@article{ WOS:000774014800008, Author = {de Lima Araujo, Henrique Cesar and Martins, Fellipe Silva and Philippi Cortese, Tatiana Tucunduva and Locosselli, Giuliano Maselli}, Title = {Artificial intelligence in urban forestry-A systematic review}, Journal = {URBAN FORESTRY \& URBAN GREENING}, Year = {2021}, Volume = {66}, Month = {DEC}, Abstract = {Environmental quality and the citizens' well-being largely depend on the urban forests. But managing this natural capital is challenging for its biological complexity and interactions with other environmental, social, and economic aspects of the cities. In line with the current digital revolution with the rise of Smart Cities, the use of Artificial Intelligence (AI) is becoming more common, including in urban forestry. In this systematic review, we evaluated 67 studies on the interplay between AI and urban forestry surveyed on Science Direct and Scopus to provide an overview of the state of the art and identify new research avenues. The sample includes studies in 23 countries and 85 cities, including 5 megacities, comprising the remote assessment of canopy cover and species distribution; ecosystem services assessment; management practices; and socioeconomic aspects of urban forestry. Most studies focused on extant urban forests, with few examples evaluating temporal trends, and only one focused on future scenarios despite the predictive potential of AI. A total of 22 AI methods were employed in these studies. Only half of them point to clear advantages of the chosen methods, such as robustness against missing data, overfitting, collinearity, non-linearity, non-normality, the combination of discrete and continuous variables, and higher accuracy. The choice of these methods depends on the various combinations of aim, timescale, data type, and data source. The application of AI in urban forestry is in full growth and will support decision making to improve livability in the cities.}, Publisher = {ELSEVIER GMBH}, Address = {HACKERBRUCKE 6, 80335 MUNICH, GERMANY}, Type = {Review}, Language = {English}, Affiliation = {Locosselli, GM (Corresponding Author), Inst Bot SIMA SP, Cluster Ecol, Sao Paulo, Brazil. de Lima Araujo, Henrique Cesar, Univ Fed Sao Paulo, Sao Paulo, Brazil. Martins, Fellipe Silva, Nove de Julho Univ UNINOVE, IT \& Knowledge Management Grad Sch, Sao Paulo, Brazil. Philippi Cortese, Tatiana Tucunduva, Nove de Julho Univ UNINOVE, Smart \& Sustainable Cities Grad Sch, Sao Paulo, Brazil. Philippi Cortese, Tatiana Tucunduva, Univ Sao Paulo, Inst Adv Studies, Sao Paulo, Brazil. Locosselli, Giuliano Maselli, Inst Bot SIMA SP, Cluster Ecol, Sao Paulo, Brazil.}, DOI = {10.1016/j.ufug.2021.127410}, Article-Number = {127410}, ISSN = {1618-8667}, EISSN = {1610-8167}, Keywords = {Deep learning; Governance; Green infrastructure; Machine learning; Nature-based solutions; Urban planning; Urban trees}, Keywords-Plus = {TREE SPECIES CLASSIFICATION; LAND-SURFACE TEMPERATURE; ECOSYSTEM SERVICES; DECISION-MAKING; CARBON STORAGE; GREEN SPACES; LIDAR DATA; COVER; BENEFITS; IMAGERY}, Research-Areas = {Plant Sciences; Environmental Sciences \& Ecology; Forestry; Urban Studies}, Web-of-Science-Categories = {Plant Sciences; Environmental Studies; Forestry; Urban Studies}, Author-Email = {locosselli@yahoo.com.br}, Affiliations = {Universidade Federal de Sao Paulo (UNIFESP); Universidade Nove de Julho; Universidade Nove de Julho; Universidade de Sao Paulo}, ResearcherID-Numbers = {Cortese, Tatiana Tucunduva P./T-3516-2018}, ORCID-Numbers = {Locosselli, Giuliano/0000-0002-2178-2027 Cortese, Tatiana Tucunduva P./0000-0003-2915-5084}, Funding-Acknowledgement = {FAPESP {[}2019/08783-0, 2020/09251-0, 2017/50341-0]}, Funding-Text = {We thank Dr. Domingos Marcio Rodrigues Napolitano and Dr. Wonder Alexandre Luz Alves for double checking the list of AI methods. We also thank FAPESP for the financial support (2019/08783-0, 2020/09251-0, 2017/50341-0).}, Cited-References = {Allawi MF, 2018, ENVIRON SCI POLLUT R, V25, P13446, DOI 10.1007/s11356-018-1867-8. Alonzo M, 2016, URBAN FOR URBAN GREE, V17, P135, DOI 10.1016/j.ufug.2016.04.003. Alonzo M, 2014, REMOTE SENS ENVIRON, V148, P70, DOI 10.1016/j.rse.2014.03.018. Anguelov D, 2010, COMPUTER, V43, P32, DOI 10.1109/MC.2010.170. Ardila JP, 2012, INT J APPL EARTH OBS, V15, P57, DOI 10.1016/j.jag.2011.06.005. Baines O, 2020, URBAN FOR URBAN GREE, V50, DOI 10.1016/j.ufug.2020.126653. Barona CO, 2020, URBAN FOR URBAN GREE, V47, DOI 10.1016/j.ufug.2019.126544. Baumeister CF, 2020, URBAN FOR URBAN GREE, V48, DOI 10.1016/j.ufug.2019.126561. BenDor T, 2014, ECOL SOC, V19, DOI 10.5751/ES-06508-190303. Bentsen P, 2010, URBAN FOR URBAN GREE, V9, P273, DOI 10.1016/j.ufug.2010.06.003. Boulton C, 2018, LANDSCAPE URBAN PLAN, V178, P82, DOI 10.1016/j.landurbplan.2018.05.029. Bur AM, 2019, OTOLARYNG HEAD NECK, V160, P603, DOI 10.1177/0194599819827507. Chen WZ, 2020, CITIES, V101, DOI 10.1016/j.cities.2020.102703. Cimburova Z, 2020, URBAN FOR URBAN GREE, V55, DOI 10.1016/j.ufug.2020.126801. Clark II W.W., 2016, SMART GREEN CITIES C, P364. Contreras I, 2018, J MED INTERNET RES, V20, DOI 10.2196/10775. Daut MAM, 2017, RENEW SUST ENERG REV, V70, P1108, DOI 10.1016/j.rser.2016.12.015. de Jong M, 2015, J CLEAN PROD, V109, P25, DOI 10.1016/j.jclepro.2015.02.004. De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.1890/0012-9658(2000)081{[}3178:CARTAP]2.0.CO;2. Diamantopoulou MJ, 2010, ENVIRON MODELL SOFTW, V25, P1857, DOI 10.1016/j.envsoft.2010.04.020. Dobbs C, 2011, LANDSCAPE URBAN PLAN, V99, P196, DOI 10.1016/j.landurbplan.2010.11.004. Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021. Dyderski MK, 2019, FORESTS, V10, DOI 10.3390/f10010026. Elmes A, 2018, URBAN FOR URBAN GREE, V30, P138, DOI 10.1016/j.ufug.2018.01.024. Endreny T, 2017, ECOL MODEL, V360, P328, DOI 10.1016/j.ecolmodel.2017.07.016. Escobedo FJ, 2020, URBAN ECOSYST, V23, P1039, DOI 10.1007/s11252-020-00962-y. Escobedo FJ, 2011, ENVIRON POLLUT, V159, P2078, DOI 10.1016/j.envpol.2011.01.010. Escobedo FJ, 2009, LANDSCAPE URBAN PLAN, V90, P102, DOI 10.1016/j.landurbplan.2008.10.021. Ezziane Z, 2006, EXPERT SYST APPL, V30, P2, DOI 10.1016/j.eswa.2005.09.042. Fang F, 2020, REMOTE SENS ENVIRON, V246, DOI 10.1016/j.rse.2020.111811. Ferreira LS, 2019, URBAN CLIM, V27, P105, DOI 10.1016/j.uclim.2018.11.002. Franco SF, 2018, REG SCI URBAN ECON, V72, P156, DOI 10.1016/j.regsciurbeco.2017.03.002. Gage EA, 2017, URBAN FOR URBAN GREE, V28, P28, DOI 10.1016/j.ufug.2017.10.003. Galle NJ, 2019, ANTHROPOCENE REV, V6, P279, DOI 10.1177/2053019619877103. Gerstenberg T, 2016, URBAN FOR URBAN GREE, V15, P103, DOI 10.1016/j.ufug.2015.12.004. Griffith DC, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7120462. Gu H, 2015, REMOTE SENS ENVIRON, V167, P168, DOI 10.1016/j.rse.2015.06.010. Gulsrud NM, 2018, LANDSCAPE URBAN PLAN, V180, P85, DOI 10.1016/j.landurbplan.2018.08.012. Guo TD, 2018, URBAN FOR URBAN GREE, V35, P192, DOI 10.1016/j.ufug.2018.08.012. Haase D, 2019, LANDSCAPE URBAN PLAN, V182, P44, DOI 10.1016/j.landurbplan.2018.10.010. Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925. He SB, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12233928. Hilbert Deborah R., 2019, Arboriculture \& Urban Forestry, V45, P167. Huang CD, 2007, J APPL REMOTE SENS, V1, DOI 10.1117/1.2794001. Huang LJ, 2013, ENVIRON MONIT ASSESS, V185, P5003, DOI 10.1007/s10661-012-2921-5. Hwang WH, 2017, LANDSCAPE URBAN PLAN, V158, P62, DOI 10.1016/j.landurbplan.2016.09.022. Jha K., 2019, ARTIF INTELL AGR, V2, P1, DOI {[}10.1016/j.aiia.2019.05.004, DOI 10.1016/J.AIIA.2019.05.004]. Jim CY, 2015, URBAN ECOSYST, V18, P1081, DOI 10.1007/s11252-015-0455-7. Jutras P, 2010, T ASABE, V53, P983. Kabisch N, 2015, ENVIRON IMPACT ASSES, V50, P25, DOI 10.1016/j.eiar.2014.08.007. Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004. Kenney W. Andy, 2011, Arboriculture \& Urban Forestry, V37, P108. Kirnbauer MC, 2013, URBAN FOR URBAN GREE, V12, P401, DOI 10.1016/j.ufug.2013.03.003. Klein Ryan W., 2019, Arboriculture \& Urban Forestry, V45, P26. Koch FH, 2018, FOREST ECOL MANAG, V417, P222, DOI 10.1016/j.foreco.2018.03.004. Koneswarakantha B., 2021, EASYALLUVIAL GENERAT. Konijnendijk CC, 2003, FOREST POLICY ECON, V5, P173, DOI 10.1016/S1389-9341(03)00023-6. Konijnendijk Cecil C., 2006, Urban Forestry \& Urban Greening, V4, P93, DOI 10.1016/j.ufug.2005.11.003. Kothencz G, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14070766. Lee A, 2021, URBAN CLIM, V36, DOI 10.1016/j.uclim.2021.100795. Li QJ, 2020, INT J REMOTE SENS, V41, P7145, DOI 10.1080/01431161.2020.1754495. Li XJ, 2021, ENVIRON PLAN B-URBAN, V48, P2039, DOI 10.1177/2399808320962511. Li X, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11101144. Lin CH, 2020, J SUPERCOMPUT, V76, P2503, DOI 10.1007/s11227-019-03012-3. Lin J, 2021, J ENVIRON MANAGE, V285, DOI 10.1016/j.jenvman.2021.112207. Lin J, 2019, URBAN FOR URBAN GREE, V43, DOI 10.1016/j.ufug.2019.126366. Lin Y, 2015, URBAN FOR URBAN GREE, V14, P404, DOI 10.1016/j.ufug.2015.03.003. Liu HJ, 2018, INT J APPL EARTH OBS, V68, P298, DOI 10.1016/j.jag.2017.12.001. Livesley SJ, 2016, FORESTS, V7, DOI 10.3390/f7120291. Loveland T.R., 2012, REMOTE SENSING LAND, P13. Martin-Martin A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002. Martinez-Trinidad T, 2010, URBAN FOR URBAN GREE, V9, P199, DOI 10.1016/j.ufug.2010.02.003. Maruthaveeran S, 2014, URBAN FOR URBAN GREE, V13, P1, DOI 10.1016/j.ufug.2013.11.006. Mavimbela LZ, 2018, NEW ZEAL J FOR SCI, V48, DOI 10.1186/s40490-018-0124-8. McGee JA, 2012, J FOREST, V110, P275, DOI 10.5849/jof.11-052. Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007. Minarik R, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12244081. Mincey SK, 2013, URBAN FOR URBAN GREE, V12, P191, DOI 10.1016/j.ufug.2012.12.005. Montes GA, 2019, TECHNOL FORECAST SOC, V141, P354, DOI 10.1016/j.techfore.2018.11.010. Morgenroth J, 2017, APPL GEOGR, V82, P1, DOI 10.1016/j.apgeog.2017.02.011. Mosaffaei Z, 2021, MODEL EARTH SYST ENV, V7, P1443, DOI 10.1007/s40808-020-00869-9. Mountrakis G, 2011, ISPRS J PHOTOGRAMM, V66, P247, DOI 10.1016/j.isprsjprs.2010.11.001. Muthukrishnan N, 2020, NEUROIMAG CLIN N AM, V30, P393, DOI 10.1016/j.nic.2020.07.004. Nasiri S, 2017, ENG FAIL ANAL, V81, P270, DOI 10.1016/j.engfailanal.2017.07.011. Nitoslawski SA, 2019, SUSTAIN CITIES SOC, V51, DOI 10.1016/j.scs.2019.101770. Nitoslawski SA, 2017, URBAN FOR URBAN GREE, V27, P187, DOI 10.1016/j.ufug.2017.08.002. Nowak DJ, 2002, ENVIRON POLLUT, V116, P381, DOI 10.1016/S0269-7491(01)00214-7. Ordonez C, 2019, LANDSCAPE URBAN PLAN, V189, P166, DOI 10.1016/j.landurbplan.2019.04.020. Ostoic SK, 2015, URBAN FOR URBAN GREE, V14, P129, DOI 10.1016/j.ufug.2015.01.001. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n160. Parsa VA, 2019, SUSTAIN CITIES SOC, V48, DOI 10.1016/j.scs.2019.101548. Pauleit Stephen, 2000, Journal of Arboriculture, V26, P133. Pu RL, 2018, INT J APPL EARTH OBS, V71, P144, DOI 10.1016/j.jag.2018.05.005. Pu RL, 2012, REMOTE SENS ENVIRON, V124, P516, DOI 10.1016/j.rse.2012.06.011. Pu RL, 2009, INT J REMOTE SENS, V30, P2759, DOI 10.1080/01431160802555820. Rahmanifard H, 2019, ARTIF INTELL REV, V52, P2295, DOI 10.1007/s10462-018-9612-8. Rajaee T, 2019, J HYDROL, V572, P336, DOI 10.1016/j.jhydrol.2018.12.037. Ramage BS, 2013, APPL VEG SCI, V16, P8, DOI 10.1111/j.1654-109X.2012.01205.x. Roffey M, 2020, CAN J REMOTE SENS, V46, P473, DOI 10.1080/07038992.2020.1809363. Roman LA, 2014, LANDSCAPE URBAN PLAN, V129, P22, DOI 10.1016/j.landurbplan.2014.05.004. Roy S, 2012, URBAN FOR URBAN GREE, V11, P351, DOI 10.1016/j.ufug.2012.06.006. Saarinen N, 2014, FORESTS, V5, P1032, DOI 10.3390/f5051032. Sadoughi F, 2018, BREAST CANCER-TARGET, V10, P219, DOI 10.2147/BCTT.S175311. Salehi H, 2018, ENG STRUCT, V171, P170, DOI 10.1016/j.engstruct.2018.05.084. Saunders A, 2020, LANDSCAPE URBAN PLAN, V199, DOI 10.1016/j.landurbplan.2020.103804. Sehgal N, 2015, ENERGY SYST, V6, P479, DOI 10.1007/s12667-015-0151-y. Seiferling I, 2017, LANDSCAPE URBAN PLAN, V165, P93, DOI 10.1016/j.landurbplan.2017.05.010. Senders JT, 2018, NEUROSURGERY, V83, P181, DOI 10.1093/neuros/nyx384. Shackleton C. M., 2012, Scientific Research and Essays, V7, P3329. Shen WJ, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010155. Shojanoori R, 2018, GEOCARTO INT, V33, P357, DOI 10.1080/10106049.2016.1265593. Singh KK, 2015, INT J APPL EARTH OBS, V38, P267, DOI 10.1016/j.jag.2015.01.012. Song XP, 2018, URBAN FOR URBAN GREE, V29, P162, DOI 10.1016/j.ufug.2017.11.017. Steenberg JWN, 2018, URBAN ECOSYST, V21, P887, DOI 10.1007/s11252-018-0764-8. Steenberg JWN, 2015, J ENVIRON MANAGE, V163, P134, DOI 10.1016/j.jenvman.2015.08.008. Strohbach MW, 2012, LANDSCAPE URBAN PLAN, V104, P95, DOI 10.1016/j.landurbplan.2011.10.001. Stubbings P, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11121395. Sun H, 2015, REMOTE SENS-BASEL, V7, P15114, DOI 10.3390/rs71115114. Sun ZY, 2009, ENVIRON GEOL, V57, P1825, DOI 10.1007/s00254-008-1470-2. Tanhuanpaa T, 2014, URBAN FOR URBAN GREE, V13, P562, DOI 10.1016/j.ufug.2014.03.005. Valle-Cruz David, 2020, dg.o `20: The 21st Annual International Conference on Digital Government Research, P232, DOI 10.1145/3396956.3396995. van den Bosch M, 2017, ENVIRON RES, V158, P373, DOI 10.1016/j.envres.2017.05.040. Verlic A, 2014, SUMAR LIST, V138, P477. Vidra RL, 2007, J TORREY BOT SOC, V134, P410, DOI 10.3159/1095-5674(2007)134{[}410:EOVRON]2.0.CO;2. Wagner FH, 2019, DATA, V4, DOI 10.3390/data4040145. Walton JT, 2008, PHOTOGRAMM ENG REM S, V74, P1213, DOI 10.14358/PERS.74.10.1213. Wang H, 2016, REMOTE SENS LETT, V7, P378, DOI 10.1080/2150704X.2016.1142682. Wang J, 2019, FOREST ECOL MANAG, V432, P121, DOI 10.1016/j.foreco.2018.09.010. Wang XF, 2021, URBAN FOR URBAN GREE, V58, DOI 10.1016/j.ufug.2020.126958. Wickham W., 2016, GGPLOT2 ELEGANT GRAP, P213. Wu N, 2010, J PLAN LIT, V24, P246, DOI 10.1177/0885412210361571. Xu S, 2020, IEEE J-STARS, V13, P3240, DOI 10.1109/JSTARS.2020.3001978. Ye ZP, 2020, SCI TOTAL ENVIRON, V699, DOI 10.1016/j.scitotenv.2019.134279. Yoo S, 2012, LANDSCAPE URBAN PLAN, V107, P293, DOI 10.1016/j.landurbplan.2012.06.009. Yuan F, 2008, INT J REMOTE SENS, V29, P1169, DOI 10.1080/01431160701294703. Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0. Zhang CY, 2012, PHOTOGRAMM ENG REM S, V78, P1079, DOI 10.14358/PERS.78.10.1079. Zhang C, 2021, J FORESTRY RES, V32, P1879, DOI 10.1007/s11676-020-01245-0. Zhang H, 2014, URBAN FOR URBAN GREE, V13, P272, DOI 10.1016/j.ufug.2013.12.009. Zhang K., 2014, REMOTE SENS-BASEL, V4, P1741. Zhang Y, 2021, INT J REMOTE SENS, V42, P964, DOI 10.1080/01431161.2020.1820618. Zhang ZY, 2016, FORESTS, V7, DOI 10.3390/f7060122. Zhou XS, 2019, FORESTS, V10, DOI 10.3390/f10060478.}, Number-of-Cited-References = {143}, Times-Cited = {6}, Usage-Count-Last-180-days = {30}, Usage-Count-Since-2013 = {56}, Journal-ISO = {Urban For. Urban Green.}, Doc-Delivery-Number = {0A5SS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000774014800008}, DA = {2023-04-22}, } @article{ WOS:000914747100001, Author = {Koutra, Sesil and Ioakimidis, Christos S.}, Title = {Unveiling the Potential of Machine Learning Applications in Urban Planning Challenges}, Journal = {LAND}, Year = {2023}, Volume = {12}, Number = {1}, Month = {JAN}, Abstract = {In a digitalized era and with the rapid growth of computational skills and advancements, artificial intelligence and Machine Learning uses in various applications are gaining a rising interest from scholars and practitioners. As a fast-growing field of Artificial Intelligence, Machine Artificial Intelligence deals with smart designs, data mining and management for complex problem-solving based on experimental data on urban applications (land use and cover, configurations of the built environment and architectural design, etc.), but with few explorations and relevant studies. In this work, a comprehensive and in-depth review is presented to discuss the future opportunities and constraints in meeting the next planning portfolio against the multiple challenges in urban environments in line with Machine Learning progress. Bringing together the theoretical views with practical analyses of cases and examples, the work unveils the huge potential, but also the potential barriers of the complexity of Machine Learning to urban planning strategies.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Ioakimidis, CS (Corresponding Author), Inteligg PC, Karaiskaki 28, Athens 10554, Greece. Koutra, Sesil, Univ Mons, Fac Architecture \& Urban Planning, 88 Str Havre, B-7000 Mons, Belgium. Ioakimidis, Christos S., Inteligg PC, Karaiskaki 28, Athens 10554, Greece.}, DOI = {10.3390/land12010083}, Article-Number = {83}, EISSN = {2073-445X}, Keywords = {case-study analysis; machine learning; urban planning}, Keywords-Plus = {ROAD NETWORK EXTRACTION; LAND-USE; BUILDING ENERGY; ARTIFICIAL-INTELLIGENCE; CELLULAR-AUTOMATA; NEURAL-NETWORKS; GROWTH; MODEL; CLASSIFICATION; PREDICTION}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Studies}, Author-Email = {cioakim@inteligg.com}, Affiliations = {University of Mons}, ResearcherID-Numbers = {IOAKIMIDIS, CHRISTOS/O-2114-2013}, ORCID-Numbers = {IOAKIMIDIS, CHRISTOS/0000-0002-4139-7046}, Cited-References = {Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189. Ahmad MW, 2016, ENERG BUILDINGS, V120, P85, DOI 10.1016/j.enbuild.2016.03.059. Al Qady M, 2010, J CONSTR ENG M, V136, P294, DOI 10.1061/(ASCE)CO.1943-7862.0000131. Al-Garadi MA, 2020, IEEE COMMUN SURV TUT, V22, P1646, DOI 10.1109/COMST.2020.2988293. Alanne K, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103445. Alexander C, 2009, COMPUT ENVIRON URBAN, V33, P285, DOI 10.1016/j.compenvurbsys.2009.01.009. Alsharif AAA, 2014, J INDIAN SOC REMOTE, V42, P149, DOI 10.1007/s12524-013-0299-7. Amasyali K, 2018, RENEW SUST ENERG REV, V81, P1192, DOI 10.1016/j.rser.2017.04.095. Awrangjeb M, 2010, ISPRS J PHOTOGRAMM, V65, P457, DOI 10.1016/j.isprsjprs.2010.06.001. Babakan AS, 2015, HABITAT INT, V49, P275, DOI 10.1016/j.habitatint.2015.05.033. Ballard G, 2008, LEAN CONSTRUCTION J, P1. Batty M, 1997, ENVIRON PLANN B, V24, P159. Bhavsar P, 2017, DATA ANALYTICS FOR INTELLIGENT TRANSPORTATION SYSTEMS, P283, DOI 10.1016/B978-0-12-809715-1.00012-2. Brilakis I, 2005, J COMPUT CIVIL ENG, V19, P341, DOI 10.1061/(ASCE)0887-3801(2005)19:4(341). Brown DG, 2013, CURR OPIN ENV SUST, V5, P452, DOI 10.1016/j.cosust.2013.07.012. Byon YJ, 2014, J INTELL TRANSPORT S, V18, P264, DOI 10.1080/15472450.2013.824762. Casali Y, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104050. Cavendish W., 2022, ARTIF INTELL. Chammas M, 2019, COMPUT ELECTR ENG, V76, P249, DOI 10.1016/j.compeleceng.2019.04.002. Chaturvedi V, 2021, URBAN SCI, V5, DOI 10.3390/urbansci5030068. Chen ZY, 2022, INT J APPL EARTH OBS, V112, DOI 10.1016/j.jag.2022.102833. Cheng CC, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19051131. Cheng XM, 2021, INT J GEOGR INF SCI, V35, P2002, DOI 10.1080/13658816.2020.1805116. Choung YJ, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9061098. Clarke KC, 1998, INT J GEOGR INF SCI, V12, P699, DOI 10.1080/136588198241617. Deep S, 2014, EGYPT J REMOTE SENS, V17, P179, DOI 10.1016/j.ejrs.2014.07.001. Deng Y, 2016, HABITAT INT, V51, P103, DOI 10.1016/j.habitatint.2015.09.007. Du GD, 2018, INT J GEOGR INF SCI, V32, P757, DOI 10.1080/13658816.2017.1410550. Fan C, 2019, APPL ENERG, V236, P700, DOI 10.1016/j.apenergy.2018.12.004. Fathi S, 2020, RENEW SUST ENERG REV, V133, DOI 10.1016/j.rser.2020.110287. Fecht D, 2014, ENVIRON MODELL SOFTW, V58, P1, DOI 10.1016/j.envsoft.2014.03.013. Gao J, 2019, ENVIRON MODELL SOFTW, V119, P458, DOI 10.1016/j.envsoft.2019.06.015. GARRETT JH, 1987, ENG COMPUT, V2, P219, DOI 10.1007/BF01276414. Gholizadeh P, 2018, J MANAGE ENG, V34, DOI 10.1061/(ASCE)ME.1943-5479.0000589. Gomez JA, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010109. Grekousis G, 2013, CITIES, V30, P193, DOI 10.1016/j.cities.2012.03.006. Guigoz Y, 2017, J ENVIRON INFORM, V30, P53, DOI 10.3808/jei.201500325. Hagenauer J, 2019, INT J GEOGR INF SCI, V33, P1399, DOI 10.1080/13658816.2019.1579333. Hagenauer J, 2018, INT J APPL EARTH OBS, V65, P46, DOI 10.1016/j.jag.2017.10.003. Hao JW, 2015, J URBAN MANAG, V4, P92, DOI 10.1016/j.jum.2015.11.002. Hashem Nadeem, 2015, Annals of GIS, V21, P233, DOI 10.1080/19475683.2014.992369. Heistermann M, 2006, AGR ECOSYST ENVIRON, V114, P141, DOI 10.1016/j.agee.2005.11.015. Hernandez IER, 2018, INT J REMOTE SENS, V39, P1175, DOI 10.1080/01431161.2017.1395968. Heung B, 2016, GEODERMA, V265, P62, DOI 10.1016/j.geoderma.2015.11.014. Huang JX, 2021, LANDSCAPE URBAN PLAN, V206, DOI 10.1016/j.landurbplan.2020.103977. Hwang S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236560. Ibrahim MR, 2021, ENVIRON PLAN B-URBAN, V48, P76, DOI 10.1177/2399808319846517. Iddianozie C, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102367. Jin HR, 2013, INT J REMOTE SENS, V34, P5468, DOI 10.1080/01431161.2013.791760. Jochem WC, 2018, COMPUT ENVIRON URBAN, V69, P104, DOI 10.1016/j.compenvurbsys.2018.01.004. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Kamrowska-Zaluska D, 2021, LAND-BASEL, V10, DOI 10.3390/land10111209. Karakus CB, 2019, ASIA-PAC J ATMOS SCI, V55, P669, DOI 10.1007/s13143-019-00109-w. Karimi F, 2019, COMPUT ENVIRON URBAN, V75, P61, DOI 10.1016/j.compenvurbsys.2019.01.001. Khesali E, 2016, J INDIAN SOC REMOTE, V44, P21, DOI 10.1007/s12524-015-0480-2. Khosravi I, 2014, PHOTOGRAMM ENG REM S, V80, P519, DOI 10.14358/PERS.80.6.519-528. Kline JD, 2007, LANDSCAPE URBAN PLAN, V80, P320, DOI 10.1016/j.landurbplan.2006.10.017. Kwok SSK, 2011, ENERG CONVERS MANAGE, V52, P2555, DOI 10.1016/j.enconman.2011.02.002. Leyk S, 2019, EARTH SYST SCI DATA, V11, P1385, DOI 10.5194/essd-11-1385-2019. Li WK, 2010, INT J REMOTE SENS, V31, P2227, DOI 10.1080/01431161003702245. Li X, 2020, FUTURE GENER COMP SY, V107, P871, DOI 10.1016/j.future.2018.02.017. Lim TS, 2000, MACH LEARN, V40, P203, DOI 10.1023/A:1007608224229. Lin JY, 2022, J ENVIRON MANAGE, V321, DOI 10.1016/j.jenvman.2022.115994. Liu H, 2020, SAFETY SCI, V121, P348, DOI 10.1016/j.ssci.2019.09.020. Liu M, 2017, APPL GEOGR, V87, P66, DOI 10.1016/j.apgeog.2017.07.011. Liu XP, 2017, LANDSCAPE URBAN PLAN, V168, P94, DOI 10.1016/j.landurbplan.2017.09.019. Lu PP, 2014, IEEE J-STARS, V7, P4772, DOI 10.1109/JSTARS.2014.2340394. Ma J, 2020, LAND USE POLICY, V94, DOI 10.1016/j.landusepol.2020.104537. Maher M.L., 1985, KNOWLEDGE ENG COMPUT. Mohamed MA, 2020, LAND-BASEL, V9, DOI 10.3390/land9070226. MOHAN R, 1989, IEEE T PATTERN ANAL, V11, P1121, DOI 10.1109/34.42852. Montjoy V., 2022, POWERFUL CROWD SIMUL. Motieyan H, 2018, CITIES, V81, P91, DOI 10.1016/j.cities.2018.03.018. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Musa SI, 2017, GEOCARTO INT, V32, P813, DOI 10.1080/10106049.2016.1213891. Nagappan SD, 2021, INT J ADV COMPUT SC, V12, P772. Neri E, 2020, RADIOL MED, V125, P517, DOI 10.1007/s11547-020-01135-9. Ngarambe J, 2020, ENERG BUILDINGS, V211, DOI 10.1016/j.enbuild.2020.109807. Novack T, 2011, REMOTE SENS-BASEL, V3, P2263, DOI 10.3390/rs3102263. Omrani H, 2019, ENVIRON MODELL SOFTW, V111, P182, DOI 10.1016/j.envsoft.2018.10.004. Patel A., 2018, GEOCOMPUTATIONAL ANA, P121. Patt TR, 2018, INT J ARCHIT COMPUT, V16, P199, DOI 10.1177/1478077118793127. Perciano T, 2016, INT J REMOTE SENS, V37, P3584, DOI 10.1080/01431161.2016.1201227. Peterson AT, 2007, ECOGRAPHY, V30, P550, DOI 10.1111/j.2007.0906-7590.05102.x. Poullis C, 2010, ISPRS J PHOTOGRAMM, V65, P165, DOI 10.1016/j.isprsjprs.2009.10.004. Quan SJ, 2019, ENVIRON PLAN B-URBAN, V46, P1581, DOI 10.1177/2399808319867946. Rahmati O, 2019, J ENVIRON MANAGE, V236, P466, DOI 10.1016/j.jenvman.2019.02.020. RICS, 2017, ARTIF INTELL. Rienow A, 2015, COMPUT ENVIRON URBAN, V49, P66, DOI 10.1016/j.compenvurbsys.2014.05.001. Rivers E, 2014, TRANSP RES PROC, V2, P123, DOI 10.1016/j.trpro.2014.09.016. Robert C., 2014, CHANCE, V27, P62, DOI DOI 10.1080/09332480.2014.914768. Rogan J, 2008, REMOTE SENS ENVIRON, V112, P2272, DOI 10.1016/j.rse.2007.10.004. Ross T, 1938, PSYCHOL REV, V45, P185, DOI 10.1037/h0059815. Sacks R., 1987, J COMPUT CIV ENG, V1, P69, DOI {[}10.1061/(ASCE)0887-3801(1987)1:2(69), DOI 10.1061/(ASCE)0887-3801(1987)1:2(69)]. Sacks R, 2020, DEV BUILT ENVIRON, V4, DOI 10.1016/j.dibe.2020.100011. Sagris T., 2022, SHANGHAIS URBAN DRAI. Samara F., 2013, P 4 TH INT C ENV MAN. Samardzic-Petrovic M., 2016, BUILD ENVIRON, V42, P321. Samardzic-Petrovic M, 2016, T GIS, V20, P718, DOI 10.1111/tgis.12174. SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206. Schoenfeld J., 2022, USING MACHINE LEARNI. Schulp CJE, 2008, AGR ECOSYST ENVIRON, V127, P251, DOI 10.1016/j.agee.2008.04.010. Schwab Klaus., 2017, 4 IND REVOLUTION. Shafizadeh-Moghadam H, 2017, COMPUT ENVIRON URBAN, V64, P297, DOI 10.1016/j.compenvurbsys.2017.04.002. Shafizadeh-Moghadam H, 2015, INT J APPL EARTH OBS, V35, P187, DOI 10.1016/j.jag.2014.08.013. Shaikh PH, 2014, RENEW SUST ENERG REV, V34, P409, DOI 10.1016/j.rser.2014.03.027. Soltani A, 2013, TEMA, V6, P189, DOI 10.6092/1970-9870/1547. Song J., 2018, P 35 INT S AUTOMATIO, DOI DOI 10.22260/ISARC2018/0080. Suveg I, 2002, PROC SPIE, V4661, P59, DOI 10.1117/12.460181. Tarabon S, 2019, J ENVIRON MANAGE, V241, P439, DOI 10.1016/j.jenvman.2019.02.031. Tayyebi A, 2014, INT J APPL EARTH OBS, V28, P102, DOI 10.1016/j.jag.2013.11.008. Tekouabou SCK, 2022, J KING SAUD UNIV-COM, V34, P5943, DOI 10.1016/j.jksuci.2021.08.007. Tien PW, 2022, ENERGY, DOI 10.1016/j.egyai.2022.100198. Tripathy P., 2018, INTERNATIONAL JOURNA, V13, P47. Varshney Harshit, 2021, IOP Conference Series: Materials Science and Engineering, V1022, DOI 10.1088/1757-899X/1022/1/012019. Vaz ED, 2012, LANDSCAPE URBAN PLAN, V104, P201, DOI 10.1016/j.landurbplan.2011.10.007. Veldkamp A, 2001, AGR ECOSYST ENVIRON, V85, P1, DOI 10.1016/S0167-8809(01)00199-2. Wang WJ, 2010, ENVIRON PLANN B, V37, P234, DOI 10.1068/b35072. Wegner JD, 2015, ISPRS J PHOTOGRAMM, V108, P128, DOI 10.1016/j.isprsjprs.2015.07.002. Weidner U., 1997, AUTOMATIC EXTRACTION. White R, 1997, ENVIRON PLANN B, V24, P323, DOI 10.1068/b240323. Witten I.H., 2002, ACM SIGMOD RECORD, V31, P76, DOI {[}10.1145/507338.507355, DOI 10.1145/507338.507355]. Wu N, 2010, J PLAN LIT, V24, P246, DOI 10.1177/0885412210361571. Wubie AM, 2020, LAND-BASEL, V9, DOI 10.3390/land9110445. Xia C, 2020, LANDSCAPE URBAN PLAN, V193, DOI 10.1016/j.landurbplan.2019.103669. Yigitcanlar T, 2021, J URBAN TECHNOL, V28, P135, DOI 10.1080/10630732.2020.1753483. Zhang JS, 2017, AUTOMAT CONSTR, V73, P45, DOI 10.1016/j.autcon.2016.08.027. Zhang Q., 2016, P 5 ACM SIGSPATIAL I. Zhao J, 2018, ENERG BUILDINGS, V174, P293, DOI 10.1016/j.enbuild.2018.06.050.}, Number-of-Cited-References = {129}, Times-Cited = {0}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Land}, Doc-Delivery-Number = {7Y2WV}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000914747100001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000807169600001, Author = {Kamrowska-Zaluska, Dorota}, Title = {Impact of AI-Based Tools and Urban Big Data Analytics on the Design and Planning of Cities}, Journal = {LAND}, Year = {2021}, Volume = {10}, Number = {11}, Month = {NOV}, Abstract = {Wide access to large volumes of urban big data and artificial intelligence (AI)-based tools allow performing new analyses that were previously impossible due to the lack of data or their high aggregation. This paper aims to assess the possibilities of the use of urban big data analytics based on AI-related tools to support the design and planning of cities. To this end, the author introduces a conceptual framework to assess the influence of the emergence of these tools on the design and planning of the cities in the context of urban change. In this paper, the implications of the application of artificial-intelligence-based tools and geo-localised big data, both in solving specific research problems in the field of urban planning and design as well as on planning practice, are discussed. The paper is concluded with both cognitive conclusions and recommendations for planning practice. It is directed towards urban planners interested in the emerging urban big data analytics based on AI-related tools and towards urban theorists working on new methods of describing urban change.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Kamrowska-Zaluska, D (Corresponding Author), Gdansk Univ Technol, Fac Architecture, PL-80233 Gdansk, Poland. Kamrowska-Zaluska, Dorota, Gdansk Univ Technol, Fac Architecture, PL-80233 Gdansk, Poland.}, DOI = {10.3390/land10111209}, Article-Number = {1209}, EISSN = {2073-445X}, Keywords = {artificial intelligence; big data; urban design and planning; urban change}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORKS; KNOWLEDGE; MANAGEMENT; GROWTH; METHODOLOGY; PERCEPTIONS; CHALLENGES; SCENARIOS; AUTOMATA}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Studies}, Author-Email = {dzaluska@pg.edu.pl}, Affiliations = {Fahrenheit Universities; Gdansk University of Technology}, ORCID-Numbers = {Kamrowska-Zaluska, Dorota/0000-0002-3083-6576}, Cited-References = {Abarca Alvarez FJ, 2013, EGA-REV EXPRES GRAF, P154, DOI 10.4995/ega.2013.1692. Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189. Allam Z, 2020, CITIES AND THE DIGITAL REVOLUTION: ALIGNING TECHNOLOGY AND HUMANITY, P31, DOI 10.1007/978-3-030-29800-5\_2. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Allen P. M., 1997, GEOGRAPHICAL SYSTEMS, V4, P103. Allmendinger P, 2009, ENVIRON PLANN A, V41, P617, DOI 10.1068/a40208. Baeza RA, 2018, TEMA, V11, P285, DOI 10.6092/1970-9870/5795. Amiri SS, 2021, COMPUT ENVIRON URBAN, V88, DOI 10.1016/j.compenvurbsys.2021.101647. Anagnostopoulos T, 2021, SMART CITIES-BASEL, V4, P177, DOI 10.3390/smartcities4010010. {[}Anonymous], 2005, REMAKING PLANNING PO. {[}Anonymous], 2012, P INT AAAI C WEB SOC. Arndt LT, 2014, PROC INST CIV ENG-U, V167, P58, DOI 10.1680/udap.13.00024. Aschwanden GDPA, 2021, ENVIRON PLAN B-URBAN, V48, P186, DOI 10.1177/2399808319862571. Assi KJ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164484. Bari A, 2017, WORKING BIG DATA SCA. Batty M, 2013, NEW SCIENCE OF CITIES, P1. Batty M., 2005, CITIES COMPLEXITY UN. Batty M, 2019, ENVIRON PLAN B-URBAN, V46, P403, DOI 10.1177/2399808319839494. Bazzan ALC, 2012, J INTELL TRANSPORT S, V16, P1, DOI 10.1080/15472450.2012.639635. Bertrand K., 2013, ARXIV. Beura SK, 2018, TRANSPORT RES REC, V2672, P145, DOI 10.1177/0361198118796350. Bonney R, 2009, BIOSCIENCE, V59, P977, DOI 10.1525/bio.2009.59.11.9. Byon YJ, 2014, J INTELL TRANSPORT S, V18, P264, DOI 10.1080/15472450.2013.824762. Chen WZ, 2020, CITIES, V101, DOI 10.1016/j.cities.2020.102703. Cheng XM, 2021, INT J GEOGR INF SCI, V35, P2002, DOI 10.1080/13658816.2020.1805116. Christodoulou S, 2009, COMPUT ENVIRON URBAN, V33, P138, DOI 10.1016/j.compenvurbsys.2008.12.001. Cook DJ, 1997, ANN INTERN MED, V126, P376, DOI 10.7326/0003-4819-126-5-199703010-00006. Crutzen Paul J., 2006, EARTH SYSTEM SCI ANT, DOI {[}10.1007/3-540-26590-2\_3, DOI 10.1007/3-540-26590-2\_3]. De Mauro A, 2016, LIBR REV, V65, P122, DOI 10.1108/LR-06-2015-0061. Dempsey N, 2011, SUSTAIN DEV, V19, P289, DOI 10.1002/sd.417. Drod W., 2020, REGIONALNY THINKLETT. Fan JQ, 2014, NATL SCI REV, V1, P293, DOI 10.1093/nsr/nwt032. Fathi S, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083223. Filomena G, 2019, CITIES, V89, P14, DOI 10.1016/j.cities.2019.01.006. Gao S, 2017, COMPUT ENVIRON URBAN, V61, P172, DOI 10.1016/j.compenvurbsys.2014.02.004. Ghahramani M, 2021, CITY ENVIRON INTERAC, V10, DOI 10.1016/j.cacint.2021.100058. GILMORE JF, 1995, IVHS J, V2, P231, DOI 10.1080/10248079508903828. Goodchild MF, 2007, GEOJOURNAL, V69, P211, DOI 10.1007/s10708-007-9111-y. Grekousis G, 2013, CITIES, V30, P193, DOI 10.1016/j.cities.2012.03.006. Gurstein M.B., 2011, 1 MONDAY, V16, DOI {[}10.5210/fm.v16i2.3316, DOI 10.5210/FM.V16I2.3316]. Hao JW, 2015, J URBAN MANAG, V4, P92, DOI 10.1016/j.jum.2015.11.002. Haqbeen J, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105453. Hopkins L.D., 2001, URBAN DEV LOGIC MAKI. Hou Y, 2018, TRANSPORT RES REC, V2672, P115, DOI 10.1177/0361198118776139. Hsueh SL, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205833. Huang JX, 2021, LANDSCAPE URBAN PLAN, V206, DOI 10.1016/j.landurbplan.2020.103977. Huijboom N, 2011, EUR J EPRACTICE, V12, P1. Hwang S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236560. Ibrahim MR, 2021, ENVIRON PLAN B-URBAN, V48, P76, DOI 10.1177/2399808319846517. Inam A., 2013, DESIGNING URBAN TRAN, DOI 10.4324/9780203728284. Intrator K, 2017, CITYSCAPE, V19, P31. Jacob C, 2010, TRANSPORT RES A-POL, V44, P53, DOI 10.1016/j.tra.2009.11.001. Abarca-Alvarez FJ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236622. Jena S, 2018, TRANSPORT RES REC, V2672, P232, DOI 10.1177/0361198118782761. Jung SM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166364. Kamrowska-Zaluska D, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10103668. Kandt J, 2021, CITIES, V109, DOI 10.1016/j.cities.2020.102992. Kang YH, 2021, LAND USE POLICY, V111, DOI 10.1016/j.landusepol.2020.104919. Kedia AS, 2017, TRANSP DEV ECON, V3, DOI 10.1007/s40890-017-0038-9. Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8. Kourtit K, 2013, J URBAN MANAG, V2, P25, DOI 10.1016/S2226-5856(18)30063-3. Kourtit K, 2015, INT PLAN STUD, V20, P71, DOI 10.1080/13563475.2014.942496. Kourtit K, 2017, SOCIO-ECON PLAN SCI, V58, P13, DOI 10.1016/j.seps.2016.10.001. Li XJ, 2018, LANDSC ARCHIT FRONT, V6, P20, DOI 10.15302/J-LAF-20180203. Liao JF, 2014, INT J GEOGR INF SCI, V28, P720, DOI 10.1080/13658816.2013.869820. Liu ZC, 2017, IEEE INT CONF BIG DA, P3447. Mager T, 2020, URBAN PLAN, V5, P24, DOI 10.17645/up.v5i2.3096. Markose LP, 2016, WATER SCI TECHNOL LI, V73, P255, DOI 10.1007/978-3-319-40195-9\_20. Natekin A, 2013, FRONT NEUROROBOTICS, V7, DOI 10.3389/fnbot.2013.00021. Neves FT, 2020, CITIES, V106, DOI 10.1016/j.cities.2020.102860. O'Sullivan D, 2000, ENVIRON PLANN A, V32, P1409, DOI 10.1068/a32140. Orun A, 2018, TRANSPORT RES D-TR E, V63, P236, DOI 10.1016/j.trd.2018.05.009. Payal Jain K., 2011, J SOFT COMPUT ENG, V1, P5. Pirouz B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062427. Portugali J., 1999, SELF ORG CITY. Quan SJ, 2019, ENVIRON PLAN B-URBAN, V46, P1581, DOI 10.1177/2399808319867946. Quercia D., 2014, P 17 ACM C COMP SUPP, P945, DOI DOI 10.1145/2531602.2531613. Raimbault J., 2020, ARXIV. Rienow A, 2014, ERDKUNDE, V68, P85, DOI 10.3112/erdkunde.2014.02.02. Rong HH, 2020, EUR TRANSP RES REV, V12, DOI 10.1186/s12544-020-00459-x. Rosa L, 2021, SMART CITIES-BASEL, V4, P894, DOI 10.3390/smartcities4020046. Rost M., 2013, P 2013 C COMP SUPP C, P357, DOI {[}10.1145/2441776.2441817, DOI 10.1145/2441776.2441817]. Shen ZJ, 2009, ENVIRON PLANN B, V36, P802, DOI 10.1068/b34148t. Sheng Q, 2018, LANDSC ARCHIT FRONT, V6, P103, DOI 10.15302/J-LAF-20180211. Shi Q, 2015, TRANSPORT RES C-EMER, V58, P380, DOI 10.1016/j.trc.2015.02.022. Soltani A, 2013, TEMA, V6, P189, DOI 10.6092/1970-9870/1547. Stajkowski S, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135374. Stathopoulos A, 2010, TRANSPORT RES REC, P120, DOI 10.3141/2183-13. Sun Y, 2020, URBAN FOR URBAN GREE, V53, DOI 10.1016/j.ufug.2020.126709. Sung H, 2015, J PLAN EDUC RES, V35, P117, DOI 10.1177/0739456X14568021. Surendra HJ, 2016, WATER SCI TECHNOL LI, V73, P277, DOI 10.1007/978-3-319-40195-9\_22. Thakuriah P, 2017, SPRING GEOGR, P11, DOI 10.1007/978-3-319-40902-3\_2. Thorhildur J., 2013, P 21 EUROPEAN C INFO. Townsend Anthony M., 2013, SMART CITIES BIG DAT. Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375. van Geenhuizen M, 2007, ENVIRON PLANN C, V25, P692, DOI 10.1068/c0647. Varia HR, 2013, RES TRANSP ECON, V38, P35, DOI 10.1016/j.retrec.2012.05.014. Vidana-Vila E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12198140. Vogiatzaki M, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156142. Wang L, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10124620. Wang WJ, 2010, ENVIRON PLANN B, V37, P234, DOI 10.1068/b35072. Wellmann T, 2020, LANDSCAPE URBAN PLAN, V204, DOI 10.1016/j.landurbplan.2020.103921. Whittemore R, 2005, J ADV NURS, V52, P546, DOI 10.1111/j.1365-2648.2005.03621.x. Wu N, 2010, J PLAN LIT, V24, P246, DOI 10.1177/0885412210361571. Xiang XJ, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106515. Yan ZJ, 2020, J INTELL TRANSPORT S, V24, P237, DOI 10.1080/15472450.2019.1652826. Yigitcanlar T, 2021, J URBAN TECHNOL, V28, P135, DOI 10.1080/10630732.2020.1753483. Yin XinZhe, 2021, Environmental Impact Assessment Review, V86, DOI 10.1016/j.eiar.2020.106493. Zhang F, 2018, LANDSCAPE URBAN PLAN, V180, P148, DOI 10.1016/j.landurbplan.2018.08.020.}, Number-of-Cited-References = {109}, Times-Cited = {5}, Usage-Count-Last-180-days = {22}, Usage-Count-Since-2013 = {45}, Journal-ISO = {Land}, Doc-Delivery-Number = {1X0QT}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000807169600001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000458227000020, Author = {Grekousis, George}, Title = {Artificial neural networks and deep learning in urban geography: A systematic review and meta-analysis}, Journal = {COMPUTERS ENVIRONMENT AND URBAN SYSTEMS}, Year = {2019}, Volume = {74}, Pages = {244-256}, Month = {MAR}, Abstract = {Artificial neural networks (ANNs) and their latest advancement in deep learning are blooming in computer science. Geography has integrated these artificial intelligence techniques, but not with the same enthusiasm. The main reason for hesitation is that ANNs are still confronted as complex and black boxes. However, ANNs might be more solid methods than conventional approaches when dealing with complex geographical problems. This study considers the great potential of ANNs for research in urban geography. First, using the PRISMA protocol, it provides a statistical review of 140 papers on studies that employed ANNs in urban geography between 1997 and 2016. Second, it performs a quantitative meta-analysis using non-parametric bootstrapping. 45 (of the 140) papers were assessed regarding ANNs' overall accuracy (OA) achieved when used for urban growth prediction or urban land-use classification. Third, a new guideline for reporting ANNs is proposed. Statistical review indicated that ANNs performed better in 75.7\% of case studies compared to conventional methods. Meta-analysis found that on bootstrapped averages, the median OA achieved when using, ANNs was higher than the median OA achieved by other techniques by 2.3\% (p < .001). ANNs also performed better when used for classification compared to prediction. Analysis also identified inadequate presentation of ANNs and related results when used in urban studies. For this reason, a new guideline for reporting ANNs is suggested in this work to ensure consistency and easier dissemination of individual lessons learned. These findings aim to motivate further studies on ANNs and deep learning in urban geography.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Grekousis, G (Corresponding Author), Sun Yat Sen Univ, Sch Geog \& Urban Planning, Dept Urban \& Reg Planning, 135 Xingang Xi Rd, Guangzhou 510275, Haizhu, Peoples R China. Grekousis, George, Sun Yat Sen Univ, Sch Geog \& Urban Planning, Dept Urban \& Reg Planning, 135 Xingang Xi Rd, Guangzhou 510275, Haizhu, Peoples R China.}, DOI = {10.1016/j.compenvurbsys.2018.10.008}, ISSN = {0198-9715}, EISSN = {1873-7587}, Keywords = {Artificial Neural Networks; Deep Learning; Urban Geography; Meta-analysis; Trends; Guidelines on Reporting results}, Keywords-Plus = {LAND-COVER CLASSIFICATION; MODEL; GIS; TRANSFORMATION; URBANIZATION; SIMULATION; ATHENS}, Research-Areas = {Computer Science; Engineering; Environmental Sciences \& Ecology; Geography; Operations Research \& Management Science; Public Administration}, Web-of-Science-Categories = {Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Studies; Geography; Operations Research \& Management Science; Regional \& Urban Planning}, Author-Email = {graikousis@mail.sysu.edu.cn}, Affiliations = {Sun Yat Sen University}, Funding-Acknowledgement = {Sun Yat Sen University {[}37000-18821113]}, Funding-Text = {This work was supported by Sun Yat Sen University Starting Research Grant for George Grekousis (37000-18821113).}, Cited-References = {{[}Anonymous], CITIES COMPLEXITY UN. Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8\_26. Bhatti SS, 2015, HABITAT INT, V50, P354, DOI 10.1016/j.habitatint.2015.09.005. Bloom DE, 2008, SCIENCE, V319, P772, DOI 10.1126/science.1153057. Brownlee J., 2017, MASTER MACHINE LEARN. Chernick M. R., 2007, BOOTSTRAP METHODS GU, DOI DOI 10.1002/. Deng L, 2013, FOUND TRENDS SIGNAL, V7, pI, DOI 10.1561/2000000039. Du PJ, 2015, J APPL REMOTE SENS, V9, DOI 10.1117/1.JRS.9.096094. Geospatial Media and Communications (GMC), 2017, GLOB GEOSP IND OUTL. Geospatial World Forum (GFM), 2017, GEOSP DEEP LEARN SHA. Glorot X., 2010, P 13 INT C ART INT S, P249. Gong JZ, 2014, LAND USE POLICY, V40, P91, DOI 10.1016/j.landusepol.2013.05.001. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Gopal S., 2017, ARTIFICIAL NEURAL NE. Gorricha J, 2012, COMPUT GEOSCI-UK, V43, P177, DOI 10.1016/j.cageo.2011.10.008. Grekousis G, 2019, SOC INDIC RES, V143, P505, DOI 10.1007/s11205-018-1994-0. Grekousis G, 2016, GISCI REMOTE SENS, V53, P122, DOI 10.1080/15481603.2015.1118977. Grekousis G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119675. Grekousis G, 2014, PROF GEOGR, V66, P124, DOI 10.1080/00330124.2013.765300. Grekousis G, 2013, CITIES, V30, P193, DOI 10.1016/j.cities.2012.03.006. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Hinton G.E., 2012, LECT NOTES COMPUTER, P599, DOI {[}10.1007/978-3-642-35289-8\_32, DOI 10.1007/978-3-642-35289-8\_32]. Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597. Kauko T, 2009, HOUSING STUD, V24, P587, DOI 10.1080/02673030903082328. Khatami R, 2016, REMOTE SENS ENVIRON, V177, P89, DOI 10.1016/j.rse.2016.02.028. KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007/BF00337288. Kohonen T, 2001, SELF ORG MAPS, Vthird. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Lai S. K., 2016, URBAN COMPLEXITY PLA. Langkvist M, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8040329. Lary DJ, 2016, GEOSCI FRONT, V7, P3, DOI 10.1016/j.gsf.2015.07.003. LeCun Y, 1989, NEURAL COMPUT, V1, P541, DOI 10.1162/neco.1989.1.4.541. Liu W, 2015, ATMOS ENVIRON, V116, P272, DOI 10.1016/j.atmosenv.2015.06.056. Luo YQ, 2012, BIOGEOSCIENCES, V9, P3857, DOI 10.5194/bg-9-3857-2012. MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491. Markets and Markets, 2016, DEEP LEARN MARK APPL. Moher D, 2009, PLOS MED, V6, DOI {[}10.1371/journal.pmed.1000097, 10.1136/bmj.b2700, 10.7326/0003-4819-151-4-200908180-00136, 10.1136/bmj.b4037]. Mozumder C, 2016, COMPUT ENVIRON URBAN, V59, P38, DOI 10.1016/j.compenvurbsys.2016.04.009. Openshaw C., 1997, ARTIF INTELL. Pacifici F, 2009, REMOTE SENS ENVIRON, V113, P1276, DOI 10.1016/j.rse.2009.02.014. Photis Y.N., 2012, INT J SUSTAIN DEV PL, V7, P372, DOI DOI 10.2495/SDP-V7-N3-372-384. Pijanowski BC, 2009, INT J ENVIRON RES, V3, P493. Pijanowski Bryan C., 2002, Lakes \& Reservoirs Research and Management, V7, P271, DOI 10.1046/j.1440-1770.2002.00203.x. Pijanowski BC, 2014, ENVIRON MODELL SOFTW, V51, P250, DOI 10.1016/j.envsoft.2013.09.015. Pu RL, 2011, INT J REMOTE SENS, V32, P3285, DOI 10.1080/01431161003745657. Purdy M., 2016, ACCENTURE. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. Rottensteiner F, 2014, ISPRS J PHOTOGRAMM, V93, P256, DOI 10.1016/j.isprsjprs.2013.10.004. Rumelhart D. E., 1985, TECH REP, DOI 10.1016/b978-1-4832-1446-7.50035-2. Salehi M, 2014, IEEE J-STARS, V7, P1394, DOI 10.1109/JSTARS.2013.2273074. Seto KC, 2016, SCIENCE, V352, P943, DOI 10.1126/science.aaf7439. Seto KC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023777. Shai S., 2014, UNDERSTANDING MACHIN. Snoek J., 2012, ADV NEURAL INFORM PR, VVolume 25, DOI DOI 10.5555/2999325.2999464. TATA Consultancy Service, 2017, GETT SMART DAY IS EL. Tayyebi A, 2014, INT J APPL EARTH OBS, V28, P102, DOI 10.1016/j.jag.2013.11.008. U. N. Dep. Econ. Soc. Aff. Popul. Div, 2014, WORLD URB PROSP 2014. United Nations Department of Economic and Social Affairs Population Division, 2016, WORLDS CIT 2016 DAT. Wang HT, 2014, INT J REMOTE SENS, V35, P7118, DOI 10.1080/01431161.2014.965288. Yang X, 2016, FRONT EARTH SCI-PRC, V10, P245, DOI 10.1007/s11707-015-0522-7. Yao H., 2012, POLISH J ENV STUDIES, V21. Zhang PZ, 2016, ISPRS J PHOTOGRAMM, V116, P24, DOI 10.1016/j.isprsjprs.2016.02.013. Zhu XX, 2017, IEEE GEOSC REM SEN M, V5, P8, DOI 10.1109/MGRS.2017.2762307.}, Number-of-Cited-References = {63}, Times-Cited = {55}, Usage-Count-Last-180-days = {16}, Usage-Count-Since-2013 = {135}, Journal-ISO = {Comput. Environ. Urban Syst.}, Doc-Delivery-Number = {HK8GI}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000458227000020}, DA = {2023-04-22}, } @article{ WOS:000844329200002, Author = {Liu, Pengyuan and Biljecki, Filip}, Title = {A review of spatially-explicit GeoAI applications in Urban Geography}, Journal = {INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION}, Year = {2022}, Volume = {112}, Month = {AUG}, Abstract = {Urban Geography studies forms, social fabrics, and economic structures of cities from a geographic perspective. Catalysed by the increasingly abundant spatial big data, Urban Geography seeks new models and research paradigms to explain urban phenomena and address urban issues. Recent years have witnessed significant advances in spatially-explicit geospatial artificial intelligence (GeoAI), which integrates spatial studies and AI, primarily focusing on incorporating spatial thinking and concept into deep learning models for urban studies. This paper provides an overview of techniques and applications of spatially-explicit GeoAI in Urban Geography based on 581 papers identified using a systematic review approach. We examined and screened papers in three scopes of Urban Geography (Urban Dynamics, Social Differentiation of Urban Areas, and Social Sensing) and found that although GeoAI is a trending topic in geography and the applications of deep neural network-based methods are proliferating, the development of spatially-explicit GeoAI models is still at their early phase. We identified three challenges of existing models and advised future research direction towards developing multi-scale explainable spatially-explicit GeoAI. This review paper acquaints beginners with the basics of GeoAI and state-of-the-art and serve as an inspiration to attract more research in exploring the potential of spatially-explicit GeoAI in studying the socio-economic dimension of the city and urban life.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Biljecki, F (Corresponding Author), Natl Univ Singapore, Dept Architecture, Singapore, Singapore. Liu, Pengyuan; Biljecki, Filip, Natl Univ Singapore, Dept Architecture, Singapore, Singapore. Biljecki, Filip, Natl Univ Singapore, Dept Real Estate, Singapore, Singapore.}, DOI = {10.1016/j.jag.2022.102936}, EarlyAccessDate = {AUG 2022}, Article-Number = {102936}, ISSN = {1569-8432}, EISSN = {1872-826X}, Keywords = {Urban studies; Deep learning; Socio-economics; Location encoder; Graph neural network}, Keywords-Plus = {RESOURCE-ALLOCATION; BIG DATA; INFORMATION; PATTERNS; LIFE}, Research-Areas = {Remote Sensing}, Web-of-Science-Categories = {Remote Sensing}, Author-Email = {pyliu93@nus.edu.sg filip@nus.edu.sg}, Affiliations = {National University of Singapore; National University of Singapore}, ResearcherID-Numbers = {Liu, Pengyuan/HCH-0879-2022 }, ORCID-Numbers = {Liu, Pengyuan/0000-0002-5443-5910}, Funding-Acknowledgement = {Singapore Ministry of Education Academic Research Fund Tier 1}, Funding-Text = {We thank the editor and 5 anonymous reviewers for their helpful and constructive comments and suggestions. We are grateful to the members of the NUS Urban Analytics Lab for the discussions. This research is part of the project Multi -scale Digital Twins for the Urban Environment: From Heartbeats to Cities, which is supported by the Singapore Ministry of Education Academic Research Fund Tier 1.}, Cited-References = {Abdelrahman MM, 2022, BUILD ENVIRON, V218, DOI 10.1016/j.buildenv.2022.109090. Abdelrahman MM, 2022, BUILD ENVIRON, V207, DOI 10.1016/j.buildenv.2021.108532. Agnew J., 2011, SAGE HDB GEOGRAPHICA. Ballatore A, 2018, LECT NOTES GEOINF CA, P149, DOI 10.1007/978-3-319-78208-9\_8. Berthon K, 2021, LANDSCAPE URBAN PLAN, V205, DOI 10.1016/j.landurbplan.2020.103959. Biljecki F, 2021, LANDSCAPE URBAN PLAN, V215, DOI 10.1016/j.landurbplan.2021.104217. Bryman Alan, 1988, QUANTITY QUALITY SOC. Bukuluki Paul, 2020, Soc Sci Humanit Open, V2, P100045, DOI 10.1016/j.ssaho.2020.100045. Cai L, 2020, T GIS, V24, P736, DOI 10.1111/tgis.12644. Castree N., 2013, DICT HUMAN GEOGRAPHY. Chen B, 2022, INT J APPL EARTH OBS, V109, DOI 10.1016/j.jag.2022.102794. Dai A, 2017, PROC CVPR IEEE, P6545, DOI 10.1109/CVPR.2017.693. De Sabbata S., 2019, P 22 AGILE C GEOGRAP. Do LNN, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1285. Docampo M.G., 2014, INT J POPUL RES, V2014. Egenhofer M. J., 1993, SIGMOD Record, V22, P398, DOI 10.1145/170036.170096. Fan F, 2014, J GEOGR SCI, V24, P492, DOI 10.1007/s11442-014-1102-6. Floridi Luciano., 2014, 4 REVOLUTION INFOSPH. Frias-Martinez V, 2014, ENG APPL ARTIF INTEL, V35, P237, DOI 10.1016/j.engappai.2014.06.019. Fuchs C, 2008, J COMMUN, V58, P402, DOI 10.1111/j.1460-2466.2008.00391\_5.x. Gale CG, 2016, J SPAT INF SCI, P1, DOI 10.5311/JOSIS.2016.12.232. Gale CG, 2013, T GIS, V17, P563, DOI 10.1111/tgis.12035. Gantumur B, 2022, GEOCARTO INT, V37, P494, DOI 10.1080/10106049.2020.1723714. Gao S., 2021, GEOSPATIAL ARTIFICIA. Gebru T, 2017, P NATL ACAD SCI USA, V114, P13108, DOI 10.1073/pnas.1700035114. Gervasoni L, 2018, PR INT CONF DATA SC, P594, DOI 10.1109/DSAA.2018.00076. Glaeser EL, 2018, ECON INQ, V56, P114, DOI 10.1111/ecin.12364. Goodchild M., 2001, AGENT BASED MODELS L, P13. Graham M, 2015, GEO-GEOGR ENVIRON, V2, P88, DOI 10.1002/geo2.8. Graham M, 2014, ANN ASSOC AM GEOGR, V104, P746, DOI 10.1080/00045608.2014.910087. Gray J., 2019, P 22 AGILE C GEOGRAP. Grekousis G, 2019, COMPUT ENVIRON URBAN, V74, P244, DOI 10.1016/j.compenvurbsys.2018.10.008. Guo HW, 2021, ENVIRON PLANN A, V53, P1855, DOI 10.1177/0308518X211035400. Hall T., 2012, URBAN GEOGR. Harris R., 2005, GEODEMOGRAPHICS GIS. He JL, 2018, INT J GEOGR INF SCI, V32, P2076, DOI 10.1080/13658816.2018.1480783. Hu S, 2021, COMPUT ENVIRON URBAN, V87, DOI 10.1016/j.compenvurbsys.2021.101619. Hu YJ, 2019, ANN AM ASSOC GEOGR, V109, P1052, DOI 10.1080/24694452.2018.1535886. Huang TY, 2019, 27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), P612, DOI 10.1145/3347146.3363464. Huang X, 2019, INT J DIGIT EARTH, V12, P1248, DOI 10.1080/17538947.2018.1523956. Jabareen Y, 2021, PLAN THEOR, V20, P211, DOI 10.1177/1473095220976942. Janowicz K, 2020, INT J GEOGR INF SCI, V34, P625, DOI 10.1080/13658816.2019.1684500. Jiang WW, 2021, Arxiv. Jiang Z., 2016, SPATIAL BIG DATA ANA. Jones CE, 2018, J SPAT INT SCI, P1, DOI 10.5311/JOSIS.2018.17.393. Kang Y, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10030137. Khallaf R, 2021, AUTOMAT CONSTR, V129, DOI 10.1016/j.autcon.2021.103760. Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481. Kristan M., 2019, PHILOS TECHNOLOGY, P3. Kruse J, 2021, COMPUT ENVIRON URBAN, V90, DOI 10.1016/j.compenvurbsys.2021.101693. Kumar N, 2021, TRANSPORT RES C-EMER, V133, DOI 10.1016/j.trc.2021.103432. LEITNER H, 1989, PROG HUM GEOG, V13, P551, DOI 10.1177/030913258901300405. Leszczynski A, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716661366. Li H, 2022, INT J APPL EARTH OBS, V110, DOI 10.1016/j.jag.2022.102804. Li H, 2021, INT J APPL EARTH OBS, V104, DOI 10.1016/j.jag.2021.102571. Li M, 2014, EUR J REMOTE SENS, V47, P389, DOI 10.5721/EuJRS20144723. Li MX, 2021, INT J GEOGR INF SCI, V35, P2489, DOI 10.1080/13658816.2021.1912347. Li WW, 2020, J SPAT INT SCI, P71, DOI 10.5311/JOSIS.2020.20.658. Li XC, 2020, ECOL PROCESS, V9, DOI 10.1186/s13717-020-00234-9. Li Y., 2018, ARXIV170701926, P1. Liu P., 2022, J SPATIAL INF SCI. Liu PY, 2021, COMPUT ENVIRON URBAN, V86, DOI 10.1016/j.compenvurbsys.2020.101583. Liu SJ, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10080545. Liu Y., 2021, LIBR J, P71. Liu ZH, 2021, CICTP 2021: ADVANCED TRANSPORTATION, ENHANCED CONNECTION, P467. Longley PA, 2004, ANN ASSOC AM GEOGR, V94, P503, DOI 10.1111/j.1467-8306.2004.00411.x. Lu XD, 1999, TRANSPORT RES A-POL, V33, P1, DOI 10.1016/S0965-8564(98)00020-2. Lu Y, 2020, ENVIRON PLAN B-URBAN, V47, P1605, DOI 10.1177/2399808319830971. Ma L, 2019, ISPRS J PHOTOGRAMM, V152, P166, DOI 10.1016/j.isprsjprs.2019.04.015. Ma LF, 2022, INT J APPL EARTH OBS, V111, DOI 10.1016/j.jag.2022.102836. MACK RW, 1964, ANN AM ACAD POLIT SS, V352, P25, DOI 10.1177/000271626435200104. Mai GC, 2020, Arxiv. Mai GC, 2022, INT J GEOGR INF SCI, V36, P639, DOI 10.1080/13658816.2021.2004602. Mai GC, 2020, LECT NOTES GEOINF CA, P21, DOI 10.1007/978-3-030-14745-7\_2. Manley E, 2018, TRANSPORTATION, V45, P703, DOI 10.1007/s11116-016-9747-x. Mills ES, 1967, AM ECON REV, V57, P197. Monteiro J, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8080327. Morgan DL, 2013, INTEGRATING QUALITAT. Noszczyk T, 2019, HUM ECOL RISK ASSESS, V25, P1377, DOI 10.1080/10807039.2018.1468994. Oliveira V, 2010, J PLAN LIT, V24, P343, DOI 10.1177/0885412210364589. Olteanu M, 2020, NEURAL COMPUT APPL, V32, P18179, DOI 10.1007/s00521-019-04199-5. Openshaw C., 1997, ARTIF INTELL. Ou C, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11092464. Perez J, 2021, PSYCHOL MED, V51, P934, DOI {[}10.1017/S0033291719002605, 10.1145/3371140.3371145]. Purves RS, 2019, J ASSOC INF SCI TECH, V70, P1173, DOI 10.1002/asi.24194. Rana MS, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e08437. Razavi S, 2021, ENVIRON MODELL SOFTW, V144, DOI 10.1016/j.envsoft.2021.105159. Reades J, 2019, URBAN STUD, V56, P922, DOI 10.1177/0042098018789054. Ren YB, 2020, INT J GEOGR INF SCI, V34, P802, DOI 10.1080/13658816.2019.1652303. Rigolon A, 2019, J URBAN AFF, V41, P887, DOI 10.1080/07352166.2018.1562846. Sanders P., 2004, P 2004 INT SYST DYN. Scherer RW, 2019, SYST REV-LONDON, V8, DOI 10.1186/s13643-019-1188-0. Sechelea A., 2016, 2016 23 INT C TEL IC, P1. Shao ZF, 2021, GEO-SPAT INF SCI, V24, P241, DOI 10.1080/10095020.2020.1787800. Shelton T, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951716665129. Shirky C., 2010, COGNITIVE SURPLUS CR. Short J.R., 2017, INTRO URBAN GEOGRAPH. Singleton AD, 2015, GEO-GEOGR ENVIRON, V2, P69, DOI 10.1002/geo2.7. Smelser N.J., 2001, INT ENCY SOCIAL BEHA, V11. SMITH TR, 1984, PROF GEOGR, V36, P147, DOI 10.1111/j.0033-0124.1984.00147.x. Tedjopurnomo DA, 2022, IEEE T KNOWL DATA EN, V34, P1544, DOI 10.1109/TKDE.2020.3001195. Thumboo J, 2003, SOC SCI MED, V56, P1761, DOI 10.1016/S0277-9536(02)00171-5. Tomasev N, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15871-z. Turok I, 2013, ENVIRON URBAN, V25, P465, DOI 10.1177/0956247813490908. van Liempt I, 2011, URBAN STUD, V48, P3385, DOI 10.1177/0042098010397401. Vazquez JJ., 2020, TRANSP RES PROCEDIA, V47, P195, DOI {[}10.1016/j.trpro.2020.03.079, DOI 10.1016/J.TRPRO.2020.03.079]. Verma D, 2018, URBAN SCI, V2, DOI 10.3390/urbansci2030078. Walks, 2020, HDB URBAN SEGREGATIO, P395. Webber R., 2001, J TARGETING MEASUREM, V10, P55. Wong D., 2004, WORLDMINDS GEOGRAPHI, P571. Wu AN, 2021, LANDSCAPE URBAN PLAN, V214, DOI 10.1016/j.landurbplan.2021.104167. Wu AN, 2022, INT J GEOGR INF SCI, V36, P1394, DOI 10.1080/13658816.2022.2041643. Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386. Xia T, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3451394. Xie KQ, 2016, IEEE SECOND INTERNATIONAL SMART CITIES CONFERENCE (ISC2 2016), P15. Xing J., 2018, 10 INT C GEOGRAPHIC. Xu TT, 2019, LAND USE POLICY, V87, DOI 10.1016/j.landusepol.2019.104030. Yan B, 2019, T GIS, V23, P620, DOI 10.1111/tgis.12547. Yang X., 2011, URBAN REMOTE SENSING. Yang X, 2021, NEUROCOMPUTING, V446, P95, DOI 10.1016/j.neucom.2021.02.089. Yao X, 2021, IEEE T INTELL TRANSP, V22, P7474, DOI 10.1109/TITS.2020.3003310. Yap W, 2022, COMPUT ENVIRON URBAN, V96, DOI 10.1016/j.compenvurbsys.2022.101825. Yin JD, 2021, INT J APPL EARTH OBS, V103, DOI 10.1016/j.jag.2021.102514. Yin Y, 2019, 27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), P416, DOI 10.1145/3347146.3359067. Yu Y., 2021, IEEE J-STARS, V15, P1221. Zahra K, 2017, GEO-SPAT INF SCI, V20, P231, DOI 10.1080/10095020.2017.1371903. Zhai YQ, 2020, INT J GEOGR INF SCI, V34, P1475, DOI 10.1080/13658816.2020.1711915. Zhang F, 2018, COMPUT ENVIRON URBAN, V71, P153, DOI 10.1016/j.compenvurbsys.2018.05.005. Zhang T, 2021, COMPUT ENVIRON URBAN, V90, DOI 10.1016/j.compenvurbsys.2021.101709. Zhang W., 2022, COMPUT INTEL NEUROSC, V2022. Zhang Y, 2020, COMPUT ENVIRON URBAN, V83, DOI 10.1016/j.compenvurbsys.2020.101517. Zhang Y, 2020, COMPUT ENVIRON URBAN, V79, DOI 10.1016/j.compenvurbsys.2019.101403. Zhang Y, 2020, IEEE T INTELL TRANSP, V21, P617, DOI 10.1109/TITS.2019.2896460. Zhao TH, 2022, COMPUT ENVIRON URBAN, V94, DOI 10.1016/j.compenvurbsys.2022.101776. Zhou F, 2021, AAAI CONF ARTIF INTE, V35, P15033. Zhou GL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234522. Zhou L, 2021, IEEE I C VI COM I PR, DOI 10.1109/VCIP53242.2021.9675363. Zhu AX, 2018, ANN GIS, V24, P225, DOI 10.1080/19475683.2018.1534890. Zhu D, 2022, GEOINFORMATICA, V26, P645, DOI 10.1007/s10707-021-00454-x. Zhu D, 2020, ANN AM ASSOC GEOGR, V110, P408, DOI 10.1080/24694452.2019.1694403. Zhu D, 2020, INT J GEOGR INF SCI, V34, P735, DOI 10.1080/13658816.2019.1599122. Zhu Q, 2022, EXPERT SYST APPL, V190, DOI 10.1016/j.eswa.2021.116115.}, Number-of-Cited-References = {142}, Times-Cited = {12}, Usage-Count-Last-180-days = {39}, Usage-Count-Since-2013 = {44}, Journal-ISO = {Int. J. Appl. Earth Obs. Geoinf.}, Doc-Delivery-Number = {3Z3PH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000844329200002}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000702075400001, Author = {Chaturvedi, Vineet and de Vries, Walter T.}, Title = {Machine Learning Algorithms for Urban Land Use Planning: A Review}, Journal = {URBAN SCIENCE}, Year = {2021}, Volume = {5}, Number = {3}, Month = {SEP}, Abstract = {Urbanization is persistent globally and has increasingly significant spatial and environmental consequences. It is especially challenging in developing countries due to the increasing pressure on the limited resources, and damage to the bio-physical environment. Traditional analytical methods of studying the urban land use dynamics associated with urbanization are static and tend to rely on top-down approaches, such as linear and mathematical modeling. These traditional approaches do not capture the nonlinear properties of land use change. New technologies, such as artificial intelligence (AI) and machine learning (ML) have made it possible to model and predict the nonlinear aspects of urban land dynamics. AI and ML are programmed to recognize patterns and carry out predictions, decision making and perform operations with speed and accuracy. Classification, analysis and modeling using earth observation-based data forms the basis for the geospatial support for land use planning. In the process of achieving higher accuracies in the classification of spatial data, ML algorithms are being developed and being improved to enhance the decision-making process. The purpose of the research is to bring out the various ML algorithms and statistical models that have been applied to study aspects of land use planning using earth observation-based data (EO). It intends to review their performance, functional requirements, interoperability requirements and for which research problems can they be applied best. The literature review revealed that random forest (RF), deep learning like convolutional neural network (CNN) and support vector machine (SVM) algorithms are best suited for classification and pattern analysis of earth observation-based data. GANs (generative adversarial networks) have been used to simulate urban patterns. Algorithms like cellular automata, spatial logistic regression and agent-based modeling have been used for studying urban growth, land use change and settlement pattern analysis. Most of the papers reviewed applied ML algorithms for classification of EO data and to study urban growth and land use change. It is observed that hybrid approaches have better performance in terms of accuracies, efficiency and computational cost.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Chaturvedi, V (Corresponding Author), Tech Univ Munich TUM, Chair Land Management, D-80333 Munich, Germany. Chaturvedi, Vineet; de Vries, Walter T., Tech Univ Munich TUM, Chair Land Management, D-80333 Munich, Germany.}, DOI = {10.3390/urbansci5030068}, Article-Number = {68}, EISSN = {2413-8851}, Keywords = {urban growth; land use change; earth observation; modeling}, Keywords-Plus = {CELLULAR-AUTOMATA; LOGISTIC-REGRESSION; CLASSIFICATION; GROWTH; COVER; PERFORMANCE; EXPANSION; MODELS}, Research-Areas = {Environmental Sciences \& Ecology; Geography; Public Administration; Urban Studies}, Web-of-Science-Categories = {Environmental Sciences; Environmental Studies; Geography; Regional \& Urban Planning; Urban Studies}, Author-Email = {vineet.chaturvedi@tum.de wt.de-vries@tum.de}, Affiliations = {Technical University of Munich}, ResearcherID-Numbers = {de Vries, Walter Timo/D-4256-2009}, ORCID-Numbers = {de Vries, Walter Timo/0000-0002-1942-4714}, Funding-Acknowledgement = {TUM open access publishing fund}, Funding-Text = {This research was funded by TUM open access publishing fund.}, Cited-References = {Abdi AM, 2020, GISCI REMOTE SENS, V57, P1, DOI 10.1080/15481603.2019.1650447. Albert A, 2018, INT GEOSCI REMOTE SE, P2095. Amler B., 1999, LAND USE PLANNING ME. {[}Anonymous], HD PRO APPLYING EDGE. {[}Anonymous], 2007, ARXIV07093967V1. Arsanjani JJ, 2013, INT J APPL EARTH OBS, V21, P265, DOI 10.1016/j.jag.2011.12.014. Augustijn-Beckers EW, 2011, COMPUT ENVIRON URBAN, V35, P93, DOI 10.1016/j.compenvurbsys.2011.01.001. Batisani N, 2009, APPL GEOGR, V29, P235, DOI 10.1016/j.apgeog.2008.08.007. Belgiu M, 2014, REMOTE SENS-BASEL, V6, P1347, DOI 10.3390/rs6021347. Berberoglu S, 2016, LANDSCAPE URBAN PLAN, V153, P11, DOI 10.1016/j.landurbplan.2016.04.017. Cao C, 2019, ENVIRONMENTS, V6, DOI 10.3390/environments6020025. Clarke KC., 2014, HDB REGIONAL SCI, P1217, DOI {[}10.1007/978-3-642-23430-9\_63, DOI 10.1007/978-3-642-23430-9\_63]. Decraene J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080309. Duque JC, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9090895. Espinola M, 2008, COMM COM INF SC, V19, P521. Feng YJ, 2016, STOCH ENV RES RISK A, V30, P1387, DOI 10.1007/s00477-015-1128-z. Gharaibeh A, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05092. Hagenauer J, 2019, INT J GEOGR INF SCI, V33, P1399, DOI 10.1080/13658816.2019.1579333. Hernandez IER, 2018, INT J REMOTE SENS, V39, P1175, DOI 10.1080/01431161.2017.1395968. Hu ZY, 2007, COMPUT ENVIRON URBAN, V31, P667, DOI 10.1016/j.compenvurbsys.2006.11.001. Jin BX, 2019, J INDIAN SOC REMOTE, V47, P951, DOI 10.1007/s12524-019-00945-3. Kamusoko C, 2015, ISPRS INT J GEO-INF, V4, P447, DOI 10.3390/ijgi4020447. Li GE, 2021, LAND-BASEL, V10, DOI 10.3390/land10060648. Maithani S, 2009, J INDIAN SOC REMOTE, V37, P363, DOI 10.1007/s12524-009-0041-7. Mustafa A, 2017, LAND USE POLICY, V69, P529, DOI 10.1016/j.landusepol.2017.10.009. NAT'L JUVENILE DEF. CTR, 2014, ADV LAND CHANG MOD O, P1, DOI DOI 10.17226/18385. Niklas U, 2020, URBAN SCI, V4, DOI 10.3390/urbansci4030036. Nong Y, 2011, GEO-SPAT INF SCI, V14, P62, DOI 10.1007/s11806-011-0427-x. Pal M, 2005, INT J REMOTE SENS, V26, P1007, DOI 10.1080/01431160512331314083. Rodriguez G., 2014, GENERATION TEST CASE. Rodriguez-Galiano VF, 2012, ISPRS J PHOTOGRAMM, V67, P93, DOI 10.1016/j.isprsjprs.2011.11.002. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Samardzic-Petrovic M, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6120387. Samardzic-Petrovic M, 2016, T GIS, V20, P718, DOI 10.1111/tgis.12174. Sun B, 2018, LAND-BASEL, V7, DOI 10.3390/land7040144. Torraco R.J., 2005, HUM RESOUR DEV REV, V4, P356, DOI {[}DOI 10.1177/1534484305278283, 10.1177/1534484305278283]. Tso B., 2001, CLASSIFICATION METHO, V2nd ed., P255, DOI {[}10.4324/9780203303566, DOI 10.4324/9780203303566]. Ustuner M, 2015, EUR J REMOTE SENS, V48, P403, DOI 10.5721/EuJRS20154823. Vali A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12152495. Webster J, 2002, MIS QUART, V26, pXIII. Xie C., 2006, UCGE REPORTS, V20243. Yuan H, 2009, REMOTE SENS-BASEL, V1, P243, DOI 10.3390/rs1030243.}, Number-of-Cited-References = {42}, Times-Cited = {14}, Usage-Count-Last-180-days = {20}, Usage-Count-Since-2013 = {54}, Journal-ISO = {Urban Sci.}, Doc-Delivery-Number = {UZ2YH}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000702075400001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000855633600008, Author = {Tekouabou, Stephane Cedric Koumetio and Diop, El Bachir and Azmi, Rida and Jaligot, Remi and Chenal, Jerome}, Title = {Reviewing the application of machine learning methods to model urban form indicators in planning decision support systems: Potential, issues and challenges}, Journal = {JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES}, Year = {2022}, Volume = {34}, Number = {8, B}, Pages = {5943-5967}, Month = {SEP}, Abstract = {Modern cities dynamically face several challenges including digitalization, sustainability, resilience and economic development. Urban planners and designers must develop urban forms that address these chal-lenges. With the integration of new communication and information technologies (Smartphone, GIS, Drones, IoT, Sensors, etc.), urban activities have generated large volumes of urban data. The rapid growth in terms of collection and big data storage capacities combined with the ever-increasing computational power of modern machines have made possible their efficient treatment using machine (ML) and deep learning (DL) algorithms. The emergence of such groundbreaking methods has in turn helped to address the challenges of modern-day cities in several domains (health, security, mobility, etc). ML algorithms have been proposed to model the urban form's indicators for intelligent urban planning decision making. They have been proven to perform better than the traditional methods. However, the potential of ML has not yet been fully explored in research for urban planning decision support. This paper presents a com-prehensive review of ML applications for mitigating the challenges of modern cities planning. First and foremost, an overview of the urban forms, sources of urban data, the ML and DL techniques as well as their potential in solving the aforementioned challenges. For each ML method, we will highlight it work-ing principle, advantages, disadvantages and potential applications using comparative tables. Finally, we will discuss the issues and challenges of ML methods in urban form's modeling while ultimately advocat-ing some future research directions.(c) 2022 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Tekouabou, SCK (Corresponding Author), Mohamed VI Polytech Univ UM6P, Ctr Urban Syst CUS, Lot 660,Hay Moulay Rachid, Ben Guerir 43150, Morocco. Tekouabou, Stephane Cedric Koumetio; Diop, El Bachir; Azmi, Rida; Chenal, Jerome, Mohamed VI Polytech Univ UM6P, Ctr Urban Syst CUS, Lot 660,Hay Moulay Rachid, Ben Guerir 43150, Morocco. Jaligot, Remi; Chenal, Jerome, Ecole Polytech Fed Lausanne EPFL, Urban \& Reg Planning Community CEAT, Lausanne, Switzerland.}, DOI = {10.1016/j.jksuci.2021.08.007}, EarlyAccessDate = {AUG 2022}, ISSN = {1319-1578}, EISSN = {2213-1248}, Keywords = {Urban form; Urban planning; Artificial intelligence; Machine learning; Deep learning; Urban models; Urban data; Neural networks; Ensemble methods; Urban big data}, Keywords-Plus = {LAND-USE; ALGORITHM; REGRESSION; NETWORK; METRICS; ORANGE}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Information Systems}, Author-Email = {ctekouaboukoumetio@gmail.com}, Affiliations = {Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne}, ResearcherID-Numbers = {azmi, rida/O-7311-2017 Tekouabou Koumetio, Cédric Stéphane/AAK-8507-2020 }, ORCID-Numbers = {azmi, rida/0000-0002-4903-176X Tekouabou Koumetio, Cédric Stéphane/0000-0003-3627-5746 DIOP, El Bachir/0000-0002-1839-2431}, Cited-References = {Alaoui EA, 2021, SUSTAIN CITIES SOC, V67, DOI 10.1016/j.scs.2020.102702. Abrantes P, 2019, ENVIRON PLAN B-URBAN, V46, P47, DOI 10.1177/2399808317700140. Acharya UR, 2017, COMPUT BIOL MED, V88, P72, DOI 10.1016/j.compbiomed.2017.06.022. Al-Garadi MA, 2020, IEEE COMMUN SURV TUT, V22, P1646, DOI 10.1109/COMST.2020.2988293. Alaoui EA, 2021, BIG DATA MIN ANAL, V4, P33, DOI 10.26599/BDMA.2020.9020023. ANIELLO C, 1995, COMPUT GEOSCI-UK, V21, P965, DOI 10.1016/0098-3004(95)00033-5. {[}Anonymous], 1995, HDB BRAIN THEORY NEU, DOI {[}DOI 10.1109/IJCNN.2004.1381049, 10.5555/303568.303704]. {[}Anonymous], 2012, SUSTAINABLE URBAN EN. Arief-Ang IB, 2018, ACM T SENSOR NETWORK, V14, DOI 10.1145/3217214. Arribas-Bel D, 2021, J URBAN ECON, V125, DOI 10.1016/j.jue.2019.103217. Barlow HB, 1989, NEURAL COMPUT, V1, P295, DOI 10.1162/neco.1989.1.3.295. Bashir S, 2014, INT CONF FRONT INFO, P226, DOI 10.1109/FIT.2014.50. Basiri A, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16091510. BERKSON J, 1951, BIOMETRICS, V7, P327, DOI 10.2307/3001655. Berkson J, 1944, J AM STAT ASSOC, V39, P357, DOI 10.2307/2280041. Bolon-Canedo V, 2019, INFORM FUSION, V52, P1, DOI 10.1016/j.inffus.2018.11.008. Borchmann D, 2020, DISCRETE APPL MATH, V273, P30, DOI 10.1016/j.dam.2019.02.036. Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324. Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/bf00058655. Caron M, 2018, LECT NOTES COMPUT SC, V11218, P139, DOI 10.1007/978-3-030-01264-9\_9. Caruana R, 2007, P 11 INT C ART INT S, V2, P339. Chan JCW, 2001, PHOTOGRAMM ENG REM S, V67, P213. Chang S, 2019, ENRGY PROCED, V158, P3994, DOI 10.1016/j.egypro.2019.01.841. Chen SS, 2020, BUILD ENVIRON, V185, DOI 10.1016/j.buildenv.2020.107314. Chen YM, 2013, ANN ASSOC AM GEOGR, V103, P1567, DOI 10.1080/00045608.2012.740360. Cherif W, 2018, PROCEDIA COMPUT SCI, V127, P293, DOI 10.1016/j.procs.2018.01.125. Cho K., 2014, P 2014 C EMPIRICAL M, P1724, DOI {[}DOI 10.3115/V1/D14-1179, 10.3115/v1/D14-1179, 10.3115/v1/d14-1179]. Choung YJ, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9061098. Chung J., 2014, NIPS 2014 WORKSHOP D, DOI DOI 10.48550/ARXIV.1412.3555. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. De Palma A., 1989, ANN DECONOMIE STATIS, P151. Dempsey N, 2010, FUTURE CITY, V2, P21, DOI 10.1007/978-1-4020-8647-2\_2. Demsar J, 2004, LECT NOTES ARTIF INT, V3202, P537. Demsar J, 2013, J MACH LEARN RES, V14, P2349. Deng J., 2009, 2009 IEEE C COMP VIS, P248. Deters JK, 2017, J ELECTR COMPUT ENG, V2017, DOI 10.1155/2017/5106045. Diez-Olivan A, 2019, INFORM FUSION, V50, P92, DOI 10.1016/j.inffus.2018.10.005. Duerr I, 2018, ENVIRON MODELL SOFTW, V102, P29, DOI 10.1016/j.envsoft.2018.01.002. EOS, 1999, ADV SPAC THERM EM RE. Faghmous JH, 2014, STUD BIG DATA, V1, P83, DOI 10.1007/978-3-642-40837-3\_3. Frenkel A, 2008, ENVIRON PLANN B, V35, P56, DOI 10.1068/b32155. Freund Y., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML `96), P148. Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771. Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504. Fu R, 2016, 2016 31ST YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), P324, DOI 10.1109/YAC.2016.7804912. Gao SH, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17249578. Geiss C, 2020, ISPRS J PHOTOGRAMM, V170, P57, DOI 10.1016/j.isprsjprs.2020.10.004. Geng X, 2019, AAAI CONF ARTIF INTE, P3656. Geron, 2019, HANDS ON MACHINE LEA. Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1. Gomez JA, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010109. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Grant TL, 2010, BMC PUBLIC HEALTH, V10, DOI 10.1186/1471-2458-10-677. Guo TM, 2017, 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), P721, DOI 10.1109/ICBDA.2017.8078730. Guo ZF, 2021, J FLOOD RISK MANAG, V14, DOI 10.1111/jfr3.12684. Hajiramezanali E, 2018, Arxiv. Han MJ, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11010030. Han S, 2016, Arxiv, DOI DOI 10.1109/ICC.2016.7511104. Hart M, 2009, THEOR APPL CLIMATOL, V95, P397, DOI 10.1007/s00704-008-0017-5. He QS, 2018, LAND USE POLICY, V78, P726, DOI 10.1016/j.landusepol.2018.07.020. Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428. Hecht R., 2013, P 26 INT CARTOGRAPHI. Hecht R, 2015, INT J CARTOGRAPHY, V1, P18, DOI {[}https://doi.org/10.1080/23729333.2015.1055644, 10.1080/23729333.2015.1055644, DOI 10.1080/23729333.2015.1055644]. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Hinton GE, 2011, LECT NOTES COMPUT SC, V6791, P44, DOI 10.1007/978-3-642-21735-7\_6. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Hosmer DW, 2013, WILEY SER PROBAB ST, P1. Huang G, 2017, PROC CVPR IEEE, P2261, DOI 10.1109/CVPR.2017.243. Huang JG, 2007, LANDSCAPE URBAN PLAN, V82, P184, DOI 10.1016/j.landurbplan.2007.02.010. Ibrahim MR, 2019, COMPUT ENVIRON URBAN, V76, P31, DOI 10.1016/j.compenvurbsys.2019.03.005. Jack E, 2014, INT J BEHAV NUTR PHY, V11, DOI 10.1186/1479-5868-11-71. Janarthanan R, 2021, SUSTAIN CITIES SOC, V67, DOI 10.1016/j.scs.2021.102720. Jindal A, 2016, IEEE T IND INFORM, V12, P1005, DOI 10.1109/TII.2016.2543145. Jochem WC, 2018, COMPUT ENVIRON URBAN, V69, P104, DOI 10.1016/j.compenvurbsys.2018.01.004. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Kabano P, 2021, LANDSCAPE URBAN PLAN, V206, DOI 10.1016/j.landurbplan.2020.103989. Kafy A.-A., 2021, ENV CHALL, V4, P100084, DOI {[}10.1016/j.envc.2021.100084, DOI 10.1016/J.ENVC.2021.100084]. Khan K, 2014, 2014 FIFTH INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES (ICADIWT), P232, DOI 10.1109/ICADIWT.2014.6814687. Kontokosta CE, 2018, COMPUT ENVIRON URBAN, V70, P151, DOI 10.1016/j.compenvurbsys.2018.03.004. Koschwitz D, 2018, ENERGY, V165, P134, DOI 10.1016/j.energy.2018.09.068. Koumetio S.C.T., 2021, MACHINE INTELLIGENCE, P107. Krishna K, 1999, IEEE T SYST MAN CY B, V29, P433, DOI 10.1109/3477.764879. Krizhevsky Alex, 2017, Communications of the ACM, V60, P84, DOI 10.1145/3065386. Kuo CCJ, 2016, J VIS COMMUN IMAGE R, V41, P406, DOI 10.1016/j.jvcir.2016.11.003. Lamb WF, 2019, NAT CLIM CHANGE, V9, P279, DOI 10.1038/s41558-019-0440-x. LeCun Y, 2015, LENET 5 CONVOLUTIONA, V20, P5. Lee C, 2019, J ENVIRON MANAGE, V246, P192, DOI 10.1016/j.jenvman.2019.05.146. Lee SH, 2008, INNOV-MANAG POLICY P, V10, P282, DOI 10.5172/impp.453.10.2-3.282. Lewis D. D., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P4, DOI 10.1007/BFb0026666. Li S.Z., 2009, ENCY BIOMETRICS, P659, DOI DOI 10.1007/978-0-387-73003-5\_196. Li X, 2020, FUTURE GENER COMP SY, V107, P871, DOI 10.1016/j.future.2018.02.017. Liu L, 2017, COMPUT ENVIRON URBAN, V65, P113, DOI 10.1016/j.compenvurbsys.2017.06.003. Liu ZY, 2019, TRANSPORT RES C-EMER, V108, P130, DOI 10.1016/j.trc.2019.09.006. Loonis Vincent., 2006, HIST MESURE, VXXI, P221. Lu SQ, 2021, ALEX ENG J, V60, P87, DOI 10.1016/j.aej.2020.06.008. Lu YD, 2008, TRANSPORT RES REC, P132, DOI 10.3141/2082-16. Luxen C. Vetter, 2011, P 19 ACM SIGSPATIAL, P513, DOI {[}DOI 10.1145/2093973.2094062, 10.1145/2093973.2094062]. Ma J, 2020, LAND USE POLICY, V94, DOI 10.1016/j.landusepol.2020.104537. Maignant G., 2005, ACT C DEV URB DUR GE. Makhzani A, 2016, Arxiv. Matsugu M, 2003, NEURAL NETWORKS, V16, P555, DOI 10.1016/S0893-6080(03)00115-1. Middel A, 2019, LANDSCAPE URBAN PLAN, V183, P122, DOI 10.1016/j.landurbplan.2018.12.001. Middel A, 2018, URBAN CLIM, V25, P120, DOI 10.1016/j.uclim.2018.05.004. Mienye Ibomoiye Domor, 2020, Informatics in Medicine Unlocked, V18, P302, DOI 10.1016/j.imu.2020.100307. Milojevic-Dupont N, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242010. Mishra S, 2020, J KING SAUD UNIV-COM, V32, P949, DOI 10.1016/j.jksuci.2017.12.004. Mitchell T. M., 1997, MACH LEARN. Mitzenmacher Michael, 2017, PROBABILITY COMPUTIN. Mohri Mehryar, 2018, ADAPTIVE COMPUTATION. Moon TK, 1996, IEEE SIGNAL PROC MAG, V13, P47, DOI 10.1109/79.543975. Mooney R.J., 2007, P NAT C ART INT, V7, P608, DOI DOI 10.5555/1619645.1619743. Moosavi V, 2017, Arxiv. Munoz A, 2014, MACHINE LEARNING OPT. Ng A., 2011, CS294A LECT NOTES, V2011, P1. Nguyen LTT, 2013, EXPERT SYST APPL, V40, P2305, DOI 10.1016/j.eswa.2012.10.035. Nice KA, 2020, URBAN SCI, V4, DOI 10.3390/urbansci4020027. Niu HF, 2020, J URBAN PLAN DEV, V146, DOI 10.1061/(ASCE)UP.1943-5444.0000566. Novack T, 2011, REMOTE SENS-BASEL, V3, P2263, DOI 10.3390/rs3102263. Okwuashi O, 2021, REMOTE SENS APPL, V21, DOI 10.1016/j.rsase.2020.100461. Opitz D., 1999, J ARTIF INTELL RES, V11, P169, DOI DOI 10.1613/JAIR.614. Pascanu R., 2013, P 30 INT C MACH LEAR, VVolume 28, P1310. Press W.H, 2002, NUMERICAL RECIPES C. Reades J, 2019, URBAN STUD, V56, P922, DOI 10.1177/0042098018789054. Rish I, 2001, IJCAI 2001 WORKSH EM, DOI DOI 10.1039/B104835J. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. Roy A, 2018, NEUROCOMPUTING, V286, P179, DOI 10.1016/j.neucom.2018.01.060. Ruggieri S, 2002, IEEE T KNOWL DATA EN, V14, P438, DOI 10.1109/69.991727. RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0. Schaeffer SE, 2007, COMPUT SCI REV, V1, P27, DOI 10.1016/j.cosrev.2007.05.001. Schwarz N, 2010, LANDSCAPE URBAN PLAN, V96, P29, DOI 10.1016/j.landurbplan.2010.01.007. Sen Maitra D, 2015, PROC INT CONF DOC, P1021, DOI 10.1109/ICDAR.2015.7333916. Shafizadeh-Moghadam H, 2017, COMPUT ENVIRON URBAN, V64, P297, DOI 10.1016/j.compenvurbsys.2017.04.002. Shelton Jeffrey, 2019, International Journal of Transportation Science and Technology, V8, P25, DOI 10.1016/j.ijtst.2018.06.004. Shen HF, 2018, J GEOPHYS RES-ATMOS, V123, P13875, DOI 10.1029/2018JD028759. Sinta D., 2014, APPL MATH SCI, V8, P7993. Smola AJ, 2004, STAT COMPUT, V14, P199, DOI 10.1023/B:STCO.0000035301.49549.88. Subasi A, 2020, PRACTICAL MACHINE LE. Sun YW, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11080959. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. TABIOS GQ, 1985, WATER RESOUR BULL, V21, P365. Tan CQ, 2018, LECT NOTES COMPUT SC, V11141, P270, DOI 10.1007/978-3-030-01424-7\_27. Tekouabou S.C.K., 2019, INT C ADV INTELLIGEN, P352. Tekouabou S.C.K., 2020, P 3 INT C NETWORKING, P1. Tekouabou SCK, 2020, J KING SAUD UNIV-COM, V34, P687, DOI 10.1016/j.jksuci.2020.01.008. Thayse A., 1988, APPROCHE LOGIQUE INT. Toivonen H, 1996, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, P134. Tran DX, 2017, ISPRS J PHOTOGRAMM, V124, P119, DOI 10.1016/j.isprsjprs.2017.01.001. Tu Chengsheng, 2017, MATEC Web of Conferences, V139, DOI 10.1051/matecconf/201713900222. Vapnik V., 2013, NATURE STAT LEARNING. Vergouw B., 2016, FUTURE DRONE USE, P21, DOI DOI 10.1007/978-94-6265-132-6\_2. Verma D, 2019, HABITAT INT, V88, DOI 10.1016/j.habitatint.2019.04.008. Voulodimos A, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/7068349. Walpole R. E., 1993, PROBABILITY STAT ENG, V5. Wang RZ, 2021, SCI TOTAL ENVIRON, V761, DOI 10.1016/j.scitotenv.2020.144057. WANG SC, 2003, KLUWER INT SER ENG C, P3. Wang SH, 2019, FRONT PSYCHIATRY, V10, DOI 10.3389/fpsyt.2019.00205. Wei YQ, 2009, 2009 IEEE INTERNATIONAL SYMPOSIUM ON IT IN MEDICINE \& EDUCATION, VOLS 1 AND 2, PROCEEDINGS, P942, DOI 10.1109/ITIME.2009.5236211. WHO, 2016, AIR POLL LEV RIS MAN. Williams W. T., 1971, ANNU REV ECOL SYST, V2, P303, DOI DOI 10.1146/ANNUREV.ES.02.110171.001511. Xayasouk T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062570. Xing HF, 2020, ECOL INDIC, V108, DOI 10.1016/j.ecolind.2019.105722. Xu H., 2016, INT J SMART HOME, V10, P251. Xu LL, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/aafe27. Yang C, 2020, GEO-SPAT INF SCI, V23, P327, DOI 10.1080/10095020.2020.1834882. Yu ZQ, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102200. Zhang H, 2019, PR MACH LEARN RES, V97. Zhang SC, 2018, IEEE T NEUR NET LEAR, V29, P1774, DOI 10.1109/TNNLS.2017.2673241. Zhang YR, 2015, TRANSPORT RES C-EMER, V58, P308, DOI 10.1016/j.trc.2015.02.019.}, Number-of-Cited-References = {168}, Times-Cited = {9}, Usage-Count-Last-180-days = {28}, Usage-Count-Since-2013 = {30}, Journal-ISO = {J. King Saud Univ.-Comput. Inf. Sci.}, Doc-Delivery-Number = {4P8IM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000855633600008}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000526210700001, Author = {Li Ziwei and Lin Borong and Zheng Shanwen and Liu Yanchen and Wang Zhe and Dai Jian}, Title = {A review of operational energy consumption calculation method for urban buildings}, Journal = {BUILDING SIMULATION}, Year = {2020}, Volume = {13}, Number = {4}, Pages = {739-751}, Month = {AUG}, Abstract = {Rapid urbanization has driven economic and social development, but it has also led to continued growth in building energy consumption. It is of great significance to ensure the user comfort while controlling the growth of building energy use. Accurate quantification of urban buildings' energy demand can support energy efficient and sustainable community design, assist urban morphology generation and optimization, building layout optimization, building shape and construction design, HVAC system optimization, assessment of the energy program and policy. In recent years, researchers worldwide have carried out research of urban scale energy consumption calculation methods from different perspectives, and encountered different technical difficulties. This paper provides a critical review on the energy modeling methods at urban neighborhood scale from the following three aspects: database, models and platforms. Through literature review, the authors indicate the advantages and limitations of current urban building energy calculation methods and tools, and propose the following possible approaches to improve the operational energy consumption calculation method for urban buildings: (1) develop micro-environment data generation methods that can be directly applied to energy consumption calculation of urban buildings; (2) improve the capabilities to collect, filter and convert the building information data by introducing the data mining technique; (3) introduce the cluster analysis and artificial intelligence technology to improve the speed of energy consumption calculation; (4) develop a visualization platform to realize real-time editing and calculating of urban design.}, Publisher = {TSINGHUA UNIV PRESS}, Address = {B605D, XUE YAN BUILDING, BEIJING, 100084, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Dai, J (Corresponding Author), Beijing Univ Technol, Coll Architecture \& Urban Planning, Beijing 100124, Peoples R China. Li Ziwei; Zheng Shanwen; Dai Jian, Beijing Univ Technol, Coll Architecture \& Urban Planning, Beijing 100124, Peoples R China. Lin Borong, Tsinghua Univ, Dept Bldg Sci, Beijing 100084, Peoples R China. Liu Yanchen, Guangzhou Univ, Coll Civil Engn, Guangzhou 510006, Peoples R China. Wang Zhe, Lawrence Berkeley Natl Lab, Bldg Technol \& Urban Syst Div, Berkeley, CA USA.}, DOI = {10.1007/s12273-020-0619-0}, EarlyAccessDate = {APR 2020}, ISSN = {1996-3599}, EISSN = {1996-8744}, Keywords = {urban buildings; operational energy consumption; building dataset; energy model; energy modelling platform}, Keywords-Plus = {RESIDENTIAL BUILDINGS; STATISTICAL-ANALYSIS; MODEL GENERATION; LASER SCANNER; HEAT-ISLAND; PERFORMANCE; SIMULATION; CITY; STOCK; CLIMATE}, Research-Areas = {Thermodynamics; Construction \& Building Technology}, Web-of-Science-Categories = {Thermodynamics; Construction \& Building Technology}, Author-Email = {daijian@bjut.edu.cn}, Affiliations = {Beijing University of Technology; Tsinghua University; Guangzhou University; United States Department of Energy (DOE); Lawrence Berkeley National Laboratory}, ORCID-Numbers = {Wang, Zhe/0000-0002-2231-1606 Lin, Borong/0000-0003-3848-2837}, Funding-Acknowledgement = {China Postdoctoral Science Foundation {[}2019M650408]; National Key Research and Development Project {[}2019YFE010332]}, Funding-Text = {This research is supported by the China Postdoctoral Science Foundation funded project (No. 2019M650408), and the National Key Research and Development Project (2019YFE010332)}, Cited-References = {Allegrini J, 2012, ENERG BUILDINGS, V55, P823, DOI 10.1016/j.enbuild.2012.10.013. {[}Anonymous], 2013, P 3 INT C WEB INT C. {[}Anonymous], 2013, P INT WORKSH DESCR L. {[}Anonymous], 2015, P 14 INT IBPSA BUILD. {[}Anonymous], 2008, P 14 INT C VIRT SYST. {[}Anonymous], 2017, P INT IBPSA BUILD SI. {[}Anonymous], 2014, P 10 EUR C PROD PROC. {[}Anonymous], 1979, P C THERM PERF EXT E. Arayici Y, 2007, AUTOMAT CONSTR, V16, P816, DOI 10.1016/j.autcon.2007.02.008. Ascione F, 2013, CITIES, V35, P270, DOI 10.1016/j.cities.2013.04.012. Bahu Jean-Marie, 2014, International Journal of 3-D Information Modeling, V3, P1, DOI 10.4018/ij3dim.2014070101. Bueno B, 2014, URBAN CLIM, V9, P35, DOI 10.1016/j.uclim.2014.05.005. Bueno B, 2012, BUILD ENVIRON, V54, P116, DOI 10.1016/j.buildenv.2012.01.023. Busch RD, 1996, FUNDAMENTALS BUILDIN, P220. Calcerano F, 2016, ENERG BUILDINGS, V112, P234, DOI 10.1016/j.enbuild.2015.12.023. Caputo P, 2013, ENERG POLICY, V55, P261, DOI 10.1016/j.enpol.2012.12.006. Chen YX, 2019, ENERG BUILDINGS, V183, P252, DOI 10.1016/j.enbuild.2018.11.008. Chen YX, 2017, APPL ENERG, V205, P323, DOI 10.1016/j.apenergy.2017.07.128. Chun B, 2014, LANDSCAPE URBAN PLAN, V125, P76, DOI 10.1016/j.landurbplan.2014.01.016. Corrado V, 2015, SUSTAIN CITIES SOC, V14, P223, DOI 10.1016/j.scs.2014.09.006. Dascalaki EG, 2011, ENERG BUILDINGS, V43, P3400, DOI 10.1016/j.enbuild.2011.09.002. Dascalaki EG, 2010, ENERG BUILDINGS, V42, P1231, DOI 10.1016/j.enbuild.2010.02.014. Davila CC, 2016, ENERGY, V117, P237, DOI 10.1016/j.energy.2016.10.057. Dogan T, 2017, ENERG BUILDINGS, V140, P140, DOI 10.1016/j.enbuild.2017.01.030. Du SH, 2015, ISPRS J PHOTOGRAMM, V105, P107, DOI 10.1016/j.isprsjprs.2015.03.011. Eicker U, 2018, ENERG BUILDINGS, V163, P79, DOI 10.1016/j.enbuild.2017.12.019. Fabbri K, 2012, ENERG BUILDINGS, V48, P137, DOI 10.1016/j.enbuild.2012.01.018. Famuyibo AA, 2012, ENERG BUILDINGS, V50, P150, DOI 10.1016/j.enbuild.2012.03.033. Fan H, 2015, ENERG BUILDINGS, V105, P9, DOI 10.1016/j.enbuild.2015.07.030. Farahbakhsh H, 1998, INT J ENERG RES, V22, P1133, DOI 10.1002/(SICI)1099-114X(19981025)22:13<1133::AID-ER434>3.0.CO;2-E. Filogamo L, 2014, APPL ENERG, V135, P825, DOI 10.1016/j.apenergy.2014.04.002. Fonseca JA, 2016, ENERG BUILDINGS, V113, P202, DOI 10.1016/j.enbuild.2015.11.055. Gago EJ, 2013, RENEW SUST ENERG REV, V25, P749, DOI 10.1016/j.rser.2013.05.057. Gimenez L, 2015, J BUILD ENG, V2, P24, DOI 10.1016/j.jobe.2015.04.002. Gracik S, 2015, BUILD ENVIRON, V90, P15, DOI 10.1016/j.buildenv.2015.02.037. Guattari C, 2018, ENERG BUILDINGS, V158, P605, DOI 10.1016/j.enbuild.2017.10.050. Hens H, 2001, ENERG BUILDINGS, V33, P275, DOI 10.1016/S0378-7788(00)00092-X. International Energy Agency (IEA), 2008, INT EN AG WORLD EN O. International Standard Organization, 2008, 13790 ISO. Julia S, 2017, ENERG BUILDINGS, V134, P11, DOI 10.1016/j.enbuild.2016.10.050. Kavgic M, 2010, BUILD ENVIRON, V45, P1683, DOI 10.1016/j.buildenv.2010.01.021. Keirstead J, 2012, RENEW SUST ENERG REV, V16, P3847, DOI 10.1016/j.rser.2012.02.047. Ko YK, 2013, J PLAN LIT, V28, P327, DOI 10.1177/0885412213491499. Kontokosta CE, 2017, APPL ENERG, V197, P303, DOI 10.1016/j.apenergy.2017.04.005. Kristensen MH, 2018, ENERG BUILDINGS, V175, P219, DOI 10.1016/j.enbuild.2018.07.030. Lafarge F, 2012, INT J COMPUT VISION, V99, P69, DOI 10.1007/s11263-012-0517-8. Li WL, 2017, ENERGY, V141, P2445, DOI 10.1016/j.energy.2017.11.071. Li XY, 2018, ENERG BUILDINGS, V169, P417, DOI 10.1016/j.enbuild.2018.03.064. Liu D., 2013, HEATING VENTILATING, V43, P95. Ma J, 2016, APPL ENERG, V183, P182, DOI 10.1016/j.apenergy.2016.08.079. Ma WW, 2017, APPL ENERG, V204, P181, DOI 10.1016/j.apenergy.2017.07.009. Madrazo L, 2013, P 4 WORKSH ORG EEB D. Martin M, 2015, ENERG BUILDINGS, V96, P221, DOI 10.1016/j.enbuild.2015.02.047. Mata E, 2014, BUILD ENVIRON, V81, P270, DOI 10.1016/j.buildenv.2014.06.013. Mattinen MK, 2014, J CLEAN PROD, V81, P70, DOI 10.1016/j.jclepro.2014.05.054. Meinel G, 2009, BUILD RES INF, V37, P468, DOI 10.1080/09613210903159833. Monteiro CS, 2018, ENERG BUILDINGS, V158, P244, DOI 10.1016/j.enbuild.2017.10.009. Mukhopadhyay S, 2017, ENERGY, V128, P688, DOI 10.1016/j.energy.2017.04.034. Nall DM, 1979, ASHRAE T, V85, P727. Nemry F, 2010, ENERG BUILDINGS, V42, P976, DOI 10.1016/j.enbuild.2010.01.009. New JoshuaRyan, 2018, INT C ENERGY ENG SMA, V5. Nutkiewicz A, 2018, APPL ENERG, V225, P1176, DOI 10.1016/j.apenergy.2018.05.023. Oh SJ, 2016, ENERG BUILDINGS, V127, P183, DOI 10.1016/j.enbuild.2016.05.073. Parekh A., 2005, DEV ARCHETYPES BUILD. Perera ATD, 2018, APPL ENERG, V222, P847, DOI 10.1016/j.apenergy.2018.04.004. Raftery P, 2011, ENERG BUILDINGS, V43, P2356, DOI 10.1016/j.enbuild.2011.05.020. Reinhart CF, 2013, P 13 INT IBPSA BUILD. Reinhart CF, 2016, BUILD ENVIRON, V97, P196, DOI 10.1016/j.buildenv.2015.12.001. Sahin C, 2012, OPT LASER ENG, V50, P1844, DOI 10.1016/j.optlaseng.2012.05.019. Salata F, 2015, ENERG BUILDINGS, V99, P32, DOI 10.1016/j.enbuild.2015.04.010. Sartori I, 2009, ENERG POLICY, V37, P1614, DOI 10.1016/j.enpol.2008.12.031. Shi ZM, 2017, BUILD ENVIRON, V121, P119, DOI 10.1016/j.buildenv.2017.05.006. Skelhorn CP, 2016, ENERG BUILDINGS, V122, P150, DOI 10.1016/j.enbuild.2016.01.035. Sofic M, 2011, BUILD SIMUL-CHINA, V4, P189, DOI 10.1007/s12273-011-0038-3. Sovacool BK, 2010, ENERG POLICY, V38, P4856, DOI 10.1016/j.enpol.2009.10.001. Stromann-Andersen J., 2012, INTEGRATED ENERGY DE. Sun YM, 2014, J BUILD PERFORM SIMU, V7, P17, DOI 10.1080/19401493.2012.757368. Swan LG, 2009, RENEW SUST ENERG REV, V13, P1819, DOI 10.1016/j.rser.2008.09.033. Talbert, 1982, ASHRAE T, V88, P522. Theodoridou I, 2011, ENERG BUILDINGS, V43, P2779, DOI 10.1016/j.enbuild.2011.06.036. Torabi Moghadam S, 2018, SUSTAIN CITIES SOC, V37, P70, DOI 10.1016/j.scs.2017.10.002. Truong-Hong L, 2015, COMPUT GRAPH-UK, V49, P82, DOI 10.1016/j.cag.2015.03.001. Tsoka S, 2018, ENERG BUILDINGS, V165, P270, DOI 10.1016/j.enbuild.2018.01.016. Uihlein A, 2010, ENERG BUILDINGS, V42, P791, DOI 10.1016/j.enbuild.2009.11.016. Urban L, 2014, PREDICTIVE ADMET: INTEGRATIVE APPROACHES IN DRUG DISCOVERY AND DEVELOPMENT, P3. Van der Meer WJ, 1978, ENERGY CONSERVATIVE. Vartholomaios A, 2017, SUSTAIN CITIES SOC, V28, P135, DOI 10.1016/j.scs.2016.09.006. Wang DH, 2018, ENERG BUILDINGS, V169, P9, DOI 10.1016/j.enbuild.2018.03.020. Xu XD, 2019, ENERG BUILDINGS, V186, P80, DOI 10.1016/j.enbuild.2019.01.002. Yang XS, 2012, ENERG BUILDINGS, V54, P243, DOI 10.1016/j.enbuild.2012.07.042. Yu DW, 2018, ENERG BUILDINGS, V160, P1, DOI 10.1016/j.enbuild.2017.11.063. Zekar A, 2018, ENERG BUILDINGS, V173, P461, DOI 10.1016/j.enbuild.2018.04.030. Zhang RJ, 2018, BUILD ENVIRON, V146, P37, DOI 10.1016/j.buildenv.2018.09.006. {[}No title captured].}, Number-of-Cited-References = {94}, Times-Cited = {25}, Usage-Count-Last-180-days = {19}, Usage-Count-Since-2013 = {101}, Journal-ISO = {Build. Simul.}, Doc-Delivery-Number = {MI2PR}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000526210700001}, DA = {2023-04-22}, } @article{ WOS:000725706800001, Author = {Chew, Louis and Hespanhol, Luke and Loke, Lian}, Title = {To Play and To Be Played: Exploring the Design of Urban Machines for Playful Placemaking}, Journal = {FRONTIERS IN COMPUTER SCIENCE}, Year = {2021}, Volume = {3}, Month = {NOV 15}, Abstract = {Within the paradigm of the smart and playable city, the urban landscape and street furniture have provided a fertile platform for pragmatic and hedonic goals of urban liveability through technology augmentation. Smart street furniture has grown from being a novelty to become a common sight in metropolitan cities, co-opted for improving the efficiency of services. However, as we consider technologies that are increasingly smarter, with human-like intelligence, we navigate towards uncharted waters when discussing the consequences of their integration with the urban landscape. The implications of a new genre of street furniture embedded with artificial intelligence, where the machine has autonomy and is an active player itself, are yet to be fully understood. In this article, we analyse the evolving design of public benches along the axes of smartness and disruption to understand their qualities as playful, urban machines in public spaces. We present a concept-driven speculative design case study, as an exploration of a smart, sensing, and disruptive urban machine for playful placemaking. With the emergence of artificial intelligence, we expand on the potential of urban machines to partake an increasingly active role as co-creators of play and playful placemaking in the cities of tomorrow.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Chew, L (Corresponding Author), Univ Sydney, Sch Architecture Design \& Planning, Design Lab, Sydney, NSW, Australia. Chew, Louis; Hespanhol, Luke; Loke, Lian, Univ Sydney, Sch Architecture Design \& Planning, Design Lab, Sydney, NSW, Australia.}, DOI = {10.3389/fcomp.2021.635949}, Article-Number = {635949}, EISSN = {2624-9898}, Keywords = {play; playable city; urban machines; placemaking; interaction design; public bench; urban prototype; smart city}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; SPECULATIVE DESIGN}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Interdisciplinary Applications}, Author-Email = {louis.chew@sydney.edu.au}, Affiliations = {University of Sydney}, Cited-References = {Alfrink K, 2014, GAMEFUL WORLD: APPROACHES, ISSUES, APPLICATIONS, P527. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. {[}Anonymous], 2011, P 12 INT DIG GOV RES, DOI DOI 10.1145/2037556.2037602. Auger J, 2013, DIGIT CREAT, V24, P11, DOI 10.1080/14626268.2013.767276. Bekker T, 2014, J AMB INTEL SMART EN, V6, P263, DOI 10.3233/AIS-140259. Boehner K, 2007, CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1 AND 2, P1077. Brignull H., 2003, INTERACT 03, V3, P17. Caillois Roger, 2001, MAN PLAY GAMES. Calder Kent E., 2016, SINGAPORE SMART CITY. Cardullo P., 2021, CITIZENS SMART CITY. Chew Louis, 2020, DIS `20: Companion Publication of the 2020 ACM Designing Interactive Systems Conference, P497, DOI 10.1145/3393914.3395829. Cid F, 2014, SENSORS-BASEL, V14, P7711, DOI 10.3390/s140507711. Coombs G., 2018, UNDESIGN CRITICAL PR. Cugurullo F, 2021, FRANKENSTEIN URBANIS. Del Signore M., 2018, URBAN MACHINES PUBLI. Deleuze G., 1987, NOMADOLOGY WAR MACHI. Der R, 2012, GER ENG PLAYFUL MACH, V1. Dow S, 2005, IEEE PERVAS COMPUT, V4, P18, DOI 10.1109/MPRV.2005.93. Dunne Anthony, 2013, SPECULATIVE EVERYTHI. Eberle SG, 2014, AM J PLAY, V6, P214. Teder ME, 2019, CODESIGN, V15, P289, DOI 10.1080/15710882.2018.1472284. Erjavec IS, 2019, LECT NOTES COMPUT SC, V11380, P209, DOI 10.1007/978-3-030-13417-4\_17. Fingas Jon, 2016, ENGADGET. Forlano L, 2014, J URBAN TECHNOL, V21, P7, DOI 10.1080/10630732.2014.971525. Foth M., 2017, MEDIA ARCHITECTURE C. Fredericks J., 2016, OZCHI, V16, P200, DOI {[}10.1145/3010915.3010997, DOI 10.1145/3010915.3010997]. Fuchs M, 2018, SUBVERSIVE GAMIFICAT, P181, DOI {[}10.1007/978-981-10-1891-6\_12, DOI 10.1007/978-981-10-1891-6\_12]. Gaver Bill, 2012, INTERACTIONS MAGAZIN, V19, P40, DOI {[}10.1145/2212877.2212889, DOI 10.1145/2212877.2212889]. Gaver W, 2015, POSITION STATEMENT H, P513. GAVER WW, 2004, CHI 04 HUM FACT COMP, P885, DOI DOI 10.1145/985921.985947. Giuliani M, 2013, ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P263, DOI 10.1145/2522848.2522869. Glas R., 2019, IMAR PLAYFUL CITIZEN. Gronvall E., 2014, CHI, V14, P2559, DOI {[}10.1145/2556288.2557360, DOI 10.1145/2556288.2557360]. Gronvall E, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P2559, DOI 10.1145/2556288.2557360. Hard Mikael, 2010, URBAN MACHINERY INSI. Hoggenmueller M, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376676. Huizinga J., 1949, SOCIOLOGY CULTURE, P3. Hutchinson H., 2003, P SIGCHI C HUM FACT, P17, DOI {[}10.1145/642611.642616, DOI 10.1145/642611.642616]. Innocent T, 2019, CITIZENS PLAY REVISI, P25, DOI {[}10.1007/978-981-13-9765-3\_2, DOI 10.1007/978-981-13-9765-3\_2]. Innocent T, 2016, PROCEEDINGS OF THE 3RD CONFERENCE ON MEDIA ARCHITECTURE BIENNALE (MAB16), DOI 10.1145/2946803.2946805. Jacobs Jane., 1961, DEATH REBIRTH GREAT. Kanniah J., 2014, PRACTICAL ROBOT DESI, Vfirst. Kim S, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106914. Kirwan CG, 2020, SMART CITIES ARTIFIC. Korsgaard H., 2014, PROC MEDIA ARCHITECT, P21, DOI {[}10.1145/2682884.2682896, DOI 10.1145/2682884.2682896]. Lee JM, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.01829. Leorke D, 2020, ROUTLEDGE RES SUSTAI. Ligthart LP, 2017, RIVER PUBL SER COMM, P1. Lim S, 2018, GEOGRAFIA-MALAYSIA, V14, P42, DOI 10.17576/geo-2018-1404-04. Lucero A., 2014, INTERACTIONS, V21, P34, DOI DOI 10.1145/2590973. Luostarinen N, 2019, J PLAY ADULTHOOD, V1, P24. Melson GF, 2009, J SOC ISSUES, V65, P545, DOI 10.1111/j.1540-4560.2009.01613.x. Mengi O, 2020, INT J KNOWL-BASED DE, V11, P220, DOI 10.1504/IJKBD.2020.112793. Morrison Ann J, 2007, P 15 ACM INT C MULT, P509, DOI DOI 10.1145/1291233.1291358. Mosco V., 2019, SMART CITY DIGITAL W. Muller L, 2013, 19 INT S EL ART. Nagenborg M., 2021, TECHNOLOGY CITY PHIL, V6. Nagenborg M, 2020, ETHICS INF TECHNOL, V22, P345, DOI 10.1007/s10676-018-9446-8. Nassar MA, 2019, IEEE COMMUN MAG, V57, P68, DOI 10.1109/MCOM.2019.1800979. Newstex, 2020, VID INT AI DA WORLDS. Nijholt A., 2020, MAKING SMART CITIES, V1s. Nijholt A, 2017, GAMING MEDIA SOC EFF, P1, DOI 10.1007/978-981-10-1962-3\_1. Pelikan H.R.M., 2020, HRI, V20, P461, DOI {[}10.1145/3319502.3374814, DOI 10.1145/3319502.3374814]. Poushneh A, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102283. Prassler E, 2012, SPRINGER TRAC ADV RO, V76, P3. Rodriguez Bolivar M.P., 2019, PUBLIC ADM INF TECHN, P34, DOI {[}10.1007/978-3-319-89474-4, DOI 10.1007/978-3-319-89474-4]. Salles Arleen, 2020, AJOB Neurosci, V11, P88, DOI 10.1080/21507740.2020.1740350. Shin DH, 2009, J INF SCI, V35, P515, DOI 10.1177/0165551509100832. Stokes B., 2017, INT COMMUNICATION AS. Stokes B, 2021, CONVERGENCE-US, V27, P711, DOI 10.1177/1354856521999181. Stolterman E, 2010, HUM-COMPUT INTERACT, V25, P95, DOI 10.1080/07370020903586696. Tekinbas Katie Salen, 2003, RULES PLAY GAME DESI. Tomitsch M., 2015, ROLE DIGITAL SCREENS, P37, DOI {[}10.1007/978-981-287-919-6\_3, DOI 10.1007/978-981-287-919-6\_3]. Turner T.K., 2017, ROBOT SOPHIA WILL CH. Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069. Urban Adj, 2021, OED ONLINE. Wakkary Ron, 2015, P 5 DEC AARH C CRIT, V1, P12, DOI DOI 10.7146/AAHCC.V1I1.21299. Whyte WH., 1980, SOCIAL LIFE SMALL UR. Wong RY, 2018, HUM-COMPUT INT-SPRIN, P175, DOI 10.1007/978-3-319-73374-6\_10. Yarosh S, 2018, PROCEEDINGS OF THE 2018 ACM CONFERENCE ON INTERACTION DESIGN AND CHILDREN (IDC 2018), P300, DOI 10.1145/3202185.3202207.}, Number-of-Cited-References = {80}, Times-Cited = {0}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {17}, Journal-ISO = {Front. Comput. Sci.-Switz}, Doc-Delivery-Number = {XH8VZ}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000725706800001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000816793700001, Author = {Sapienza, Martina and Nurchis, Mario Cesare and Riccardi, Maria Teresa and Bouland, Catherine and Jevtic, Marija and Damiani, Gianfranco}, Title = {The Adoption of Digital Technologies and Artificial Intelligence in Urban Health: A Scoping Review}, Journal = {SUSTAINABILITY}, Year = {2022}, Volume = {14}, Number = {12}, Month = {JUN}, Abstract = {As more people live in cities, the impact of urban settings on population health has been increasing. One of the main strategies to cope with urbanization is adopting artificial intelligence (AI) and new digital technologies to develop new urban services that improve citizens' health and well-being. The aim of this study is to review urban interventions and adopting digital technologies and AI-based algorithms to improve population health. A scoping review of the literature was conducted by querying MEDLINE, Web of Science, and Scopus databases. The included studies were categorized into one urban health area, suggested by the WHO, according to the type of intervention investigated. Out of 3733 records screened, 12 papers met all inclusion criteria. Four studies investigated the ``outdoor and indoor pollution{''} area, one ``climate change{''}, one ``housing{''}, two ``health and social services{''} and four ``urban transport{''} areas. Only one article used a comprehensive approach to public health, investigating the use of AI and digital technologies both to characterize exposure conditions to health determinants and to monitor population health effects, while the others were limited to characterizing exposure conditions to health determinants, thus employing a preliminary public health perspective. From this point of view, countries should foster synergy for the development of research on digital technologies to address the determinants of health in the urban context. From a global health perspective, sharing results with the scientific community would also allow other countries to use those technologies that have been shown to be effective, paving the way for more sustainable living conditions worldwide.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Riccardi, MT (Corresponding Author), Univ Cattolica Sacro Cuore, Dipartimento Sci Vita \& Sanita Pubbl, I-00168 Rome, Italy. Sapienza, Martina; Nurchis, Mario Cesare; Riccardi, Maria Teresa; Damiani, Gianfranco, Univ Cattolica Sacro Cuore, Dipartimento Sci Vita \& Sanita Pubbl, I-00168 Rome, Italy. Nurchis, Mario Cesare; Damiani, Gianfranco, Fdn Policlin Univ A Gemelli IRCCS, Dept Woman \& Child Hlth \& Publ Hlth, I-00168 Rome, Italy. Bouland, Catherine; Jevtic, Marija, Univ Libre Bruxelles, Sch Publ Hlth, Res Ctr Environm \& Occupat Hlth, B-1050 Brussels, Belgium. Jevtic, Marija, Univ Novi Sad, Fac Med, Novi Sad 21000, Serbia. Jevtic, Marija, Inst Publ Hlth Vojvodina, Novi Sad 21000, Serbia.}, DOI = {10.3390/su14127480}, Article-Number = {7480}, EISSN = {2071-1050}, Keywords = {digital technologies; artificial intelligence; urban health}, Keywords-Plus = {SYSTEM}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {martina.sapienza01@icatt.it nurchismario@gmail.com mt.riccardi@gmail.com catherine.bouland@ulb.be marija.jevtic@uns.ac.rs gianfranco.damiani@unicatt.it}, Affiliations = {Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; Universite Libre de Bruxelles; University of Novi Sad}, ResearcherID-Numbers = {Damiani, Gianfranco/K-2782-2016}, ORCID-Numbers = {Riccardi, Maria Teresa/0000-0003-3506-922X Nurchis, Mario Cesare/0000-0002-9345-4292 Damiani, Gianfranco/0000-0003-3028-6188}, Cited-References = {Aletta F, 2019, LANCET, V394, P17. Alhussein M, 2017, IEEE ACCESS, V5, P19835, DOI 10.1109/ACCESS.2017.2748561. {[}Anonymous], 2018, UN WORLD URB PROSP 2. Arksey H, 2005, INT J SOC RES METHOD, V8, P19, DOI {[}10.1080/1364557032000119616, DOI 10.1080/1364557032000119616]. Bardhan R, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102315. Bini SA, 2018, J ARTHROPLASTY, V33, P2358, DOI 10.1016/j.arth.2018.02.067. Bravo Y, 2016, LECT NOTES COMPUT SC, V9704, P147, DOI 10.1007/978-3-319-39595-1\_15. Buttazzoni A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072325. Candelieri A., 2013, WIT T ECOL ENV, V179, P719, DOI DOI 10.2495/SC130611. Capolongo Stefano, 2020, Acta Biomed, V91, P13, DOI 10.23750/abm.v91i2.9615. Carmichael L, 2020, SCI TOTAL ENVIRON, V719, DOI 10.1016/j.scitotenv.2020.137146. Chigbu UE, 2021, TOWN PLAN REV, V92, P115, DOI 10.3828/tpr.2020.74. Chu YT, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182111402. Gabrys J, 2020, HUM SOC SCI COMMUN, V7, DOI 10.1057/s41599-020-00534-7. Helm JM, 2020, CURR REV MUSCULOSKE, V13, P69, DOI 10.1007/s12178-020-09600-8. Hussain I, 2021, IEEE ACCESS, V9, P123146, DOI 10.1109/ACCESS.2021.3109806. Hussain I, 2020, IEEE ACCESS, V8, P213574, DOI 10.1109/ACCESS.2020.3040437. Jain G., 2022, NPJ URBAN SUSTAIN, V2, P7, DOI {[}10.1038/s42949-022-00050-4, DOI 10.1038/S42949-022-00050-4]. Jia J, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20051259. Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101. John Hopkins Centre for a Livable Future, 2018, SMART CIT DIG SOL MO. Kahn ME, 2021, J ECON SURV, V35, P330, DOI 10.1111/joes.12404. Machado C, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102671. Marten R, 2021, HEALTH POLICY PLANN, V36, P218, DOI 10.1093/heapol/czaa165. Mbunge E., 2021, GHJ, V5, P169, DOI {[}10.1016/j.glohj.2021.11.008, DOI 10.1016/J.GLOHJ.2021.11.008]. Mihaita AS, 2018, SIMUL MODEL PRACT TH, V86, P120, DOI 10.1016/j.simpat.2018.05.005. Mora H, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17081834. Morris E., 2020, ISPRS ANN PHOTOGRAMM, VVI, P119, DOI {[}10.5194/isprs-annals-VI-4-W2-2020-119-2020, DOI 10.5194/ISPRS-ANNALS-VI-4-W2-2020-119-2020]. Mouratidis K, 2021, CITIES, V115, DOI 10.1016/j.cities.2021.103229. Murray V, 2022, SPRINGER CLIMATE, P195, DOI 10.1007/978-3-030-86211-4\_23. Nagarajan SM, 2021, SUSTAIN CITIES SOC, V71, DOI 10.1016/j.scs.2021.102945. Ompad D.C, 2008, INT ENCYCL PUBLIC HL, V6, P463. Pala D, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20072105. Peters MDJ, 2015, INT J EVID-BASED HEA, V13, P141, DOI 10.1097/XEB.0000000000000050. Ramirez-Rubio O, 2019, GLOBALIZATION HEALTH, V15, DOI 10.1186/s12992-019-0529-z. Ronquillo Y., 2022, DIGIT HEALTH. Sclar ED, 2011, ENCY ENV HLTH, P556, DOI {[}10.1016/B978-0-444-52272-6.00322-6, DOI 10.1016/B978-0-444-52272-6.00322-6]. Sharma M, 2020, J CLEAN PROD, V270, DOI 10.1016/j.jclepro.2020.122047. Singh JA, 2019, EMERG TOP LIFE SCI, V3, P741, DOI 10.1042/ETLS20190106. Thompson J, 2020, LANCET PLANET HEALTH, V4, pE32, DOI 10.1016/S2542-5196(19)30263-3. Tong H, 2021, LANCET, V398, P86. United Nations, 68 WORLD POP PROJ LI. Valinejadshoubi M, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102602. Wei T, 2021, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.696381. World Health Organization, 2010, WHY URB HLTH MATT. World Health Organization, 2021, ETH GOV ART INT HLTH. Zaheer T, 2019, INT J DISTRIB SENS N, V15, DOI 10.1177/1550147719888845.}, Number-of-Cited-References = {47}, Times-Cited = {0}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {13}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {2L1PI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000816793700001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000888573700001, Author = {Liu, Jinping and Cho, Hyo-Seob and Osman, Sazali and Jeong, Hyeon-Gyo and Lee, Kwonmin}, Title = {Review of the status of urban flood monitoring and forecasting in TC region}, Journal = {TROPICAL CYCLONE RESEARCH AND REVIEW}, Year = {2022}, Volume = {11}, Number = {2}, Pages = {103-119}, Month = {JUN}, Abstract = {With the impacts of rapid urbanization and climate change, the urban flood has increasingly become a major hazard risk faced by human being in recent decades. The catastrophic urban flood events appear every year in the world, especially in Asia and Pacific region due to its geographical composition, density population and un-even economic and social development. To reduce the urban flood risk and enhance the resilience of vulnerable communities, especially coastal communities, the Members of ESCAP/WMO Typhoon Committee (TC) have made their great efforts including engineering and non-engineering measures based on their different national conditions. As a key part of non-engineering measures, it is recognized that improving urban flood monitoring and forecasting is a measure with high benefit related to cost on urban flood risk reduction. In recent years, TC Members enhanced their capacity building on urban flood monitoring, forecasting and simulation, inundation mapping, etc. In order to enhance the technical cooperation and exchange on this aspect, Typhoon Committee Working Group on Hydrology (WGH) conducted two projects on ``Urban Flood Risk Management in Typhoon Committee Area (UFRM){''} and ``Operation System for Urban Flood Forecasting and Inundation Mapping (OSUFFIM){''} in the past years. This paper generally reviewed the situation and causes of urban flood in TC region; briefly summarized the progresses and shortages on urban flood monitoring and forecasting in TC Members; and initially discussed the areas to be enhanced in future for improvement of urban flood monitoring, forecasting and simulation, and inundation mapping with up-to-date development of weather radar and satellite monitoring, image-based monitoring, information technology (IT), Internet of Things (IoT), big data and artificial intelligence (AI).(c) 2022 The Shanghai Typhoon Institute of China Meteorological Administration. Publishing services by Elsevier B.V. on behalf of KeAi Communication Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, Publisher = {KEAI PUBLISHING LTD}, Address = {16 DONGHUANGCHENGGEN NORTH ST, BEIJING, DONGCHENG DISTRICT 100717, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Liu, JP (Corresponding Author), UNESCAP, WMO Typhoon Committe, Macau, Peoples R China. Liu, Jinping, UNESCAP, WMO Typhoon Committe, Macau, Peoples R China. Cho, Hyo-Seob; Jeong, Hyeon-Gyo, Minist Environm, Han River Flood Control Off, Seoul, South Korea. Osman, Sazali, Minist Nat Resources \& Water, Dept Irrigat \& Drainage, Putrajaya, Malaysia. Lee, Kwonmin, Ewha Womans Univ, Dept Climate \& Energy Syst Engn, Seoul, South Korea.}, DOI = {10.1016/j.tcrr.2022.07.001}, ISSN = {2225-6032}, Keywords = {Urban flood; Monitoring; Forecasting}, Research-Areas = {Meteorology \& Atmospheric Sciences}, Web-of-Science-Categories = {Meteorology \& Atmospheric Sciences}, Author-Email = {jpliu@typhooncommitee.org}, Affiliations = {Ewha Womans University}, Cited-References = {Chen Y., 2019, 0017 ESCAPWMO TCTD. DID Malaysia, 2021, TEND DOC CONSTR HYDR. DID Malaysia, 2017, REP FLASH FLOOD ISS, V1. ESCAP/WMO Typhoon Committee, 2010, 42 ANN SESS. ESCAP/WMO Typhoon Committee, 2013, 45 ANN SESS. Garcia FCC, 2015, TENCON IEEE REGION. Hong Y, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2006GL028010. Jha AK, 2012, CITIES AND FLOODING: A GUIDE TO INTEGRATED URBAN FLOOD RISK MANAGEMENT FOR THE 21ST CENTURY, P1, DOI 10.1596/978-0-8213-8866-2. Lin B., 2019, CHINA FLOOD DROUGHT, V29, P3. Liu J., 2002, 10 REGIONAL STEERING. Liu JP, 2018, TROP CYCLONE RES REV, V7, P11, DOI 10.6057/2018TCRR01.02. Liu JP, 2012, TROP CYCLONE RES REV, V1, P194, DOI 10.6057/2012TCR02.03. Lo SW, 2015, SENSORS-BASEL, V15, P20006, DOI 10.3390/s150820006. Ministry of the Interior and Safety Republic of Korea, 2018, STAT YB NAT DIS 2018. Moon Y., 2017, INT J SAFETY SECURIT, V7, P213. Olthof I, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12193141. Son Minsu, 2013, {[}Seoul Studies, 서울도시연구], V14, P127. UN, 2018, WORLD URB PROSP 2018. UN Office for Disaster Risk Reduction, 2020, HUM COST DIS 2000 20. Xie M., 2018, J DIGIT LANDS ARCHI, V3, P310. Zhao C., 2018, WATER PURIFICATION T, V37, P60.}, Number-of-Cited-References = {21}, Times-Cited = {0}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {6}, Journal-ISO = {Trop. Cyclone Res. Rev.}, Doc-Delivery-Number = {6M0NF}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000888573700001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000660769900001, Author = {Kakderi, Christina and Oikonomaki, Eleni and Papadaki, Ilektra}, Title = {Smart and Resilient Urban Futures for Sustainability in the Post COVID-19 Era: A Review of Policy Responses on Urban Mobility}, Journal = {SUSTAINABILITY}, Year = {2021}, Volume = {13}, Number = {11}, Month = {JUN}, Abstract = {The COVID-19 pandemic has put lifestyles in question, changed daily routines, and limited citizen freedoms that seemed inalienable before. A human activity that has been greatly affected since the beginning of the health crisis is mobility. Focusing on mobility, we aim to discuss the transformational impact that the pandemic brought to this specific urban domain, especially with regards to the promotion of sustainability, the smart growth agenda, and the acceleration towards the smart city paradigm. We collect 60 initial policy responses related to urban mobility from cities around the world and analyze them based on the challenge they aim to address, the exact principles of smart growth and sustainable mobility that they encapsulate, as well as the level of ICT penetration. Our findings suggest that emerging strategies, although mainly temporary, are transformational, in line with the principles of smart growth and sustainable development. Most policy responses adopted during the first months of the pandemic, however, fail to leverage advancements made in the field of smart cities, and to adopt off-the-shelf solutions such as monitoring, alerting, and operations management.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Kakderi, C (Corresponding Author), Aristotle Univ Thessaloniki, URENIO Res, Thessaloniki 54124, Greece. Kakderi, Christina; Oikonomaki, Eleni; Papadaki, Ilektra, Aristotle Univ Thessaloniki, URENIO Res, Thessaloniki 54124, Greece.}, DOI = {10.3390/su13116486}, Article-Number = {6486}, EISSN = {2071-1050}, Keywords = {urban planning; COVID-19; urban mobility; sustainability; smart cities; smart growth; pandemic; resilience}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; CITIES; TRANSPORT; AI}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {kakderi@plandevel.auth.gr Eleni.Oikonomaki@urenio.org Ilektra.Papadaki@urenio.org}, Affiliations = {Aristotle University of Thessaloniki}, Funding-Acknowledgement = {European Union {[}823952]}, Funding-Text = {This research received funding from the European Union's Horizon 2020 Marie SklodowskaCurie (MSCA-RISE-2018) project TREND-{''}Transition with Resilience for Evolutionary Development{''}. Grant agreement 823952.}, Cited-References = {Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189. Alam F, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073797. {[}Anonymous], 2020, MOOVIT PUBLIC TRANSP. Baron M., 2012, J EC MANAGEMENT, V10, P32. Basu R, 2021, TRANSPORT POLICY, V103, P197, DOI 10.1016/j.tranpol.2021.01.006. Batty M., 2021, ARXIV. Batty M., 2020, 226 UCL. Bernhard A., 2020, GREAT BICYCLE BOOM 2. Bozzon A., 2020, SOCIAL DISTANCING DA. Bragazzi NL, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17093176. Budd Lucy, 2020, Transp Res Interdiscip Perspect, V6, P100151, DOI 10.1016/j.trip.2020.100151. Burau V., 2006, J COMP POLICY ANAL, V8, P63, DOI DOI 10.1080/13876980500513558. Carlson SA, 2017, J TRANSP HEALTH, V5, P142, DOI 10.1016/j.jth.2016.11.003. Chamings A., 2020, 2020 SAN FRANCISCO E. Cosnard, 2020, MONDE. Costa DG, 2020, IET SMART CITIES, V2, P64, DOI 10.1049/iet-smc.2020.0044. Cugurullo F, 2020, FRONT SUSTAIN CITIES, V2, DOI 10.3389/frsc.2020.00038. Deal B, 2017, J URBAN TECHNOL, V24, P29, DOI 10.1080/10630732.2017.1285018. Deloitte, 2021, CONN FUT INN MOR ETH. EIT, 2020, COVID 19. European Commission, 2013, CONCEPT SUSTAINABLE. European Commission, 2019, EUR IND REN. Gkiotsalitis K, 2021, TRANSPORT REV, V41, P374, DOI 10.1080/01441647.2020.1857886. Global Footprint Network, 2020, EARTH OV DAY. Gutierrez A., 2021, CITIES HLTH, V5, pS177, DOI {[}10.1080/23748834.2020.1804291, DOI 10.1080/23748834.2020.1804291]. Hausler S., 2020, OUR INSIGHTS IMPACT. Honey-Roses J., 2020, IMPACT COVID 19 PUBL, P1, DOI {[}https://doi.org/10.1080/23748834.2020.1780074, 10.1080/23748834.2020.1780074, DOI 10.1080/23748834.2020.1780074]. Howlett M., 2019, INT REV PUBLIC POLIC, V1, P27, DOI {[}10.4000/irpp.310, DOI 10.4000/IRPP.310]. Huang JZ, 2020, KDD `20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P3443, DOI 10.1145/3394486.3412856. James P, 2020, DIALOGUES HUM GEOGR, V10, P255, DOI 10.1177/2043820620934211. Kakderi C., 2018, 20 SCI C ASS GREEK R, P112. Kakderi C, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063158. Kakderi C, 2017, EUR PLAN STUD, V25, P1435, DOI 10.1080/09654313.2017.1322041. Kanda W, 2020, ENERGY RES SOC SCI, V68, DOI 10.1016/j.erss.2020.101666. Kandt J, 2021, CITIES, V109, DOI 10.1016/j.cities.2020.102992. Karuri-Sebina G, 2016, FORESIGHT, V18, P449, DOI 10.1108/FS-07-2016-0037. Komninos N, 2019, CITIES SERIES, P1, DOI 10.4337/9781789907056. Komninos N., 2017, SMART CITIES CONNECT. Komninos N., 2020, NEW LOGIC ENV SUSTAI. Komninos N, 2022, J KNOWL ECON, V13, P1169, DOI 10.1007/s13132-021-00767-0. Komninos N, 2021, J URBAN TECHNOL, V28, P93, DOI 10.1080/10630732.2020.1805712. Kraemer MUG, 2020, SCIENCE, V368, P493, DOI 10.1126/science.abb4218. Lai KY, 2020, CURR OPIN ENV SUST, V46, P27, DOI 10.1016/j.cosust.2020.08.008. Laker L., 2020, GUARDIAN 0411. Litman T., 2015, EVALUATING COMPLETE. Lozzi G., 2020, RES TRAN COMMITTEE C. Mock B., 2020, GREEN STIMULUS PLAN. Mora L, 2020, J CLEAN PROD, V275, DOI 10.1016/j.jclepro.2020.124087. NACTO, 2020, STREETS PAND RESP RE. OECD, 2020, CIT POL RESP. OECD, TERR IMP COVID 19 MA. Panori A, 2021, LAND USE POLICY, V111, DOI 10.1016/j.landusepol.2020.104631. Papa R, 2015, TEMA, V8, P19, DOI 10.6092/1970-9870/2883. Pozoukidou G, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020928. Reid C., 2020, FORBES. Scott M, 2020, PLAN THEORY PRACT, V21, P343, DOI 10.1080/14649357.2020.1781445. Sharifi A, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.142391. Smith KB, 2002, POLICY STUD J, V30, P379, DOI 10.1111/j.1541-0072.2002.tb02153.x. Tirachini A, 2020, J PUBLIC TRANSPORT, V22, P1, DOI {[}10.5038/2375-091.22.1.1, 10.5038/2375-0901.22.1.1]. Ugolini F, 2020, URBAN FOR URBAN GREE, V56, DOI 10.1016/j.ufug.2020.126888. Vandi K., 2020, BBC NEWS. Venter ZS, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/abb396. Vermicelli S, 2021, R\&D MANAGE, V51, P183, DOI 10.1111/radm.12443. Vickerman R, 2021, TRANSPORT POLICY, V103, P95, DOI 10.1016/j.tranpol.2021.01.005. WBCSD, 2020, METH IND CALC METH S. Xie J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176751. Ye L, 2005, J PLAN LIT, V19, P301, DOI 10.1177/0885412204271668. Yigitcanlar T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208548. Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473. Zuber C, 2019, SMART CITIES POSTALG.}, Number-of-Cited-References = {70}, Times-Cited = {18}, Usage-Count-Last-180-days = {18}, Usage-Count-Since-2013 = {75}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {SR0XT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000660769900001}, OA = {gold, Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000880885400001, Author = {Zhu, Shoupeng and Yang, Huadong and Liu, Duanyang and Wang, Hongbin and Zhou, Linyi and Zhu, Chengying and Zu, Fan and Wu, Hong and Lyu, Yang and Xia, Yu and Zhu, Yanhe and Fan, Yi and Zhang, Ling and Zhi, Xiefei}, Title = {Observations and Forecasts of Urban Transportation Meteorology in China: A Review}, Journal = {ATMOSPHERE}, Year = {2022}, Volume = {13}, Number = {11}, Month = {NOV}, Abstract = {Against the backdrop of intensified global warming, extreme weather events such as dense fog, low visibility, heavy precipitation, and extreme temperatures have been increased and enhanced to a great extent. They are likely to pose severe threats to the operation of urban transportation and associated services, which has drawn much attention in recent decades. However, there are still plenty of issues to be resolved in improving the emergency meteorological services and developing targeted urban transportation meteorological services in modern cities. The present review briefly illustrates the current cutting-edge developments and trends in the field of urban transportation meteorology in China, including the establishment of observation networks and experiments and the development of early warning and prediction technologies, as well as the related meteorological commercial services. Meanwhile, reflections and discussions are provided in terms of the state-of-the-art observation channels and methods and the application of numerical model forecasts and artificial intelligence. With the advantages of various advanced technologies from multiple aspects, researchers could further expand explorations on urban transportation meteorological observations, forecasts, early warnings, and services. Associated theoretical studies and practical investigations are also to be carried out to provide solid scientific foundations for urban transportation disaster prevention and mitigation, for implementing the action of meteorological guarantees, and for the construction of a high-quality smart society.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Yang, HD; Liu, DY (Corresponding Author), China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing Joint Inst Atmospher Sci, Nanjing 210041, Peoples R China. Zhu, Shoupeng; Yang, Huadong; Liu, Duanyang; Wang, Hongbin; Zhou, Linyi; Zhu, Chengying; Zu, Fan; Wu, Hong, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing Joint Inst Atmospher Sci, Nanjing 210041, Peoples R China. Lyu, Yang; Zhu, Yanhe; Fan, Yi; Zhang, Ling; Zhi, Xiefei, Nanjing Univ Informat Sci Technol, Collaborat Innovat Ctr Forecast \& Evaluat Meteoro, Key Lab Meteorol Disaster, Minist Educ, Nanjing 210044, Peoples R China. Xia, Yu, China Meteorol Adm, Inst Urban Meteorol, Beijing 100089, Peoples R China.}, DOI = {10.3390/atmos13111823}, Article-Number = {1823}, EISSN = {2073-4433}, Keywords = {urban meteorology; transportation meteorology; observation; forecast; early warning; review; China}, Keywords-Plus = {AIRCRAFT SYSTEMS UASS; BOUNDARY-LAYER; AIR-POLLUTION; WEATHER; ENVIRONMENT; TEMPERATURE; CHALLENGES; TURBULENCE; INTERNET; PROGRESS}, Research-Areas = {Environmental Sciences \& Ecology; Meteorology \& Atmospheric Sciences}, Web-of-Science-Categories = {Environmental Sciences; Meteorology \& Atmospheric Sciences}, Author-Email = {huadonyang@hotmail.com liuduanyang@cma.gov.cn}, Affiliations = {China Meteorological Administration; Nanjing University of Information Science \& Technology; China Meteorological Administration}, ResearcherID-Numbers = {Zhi, Xiefei/AGU-6880-2022 Yang, Huadong/HJG-6479-2022 }, ORCID-Numbers = {Zhi, Xiefei/0000-0003-4414-0497 ZU, FAN/0000-0003-3627-273X}, Funding-Acknowledgement = {Basic Research Fund of the Chinese Academy of Meteorological Sciences {[}2022Y027, 2021Y011]; Jiangsu Meteorological Bureau {[}KQ202209, KQ202114]; 333 Project of Jiangsu Province {[}BRA2018420]; Beijing Foundation of NJIAS {[}BJG201906, BJG202104, BJG202209]; General Program of Key Science and Technology in Transportation, Ministry of Transport {[}2018-MS4-102, ZL-2018-04]}, Funding-Text = {This research was jointly funded by the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant Nos. 2022Y027 and 2021Y011), the research project of the Jiangsu Meteorological Bureau (Grant Nos. KQ202209 and KQ202114), the 333 Project of Jiangsu Province (Grant No. BRA2018420), the Beijing Foundation of NJIAS (Grant Nos. BJG201906, BJG202104 and BJG202209) and the General Program of Key Science and Technology in Transportation, the Ministry of Transport (Grant Nos. 2018-MS4-102 and ZL-2018-04).}, Cited-References = {Ali A, 2019, INT C PAR DISTRIB SY, P125, DOI 10.1109/ICPADS47876.2019.00025. Allwine KJ, 2002, B AM METEOROL SOC, V83, P521, DOI 10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2. Allwine KJ, 2004, P S PLANN NOWC FOR U. Arnold SJ, 2004, SCI TOTAL ENVIRON, V332, P139, DOI 10.1016/j.scitotenv.2004.04.020. Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010. Baklanov A, 2018, URBAN CLIM, V23, P330, DOI 10.1016/j.uclim.2017.05.004. Barmpounakis E.N., 2016, INT J TRANSPORTATION, DOI {[}10.1016/j.ijtst.2017.02.001, DOI 10.1016/J.IJTST.2017.02.001]. Bauer P, 2015, NATURE, V525, P47, DOI 10.1038/nature14956. Beijing Municipal Commission of Transportation, 2011, FEAS STUD INT THINGS, P127. Belli L, 2020, SMART CITIES-BASEL, V3, P1039, DOI 10.3390/smartcities3030052. Bohnenstengel SI, 2015, B AM METEOROL SOC, V96, P779, DOI 10.1175/BAMS-D-12-00245.1. Chapman L, 2015, B AM METEOROL SOC, V96, P1545, DOI 10.1175/BAMS-D-13-00193.1. Chen GW, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138147. Chen Y., 2021, B SCI TECHNOL, V37, P18. {[}谌芸 Chen Yun], 2012, {[}气象, Meteorological Monthly], V38, P1255. China Intelligent Transportation Association, 2022, FRAM TECHN SPEC EXPR, P11. China Meteorological Administration, 2018, ACT PLAN DEV SMART M. China Meteorological Administration China Ministry of Public Security China Ministry of Transport China State Railway Administration China State Post Bureau, 2021, 14 5 YEAR PLAN TRANS. China Meteorological Administration Ministry of Science and Technology of the Peoples Republic of China Chinese Academy of Sciences, 2022, DEV STRAT MET SCI TE, P46. China National Development and Reform Commission, 2021, 14 5 YEAR PLAN NAT M, P52. China State Council, 2022, OUTL HIGH QUAL MET D. Chu Y, 2017, J LIAONING POLICE CO, V19, P58. Crevier LP, 2001, J APPL METEOROL, V40, P2026, DOI 10.1175/1520-0450(2001)040<2026:MANMFR>2.0.CO;2. Cros B, 2004, ATMOS RES, V69, P241, DOI 10.1016/j.atmosres.2003.05.001. Cui B., 2015, P 32 ANN C CHINESE M, P29. Deb B, 2019, 2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT). Ding HC, 2018, IEEE ACM T NETWORK, V26, P2598, DOI 10.1109/TNET.2018.2871667. English N, 2022, SOC SCI COMPUT REV, V40, P179, DOI 10.1177/0894439320920601. Espinosa JM, 2005, TRANSPORT RES REC, V1927, P139. Faraji M, 2021, AIR QUAL ATMOS HLTH, V14, P1211, DOI 10.1007/s11869-021-01011-z. Feng D., 2018, METEOROL SCI TECHNOL, V46, P822. Ge F, 2021, ENVIRON RES LETT, V16, DOI 10.1088/1748-9326/abd7ad. Ge F, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/aaff7e. Geng K, 2022, URBAN MASS TRANSIT, V25, P86. Grimmond CSB, 2006, THEOR APPL CLIMATOL, V84, P3, DOI 10.1007/s00704-005-0140-5. Hajizadeh Y, 2021, J ENVIRON HEALTH SCI, V19, P781, DOI 10.1007/s40201-021-00645-6. HALTINER GJ, 1975, MON WEATHER REV, V103, P571, DOI 10.1175/1520-0493(1975)103<0571:SRAINW>2.0.CO;2. Han S, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0263539. Handler SL, 2020, WEATHER FORECAST, V35, P1845, DOI 10.1175/WAF-D-19-0159.1. Hanna S., 2006, P 6 S URBAN ENV. Harrison RM, 2012, ATMOS CHEM PHYS, V12, P3065, DOI 10.5194/acp-12-3065-2012. Hicks BB, 2012, J APPL METEOROL CLIM, V51, P205, DOI 10.1175/JAMC-D-11-015.1. Hosseini Faranak, 2015, Cold Regions Engineering 2015. Developing and Maintaining Resilient Infrastructure. 16th International Conference on Cold Regions Engineering. Proceedings, P440. Hu J., 2020, SCI TECHNOL ENG, V20, P1. {[}黄鹤 Huang He], 2011, {[}高原气象, Plateau Meteorology], V30, P1481. Jia YH, 2017, J ADV TRANSPORT, DOI 10.1155/2017/6575947. Kang Y., 2016, J ARID METEOROL, V34, P591. Koskinen JT, 2011, B AM METEOROL SOC, V92, P325, DOI 10.1175/2010BAMS2878.1. Kueper DA, 2008, ITE J, V78, P38. Lee YJ, 2018, IEEE INT C INTELL TR, P1279, DOI 10.1109/ITSC.2018.8569620. {[}李蔼恂 Li Aixun], 2018, {[}气象, Meteorological Monthly], V44, P676. Li CC, 2010, 2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 2, P644, DOI 10.1109/ICACC.2010.5486720. Li J., 2014, ADV METEOROL SCI TEC, V4, P36. Li J, 2008, CHINESE J GEOPHYS-CH, V51, P360. Li L, 2020, ATMOS ENVIRON, V220, DOI 10.1016/j.atmosenv.2019.117083. Liang X, 2018, B AM METEOROL SOC, V99, P1391, DOI 10.1175/BAMS-D-16-0178.1. Liang Y, 2022, SCI TOTAL ENVIRON, V853, DOI 10.1016/j.scitotenv.2022.158657. Liu CC, 2022, J CONTROL DECIS, DOI {[}10.4018/JECO.305736, 10.1080/23307706.2021.2024460]. Liu H., 2008, J NANJING U NAT SCI, V44, P99. Liu HN, 2015, J METEOROL RES-PRC, V29, P950, DOI 10.1007/s13351-015-5013-y. Lu H, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8071193. Lu HP, 2020, TRANSPORT POLICY, V98, P2, DOI 10.1016/j.tranpol.2019.10.006. Lu Z., 2021, METEOROL HYDROL MAR, V38, P16. Luo YL, 2023, ADV ATMOS SCI, V40, P393, DOI 10.1007/s00376-022-2048-8. Lyu Y, 2021, WEATHER FORECAST, V36, P1661, DOI 10.1175/WAF-D-21-0043.1. Ma DF, 2021, IEEE T INTELL TRANSP, V22, P2627, DOI 10.1109/TITS.2020.2973279. Mao MJ, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2008GL036768. {[}毛敏娟 MAO Minjuan], 2006, {[}环境科学学报, Acta Scientiae Circumstantiae], V26, P1723. Mao X., 2013, ADV METEOROL SCI TEC, V3, P13. Masson V, 2008, METEOROL ATMOS PHYS, V102, P135, DOI 10.1007/s00703-008-0289-4. {[}孟春雷 Meng Chunlei], 2012, {[}应用气象学报, Journal of Applied Meteorolgical Science], V23, P451. Miao S., 2014, ADV METEOROL SCI TEC, V4, P6. Miao SG, 2020, J METEOROL RES-PRC, V34, P218, DOI 10.1007/s13351-020-9858-3. Miao SG, 2014, SCI CHINA EARTH SCI, V57, P2408, DOI 10.1007/s11430-014-4829-0. Miao SG, 2012, SCI CHINA EARTH SCI, V55, P1881, DOI 10.1007/s11430-012-4411-6. Mikami T, 2009, P 7 INT C URB CLIM Y. Minhoto MJC, 2005, TRANSPORT RES REC, P96, DOI 10.3141/1919-11. Mojarrad H, 2020, HUM ECOL RISK ASSESS, V26, P2836, DOI 10.1080/10807039.2019.1688640. Mokhtari M, 2019, INT J ENVIRON SCI TE, V16, P2657, DOI 10.1007/s13762-018-1858-9. Nagy AM, 2018, PERVASIVE MOB COMPUT, V50, P148, DOI 10.1016/j.pmcj.2018.07.004. Nakatani T, 2015, B AM METEOROL SOC, V96, pES123, DOI 10.1175/BAMS-D-14-00209.1. Nasser A, 2021, I S WORLD WIREL MOBI, P335, DOI 10.1109/WoWMoM51794.2021.00061. Nigam Archana, 2021, ICDCN `21: Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking, P1, DOI 10.1145/3427477.3429780. Orville R., 2004, HOUSTON ENV AEROSOL, P57. Qu X., 2012, METEOROL SCI TECHNOL, V40, P203. Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1. Rotach MW, 2005, THEOR APPL CLIMATOL, V81, P231, DOI 10.1007/s00704-004-0117-9. Ryu S, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10061938. Silva BN, 2017, WIREL COMMUN MOB COM, DOI 10.1155/2017/9429676. Simunek M, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11010315. Soleimani A, 2022, INT J ENVIRON AN CH, DOI 10.1080/03067319.2022.2032013. Sun JL, 2016, BOUND-LAY METEOROL, V160, P83, DOI 10.1007/s10546-016-0134-0. Sun JL, 2012, J ATMOS SCI, V69, P338, DOI 10.1175/JAS-D-11-082.1. Sun N, 2020, IEEE ACCESS, V8, P15907, DOI 10.1109/ACCESS.2020.2966995. Taillardat M, 2016, MON WEATHER REV, V144, P2375, DOI 10.1175/MWR-D-15-0260.1. Tan JG, 2015, B AM METEOROL SOC, V96, P85, DOI 10.1175/BAMS-D-13-00216.1. Telang S., 2021, SECURITY PRIVACY APP. The People's Government of Beijing Municipality, 2011, OV PLAN INT THINGS A, P14. Tian H., 2018, METEOROL ENV SCI, V41, P70. Tian H., 2019, J METEOROL ENV, V35, P79. Tukymbekov D, 2021, ENERGY, V231, DOI 10.1016/j.energy.2021.120902. Tukymbekov D, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST 2019). {[}王琳 Wang Lin], 2018, {[}国土资源遥感, Remote Sensing for Land \& Resources], V30, P1. Wang Y, 2022, FRONT ENV SCI-SWITZ, V10, DOI 10.3389/fenvs.2022.890514. Wang Z., 2017, ADV METEOROL SCI TEC, V7, P85. Wang Z., 2018, METEOROL HYDROL MAR, V35, P109. Warner T, 2007, B AM METEOROL SOC, V88, P167, DOI 10.1175/BAMS-88-2-167. Wessel J, 2020, TRANSPORT RES A-POL, V138, P537, DOI 10.1016/j.tra.2020.06.006. Whitehead K, 2014, J UNMANNED VEH SYST, V2, P86, DOI 10.1139/juvs-2014-0007. Whitehead K, 2014, J UNMANNED VEH SYST, V2, P69, DOI 10.1139/juvs-2014-0006. Wu JW, 2020, TRANSPORT RES A-POL, V135, P264, DOI 10.1016/j.tra.2020.03.020. Xiao Y., 2022, METEOROL ENV SCI, V45, P29. Xu HC, 2022, ENVIRON IMPACT ASSES, V97, DOI 10.1016/j.eiar.2022.106905. {[}徐祥德 Xu Xiangde], 2004, {[}气象学报, Acta Meteorologica Sinica], V62, P663. Yang F., 2021, CITY DISASTER REDUCT, V137, P35. Yu M., 2019, ADV METEOROL SCI TEC, V9, P16. Yu M, 2015, J GEOPHYS RES-ATMOS, V120, P8132, DOI 10.1002/2015JD023336. {[}翟雅静 Zhai Yajing], 2015, {[}灾害学, Journal of Catastrophology], V30, P144. Zhang C., 2015, J HUAZHONG U SCI TEC, V29, P120. {[}张朝林 ZHANG Chaolin], 2007, {[}热带气象学报, Journal of Tropical Meteorology], V23, P652. Zhang NY, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16091501. Zhang X., 2022, HIGHWAY, V67, P248. Zhao N., 2015, METEOROL SCI TECHNOL, V43, P145. Zhi X., 2022, P INT C ELECTROCOMMU. Zhou H, 2012, COMM COM INF SC, V312, P572. Zhou ZY, 2019, IEEE INT CONF MOB DA, P369, DOI 10.1109/MDM.2019.00-27. Zhu SP, 2021, WEATHER FORECAST, V36, P39, DOI 10.1175/WAF-D-20-0096.1. Zhu SP, 2020, THEOR APPL CLIMATOL, V142, P613, DOI 10.1007/s00704-020-03345-7. Zhu SP, 2020, CLIMATIC CHANGE, V160, P343, DOI 10.1007/s10584-019-02640-1. {[}朱焱 Zhu Yan], 2016, {[}高原气象, Plateau Meteorology], V35, P1584. 