
ZeRO-Infinity:
Breaking the GPU Memory Wall for Extreme Scale Deep Learning

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He

deepspeed

Large model training landscape

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in

model size?

• Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D

parallelism (tensor-slicing + pipeline
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab |
Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Beyond the GPU Memory
Memory available on a Single DGX-2 Node

• Modern clusters have heterogeneous
memory systems.

• GPU memory comprises a small
fraction

• Leverages GPU/CPU/NVMe memory
• 32T params on 32 nodes
• 1T params on a single node

• GPT-3 can be fine-tuned on a single
node

Model Size on a Single DGX-2 Node

GPU Only

CPU + GPU

NVMe+CPU+GPU

How to leverage non-GPU memory?

• Can we extend an existing parallel training technology to use
CPU/NVMe memory?

• Data Parallelism : Replication causes memory explosion

• Tensor-Slicing: Does not scale beyond a single node

• Pipeline-Parallelism: Requires significant code refactoring

• What about Zero Redundancy Optimizer (ZeRO)?
• Efficiently scale across nodes – trillions of parameters
• No model code refactoring necessary

ZeRO: Zero Redundancy Optimizer

• Memory efficient form of data parallelism

• Each GPU stores a mutually exclusive subset of the parameters

• Broadcast parameters from owner to all the GPUs as needed

GPU 0 GPU 1 GPU 2

Layer 0
Layer 1
Layer 2

GPU Interconnect

Layer 0
Layer 1
Layer 2

Layer 0
Layer 1
Layer 2

GPU 0 GPU 1 GPU 2

Layer 0

GPU Interconnect

Layer 1
Layer 2

Model States mapping in Data Parallel Training Model States mapping in ZeRO Training
5

ZeRO with CPU/NVME Offload

• Store in CPU/NVME instead of GPU

• Send from CPU/NVMe to GPU

• Broadcast or reduce as ZeRO

• Is NVME→GPU bandwidth
sufficient?
• Efficiency analysis based on
bandwidth

Efficiency as a function of bandwidth

Data Type Overlap Requirement

Params/Grads Yes 60 GB/s

Optimizer States No 1500 GB/s

Activations Yes 4 GB/s Batch Size 2K tokens per GPU

ZeRO with CPU/NVME Offload

NVMENVMENVME

Layer 0
Layer 1

Layer 2

GPU Interconnect

GPU 0 GPU 1 GPU 2

PCIe

• Is CPU/NVME→GPU bandwidth sufficient?
• Params/grads: PCIe bottleneck 12 GB/s

• Optimizer States: More than needed

• Activations: CPU Memory bandwidth sufficient

Layer 0

8

GPUs Data Type Required NVMe memory
CPU

Memory

1024 Params/Grads 60 GB/s 12 GB/s 12 GB/s

1024 Optimizer States 1500 GB/s 1792 GB/s 4096 GB/s

1024 Activations 4 GB/s 1.75GB/s 4GB/s

ZeRO with non-GPU memory

Example: Training using ZeRO with Offload on 64x DGX-2 nodes.

• Partition each parmaeter across GPUs
• Send from NVMe to GPU in parallel
• Allgather and Reduce-Scatter

• Bandwidth Increases linearly with
devices
• #gpus x host-to-device bandwidth
• CPU -> GPU: 64 GB/s – 4 TB/s (1-64 nodes)
• NVMe -> GPU: 28 GB/s – 1.8 TB/s (1-64 nodes)

