

Model Scale

• 10+ Trillion parameters

DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale

Reza, Samyam, <u>Ammar</u>, Cheng, Du, Elton, Olatunji, Shaden, Minjia, Jeff, and Yuxiong He

Speed

• Fast & scalable training

Democratize Al

Bigger & faster for all

Compressed Training

• Boosted efficiency

Accelerated inference

• Up to 10x faster & cheaper

Usability

• Few lines of code changes

https://github.com/microsoft/DeepSpeed

What is DeepSpeed?

Training	Inference	Compression	
• Speed	Latency	Model size	
• Scale	Throughput	 Latency 	
• Cost	 Serving cost 	 Tuning cost 	
 Democratization 	• Ease-of-use	 Composability 	

DeepSpeed Website: <u>https://www.deepspeed.ai/</u> DeepSpeed GitHub: <u>https://github.com/microsoft/DeepSpeed</u>

Agenda

Introduction

- Inference Landscape
- Challenges
- Proposed Optimizations
 - Single-GPU inference-optimized transformer kernels
 - Many-GPU dense transformer optimizations
 - Massive-scale sparse (MoE) model optimizations
 - ZeRO-Offload inspired optimizations
- Performance Evaluation
- Conclusion

Introduction

- Deep Learning
 - Training: most state-of-the-art studies and papers –
 - Focused on distributed training on hundreds of GPUs
 - Optimizing for computation and communication efficiency
 - Training time and FLOPS are key metrics
 - Inference
 - CPU based inference is common
 - GPUs increased adoption
 - Large transformer models especially sparse MoE models can exploit hundreds of GPUs!
 - Latency and throughput are the main metrics

Courtesy: <u>https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-deep-learning-training-and-inference</u> and <u>http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/</u>

Transformer Models

- Transformer models are everywhere
 - Language, Vision, Speech, multi-modal, etc.
 - And they are becoming bigger and better!
 - Being re-branded as *"foundation models"*
- Training large transformer models is hard
 - Deploying (inference) them is even more challenging!

https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Inference Landscape

- Diverse Inference Landscape
 - *Model Size*: millions to trillions of parameters
 - Architecture: Dense vs Sparse
 - Heterogeneous Hardware: Single-GPU, Single-node, and Multi-node
 - **Batch Size**: few (*latency sensitive*) to thousands (*throughput sensitive*)
- Challenges
 - Single Solution cannot be efficient across the entire landscape
 - Hardware accessibility limitations for large model inference

BERT-Base	BERT-Large	GPT2	GPT2-XL	Turing-NLG	BLOOM	MT-NLG	MoE	MoE	MoE
(112M)	(340M)	(340M)	(1.5B)	(17B)	(176B)	(530B)	(349B)	(1T)	(2T)

DeepSpeed Inference

DeepSpeed Inference: SoTA latency and throughput across the entire inference landscape

A systematic composition of diverse set of optimizations

- □ Inference Optimized transformer kernels achieve best single GPU performance
- □ Many-GPU Dense transformer optimizations *powering large and very large models like Megatron-Turing 530B*
- □ Massive Scale Sparse Model Inference- *a trillion parameter MoE model inference under 25ms*

Democratizing Massive Model Inference

□ ZeRO-Inference – 50x bigger model inference on single-GPU device

Agenda

Introduction

- Inference Landscape
- Challenges

Proposed Optimizations

- Single-GPU inference-optimized transformer kernels
- Many-GPU dense transformer optimizations
- Massive-scale sparse (MoE) model optimizations
- ZeRO-Offload inspired optimizations
- Performance Evaluation
- Conclusion

Single GPU transformer kernels

- DeepFusion
 - Fuse all the kernels we can
- Optimized GEMM kernels
- Kernels injected to models at runtime
 - Easy-to-use
 - No model code change
- End to end improvement for transformer models

Many GPU Dense Optimizations

• Challenges of supporting a massive model for inference

- Tensor-slicing: can't scale across nodes
- Pipeline parallelism can scale but has its own challenge
 - Dependency between current and next token generation
 - Load imbalance between prompt processing and token generation
- Memory and communication overheads

