{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Load UCI census and convert to json for sending to the visualization\n", "import pandas as pd\n", "features = [\"Age\", \"Workclass\", \"fnlwgt\", \"Education\", \"Education-Num\", \"Marital Status\",\n", " \"Occupation\", \"Relationship\", \"Race\", \"Sex\", \"Capital Gain\", \"Capital Loss\",\n", " \"Hours per week\", \"Country\", \"Target\"]\n", "\n", "# Load dataframe from external CSV and add header information\n", "df = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test\",\n", " names=features, # name features for header row\n", " sep=r'\\s*,\\s*', # separator used in this dataset\n", " engine='python',\n", " skiprows=[0], # skip first row without data \n", " na_values=\"?\") # add ? where data is missing\n", "\n", "# set the sprite_size based on the number of records in dataset,\n", "# larger datasets can crash the browser if the size is too large (>50000)\n", "sprite_size = 32 if len(df.index)>50000 else 64\n", "\n", "jsonstr = df.to_json(orient='records')\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "# Display the Dive visualization for this data\n", "from IPython.core.display import display, HTML\n", "\n", "# Create Facets template \n", "HTML_TEMPLATE = \"\"\"\n", " \n", " \"\"\"\n", "\n", "# Load the json dataset and the sprite_size into the template\n", "html = HTML_TEMPLATE.format(jsonstr=jsonstr, sprite_size=sprite_size)\n", "\n", "# Display the template\n", "display(HTML(html))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }