// Copyright(c) Microsoft Corporation.All rights reserved. // Licensed under the MIT License. // #include #include #include #include #include #include const OrtApi* g_ort = OrtGetApiBase()->GetApi(ORT_API_VERSION); //***************************************************************************** // helper function to check for status void CheckStatus(OrtStatus* status) { if (status != NULL) { const char* msg = g_ort->GetErrorMessage(status); fprintf(stderr, "%s\n", msg); g_ort->ReleaseStatus(status); exit(1); } } int main(int argc, char* argv[]) { //************************************************************************* // initialize enviroment...one enviroment per process // enviroment maintains thread pools and other state info OrtEnv* env; CheckStatus(g_ort->CreateEnv(ORT_LOGGING_LEVEL_WARNING, "test", &env)); // initialize session options if needed OrtSessionOptions* session_options; CheckStatus(g_ort->CreateSessionOptions(&session_options)); g_ort->SetIntraOpNumThreads(session_options, 1); // Sets graph optimization level g_ort->SetSessionGraphOptimizationLevel(session_options, ORT_ENABLE_BASIC); // Optionally add more execution providers via session_options // E.g. for CUDA include cuda_provider_factory.h and uncomment the following line: // OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0); //************************************************************************* // create session and load model into memory // using squeezenet version 1.3 // URL = https://github.com/onnx/models/tree/master/squeezenet OrtSession* session; #ifdef _WIN32 const wchar_t* model_path = L"squeezenet.onnx"; #else const char* model_path = "squeezenet.onnx"; #endif printf("Using Onnxruntime C API\n"); CheckStatus(g_ort->CreateSession(env, model_path, session_options, &session)); //************************************************************************* // print model input layer (node names, types, shape etc.) size_t num_input_nodes; OrtStatus* status; OrtAllocator* allocator; CheckStatus(g_ort->GetAllocatorWithDefaultOptions(&allocator)); // print number of model input nodes status = g_ort->SessionGetInputCount(session, &num_input_nodes); std::vector input_node_names(num_input_nodes); std::vector input_node_dims; // simplify... this model has only 1 input node {1, 3, 224, 224}. // Otherwise need vector> printf("Number of inputs = %zu\n", num_input_nodes); // iterate over all input nodes for (size_t i = 0; i < num_input_nodes; i++) { // print input node names char* input_name; status = g_ort->SessionGetInputName(session, i, allocator, &input_name); printf("Input %zu : name=%s\n", i, input_name); input_node_names[i] = input_name; // print input node types OrtTypeInfo* typeinfo; status = g_ort->SessionGetInputTypeInfo(session, i, &typeinfo); const OrtTensorTypeAndShapeInfo* tensor_info; CheckStatus(g_ort->CastTypeInfoToTensorInfo(typeinfo, &tensor_info)); ONNXTensorElementDataType type; CheckStatus(g_ort->GetTensorElementType(tensor_info, &type)); printf("Input %zu : type=%d\n", i, type); // print input shapes/dims size_t num_dims; CheckStatus(g_ort->GetDimensionsCount(tensor_info, &num_dims)); printf("Input %zu : num_dims=%zu\n", i, num_dims); input_node_dims.resize(num_dims); g_ort->GetDimensions(tensor_info, (int64_t*)input_node_dims.data(), num_dims); for (size_t j = 0; j < num_dims; j++) printf("Input %zu : dim %zu=%jd\n", i, j, input_node_dims[j]); g_ort->ReleaseTypeInfo(typeinfo); } // Results should be... // Number of inputs = 1 // Input 0 : name = data_0 // Input 0 : type = 1 // Input 0 : num_dims = 4 // Input 0 : dim 0 = 1 // Input 0 : dim 1 = 3 // Input 0 : dim 2 = 224 // Input 0 : dim 3 = 224 //************************************************************************* // Similar operations to get output node information. // Use OrtSessionGetOutputCount(), OrtSessionGetOutputName() // OrtSessionGetOutputTypeInfo() as shown above. //************************************************************************* // Score the model using sample data, and inspect values size_t input_tensor_size = 224 * 224 * 3; // simplify ... using known dim values to calculate size // use OrtGetTensorShapeElementCount() to get official size! std::vector input_tensor_values(input_tensor_size); std::vector output_node_names = {"softmaxout_1"}; // initialize input data with values in [0.0, 1.0] for (size_t i = 0; i < input_tensor_size; i++) input_tensor_values[i] = (float)i / (input_tensor_size + 1); // create input tensor object from data values OrtMemoryInfo* memory_info; CheckStatus(g_ort->CreateCpuMemoryInfo(OrtArenaAllocator, OrtMemTypeDefault, &memory_info)); OrtValue* input_tensor = NULL; CheckStatus(g_ort->CreateTensorWithDataAsOrtValue(memory_info, input_tensor_values.data(), input_tensor_size * sizeof(float), input_node_dims.data(), 4, ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, &input_tensor)); int is_tensor; CheckStatus(g_ort->IsTensor(input_tensor, &is_tensor)); assert(is_tensor); g_ort->ReleaseMemoryInfo(memory_info); // score model & input tensor, get back output tensor OrtValue* output_tensor = NULL; CheckStatus(g_ort->Run(session, NULL, input_node_names.data(), (const OrtValue* const*)&input_tensor, 1, output_node_names.data(), 1, &output_tensor)); CheckStatus(g_ort->IsTensor(output_tensor, &is_tensor)); assert(is_tensor); // Get pointer to output tensor float values float* floatarr; CheckStatus(g_ort->GetTensorMutableData(output_tensor, (void**)&floatarr)); assert(std::abs(floatarr[0] - 0.000045) < 1e-6); // score the model, and print scores for first 5 classes for (int i = 0; i < 5; i++) printf("Score for class [%d] = %f\n", i, floatarr[i]); // Results should be as below... // Score for class[0] = 0.000045 // Score for class[1] = 0.003846 // Score for class[2] = 0.000125 // Score for class[3] = 0.001180 // Score for class[4] = 0.001317 g_ort->ReleaseValue(output_tensor); g_ort->ReleaseValue(input_tensor); g_ort->ReleaseSession(session); g_ort->ReleaseSessionOptions(session_options); g_ort->ReleaseEnv(env); printf("Done!\n"); return 0; }