<22

Model Scale

e 10+ Trillion parameters

DeepSpeed Inference: Enabling Efficient Speed

* Fast & scalable training

Inference of Transformer Models at
Unprecedented Scale -

Compressed Training
Reza, Samyam, Ammar, Cheng, Du, Elton, Olatunji, Shaden, Minjia, Jeff, and « Boosted efficiency

Yuxiong He

Accelerated inference
* Up to 10x faster & cheaper

Usability

https://github.com/microsoft/DeepSpeed ¢ Few lines of code changes

https://github.com/microsoft/DeepSpeed

What is DeepSpeed?

Multi-purpose DL optimization suite @%

Training Inference Compression
e Speed e Latency e Model size

e Scale e Throughput e Latency
e Cost e Serving cost e Tuning cost
e Democratization | e Ease-of-use e Composability

DeepSpeed Website: https://www.deepspeed.ai/
DeepSpeed GitHub: https://github.com/microsoft/DeepSpeed g deepspeed

SC22 | Dallas, TX | hpc accelerates.

https://www.deepspeed.ai/
https://github.com/microsoft/DeepSpeed

Agenda

e Introduction

* Inference Landscape
* Challenges

* Proposed Optimizations
* Single-GPU inference-optimized transformer kernels
* Many-GPU dense transformer optimizations
* Massive-scale sparse (MoE) model optimizations
» ZeRO-Offload inspired optimizations

 Performance Evaluation
* Conclusion

& ¢ SC22 | Dallas, TX | hpc accelerates.

Introduction

* Deep Learning
* Training: most state-of-the-art studies
and papers —

* Focused on distributed training on
hundreds of GPUs

* Optimizing for computation and
communication efficiency

* Training time and FLOPS are key metrics
Inference
* CPU based inference is common
* GPUs —increased adoption
* Large transformer models especially

sparse MoE models can exploit hundreds

of GPUs!

* Latency and throughput are the main
metrics

ARTIFICIAL

MACHINE
LEARNING

DEEP
LEARNING

0001% umcn gy /0100

1950°s 1960's 1970's 1980's 1990's 2000's 2010's

TRAINING

ing a new capability
Iromcx I gd(

I—/\%

TRAINING
DATASET

Courtesy: https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-deep-learning-training-and-inference and

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

'- SC22 | Dalias, TX | hpc accelerates

https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-deep-learning-training-and-inference
http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

Transformer Models

* Transformer models are
everywhere
* Language, Vision, Speech,
multi-modal, etc.

* And they are becoming
bigger and better!

* Being re-branded as
“foundation models”

* Training large transformer
models is hard

* Deploying (inference) them
is even more challenging!

I: $C22 | Dallas, TX | hpc accelerates.

Tasks

Question 7
& Answering r,.
Data S ’ Sentiment
! , . Analysis
l ; \'l %7 sf) 2
Text ¢

F D r
| %, Information)
o jlmages ' Extraction \,\
o Y Adaptation
Speech/\/\m\/} 4aining | Foundation " g Image e~
Model %‘f Captioning 4 o /
\
Structured ——
<! Data
‘g‘“ﬁ“ = Object
. = ' 4 S Recognition
3D Signals 4
— A\
$ Instruction
4\‘_ Following .. .~

[

https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Inference Landscape

* Diverse Inference Landscape
* Model Size: millions to trillions of parameters
* Architecture: Dense vs Sparse
* Heterogeneous Hardware: Single-GPU, Single-node, and Multi-node
* Batch Size: few (latency sensitive) to thousands (throughput sensitive)

* Challenges

 Single Solution cannot be efficient across the entire landscape
* Hardware accessibility limitations for large model inference

BERT-Base BERT-Large GPT2 GPT2-XL Turing-NLG BLOOM MT-NLG MoE MoE MoE
(112M) (340M) (340M) (1.5B) (178B) (176B) (5308B) (3498B) (1T) (2T)

1: ¢ 5C22 | Dallas, TX | hpc accelerates.

