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Model Scale

e 10+ Trillion parameters

DeepSpeed Inference: Enabling Efficient Speed

* Fast & scalable training

Inference of Transformer Models at
Unprecedented Scale -

Compressed Training
Reza, Samyam, Ammar, Cheng, Du, Elton, Olatunji, Shaden, Minjia, Jeff, and « Boosted efficiency

Yuxiong He

Accelerated inference
* Up to 10x faster & cheaper

Usability

https://github.com/microsoft/DeepSpeed ¢ Few lines of code changes



https://github.com/microsoft/DeepSpeed

What is DeepSpeed?

Multi-purpose DL optimization suite @%

Training Inference Compression
e Speed e Latency e Model size

e Scale e Throughput e Latency
e Cost e Serving cost e Tuning cost
e Democratization | e Ease-of-use e Composability

DeepSpeed Website: https://www.deepspeed.ai/
DeepSpeed GitHub: https://github.com/microsoft/DeepSpeed g deepspeed
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https://www.deepspeed.ai/
https://github.com/microsoft/DeepSpeed

Agenda

e Introduction

* Inference Landscape
* Challenges

* Proposed Optimizations
* Single-GPU inference-optimized transformer kernels
* Many-GPU dense transformer optimizations
* Massive-scale sparse (MoE) model optimizations
» ZeRO-Offload inspired optimizations

 Performance Evaluation
* Conclusion
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Introduction

* Deep Learning
* Training: most state-of-the-art studies
and papers —

* Focused on distributed training on
hundreds of GPUs

* Optimizing for computation and
communication efficiency

* Training time and FLOPS are key metrics
Inference
* CPU based inference is common
* GPUs —increased adoption
* Large transformer models especially

sparse MoE models can exploit hundreds

of GPUs!

* Latency and throughput are the main
metrics
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Courtesy: https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-deep-learning-training-and-inference and

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/
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Transformer Models

* Transformer models are
everywhere
* Language, Vision, Speech,
multi-modal, etc.

* And they are becoming
bigger and better!

* Being re-branded as
“foundation models”

* Training large transformer
models is hard

* Deploying (inference) them
is even more challenging!

I: $C22 | Dallas, TX | hpc accelerates.
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https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/
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Inference Landscape

* Diverse Inference Landscape
* Model Size: millions to trillions of parameters
* Architecture: Dense vs Sparse
* Heterogeneous Hardware: Single-GPU, Single-node, and Multi-node
* Batch Size: few (latency sensitive) to thousands (throughput sensitive)

* Challenges

 Single Solution cannot be efficient across the entire landscape
* Hardware accessibility limitations for large model inference

BERT-Base BERT-Large GPT2 GPT2-XL Turing-NLG BLOOM MT-NLG MoE MoE MoE
(112M) (340M) (340M) (1.5B) (178B) (176B) (5308B) (3498B) (1T) (2T)
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DeepSpeed Inference

DeepSpeed Inference: SoTA latency and throughput across the entire inference landscape
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A systematic composition of diverse set of optimizations

O Inference Optimized transformer kernels — achieve best single GPU performance
O Many-GPU Dense transformer optimizations — powering large and very large models like Megatron-Turing 530B
L Massive Scale Sparse Model Inference— a trillion parameter MoE model inference under 25ms

Democratizing Massive Model Inference
O ZeRO-Inference — 50x bigger model inference on single-GPU device



Agenda

* Proposed Optimizations
* Single-GPU inference-optimized transformer kernels
 Many-GPU dense transformer optimizations
* Massive-scale sparse (MoE) model optimizations
* ZeRO-Offload inspired optimizations

 Performance Evaluation
* Conclusion
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Single GPU transformer kernels
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Many GPU Dense Optimizations

* Challenges of supporting a massive model for inference

e Tensor-slicing: can’t scale across nodes

* Pipeline parallelism can scale but has its own challenge
* Dependency between current and next token generation
* Load imbalance between prompt processing and token generation

* Memory and communication overheads

* Inference optimized pipeline parallelism in DeepSpeed
1. Efficient Pipeline schedule to handle token dependencies
2. Hybrid Scheduling to address load balancing
3. Memory and communication optimizations
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Efficient Pipeline Scheduling

e 1. Adapt training pipeline-schedule to handle token-generation

* Inference pipeline load imbalance
* Prompt: process a batch of input (large tokens)
* Token-generation: generating one token per batch

e 2. Hybrid Schedule for higher inference throughput

Prompt processing Token-generation

ml 010101010

Pipeline
Stage

mO ml B2 n MO (bsz=4) M1 (bsz=4)
ml A28 m3
MO (bsz=8)

Pipeline
Stage




3. Memory and communication optimizations

* High memory usage to handle large batch inference
 Saving Key/Value for all the pipeline stages (in-flight requests)

* Use CPU memory to offload a part of KV-cache
* Double-buffer memory to write the current data while prefetching the next
* Offload policy: to the point that we saturate PCIE bandwidth
* Increase batch size by ~¥30%, resulting in 25% speedup

* Communication optimization

* Handle the dynamic data-transfer at inference time
 We use some meta-data to handle the serialization-deserialization issue

e Customized implementation to eliminate the GPU-to-CPU traffic
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Primary Challenge with MoE Inference

* Inference latency lower-bounded by parameter load time
* Model-Size / Achievable Memory Bandwidth
e Ex. 200B model on a single V1I00@900GB/s takes 444ms

* Tensor-Parallelism to achieve lowest latency

* Higher aggregate bandwidth
e Ex. 200B model on 16x V100@500GB/s takes 50ms

e Tensor-Parallelism is limited
e Fine-grained Parallelism -> hard to achieve good bandwidth per device
* Communication volume overhead -> does not decrease with more devices

* 4x larger MoE model size than quality-equivalent-dense
* Requires 4x higher bandwidth/parallelism/scalability for latency parity




Designing a highly scalable MoE Inference System

* Goal:
e Scale beyond tensor-slicing
* Achieve aggregate memory bandwidth across hundreds of devices

* Three main area of optimizations for maximizing aggregate bandwidth
* A symphony of parallelism
* Careful orchestration of tensor, data and expert parallelism

 Parallelism coordinated Communication Optimization Strategies
* Minimize communication overhead

e Kernel Optimizations
* Maximize bandwidth utilization per device

1’ © SC22 | Dallas, TX | hpc accelerates.
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A symphony of Parallelism

* Observation
* Eachtoken is processed by at most a single expert SOl EIE
e Eachtoken can be processed independent|y of the Fine-grained Parallelism Coarse-grained parallelism
other Comm Vol: O(batch) Comm Vol: O(batch/devices)
e Expert Parallelism
* Group tokens based on experts Total GPUs = 16, Total Experts =8
° Run experts |n pa ra”el e:(pert—s_li:ir.\g dzgree :_ZAe;per-t-parallel degree_:s / _ Expert-parallelism \
. . . . ensor-slicing degree = 4, data-parallel degree =4 K Expert-slicing Expert-slicing
* Coordinate with all-to-all communication r——— T
Output (GPUO) | (
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. . (GPU 8) (GPU 15)
* Tensor Parallelism: - Mo Transformer Layer | —
ici /| Allgather.
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* Expert-Slicing for expert parameters | = rensor shing rensor-slicing
. AN (GPU 1) (GPU 13)
* Data Parallelism: nput sice2 Sice 2
* Scale non-expert parametersto match expert N o

Al (GPU 14)
. \\ reduce - reduce
parallelism Y N o
Ay
N Data-parallelism (no communication) /
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Communication Optimizations

e Communications:
* All-to-all, all-gather, all-reduce
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Democratizing Massive Model Inference

