
DeepSpeed Inference: Enabling Efficient
Inference of Transformer Models at
Unprecedented Scale

Reza, Samyam, Ammar, Cheng, Du, Elton, Olatunji, Shaden, Minjia, Jeff, and
Yuxiong He

https://github.com/microsoft/DeepSpeed

https://github.com/microsoft/DeepSpeed

What is DeepSpeed?

Multi-purpose DL optimization suite

Training
• Speed
• Scale
• Cost
• Democratization

Inference
• Latency
• Throughput
• Serving cost
• Ease-of-use

Compression
• Model size
• Latency
• Tuning cost
• Composability

T

I C

...

DeepSpeed Website: https://www.deepspeed.ai/
DeepSpeed GitHub: https://github.com/microsoft/DeepSpeed

...

2

https://www.deepspeed.ai/
https://github.com/microsoft/DeepSpeed

Agenda

• Introduction
• Inference Landscape
• Challenges

• Proposed Optimizations
• Single-GPU inference-optimized transformer kernels
• Many-GPU dense transformer optimizations
• Massive-scale sparse (MoE) model optimizations
• ZeRO-Offload inspired optimizations

• Performance Evaluation

• Conclusion

3

Introduction

• Deep Learning
• Training: most state-of-the-art studies

and papers –
• Focused on distributed training on

hundreds of GPUs
• Optimizing for computation and

communication efficiency
• Training time and FLOPS are key metrics

• Inference
• CPU based inference is common
• GPUs – increased adoption
• Large transformer models especially

sparse MoE models can exploit hundreds
of GPUs!

• Latency and throughput are the main
metrics

Courtesy: https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-deep-learning-training-and-inference and
http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

4

https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-deep-learning-training-and-inference
http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

Transformer Models

• Transformer models are
everywhere
• Language, Vision, Speech,

multi-modal, etc.
• And they are becoming

bigger and better!
• Being re-branded as

“foundation models”

• Training large transformer
models is hard
• Deploying (inference) them

is even more challenging!
https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

5

https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Inference Landscape

• Diverse Inference Landscape
• Model Size: millions to trillions of parameters

• Architecture: Dense vs Sparse

• Heterogeneous Hardware: Single-GPU, Single-node, and Multi-node

• Batch Size: few (latency sensitive) to thousands (throughput sensitive)

• Challenges
• Single Solution cannot be efficient across the entire landscape

• Hardware accessibility limitations for large model inference

6

DeepSpeed Inference

❑ Inference Optimized transformer kernels – achieve best single GPU performance
❑ Many-GPU Dense transformer optimizations – powering large and very large models like Megatron-Turing 530B
❑ Massive Scale Sparse Model Inference– a trillion parameter MoE model inference under 25ms

A systematic composition of diverse set of optimizations

I

DeepSpeed Inference: SoTA latency and throughput across the entire inference landscape

❑ ZeRO-Inference – 50x bigger model inference on single-GPU device
Democratizing Massive Model Inference

8.7x
7.6x

5.4x

4x

2.1x

12x

2.5

5.9x

7.2x 7.3x

0

2

4

6

8

10

12

14

BERT-Base

 (112M)
BERT-Large

 (340M)
GPT2

 (340M)
GPT2-XL

 (1.5B)
Turing-NLG

 (17B)
BLOOM

 (176B)
MT-NLG

 (530B)
MoE

 (349B)
MoE

 (1T)
MoE

 (2T)

Dense

Single GPU
Dense

Multi-GPU
Sparse

Multi-GPU

La
te

n
cy

 Im
p

ro
ve

m
en

t

Baseline DeepSpeed Inference

7

Agenda

• Introduction
• Inference Landscape
• Challenges

• Proposed Optimizations
• Single-GPU inference-optimized transformer kernels
• Many-GPU dense transformer optimizations
• Massive-scale sparse (MoE) model optimizations
• ZeRO-Offload inspired optimizations

• Performance Evaluation

• Conclusion

8

Single GPU transformer kernels

• DeepFusion
• Fuse all the kernels we can

• Optimized GEMM kernels

• Kernels injected to models
at runtime
• Easy-to-use

• No model code change

• End to end improvement
for transformer models

9

• Challenges of supporting a massive model for inference
• Tensor-slicing: can’t scale across nodes
• Pipeline parallelism can scale but has its own challenge

• Dependency between current and next token generation
• Load imbalance between prompt processing and token generation

• Memory and communication overheads

• Inference optimized pipeline parallelism in DeepSpeed
1. Efficient Pipeline schedule to handle token dependencies
2. Hybrid Scheduling to address load balancing
3. Memory and communication optimizations

