{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Setup\n",
    "\n",
    "Import Semantic Kernel SDK from pypi.org"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Note: if using a virtual environment, do not run this cell\n",
    "%pip install -U semantic-kernel\n",
    "from semantic_kernel import __version__\n",
    "\n",
    "__version__"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Initial configuration for the notebook to run properly."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Make sure paths are correct for the imports\n",
    "\n",
    "import os\n",
    "import sys\n",
    "\n",
    "notebook_dir = os.path.abspath(\"\")\n",
    "parent_dir = os.path.dirname(notebook_dir)\n",
    "grandparent_dir = os.path.dirname(parent_dir)\n",
    "\n",
    "\n",
    "sys.path.append(grandparent_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Configuring the Kernel\n",
    "\n",
    "Let's get started with the necessary configuration to run Semantic Kernel. For Notebooks, we require a `.env` file with the proper settings for the model you use. Create a new file named `.env` and place it in this directory. Copy the contents of the `.env.example` file from this directory and paste it into the `.env` file that you just created.\n",
    "\n",
    "**NOTE: Please make sure to include `GLOBAL_LLM_SERVICE` set to either OpenAI, AzureOpenAI, or HuggingFace in your .env file. If this setting is not included, the Service will default to AzureOpenAI.**\n",
    "\n",
    "#### Option 1: using OpenAI\n",
    "\n",
    "Add your [OpenAI Key](https://openai.com/product/) key to your `.env` file (org Id only if you have multiple orgs):\n",
    "\n",
    "```\n",
    "GLOBAL_LLM_SERVICE=\"OpenAI\"\n",
    "OPENAI_API_KEY=\"sk-...\"\n",
    "OPENAI_ORG_ID=\"\"\n",
    "OPENAI_CHAT_MODEL_ID=\"\"\n",
    "OPENAI_TEXT_MODEL_ID=\"\"\n",
    "OPENAI_EMBEDDING_MODEL_ID=\"\"\n",
    "```\n",
    "The names should match the names used in the `.env` file, as shown above.\n",
    "\n",
    "#### Option 2: using Azure OpenAI\n",
    "\n",
    "Add your [Azure Open AI Service key](https://learn.microsoft.com/azure/cognitive-services/openai/quickstart?pivots=programming-language-studio) settings to the `.env` file in the same folder:\n",
    "\n",
    "```\n",
    "GLOBAL_LLM_SERVICE=\"AzureOpenAI\"\n",
    "AZURE_OPENAI_API_KEY=\"...\"\n",
    "AZURE_OPENAI_ENDPOINT=\"https://...\"\n",
    "AZURE_OPENAI_CHAT_DEPLOYMENT_NAME=\"...\"\n",
    "AZURE_OPENAI_TEXT_DEPLOYMENT_NAME=\"...\"\n",
    "AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME=\"...\"\n",
    "AZURE_OPENAI_API_VERSION=\"...\"\n",
    "```\n",
    "The names should match the names used in the `.env` file, as shown above.\n",
    "\n",
    "For more advanced configuration, please follow the steps outlined in the [setup guide](./CONFIGURING_THE_KERNEL.md)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's define our kernel for this example."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from semantic_kernel import Kernel\n",
    "\n",
    "kernel = Kernel()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will load our settings and get the LLM service to use for the notebook."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from services import Service\n",
    "\n",
    "from samples.service_settings import ServiceSettings\n",
    "\n",
    "service_settings = ServiceSettings.create()\n",
    "\n",
    "# Select a service to use for this notebook (available services: OpenAI, AzureOpenAI, HuggingFace)\n",
    "selectedService = (\n",
    "    Service.AzureOpenAI\n",
    "    if service_settings.global_llm_service is None\n",
    "    else Service(service_settings.global_llm_service.lower())\n",
    ")\n",
    "print(f\"Using service type: {selectedService}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We now configure our Chat Completion service on the kernel."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Remove all services so that this cell can be re-run without restarting the kernel\n",
    "kernel.remove_all_services()\n",
    "\n",
    "service_id = None\n",
    "if selectedService == Service.OpenAI:\n",
    "    from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion\n",
    "\n",
    "    service_id = \"default\"\n",
    "    kernel.add_service(\n",
    "        OpenAIChatCompletion(\n",
    "            service_id=service_id,\n",
    "        ),\n",
    "    )\n",
    "elif selectedService == Service.AzureOpenAI:\n",
    "    from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion\n",
    "\n",
    "    service_id = \"default\"\n",
    "    kernel.add_service(\n",
    "        AzureChatCompletion(\n",
    "            service_id=service_id,\n",
    "        ),\n",
    "    )"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Run a Semantic Function\n",
    "\n",
    "**Step 3**: Load a Plugin and run a semantic function:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plugin = kernel.add_plugin(parent_directory=\"../../../prompt_template_samples/\", plugin_name=\"FunPlugin\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from semantic_kernel.functions import KernelArguments\n",
    "\n",
    "joke_function = plugin[\"Joke\"]\n",
    "\n",
    "joke = await kernel.invoke(\n",
    "    joke_function,\n",
    "    KernelArguments(input=\"time travel to dinosaur age\", style=\"super silly\"),\n",
    ")\n",
    "print(joke)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}