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1 Introduction

Picnic is a signature scheme that is designed to provide security against
attacks by quantum computers, in addition to attacks by classical computers.
The scheme uses a zero-knowledge proof system and is based on symmetric
key primitives like hash functions and block ciphers with conjectured post-
quantum security. In particular, Picnic does not rely on number-theoretic or
algebraic hardness assumptions.

In this document we present the building blocks of the Picnic signature
scheme in Section 2. In Section 3 we present several variants of the Picnic
signature scheme and various optimizations to the building blocks. We spec-
ify the parameters for some of the building blocks in Section 4 (and leave
complete details of the parameters to the specification document). In Sec-
tion 5 we include the formal security proofs for the proposed instantiations of
Picnic. Section 7 presents an analysis of the algorithm with respect to known
attacks and Section 8 provides a thorough description of the expected security
strength. Finally, Section 9 discuss advantages and limitations, Section 10
discusses additional security properties, and Section 11 presents results on
efficiency and memory usage of the Picnic scheme.

Source Materials Parts of this document are taken or adapted from re-
search papers [CDG+17, KKW18, DKP+19] by the authors and the Picnic
Specification document [Tea19a]. The Picnic website [Tea19b] lists these
sources and related talks, with links to the papers themselves.

1.1 The Picnic Design Team

Picnic was designed collaboratively by the following group of people.
Melissa Chase, Microsoft
David Derler, DFINITY
Steven Goldfeder, Cornell Tech
Jonathan Katz, George Mason University
Daniel Kales, Graz University of Technology
Vladimir Kolesnikov, Georgia Tech
Claudio Orlandi, Aarhus University
Sebastian Ramacher, Graz University of Technology
Christian Rechberger, Graz University of Technology & DTU
Daniel Slamanig, AIT Austrian Institute of Technology
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Xiao Wang, Northwestern University
Greg Zaverucha, Microsoft

1.2 Acknowledgments

We are grateful for help from Christian Paquin (integration of Picnic in
OQS and OpenSSL), Larry Joy (HSM demo), Alexander Grass and Angela
Promitzer (contributions to the optimized implementation). We are also
grateful to Serge Fehr and his co-authors Jelle Don, Christian Majenz and
Christian Schaffner, for generalizing their QROM results [DFMS19a] to apply
to Picnic2.

2 Background

In this section we review some background material relevant to the Picnic
design.

2.1 Commitments

Definition 2.1 (Commitment Scheme). A (non-interactive) commitment
scheme consists of algorithms Com and Open with the following properties:

Com(M) : On input a message M ∈ {0, 1}, the commitment algorithm out-
puts (C,D) ← Com(M ;R), where R is a random value used when
forming the commitment. C is the commitment string, while D is the
decommitment string which is kept secret until opening time.

Open(C,D) : On input C,D, the verification algorithm either outputs a mes-
sage M or ⊥.

Computationally secure commitments must satisfy the following proper-
ties

Correctness. If Com(M) outputs (C,D) then Open(C,D) = M .

Hiding. For every message pairM,M ′ the probability ensembles {C : (C,D)←
Com(M)}κ∈N and {C : (C,D)← Com(M ′)}κ∈N are computationally in-
distinguishable for security parameter κ.
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Binding. We say that an adversary A wins if it outputs C,D,D′ such that
Open(C,D) = M , Open(C,D′) = M ′ and M 6= M ′. We require that
for all efficient algorithms A (running in time polynomial in κ), the
probability that A wins is a negligible function of κ.

Our implementation uses hash-based commitments, which requires modeling
the hash function as a random oracle in our security analysis. Let H be a
cryptographic hash function. The commitment scheme works as follows:

Com(M) : SampleR←R {0, 1}κ and set C ← H(R,M) and return (C, (R,M));

Open(C,D) : Parse D as (R,M) and return M if H(R,M) = C, and return
⊥ otherwise.

2.2 Zero-Knowledge Proofs and Σ-Protocols

A sigma protocol is a three-flow protocol between a prover and verifier, used
to prove knowledge of a secret. A well-known class of sigma protocols are
the so-called generalized Schnorr proofs, which allow the prover to prove
knowledge of a discrete logarithm, and that it satisfies certain properties. In
the present work we use a sigma protocol that allows one to prove knowledge
of an input to an arbitrary binary circuit. Sigma protocols are usually zero-
knowledge proofs, which informally means that the proof protocol does not
reveal any information about the secret. We describe interactive protocols,
but will show later how to make them non-interactive (so that signatures are
non-interactive). Let L be an NP-language with associated witness relation
R so that L = {x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined
as follows.

Definition 2.2 (Σ-Protocol). A Σ-protocol for relation R is an interactive
three-move protocol between a PPT prover P = (Commit,Prove) and a PPT
verifier V = (Challenge,Verify), where P makes the first move and transcripts
are of the form (a, e, z) ∈ A×E×Z, where a is output by Commit, e is output
by Challenge and z is output by Prove. Additionally, Σ protocols satisfy the
following properties

Completeness. A Σ-protocol for language L is complete, if for all security
parameters κ, and for all (x,w) ∈ R, it holds that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.
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s-Special Soundness. A Σ-protocol for language L is s-special sound, if
there exists a PPT extractor E so that for all x, and for all sets of
accepting transcripts {(a, ei, zi)}i∈[s] with respect to x where ∀i, j ∈
[s], i 6= j : ei 6= ej, generated by any algorithm with polynomial runtime
in κ, it holds that

Pr
[
w ← E(1κ, x, {(a, ei, zi)}i∈[s]) : (x,w) ∈ R

]
≥ 1− ε(κ).

We can also consider a computational variant which says that if A is a
PPT algorithm then the probability that it can produce an accepting
transcript from which E fails to extract a valid witness is negligible.

Special Honest-Verifier Zero-Knowledge. A Σ-protocol is special hon-
est-verifier zero-knowledge, if there exists a PPT simulator S so that
for every x ∈ L and every challenge e from the challenge space, it holds
that a transcript (a, e, z), where (a, z) ← S(1κ, x, e) is computationally
indistinguishable from a transcript resulting from an honest execution
of the protocol.

The s-special soundness property gives an immediate bound for the soundness
of the protocol: if no witness exists then (ignoring a negligible error) the
prover can successfully answer at most (s − 1)/t of the possible challenges,
where t = |E| is the size of the challenge space. If this value is too large,
it is possible to reduce the soundness error using parallel repetition (see
[Dam10, CDS94] for details).

Lemma 2.3. Let Π be a Σ-protocol with s-special soundness. Then the `-
fold parallel repetition of Π, denoted Π`, is also a Σ-protocol with s`-special
soundness.

2.3 Non-Interactive Zero-Knowledge Proofs of Knowl-
edge

For our signatures, we use non-interactive zero-knowledge proofs of knowl-
edge, in which the proof is a single message. Here we define zero-knowledge
and the necessary notion of simulation-extractability. We present the defini-
tion the random oracle model against classical adversaries and the definition
in the quantum random oracle model against quantum adversaries.1

1These definition roughly combine the ROM definitions of [BPW12] and the QROM
definitions of [Unr15].
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Zero-knowledge says that there is a simulator which can produce proofs
that are indistinguishable from those produced by P without knowing the
witnesses to an adversary who is given access to a simulated version of the
random oracle.

Definition 2.4 (Zero-Knowledge). A protocol P, V for relation R is zero-
knowledge against (quantum) adversaries in the (quantum) random oracle
model if there exist PPT algorithms SR, Sim such that for all (quantum)
PPT adversaries A

|Pr[b← AR(·),P (·,·)(1λ) : b = 1]− Pr[b← ASR(·),SimP (·,·)(1λ) : b = 1]|

is negligible in λ, where R is a random function to which A can provide
(quantum) inputs, SimP takes a pair (x,w) ∈ R and calls Sim(x), and Sim, SR

share state.

Simulation-extractability says that an adversary cannot produce a new
proof for a statement for which he does not know the witness, even if he is
allowed to see proofs produced by someone else for statements of his choice.
More formally, we say that even when an adversary is given access to the
zero-knowledge simulator to obtain proofs for (true or false) statements of
its choice, whenever it produces a new proof (not produced by the simu-
lator) that is accepted by the verifier, there is an extractor that can look
at the implementation of the adversary and extract a valid witness for that
statement.

Definition 2.5 (Simulation extractability). A protocol P, V for relation R
satisfies simulation extractability against (quantum) adversaries in the (quan-
tum) random oracle model if there exist PPT algorithms SR, Sim satisfying
the zero-knowledge definition and a PPT (quantum) extractor such that for
all (quantum) PPT adversaries A

Pr[(x, π)← ASR(·),Sim(·)(1λ); w ← E(A, x, π) :

V SR(x, π) = 1 ∧ (x, π) /∈ Q ∧ (x,w) /∈ R]

is negligible in λ, where SR, Sim, and E share state, Q is the list of A’s queries
to Sim and the resulting responses, and passing A as input to E means E is
given access to a (quantum) implementation of A.
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2.4 Signature Schemes

In the following we recall a standard definition of signature schemes along
with two widely used security notions.

Definition 2.6 (Signature Scheme). A signature scheme Σ is a triple (Gen,
Sign,Verify) of PPT algorithms, which are defined as follows:

Gen(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key sk and a public (verification) key pk with associated
message spaceM (we may omit to make the message spaceM explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

Besides the usual correctness property, Σ needs to provide some unforge-
ability notion. We consider two notions, namely existential unforgeability
under adaptively chosen message attacks (EUF-CMA security) and its strong
variant (sEUF-CMA security), which we define below.

Definition 2.7 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr
[

(sk, pk)← Gen(1κ), (m∗, σ∗)← ASign(sk,·)(pk) :

Verify(pk,m∗, σ∗) = 1 ∧ (m∗, ·) /∈ QSign
]
≤ ε(κ),

where the environment keeps track of the queries and responses to and from
the signing oracle via QSign.

Definition 2.8 (sEUF-CMA). A signature scheme Σ is strongly EUF-CMA
(sEUF-CMA) secure, if for all PPT adversaries A there is a negligible function
ε(·) such that

Pr
[

(sk, pk)← Gen(1κ), (m∗, σ∗)← ASign(sk,·)(pk) :

Verify(pk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ QSign
]
≤ ε(κ),

where the environment keeps track of the queries and responses to and from
the signing oracle via QSign.
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2.5 Fiat-Shamir Transform

The Fiat-Shamir (FS) transform [FS86] is an elegant way to construct sig-
nature schemes from Σ-protocols. The basic idea is similar to constructing
NIZK proofs from Σ-protocols, but the challenge e is generated by hashing
the prover’s first message a and the message m to be signed, i.e., define a
modified challenge algorithm Challenge′ that outputs e ← H(a,m). Then,
the prover can locally obtain the challenge after computing the initial mes-
sage. Starting a verifier V′ = (Challenge′,Verify) on the same initial message
would yield the same challenge. The prover outputs (a, z) as the challenge.

More formally, by using the hash function H : A × X → E, which we
model as a random oracle, we obtain the non-interactive PPT algorithms
(ProveH , VerifyH) , defined as follows:

ProveH(1κ, (x,m), w) : Start P on input (1κ, x, w), obtain the first message
a, answer with e← H(a,m), and finally obtain z. Return π ← (a, z).

VerifyH(1κ, (x,m), π) : Parse π as (a, z). Start V′ on (1κ, x), send (a,m) as
the first message to the verifier. When V′ outputs e, reply with z and
output 1 if V′ accepts and 0 otherwise.

2.6 Unruh Transform

Similar to the Fiat-Shamir transform, Unruh’s transform [Unr12, Unr15,
Unr16] allows one to construct NIZK proofs and signature schemes from
Σ-protocols. In contrast to the FS transform, Unruh’s transform can be
proven secure in the QROM (quantum random oracle model), strengthening
the security guarantee against quantum adversaries.

At a high level, Unruh’s transform works as follows: Given a 2-special-
sound Σ-protocol, integers t andM , a statement x and a random permutation
G, the prover will repeat the first phase of the Σ-protocol t times. Then,
for each of the t runs, it produces proofs to M different randomly selected
challenges. The prover applies G to each of the so-obtained responses. The
prover then selects the responses to publish for each round of the Σ-protocol
by querying the random oracle on the message to be signed, all first rounds
of the Σ-protocol and the outputs of G on all responses.

For a more formal treatment, we keep t as above and let M ∈ [2, |E|].
Let H : {0, 1}∗ → [M ]t be a hash function we model as a random oracle.
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We obtain the non-interactive PPT algorithms (ProveH , VerifyH) defined
as follows:

ProveH(1κ, (x,m), w) :

1. For i ∈ [t]:

(a) Start P on (1κ, x, w) and obtain first message ai.

(b) For j ∈ [M ], set ei,j ←R E\{ei,1, . . . , ei,j−1} and obtain response
zi,j for challenge ei,j.

2. For i, j ∈ [t]× [M ], set gi,j ← G(zi,j).

3. Let (J1, . . . , Jt)← H(m, (ai)i∈[t], (ei,j)(i,j)∈[t]×[M ], (gi,j)(i,j)∈[t]×[M ])

4. Return π ← ((ai)i∈[t], (ei,j)(i,j)∈[t]×[M ], (gi,j)(i,j)∈[t]×[M ], (zi,Ji)i∈[t])

VerifyH(1κ, (x,m), π) : Parse π as ((ai)i∈[t], (ei,j)(i,j)∈[t]×[M ], (gi,j)(i,j)∈[t]×[M ],
(zi)i∈[t]).

1. Let (J1, . . . , Jt)← H(m, (ai)i∈[t], (ei,j)(i,j)∈[t]×[M ], (gi,j)(i,j)∈[t]×[M ])

2. For i ∈ [t] check that all ei,1, . . . , ei,M are pairwise distinct.

3. For i ∈ [t] check whether V accepts the proof with respect to x,
first message ai, challenge ei,Ji and response zi.

4. For i ∈ [t] check gi,Ji = G(zi).

5. Output 1 if all checks succeeded and 0 otherwise.

We discuss a specialization of Unruh’s transform to our Σ-protocol in
Section 3.1.

2.7 (2,3)-Decomposition of Circuits

A circuit decomposition is a protocol for jointly computing a circuit, similar
to an MPC protocol, but with greater efficiency. In a (2,3)-decomposition
there are three players and the protocol has 2-privacy, i.e., it remains secure
even if two of the three players are corrupted.

Definition 2.9 ((2,3)-decomposition). Let f(·) be a function that is com-
puted by an n-gate circuit φ such that f(x) = φ(x) = y. Let k1, k2, and k3 be
tapes of length κ chosen uniformly at random from {0, 1}κ corresponding to
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players P1, P2 and P3, respectively. Consider the following set of functions,
D:

(view
(0)
1 , view

(0)
2 , view

(0)
3 )← Share(x, k1, k2, k3)

view
(j+1)
i ← Update(view

(j)
i , view

(j)
i+1, ki, ki+1)

yi ← Output(Viewi)

y ← Reconstruct(y1, y2, y3)

such that Share is a potentially randomized function that takes x as input
and outputs the initial view for each player containing the secret share of xi
of x - i.e. view

(0)
i = xi. The function Update computes the wire values for

the next gate and updates the view accordingly. The function Outputi takes

as input the final view, Viewi ≡ view
(n)
i after all gates have been computed

and outputs player Pi’s output share, denoted yi.

Correctness requires that reconstructing a (2,3)-decomposed evaluation of
a circuit φ yields the same value as directly evaluating φ on the input value.
The 2-privacy property requires that revealing the values from two shares
reveals nothing about the input value. More formally, these two properties
are defined as follows: We define the experiment EXP

(φ,x)
decomp in Experiment 1,

which runs the decomposition over a circuit φ on input x: We say that D is

EXP
(φ,x)
decomp:

1. First run the Share function on x: view
(0)
1 , view

(0)
2 , view

(0)
3 ←

Share(x, k1, k2, k3)

2. For each of the three views, call the update function successively for
every gate in the circuit: view

(j)
i = Update(view

(j−1)
i , view

(j−1)
i+1 , ki, ki+1)

for i ∈ [1, 3], j ∈ [1, n]

3. From the final views, compute the output share of each view: yi ←
output(Viewi)

Experiment 1: Decomposition Experiment

a (2, 3)-decomposition of φ if the following two properties hold when running

EXP
(φ,x)
decomp:
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Correctness. For all circuits φ, for all inputs x and for the yi’s produced
by EXP

(φ,x)
decomp,

Pr[φ(x) = Reconstruct(y1, y2, y3)] = 1.

2-Privacy. Let D be correct. Then for all e ∈ {1, 2, 3} there exists a PPT
simulator Se such that for any probabilistic polynomial-time (PPT)
algorithm A, for all circuits φ, for all inputs x, and for the distribution
of views and ki’s produced by EXP

(φ,x)
decomp we have that∣∣Pr[A(x, y, ke,Viewe, ke+1,Viewe+1, ye+2) = 1]−Pr[A(x, y,Se(φ, y)) = 1]

∣∣
is negligible.

We now discuss the (2,3)-decomposition used by ZKB++. Let R be
an arbitrary finite ring and φ a function such that φ : Rm → R` can be
expressed by an n-gate arithmetic circuit over the ring using addition by
constant, multiplication by constant, addition and multiplication gates. A
(2, 3)−decomposition of φ is given by the following functions. In the notation
below, arithmetic operations are done in Rs where the operands are elements
of Rs):

• (x1, x2, x3)← Share(x, k1, k2, k3) samples random x1, x2, x3 ∈ Rm such
that x1 + x2 + x3 = x.

• yi ← Outputi(view
(n)
i ) selects the ` output wires of the circuit as stored

in the view view
(n)
i .

• y ← Reconstruct(y1, y2, y3) = y1 + y2 + y3

• view
(j+1)
i ← Update

(j)
i (view

(j)
i , view

(j)
i+1, ki, ki+1) computes Pi’s view of

the output wire of gate gj and appends it to the view. Notice that it
takes as input the views and random tapes of both party Pi as well as
party Pi+1. We use wk to refer to the k-th wire, and we use w

(i)
k to refer

to the value of wk in party Pi’s view. The update operation depends
on the type of gate gj.

The gate-specific operations are defined as follows.
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Addition by Constant (wb = wa + k):

w
(i)
b =

{
w

(i)
a + k if i = 1,

w
(i)
a otherwise.

Multiplication by Constant (wb = wa · k):

w
(i)
b = k · w(i)

a

Binary Addition (wc = wa + wb):

w(i)
c = w(i)

a + w
(i)
b

Binary Multiplication (wc = wa · wb):

w(i)
c = w(i)

a · w
(i)
b + w(i+1)

a · w(i)
b +

w(i)
a · w

(i+1)
b +Ri(c)−Ri+1(c),

where Ri(c) is the c-th output of a pseudorandom generator seeded
with ki.

Note that with the exception of the constant addition gate, the gates are
symmetric for all players. Also note that Pi can compute all gate types locally
with the exception of binary multiplication gates as this requires inputs from
Pi+1. In other words, for every operation except binary multiplication, the

Update function does not use the inputs from the second party, i.e., view
(j)
i+1

and ki+1.
While we do not give the details here, [GMO16a] shows that this decom-

position meets the correctness and 2-privacy requirements of Definition 2.9.
In other words, for every operation except binary multiplication, the Update

function does not use the inputs from the second party, i.e., view
(j)
i+1 and Ri+1.

2.8 ZKB++

ZKB++, an optimized version of ZKBoo [GMO16a], is a proof system for
zero-knowledge proofs on arbitrary circuits. ZKBoo and ZKB++ build on
the MPC-in-the-head paradigm of Ishai et al. [IKOS09], that we describe
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only informally here. The multiparty computation protocol (MPC) will im-
plement the relation, and the input is the witness. For example, the MPC
could compute y = SHA-256(x) where players each have a share of x and y
is public. The idea is to have the prover simulate a multiparty computation
protocol “in their head”, commit to the state and transcripts of all players,
then have the verifier “corrupt” a random subset of the simulated players
by seeing their complete state. The verifier then checks that the corrupted
players performed the correct computation, and if so, he has some assurance
that the output is correct. Iterating this for many rounds then gives the
verifier high assurance.

ZKBoo generalizes the idea of [IKOS09] by replacing MPC with circuit
decompositions. In Scheme 1 and Scheme 2 we present the prover and the
verifier of the ZKB++ Σ-protocol.

P.Commit : 1. For each iteration i ∈ [t]: Sample random seeds k
(i)
1 , k

(i)
2 , k

(i)
3

obtain view View
(i)
j and output share y

(i)
j . For each player Pj

compute

(a) (x
(i)
1 , x

(i)
2 , x

(i)
3 )← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3 )

(b) View
(i)
j ← Update(. . . Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .)

(c) y
(i)
j ← Output(View

(i)
j )

(d) Commit C
(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j ), and let a(i) ←

(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ).

2. Return (a(i))i∈[t].

P.Prove : On input of a challenge (e(i))i∈[t], set for each iteration i ∈ [1, t]

z(i) ←


(View

(i)
2 , k

(i)
1 , k

(i)
2 ) if e(i) = 1,

(View
(i)
3 , k

(i)
2 , k

(i)
3 , x

(i)
3 ) if e(i) = 2,

(View
(i)
1 , k

(i)
3 , k

(i)
1 , x

(i)
3 ) if e(i) = 3.

and return (z(i))i∈[t].

Scheme 1: The prover of the ZKB++ Σ-protocol.

We now discuss various instantiation aspects of ZKB++ that make the
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V.Challenge : Store (a(i))i∈[t] and return (e(i))i∈[t]←R Et.

V.Verify : 1. For each iteration i ∈ [t] reconstruct the views, input and
output shares that were not explicitly given as part of the proof
response z(i):

(a) Set

x
(i)

e(i)
←

{
Re(i)(0) if e(i) 6= 3,

x
(i)
3 given as part of z(i) if e(i) = 3.

x
(i)

e(i)+1
←

{
Re(i)+1(0) if e(i) 6= 2,

x
(i)
3 given as part of z(i) if e(i) = 2.

(b) Obtain View
(i)

e(i)+1
from z(i).

(c) View(i)
e ← Update(. . . Update(x

(i)

e(i)
, x

(i)
e+1, k

(i)
e , k

(i)
e+1) . . .)

(d) y
(i)

e(i)
← Output(View

(i)

e(i)
)

(e) y
(i)

e(i)+1
← Output(View

(i)

e(i)+1
)

(f) y
(i)

e(i)+2
← y − y(i)

e(i)
− y(i)

e(i)+1

2. Re-compute the commitments for views View
(i)

e(i)
and View

(i)

e(i)
. For

j ∈ {e(i), e(i) + 1}:

C
(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j )

3. Set a′(i) ← (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ) taking C

(i)

e(i)+2
from a(i).

4. If a′(i) = a(i) for all i ∈ [t], output Accept, otherwise Reject.

Scheme 2: The verifier of the ZKB++ Σ-protocol.
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optimizations with respect to ZKBoo possible. To highlight the differ-
ence, we also present the Fiat-Shamir transformed ZKBoo proof system
in Scheme 3 and the Fiat-Shamir transformed ZKB++ in Scheme 4.

The Share Function. We make the Share function sample the shares
pseudorandomly as:

(x1, x2, x3)← Share(x, k1, k2, k3) :=

x1 = R1(0), x2 = R2(0), x3 = x− x1 − x2.

Ri is a pseudorandom generator seeded with ki. We specify the Share func-
tion in this manner as it will lead to more compact proofs. Moving now to
the ZKBoo protocol, for each round, the prover is required to “open” two
views. In order to verify the proof, the verifier must be given both the random
tape and the input share for each opened view. If these values are generated
independently of one another, then the prover will have to explicitly include
both of them in the proof. However, with our sampling method, in View1

and View2, the prover only needs to include ki, as xi can be deterministically
computed by the verifier.

The exact savings depends on which views the prover must open, and
thus depends on the challenge.

Not Including Input Shares. Since the input shares are generated pseu-
dorandomly using the seed ki, we do not need to include them in the view
when e = 1. However, if e = 2 or e = 3, we still need to send one input share
for the third view for which the input share cannot be derived from the seed.
Thus we explicitly specify the input share when required and do not include
it in View

(j)
i .

No Additional Randomness for Commitments. Since the first input
to the commitment is the seed value ki for the random tape, the protocol
input to the commitment doubles as a randomization value, ensuring that
commitments are hiding. To simplify security analysis, we in fact choose two
different random oracles H ′, H ′′. We use H ′(ki) as the seed to generate the
random tape used to generate the input shares and views, and we use H ′′(ki)
as input to the commitment. In the random oracle model then, this produces
two independent random values; as H ′′(ki) for the unopened view only ap-
pears as input to the commitment, this effectively replaces the randomness
needed for the commitment scheme in the RO model. (Since one already
needs the RO model to make the proofs non-interactive, there is no extra
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ProveH(1κ, y, x) : 1. For each iteration i ∈ [1, t]: Sample random tapes

k
(i)
1 , k

(i)
2 , k

(i)
3 and run the decomposition to get an output view

View
(i)
j and output share y

(i)
j . In particular, for each player Pj:

(a) (x
(i)
1 , x

(i)
2 , x

(i)
3 )← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3 )

(b) View
(i)
j ← Update(. . . Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .)

(c) y
(i)
j ← Output(View

(i)
j )

(d) Commit C
(i)
j ← Com(k

(i)
j ,View

(i)
j ), and let a(i) ←

(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ).

2. Compute the challenge: e ← H(a(1), . . . , a(t)). Interpret the chal-
lenge such that for i ∈ [1, t], e(i) ∈ {1, 2, 3}

3. For each iteration i ∈ [1, t], let z(i) = (D
(i)

e(i)
, D

(i)

e(i)+1
).

4. Output π ← [(a(1), z(1)), (a(2), z(2)), · · · , (a(t), z(t))]

VerifyH(1κ, y, π) : 1. Parse π as [(a(1), z(1)), (a(2), z(2)), · · · , (a(t), z(t))].

2. Compute the challenge: e′ ← H(a(1), · · · , a(t)). Interpret the chal-
lenge such that for i ∈ [1, t], e′(i) ∈ {1, 2, 3}.

3. For each iteration i ∈ [1, t]: If there exists j ∈ {e′(i), e′(i) + 1}
such that Open(C

(i)
j , D

(i)
j ) = ⊥, output Reject. Otherwise, for all

j ∈ {e′(i), e′(i) + 1}, set {k(i)
j ,View

(i)
j } ← Open(C

(i)
j , D

(i)
j ).

4. For each iteration i ∈ [1, t]: If Reconstruct(y
(i)
1 , y

(i)
2 , y

(i)
3 ) 6= y,

output Reject. If there exists j ∈ {e′(i), e′(i) + 1} such that y
(i)
j 6=

Output(View
(i)
j ), output Reject. For each wire value w

(e)
j ∈ Viewe,

if w
(e)
j 6= Update(view(j−1)

e , view
(j−1)
e+1 , ke, ke+1) output Reject.

5. Output Accept.

Scheme 3: The ZKBoo non-interactive proof system.
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ProveH(1κ, y, x) : 1. For each iteration i ∈ [t]: Sample random tapes

k
(i)
1 , k

(i)
2 , k

(i)
3 and obtain output view View

(i)
j and output share y

(i)
j .

For each player Pj compute

(a) (x
(i)
1 , x

(i)
2 , x

(i)
3 )← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3 )

(b) View
(i)
j ← Update(. . . Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .)

(c) y
(i)
j ← Output(View

(i)
j )

(d) Commit C
(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j ), and let a(i) ←

(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ).

2. Compute the challenge: e← H(a(1), . . . , a(t)).

3. For each iteration i ∈ [1, t] set: z(i) ← (View
(i)
2 , k

(i)
1 , k

(i)
2 ) if e(i) = 1

and z(i) ← (View
(i)

e(i)+1
, k

(i)

e(i)
, k

(i)

e(i)+1
, x

(i)
3 ) otherwise, and return π ←

(e, z
(i)
i∈[t]).

VerifyH(1κ, y, π) : Parse π as (e, z
(i)
i∈[t]).

1. For each iteration i ∈ [t] reconstruct the views, input and output
shares that were not explicitly given as part of the proof z(i):

(a) Set x
(i)

e(i)
← Re(i)(0) if e(i) 6= 3, otherwise obtain x

(i)
3 from z(i).

Set x
(i)

e(i)+1
← Re(i)+1(0) if e(i) 6= 2, otherwise obtain x

(i)
3 from

z(i).

(b) Obtain View
(i)

e(i)+1
from z(i).

(c) View(i)
e ← Update(. . . Update(x

(i)

e(i)
, x

(i)
e+1, k

(i)
e , k

(i)
e+1) . . .)

(d) y
(i)

e(i)
← Output(View

(i)

e(i)
), y

(i)

e(i)+1
← Output(View

(i)

e(i)+1
)

(e) y
(i)

e(i)+2
← y + y

(i)

e(i)
+ y

(i)

e(i)+1

2. Re-compute the commitments for views View
(i)

e(i)
and View

(i)

e(i)
. For

j ∈ {e(i), e(i) + 1}: C(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j ).

3. Set a′(i) ← (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ) taking C

(i)

e(i)+2
from a(i).

4. Re-compute the challenge: e′ ← H(a′(1), . . . , a′(t)). If e = e′ output
Accept, otherwise Reject.

Scheme 4: The Fiat-Shamir transformed ZKB++ protocol.
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assumption here.) Hence we will use the following hash-based commitment
scheme:

Com(M) : Set C ← H(M) and return (C,M);

Open(C,D) : Return M if H(D) = C, and return ⊥ otherwise.

We will prove in Section 5.1 that our proof system is secure when using this
scheme.

Not Including the Output Shares. The output shares yi are included in
the proof as part of a. Moreover, for the two views that are opened, those
output shares are included a second time. First, we do not need to send
two of the output shares twice. We actually do not need to send any output
shares at all as they can be deterministically computed from the rest of the
proof as follows:

For the two views that are given as part of the proof, the output share
can be recomputed from the remaining parts of the view. Essentially, the
output share is just the value on the output wires. Given the random tapes
and the communicated bits from the binary multiplication gates, all wires
for both views can be recomputed.

For the third view, recall that the Reconstruct function simply adds the
three output shares to obtain y. But the verifier is given y, and can thus
instead recompute the third output share. In particular, given yi, yi+1 and
y, the verifier can compute: yi+2 = y − yi − yi+1. Thus we explicitly specify

the output share when required and do not include it in View
(j)
i .

When applying the Fiat-Shamir and Unruh transforms to ZKB++ to
obtain a signature scheme, we can also perform the following modifications.

Not Including Commitments. It is unnecessary to send all three com-
mitments to the verifier. Since for the two views that are opened, the verifier
can recompute the commitment. Only for the third view that the verifier is
not given the commitment needs to be explicitly sent.

Security. One can observe that all optimizations except ”No Additional
Randomness for Commitments” are equivalence transformations, and, there-
fore, do not impact the security of the overall ZKB++ proof system. In
Section 5.1, we formally confirm that using no additional randomness for the
commitments does not impact the security of the ZKB++ proof system.
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2.9 KKW

KKW [KKW18] is another variant of ZKBoo, focusing on minimizing the
signature size. It is very similar to ZKBoo and ZKB++ but uses an MPC
protocol with more than three parties.

2.9.1 The MPC Protocol

Recall that the prover needs to simulate a set of parties, S1, . . . , Sn. In KKW,
all simulated parties run an n-party protocol Π in the preprocessing model,
secure against semi-honest corruption of all-but-one of the parties.

The protocol Π maintains the invariant that, for each wire in the circuit,
the parties hold an n-out-of-n secret sharing of a random mask along with
the (public) masked value of the wire. Specifically, if we let zα denote the
value of wire α in the circuit C when evaluated on input w, then the parties

will hold [λα] (for uniform λα ∈ {0, 1}) along with the value ẑα
def
= zα ⊕ λα.

Preprocessing phase. In the preprocessing phase, shares are set up among
the parties as follows. For each wire α that is either an input wire of the
circuit or the output wire of an AND gate, the parties are given [λα], where
λα ∈ {0, 1} is uniform. For an XOR gate with input wires α, β and output

wire γ, define λγ
def
= λα ⊕ λβ; note the parties can compute [λγ] locally.

Finally, for each AND gate with input wires α, β, the parties are given [λα,β],

where λα,β
def
= λα · λβ.

One observation is that the shares of the {λα} are uniform, and so can
be generated by having each party Si apply a pseudorandom generator to a
short, random seed seedi given to that party, and then (implicitly) defining
the {λα} based on the resulting shares. All-but-one of the shares of the
{λα,β} can also be generated in this way, but the final share is constrained
by the values of λα, λβ. To ensure that the shares of the {λα,β} are correct,
Sn can be given an additional |C| “correction bits” that determine its share
of λα,β for each AND gate with input wires α, β.

To summarize: each Si is given a κ-bit seed seedi ∈ {0, 1}κ, and Sn is
additionally given |C| bits denoted by auxn. We refer to this information as
the state of the parties, and denote the state of Si by statei. In the online
phase of the protocol, each party Si uses seedi to generate its shares of the
{λα}; for 1 ≤ i ≤ n− 1, party Si also uses seedi to generate its shares of the
{λα,β}. Party Sn uses auxn as its shares of the {λα,β}.
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Protocol execution. Note that in this setting, where all parties are semi-
honest, we can perform public reconstruction of a shared value [x] by simply
having each party broadcast its share.

We assume the parties begin the protocol holding a masked value ẑα for
each input wire α. (In this context these masked values will be provided
to the parties by the prover who is simulating execution of the protocol.)
These masked values, along with the corresponding {λα}, define an effective
input to the protocol. During the online phase of the protocol, the parties
inductively compute ẑα for all wires in the circuit. Specifically, for each gate
of the circuit with input wires α, β and output wire γ, where the parties
already hold ẑα, ẑβ, the parties do:

• If the gate is an XOR gate, then the parties locally compute

ẑγ := ẑα ⊕ ẑβ .

• If the gate is an AND gate, the parties locally compute

[s] := ẑα[λβ]⊕ ẑβ[λα]⊕ [λα,β]⊕ [λγ],

and then publicly reconstruct s. Finally, they compute ẑγ := s⊕ ẑαẑβ.
One can verify that ẑγ = zγ ⊕ λγ.

Once the parties have computed ẑα for the output wire α, the output value
zα is computed by publicly reconstructing λα and then setting zα := ẑα⊕λα.

We remark that the online phase of this protocol is deterministic. Also
observe that all communication is due to share reconstruction: for a circuit
with |C| AND gates, at most |C|+ 1 share reconstructions are needed.

2.9.2 The Proof Protocol

The high-level idea is to have the prover run M emulations of the prepro-
cessing phase and their online phases, and commit to all emulations. The
verifier selects M − τ of them and checks the preprocessing phase; the online
phase of the remaining τ executions will be checked by revealing the view of
all-but-one parties. The protocol is shown in Figure 1 and Figure 2. In the
following, we will discuss more details of KKW.

Checking the preprocessing phase. Recall from the previous section
that, following the preprocessing phase, the state of party Si for 1 ≤ i ≤ n−1
is a seed seedi, while the state of party Sn is a seed seedn along with a |C|-bit
string auxn. We improve the communication complexity in several ways:
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KKW Prover Algorithm

Inputs: Both parties have a circuit C; the prover also holds w with
C(w) = 1. Values M,n, τ are parameters of the protocol.

Round 1 For each j ∈ [M ], the prover does:

1. Choose uniform seed∗j ∈ {0, 1}
κ and use it to generate values

seedj,1, rj,1, . . ., seedj,n, rj,n. Also compute auxj ∈ {0, 1}|C| as
described in the text. For i = 1, . . . , n− 1, let statej,i := seedj,i;
let statej,n := seedj,n‖auxj.

2. For i ∈ [n], compute comj,i := Com(statej,i; rj,i).

3. The prover simulates the online phase of the n-party protocol Π
(as described in the text) using {statej,i}i, beginning by comput-
ing the masked inputs {ẑj,α} (based on w and the {λj,α} defined
by the preprocessing). Let msgsj,i denote the messages broadcast
by Si in this protocol execution.

4. Let hj := H(comj,1, . . . , comj,n) and h′j :=
H({ẑj,α},msgsj,1, . . . ,msgsj,n).

Compute h := H(h1, . . . , hM) and h′ := H(h′1, . . . , h
′
M) and send

h∗ := H(h, h′) to the verifier.

Round 2 The verifier chooses a uniform τ -sized set C ⊂ [M ] and P =
{pj}j∈[τ ] where each pj ∈ [n] is uniform. Send (C,P) to the prover.

Round 3 For each j ∈ [M ] \ C, the prover sends seed∗j , h
′
j to the verifier.

For each j ∈ C, the prover sends {statej,i, rj,i}i 6=pj , comj,pj , {ẑj,α},
and msgsj,pj to the verifier.

Figure 1: Prover algorithm of the KKW proof protocol.

1. The prover computes H(com1, . . . , comn), and then sends the hash of
the results from all m executions; thus, it sends just a single hash value
to the verifier.
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KKW Verifier Algorithm

Verification The verifier accepts iff all the following checks succeed:

1. For every j ∈ C, i 6= pj, the verifier uses statej,i and rj,i to
compute comj,i. It then computes hj := H(comj,1, . . . , comj,n).

2. For j ∈ [M ]\C, the verifier uses seed∗j to compute hj as an honest
prover would. It then computes h := H(h1, . . . , hM).

3. For each j ∈ C, the verifier simulates an execution of Π
among the {Si}i 6=pj using {statej,i}i 6=pj , masked input-wire val-
ues {ẑα}, and msgsj,pj . This yields {msgsi}i 6=pj and an output

bit b. The verifier checks that b
?
= 1 and computes h′j :=

H({ẑj,α},msgsj,1, . . . ,msgsj,n) as well as h′ := H(h′1, . . . , h
′
m).

4. The verifier checks that H(h, h′)
?
= h∗.

Figure 2: Verifier algorithm of the KKW proof protocol.

2. When opening a challenged execution, it is unnecessary for the prover
to send auxn since the correct value of auxn can be computed from
seed1, . . . , seedn.

3. By generating the {seedi} and the {ri} from a “root” seed seed∗ ∈
{0, 1}κ, the prover can open a challenged execution of the preprocessing
phase by simply sending seed∗.

Checking the online execution. An execution of the protocol proceeds
gate-by-gate, with the processing of each AND gate requiring reconstruction
of one shared value. Although the communication complexity of share re-
construction in the protocol is n bits (one bit per party), for the purposes
of checking, we do not need the prover to send n bits per gate in order to
prove consistent execution. This is because the verifier only needs to obtain
the protocol messages sent by the (single) unopened party in order to check
the execution of the n− 1 opened parties. Thus, it suffices for the prover to
send just a single bit per AND gate.

In addition to the protocol messages sent by the unopened party, the
prover also needs to reveal the state (from the preprocessing phase) of every
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opened party. For each opened party Si, i 6= n, this involves just O(κ) bits;
if Sn is opened then this requires |C|+O(κ) bits due to auxn. In either case
the marginal communication complexity per AND gate is independent of the
number of parties n.

Reducing the number of random seeds. In the cth emulation of the
preprocessing phase, the prover generates n seeds seedc,1, . . ., seedc,n from
a root seed seed∗c , commits to the n generated seeds, and then sends n − 1
of those seeds to the verifier. The second step requires (n − 1) · κ bits of
communication.

Motivated by the NNL scheme for stateless revocation [NNL01], we ob-
serve that we can reduce the communication by generating the seeds in a
more structured way. Namely, imagine labeling the root of a binary tree of
depth log n with seed∗c , and then inductively labeling the children of each
node with the output of a pseudorandom generator applied to the node’s la-
bel. The {seedc,i}i∈[n] will be the labels of the n leaves of the tree. To reveal
{seedc,i}i 6=p, it suffices to reveal the labels on the siblings of the path from
the root of the tree to leaf p. Those labels allow the verifier to reconstruct
{seedc,i}i 6=p while still hiding seedc,p. Applying this optimization reduces the
communication complexity to O(κ · log n) for revealing the seeds used by the
n− 1 opened parties.

We can, in fact, apply the same idea to the root seeds {seed∗j}mj=1 used
for the different emulations of the preprocessing phase; this reduces the com-
munication required to reveal all-but-one of those seeds in Round 3 from
(m − 1) · κ bits to O(κ · logm) bits. Further, we are not limited to reveal-
ing all-but-one of the leaf labels; more generally, the scheme just described
supports revealing all-but-τ of the leaf labels using communication at most
O(κ · τ log m

τ
) bits (cf. [NNL01]).

Reducing the size of commitments with Merkle trees. M − τ of
the commitments h′1, . . . , h

′
M are sent as part of the proof for the instances

where j 6∈ C. These are necessary for verification, when recomputing the
challenge the prover provides M − τ of the commitments, and the verifier
recomputes the other τ . We can reduce the proof size by having the prover
commit to h′1, . . . , h

′
M using a Merkle tree and hash the root when computing

the challenge. Then, the verifier is given the root and enough information to
confirm that the τ commitments he recomputes are in fact committed to by
the root. In this way, only O(τ log(M/τ)) hash values are are communicated,
which is much less than M − τ because τ is much smaller than M in our
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parameter sets.

Reducing the size of commitment openings. As in ZKB++, we can
reduce the size of openings for commitments by not using additional random-
ness when forming the commitments comi,j and h′j. Intuitively, since other
values in the commitment have sufficient entropy from an attacker’s perspec-
tive, having the commitment does not provide additional useful information.
This is analyzed more formally in Section 6.2, where our security proof for
the signature scheme uses commitments without additional randomness.

2.10 LowMC

LowMC [ARS+15, ARS+16] is a very parameterizable symmetric encryp-
tion scheme design enabling instantiation with low AND depth and low multi-
plicative complexity. Given any blocksize, a choice for the number of S-boxes
per round, and security expectations in terms of time and data complexity,
instantiations can be created minimizing the AND depth, the number of
ANDs, or the number of ANDs per encrypted bit. Table 1 lists the choices
for the parameters for security levels L1, L3, L5.

The description of LowMC is possible independently of the choice of
parameters using a partial specification of the S-box and arithmetic in vector
spaces over F2. In particular, let n be the blocksize, m be the number
of S-boxes, k the key size, and r the number of rounds, we choose round
constants Ci←R Fn2 for i ∈ [1, r], full rank matrices Ki←R Fn×k2 and regular
matrices Li←R Fn×n2 independently during the instance generation and keep
them fixed. Keys for LowMC are generated by sampling from Fk2 uniformly
at random.

LowMC encryption starts with key whitening which is followed by sev-
eral rounds of encryption. A single round of LowMC is composed of an
S-box layer, a linear layer, addition with constants and addition of the round
key, i.e.

LowMCRound(i) = KeyAddition(i)

◦ ConstantAddition(i)

◦ LinearLayer(i) ◦ SboxLayer.

SboxLayer is an m-fold parallel application of the same 3-bit S-box on the
first 3 ·m bits of the state. The S-box is defined as S(a, b, c) = (a ⊕ bc, a ⊕
b⊕ ac, a⊕ b⊕ c⊕ ab).
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The other layers only consist of F2-vector space arithmetic. LinearLayer(i)
multiplies the state with the linear layer matrix Li, ConstantAdditon(i)
adds the round constant Ci to the state, and KeyAddition(i) adds the
round key to the state, where the round key is generated by multiplying the
master key with the key matrix Ki.

Algorithm 1 gives a full description of the encryption algorithm.

Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for i ∈ [0, r],
linear layer matrices Li ∈ Fn×n2 and round constants Ci ∈ Fn2 for i ∈ [1, r].

Require: plaintext p ∈ Fn2 and key y ∈ Fk2
s← K0 · y + p
for i ∈ [1, r] do

s← Sbox(s)
s← Li · s
s← Ci + s
s← Ki · y + s

end for
return s

LowMC is very flexible in the choice of parameters: the block size n, the
key size k, the number of 3-bit S-boxes m in the substitution layer and the
allowed data complexity d of attacks can independently be chosen. To reduce
the multiplicative complexity, the number of S-boxes applied in parallel can
be reduced, leaving part of the substitution layer as the identity mapping.
The number of rounds r needed to achieve the goals is then determined
as a function of all these parameters. We discuss concrete choices of the
parameters in Section 4.2.

3 The Picnic Signature Schemes

We consider several schemes, all obtained by transforming an interactive zero-
knowledge protocol into a (non-interactive) signature. Different signature
schemes are obtained by varying the zero-knowledge protocol used and the
transformation that is applied. Picnic-FS uses ZKB++ with the Fiat-Shamir
transform, Picnic-UR uses ZKB++ with the Unruh transform, and Picnic2
uses the proof protocol of [KKW18] with the Fiat-Shamir transform. In
Scheme 5 we provide a general description of our schemes.
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For all schemes, the public key contains values u, y, and the signer proves
knowledge of a pre-image x of y with respect to a one-way function fu. In all
cases, we instantiate the one way function with LowMC; specifically, if F
denotes the LowMC block cipher then we choose a uniform domain element u
and define the one-way function fu via fu(x) = Fx(u). (See Section 2.10
for an overview of LowMC and Section 4.2 for a discussion of our parameter
choices.) One-wayness of fu follows from the assumption that LowMC is a
secure block cipher (i.e., pseudorandom permutation); Section 7 discusses
the difficulty of inverting fu using known attacks.

Gen(1κ) : Choose u←R Kκ, x←R Dκ, compute y ← fu(x), set pk← (y, u) and
sk← (pk, x) and return (sk, pk).

Sign(sk,m) : Parse sk as (pk, x), compute p = (r, s) ← ProveH((y, u), x)
and return σ ← p, where internally the challenge is computed as c ←
H(r, pk||m).

Verify(pk,m, σ) : Parse pk as (y, u), and σ as p = (r, s). Return 1 if the
following holds, and 0 otherwise:

VerifyH((y, u), p) = 1,

where internally the challenge is computed as c← H(r, pk||m).

Scheme 5: Generic description the Picnic-FS and Picnic2-FS signature
schemes. Scheme Picnic-UR is similar, except Prove and Verify are dif-
ferent.

3.1 Efficient Instantiation of Unruh’s Transform

Although Unruh’s transformation was only designed for Σ-protocols with 2-
special soundness, we can easily modify it for ZKB++ (which has 3-special
soundness).

Since ZKB++ has 3-special soundness, we would need at least three
responses for each iteration. Moreover, since there are only three possible
challenges in ZKB++, we run Unruh’s transform with E = {1, 2, 3} and
M = 3—i.e., every possible challenge and response. If we apply this naively,
we obtain the following protocol:

ProveH(1κ, (x,m), w) : 1. For i ∈ [t]:

(a) Start P on (1κ, x, w) and obtain first message ai.
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(b) For all ei,j = j ∈ E, obtain response zi,j for challenge ei,j.

2. For (i, j) ∈ [t]× E, set gi,j ← G(zi,j).

3. Let (J1, . . . , Jt)← H(m, (ai)i∈[t], (gi,1, . . . , gi,3)i∈[t])

4. Return π ← ((ai)i∈[t], (gi,1, . . . , gi,3)(i,j)∈[t], (zi,Ji)i∈[t])

As we no longer randomly select the challenges, we can omit them as input
to the hash function and do not need to include them in the proof.

To instantiate the function G in the protocol, Unruh shows that one does
not need a random oracle that is actually a permutation. Instead, as long
as the domain and codomain of G are the same size (and large enough), it
can be used, since it is indistinguishable from a random permutation. So let
G : {0, 1}|zi,j | → {0, 1}|zi,j | be a hash function modeled as a random oracle.
The size of the response changes depending on what the challenge is. If
the challenge is 0, the response is slightly smaller as it does not need to
include the extra input share. So more precisely, this is actually two hash
functions, G0 used for the 0-challenge response and G1,2 used for the other
two challenges. In our specification document we define G precisely.

Optimization 1: Making Use of Overlapping Responses. We can
make use of the structure of the ZKB++ proofs to achieve a very significant
reduction in the proof size. Although we refer to three separate challenges,
in the case of the ZKB++ protocol, there is a large overlap between the
contents of the responses corresponding to these challenges. In particular,
there are only three distinct views in the ZKB++ protocol, two of which
are opened for a given challenge.

Instead of computing a permutation of each response, zi,j, we can compute
a permutation of each view, vi,j. For each i ∈ {1, . . . , t}, and for each j ∈ E,
the prover computes gi,j = G(vi,j).

The verifier checks the permuted value for each of the two views in the
response. In particular, for challenge j ∈ {1, 2, 3}, the verifier will need to
check that gi,j = G(vi,j) and gi,j+1 = G(vi,j+1).

Optimization 2: Omit Re-Computable Values. Moreover, since G is
a public function, we do not need to include G(vi,j) in the transcript if we
have included vi,j in the response. Thus for the two views (corresponding
to a single challenge) that the prover sends as part of the proof, we do not
need to include the permutations of those views. We only need to include
G(vi,(j+2)), where vi,(j+2) is the view that the prover does not open for the
given challenge.
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3.2 Seed Generation

We generate seeds for the random tapes using SHAKE with the private key,
message, and public key as input and requesting the required number of
output bytes from the XOF. Complete details are given in the specification
document. Our current implementation and specification use deterministic
signatures as a default to facilitate testing, however the specification shows
how to randomize signatures by including additional entropy in the derivation
process. The specification recommends randomizing signatures, especially
when side-channel attacks are a concern.

3.3 Random Tapes

We generate random tapes using the SHAKE XOF as a KDF to expand the
seed to the required number of output bytes. Complete details are given in
the specification document.

3.4 Challenge Generation

For both the FS and Unruh transform the challenge is computed with a
hash function. For Picnic-FS and Picnic-UR the function is H : {0, 1}∗ →
{0, 1, 2}t (implemented using SHAKE) and rejection sampling: we split the
output bits in pairs of two bits and reject all pairs with both bits set. For
Picnic2 the range of the function is a set and a list of integers whose size
depends on the parameter set. The same rejection sampling method is used

3.5 Function G

As explained in Section 3.1, the function G used in Picnic-UR may be imple-
mented with a hash function with the same domain and range. We implement
G(x) with SHAKE, where the requested number of output bits is |x|.

4 Choice of Parameters

In this section we explain our parameter selection and rationale.
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4.1 Choice of LowMC and SHAKE

The signature size depends on constants that are close to the security expec-
tation. The only exceptions are the number of binary multiplication gates,
and the size of the ring, which both depend on the choice of the primitive.
In this section we compare LowMC to existing standardized primitives and
to other primitives with a low number of multiplications.

Standardized Primitives. The smallest known Boolean circuit for AES-
128 needs 5440 AND gates, AES-192 needs 6528 AND gates, and AES-256
needs 7616 AND gates [BMP13]. An AES circuit in F24 might be more
efficient in our setting, as in this case the number of multiplications is lower
than 1000 [CGP+12]. This results in an impact on the signature size that
is equivalent to 4000 AND gates. Even though collision resistance is often
not required, hash functions like SHA-256 are a popular choice for proof-
of-concept implementations. The number of AND gates of a single call to
the SHA-256 compression function is about 25000 and a single call to the
permutation underlying SHA-3 is 38400.

Lightweight Ciphers. Most early designs in this domain focused on small
area when implemented in hardware where an XOR gate is by a small
factor larger than an AND or NAND gate. Notable designs with a low
number of AND gates at the 128-bit security level are the block ciphers
Noekeon [DPVAR00] (2048 ANDs) and Fantomas [GLSV14] (2112 ANDs).
Furthermore, one should mention Prince [BCG+12] (1920 ANDs), or the
stream cipher Trivium [DP08] (1536 AND gates to compute 128 output bits,
with 80-bit security).

Custom Ciphers with a Low Number of Multiplications. Motivated
by applications in SHE/FHE schemes, MPC protocols and SNARKs, recently
a trend to design symmetric encryption primitives with a low number of
multiplications or a low multiplicative depth started to evolve. This is a
trend we can take advantage of.

We start with the LowMC [ARS+15] block cipher family. In the most
recent version of the design [ARS+16], the number of AND gates can be
below 500 for 80-bit security, below 800 for 128-bit security, and below 1400
for 256-bit security. The stream cipher Kreyvium [CCF+16] (similarly to
Trivium) needs 1536 AND gates to compute 128 output bits, but offers a
higher security level of 128 bits. Even though FLIP [MJSC16] was designed
to have especially low depth, it needs hundreds of AND gates per bit and is

31



hence not competitive in our setting.
Last but not least there are the block ciphers and hash functions around

MiMC [AGR+16] which need less than 2 · s multiplications for s-bit security
in a field of size close to 2s. Note that MiMC is the only design in this
category which aims at minimizing multiplications in a field larger than F2.
However, since the size of the signature depends on both the number of
multiplications and the size of the field, this leads to a factor 2s2 which, for
all arguably secure instantiations of MiMC, is already larger than the number
of AND gates in the AES circuit.

LowMC has two important advantages over other designs: It has the
lowest number of AND gates for every security level: The closest competitor
Kreyvium needs about twice as many AND gates and only exists for the
128-bit security level. The fact that it allows for an easy parameterization
of the security level is another advantage. We hence use LowMC for our
concrete proposal.

Hashing with SHAKE. Keccak is a family of cryptographic primitives
including hash functions and extensible output functions (XOF). It was se-
lected as the successor to SHA-2 and was standardized as SHA3 [NIS15].
SHAKE is an XOF constructed from SHA3. Since both SHA3 and SHAKE
have a large number of AND gates (as described above), we do not use them
for Picnic key generation.

However, other parts of the ZKB++ protocol require a hash function.
We will use SHAKE in two modes

1. as a hash function with a fixed output length

2. as a key derivation function, where we expand a fixed length seed into a
larger pseudorandom value, by requesting larger, variable sized SHAKE
outputs.

For the Picnic2 parameter sets, in our current implementation hashing
with SHAKE accounts for roughly 30% of signing runtime (at security level
L1). If in the future, a faster hash function becomes widely viewed as pro-
viding sufficient security (and example candidate is Kangaroo12 [BDP+18]),
it may be worth considering using it with Picnic2.
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Security level Blocksize S-boxes Keysize Rounds
n m k r

L1 128 10 128 20
L3 192 10 192 30
L5 256 10 256 38

Table 1: Parameters for LowMC targeting security levels L1, L3 and L5.
All parameters are computed for data complexity d = 1.

4.2 LowMC Parameters

To minimize the number of AND gates for a given key length k and data
complexity d, we want to minimize r ·m (where r is the number of rounds
and m is the number of sboxes). One strategy would be to set m to 1, and
to look for an n that minimizes r. Examples of such an approach are already
given in the document describing version 2 of the LowMC design [ARS+16].
In our setting, this approach may not lead to the best results, as it ignores
the impact of the large amount of XOR operations it requires. While Pic-
nic signatures defined with these parameters have minimal length, the large
number of XOR gates make singing and verification slow. To find the most
suitable parameters, we thus explore a larger range of values for m, looking
to balance signing and verification cost with signature size.

Whenever we want to instantiate our signature scheme with LowMC
with κ-bit quantum security, we set k = n = 2 · κ. This matches AES, and
the security levels in the NIST call for proposals.

Furthermore, we observe that for a given key the adversary only ever
sees a single plaintext-ciphertext pair (namely, the public key in the Picnic
scheme). This is why we can set the data complexity d = 12.

4.3 Number of Parallel Repetitions

Parameters for ZKB++. A single repetition of ZKB++ has a soundness
error of 2/3, which means that we need to perform parallel repetitions to
achieve the desired soundness error. Hence we need 219 parallel repetitions
for 128-bit classical security ((3/2)219 ≥ 2128). For 128-bit PQ security, we

2d is given in units of log2(n), where n is the number of pairs. Thus setting d = 1
corresponds to 2-pairs, which is exactly what we need for our signature schemes.
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must set our repetition count to t := 438. This is double the repetition
count required for classical security due to Grover’s algorithm [Gro96]. The
required number of repetitions for the L1, L3 and L5 security levels are given
in Table 2.

level # parallel repetitions
L1 219
L3 329
L5 418

Table 2: Number of parallel repetitions required at each security level.

Parameters for KKW. In the KKW protocol, there are multiple param-
eters to be chosen, including the number of emulated parties n, the number
of total executions M , and the number of online executions checked by the
verifier τ . The soundness error ε, depends on the choice of (M,n, τ), and is
computed with the following equation.

ε(M,n, τ) = max
M−τ≤k≤M

{ (
k

M−τ

)(
M

M−τ

)
· nk−M+τ

}
.

In Table 3, we list some example parameter choices that minimize signature
size. Each choice of (M,n, τ) represents different trade offs in computation
and signature size. Our specification fixes n = 64, since generally larger n
gives smaller signatures, and it allows allows implementations to pack the bit
shares of each party into a 64-bit word, and operate on them with machine
word operations.

Our specified choices of M and τ move away from the smallest possible
signature size (e.g., at level L1 (M, τ) is (343, 27) compared to (631, 23) in
Table 3), in order to reduce M . We found that for a small increase in size, M
is significantly reduced, which significantly reduces the CPU cost of signing
and verification.

4.4 Alternative Parameters

In this section we list some possible alternatives to the parameters we chose,
and discuss the tradeoffs. These apply to the Picnic2 parameters, since the
KKW protocol has more parameters than the ZKB++ protocol. Some
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n 4 8 16 32 64 128

L1 M 218 252 352 462 631 916
τ 65 44 33 27 23 20

n 4 8 16 32 64 128

L3 M 319 376 563 740 1017 1677
τ 98 66 49 40 34 29

n 4 8 16 32 64 128

L5 M 456 533 781 1024 1662 2540
τ 129 87 65 53 44 38

Table 3: Example combinations of parameters (M,n, τ) for KKW at each
security level.

alternative parameters for LowMC, that apply to all parameter sets, were
discussed in Section 4.2 and [CDG+17].

Faster (but larger) signatures The main computational cost in our cur-
rent implementation of the Picnic2 parameter sets is the online simulation
step of the M MPC instances. We can choose a smaller M , provided we in-
crease τ to maintain the soundness error ε. Larger τ increases the signature
size. We searched the parameter space and chose one alternative parameter
set and benchmarked the Optimized-C implementation on our benchmark
Platform C (these are described in Section 11). Table 4 compares the possible
“fast” parameters to the parameters we chose.

Parameter set (M, τ) Size Sign Verify
Picnic2-L1-FS (343, 27) 12K 155 87

L1 fast (133, 60) 21K 60 42
Picnic2-L3-FS (570, 39) 27K 421 189

L3 fast (198, 91) 48K 146 95
Picnic2-L5-FS (803, 50) 46K 848 328

L5 fast (264, 119) 82K 279 172

Table 4: Alternative Picnic2 parameter sets that trade off size for CPU cost.
The timings are in milliseconds, the sizes are in bytes, rounded up and aver-
aged from 10 runs.

35



An alternative size/speed tradeoff can be made by changing n, the number
of parties. Using larger n increases the computational cost, but can let us
decrease τ to have shorter signatures. We chose n = 64 because it matches
the word size on 64-bit processors, and is therefore convenient for packing
binary shares of all parties in a single word. Also note that small changes
in n have limited effect on ε, but do have appreciable CPU costs. On SIMD
implementations with 128-bit and larger registers it may be worth considering
n = 128, and similarly on constrained platforms setting n to the word size
may be advantageous.

Using a 5-round protocol The KKW interactive proof protocol can nat-
urally be done as a five round protocol (see [KKW18, Figure 1]). In the first
round the prover commits to the offline portion of many MPC instances, the
verifier selects a subset, then the prover commits to the online simulations
(using the selected subset), and the verifier selects one party from each in-
stance to remain unopened. The potential benefit of this approach is that
the prover needs to perform the online MPC simulation for a much smaller
number of instances (roughly τ instead of M). This is significant, since in
our current implementation the online part of the MPC simulation is much
slower than the offline part (roughly 5x slower).

However, when making this non-interactive, the soundness error is given
by a different formula (since both challenges must be sufficiently large), and
we must use different values ofM and τ . If we directly instantiate a five round
protocol, M must be extremely large, making performance must worse than
a three round protocol (even though there are fewer online simulations, the
offline simulations are not completely free). We are investigating a variant of
the five round version where the prover does more than τ online simulations
but fewer than M , this a promising approach to reducing computational
costs, and this investigation is ongoing.

5 Formal Security Analysis

This section contains formal security analyses of the Picnic-FS and Picnic-UR
schemes (Picnic2 is analyzed in §6). We begin in Section 5.1 by analyzing
the (interactive) ZKB++ protocol. We then separately analyze Picnic-FS
and Picnic-UR, which differ in the transform applied to ZKB++, in the
sense of unforgeability. As we discuss in Section 5.4, the scheme can actually
be shown to satisfy strong unforgeability. The Picnic-FS scheme was also
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proven secure in the QROM in [DFMS19a], see the discussion in Section 6.4.

5.1 Security Analysis of ZKB++

First, we observe that not including output shares and commitments are
what we call equivalence transformations: there is a transformation (which
anyone can compute) which takes a ZKBoo proof and removes output shares
and commitments, or which takes a proof without the output shares and
commitments and produces a proof which does again include these values.
Thus removing these values does not reveal any more information or make
it any easier to forge proofs.

The other modification we make is to generate the initial shares pseu-
dorandomly. Note that this cannot make it easier to forge proofs, because
we are only reducing the options the prover has in choosing the shares. On
the other hand, we note that the 2-privacy simulator for the decomposition
works even if the initial random shares are generated pseudorandomly, so the
zero-knowledge proof still goes through. Again, after this step, removing the
input shares is an equivalence transformation that has no effect on security.

Thus, we only have to show that including no additional randomness in
the commitments preserves completeness, 3-special soundness, and special
honest-verifier zero-knowledge of ZKB++.

First, we observe that completeness is clearly not impacted and the corol-
lary below follows from this and [GMO16b, Proof of Proposition 2].

Corollary 5.1. The modified version of ZKBoo—where the commitments
no longer contain additional randomness—is complete, i.e., ZKB++ is com-
plete.

Second, under the observation that removing the randomness in the com-
mitments does not impact the binding property of the commitments we can
derive the following corollary from [GMO16b, Proof of Proposition 2].

Corollary 5.2. The modified version of ZKBoo—where the commitments
no longer contain additional randomness—is 3-special sound, i.e., ZKB++
is 3-special sound.

What remains is to prove the following theorem.
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Theorem 5.3. The modified version of ZKBoo—where the commitments no
longer contain additional randomness—is special honest-verifier zero-know-
ledge in the random oracle model, i.e., ZKB++ is special honest-verifier
zero-knowledge in the (quantum) random oracle model.

Before we prove the theorem, we recall that—as the challenge can be
determined a priori in the proof for special honest-verifier zero-knowledge—
we can use the 2-privacy simulator of the (2,3)-decomposition underlying
ZKB++ (cf. Section 2.7 for details) to produce satisfying transcripts for
the two views which need to be opened according to the challenge. Now, in
the original proof [GMO16b, Proof of Proposition 2], the hiding property of
the commitment which is not required to be opened ensures that the simu-
lation works out. We have to argue that this still holds when no additional
randomness is included in the commitments. Since we already use the ran-
dom oracle heuristic for our signature scheme, we also rely on the random
oracle heuristic for the subsequent proof.

Proof (Sketch). Recall the modification discussed in Section 2.8. We consider
the random oracle model, in which H ′, H ′′ are independent random oracles.
Then, consider the seed ki for each the unopened view: this ki is only used
as input to H ′, H ′′. So the initial prover is distributed identically to another
prover which replaces H ′(ki), H

′′(ki) for the unopened views with random
values Z,Z ′. Now, Z ′ is a random value which is only used as input to the
commitment, so we can apply the same HVZK argument as ZKBoo.

5.2 Security Analysis of Picnic-FS

In this section we prove security of Picnic-FS in the ROM. For discussion of
security of Picnic-FS in the QROM, see Section 6.4. If we view ZKB++ as a
canonical identification scheme that is secure against passive adversaries one
just needs to keep in mind that most definitions are tailored to (2-)special
soundness, and the 3-special soundness of ZKB++ requires an additional
rewind. In particular, an adapted version of the proof of [Kat10, Theorem
8.2], which considers this additional rewind, attests the security of Picnic-FS.
We obtain the following:

Corollary 5.4. Picnic-FS instantiated with ZKB++ and a secure one-way
function yields an EUF-CMA secure signature scheme in the ROM.
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However, we actually aim for a stronger result, i.e., sEUF-CMA, which also
excludes malleability of the signatures. To show that Picnic-FS also satisfies
this property, we need to view ZKB++ as a Σ-protocol which is transformed
to its non-interactive counterpart via the FS transform and show that this
protocol is actually simulation extractable. We base our argumentation upon
the argumentation of [FKMV12a] to confirm simulation extractability. What
we have to do is to show that the FS transformed ZKB++ is zero-knowledge
and provides quasi-unique responses. We do so by proving two lemmas.
Combining those lemmas with [FKMV12a, Theorem 2 and Theorem 3] then
yields simulation extractability as a corollary.

Lemma 5.5. Let QH be the number of queries to the random oracle H, QS be
the overall queries to the simulator, and let the commitments be instantiated
via a RO H ′ with output space {0, 1}ρ and the committed values having min
entropy ν. Then the probability ε(κ) for all PPT adversaries A to break zero-
knowledge of κ parallel executions of the FS transformed ZKB++ is bounded
by ε(κ) ≤ s/2ν + (QS ·QH)/23·ρ.

The subsequent proof is similar to the general results for Σ-protocols from
[FKMV12a], yet we have to account for the additional challenge that the
simulator only outputs transcripts which are statistically close to original
transcripts (which is in contrast to the identically distributed transcripts
in [FKMV12a]). Furthermore, we also provide concrete bounds.

Proof. We bound the probability of any PPT adversary A to win the zero-
knowledge game by showing that the simulation of the proof oracle is sta-
tistically close to the real proof oracle. For our proof let the environment
maintain a list H where all entries are initially set to ⊥.

Game 0: The zero-knowledge game where the proofs are honestly com-
puted, and the ROs are simulated honestly.

Game 1: As Game 0, but whenever the adversary requests a proof for some
tuple (x,w) we choose e←R {0, 1, 2}κ before computing a and z. If
H[(a, x)] 6= ⊥ we abort and call that event E. Otherwise, we set
H[(a, x)]← e.

Transition - Game 0 → Game 1: Game 0 and Game 1 proceed identically
unless E happens. The message a includes 3 RO commitments with
respect to H ′, i.e., a lower bound for the min-entropy is 3 · ρ. We have
that |Pr[S0]− Pr[S1]| ≤ (QS ·QH)/23·ρ.
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Game 2: As Game 1, but we compute the commitments in a so that the
commitments which will never be opened according to e contain random
values.

Transition - Game 1 → Game 2: The statistical difference between Game 1
and Game 2 can be upper bounded by |Pr[S1]− Pr[S2]| ≤ κ · 1/2ν (for
compactness we collapsed the s game changes into a single game).

Game 3: As Game 2, but we use the HVZK simulator to obtain (a, e, z).

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] =
Pr[S3].

In Game 0, we sample from the first distribution of the zero-knowledge game,
whereas we sample from the second one in Game 3; the distinguishing bounds
shown above conclude the proof.

Lemma 5.6. Let the commitments be instantiated via a RO H ′ with output
space {0, 1}ρ and let QH′ be the number of queries to H ′, then the probability
to break quasi-unique responses is bounded by Q2

H′/2ρ.

Proof. To break quasi-unique responses, the adversary would need to come
up with two valid proofs (a, e, z) and (a, e, z′). The last message z (resp z′)
only contains openings to commitments, meaning that breaking quasi unique
responses implies finding a collision for at least one of the commitments. The
probability for this to happen is upper bounded by Q2

H′/2ρ which concludes
the proof.

Combining Lemma 5.5 and Lemma 5.6 with [FKMV12a, Theorem 2 and
Theorem 3] yields the following corollary.

Corollary 5.7. The FS transformed ZKB++ protocol is simulation ex-
tractable.

5.3 Security Analysis of Picnic-UR

Here we prove that the proof system we get by applying our modified Unruh
transform to ZKB++ is both zero knowledge and simulation extractable in
the quantum random oracle model.

Before we begin, we note that the quantum random oracle model is highly
non-trivial, and a lot of the techniques used in standard random oracle proofs
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do not apply. The adversary is a quantum algorithm that may query the
oracle on quantum inputs which are a superposition of states and receive
superposition of outputs. If we try to measure those states, we change the
outcome, so we do not for example have the same ability to view the ad-
versary’s input and program the responses that we would in the standard
ROM.

Here we rely on lemmas from Unruh’s work on quantum-secure Fiat-
Shamir like proofs [Unr15]. We follow his proof strategy as closely as possible,
modifying it to account for the optimizations we made and the fact that we
have only 3-special soundness in our underlying Σ-protocol.

Zero-Knowledge. This proof very closely follows the proof from [Unr15].
The main difference is that we also use the random oracle to form our com-
mitments, which is addressed in the transition from game 2 to game 3 below.

Consider the simulator described in Figure 3. From this point on we
assume for simplicity of notation that View3 includes x3.

We proceed via a series of games.

Game 1: This is the real game in the quantum random oracle model. Let
Hcom be the random oracle used for forming the commitments, Hchal

be the random oracle used for forming the challenge, and G be the
additional random permutation.

Game 2: We change the prover so that it first chooses random e∗ = e∗(1),
. . . , e∗(t), and then on step 2, it programsHchal(a

(1), . . . , a(t), h(1), . . . , h(t))
= e∗.
Note that each the a(1), . . . , a(t), h(1), . . . , h(t) has sufficient collision-
entropy, since it includes {h(i) = (g

(i)
1 , g

(i)
2 , g

(i)
3 )}, the output of a per-

mutation on input whose first k bits are chosen at random (the k
(i)
j ),

so we can apply Corollary 11 from [Unr15] (using a hybrid argument)
to argue that Game 1 and Game 2 are indistinguishable.

Game 3: We replace the output of each Hcom(ke∗(i) ,Viewe∗(i)) and G(ke∗(i) ,
Viewe∗(i)) with a pair of random values.

First, note that Hcom and G are always called (by the honest party)
on the same inputs, so we will consider them as a single random oracle
with a longer output space, which we refer to as H for this proof.
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p← Sim(x): In the simulator, we follow Unruh, and replace the initial
state (before programming) of the random oracles with random polyno-
mials of degree 2q−1 where q is an upper bound on the number of queries
the adversary makes.

1. For i ∈ [1, t], choose random e(i) ← {1, 2, 3}. Let e be the corre-
sponding binary string.

2. For each iteration ri, i ∈ [1, t]: Sample random seeds k
(i)

e(i)
, k

(i)

e(i)+1

and run the circuit decomposition simulator to generate View
(i)

e(i)
,

View
(i)

e(i)+1
, output shares y

(i)
1 , y

(i)
2 , y

(i)
3 , and if e(i) = 1 x

(i)
3 .

For j = e(i), e(i) + 1 commit [C
(i)
j , D

(i)
j ] ←

[H(k
(i)
j ,View

(i)
j ), k

(i)
j ||View

(i)
j ], and compute g

(i)
j = G(k

(i)
j ,View

(i)
j ).

Choose random Ce(i)+2, g
(i)

e(i)+2

Let a(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ). And h(i) = g

(i)
1 , g

(i)
2 , g

(i)
3 .

2. Set the challenge: program H(a(1), . . . , a(t)) := e.

3. For each iteration ri, i ∈ [1, t]: let b(i) = (y
(i)

e(i)+2
, C

(i)

e(i)+2
) and set

z(i) ←


(View

(i)
2 , k

(i)
1 , k

(i)
2 ) if e(i) = 1,

(View
(i)
3 , k

(i)
2 , k

(i)
3 , x

(i)
3 ) if e(i) = 2,

(View
(i)
1 , k

(i)
3 , k

(i)
1 , x

(i)
3 ) if e(i) = 3.

4. Output p← [e, (b(1), z(1)), (b(2), z(2)), · · · , (b(t), z(t))].

Figure 3: The zero knowledge simulator

Now, to show that Games 2 and 3 are indistinguishable, we proceed
via a series of hybrids, where the i-th hybrid replaces the first i such
outputs with random values.

To show that the i-th and i+ 1-st hybrid are indistinguishable, we rely
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on Lemma 9 from [Unr15]. This lemma says the following: For any
quantum A0, A1 which make q0, q1 queries to H respectively and clas-
sical AC , all three of which may share state, let PC be the probability
if we choose a random function H and a random output B, then run
AH0 followed by AC to generate x, and then run AH1 (x,B), that for a
random j, the j-th query AH1 makes is measured as x′ = x. Then as
long as the output of AC has collision-entropy at least k, the advan-
tage with which AH1 , when run after A0, AC as described, distinguishes
(x,B) from (x,H(x)) is at most (4 +

√
2)
√
q02−k/4 + 2q1

√
PC .

In other words, if we can divide our game into three such algorithms
and argue that the A1 queries H on something that collapses to x with
only negligible probability, then we can conclude that the two games
are indistinguishable. Let A0 run the game up until just before the
i th iteration in the proof generation. Let AC be the process which
chooses k

(i)
1 , k

(i)
2 , k

(i)
3 and generates View

(i)
1 ,View

(i)
2 ,View

(i)
3 , and outputs

x = ke∗(i) ,Viewe∗(i) . (Note that this has collision entropy |ke∗(i) | which
is sufficient.) Let A1 be the process which runs the rest of the proof,
and then runs the adversary on the response.

Now we just have to argue that the probability that we make a mea-
surement of A1’s j-th query to H and get x is negligible. To do this, we
reduce to the security of the PRG used to generate the random tapes
(and hence the views). Note that besides the one RO query, ke∗(i) is
only used as input to the PRG. So, suppose there exists a quantum
adversary A for which the resulting A1 has non-negligible probability
of making an H-query that collapses to x. Then we can construct a
quantum attacker for the PRG: we run the above A0, AC , but instead
of choosing ke∗(i) we use the PRG challenge as the resulting random
tape, and return a random value as the RO output. Then we run A1,
which continues the proof (which should query ke∗(i) only with negli-
gible probability since ks are chosen at random), and then runs the
adversary. We pick a random j, and on the adversary’s j-th RO query,
we make a measurement and if it gives us a seed consistent with our
challenge tape, we output 1, otherwise a random bit. If PC is non-
negligible then we will obtain the correct seed and distinguish with
non-negligible probability.

Game 4: For each i instead of choosing random ke∗(i) and expanding it via

43



the PRG to get the random tape used to compute the views, we choose
those tapes directly at random.

Note that in Game 3, ke∗(i) are now only used as seeds for the PRG, so
this follow from pseudo-randomness via a hybrid argument.

Game 5: We use the simulator to generate the views that will be opened,
i.e. j 6= e∗(i) for each i. We note that now the simulator no longer uses
the witness.

This is identical by perfect privacy of the circuit decomposition.

Game 6: To allow for extraction in the simulation-extractability game we
replace the random oracles with random polynomials whose degree is
larger than the number of queries the adversary makes. The argument
here identical to that in [Unr15].

Online Extractability. Before we prove online simulation-extractability,
we define some notation to simplify the presentation:

For any proof π = e, {b(i), g(i), z(i)}i=1...t, let hash-input(π) = {a(i), h(i) =

(g
(i)
1 , g

(i)
2 , g

(i)
3 )} be the values that the verifier uses as input to Hchal in the

verification of π as described in Figure 4.
For a proof π = (e, {b(i), g(i), z(i)}i=1...t), let open0(z(i)), open1(z(i)) denote

the values derived from z(i) and used to compute C
(i)
ei and C

(i)
ei+1 respectively

in the description of Ver in Figure 4.
We say a tuple (a, j, (o1, o2)) is valid if a = (y1, y2, y3, C1, C2, C3), Cj =

Hcom(o1), Cj+1 = Hcom(o2) and o1, o2 consist of k,View pairs for player
j, j + 1 that are consistent according to the circuit decomposition. We say
(a, j, (O1, O2)) is set-valid if there exists o1 ∈ O1 and o2 ∈ O2 such that
(a, j, (o1, o2)) is valid and set-invalid if not.

We first restate lemma 16 from [Unr15] tailored to our application, in
particular the fact that our proofs do not explicitly contain the commitment
but rather the information the verifier needs to recompute it.

Lemma 5.8. Let qG be the number of queries to G made by the adversary
A and the simulator S in the simulation-extractability game, and let n be
the number of proofs generated by S. Then the probability that A produces
x, π∗ /∈ simproofs where x, π∗ is accepted by VerH , and hash-input(π∗) =
hash-input(π′) for a previous proof π′ produced by the simulator, is at most
n(n+ 1)/2(2−κ)3t +O((qG + 1)32−κ) (Call this event MallSim.)
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Proof. This proof follows almost exactly as in [Unr15].
First, we argue that G is indistinguishable from a random function exactly

as in [Unr15].
Then, observe that there are only two ways MallSim can occur:
Let e′ be the hash value in π′. Then either S reprograms H sometime

after π′ is generated so that H(hash-input(π′)) is no longer e′, or π∗ also
contains the same e as π, i.e. e = e′. S only reprograms H if it chooses
the same hash-input in a later proof - and hash-input includes g

(i)
j , i.e. a

random function applied to an input which includes a randomly chosen seed.
Thus, the probability that S chooses the same hash-input twice is at most
n(n+1)/2(2−κ)3t+O((qG+1)32−κ, where the first term is the probability that
two proofs use all the same seeds, and the second term is the probability that
two different seeds result in a collision in G, where the latter follows from
Theorem 8 in [Unr15].

The other possibility is that hash-input(π∗) = hash-input(π′) , and e =
e′, but b(i), g(i), z(i) 6= b′(i), g′(i), z′(i) for some i. First note, that if e = e′

and hash-input(π∗) = hash-input(π′), then g(i) = g′(i) and b(i) = b′(i) for all
i, by definition of hash-input. Thus, the only remaining possibility is that
z(i) 6= z′(i) for some i. But since h(i) = h′(i) for all i, this implies a collision
in G, which again by Theorem 8 in [Unr15] occurs with probability at most
O((qG + 1)32−κ.

We conclude that MallSim occurs with probability at most

n(n+ 1)/2(2−κ)3t +O((qG + 1)32−κ.

Here, next we present our variant of lemma 17 from [Unr15]. Note that
this is quoted almost directly from Unruh with two modifications to account
for the fact that our proofs do not explicitly contain the commitment but
rather the information the verifier needs to recompute it, and the fact that our
underlying Σ-protocol has only 3 challenges and satisfies 3-special soundness.
H0 in this lemma will correspond in our final proof to the initial state of Hchal,
before any reprogramming.

Lemma 5.9. Let G,Hcom be arbitrarily distributed functions, and let H0 :
{0, 1}≤` → {0, 1}2t be uniformly random (and independent of G). , Then, it is

hard to find x and π = e, {b(i), g(i), z(i)}i=1...t such that for {a(i), (g
(i)
1 , g

(i)
2 , g

(i)
3 )} =

hash-input(π) and J1|| . . . ||Jt := H0(hash-input(π))

(i) g
(i)
Ji

= G(open0(z(i))) and g
(i)
Ji+1 = G(open1(z(i))) for all i.
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(ii) (a(i), Ji, (open0(z(i)), open1(z(i)))) is valid for all i.

(iii) For every i, there exists a j such that (a(i), j, G−1(gi,j), G
−1(gi,j+1))) is

set-invalid.

More precisely, if AG,H0 makes at most qH queries to H0, it outputs (x, π)
with these properties with probability at most 2(qH + 1)(2

3
)t/2

Proof. Without loss of generality, we can assume that G,Hcom are fixed
functions which A knows, so for this lemma we only treat H0 as a random
oracle.

For any given value of H0, we call a tuple c = (x, {a(i)}i, {g(i)
j }i,j) a candi-

date iff: for each i, among the three transcripts, (a(i), 1, G−1(g1)(i), G−1(g
(i)
2 )),

(a(i), 2, G−1(g
(i)
2 ),

G−1(g
(i)
3 )), and (a(i), 3, G−1(g

(i)
3 ), G−1(g

(i)
1 )) at least one is set-valid, and at

least one is set-invalid. Let ntwovalid(c) be the number of i’s for which there are
2 set-valid transcripts. Let Evalid(c) be the set of challenge tuples which corre-
spond to only set-valid conversations. (Note that |Evalid(c)| = 2ntwovalid(c).) We
call a candidate an H0-solution if the challenge produced by H0 only opens
set-valid conversations, i.e. in lies in Evalid(c). We now aim to prove that AH

outputs an H0 solution with negligible probability.
For any given candidate c, for uniformly random H0, the probability that

c is an H0-solution is ≤ (2
3
)t. In particular, for candidate c the probability is

(2
3
)t ∗ 2ntwovalid(c)−t.
Let Cand be the set of all candidates. Let F : Cand→ {0, 1} be a random

function such that for each c F (c) is i.i.d. with Pr[F (c) = 1] = (2/3)t .
Given F , we construct HF : {0, 1}∗ → Zt3 as follows:

• For each c /∈ Cand, HF (c) is set to a uniformly random y ∈ Zt3.

• For each c ∈ Cand such that F (c) = 0, HF (c) is set to a uniformly
random y ∈ Zt3 \ Evalid(c).

• For each c ∈ Cand with F (c) = 1, with probability 2ntwovalid−t, choose a
random challenge tuple e from Evalid(c), and set HF (c) := e. Otherwise
HF (c) is set to a uniformly random y ∈ Zt3 \ Evalid(c).

Note that for each c, and e the probability of H(c) being set to e is 3−t.
Suppose AH0 outputs an H0-solution with probability µ, then since HF has
the same distribution as H0, AHF () outputs an HF solution c with probability
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µ. By our definition of HF , if c is an HF solution, then F (c) = 1. Thus,
AHF () outputs c such that F (c) = 1 with probability at least µ.

As in [Unr15], we can simulate AHF () with another algorithm which gen-
erates HF on the fly, and thus makes at most the same number of queries to
F that A makes to HF . Thus by applying Lemma 7 from [Unr15], we get

µ ≤ 2(qH + 1)(
2

3
)t/2.

Finally, as the sigma protocol underlying our proofs is only computa-
tionally sound (because we use Hcom for our commitment scheme), we need
to argue that an extractor can extract from 3 valid transcripts with all but
negligible probability.

Lemma 5.10. There exists an extractor EΣ such that for any PPT quantum
adversary A, the probability that A can produce (a, {(ν1,j, ν2,j)}j=1,2,3) such
that (a, j, (ν1,j, ν2,j)) is a valid transcript for j = 1, 2, 3, but EΣ(a, {(ν1,j,
ν2,j)}j=1,2,3) fails to extract a proof, is negligible.

Proof. Recall that a = (y1, y2, y3, C1, C2, C3), and if all three transcripts
are valid, Cj = Hcom(ν1,j) = Hcom(ν2,j−1) for j = 1, 2, 3. Thus, either we
have ν1,j = ν2,j−1 for all j or A has found a collision in Hcom. But, Theorem
8 in [Unr15] tells us that the probability of finding a collision in a random
function with k-bit output using at most q queries is at most O((q+ 1)32−k),
which is negligible. If ν1,j = ν2,j−1 for all j, then we have 3 kj||Viewj values,
all of which are pairwise consistent, so we conclude by the correctness of the
circuit decomposition, and the fact that (x = y, w) ∈ R iff φ(w) = y that
if we sum the input share in View1,View2,View3, we get a witness such that
(x,w) ∈ R.

Theorem 5.11. Our version of the Unruh protocol satisfies simulation-
extractability against a quantum adversary.

Proof. We define the following extractor:

1. On input π, compute hash-input(π) = {a(i), h(i) = (g
(i)
1 , g

(i)
2 , g

(i)
3 )}

2. For i ∈ 1, . . . , t: For j ∈ 1, 2, 3, check whether there exists ν1,j ∈
G−1(g

(i)
j ), ν2,j ∈ G−1(g

(i)
j+1) such that (a(i), j, (ν1,j, ν2,j)) is a valid tran-

script. If there is a valid transcript for all j, output EΣ(a(i), {(ν1,j,
ν2,j)}j=1,2,3) as defined by Lemma 5.10 and halt.

47



3. If no solution is found, output ⊥.

First we define some notation, again borrowed heavily from [Unr15]:
Let Evi,Evii,Eviii be events denoting thatA in the simulation-extractability

game produces a proof satisfying conditions (i), (ii), and (iii) from Lemma
5.9 respectively.

Let SigExtFail be the event that the extractor finds a successful (a, {(ν1,j,
ν2,j)}j=1,2,3), but EΣ fails to produce a valid witness.

Let ShouldExt denote the event that A produces x, π such that VerH

accepts and (x, π) /∈ simproofs.
Then our goal is to prove that the w produced by the extractor is such

that (x,w) ∈ R. I.e., we want to prove that the following probability is
negligible.

Pr[ShouldExt ∧ (x,w) /∈ R]

≤ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim] + Pr[MallSim]

= Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ ¬Eviii]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii] + Pr[MallSim]

≤ Pr[(x,w) /∈ R ∧ ¬Eviii]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii] + Pr[MallSim]

= Pr[SigExtFail]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii] + Pr[MallSim]

= Pr[SigExtFail]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Evi ∧ Evii ∧ Eviii]

+ Pr[MallSim]

≤ Pr[SigExtFail] + Pr[Evi ∧ Evii ∧ Eviii] + Pr[MallSim]

Here, the second equality follows from the definition of SigExtFail and Eviii,
and the description of the extractor. The third equality follows from the
fact that ¬MallSim means that the hash function on hash-input(π) has not
been reprogrammed, and the fact that ShouldExt means verification succeeds,
which means that conditions (i) and (ii) are satisfied.

Finally, by Lemmas 5.10, 5.9, and 5.8, we conclude that this probability
is negligible.
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5.4 Strong Unforgeability of Picnic-FS and Picnic-UR

We have shown that Picnic-FS and Picnic-UR are a simulation-extractable
NIZK proof systems in the classical (resp. quantum) random oracle model
against classical (resp. quantum) adversaries. Strong unforgeability (sEUF-
CMA security) follows directly: this is a well known result in the classical
model, and shown in [Unr15] in the quantum setting. For completeness, we
briefly sketch this result:

Suppose there exist an adversary A who can break the strong unforgeabil-
ity property (cf. Definition 2.8). Then we can construct an adversary against
the ZK property of the NIZK, the simulation-extractability property of the
NIZK, or the one-wayness of the one-way function. We proceed through a
series of games. In the first transition, we switch the signature algorithm
to use the ZK simulator rather than the prover. This is indistinguishable
by ZK, so the adversary will still produce forgeries with high probability,
or we have a distinguisher which breaks the ZK property. Then, when the
adversary produces a valid forgery, we run the extractor to produce a pre-
image of the one-way function. If this extractor does not succeed with high
probability whenever the adversary produces a forgery, we break simulation-
extractability. Note here, that our extractor is guaranteed to work as soon
as either the statement or the proof is different from what the simulator pro-
duced, so we will be able to extract from new signatures on previously signed
messages as required in strong unforgeability. Otherwise, we have produced
a pre-image given only the output of the one-way function (recall that we use
the simulator to sign, so we do not need the pre-image there), so we break
the one-wayness property.

6 Formal Security Analysis of Picnic2

In this section we provide a formal analysis of the Picnic2 signature schemes,
starting with the security of the underlying MPC protocol, then proving
unforgeability in the random oracle model. We end with a brief analysis of
two optimizations and discuss security in the quantum random oracle model.
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6.1 Proof of Security of the Underlying MPC Protocol

The protocol is described in Section 2.9.1, here we prove it is secure against
an all-but-one corruption in the semi-honest model.

Lemma 6.1. Suppose there exists a (t, εPRG)-PRG. Then there exists a sim-
ulator for the MPC protocol of §2.9.1 such that no distinguisher running in
time t can distinguish between the real-world execution and ideal-world exe-
cution defined by this simulator with better than εPRG probability.

Proof. We first describe a simulator SimP (1κ, y, C) that outputs the view of
all parties except for P . Denote the input and output sizes of C by m and l
respectively. We use x ← X to denote choosing a value from X at random
and assigning it to x. The simulator works as follows:

1. If P = n, set statei ← {0, 1}k for all i 6= P . Otherwise, set statei ←
{0, 1}k, for i 6∈ {n, P} and set staten ← {0, 1}k+|C|.

2. Pick ẑ ← {0, 1}m, msgsP ← {0, 1}
|C|.

3. Use {statei}i 6=P , ẑ and msgsP to simulate the online phase of the MPC
protocol until the output reconstruction step, such that the simulator
obtains the shares of outputs [y] for i 6= P , denoted as [y]i. Compute
[y]P :=

⊕
i 6=P [y]i ⊕ y. Append [y]P to msgsP .

Hybrid1. Same as the real-world protocol, except use true randomness,
instead of seed-derived, for party P . String aux is computed as described in
the protocol, based on the true randomness.

It is easy to see that the probability of distinguishing Hybrid1 and the
real-world protocol in running time t is no more than εPRG.

Hybrid2. Replace aux in Hybrid1 by a uniformly random string of the
same length.