DeepSpeed Inference

DeepSpeed Inference: SoTA latency and throughput across the entire inference landscape

14

EBaseline W DeepSpeed Inference 12x
212
£
g 10 8.7x
7.6x
g_ 8 7.2x 7.3x
E 6 5.4x 5.9x
§ . 4x
2 I 2.1 2.5
o
T 7 H | 7
0) 7z) 77) 77
BERT-Base BERT-Large GPT2 GPT2-XL Turing-NLG BLOOM MT-NLG MoE MoE MoE
(112M) (340M) (340M) (1.5B) (178) (1768) (5308) (3498) (m (2T
Dense Dense Sparse
Single GPU Multi-GPU Multi-GPU

A systematic composition of diverse set of optimizations

O Inference Optimized transformer kernels — achieve best single GPU performance
O Many-GPU Dense transformer optimizations — powering large and very large models like Megatron-Turing 530B
L Massive Scale Sparse Model Inference— a trillion parameter MoE model inference under 25ms

Democratizing Massive Model Inference
O ZeRO-Inference — 50x bigger model inference on single-GPU device

Agenda

* Proposed Optimizations
* Single-GPU inference-optimized transformer kernels
 Many-GPU dense transformer optimizations
* Massive-scale sparse (MoE) model optimizations
* ZeRO-Offload inspired optimizations

 Performance Evaluation
* Conclusion

¥ 5c22 | Dallas, TX | hpc accelerates.

Single GPU transformer kernels

Y ION o o —— e — e —
DeepFUSIOn | QKV —+ Query > + LL Q-trans —*» Attn , Soft Attention I

for transformer models '"tEFf'F‘Ed‘ate+ GELU »(@)» °”F‘f“t @G-

* Fuse all the kernels we can | L Score Max |
oDl e |
. . N > K —>{+ > K-t
* Optimized GEMM kernels] e 1 |
1.5x e ~ Attn
* Kernels injected to models speedup */Value jj’ Vitrans " Context :
at runtime L——;ttn———r———-}——‘l
* Easy-to-use T T—._t_ lT Qutpur ~ | L TrERSIOmMIT
* No model code change | P | o
. | Norm 3x | speedup
* End to end improvement | . speedup Bias-add |
|
|

| L |
_________ —L b.UlI - Oﬁiﬂs

Many GPU Dense Optimizations

* Challenges of supporting a massive model for inference

e Tensor-slicing: can’t scale across nodes

* Pipeline parallelism can scale but has its own challenge
* Dependency between current and next token generation
* Load imbalance between prompt processing and token generation

* Memory and communication overheads

* Inference optimized pipeline parallelism in DeepSpeed
1. Efficient Pipeline schedule to handle token dependencies
2. Hybrid Scheduling to address load balancing
3. Memory and communication optimizations

1} $C22 | Dallas, TX | hpc accelerates.

Efficient Pipeline Scheduling

e 1. Adapt training pipeline-schedule to handle token-generation

* Inference pipeline load imbalance
* Prompt: process a batch of input (large tokens)
* Token-generation: generating one token per batch

e 2. Hybrid Schedule for higher inference throughput

Prompt processing Token-generation

ml 010101010

Pipeline
Stage

mO ml B2 n MO (bsz=4) M1 (bsz=4)
ml A28 m3
MO (bsz=8)

Pipeline
Stage

3. Memory and communication optimizations

* High memory usage to handle large batch inference
 Saving Key/Value for all the pipeline stages (in-flight requests)

* Use CPU memory to offload a part of KV-cache
* Double-buffer memory to write the current data while prefetching the next
* Offload policy: to the point that we saturate PCIE bandwidth
* Increase batch size by ~¥30%, resulting in 25% speedup

* Communication optimization

* Handle the dynamic data-transfer at inference time
 We use some meta-data to handle the serialization-deserialization issue

e Customized implementation to eliminate the GPU-to-CPU traffic

1} $C22 | Dallas, TX | hpc accelerates.

Primary Challenge with MoE Inference

* Inference latency lower-bounded by parameter load time
* Model-Size / Achievable Memory Bandwidth
e Ex. 200B model on a single V1I00@900GB/s takes 444ms

* Tensor-Parallelism to achieve lowest latency

* Higher aggregate bandwidth
e Ex. 200B model on 16x V100@500GB/s takes 50ms

e Tensor-Parallelism is limited
e Fine-grained Parallelism -> hard to achieve good bandwidth per device
* Communication volume overhead -> does not decrease with more devices

* 4x larger MoE model size than quality-equivalent-dense
* Requires 4x higher bandwidth/parallelism/scalability for latency parity

Designing a highly scalable MoE Inference System

* Goal:
e Scale beyond tensor-slicing
* Achieve aggregate memory bandwidth across hundreds of devices

* Three main area of optimizations for maximizing aggregate bandwidth
* A symphony of parallelism
* Careful orchestration of tensor, data and expert parallelism