Inference optimized pipeline parallelism in DeepSpeed

- 1. Efficient Pipeline schedule to handle token dependencies
- 2. Hybrid Scheduling to address load balancing
- 3. Memory and communication optimizations

Efficient Pipeline Scheduling

- 1. Adapt training pipeline-schedule to handle token-generation
 - Inference pipeline load imbalance
 - Prompt: process a batch of input (large tokens)
 - Token-generation: generating one token per batch
- 2. Hybrid Schedule for higher inference throughput

3. Memory and communication optimizations

- High memory usage to handle large batch inference
 - Saving Key/Value for all the pipeline stages (in-flight requests)
- Use CPU memory to offload a part of KV-cache
 - Double-buffer memory to write the current data while prefetching the next
 - Offload policy: to the point that we saturate PCIE bandwidth
 - Increase batch size by ~30%, resulting in 25% speedup
- Communication optimization
 - Handle the dynamic data-transfer at inference time
 - We use some meta-data to handle the serialization-deserialization issue
 - Customized implementation to eliminate the GPU-to-CPU traffic

Primary Challenge with MoE Inference

- Inference latency lower-bounded by parameter load time
 - Model-Size / Achievable Memory Bandwidth
 - Ex. 200B model on a single V100@900GB/s takes 444ms
- Tensor-Parallelism to achieve lowest latency
 - Higher aggregate bandwidth
 - Ex. 200B model on 16x V100@500GB/s takes 50ms
- Tensor-Parallelism is limited
 - Fine-grained Parallelism -> hard to achieve good bandwidth per device
 - Communication volume overhead -> does not decrease with more devices
- 4x larger MoE model size than quality-equivalent-dense
 - Requires 4x higher bandwidth/parallelism/scalability for latency parity

Designing a highly scalable MoE Inference System

- Goal:
 - Scale beyond tensor-slicing
 - Achieve aggregate memory bandwidth across <u>hundreds of devices</u>
- Three main area of optimizations for maximizing aggregate bandwidth
 - A symphony of parallelism
 - Careful orchestration of tensor, data and expert parallelism
 - Parallelism coordinated Communication Optimization Strategies
 - Minimize communication overhead
 - Kernel Optimizations
 - Maximize bandwidth utilization per device

A symphony of Parallelism

- Observation
 - Each token is processed by at most a single expert
 - Each token can be processed independently of the other
- Expert Parallelism
 - Group tokens based on experts
 - Run experts in parallel
 - Coordinate with all-to-all communication
- Tensor Parallelism:
 - Tensor-slicing for non-expert parameters
 - Expert-Slicing for expert parameters

Tensor-ParallelismExpert-ParallelismFine-grained ParallelismCoarse-grained parallelismComm Vol: O(batch)Comm Vol: O(batch/devices)

- Data Parallelism:
 - Scale non-expert parameters to match expert parallelism

Communication Optimizations

- Communications:
 - All-to-all, all-gather, all-reduce
- Communication optimizations
 - NUMA aware, SCCL
 - Hierarchical, parallelism-coordinated, allgather based, data mapping strategies
- All-to-All latency
 - Increases linearly with devices
 - Massive overhead at hundred gpu scale
- Parallelism-Coordinated All-to-All
 - Leverage redundancy in data
 - Reduce critical communication path
 - O(gpus) -> O(gpus/tensor-slicing)

Baseline All-to-All with Tensor-Slicing:

Parallelism-coordinated AlltoAll optimization

Democratizing Massive Model Inference

- Many model scientists only have access to one or a few GPUs
- ZeRO-Inference utilizes heterogeneous memory (GPU/CPU/NVMe) to fit massive models
- Built on top of ZeRO-Infinity and optimized for inference
 - DeepNVMe, a powerful C++ NVMe read/write library
 - Supports bulk asynchronous data transfer
 - Achieves near the peak bandwidth
 - Pinned Memory Manager, manages the limited supply of pinned memory
 - Reuses a small amount (tens of GBs) for offloading the entire model states (up to tens of TBs) to CPU or NVMe
 - Dynamic Prefetching (detailed in next slide)

Dynamic Prefetching

- Trace the operator sequence ahead of time
- At runtime prefetch parameters needed for future operators while computing the current one

Agenda

Introduction

- Inference Landscape
- Challenges
- Proposed Optimizations
 - Single-GPU inference-optimized transformer kernels
 - Many-GPU dense transformer optimizations
 - Massive-scale sparse (MoE) model optimizations
 - ZeRO-Offload inspired optimizations

• Performance Evaluation

Conclusion

DS-Inference: Up to 2x better single-GPU performance

- Low latency and high throughput for various model sizes
 - GPT2-345M to GPT-13B

FT (Fp16) latency Science (Fp16) latency Science (INT8) latency FT (Fp16) tput ---- DS-Inference (Fp16) tput ---- DS-Inference (INT8) tput

DS-Inference: Up to 1.5x better multi-GPU performance

- Low latency and high throughput for models larger than a GPU memory
 - GPT-NeoX 20B \rightarrow GPT3-like 175B model

FT (Fp16) latency 📰 DS-Inference (Fp16) latency 📰 DS-Inference (INT8) latency 🛶 FT (Fp16) tput 🛶 DS-Inference (Fp16) tput 🛶 DS-Inference (INT8) tput

Symphony of all optimizations: Deploying Megatron-Turing-NLG 530B

- Inference optimized pipeline parallelism in DeepSpeed
 - Pipeline Schedule
 - Efficient schedule to handle token dependencies
 - Hybrid Scheduling to address prompt/token load-imbalance
 - Memory-offload: utilize CPU for largebatch inference
 - Communication optimizations
 - High-performance Transformer kernels

Unique properties of MoE inference

- Super-linear increase in throughput
 - Exploiting aggregate memory bandwidth across all GPUs
- For dense models, the best-case is linear
- Latency reduction with more GPUs
- DeepSpeed-MoE: Achieve low-latency along with the super-linear throughput increase!

---- PyTorch-MoE ----- DeepSpeed-MoE ----- Linear

Sparse MoE model optimizations

- 7.3x Lower-latency & Higher-throughput at Unprecedented Scale
- 25ms for serving a 1T model
 - 50ms for fastest 200B dense model

0

Democratizing Inference on a single A6000 GPU

- Large model scale: > 40x bigger model inference on single-GPU
- High efficiency:
 - > 50% hardware peak throughput
 - Better than GPU-only inference due to larger batch size

Agenda

Introduction

- Inference Landscape
- Challenges
- Proposed Optimizations
 - Single-GPU inference-optimized transformer kernels
 - Many-GPU dense transformer optimizations
 - Massive-scale sparse (MoE) model optimizations
 - ZeRO-Offload inspired optimizations
- Performance Evaluation

Conclusion

Conclusion and Future work

- DeepSpeed inference is addressing the diverse landscape of
 - Model sizes
 - Model architectures
 - Platform scale
- A coordinated set of optimizations are needed
 - Single GPU kernels
 - Multi GPU and multi-node inference for dense models requires coordination
 - Multi-node sparse MoE models require a different set of optimizations
 - DeepSpeed-inference combines them in one system
- We are laser focused on fast performance and ease-of-use

So, what's next?

- Fast moving field; new models everyday
 - Image generation is taking over the fun model experimentation space!
- DeepSpeed-MII: Our latest effort to make DeepSpeedinference accessible and reproducible
 - We are enabling the fastest Stable Difussion (under 1 sec.) with MII!

Stable Diffusion Image Generation under 1 second w. DeepSpeed MII

https://github.com/microsoft/DeepSpeed-MII/tree/main/examples/benchmark/txt2img

Thank You!

• Questions and feedback

Training	Inference	Compression	
• Speed	 Latency 	Model size	
• Scale	 Throughput 	 Latency 	
• Cost	 Serving cost 	 Tuning cost 	
 Democratization 	• Ease-of-use	 Composability 	

Multi-purpose DL optimization suite

DeepSpeed Website: <u>https://www.deepspeed.ai/</u> DeepSpeed-MII: <u>https://github.com/microsoft/DeepSpeed-MII</u> DeepSpeed GitHub: <u>https://github.com/microsoft/DeepSpeed</u>