Many GPU Dense Optimizations

10

• 1. Adapt training pipeline-schedule to handle token-generation
• Inference pipeline load imbalance

• Prompt: process a batch of input (large tokens)

• Token-generation: generating one token per batch

• 2. Hybrid Schedule for higher inference throughput

Efficient Pipeline Scheduling

M0 (bsz=8)

M0 (bsz=4) M1 (bsz=4)

Time

Prompt processing Token-generation

11

3. Memory and communication optimizations

• High memory usage to handle large batch inference
• Saving Key/Value for all the pipeline stages (in-flight requests)

• Use CPU memory to offload a part of KV-cache
• Double-buffer memory to write the current data while prefetching the next

• Offload policy: to the point that we saturate PCIE bandwidth

• Increase batch size by ~30%, resulting in 25% speedup

• Communication optimization
• Handle the dynamic data-transfer at inference time

• We use some meta-data to handle the serialization-deserialization issue

• Customized implementation to eliminate the GPU-to-CPU traffic

12

Primary Challenge with MoE Inference

• Inference latency lower-bounded by parameter load time
• Model-Size / Achievable Memory Bandwidth
• Ex. 200B model on a single V100@900GB/s takes 444ms

• Tensor-Parallelism to achieve lowest latency
• Higher aggregate bandwidth
• Ex. 200B model on 16x V100@500GB/s takes 50ms

• Tensor-Parallelism is limited
• Fine-grained Parallelism -> hard to achieve good bandwidth per device
• Communication volume overhead -> does not decrease with more devices

• 4x larger MoE model size than quality-equivalent-dense
• Requires 4x higher bandwidth/parallelism/scalability for latency parity

13

Designing a highly scalable MoE Inference System

• Goal:
• Scale beyond tensor-slicing
• Achieve aggregate memory bandwidth across hundreds of devices

• Three main area of optimizations for maximizing aggregate bandwidth
• A symphony of parallelism

• Careful orchestration of tensor, data and expert parallelism

• Parallelism coordinated Communication Optimization Strategies
• Minimize communication overhead

• Kernel Optimizations
• Maximize bandwidth utilization per device

14

A symphony of Parallelism
• Observation

• Each token is processed by at most a single expert
• Each token can be processed independently of the

other

• Expert Parallelism
• Group tokens based on experts
• Run experts in parallel
• Coordinate with all-to-all communication

• Tensor Parallelism:
• Tensor-slicing for non-expert parameters
• Expert-Slicing for expert parameters

• Data Parallelism:
• Scale non-expert parameters to match expert

parallelism

Tensor-Parallelism Expert-Parallelism

Fine-grained Parallelism Coarse-grained parallelism

Comm Vol: O(batch) Comm Vol: O(batch/devices)

15

Communication Optimizations
• Communications:

• All-to-all, all-gather, all-reduce

• Communication optimizations
• NUMA aware, SCCL
• Hierarchical, parallelism-coordinated, all-

gather based, data mapping strategies

• All-to-All latency
• Increases linearly with devices
• Massive overhead at hundred gpu scale

• Parallelism-Coordinated All-to-All
• Leverage redundancy in data
• Reduce critical communication path
• O(gpus) -> O(gpus/tensor-slicing)

16

Democratizing Massive Model Inference

• Many model scientists only have access to one or a few GPUs

• ZeRO-Inference utilizes heterogeneous memory (GPU/CPU/NVMe) to
fit massive models

• Built on top of ZeRO-Infinity and optimized for inference
• DeepNVMe, a powerful C++ NVMe read/write library

• Supports bulk asynchronous data transfer

• Achieves near the peak bandwidth

• Pinned Memory Manager, manages the limited supply of pinned memory
• Reuses a small amount (tens of GBs) for offloading the entire model states (up to tens of

TBs) to CPU or NVMe

• Dynamic Prefetching (detailed in next slide)

17

Dynamic Prefetching

• Trace the operator sequence ahead of time

• At runtime prefetch parameters needed for future operators while
computing the current one

nc: NVMe to CPU memory
cg: CPU memory to GPU memory
gc-c: construct the parameter and compute

w/o prefetching:

w/ prefetching:

nc cg gc-c

𝑖𝑡ℎ operator

nc cg gc-c

(𝑖 + 1)𝑡ℎ operator

nc cg

nc cg gc-c

gc-c

nc cg gc-c

(𝑖 + 2)𝑡ℎ operator

nc cg gc-c

nc cg gc-c

(𝑖 + 3)𝑡ℎ operator

nc cg gc-c

…

…

Mitigates the bandwidth
bottleneck on a single GPU

All three overlap

18

Agenda

• Introduction
• Inference Landscape
• Challenges

• Proposed Optimizations
• Single-GPU inference-optimized transformer kernels
• Many-GPU dense transformer optimizations
• Massive-scale sparse (MoE) model optimizations
• ZeRO-Offload inspired optimizations