If P = n, then aux is not part of the view of the adversary; if P 6= n, then
bits of aux are computed by XORing one bit of randomness from each seed
from party i 6= P , then XORing one bit of randomness from party P (which
is uniformly random in Hybrid1). Therefore aux is uniformly random in
Hybrid1.

Therefore, Hybrid1 and Hybrid2 are identical.

Hybrid3. Same as Hybrid2, except that ẑ is changed to uniformly random
string; The last message from party P is replaced by a message computed
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from the output as defined in the simulator. In more detail, use {statei}i 6=P , ẑ
and msgsP to simulate the online phase of the MPC protocol locally, such that
in the end, the simulator obtains share of outputs [y]i for i 6= P . Compute
[y]P :=

⊕
i 6=P [y]i⊕y. Replace the last message from party P for reconstruct-

ing the output to [y]P .
It is easy to see that ẑ is uniformly random in both hybrids since the

share of the mask held by party P is uniformly random. [y]P is identically
distributed in the two hybrids given the perfect correctness of the protocol: in
both worlds, [y]P is a deterministic function of the output y and the messages
send by parties other than P .

Therefore, Hybrid3 and Hybrid2 are identical.

6.2 Security Proof of the Signature Scheme

In this section, we give a dedicated proof of security for the signature scheme
constructed by making the KKW proof protocol non-interactive with the
Fiat-Shamir transform. In doing so, our goals are both to give a complete
proof (taking into account certain optimizations mentioned in the text), as
well as to highlight the concrete-security bound we obtain. The theorem
below proves EUF-CMA security, we believe it can be generalized to strong
unforgeability.

In this section κ is a security parameter, and G is a hash function modeled
as a random oracle (different from the permutation G used in Picnic-UR).
We abstract our scheme by assuming that the key-generation algorithm Gen
outputs a pair (C,w) with C(w) = 1, where we view C as the public key and
w as the private key. We assume |C| ≥ κ and w ∈ {0, 1}κ. Our hardness
assumption is that, given C as output by Gen, it is hard to find w′ for
which C(w′) = 1. More formally, we say that Gen is (t, ε)-one way if for all
adversaries A running in time at most t we have

Pr[(C,w)← Gen;w′ ← A(C) : C(w′) = 1] ≤ ε.

Theorem 6.2. Suppose the PRG used is (t, εPRG)-secure, Gen is (t, εOW )-
one-way, and Π is the MPC protocol described in Section 2.9.1. Model
H0, H1, H2, and G as random oracles where H0, H1, H2 have 2κ-bit output
length. Then any attacker carrying out an adaptive chosen-message attack
on Picnic2 (Figure 4), running in time t, making qs signing queries, and
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Picnic2 Signing

Keys: The public key is a circuit C; the private key is a value w for
which C(w) = 1. Values M,n, τ are parameters of the protocol.

To sign message m, the signer does the following.

Step 1 For each j ∈ [M ]:

1. Choose uniform seed∗j ∈ {0, 1}
κ and use it to generate values

seedj,1, . . ., seedj,n with a PRG. Also compute auxj ∈ {0, 1}|C| as
described in the text. For i = 1, . . . , n− 1, let statej,i := seedj,i;
let statej,n := seedj,n‖auxj.

2. For i ∈ [n], compute comj,i := H0(statej,i).

3. The signer runs the online phase of the n-party protocol Π (as
described in the text) using {statej,i}i, beginning by computing
the masked inputs {ẑj,α} (based on w and the {λj,α} defined by
the preprocessing). Let msgsj,i denote the messages broadcast
by Si in this protocol execution.

4. Let hj := H1(comj,1, . . . , comj,n) and let
h′j := H2({ẑj,α},msgsj,1, . . . ,msgsj,n).

Step 2 Compute (C,P) := G(m,h1, h
′
1, . . . , hM , h

′
M), where C ⊂ [M ] is

a set of size τ , and P is a list {pj}j∈C with pj ∈ [n]. The signature
includes (C,P).

Step 3 For each j ∈ [M ] \ C, the signer includes seed∗j , h
′
j in the signa-

ture. Also, for each j ∈ C, the signer includes {statej,i}i 6=pj , comj,pj ,
{ẑj,α}, and msgsj,pj in the signature.

Figure 4: The signing algorithm in the Picnic2 signature scheme.
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Picnic2 Verification

A signature (C,P , {seed∗j , h
′
j}j 6∈C, {{statej,i}i 6=pj , comj,pj , {ẑj,α},msgsj,pj}j∈C)

on a message m is verified as follows:

1. For every j ∈ C and i 6= pj, set comj,i := H0(statej,i); then compute
the value hj := H1(comj,1, . . . , comj,n).

2. For j 6∈ C, use seed∗j to compute hj as the signer would.

3. For each j ∈ C, run an execution of Π among the parties {Si}i 6=pj
using {statej,i}i 6=pj , {ẑα}, and msgsj,pj ; this yields {msgsi}i 6=pj and an

output bit b. Check that b
?
= 1. Then compute h′j := H2({ẑj,α}

msgsj,1, . . . ,msgsj,n).

4. Check that (C,P)
?
= G(m,h1, h

′
1, . . . , hM , h

′
M).

Figure 5: The verification algorithm in the Picnic2 signature scheme.

making q0, q1, q2, qG queries, respectively, to the random oracles, succeeds in
outputting a valid forgery with probability at most

Pr[Forge] ≤ O(qs·τ ·εPRG)+O

(
(q0 + q1 + q2 +Mnqs)

2

2κ

)
+εOW+qG·ε(M,n, τ),

where

ε(M,n, τ) = max
M−τ≤k≤M

{ (
k

M−τ

)(
M

M−τ

)
· nk−M+τ

}
.

In the Picnic2 specification, the parameters (M,n, τ) are chosen such that
ε(M,n, τ) ≤ 2−κ.

Proof. Fix some attacker A. Let qs denote the number of signing queries
made byA; let q0, q1, q2, respectively, denote the number of queries toH0, H1, H2

made by A, and let qG denote the number of queries to G made by A. To
prove security we define a sequence of experiments involving A, where the
first corresponds to the experiment in which A interacts with the real signa-
ture scheme. We let Pri[·] refer to the probability of an event in experiment i.
We let t denote the running time of the entire experiment, i.e., including both
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A’s running time and the time required to answer signing queries and to ver-
ify A’s output.

Experiment 1. This corresponds to the interaction of A with the real
signature scheme. In more detail: first Gen is run to obtain (C,w), and
A is given the public key C. In addition, we assume the random oracles
H0, H1, H2, and G are chosen uniformly from the appropriate spaces. A may
make signing queries, which will be answered as in Figure 4; Amay also query
any of the random oracles. Finally, A outputs a message/signature pair; we
let Forge denote the event that the message was not previously queried by
A to its signing oracle, and the signature is valid. We are interested in
upper-bounding Pr1[Forge].

Experiment 2. We abort the experiment if, during the course of the experi-
ment, a collision in H0, H1, or H2 is found. Suppose q = max{q0, q1, q2}, then
the number of queries to any oracle throughout the experiment (by either
the adversary or the signing algorithm) is at most (q +Mnqs). Thus,

|Pr1[Forge]− Pr2[Forge]| ≤ 3(q +Mnqs)
2

22κ
.

Experiment 3. Here we modify the way signing is done. Specifically, when
signing a message m we begin by choosing (C,P) uniformly. Steps 1 and 3
of the signing algorithm are computed as before, but in step 2 we simply set
the output of G equal to (C,P). Formally, a signature on a message m is
now computed as follows:

Step 0 Choose uniform (C,P), where C ⊂ [M ] is a set of size τ , and P =
{pj}j∈C with pj ∈ [n].

Step 1 For each j ∈ [M ]:

1. Choose uniform seed∗j ∈ {0, 1}
κ and use it to generate values seedj,1,

. . ., seedj,n and auxj ∈ {0, 1}|C|. For i = 1, . . . , n − 1, let statej,i :=
seedj,i; let statej,n := seedj,n‖auxj.

2. For i ∈ [n], compute comj,i := H0(statej,i).

3. Run the online phase of the n-party protocol Π using {statej,i}i,
beginning by computing the masked inputs {ẑj,α} (based on w and
the {λj,α} defined by the preprocessing). Let msgsj,i denote the
messages broadcast by Si in this protocol execution.
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4. Let hj := H1(comj,1, . . . , comj,n) and h′j := H2({ẑj,α},msgsj,1, . . . ,msgsj,n).

Step 2 Set G(m,h1, h
′
1, . . . , hM , h

′
M) equal to (C,P). (I.e., if A subsequently

makes the query G(m,h1, h
′
1, . . . , hM , h

′
M), return (C,P) as the output.)

Include (C,P) in the signature.

Step 3 For each j ∈ [M ] \ C, the signer includes seed∗j , h
′
j in the signature.

Also, for each j ∈ C, the signer includes {statej,i}i 6=pj , comj,pj , {ẑj,α},
and msgsj,pj in the signature.

The only difference between this experiment and the previous one occurs
if, in the course of answering a signing query, the query to G in step 2 was
ever made before (by either the adversary or as part of answering some other
signing query). Letting InputCollG denote this event, we have

|Pr3[Forge]− Pr2[Forge]| ≤ Pr3[InputCollG].

Experiment 4. Here we again modify the way signing is done. Now, the
signer chooses uniform {seedj,i}ni=1 for all j ∈ C. That is, signatures are now
computed as follows:

Step 0 Choose uniform (C,P), where C ⊂ [M ] is a set of size τ , and P =
{pj}j∈C with pj ∈ [n].

Step 1 For each j ∈ [M ]:

1. If j 6∈ C, choose uniform seed∗j ∈ {0, 1}
κ and use it to generate

values seedj,1, . . ., seedj,n. If j ∈ C, choose uniform seedj,1, . . .,
seedj,n ∈ {0, 1}κ.

2. Compute auxj ∈ {0, 1}|C| based on {seedj,i}i. For i = 1, . . . , n − 1,
let statej,i := seedj,i; let statej,n := seedj,n‖auxj.

3. For i ∈ [n], compute comj,i := H0(statej,i).

4. Run the online phase of the n-party protocol Π using {statej,i}i,
beginning by computing the masked inputs {ẑj,α} (based on w and
the {λj,α} defined by the preprocessing). Let msgsj,i denote the
messages broadcast by Si in this protocol execution.

5. Let hj := H1(comj,1, . . . , comj,n) and h′j := H2({ẑj,α},msgsj,1, . . . ,msgsj,n).
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Step 2 Set G(m,h1, h
′
1, . . . , hM , h

′
M) equal to (C,P). (I.e., if A subsequently

makes the query G(m,h1, h
′
1, . . . , hM , h

′
M), return (C,P) as the output.)

Include (C,P) in the signature.

Step 3 For each j 6∈ C, include seed∗j , h
′
j in the signature. For each j ∈ C,

include {statej,i}i 6=pj , comj,pj , {ẑj,α}, and msgsj,pj in the signature.

It is easy to see that if the pseudorandom generator is (t, εPRG)-secure,
then

|Pr4[Forge]− Pr3[Forge]| ≤ qs · τ · εPRG
and

|Pr4[InputCollG]− Pr3[InputCollG]| ≤ qs · τ · εPRG.

We now bound Pr4[InputCollG]. Fix some previous query (m,h1, h
′
1, . . . , hM , h

′
M)

to G, and look at a query G(m̂, ĥ1, ĥ
′
1, . . . , ĥM , ĥ

′
M) made while responding

to some signing query. (In the rest of this discussion, we will use ·̂ to rep-
resent values computed as part of answering that signing query.) For some
fixed j ∈ Ĉ, it is not hard to see that the probability of the event ĥj = hj
is maximized if hj was output by a previous query H1(com1, . . . , comn), and
each comi was output by a previous query H0(statei). (In all cases, the rele-
vant prior query must be unique since the experiment is aborted if there is a
collision in H0 or H1.) In that case, the probability that ĥj = hj is at most

(2−κ + 2−2κ)n + 2−2κ ≤ 2 · 2−2κ

(assuming n ≥ 3), and thus the probability that ĥj = hj for all j ∈ Ĉ is
at most 2−τ ·(2κ−1). Taking a union bound over all signing queries and all
queries made to G (including those made during the course of answering
signing queries), we conclude that

Pr4[InputCollG] ≤ qs · (qs + qG) · 2−τ ·(2κ−1).

Experiment 5. Here we again modify the way signing is done. Now:

• For each j ∈ C, choose uniform comj,pj (i.e., without making the corre-
sponding query to H0).

• For each j 6∈ C, choose uniform h′j (i.e., without making the corre-
sponding query to H2).
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So, signatures are now computed as follows:

Step 0 Choose uniform (C,P), where C ⊂ [M ] is a set of size τ , and P =
{pj}j∈C with pj ∈ [n].

Step 1 For each j ∈ [M ]:

1. If j 6∈ C, choose uniform seed∗j ∈ {0, 1}
κ and use it to generate

values seedj,1, . . ., seedj,n. If j ∈ C, choose uniform seedj,1, . . .,
seedj,n ∈ {0, 1}κ.

2. Compute auxj ∈ {0, 1}|C| based on {seedj,i}i. For i = 1, . . . , n − 1,
let statej,i := seedj,i; let statej,n := seedj,n‖auxj.

3. For j ∈ C, choose uniform comj,pj ∈ {0, 1}
2κ. For all other j, i, set

comj,i := H0(statej,i).

4. Run the online phase of the n-party protocol Π using {statej,i}i,
beginning by computing the masked inputs {ẑj,α} (based on w and
the {λj,α} defined by the preprocessing). Let msgsj,i denote the
messages broadcast by Si in this protocol execution.

5. Let hj := H1(comj,1, . . . , comj,n). If j ∈ C, set h′j := H2({ẑj,α},
msgsj,1, . . . , msgsj,n); otherwise, choose uniform h′j ∈ {0, 1}

2κ.

Step 2 Set G(m,h1, h
′
1, . . . , hM , h

′
M) equal to (C,P). (I.e., if A subsequently

makes the query G(m,h1, h
′
1, . . . , hM , h

′
M), return (C,P) as the output.)

Include (C,P) in the signature.

Step 3 For each j 6∈ C, include seed∗j , h
′
j in the signature. For each j ∈ C,

include {statej,i}i 6=pj , comj,pj , {ẑj,α}, and msgsj,pj in the signature.

The only difference between this experiment and the previous one occurs
if, during the course of answering a signing query, statej,pj (for some j ∈ C) is
queried to H0 at some other point in the experiment, or ({ẑj,α},msgsj,1, . . . ,
msgsj,n) (for some j 6∈ C) is ever queried to H2 at some other point in the
experiment. Denoting this event by InputCollH , we thus have

|Pr5[Forge]− Pr4[Forge]| ≤ Pr5[InputCollH ].

Experiment 6. We again modify the signing algorithm. Now, for j ∈ C the
signer uses the simulator for Π (namely, SimΠ) to generate the views of the
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parties {Si}i 6=pj in an execution of Π when evaluating C with output 1. This
results in values {statej,i}i 6=pj , masked input-wire values {ẑj,α}, and msgsj,pj .
From the respective views, {msgsj,i}i 6=pj can be computed, and hj, h

′
j can be

computed as well. Thus, signatures are now computed as follows:

Step 0 Choose uniform (C,P), where C ⊂ [M ] is a set of size τ , and P =
{pj}j∈C with pj ∈ [n].

Step 1 For j 6∈ C:

1. Choose uniform seed∗j ∈ {0, 1}
κ and use it to generate values seedj,1,

. . ., seedj,n. Compute auxj ∈ {0, 1}|C| based on {seedj,i}i. For i =
1, . . . , n− 1, let statej,i := seedj,i; let statej,n := seedj,n‖auxj.

2. For all i, set comj,i := H0(statej,i).

3. Let hj := H1(comj,1, . . . , comj,n). Choose uniform h′j ∈ {0, 1}
2κ.

For each j ∈ C:

1. Compute ({statej,i}i 6=pj , {ẑj,α},msgsj,pj)← SimΠ(pj). Compute {msgsj,i}i 6=pj
based on this information.

2. Choose uniform comj,pj ∈ {0, 1}
2κ. For all other i, set comj,i :=

H0(statej,i).

3. Let hj := H1(comj,1, . . . , comj,n) and h′j := H2({ẑj,α},msgsj,1, . . . ,msgsj,n).

Step 2 Set G(m,h1, h
′
1, . . . , hM , h

′
M) equal to (C,P). (I.e., if A subsequently

makes the query G(m,h1, h
′
1, . . . , hM , h

′
M), return (C,P) as the output.)

Include (C,P) in the signature.

Step 3 For each j 6∈ C, the signer includes seed∗j , h
′
j in the signature. Also,

for each j ∈ C, the signer includes {statej,i}i 6=pj , comj,pj , {ẑj,α}, and
msgsj,pj in the signature.

Observe that w is no longer used for generating signatures. Recall, the
adversary in the underlying MPC protocol Π has distinguishing advantage
εPRG (see Lemma 6.1). It is immediate that

|Pr6[Forge]− Pr5[Forge]| ≤ τ · qs · εPRG

and
|Pr6[InputCollH ]− Pr5[InputCollH ]| ≤ τ · qs · εPRG.
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We now bound Pr6[InputCollH ]. For any particular signing query and any
j ∈ C, the value statej,pj has min-entropy at least κ and is not used anywhere
else in the experiment. Similarly, for any j 6∈ C, the value {ẑj,α} has min-
entropy at least κ, since the input is κ-bit and they are all uniform according
to the simulator defined in the next section. and is not used anywhere else
in the experiment. Thus,

Pr6[InputCollH ] ≤M · qs · (Mqs + q0 + q2) · 2−κ.

Experiment 7. We first define some notation. At any point during the
experiment, we classify a pair (h, h′) in one of the following ways:

1. If h was output by a previous query H1(com1, . . . , comn), and each comi

was output by a previous query H0(statei) where the {statei} form a
valid preprocessing, then say (h, h′) defines correct preprocessing.

2. If h was output by a previous query H1(com1, . . . , comn), and each comi

was output by a previous query H0(statei), and h′ was output by a pre-
vious query H2({ẑα},msgs1, . . . ,msgsn) where {statei}, {ẑα}, {msgsi}
are consistent with an online execution of Π among all parties with
output 1 (but the {statei} may not form a valid preprocessing), then
say (h, h′) defines correct execution.

3. In any other case, say (h, h′) is bad.

(Note that in all cases the relevant prior query, if it exists, must be unique
since the experiment is aborted if there is ever a collision in H0, H1, or H2.)

In Experiment 7, for each query G(m,h1, h
′
1, . . . , hM , h

′
M) made by the

adversary (where m was not previously queried to the signing oracle ), check
if there exists an index j for which (hj, h

′
j) defines correct preprocessing

and correct execution. We let Invert be the event that this occurs for some
query to G. Note that if that event occurs, the {statei}, {ẑα} (which can be
determined from the oracle queries of the adversary) allow computation of w′

for which C(w′) = 1. Thus, Pr7[Invert] ≤ εOW .
We claim that

Pr7[Forge ∧ Invert] ≤ qG · ε(M,n, τ).

To see this, assume Invert does not occur. For any query G(m,h1, h
′
1, . . . ,

hM , h
′
M) made during the experiment (where m was not previously queried
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to the signing oracle), let Pre denote the set of indices for which (hj, h
′
j)

defines correct preprocessing (but not correct execution), and let k = |Pre|.
Let (C,P) be the (random) answer from this query to G. The attacker can
only possibly generate a forgery (using this G-query) if (1) [M ] \ C ⊆ Pre,
and (2) for all j ∈ Pre ∩ C, the value pj is chosen to be the unique party
such that the views of the remaining parties {Si}i 6=pj are consistent . Since

|M \ C| = M − τ , the number of ways the first event can occur is
(

k
M−τ

)
;

given this, there are k − (M − τ) elements remaining Pre ∩ C. Thus, the
overall probability with which the attacker can generate a forgery using this
G-query is

ε(M,n, τ, k) =

(
k

M−τ

)
· nM−k(

M
M−τ

)
· nτ

=

(
k

M−τ

)(
M

M−τ

)
· nk−M+τ

≤ ε(M,n, τ) = max
k
{ε(M,n, τ, k)} .

The final bound is obtained by taking a union bound over all queries to G.

6.3 Tree-Based Optimizations

In this section we discuss standard constructions of seed tree and Merkle
tree and their use in Picnic2. These are well-known cryptographic objects,
which are used in a standard way. Nevertheless, in this section we briefly
sketch security arguments corresponding to their use. We first consider some
properties of the seed tree construction, then discuss the use of seed and
Merkle trees in Picnic2.

6.3.1 Seed Tree

The beginning of this section is taken (with minor modifications) from the
Picnic specification [Tea19a], Section 7.3.1, that describes how the tree is
constructed, and how seeds are efficiently revealed.

When signing, the signer must generate a set of seeds, then reveal a
subset of these based on the challenge. The seeds are then used by the
verifier to check that the MPC protocol was setup or simulated correctly. By
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deriving seeds deterministically in a binary tree, then using the leaf seeds in
the protocol, the signer can reveal large subsets of the seeds efficiently by
revealing intermediate nodes in the tree. In Picnic2, the signer must reveal
M − τ of the M initial seeds and one of the n seeds in each of the τ MPC
instances that are checked by the verifier.

The tree is initialized with random data at the root node. For each non-
leaf node in the tree, having seed parent seed, compute the 2κ-bit digest

d := H(parent seed‖salt‖j‖i)

where j is the MPC instance number, and i is the index of the parent node.
The function H is a hash function with 2κ-bit outputs. Then set the left child
of the node to the leftmost κ bits of d, and the right child to the rightmost
κ bits of d. The salt is a random, per-signature value that is included to
prevent multi-target attacks (along with the counter). The values salt, j and
i are always public, but only some of the parent seed values are revealed.

Collision-resistance Non-malleability of Picnic2 signatures requires that
the seed tree be collision-resistant. This means it must be hard to find distinct
seeds that expand to the same set of leaf seeds. In practice 2nd preimage
resistance should be sufficient, since an attacker must find a second seed that
expands to the same set of seeds appearing in a valid signature. However, we
use collision resistance because it allows us to prove that the proof protocol
has computationally unique responses (also called quasi-unique responses) in
Lemma 6.7.

Theorem 6.3. The seed tree construction is collision-resistant if the hash
function H is collision-resistant.

Proof. The algorithm to reveal seeds ensures that any node without a sib-
ling is revealed directly (as opposed to being re-derived from another seed).
Therefore, both halves of the output bits of H are used, so if distinct seeds s
and s′ derive the same set of seeds, we have a collision, H(s) = H(s′) where
s is a parent of two leaf seeds.

Hiding and Pseudorandomness The derived seeds must be pseudoran-
dom for security of the protocol. Further, the unrevealed seeds must remain
hidden, or else the signature will leak information about the private key.
Therefore, given the revealed seeds, it must be difficult to distinguish the
unrevealed seeds from random values. For this we will rely on the function
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H being a PRF keyed by the parent seed, so that given half the output bits
of H(parent seed‖salt‖j‖i) the sibling value the other half of the output
bits are indistinguishable from a random value.

Theorem 6.4. Given the opening information for a set of revealed seeds, the
unrevealed seeds remain indistinguishable from random values, assuming H
is a secure PRF when keyed with an unrevealed seed.

Proof. Consider a subtree with root p, having left child r = leftHalf(H(p‖ . . .)),
and right child s = rightHalf(H(p‖ . . .)). We must show that if r is revealed,
s remains indistinguishable from random (the same argument holds when r
and s are reversed). Since H is assumed to be a PRF with key p, and p is
unrevealed, the output H(p‖ . . .) is indistinguishable from a random value.
In a random value the two halves of the output are independent, so hav-
ing one half gives no information about other, so the hidden half remains
indistinguishable from random.

The value p is unrevealed, if it has a sibling that is revealed, the same ar-
gument is applied recursively up the tree (with height bounded byO(log(M)),
polynomial in κ). The root is only revealed when there are no unrevealed
seeds.

In practice H is SHA-3, and inputs always have a fixed length.

6.3.2 Use in Picnic2

Here we review where the the seed tree and Merkle tree optimizations are
used in Picnic2 and argue that the security properties above are sufficient to
maintain security.

The seed tree construction is used in two places. First, in Step 1.1, instead
of choosing {seed∗j}Mj=1 at random, the signer derives them using a seed tree.
Then in Step 3, the signer outputs seeds from the tree that allows the verifier
to recompute the M − τ revealed seeds.

• The privacy property of the seed tree construction (Theorem 6.4), en-
sures that the unrevealed seeds are indistinguishable from random.

• For malleability, if the seeds output by the signer are modified, collision
resistance ensures that at least one of the M − τ reconstructed seeds is
different. Then verification will fail, since seed∗j is used as the root of
a seed tree, which is collision-resistant, meaning the values seedj,i will
be different.
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The second use is in Step 1.1, in each instance j, the n seeds {seedj,i}
are derived with the seed tree construction with root seed∗j . Then in Step 3,
instead of revealing {seedj,i}i 6=pj , the signer reveals seeds from the tree that
allow the verifier to recompute this set.

• The privacy property of the seed tree construction ensures that seedj,pj
is indistinguishable from random.

• For malleability, if the revealed seeds are modified such that the recom-
puted seeds {seedj,i}i 6=pj are different, then verification will fail when
{comj,i}i 6=pj are recomputed (or there is a collision in H0, H1 or G).
Collision resistance of the seed tree construction ensures that changing
the seeds output by the signer will cause the seeds recomputed by the
verifier to be different.

The Merkle tree is used as a commitment to a set of commitments, the
values {h′j}Mj=1. Using a Merkle tree does not affect the hiding property of
the commitments h′j (which are public when a Merkle tree is not used), so ,
we only need to consider whether the Merkle tree is a binding commitment.
It can be shown that providing two openings for a left with respect to the
same root gives a collision in H (the function used to form the Merkle tree).

6.4 QROM Security

In this section we discuss the QROM security of Picnic signatures instantiated
with the KKW proof protocol. The differences between Picnic2 and the new
parameters 3 called Picnic3 are small enough that the analysis of this section
applies to both.

Picnic2 is a Fiat-Shamir type signature scheme, and the recent work of
Don, Fehr, Majenz and Schaffner [DFMS19a] proves that a large class of FS
signature schemes are secure in the QROM. In [DFMS19a, Corollary 26],
security of Picnic instantiated with the ZKBoo proof system is shown, and
it can be checked that this also holds when ZKB++ is used, establishing
the QROM security of the Picnic-L1-FS, Picnic-L3-FS and Picnic-L5-FS

parameter sets.

3Introduced in April 2020, see the IACR ePrint report Improving the Performance
of the Picnic Signature Scheme by Kales and Zaverucha for a description of differences
between Picnic2 and Picnic3.
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However, the published version of [DFMS19a] did not apply to instances
of Picnic using the KKW protocol (i.e., Picnic2), since the KKW protocol
did not meet the required definition of t-soundness. Informally, a Σ-protocol
is said to be t-sound if we can extract a witness from any set of t accepting
transcripts that have the same commitment, and different challenges and
responses. Then the approach to show that a t-sound Σ-protocol is a proof
of knowledge is to define an extractor that interacts with a malicious prover
(in the random oracle model). The extractor runs the prover to obtain an
accepting transcript, then rewinds her t − 1 times to the point when the
challenge is output by the random oracle, and outputs a different challenge.
The extractor then obtains an additional t − 1 accepting transcripts, then
extracts the witness from these t transcripts.

While it is possible to extract a witness from three accepting KKW tran-
scripts, the extractor does not work for any three. As shown in [KKW18,
Theorem 2.1], the three transcripts must have the form (c, p), (c′, ∗), (c, p′),
where ∗ denotes any value, c 6= c′ and p 6= p′. In particular this means that
there are many triples of challenges for which extraction will fail. For ex-
ample, if c is fixed for the three challenges and p differs, extraction may fail
because the preprocessing step may be incorrect. Similarly, if p is fixed and
c varies, the extractor does not have the state of all n parties, and cannot
recover the witness since the MPC protocol is secure.

The rewinding technique of [DFMS19a] chooses a new challenge at ran-
dom. Therefore, the extractor for KKW is not guaranteed to succeed, since
it may be that the malicious prover only succeeds when the three challenges
do not satisfy the required property. In an updated full version, Don et
al. [DFMS19b] generalize their result to allow the extractor to re-use the
first part of a previous challenge, after first using a random challenge. In
particular, this allows three random challenges of the form (C,P ), (C,P ′)
and (C ′′, P ′′) for random C,P, P ′, C ′′, and P ′′. Thus, with overwhelming
probability, the transcripts will contain a challenge of the correct form, and
extraction will succeed.

One caveat we note is that this generalization comes with a cost in tight-
ness of the reduction. The reduction for the ZKB++ parameter sets looses
a factor of q2, and for KKW the loss is a factor q6, where q is the number
of hash queries. As the results are non-tight, and depend on the asymptotic
analysis of [DFMS19a], we make no claims about the concrete security of
Picnic in the QROM.

We must also assume that the hash functions H, H0, H1, and H2 used for
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commitments and deriving seeds in KKW are collapsing, a quantum general-
ization of collision resistance. For a definition of collapsing, see [DFMS19b,
Definition 23]. The hash function G (used to compute the challenge is mod-
eled as a quantum random oracle.

Theorem 6.5. Picnic2 is strongly unforgeable under chosen message attacks
in the QROM when H,H0, H1 and H2 are instantiated with collapsing hash
functions.

Proof. The proof follows the proof of [DFMS19a, Corollary 26] for Picnic-
FS. To apply the main theorems of [DFMS19a], We require that the KKW
Σ-protocol:

1. Be non-abort honest-verifier zero-knowledge (naHVZK, or simply HVZK
because the KKW protocol does not abort, we do not have to quantify
the non-abort probability).

(a) This was first done in [KKW18, Theorem 2.2], but considers the
protocol when commitments are randomized.

(b) In [AOTZ20, Lemma 18], a similar proof is given, but accounts
for the optimization of using non-randomized commitments.

(c) The proofs assume only that the hash functions are modeled as
random oracles.

2. Have min-entropy (denoted α) that is polynomial in the security pa-
rameter, where min-entropy of a Σ-protocol is as defined in [KLS18,
Definition 2.6]. This was done in [AOTZ20, Lemma 17].

3. Has quantum computationally unique responses (CUR).

(a) We first show that it has classical CUR, assuming the hash func-
tions are collision resistant, in Lemma 6.7.

(b) It then follows that KKW has quantum CUR under the further
assumption that the hash functions are collapse-binding.

Now to prove Picnic2 is sEUF-CMA secure, we can use [DFMS19b, The-
orem 25], which says that a t-sound protocol that has quantum CUR is a
computational proof of knowledge (PoK) in the QROM. Here we use the
generalized version that uses [DFMS19b, Lemma 30], allowing the extrac-
tor to re-use the first part of the challenge when rewinding. Then we apply
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[DFMS19b, Theorem 22], which says that a PoK that is also zero-knowledge
with α bits of min-entropy and CUR is strongly unforgeable under chosen-
message attacks.

6.5 Computationally Unique Responses

A Σ-protocol has computationally unique responses, if it is hard to find two
valid responses for a fixed commitment and challenge. In this section we
show that the KKW protocol as used in Picnic2, has CUR (Lemma 6.7).

Definition 6.6 (Computationally Unique Responses). For a Σ-protocol Π
with transcripts (W, c, Z) and verification function V , if the following prob-
ability is negligible in κ for all polynomial-time adversaries A,

Pr[V (pk,W, c, Z) = V (pk,W, c, Z ′) = 1|(pk,W, c, Z, Z ′)← A(κ)]

then we say that Π has computationally unique responses (CUR).

Our definition of CUR is based on Fischlin’s [Fis05], which differs from
the definition of [KLS18] where A is given the public key, rather than being
allowed to choose it. In the context of signature schemes A is typically trying
to find multiple responses with respect to a given public key, but since CUR
holds for Picnic2 even when A is allowed to choose the key pair we use the
stronger definition. The CUR property (as defined here) is also called quasi-
unique responses in [FKMV12b].

Our proof of CUR applies to Picnic2 including the two optimizations:
seeds are derived using the tree construction, and commitments to the views
are done with a Merkle tree, as described in the Picnic specification. We use
H to denote the hash function used to instantiate the Merkle tree and the
seed tree. Hashes H0, H1, H2 and G are as defined in Figure 4.

Lemma 6.7. If the hash functions H,H0, H1, H2 and G used to implement
Picnic2 are collision-resistant, then Picnic2 has computationally unique re-
sponses.

Proof. Using the notation of Definition 6.6, suppose thatA outputs (W, c, Z, Z ′).
We will ignore the public key pk and some of the other checks that the ver-
ification function might make, however, these only add constraints to A’s
output, making it strictly more difficult. We show that it is difficult for A
to find distinct Z,Z ′ with respect to any W, c, that pass only a subset of
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the verification function (namely, the checks that commitment openings in
Z correspond to the commitments in W ).

Recall that in Picnic2:

• W is h1, . . . , hM , and MerkleTreeRoot(h′1, . . . , h
′
M)

• c is (C,P), and

• Z is

– for j ∈ C: {statej,i}i 6=pj , comj,pj , {ẑj,α} and msgsj,pj

– for j 6∈ C: seedj
∗, h′j

We will argue that any difference in the values in Z and Z ′ gives a collision
in one of the hash functions.

If statei differs, then comi will differ unless we have a collision in H0. If
comi differs, then hj will differ unless we have a collision in H1. Finally if
hj differs, c will differ unless we have a collision in G. But A has output a
single c value, so either there is a collision, or the statei values are all equal.

If compj differ, then hj and c will differ, or we have a collision in H0, H1

or G.
If any of the {ẑj,α} differ, then h′j will differ or we have a collision in H2.

The root of the Merkle tree will differ (or there is a collision in H), causing
c to differ, unless we have a collision in G.

The values {msgsj,pj} are hashed with {ẑj,α} to form h′j, so the same
reasoning ensures they will be distinct.

The values seed∗j are root seeds used to derive {seedi,j} for the MPC
instance j, using the seed-tree construction. The root seeds do not get hashed
as part of computing c. If Z and Z ′ contain two different root seeds s and
s′ that expand to different seeds, then one or more of the state values will
change, causing c to be different, or a collision in H0, H1, H2 or G as argued
above. If s and s′ expand to the same seeds, then there would be a collision
in the seed tree construction. As shown in Theorem 6.3, this would imply a
collision in H.

Finally, if any of the h′j values differ but c is the same, we have a collision
in H2, as argued for {ẑj,α}.

67



7 Analysis with Respect to Known Attacks

In this section we analyze the Picnic signature scheme with respect to known
attacks. First, we observe that in case we deal with ideal primitives, Corol-
lary 5.4 already gives us a provable bound for EUF-CMA security. Since those
primitives are, however, instantiated with concrete building blocks, we con-
sider concrete attacks on those building blocks. In our scheme, we use the
classical approach to turn Σ-protocols into signature schemes in the random
oracle model. Based on the fact that, since the introduction of the random
oracle model [BR93], no attack which arises from the assumption that a hash
function behaves as a random oracle (except for some artificial counterexam-
ples such as [CGH98]) was found [KM15], we claim that the best attacks
against our scheme are attacks which also invalidate the claims made for the
underlying symmetric primitives.

All cryptographic primitives, except the one-way function LowMC, rely
on the SHA3 function SHAKE [NIS15], a well established and standardized
primitive, and we use it in a standard way. For those primitives, we have
already gained substantial confidence regarding security due to extensive
cryptanalysis efforts within the community. We therefore do not see these
building blocks as a central attack surface and assume that the bounds given
in [NIS15, Table 4] hold. We note that improvements in attacks against those
primitives also lead to improvements in the attacks against our signature
scheme.

7.1 Usage and Security Margin of LowMC

Consequently, we henceforth put focus on attacks on the one-way function
f . Essentially, the function f could be any one-way function, but since
we found block ciphers—and, in particular the LowMC family of block
ciphers [ARS+15, ARS+16]—gave the most efficient signatures, we decided
to use them in our signature scheme. In particular, we assume that using
LowMC as described below yields a suitable family of one-way functions
{fu}u∈Kκ . We use this function to establish a suitable relation between secret
and public keys. In particular, let

fu(x) := E(x, u),

and let E denote LowMC encryption with respect to a single block u under
key x. The keys in our signature scheme are generated as follows. First, one
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chooses a LowMC encryption key x, as well as a single block u uniformly
at random. Then, the the public verification key pk, as well as the secret
signing key sk are defined as follows

pk := (y, u) = (fu(x), u), sk := (pk, x).

The choice of the number of rounds within LowMC comes with a significant
security margin. For security level L1 with the specified 20 rounds, the best
attack known is on 12 rounds. For security level L3 with the specified 30
rounds, the best attack known is on 19 rounds. For security level L5 with
the specified 38 rounds, the best attack known is on 26 rounds. And even
those attacks require an attacker to see two plaintext-ciphertext pairs for the
same key, whereas within our signature scheme an attacker only ever sees a
single input-output pair for every key.

7.2 Attacks in the Single-User Setting

In the single-user setting, the attacker only ever sees a single key pair for the
Picnic signature scheme, i.e., a single plaintext-ciphertext pair (fu(x), u) of
LowMC with respect to a uniformly random key x and a uniformly random
block u. Consequently, in this setting cryptanalytic results for LowMC also
directly apply to our scheme, and also the claimed bounds carry over to the
Picnic signature scheme. Note that, one could even globally fix x to further
shrink the size of the public verification key pk. However, we chose not to do
so, as we also want to consider attacks in the multi-user setting (as discussed
below).

7.3 Attacks in the Multi-User Setting

The multi-user setting more accurately models reality, in that there are mul-
tiple users, each with a public key, and the adversary is considered successful
if he can attack any one of the users.

Multi-User EUF-CMA. Even if single-user EUF-CMA security generically
implies multi-user EUF-CMA (MU-EUF-CMA) security under a polynomial
loss [GMS02], we put concrete focus on attack scenarios which become ap-
plicable by moving to the multi-user setting. Here, the adversary may see
many signing key pairs and we need to be cautious with respect to more
sophisticated attacks that might apply.
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In particular—in contrast to the single-user setting—our decision to choose
an independent and uniformly random block u, being the encryption function
E(·, u) of LowMC, per signing key pair turns out to be important. This is
because using the same, fixed block u with independent keys x1, . . . , xn for
each of the n users would allow an adversary to apply multi-user key recovery
attacks [Bih02] and generic time-memory trade-off attacks like [Hel80] and
in particular time/memory/key trade-off attacks [BMS05]. In these attacks
one of n block cipher keys may be recovered in less time than the cost of
recovering a single key, and the attacks become more efficient for large n.
Intuitively, the random block chooses a unique function per user, and work
done to attack one user (function) can not be used to simultaneously attack
another user (function). In addition, Banegas and Bernstein [BB17] have
recently shown that parallel collision search attacks [vOW94] can also be ap-
plied in the quantum setting which also supports making a random choice
of u per user. Finally, we note that one could choose a smaller value that is
unique per user (with a potential decrease in security) to reduce the size of
the public key. However, since public keys in our schemes are already small
(at most 64 bytes), our design uses a full random block to be as conservative
as possible.

Key-Substitution Attacks. These are attacks where an adversary who
is given a signature σA on message M under A’s public key pkA manages
to come up with a public key pkE (different from pkA) such that σA verifies
under pkE and message M . Menezes and Smart in [MS04] provide a formal
model to cover such attacks, which are not covered by EUF-CMA security.
We explicitly consider such attacks. Security against these types of attacks
can be generically achieved. This has been shown in [MS04], and we recall
their theorem below.

Theorem 7.1 ([MS04], Theorem 6). Let (Gen, Sign,Verify) be an EUF-CMA
secure signature scheme. Then, (Gen, Sign′,Verify) with Sign′ := Sign(sk, pk‖m)
and pk being an unambiguous encoding of the public key is a secure signature
scheme in the multi-user setting.

We stress that the above result in particular holds for sEUF-CMA secure
signature schemes.

As discussed in Section 3 (see also Section 4.3 of the specification), the
public key is prepended to the message on signing, and the specification
provides an unambiguous encoding (since the public key is a pair of bitstrings,
the encoding is trivial). Consequently, we have the following corollary.
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Corollary 7.2. Picnic-FS and Picnic-UR provide security in the multi-user
setting in the sense of [MS04, Definition 6].

7.4 Multi-Target Attacks

In [DKP+19], Dinur and Nadler describe attacks against the version 1.0
specification of Picnic (the Picnic-FS, and Picnic-UR parameter sets). At
the time, the Picnic2 parameter sets were not specified, but the attack ap-
plies equally to a direct instantiation of the KKW protocol. Their attacks
are multi-target attacks, where an attacker has a list of values of the form
y1 := H(x1), . . . , yS := H(xS), and recovering any of the xi leads to a suc-
cessful attack. Specifically, the xi values are k bits long, and the attacker can
recover the k-bit singing key. The yi values can come from (i) a single sig-
nature (there are about 27 in a signature), (ii) from many signatures created
by the same signer, or (iii) from signatures from multiple signers.

In Dinur and Nadler’s attack, the xi values are the seeds used for each
party, in each MPC instance. The function H expands xi to a random tape,
used during the MPC protocol simulation. In Picnic the seeds of two of three
parties are revealed to the verifier, and in Picnic2 n− 1 of n are revealed. If
an attacker learns the missing seed, they can recover the secret shared input,
the signing key. Specifically H is the SHAKE XOF, and the output length
depends on the parameter set, but is always above 600 bits.

What makes the attack non-obvious, is that the output of H (the random
tapes) are not revealed directly. Dinur and Nadler show that given the states
of the opened parties, it’s possible to solve for some of the unopened party’s
random tape. They show this is a property of MPC protocols, that doesn’t
affect the usual MPC security notion (Briefly, the MPC protocol must guar-
antee privacy of inputs, not the randomness, and leaking some randomness is
allowable provided it does not affect privacy). They also quantify the num-
ber of random bits that can be recovered from an MPC instance, and the
cost. In all cases, it is possible to efficiently recover more than k bits, so
that testing a candidate xi value can be done. However, the bits from each
target have different positions in the random tape, complicating an efficient
implementation of the attack. In a typical multi-target attack, the attacker
iterates over candidate values x′, computes y′ = H(x′), then compares y′ to
the yi efficiently using a data structure (e.g., a hash table or search tree).
But here comparing the candidate tape y′ (with all bits known) to the target
tapes yi (where a different subset of bits are known for each), is not obviously
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efficient. Dinur and Nadler show that it can be made efficient, and precisely
quantify costs under various settings. In the best case, when all signatures
are created by a single signer, their attacks cost 2k−7/S (information theo-
retically optimal). In other cases, the attack is cost is higher, but still below
the expected security level.

Mitigation The 2.0 version of the specification makes a change to mitigate
these attacks (in all parameter sets). The change adds additional information
to the input of H, called a salt, so that a candidate seed x′, cannot be tested
by comparing y′ to all yi, since each yi is computed using a different salt.
The salt ensures that y′ would need to be recomputed with the correct salt
before each comparison. To address all three variants of the attack, the salt
must be unique per signature, per signer and per invocation of H. The first
change is to choose a random per signature salt, 256 bits long. This ensures
that (with high probability), the salt is unique across all signatures recorded
by an adversary.

Then, to ensure that salts are unique within a signature, we also include
a pair of counters, the first value corresponds to the MPC instance number,
and the second corresponds to the invocation number of H. The specification
already uses a domain separation technique, where different hash functions
are created for different purposes, as follows, Hi(x) = H(i‖x). This mecha-
nism also helps ensure salts are unique, e.g., when computing the seed tree
we can use Hi and when computing the Merkle tree use Hj, and not worry
about (salt, counters) pairs being repeated in both trees.

The main cost of the mitigation is a increase in signature size, of 256 bits,
which is small relative to the overall size of the signature. Some additional
data must also be hashed, but CPU costs in our benchmarks did not increase
appreciably. This is likely due to the fact that hash inputs were short to begin
with, and remain short (smaller than the hash function block size), even with
the salt.