胡非, 1999, {[}气候与环境研究, Climatic and Environmental Research], V4, P252.}, Number-of-Cited-References = {131}, Times-Cited = {1}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Atmosphere}, Doc-Delivery-Number = {6A8FV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000880885400001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000790501700002, Author = {Piadeh, Farzad and Behzadian, Kourosh and Alani, Amir M.}, Title = {A critical review of real-time modelling of flood forecasting in urban drainage systems}, Journal = {JOURNAL OF HYDROLOGY}, Year = {2022}, Volume = {607}, Month = {APR}, Abstract = {There has been a strong tendency in recent decades to develop real-time urban flood prediction models for early warning to the public due to a large number of worldwide urban flood occurrences and their disastrous consequences. While a significant breakthrough has been made so far, there are still some potential knowledge gaps that need further investigation. This paper presents a comprehensive review of the current state-of-the-art and future trends of real-time modelling of flood forecasting in urban drainage systems. Findings showed that the combination of various real-time sources of rainfall measurement and the inclusion of other real-time data such as soil moisture, wind flow patterns, evaporation, fluvial flow and infiltration should be more investigated in real-time flood forecasting models. Additionally, artificial intelligence is also present in most of the new RTFF models in UDS and consequently further developments of this technique are expected to appear in future works.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Behzadian, K (Corresponding Author), Univ West London, Sch Comp \& Engn, St Marys Rd, London W5 5RF, England. Piadeh, Farzad; Behzadian, Kourosh; Alani, Amir M., Univ West London, Sch Comp \& Engn, St Marys Rd, London W5 5RF, England.}, DOI = {10.1016/j.jhydrol.2022.127476}, EarlyAccessDate = {FEB 2022}, Article-Number = {127476}, ISSN = {0022-1694}, EISSN = {1879-2707}, Keywords = {Artificial intelligence-based models; Data -driven models; Real -time flood forecasting; Urban drainage systems; Urban flood}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORKS; RAINFALL DATA; OPTIMIZATION TECHNIQUES; PRECIPITATION PRODUCTS; DATA-DRIVEN; RADAR DATA; GAUGE; RESOLUTION; URBANIZATION; COMBINATION}, Research-Areas = {Engineering; Geology; Water Resources}, Web-of-Science-Categories = {Engineering, Civil; Geosciences, Multidisciplinary; Water Resources}, Author-Email = {kourosh.behzadian@uwl.ac.uk amir.alani@uwl.ac.uk}, Cited-References = {Abou Rjeily Y, 2018, J HYDROL, V566, P558, DOI 10.1016/j.jhydrol.2018.09.044. Abou Rjeily Y, 2017, WATER SCI TECHNOL, V76, P2401, DOI 10.2166/wst.2017.409. Acharya R, 2017, SATELLITE SIGNAL PROPAGATION, IMPAIRMENTS AND MITIGATION, P195, DOI 10.1016/B978-0-12-809732-8.00007-7. Aieb A, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01247. Aires F, 2020, REMOTE SENS ENVIRON, V237, DOI 10.1016/j.rse.2019.111481. American Meteorological Society (AMS), 2020, GLOSS WEATH CLIM OC. Anbarasan M, 2020, COMPUT COMMUN, V150, P150, DOI 10.1016/j.comcom.2019.11.022. Angrill S, 2017, J ENVIRON MANAGE, V189, P14, DOI 10.1016/j.jenvman.2016.12.027. Balistrocchi M, 2020, J HYDROL-REG STUD, V28, DOI 10.1016/j.ejrh.2020.100670. Bardossy A, 2017, J HYDROL, V544, P397, DOI 10.1016/j.jhydrol.2016.11.039. Behzadian K, 2009, ENVIRON MODELL SOFTW, V24, P530, DOI 10.1016/j.envsoft.2008.09.013. Belete M, 2020, SCI TOTAL ENVIRON, V708, DOI 10.1016/j.scitotenv.2019.134834. Ben Aissia MA, 2017, ADV WATER RESOUR, V110, P299, DOI 10.1016/j.advwatres.2017.10.002. Bermudez M, 2018, WATER RESOUR MANAG, V32, P2801, DOI 10.1007/s11269-018-1959-8. Berndt C, 2014, J HYDROL, V508, P88, DOI 10.1016/j.jhydrol.2013.10.028. Berndtsson R., 2019. Birkinshaw SJ, 2021, J HYDROL, V594, DOI 10.1016/j.jhydrol.2020.125884. Borup M, 2016, J HYDROL, V539, P687, DOI 10.1016/j.jhydrol.2016.05.002. Boudevillain B, 2016, J HYDROL, V541, P14, DOI 10.1016/j.jhydrol.2016.03.058. Brunner MI, 2021, WIRES WATER, V8, DOI 10.1002/wat2.1520. Cecinati F, 2017, WATER RESOUR RES, V53, P8999, DOI 10.1002/2016WR020330. Centre for Research on the Epidemiology of Disasters (CRED), 2021, EM EV DAT. Chang FJ, 2014, J HYDROL, V517, P836, DOI 10.1016/j.jhydrol.2014.06.013. Chen YB, 2015, ENVIRON RES, V139, P3, DOI 10.1016/j.envres.2015.02.028. Chen YH, 2021, SCI TOTAL ENVIRON, V757, DOI 10.1016/j.scitotenv.2020.143975. Cools J, 2016, ENVIRON SCI POLICY, V58, P117, DOI 10.1016/j.envsci.2016.01.006. Courdent V, 2018, J HYDROL, V556, P1013, DOI 10.1016/j.jhydrol.2016.08.015. Dao D.A, J HYDRO-ENVIRON RES, V32, P48. Darabi H, 2020, HYDROL RES, V51, P127, DOI 10.2166/nh.2019.090. Delrieu G, 2014, ADV WATER RESOUR, V71, P110, DOI 10.1016/j.advwatres.2014.06.005. Department for Environment Food and Rural Affairs (DEFRA), 2021, DEFRA OFF WEBS. Ding Y., 2014, MEASURING SCHOLARLY, P285. Dao DA, 2020, J HYDROL, V584, DOI 10.1016/j.jhydrol.2020.124704. Dumedah G, 2014, J HYDROL, V515, P330, DOI 10.1016/j.jhydrol.2014.04.068. Fidal J, 2020, J HYDROL, V589, DOI 10.1016/j.jhydrol.2020.125122. Figueroa M, 2020, J HYDROL-REG STUD, V32, DOI 10.1016/j.ejrh.2020.100752. Garcia L, 2015, ADV WATER RESOUR, V85, P120, DOI 10.1016/j.advwatres.2015.08.007. Garofalo G, 2017, J NETW COMPUT APPL, V78, P30, DOI 10.1016/j.jnca.2016.11.004. Geravand F, 2020, J HYDROL, V584, DOI 10.1016/j.jhydrol.2020.124743. Goh KH, 2021, J CLEAN PROD, V284, DOI 10.1016/j.jclepro.2020.124711. Gosain A. K., 2009, ADV FLUID MECH, V339, P63. Guan MF, 2016, HYDROL PROCESS, V30, P543, DOI 10.1002/hyp.10624. Hadid B, 2020, J PROCESS CONTR, V86, P44, DOI 10.1016/j.jprocont.2019.12.007. Hamil L, 2011, UNDERSTANDING HYDRAU, V3rd, P507. Han J, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142491. Hasan MM, 2016, ADV WATER RESOUR, V97, P205, DOI 10.1016/j.advwatres.2016.09.011. Islam A, 2020, J HYDROL, V590, DOI 10.1016/j.jhydrol.2020.125474. Jewell SA, 2015, Q J ROY METEOR SOC, V141, P2300, DOI 10.1002/qj.2522. Jiang P, 2013, J HYDROL, V504, P80, DOI 10.1016/j.jhydrol.2013.09.037. Kamkhad N, 2020, KNOWL-BASED SYST, V196, DOI 10.1016/j.knosys.2020.105803. Kamwaga S, 2018, PHYS CHEM EARTH, V106, P17, DOI 10.1016/j.pce.2018.05.008. KC S., 2021, J ENVIRON MANAGE, V281. Kim JH, 2020, CATENA, V193, DOI 10.1016/j.catena.2020.104602. Konami T, 2021, INT J DISAST RISK RE, V53, DOI 10.1016/j.ijdrr.2020.102012. Kourtis IM, 2021, SCI TOTAL ENVIRON, V771, DOI 10.1016/j.scitotenv.2021.145431. Li CL, 2018, SCI TOTAL ENVIRON, V643, P301, DOI 10.1016/j.scitotenv.2018.06.211. Li JD, 2020, SCI TOTAL ENVIRON, V732, DOI 10.1016/j.scitotenv.2020.138931. Liu JH, 2020, ENVIRON RES, V182, DOI 10.1016/j.envres.2019.108929. Lund NSV, 2019, J ENVIRON MANAGE, V248, DOI 10.1016/j.jenvman.2019.05.110. Macchione F, 2019, J HYDROL, V576, P443, DOI 10.1016/j.jhydrol.2019.06.031. Maggioni V, 2018, J HYDROL, V558, P214, DOI 10.1016/j.jhydrol.2018.01.039. Martens B, 2013, J HYDROL, V500, P84, DOI 10.1016/j.jhydrol.2013.07.011. McKee JL, 2016, CAN WATER RESOUR J, V41, P186, DOI 10.1080/07011784.2015.1064786. Meteorological Office (Met Office), 2020, MET OFF OFF WEBS. Meyers SD, 2021, URBAN CLIM, V35, DOI 10.1016/j.uclim.2020.100752. Milad Jajarmizadeh, 2012, Journal of Environmental Science and Technology, V5, P249, DOI 10.3923/jest.2012.249.261. Miller JD, 2017, J HYDROL-REG STUD, V12, P345, DOI 10.1016/j.ejrh.2017.06.006. Moher D, 2015, SYST REV-LONDON, V4, DOI {[}10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1186/s13643-015-0087-2]. Mosavi A, 2018, WATER-SUI, V10, DOI 10.3390/w10111536. Motta M, 2021, INT J DISAST RISK RE, V56, DOI 10.1016/j.ijdrr.2021.102154. Mounce SR, 2014, WATER SCI TECHNOL, V69, P1326, DOI 10.2166/wst.2014.024. Muller H, 2018, J HYDROL, V556, P847, DOI 10.1016/j.jhydrol.2016.01.031. Mullapudi A, 2020, ADV WATER RESOUR, V140, DOI 10.1016/j.advwatres.2020.103600. Nanding N, 2015, J HYDROINFORM, V17, P422, DOI 10.2166/hydro.2015.001. National Centre for Atmospheric Research (NCAR), 2012, NUMB STAT US GPC MAY. Niemi TJ, 2017, J HYDROL, V547, P143, DOI 10.1016/j.jhydrol.2017.01.056. Nkwunonwo UC, 2020, SCI AFR, V7, DOI 10.1016/j.sciaf.2020.e00269. Ochoa-Rodriguez S, 2019, WATER RESOUR RES, V55, P6356, DOI 10.1029/2018WR023332. Ochoa-Rodriguez S, 2015, J HYDROL, V531, P389, DOI 10.1016/j.jhydrol.2015.05.035. Olsson J, 2017, ENVIRON MODELL SOFTW, V93, P381, DOI 10.1016/j.envsoft.2017.03.025. Paz I, 2018, WATER-SUI, V10, DOI 10.3390/w10030269. Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006. Pour SH, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102373. Pulkkinen S, 2016, J HYDROL, V542, P662, DOI 10.1016/j.jhydrol.2016.09.036. Rabiei E, 2015, J HYDROL, V522, P544, DOI 10.1016/j.jhydrol.2015.01.020. Rahmati O, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69703-7. Rajput SPS, 2020, MATER TODAY-PROC, V26, P1482, DOI 10.1016/j.matpr.2020.02.305. Raut NP, 2021, MATER TODAY-PROC, V45, P4830, DOI 10.1016/j.matpr.2021.01.295. Ravazzani G, 2016, J HYDROL, V539, P237, DOI 10.1016/j.jhydrol.2016.05.023. Razavi S, 2021, ENVIRON MODELL SOFTW, V137, DOI 10.1016/j.envsoft.2020.104954. Rico-Ramirez MA, 2015, J HYDROL, V528, P17, DOI 10.1016/j.jhydrol.2015.05.057. Ben LR, 2019, IFAC PAPERSONLINE, V52, P101, DOI 10.1016/j.ifacol.2019.11.016. Rubinato M, 2019, WATER SCI ENG, V12, P274, DOI 10.1016/j.wse.2019.12.004. Salvadore E, 2015, J HYDROL, V529, P62, DOI 10.1016/j.jhydrol.2015.06.028. Schaller N, 2020, WEATHER CLIM EXTREME, V29, DOI 10.1016/j.wace.2020.100259. Sharifi E, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8020135. Shih SS, 2019, J ENVIRON MANAGE, V251, DOI 10.1016/j.jenvman.2019.109553. Silva CD, 2020, J ENVIRON MANAGE, V253, DOI 10.1016/j.jenvman.2019.109719. Sitterson J., 2017, EPA600R153 US EPA. Tanaka T, 2020, J HYDROL, V584, DOI 10.1016/j.jhydrol.2020.124706. Thorndahl S, 2017, HYDROL EARTH SYST SC, V21, P1359, DOI 10.5194/hess-21-1359-2017. Thrysoe C, 2019, J HYDROL, V568, P517, DOI 10.1016/j.jhydrol.2018.11.005. Tian JY, 2019, ATMOS RES, V224, P127, DOI 10.1016/j.atmosres.2019.03.029. Troutman SC, 2017, WATER RES, V126, P88, DOI 10.1016/j.watres.2017.08.065. United Nations Office for Disaster Risk Reduction (UNDRR), 2019, ANN REP UN OFF DIS R. van Daal P, 2017, ENVIRON MODELL SOFTW, V95, P90, DOI 10.1016/j.envsoft.2017.06.015. Wagener T, 2004, RAINFALL RUNOFF MODE, V1st, P80. Wang LP, 2015, J HYDROL, V531, P408, DOI 10.1016/j.jhydrol.2015.05.049. Wang XQ, 2019, J HYDROL, V577, DOI 10.1016/j.jhydrol.2019.123984. Wu ZN, 2020, SCI TOTAL ENVIRON, V716, DOI 10.1016/j.scitotenv.2020.137077. Xu C, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121421. Yao L, 2016, ECOL INDIC, V60, P893, DOI 10.1016/j.ecolind.2015.08.041. Yin DK, 2020, SCI TOTAL ENVIRON, V720, DOI 10.1016/j.scitotenv.2020.137630. Yin HL, 2017, J HYDRODYN, V29, P898, DOI 10.1016/S1001-6058(16)60803-X. Zhang D, 2018, J HYDROL, V556, P409, DOI 10.1016/j.jhydrol.2017.11.018. Zhao G, 2019, SCI TOTAL ENVIRON, V659, P940, DOI 10.1016/j.scitotenv.2018.12.217. Zhao WQ, 2019, IEEE T SYST MAN CY-S, V49, P1254, DOI 10.1109/TSMC.2017.2724440. Zhu ZH, 2016, SCI TOTAL ENVIRON, V553, P1, DOI 10.1016/j.scitotenv.2016.02.025. Zounemat-Kermani Mohammad, 2020, Journal of Hydrology, V588, P823, DOI 10.1016/j.jhydrol.2020.125085. Zounemat-Kermani M, 2021, J HYDROL, V598, DOI 10.1016/j.jhydrol.2021.126266.}, Number-of-Cited-References = {120}, Times-Cited = {13}, Usage-Count-Last-180-days = {53}, Usage-Count-Since-2013 = {83}, Journal-ISO = {J. Hydrol.}, Doc-Delivery-Number = {0Y6LZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000790501700002}, OA = {Green Accepted, hybrid}, DA = {2023-04-22}, } @article{ WOS:000482939700011, Author = {Wagner, Magdalena and de Vries, Walter Timo}, Title = {Comparative Review of Methods Supporting Decision-Making in Urban Development and Land Management}, Journal = {LAND}, Year = {2019}, Volume = {8}, Number = {8}, Month = {AUG}, Abstract = {This paper discusses how and where technologies supporting decision-making can play, or are already playing, a role in both urban development and land management. The review analyzes and compares three types of technologies: cellular automata (CA), artificial intelligence (AI), and operational research (OR), and evaluates to which extent they can be useful when dealing with various land planning objectives and phases. CA is one of the most useful models for simulating urban growth, AI displays great potential as a solution to capture the dynamics of land change, and OR is useful in decision-making, for example to conduct locational analyses. The evaluation relies on a collection of relevant articles, selected on the basis of both content and actuality. The paper offers new perspectives towards innovative methods in urban planning and land management and highlights where and when which type of tool can be considered useful and valid. The existing gaps, i.e., phases or areas in spatial planning or land management where the methods have not been applied, are also discussed.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Wagner, M (Corresponding Author), Tech Univ Munich, TUM Dept Civil Geo \& Environm Engn, D-80333 Munich, Germany. Wagner, Magdalena; de Vries, Walter Timo, Tech Univ Munich, TUM Dept Civil Geo \& Environm Engn, D-80333 Munich, Germany.}, DOI = {10.3390/land8080123}, Article-Number = {123}, EISSN = {2073-445X}, Keywords = {cellular automata; artificial intelligence; operational research; land management; urban development}, Keywords-Plus = {CELLULAR-AUTOMATA; ARTIFICIAL-INTELLIGENCE; GROWTH; MODEL; SIMULATION; PREDICTION; DYNAMICS; NETWORK; AREA; GIS}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Studies}, Author-Email = {m.wagner@o2.pl}, Affiliations = {Technical University of Munich}, ResearcherID-Numbers = {de Vries, Walter Timo/I-7765-2019 }, ORCID-Numbers = {de Vries, Walter Timo/0000-0002-1942-4714 Wagner, Magdalena/0000-0002-9919-8728}, Cited-References = {Aburas MM, 2016, INT J APPL EARTH OBS, V52, P380, DOI 10.1016/j.jag.2016.07.007. Angilella S, 2016, ANN OPER RES, V245, P427, DOI 10.1007/s10479-015-1787-7. {[}Anonymous], 1974, DEMATEL INNOVATIVE M. {[}Anonymous], ANAL COMPLEX SOCIOEC. Batty M, 1997, J AM PLANN ASSOC, V63, P266, DOI 10.1080/01944369708975918. Batty M., 1999, Computers, Environment and Urban Systems, V23, P205, DOI 10.1016/S0198-9715(99)00015-0. Batty M., 2005, CITIES COMPLEXITY UN. Batty M, 2009, INT ENCY HUMAN GEOGR, P51, DOI {[}10.1016/B978-008044910-4.01092-0, DOI 10.1016/B978-008044910-4.01092-0]. Berberoglu S, 2016, LANDSCAPE URBAN PLAN, V153, P11, DOI 10.1016/j.landurbplan.2016.04.017. Blumenfeld D.E., 2004, FOCUS, V24, P10. BOUYSSOU D, 2001, ENCY OPTIMIZATION. Brans J P., 2016, MULTIPLE CRITERIA DE, P187, DOI {[}10.1007/978-1-4939-3094-4\_6, DOI 10.1007/978-1-4939-3094-4\_6]. CHAPIN FS, 1968, TRANSPORT RES, V2, P375, DOI 10.1016/0041-1647(68)90103-2. Charif O., 2012, P 45 ANN SIM S. Chaudhuri G., 2013, INT J ENV RESOURCES, V1, P88, DOI DOI 10.22069/IJERR.2013.1688. Cheng, 2003, MODELLING SPATIAL TE. Clarke KC, 1998, INT J GEOGR INF SCI, V12, P699, DOI 10.1080/136588198241617. Clarke R, 2008, INFORMATION SYSTEMS ACADEMIC DISCIPLINE IN AUSTRALIA, P47. Coman A, 2009, HUM SYST MANAGE, V28, P93, DOI 10.3233/HSM-2009-0703. De Boer L., 1998, EUROPEAN J PURCHASIN, V4, P109, DOI DOI 10.1016/S0969-7012(97)00034-8. De Toro P, 2016, AESTIMUM, V69, P93, DOI 10.13128/Aestimum-20450. De Vries W.T., 2016, 18 MUNCHN TAG NACHH, V48, P74. De Vries W.T., 2018, J GEOMAT PLAN, V5, P205, DOI {[}10.14710/geoplanning.5.2.205-214, DOI 10.14710/GEOPLANNING.5.2.205-214]. Eom S. B., 2001, INT ENCY BUSINESS MA. Feng S, 1999, EXPERT SYST, V16, P248, DOI 10.1111/1468-0394.00117. Feng YJ, 2016, STOCH ENV RES RISK A, V30, P1387, DOI 10.1007/s00477-015-1128-z. Ferretti V, 2016, DECIS SUPPORT SYST, V84, P41, DOI 10.1016/j.dss.2016.01.005. Figueira J, 2005, INT SER OPER RES MAN, V78, P1, DOI 10.1007/b100605. Giove Silvio, 2009, P53, DOI 10.1007/978-0-387-09722-0\_3. Greco S, 2001, EUR J OPER RES, V129, P1, DOI 10.1016/S0377-2217(00)00167-3. Guan QF, 2010, INT J GEOGR INF SCI, V24, P695, DOI 10.1080/13658810902984228. Helbing D., 2018, DIGITAL ENLIGHTENMEN, P73, DOI DOI 10.1007/978-3-319-90869-4\_7. Hosch W.L., 2016, ENCY BRITANNICA. Ishida Y, 2005, LECT NOTES ARTIF INT, V3682, P86. Jantz CA, 2010, COMPUT ENVIRON URBAN, V34, P1, DOI 10.1016/j.compenvurbsys.2009.08.003. Jochem WC, 2018, COMPUT ENVIRON URBAN, V69, P104, DOI 10.1016/j.compenvurbsys.2018.01.004. Kouziokas GN, 2017, TRANSP RES PROC, V24, P467, DOI 10.1016/j.trpro.2017.05.083. Lagopoulos AP, 2018, URBAN SCI, V2, DOI 10.3390/urbansci2010017. Lee HS, 2013, APPL MATH MODEL, V37, P6746, DOI 10.1016/j.apm.2013.01.016. Liu L, 2015, NAT HAZARD EARTH SYS, V15, P381, DOI 10.5194/nhess-15-381-2015. Liu XP, 2018, INT J GEOGR INF SCI, V32, P73, DOI 10.1080/13658816.2017.1376065. Liu XP, 2010, INT J GEOGR INF SCI, V24, P783, DOI 10.1080/13658810903270551. Los M., 1973, SPATIAL DESIGN ARTIF. Lupu C., 2018, Human Geographies - Journal of Studies and Research in Human Geographies, V12, P115, DOI 10.5719/hgeo.2018.121.7. Lv YS, 2015, IEEE T INTELL TRANSP, V16, P865, DOI 10.1109/TITS.2014.2345663. Mahiny A.S., 2011, 2011 INT C COMP SCI. Moore S., 2015, DIGITALIZATION AUTOM. Mulgan G, 2018, AI SOC, V33, P631, DOI 10.1007/s00146-018-0861-5. Omar NQ, 2014, IOP C SER EARTH ENV, V20, DOI 10.1088/1755-1315/20/1/012008. Omrani H, 2017, GISCI REMOTE SENS, V54, P283, DOI 10.1080/15481603.2016.1265706. Pan YH, 2016, ENGINEERING, V2, P171, DOI 10.1016/J.ENG.2016.02.003. Pinter J., MATHWORLD WOLFRAM WE. Reades J, 2019, URBAN STUD, V56, P922, DOI 10.1177/0042098018789054. Rimal B, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7040154. Campos PBR, 2018, LAND USE POLICY, V79, P774, DOI 10.1016/j.landusepol.2018.08.036. Saaty T.L., 2008, GROUP DECISION MAKIN. Saaty T.L., 2008, IRANIAN J OPERATIONS, V1, P1. Shafizadeh-Moghadam H, 2017, COMPUT ENVIRON URBAN, V64, P297, DOI 10.1016/j.compenvurbsys.2017.04.002. Sprague RH, 1982, BUILDING EFFECTIVE D. Thagard P., 2013, COGNITIVE SCI. Nguyen TA, 2019, ENVIRON DEV SUSTAIN, V21, P429, DOI 10.1007/s10668-017-0046-2. TOBLER WR, 1970, ECON GEOGR, V46, P234, DOI 10.2307/143141. Tobler WR., 1979, PHILOS GEOGRAPHY, P379, DOI 10.1007/978-94-009-9394-5\_18. Torabi Moghadam S, 2016, PROCD SOC BEHV, V223, P974, DOI 10.1016/j.sbspro.2016.05.334. Veldkamp A, 2004, J ENVIRON MANAGE, V72, P1, DOI 10.1016/j.jenvman.2004.04.004. Wagner M., 2014, URBAN INF, V257, P72. Wagner M., 2016, P IFKAD 2016 11 INT, P2053. Wagner M, 2017, GREEN ENERGY TECHNOL, P205, DOI 10.1007/978-3-319-44899-2\_12. Wolfram, 1986, THEORY APPL CELLULAR. Wu N, 2010, J PLAN LIT, V24, P246, DOI 10.1177/0885412210361571. Xiao N., 2017, INT ENCY GEOGRAPHY P. Xie YC, 1996, GEOGR ANAL, V28, P350. Yang J., 2001, MSM WORKING PAPER SE, V106, P1. Yu J, 2011, INT J GEOGR INF SCI, V25, P131, DOI 10.1080/13658811003785571. Zeleny M, 2011, J MULTI-CRITERIA DEC, V18, P77, DOI 10.1002/mcda.473. Zhang HY, 2017, ADV GEOSPAT TECH, P19, DOI 10.4018/978-1-5225-2446-5.ch002. Zwass V., 2018, ENCY BRITANNICA.}, Number-of-Cited-References = {77}, Times-Cited = {10}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {17}, Journal-ISO = {Land}, Doc-Delivery-Number = {IT5WT}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000482939700011}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000406817800033, Author = {Hawas, Mohamed A.}, Title = {Are We Intentionally Limiting Urban Planning and Intelligence? A Causal Evaluative Review and Methodical Redirection for Intelligence Systems}, Journal = {IEEE ACCESS}, Year = {2017}, Volume = {5}, Pages = {13253-13259}, Abstract = {The chronic growth of networked complexities in today's world, now require highly efficient evolvable systems. However, diverse open issues and inabilities are facing urban planning practice and social sciences due to the limitations of artificial intelligence planning tools. These incapacities have relatively limited our ability to perceive and handle possible present and future temperamental situations in socio-physical contexts and in real- time modes. Here, we theoretically present two simple philosophical and systematic causal models to help software engineers to understand this philosophical and complexity dilemma from an urban planning perspective. The first model evaluates the reliance on perceptual and bounding trajectories. It discusses discrete and finite-expert systems that perceive specific parts of self-organization's complexities, while bounding limited facets only of general intelligence to address certain issues in urban planning and social contexts. This implies the second causal model that is based on aligning to urban self-organizational happenings, by putting philosophical foundations for a responsive artificial superintelligence (ASI). This proposed ASI is based on connecting between complex adaptive systems in our contexts by open-endedly hosting and operating in finite expert systems to refiect different fields and functions, toward asymptotic in finite intellectual capacity.}, Publisher = {IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC}, Address = {445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA}, Type = {Review}, Language = {English}, Affiliation = {Hawas, MA (Corresponding Author), Cairo Univ, Fac Engn, Dept Architecture, Urban Design \& Community Dev Sect, Giza 12613, Egypt. Hawas, Mohamed A., Cairo Univ, Fac Engn, Dept Architecture, Urban Design \& Community Dev Sect, Giza 12613, Egypt.}, DOI = {10.1109/ACCESS.2017.2725138}, ISSN = {2169-3536}, Keywords = {Philosophical considerations; artificial intelligence; artificial superintelligence; urban planning; complexity theory; causal evaluation; expert systems}, Keywords-Plus = {SELF-ORGANIZATION; COMPLEXITY; MODEL; SUITABILITY; SIMULATION; CITIES; LAND; LIFE}, Research-Areas = {Computer Science; Engineering; Telecommunications}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Telecommunications}, Author-Email = {m\_hawas@live.eom}, Affiliations = {Egyptian Knowledge Bank (EKB); Cairo University}, ORCID-Numbers = {Hawas, Mohamed/0000-0003-0574-1177}, Cited-References = {Abel T, 2014, INT J GEN SYST, V43, P44, DOI 10.1080/03081079.2013.852188. Nescolarde-Selva JA, 2015, COMPLEXITY, V20, P58, DOI 10.1002/cplx.21514. Balmaceda B, 2016, J SYST SCI COMPLEX, V29, P1177, DOI 10.1007/s11424-016-6084-2. Banzhaf W, 2014, GENET PROGRAM EVOL M, V15, P63, DOI 10.1007/s10710-013-9196-7. Boschetti F, 2016, COMPLEXITY, V21, P202, DOI 10.1002/cplx.21680. Bostrom N., 2006, LINGUISTIC PHILOS IN, V5, P11. Bostrom Nick, 2014, SUPERINTELLIGENCE PA. de Roo G, 2016, SPRINGER PR COMPLEX, P153, DOI 10.1007/978-3-319-32653-5\_9. Divigalpitiya P., 2016, P 13 INT C DES DEC S, P47. DOSE K, 1988, INTERDISCIPL SCI REV, V13, P348. Fava D., 2016, COUNTERACTING URBAN, P109, DOI {[}10.1007/978-3-319-10425-6\_5, DOI 10.1007/978-3-319-10425-6\_5]. Feng S, 1999, EXPERT SYST, V16, P248, DOI 10.1111/1468-0394.00117. Gell-Mann M, 2003, SFI S SCI C, P387. Georgiev GY, 2015, COMPLEXITY, V21, P18, DOI 10.1002/cplx.21574. Gershenson C, 2012, COMPLEXITY, V18, P29, DOI 10.1002/cplx.21424. Grabowski F, 2013, COMPLEXITY, V18, P28, DOI 10.1002/cplx.21438. HAKEN H, 1995, ENVIRON PLANN B, V22, P35, DOI 10.1068/b220035. Halley JD, 2008, COMPLEXITY, V14, P10, DOI 10.1002/cplx.20235. Haste H, 2016, INTERDISCIPL SCI REV, V41, P167, DOI 10.1080/03080188.2016.1223584. Jaffe K, 2016, COMPLEXITY, V21, P235, DOI 10.1002/cplx.21800. Kadaifci C., 2017, INTELLIGENCE SYSTEMS, V113, P385. Kasthurirathna D, 2016, COMPLEXITY, V21, P123, DOI 10.1002/cplx.21789. Kauffman S., 2016, ONCE FUTURE TURING C, P163. Kauffman S., 2004, SCI ULTIMATE REALITY, P654, DOI {[}10.1017/CBO9780511814990.032, DOI 10.1017/CBO9780511814990.032]. Kauffman SA, 2015, PROG BIOPHYS MOL BIO, V119, P219, DOI 10.1016/j.pbiomolbio.2015.06.003. Kelso JAS, 2016, SPRINGER PR COMPLEX, P43, DOI 10.1007/978-3-319-32653-5\_3. Kong CF, 2016, ENVIRON EARTH SCI, V75, DOI 10.1007/s12665-016-5956-z. Kurzweil R, 2006, SINGULARITY IS NEAR. LANCASTER J, 1989, INT J GEN SYST, V16, P43, DOI 10.1080/03081078908935062. Laredo JLJ, 2014, GENET PROGRAM EVOL M, V15, P221, DOI 10.1007/s10710-014-9213-5. Malmir M, 2016, ENVIRON MONIT ASSESS, V188, DOI 10.1007/s10661-016-5401-5. MANSFIELD U, 1982, J AM SOC INFORM SCI, V33, P375, DOI 10.1002/asi.4630330608. Manson SM, 2001, GEOFORUM, V32, P405, DOI 10.1016/S0016-7185(00)00035-X. Lopez MM, 2008, INTERDISCIPL SCI REV, V33, P153, DOI 10.1179/030801808X259745. Muller V. C., 2014, AI MATTERS, V1, P9, DOI DOI 10.1145/2639475.2639478. Muller V. C., MULLER VINCENT C PUB. Mullins R., 2012, INTRO WHAT IS TURING. Neema M., 2016, P 13 INT C DES DEC S, P345. Partanen J, 2015, ENVIRON PLANN B, V42, P951, DOI 10.1068/b140064p. Piera MA, 2016, J SIMUL, V10, P216, DOI 10.1057/jos.2014.42. Plikynas D, 2010, J SYST SCI COMPLEX, V23, P232, DOI 10.1007/s11424-010-7239-1. Portugali J., 2012, COMPLEXITY THEORIES. Portugali J, 2011, UNDERST COMPLEX SYST, P1, DOI 10.1007/978-3-642-19451-1. Rauws W, 2016, TOWN PLAN REV, V87, P241, DOI 10.3828/tpr.2016.18. Russell S.J., 2010, ARTIF INTELL MODERN, Vthird. Sipser M., 2006, INTRO THEORY COMPUTA. Tadic S, 2014, EXPERT SYST APPL, V41, P8112, DOI 10.1016/j.eswa.2014.07.021. Thomas J, 2016, COMPLEXITY, V21, P207, DOI 10.1002/cplx.21799. Tian GJ, 2014, ECOL SOC, V19, DOI 10.5751/ES-06909-190352. University of Cambridge, 2016, RES DEP LAND EC LISA. Uso-Domenech JL, 2016, COMPLEXITY, V21, P388, DOI 10.1002/cplx.21817. Vattay G, 2015, J PHYS CONF SER, V626, DOI 10.1088/1742-6596/626/1/012023. Wu FL, 2016, URBAN STUD, V53, P2973, DOI 10.1177/0042098015598745. Wu N, 2010, J PLAN LIT, V24, P246, DOI 10.1177/0885412210361571. Yigitcanlar S. P., 2016, INT J ENVIRON SCI TE, V14, P1. Zhang SH, 2016, TOWN PLAN REV, V87, P253, DOI 10.3828/tpr.2016.19. Zhao H, 2015, EXPERT SYST APPL, V42, P3760, DOI 10.1016/j.eswa.2014.11.056.}, Number-of-Cited-References = {57}, Times-Cited = {2}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {23}, Journal-ISO = {IEEE Access}, Doc-Delivery-Number = {FC4NY}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000406817800033}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000831582400004, Author = {Casali, Ylenia and Aydin, Nazli Yonca and Comes, Tina}, Title = {Machine learning for spatial analyses in urban areas: a scoping review}, Journal = {SUSTAINABLE CITIES AND SOCIETY}, Year = {2022}, Volume = {85}, Month = {OCT}, Abstract = {The challenges for sustainable cities to protect the environment, ensure economic growth, and maintain social justice have been widely recognized. Along with the digitization, availability of large datasets, Machine Learning (ML) and Artificial Intelligence (AI) are promising to revolutionize the way we analyze and plan urban areas, opening new opportunities for the sustainable city agenda. Especially urban spatial planning problems can benefit from ML approaches, leading to an increasing number of ML publications across different domains. What is missing is an overview of the most prominent domains in spatial urban ML along with a mapping of specific applied approaches. This paper aims to address this gap and guide researchers in the field of urban science and spatial data analysis to the most used methods and unexplored research gaps. We present a scoping review of ML studies that used geospatial data to analyze urban areas. Our review focuses on revealing the most prominent topics, data sources, ML methods and approaches to parameter selection. Furthermore, we determine the most prominent patterns and challenges in the use of ML. Through our analysis, we identify knowledge gaps in ML methods for spatial data science and data specifications to guide future research.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Casali, Y (Corresponding Author), Delft Univ Technol, Fac Technol Policy \& Management, Bldg 31,Jaffalaan 5, NL-2628 BX Delft, Netherlands. Casali, Ylenia; Aydin, Nazli Yonca; Comes, Tina, Delft Univ Technol, Fac Technol Policy \& Management, Bldg 31,Jaffalaan 5, NL-2628 BX Delft, Netherlands.}, DOI = {10.1016/j.scs.2022.104050}, EarlyAccessDate = {JUL 2022}, Article-Number = {104050}, ISSN = {2210-6707}, EISSN = {2210-6715}, Keywords = {Machine learning; Urban areas; Review; Spatial analyses; Geospatial data}, Keywords-Plus = {WATER DISTRIBUTION NETWORKS; LAND-USE; DATA ANALYTICS; PRINCIPAL COMPONENT; NEURAL-NETWORKS; ENERGY USE; SCALE; MODEL; GIS; ENVIRONMENT}, Research-Areas = {Construction \& Building Technology; Science \& Technology - Other Topics; Energy \& Fuels}, Web-of-Science-Categories = {Construction \& Building Technology; Green \& Sustainable Science \& Technology; Energy \& Fuels}, Author-Email = {ylenia.casali@gmail.com}, Affiliations = {Delft University of Technology}, ResearcherID-Numbers = {Comes, Tina/G-2076-2016}, ORCID-Numbers = {Comes, Tina/0000-0002-8721-8314}, Funding-Acknowledgement = {Delft University of Technology (TU Delft)}, Funding-Text = {This work was supported by the Delft University of Technology (TU Delft) .}, Cited-References = {Abbasabadi N., 2019, SIMULATION SERIES, V51, P71. Abdulla B, 2020, CONSTRUCTION RESEARCH CONGRESS 2020: COMPUTER APPLICATIONS, P38. Aksela K, 2011, J WATER RES PL-ASCE, V137, P456, DOI 10.1061/(ASCE)WR.1943-5452.0000131. Alam MS, 2018, J CLEAN PROD, V183, P797, DOI 10.1016/j.jclepro.2018.02.206. Alejandro Y, 2019, LECT NOTES ARTIF INT, V11835, P187, DOI 10.1007/978-3-030-33749-0\_16. Ali U, 2020, APPL ENERG, V279, DOI 10.1016/j.apenergy.2020.115834. Alomari E, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21092993. {[}Anonymous], 2012, P ACM SIGKDD INT WOR, DOI DOI 10.1145/2346496.2346498. Arnaudo E, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10134587. Arribas-Bel D, 2021, J URBAN ECON, V125, DOI 10.1016/j.jue.2019.103217. Aschwanden GDPA, 2021, ENVIRON PLAN B-URBAN, V48, P186, DOI 10.1177/2399808319862571. Auerbach J., 2017, ARXIV. Awan FM, 2021, IEEE SENS J, V21, P20722, DOI 10.1109/JSEN.2021.3100324. Ayeleru OO, 2021, J CLEAN PROD, V289, DOI 10.1016/j.jclepro.2020.125671. Badii C, 2022, MULTIMED TOOLS APPL, V81, P115, DOI 10.1007/s11042-021-10993-y. Badmos OS, 2019, COMPUT ENVIRON URBAN, V77, DOI 10.1016/j.compenvurbsys.2019.101369. Baltensperger AP, 2013, POLAR BIOL, V36, P1587, DOI 10.1007/s00300-013-1376-7. Banga A, 2021, INT J SYST ASSUR ENG, DOI 10.1007/s13198-020-01049-9. Bao J, 2019, ACCIDENT ANAL PREV, V122, P239, DOI 10.1016/j.aap.2018.10.015. Bappee F. K., 2020, ARXIV. Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012. Batty M, 2008, SCIENCE, V319, P769, DOI 10.1126/science.1151419. Bechtel B, 2019, URBAN CLIM, V27, P24, DOI 10.1016/j.uclim.2018.10.001. Bibri SE, 2020, LAND USE POLICY, V97, DOI 10.1016/j.landusepol.2020.104703. Biljecki F, 2021, LANDSCAPE URBAN PLAN, V215, DOI 10.1016/j.landurbplan.2021.104217. Biljecki F, 2017, COMPUT ENVIRON URBAN, V64, P1, DOI 10.1016/j.compenvurbsys.2017.01.001. Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss\_a\_00018. Bjerre-Nielsen A, 2020, PLOS ONE, V15, DOI {[}10.1371/journal.pone.0234003, 10.1371/journal.pone.0234003.r001, 10.1371/journal.pone.0234003.r002, 10.1371/journal.pone.0234003.r003, 10.1371/journal.pone.0234003.r004, 10.1371/journal.pone.0234003.r005]. Bonilla-Bedoya S, 2021, J ENVIRON MANAGE, V300, DOI 10.1016/j.jenvman.2021.113556. Boulos MNK, 2019, INT J HEALTH GEOGR, V18, DOI 10.1186/s12942-019-0171-2. Brajard J, 2020, J COMPUT SCI-NETH, V44, DOI 10.1016/j.jocs.2020.101171. Brokamp C, 2017, ATMOS ENVIRON, V151, P1, DOI 10.1016/j.atmosenv.2016.11.066. Candelieri A, 2013, WIT TRANS ECOL ENVIR, V171, P107, DOI 10.2495/WRM130101. Carrera B, 2021, SUSTAIN CITIES SOC, V72, DOI 10.1016/j.scs.2021.103025. Celebi M.E., 2016, UNSUPERVISED LEARNIN, DOI DOI 10.1007/978-3-319-24211-8. Champendal A, 2014, LECT NOTES COMPUT SC, V8581, P682, DOI 10.1007/978-3-319-09150-1\_50. Chan JCW, 2001, PHOTOGRAMM ENG REM S, V67, P213. Chang MC, 2018, COMPUTING FOR A BETTER TOMORROW, (ECAADE 2018), VOL 2, P669. Chang MC, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P1139, DOI 10.1109/ICMLA.2017.00015. Chaturvedi V, 2021, URBAN SCI, V5, DOI 10.3390/urbansci5030068. Chen LB, 2015, PROCEEDINGS OF THE 2015 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING (UBICOMP 2015), P571, DOI 10.1145/2750858.2804291. Chen Q, 2021, ENVIRON PLAN B-URBAN, V48, P1876, DOI 10.1177/2399808320951580. Cheng JQ, 2006, LAND USE POLICY, V23, P604, DOI 10.1016/j.landusepol.2005.05.010. Cichosz P, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9070459. Colding J, 2020, ENVIRON PLAN B-URBAN, V47, P179, DOI 10.1177/2399808318763164. Collini E, 2021, IEEE ACCESS, V9, P124337, DOI 10.1109/ACCESS.2021.3110794. Cranshaw J., 2012, LIVEHOODS PROJECT UT. Cutter SL, 2008, P NATL ACAD SCI USA, V105, P2301, DOI 10.1073/pnas.0710375105. Darabi H, 2019, J HYDROL, V569, P142, DOI 10.1016/j.jhydrol.2018.12.002. Dash SK, 2018, IEEE INT CONF BIG DA, P1912, DOI 10.1109/BigData.2018.8622041. de Montjoye YA, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.286. De Nadai M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70808-2. Deters JK, 2017, J ELECTR COMPUT ENG, V2017, DOI 10.1155/2017/5106045. Ding C, 2018, TRANSPORT RES A-POL, V110, P107, DOI 10.1016/j.tra.2018.02.009. Dong L, 2019, P NATL ACAD SCI USA, V116, P15447, DOI 10.1073/pnas.1903064116. Dong SJ, 2020, COMPUT ENVIRON URBAN, V80, DOI 10.1016/j.compenvurbsys.2019.101443. Eggimann S, 2021, SUSTAIN CITIES SOC, V72, DOI 10.1016/j.scs.2021.103068. Eini M, 2020, INT J DISAST RISK RE, V50, DOI 10.1016/j.ijdrr.2020.101687. Elmqvist T, 2019, NAT SUSTAIN, V2, P267, DOI 10.1038/s41893-019-0250-1. Falco GJ, 2015, PROCEDIA ENGINEER, V118, P1008, DOI 10.1016/j.proeng.2015.08.542. Fallatah A, 2020, INT J REMOTE SENS, V41, P4421, DOI 10.1080/01431161.2020.1718237. Farella EM, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11041445. Favaretto M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228987. Feng YJ, 2016, STOCH ENV RES RISK A, V30, P1387, DOI 10.1007/s00477-015-1128-z. Gage E, 2015, WATER RESOUR MANAG, V29, P3877, DOI 10.1007/s11269-015-1034-7. Gao XL, 2007, LANDSCAPE URBAN PLAN, V81, P155, DOI 10.1016/j.landurbplan.2006.11.007. Gil J, 2012, URBAN MORPHOL, V16, P27. Gong JZ, 2014, LAND USE POLICY, V40, P91, DOI 10.1016/j.landusepol.2013.05.001. Goodchild M., 2001, SPEC WORKSH AG BAS M. Goodchild MF, 2004, PAP REG SCI, V83, P363, DOI 10.1007/s10110-003-0190-y. Grekousis G, 2019, COMPUT ENVIRON URBAN, V74, P244, DOI 10.1016/j.compenvurbsys.2018.10.008. Grekousis G, 2013, CITIES, V30, P193, DOI 10.1016/j.cities.2012.03.006. GROVE DM, 1980, URBAN STUD, V17, P77, DOI 10.1080/00420988020080091. Guigoz Y, 2017, J ENVIRON INFORM, V30, P53, DOI 10.3808/jei.201500325. Gusenbauer M, 2020, RES SYNTH METHODS, V11, P181, DOI 10.1002/jrsm.1378. Hanna S, 2007, INT J ARCHIT COMPUT, V5, P1. Hastie T., 2009, ELEMENTS STAT LEARNI, DOI {[}DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-84858-7]. Hegde J, 2020, SAFETY SCI, V122, DOI 10.1016/j.ssci.2019.09.015. Heinimann HR, 2017, NATO SCI PEACE SECUR, P147, DOI 10.1007/978-94-024-1123-2\_5. Hernandez-Jayo U, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21051707. Hu S, 2020, COMPUT ENVIRON URBAN, V80, DOI 10.1016/j.compenvurbsys.2019.101442. Huang B, 2009, ENVIRON PLANN B, V36, P398, DOI 10.1068/b33047. Ibrahim MR, 2020, CITIES, V96, DOI 10.1016/j.cities.2019.102481. Janowicz K, 2020, INT J GEOGR INF SCI, V34, P625, DOI 10.1080/13658816.2019.1684500. Jiang S, 2012, P ACM SIGKDD INT WOR, P95, DOI DOI 10.1145/2346496.2346512. Jochem WC, 2018, COMPUT ENVIRON URBAN, V69, P104, DOI 10.1016/j.compenvurbsys.2018.01.004. Kao A., 2007, NATURAL LANGUAGE PRO. Kar AK, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102205. Karamshuk D, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P793. Kauko T, 2009, HOUSING STUD, V24, P587, DOI 10.1080/02673030903082328. Kaya K, 2021, SUSTAIN COMPUT-INFOR, V30, DOI 10.1016/j.suscom.2021.100548. Ke Q, 2020, ADV WATER RESOUR, V145, DOI 10.1016/j.advwatres.2020.103719. Kim D., 2021, SUSTAINABILITY SWITZ, V13. Kim K, 2020, IEEE T INTELL TRANSP, V21, P2002, DOI 10.1109/TITS.2019.2910548. Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481. Knippenberg E, 2019, WORLD DEV, V121, P1, DOI 10.1016/j.worlddev.2019.04.010. Konstantinou C, 2020, URBAN WATER J, V17, P534, DOI 10.1080/1573062X.2020.1800758. Kontokosta CE, 2017, APPL ENERG, V197, P303, DOI 10.1016/j.apenergy.2017.04.005. Kourtit K, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102665. Kramer A, 2018, CITIES, V83, P1, DOI 10.1016/j.cities.2018.05.013. Krishnan S., 2021, URBAN BOOK SERIES, P465. Kutylowska M, 2017, PERIOD POLYTECH-CIV, V61, P548, DOI 10.3311/PPci.9997. Lai Y, 2019, COMPUT ENVIRON URBAN, V78, DOI 10.1016/j.compenvurbsys.2019.101383. Lary DJ, 2016, GEOSCI FRONT, V7, P3, DOI 10.1016/j.gsf.2015.07.003. Laskari A, 2008, DESIGN COMPUTING AND COGNITION `08, P615, DOI 10.1007/978-1-4020-8728-8\_32. Lee J, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6100309. Lehmann A, 2017, IEEE INT CONF MOB DA, P154, DOI 10.1109/MDM.2017.29. Leyk S, 2019, EARTH SYST SCI DATA, V11, P1385, DOI 10.5194/essd-11-1385-2019. Li F, 2019, PROCESS SAF ENVIRON, V122, P23, DOI 10.1016/j.psep.2018.11.014. Li WW, 2020, J SPAT INT SCI, P71, DOI 10.5311/JOSIS.2020.20.658. Li X, 2020, FUTURE GENER COMP SY, V107, P871, DOI 10.1016/j.future.2018.02.017. Li Y, 2021, ENVIRON SCI POLLUT R, V28, P19260, DOI 10.1007/s11356-020-12294-7. Lin YL, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7080298. Liu T, 2021, J HYDROL, V603, DOI 10.1016/j.jhydrol.2021.126916. Liu W, 2015, ATMOS ENVIRON, V116, P272, DOI 10.1016/j.atmosenv.2015.06.056. Liu X, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11101247. Ma J, 2017, J CLEAN PROD, V151, P406, DOI 10.1016/j.jclepro.2017.03.083. Ma J, 2016, APPL ENERG, V183, P182, DOI 10.1016/j.apenergy.2016.08.079. Ma L, 2019, ISPRS J PHOTOGRAMM, V152, P166, DOI 10.1016/j.isprsjprs.2019.04.015. Ma XL, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17040818. Magalhaes RP, 2021, INFORM SYST, V98, DOI 10.1016/j.is.2019.101444. Magazzino C, 2020, APPL ENERG, V279, DOI 10.1016/j.apenergy.2020.115835. Mahabir R, 2020, INT J DIGIT EARTH, V13, P683, DOI 10.1080/17538947.2018.1554010. Majumdar S, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102500. Marsland S., 2014, MACHINE LEARNING ALG, DOI DOI 10.1201/B17476. Martinez CF, 2018, J TRANSP GEOGR, V67, P102, DOI 10.1016/j.jtrangeo.2017.09.006. Maxwell AE, 2018, INT J REMOTE SENS, V39, P2784, DOI 10.1080/01431161.2018.1433343. Mayaud JR, 2019, COMPUT ENVIRON URBAN, V78, DOI 10.1016/j.compenvurbsys.2019.101401. Meerow S, 2019, URBAN GEOGR, V40, P309, DOI 10.1080/02723638.2016.1206395. Milojevic-Dupont N, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102526. Mirri S, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11031177. Mitchell T. M., 1997, MACH LEARN. Modai-Snir T, 2018, CITIES, V82, P108, DOI 10.1016/j.cities.2018.05.009. Moghaddam H. K., 2009, REAL CORP, V6, P571. Mohammed Abbas F., 2020, IOP Conference Series: Materials Science and Engineering, V928, DOI 10.1088/1757-899X/928/3/032081. Moher D, 2009, PLOS MED, V6, DOI {[}10.1371/journal.pmed.1000097, 10.1136/bmj.b2700, 10.7326/0003-4819-151-4-200908180-00136, 10.1136/bmj.b4037]. Moretti F, 2015, NEUROCOMPUTING, V167, P3, DOI 10.1016/j.neucom.2014.08.100. Motta M, 2021, INT J DISAST RISK RE, V56, DOI 10.1016/j.ijdrr.2021.102154. Munn Z, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-017-0468-4. Nakalembe C, 2021, GLOB FOOD SECUR-AGR, V29, DOI 10.1016/j.gfs.2021.100543. Nikparvar B, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10090600. Nosratabadi S, 2020, LECT NOTE NETW SYST, V101, P228, DOI 10.1007/978-3-030-36841-8\_22. Nutkiewicz A, 2018, APPL ENERG, V225, P1176, DOI 10.1016/j.apenergy.2018.05.023. Nyhan M, 2016, ATMOS ENVIRON, V140, P352, DOI 10.1016/j.atmosenv.2016.06.018. Oke JB, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/ab22c7. Openshaw C., 1997, ARTIF INTELL. Osborne PE, 2019, COMPUT ENVIRON URBAN, V76, P80, DOI 10.1016/j.compenvurbsys.2019.04.003. Osuteye E, 2017, INT J DISAST RISK RE, V26, P24, DOI 10.1016/j.ijdrr.2017.09.026. Palafox L, 2020, IEEE IJCNN. Panwar V., 2020, EC DISASTERS CLIMATE, V4, P295, DOI DOI 10.1007/S41885-019-00052-0. Park J, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0206872. Peters MDJ, 2015, INT J EVID-BASED HEA, V13, P141, DOI 10.1097/XEB.0000000000000050. Pijanowski B. C., 2002, Computers, Environment and Urban Systems, V26, P553, DOI 10.1016/S0198-9715(01)00015-1. Pijanowski BC, 2014, ENVIRON MODELL SOFTW, V51, P250, DOI 10.1016/j.envsoft.2013.09.015. Qin K, 2020, T GIS, V24, P1382, DOI 10.1111/tgis.12641. Rahman A, 2018, APPL ENERG, V212, P372, DOI 10.1016/j.apenergy.2017.12.051. Rasti B., 2021, IEEE GEOSC REM SEN M. Reades J, 2019, URBAN STUD, V56, P922, DOI 10.1177/0042098018789054. Redfern J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239840. Robinson C, 2017, APPL ENERG, V208, P889, DOI 10.1016/j.apenergy.2017.09.060. Rodriguez-Pose A, 2020, URBAN STUD, V57, P223, DOI 10.1177/0042098019859458. Rozos E, 2019, RESOURCES-BASEL, V8, DOI 10.3390/resources8040173. Sachs J., 2019, NAT SUSTAIN. Saldana-Perez M, 2019, IEEE ACCESS, V7, P177376, DOI 10.1109/ACCESS.2019.2942586. Samardzic-Petrovic M, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6120387. SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206. Sangermano F, 2010, T GIS, V14, P569, DOI 10.1111/j.1467-9671.2010.01226.x. Sankhala S., 2014, INT J EMERGING TECHN, V3, P1. Santibanez SF, 2015, GEOCOMPUTATION PAPER, P292. Satman M. H., 2014, INT J STAT PROBABILI, V3, DOI {[}10.5539/ijsp.v3n1p67, DOI 10.5539/IJSP.V3N1P67]. Shahriar S, 2021, IEEE ACCESS, V9, P111576, DOI 10.1109/ACCESS.2021.3103119. Shi WF, 2014, FRONT ENV SCI ENG, V8, P117, DOI 10.1007/s11783-013-0581-5. Shi ZB, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abd6696. Smolak K, 2020, URBAN WATER J, V17, P32, DOI 10.1080/1573062X.2020.1734947. Spadon G, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48295-x. Straka M, 2020, IEEE ACCESS, V8, P11315, DOI 10.1109/ACCESS.2020.2965621. Strano E, 2013, ENVIRON PLANN B, V40, P1071, DOI 10.1068/b38216. Strohbach MW, 2012, LANDSCAPE URBAN PLAN, V104, P95, DOI 10.1016/j.landurbplan.2011.10.001. Suleiman A, 2019, ATMOS POLLUT RES, V10, P134, DOI 10.1016/j.apr.2018.07.001. Sun YW, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11080959. Taleqani AR, 2019, TRANSPORT RES REC, V2673, P195, DOI 10.1177/0361198119838982. Tang L, 2018, J COMPUT CIVIL ENG, V32, DOI 10.1061/(ASCE)CP.1943-5487.0000752. Tchuente D, 2022, ANN OPER RES, V308, P571, DOI 10.1007/s10479-021-03932-5. Tehrany MS, 2019, CATENA, V175, P174, DOI 10.1016/j.catena.2018.12.011. Truong TMT, 2021, TRANSPORT PLAN TECHN, V44, P843, DOI 10.1080/03081060.2021.1992178. Thomas I, 2010, ENVIRON PLANN B, V37, P942, DOI 10.1068/b36039. Toch E, 2019, KNOWL INF SYST, V58, P501, DOI 10.1007/s10115-018-1186-x. Torija AJ, 2015, SCI TOTAL ENVIRON, V505, P680, DOI 10.1016/j.scitotenv.2014.08.060. Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y. Walks RA, 2008, URBAN GEOGR, V29, P293, DOI 10.2747/0272-3638.29.4.293. Wang N, 2020, TSINGHUA SCI TECHNOL, V25, P813, DOI 10.26599/TST.2020.9010007. Wang Q, 2018, P NATL ACAD SCI USA, V115, P7735, DOI 10.1073/pnas.1802537115. Wang Q, 2017, QUAL QUANT, V51, P2409, DOI 10.1007/s11135-016-0396-0. Wang W, 2021, IEEE T INTELL TRANSP, V22, P3567, DOI 10.1109/TITS.2020.2995856. Winkler D, 2018, STRUCT INFRASTRUCT E, V14, P1402, DOI 10.1080/15732479.2018.1443145. Wojcik P, 2022, REG SCI POLICY PRACT, V14, P891, DOI 10.1111/rsp3.12478. Xiao D, 2019, BUILD ENVIRON, V148, P323, DOI 10.1016/j.buildenv.2018.10.035. Xie R, 2018, WEB INTELL, V16, P91, DOI 10.3233/WEB-180375. Xu F, 2019, HABITAT INT, V84, P43, DOI 10.1016/j.habitatint.2018.12.006. Xu MW, 2016, 24TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2016), DOI 10.1145/2996913.2996996. Xue C, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12081329. Yan B, 2017, 25TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2017), DOI 10.1145/3139958.3140054. Yang CW, 2020, INT J GEOGR INF SCI, V34, P1075, DOI 10.1080/13658816.2019.1698743. Yang DQ, 2018, WORLD WIDE WEB, V21, P1323, DOI 10.1007/s11280-017-0515-4. Yang Y, 2015, INT J HOSP MANAG, V47, P14, DOI 10.1016/j.ijhm.2015.02.008. Yao H, 2012, POL J ENVIRON STUD, V21, P1901. Yao Y, 2017, INT J GEOGR INF SCI, V31, P825, DOI 10.1080/13658816.2016.1244608. Yi F, 2018, IEEE DATA MINING, P1386, DOI 10.1109/ICDM.2018.00190. Yuan J., 2012, PROC 18 ACM SIGKDD I, P186, DOI 10.1145/2339530.2339561. Zekic-Susac M, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2020.102074. Zhai W, 2019, COMPUT ENVIRON URBAN, V74, P1, DOI 10.1016/j.compenvurbsys.2018.11.008. Zhang WW, 2018, ENERGY, V155, P162, DOI 10.1016/j.energy.2018.04.161. Zhang XP, 2021, SUSTAIN CITIES SOC, V69, DOI 10.1016/j.scs.2021.102875. Zhang XY, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7120459. Zhao G, 2019, SCI TOTAL ENVIRON, V659, P940, DOI 10.1016/j.scitotenv.2018.12.217. Zhu XL, 2016, P IEEE I C SERV COMP, P475, DOI 10.1109/SCC.2016.68. Zubair OA, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9122223.}, Number-of-Cited-References = {217}, Times-Cited = {3}, Usage-Count-Last-180-days = {42}, Usage-Count-Since-2013 = {58}, Journal-ISO = {Sust. Cities Soc.}, Doc-Delivery-Number = {3G8EY}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000831582400004}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000652901900001, Author = {Feng, Tian and Fan, Feiyi and Bednarz, Tomasz}, Title = {A review of computer graphics approaches to urban modeling from a machine learning perspective}, Journal = {FRONTIERS OF INFORMATION TECHNOLOGY \& ELECTRONIC ENGINEERING}, Year = {2021}, Volume = {22}, Number = {7}, Pages = {915-925}, Month = {JUL}, Abstract = {Urban modeling facilitates the generation of virtual environments for various scenarios about cities. It requires expertise and consideration, and therefore consumes massive time and computation resources. Nevertheless, related tasks sometimes result in dissatisfaction or even failure. These challenges have received significant attention from researchers in the area of computer graphics. Meanwhile, the burgeoning development of artificial intelligence motivates people to exploit machine learning, and hence improves the conventional solutions. In this paper, we present a review of approaches to urban modeling in computer graphics using machine learning in the literature published between 2010 and 2019. This serves as an overview of the current state of research on urban modeling from a machine learning perspective.}, Publisher = {ZHEJIANG UNIV PRESS}, Address = {Xixi Campus, Zhejiang University, No. 148 Tianmushan Road, Hangzhou, Zhejiang, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Feng, T (Corresponding Author), La Trobe Univ, Dept Comp Sci \& Informat Technol, Bundoora, Vic 3086, Australia. Feng, Tian, La Trobe Univ, Dept Comp Sci \& Informat Technol, Bundoora, Vic 3086, Australia. Fan, Feiyi, Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China. Bednarz, Tomasz, Univ New South Wales, Expanded Percept \& Interact Ctr, Sydney, NSW 2021, Australia. Bednarz, Tomasz, CSIROs Data61, Sydney, NSW 2015, Australia.}, DOI = {10.1631/FITEE.2000141}, EarlyAccessDate = {MAY 2021}, ISSN = {2095-9184}, EISSN = {2095-9230}, Keywords = {Urban modeling; Computer graphics; Machine learning; Deep learning; TP399}, Keywords-Plus = {NEURAL-NETWORK; DESIGN}, Research-Areas = {Computer Science; Engineering}, Web-of-Science-Categories = {Computer Science, Information Systems; Computer Science, Software Engineering; Engineering, Electrical \& Electronic}, Author-Email = {t.feng@latrobe.edu.au}, Affiliations = {La Trobe University; Chinese Academy of Sciences; Institute of Computing Technology, CAS; University of New South Wales Sydney; Commonwealth Scientific \& Industrial Research Organisation (CSIRO)}, ResearcherID-Numbers = {Bednarz, Tomasz/A-7376-2011}, ORCID-Numbers = {Bednarz, Tomasz/0000-0001-9240-0922}, Cited-References = {Affara L, 2016, LECT NOTES COMPUT SC, V9907, P437, DOI 10.1007/978-3-319-46487-9\_27. AlHalawani S, 2013, COMPUT GRAPH FORUM, V32, P215, DOI 10.1111/cgf.12041. Aliaga D. G., 2012, INT SCHOL RES NOTIC, V2012. {[}Anonymous], 2018, P INT C GRAPH INT, DOI DOI 10.1109/ITCGI.2018.8602928. {[}Anonymous], 2003, INSTANT ARCHITECTURE. {[}Anonymous], 2006, PATTERN RECOGN, DOI {[}DOI 10.1117/1.2819119, 10.1117/1.2819119]. {[}Anonymous], 2020, REAL TIME SINGLE IMA. {[}Anonymous], 2012, EUROGRAPHICS 2012 SH, DOI DOI 10.2312/CONF/EG2012/SHORT/053-056. Bao F, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2461912.2461977. Bao F, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2421636.2421644. Benes J, 2014, COMPUT GRAPH FORUM, V33, P132, DOI 10.1111/cgf.12283. Besuievsky G, 2013, COMPUT GRAPH FORUM, V32, P26, DOI 10.1111/cgf.12141. Caruana R., 2006, ACM INT C PROCEEDING, P161, DOI DOI 10.1145/1143844.1143865. Ceylan D, 2014, ACM T GRAPHIC, V33, DOI 10.1145/2517348. Ceylan D, 2012, COMPUT GRAPH FORUM, V31, P671, DOI 10.1111/j.1467-8659.2012.03046.x. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964. Demir Ilke, 2014, 2014 2nd International Conference on 3D Vision (3DV). Proceedings, P456, DOI 10.1109/3DV.2014.31. Emilien A, 2012, VISUAL COMPUT, V28, P809, DOI 10.1007/s00371-012-0699-7. Feng T, 2018, LECT NOTES COMPUT SC, V11212, P627, DOI 10.1007/978-3-030-01237-3\_38. Feng T, 2016, ACM T GRAPHIC, V35, DOI 10.1145/2897824.2925894. FUKUSHIMA K, 1980, BIOL CYBERN, V36, P193, DOI 10.1007/BF00344251. Galin E, 2010, COMPUT GRAPH FORUM, V29, P429, DOI 10.1111/j.1467-8659.2009.01612.x. Galin E, 2011, COMPUT GRAPH FORUM, V30, P2021, DOI 10.1111/j.1467-8659.2011.02055.x. Garcia-Dorado I, 2014, COMPUT GRAPH FORUM, V33, P411, DOI 10.1111/cgf.12329. Garcia-Dorado I, 2017, ACM T GRAPHIC, V36, DOI 10.1145/2999534. Goldblatt R, 2018, REMOTE SENS ENVIRON, V205, P253, DOI 10.1016/j.rse.2017.11.026. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Guerrero P, 2015, ACM T GRAPHIC, V34, DOI 10.1145/2766933. Guo Y. J., 2017, P SAR BIG DAT ER MOD, P1, DOI {[}10.1109/BIGSARDATA.2017.8124926, DOI 10.1109/BIGSARDATA.2017.8124926]. Hartmann S, 2017, COMPUT SCI RES NOTES, V2702, P133. Hassoun M H, 1995, FUNDAMENTALS ARTIFIC. Hastie T., 2009, ELEMENTS STAT LEARNI, DOI {[}DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-84858-7]. HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554. Hu YJ, 2015, COMPUT ENVIRON URBAN, V54, P240, DOI 10.1016/j.compenvurbsys.2015.09.001. Huang HB, 2017, IEEE T VIS COMPUT GR, V23, P2003, DOI 10.1109/TVCG.2016.2597830. Ilcik M, 2015, COMPUT GRAPH FORUM, V34, P205, DOI 10.1111/cgf.12553. Isola P., 2017, CVPR, DOI DOI 10.1109/CVPR.2017.632. Goodfellow IJ, 2014, Arxiv, DOI DOI 10.1145/3422622. James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7. Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301. Kelly T, 2015, COMPUT GRAPH FORUM, V34, P117, DOI 10.1111/cgf.12546. Kelly T., 2018, SIGGR AS SIGGR AS, DOI {[}10.1145/3272127.3275065, DOI 10.1145/3272127.3275065]. Kelly T, 2017, ACM T GRAPHIC, V36, DOI 10.1145/3130800.3130823. Khanum M., 2015, INT J COMPUT APPL, V119, P34, DOI DOI 10.5120/21131-4058. Kim S, 2020, VISUAL COMPUT, V36, P911, DOI 10.1007/s00371-019-01701-x. Krecklau L, 2010, COMPUT GRAPH FORUM, V29, P2291, DOI 10.1111/j.1467-8659.2010.01714.x. Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386. Kuang ZZ, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2508363.2508424. Lafarge F, 2011, IEEE I CONF COMP VIS, P1068, DOI 10.1109/ICCV.2011.6126353. Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791. Li HN, 2018, NEUROQUANTOLOGY, V16, P814, DOI 10.14704/nq.2018.16.5.1390. Li ML, 2016, LECT NOTES COMPUT SC, V9908, P54, DOI 10.1007/978-3-319-46493-0\_4. Lienhard S, 2017, COMPUT GRAPH FORUM, V36, P39, DOI 10.1111/cgf.13105. Lin H, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2461912.2461969. LINDENMAYER A, 1968, J THEOR BIOL, V18, P280, DOI 10.1016/0022-5193(68)90079-9. Lipp M, 2011, COMPUT GRAPH FORUM, V30, P345, DOI 10.1111/j.1467-8659.2011.01865.x. Lynch K, 1964, IMAGE CITY. MacQueen J., 1967, P 5 BERKELEY S MATH, V1, P281, DOI DOI 10.1007/S11665-016-2173-6. Mech R., 1996, Computer Graphics Proceedings. SIGGRAPH `96, P397, DOI 10.1145/237170.237279. Merrell P, 2010, ACM T GRAPHIC, V29, DOI 10.1145/1866158.1866203. Dang M, 2015, ACM T GRAPHIC, V34, DOI 10.1145/2816795.2818069. Dang M, 2014, COMPUT GRAPH FORUM, V33, P83, DOI 10.1111/cgf.12313. Mirza M., 2014, ARXIV. Muller P, 2006, ACM T GRAPHIC, V25, P614, DOI 10.1145/1141911.1141931. Musialski P, 2012, COMPUT GRAPH FORUM, V31, P661, DOI 10.1111/j.1467-8659.2012.03045.x. Nan LL, 2015, COMPUT GRAPH FORUM, V34, P217, DOI 10.1111/cgf.12554. Nan Liangliang, 2010, COMPUT GRAPH FORUM, P1, DOI {[}10.1145/1833349.1778830, DOI 10.1145/1778765.1778830]. Newton David, 2019, Technology Architecture + Design, V3, P176, DOI 10.1080/24751448.2019.1640536. Nishida G, 2016, COMPUT GRAPH FORUM, V35, P5, DOI 10.1111/cgf.12728. Nishida G, 2016, ACM T GRAPHIC, V35, DOI 10.1145/2897824.2925951. Oliva, 2014, ADV NEURAL INFORM PR, DOI DOI 10.1162/153244303322533223. Parish YIH, 2001, COMP GRAPH, P301, DOI 10.1145/383259.383292. Peng CH, 2016, ACM T GRAPHIC, V35, DOI 10.1145/2897824.2925935. Peng CH, 2014, ACM T GRAPHIC, V33, DOI 10.1145/2601097.2601164. Peters J, 2017, ADAPT COMPUT MACH LE. Rumelhart D. E., 1985, TECH REP, DOI 10.1016/b978-1-4832-1446-7.50035-2. Schapire RE, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 \& 2, P1401. Schwarz M, 2015, ACM T GRAPHIC, V34, DOI 10.1145/2766956. Shen CH, 2011, ACM T GRAPHIC, V30, DOI 10.1145/2024156.2024218. Smelik RM, 2014, COMPUT GRAPH FORUM, V33, P31, DOI 10.1111/cgf.12276. Smith N, 2018, ACM T GRAPHIC, V37, DOI 10.1145/3272127.3275010. Mathew CDT, 2019, COMPUT GRAPH FORUM, V38, P455, DOI 10.1111/cgf.13585. Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994. United Nations Department of Economic and Social Affairs Population Division, 2018, REVISION WORLD URBAN. Vanegas CA, 2012, ACM T GRAPHIC, V31, DOI 10.1145/2366145.2366187. Vanegas CA, 2012, COMPUT GRAPH FORUM, V31, P681, DOI 10.1111/j.1467-8659.2012.03047.x. Vanegas CA, 2010, PROC CVPR IEEE, P358, DOI 10.1109/CVPR.2010.5540190. Vanegas CA, 2009, ACM T GRAPHIC, V28, DOI 10.1145/1618452.1618457. Verdie Y, 2015, ACM T GRAPHIC, V34, DOI 10.1145/2732527. Wu FZ, 2014, ACM T GRAPHIC, V33, DOI 10.1145/2601097.2601162. Wu WM, 2018, COMPUT GRAPH FORUM, V37, P511, DOI 10.1111/cgf.13380. Xiao JX, 2009, ACM T GRAPHIC, V28, DOI 10.1145/1618452.1618460. Yang YL, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2508363.2508405. Yumer ME, 2015, UIST'15: PROCEEDINGS OF THE 28TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, P109, DOI 10.1145/2807442.2807448. Zhang H, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2461912.2461923. Zheng QA, 2010, ACTA OCEANOL SIN, V29, P1, DOI 10.1007/s13131-010-0044-9. Zhu X, 2009, SYNTH LECT ARTIF INT, V3, P1, DOI 10.2200/S00196ED1V01Y200906AIM006.}, Number-of-Cited-References = {98}, Times-Cited = {4}, Usage-Count-Last-180-days = {10}, Usage-Count-Since-2013 = {36}, Journal-ISO = {Front. Inform. Technol. Elect. Eng.}, Doc-Delivery-Number = {TQ9KH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000652901900001}, DA = {2023-04-22}, } @article{ WOS:000931227300001, Author = {Yang, Liu and Iwami, Michiyo and Chen, Yishan and Wu, Mingbo and van Dam, Koen H.}, Title = {Computational decision-support tools for urban design to improve resilience against COVID-19 and other infectious diseases: A systematic review}, Journal = {PROGRESS IN PLANNING}, Year = {2023}, Volume = {168}, Month = {FEB}, Abstract = {The COVID-19 pandemic highlighted the need for decision-support tools to help cities become more resilient to infectious diseases. Through urban design and planning, non-pharmaceutical interventions can be enabled, impelling behaviour change and facilitating the construction of lower risk buildings and public spaces. Computational tools, including computer simulation, statistical models, and artificial intelligence, have been used to support responses to the current pandemic as well as to the spread of previous infectious diseases. Our multidisciplinary research group systematically reviewed state-of-the-art literature to propose a toolkit that employs computational modelling for various interventions and urban design processes. We selected 109 out of 8,737 studies retrieved from databases and analysed them based on the pathogen type, transmission mode and phase, design intervention and process, as well as modelling methodology (method, goal, motivation, focus, and indication to urban design). We also explored the relationship between infectious disease and urban design, as well as computational modelling support, including specific models and parameters. The proposed toolkit will help designers, planners, and computer modellers to select relevant approaches for evaluating design decisions depending on the target disease, geographic context, design stages, and spatial and temporal scales. The findings herein can be regarded as stand-alone tools, particularly for fighting against COVID-19, or be incorporated into broader frameworks to help cities become more resilient to future disasters.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Yang, L (Corresponding Author), Southeast Univ, Sch Architecture, Si Pai Lou 2, Nanjing 210096, Jiangsu, Peoples R China. Yang, Liu, Southeast Univ, Sch Architecture, Nanjing, Peoples R China. Yang, Liu, Southeast Univ, Res Ctr Urban Design, Nanjing, Peoples R China. Iwami, Michiyo, Imperial Coll London, Fac Med, Dept Infect Dis, London, England. Chen, Yishan, China IPPR Int Engn CO LTD, Architecture \& Urban Design Res Ctr, Beijing, Peoples R China. Wu, Mingbo, Chinese Acad Sci, Inst Geog Sci \& Nat Resources Res, State Key Lab Resources \& Environm Informat Syst, Beijing, Peoples R China. Wu, Mingbo, Univ Chinese Acad Sci, Beijing, Peoples R China. van Dam, Koen H., Imperial Coll London, Ctr Proc Syst Engn, Dept Chem Engn, London, England. Yang, Liu, Southeast Univ, Sch Architecture, Si Pai Lou 2, Nanjing 210096, Jiangsu, Peoples R China.}, DOI = {10.1016/j.progress.2022.100657}, EarlyAccessDate = {FEB 2023}, Article-Number = {100657}, ISSN = {0305-9006}, EISSN = {1873-4510}, Keywords = {Urban design; Urban planning; Decision -support tool; COVID-19; Infectious disease; Computer modelling; Resilience}, Keywords-Plus = {VIRUS TRANSMISSION; EPIDEMIC; NETWORK; CITIES; FLATS; MODEL}, Research-Areas = {Environmental Sciences \& Ecology; Public Administration}, Web-of-Science-Categories = {Environmental Studies; Regional \& Urban Planning}, Author-Email = {yangliu2020@seu.edu.cn}, Affiliations = {Southeast University - China; Southeast University - China; Imperial College London; Chinese Academy of Sciences; Institute of Geographic Sciences \& Natural Resources Research, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Imperial College London; Southeast University - China}, Funding-Acknowledgement = {National Natural Science Foundation China {[}5210081743]; Natural Science Foundation of Jiangsu Province {[}BK20210260]; China Postdoctoral Science Foundation {[}2021M690612]; Fundamental Research Funds for the Central Universities {[}2242021R20003]}, Funding-Text = {Acknowledgments Dr Liu Yang is supported by the National Natural Science Foundation China (No. 5210081743) , the Natural Science Foundation of Jiangsu Province (No. BK20210260) , the China Postdoctoral Science Foundation (No. 2021M690612) , and the Fundamental Research Funds for the Central Universities (No. 2242021R20003) . Dr Koen H van Dam works on Climate Compatible Growth (CCG) , a ?38 m UK ODA-funded research programme. The authors thank Prof Jianguo Wang (South-east University, China) and Dr Bani Anvari (University College London, UK) for giving insightful suggestions and research ideas for the project. The search terms of this review were refined through test runs of searching in October/November 2020 with assistance from two library managers (Rebecca S Jones and Georgina Wildman) at Imperial College London. We benefited with the support from Dr M. Trent Herdman (Medical Entomology and Zoonoses Ecology, UK Health Security Agency) at the revision stage.}, Cited-References = {ACM, ACM COMP CLASS SYST. Adiga A, 2020, J INDIAN I SCI, V100, P793, DOI 10.1007/s41745-020-00200-6. Adly AS, 2020, J MED INTERNET RES, V22, DOI 10.2196/19104. Alimohamadi Yousef, 2021, J Prev Med Hyg, V62, pE311, DOI 10.15167/2421-4248/jpmh2021.62.2.1627. Alvarez-Pomar Lindsay, 2021, ScientificWorldJournal, V2021, P6616654, DOI 10.1155/2021/6616654. {[}Anonymous], COVIDENCE. Badr HS, 2020, LANCET INFECT DIS, V20, P1247, DOI 10.1016/S1473-3099(20)30553-3. Balocco C, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208737. Ban T. Q., 2020, COVID 19 DIS SIMULAT, P246. Barbosa H, 2018, PHYS REP, V734, P1, DOI 10.1016/j.physrep.2018.01.001. Batty M., FINDINGS. Batty M., 1976, URBAN MODELLING ALGO. Bazant M. Z, 2021, P NATL ACAD SCI USA, P27. Bian L, 2013, T GIS, V17, P1, DOI 10.1111/j.1467-9671.2012.01329.x. Bisset K. R., 2012, IEEE T NANOBIOSCI, P1. Blecic I., 2020, LECT NOTES COMPUT SC. Block P, 2020, NAT HUM BEHAV, V4, P588, DOI 10.1038/s41562-020-0898-6. Brodeur A, 2021, J ECON SURV, V35, P1007, DOI 10.1111/joes.12423. Brooks SK, 2020, LANCET, V395, P912, DOI {[}10.1016/S0140-6736(20)30460-8, 10.1016/S0140-6736(20)30460-8.]. Budds D., 2020, DESIGN AGE PANDEMICS. Calder M, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.172096. Campisi T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218829. Carmona M, 2010, PUBLIC PLACES URBAN. Carteni A, 2021, SAFETY SCI, V133, DOI 10.1016/j.ssci.2020.104999. Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317. Chu DK, 2020, LANCET, V395, P1973, DOI 10.1016/S0140-6736(20)31142-9. Coclite D, 2021, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.594269. Coeytaux R, 2014, EVIDENCE MAP YOGA HI. Cowling B.J., 2020, NONPH PUBL HLTH MEAS, DOI {[}10.1101/2020.03.12.20034660., DOI 10.1101/2020.03.12.20034660]. D'angelo D, 2021, SAFETY SCI, V134, DOI 10.1016/j.ssci.2020.105067. Da Silva J., 2011, CHARACTERISTICS SAFE. Dabachine Y, 2020, J AIR TRANSP MANAG, V89, DOI 10.1016/j.jairtraman.2020.101917. De Las Heras A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229320. Desouza KC, 2013, CITIES, V35, P89, DOI 10.1016/j.cities.2013.06.003. Di Mascio P., 2020, SUSTAINABILITY-BASEL, V12, P1. Domino SP, 2021, INT J COMPUT FLUID D, V35, P743, DOI 10.1080/10618562.2021.1905801. Dragoicea M, 2020, IEEE ACCESS, V8, P185526, DOI 10.1109/ACCESS.2020.3029320. Elavarasan RM, 2021, SUSTAIN CITIES SOC, V68, DOI 10.1016/j.scs.2021.102789. Eubank S, 2020, B MATH BIOL, V82, DOI 10.1007/s11538-020-00726-x. {[}方乐恒 Fang Leheng], 2020, {[}应用数学学报, Acta Mathematicae Applicatae Sinica], V43, P383. Farthing TS, 2021, EPIDEMICS-NETH, V37, DOI 10.1016/j.epidem.2021.100524. Fezi B. A, 2021, SARS COV 2 ORIGIN CO. Figueiredo L., 2018, OECD REGIONAL DEV WO, DOI {[}10.1787/6f1f6065-en, DOI 10.1787/6F1F6065-EN]. Forsyth A, 2020, WHAT ROLE PLANNING D. Frank L, 1943, REPORT URBAN PLANNIN. Gao NP, 2008, BUILD ENVIRON, V43, P1805, DOI 10.1016/j.buildenv.2007.10.023. Gkiotsalitis K, 2022, TRANSPORTMETRICA A, V18, P807, DOI 10.1080/23249935.2021.1896593. Gomez J, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245787. Grantz KH, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18190-5. Hamidi S, 2021, LANDSCAPE URBAN PLAN, V205, DOI 10.1016/j.landurbplan.2020.103952. Hamidi S, 2020, J AM PLANN ASSOC, V86, P495, DOI 10.1080/01944363.2020.1777891. Hao QY, 2020, KDD `20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P3485, DOI 10.1145/3394486.3412860. Harweg T, 2023, J PUBLIC HEALTH-HEID, V31, P221, DOI 10.1007/s10389-021-01489-y. Hernandez-Mejia G, 2020, MATH BIOSCI, V328, DOI 10.1016/j.mbs.2020.108434. Higgins JPT, 2019, COCHRANE HDB SYSTEMA, DOI DOI 10.1002/9781119536604. HM Government, 2021, COVID 19 SEC SAF PUB. Honey-Roses J., 2020, IMPACT COVID 19 PUBL, P1, DOI {[}https://doi.org/10.1080/23748834.2020.1780074, 10.1080/23748834.2020.1780074, DOI 10.1080/23748834.2020.1780074]. Hong B, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2021258118. Hunter E, 2017, JASSS-J ARTIF SOC S, V20, DOI 10.18564/jasss.3414. Iravani H, 2020, J URBAN DES, V25, P218, DOI 10.1080/13574809.2018.1554997. Jorritsma J, 2020, CHAOS SOLITON FRACT, V139, DOI 10.1016/j.chaos.2020.109965. Kain MP, 2021, EPIDEMICS-NETH, V34, DOI {[}10.1016/j.epidem.2020.100430, 10.1101/2020.06.30.20143115]. Kakodkar P, 2020, CUREUS J MED SCIENCE, V12, DOI 10.7759/cureus.7560. Kaplan EH, 2020, M\&SOM-MANUF SERV OP, V22, P645, DOI 10.1287/msom.2020.0891. Karimi E, 2015, HEALTH CARE MANAG SC, V18, P318, DOI 10.1007/s10729-014-9310-2. Kierzkowski A, 2020, J AIR TRANSP MANAG, V88, DOI 10.1016/j.jairtraman.2020.101868. Kindervag J, 2022, CYBERSECURITY LESSON. Klinker Jens, 2021, Stud Health Technol Inform, V279, P113, DOI 10.3233/SHTI210097. Klompmaker J.O., 2020, PREPRINT. Komperda J, 2021, PHYS FLUIDS, V33, DOI 10.1063/5.0043934. Kudela J, 2020, IEEE ACCESS, V8, P149402, DOI 10.1109/ACCESS.2020.3016724. Kudryashova OB, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0244983. Lai KY, 2020, CURR OPIN ENV SUST, V46, P27, DOI 10.1016/j.cosust.2020.08.008. Lak Azadeh, 2020, Med J Islam Repub Iran, V34, P71, DOI 10.34171/mjiri.34.71. Lant T, 2008, 2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, P1305, DOI 10.1109/WSC.2008.4736203. Larson RC, 2010, STUD HEALTH TECHNOL, V153, P311, DOI 10.3233/978-1-60750-533-4-311. Lee EK, 2009, INTERFACES, V39, P476, DOI 10.1287/inte.1090.0463. Lee VJ, 2009, BMC MED, V7, DOI 10.1186/1741-7015-7-76. Leiva Gd. C., 2020, REV BRAS ESTUD POPUL, V37, P1. Leng JW, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102405. Li HY, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-84245-2. Li X, 2020, 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), P315, DOI 10.1109/ICAICE51518.2020.00067. Li X, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17186712. Li Y, 2005, INDOOR AIR, V15, P96, DOI 10.1111/j.1600-0668.2004.00318.x. Li ZB, 2021, PHYS FLUIDS, V33, DOI 10.1063/5.0046870. Lim T, 2011, BUILD ENVIRON, V46, P2413, DOI 10.1016/j.buildenv.2011.04.015. Liu F., 2021, ENVIRON INT, V153. Maghdid Halgurd S, 2020, SN Comput Sci, V1, P271, DOI 10.1007/s42979-020-00290-0. Mahdizadeh Gharakhanlou Navid, 2020, Inform Med Unlocked, V20, P100403, DOI 10.1016/j.imu.2020.100403. Mao L, 2010, COMPUT ENVIRON URBAN, V34, P204, DOI 10.1016/j.compenvurbsys.2010.03.004. Matthew RA, 2006, J AM PLANN ASSOC, V72, P109, DOI 10.1080/01944360608976728. Meadows D., 1985, ELECT ORACLE COMPUTE. Megahed NA, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110471. Megahed NA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102350. Miller C, 2016, PROG PLANN, V106, P1, DOI 10.1016/j.progress.2015.02.002. Miller S.L., 2020, AM J INFECT CONTROL. Milne GJ, 2013, BMJ OPEN, V3, DOI 10.1136/bmjopen-2012-002518. Mohammadi A, 2021, SAFETY SCI, V134, DOI 10.1016/j.ssci.2020.105066. Moughtin C., 2003, URBAN DESIGN STREET. Nguyen CT, 2020, IEEE ACCESS, V8, P153479, DOI 10.1109/ACCESS.2020.3018140. Novani S., 2007, 51 ANN M INT SOCIETY, P424. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI {[}10.1136/bmj.n71, 10.1371/journal.pmed.1003583, 10.1016/j.ijsu.2021.105906]. Pang JJ, 2021, TSINGHUA SCI TECHNOL, V26, P759, DOI 10.26599/TST.2021.9010026. Patil R, 2021, APPL NETW SCI, V6, DOI 10.1007/s41109-020-00346-3. Pavon RM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12239974. Payedimarri A. B. C., 2021, INT J ENV RES PUB HE, V18, P23. Perlman Y, 2020, SAFETY SCI, V132, DOI 10.1016/j.ssci.2020.104987. Perra N, 2021, PHYS REP, V913, P1, DOI 10.1016/j.physrep.2021.02.001. Pettit CJ, 2015, APPL SPAT ANAL POLIC, V8, P93, DOI 10.1007/s12061-015-9133-7. Porgo TV, 2019, RES SYNTH METHODS, V10, P125, DOI 10.1002/jrsm.1333. Prieto DM, 2012, BMC PUBLIC HEALTH, V12, DOI 10.1186/1471-2458-12-251. {[}邱建 Qiu Jian], 2020, {[}城市规划, City Planning Review], V44, P13. Nguyen QC, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176359. Rader B, 2020, NAT MED, V26, DOI 10.1038/s41591-020-1104-0. Rahman MM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219101. Rahman MR, 2021, MODEL EARTH SYST ENV, V7, P2059, DOI 10.1007/s40808-020-00962-z. Rahmani AM, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102568. Ramchandani A, 2020, IEEE ACCESS, V8, P159915, DOI 10.1109/ACCESS.2020.3019989. Renardy M, 2020, J THEOR BIOL, V507, DOI 10.1016/j.jtbi.2020.110461. Rezaei Mahdi, 2020, Applied Sciences, V10, DOI 10.3390/app10217514. Rice L, 2020, URBAN DES INT, DOI 10.1057/s41289-020-00142-6. Richards P, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003567. Ridenhour BJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029640. Ronchi E, 2020, SAFETY SCI, V130, DOI 10.1016/j.ssci.2020.104834. Roy S, 2021, IEEE ACCESS, V9, P26196, DOI 10.1109/ACCESS.2021.3058206. Satheesan MK, 2020, BUILD SIMUL-CHINA, V13, P887, DOI 10.1007/s12273-020-0623-4. Scarpone C, 2020, INT J HEALTH GEOGR, V19, DOI 10.1186/s12942-020-00225-1. Selvakarthi D, 2021, PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), P980, DOI 10.1109/ICICT50816.2021.9358749. Sen N, 2021, PHYS FLUIDS, V33, DOI 10.1063/5.0045289. Sharifi A, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.142391. Shearer FM, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003018. Shorfuzzaman M, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102582. Shuvo SB, 2020, KDD `20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P3451, DOI 10.1145/3394486.3412859. Silalahi FES, 2020, BMC HEALTH SERV RES, V20, DOI 10.1186/s12913-020-05896-x. Silva GF, 2020, IEEE INT SM C CONF. Small M, 2020, IEEE ACCESS, V8, P109719, DOI 10.1109/ACCESS.2020.3001298. Spencer JH, 2020, LANDSCAPE URBAN PLAN, V193, DOI 10.1016/j.landurbplan.2019.103681. Standl F, 2021, LANCET INFECT DIS, V21, pE77, DOI {[}10.1016/S1473-3099(20)30648-4, 10.1016/S1473-3099(20)30484-9]. Subahi AF, 2021, COMPUT SYST SCI ENG, V36, P13, DOI 10.32604/csse.2021.014376. Sun CJ, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102390. Sun Q, 2021, SCI TOTAL ENVIRON, V763, DOI 10.1016/j.scitotenv.2020.143033. Sung Hyun-Gun, 2016, {[}Journal of Korea Planning Association, 국토계획], V51, P165. Swinarski D, 2021, BUILD SERV ENG RES T, V42, P82, DOI 10.1177/0143624420966257. Tang L, 2020, INT STAT REV, V88, P462, DOI 10.1111/insr.12402. Tannier C, 2016, PROG PLANN, V108, P1, DOI 10.1016/j.progress.2015.04.001. The World Bank, 2021, INFL COVID 19 CHIN U. Thilakaratne R, 2019, IOP C SERIES EARTH E. Tupper P, 2020, P NATL ACAD SCI USA, V117, P32038, DOI 10.1073/pnas.2019324117. Ugail H., 2020, 2020 INT C INTERNET, P1. UN-Habitat, 2020, UNHABITAT COVID 19 R. UN-Habitat China Wuhan Land Use And Urban Spatial Planning Research Center CITIC General Institute of Architectural Design and Research Co. L. Wuhan University \& Affairs I.o.P.E., 2020, COVID 19 WUH GUID PA. UN-Habitat \& World Health Organization, 2020, INT HLTH URB TERR PL. Van Kerkhove MD, 2012, B WORLD HEALTH ORGAN, V90, P306, DOI 10.2471/BLT.11.097949. Vazquez-Prokopec GM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058802. Wang JG, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102511. Wang JS, 2010, 2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS. Wei H, 2020, IEEE ACCESS, V8, P164705, DOI 10.1109/ACCESS.2020.3022395. Wolff RF, 2019, ANN INTERN MED, V170, P51, DOI 10.7326/M18-1376. World Health Organisation, 2018, MAN EP KEY FACTS MAJ. World Health Organization, 2017, PAND INFL RISK MAN W. Xia HD, 2015, ARTIF INTELL MED, V65, P113, DOI 10.1016/j.artmed.2015.06.003. Xu QC, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229385. Xu WP, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18010088. Yamakawa M, 2021, J AEROSOL SCI, V155, DOI 10.1016/j.jaerosci.2021.105769. Yang L., 2022, 2022 INT C GREEN BUI. Yang L, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229677. Yang W., 2020, BUILD ENVIRON. Yang Y., 2021, BUILDINGS CITIES, V2. Yang YY, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127136. Ye Y, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127126. Yu HC, 2017, INDOOR BUILT ENVIRON, V26, P514, DOI 10.1177/1420326X16631596. Zhou JP, 2006, ICAT 2006: 16TH INTERNATIONAL CONFERENCE ON ARTIFICIAL REALITY AND TELEXISTENCE - WORSHOPS, PROCEEDINGS, P589.}, Number-of-Cited-References = {172}, Times-Cited = {2}, Usage-Count-Last-180-days = {24}, Usage-Count-Since-2013 = {35}, Journal-ISO = {Prog. Plan.}, Doc-Delivery-Number = {8W3HB}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000931227300001}, OA = {Green Published, Bronze}, DA = {2023-04-22}, } @article{ WOS:000887624400001, Author = {Bhuyan, Bikram Pratim and Tomar, Ravi and Cherif, Amar Ramdane}, Title = {A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban)}, Journal = {SUSTAINABILITY}, Year = {2022}, Volume = {14}, Number = {22}, Month = {NOV}, Abstract = {Urban agriculture is the practice of growing food inside the city limits. Due to the exponential amount of data generated by information and technology-based farm management systems, we need proper methods to represent the data. The branch of artificial intelligence known as ``knowledge representation and reasoning{''} is devoted to the representation of information about the environment in a way where a computer system can utilise it to accomplish difficult problems. This research is an extensive survey of the knowledge representation techniques used in smart agriculture, and specifically in the urban agricultural domain. Relevant articles on the knowledge base are extracted from the retrieved set to study the fulfillment of the criteria of the system. Various interesting findings were observed after the review. Spatial-temporal characteristics were rarely approached. A generalised representation technique to include all domains in agriculture is another issue. Finally, proper validation technique is found to be missing in such an ontology.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Bhuyan, BP (Corresponding Author), Univ Petr \& Energy Studies, Sch Comp Sci, Dehra Dun 248006, Uttarakhand, India. Bhuyan, BP (Corresponding Author), Univ Paris Saclay, LISV Lab, 10-12 Ave Europe, F-78140 Velizy Villacoublay, France. Bhuyan, Bikram Pratim, Univ Petr \& Energy Studies, Sch Comp Sci, Dehra Dun 248006, Uttarakhand, India. Bhuyan, Bikram Pratim; Cherif, Amar Ramdane, Univ Paris Saclay, LISV Lab, 10-12 Ave Europe, F-78140 Velizy Villacoublay, France. Tomar, Ravi, Persistent Syst, Pune 411016, Maharashtra, India.}, DOI = {10.3390/su142215249}, Article-Number = {15249}, EISSN = {2071-1050}, Keywords = {knowledge representation; sustainable agriculture; smart urban agriculture; ontology; Semantic Web; artificial intelligence in agriculture}, Keywords-Plus = {PRECISION AGRICULTURE; ONTOLOGY; INTERNET; MODEL; IOT}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {bikram23bhuyan@gmail.com}, Affiliations = {University of Petroleum \& Energy Studies (UPES); UDICE-French Research Universities; Universite Paris Saclay}, ResearcherID-Numbers = {Bhuyan, Bikram Pratim/AAT-5369-2020 Tomar, Ravi/Q-5206-2019 }, ORCID-Numbers = {Tomar, Ravi/0000-0002-8957-6756 Amar, RAMDANE-CHERIF/0000-0001-8289-747X Bhuyan, Bikram Pratim/0000-0001-5373-8912}, Funding-Acknowledgement = {IDEX ParisSaclay {[}ANR-11-IDEX-0003-02]}, Funding-Text = {This work is supported by the ``ADI 2022{''} project funded by the IDEX ParisSaclay, ANR-11-IDEX-0003-02.}, Cited-References = {Abayomi-Alli AA, 2021, INT J SEMANT WEB INF, V17, P79, DOI 10.4018/IJSWIS.2021040105. Abbasi R., 2021, PROCEDIA CIRP, V100, P55, DOI {[}10.1016/j.procir.2021.05.009, DOI 10.1016/J.PROCIR.2021.05.009]. Abraham A., 2021, AI EDGE IOT BASED SM. Abrahao E, 2017, 2017 SECOND INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS ENGINEERING (ICISE), P12, DOI 10.1109/ICISE.2017.18. Adjali O, 2017, THESIS U PARIS SACLA. Adjali O, 2017, INT J COGN INFORM NA, V11, P1, DOI 10.4018/IJCINI.2017100101. Adjali O, 2017, 2017 IEEE 16TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS \& COGNITIVE COMPUTING (ICCI{*}CC), P503, DOI 10.1109/ICCI-CC.2017.8109796. Afzal H., 2021, J APPL EMERG SCI, V11, P85. Afzal H, 2019, 2019 7TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD 2019), P343, DOI 10.1109/FiCloud.2019.00057. Alfred R., 2014, P 8 INT C KNOWLEDGE, P299. Aqeel-ur-Rehman, 2011, ADV BIOM ENG, P411. Barramou F., 2020, J GEOGR INF SYST, V12, P697, DOI {[}10.4236/jgis.2020.126040, DOI 10.4236/JGIS.2020.126040]. Beacham AM, 2019, J HORTIC SCI BIOTECH, V94, P277, DOI 10.1080/14620316.2019.1574214. Beck H, 2001, PROCEEDINGS OF THE WORLD CONGRESS OF COMPUTERS IN AGRICULTURE AND NATURAL RESOURCES, P629. Beck H.W., 2005, P EFITAWCCA 2005, P1169. Bejinaru R., 2022, EC RES EKON ISTRA IV, P1, DOI {[}10.1080/1331677X.2022.2086597, DOI 10.1080/1331677X.2022.2086597]. Bettencourt LMA, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aat8812. Bhuyan BP, 2021, IEEE INT CONF BIG DA, P3400, DOI 10.1109/BigData52589.2021.9672020. BLACKMORE S, 1994, OUTLOOK AGR, V23, P275, DOI 10.1177/003072709402300407. Bonacin R, 2016, FUTURE GENER COMP SY, V54, P423, DOI 10.1016/j.future.2015.04.010. Borghini A, 2020, RIV ESTET, P120. Bougnom BP, 2019, ENVIRON RES, V168, P14, DOI 10.1016/j.envres.2018.09.022. Bratianu C, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132212927. CAAS, 1994, CHINESE ACAD AGR SCI. Campbell H, 2011, J RURAL STUD, V27, P350, DOI 10.1016/j.jrurstud.2011.04.003. Chein M, 2009, ADV INFORM KNOWL PRO, P1. Chougule A, 2017, ADV INTELL SYST, V468, P665, DOI 10.1007/978-981-10-1675-2\_65. Chougule A, 2016, INT CONF ADV COMPU, P133, DOI 10.1109/IACC.2016.34. Chun C., 2002, P 3 ASIAN C INFORM T, P526. Cisternas I, 2020, COMPUT ELECTRON AGR, V176, DOI 10.1016/j.compag.2020.105626. Damos P, 2015, AGRON SUSTAIN DEV, V35, P1347, DOI 10.1007/s13593-015-0319-9. DAVIS R, 1993, AI MAG, V14, P17. Ding Y, 2018, COMPUT ELECTRON AGR, V151, P104, DOI 10.1016/j.compag.2018.06.004. FAO, 1995, AGROVOC MULT AGR THE. Farhangi M, 2021, LAND-BASEL, V10, DOI 10.3390/land10080830. Farhangi MH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12103955. Farrow A, 2015, AGTRIALS EXAMPLE OPE. Fatemeh Kalantari, 2018, Journal of Landscape Ecology, V11, P35, DOI 10.1515/jlecol-2017-0016. Ferentinos KP, 2002, T ASAE, V45, P2007, DOI 10.13031/2013.11412. Fergerson R.W., 2015, P ICBO. Finlayson MA, 2014, PROCEEDINGS OF THE SEVENTH GLOBAL WORDNET CONFERENCE, GWC 2014, P78. FORTUNE S, 1983, J ACM, V30, P151, DOI 10.1145/322358.322370. Friedman-Hill E., 2008, JESS RULE ENGINE JAV. Gebbers R, 2010, SCIENCE, V327, P828, DOI 10.1126/science.1183899. Gerevini A, 2002, FRONT ARTIF INTEL AP, V77, P312. Glimm B, 2014, J AUTOM REASONING, V53, P245, DOI 10.1007/s10817-014-9305-1. Goumopoulos Christos, 2009, International Journal of Metadata, Semantics and Ontologies, V4, P72, DOI 10.1504/IJMSO.2009.026256. Gruber TR, 1995, INT J HUM-COMPUT ST, V43, P907, DOI 10.1006/ijhc.1995.1081. Hasegawa T, 2019, NAT SUSTAIN, V2, P826, DOI 10.1038/s41893-019-0371-6. Heflin J., 2000, SEMANTIC INTEROPERAB. HEILER S, 1995, ACM COMPUT SURV, V27, P271, DOI 10.1145/210376.210392. Heilig G, 1999, FOOD SECUR DIFFER SC, V2025, P25. Hensel DS, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12145865. Holsapple C.W., 2004, HDB KNOWLEDGE MANAGE, V1, P89. Hosseinifarhangi M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216070. Hu SQ, 2011, IFIP ADV INF COMM TE, V344, P131. Jager M, 2015, INT WORKSHOP DATABAS, P115, DOI 10.1109/DEXA.2015.40. Jincui Kang, 2013, Advanced Materials Research, V756-759, P1249, DOI 10.4028/www.scientific.net/AMR.756-759.1249. Jonquet C., 2017, P EFITA WCCA C MONTP. Kanjilal D., 2014, INT J SCI TECHNOL RE, V3, P109. Khanna A, 2019, COMPUT ELECTRON AGR, V157, P218, DOI 10.1016/j.compag.2018.12.039. Kim T., 2013, INT J SMART HOMES, V7, P117. Kumar Avinash, 2019, 2019 International Conference on Communication and Signal Processing (ICCSP), P0185, DOI 10.1109/ICCSP.2019.8698099. Lacasta J, 2018, COMPUT ELECTRON AGR, V152, P82, DOI 10.1016/j.compag.2018.06.049. Lagos-Ortiz K, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10031040. Lakemeyer G., 1994, FOUND KNOWL REPRESEN, V810, P1. Lauser B., 2006, P DUBLIN CORE C. Lenord Melvix J. S. M., 2014, 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), P148, DOI 10.1109/ICCPEIC.2014.6915356. Lev-Yadun S, 2000, SCIENCE, V288, P1602, DOI 10.1126/science.288.5471.1602. LEVESQUE HJ, 1986, ANNU REV COMPUT SCI, V1, P255, DOI 10.1146/annurev.cs.01.060186.001351. Liang A. C., 2006, New Review of Hypermedia and Multimedia, V12, P51, DOI 10.1080/13614560600774396. Lifschitz V, 2008, FOUND ARTIF INTELL, P3, DOI 10.1016/S1574-6526(07)03001-5. Lin L., 2020, GC053 0004, V2020. Liu Q, 2019, LIBR J, V38, P53. Lyytinen K., 2002, COMMUN ACM, V45, P63, DOI DOI 10.1145/585597.585616. Ma XG, 2014, ENVIRON MODELL SOFTW, V61, P191, DOI 10.1016/j.envsoft.2014.08.002. Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010. Manouselis Nikos, 2009, International Journal of Web Portals, V1, P71, DOI 10.4018/jwp.2009092105. Martinez-Cruz C, 2012, ARTIF INTELL REV, V38, P271, DOI 10.1007/s10462-011-9251-9. Matteis L., 2013, P 1 INT WORKSH SEM B. Mazac R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062355. Mazzetto F, 2019, IOP C SER EARTH ENV, V275, DOI 10.1088/1755-1315/275/1/012008. Modu F., 2020, ADV SCI TECHNOL ENG, V5, P233, DOI {[}DOI 10.25046/AJ050130, 10.25046/aj050130]. Mougeot L. J. A., 2000, Growing cities, growing food: urban agriculture on the policy agenda. A reader on urban agriculture, P1. Musen Mark A, 2015, AI Matters, V1, P4. Naidoo N., 2021, P 2021 INT C ARTIFIC, P1. NEWLING BE, 1969, GEOGR REV, V59, P242, DOI 10.2307/213456. Nousala S, 2021, J CULT HERIT MANAG S, V11, P201, DOI 10.1108/JCHMSD-05-2020-0074. Obrst L., 2007, SEMANT WEB, P139, DOI DOI 10.1007/978-0-387-48438-9\_8. Opitz I, 2016, AGR HUM VALUES, V33, P341, DOI 10.1007/s10460-015-9610-2. Orsini F, 2013, AGRON SUSTAIN DEV, V33, P695, DOI 10.1007/s13593-013-0143-z. Pakdeetrakulwong U., 2018, INTERDISCIP RES REV, V13, P26. Pastor-Sanchez JA, 2009, INFORM RES, V14. Patton EW, 2014, FUTURE GENER COMP SY, V36, P430, DOI 10.1016/j.future.2013.09.017. Pearson LJ, 2010, INT J AGR SUSTAIN, V8, P7, DOI 10.3763/ijas.2009.0468. Phutthisathian A., 2011, Proceedings of the 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC 2011), P258, DOI 10.1109/IMCCC.2011.260. Pizzuti Teresa, 2013, 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), P281, DOI 10.1109/IDAACS.2013.6662689. Pouteau S, 2021, P WORLD C OWC 2021. Reganold JP, 2016, NAT PLANTS, V2, DOI {[}10.1038/NPLANTS.2015.221, 10.1038/nplants.2015.221]. Rhayem A, 2020, INTERNET THINGS-NETH, V11, DOI 10.1016/j.iot.2020.100206. Rodriguez-Garcia M.A., 2020, P INT C TECHNOLOGIES, P18. Roy N.R., 2020, ONTOLOGY BASED APPRO. Saad MHM, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121422. Samarakoon U. C., 2006, Tropical Agricultural Research, V18, P13. Samarasinghe SWADM, 2016, LECT NOTES COMPUT SC, V9790, P24, DOI 10.1007/978-3-319-42092-9\_3. Sanchez-Alonso S., 2008, P WORLD C AGR INFORM, P24. Sanchez-Alonso S, 2009, METADATA AND SEMANTICS, P481, DOI 10.1007/978-0-387-77745-0\_47. Saravanan D., 2018, Proceedings of the Second International Conference on Computational Intelligence and Informatics. ICCII-2017. Advances in Intelligent Systems and Computing (AISC 712), P1, DOI 10.1007/978-981-10-8228-3\_1. Shafi U, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19173796. Shamshiri RR, 2018, INT J AGR BIOL ENG, V11, P1, DOI 10.25165/j.ijabe.20181101.3210. Shankhdhar G.K., 2021, SEMANTIC IOT THEORY, P265. SHARDA R, 1988, MANAGE SCI, V34, P139, DOI 10.1287/mnsc.34.2.139. Sivamani S., 2014, ADV COMPUTER SCI ITS, P327. Sivamani S, 2013, INT J DISTRIB SENS N, DOI 10.1155/2013/161495. Soergel D., 2004, J DIGIT INF, V4, P1. Sonneveld C, 2009, PLANT NUTRITION OF GREENHOUSE CROPS, P393, DOI 10.1007/978-90-481-2532-6\_17. Sowa J.F., 1999, KNOWLEDGE REPRESENTA. Sreedevi T. R., 2020, 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), P120, DOI 10.1109/ACCTHPA49271.2020.9213235. Stafford JV, 2000, J AGR ENG RES, V76, P267, DOI 10.1006/jaer.2000.0577. Sultan B, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01262. Sung J., 2018, AUTOMATION AGR SECUR, VVolume 1. Tao TY, 2012, J INTEGR AGR, V11, P800, DOI 10.1016/S2095-3119(12)60070-7. Thunkijjanukij A., 2009, Kasetsart Journal, Natural Sciences, V43, P594. Tian T, 2017, NUCLEIC ACIDS RES, V45, pW122, DOI 10.1093/nar/gkx382. Titiya M.D., 2018, IJWP, V10, P32, DOI {[}10.4018/IJWP.2018070103, DOI 10.4018/IJWP.2018070103]. Tomic D., 2015, Journal of Agricultural Informatics, V6, P115. Trejo-Tellez L. I., 2012, HYDROPONICS STANDARD, P1, DOI {[}10.5772/37578, DOI 10.5772/37578]. Tudorache T., 2008, P OWLED, V432, P2009. Urkude G., 2020, J GREEN ENG, V10, P7078. Vergara-Lozano V., 2017, P INT C TECHNOLOGIES, P47. Vij A, 2020, PROCEDIA COMPUT SCI, V167, P1250, DOI 10.1016/j.procs.2020.03.440. Vrandecic D., 2009, HDB ONTOLOGIES, P293, DOI DOI 10.1007/978-3-540-92673-3\_13. Wang Y, 2018, COMPUT ELECTRON AGR, V155, P359, DOI 10.1016/j.compag.2018.10.034. Wang Y, 2015, COMPUT ELECTRON AGR, V113, P24, DOI 10.1016/j.compag.2015.01.009. Wilson R., 2021, P 8 RUHUNA INT SCI T. Wu Z, 1979, DEV SOCIALIST AGR CH. Xiong Jinhui, 2010, Proceedings 2010 3rd International Conference on Intelligent Networks and Intelligent Systems (ICINIS 2010), P479, DOI 10.1109/ICINIS.2010.106. Yang Nari, 2015, {[}The Journal of the Korea Contents Association, 한국콘텐츠학회 논문지], V15, P58, DOI 10.5392/JKCA.2015.15.02.058. Yue J., 2005, P 2005 1 INT C SEMAN, P130. Zasada I, 2011, LAND USE POLICY, V28, P639, DOI 10.1016/j.landusepol.2011.01.008. Zhang NQ, 2002, COMPUT ELECTRON AGR, V36, P113, DOI 10.1016/S0168-1699(02)00096-0. Zheng YL, 2012, J INTEGR AGR, V11, P700, DOI 10.1016/S2095-3119(12)60059-8.}, Number-of-Cited-References = {142}, Times-Cited = {2}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {6K6QQ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000887624400001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000701987300003, Author = {Kaginalkar, Akshara and Kumar, Shamita and Gargava, Prashant and Niyogi, Dev}, Title = {Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective}, Journal = {URBAN CLIMATE}, Year = {2021}, Volume = {39}, Month = {SEP}, Abstract = {Cities foster economic growth. However, growing cities also contribute to air pollution and climate change. The paper provides a perspective regarding the opportunity available in addressing the urban air quality management (UAQM) issues using smart city framework in the context of `urban computing'. Traditionally, UAQM has been built on sparse regulatory monitoring, enhanced with satellite data and forecast models. The `Fourth Industrial Revolution' (4IR) technologies such as Internet of Things (IoT), big data, artificial intelligence, smartphones, social and cloud computing are reshaping urban conglomerates, worldwide. Cities can harness these ubiquitous technologies in concert with traditional methods for betterment of air quality governance and to improve quality of life. This paper discusses the role of urban computing in UAQM through a review of scientific publications and `grey literature' from technical reports of governments, international organizations and institutional websites. It provides an interdisciplinary knowledge repository on urban computing applications for air quality functions. It highlights the potential of integrated technologies in enabling data driven, strategic and real-time mitigation governance actions and helping citizens to take informed decisions. It recommends `fit for the purpose' multitechnology framework for UAQM services in emerging smart cities.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Kaginalkar, A (Corresponding Author), Ctr Dev Adv Comp, Pune 411008, Maharashtra, India. Kaginalkar, Akshara, Ctr Dev Adv Comp, Pune 411008, Maharashtra, India. Kaginalkar, Akshara; Kumar, Shamita, Bharati Vidyapeeth Deemed Univ, Inst Environm Educ \& Res, Pune, Maharashtra, India. Gargava, Prashant, Parivesh Bhawan, India Cent Pollut Control Board, New Delhi 110032, India. Niyogi, Dev, Indian Inst Technol Roorkee, Ctr Excellence Disaster Mitigat \& Management, Roorkee 247667, Uttarakhand, India. Niyogi, Dev, Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. Niyogi, Dev, Univ Texas Austin, Cockrell Sch Engn, Dept Civil Architectural \& Environm Engn, Austin, TX 78712 USA.}, DOI = {10.1016/j.uclim.2021.100972}, EarlyAccessDate = {SEP 2021}, Article-Number = {100972}, ISSN = {2212-0955}, Keywords = {Air pollution; ICT; Urban computing; 4 IR technologies; AI; ML; Internet of things (IoT); Big data; Social media}, Keywords-Plus = {PARTICULATE MATTER; BIG DATA; POLLUTION EXPOSURE; SENSOR NETWORK; PERSONAL EXPOSURE; SPATIAL VARIATION; NEXT-GENERATION; CARBON-MONOXIDE; HYBRID MODEL; CFD MODEL}, Research-Areas = {Environmental Sciences \& Ecology; Meteorology \& Atmospheric Sciences}, Web-of-Science-Categories = {Environmental Sciences; Meteorology \& Atmospheric Sciences}, Author-Email = {akshara@cdac.in}, Affiliations = {Centre for Development of Advanced Computing (C-DAC); Bharati Vidyapeeth Deemed University; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Roorkee; University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin}, ResearcherID-Numbers = {Niyogi, Dev/H-6326-2013 }, ORCID-Numbers = {Niyogi, Dev/0000-0002-1848-5080 /0000-0001-7807-2280}, Cited-References = {A JD, 2020, ATMOSPHERE-BASEL, V11, P625, DOI DOI 10.3390/ATMOS11060625. Agarwal S, 2020, SCI TOTAL ENVIRON, V735, DOI 10.1016/j.scitotenv.2020.139454. AirNow, 2020, HOM PAG. AirQ+, 2020, AIRQ SOFTW TOOL HLTH. AKIDOU E, 2017, LANCET, V390, P1345, DOI DOI 10.1016/S0140-6736(17)32366-8. Al-Ali AR, 2010, IEEE SENS J, V10, P1666, DOI 10.1109/JSEN.2010.2045890. Albino V, 2015, J URBAN TECHNOL, V22, P3, DOI 10.1080/10630732.2014.942092. Alexeeff SE, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0382-1. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Alvear O, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020460. Ameer S, 2019, IEEE ACCESS, V7, P128325, DOI 10.1109/ACCESS.2019.2925082. Anenberg SC, 2016, RISK ANAL, V36, P1718, DOI 10.1111/risa.12540. Angelidou M, 2018, J SCI TECHNOL POLICY, V9, P146, DOI 10.1108/JSTPM-05-2017-0016. {[}Anonymous], 2016, EUROPEAN HDB CROWDSO, DOI {[}10.5334/bax.aa, DOI 10.5334/BAX.AA]. Apte JS, 2017, ENVIRON SCI TECHNOL, V51, P6999, DOI 10.1021/acs.est.7b00891. AQ, 2020, AIR QUAL LOND 2016 2. Arano KAG, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16173130. Arvind DK, 2016, 19TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2016), P207, DOI 10.1109/DSD.2016.110. Ashie Y, 2011, INT J CLIMATOL, V31, P174, DOI 10.1002/joc.2226. Athira V., 2018, PROCEDIA COMPUT SCI, V132, P1394, DOI 10.1016/j.procs.2018.05.068. Badach J, 2020, BUILD ENVIRON, V174, DOI 10.1016/j.buildenv.2020.106743. Bai L, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040780. Baklanov A, 2007, ATMOS CHEM PHYS, V7, P855, DOI 10.5194/acp-7-855-2007. Baklanov A, 2006, ATMOS CHEM PHYS, V6, P2005, DOI 10.5194/acp-6-2005-2006. Baklanov A., 2020, GLOB TRANSIT, V2, P261, DOI {[}10.1016/j.glt.2020.11.001, DOI 10.1016/J.GLT.2020.11.001]. Baklanov A, 2020, URBAN CLIM, V32, DOI 10.1016/j.uclim.2020.100610. Baklanov A, 2016, ATMOS ENVIRON, V126, P235, DOI 10.1016/j.atmosenv.2015.11.059. Batty M, 2012, EUR PHYS J-SPEC TOP, V214, P481, DOI 10.1140/epjst/e2012-01703-3. Behera SN, 2015, URBAN CLIM, V14, P396, DOI 10.1016/j.uclim.2014.12.003. Behera SN, 2011, WATER AIR SOIL POLL, V218, P423, DOI 10.1007/s11270-010-0656-x. Beig G, 2015, 2172015 WMO GAW, P51. Belavadi SV, 2020, PROCEDIA COMPUT SCI, V170, P241, DOI 10.1016/j.procs.2020.03.036. Bellinger C, 2017, BMC PUBLIC HEALTH, V17, DOI 10.1186/s12889-017-4914-3. Bibri Simon Elias, 2020, Energy Informatics, V3, DOI {[}10.1186/s42162-020-00130-8, 10.1186/s42162-020-00108-6]. Bibri SE, 2019, SMART CITIES-BASEL, V2, P179, DOI 10.3390/smartcities2020013. Blair GS, 2019, FRONT ENV SCI-SWITZ, V7, DOI 10.3389/fenvs.2019.00121. Braathen N.A, 2017, RISING COST AMBIENT, DOI {[}10.1787/d1b2b844-en, DOI 10.1787/D1B2B844-EN]. Brauer M, 2016, ENVIRON SCI TECHNOL, V50, P79, DOI 10.1021/acs.est.5b03709. Broday DM, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17102263. Bulot FMJ, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43716-3. Byun D, 2006, APPL MECH REV, V59, P51, DOI 10.1115/1.2128636. C40, 2019, REP C40 CIT ANN REP. Cai M, 2016, PROCEDIA ENVIRON SCI, V36, P82, DOI 10.1016/j.proenv.2016.09.017. CALPUFF, 2021, OFF CALPUFF MOD SYST. Campbell R., 2018, IMPACT BASED FORECAS. Castell N, 2018, ENVIRON RES, V165, P410, DOI 10.1016/j.envres.2017.10.019. Castell N, 2015, URBAN CLIM, V14, P370, DOI 10.1016/j.uclim.2014.08.002. Caubel JJ, 2019, ENVIRON SCI TECHNOL, V53, P7564, DOI 10.1021/acs.est.9b00282. Chang YY, 2018, IEEE TOPIC CONF WIRE, P1. Charitidis P, 2019, 2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE WORKSHOPS (WI 2019 COMPANION), P215, DOI 10.1145/3358695.3361106. Chatzidiakou L, 2019, ATMOS MEAS TECH, V12, P4643, DOI {[}10.5194/amt-12-1-2019, 10.5194/amt-12-4643-2019]. Che WW, 2020, SUSTAIN CITIES SOC, V54, DOI 10.1016/j.scs.2019.101986. Chen M, 2018, IEEE COMMUN MAG, V56, P14, DOI 10.1109/MCOM.2018.1700571. Chen PY, 2019, EURASIP J IMAGE VIDE, DOI 10.1186/s13640-019-0443-6. Ching, 1999, EPA600R99030 USEPA. Ching J, 2018, B AM METEOROL SOC, V99, P1907, DOI 10.1175/BAMS-D-16-0236.1. Chourabi H., 2012, 2012 45th Hawaii International Conference on System Sciences (HICSS), P2289, DOI 10.1109/HICSS.2012.615. Chowdhury S, 2017, ENVIRON SCI POLICY, V74, P8, DOI 10.1016/j.envsci.2017.04.018. Chowdhury S, 2016, ENVIRON INT, V91, P283, DOI 10.1016/j.envint.2016.03.004. CII Dalberg, 2021, AIR POLL ITS IMP BUS. Cimorelli AJ, 2005, J APPL METEOROL, V44, P682, DOI 10.1175/JAM2227.1. Cocchia A, 2014, PROGR IS, P13, DOI 10.1007/978-3-319-06160-3\_2. Constant N., 2018, URBAN POLLUTION, P303, DOI {[}10.1002/9781119260493.ch23, DOI 10.1002/9781119260493.CH23]. Corbett J, 2017, INFORM SYST J, V27, P427, DOI 10.1111/isj.12138. CPCB, 2019, REP NAT CLEAR AIR PR. Cui L, 2018, IEEE ACCESS, V6, P46134, DOI 10.1109/ACCESS.2018.2853985. Dalvi W, 2006, ATMOS ENVIRON, V40, P2995, DOI 10.1016/j.atmosenv.2006.01.013. Dameri R.P., 2012, INT J COMPUT TECHNOL, V11, P2544, DOI 10.24297/ijct.v11i5.1142. Davila S, 2015, ARH HIG RADA TOKSIKO, V66, P171, DOI 10.1515/aiht-2015-66-2633. Davis L.F., 2020, COMMUNITY SCI THEORY, V5, P1, DOI DOI 10.5334/CSTP.253. de Nazelle A, 2013, ENVIRON POLLUT, V176, P92, DOI 10.1016/j.envpol.2012.12.032. Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE `04), P137. Degbelo A, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5020016. Dembski F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062307. Dey S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170928. Diao MH, 2019, J AIR WASTE MANAGE, V69, P1391, DOI 10.1080/10962247.2019.1668498. Donaire-Gonzalez D, 2016, JMIR MHEALTH UHEALTH, V4, DOI 10.2196/mhealth.5771. Dong DX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16234784. Dong XY, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-57385-9. Duran-Limon HA, 2016, EARTH SCI INFORM, V9, P365, DOI 10.1007/s12145-016-0253-7. Dutta J, 2016, IEEE SENSOR. EEA, 2019, ASS AIR QUAL CIT SCI. EIONET, 2019, 201821 EIONET ETCACM. Engel-Cox J, 2013, ATMOS ENVIRON, V80, P584, DOI 10.1016/j.atmosenv.2013.08.016. English PB, 2018, ANNU REV PUBL HEALTH, V39, P335, DOI 10.1146/annurev-publhealth-040617-013702. Ericksson, 2015, UNHABITAT ER JOINT R. EU, 2020, SMART CIT. Fang W, 2014, SCI WORLD J, DOI 10.1155/2014/646497. Fazziki A, 2015, CEUR WORKSHOP PROC, P1381. Feng Chen, 2017, 2017 Conference on Lasers and Electro-Optics Europe \& European Quantum Electronics Conference (CLEO/Europe-EQEC), DOI 10.1109/CLEOE-EQEC.2017.8087747. Garaga R, 2018, CURR POLLUT REP, V4, P59, DOI 10.1007/s40726-018-0081-0. Garzon SR, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THE INTERNET OF THINGS (IOT'18), DOI 10.1145/3277593.3277599. Gately CK, 2017, ENVIRON POLLUT, V229, P496, DOI 10.1016/j.envpol.2017.05.091. GeSI, 2015, REP SMARTER2030. Gharaibeh A, 2017, IEEE COMMUN SURV TUT, V19, P2456, DOI 10.1109/COMST.2017.2736886. Goga K, 2018, ADV INTELL SYST, V611, P384, DOI 10.1007/978-3-319-61566-0\_35. Gokhale S, 2005, ATMOS ENVIRON, V39, P4025, DOI 10.1016/j.atmosenv.2005.04.010. Gonz alez J.E, 2021, URBAN CLIM, V38, DOI 10.1016/j.uclim.2021.10085. Gorai AK, 2018, ENVIRON HEALTH INSIG, V12, DOI 10.1177/1178630218792861. Gouldson Andy, 2015, ACCELERATING LOW CAR. Grant MJ, 2009, HEALTH INFO LIBR J, V26, P91, DOI 10.1111/j.1471-1842.2009.00848.x. Grell GA, 2005, ATMOS ENVIRON, V39, P6957, DOI 10.1016/j.atmosenv.2005.04.027. Grimmond S, 2020, URBAN CLIM, V33, DOI 10.1016/j.uclim.2020.100623. Gryech I, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20040998. GSMA, 2018, REP AIR QUAL MON US. GSMA, 2018, REP ENV MON GUID ENS. GSMA, 2018, REP AIR QUAL MON IOT. Gulia S, 2015, J SCI IND RES INDIA, V74, P302. Gulia S, 2017, TRANSPORT RES D-TR E, V56, P141, DOI 10.1016/j.trd.2017.08.005. Gulia S, 2017, AEROSOL AIR QUAL RES, V17, P394, DOI 10.4209/aaqr.2016.06.0273. Gulia S, 2015, ATMOS POLLUT RES, V6, P286, DOI 10.5094/APR.2015.033. Guo HG, 2020, ENVIRON INT, V143, DOI 10.1016/j.envint.2020.105821. Gupta P, 2018, GEOHEALTH, V2, P172, DOI 10.1029/2018GH000136. Guttikunda SK, 2013, ATMOS ENVIRON, V67, P101, DOI 10.1016/j.atmosenv.2012.10.040. Habibzadeh H, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3309545. Hagan DH, 2019, ENVIRON SCI TECH LET, V6, P467, DOI 10.1021/acs.estlett.9b00393. Ly HB, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19224941. Hankey S, 2015, ATMOS ENVIRON, V122, P65, DOI 10.1016/j.atmosenv.2015.09.025. Hano Mary Clare, 2020, Citiz Sci, V5, P1, DOI 10.5334/cstp.244. Harrison C, 2010, IBM J RES DEV, V54, DOI 10.1147/JRD.2010.2048257. Hasenfratz D, 2015, PERVASIVE MOB COMPUT, V16, P268, DOI 10.1016/j.pmcj.2014.11.008. Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002. HEI, 2019, HLTH EFF I 2019 STAT. Heimann I, 2015, ATMOS ENVIRON, V113, P10, DOI 10.1016/j.atmosenv.2015.04.057. Henderson K., 2016, CITIZEN HLTH SCI CHR. Hu K., P P MLSDA 2014 2 WOR, P48. Hu ZY, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-26. Iordache S, 2015, I C CONTR SYS COMP S, P789, DOI 10.1109/CSCS.2015.39. Iskandaryan D, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10072401. Jena C., 2020, ATMOSPHERIC CHEMPHYS, P1, DOI {[}10.5194/acp-2020-673, DOI 10.5194/ACP-2020-673]. Jerrett M, 2005, J EXPO ANAL ENV EPID, V15, P185, DOI 10.1038/sj.jea.7500388. Jerrett M, 2017, ENVIRON RES, V158, P286, DOI 10.1016/j.envres.2017.04.023. Jiang JY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2627. Jiang WX, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134142. Jin J, 2014, IEEE INTERNET THINGS, V1, P112, DOI 10.1109/JIOT.2013.2296516. Johnson S, 2020, ENVIRON SCI TECHNOL, V54, P9804, DOI 10.1021/acs.est.0c00694. Kadaverugu R, 2019, ASIA-PAC J ATMOS SCI, V55, P539, DOI 10.1007/s13143-019-00110-3. Kadri Abdullah, 2013, 1 INT C COMMUNICATIO, P1. Kaivonen S, 2020, DIGIT COMMUN NETW, V6, P23, DOI 10.1016/j.dcan.2019.03.003. Karagulian F, 2019, ATMOSPHERE-BASEL, V10, DOI 10.3390/atmos10090506. Karagulian F, 2015, ATMOS ENVIRON, V120, P475, DOI 10.1016/j.atmosenv.2015.08.087. Kaya Kiymet, 2020, PHYS REV D, V10, P1. Kedia S, 2018, ATMOS ENVIRON, V185, P109, DOI 10.1016/j.atmosenv.2018.05.005. Kesarkar AP, 2007, ATMOS ENVIRON, V41, P1976, DOI 10.1016/j.atmosenv.2006.10.042. Khaefi MR, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P393. Khan A, 2021, EARTH INTERACT, V25, P57, DOI 10.1175/EI-D-20-0017.1. Khan Z, 2015, J CLOUD COMPUT-ADV S, V4, DOI 10.1186/s13677-015-0026-8. Kindberg T, 2007, IEEE PERVAS COMPUT, V6, P18, DOI 10.1109/MPRV.2007.57. Klein T, 2012, AMBIO, V41, P851, DOI 10.1007/s13280-012-0288-z. Kok I, 2017, IEEE INT CONF BIG DA, P1983. Kontgis C, 2021, NEW LAND USE MAPPING. Kontokosta C, 2017, DATA CLIMATE ACTION. Kosmidis E, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7050187. Krishnamurthy R, 2021, ATMOS MEAS TECH, V14, P4403, DOI 10.5194/amt-14-4403-2021. Kukkonen J, 2012, ATMOS CHEM PHYS, V12, P1, DOI 10.5194/acp-12-1-2012. Kulkarni SH, 2020, ENVIRON SCI TECHNOL, V54, P4790, DOI 10.1021/acs.est.0c00329. Kumar A, 2013, PURE APPL GEOPHYS, V170, P711, DOI 10.1007/s00024-012-0583-4. Kumar P, 2017, ENVIRON POLLUT, V225, P20, DOI 10.1016/j.envpol.2017.03.017. Kumar P, 2015, ENVIRON INT, V75, P199, DOI 10.1016/j.envint.2014.11.019. Kuria E., 2019, INT J COMPUT APPL, V178, P6. Kwak KH, 2015, ATMOS ENVIRON, V100, P167, DOI 10.1016/j.atmosenv.2014.10.059. Landrigan PJ, 2018, LANCET, V391, P430. Larkin A, 2017, Curr Environ Health Rep, V4, P463, DOI 10.1007/s40572-017-0163-y. Larkin A, 2015, COMPUT J, V58, P1431, DOI 10.1093/comjnl/bxu067. Leelossy A, 2014, CENT EUR J GEOSCI, V6, P257, DOI 10.2478/s13533-012-0188-6. Lelieveld J, 2020, CARDIOVASC RES, V116, P1910, DOI 10.1093/cvr/cvaa025. Li WW, 2020, INT J GEOGR INF SCI, V34, P311, DOI 10.1080/13658816.2019.1673397. Liao Q, 2020, CURR POLLUT REP, V6, P399, DOI 10.1007/s40726-020-00159-z. Lim CC, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.105022. Liu CB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0145955. Liu DM, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14030247. Liu HY, 2014, ENVIRON HEALTH-GLOB, V13, DOI 10.1186/1476-069X-13-107. Liu HY, 2013, ENVIRON HEALTH-GLOB, V12, DOI 10.1186/1476-069X-12-93. Liu SM, 2017, BUILD ENVIRON, V117, P11, DOI 10.1016/j.buildenv.2017.02.021. LondonAir, 2020, LOND AIR QUAL NETW A. Lu XC, 2021, SCI TOTAL ENVIRON, V770, DOI 10.1016/j.scitotenv.2020.144221. Lytras MD, 2020, IEEE ACCESS, V8, P72340, DOI 10.1109/ACCESS.2020.2988125. Ma JH, 2020, AEROSOL AIR QUAL RES, V20, P128, DOI 10.4209/aaqr.2019.08.0408. Maag B., 2018, PROC ACM INTERACT MO, V2, P1, DOI DOI 10.1145/3191756. Mahajan S, 2020, SUSTAIN CITIES SOC, V57, DOI 10.1016/j.scs.2020.102076. Mahajan S, 2020, SUSTAIN CITIES SOC, V52, DOI 10.1016/j.scs.2019.101800. Maji KJ, 2017, ENVIRON SCI POLLUT R, V24, P4709, DOI 10.1007/s11356-016-8164-1. McKinsey, 2018, MCKINSEY GLOB I 2018. Messier KP, 2018, ENVIRON SCI TECHNOL, V52, P12563, DOI 10.1021/acs.est.8b03395. Miao YC, 2013, ADV ATMOS SCI, V30, P1663, DOI 10.1007/s00376-013-2234-9. Mishra D, 2015, ATMOS POLLUT RES, V6, P99, DOI 10.5094/APR.2015.012. MOHFW, 2015, REPORT STEERING COMM. Molina LT, 2019, ATMOSPHERE-BASEL, V10, DOI 10.3390/atmos10090512. Molthan AL, 2015, B AM METEOROL SOC, V96, DOI 10.1175/BAMS-D-14-00013.1. Mukherjee A, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19214701. Nichol JE, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8040328. Nikzad N., 2012, P C WIR HLTH WH 12 A, DOI DOI 10.1145/2448096.2448107. NYC Portal, 2020, ENV HLTH DAT PORT. NYHAN M, 2016, ENVIRON SCI-TOKYO. Nyhan MM, 2019, J EXPO SCI ENV EPID, V29, P238, DOI 10.1038/s41370-018-0038-9. OECD, 2016, EC CONS OUTD AIR POL, DOI DOI 10.1787/9789264257474-EN. Ogen Y, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138605. ohnson, 2020, M ORD OAR AIRNOW USF. Oke T. R., 2017, URBAN CLIMATES, DOI {[}10.1017/9781139016476, DOI 10.1017/9781139016476]. omlinson R.F, 1968, GEOGRAPHIC INFORM SY. Ottaviano M, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19132940. Pan ZX, 2017, AAAI CONF ARTIF INTE, P4728. Pant P, 2019, AIR QUAL ATMOS HLTH, V12, P45, DOI 10.1007/s11869-018-0629-6. Parrish DD, 2009, SCIENCE, V326, P674, DOI 10.1126/science.1176064. Penza M, 2014, IEEE SENSOR, P2012, DOI 10.1109/ICSENS.2014.6985429. Piedrahita R, 2014, ATMOS MEAS TECH, V7, P3325, DOI 10.5194/amt-7-3325-2014. Pipalatkar P, 2014, AEROSOL AIR QUAL RES, V14, P1089, DOI 10.4209/aaqr.2013.04.0130. Pirbazari AM, 2020, PROCESSES, V8, DOI 10.3390/pr8040484. Popoola OAM, 2018, ATMOS ENVIRON, V194, P58, DOI 10.1016/j.atmosenv.2018.09.030. Powers JG, 2021, B AM METEOROL SOC, V102, pE1261, DOI 10.1175/BAMS-D-20-0219.1. Pune Resilience, 2020, PUN RES STRAT. Rafael S, 2020, SCI TOTAL ENVIRON, V712, DOI 10.1016/j.scitotenv.2020.136546. Ramamurthy Mohan., 2017, ESIP, DOI {[}10.6084/m9.figshare.5249839.v1, DOI 10.6084/M9.FIGSHARE.5249839.V1]. Ramanathan V., 2014, INDIA CALIFORNIA AIR, DOI {[}10.13140/RG.2.1.4112.5527, DOI 10.13140/RG.2.1.4112.5527]. Ramos F, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082507. Reddy V., 2017, DEEP AIR FORECASTING. Reis S, 2015, ENVIRON MODELL SOFTW, V74, P238, DOI 10.1016/j.envsoft.2015.06.003. Relvas H, 2018, AIR QUAL ATMOS HLTH, V11, P815, DOI 10.1007/s11869-018-0587-z. REPRESA S, 2020, ENVIRON PROCESS, V7, DOI DOI 10.1007/S40710-019-00407-5. Ripple WJ, 2020, BIOSCIENCE, V70, P8, DOI 10.1093/biosci/biz088. Rivas I, 2020, ENVIRON INT, V135, DOI 10.1016/j.envint.2019.105345. Robinson JA, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18113768. Rohi G, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03252. Rojas-Rueda D, 2020, ANNU REV PUBL HEALTH, V41, P329, DOI 10.1146/annurev-publhealth-040119-094035. Rolnick D., 2019, ARXIV190605433. Rybarczyk Y, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8122570. Rzeszutek M, 2019, SCI TOTAL ENVIRON, V689, P31, DOI 10.1016/j.scitotenv.2019.06.379. S EPA, 2015, CIT SCI OPP MON AIR. Sacks JD, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11050516. Sanchez L, 2014, COMPUT NETW, V61, P217, DOI 10.1016/j.bjp.2013.12.020. Sanchez-Corcuera R, 2019, INT J DISTRIB SENS N, V15, DOI 10.1177/1550147719853984. Santiago JL, 2017, SCI TOTAL ENVIRON, V576, P46, DOI 10.1016/j.scitotenv.2016.09.234. Sathe Y, 2019, ATMOS POLLUT RES, V10, P418, DOI 10.1016/j.apr.2018.08.016. Schneider P, 2015, ATMOS CHEM PHYS, V15, P1205, DOI 10.5194/acp-15-1205-2015. Schneider P, 2017, ENVIRON INT, V106, P234, DOI 10.1016/j.envint.2017.05.005. Schwab K., 2016, 4 IND REVOLUTION WHA. Sengupta U, 2017, UNU IAS POLICY BRIEF, V12. Sharma S, 2020, SCI TOTAL ENVIRON, V728, DOI 10.1016/j.scitotenv.2020.138878. Shi Y, 2019, LANDSCAPE URBAN PLAN, V189, P15, DOI 10.1016/j.landurbplan.2019.04.004. Shukla S, 2016, REINVENTING AIR QUAL. Silva BN, 2017, WIREL COMMUN MOB COM, DOI 10.1155/2017/9429676. Simm W, 2020, IFIP ADV INF COMM TE, V554, P216, DOI 10.1007/978-3-030-39815-6\_21. Simmhan Yogesh, 2019, 2019 15th International Conference on eScience (eScience). Proceedings, P57, DOI 10.1109/eScience.2019.00014. Singh D, 2016, J HAZARD TOXIC RADIO, V20, DOI 10.1061/(ASCE)HZ.2153-5515.0000244. Skamarock W. C, 2005, DESCRIPTION ADV RES, DOI {[}10.5065/D6DZ069T, DOI 10.5065/D6DZ069T]. Skjetne E., 2017, J ENV PROT, V08, P1372, DOI {[}10.4236/jep.2017.811084, DOI 10.4236/JEP.2017.811084]. Snyder EG, 2013, ENVIRON SCI TECHNOL, V47, P11369, DOI 10.1021/es4022602. Sorek-Hamer M, 2016, CURR OPIN PEDIATR, V28, P228, DOI 10.1097/MOP.0000000000000326. Sorokine A, 2016, P 5 ACM SIGSPATIAL I, P34, DOI {[}10.1145/3006386.3006391, DOI 10.1145/3006386.3006391]. Spyromitros-Xioufis E, 2018, MULTIMED SYST APPL, P67, DOI 10.1007/978-3-319-76445-0\_5. Statista, 2020, MOST POPULAR MESSAGI. Steinle S, 2015, SCI TOTAL ENVIRON, V508, P383, DOI 10.1016/j.scitotenv.2014.12.003. Stern, 1968, AIR POLL ITS EFF, DOI {[}10.1016/C2013-0-11540-1, DOI 10.1016/C2013-0-11540-1]. Sun AY, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/ab1b7d. Sun J, 2015, J AIR WASTE MANAGE, V65, P611, DOI 10.1080/10962247.2015.1033068. Sun W, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11010042. Svetnik V, 2003, J CHEM INF COMP SCI, V43, P1947, DOI 10.1021/ci034160g. Triscone G., 2016, INT J SUSTAIN DEV PL, V11, P546, DOI {[}10.2495/SDP-V11-N4-546-557, DOI 10.2495/SDP-V11-N4-546-557]. TU, 2015, REP ICT CLIM CHANG A. TU, 2020, FRONT TECHN PROT ENV. UN, 2015, 68 WORLD POP PROJ LI. UN, 2018, WORLD URB PROSP 2018. UN General Assembly, 2015, TRANSF OUR WORLD 203, DOI DOI 10.1891/9780826190123.AP02. UN-Habitat, 2016, WORLD CIT REP 2016 U. UNEP, 2019, EM GAP REP 2019. United Nations, 2015, ACHIEVING SUSTAINABL. Upadhyay N, 2017, PROCEDIA COMPUT SCI, V108, P2542, DOI 10.1016/j.procs.2017.05.017. US EPA O, 2016, AIR QUAL MOD. Van den Bossche J, 2015, ATMOS ENVIRON, V105, P148, DOI 10.1016/j.atmosenv.2015.01.017. van Donkelaar A, 2015, ENVIRON HEALTH PERSP, V123, P135, DOI 10.1289/ehp.1408646. van Zoest V, 2020, INT J GEOGR INF SCI, V34, P851, DOI 10.1080/13658816.2019.1667501. von Schneidemesser E, 2017, ELEMENTA-SCI ANTHROP, V5, DOI 10.1525/elementa.126. WEF, 2017, HARN 4 IND REV SUST. WEF, 2018, 4 IND REV EARTH HARN. Werner M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11202364. WHO, 2014, WHO EXP M METH TOOLS. Wilkinson Mark D, 2016, Sci Data, V3, P160018, DOI 10.1038/sdata.2016.18. Wilson G, 2002, RECENT ADV CAMX AIR, DOI {[}10.1007/978-3-662-04956-3\_10, DOI 10.1007/978-3-662-04956-3\_10]. WMO, 2020, 26 WMO ETR. WMO (World Meteorological Organization), 2019, 1234 WMO. World Bank, 2019, URB POP IND DAT. World Health Organization, 2016, CLEAN AIR J, V26, P6, DOI {[}DOI 10.17159/2410-972X/2016/V26N2A4, 10.17159/2410-972x/2016/v26n2a4]. Xie XZ, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6120389. Xu Du, 2016, 2016 IEEE 32nd International Conference on Data Engineering: Workshops (ICDEW), P54, DOI 10.1109/ICDEW.2016.7495616. Xu J., 2020, ATMOS CHEM PHYS DISC, DOI {[}10.5194/acp-2020-1020, DOI 10.5194/ACP-2020-1020]. Xu M, 2021, ATMOS ENVIRON, V248, DOI 10.1016/j.atmosenv.2020.118022. Xu Y., 2017, TRANSP RES BOARD 96. Yamaji K, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11030222. Yan LX, 2019, CITIES, V91, P116, DOI 10.1016/j.cities.2018.11.011. Yang CW, 2020, INT J GEOGR INF SCI, V34, P1075, DOI 10.1080/13658816.2019.1698743. Yang CW, 2017, COMPUT ENVIRON URBAN, V61, P120, DOI 10.1016/j.compenvurbsys.2016.10.010. Yarza S, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11020122. Yazdi MD, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060914. Yi WY, 2015, SENSORS-BASEL, V15, P31392, DOI 10.3390/s151229859. Yin JJ, 2017, SPRING GEOGR, P83, DOI 10.1007/978-3-319-40902-3\_5. Yu RY, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010086. Zalakeviciute R., 2019, AIR POLLUT MONIT QUA, DOI DOI 10.5772/INTECHOPEN.79570. Zheng SQ, 2019, NAT HUM BEHAV, V3, P237, DOI 10.1038/s41562-018-0521-2. Zheng TS, 2020, ATMOS ENVIRON, V230, DOI 10.1016/j.atmosenv.2020.117451. Zheng TS, 2019, ATMOS MEAS TECH, V12, P5161, DOI 10.5194/amt-12-5161-2019. Zheng TS, 2018, ATMOS MEAS TECH, V11, P4823, DOI 10.5194/amt-11-4823-2018. Zheng Y, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2267, DOI 10.1145/2783258.2788573. Zheng Yu, 2014, ACM T INTEL SYST TEC, V5, P3, DOI {[}DOI 10.1145/2629592, 10.1145/2629592]. Zhou YC, 2018, IEEE ACCESS, V6, P77996, DOI 10.1109/ACCESS.2018.2884647. Zhuang JW, 2020, J ADV MODEL EARTH SY, V12, DOI 10.1029/2020MS002064.}, Number-of-Cited-References = {305}, Times-Cited = {22}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {49}, Journal-ISO = {Urban CLim.}, Doc-Delivery-Number = {UZ1QW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000701987300003}, OA = {Bronze}, DA = {2023-04-22}, } @article{ WOS:000754067600001, Author = {Reja, R. K. and Amin, Ruhul and Tasneem, Zinat and Ali, Md Firoj and Islam, Md Robiul and Saha, Dip Kumar and Badal, Faisal Rahman and Ahamed, Md Hafiz and Moyeen, Sumaya Ishrat and Das, Sajal Kumar}, Title = {A review of the evaluation of urban wind resources: challenges and perspectives}, Journal = {ENERGY AND BUILDINGS}, Year = {2022}, Volume = {257}, Month = {FEB 15}, Abstract = {Wind energy in urban areas is a prominent alternative source of renewable energy that is becoming increasingly popular. The technological development, low cost of installation, and availability of wind make it a promising and essential renewable energy sector. Wind farms in urban settings, on the other hand, have yet to be commercialized in a meaningful way. In metropolitan areas, the urban wind becomes turbulent and unpredictable to some extent due to high-rise buildings and variations in their structures, railway tracks, and roads. Hence traditional wind mapping technologies have proven ineffec-tive in metropolitan areas, preventing its commercial use. This paper presents a thorough analysis of the most recent urban wind-resource evaluation techniques, covering multiple strategies, methodologies, software instruments, and the impact of site and building on the accurate installation of wind farms. Noise and vibrations, as well as aesthetic and shadow effects, ecological impact, high investment prices, and data availability, have all been considered, with potential solutions proposed. It has been found that in metropolitan settings, the traditional method of analyzing wind resources is hampered by the inability to collect data in a turbulent environment. As a result, this study predicts that artificial intelligence, such as machine learning, deep learning, and multiple neural networks, will dominate this industry in order to provide precise forecasts while minimizing the operational time and costs of the utilization system.}, Publisher = {ELSEVIER SCIENCE SA}, Address = {PO BOX 564, 1001 LAUSANNE, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Reja, RK (Corresponding Author), Rajshahi Univ Engn \& Technol, Dept Mechatron Engn, Rajshahi, Bangladesh. Reja, R. K.; Amin, Ruhul; Tasneem, Zinat; Ali, Md Firoj; Islam, Md Robiul; Saha, Dip Kumar; Badal, Faisal Rahman; Ahamed, Md Hafiz; Moyeen, Sumaya Ishrat; Das, Sajal Kumar, Rajshahi Univ Engn \& Technol, Dept Mechatron Engn, Rajshahi, Bangladesh.}, DOI = {10.1016/j.enbuild.2021.111781}, Article-Number = {111781}, ISSN = {0378-7788}, EISSN = {1872-6178}, Keywords = {Urban wind; Site location; Wind speed mapping; Wind turbulence; Building structure}, Keywords-Plus = {ATMOSPHERIC BOUNDARY-LAYER; ENERGY-CONVERSION SYSTEMS; PEDESTRIAN-LEVEL WIND; ELECTRICITY-GENERATION; SOCIAL ACCEPTANCE; WEIBULL PARAMETERS; POWER-GENERATION; COMPLEX TERRAIN; ECONOMIC-FEASIBILITY; POTENTIAL ASSESSMENT}, Research-Areas = {Construction \& Building Technology; Energy \& Fuels; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Energy \& Fuels; Engineering, Civil}, Affiliations = {Rajshahi University of Engineering \& Technology (RUET)}, Cited-References = {Abe K, 2005, J WIND ENG IND AEROD, V93, P951, DOI 10.1016/j.jweia.2005.09.003. Abohela I, 2013, RENEW ENERG, V50, P1106, DOI 10.1016/j.renene.2012.08.068. Abromas J, 2015, RURAL DEVELOPMENT, DOI 10.15544/RD.2015.005. Abudureyimu A, 2012, APCBEE PROC, V1, P182, DOI 10.1016/j.apcbee.2012.03.029. Ackerman Steve, FORCES WINDS. Ahmed S., 2015, WIND ENERGY THEORY P. Al-Yahyai S, 2010, RENEW SUST ENERG REV, V14, P3192, DOI 10.1016/j.rser.2010.07.001. Anderson D.C., 2008, ROOFTOP WIND RESOURC. Anjum L., 2014, INT J WIND RENEWABLE, V3, P26. {[}Anonymous], 1969, DIFFUSION INNOVATION. {[}Anonymous], WILDL IMP WIND EN. {[}Anonymous], 2016, RINKESH TRUE ENV HEA. {[}Anonymous], 2014, WIND ENERGY ADVANTAG. {[}Anonymous], 2019, ENERGY RESOURCES WIN. {[}Anonymous], 2020, SCALE. {[}Anonymous], WIND ENERGY PROJECTS. {[}Anonymous], 2015, BLOG IMP SIT AN SENS. Anup KC, 2019, RENEW ENERG, V131, P268, DOI 10.1016/j.renene.2018.07.050. Armstrong T., 1972, J GLACIOL, V11, P148, DOI DOI 10.3189/S0022143000022577. Arnett Edward B., 2016, P295. ASCHER W, 1979, FORECASTING APPRAISA. Ayala M, 2017, ENRGY PROCED, V107, P41, DOI 10.1016/j.egypro.2016.12.127. Ayotte KW, 2001, BOUND-LAY METEOROL, V98, P275, DOI 10.1023/A:1026583021740. Bagiorgas HS, 2007, ENERG CONVERS MANAGE, V48, P1640, DOI 10.1016/j.enconman.2006.11.009. Bailey B.H., 1997, NRELSR44022223 AWS S. Bakker RH, 2012, SCI TOTAL ENVIRON, V425, P42, DOI 10.1016/j.scitotenv.2012.03.005. Barber D, 2019, 4 FORCES INFLUENCE W. Bas E, 2013, APPL MATH COMPUT, V219, P5901, DOI 10.1016/j.amc.2012.12.031. Battisti L, 2018, RENEW ENERG, V129, P102, DOI 10.1016/j.renene.2018.05.062. Beaucage P, 2014, WIND ENERGY, V17, P197, DOI 10.1002/we.1568. Bhandari R, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.123385. Bichet A, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL051685. Bilir L, 2015, ENERG CONVERS MANAGE, V103, P910, DOI 10.1016/j.enconman.2015.07.017. Billinton R, 2001, IEE P-GENER TRANSM D, V148, P530, DOI 10.1049/ip-gtd:20010562. Bishop ID, 2002, ENVIRON PLANN B, V29, P707, DOI 10.1068/b12854. Blocken B, 2007, ATMOS ENVIRON, V41, P238, DOI 10.1016/j.atmosenv.2006.08.019. Boudia SM, 2012, INT J GREEN ENERGY, V9, P243, DOI 10.1080/15435075.2011.621482. Bui D.M., 2013, INT J SUSTAIN ENERGY, V2, P105. Burton T., 2001, WIND ENERGY HDB, V2. Byrne R, 2019, SUSTAIN ENERGY TECHN, V36, DOI 10.1016/j.seta.2019.100537. Byrne R, 2018, ENERGY SUSTAIN DEV, V43, P23, DOI 10.1016/j.esd.2017.12.002. Cakmakci BA, 2022, ENERG SOURCE PART A, V44, P834, DOI 10.1080/15567036.2020.1811810. Carlman I., 1982, INT S WIND EN SYST P, P2. Cattin R., 2006, 2006 EUR WIND EN ASS. Celik AN, 2004, RENEW ENERG, V29, P593, DOI 10.1016/j.renene.2003.07.002. Chalmers D, 2021, ENTREP THEORY PRACT, V45, P1028, DOI 10.1177/1042258720934581. Chandel SS, 2014, SUSTAIN ENERGY TECHN, V8, P18, DOI 10.1016/j.seta.2014.06.005. Chandel SS, 2014, RENEW SUST ENERG REV, V39, P530, DOI 10.1016/j.rser.2014.07.050. Chang TP, 2011, APPL ENERG, V88, P272, DOI 10.1016/j.apenergy.2010.06.018. Chantrelle FP, 2011, APPL ENERG, V88, P1386, DOI 10.1016/j.apenergy.2010.10.002. Chavez-Arroyo R., 2012, EUR WIND EN C. Chen NY, 2014, IEEE T POWER SYST, V29, P656, DOI 10.1109/TPWRS.2013.2282366. Chong WT, 2013, APPL ENERG, V112, P601, DOI 10.1016/j.apenergy.2012.12.064. Chong WT, 2013, RENEW ENERG, V51, P388, DOI 10.1016/j.renene.2012.09.033. Chong WT, 2011, APPL ENERG, V88, P4067, DOI 10.1016/j.apenergy.2011.04.042. Christidis T, 2017, RENEW ENERG, V112, P93, DOI 10.1016/j.renene.2017.05.005. Cooney C, 2017, ENERGY SUSTAIN DEV, V36, P44, DOI 10.1016/j.esd.2016.11.001. Rocha PAC, 2012, APPL ENERG, V89, P395, DOI 10.1016/j.apenergy.2011.08.003. Coulibaly P, 2013, CAN WATER RESOUR J, V38, P159, DOI 10.1080/07011784.2013.787181. D'Souza C, 2014, ENERG POLICY, V74, P262, DOI 10.1016/j.enpol.2014.08.035. Dabar OA, 2019, ENERGY, V185, P884, DOI 10.1016/j.energy.2019.07.107. Dahirul Islam K., 2020, J ADV RES FLUID MECH, V74, P183, DOI 10.37934/arfmts.74.2.183195. DEBRUIN HAR, 1993, BOUND-LAY METEOROL, V63, P231, DOI 10.1007/BF00710461. Defforge CL, 2019, J WIND ENG IND AEROD, V189, P243, DOI 10.1016/j.jweia.2019.03.030. Deltenre Q, 2019, RES TOP WIND ENERG, V8, P71, DOI 10.1007/978-3-030-13531-7\_5. Dhakal R., 2020, FEASIBILITY STUDY DI. Dhunny AZ, 2017, RENEW ENERG, V101, P1, DOI 10.1016/j.renene.2016.08.032. Diwakar N., 2010, INT J EMERG TECHNOL, V1, P80. Doolan CJ, 2012, ACOUST AUST, V40, P7. Dresner S, 2006, ENERG POLICY, V34, P895, DOI 10.1016/j.enpol.2004.08.043. Du YX, 2017, BUILD ENVIRON, V117, P84, DOI 10.1016/j.buildenv.2017.03.001. Duran P., 2019, METEOROL Z. Ekechukwu OV, 2011, ENERG CONVERS MANAGE, V52, P564, DOI 10.1016/j.enconman.2010.07.031. Enevoldsen P, 2016, RENEW SUST ENERG REV, V53, P178, DOI 10.1016/j.rser.2015.08.041. Engl G, 2010, COMPUT-AIDED CHEM EN, V28, P451. Esen H, 2008, EXPERT SYST APPL, V35, P1940, DOI 10.1016/j.eswa.2007.08.081. Esen H, 2008, ENERG BUILDINGS, V40, P1074, DOI 10.1016/j.enbuild.2007.10.002. European Wind Energy Association EWEA, 2006, NO FUEL WIND POW FUE. Ezhiljenekkha GB, 2020, MATER TODAY-PROC, V24, P2137, DOI 10.1016/j.matpr.2020.03.670. Frick WF, 2017, BIOL CONSERV, V209, P172, DOI 10.1016/j.biocon.2017.02.023. Froese Michelle, 2018, WINDPOWER ENG DEV, V18. Frolic Kai, 2018, SHADOW FLICKER IMPAC. Gagliano A., 2012, SMART INNOVAT SYST T, P539, DOI DOI 10.1007/978-3-642-27509-8\_45. Gaskell G., 2003, EUROPEANS BIOTECHNOL. Giometto MG, 2017, ADV WATER RESOUR, V106, P154, DOI 10.1016/j.advwatres.2017.06.018. Gokcek M, 2009, APPL ENERG, V86, P2731, DOI 10.1016/j.apenergy.2009.03.025. Gross C, 2007, ENERG POLICY, V35, P2727, DOI 10.1016/j.enpol.2006.12.013. Hamada S, 2010, URBAN FOR URBAN GREE, V9, P15, DOI 10.1016/j.ufug.2009.10.002. Hamouda YA, 2012, RENEW SUST ENERG REV, V16, P3312, DOI 10.1016/j.rser.2012.02.058. Hsiao FB, 2013, ENERGIES, V6, P2784, DOI 10.3390/en6062784. Huijts NMA, 2007, ENERG POLICY, V35, P2780, DOI 10.1016/j.enpol.2006.12.007. Idriss AI, 2020, ENG SCI TECHNOL, V23, P65, DOI 10.1016/j.jestch.2019.06.004. Blanco MI, 2009, RENEW SUST ENERG REV, V13, P1372, DOI 10.1016/j.rser.2008.09.004. Ishugah TF, 2014, RENEW SUST ENERG REV, V37, P613, DOI 10.1016/j.rser.2014.05.053. Jia Vi Jin, 2020, E3S Web of Conferences, V186, DOI 10.1051/e3sconf/202018603003. Jobert A, 2007, ENERG POLICY, V35, P2751, DOI 10.1016/j.enpol.2006.12.005. Kalmikov A, 2010, WIND POWER RESOURCE. Karthikeya BR, 2016, RENEW ENERG, V87, P403, DOI 10.1016/j.renene.2015.10.010. Kent CW, 2017, BOUND-LAY METEOROL, V164, P183, DOI 10.1007/s10546-017-0248-z. Keyhani A, 2010, ENERGY, V35, P188, DOI 10.1016/j.energy.2009.09.009. Kim D, 2016, J WIND ENG IND AEROD, V158, P109, DOI 10.1016/j.jweia.2016.09.011. Kim HG, 2018, ATMOSPHERE-BASEL, V9, DOI 10.3390/atmos9020073. Kim HG, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8121019. Kumar NK, 2020, SUSTAIN CITIES SOC, V60, DOI 10.1016/j.scs.2020.102265. Kwon SD, 2010, APPL ENERG, V87, P856, DOI 10.1016/j.apenergy.2009.08.038. Lantz E, 2012, NRELCP6A2054526. Li D., 2010, 2010 AS PAC POW EN E, P1, DOI {[}DOI 10.1109/IPDPS.2010.5470463, DOI 10.1109/APPEEC.2010.5448223]. Li QS, 2016, APPL ENERG, V165, P777, DOI 10.1016/j.apenergy.2015.12.114. Li Z., 2020, BUILD ENVIRON. Liu CL, 2015, FLOW MEAS INSTRUM, V45, P415, DOI 10.1016/j.flowmeasinst.2015.07.011. Liu H, 2020, ENERG CONVERS MANAGE, V224, DOI 10.1016/j.enconman.2020.113324. Liu JL, 2016, BUILD ENVIRON, V96, P91, DOI 10.1016/j.buildenv.2015.11.007. Liu YX, 2019, IEEE T GEOSCI REMOTE, V57, P9756, DOI 10.1109/TGRS.2019.2929002. Loganathan B, 2019, ENRGY PROCED, V160, P812, DOI 10.1016/j.egypro.2019.02.153. LORENC AC, 1986, Q J ROY METEOR SOC, V112, P1177, DOI 10.1002/qj.49711247414. Lovatto M.L., 2015, 14 INT C WIND ENG, V16. Lowson M. V., 1992, Wind Engineering, V16, P126. Lu L, 2014, ENERG BUILDINGS, V68, P339, DOI 10.1016/j.enbuild.2013.09.029. Lucon OD, 2005, ENVIRON IMPACT ASSES, V25, P197, DOI 10.1016/j.eiar.2004.06.010. Lun IYF, 2000, RENEW ENERG, V20, P145, DOI 10.1016/S0960-1481(99)00103-2. Maatallah T, 2013, SUSTAIN CITIES SOC, V6, P1, DOI 10.1016/j.scs.2012.06.004. Maizi M, 2018, RENEW ENERG, V117, P242, DOI 10.1016/j.renene.2017.10.058. Maldonado-Correa J, 2021, WIND ENG, V45, P413, DOI 10.1177/0309524X19891672. Mancebo C.D.A., 2014, COMP STUDY 2 COMMERC. Mantzos L., 2006, EUROPEAN ENERGY TRAN. Martinez E, 2009, RENEW ENERG, V34, P667, DOI 10.1016/j.renene.2008.05.020. Mathew S, 2006, WIND ENERGY FUNDAMEN. Mazzeo D, 2021, ENERGY, V232, DOI 10.1016/j.energy.2021.120999. McCord B., 2019, HARVARD DATA SCI REV, V1. McLendon Russell, 2019, 6 WAYS PROTECT BATS. Mezidi A, 2020, ENERG SOURCE PART A, V42, P161, DOI 10.1080/15567036.2019.1587063. Micallef D, 2018, ENERGIES, V11, DOI 10.3390/en11092204. Milborrow D., 2010, WIND POWER, V15. Millon L, 2018, ECOL ENG, V112, P51, DOI 10.1016/j.ecoleng.2017.12.024. Millward-Hopkins JT, 2012, WIND ENERGY, V15, P225, DOI 10.1002/we.463. Mollasalehi E, 2013, ENERGIES, V6, P3669, DOI 10.3390/en6083669. Morales JM, 2012, IEEE T POWER SYST, V27, P1060, DOI 10.1109/TPWRS.2011.2177281. Mortensen N.G., 1997, EWEC C, P317. Mou B, 2017, ENG APPL COMP FLUID, V11, P293, DOI 10.1080/19942060.2017.1281845. Murthy KSR, 2014, 2014 6TH IEEE POWER INDIA INTERNATIONAL CONFERENCE (PIICON). Murthy K.S.R., 2014, 8 NATL POWER SYSTEMS, P1. Muskulus M., 2014, J OCEAN WIND ENERGY, V1, P12. Nayyar ZA, 2020, RENEW ENERG, V149, P66, DOI 10.1016/j.renene.2019.12.044. Ng E, 2011, LANDSCAPE URBAN PLAN, V101, P59, DOI 10.1016/j.landurbplan.2011.01.004. Nguyen L.T., 2017, THESIS U UTAH. Nikolic V, 2016, MECHATRONICS, V34, P78, DOI 10.1016/j.mechatronics.2015.04.007. Nor KM, 2014, RENEW ENERG, V62, P147, DOI 10.1016/j.renene.2013.07.001. Ohare, 1977, NOT MY BLOCK YOU DON. Oke T. R., 1978, Boundary layer climates.. Oyedepo SO, 2012, INT J ENERGY ENVIR E, V3, DOI 10.1186/2251-6832-3-7. Palaiologou P, 2011, COMPUT GEOSCI-UK, V37, P962, DOI 10.1016/j.cageo.2010.05.025. Palma JMLM, 2008, J WIND ENG IND AEROD, V96, P2308, DOI 10.1016/j.jweia.2008.03.012. Pamucar D, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9081315. Park H, 2013, IEEE T POWER SYST, V28, P2395, DOI 10.1109/TPWRS.2013.2251481. Park JH, 2016, ENERG BUILDINGS, V122, P202, DOI 10.1016/j.enbuild.2016.04.037. Petersen E.L., 1998, WIND ENERGY, V1, P55, DOI 10.1002/(SICI)1099-1824(199812)1:23.0.CO;2-R. Petkovic D., 2015, J CENT CATHEDRA BUS, V8, P11. Probst O, 2010, ENERGIES, V3, P1087, DOI 10.3390/en3061087. Ramenah H, 2016, RENEW ENERG, V91, P1, DOI 10.1016/j.renene.2015.11.019. Ricciardelli F, 2006, J WIND ENG IND AEROD, V94, P815, DOI 10.1016/j.jweia.2006.06.003. RICHARDS PJ, 1993, J WIND ENG IND AEROD, V46-7, P145, DOI 10.1016/0167-6105(93)90124-7. Saraswat SK, 2021, RENEW ENERG, V169, P865, DOI 10.1016/j.renene.2021.01.056. Scherhaufer P, 2017, ENERG POLICY, V109, P863, DOI 10.1016/j.enpol.2017.05.057. Schwartz S.S., WIND WILDLIFE RES M. Seguro JV, 2000, J WIND ENG IND AEROD, V85, P75, DOI 10.1016/S0167-6105(99)00122-1. Shao M, 2020, RENEW ENERG, V157, P377, DOI 10.1016/j.renene.2020.04.137. Shata ASA, 2008, RENEW ENERG, V33, P141, DOI 10.1016/j.renene.2007.06.001. Shepherd W., 2017, ELECT GENERATION USI. Sibley D., 2003, SIBLEY FIELD GUIDE B, P1. Simoes T., 2009, EWEC 2009. Simoes T, 2016, RENEW ENERG, V89, P598, DOI 10.1016/j.renene.2015.12.008. Sivakumar A., 2010, EUR TRANSP C, P11. Solyali D, 2016, RENEW SUST ENERG REV, V55, P180, DOI 10.1016/j.rser.2015.10.123. Sovacool BK, 2009, ENERG POLICY, V37, P2241, DOI 10.1016/j.enpol.2009.02.011. Spahic E, 2007, 2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, P615, DOI 10.1109/PCT.2007.4538387. Szumilas-Kowalczyk H, 2020, RENEW ENERG, V150, P550, DOI 10.1016/j.renene.2019.12.143. Tabrizi AB, 2014, RENEW ENERG, V67, P242, DOI 10.1016/j.renene.2013.11.033. Tamura Y, 2019, J WIND ENG IND AEROD, V192, P74, DOI 10.1016/j.jweia.2019.06.017. Tang XY, 2019, APPL ENERG, V238, P806, DOI 10.1016/j.apenergy.2019.01.129. Tao H, 2020, IEEE ACCESS, V8, P83347, DOI 10.1109/ACCESS.2020.2990439. Tasneem Z, 2020, DEV BUILT ENVIRON, V4, DOI 10.1016/j.dibe.2020.100033. Taylor J, 2013, RENEW ENERG, V55, P120, DOI 10.1016/j.renene.2012.11.031. Tegen S, 2010, NRELTP500052920. Thapar S, 2018, ENERG POLICY, V122, P622, DOI 10.1016/j.enpol.2018.08.004. Tominaga Y, 2015, BUILD ENVIRON, V84, P204, DOI 10.1016/j.buildenv.2014.11.012. Troen I., 2014, P 2014 EWEA C, V20. Ucar A, 2009, APPL ENERG, V86, P333, DOI 10.1016/j.apenergy.2008.05.001. van Kuik GAM, 2016, WIND ENERGY SCI, V1, P1, DOI 10.5194/wes-1-1-2016. VanUlden AP, 1996, BOUND-LAY METEOROL, V78, P39, DOI 10.1007/BF00122486. Veers PS, 2003, WIND ENERGY, V6, P245, DOI 10.1002/we.90. Verderame PM, 2010, IND ENG CHEM RES, V49, P3993, DOI 10.1021/ie902009k. Verkaik JW, 2000, J APPL METEOROL, V39, P1613, DOI 10.1175/1520-0450(2000)039<1613:EOTGMF>2.0.CO;2. Walker SL, 2011, ENERG BUILDINGS, V43, P1852, DOI 10.1016/j.enbuild.2011.03.032. Wang TG, 2001, J WIND ENG IND AEROD, V89, P873, DOI 10.1016/S0167-6105(01)00072-1. Weisser D, 2003, RENEW ENERG, V28, P1803, DOI 10.1016/S0960-1481(03)00016-8. Wever N, 2012, J GEOPHYS RES-ATMOS, V117, DOI 10.1029/2011JD017118. White LV, 2014, ENERGY SUSTAIN DEV, V21, P1, DOI 10.1016/j.esd.2014.04.003. Whiten A, 2013, ANIM BEHAV, V86, P213, DOI 10.1016/j.anbehav.2013.04.021. Wilhelmsson D., 2010, GREENING BLUE ENERGY. Wolsink M, 2006, T I BRIT GEOGR, V31, P85, DOI 10.1111/j.1475-5661.2006.00191.x. Wolsink M, 2000, RENEW ENERG, V21, P49, DOI 10.1016/S0960-1481(99)00130-5. Wolsink M, 2007, ENERG POLICY, V35, P2692, DOI 10.1016/j.enpol.2006.12.002. Wu J, 2016, CLIM DYNAM, V46, P847, DOI 10.1007/s00382-015-2616-z. Wustenhagen R, 2007, ENERG POLICY, V35, P2683, DOI 10.1016/j.enpol.2006.12.001. Xu XD, 2017, J WIND ENG IND AEROD, V166, P61, DOI 10.1016/j.jweia.2017.03.013. Yan BW, 2016, ENERG CONVERS MANAGE, V117, P351, DOI 10.1016/j.enconman.2016.02.076. Yang AS, 2016, APPL ENERG, V171, P213, DOI 10.1016/j.apenergy.2016.03.007. Yang J, 2019, URBAN CLIM, V28, DOI 10.1016/j.uclim.2019.100458. Yang L, 2020, ENERGY, V190, DOI 10.1016/j.energy.2019.116487. Yang Y, 2009, J WIND ENG IND AEROD, V97, P88, DOI 10.1016/j.jweia.2008.12.001. Yu Y, 2017, J WIND ENG IND AEROD, V167, P51, DOI 10.1016/j.jweia.2017.04.006. Zoellner J, 2008, ENERG POLICY, V36, P4136, DOI 10.1016/j.enpol.2008.06.026.}, Number-of-Cited-References = {212}, Times-Cited = {5}, Usage-Count-Last-180-days = {16}, Usage-Count-Since-2013 = {34}, Journal-ISO = {Energy Build.}, Doc-Delivery-Number = {YX4HX}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000754067600001}, DA = {2023-04-22}, } @article{ WOS:000644016800001, Author = {Severino, Alessandro and Curto, Salvatore and Barberi, Salvatore and Arena, Fabio and Pau, Giovanni}, Title = {Autonomous Vehicles: An Analysis Both on Their Distinctiveness and the Potential Impact on Urban Transport Systems}, Journal = {APPLIED SCIENCES-BASEL}, Year = {2021}, Volume = {11}, Number = {8}, Month = {APR}, Abstract = {Autonomous driving is a technological innovation that involves the use of Artificial Intelligence (AI) in the automotive area, representing the future of transport and whose applications will influence the concept of driving and many other features of modern society. Indeed, the introduction of Autonomous Vehicles (AVs) on the market, along with the development of related technologies, will have a potential impact not only on the automotive industry but also on urban transport systems. New mobility-related businesses will emerge, whereas existing ones will have to adapt to changes. There are various aspects that affect urban transport systems: in this work, we highlight how road markings, intersections, and pavement design upgradings have a key role for AVs operation. This work aims to describe how contemporary society will be influenced by Autonomous Vehicles' spread in regard to urban transport systems. A comprehensive analysis of the expected developments within urban transport systems is hereby presented, and some crucial issues concerning benefits and drawbacks are also discussed. From our studies, it emerges that the detection performed by vehicles is mainly affected by road markings characteristics, especially at intersections. Indeed, the need for a new cross-sections type arise, since vehicles wandering phenomena will be reduced due to AVs position-keeping systems.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Severino, A (Corresponding Author), Univ Catania, Dept Civil Engn \& Architecture, I-95123 Catania, Italy. Severino, Alessandro, Univ Catania, Dept Civil Engn \& Architecture, I-95123 Catania, Italy. Curto, Salvatore; Barberi, Salvatore; Arena, Fabio; Pau, Giovanni, Kore Univ Enna, Fac Engn \& Architecture, I-94100 Enna, Italy.