

ZeRO-Infinity:

Breaking the GPU Memory Wall for Extreme Scale Deep Learning

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He

Large model training landscape

- GPU Memory Wall
	- 1T (10T) params: 800 (8K) V100 GPUs
	- How do we support the growth in model size?
- Accessibility to large model training
	- 256 GPUs to fine-tune GPT-3
	- Limited access to such resources
- Model code refactoring
	- Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
	- Painful and error prone

Beyond the GPU Memory Memory Memory available on a Single DGX-2 Node

- Modern clusters have heterogeneous memory systems.
- GPU memory comprises a small fraction
- Leverages GPU/CPU/NVMe memory
	- 32T params on 32 nodes
	- 1T params on a single node

Model Size on a Single DGX-2 Node

How to leverage non-GPU memory?

- Can we extend an existing parallel training technology to use CPU/NVMe memory?
- Data Parallelism : Replication causes memory explosion
- Tensor-Slicing: Does not scale beyond a single node
- Pipeline-Parallelism: Requires significant code refactoring
- What about Zero Redundancy Optimizer (ZeRO)?
	- Efficiently scale across nodes trillions of parameters
	- No model code refactoring necessary

ZeRO: Zero Redundancy Optimizer

- Memory efficient form of data parallelism
- Each GPU stores a mutually exclusive subset of the parameters
- Broadcast parameters from owner to all the GPUs as needed

Model States mapping in **Data Parallel** Training Model States mapping in **ZeRO** Training

ZeRO with CPU/NVME Offload

- Store in CPU/NVME instead of GPU
- Send from CPU/NVMe to GPU
- Broadcast or reduce as ZeRO

$$
efficiency = \frac{compute_time}{compute_time+communication_time}
$$

$$
compute_time = \frac{total_computation}{peak_{tp}}
$$

communication time

ait

total_computation
total_data_movement $=$ total_data_movement hw $=\frac{total_computation}{ait\times bw$

$$
efficiency = \frac{ait \times bw}{ait \times bw + peak_{tp}}
$$

- Is NVME \leftrightarrow GPU bandwidth sufficient?
	- Efficiency analysis based on bandwidth

Efficiency as a function of bandwidth

(a) Parameter and Gradient Bandwidth

(b) Optimizer States bandwidth

(c) Activation Checkpoint Bandwidth

Figure 3: Impact of bandwidth on efficiency assuming an accelerator with 70 TFlops of single GPU peak achievable throughput.

Batch Size 2K tokens per GPU

ZeRO with CPU/NVME Offload

Example: Training using ZeRO with Offload on 64x DGX-2 nodes.

ZeRO with non-GPU memory

- Is CPU/NVME \leftrightarrow GPU bandwidth sufficient?
	- Params/grads: PCIe bottleneck 12 GB/s
	- Optimizer States: More than needed
	- Activations: CPU Memory bandwidth sufficient

ZeRO-Infinity

- Partition each parmaeter across GPUs
- Send from NVMe to GPU in parallel
- Allgather and Reduce-Scatter
- Bandwidth Increases linearly with devices
	- #gpus x host-to-device bandwidth
	- CPU -> GPU: 64 GB/s 4 TB/s (1-64 nodes)
	- NVMe -> GPU: 28 GB/s 1.8 TB/s (1-64 nodes)
- Limited by GPU \leftrightarrow GPU bw
	- min (#gpus x host-device bw, gpu-gpu bw)
	- 70 GB/s

ZeRO Infinity

9

Weak Scaling: ZeRO Infinity vs ZeRO Offload

ZeRO-Infinity in Action

Powerful Optimizations in ZeRO-Infinity

- Overlap Centric Design
	- GPU computation
	- GPU \leftrightarrow CPU, NVME \leftrightarrow CPU communication
	- GPU \leftrightarrow GPU communication
- Infinity Offload Engine
	- DeepNVMe
	- Pinned Memory Management Layer
	- Can be used as an independent library

Overlapped layer prefetching during forward pass

Ease Inspired Implementation

- Automatic Data Movement
	- Auto registration of all parameters
	- Intercepting parameter access to automate communication
- Automatic Model Partitioning during Initialization
	- Initializing models that are larger than GPU/CPU memory
	- Automatically partitioning parmaeters as they are created

Evaluation

Massive model scale

Excellent Efficiency

Super-linear Scalability

Democratizing Large Model Training

Impact of System Features on Performance

• Prefetching and Overlapping • Activation checkpoint offload

More effective for smaller batch sizes **Overhead is negligible for large hidden dims**

Large model training landscape today

• **GPU Memory Wall**

- 1T (10T) params: 800 (8K) V100 GPUs
- How do we support the growth in model size?
- **Accessibility to large model training**
	- 256 GPUs to fine-tune GPT-3
	- Limited access to such resources

• **Model code refactoring**

- Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
- Painful and error prone

Redefining the landscape with ZeRO-Infinity

- Beyond GPU Memory
	- 50x larger models
	- 32T params on 512 GPUs (instead of 25K)
- Broader access to large model training
	- GPT-3 sized fine-tuning on a single node/GPU (instead of 16 nodes)
- Excellent Throughput and Scalability
	- Comparable to 3D-parallelism
- Ease of Use
	- No model refactoring necessary

Thank You!

www.deepspeed.ai

is hiring

Evaluation

-
-
-
-
- -
	- -
-
- - - -

-
-
-
-
- -
	-
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
- -
- - -
-

Powerful Optimizations in ZeRO-Infinity

- Overlap Centric Design
	- GPU computation
	- GPU \leftrightarrow CPU, NVME \leftrightarrow CPU communication
	- GPU \leftrightarrow GPU communication
- Infinity Offload Engine
	- DeepNVMe
	- Pinned Memory Management Layer
	- Can be used as an independent library

Overlapped layer prefetching during forward pass