8 Expected Security Strength

Since a Picnic keypair is a block cipher key and plaintext/ciphertext pair, we
chose to define parameters at the L1/AES-128, L3/AES-192 and L5/AES-
256 security levels. By the CFP, this means that L2 is implicitly defined by
L3 and L4 is defined by L5.
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We expect each parameter set to provide security equivalent to AES. For
example, at L1, we expect 128-bits of security against classical attacks, and
at least 64-bits against quantum attacks. Like AES, key recovery attacks
using Grover’s algorithm against LowMC are the best known quantum at-
tacks on Picnic. The estimate of 64-bits comes from an idealized version of
Grover’s algorithm capable of running for a long time. Like AES this may be
conservative, even more so in the case of LowMC, since the circuit is much
larger than AES, due to the large amount of constant data required to im-
plement it.4 For example, at level L1, the Picnic LowMC instance requires
34KBytes of constant data. These constants must either be encoded into
the circuit, or the circuit must be expanded to recompute them on the fly.
Thus the LowMC circuit is orders of magnitude larger than AES, making
attacking LowMC with Grover’s algorithm at least as difficult as attacking
AES.

We similarly set the number of parallel iterations to provide 128-bit se-
curity against classical attacks, and 64-bits against quantum attacks using
an idealized version of Grover’s algorithm. Like with LowMC, the circuit
required to break ZKB++ soundness with Grover’s algorithm is orders of
magnitude larger than the AES circuit.

In more detail, suppose an attacker is trying to forge a proof as a generic
search problem. In particular, if an attacker can find a permutation of a
set of transcripts that hash to a challenge chosen in advance, he can forge a
proof. Consider a T round protocol (Picnic specifies 219, 329 and 438 rounds
at levels L1, L3 and L5, resp.). Then there are 3T possible challenges that
can come from hashing those 3T transcripts (since there are 3 challenges).

Now consider an attacker who constructs invalid ZKB++ “proofs” such
that for each ZKB++ iteration, he can give a valid response to two of the
challenges but not the third. If we model the hash function as a random
oracle, the probability of getting a challenge for which he can respond is (2

3
)T ,

and thus we expect that if the attacker searches a space of (3
2
)T candidates

(i.e., permutations of transcripts that are constructed in this manner) he can
find one. Grover’s algorithm allows the attacker to search the space in time
(3

2
)T/2.
However, the items in the space are larger, and changes in one value (e.g.,

a seed value) requires re-computing many others (the random tape, the MPC

4Previously, when we compared the LowMC circuit size to AES, we were looking only
at AND gates, but here we’re considering all gates.
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transcript, and the commitments). Clearly this is far more expensive than a
single AES evaluation, and so we assume that Grover’s algorithm applied to
breaking ZKB++ soundness is at least as costly as AES key recovery.

Using Larger LowMC Keys We could reduce the feasibility of Grover
key recovery attacks against LowMC by increasing the keysize and keep-
ing the block length fixed. There would still be a chance to use Grover’s
algorithm to break the soundness of ZKB++ (unless the number of parallel
iterations was increased). However, a quick inspection reveals that the com-
putation of attacking soundness is computationally much more complex than
attacking LowMC. For example, checking whether a candidate secret key
corresponds to a given public key requires one LowMC evaluation, while
checking whether a set of cheating commitments leads to a challenge that
does not catch the cheating requires hundreds of SHA3 computations.

8.1 LowMC Parameter Selection

The choice of LowMC parameters may seem aggressive in the context of
a general-purpose block cipher. The LowMC spec recommends an addi-
tional 1.3 times the number of rounds, as a security margin against unknown
attacks. Picnic does not use these additional rounds.

The general block cipher security definition gives attackers as much power
as possible, to model the worst case scenario. Consider the CPA security
game, where attackers may choose plaintexts, query the encryption oracle
many times, and must only distinguish encryptions of chosen plaintexts in
order to break the cipher (as opposed to recovering plaintext or private keys).
This strong security definition is sensible when the primitive will be used in
a variety of (potentially unforeseen) applications.

By contrast, for the security of Picnic signatures, attackers are severely
restricted. They are given a single plaintext/ciphertext pair, for a randomly
chosen block and key, and succeed if they can recover the key. Signatures
are zero-knowledge proofs, so by definition provide no additional useful in-
formation. Thus the success criteria for the LowMC attacker in our context
is key recovery, which is more difficult than indistinguishability, while the
capabilities are more limited. In this context, the parameters we have chosen
for LowMC are arguably very conservative. We believe that reducing the
number of rounds further would maintain security, but chose to use the full
number of rounds as a security margin, given LowMC is a relatively new
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design.
Further, it is difficult to quantitatively support parameter selection in our

restricted attack model, since most research focuses on the standard security
definition. Our claim is that the complexity of a key recovery attack against
LowMC, given only a Picnic public key, is at least as difficult as attacking
the CPA security of AES (for equivalent key size, and with Picnic the block
size always matches the key size).

As we improve our understanding of LowMC security in this restricted
attack model, we expect to be able to justify reducing the number of rounds
further. The motivation is the direct impact this has on the size of Picnic
signatures. For example, at L1 with 128-bit blocksize and keysize, with 10 s-
boxes, the recommended number of rounds is 20 and Picnic-FS signatures are
about 33KB. Reducing the number of rounds to 10 would make signatures
24KB.

8.2 Hash Function Security

Picnic depends on secure hash functions when computing signatures, for
commitments and the challenge. In our security analysis we have modeled
these as random oracles. While choosing parameters we also took into ac-
count some some more specific security properties (all implied by a random
oracle).

All hash functions are implemented with SHAKE128 with 256-bit digests
at security level L1, and SHAKE256 at levels L3 and L5, with 384 and
512-bit digests, respectively.5 We expect the concrete security provided by
SHAKE for collision and preimage resistance claimed in [NIS15], extended
to quantum attacks.

For preimage resistance, in the classical case it is common to assume
O(2n) operations for standard hash functions. When considering quantum
algorithms, Grover’s algorithm can find preimages with O(2n/2) operations.
Therefore, we assume that our uses of SHAKE128 and SHAKE256 provide
this level of preimage resistance.

When considering quantum algorithms, in theory it may be possible to
find collisions using a generic algorithm of Brassard et al. [BHT98] with cost
O(2n/3) (for n-bit digests). A detailed analysis of the costs of the algorithm

5We considered using SHAKE256 at all three levels for simplicity, but L1 signing and
verify times increased by roughly 10%.
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in [BHT98] by Bernstein [Ber09] found that in practice the quantum algo-
rithm is unlikely to outperform the O(2n/2) classical algorithm. Multiple
cryptosystems have since made the assumption that standard hash functions
with n-bit digests provide n/2 bits of collision resistance against quantum at-
tacks (for examples, see papers citing [Ber09]). We make this assumption as
well, and in particular, that SHAKE128 with 256-bit digests provides 128 bits
of PQ security, SHAKE256 with 384-bits provides 192-bits and SHAKE256
with 512-bit digests provides 256-bits.

9 Advantages and Limitations

9.1 Compatibility with Existing Protocols

Here we describe some work we did to demonstrate compatibility of Picnic
signatures existing protocols protocols, TLS, and X.509. We also prototyped
protecting Picnic private key operations on a commercial hardware security
module.

9.2 TLS and X.509 Compatibility

The optimized implementation of Picnic has been integrated with the Open
Quantum Safe (OQS) project.6 Then, using a modified version of OpenSSL7

modified to use OQS, we were able to create X.509 certificates signed with
Picnic and certificates certifying Picnic public keys. These keys and cer-
tificates were then used to establish TLS 1.2 connections, where the key
exchange algorithm was one of the the LWE-Frodo or SIDH algorithms from
OQS. To our knowledge, these were the world’s first TLS connections to use
both post-quantum secure key exchange and authentication algorithms.

OpenSSL had to be patched in one place to handle larger signature sizes,
since the TLS 1.2 standard has a limit of 216−1 bytes. Signatures for the L1
parameter sets are under this limit, but for L3 and L5 we would likely need
an extension to support larger signatures. Ideally a future version of TLS
would allow larger signatures, but this is not pressing as we expect the L1
parameter set to provide sufficient security in the short and medium term.
Otherwise the integration was smooth, and performance seemed acceptable

6https://github.com/open-quantum-safe/liboqs
7https://github.com/christianpaquin/openssl
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in our limited experiments. In particular the certificate stack (X.509/ASN.1)
worked unmodified with signatures this large, something we did not expect.

We then compiled the Apache web server against our version of OpenSSL
that uses OQS. No source code modifications to Apache were necessary, we
simply had to configure the build to use the OQS version of OpenSSL. We
configured Apache to host static HTML files, that we fetched over HTTPS
with various ciphersuites and measured the latency observed by the client.
The results are given in Section 11.7.

9.3 Hardware Security Module Compatibility

Cryptographic keys are often protected by specialized hardware known as
hardware security modules (HSMs). An HSM is a tamper-resistant device
that stores keys and performs operations in response to calls to a limited
API. The primary security goal is that private keys never leave the device
(with exceptions for backup and export to other similar devices). Secondary
goals are tamper proof logging and isolation of cryptographic operations from
the rest of the system, forming a strong security boundary. If an attacker
compromises the system, they can use the key, but cannot export it for use
on another system, and ideally, cannot use it without leaving logs.

For signature keys, example operations are generating keys and signing
(digests). Upon key generation, a key identifier is output, which can be used
in sign calls to refer to the private key (that may be marked non-exportable).
An example API is PKCS #11, standardized so that applications can be
agnostic of the underlying hardware.

Many such devices are available on the market, with a range of features,
performance and security hardening. They may be small peripheral devices
similar to a smartcard, or standalone, network connected servers. Often the
firmware on these devices is fixed by the manufacturer, and prototyping new
algorithms is not possible. One device that does allow the owner to provide
some custom firmware implementing new cryptographic algorithms is the
Utimaco SecurityServer Se50 LAN V4. We added support for Picnic on this
device and describe our experience here.

On the Utimaco HSM, the owner may (i) use the provided cryptographic
modules (e.g., RSA, ECDSA, SHA-256, and RNG) in the firmware, (ii) write
their own cryptographic module that doesn’t depend on any of the provided
modules, or (iii) write a module implementing a new primitive that uses some
of the provided modules. To implement Picnic on the HSM, we experimented
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with option (iii). In particular we leveraged the RNG, ASN.1 and SHA3
modules from Utimaco, and implemented the remainder of our spec in a
custom module (named PICNIC). The PICNIC module was a port of our
reference implementation that replaced the RNG and SHA3 with calls to
the Utimaco modules. Additionally we added a module named CERT, that
uses the PICNIC and ASN1 modules to create X.509 certificates signed with
Picnic.

Whether it is desirable to create certificates on the HSM, vs. creating
them on the host application and using the HSM only to sign them is de-
batable. On one hand having more functionality in the HSM may allow CA
policy to be better enforced in the event of a compromise of the host appli-
cation. On the other hand, having more functionality in the HSM increases
its attack surface.

Since having the HSM be a limited singing oracle is a special case of having
it create certificates, in our demo we created certificates on the HSM. If this
more complicated design can be demonstrated to work, then the simpler case
should also work.

The certificates are standard X.509 v3 certificates, but with custom object
identifiers (OIDs) for Picnic keys and signatures. We confirmed that the
resulting certificates parsed correctly in existing viewers (e.g., http://www.
lapo.it/asn1js/).

Typically the sign API of an HSM accepts a hash of the data to be
signed. In contrast, the sign API of the Picnic spec accepts the (unhashed)
data to be signed, and hashes it internally. The Picnic spec allows digests
to be signed, but this is intended only for very large messages, as it requires
stronger security properties from the hash function (as with other Schnorr-
like signatures, with EdDSA being another example, see RFC 8032). In our
demo, we did not have issues sending larger amounts of data to the HSM
(we tested up to roughly 10k bytes), so we expect the sign API without
pre-hashing the message to work for most PKI scenarios.

Scenario: Post-Quantum Public-Key Infrastructure. We implemented
a small demo to test Picnic in a public-key infrastructure (PKI) scenario,
from the perspective of a certificate authority (CA).

The demo architecture has two main software components.

1. A host application, running on a Windows PC.

2. A pair of firmware modules, running on the HSM, housed in a machine
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room in a building across the street.

The application is connected to the HSM with a 100MBit connection, The
latency of a no-op call between host and HSM was about 24 ms. We also
tried running the host application from a laptop at home where latency was
about 200ms, and saw larger variance in the roundtrip times for operations
but similar mean times.

We implemented the following CA operations.

1. The HSM generates and stores new Picnic key pair, and creates a self-
signed certificate. This is the root certificate of the PKI.

2. The host application generates and stores a new Picnic end-entity (EE)
key, and then the CA issues a certificate for the EE key using the signing
key from the previous step. This is not a typical CA operation, but
was a useful stepping stone during development.

3. The host application sends a certificate signing request (CSR) to the
HSM. The CSR is created with OpenSSL, and the subject public key
is an RSA key pair. The HSM issues a cert for the RSA public key,
signed with Picnic.

For item 3, it would have been more realistic to use Picnic as the subject
public key and sign the CSR with Picnic as well, but our version of OpenSSL
(the OQS OpenSSL fork described above), did not support creating CSRs
with post-quantum algorithms yet.

Our new modules were tested in the HSM simulator first, then cross-
compiled for the HSM itself and uploaded.

Software. The software we used for this experiment is available at https://
microsoft.github.io/Picnic/ under the MIT license. Note that although
our code is MIT licensed, building it and running it (even in the simulator),
may require a license for software and tools from Utimaco.

The main effort involved was porting the reference implementation to
build with the HSM’s tools. It took between two and three person-weeks,
and this included time to get familiar with the HSM tools and development
process. Porting the Picnic library to the HSM required the following steps:

• Create an empty HSM module from the HSM’s SDK.

• Add the Picnic source and header files to the module code and update
the module’s makefile for the c6000 cross-compiler.
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• Replace the standard C libraries with the HSM provided libraries and
update calls where the names differ. Most of these changes deal with
memory management and string handling in error handling code.

• Update the RNG and SHA-3 calls in Picnic to use the HSM modules
for these functions.

• The c6000 compiler is C89 compliant and lacks features of more modern
C standards. Several small changes were required dealing mainly with
variable declarations.

• Create a new public interface for the Picnic module that more closely
resembles the other HSM’s crypto modules for consistency.

• When the code is building and functioning properly in the HSM sim-
ulator, cross-compiled the code for the HSM; sign it; load it into the
HSM and verify it is working correctly.

Performance and Discussion. The goal of this prototype was to demon-
strate that using post-quantum signatures in a PKI scenario is practical, and
that there are no major impediments to deployment even with existing com-
mercially available HSM hardware. In particular, using new types of keys,
and creating signatures with a new algorithm, having larger signatures than
traditional algorithms, and hashing the message on the HSM was possible,
and did not pose significant engineering challenges.

Some benchmarks are given in Table 5. We signed messages of three sizes,
100B, 1KB and 10KB, covering the range of message sizes we would expect
in our PKI scenario. We measured the round trip time of a call to the HSM
from the host application. There was no significant difference for the different
message sizes. For the L1-FS parameter set, the round trip time is about
half a second, and goes up to about four seconds for the L5-FS parameter
set.

For many PKI applications the number of certificates created is relatively
small, and this performance would be considered adequate. We stress that
this is an unoptimized implementation, and we don’t have a breakdown of
where the time was spent, i.e., network time vs. computation time on the
HSM. For improving computation time, using our optimized implementation
would be a first step.
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Sign 100B Sign 1KB Sign 10KB Keygen
L1-FS 0.4474 0.4477 0.4504 0.0050
L3-FS 1.6478 1.6474 1.6509 0.0069
L5-FS 4.0854 4.0841 4.0860 0.0096

Table 5: Mean round trip times in seconds for calls to an HSM creating
Picnic signatures (average of 10 calls).

10 Additional Security Properties

10.1 Side-Channel Attacks

Key Generation. Key generation requires generating a random LowMC
key and plaintext, and computing the LowMC block cipher. A fast imple-
mentation of the LowMC block cipher may use precomputed data, and have
cache-timing side channels, because the access pattern depends on the secret
key. However, there are a couple mitigations:

1. Since key generation happens infrequently, a slower LowMC imple-
mentation with a constant access pattern can be be used.

2. Even if a side-channel is present in key generation, since only one en-
cryption with a given secret key is ever computed, and known attacks
require observing multiple runs, the feasibility of a successful attack is
unlikely.

Signing. Generally speaking, since the three party protocol simulated during
signing is circuit-based, the same operations are performed, regardless of the
values on the input wires of the circuit.

Signing is not constant time in the absolute sense, but is constant time
with respect to the operations that depend on the ephemeral random values
(that in turn depend on the signing key). The timing (and signature size)
variation is due to the different operations performed depending on the (pub-
lic) bits of the challenge. The reference and optimized implementations are
constant time relative to the secret key.

The Picnic design has what seems like a natural mitigation to some side-
channel attacks, since the LowMC secret keys used by each of the players
is a randomized secret sharing of the actual key. The shares are only ever
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used once, and the randomization means that access pattern information
learned by an attacker in one parallel iteration of ZKB++ or KKW can
not be combined with information from other iterations. Since many side-
channel attacks require multiple observations (called traces), we expect this
mitigation to be effective.

Note that the derandomized variant of the sign algorithm (i.e., where the
per-signature randomness is derived from the message to be signed and the
secret key), may in fact use the same shares multiple times, when signing the
same message. Therefore if a side-channel attacker can repeatedly cause a
signature to be computed on the same message, while observing the signing
device, they may be able to collect multiple traces. The Picnic spec allows
randomized signatures, and recommends that when deriving the ephemeral
value additional entropy by included. Our implementations do not do this
at the moment, to allow for easier testing. Randomization may also help
mitigate fault attacks and differential attacks against Picnic, though we have
not yet investigated this topic (see [PSS+17, ABF+17]).

The circuit decomposition technique is similar to the side channel coun-
termeasure called masking, commonly used to protect block cipher imple-
mentations from side channel attacks. An early, well cited paper on the
topic is Goubin and Patarin [GP99]. With further study, we may find that
the ZKB++ circuit decomposition provides other types of side channel re-
sistance, for example, resistance to differential power analysis.

10.2 Security Impact of Using Weak Ephemeral Values

The specification recommends that the per-signature random values used
when computing a signature be derived from the signing key and the message,
to simplify testing and to mitigate the security impact of a defective random
number generator during signing. The goal is that signatures are secure,
provided the random number generator was secure during key generation.

Like (EC)DSA, given the random values used when computing a signa-
ture, it is possible to recover the signer’s secret key. Recall that in each
parallel iteration of ZKB++, three seed values are generated, one for each
party in the MPC protocol. In normal operation, two of these seed values
are revealed, and one is kept secret. The MPC protocol remains secure when
two of the three parties are corrupted (i.e., have their seed exposed, which
exposes their state, input and output shares). Given the entire third seed,
it is possible to recover the input share of the third player, and recover the
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secret key.
Unlike (EC)DSA, slight biases in the random number generator do not

allow the secret to be recovered from multiple signatures. This is because
the seed values are never used directly; they are always expanded with an
extendable output functions (XOF) into a random tape, and the random
tape values are used.

Regardless of how the seeds are generated, a bias in the XOF output
may lead to an attack. For example, if the XOF/PRF used to derandom-
ize (EC)DSA, EdDSA, and other ElGamal-like signatures was biased, the
ephemeral value is biased, and the lattice attacks studied in the context of
RNG biases apply [Ble00, HS01]. For Picnic, it’s not clear if this could be
exploited.

10.3 Parameter Integrity

With some cryptographic primitives if the system parameters are changed,
security is lost. For example, if an elliptic curve secret key is used on a weak
curve, the primitive may still work, but leak the secret key.

In Picnic, the parameters are small integer values like the parallel repeti-
tion count that tend to be hard-coded in software, and the LowMC matrices
and constants. Using weak parameters for LowMC could weaken the cipher
to the point where key recovery attacks are feasible. If weak parameters are
used for key generation it is possible to generate a weak keypair, however, it
will not produce signatures that verify with respect to the correct parame-
ters. So the common PKI practice of signing a certificate request with the
subject key will catch keys generated with invalid parameters.

Creating signatures with invalid parameters can also be a security risk.
Suppose a set of weak LowMC parameters were used, so that the signing
algorithm proves knowledge of the signing key k, for an new circuit E ′, i.e.,
E ′k(x) = pk, where E ′ is LowMC with invalid parameters. The signature
would be invalid in most cases, unless key generation and verification also
used E ′. However, the invalid signature contains enough information to re-
cover E ′k(x), from which it may be possible to recover k.
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11 Efficiency and Memory Usage

This section gives performance benchmarks of the Picnic signature scheme. A
single core/thread was used for all benchmarks. All times are in milliseconds.
We benchmark three implementations:

Reference. An expository C implementation. Makes no performance opti-
mizations.

Optimized-C. A somewhat optimized implementation using C only.

Optimized. An optimized implementation that uses processor-specific com-
piler intrinsics for vector instructions, e.g. SSE2 and AVX2 on Intel
x86-64 and NEON on ARM v8.

The optimized-C and optimized implementations are constant-time.

11.1 Description of the Benchmark Platforms

11.1.1 Platform A

The primary benchmarking platform, Platform A, has the following speci-
fications:

CPU. Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

Memory. 16 GB

OS. Ubuntu 18.04.1

Compiler. GCC 7.3.0

Intel Turbo Boost (dynamic frequency scaling) was disabled. For comparison,
OpenSSL version 1.0.2g reports 0.03 ms for ECDSA signing and 0.08 ms for
verification on Platform A8.

8As reported by the command openssl speed ecdsap256
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11.1.2 Platform B

The secondary benchmarking platform, Platform B (Raspberry Pi 3 Model
B), has the following specifications:

CPU. Quad Core 1.2GHz Broadcom BCM2837 64-bit CPU, ARM Cortex
A53 (ARMv8)

Memory. 1 GB RAM

OS. openSUSE Tumbleweed 20180905

Compiler. GCC 8.2.1

For comparison, OpenSSL version 1.0.2j reports 11 ms for ECDSA signing
and 40 ms for verification on Platform B.

11.1.3 Platform C

A third platform, Platform C, is an older x64-based system, has the follow-
ing specifications:

CPU. Intel(R) Xeon(R) CPU E31230 @ 3.20GHz

Memory. 8 GB

OS. Ubuntu 18.04.2 LTS

Compiler. GCC 7.3.0

For comparison, OpenSSL 1.0.2g reports 0.05 ms for ECDSA signing and
0.12 ms for ECDSA verification on Platform C.

11.2 Description of the Benchmarking Methodology

Timings results for key generation, signing and signature verification were
averaged over 1000 runs on x64 and 100 runs on ARM.

On Platforms A and C we measured CPU cycles using the perf event

performance monitoring subsystem of the Linux kernel. On Platform B CPU
cycles were measured using the hardware performance counter available via
the MRS instruction. The optimized implementations will use the GCC link
time optimization (-flto) feature by default if it is available (it was available
on all three of our benchmarking platforms).
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11.3 Benchmark Results: Sizes

In Table 6 we give the size of Picnic keys, and signatures. Note that these
are the same for all implementations.

Parameter Set Pub. key Priv. key Sig (max) Sig (avg., std. dev.)
Picnic-L1-FS 32 16 34032 32838, 107
Picnic-L1-UR 32 16 53961
Picnic2-L1-FS 32 16 13802 12359, 213
Picnic-L3-FS 48 24 76772 74134, 198
Picnic-L3-UR 48 24 121845
Picnic2-L3-FS 48 24 29750 27173, 443
Picnic-L5-FS 64 32 132856 128176, 315
Picnic-L5-UR 64 32 209506
Picnic2-L5-FS 64 32 54732 46282, 613

Table 6: Key and signature sizes (in bytes) by security level. For the FS
variants, the signature length varies based on the challenge, therefore we
give the maximum possible size, along with the average size and standard
deviation computed over 100 signatures.

11.4 Benchmark Results: Timings

In this section we describe the time required for various operations, on the
three benchmark platforms. In all tables presented in this section we give
the timing information as milliseconds and CPU cycles.

In Tables 7, 8, and 9 we present the benchmark results of all implemen-
tations on Platform A. On this platform we observe speed improvements of
the optimized implementation over the optimized-C implementation by a
factor of about 2 for Picnic and 1.5 for Picnic2. This is largely explained by
support for AVX2 vector instructions on Platform A. Currently, the Picnic2
implementation makes less use of vector instructions than in Picnic parame-
ters.

Next we give the results of the evaluation of our implementations on Plat-
form B in Tables 10, 11, and 12. Again we observe improved performance
figures for the optimized implementation, but they are not as significant as
on Platform A. GCC’s optimizer vectorizes the code on Platform B more ag-
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.05 38.31 25.18
(cycles) 182135 137915579 90638943
Picnic-L1-UR 0.04 47.93 32.36
(cycles) 160250 172560379 116494076
Picnic2-L1-FS 0.04 851.85 515.93
(cycles) 149749 3066663719 1857340295
Picnic-L3-FS 0.12 128.30 84.70
(cycles) 427625 461886045 304933466
Picnic-L3-UR 0.11 152.51 102.36
(cycles) 392130 549035979 368491954
Picnic2-L3-FS 0.10 2830.60 1538.25
(cycles) 362481 10190171124 5537696230
Picnic-L5-FS 0.21 308.96 204.53
(cycles) 746566 1112238170 736317245
Picnic-L5-UR 0.21 342.98 230.12
(cycles) 752867 1234712908 828445835
Picnic2-L5-FS 0.19 7080.01 3595.40
(cycles) 691790 25488037138 12943455830

Table 7: Benchmarks for the reference implementation, on benchmark
Platform A.
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.00 2.82 2.34
(cycles) 13102 10135801 8421534
Picnic-L1-UR 0.00 3.49 2.87
(cycles) 14007 12552077 10344492
Picnic2-L1-FS 0.01 106.91 42.64
(cycles) 22607 384870013 153501082
Picnic-L3-FS 0.01 6.74 5.66
(cycles) 25710 24256134 20363282
Picnic-L3-UR 0.01 8.64 7.12
(cycles) 27271 31109463 25615076
Picnic2-L3-FS 0.01 328.68 99.27
(cycles) 30972 1183244054 357386886
Picnic-L5-FS 0.01 12.37 10.59
(cycles) 38418 44526676 38119483
Picnic-L5-UR 0.01 15.02 12.64
(cycles) 39309 54073507 45504820
Picnic2-L5-FS 0.01 708.82 178.63
(cycles) 50681 2551768397 643079749

Table 8: Benchmarks for the optimized-C implementation, on benchmark
Platform A.
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.00 1.44 1.15
(cycles) 12391 5191118 4151833
Picnic-L1-UR 0.00 1.80 1.45
(cycles) 12613 6471898 5236920
Picnic2-L1-FS 0.01 63.87 27.93
(cycles) 21026 229947918 100546772
Picnic-L3-FS 0.00 3.37 2.79
(cycles) 14441 12145246 10055243
Picnic-L3-UR 0.00 4.28 3.55
(cycles) 15181 15410759 12764570
Picnic2-L3-FS 0.01 182.76 62.16
(cycles) 20160 657944759 223785326
Picnic-L5-FS 0.01 5.87 4.92
(cycles) 20443 21135646 17708704
Picnic-L5-UR 0.01 7.34 6.18
(cycles) 20803 26428140 22247160
Picnic2-L5-FS 0.01 374.09 107.68
(cycles) 35716 1346724260 387637876

Table 9: Benchmarks for the optimized implementation, on benchmark
Platform A.
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.41 300.48 196.38
(cycles) 491452 360581357 235657525
Picnic-L1-UR 0.38 356.09 238.06
(cycles) 457703 427311119 285668078
Picnic2-L1-FS 0.32 6143.37 3668.65
(cycles) 379151 7372048160 4402376487
Picnic-L3-FS 0.93 1030.39 681.57
(cycles) 1117910 1236464123 817889494
Picnic-L3-UR 0.94 1194.93 802.89
(cycles) 1128756 1433913576 963465350
Picnic2-L3-FS 0.84 20253.54 10594.90
(cycles) 1007441 24304251305 12713878163
Picnic-L5-FS 1.82 2600.40 1726.59
(cycles) 2180092 3120475633 2071908013
Picnic-L5-UR 1.85 2832.86 1903.62
(cycles) 2223283 3399435377 2284344835
Picnic2-L5-FS 1.72 49321.25 23866.37
(cycles) 2065770 59185502655 28639647451

Table 10: Benchmarks for the reference implementation, on benchmark
Platform B.

gressively for optimized-C implementation and thus the performance gains
of the optimized implementation are smaller.

Finally, Tables 13, 14 and 15 show benchmarks for Platform C. Here,
the optimized-C and optimized implementations are very close, since this
platform does have AVX2 support (and our implementation does not have
an optimized implementation using only AVX and SSE).

11.5 Memory Requirements

In this section we give the memory requirements for our implementations.
The memory requirements of an implementation are assumed to be the same
for all platforms.

We note that at this time, our implementations of the Picnic2 parameter
sets have not been optimized to reduce memory consumption.
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.04 16.50 14.18
(cycles) 517030 19797395 17018574
Picnic-L1-UR 0.04 19.85 16.94
(cycles) 44960 23817176 20322239
Picnic2-L1-FS 0.04 691.72 238.06
(cycles) 44855 830065732 285669555
Picnic-L3-FS 0.08 48.52 43.11
(cycles) 90591 58219483 51728618
Picnic-L3-UR 0.08 58.01 50.51
(cycles) 90630 69607278 60609890
Picnic2-L3-FS 0.07 2150.92 562.78
(cycles) 84626 2581108219 675330804
Picnic-L5-FS 0.10 91.25 83.12
(cycles) 119775 109497015 99741418
Picnic-L5-UR 0.11 104.50 94.05
(cycles) 135453 125396028 112861188
Picnic2-L5-FS 0.12 4714.90 1015.69
(cycles) 139243 5657876778 1218823201

Table 11: Benchmarks for the optimized-C implementation, on benchmark
Platform B.

91



Parameters Keygen Sign Verify
Picnic-L1-FS 0.04 15.73 13.32
(cycles) 47742 18870632 15981838
Picnic-L1-UR 0.04 18.11 15.24
(cycles) 42767 21730459 18284627
Picnic2-L1-FS 0.03 660.14 236.05
(cycles) 40827 792170348 283255251
Picnic-L3-FS 0.07 45.24 40.22
(cycles) 86515 54290201 48260659
Picnic-L3-UR 0.07 54.61 47.66
(cycles) 87774 65536464 57190412
Picnic2-L3-FS 0.07 2041.81 560.53
(cycles) 87578 2450174097 672630661
Picnic-L5-FS 0.09 79.44 71.37
(cycles) 110962 95331677 85641892.
Picnic-L5-UR 0.12 98.39 87.60
(cycles) 142196 118071213 105117874
Picnic2-L5-FS 0.12 4446.97 1001.88
(cycles) 141311 5336358266 1202255981

Table 12: Benchmarks for the optimized implementation, on benchmark
Platform B.
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.07 54.18 35.57
(cycles) 2267156 1733910732 113827369
Picnic-L1-UR 0.06 65.35 43.85
(cycles) 2011758 209108687 140323212
Picnic2-L1-FS 0.06 1380.24 906.94
(cycles) 1900840 4416763062 2902196149
Picnic-L3-FS 0.17 186.24 122.99
(cycles) 544439 595962163 393554832
Picnic-L3-UR 0.16 219.66 148.08
(cycles) 506233 702919158 473848875
Picnic2-L3-FS 0.15 4376.62 2545.02
(cycles) 488005 14005170619 8144070561
Picnic-L5-FS 0.31 467.45 309.81
(cycles) 1004010 1495844637 991399622
Picnic-L5-UR 0.32 514.08 344.88
(cycles) 1012476 1645054261 1103615594
Picnic2-L5-FS 0.31 10509.07 5713.30
(cycles) 982634 33629020802 18282558758

Table 13: Benchmarks for the reference implementation, on benchmark
Platform C.
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.01 4.41 3.56
(cycles) 17373 14118186 11400107
Picnic-L1-UR 0.01 5.66 4.53
(cycles) 17793 18102403 14487939
Picnic2-L1-FS 0.01 180.00 88.63
(cycles) 25635 575998506 283601036
Picnic-L3-FS 0.01 10.88 9.29
(cycles) 33241 34829503 29730907
Picnic-L3-UR 0.01 14.42 12.01
(cycles) 33144 46138285 38442986
Picnic2-L3-FS 0.01 521.31 196.81
(cycles) 37724 1668205946 629804850
Picnic-L5-FS 0.01 19.52 16.81
(cycles) 45311 62457936 53796359
Picnic-L5-UR 0.01 24.48 21.07
(cycles) 45498 78350160 67436627
Picnic2-L5-FS 0.02 1095.25 344.55
(cycles) 58268 3504807600 1102558535

Table 14: Benchmarks for the optimized-C implementation, on benchmark
Platform C.
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Parameters Keygen Sign Verify
Picnic-L1-FS 0.01 4.20 3.40
(cycles) 17676 13435455 10886965
Picnic-L1-UR 0.01 5.48 4.37
(cycles) 17781 17539617 13976186
Picnic2-L1-FS 0.01 153.99 86.40
(cycles) 24729 492772673 276474753
Picnic-L3-FS 0.01 10.17 8.36
(cycles) 30355 32532479 26762749
Picnic-L3-UR 0.01 13.70 11.10
(cycles) 30785 43827423 35505712
Picnic2-L3-FS 0.01 420.59 189.56
(cycles) 36181 1345886906 606593762
Picnic-L5-FS 0.01 17.67 14.67
(cycles) 39579 56541841 46933599
Picnic-L5-UR 0.01 22.64 18.97
(cycles) 39663 72449921 60707627
Picnic2-L5-FS 0.02 847.51 327.60
(cycles) 53246 2712044663 1048318112

Table 15: Benchmarks for the optimized implementation, on benchmark
Platform C.

95



Parameter set Sign Verify
Picnic-L1-FS 190,148 132,247
Picnic-L1-UR 268,080 239,367
Picnic2-L1-FS 7,916,440 6,649,248
Picnic-L3-FS 380,380 290,507
Picnic-L3-UR 552,752 492,779
Picnic2-L3-UR 19,060,800 18,610,464
Picnic-L5-FS 632,544 468,162
Picnic-L5-UR 984,696 733,426
Picnic2-L5-UR 33,937,992 32,194,200

Table 16: Peak memory usage (stack and heap combined) of reference imple-
mentation, in bytes. This excludes memory used for the LowMC constants,
which was stored as static data in program binary (see §11.6).

11.5.1 Reference Implementation Detailed Memory Usage

Memory usage was benchmarked using the Valgrind9 tool Massif. Massif was
run on an example program, that generates a key pair, creates a signature,
then verifies it, using the API in picnic.h. Then the tool massifcherrypick10

was used to determine the peak memory usage of specific functions.
Massif was invoked with the command:

valgrind --tool=massif --stacks=yes ./example

When creating a signature, peak memory usage ranged from about 190K
to 33M bytes, as shown in Table 16, while verification ranged from about
132K to 32M bytes.
Massif measures memory usage by sampling so there is some variability in
these measurements. The variance was low so these are a reasonable estimate,
since we’re only interested in peak usage.

11.5.2 Optimized Implementation Detailed Memory Usage

With the same methodology as used for the reference implementation, peak
memory usage data was generated with valgrind. The data is presented in
Table 17.

9http://valgrind.org/docs/manual/ms-manual.html
10https://github.com/lnishan/massif-cherrypick
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Parameter set Sign Verify
Picnic-L1-FS 136,912 84,352
Picnic-L1-UR 200,203 131,218
Picnic2-L1-FS 8,253,952 7,576,712
Picnic-L3-FS 284,632 163,560
Picnic-L3-UR 427,747 269,498
Picnic2-L3-FS 19,840,560 10,170,216
Picnic-L5-FS 463,016 259,784
Picnic-L5-UR 706,982 441,116
Picnic2-L5-FS 34,522,576 34,058,656

Table 17: Peak memory usage (stack and heap combined) of the optimized
implementation, in bytes. This excludes memory used for the LowMC con-
stants, which was stored as static data in program binary (see §11.6).

11.6 Size of Precomputed Constants and Data

Size of LowMC Constants. The LowMC block cipher uses a large
amount of constant data when compared to traditional block ciphers. This
data may be computed on-the-fly as needed, or precomputed and stored in
advance. All our implementations compile this data into the binary.

We did not investigate the cost of re-computing the LowMC constants at
runtime. The output of the Grain LSFR is used as a self-shrinking generator
to create the constants.

The optimized-C and optimized implementations use an alternative
but equivalent representation of LowMC. They implement an optimized lin-
ear layer [DKP+19], which allows to greatly reduced the size of the LowMC
constants and also gives a significant performance boost. The sizes of those
matrices are are given in Tables 19 and 19 in the Key Matrices and Lin-
ear Matrices columns. The total reduction in size of precomputed constants
ranges from 2.4 to 4.9 times.

11.7 TLS Performance

As described in Section 9.1 we used OQS, OpenSSL and Apache to bench-
mark Picnic and other post-quantum cryptography in the context of HTTPS.
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Params Linear Matrices Round Constants Key Matrices Total
L1 40,960 320 43,008 84,288
L3 138,240 720 142,848 281,808
L5 311,296 1,216 319,488 632,000

Table 18: Size of constant data (in bytes) required by LowMC as used by
the reference implementation, with the parameters used in Picnic at security
levels L1, L3 and L5.

Params Linear Matrices Round Constants Key Matrices Total
L1 20,288 128 14,336 34,752
L3 61,824 160 30,720 92,704
L5 79,232 192 49,152 128,576

Table 19: Size of constant data (in bytes) required by LowMC as used
by the optimized implementations, with the parameters used in Picnic at
security levels L1, L3 and L5.

We set up a web server in Microsoft Azure (a standard D2s v3 instance11),
and hosted HTML files of size 45B, 1KB, 10KB, 100KB and 1MB. The cipher-
suites we benchmarked were ECDHE RSA (as a baseline), LWEFRODO RSA,
LWEFRODO PICNIC, SIDH RSA and SIDH PICNIC. The key exchange al-
gorithms LWEFRODO and SIDH are post-quantum candidates: security of
LWEFRODO is based on the lattice problem learning with errors and secu-
rity of SIDH is based on the supersingular isogeny Diffie-Hellman problem.
Details of these schemes are available on the OQS project website, and the
corresponding submissions to the NIST PQ Project. Note that we used the
versions of SIDH and Frodo that were in OQS at the time, and these were
probably behind the versions submitted to NIST. This should not affect our
conclusions regarding the performance of Picnic signatures in TLS.

All ciphersuites used AES256-GCM-SHA384 for the symmetric-key prim-
itives (e.g., ECDHE-RSA-AES256-GCM-SHA384, LWEFRODO-PICNIC--
AES256-GCM-SHA384, etc.). All instances of Picnic used the L1-FS pa-
rameter set. The server certificate was signed with Picnic, and had a Picnic
subject public key. This doubles the bandwidth increase due to Picnic, from
about 32KB to 64KB. However, in actual deployment we expect the CA sig-

11The D2s v3 instance has 2 vcpus, 8 GB memory. The operating system we used was
16.04.3 LTS (GNU/Linux 4.11.0-1015-azure x86 64).
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nature to be created with a stateful hash-based signature scheme (like LMS
or XMSS), and to be 1-5KB in size. Therefore, the performance given here
is arguably pessimistic. However, support for stateful hash-based signatures
was not present in OQS, and adding support for them with the time and
resources available to us was not possible.

Our experiment used two client machines. The first was a Lenovo Thinkpad
x270 connected over WiFi in a home with cable internet service. This is la-
beled “slow network” in Table 20. The second was a Dell Poweredge R710
server on the Microsoft campus, labeled “fast network” in Table 20. The
fetch times of the faster machine is about 2-3 times as fast as the slower one.
Both were running Ubuntu 17.10.

We then ran the benchmarking program http load12 (also compiled with
OQS-OpenSSL), with the parameters -parallel 1 -seconds 60. This uses
a single thread to fetch a URL repeatedly for approximately 60 seconds. We
then computed the mean fetch time as the total time taken divided by the
number of fetches completed.

The results of Table 20 show that for large pages, all ciphersuites have
similar performance. This can be explained by (i) the cost of network com-
munication dominating the CPU time and (ii) the bandwidth overhead of the
ciphersuites becomes negligible for large pages. For smaller pages, the addi-
tional bandwidth cost of Picnic signatures is apparent. For example, for the
45B page, the LWEFRODO-PICNIC suite is 1.7X slower than LWEFRODO-
RSA on the slower network, while on the faster network it is 1.4x slower. For
every network speed there will be a page size where the cost of Picnic vs.
RSA does not affect performance. For our client on the slower network this
is somewhere between 100K and 1M, and for our client on the faster network
it is somewhere between 10K and 100K.

Limitations. This provides only a limited understanding of how changing
from RSA signatures to Picnic signatures would impact web and TLS perfor-
mance from the client perspective. The benchmarks here could be improved
by fetching real web sites, which contain a mix of small and large objects,
hosted on a set of servers, and the TLS context is re-used for multiple re-
quests. We also only considered the case of an idle server, able to dedicate
all of its resources to serving a client request. As costs may increase on the

12ACME Labs, http://www.acme.com/software/http_load/, we used version
09Mar2016, and modified it to use a newer version of OpenSSL, we had to change the
way OpenSSL was initialized.
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Ciphersuite Page Size Mean fetch time
Slow network

Mean fetch time
Fast network

ECDHE-RSA 45B 0.470 0.299
1K 0.526 0.299
10K 0.527 0.300
100K 1.226 0.452
1M 3.001 0.750

LWEFRODO-RSA 45B 0.578 0.366
1K 0.660 0.365
10K 0.645 0.369
100K 1.335 0.518
1M 2.874 0.741

LWEFRODO-PICNIC 45B 0.984 0.513
1K 1.118 0.513
10K 1.158 0.519
100K 1.733 0.594
1M 3.337 0.764

SIDH-RSA 45B 0.655 0.385
1K 0.698 0.385
10K 0.729 0.387
100K 1.370 0.541
1M 3.758 0.836

SIDH-PICNIC 45B 1.084 0.523
1K 1.106 0.524
10K 1.093 0.528
100K 1.738 0.600
1M 3.158 0.802

Table 20: Time in seconds to fetch pages of varying size over HTTPS when
different ciphersuites are used for TLS. The Picnic L1-FS parameter set is
used. The symmetric algorithms of each ciphersuite were the same, AES256-
GCM-SHA384.
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server (bandwidth, memory and CPU), it would also be instructive to mea-
sure these, for example, by concurrently making many requests on a server
and measuring requests per second for the different ciphersuites.

Picnic implementation. These experiments were done with the opti-
mized Picnic implementation in the fall of 2017, and the experiment was not
repeated with the latest implementation for version 2.0 of this document, or
with the Picnic2 parameter sets.
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108


	Introduction
	The Picnic Design Team
	Acknowledgments

	Background
	Commitments
	Zero-Knowledge Proofs and -Protocols
	Non-Interactive Zero-Knowledge Proofs of Knowledge
	Signature Schemes
	Fiat-Shamir Transform
	Unruh Transform
	(2,3)-Decomposition of Circuits
	ZKB++
	KKW
	The MPC Protocol
	The Proof Protocol

	LowMC

	The Picnic Signature Schemes
	Efficient Instantiation of Unruh's Transform
	Seed Generation
	Random Tapes
	Challenge Generation
	Function G

	Choice of Parameters
	Choice of LowMC and SHAKE 
	LowMC Parameters
	Number of Parallel Repetitions
	Alternative Parameters

	Formal Security Analysis
	Security Analysis of ZKB++
	Security Analysis of Picnic-FS
	Security Analysis of Picnic-UR
	Strong Unforgeability of Picnic-FS and Picnic-UR

	Formal Security Analysis of Picnic2
	Proof of Security of the Underlying MPC Protocol
	Security Proof of the Signature Scheme
	Tree-Based Optimizations
	Seed Tree
	Use in Picnic2

	QROM Security
	Computationally Unique Responses

	Analysis with Respect to Known Attacks
	Usage and Security Margin of LowMC
	Attacks in the Single-User Setting
	Attacks in the Multi-User Setting
	Multi-Target Attacks

	Expected Security Strength
	LowMC Parameter Selection
	Hash Function Security

	Advantages and Limitations
	Compatibility with Existing Protocols
	TLS and X.509 Compatibility
	Hardware Security Module Compatibility

	Additional Security Properties
	Side-Channel Attacks
	Security Impact of Using Weak Ephemeral Values
	Parameter Integrity

	Efficiency and Memory Usage
	Description of the Benchmark Platforms
	Platform A
	Platform B
	Platform C

	Description of the Benchmarking Methodology
	Benchmark Results: Sizes
	Benchmark Results: Timings
	Memory Requirements
	Reference Implementation Detailed Memory Usage
	Optimized Implementation Detailed Memory Usage

	Size of Precomputed Constants and Data
	TLS Performance

	Change History