• Performance Evaluation

• Conclusion

19

DS-Inference: Up to 2x better single-GPU performance

• Low latency and high throughput for various model sizes
• GPT2-345M to GPT-13B

0

40

80

120

160

200

0
20
40
60
80

100
120
140

1-batch 8-batch 16-batch Tp
u

t
(#

to
ke

n
s-

p
er

-s
ec

)

La
te

n
cy

 (m
s)

GPT2

0

20

40

60

80

100

120

0

50

100

150

200

250

300

1-batch 8-batch 16-batch

Tp
u

t
(#

to
ke

n
s-

p
er

-s
ec

)

La
te

n
cy

 (m
s)

GPTJ-6B

0

20

40

60

80

0

100

200

300

400

500

1-batch 8-batch 16-batch

Tp
u

t
(#

to
ke

n
s-

p
er

-s
ec

)

La
te

n
cy

 (m
s)

GPT-13B

20

DS-Inference: Up to 1.5x better multi-GPU performance

• Low latency and high throughput for models larger than a GPU memory
• GPT-NeoX 20B → GPT3-like 175B model

0

10

20

30

40

0
50

100
150
200
250
300
350
400
450

1-batch 8-batch 16-batch

Tp
u

t
(#

to
ke

n
s-

p
er

-s
ec

)

La
te

n
cy

 (m
s)

GPT-Neox-20B

0
2
4
6
8
10
12
14
16

0
100
200
300
400
500
600
700
800
900

1-batch 8-batch 16-batch

Tp
u

t
(#

to
ke

n
s-

p
er

-s
ec

)

La
te

n
cy

 (m
s)

GPT-175B

0

5

10

15

20

25

30

0

100

200

300

400

500

600

1-batch 8-batch 16-batch

Tp
u

t
(#

to
ke

n
s-

p
er

-s
ec

)

La
te

n
cy

 (m
s)

GPT-50B

21

Symphony of all optimizations: Deploying
Megatron-Turing-NLG 530B
• Inference optimized pipeline

parallelism in DeepSpeed
• Pipeline Schedule

• Efficient schedule to handle token
dependencies

• Hybrid Scheduling to address prompt/token
load-imbalance

• Memory-offload: utilize CPU for large-
batch inference

• Communication optimizations

• High-performance Transformer kernels

22

0

10

20

30

40

50

0 20 40 60 80Th
ro

u
gh

p
u

t (
to

ke
n

s/
se

c)

Th
o

u
sa

n
d

s

Number of GPUs

PyTorch-MoE DeepSpeed-MoE Linear

Unique properties of MoE inference

• Super-linear increase in throughput
• Exploiting aggregate memory bandwidth

across all GPUs

• For dense models, the best-case is
linear

• Latency reduction with more GPUs

• DeepSpeed-MoE: Achieve low-latency
along with the super-linear
throughput increase! 0

10

20

30

40

50

60

8 GPUs 16 GPUs 32 GPUs 64 GPUs

La
te

n
cy

 (m
s)

52 Billion (1.3B+MoE-128)

PyTorch-MoE DeepSpeed-MoE
23

Sparse MoE model optimizations

• 7.3x Lower-latency & Higher-throughput at Unprecedented Scale

• 25ms for serving a 1T model
• 50ms for fastest 200B dense model

0

100

200

300

400

500

600

700

800

0

10

20

30

40

50

60

70

PyTorch-MoE DeepSpeed-MoE

T
h

ro
u

g
h

p
u

t
(t

o
ke

n
s-

p
e

r-
se

c)

La
te

n
cy

 (
m

s)

107 Billion

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

140

160

PyTorch-MoE DeepSpeed-MoE

T
h

ro
u

g
h

p
u

t
(t

o
ke

n
s-

p
e

r-
se

c)

La
te

n
cy

 (
m

s)
349 Billion

5.5x
5.9x

0

5

10

15

20

25

30

35

40

45

0

20

40

60

80

100

120

140

160

180

200

PyTorch-MoE DeepSpeed-MoE

T
h

ro
u

g
h

p
u

t
(t

o
ke

n
s-

p
e

r-
se

c)

La
te

n
cy

 (
m

s)

