{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Setup\n", "\n", "Import Semantic Kernel SDK from pypi.org" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Note: if using a virtual environment, do not run this cell\n", "%pip install -U semantic-kernel\n", "from semantic_kernel import __version__\n", "\n", "__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Initial configuration for the notebook to run properly." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Make sure paths are correct for the imports\n", "\n", "import os\n", "import sys\n", "\n", "notebook_dir = os.path.abspath(\"\")\n", "parent_dir = os.path.dirname(notebook_dir)\n", "grandparent_dir = os.path.dirname(parent_dir)\n", "\n", "\n", "sys.path.append(grandparent_dir)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Configuring the Kernel\n", "\n", "Let's get started with the necessary configuration to run Semantic Kernel. For Notebooks, we require a `.env` file with the proper settings for the model you use. Create a new file named `.env` and place it in this directory. Copy the contents of the `.env.example` file from this directory and paste it into the `.env` file that you just created.\n", "\n", "**NOTE: Please make sure to include `GLOBAL_LLM_SERVICE` set to either OpenAI, AzureOpenAI, or HuggingFace in your .env file. If this setting is not included, the Service will default to AzureOpenAI.**\n", "\n", "#### Option 1: using OpenAI\n", "\n", "Add your [OpenAI Key](https://openai.com/product/) key to your `.env` file (org Id only if you have multiple orgs):\n", "\n", "```\n", "GLOBAL_LLM_SERVICE=\"OpenAI\"\n", "OPENAI_API_KEY=\"sk-...\"\n", "OPENAI_ORG_ID=\"\"\n", "OPENAI_CHAT_MODEL_ID=\"\"\n", "OPENAI_TEXT_MODEL_ID=\"\"\n", "OPENAI_EMBEDDING_MODEL_ID=\"\"\n", "```\n", "The names should match the names used in the `.env` file, as shown above.\n", "\n", "#### Option 2: using Azure OpenAI\n", "\n", "Add your [Azure Open AI Service key](https://learn.microsoft.com/azure/cognitive-services/openai/quickstart?pivots=programming-language-studio) settings to the `.env` file in the same folder:\n", "\n", "```\n", "GLOBAL_LLM_SERVICE=\"AzureOpenAI\"\n", "AZURE_OPENAI_API_KEY=\"...\"\n", "AZURE_OPENAI_ENDPOINT=\"https://...\"\n", "AZURE_OPENAI_CHAT_DEPLOYMENT_NAME=\"...\"\n", "AZURE_OPENAI_TEXT_DEPLOYMENT_NAME=\"...\"\n", "AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME=\"...\"\n", "AZURE_OPENAI_API_VERSION=\"...\"\n", "```\n", "The names should match the names used in the `.env` file, as shown above.\n", "\n", "For more advanced configuration, please follow the steps outlined in the [setup guide](./CONFIGURING_THE_KERNEL.md)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define our kernel for this example." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from semantic_kernel import Kernel\n", "\n", "kernel = Kernel()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will load our settings and get the LLM service to use for the notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from services import Service\n", "\n", "from samples.service_settings import ServiceSettings\n", "\n", "service_settings = ServiceSettings.create()\n", "\n", "# Select a service to use for this notebook (available services: OpenAI, AzureOpenAI, HuggingFace)\n", "selectedService = (\n", " Service.AzureOpenAI\n", " if service_settings.global_llm_service is None\n", " else Service(service_settings.global_llm_service.lower())\n", ")\n", "print(f\"Using service type: {selectedService}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now configure our Chat Completion service on the kernel." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Remove all services so that this cell can be re-run without restarting the kernel\n", "kernel.remove_all_services()\n", "\n", "service_id = None\n", "if selectedService == Service.OpenAI:\n", " from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion\n", "\n", " service_id = \"default\"\n", " kernel.add_service(\n", " OpenAIChatCompletion(\n", " service_id=service_id,\n", " ),\n", " )\n", "elif selectedService == Service.AzureOpenAI:\n", " from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion\n", "\n", " service_id = \"default\"\n", " kernel.add_service(\n", " AzureChatCompletion(\n", " service_id=service_id,\n", " ),\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Run a Semantic Function\n", "\n", "**Step 3**: Load a Plugin and run a semantic function:\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plugin = kernel.add_plugin(parent_directory=\"../../../prompt_template_samples/\", plugin_name=\"FunPlugin\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from semantic_kernel.functions import KernelArguments\n", "\n", "joke_function = plugin[\"Joke\"]\n", "\n", "joke = await kernel.invoke(\n", " joke_function,\n", " KernelArguments(input=\"time travel to dinosaur age\", style=\"super silly\"),\n", ")\n", "print(joke)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }