
ZeRO-Infinity: 
Breaking the GPU Memory Wall for Extreme Scale Deep Learning
  

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He

deepspeed



Large model training landscape

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in 

model size?

•  Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D 

parallelism (tensor-slicing + pipeline 
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | 
Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Beyond the GPU Memory
Memory available on a Single DGX-2 Node

• Modern clusters have heterogeneous 
memory systems.

• GPU memory comprises a small 
fraction

• Leverages GPU/CPU/NVMe memory
• 32T params on 32 nodes
• 1T params on a single node

• GPT-3 can be fine-tuned on a single 
node

Model Size on a Single DGX-2 Node

GPU Only

CPU + GPU

NVMe+CPU+GPU



How to leverage non-GPU memory?

• Can we extend an existing parallel training technology to use 
CPU/NVMe memory?

• Data Parallelism : Replication causes memory explosion

• Tensor-Slicing: Does not scale beyond a single node

• Pipeline-Parallelism: Requires significant code refactoring

• What about Zero Redundancy Optimizer (ZeRO)?
• Efficiently scale across nodes – trillions of parameters 
• No model code refactoring necessary



ZeRO: Zero Redundancy Optimizer

• Memory efficient form of data parallelism

• Each GPU stores a mutually exclusive subset of the parameters

• Broadcast parameters from owner to all the GPUs as needed
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ZeRO with CPU/NVME Offload

• Store in CPU/NVME instead of GPU

• Send from CPU/NVMe to GPU

• Broadcast or reduce as ZeRO

• Is NVME→GPU bandwidth 
sufficient?
• Efficiency analysis based on 
bandwidth



Efficiency as a function of bandwidth

Data Type Overlap Requirement

Params/Grads Yes 60 GB/s

Optimizer States No 1500 GB/s

Activations Yes 4 GB/s Batch Size 2K tokens per GPU



ZeRO with CPU/NVME Offload

NVMENVMENVME
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• Is CPU/NVME→GPU bandwidth sufficient?
• Params/grads: PCIe bottleneck 12 GB/s

• Optimizer States: More than needed

• Activations: CPU Memory bandwidth sufficient

Layer 0
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GPUs Data Type Required NVMe memory
CPU 

Memory

1024 Params/Grads 60 GB/s 12 GB/s 12 GB/s

1024 Optimizer States 1500 GB/s 1792 GB/s 4096 GB/s

1024 Activations 4 GB/s 1.75GB/s 4GB/s

ZeRO with non-GPU memory

Example: Training using ZeRO with Offload on 64x DGX-2 nodes.



• Partition each parmaeter across GPUs
• Send from NVMe to GPU in parallel
• Allgather and Reduce-Scatter

• Bandwidth Increases linearly with 
devices
• #gpus x host-to-device bandwidth
• CPU -> GPU: 64 GB/s – 4 TB/s (1-64 nodes)
• NVMe -> GPU: 28 GB/s – 1.8 TB/s (1-64 nodes)  

• Limited by GPU→GPU bw
• min (#gpus x host-device bw, gpu-gpu bw)
• 70 GB/s

ZeRO-Infinity
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GPUs Data Type Required NVMe memory
CPU 

Memory

1024 Params/Grads 60 GB/s 70 GB/s 70 GB/s

1024 Optimizer States 1500 GB/s 1792 GB/s 4096 GB/s

1024 Activations 4 GB/s 1.75GB/s 4GB/s

ZeRO Infinity

Weak Scaling:
ZeRO Infinity vs ZeRO Offload



ZeRO-Infinity in Action



• Overlap Centric Design
• GPU computation

• GPU → CPU, NVME → CPU communication

• GPU → GPU communication

• Infinity Offload Engine
• DeepNVMe

• Pinned Memory Management Layer

• Can be used as an independent library

Powerful Optimizations in ZeRO-Infinity
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Ease Inspired Implementation

• Automatic Data Movement
• Auto registration of all parameters

• Intercepting parameter access to automate communication

• Automatic Model Partitioning during Initialization
• Initializing models that are larger than GPU/CPU memory

• Automatically partitioning parmaeters as they are created



Evaluation



Massive model scale
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Excellent Efficiency
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Super-linear Scalability
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Democratizing Large Model Training
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Impact of System Features on Performance

• Activation checkpoint offload• Prefetching and Overlapping

8B model on 64 GPUs

More effective for smaller batch sizes Overhead is negligible for large hidden dims



Large model training landscape today

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in 

model size?

•  Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D 

parallelism (tensor-slicing + pipeline 
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | 
Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Redefining the landscape 
with ZeRO-Infinity

• Beyond GPU Memory  
• 50x larger models
• 32T params on 512 GPUs (instead of 25K)

• Broader access to large model training 
• GPT-3 sized fine-tuning on a single 

node/GPU (instead of 16 nodes)

• Excellent Throughput and Scalability
• Comparable to 3D-parallelism

• Ease of Use
• No model refactoring necessary



Thank You!

www.deepspeed.ai

is hiring

http://www.deepspeed.ai/


Evaluation



• Overlap Centric Design
• GPU computation

• GPU → CPU, NVME → CPU communication

• GPU → GPU communication

• Infinity Offload Engine
• DeepNVMe

• Pinned Memory Management Layer

• Can be used as an independent library

Powerful Optimizations in ZeRO-Infinity
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