 Many model scientists only have access to one or a few GPUs

» ZeRO-Inference utilizes heterogeneous memory (GPU/CPU/NVMe) to
fit massive models

e Built on top of ZeRO-Infinity and optimized for inference
* DeepNVMe, a powerful C++ NVMe read/write library

e Supports bulk asynchronous data transfer
* Achieves near the peak bandwidth
* Pinned Memory Manager, manages the limited supply of pinned memory
* Reuses a small amount (tens of GBs) for offloading the entire model states (up to tens of
TBs) to CPU or NVMe
 Dynamic Prefetching (detailed in next slide)

o . e
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Dynamic Prefetching

* Trace the operator sequence ahead of time

e At runtime prefetch parameters needed for future operators while
computing the current one

it" operator (i + 1)" operator (i + 2)t" operator (i + 3)" operator
L L

A A
I 1 I 1

w/ prefetching: o All three overlap

Mitigates the bandwidth
oo bottleneck on a single GPU

nc: NVMe to CPU memory
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Agenda

* Performance Evaluation
* Conclusion
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DS-Inference: Up to 2x better single-GPU performance

* Low latency and high throughput for various model sizes
* GPT2-345M to GPT-13B
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DS-Inference: Up to 1.5x better multi-GPU performance

* Low latency and high throughput for models larger than a GPU memory
* GPT-NeoX 20B = GPT3-like 175B model
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Symphony of all optimizations: Deploying
Megatron-Turing-NLG 530B

* Inference optimized pipeline
parallelism in DeepSpeed

* Pipeline Schedule

e Efficient schedule to handle token
dependencies

* Hybrid Scheduling to address prompt/token
load-imbalance .

* Memory-offload: utilize CPU for large- & & &
batch inference
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* Communication optimizations
* High-performance Transformer kernels




Unique properties of MoE inference
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Sparse MoE model optimizations

e 7.3x Lower-latency & Higher-throughput at Unprecedented Scale

e 25ms for serving a 1T model
 50ms for fastest 200B dense model
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Democratizing Inference on a single A6000 GPU

* Large model scale: > 40x bigger model inference on single-GPU
* High efficiency:

* >50% hardware peak throughput

* Better than GPU-only inference due to larger batch size

Largest model inference on one NVIDIARTX A6000 GPU

Inference efficiency of large models on 1xA6000
(48GB HBM, 256GB DRAM, 2TB NVMe)
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Conclusion and Future work

* DeepSpeed inference is addressing the diverse landscape of
* Model sizes
* Model architectures
e Platform scale

* A coordinated set of optimizations are needed

Single GPU kernels

Multi GPU and multi-node inference for dense models requires coordination
* Multi-node sparse MoE models require a different set of optimizations

* DeepSpeed-inference combines them in one system

* We are laser focused on fast performance and ease-of-use

1’ © SC22 | Dallas, TX | hpc accelerates.
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So, what’s next?

* Fast moving field; new models
everyday

* Image generation is taking over
the fun model experimentation
space!

* DeepSpeed-Mll: Our latest
effort to make DeepSpeed-
inference accessible and
reproducible

 We are enabling the fastest

Stable Difussion (under 1 sec.)
with Mll!

SC22 | Dallas, TX | hpc accelerates.

Stable Diffusion Image Generation under 1 second w. DeepSpeed MI|

Latency Sensitive Throughput Focused

Batch size: 1, Lower is better Batch size: 8, Higher is better
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https://github.com/microsoft/DeepSpeed-
MIl/tree/main/examples/benchmark/txt2img
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Thank You!

 Questions and feedback

Training Inference Compression

e Speed e Latency Model size

e Scale e Throughput Latency

e Cost e Serving cost Tuning cost

e Democratization | e Ease-of-use Composability

Multi-purpose DL optimization suite

DeepSpeed Website: https://www.deepspeed.ai/ g d d
DeepSpeed-Mll: https://github.com/microsoft/DeepSpeed-Ml| eepspee

DeepSpeed GitHub: https://github.com/microsoft/DeepSpeed
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