 Parallelism coordinated Communication Optimization Strategies
* Minimize communication overhead

e Kernel Optimizations
* Maximize bandwidth utilization per device

1’ © SC22 | Dallas, TX | hpc accelerates.
il

A symphony of Parallelism

* Observation
* Eachtoken is processed by at most a single expert SOl EIE
e Eachtoken can be processed independent|y of the Fine-grained Parallelism Coarse-grained parallelism
other Comm Vol: O(batch) Comm Vol: O(batch/devices)
e Expert Parallelism
* Group tokens based on experts Total GPUs = 16, Total Experts =8
° Run experts |n pa ra”el e:(pert—s_li:ir.\g dzgree :_ZAe;per-t-parallel degree_:s / _ Expert-parallelism \
. . . . ensor-slicing degree = 4, data-parallel degree =4 K Expert-slicing Expert-slicing
* Coordinate with all-to-all communication r——— T
Output (GPUO) | (
I a | Expert-Slice 1 | Expert-Slice 1
. . (GPU 8) (GPU 15)
* Tensor Parallelism: - Mo Transformer Layer | —
ici /| Allgather.
* Tensor-slicing for non-expert parameters (6PU7 <> GPU1S)
* Expert-Slicing for expert parameters | = rensor shing rensor-slicing
. AN (GPU 1) (GPU 13)
* Data Parallelism: nput sice2 Sice 2
* Scale non-expert parametersto match expert N o

Al (GPU 14)
. \\ reduce - reduce
parallelism Y N o
Ay
N Data-parallelism (no communication) /

SC22 | Dallas, TX | hpc accelerates.

Communication Optimizations

e Communications:
* All-to-all, all-gather, all-reduce

Baseline AlltoAll:
(T T T s ey e e (TTTTTTT T
o L BT - 1o] c [0 VRS CTLY [« 1 [v]
* Communication optimizations SICTE [T<T- vt NG ¢ | - I
« NUMA aware, SCCL oo W > (e HEOE
Bl o]} -\-------EEF_’EJ_?'_E!_!_E.
* Hierarchical, parallelism-coordinated, all-
gather based, data mapping strategles
Baseline All-to-All with Tensor-Slicing:
vpoicru oy B e o: cruo R Y [I
* Al-to-Alllatency —~ — i o EEE Aon (1 o IAE D
* Increases linearly with devices ;Mpo,f_g_p_g__z_ﬂ_____ﬂ_g_m_‘. > MPO! apu 2
« Massive overhead at hundred gpu scale ve sru S I L MF.’.%-EE’H?.EE.E_III_
. . Parallelism-coordinated AlltoAll optimization
° Para”ensm'COOrdlnatEd AII'tO'A” _MI_J_C_J_ (-E-P-IZJ-E) “““ ﬂ “'""E"] _______ . (Tacess [mmmmo—mmm—mmmme]
. L dund in dat meo:eruoEIE B Local (MPoicruo @ | (MPo:cPUORYIEl]
everage re un ancy In a a _MI_D_]_'_xEP_!_%__.____E___!_E_, Transform + 'Mﬁ'i-?-é-ﬁ[:l-i ----------------- j Inter- MP_ME’_]- LE’E’BE““““MJ
* Reduce critical communication path Mol AEE D, P el cr I) (MO Gru> |
* O(gpus)-> O(gpus/tensor-slicing) vpe e sEE AL piiceus | Lk ivericrus Y

SC22 | Dallas, TX | hpc accelerates.

Democratizing Massive Model Inference

 Many model scientists only have access to one or a few GPUs

» ZeRO-Inference utilizes heterogeneous memory (GPU/CPU/NVMe) to
fit massive models

e Built on top of ZeRO-Infinity and optimized for inference
* DeepNVMe, a powerful C++ NVMe read/write library

e Supports bulk asynchronous data transfer
* Achieves near the peak bandwidth
* Pinned Memory Manager, manages the limited supply of pinned memory
* Reuses a small amount (tens of GBs) for offloading the entire model states (up to tens of
TBs) to CPU or NVMe
 Dynamic Prefetching (detailed in next slide)

o . e
19? : $C22 | Dallas, TX | hpc accelerates.
A

Dynamic Prefetching

* Trace the operator sequence ahead of time

e At runtime prefetch parameters needed for future operators while
computing the current one

it" operator (i + 1)" operator (i + 2)t" operator (i + 3)" operator
L L

A A
I 1 I 1

w/ prefetching: o All three overlap

Mitigates the bandwidth
oo bottleneck on a single GPU

nc: NVMe to CPU memory

K ¢ SC22 | Dallas, TX | hpc accelerates.

Agenda

* Performance Evaluation
* Conclusion

" ; SC22 | Dallas, TX | hpc accelerates.

