

ZeRO-Infinity:

Breaking the GPU Memory Wall for Extreme Scale Deep Learning

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He

Large model training landscape

- GPU Memory Wall
 - 1T (10T) params: 800 (8K) V100 GPUs
 - How do we support the growth in model size?
- Accessibility to large model training
 - 256 GPUs to fine-tune GPT-3
 - Limited access to such resources
- Model code refactoring
 - Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
 - Painful and error prone

Beyond the GPU Memory

- Modern clusters have heterogeneous memory systems.
- GPU memory comprises a small fraction
- Leverages GPU/CPU/NVMe memory
 - 32T params on 32 nodes
 - 1T params on a single node

Memory available on a Single DGX-2 Node

	SPU Memo	ry 🗖 C	PU Memo	ry 🗖 N	VMe Stora	age
0.5 1.5			28			
0	5	10	15	20	25	30
			Memory (TB)			

Model Size on a Single DGX-2 Node

How to leverage non-GPU memory?

- Can we extend an existing parallel training technology to use CPU/NVMe memory?
- Data Parallelism : Replication causes memory explosion
- Tensor-Slicing: Does not scale beyond a single node
- Pipeline-Parallelism: Requires significant code refactoring
- What about Zero Redundancy Optimizer (ZeRO)?
 - Efficiently scale across nodes trillions of parameters
 - No model code refactoring necessary

ZeRO: Zero Redundancy Optimizer

- Memory efficient form of data parallelism
- Each GPU stores a mutually exclusive subset of the parameters
- Broadcast parameters from owner to all the GPUs as needed

Model States mapping in **Data Parallel** Training

Model States mapping in ZeRO Training

ZeRO with CPU/NVME Offload

- Store in CPU/NVME instead of GPU
- Send from CPU/NVMe to GPU
- Broadcast or reduce as ZeRO

$$efficiency = \frac{compute_time}{compute_time+communication_time}$$

$$compute_time = \frac{total_computation}{peak_{tp}}$$

communication_time

ait

$$= \frac{total_computation}{total_data_movement}$$
$$= \frac{total_data_movement}{bw}$$
$$= \frac{total_computation}{ait \times bw}$$

$$efficiency = \frac{ait \times bw}{ait \times bw + peak_{tp}}$$

- Is NVME ← → GPU bandwidth sufficient?
 - Efficiency analysis based on bandwidth

Efficiency as a function of bandwidth

(a) Parameter and Gradient Bandwidth

(b) Optimizer States bandwidth

(c) Activation Checkpoint Bandwidth

Figure 3: Impact of bandwidth on efficiency assuming an accelerator with 70 TFlops of single GPU peak achievable throughput.

Data Type	Overlap	Requirement
Params/Grads	Yes	60 GB/s
Optimizer States	No	1500 GB/s
Activations	Yes	4 GB/s

Batch Size 2K tokens per GPU

ZeRO with CPU/NVME Offload

Example: Training using ZeRO with Offload on 64x DGX-2 nodes.

GPUs	Data Type	Required
1024	Params/Grads	60 GB/s
1024	Optimizer States	1500 GB/s
1024	Activations	4 GB/s

ZeRO with non-GPU memorv

- Is CPU/NVME ← → GPU bandwidth sufficient?
 - Params/grads: PCIe bottleneck 12 GB/s
 - Optimizer States: More than needed
 - Activations: CPU Memory bandwidth sufficient

ZeRO-Infinity

- Partition each parmaeter across GPUs
- Send from NVMe to GPU in parallel
- Allgather and Reduce-Scatter
- Bandwidth Increases linearly with devices
 - #gpus x host-to-device bandwidth
 - CPU -> GPU: 64 GB/s 4 TB/s (1-64 nodes)
 - NVMe -> GPU: 28 GB/s 1.8 TB/s (1-64 nodes)
- Limited by GPU $\leftarrow \rightarrow$ GPU bw
 - min (#gpus x host-device bw, gpu-gpu bw)
 - 70 GB/s

ZeRO Infinity

GPUs	Data Type	Required	NVMe memory	CPU Memory
1024	Params/Grads	60 GB/s	70 GB/s	70 GB/s
1024	Optimizer States	1500 GB/s	1792 GB/s	4096 GB/s
1024	Activations	4 GB/s	1.75GB/s	4GB/s

9

Weak Scaling: ZeRO Infinity vs ZeRO Offload ZeRO-Infinity in Action

Powerful Optimizations in ZeRO-Infinity

- Overlap Centric Design
 - GPU computation
 - GPU \leftarrow \rightarrow CPU, NVME \leftarrow \rightarrow CPU communication
 - GPU \leftarrow \rightarrow GPU communication
- Infinity Offload Engine
 - DeepNVMe
 - Pinned Memory Management Layer
 - Can be used as an independent library

Overlapped layer prefetching during forward pass

Ease Inspired Implementation

- Automatic Data Movement
 - Auto registration of all parameters
 - Intercepting parameter access to automate communication
- Automatic Model Partitioning during Initialization
 - Initializing models that are larger than GPU/CPU memory
 - Automatically partitioning parmaeters as they are created

Evaluation

Massive model scale

Excellent Efficiency

Super-linear Scalability

Democratizing Large Model Training

Impact of System Features on Performance

• Prefetching and Overlapping

Activation checkpoint offload

Overhead is negligible for large hidden dims

Large model training landscape today

GPU Memory Wall

٠

- 1T (10T) params: 800 (8K) V100 GPUs
- How do we support the growth in model size?
- Accessibility to large model training
 - 256 GPUs to fine-tune GPT-3
 - Limited access to such resources

Model code refactoring

- Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
- Painful and error prone

Redefining the landscape with ZeRO-Infinity

- Beyond GPU Memory
 - 50x larger models
 - 32T params on 512 GPUs (instead of 25K)
- Broader access to large model training
 - GPT-3 sized fine-tuning on a single node/GPU (instead of 16 nodes)
- Excellent Throughput and Scalability
 - Comparable to 3D-parallelism
- Ease of Use
 - No model refactoring necessary

Thank You!

www.deepspeed.ai

is hiring

Evaluation

Powerful Optimizations in ZeRO-Infinity

- Overlap Centric Design
 - GPU computation
 - GPU \leftarrow \rightarrow CPU, NVME \leftarrow \rightarrow CPU communication
 - GPU \leftarrow \rightarrow GPU communication
- Infinity Offload Engine
 - DeepNVMe
 - Pinned Memory Management Layer
 - Can be used as an independent library

Overlapped layer prefetching during forward pass