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What is DeepSpeed?

Multi-purpose DL optimization suite

Training
• Speed
• Scale
• Cost
• Democratization

Inference
• Latency
• Throughput
• Serving cost
• Ease-of-use

Compression
• Model size
• Latency
• Tuning cost
• Composability
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DeepSpeed Website: https://www.deepspeed.ai/ 
DeepSpeed GitHub: https://github.com/microsoft/DeepSpeed 
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Agenda

• Introduction
• Inference Landscape
• Challenges

• Proposed Optimizations
• Single-GPU inference-optimized transformer kernels
• Many-GPU dense transformer optimizations
• Massive-scale sparse (MoE) model optimizations
• ZeRO-Offload inspired optimizations

• Performance Evaluation

• Conclusion
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Introduction

• Deep Learning
• Training: most state-of-the-art studies 

and papers –
• Focused on distributed training on 

hundreds of GPUs
• Optimizing for computation and 

communication efficiency
• Training time and FLOPS are key metrics

• Inference
• CPU based inference is common
• GPUs – increased adoption
• Large transformer models especially 

sparse MoE models can exploit hundreds 
of GPUs! 

• Latency and throughput are the main 
metrics

Courtesy: https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-deep-learning-training-and-inference and
http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/ 
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Transformer Models

• Transformer models are 
everywhere
• Language, Vision, Speech, 

multi-modal, etc.
• And they are becoming 

bigger and better!
• Being re-branded as 

“foundation models”

• Training large transformer 
models is hard
• Deploying (inference) them  

is even more challenging! 
https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/ 
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Inference Landscape

• Diverse Inference Landscape
• Model Size: millions to trillions of parameters

• Architecture: Dense vs Sparse

• Heterogeneous Hardware: Single-GPU, Single-node, and Multi-node

• Batch Size: few (latency sensitive) to thousands (throughput sensitive)

• Challenges
• Single Solution cannot be efficient across the entire landscape

• Hardware accessibility limitations for large model inference
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DeepSpeed Inference

❑ Inference Optimized transformer kernels – achieve best single GPU performance
❑ Many-GPU Dense transformer optimizations – powering large and very large models like Megatron-Turing 530B
❑ Massive Scale Sparse Model Inference– a trillion parameter MoE model inference under 25ms

A systematic composition of diverse set of optimizations

I

DeepSpeed Inference: SoTA latency and throughput across the entire inference landscape

❑ ZeRO-Inference – 50x bigger model inference on single-GPU device
Democratizing Massive Model Inference
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Single GPU transformer kernels

• DeepFusion
• Fuse all the kernels we can

• Optimized GEMM kernels

• Kernels injected to models 
at runtime
• Easy-to-use 

• No model code change

• End to end improvement 
for transformer models
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• Challenges of supporting a massive model for inference
• Tensor-slicing: can’t scale across nodes
• Pipeline parallelism can scale but has its own challenge

• Dependency between current and next token generation
• Load imbalance between prompt processing and token generation

• Memory and communication overheads

• Inference optimized pipeline parallelism in DeepSpeed
1. Efficient Pipeline schedule to handle token dependencies
2. Hybrid Scheduling to address load balancing
3. Memory and communication optimizations

Many GPU Dense Optimizations
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• 1. Adapt training pipeline-schedule to handle token-generation
• Inference pipeline load imbalance

• Prompt: process a batch of input (large tokens)

• Token-generation: generating one token per batch

• 2. Hybrid Schedule for higher inference throughput

Efficient Pipeline Scheduling 

M0 (bsz=8)

M0 (bsz=4) M1 (bsz=4)

Time

Prompt processing Token-generation
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3. Memory and communication optimizations

• High memory usage to handle large batch inference
• Saving Key/Value for all the pipeline stages (in-flight requests)

• Use CPU memory to offload a part of KV-cache 
• Double-buffer memory to write the current data while prefetching the next

• Offload policy: to the point that we saturate PCIE bandwidth

• Increase batch size by ~30%, resulting in 25%  speedup

• Communication optimization
• Handle the dynamic data-transfer at inference time

• We use some meta-data to handle the serialization-deserialization issue

• Customized implementation to eliminate the GPU-to-CPU traffic
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Primary Challenge with MoE Inference

• Inference latency lower-bounded by parameter load time
• Model-Size / Achievable Memory Bandwidth
• Ex. 200B model on a single V100@900GB/s takes 444ms

• Tensor-Parallelism to achieve lowest latency
• Higher aggregate bandwidth
• Ex. 200B model on 16x V100@500GB/s takes 50ms

• Tensor-Parallelism is limited
• Fine-grained Parallelism -> hard to achieve good bandwidth per device
• Communication volume overhead -> does not decrease with more devices

• 4x larger MoE model size than quality-equivalent-dense
• Requires 4x higher bandwidth/parallelism/scalability for latency parity
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Designing a highly scalable MoE Inference System

• Goal:
• Scale beyond tensor-slicing
• Achieve aggregate memory bandwidth across hundreds of devices

• Three main area of optimizations for maximizing aggregate bandwidth
• A symphony of parallelism

• Careful orchestration of tensor, data and expert parallelism

• Parallelism coordinated Communication Optimization Strategies
• Minimize communication overhead

• Kernel Optimizations
• Maximize bandwidth utilization per device
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A symphony of Parallelism
• Observation

• Each token is processed by at most a single expert 
• Each token can be processed independently of the 

other

• Expert Parallelism
• Group tokens based on experts
• Run experts in parallel
• Coordinate with all-to-all communication