DS-Inference: Up to 2x better single-GPU performance

* Low latency and high throughput for various model sizes
* GPT2-345M to GPT-13B

140 GPT2 500 300 GPTJ-6B 1205 500 GPT-13B 30 _
o ¢ 0
- 120 160 § 250 100 5 % 400 0 7
g 100 5 £ 200 g0 & = g
= 80 120 o = 2 3z 300 -
o & 3 150 60 & < 40 <
c 60 80 ¢ c X o a
g) Q S & 200 X
5 40 10 X + 100 40 £ 3 §
% . E 7 50 20 5 100 20 =
- S
S 0 0 — a
1-batch 8-batch 16-batch = 0 0 =
1-batch 8-batch 16-batch 1-batch 8-batch 16-batch
I FT (Fpl6) latency mmmm DS-Inference (Fpl6) latency W D5-Inference (INT8) latency ==s=FT (Fpl16) tput DS-Inference (Fplg) tput === D5-Inference (INT8) tput

:"':. SC22 | Dallas, TX | hpc accelerates.

DS-Inference: Up to 1.5x better multi-GPU performance

* Low latency and high throughput for models larger than a GPU memory
* GPT-NeoX 20B = GPT3-like 175B model

450
400
— 350
£ 300
= 250
£ 200
+~ 150
5100
50

0

GPT-Neox-20B

1-batch 8-batch 16-batch

40

30

20

10

o

Tput (#tokens-per-sec)

600
500

o
o
o

300
200
100

Latency (ms)

GPT-50B

30
25
20
15
10

Tput (#tokens-per-sec)

1-batch 8-batch 16-batch

s FT (Fpl6) latency mm DS-Inference (Fp16) latency mmmm DS-Inference (INT8) latency ==e=—FT (Fpl16) tput

:"':. SC22 | Dallas, TX | hpc accelerates.

GPT-175B

900
800

— 700

(%]

£ 600

= 500

O

S 400

& 300
200
100

S = R
ON PO

(000}
Tput (#tokens-per-sec)

OoON PO

1-batch 8-batch 16-batch

DS-Inference (Fp16) tput ==e= D5-Inference (INT8) tput

Symphony of all optimizations: Deploying
Megatron-Turing-NLG 530B

* Inference optimized pipeline
parallelism in DeepSpeed

* Pipeline Schedule

e Efficient schedule to handle token
dependencies

* Hybrid Scheduling to address prompt/token
load-imbalance .

* Memory-offload: utilize CPU for large- & & &
batch inference

433

Speedup
QR MW BN
'_\
_E
]
< N
L E

'_'.
~
[
[ap]

* Communication optimizations
* High-performance Transformer kernels

Unique properties of MoE inference

= 250
2 §4o
. . . & o 30
» Super-linear increase in throughput 5 E .
* Exploiting aggregate memory bandwidth 2 1
across all GPUs S 0
. £ 0 20 40 60 80
* For dense models, the best-case is Number of GPUs
“near —o—PyTorch-MoE —=— DeepSpeed-MoE ------ Linear
. . 52 Billion (1.3B+MoE-128)
* Latency reduction with more GPUs 0
* DeepSpeed-MotE: Achieve low-latency <
along with the super-linear g 20
. — 10
throughput increase! 0

8 GPUs 16 GPUs 32 GPUs 64 GPUs

B PyTorch-MoE ™ DeepSpeed-MoE

. SC22 | Dallas, TX | hpc accelerates.

Sparse MoE model optimizations

e 7.3x Lower-latency & Higher-throughput at Unprecedented Scale

e 25ms for serving a 1T model
 50ms for fastest 200B dense model

107 Billion 349 Billion 1 Trillion 2 Trillion

70 800 160 100 350 25
60 700 _ 140 08 a 300 o
A 9 g0 L S A 5
600 & 120 1 8 i 250 v
50 - 0 & : ?
z 500 & 100 g g g
Qo %) @ ~ T ™ I
£ 40 g £ 59x 0 2 £ £ 200 52
) 400 2 > 5 4 = 7.3x $
g 5.5x 2 g &0 50 3) g g
& 30 < S £ < £ 150 5
S 300 2 T 60 40 S E] K 0 3
< <
[=2] = S S
20 v 200 3 40 v 30 £ E 100 g
10 = 20 = v 50

100
, H)]
0 0 0 0 . .
PyTorch-MoE DeepSpeed-MoE PyTorch-MoE DeepSpeed-MoE PyTorch-MoE DeepSpeed-MoE by Torch-MoE DeepSpeed-Mok

's SC22 | Dalias, TX | hpc accelerates.