1 Trillion

7.2x

0

5

10

15

20

25

0

50

100

150

200

250

300

350

PyTorch-MoE DeepSpeed-MoE

T
h

ro
u

g
h

p
u

t
(t

o
ke

n
s-

p
e

r-
se

c)

La
te

n
cy

 (
m

s)

2 Trillion

7.3x

24

Democratizing Inference on a single A6000 GPU

• Large model scale: > 40x bigger model inference on single-GPU

• High efficiency:
• > 50% hardware peak throughput

• Better than GPU-only inference due to larger batch size

24

128

1000

0 200 400 600 800 1000

PyTorch

ZeRO-Inference (CPU)

ZeRO-Inference (NVMe)

Model size (billions of parameters)

Largest model inference on one NVIDIA RTX A6000 GPU

(48GB HBM, 256GB DRAM, 2TB NVMe)

50
54

46
43

0

10

20

30

40

50

60

20 50 175 530

Pe
rc

en
ta

ge
 o

f
Pe

ak
 (%

)
Model size (billions of parameters)

Inference efficiency of large models on 1xA6000

PyTorch

ZeRO-Inference(CPU)

ZeRO-Inference (NVMe)

40X

25

Agenda

• Introduction
• Inference Landscape
• Challenges

• Proposed Optimizations
• Single-GPU inference-optimized transformer kernels
• Many-GPU dense transformer optimizations
• Massive-scale sparse (MoE) model optimizations
• ZeRO-Offload inspired optimizations

• Performance Evaluation

• Conclusion

26

Conclusion and Future work

• DeepSpeed inference is addressing the diverse landscape of
• Model sizes

• Model architectures

• Platform scale

• A coordinated set of optimizations are needed
• Single GPU kernels

• Multi GPU and multi-node inference for dense models requires coordination

• Multi-node sparse MoE models require a different set of optimizations

• DeepSpeed-inference combines them in one system

• We are laser focused on fast performance and ease-of-use

27

So, what’s next?

• Fast moving field; new models
everyday
• Image generation is taking over

the fun model experimentation
space!

• DeepSpeed-MII: Our latest
effort to make DeepSpeed-
inference accessible and
reproducible
• We are enabling the fastest

Stable Difussion (under 1 sec.)
with MII!

https://github.com/microsoft/DeepSpeed-
MII/tree/main/examples/benchmark/txt2img

28

https://github.com/microsoft/DeepSpeed-MII/tree/main/examples/benchmark/txt2img
https://github.com/microsoft/DeepSpeed-MII/tree/main/examples/benchmark/txt2img

Thank You!
• Questions and feedback

Multi-purpose DL optimization suite

Training
• Speed
• Scale
• Cost
• Democratization

Inference
• Latency
• Throughput
• Serving cost
• Ease-of-use

Compression
• Model size
• Latency
• Tuning cost
• Composability

T

I C

...

DeepSpeed Website: https://www.deepspeed.ai/
DeepSpeed-MII: https://github.com/microsoft/DeepSpeed-MII
DeepSpeed GitHub: https://github.com/microsoft/DeepSpeed

...

29

https://www.deepspeed.ai/
https://github.com/microsoft/DeepSpeed-MII
https://github.com/microsoft/DeepSpeed

	Slide 1: DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
	Slide 2: What is DeepSpeed?
	Slide 3: Agenda
	Slide 4: Introduction
	Slide 5: Transformer Models
	Slide 6: Inference Landscape
	Slide 7: DeepSpeed Inference
	Slide 8: Agenda
	Slide 9: Single GPU transformer kernels
	Slide 10: Many GPU Dense Optimizations
	Slide 11: Efficient Pipeline Scheduling
	Slide 12: 3. Memory and communication optimizations
	Slide 13: Primary Challenge with MoE Inference
	Slide 14: Designing a highly scalable MoE Inference System
	Slide 15: A symphony of Parallelism
	Slide 16: Communication Optimizations
	Slide 17: Democratizing Massive Model Inference
	Slide 18: Dynamic Prefetching
	Slide 19: Agenda
	Slide 20: DS-Inference: Up to 2x better single-GPU performance
	Slide 21: DS-Inference: Up to 1.5x better multi-GPU performance
	Slide 22: Symphony of all optimizations: Deploying Megatron-Turing-NLG 530B
	Slide 23: Unique properties of MoE inference
	Slide 24: Sparse MoE model optimizations
	Slide 25: Democratizing Inference on a single A6000 GPU
	Slide 26: Agenda
	Slide 27: Conclusion and Future work
	Slide 28: So, what’s next?
	Slide 29: Thank You!