• Tensor Parallelism:
• Tensor-slicing for non-expert parameters
• Expert-Slicing for expert parameters

• Data Parallelism:
• Scale non-expert parameters to match expert 

parallelism

Tensor-Parallelism Expert-Parallelism

Fine-grained Parallelism Coarse-grained parallelism

Comm Vol: O(batch) Comm Vol: O(batch/devices)
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Communication Optimizations
• Communications:

• All-to-all, all-gather, all-reduce

• Communication optimizations
• NUMA aware, SCCL
• Hierarchical, parallelism-coordinated, all-

gather based, data mapping strategies

• All-to-All latency
• Increases linearly with devices
• Massive overhead at hundred gpu scale

• Parallelism-Coordinated All-to-All
• Leverage redundancy in data
• Reduce critical communication path
• O(gpus) -> O(gpus/tensor-slicing)
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Democratizing Massive Model Inference

• Many model scientists only have access to one or a few GPUs

• ZeRO-Inference utilizes heterogeneous memory (GPU/CPU/NVMe) to 
fit massive models

• Built on top of ZeRO-Infinity and optimized for inference
• DeepNVMe, a powerful C++ NVMe read/write library

• Supports bulk asynchronous data transfer

• Achieves near the peak bandwidth

• Pinned Memory Manager, manages the limited supply of pinned memory
• Reuses a small amount (tens of GBs) for offloading the entire model states (up to tens of 

TBs) to CPU or NVMe

• Dynamic Prefetching (detailed in next slide)
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Dynamic Prefetching

• Trace the operator sequence ahead of time

• At runtime prefetch parameters needed for future operators while 
computing the current one

nc: NVMe to CPU memory
cg: CPU memory to GPU memory 
gc-c: construct the parameter and compute

w/o prefetching:

w/ prefetching:

nc cg gc-c

𝑖𝑡ℎ operator

nc cg gc-c

(𝑖 + 1)𝑡ℎ operator

nc cg

nc cg gc-c

gc-c

nc cg gc-c

(𝑖 + 2)𝑡ℎ operator

nc cg gc-c

nc cg gc-c

(𝑖 + 3)𝑡ℎ operator

nc cg gc-c

…

…

Mitigates the bandwidth 
bottleneck on a single GPU

All three overlap
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DS-Inference: Up to 2x better single-GPU performance

• Low latency and high throughput for various model sizes
• GPT2-345M to GPT-13B
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DS-Inference: Up to 1.5x better multi-GPU performance

• Low latency and high throughput for models larger than a GPU memory
• GPT-NeoX 20B → GPT3-like 175B model
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Symphony of all optimizations: Deploying 
Megatron-Turing-NLG 530B
• Inference optimized pipeline 

parallelism in DeepSpeed
• Pipeline Schedule

• Efficient schedule to handle token 
dependencies

• Hybrid Scheduling to address prompt/token 
load-imbalance

• Memory-offload: utilize CPU for large-
batch inference

• Communication optimizations

• High-performance Transformer kernels
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Sparse MoE model optimizations

• 7.3x Lower-latency & Higher-throughput at Unprecedented Scale

• 25ms for serving a 1T model
• 50ms for fastest 200B dense model
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Democratizing Inference on a single A6000 GPU

• Large model scale: > 40x bigger model inference on single-GPU

• High efficiency: 
• > 50% hardware peak throughput

• Better than GPU-only inference due to larger batch size

24

128

1000

0 200 400 600 800 1000

PyTorch

ZeRO-Inference (CPU)

ZeRO-Inference (NVMe)

Model size (billions of parameters)

Largest model inference on one NVIDIA RTX A6000 GPU

(48GB HBM, 256GB DRAM, 2TB NVMe)

50
54

46
43

0

10

20

30

40

50

60

20 50 175 530

Pe
rc

en
ta

ge
 o

f 
Pe

ak
 (%

)
Model size (billions of parameters)

Inference efficiency of large models on 1xA6000

PyTorch

ZeRO-Inference(CPU)

ZeRO-Inference (NVMe)

40X

25



Agenda

• Introduction
• Inference Landscape
• Challenges

• Proposed Optimizations
• Single-GPU inference-optimized transformer kernels
• Many-GPU dense transformer optimizations
• Massive-scale sparse (MoE) model optimizations
• ZeRO-Offload inspired optimizations

• Performance Evaluation

• Conclusion

26



Conclusion and Future work

• DeepSpeed inference is addressing the diverse landscape of 
• Model sizes

• Model architectures

• Platform scale 

• A coordinated set of optimizations are needed
• Single GPU kernels

• Multi GPU and multi-node inference for dense models requires coordination

• Multi-node sparse MoE models require a different set of optimizations

• DeepSpeed-inference combines them in one system

• We are laser focused on fast performance and ease-of-use
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So, what’s next?

• Fast moving field; new models 
everyday
• Image generation is taking over 

the fun model experimentation 
space!

• DeepSpeed-MII: Our latest 
effort to make DeepSpeed-
inference accessible and 
reproducible
• We are enabling the fastest 

Stable Difussion (under 1 sec.) 
with MII!

https://github.com/microsoft/DeepSpeed-
MII/tree/main/examples/benchmark/txt2img 
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Thank You!
• Questions and feedback 

Multi-purpose DL optimization suite

Training
• Speed
• Scale
• Cost
• Democratization

Inference
• Latency
• Throughput
• Serving cost
• Ease-of-use

Compression
• Model size
• Latency
• Tuning cost
• Composability
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