Democratizing Inference on a single A6000 GPU

* Large model scale: > 40x bigger model inference on single-GPU
* High efficiency:

* >50% hardware peak throughput

* Better than GPU-only inference due to larger batch size

Largest model inference on one NVIDIARTX A6000 GPU

Inference efficiency of large models on 1xA6000
(48GB HBM, 256GB DRAM, 2TB NVMe)

(o))
o

B PyTorch

Ul
o

1000

zer0-nference (\vie) - [

B ZeRO-Inference(CPU)
B ZeRO-Inference (NVMe)

N
o

ZeRO-Inference (CPU) - 128

Percentage of Peak (%)
w
o

40X 20
PyTorch I‘24 | 10
0 200 400 600 800 1000 0 530
Model size (billions of parameters)

Model size (billions of parameters)
E SC22 | Dallas, TX | hpc accelerates.

Agenda

e Conclusion

" ; SC22 | Dallas, TX | hpc accelerates .

Conclusion and Future work

* DeepSpeed inference is addressing the diverse landscape of
* Model sizes
* Model architectures
e Platform scale

* A coordinated set of optimizations are needed

Single GPU kernels

Multi GPU and multi-node inference for dense models requires coordination
* Multi-node sparse MoE models require a different set of optimizations

* DeepSpeed-inference combines them in one system

* We are laser focused on fast performance and ease-of-use

1’ © SC22 | Dallas, TX | hpc accelerates.
il

So, what’s next?

* Fast moving field; new models
everyday

* Image generation is taking over
the fun model experimentation
space!

* DeepSpeed-Mll: Our latest
effort to make DeepSpeed-
inference accessible and
reproducible

 We are enabling the fastest

Stable Difussion (under 1 sec.)
with Mll!

SC22 | Dallas, TX | hpc accelerates.

Stable Diffusion Image Generation under 1 second w. DeepSpeed MI|

Latency Sensitive Throughput Focused

Batch size: 1, Lower is better Batch size: 8, Higher is better

2.00

=
’ 1.58

1.60

S120 N\ :
| N 128 g \
AlTemplate 119 TE 1.00 §
Q
3 o0 0.80

" 0.40
Mil-Azure W\%ﬁ? 020 §

0.00

0.68

o
@
V]

0.00 0.50 1.00 1.50 2.00 2.50
MIl-Azure MII-Public AlTemplate Diffusers+ Diffusers
Batch size 1 latency (seconds) xformers v0.7.1
N . a .
WA100-4068 [MA100-80GB N A100-40GE [A100-80GB

https://github.com/microsoft/DeepSpeed-
MIl/tree/main/examples/benchmark/txt2img

https://github.com/microsoft/DeepSpeed-MII/tree/main/examples/benchmark/txt2img
https://github.com/microsoft/DeepSpeed-MII/tree/main/examples/benchmark/txt2img

Thank You!

 Questions and feedback

Training Inference Compression

e Speed e Latency Model size

e Scale e Throughput Latency

e Cost e Serving cost Tuning cost

e Democratization | e Ease-of-use Composability

Multi-purpose DL optimization suite

DeepSpeed Website: https://www.deepspeed.ai/ g d d
DeepSpeed-Mll: https://github.com/microsoft/DeepSpeed-Ml| eepspee

DeepSpeed GitHub: https://github.com/microsoft/DeepSpeed

SC22 | Dallas, TX | hpc accelerates.

https://www.deepspeed.ai/
https://github.com/microsoft/DeepSpeed-MII
https://github.com/microsoft/DeepSpeed

	Slide 1: DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
	Slide 2: What is DeepSpeed?
	Slide 3: Agenda
	Slide 4: Introduction
	Slide 5: Transformer Models
	Slide 6: Inference Landscape
	Slide 7: DeepSpeed Inference
	Slide 8: Agenda
	Slide 9: Single GPU transformer kernels
	Slide 10: Many GPU Dense Optimizations
	Slide 11: Efficient Pipeline Scheduling
	Slide 12: 3. Memory and communication optimizations
	Slide 13: Primary Challenge with MoE Inference
	Slide 14: Designing a highly scalable MoE Inference System
	Slide 15: A symphony of Parallelism
	Slide 16: Communication Optimizations
	Slide 17: Democratizing Massive Model Inference
	Slide 18: Dynamic Prefetching
	Slide 19: Agenda
	Slide 20: DS-Inference: Up to 2x better single-GPU performance
	Slide 21: DS-Inference: Up to 1.5x better multi-GPU performance
	Slide 22: Symphony of all optimizations: Deploying Megatron-Turing-NLG 530B
	Slide 23: Unique properties of MoE inference
	Slide 24: Sparse MoE model optimizations
	Slide 25: Democratizing Inference on a single A6000 GPU
	Slide 26: Agenda
	Slide 27: Conclusion and Future work
	Slide 28: So, what’s next?
	Slide 29: Thank You!