• Limited by GPU→GPU bw
• min (#gpus x host-device bw, gpu-gpu bw)
• 70 GB/s

ZeRO-Infinity

NVMENVMENVME

GPU Interconnect

GPU 0 GPU 1 GPU 2

PCIe

Layer 0
Layer 1
Layer 2

Layer 0

9

GPUs Data Type Required NVMe memory
CPU

Memory

1024 Params/Grads 60 GB/s 70 GB/s 70 GB/s

1024 Optimizer States 1500 GB/s 1792 GB/s 4096 GB/s

1024 Activations 4 GB/s 1.75GB/s 4GB/s

ZeRO Infinity

Weak Scaling:
ZeRO Infinity vs ZeRO Offload

ZeRO-Infinity in Action

• Overlap Centric Design
• GPU computation

• GPU → CPU, NVME → CPU communication

• GPU → GPU communication

• Infinity Offload Engine
• DeepNVMe

• Pinned Memory Management Layer

• Can be used as an independent library

Powerful Optimizations in ZeRO-Infinity

Layer i

Layer i+1

Layer i+2

Prefetching

Prefetching

NVME

CPU

GPU

Overlapped layer prefetching during forward pass

Computing

Ease Inspired Implementation

• Automatic Data Movement
• Auto registration of all parameters

• Intercepting parameter access to automate communication

• Automatic Model Partitioning during Initialization
• Initializing models that are larger than GPU/CPU memory

• Automatically partitioning parmaeters as they are created

Evaluation

Massive model scale

1 T
8 T

16 T

32 T

64 T

128 T

0

20

40

60

80

100

120

140

1 8 16 32 64 128

P
a
ra

m
e
te

rs
 (

Tr
il
li
o

n
s)

NVIDIA V100 DGX-2 Nodes

3D parallelism

ZeRO-Infinity

Excellent Efficiency

0

10

20

30

40

50

60

0.5 1 5 10 20

T
h

ro
u

g
h

p
u

t
(T

F
LO

P
s)

Model Parameters (Trillions)

3D Parallelism

ZeRO-Infinity

Super-linear Scalability

0

5

10

15

20

25

30

64 128 192 256 320 384 448 512

T
h

ro
u

g
h

p
u

t
(P

F
LO

P
s)

Number of V100 GPUs

Measured Throughput

Perfect Linear Scaling (ref.)

Democratizing Large Model Training

1000

70

20

20

13

1.4

0 100 200 300 400 500 600 700 800 900 1000

ZeRO-Infinity (NVMe)

ZeRO-Infinity (CPU)

3D Parallelism

ZeRO Stage 3

ZeRO Offload

Data Parallel

Trainable Model Parameter (Billions)

Impact of System Features on Performance

• Activation checkpoint offload• Prefetching and Overlapping

8B model on 64 GPUs

More effective for smaller batch sizes Overhead is negligible for large hidden dims

Large model training landscape today

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in

model size?

• Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D

parallelism (tensor-slicing + pipeline
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab |
Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Redefining the landscape
with ZeRO-Infinity

• Beyond GPU Memory
• 50x larger models
• 32T params on 512 GPUs (instead of 25K)

• Broader access to large model training
• GPT-3 sized fine-tuning on a single

node/GPU (instead of 16 nodes)

• Excellent Throughput and Scalability
• Comparable to 3D-parallelism

• Ease of Use
• No model refactoring necessary

Thank You!

www.deepspeed.ai

is hiring

http://www.deepspeed.ai/

Evaluation

• Overlap Centric Design
• GPU computation

• GPU → CPU, NVME → CPU communication

• GPU → GPU communication

• Infinity Offload Engine
• DeepNVMe

• Pinned Memory Management Layer

• Can be used as an independent library

Powerful Optimizations in ZeRO-Infinity

Layer i

Prefetching

Prefetching

NVME

CPU

GPU

Overlapped layer prefetching during forward pass

Computing

i+1

i+2

Prefetching

	Slide 1
	Slide 2: Large model training landscape
	Slide 3: Beyond the GPU Memory
	Slide 4: How to leverage non-GPU memory?
	Slide 5: ZeRO: Zero Redundancy Optimizer
	Slide 6: ZeRO with CPU/NVME Offload
	Slide 7: Efficiency as a function of bandwidth
	Slide 8: ZeRO with CPU/NVME Offload
	Slide 9: ZeRO-Infinity
	Slide 10
	Slide 11: Powerful Optimizations in ZeRO-Infinity
	Slide 12: Ease Inspired Implementation
	Slide 13: Evaluation
	Slide 14: Massive model scale
	Slide 15: Excellent Efficiency
	Slide 16: Super-linear Scalability
	Slide 17: Democratizing Large Model Training
	Slide 18: Impact of System Features on Performance
	Slide 19: Large model training landscape today
	Slide 20: Redefining the landscape with ZeRO-Infinity
	Slide 21: Thank You!
	Slide 22: Evaluation
	Slide 23: Powerful Optimizations in ZeRO-Infinity