}, DOI = {10.3390/app11083604}, Article-Number = {3604}, EISSN = {2076-3417}, Keywords = {autonomous vehicles; intelligent transportation system; road safety; urban transport system; artificial intelligence}, Research-Areas = {Chemistry; Engineering; Materials Science; Physics}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied}, Author-Email = {alessandro.severino@unict.it salvatore.curto@unikorestudent.it salvatore.barberi@unikore.it fabio.arena@unikore.it giovanni.pau@unikore.it}, Affiliations = {University of Catania; Universita Kore di ENNA}, ResearcherID-Numbers = {Pau, Giovanni/K-2944-2015 }, ORCID-Numbers = {Pau, Giovanni/0000-0002-5798-398X Severino, Alessandro/0000-0003-0688-5113 Arena, Fabio/0000-0002-6656-1797 Curto, Salvatore/0000-0003-2517-0711}, Cited-References = {{[}Anonymous], 2017, INT J PAVEMENT RES T, DOI DOI 10.1016/J.IJPRT.2017.07.002. Arena F, 2020, INFRASTRUCTURES-BASE, V5, DOI 10.3390/infrastructures5070053. Arvin R, 2020, J INTELL TRANSPORT S, V25, P170, DOI 10.1080/15472450.2020.1834392. Ceder A, 2021, INT J URBAN SCI, V25, P455, DOI 10.1080/12265934.2020.1799846. Bagloee SA, 2016, J MOD TRANSP, V24, P284, DOI 10.1007/s40534-016-0117-3. Berktas ES, 2020, J TRANSP ENG A-SYST, V146, DOI 10.1061/JTEPBS.0000297. Bosch PM, 2018, TRANSPORT POLICY, V64, P76, DOI 10.1016/j.tranpol.2017.09.005. Burghardt T. E., 2020, TRANSP RES PROCEDIA, V48, P3622, DOI {[}10.1016/J.TRPRO.2020.08.089, DOI 10.1016/J.TRPRO.2020.08.089]. Cao D., 2019, 190501150 ARXIV. Chen F, 2019, TRANSPORT RES C-EMER, V103, P17, DOI 10.1016/j.trc.2019.04.001. Choi H.H., 2019, P 2019 INT C INF NET. Chowdhury M., 2019, NATL ACAD ENG, V49, P46. Dadashzadeh N, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226326. Dias C, 2020, IEEE ACCESS, V8, P109821, DOI 10.1109/ACCESS.2020.3002020. Duarte F, 2018, J URBAN TECHNOL, V25, P3, DOI 10.1080/10630732.2018.1493883. Favaro FM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184952. FLASH T, 1985, J NEUROSCI, V5, P1688, DOI 10.1523/jneurosci.05-07-01688.1985. Fujimura K., 2018, P 2018 IEEE INT C RO. Golda IJ, 2017, J VIBROENG, V19, P5627, DOI 10.21595/jve.2017.19275. Gungor OE, 2022, INT J PAVEMENT ENG, V23, P121, DOI 10.1080/10298436.2020.1735636. Khan SK, 2020, ACCIDENT ANAL PREV, V148, DOI 10.1016/j.aap.2020.105837. Klodawski M., 2014, ARCH TRANSPORT, V31, P23, DOI {[}10.5604/08669546.1146982, DOI 10.5604/08669546.1146982]. Le M.H., 2019, P 2019 INT C SYST SC. Levin MW, 2017, TRANSPORT RES C-EMER, V85, P528, DOI 10.1016/j.trc.2017.09.025. Li YW, 2018, ENERGIES, V11, DOI 10.3390/en11051277. Liu TY, 2021, IEEE ROBOT AUTOM MAG, V28, P48, DOI 10.1109/MRA.2020.3045040. Mariani R, 2018, INT RELIAB PHY SYM. Mouratidis K, 2021, TRANSPORT RES D-TR E, V92, DOI 10.1016/j.trd.2021.102716. Nedosekin G., 2019, P 24 C OP INN ASS FR. Olayode O. I., 2020, Procedia CIRP, V91, P194, DOI 10.1016/j.procir.2020.02.167. Prabakaran A., 2020, INT J SCI RES, V9, P1579, DOI {[}10.21275/ART20204360, DOI 10.21275/ART20204360]. Shrivastava A., 2019, WORKSH AUT SYST DES, DOI {[}10.4230/OASIcs.ASD.2019.7, DOI 10.4230/OASICS.ASD.2019.7]. Singh P., 2020, J TRANSP TECHNOL, V10, P183, DOI {[}10.4236/jtts.2020.103012, DOI 10.4236/JTTS.2020.103012]. Steyn WJV, 2019, J TRAFFIC TRANSP ENG, V6, P273, DOI 10.1016/j.jtte.2019.05.001. Sun S., 2020, TRANSPORTATION RES I, DOI {[}10.1016/j.trip.2020.100275, DOI 10.1016/J.TRIP.2020.100275]. Swiderski A, 2018, EKSPLOAT NIEZAWODN, V20, P292, DOI 10.17531/ein.2018.2.16. Taeihagh A, 2019, TRANSPORT REV, V39, P103, DOI 10.1080/01441647.2018.1494640. Tesoriere G, 2019, AIP CONF PROC, V2186, DOI 10.1063/1.5138072. Hoang TM, 2019, IEEE ACCESS, V7, P109817, DOI 10.1109/ACCESS.2019.2933598. Toapanta A, 2021, CIENC ING, V42, P43. Trubia S, 2020, INFRASTRUCTURES-BASE, V5, DOI 10.3390/infrastructures5100088. Trubia S, 2020, INFRASTRUCTURES-BASE, V5, DOI 10.3390/infrastructures5120107. Trubia S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020850. Wolfermann A., 2011, P 3 INT C ROAD SAF S, P1, DOI DOI 10.1109/AERO.2011.5747243. Wong A, 2015, IEEE ACCESS, V3, P469, DOI 10.1109/ACCESS.2015.2425304. Yudin DA, 2019, OPT MEMORY NEURAL, V28, P283, DOI 10.3103/S1060992X19040118. Zhao JX, 2019, TRANSPORT RES C-EMER, V100, P68, DOI 10.1016/j.trc.2019.01.007. Zhen Kang, 2020, Journal of Physics: Conference Series, V1453, DOI 10.1088/1742-6596/1453/1/012141.}, Number-of-Cited-References = {48}, Times-Cited = {16}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {40}, Journal-ISO = {Appl. Sci.-Basel}, Doc-Delivery-Number = {RS8IN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000644016800001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000791965300001, Author = {Kaginalkar, Akshara and Kumar, Shamita and Gargava, Prashant and Kharkar, Neelesh and Niyogi, Dev}, Title = {SmartAirQ: A Big Data Governance Framework for Urban Air Quality Management in Smart Cities}, Journal = {FRONTIERS IN ENVIRONMENTAL SCIENCE}, Year = {2022}, Volume = {10}, Month = {APR 8}, Abstract = {Rapid urbanization across the world has put an enormous burden on our environment. Cities from developing countries, in particular, are experiencing high air pollution levels. To address this challenge, the new WHO global air quality guidelines and various nations are mandating cities to implement clean air measures. However, these implementations are largely hindered by limited observations, siloed city operations, absence of standard processes, inadequate outreach, and absence of collaborative urban air quality management (UAQM) governance. The world is experiencing transformative changes in the way we live. The 4th industrial revolution technologies of artificial intelligence, Internet of Things, big data, and cloud computing bridge gaps between physical, natural, and personal entities. Globally, smart cities are being promulgated on the premise that technologies and data aid in improving urban services. However, in many instances, the smart city programs and UAQM services may not be aligned, thereby constraining the cumulative advantage in building urban resilience. Considering the potential of these technologies as enablers of environmental sustainability, a conceptual urban computing framework ``SmartAirQ{''} for UAQM is designed. This interdisciplinary study outlines the SmartAirQ components: 1) data acquisition, 2) communication and aggregation, 3) data processing and management, 4) intelligence, 5) application service, 6) high-performance computing- (HPC-) cloud, and 7) security. The framework has integrated science cloud and urban services aiding in translating scientific data into operations. It is a step toward collaborative, data-driven, and sustainable smart cities.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Kaginalkar, A (Corresponding Author), Ctr Dev Adv Comp, Pune, India. Kaginalkar, A (Corresponding Author), BharatiV idyapeeth Deemed Univ, Inst Environm Educ \& Res, Pune, India. Kaginalkar, Akshara; Kharkar, Neelesh, Ctr Dev Adv Comp, Pune, India. Kaginalkar, Akshara; Kumar, Shamita, BharatiV idyapeeth Deemed Univ, Inst Environm Educ \& Res, Pune, India. Gargava, Prashant, Cent Pollut Control Board, New Delhi, India. Niyogi, Dev, Indian Inst Technol Roorkee, Ctr Excellence Disaster Mitigat \& Management, Roorkee, India. Niyogi, Dev, Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX USA. Niyogi, Dev, Univ Texas Austin, Cockrell Sch Engn, Dept Civil Architectural \& Environm Engn, Austin, TX USA.}, DOI = {10.3389/fenvs.2022.785129}, Article-Number = {785129}, EISSN = {2296-665X}, Keywords = {urban computing; frontier technologies; data governance; AI; cloud computing; machine learning; smart cities; air pollution}, Keywords-Plus = {STREET VIEW CARS; ARTIFICIAL-INTELLIGENCE; PARTICULATE MATTER; DATA ANALYTICS; SOCIAL MEDIA; LAND-USE; EMISSIONS INVENTORY; LEARNING APPROACH; CITIZEN SCIENCE; NEURAL-NETWORK}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {akshara@cdac.in}, Affiliations = {Centre for Development of Advanced Computing (C-DAC); Central Pollution Control Board Delhi; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Roorkee; University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin}, ResearcherID-Numbers = {Niyogi, Dev/H-6326-2013 }, ORCID-Numbers = {Niyogi, Dev/0000-0002-1848-5080 /0000-0001-7807-2280}, Cited-References = {Achakulwisut P, 2019, LANCET PLANET HEALTH, V3, pE166, DOI 10.1016/S2542-5196(19)30046-4. Ahlgren B, 2016, IEEE INTERNET COMPUT, V20, P52, DOI 10.1109/MIC.2016.124. AirNow, HOM PAG AIRNOW GOV. AirQ+, AIRQ SOFTW TOOL HLTH. Albino V, 2015, J URBAN TECHNOL, V22, P3, DOI 10.1080/10630732.2014.942092. Alexeeff SE, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0382-1. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Alvear O, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020460. Ameer S, 2019, IEEE ACCESS, V7, P128325, DOI 10.1109/ACCESS.2019.2925082. Anenberg SC, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48057-9. Ang LM, 2016, BIG DATA RES, V4, P1, DOI 10.1016/j.bdr.2015.12.003. {[}Anonymous], 2016, EUROPEAN HDB CROWDSO, DOI {[}10.5334/bax.aa, DOI 10.5334/BAX.AA]. {[}Anonymous], 2015, QUALITATIVE RES STAR. {[}Anonymous], 2011, P 12 INT DIG GOV RES, DOI DOI 10.1145/2037556.2037602. Apte JS, 2017, ENVIRON SCI TECHNOL, V51, P6999, DOI 10.1021/acs.est.7b00891. Asgari Marjan, 2017, P 2017 INT C CLOUD B, P89. Atrouche A., 2015, LNCS, V9170, P683, DOI {[}10.1007/978-3-319-20916-6\_63, DOI 10.1007/978-3-319-20916-6\_63]. Guedes ALA, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093121. Badach J, 2020, BUILD ENVIRON, V174, DOI 10.1016/j.buildenv.2020.106743. Badii C, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19214798. Baklanov A, 2018, URBAN CLIM, V23, P330, DOI 10.1016/j.uclim.2017.05.004. Baklanov A., 2020, GLOB TRANSIT, V2, P261, DOI {[}10.1016/j.glt.2020.11.001, DOI 10.1016/J.GLT.2020.11.001]. Baklanov A, 2020, URBAN CLIM, V32, DOI 10.1016/j.uclim.2020.100610. Baklanov A, 2016, ATMOS ENVIRON, V126, P235, DOI 10.1016/j.atmosenv.2015.11.059. Ballejos LC, 2011, REQUIR ENG, V16, P281, DOI 10.1007/s00766-011-0123-2. Baskarada S, 2014, QUAL REP, V19. Behera SN, 2011, WATER AIR SOIL POLL, V218, P423, DOI 10.1007/s11270-010-0656-x. Beig G., 2015, WMO GAW, V217, P51. Bellinger C, 2017, BMC PUBLIC HEALTH, V17, DOI 10.1186/s12889-017-4914-3. Benedict S, 2019, IEEE I C ADV NETW TE. Bibri Simon Elias, 2020, Energy Informatics, V3, DOI {[}10.1186/s42162-020-00130-8, 10.1186/s42162-020-00108-6]. Bibri SE, 2019, SMART CITIES-BASEL, V2, P179, DOI 10.3390/smartcities2020013. Braithwaite I, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP4595. Capineri C., 2016, EUROPEAN HDB CROWDSO, P1, DOI {[}10.5334/bax.a, DOI 10.5334/BAX.A]. Carslaw DC, 2012, ENVIRON MODELL SOFTW, V27-28, P52, DOI 10.1016/j.envsoft.2011.09.008. Castell N, 2018, ENVIRON RES, V165, P410, DOI 10.1016/j.envres.2017.10.019. Castelli M, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/8049504. Charitidis P, 2019, 2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE WORKSHOPS (WI 2019 COMPANION), P215, DOI 10.1145/3358695.3361106. Che WW, 2020, SUSTAIN CITIES SOC, V54, DOI 10.1016/j.scs.2019.101986. Ching J, 2018, B AM METEOROL SOC, V99, P1907, DOI 10.1175/BAMS-D-16-0236.1. Cho D, 2020, EARTH SPACE SCI, V7, DOI 10.1029/2019EA000740. Chu HJ, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-79064-w. CII Dalberg, 2021, AIR POLLUTION ITS IM. Cimorelli AJ, 2005, J APPL METEOROL, V44, P682, DOI 10.1175/JAM2227.1. Constant N., 2018, URBAN POLLUTION, P303, DOI {[}10.1002/9781119260493.ch23, DOI 10.1002/9781119260493.CH23]. CPCB, 2019, REP NAT CLEAR AIR PR. Creutzig F, 2019, GLOB SUSTAIN, V2, DOI {[}10.1017/sus.2018.15, 10.1017/sus.2018.16]. Cui L, 2018, IEEE ACCESS, V6, P46134, DOI 10.1109/ACCESS.2018.2853985. Dalvi W, 2006, ATMOS ENVIRON, V40, P2995, DOI 10.1016/j.atmosenv.2006.01.013. Dey S, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12233872. Dirks KN, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122802. Donaire-Gonzalez D, 2016, JMIR MHEALTH UHEALTH, V4, DOI 10.2196/mhealth.5771. Dwevedi R, 2018, RESOURCES-BASEL, V7, DOI 10.3390/resources7040064. Elbir T, 2010, ATMOS ENVIRON, V44, P441, DOI 10.1016/j.atmosenv.2009.11.008. Engel-Cox JA, 2004, J AIR WASTE MANAGE, V54, P1360, DOI 10.1080/10473289.2004.10471005. English PB, 2018, ANNU REV PUBL HEALTH, V39, P335, DOI 10.1146/annurev-publhealth-040617-013702. EPA, 2015, CIT SCI OPP MON AIR. Fazziki A.E., 2015, CAISE IND TRACK. Fotopoulou E, 2016, IEEE ACCESS, V4, P149, DOI 10.1109/ACCESS.2015.2513439. Fragomeni MBA, 2020, URBAN CLIM, V33, DOI 10.1016/j.uclim.2020.100653. Gargava P, 2016, AIR QUAL ATMOS HLTH, V9, P471, DOI 10.1007/s11869-015-0353-4. Gately CK, 2017, ENVIRON POLLUT, V229, P496, DOI 10.1016/j.envpol.2017.05.091. Geng GN, 2021, ENVIRON SCI TECHNOL, V55, P12106, DOI 10.1021/acs.est.1c01863. Gharaibeh A, 2017, IEEE COMMUN SURV TUT, V19, P2456, DOI 10.1109/COMST.2017.2736886. Ghermandi A, 2019, GLOBAL ENVIRON CHANG, V55, P36, DOI 10.1016/j.gloenvcha.2019.02.003. Given L. M., 2008, SAGE ENCY QUALITATIV, DOI DOI 10.4135/9781412963909. Gkatzoflias D, 2013, COMPUT GEOSCI-UK, V52, P21, DOI 10.1016/j.cageo.2012.10.011. Gonzalez JE, 2021, URBAN CLIM, V38, DOI 10.1016/j.uclim.2021.100858. GPAI, 2020, DAT GOV WORK GROUP F. Grell GA, 2005, ATMOS ENVIRON, V39, P6957, DOI 10.1016/j.atmosenv.2005.04.027. Gulia S, 2017, TRANSPORT RES D-TR E, V56, P141, DOI 10.1016/j.trd.2017.08.005. Gulia S, 2015, ATMOS POLLUT RES, V6, P286, DOI 10.5094/APR.2015.033. Gupta P, 2006, ATMOS ENVIRON, V40, P5880, DOI 10.1016/j.atmosenv.2006.03.016. Guttikunda SK, 2013, ATMOS ENVIRON, V67, P101, DOI 10.1016/j.atmosenv.2012.10.040. Habibzadeh H, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3309545. Hagan DH, 2019, ENVIRON SCI TECH LET, V6, P467, DOI 10.1021/acs.estlett.9b00393. Haghi M, 2018, IEEE T BIOMED CIRC S, V12, P1144, DOI 10.1109/TBCAS.2018.2840347. Harpham QK, 2019, ENVIRON MODELL SOFTW, V122, DOI 10.1016/j.envsoft.2019.104549. Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002. Haupt SE, 2021, PHILOS T R SOC A, V379, DOI 10.1098/rsta.2020.0091. Hu K., P P MLSDA 2014 2 WOR, P48. Huang Y, 2018, IEEE ACCESS, V6, P78678, DOI 10.1109/ACCESS.2018.2885142. India Smart City, 2015, SMART CIT MISS STAT. India State Level Dis Burden, 2019, LANCET PLANET HEALTH, V3, pE26, DOI 10.1016/S2542-5196(18)30261-4. Ismagilova E, 2022, INFORM SYST FRONT, V24, P393, DOI 10.1007/s10796-020-10044-1. ITU, 2015, ICT4SDG ITU. ITU, 2020, FRONT TECHN PROT ENV. Jena C, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-83467-8. Jensen D., 2019, CASE DIGITAL ECOSYST, DOI {[}10.13140/RG.2.2.10387.73764., DOI 10.13140/RG.2.2.10387.73764, 10.13140/RG.2.2.10387.73764]. Jiang JY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2627. Jiang W, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141185. Johansson L, 2015, ENVIRON MODELL SOFTW, V64, P143, DOI 10.1016/j.envsoft.2014.11.021. Kaginalkar A, 2022, B AM METEOROL SOC, V103, pE54, DOI 10.1175/BAMS-D-20-0279.1. Kaginalkar A, 2021, URBAN CLIM, V39, DOI 10.1016/j.uclim.2021.100972. Katoto PDMC, 2021, ENVIRON HEALTH-GLOB, V20, DOI 10.1186/s12940-021-00714-1. Kerins P., 2020, SPATIAL CHARACTERIZA. Khan A, 2021, EARTH INTERACT, V25, P57, DOI 10.1175/EI-D-20-0017.1. Khan Z, 2015, J CLOUD COMPUT-ADV S, V4, DOI 10.1186/s13677-015-0026-8. Kindberg T, 2007, IEEE PERVAS COMPUT, V6, P18, DOI 10.1109/MPRV.2007.57. Klein T, 2012, AMBIO, V41, P851, DOI 10.1007/s13280-012-0288-z. Komninos N., 2015, J SMART CITIES, V1, P1, DOI DOI 10.18063/JSC.2015.01.001. Kosmidis E, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7050187. Kotsev A, 2018, GEOSCIENCES, V8, DOI 10.3390/geosciences8060221. Kulkarni SH, 2020, ENVIRON SCI TECHNOL, V54, P4790, DOI 10.1021/acs.est.0c00329. Kurinji S.L., 2020, MANAGING INDIAS AIR. Landrigan PJ, 2018, LANCET, V391, P462, DOI 10.1016/S0140-6736(17)32345-0. Laniak GF, 2013, ENVIRON MODELL SOFTW, V39, P3, DOI 10.1016/j.envsoft.2012.09.006. Lau BPL, 2019, INFORM FUSION, V52, P357, DOI 10.1016/j.inffus.2019.05.004. Lelieveld J, 2020, CARDIOVASC RES, V116, P1910, DOI 10.1093/cvr/cvaa025. Lepenies R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073973. Leung Y, 2018, INT J GEOGR INF SCI, V32, P1787, DOI 10.1080/13658816.2018.1460752. Li HD, 2020, ATMOS RES, V241, DOI 10.1016/j.atmosres.2020.104957. Li TW, 2017, GEOPHYS RES LETT, V44, P11985, DOI 10.1002/2017GL075710. Li WW, 2020, INT J GEOGR INF SCI, V34, P311, DOI 10.1080/13658816.2019.1673397. Lim C, 2018, CITIES, V82, P86, DOI 10.1016/j.cities.2018.04.011. Liu B, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-82871-4. Liu XF, 2017, INT WORKSHOP DATABAS, P27, DOI {[}10.1109/DEXA.2017.22, 10.1145/3127502.3127518]. LondonAir, LOND AIR QUAL NETW A. Lv ZH, 2018, FUTURE GENER COMP SY, V81, P443, DOI 10.1016/j.future.2017.08.047. Lytras MD, 2020, IEEE ACCESS, V8, P72340, DOI 10.1109/ACCESS.2020.2988125. Mabkhot MM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13052560. Ma JH, 2020, AEROSOL AIR QUAL RES, V20, P128, DOI 10.4209/aaqr.2019.08.0408. Maag B, 2018, IEEE INTERNET THINGS, V5, P4857, DOI 10.1109/JIOT.2018.2853660. Mahajan S, 2020, SUSTAIN CITIES SOC, V52, DOI 10.1016/j.scs.2019.101800. Majumdar S, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102500. Martin RV, 2008, ATMOS ENVIRON, V42, P7823, DOI 10.1016/j.atmosenv.2008.07.018. Masiol M, 2018, ENVIRON RES, V167, P7, DOI 10.1016/j.envres.2018.06.052. McGovern A, 2017, B AM METEOROL SOC, V98, P2073, DOI 10.1175/BAMS-D-16-0123.1. Michalakes J., 2020, BOOK PARALLEL ALGORI, P297, DOI {[}DOI 10.1007/978-3-030-43736-7\_10, 10.1007/978-3-030-43736-7\_10]. Mircea M., 2020, EUROPEAN GUIDE AIR P. Molina LT, 2019, ATMOSPHERE-BASEL, V10, DOI 10.3390/atmos10090512. Molthan AL, 2015, B AM METEOROL SOC, V96, DOI 10.1175/BAMS-D-14-00013.1. Mondschein J, 2021, SUSTAIN CITIES SOC, V67, DOI 10.1016/j.scs.2021.102730. Morawska L, 2018, ENVIRON INT, V116, P286, DOI 10.1016/j.envint.2018.04.018. Nyhan MM, 2019, J EXPO SCI ENV EPID, V29, P238, DOI 10.1038/s41370-018-0038-9. Octaviano C., 2020, DATA CLIMATE ACTION. Oke T. R., 2017, URBAN CLIMATES, DOI {[}10.1017/9781139016476, DOI 10.1017/9781139016476]. Pandey A, 2021, LANCET PLANET HEALTH, V5, pE25, DOI 10.1016/S2542-5196(20)30298-9. Parisar, 2020, CLEAR HAZ. Paskaleva K, 2017, INFORMATICS-BASEL, V4, DOI 10.3390/informatics4040041. Piedrahita R, 2014, ATMOS MEAS TECH, V7, P3325, DOI 10.5194/amt-7-3325-2014. Pinder RW, 2019, ATMOS ENVIRON, V215, DOI 10.1016/j.atmosenv.2019.06.032. Pipalatkar P, 2014, AEROSOL AIR QUAL RES, V14, P1089, DOI 10.4209/aaqr.2013.04.0130. Ramacher MOP, 2021, ATMOSPHERE-BASEL, V12, DOI 10.3390/atmos12111404. Ramos F, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082507. Randhawa Aman, 2017, International Journal of Sustainable Built Environment, V6, P701, DOI 10.1016/j.ijsbe.2017.08.002. Ranscombe P, 2019, LANCET RESP MED, V7, P567, DOI 10.1016/S2213-2600(19)30151-1. Rathore MM, 2018, SUSTAIN CITIES SOC, V40, P600, DOI 10.1016/j.scs.2017.12.022. Ravi D, 2017, IEEE J BIOMED HEALTH, V21, P56, DOI 10.1109/JBHI.2016.2633287. Reed MS, 2009, J ENVIRON MANAGE, V90, P1933, DOI 10.1016/j.jenvman.2009.01.001. Rivas I, 2020, ENVIRON INT, V135, DOI 10.1016/j.envint.2019.105345. Rodriguez MC, 2016, RENEW SUST ENERG REV, V53, P1, DOI 10.1016/j.rser.2015.07.190. Sahu R, 2021, ATMOS MEAS TECH, V14, P37, DOI 10.5194/amt-14-37-2021. Santiago JL, 2017, SCI TOTAL ENVIRON, V576, P46, DOI 10.1016/j.scitotenv.2016.09.234. Saraswat I., 2017, REMOTE SENSING APPL, V8, P251, DOI {[}DOI 10.1016/J.RSASE.2017.10.006, 10.1016/j.rsase.2017.10.006.]. Schneider R, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12223803. Sebestyen V, 2021, FRONT ENV SCI-SWITZ, V9, DOI 10.3389/fenvs.2021.619092. Sekayi D, 2017, QUAL REP, V22, P2755. Sentinel-5P, SENT 5P TROPOMI US G. Shi Y, 2019, LANDSCAPE URBAN PLAN, V189, P15, DOI 10.1016/j.landurbplan.2019.04.004. Silva BN, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18092994. Simmhan Yogesh, 2019, 2019 15th International Conference on eScience (eScience). Proceedings, P57, DOI 10.1109/eScience.2019.00014. Skjetne E., 2017, J ENV PROT, V08, P1372, DOI {[}10.4236/jep.2017.811084, DOI 10.4236/JEP.2017.811084]. Smith RB, 2017, BMJ-BRIT MED J, V359, DOI 10.1136/bmj.j5299. Smith RM, 2019, J URBAN AFF, V41, P518, DOI 10.1080/07352166.2018.1468221. Steuri B, 2020, URBAN CLIM, V32, DOI 10.1016/j.uclim.2020.100630. Sun W, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11010042. Syed AS, 2021, SMART CITIES-BASEL, V4, P429, DOI 10.3390/smartcities4020024. Toma C, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19153401. UN, 2018, WORLD URB PROSP 2018. UNEP, 2021, MEAS PROGR ENV SDGS. Upadhyay N, 2017, PROCEDIA COMPUT SCI, V108, P2542, DOI 10.1016/j.procs.2017.05.017. USEPA, 2016, ATM MOD EV TOOL. USEPA, 2014, ENV BEN MAPP AN PROG. van der Schaaf H, 2015, LECT NOTES COMPUT SC, V9001, P62, DOI 10.1007/978-3-319-16546-2\_6. van Zoest V, 2020, INT J GEOGR INF SCI, V34, P851, DOI 10.1080/13658816.2019.1667501. Verma S., 2021, TRANSPARENCY INDEX R. Vincent K, 2018, CLIM SERV, V12, P48, DOI 10.1016/j.cliser.2018.11.001. Viqueira JRR, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10030856. Wang JL, 2019, GEOSCI MODEL DEV, V12, P4261, DOI 10.5194/gmd-12-4261-2019. Wang YD, 2017, COMPUT ENVIRON URBAN, V66, P110, DOI 10.1016/j.compenvurbsys.2017.07.002. WCCD, 2021, WORLD COUNC CIT DAT. WHO, 2018, BURD DIS HOUS POLL 2. WHO, 2021, NEW WHO GLOB AIR QUA. Wiedinmyer C, 2011, GEOSCI MODEL DEV, V4, P625, DOI 10.5194/gmd-4-625-2011. Wilkinson Mark D, 2016, Sci Data, V3, P160018, DOI 10.1038/sdata.2016.18. Wu JS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142449. Wu Yun-Chun, 2015, Alzheimers Dement (Amst), V1, P220, DOI 10.1016/j.dadm.2014.11.015. Xu M, 2021, ATMOS ENVIRON, V248, DOI 10.1016/j.atmosenv.2020.118022. Yan LX, 2019, CITIES, V91, P116, DOI 10.1016/j.cities.2018.11.011. Yarza S, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11020122. Santana EFZ, 2018, ACM COMPUT SURV, V50, DOI 10.1145/3124391. Zanella A, 2014, IEEE INTERNET THINGS, V1, P22, DOI 10.1109/JIOT.2014.2306328. Zheng SQ, 2019, NAT HUM BEHAV, V3, P237, DOI 10.1038/s41562-018-0521-2. Zheng Y, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2267, DOI 10.1145/2783258.2788573. Zimmerman N, 2018, ATMOS MEAS TECH, V11, P291, DOI 10.5194/amt-11-291-2018.}, Number-of-Cited-References = {196}, Times-Cited = {3}, Usage-Count-Last-180-days = {31}, Usage-Count-Since-2013 = {55}, Journal-ISO = {Front. Environ. Sci.}, Doc-Delivery-Number = {1A7XS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000791965300001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000909346600001, Author = {Chitwatkulsiri, Detchphol and Miyamoto, Hitoshi}, Title = {Real-Time Urban Flood Forecasting Systems for Southeast Asia-A Review of Present Modelling and Its Future Prospects}, Journal = {WATER}, Year = {2023}, Volume = {15}, Number = {1}, Month = {JAN}, Abstract = {Many urban areas in tropical Southeast Asia, e.g., Bangkok in Thailand, have recently been experiencing unprecedentedly intense flash floods due to climate change. The rapid flood inundation has caused extremely severe damage to urban residents and social infrastructures. In addition, urban Southeast Asia usually has inadequate capacities in drainage systems, complicated land use patterns, and a large vulnerable population in limited urban areas. To reduce the urban flood risk and enhance the resilience of vulnerable urban communities, it has been of essential importance to develop real-time urban flood forecasting systems for flood disaster prevention authorities and the urban public. This paper reviewed the state-of-the-art models of real-time forecasting systems for urban flash floods. The real-time system basically consists of the following subsystems, i.e., rainfall forecasting, drainage system modelling, and inundation area mapping. This paper summarized the recent radar data utilization methods for rainfall forecasting, physical-process-based hydraulic models for flood inundation prediction, and data-driven artificial intelligence (AI) models for the real-time forecasting system. This paper also dealt with available technologies for modelling, e.g., digital surface models (DSMs) for the finer urban terrain of drainage systems. The review indicated that an obstacle to using process-based hydraulic models was the limited computational resources and shorter lead time for real-time forecasting in many urban areas in tropical Southeast Asia. The review further discussed the prospects of data-driven AI models for real-time forecasting systems.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Chitwatkulsiri, D (Corresponding Author), Shibaura Inst Technol, Dept Civil Engn, 3-7-5 Toyosu,Koto Ku, Tokyo 1358548, Japan. Chitwatkulsiri, Detchphol; Miyamoto, Hitoshi, Shibaura Inst Technol, Dept Civil Engn, 3-7-5 Toyosu,Koto Ku, Tokyo 1358548, Japan.}, DOI = {10.3390/w15010178}, Article-Number = {178}, EISSN = {2073-4441}, Keywords = {urban floods; real-time forecasting; methodology; physical-process-based models; artificial-intelligence-based models; regional implementation}, Keywords-Plus = {SPATIAL-RESOLUTION; DRAINAGE SYSTEMS; TIPPING-BUCKET; RADAR; PRECIPITATION; INUNDATION; GAUGE; SCALE; ROUGHNESS; IDENTIFICATION}, Research-Areas = {Environmental Sciences \& Ecology; Water Resources}, Web-of-Science-Categories = {Environmental Sciences; Water Resources}, Author-Email = {na20109@shibaura-it.ac.jp}, Affiliations = {Shibaura Institute of Technology}, ORCID-Numbers = {Miyamoto, Hitoshi/0000-0003-3368-5715}, Cited-References = {Abou Rjeily Y, 2017, WATER SCI TECHNOL, V76, P2401, DOI 10.2166/wst.2017.409. Akoh R, 2017, NAT HAZARD EARTH SYS, V17, P1871, DOI 10.5194/nhess-17-1871-2017. Ali AM, 2015, HYDROL EARTH SYST SC, V19, P631, DOI 10.5194/hess-19-631-2015. Altenau EH, 2017, WATER RESOUR RES, V53, P1683, DOI 10.1002/2016WR019396. Anni AH, 2020, J HYDROL, V588, DOI 10.1016/j.jhydrol.2020.125028. Annis A, 2020, WATER-SUI, V12, DOI 10.3390/w12061717. Arrighi C, 2019, J FLOOD RISK MANAG, V12, DOI 10.1111/jfr3.12530. Avila L, 2017, WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2017: WATER, WASTEWATER, AND STORMWATER; URBAN WATERSHED MANAGEMENT; AND MUNICIPAL WATER INFRASTRUCTURE, P372. Ba M, 2017, WEATHER FORECAST, V32, P1477, DOI 10.1175/WAF-D-16-0173.1. bangkok, DEP DRAINAGE SEWERAG. Bates PD, 2022, ANNU REV FLUID MECH, V54, P287, DOI 10.1146/annurev-fluid-030121-113138. Bates PD, 2010, J HYDROL, V387, P33, DOI 10.1016/j.jhydrol.2010.03.027. Bedient PB, 2003, J HYDROL ENG, V8, P308, DOI 10.1061/(ASCE)1084-0699(2003)8:6(308). Ben-Daoud A., 2022, ENV CHALLENGES, V6, DOI {[}DOI 10.1016/J.ENVC.2021.100403, 10.1016/j.envc.2021.100403]. Berkhahn S, 2019, J HYDROL, V575, P743, DOI 10.1016/j.jhydrol.2019.05.066. Bermudez M, 2018, WATER RESOUR MANAG, V32, P2801, DOI 10.1007/s11269-018-1959-8. Bermudez M, 2018, NAT HAZARDS, V92, P1633, DOI 10.1007/s11069-018-3270-7. Birkinshaw SJ, 2021, J HYDROL, V594, DOI 10.1016/j.jhydrol.2020.125884. Bliznak V, 2017, ATMOS RES, V184, P24, DOI 10.1016/j.atmosres.2016.10.003. Borga M, 2011, ENVIRON SCI POLICY, V14, P834, DOI 10.1016/j.envsci.2011.05.017. Bulti DT, 2020, MODEL EARTH SYST ENV, V6, P1293, DOI 10.1007/s40808-020-00803-z. Burger G, 2014, ENVIRON MODELL SOFTW, V53, P27, DOI 10.1016/j.envsoft.2013.11.002. Cao XJ, 2020, WATER RESOUR RES, V56, DOI 10.1029/2019WR025468. Chang F.J., 2019, FLOOD FORECASTING US, DOI DOI 10.3390/BOOKS978-3-03897-549-6. Chaudhary S, 2021, J HYDROL, V603, DOI 10.1016/j.jhydrol.2021.126951. Chen AS, 2012, J HYDROL, V470, P1, DOI 10.1016/j.jhydrol.2012.06.022. Chitwatkulsiri D, 2022, WATER-SUI, V14, DOI 10.3390/w14101641. Chu HB, 2020, ENVIRON MODELL SOFTW, V124, DOI 10.1016/j.envsoft.2019.104587. Craninx M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105651. David A, 2021, WATER-SUI, V13, DOI 10.3390/w13172346. de Almeida GAM, 2018, J FLOOD RISK MANAG, V11, pS855, DOI 10.1111/jfr3.12276. de Almeida GAM, 2012, WATER RESOUR RES, V48, DOI 10.1029/2011WR011570. de Vitry MM, 2019, HYDROL EARTH SYST SC, V23, P4621, DOI 10.5194/hess-23-4621-2019. Dewals B, 2021, WATER-SUI, V13, DOI 10.3390/w13070960. Bui DT, 2020, SCI TOTAL ENVIRON, V701, DOI 10.1016/j.scitotenv.2019.134413. DIXON M, 1993, J ATMOS OCEAN TECH, V10, P785, DOI 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2. Dao DA, 2020, J HYDROL, V584, DOI 10.1016/j.jhydrol.2020.124704. Duncan A., 2011, URBAN FLOOD PREDICTI. Fernandez-Pato J, 2021, HYDROLOGY-BASEL, V8, DOI 10.3390/hydrology8040146. Fidal J, 2020, J HYDROL, V589, DOI 10.1016/j.jhydrol.2020.125122. Foresti L, 2015, METEOROL APPL, V22, P141, DOI 10.1002/met.1416. Gallegos HA, 2009, ADV WATER RESOUR, V32, P1323, DOI 10.1016/j.advwatres.2009.05.008. Garcia L, 2015, ADV WATER RESOUR, V85, P120, DOI 10.1016/j.advwatres.2015.08.007. Gayer G, 2010, NAT HAZARD EARTH SYS, V10, P1679, DOI 10.5194/nhess-10-1679-2010. GEORGAKAKOS KP, 1986, B AM METEOROL SOC, V67, P1233, DOI 10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2. Geuzaine C, 2009, INT J NUMER METH ENG, V79, P1309, DOI 10.1002/nme.2579. Ghosh I, 2012, J HYDROL ENG, V17, P129, DOI 10.1061/(ASCE)HE.1943-5584.0000405. Guidolin M, 2016, ENVIRON MODELL SOFTW, V84, P378, DOI 10.1016/j.envsoft.2016.07.008. Courty LG, 2017, GEOSCI MODEL DEV, V10, P1835, DOI 10.5194/gmd-10-1835-2017. Guo KH, 2021, HYDROL EARTH SYST SC, V25, P2843, DOI 10.5194/hess-25-2843-2021. Guo ZF, 2021, J FLOOD RISK MANAG, V14, DOI 10.1111/jfr3.12684. Haiden T, 2011, WEATHER FORECAST, V26, P166, DOI 10.1175/2010WAF2222451.1. hal-enpc, INFLUENCE SMALL SCAL. Hammond MJ, 2015, URBAN WATER J, V12, P14, DOI 10.1080/1573062X.2013.857421. Henonin J, 2013, J HYDROINFORM, V15, P717, DOI 10.2166/hydro.2013.132. Hofmann J, 2021, WATER-SUI, V13, DOI 10.3390/w13162255. Horritt MS, 2001, J HYDROL, V253, P239, DOI 10.1016/S0022-1694(01)00490-5. Hu R, 2018, J HYDROL, V560, P354, DOI 10.1016/j.jhydrol.2018.02.078. Irvine KN, 2015, J WATER MANAG MODELL, DOI 10.14796/JWMM.C389. Irvine KN, 2013, J WATER MANAG MODELL, P177, DOI 10.14796/JWMM.R246-11. Jamali B, 2018, J HYDROL, V564, P1085, DOI 10.1016/j.jhydrol.2018.07.064. Jasper-Tonnies A, 2018, WATER SCI TECHNOL, P27, DOI 10.2166/wst.2018.079. Johnson JT, 1998, WEATHER FORECAST, V13, P263, DOI 10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2. Jung HC, 2015, REMOTE SENS-BASEL, V7, P7938, DOI 10.3390/rs70607938. Kabir S, 2020, J HYDROL, V590, DOI 10.1016/j.jhydrol.2020.125481. Kalyanapu AJ, 2011, ENVIRON MODELL SOFTW, V26, P1009, DOI 10.1016/j.envsoft.2011.02.014. Kim HI, 2020, WATER-SUI, V12, DOI 10.3390/w12030899. Kim HI, 2019, WATER-SUI, V11, DOI 10.3390/w11020293. Kim S, 2021, J HYDROL, V598, DOI 10.1016/j.jhydrol.2021.126236. Kwon SH, 2021, WATER-SUI, V13, DOI 10.3390/w13243545. Leandro J, 2016, J HYDROL, V535, P356, DOI 10.1016/j.jhydrol.2016.01.060. Leandro J, 2009, J HYDRAUL ENG-ASCE, V135, P495, DOI 10.1061/(ASCE)HY.1943-7900.0000037. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Leitao JP, 2018, J HYDROL, V561, P651, DOI 10.1016/j.jhydrol.2018.04.043. Li JD, 2020, SCI TOTAL ENVIRON, V732, DOI 10.1016/j.scitotenv.2020.138931. Liang RJ, 2021, J HYDROL, V602, DOI 10.1016/j.jhydrol.2021.126787. Lim NJ, 2019, GEOMAT NAT HAZ RISK, V10, P1613, DOI 10.1080/19475705.2019.1604573. Lin Q, 2020, WATER-SUI, V12, DOI 10.3390/w12123568. Liu JH, 2020, ENVIRON RES, V182, DOI 10.1016/j.envres.2019.108929. Liu XH, 2020, WEATHER FORECAST, V35, P299, DOI 10.1175/WAF-D-19-0026.1. Loc H. H., 2015, British Journal of Environment and Climate Change, V5, P91. Lund NSV, 2019, J ENVIRON MANAGE, V248, DOI 10.1016/j.jenvman.2019.05.110. Macchione F, 2019, ENVIRON MODELL SOFTW, V111, P510, DOI 10.1016/j.envsoft.2018.11.005. Maiolo M, 2020, WATER-SUI, V12, DOI 10.3390/w12102842. Martin CP, 2008, J WATER MANAG MODELL, P123, DOI 10.14796/JWMM.R228-08. met.gov, LAMAN WEB RASMI JABA. Mignot E, 2019, J HYDROL, V568, P334, DOI 10.1016/j.jhydrol.2018.11.001. Molinari D, 2019, INT J DISAST RISK RE, V33, P441, DOI 10.1016/j.ijdrr.2018.10.022. Mueller C, 2003, WEATHER FORECAST, V18, P545, DOI 10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2. Muller H, 2018, J HYDROL, V556, P847, DOI 10.1016/j.jhydrol.2016.01.031. Mustafa A, 2021, PEERJ, V9, DOI 10.7717/peerj.11667. Muthusamy M, 2021, J HYDROL, V596, DOI 10.1016/j.jhydrol.2021.126088. Nkwunonwo UC, 2020, SCI AFR, V7, DOI 10.1016/j.sciaf.2020.e00269. Novak P, 2007, ATMOS RES, V83, P450, DOI 10.1016/j.atmosres.2005.09.014. Ochoa-Rodriguez S, 2019, WATER RESOUR RES, V55, P6356, DOI 10.1029/2018WR023332. Ozdemir H, 2013, HYDROL EARTH SYST SC, V17, P4015, DOI 10.5194/hess-17-4015-2013. Parkinson J., 2006, URBAN STORMWATER MAN. Petheram C, 2012, J HYDROL, V462, P28, DOI 10.1016/j.jhydrol.2011.12.046. Pierce CE, 2000, METEOROL APPL, V7, P341, DOI 10.1017/S135048270000164X. Pinos J, 2022, WATER-SUI, V14, DOI 10.3390/w14010010. Qi WC, 2021, NAT HAZARDS, V108, P31, DOI 10.1007/s11069-021-04715-8. Qiu QT, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12030363. Ramsauer S, 2021, WATER-SUI, V13, DOI 10.3390/w13192629. Rene JR, 2014, URBAN WATER J, V11, P573, DOI 10.1080/1573062X.2013.795237. Reyniers M., 2016, QUANTITATIVE PRECIPI. Rivard G, 2006, J WATER MANAG MODELL, P53, DOI 10.14796/JWMM.R225-03. Roberts RD, 2006, WEATHER FORECAST, V21, P540, DOI 10.1175/WAF930.1. Rosenzweig BR, 2021, EARTHS FUTURE, V9, DOI 10.1029/2020EF001739. Ruzanski E, 2011, J ATMOS OCEAN TECH, V28, P640, DOI 10.1175/2011JTECHA1496.1. Saurav KC, 2021, J ENVIRON MANAGE, V281, DOI 10.1016/j.jenvman.2020.111894. Savina M, 2012, ATMOS RES, V103, P45, DOI 10.1016/j.atmosres.2011.06.010. Schmid W, 2000, PHYS CHEM EARTH PT B, V25, P1335, DOI 10.1016/S1464-1909(00)00204-5. Schmitt TG, 2004, J HYDROL, V299, P300, DOI 10.1016/j.jhydrol.2004.08.012. Schubert JE, 2012, ADV WATER RESOUR, V41, P49, DOI 10.1016/j.advwatres.2012.02.012. Schubert JE, 2008, ADV WATER RESOUR, V31, P1603, DOI 10.1016/j.advwatres.2008.07.012. Scotti V, 2020, J FLOOD RISK MANAG, V13, DOI 10.1111/jfr3.12647. Sharma VC, 2021, WATER-SUI, V13, DOI 10.3390/w13020191. Shen CP, 2018, WATER RESOUR RES, V54, P8558, DOI 10.1029/2018WR022643. Shen J, 2020, NAT HAZARDS, V104, P927, DOI 10.1007/s11069-020-04198-z. Shen J, 2018, WATER-SUI, V10, DOI 10.3390/w10121760. Sidek LM, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11199300. Silva CD, 2020, J ENVIRON MANAGE, V253, DOI 10.1016/j.jenvman.2019.109719. Sinclair S, 2005, ATMOS SCI LETT, V6, P19, DOI 10.1002/asl.85. Sokol Z, 2017, ATMOS RES, V194, P245, DOI 10.1016/j.atmosres.2017.05.003. Sokol Z, 2012, Q J ROY METEOR SOC, V138, P1072, DOI 10.1002/qj.970. Sokol Z, 2012, ATMOS RES, V103, P70, DOI 10.1016/j.atmosres.2011.07.013. Song Y, 2016, PROCEDIA ENGINEER, V154, P1193, DOI 10.1016/j.proeng.2016.07.525. Talchabhadel R, 2021, GEOMAT NAT HAZ RISK, V12, P939, DOI 10.1080/19475705.2021.1910575. Tealab Ahmed, 2018, Future Computing and Informatics Journal, V3, P334, DOI 10.1016/j.fcij.2018.10.003. Teng J, 2017, ENVIRON MODELL SOFTW, V90, P201, DOI 10.1016/j.envsoft.2017.01.006. Thai Meteorological Department, TMD GO TH. The Meteorological Service Singapore (MSS), WEATHER FORECAST 24H. Thrysoe C, 2019, J HYDROL, V568, P517, DOI 10.1016/j.jhydrol.2018.11.005. van Kempen G, 2021, NAT HAZARD EARTH SYS, V21, P961, DOI {[}10.5194/nhes-21-961-2021, 10.5194/nhess-21-961-2021]. Vojinovic Z, 2009, URBAN WATER J, V6, P183, DOI 10.1080/15730620802566877. Wang XQ, 2019, J HYDROL, V577, DOI 10.1016/j.jhydrol.2019.123984. Wang Y, 2020, J HYDROL, V582, DOI 10.1016/j.jhydrol.2019.124482. Warsta L, 2017, URBAN WATER J, V14, P954, DOI 10.1080/1573062X.2017.1325496. Wolfs V, 2013, J HYDROL, V503, P222, DOI 10.1016/j.jhydrol.2013.08.020. Xing Y, 2022, NAT HAZARDS, V112, P2313, DOI 10.1007/s11069-022-05267-1. Xu C, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121421. Yalcin E, 2020, NAT HAZARDS, V101, P995, DOI 10.1007/s11069-020-03906-z. Yin DK, 2020, SCI TOTAL ENVIRON, V720, DOI 10.1016/j.scitotenv.2020.137630. Yu D, 2006, HYDROL PROCESS, V20, P1541, DOI 10.1002/hyp.5935. Zanchetta ADL, 2020, WATER-SUI, V12, DOI 10.3390/w12020570. Zhang FH, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21061981. Zhang Y, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14133154. Zhao WQ, 2019, IEEE T SYST MAN CY-S, V49, P1254, DOI 10.1109/TSMC.2017.2724440. Zhou YR, 2021, ENVIRON MODELL SOFTW, V143, DOI 10.1016/j.envsoft.2021.105112.}, Number-of-Cited-References = {149}, Times-Cited = {0}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {14}, Journal-ISO = {Water}, Doc-Delivery-Number = {7Q4ER}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000909346600001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000502885500038, Author = {Ibrahim, Mohamed R. and Haworth, James and Cheng, Tao}, Title = {Understanding cities with machine eyes: A review of deep computer vision in urban analytics}, Journal = {CITIES}, Year = {2020}, Volume = {96}, Month = {JAN}, Abstract = {Modelling urban systems has interested planners and modellers for decades. Different models have been achieved relying on mathematics, cellular automation, complexity, and scaling. While most of these models tend to be a simplification of reality, today within the paradigm shifts of artificial intelligence across the different fields of science, the applications of computer vision show promising potential in understanding the realistic dynamics of cities. While cities are complex by nature, computer vision shows progress in tackling a variety of complex physical and non-physical visual tasks. In this article, we review the tasks and algorithms of computer vision and their applications in understanding cities. We attempt to subdivide computer vision algorithms into tasks, and cities into layers to show evidence of where computer vision is intensively applied and where further research is needed. We focus on highlighting the potential role of computer vision in understanding urban systems related to the built environment, natural environment, human interaction, transportation, and infrastructure. After showing the diversity of computer vision algorithms and applications, the challenges that remain in understanding the integration between these different layers of cities and their interactions with one another relying on deep learning and computer vision. We also show recommendations for practice and policy-making towards reaching Al-generated urban policies.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Ibrahim, MR (Corresponding Author), UCL, Dept Civil Environm \& Geomat Engn, Room 1-02,Chadwick Bldg,Gower St, London WC1E 6BT, England. Ibrahim, Mohamed R.; Haworth, James; Cheng, Tao, UCL, Dept Civil, SpaceTimeLab, London, England.}, DOI = {10.1016/j.cities.2019.102481}, Article-Number = {102481}, ISSN = {0264-2751}, EISSN = {1873-6084}, Keywords = {Cities; Computer vision; Deep learning; Convolutional neural networks (CNN); Urban studies}, Keywords-Plus = {SEMANTIC SEGMENTATION; IMAGES; SCALE; SCENE; FRAMEWORK; TRACKING; NETWORK}, Research-Areas = {Urban Studies}, Web-of-Science-Categories = {Urban Studies}, Author-Email = {mohamed.ibrahim.17@ucl.ac.uk}, Affiliations = {University of London; University College London}, ORCID-Numbers = {Ibrahim, Mohamed/0000-0001-7733-7777 Cheng, Tao/0000-0002-5503-9813}, Funding-Acknowledgement = {UCL; Road Safety Trust {[}RST 38\_03\_2017]; EPSRC {[}EP/G023212/1, EP/J004197/1] Funding Source: UKRI}, Funding-Text = {This research outcome is a part of a PhD study for the first author at University College London (UCL). It was supported by funds from UCL Overseas Research Scholarship (ORS) and the Road Safety Trust (RST 38\_03\_2017).}, Cited-References = {Amirkolaee HA, 2019, ISPRS J PHOTOGRAMM, V149, P50, DOI 10.1016/j.isprsjprs.2019.01.013. {[}Anonymous], 2015, 1511 ARXIV. {[}Anonymous], 2015, PROC CVPR IEEE, DOI {[}10.1109/CVPR.2015.7298594, DOI 10.1109/CVPR.2015.7298594]. {[}Anonymous], 1994, FRACTAL CITIES GEOME. Audebert N, 2018, ISPRS J PHOTOGRAMM, V140, P20, DOI 10.1016/j.isprsjprs.2017.11.011. Badrinarayanan V, 2017, IEEE T PATTERN ANAL, V39, P2481, DOI 10.1109/TPAMI.2016.2644615. Batty M, 2005, ENVIRON PLANN A, V37, P1373, DOI 10.1068/a3784. Batty M, 1996, ENVIRON PLANN A, V28, P1745, DOI 10.1068/a281745. BATTY M, 1997, URBAN SYSTEMS CELLUL. Batty M., 2009, INT ENCY HUMAN GEOGR. Batty M, 2008, SCIENCE, V319, P769, DOI 10.1126/science.1151419. Batty M, 2019, ENVIRON PLAN B-URBAN, V46, P403, DOI 10.1177/2399808319839494. BECATTINI F, 2017, ARXIV170501781CS. Bettencourt LMA, 2013, SCIENCE, V340, P1438, DOI 10.1126/science.1235823. Bilen H, 2016, CVPR, DOI DOI 10.1109/CVPR.2016.331. Bottino A, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16060813. BROCK A, 2018, ARXIV180911096CSSTAT. Buch N, 2011, IEEE T INTELL TRANSP, V12, P920, DOI 10.1109/TITS.2011.2119372. Buch S, 2017, PROC CVPR IEEE, P6373, DOI 10.1109/CVPR.2017.675. CAI BY, 2018, ARXIV180804754CS. Calder M, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.172096. CAO Y, 2017, ARXIV160502305CS. Cao Z, 2016, ARXIV161108050CS. Caron M, 2018, LECT NOTES COMPUT SC, V11218, P139, DOI 10.1007/978-3-030-01264-9\_9. Cha YJ, 2017, COMPUT-AIDED CIV INF, V32, P361, DOI 10.1111/mice.12263. CHAO YW, 2018, ARXIV180407667CS. Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP). Chen J, 2016, ISPRS J PHOTOGRAMM, V115, P3, DOI 10.1016/j.isprsjprs.2015.09.008. Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184. Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709. Chen W, 2015, IEEE I CONF COMP VIS, P3298, DOI 10.1109/ICCV.2015.377. Chen Y, 2016, APPL SOFT COMPUT, V38, P1088, DOI 10.1016/j.asoc.2015.06.048. Chew R, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7110448. Chew RF, 2018, INT J HEALTH GEOGR, V17, DOI 10.1186/s12942-018-0132-1. CHU Q, 2017, ARXIV170802843CS. Cordts M, 2016, PROC CVPR IEEE, P3213, DOI 10.1109/CVPR.2016.350. Danelljan M, 2017, PROC CVPR IEEE, P6931, DOI 10.1109/CVPR.2017.733. Danelljan M, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), P621, DOI 10.1109/ICCVW.2015.84. De Nadai M, 2016, P 2016 ACM MULT C MM, P1127, DOI DOI 10.1145/2964284.2964312. Demir I, 2018, IEEE COMPUT SOC CONF, P172, DOI 10.1109/CVPRW.2018.00031. DIBA A, 2017, TEMPORAL 3D CONVNETS, V5. Duarte F, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0264-3. Dubey A, 2016, PROCEEDINGS OF THE 9TH INDIA SOFTWARE ENGINEERING CONFERENCE, P190, DOI 10.1145/2856636.2856656. El-Nouby A, 2018, ARXIV. Elhoseiny M, 2015, IEEE IMAGE PROC, P3349, DOI 10.1109/ICIP.2015.7351424. Escorcia V, 2016, LECT NOTES COMPUT SC, V9907, P768, DOI 10.1007/978-3-319-46487-9\_47. Eslami SMA, 2018, SCIENCE, V360, P1204, DOI 10.1126/science.aar6170. Faisal A, 2019, J TRANSP LAND USE, V12, P45, DOI 10.5198/jtlu.2019.1405. FANG HS, 2016, ARXIV161200137CS. Feng C, 2017, COMPUTING IN CIVIL ENGINEERING 2017: INFORMATION MODELLING AND DATA ANALYTICS, P298. Frankhauser P., 1998, POPUL ENGL SEL, P205. GEMERT J, 2015, P BRIT MACH VIS C. GIRDHAR R, 2017, DETECT AND TRACK EFF, P10. Girdhar R, 2017, ADV NEUR IN, V30. Girshick R., 2014, PROC CVPR IEEE, P580, DOI {[}DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81]. GKIOXARI G, 2017, DETECTING RECOGNIZIN, P9. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. GOODFELLOW L, 2016, ARXIV170100160CS. Gopalakrishnan K, 2018, DATA, V3, DOI 10.3390/data3030028. GRIFFITHS D, 2018, REMOTE SENSING SPATI, V42, P391, DOI DOI 10.5194/ISPRS-ARCHIVES-XLII-2-391-2018. GUERRA JCV, 2018, ARXIV180800588CS. Guler RA, 2018, PROC CVPR IEEE, P7297, DOI 10.1109/CVPR.2018.00762. Guo M, 2018, PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MATHEMATICS AND ARTIFICIAL INTELLIGENCE (ICMAI 2018), P1, DOI 10.1145/3208788.3208790. Guo S, 2018, LECT NOTES COMPUT SC, V11214, P139, DOI 10.1007/978-3-030-01249-6\_9. Guo YM, 2016, NEUROCOMPUTING, V187, P27, DOI 10.1016/j.neucom.2015.09.116. He H, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11091015. He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90. He L, 2018, IEEE T IMAGE PROCESS, V27, P4676, DOI 10.1109/TIP.2018.2832296. Helbich M, 2019, ENVIRON INT, V126, P107, DOI 10.1016/j.envint.2019.02.013. HELD D, 2016, ARXIV160401802CS. Heppenstall AJJ., 2012, AGENT BASED MODELS G, V164, P1, DOI 10.1007/978-90-481-8927-4. Hester T, 2018, AAAI CONF ARTIF INTE, P3223. HONG SJ, 2019, SENSORS, V19, P112. Hou R, 2017, IEEE I CONF COMP VIS, P5823, DOI 10.1109/ICCV.2017.620. Huang G., 2017, PROC CVPR IEEE, P4700, DOI {[}10.1109/CVPR.2017.243, DOI 10.1109/CVPR.2017.243]. Ibrahim MR, 2021, ENVIRON PLAN B-URBAN, V48, P76, DOI 10.1177/2399808319846517. INSAFUTDINOV E, 2016, ARXIV160503170CS. INSAFUTDINOV E, 2016, ARXIV161201465CS. Isalgue A, 2007, PHYSICA A, V382, P643, DOI 10.1016/j.physa.2007.04.019. Isola P., 2017, CVPR, DOI DOI 10.1109/CVPR.2017.632. Jegou S, 2016, ARXIV161109326CS. Jiang CR, 2018, NEUROCOMPUTING, V275, P2892, DOI 10.1016/j.neucom.2017.10.043. Kale GV, 2016, INT J AMBIENT COMPUT, V7, P75, DOI 10.4018/IJACI.2016070104. Kang J, 2018, ISPRS J PHOTOGRAMM, V145, P44, DOI 10.1016/j.isprsjprs.2018.02.006. Kang K, 2016, PROC CVPR IEEE, P817, DOI 10.1109/CVPR.2016.95. Karras T, 2019, PROC CVPR IEEE, P4396, DOI 10.1109/CVPR.2019.00453. KOCABAS M, 2018, ARXIV180704067CS. Krause J, 2018, ICMR `18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, P517, DOI 10.1145/3206025.3206089. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Kuo CCJ, 2016, J VIS COMMUN IMAGE R, V41, P406, DOI 10.1016/j.jvcir.2016.11.003. LAW S, 2018, ARXIV180707155CSECON. Law S, 2020, INT J GEOGR INF SCI, V34, P681, DOI 10.1080/13658816.2018.1555832. Li PX, 2018, PATTERN RECOGN, V76, P323, DOI 10.1016/j.patcog.2017.11.007. LI X, 2017, ARXIV170802421CS. Li X, 2017, IEEE I CONF COMP VIS, P5775, DOI 10.1109/ICCV.2017.615. LI Y, 2016, ARXIV160405633CS. Li ZW, 2019, ISPRS J PHOTOGRAMM, V150, P197, DOI 10.1016/j.isprsjprs.2019.02.017. Lin GS, 2017, PROC CVPR IEEE, P5168, DOI 10.1109/CVPR.2017.549. Lin TY, 2020, IEEE T PATTERN ANAL, V42, P318, DOI 10.1109/TPAMI.2018.2858826. Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1\_48. Liu CF, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162089. Liu L, 2017, COMPUT ENVIRON URBAN, V65, P113, DOI 10.1016/j.compenvurbsys.2017.06.003. Liu W, 2017, J ADV COMPUT INTELL, V21, P403, DOI 10.20965/jaciii.2017.p0403. Liu Y, 2016, ARXIV160501156CS. LONG J, 2015, ARXIV14114038V2CSCV. MAEDA H, 2018, ARXIV180109454CS. Mahmud SMS, 2017, IATSS RES, V41, P153, DOI 10.1016/j.iatssr.2017.02.001. Manen S, 2017, IEEE I CONF COMP VIS, P290, DOI 10.1109/ICCV.2017.40. Marcos D, 2018, ISPRS J PHOTOGRAMM, V145, P96, DOI 10.1016/j.isprsjprs.2018.01.021. Mettes P, 2016, LECT NOTES COMPUT SC, V9909, P437, DOI 10.1007/978-3-319-46454-1\_27. MIROWSKI P, 2018, ARXIV180400168CS. Mnih V, 2016, PR MACH LEARN RES, V48. MOHAMED AN, 2013, J ENG SCI, V41, P19. Mohanty SP, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01419. Murcio R, 2015, PHYS REV E, V92, DOI 10.1103/PhysRevE.92.062130. Naik N, 2017, P NATL ACAD SCI USA, V114, P7571, DOI 10.1073/pnas.1619003114. Naik N, 2016, AM ECON REV, V106, P128, DOI 10.1257/aer.p20161030. Naik N, 2014, IEEE COMPUT SOC CONF, P793, DOI 10.1109/CVPRW.2014.121. NARAZAKI Y, 2017, VISION BASED AUTOMAT, V10. Nguyen QC, 2018, J EPIDEMIOL COMMUN H, V72, P260, DOI 10.1136/jech-2017-209456. Oliva A, 2006, PROG BRAIN RES, V155, P23, DOI 10.1016/S0079-6123(06)55002-2. Paganini M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.014021. PAPANDREOU G, 2017, ARXIV170101779CS. Pekkanen RJ, 2016, JAPAN DECIDES 2014: THE JAPANESE GENERAL ELECTION, P9. Peng C, 2017, PROC CVPR IEEE, P1743, DOI 10.1109/CVPR.2017.189. Pfister T, 2015, IEEE I CONF COMP VIS, P1913, DOI 10.1109/ICCV.2015.222. PRIYA G, 2015, HUMAN WALKING MOTION, V3, P6. Quercia D., 2014, P 17 ACM C COMP SUPP, P945, DOI DOI 10.1145/2531602.2531613. Radford A., 2015, ARXIV151106434. Redmon J., 2018, ARXIV PREPRINT ARXIV. Redmon J., 2017, PROC CVPR IEEE, P6517, DOI DOI 10.1109/CVPR.2017.690. Redmon J, 2016, PROC CVPR IEEE, P779, DOI 10.1109/CVPR.2016.91. REED S, 2016, ARXIV160505396CS. Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1. Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031. Robie AA, 2017, J EXP BIOL, V220, P25, DOI 10.1242/jeb.142281. Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4\_28. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y. SAHA S, 2017, ARXIV170404952CS. Saha S., 2016, BMVC. Salesses P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068400. Sayed T, 2013, SAFETY SCI, V59, P163, DOI 10.1016/j.ssci.2013.05.009. Seresinhe CI, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.170170. Sharma A, 2017, NEURAL NETWORKS, V95, P19, DOI 10.1016/j.neunet.2017.07.017. SHOU Z, 2017, ARXIV170301515CS. Silver D., 2013, CORR, V1312, P5602, DOI DOI 10.1038/NATURE14236. Simonyan K, 2015, Arxiv, DOI DOI 10.48550/ARXIV.1409.1556. SINGH G, 2016, ARXIV161108563CS. Sirirattanapol C, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8030128. Soomro K, 2017, IEEE I CONF COMP VIS, P696, DOI 10.1109/ICCV.2017.82. Srivastava S, 2019, REMOTE SENS ENVIRON, V228, P129, DOI 10.1016/j.rse.2019.04.014. Sun Y, 2017, COMPUT INTEL NEUROSC, V2017, DOI 10.1155/2017/7361042. Tao Y, 2017, CHIN CONTR CONF, P4288, DOI 10.23919/ChiCC.2017.8028032. Tian K, 2017, LECT NOTES ARTIF INT, V10535, P809, DOI 10.1007/978-3-319-71246-8\_49. Van Hasselt Hado, 2016, P AAAI C ART INT, V30. van Veenstra AF, 2017, LECT NOTES COMPUT SC, V10429, P100, DOI 10.1007/978-3-319-64322-9\_9. Vanhoey K, 2017, ACM SIGGRAPH 2017 TALKS, DOI 10.1145/3084363.3085085. Viola P, 2001, PROC CVPR IEEE, P511, DOI 10.1109/cvpr.2001.990517. VOIGTLAENDER P, 2019, MOTS MULTIOBJECT TRA, P10. Wang BX, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18061796. Wang LM, 2015, PROC CVPR IEEE, P4305, DOI 10.1109/CVPR.2015.7299059. Wang LL, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020655. Wang S, 2018, ISPRS J PHOTOGRAMM, V145, P148, DOI 10.1016/j.isprsjprs.2017.12.012. Wang WS, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P647, DOI 10.1145/3184558.3186581. WANG Z, 2015, ARXIV151106581CS. Wei Liu, 2016, Computer Vision - ECCV 2016. 14th European Conference. Proceedings: LNCS 9905, P21, DOI 10.1007/978-3-319-46448-0\_2. WEINZAEPFEL P, 2016, ARXIV160505197CS. Weinzaepfel P, 2015, IEEE I CONF COMP VIS, P3164, DOI 10.1109/ICCV.2015.362. Williams D, 2017, PLANT METHODS, V13, DOI 10.1186/s13007-017-0226-y. Wu GX, 2016, NEUROCOMPUTING, V175, P310, DOI 10.1016/j.neucom.2015.10.064. Wurm M, 2019, ISPRS J PHOTOGRAMM, V150, P59, DOI 10.1016/j.isprsjprs.2019.02.006. Xie JY, 2016, PR MACH LEARN RES, V48. Xu HZ, 2017, PROC CVPR IEEE, P3530, DOI 10.1109/CVPR.2017.376. Yang DF, 2019, INT J ADV ROBOT SYST, V16, DOI 10.1177/1729881419842995. Yang MK, 2018, PROC CVPR IEEE, P3684, DOI 10.1109/CVPR.2018.00388. Yang Z, 2018, IMAGE VISION COMPUT, V69, P143, DOI 10.1016/j.imavis.2017.09.008. YU H, 2017, SENSORS, V17, P112. Yuille, 2014, ARXIV14127062, DOI DOI 10.1109/TPAMI.2017.2699184. Zaki MH, 2013, TRANSPORT RES REC, P75, DOI 10.3141/2393-09. Zaki MH, 2013, TRANSPORT RES C-EMER, V33, P50, DOI 10.1016/j.trc.2013.04.007. Zhang BW, 2016, PROC CVPR IEEE, P2718, DOI 10.1109/CVPR.2016.297. Zhang F, 2019, ISPRS J PHOTOGRAMM, V153, P48, DOI 10.1016/j.isprsjprs.2019.04.017. Zhang F, 2018, LANDSCAPE URBAN PLAN, V180, P148, DOI 10.1016/j.landurbplan.2018.08.020. Zhang H, 2017, IEEE I CONF COMP VIS, P5908, DOI 10.1109/ICCV.2017.629. Zhang SG, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/3090343. Zhang X, 2018, ISPRS J PHOTOGRAMM, V140, P77, DOI 10.1016/j.isprsjprs.2017.07.009. Zhao J., 2018, P 2018 IEEE 3 INT C, P20, DOI DOI 10.1109/DSC.2018.00012. Zhao Y, 2017, IEEE I CONF COMP VIS, P2933, DOI 10.1109/ICCV.2017.317. Zhou BL, 2017, PROC CVPR IEEE, P5122, DOI 10.1109/CVPR.2017.544. Zhu HY, 2017, IEEE I CONF COMP VIS, P5814, DOI 10.1109/ICCV.2017.619. ZHU Y, 2017, ARXIV170400389CS. ZOU Z, 2019, ARXIV190505055V240.}, Number-of-Cited-References = {194}, Times-Cited = {52}, Usage-Count-Last-180-days = {33}, Usage-Count-Since-2013 = {117}, Journal-ISO = {Cities}, Doc-Delivery-Number = {JW2KB}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000502885500038}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000580580900039, Author = {Zhang, Junyi and He, Shenjing}, Title = {Smart technologies and urban life: A behavioral and social perspective}, Journal = {SUSTAINABLE CITIES AND SOCIETY}, Year = {2020}, Volume = {63}, Month = {DEC}, Abstract = {The explosive advancements of sensing technologies, Artificial Intelligence (AI), and Internet of Things (IoT) have given rise to various smart technologies that brought profound changes in various aspects of urban life. Such changes may suggest a paradigm shift in the ways of experiencing and researching urbanism. However, we still know very little about what to expect and how to cope with these changes based on scientific investigations from a behavioral and social perspective. To fill this void, this special issue ``Smart technologies and urban life: A behavioral and social perspective{''} presents a collection of ten papers covering four themes, namely smart technologies-generated big data and urban research, smart technologies and travel behavior, smart technologies and energy consumption, and smart technologies and urban life. Specific topics include the application of open source data and deep learning techniques, the development of smart street lighting system, the usage and social implications of smartphone applications, the ownership and application of emerging mobility services, household decisions on investments in renewable energy equipment, travel behavior, smartness and sustainability etc. Building upon findings from these studies, we speculate on the prospects and future applications of smart technologies and their implications for social and environmental sustainability.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Zhang, JY (Corresponding Author), Hiroshima Univ, Mobil \& Urban Policy Lab, Grad Sch Int Dev \& Cooperat, Hiroshima, Japan. Zhang, Junyi, Hiroshima Univ, Mobil \& Urban Policy Lab, Grad Sch Int Dev \& Cooperat, Hiroshima, Japan. He, Shenjing, Univ Hong Kong, Fac Architecture, Dept Urban Planning \& Design, Hong Kong, Peoples R China. He, Shenjing, Univ Hong Kong, Fac Architecture, SIEW Lab, Hong Kong, Peoples R China.}, DOI = {10.1016/j.scs.2020.102460}, Article-Number = {102460}, ISSN = {2210-6707}, EISSN = {2210-6715}, Keywords = {Smart technologies; Smart cities; Life-oriented approach; Social exclusion; Sustainability; Big data}, Research-Areas = {Construction \& Building Technology; Science \& Technology - Other Topics; Energy \& Fuels}, Web-of-Science-Categories = {Construction \& Building Technology; Green \& Sustainable Science \& Technology; Energy \& Fuels}, Author-Email = {zjy@hiroshima-u.ac.jp sjhe@hku.hk}, Affiliations = {Hiroshima University; University of Hong Kong; University of Hong Kong}, ResearcherID-Numbers = {Zhang, Junyi/HDN-7815-2022 He, shenjing/AHC-5435-2022 Zhang, Junyi/B-4865-2012}, ORCID-Numbers = {He, shenjing/0000-0001-5692-2088 Zhang, Junyi/0000-0002-3267-542X}, Funding-Acknowledgement = {Japan Society for the Promotion of Science (JSPS) {[}18KT0007]; Grants-in-Aid for Scientific Research {[}18KT0007] Funding Source: KAKEN}, Funding-Text = {This research was supported by a Grants-in-Aid for Scientific Research (B), Japan Society for the Promotion of Science (JSPS) {[}No. 18KT0007].}, Cited-References = {Asgari H, 2020, SUSTAIN CITIES SOC, V52, DOI 10.1016/j.scs.2019.101735. Chen Y, 2020, SUSTAIN CITIES SOC, V52, DOI 10.1016/j.scs.2019.101817. Coe A, 2001, SOC SCI COMPUT REV, V19, P80, DOI 10.1177/089443930101900107. Docherty I, 2018, TRANSPORT RES A-POL, V115, P114, DOI 10.1016/j.tra.2017.09.012. El-Diraby T, 2019, SUSTAIN CITIES SOC, V49, DOI 10.1016/j.scs.2019.101578. Gabrys J, 2014, ENVIRON PLANN D, V32, P30, DOI 10.1068/d16812. Gu GF, 2019, SUSTAIN CITIES SOC, V50, DOI 10.1016/j.scs.2019.101641. Jamal S, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101939. Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8. Luan X, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101968. Mohandas P, 2019, SUSTAIN CITIES SOC, V48, DOI 10.1016/j.scs.2019.101499. Talari S, 2017, ENERGIES, V10, DOI 10.3390/en10040421. Warschauer M., 2003, TECHNOLOGY SOCIAL IN. Woods O, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101940. Zhou H, 2019, SUSTAIN CITIES SOC, V50, DOI 10.1016/j.scs.2019.101605. Zong WY, 2019, SUSTAIN CITIES SOC, V49, DOI 10.1016/j.scs.2019.101589.}, Number-of-Cited-References = {16}, Times-Cited = {11}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {55}, Journal-ISO = {Sust. Cities Soc.}, Doc-Delivery-Number = {OE5PA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000580580900039}, DA = {2023-04-22}, } @article{ WOS:000699674500001, Author = {Aldebei, Faisal and Dombi, Mihaly}, Title = {Mining the Built Environment: Telling the Story of Urban Mining}, Journal = {BUILDINGS}, Year = {2021}, Volume = {11}, Number = {9}, Month = {SEP}, Abstract = {Materials are continuously accumulating in the human-built environment since massive amounts of materials are required for building, developing, and maintaining cities. At the end of their life cycles, these materials are considered valuable sources of secondary materials. The increasing construction and demolition waste released from aging stock each year make up the heaviest, most voluminous waste outflow, presenting challenges and opportunities. These material stocks should be utilized and exploited since the reuse and recycling of construction materials would positively impact the natural environment and resource efficiency, leading to sustainable cities within a grander scheme of a circular economy. The exploitation of material stock is known as urban mining. In order to make these materials accessible for future mining, material quantities need to be estimated and extrapolated to regional levels. This demanding task requires a vast knowledge of the existing building stock, which can only be obtained through labor-intensive, time-consuming methodologies or new technologies, such as building information modeling (BIM), geographic information systems (GISs), artificial intelligence (AI), and machine learning. This review paper gives a general overview of the literature body and tracks the evolution of this research field.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Aldebei, F (Corresponding Author), Univ Debrecen, Fac Econ \& Business, Inst Econ \& World Econ, Dept Environm Econ, H-4032 Debrecen, Hungary. Aldebei, Faisal; Dombi, Mihaly, Univ Debrecen, Fac Econ \& Business, Inst Econ \& World Econ, Dept Environm Econ, H-4032 Debrecen, Hungary.}, DOI = {10.3390/buildings11090388}, Article-Number = {388}, EISSN = {2075-5309}, Keywords = {urban mining; material stock; circular economy; building information modeling (BIM); geographic information systems (GISs)}, Keywords-Plus = {MATERIAL FLOW-ANALYSIS; IN-USE STOCKS; BUILDING MATERIAL STOCKS; FUTURE ENERGY DEMAND; RESIDENTIAL BUILDINGS; CIRCULAR ECONOMY; DEMOLITION WASTE; SOCIOECONOMIC METABOLISM; ANTHROPOGENIC RESOURCES; DYNAMIC-ANALYSIS}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil}, Author-Email = {faisalaldebei@mailbox.unideb.hu dombi.mihaly@econ.unideb.hu}, Affiliations = {University of Debrecen}, ResearcherID-Numbers = {Dombi, Mihály/HOF-7767-2023 }, ORCID-Numbers = {Dombi, Mihály/0000-0002-3386-0889 aldebei, faisal/0000-0003-4534-3309}, Funding-Acknowledgement = {National Research, Development and Innovation Office-NKFIH {[}K-135907]}, Funding-Text = {This research was supported by the National Research, Development and Innovation Office-NKFIH, K-135907.}, Cited-References = {Ajayebi A, 2020, RESOUR CONSERV RECY, V162, DOI 10.1016/j.resconrec.2020.105026. Akanbi LA, 2020, J CLEAN PROD, V274, DOI 10.1016/j.jclepro.2020.122843. Aksozen M, 2017, BUILD RES INF, V45, P239, DOI 10.1080/09613218.2016.1152040. Albelwi N, 2017, ENRGY PROCED, V115, P440, DOI 10.1016/j.egypro.2017.05.041. {[}Anonymous], 2021, GUID DAT MOD DAT INT, DOI {[}10.6094/UNIFR/217970, DOI 10.6094/UNIFR/217970]. {[}Anonymous], 2018, 196501 ISO. Arora M, 2020, RESOUR CONSERV RECY, V154, DOI 10.1016/j.resconrec.2019.104581. Arora M, 2019, J CLEAN PROD, V216, P239, DOI 10.1016/j.jclepro.2019.01.199. Aryapratama R, 2019, RESOUR CONSERV RECY, V149, P301, DOI 10.1016/j.resconrec.2019.06.010. Augiseau V, 2017, RESOUR CONSERV RECY, V123, P153, DOI 10.1016/j.resconrec.2016.09.002. Baccini P, 2012, METABOLISM OF THE ANTHROPOSPHERE: ANALYSIS, EVALUATION, DESIGN, 2ND EDITION, P1. Baccini P., 1991, METABOLISM ANTHROPOS. Bergback B., 2008, GLOBAL ENV SCI TECHN, P276, DOI {[}10.1002/9783527619658, DOI 10.1002/9783527619658]. Bleischwitz R, 2018, GLOBAL ENVIRON CHANG, V48, P86, DOI 10.1016/j.gloenvcha.2017.11.008. Bocken NMP, 2016, J IND PROD ENG, V33, P308, DOI 10.1080/21681015.2016.1172124. Bristow DN, 2020, J IND ECOL, V24, P300, DOI 10.1111/jiec.12919. Brunner P.H., MAT FLOW ANAL RESHAP. Brunner P.H., 2004, LCA COMPEND, DOI {[}10.1007/bf02979426, DOI 10.1007/BF02979426]. Brunner PH, 2011, J IND ECOL, V15, P339, DOI 10.1111/j.1530-9290.2011.00345.x. Buffat R, 2017, APPL ENERG, V208, P277, DOI 10.1016/j.apenergy.2017.10.041. Cai WJ, 2015, ENVIRON SCI TECHNOL, V49, P13921, DOI 10.1021/acs.est.5b02333. Cao Z, 2019, ENVIRON SCI TECHNOL, V53, P11313, DOI 10.1021/acs.est.9b03765. Carmona LG, 2021, RESOUR CONSERV RECY, V165, DOI 10.1016/j.resconrec.2020.105226. Chen C., 2016, UNIVERS J MAT SCI, V4, P40, DOI {[}DOI 10.13189/UJMS.2016.040204, 10.13189/ujms.2016.040204]. Chen X, 2011, P NATL ACAD SCI USA, V108, P8589, DOI 10.1073/pnas.1017031108. Cheng JCP, 2013, WASTE MANAGE, V33, P1539, DOI 10.1016/j.wasman.2013.01.001. Cheng JH, 2020, J CLEAN PROD, V259, DOI 10.1016/j.jclepro.2020.120808. Cheng KL, 2018, RESOUR CONSERV RECY, V133, P10, DOI 10.1016/j.resconrec.2018.02.003. Ciacci L, 2017, RESOUR CONSERV RECY, V123, P108, DOI 10.1016/j.resconrec.2016.08.008. Coffey B, 2009, BUILD RES INF, V37, P610, DOI 10.1080/09613210903189467. Condeixa K, 2017, J CLEAN PROD, V149, P1249, DOI 10.1016/j.jclepro.2017.02.080. Cooper DR, 2017, J IND ECOL, V21, P38, DOI 10.1111/jiec.12388. Cossu R., 1996, LANDFILL MINING EURO, P107. Cossu R, 2015, WASTE MANAGE, V45, P1, DOI 10.1016/j.wasman.2015.09.040. Cossu R, 2013, WASTE MANAGE, V33, P497, DOI 10.1016/j.wasman.2013.01.010. De Tudela A.R.P., 2019, RESOUR CONSERV RECY, DOI {[}10.1016/j.rcrx.2019.100027, DOI 10.1016/J.RCRX.2019.100027]. Deetman S, 2020, J CLEAN PROD, V245, DOI 10.1016/j.jclepro.2019.118658. Deilmann C, 2009, BUILD RES INF, V37, P660, DOI 10.1080/09613210903166739. Ding Ning, 2012, Chinese Journal of Nonferrous Metals, V22, P2908. Dombi M, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/ab15be. Dombi M, 2018, J CLEAN PROD, V172, P758, DOI 10.1016/j.jclepro.2017.10.220. Elshkaki A, 2013, J CLEAN PROD, V59, P260, DOI 10.1016/j.jclepro.2013.07.003. Elvidge CD, 1997, INT J REMOTE SENS, V18, P1373, DOI 10.1080/014311697218485. Ergun D, 2015, WASTE MANAGE, V45, P180, DOI 10.1016/j.wasman.2015.03.036. Fischer-Kowalski M., 1997, J IND ECOL, V2, P61, DOI {[}10.1162/jiec.1998.2.1.61, DOI 10.1162/JIEC.1998.2.1.61]. Fishman T, 2016, ENVIRON SCI TECHNOL, V50, P3729, DOI 10.1021/acs.est.5b05790. Fishman T, 2014, J IND ECOL, V18, P407, DOI 10.1111/jiec.12114. Fu CL, 2019, SCI TOTAL ENVIRON, V675, P98, DOI 10.1016/j.scitotenv.2019.04.205. Gallardo C, 2014, BUILD RES INF, V42, P343, DOI 10.1080/09613218.2014.872547. Gassner A, 2020, J IND ECOL, V24, P1364, DOI 10.1111/jiec.13024. Geng Y, 2008, INT J SUST DEV WORLD, V15, P231, DOI 10.3843/SusDev.15.3:6. Gerst MD, 2009, ENVIRON SCI TECHNOL, V43, P6320, DOI 10.1021/es900845v. Gloser S, 2013, ENVIRON SCI TECHNOL, V47, P6564, DOI 10.1021/es400069b. Gonti P, 2018, RESOUR CONSERV RECY, V130, P228, DOI 10.1016/j.resconrec.2017.11.022. Gontia P, 2020, J CLEAN PROD, V251, DOI 10.1016/j.jclepro.2019.119435. Graedel T.E., 2011, BRIDGE, V41, P43. Grubler A., ENERGIZING SUSTAINAB. Guo DM, 2019, BUILDINGS-BASEL, V9, DOI 10.3390/buildings9100207. Guo J, 2021, J IND ECOL, V25, P162, DOI 10.1111/jiec.13054. Guo J, 2019, RESOUR CONSERV RECY, V146, P45, DOI 10.1016/j.resconrec.2019.03.031. Haas W, 2015, J IND ECOL, V19, P765, DOI 10.1111/jiec.12244. Haberl H, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9071049. Han J, 2018, ENVIRON SCI TECHNOL, V52, P12122, DOI 10.1021/acs.est.8b03111. Han J, 2018, J CLEAN PROD, V180, P395, DOI 10.1016/j.jclepro.2018.01.168. Han J, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9122312. Hao M, 2020, J CLEAN PROD, V261, DOI 10.1016/j.jclepro.2020.121260. Hardadi G, 2021, J IND ECOL, V25, P95, DOI 10.1111/jiec.13045. Hashimoto S, 2007, WASTE MANAGE, V27, P1725, DOI 10.1016/j.wasman.2006.10.009. Hashimoto S, 2009, WASTE MANAGE, V29, P2859, DOI 10.1016/j.wasman.2009.06.011. Hecht R, 2013, ISPRS INT J GEO-INF, V2, P1066, DOI 10.3390/ijgi2041066. Heeren N, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0021-x. Heeren N, 2019, J IND ECOL, V23, P253, DOI 10.1111/jiec.12739. Heisel F, 2020, J CLEAN PROD, V243, DOI 10.1016/j.jclepro.2019.118482. Hong LX, 2016, ENERG POLICY, V94, P47, DOI 10.1016/j.enpol.2016.03.024. Hu MM, 2010, RESOUR CONSERV RECY, V54, P591, DOI 10.1016/j.resconrec.2009.10.016. Huang C, 2017, RESOUR CONSERV RECY, V123, P47, DOI 10.1016/j.resconrec.2016.06.014. Hudson P, 2018, HIST ENVIRON POLICY, V9, P306, DOI 10.1080/17567505.2018.1542776. Jakob L, 2020, WASTE MANAGE, V113, P154, DOI 10.1016/j.wasman.2020.05.054. Jalali S, 2012, INT SYMP EMP SOFTWAR, P29, DOI 10.1145/2372251.2372257. Jiang XB, 2020, RESOUR CONSERV RECY, V161, DOI 10.1016/j.resconrec.2020.104969. Johansson N, 2013, J CLEAN PROD, V55, P35, DOI 10.1016/j.jclepro.2012.04.007. Kakkos E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125041. Kalt G, 2018, CARBON MANAG, V9, P265, DOI 10.1080/17583004.2018.1469948. Kapur A, 2006, RESOUR CONSERV RECY, V47, P160, DOI 10.1016/j.resconrec.2005.10.007. Kapur A, 2006, ENVIRON SCI TECHNOL, V40, P3135, DOI 10.1021/es0626887. Kennedy C, 2007, J IND ECOL, V11, P43, DOI 10.1162/jie.2007.1107. Kleemann F, 2017, J IND ECOL, V21, P368, DOI 10.1111/jiec.12446. Kleemann F, 2016, BUILD RES INF, V44, P51, DOI 10.1080/09613218.2014.979029. Klinglmair M, 2011, ECOL ECON, V72, P179, DOI 10.1016/j.ecolecon.2011.10.010. Kohler T., 2014, P 25 INT INT FED SUR. Krausmann F, 2020, GLOBAL ENVIRON CHANG, V61, DOI 10.1016/j.gloenvcha.2020.102034. Krausmann F, 2017, P NATL ACAD SCI USA, V114, P1880, DOI 10.1073/pnas.1613773114. Krook J, 2013, J CLEAN PROD, V55, P1, DOI 10.1016/j.jclepro.2013.04.043. Krook J, 2011, J CLEAN PROD, V19, P1052, DOI 10.1016/j.jclepro.2011.01.015. Lanau M, 2021, J IND ECOL, V25, P961, DOI 10.1111/jiec.13110. Lanau M, 2020, ENVIRON SCI TECHNOL, V54, P4675, DOI 10.1021/acs.est.9b07749. Lanau M, 2019, ENVIRON SCI TECHNOL, V53, P8499, DOI 10.1021/acs.est.8b06652. Lederer J, 2016, J IND ECOL, V20, P1320, DOI 10.1111/jiec.12395. Lederer J, 2014, J CLEAN PROD, V84, P368, DOI 10.1016/j.jclepro.2014.05.078. Li FY, 2020, RESOUR CONSERV RECY, V160, DOI 10.1016/j.resconrec.2020.104906. Li SP, 2021, J CLEAN PROD, V290, DOI 10.1016/j.jclepro.2021.125859. Liang HW, 2017, RESOUR CONSERV RECY, V123, P11, DOI 10.1016/j.resconrec.2016.04.001. Lichtensteiger T., 2008, ENVIRON ENG MANAG J, V18, P41. Lieder M, 2016, J CLEAN PROD, V115, P36, DOI 10.1016/j.jclepro.2015.12.042. Lu R.S., 2019, P INT ARCH PHOT REM, P623, DOI {[}10.5194/isprs-archives-XLII-3-W10-623-2020, DOI 10.5194/ISPRS-ARCHIVES-XLII-3-W10-623-2020]. Luscuere LM, 2017, PROC INST CIV ENG-WA, V170, P25, DOI 10.1680/jwarm.16.00016. Marcellus-Zamora KA, 2016, J IND ECOL, V20, P1025, DOI 10.1111/jiec.12327. Marinova S, 2020, J CLEAN PROD, V247, DOI 10.1016/j.jclepro.2019.119146. Mastrucci A, 2017, RESOUR CONSERV RECY, V123, P54, DOI 10.1016/j.resconrec.2016.07.003. McDonough W., 2002, INT HDB ENV TECHNOLO, P33. Meinel G, 2009, BUILD RES INF, V37, P468, DOI 10.1080/09613210903159833. Merli R, 2018, J CLEAN PROD, V178, P703, DOI 10.1016/j.jclepro.2017.12.112. Merschroth S, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030834. Mesta C, 2019, J IND ECOL, V23, P280, DOI 10.1111/jiec.12723. Meylan G, 2017, RESOUR CONSERV RECY, V123, P1, DOI 10.1016/j.resconrec.2016.01.006. Miatto A, 2019, RESOUR CONSERV RECY, V142, P245, DOI 10.1016/j.resconrec.2018.12.011. Miatto A, 2017, RESOUR CONSERV RECY, V127, P168, DOI 10.1016/j.resconrec.2017.08.024. Miatto A, 2017, RESOUR CONSERV RECY, V122, P143, DOI 10.1016/j.resconrec.2017.01.015. Muller DB, 2004, J IND ECOL, V8, P65, DOI 10.1162/1088198042442342. Muller DB, 2011, ENVIRON SCI TECHNOL, V45, P182, DOI 10.1021/es102273t. Muller E, 2014, ENVIRON SCI TECHNOL, V48, P2102, DOI 10.1021/es403506a. Muller DB, 2006, P NATL ACAD SCI USA, V103, P16111, DOI 10.1073/pnas.0603375103. Muller DB, 2006, ECOL ECON, V59, P142, DOI 10.1016/j.ecolecon.2005.09.025. Muller DB, 2013, ENVIRON SCI TECHNOL, V47, P11739, DOI 10.1021/es402618m. Murray A, 2017, J BUS ETHICS, V140, P369, DOI 10.1007/s10551-015-2693-2. Nakamura T., 2015, SPRINGERBRIEFS APPL, P7, DOI {[}10.1007/978-4-431-55075-4\_2, DOI 10.1007/978-4-431-55075-4\_2]. Newell JP, 2015, PROG HUM GEOG, V39, P702, DOI 10.1177/0309132514558442. Noll D, 2019, RESOUR CONSERV RECY, V150, DOI 10.1016/j.resconrec.2019.104405. Oezdemir O, 2017, BUILDINGS, V7, DOI 10.3390/buildings7020045. Olaya Y, 2017, RESOUR CONSERV RECY, V123, P187, DOI 10.1016/j.resconrec.2016.09.028. Ortlepp R, 2016, BUILD RES INF, V44, P840, DOI 10.1080/09613218.2016.1112096. Pacione M, 2010, EC CITIES. Park J.K., 2017, ADV RECYCLING WASTE, V2, P4. Pauliuk S, 2015, ECOL ECON, V119, P83, DOI 10.1016/j.ecolecon.2015.08.012. Pauliuk S, 2014, GLOBAL ENVIRON CHANG, V24, P132, DOI 10.1016/j.gloenvcha.2013.11.006. Pauliuk S, 2013, RESOUR CONSERV RECY, V71, P22, DOI 10.1016/j.resconrec.2012.11.008. Pauliuk S, 2012, ENVIRON SCI TECHNOL, V46, P148, DOI 10.1021/es201904c. Peled Y, 2021, RESOUR CONSERV RECY, V169, DOI 10.1016/j.resconrec.2021.105509. Pfaff M, 2018, RESOUR CONSERV RECY, V139, P205, DOI 10.1016/j.resconrec.2018.08.017. Qi J, 2016, RES SER CHIN DREAM, P1, DOI 10.1007/978-981-10-2466-5. Rauch JN, 2009, P NATL ACAD SCI USA, V106, P18920, DOI 10.1073/pnas.0900658106. Risbol O, 2018, ARCHAEOL PROSPECT, V25, P329, DOI 10.1002/arp.1712. Rose CM, 2019, P I CIVIL ENG-ENG SU, V172, P129, DOI 10.1680/jensu.17.00074. Sandberg NH, 2017, ENERG BUILDINGS, V146, P220, DOI 10.1016/j.enbuild.2017.04.016. Sandberg NH, 2011, BUILD RES INF, V39, P1, DOI 10.1080/09613218.2010.528186. Sauve S, 2016, ENVIRON DEV, V17, P48, DOI 10.1016/j.envdev.2015.09.002. SAVAGE GM, 1993, BIOCYCLE, V34, P58. Schaffartzik A, 2019, ECOL ECON, V163, P9, DOI 10.1016/j.ecolecon.2019.05.008. Schandl H, 2020, J CLEAN PROD, V265, DOI 10.1016/j.jclepro.2020.121770. Schandl H, 2019, DATA BRIEF, V22, P662, DOI 10.1016/j.dib.2018.12.072. Schebek L, 2017, RESOUR CONSERV RECY, V123, P24, DOI 10.1016/j.resconrec.2016.06.001. Schiller G, 2019, J IND ECOL, V23, P796, DOI 10.1111/jiec.12817. Schiller G, 2017, RESOUR CONSERV RECY, V123, P93, DOI 10.1016/j.resconrec.2016.08.007. Simoni M, 2015, WASTE MANAGE, V45, P10, DOI 10.1016/j.wasman.2015.06.045. Song LL, 2020, J ENVIRON MANAGE, V271, DOI 10.1016/j.jenvman.2020.111035. Song LL, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121393. Song LL, 2019, ECOSYST HEALTH SUST, V5, P110, DOI 10.1080/20964129.2019.1598780. Streeck J, 2020, RESOUR CONSERV RECY, V161, DOI 10.1016/j.resconrec.2020.104960. Surahman U, 2017, J MATER CYCLES WASTE, V19, P657, DOI 10.1007/s10163-015-0460-1. Symmes R, 2020, J IND ECOL, V24, P369, DOI 10.1111/jiec.12853. Tabata T, 2020, INT J DISAST RISK RE, V51, DOI 10.1016/j.ijdrr.2020.101922. Tabata T, 2018, RESOUR CONSERV RECY, V133, P86, DOI 10.1016/j.resconrec.2018.02.012. Takahashi KI, 2010, RESOUR CONSERV RECY, V55, P196, DOI 10.1016/j.resconrec.2010.09.008. Tanikawa H, 2015, J IND ECOL, V19, P778, DOI 10.1111/jiec.12284. Tanikawa H, 2014, J IND ECOL, V18, P421, DOI 10.1111/jiec.12126. Tanikawa H, 2009, BUILD RES INF, V37, P483, DOI 10.1080/09613210903169394. UNEP, BRIDG EM GAP UNEP SY. UNEP, 2010, ASS GLOB MET FLOWS M. van Beers D, 2007, J CLEAN PROD, V15, P849, DOI 10.1016/j.jclepro.2006.06.022. van Ruijven BJ, 2016, RESOUR CONSERV RECY, V112, P15, DOI 10.1016/j.resconrec.2016.04.016. Vasquez F, 2016, ENERG BUILDINGS, V111, P37, DOI 10.1016/j.enbuild.2015.11.018. Vilaysouk X, 2021, RESOUR CONSERV RECY, V170, DOI 10.1016/j.resconrec.2021.105608. Volk R, 2014, AUTOMAT CONSTR, V38, P109, DOI 10.1016/j.autcon.2013.10.023. Wallsten B, 2015, RESOUR CONSERV RECY, V103, P85, DOI 10.1016/j.resconrec.2015.07.025. Wallsten B, 2013, J CLEAN PROD, V55, P103, DOI 10.1016/j.jclepro.2012.05.041. Wang HY, 2019, J CLEAN PROD, V228, P1446, DOI 10.1016/j.jclepro.2019.04.341. Wang T, 2016, J IND ECOL, V20, P1349, DOI 10.1111/jiec.12383. Wang T, 2015, J IND ECOL, V19, P877, DOI 10.1111/jiec.12319. Wen ZG, 2015, J IND ECOL, V19, P1091, DOI 10.1111/jiec.12271. Wiedenhofer D, 2015, J IND ECOL, V19, P538, DOI 10.1111/jiec.12216. Wittmer D, 2007, WASTE MANAGE RES, V25, P220, DOI 10.1177/0734242X07079183. WOLMAN A, 1965, SCI AM, V213, P179. Wuyts W, 2019, J CLEAN PROD, V231, P660, DOI 10.1016/j.jclepro.2019.05.258. Yang D, 2020, RESOUR CONSERV RECY, V159, DOI 10.1016/j.resconrec.2020.104824. Yang JH, 2020, RESOUR CONSERV RECY, V155, DOI {[}10.1016/resconrec.2019.104668, 10.1016/j.resconrec.2019.104668]. Yang W, 2008, BUILD RES INF, V36, P1, DOI 10.1080/09613210701702883. Yu BL, 2018, ENVIRON SCI TECHNOL, V52, P11520, DOI 10.1021/acs.est.8b02838. Zhang T, 2019, STRUCT CHANGE ECON D, V51, P24, DOI 10.1016/j.strueco.2019.06.014. Zhu X, 2017, RESOUR CONSERV RECY, V120, P27, DOI 10.1016/j.resconrec.2017.01.002. Zhu X, 2016, J SUSTAIN METALL, V2, P304, DOI 10.1007/s40831-016-0049-5.}, Number-of-Cited-References = {190}, Times-Cited = {4}, Usage-Count-Last-180-days = {20}, Usage-Count-Since-2013 = {57}, Journal-ISO = {BUILDINGS-BASEL}, Doc-Delivery-Number = {UV7TA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000699674500001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000940073700001, Author = {Yan, Yuna and Zhang, Na and Zhang, Han}, Title = {Applications of Advanced Technologies in the Development of Urban Flood Models}, Journal = {WATER}, Year = {2023}, Volume = {15}, Number = {4}, Month = {FEB}, Abstract = {Over the past 10 years, urban floods have increased in frequency because of extreme rainfall events and urbanization development. To reduce the losses caused by floods, various urban flood models have been developed to realize urban flood early warning. Using CiteSpace software's co-citation analysis, this paper reviews the characteristics of different types of urban flood models and summarizes state-of-the-art technologies for flood model development. Artificial intelligence (AI) technology provides an innovative approach to the construction of data-driven models; nevertheless, developing an AI model coupled with flooding processes represents a worthwhile challenge. Big data (such as remote sensing, crowdsourcing geographic, and Internet of Things data), as well as spatial data management and analysis methods, provide critical data and data processing support for model construction, evaluation, and application. The further development of these models and technologies is expected to improve the accuracy and efficiency of urban flood simulations and provide support for the construction of a multi-scale distributed smart flood simulation system.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Zhang, N (Corresponding Author), Univ Chinese Acad Sci, Coll Resources \& Environm, Beijing 100049, Peoples R China. Zhang, N (Corresponding Author), Univ Chinese Acad Sci, Beijing Yanshan Earth Crit Zone Natl Res Stn, Beijing 101408, Peoples R China. Yan, Yuna; Zhang, Na; Zhang, Han, Univ Chinese Acad Sci, Coll Resources \& Environm, Beijing 100049, Peoples R China. Zhang, Na, Univ Chinese Acad Sci, Beijing Yanshan Earth Crit Zone Natl Res Stn, Beijing 101408, Peoples R China.}, DOI = {10.3390/w15040622}, Article-Number = {622}, EISSN = {2073-4441}, Keywords = {artificial intelligence technology; remote sensing; crowdsourcing geographic data; Internet of Things; spatial data management and analysis; distributed smart flood simulation system}, Keywords-Plus = {SYNTHETIC-APERTURE RADAR; SOIL-MOISTURE RETRIEVAL; REMOTE-SENSING DATA; REAL-TIME; ARTIFICIAL-INTELLIGENCE; INUNDATION; AREAS; INFORMATION; PREDICTION; MANAGEMENT}, Research-Areas = {Environmental Sciences \& Ecology; Water Resources}, Web-of-Science-Categories = {Environmental Sciences; Water Resources}, Author-Email = {zhangna@ucas.ac.cn}, Affiliations = {Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS}, Funding-Acknowledgement = {Beijing Natural Science Foundation {[}8181001]; Special Fund for Scientific Research Cooperation between Colleges and Institutes of the University of Chinese Academy of Sciences {[}Y65201NY00]}, Funding-Text = {This research was supported by the Beijing Natural Science Foundation {[}8181001] and the Special Fund for Scientific Research Cooperation between Colleges and Institutes of the University of Chinese Academy of Sciences {[}Y65201NY00].}, Cited-References = {Abdulkareem JH, 2018, MODEL EARTH SYST ENV, V4, P1577, DOI 10.1007/s40808-018-0509-y. Agarwal S., 2020, INDIAN J ECOL, V47, P48. Agudelo-Otalora LM, 2018, TECNOL CIENC AGUA, V9, P209, DOI 10.24850/j-tyca-2018-04-09. Anni AH, 2020, J HYDROL, V588, DOI 10.1016/j.jhydrol.2020.125028. {[}Anonymous], 2016, HEC RAS RIVER ANAL S. {[}Anonymous], 2018, EM DAT INT DISASTER. {[}Anonymous], 2012, INFOWORKS ICM VERS 3. ANSELIN L, 1992, ANN REGIONAL SCI, V26, P19, DOI 10.1007/BF01581478. Berkhahn S, 2019, J HYDROL, V575, P743, DOI 10.1016/j.jhydrol.2019.05.066. Bermudez M, 2019, J FLOOD RISK MANAG, V12, DOI 10.1111/jfr3.12522. Bhatt C., 2022, GEOSPATIAL TECHNOLOG, P457. Bioucas-Dias JM, 2013, IEEE GEOSC REM SEN M, V1, P6, DOI 10.1109/MGRS.2013.2244672. Bisht DS, 2016, NAT HAZARDS, V84, P749, DOI 10.1007/s11069-016-2455-1. BLOSCHL G, 1995, HYDROL PROCESS, V9, P251, DOI 10.1002/hyp.3360090305. Brakenridge GR, 2007, WATER RESOUR RES, V43, DOI 10.1029/2006WR005238. Brakenridge R, 2006, NATO SCI S SS IV EAR, V72, P1. Carbone D., 2012, AUSTR GEOGRAPHI 0308. Chang DL, 2020, WATER-SUI, V12, DOI 10.3390/w12123552. Chang MJ, 2018, WATER-SUI, V10, DOI 10.3390/w10121734. Chapi K, 2017, ENVIRON MODELL SOFTW, V95, P229, DOI 10.1016/j.envsoft.2017.06.012. Chen GZ, 2020, FRONT EARTH SC-SWITZ, V8, DOI 10.3389/feart.2020.545612. {[}陈书林 Chen Shulin], 2012, {[}地球科学进展, Advance in Earth Sciences], V27, P1192. Chen Y., 2022, ARXIV. Chen YH, 2009, ADV SPACE RES, V43, P1101, DOI 10.1016/j.asr.2008.11.008. Chen YT, 2020, IEEE T GEOSCI REMOTE, V58, P5932, DOI 10.1109/TGRS.2020.2973171. Cheng JY, 2020, INTERNATIONAL LOW IMPACT DEVELOPMENT CONFERENCE 2020 - SETTING THE VISION FOR THE NEXT TWENTY YEARS, P188. Colomina I, 2014, ISPRS J PHOTOGRAMM, V92, P79, DOI 10.1016/j.isprsjprs.2014.02.013. Cristiano E, 2017, HYDROL EARTH SYST SC, V21, P3859, DOI 10.5194/hess-21-3859-2017. Deng JS, 2009, LANDSCAPE URBAN PLAN, V92, P187, DOI 10.1016/j.landurbplan.2009.05.001. Dhaya R, 2022, EARTH SCI INFORM, V15, P1407, DOI 10.1007/s12145-022-00817-4. DHI, 2011, COLL SYST US GUID. Dungan JL, 2002, ECOGRAPHY, V25, P626, DOI 10.1034/j.1600-0587.2002.250510.x. Ejikeme J., 2017, INT J INNOV RES SCI, V4, P634, DOI {[}10.21276/ijirem.2017.4.2.5, DOI 10.21276/IJIREM.2017.4.2.5]. Fan YY, 2017, ADV METEOROL, V2017, DOI 10.1155/2017/2819308. Farooq M, 2019, NAT HAZARDS, V97, P477, DOI 10.1007/s11069-019-03638-9. Felsberger L, 2018, Arxiv. Feng C.-H., 2022, THESIS U CHINESE ACA. Feng CH, 2021, ECOSYST HEALTH SUST, V7, DOI 10.1080/20964129.2021.1994885. Feng QL, 2015, WATER-SUI, V7, P1437, DOI 10.3390/w7041437. Filonenko A, 2015, IEEE IND ELEC, P4082, DOI 10.1109/IECON.2015.7392736. Fohringer J, 2015, NAT HAZARD EARTH SYS, V15, P2725, DOI 10.5194/nhess-15-2725-2015. Furht B., 2016, BIG DATA TECHNOLOGIE, P3. Gao W, 2018, ENVIRON MONIT ASSESS, V190, DOI 10.1007/s10661-018-6499-4. Gashaw T, 2019, ENVIRON EARTH SCI, V78, DOI 10.1007/s12665-019-8726-x. Gericke OJ, 2012, J S AFR INST CIV ENG, V54, P15. Giannaros C, 2022, METEOROL APPL, V29, DOI 10.1002/met.2079. Giustarini L, 2011, HYDROL EARTH SYST SC, V15, P2349, DOI 10.5194/hess-15-2349-2011. Goyal HR, 2021, MATER TODAY-PROC, V46, P10411, DOI 10.1016/j.matpr.2020.12.947. Guidolin M, 2016, ENVIRON MODELL SOFTW, V84, P378, DOI 10.1016/j.envsoft.2016.07.008. Guo J, 2020, ENVIRON RES, V188, DOI 10.1016/j.envres.2020.109822. He XC, 2021, BUILD ENVIRON, V206, DOI 10.1016/j.buildenv.2021.108383. Hou JM, 2021, NAT HAZARDS, V108, P2335, DOI 10.1007/s11069-021-04782-x. Huang F, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16050763. Hulley GC, 2010, REMOTE SENS ENVIRON, V114, P1480, DOI 10.1016/j.rse.2010.02.002. Hunter NM, 2007, GEOMORPHOLOGY, V90, P208, DOI 10.1016/j.geomorph.2006.10.021. Jamali B, 2019, WATER RESOUR RES, V55, P4936, DOI 10.1029/2018WR023679. Jamali B, 2018, J HYDROL, V564, P1085, DOI 10.1016/j.jhydrol.2018.07.064. Jiang Y, 2018, ENVIRON SCI POLICY, V80, P132, DOI 10.1016/j.envsci.2017.11.016. Jimenez-Jimenez SI, 2020, GEOMAT NAT HAZ RISK, V11, P906, DOI 10.1080/19475705.2020.1760360. {[}景学义 Jing Xueyi], 2009, {[}灾害学, Journal of Catastrophology], V24, P54. Kaliraj S, 2012, BONFRING INT J IND E, V2, P32. Kazamias AP, 2022, ATMOS RES, V269, DOI 10.1016/j.atmosres.2021.106014. Ke Q, 2020, ADV WATER RESOUR, V145, DOI 10.1016/j.advwatres.2020.103719. Khosravi K, 2020, J HYDROL, V591, DOI 10.1016/j.jhydrol.2020.125552. Kidd C, 2011, HYDROL EARTH SYST SC, V15, P1109, DOI 10.5194/hess-15-1109-2011. Koks EE, 2022, NAT HAZARD EARTH SYS, V22, P3831, DOI 10.5194/nhess-22-3831-2022. Kornelsen KC, 2013, J HYDROL, V476, P460, DOI 10.1016/j.jhydrol.2012.10.044. KUMMEROW C, 1994, J APPL METEOROL, V33, P3, DOI 10.1175/1520-0450(1994)033\<0003:APMTFE\>2.0.CO;2. Le Maitre DC, 2014, LAND USE POLICY, V36, P171, DOI 10.1016/j.landusepol.2013.07.007. Li J, 2017, P IEEE, V105, P1900, DOI 10.1109/JPROC.2017.2684460. Li XL, 2014, CHIN CONTR CONF, P6375, DOI 10.1109/ChiCC.2014.6896038. Lin Q, 2020, FRONT EARTH SC-SWITZ, V8, DOI 10.3389/feart.2020.00332. Lin YN, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11151778. Liu B., 2017, DEV MARINE GEOL, V24, P103. Lowe R, 2021, J HYDROL, V603, DOI 10.1016/j.jhydrol.2021.126898. Ma HD, 2011, J COMPUT SCI TECH-CH, V26, P919, DOI 10.1007/s11390-011-1189-5. Ma MH, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12121954. Mason DC, 2014, INT J APPL EARTH OBS, V28, P150, DOI 10.1016/j.jag.2013.12.002. McGarigal K., 1995, General Technical Report - Pacific Northwest Research Station, USDA Forest Service. MCGINNIS DF, 1975, GEOPHYS RES LETT, V2, P132, DOI 10.1029/GL002i004p00132. Mignot E, 2019, J HYDROL, V568, P334, DOI 10.1016/j.jhydrol.2018.11.001. Mu Q, 2007, REMOTE SENS ENVIRON, V111, P519, DOI 10.1016/j.rse.2007.04.015. Niazi M, 2017, J SUSTAIN WATER BUIL, V3, DOI {[}10.1061/jswbay.0000817, 10.1061/JSWBAY.0000817]. Njoku EG, 2003, IEEE T GEOSCI REMOTE, V41, P215, DOI 10.1109/TGRS.2002.808243. Pender G, 2006, P I CIVIL ENG-WAT M, V159, P3, DOI 10.1680/wama.2006.159.1.3. Nguyen PKT, 2012, HYDROL PROCESS, V26, P2878, DOI 10.1002/hyp.8347. Piegay H, 2020, EARTH SURF PROC LAND, V45, P157, DOI 10.1002/esp.4787. Poser K., 2010, GEOMATICA, V64, P89, DOI DOI 10.1088/1755-1315/57/1/012015. Qi L, 2019, IEEE J-STARS, V12, P4252, DOI 10.1109/JSTARS.2019.2908515. Qi M, 2020, APPL GEOGR, V125, DOI 10.1016/j.apgeog.2020.102362. Qi WC, 2021, NAT HAZARDS, V108, P31, DOI 10.1007/s11069-021-04715-8. Qiu J., 2012, NATURE, V10, P11086, DOI {[}10.1038/nature.2012.11086, DOI 10.1038/NATURE.2012.11086]. Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045. Rees W. G., 2013, PHYS PRINCIPLES REMO. {[}任伯帜 REN Bozhi], 2006, {[}中国给水排水, China Water \& Wastewater], V22, P39. Rong YT, 2020, J HYDROL, V584, DOI 10.1016/j.jhydrol.2019.124308. Rossman L.A., 2016, STORM WATER MANAGEME. Rossman L. A, 2004, J WATER MANAGEMENT M, DOI {[}10.14796/JWMM.R220-16, DOI 10.14796/JWMM.R220-16]. Salles L, 2019, WATER-SUI, V11, DOI 10.3390/w11040668. Salvadore E, 2015, J HYDROL, V529, P62, DOI 10.1016/j.jhydrol.2015.06.028. Serban G, 2016, NAT HAZARDS, V82, P1817, DOI 10.1007/s11069-016-2266-4. Sidek LM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810259. {[}宋利祥 Song Lixiang], 2019, {[}北京师范大学学报. 自然科学版, Journal of Beijing Normal University. Natural Science], V55, P581. Stefanidis S, 2022, HYDROLOGY-BASEL, V9, DOI 10.3390/hydrology9080145. Sui D., 2012, CROWDSOURCING GEOGRA. Tao LL, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13010122. Task Force on Urban Flooding Problem and Solution Investigation (TFUFPSI), 2014, CHINA FLOODS DROUGHT, V24, P65. Tegos A, 2022, HYDROLOGY-BASEL, V9, DOI 10.3390/hydrology9050093. Teng J, 2017, ENVIRON MODELL SOFTW, V90, P201, DOI 10.1016/j.envsoft.2017.01.006. Contreras MT, 2020, NAT HAZARD EARTH SYS, V20, P3261, DOI 10.5194/nhess-20-3261-2020. Tian Y, 2018, WATER-SUI, V10, DOI 10.3390/w10111655. Todini E., 2006, P WATER DISTRIBUTION, P1, DOI DOI 10.1061/40941(247)75. Van Ackere S, 2019, WATER-SUI, V11, DOI 10.3390/w11112275. Varma A.K., 2018, REMOTE SENSING AEROS, P223. Verma AK, 2010, PADDY WATER ENVIRON, V8, P131, DOI 10.1007/s10333-009-0192-8. Wang H, 2018, J QUANT SPECTROSC RA, V219, P74, DOI 10.1016/j.jqsrt.2018.08.011. Wang Q.-C., 2013, J ARID METEOROL, V31, P609. Wei M, 2020, WATER SCI TECHNOL, V82, P1921, DOI 10.2166/wst.2020.477. Wu WL, 2021, ENVIRON SCI POLLUT R, V28, P31814, DOI 10.1007/s11356-021-12596-4. Wu ZN, 2020, WATER SUPPLY, V20, P408, DOI 10.2166/ws.2019.171. {[}徐宗学 Xu Zongxue], 2018, {[}科学通报, Chinese Science Bulletin], V63, P2156. Yadav Vijay Pratap, 2022, IEEE Geoscience and Remote Sensing Letters, V19, DOI 10.1109/LGRS.2020.3034420. Ye M.-H., 2021, SHANGHAI INSUR, V08, P18. Ye X., 2021, COMPUTURBAN SCI, V1, P11, DOI {[}10.1007/s43762-021-00011-0, DOI 10.1007/S43762-021-00011-0]. Yue M.-L., 2019, THESIS N CHINA U WAT. Zanchetta ADL, 2020, WATER-SUI, V12, DOI 10.3390/w12020570. Zhang N, 2018, ECOL ENG, V125, P11, DOI 10.1016/j.ecoleng.2018.10.008. Zhang N, 2011, INT J GEOGR INF SCI, V25, P1525, DOI 10.1080/13658816.2010.532134. {[}张娜 ZHANG Na], 2007, {[}生态学报, Acta Ecologica Sinica], V27, P4252. {[}张娜 ZHANG Na], 2006, {[}生态学报, Acta Ecologica Sinica], V26, P2340. Zhang Y, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9101029. Zhao LL, 2019, J GEOGR SCI, V29, P1039, DOI 10.1007/s11442-019-1643-9. {[}周鹏 Zhou Peng], 2010, {[}遥感学报, Journal of Remote Sensing], V14, P959. Zhu ZD, 2016, ENVIRON MODELL SOFTW, V77, P63, DOI 10.1016/j.envsoft.2015.11.014. Zhu ZJ, 2017, J WATER MANAG MODELL, V26, DOI 10.14796/JWMM.C433. Zou Y.-J., 2013, SCI SURV MAPP, V38, P5. Zounemat-Kermani M, 2020, J HYDROL, V588, DOI 10.1016/j.hydrol.2020.125085.}, Number-of-Cited-References = {137}, Times-Cited = {0}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Water}, Doc-Delivery-Number = {9J3EE}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000940073700001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000788276000001, Author = {Deng, Tianhu and Zhang, Keren and Shen, Zuo-Jun (Max)}, Title = {A systematic review of a digital twin city: A new pattern of urban governance toward smart cities}, Journal = {JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING}, Year = {2021}, Volume = {6}, Number = {2}, Pages = {125-134}, Month = {JUN}, Abstract = {Many countries and governments consider smart cities a solution to global warming, population growth, and resource depletion. Numerous challenges arise while creating a smart city. Digital twins, along with the Internet of Things, fifth-generation wireless systems, blockchain, collaborative computing, simulation, and artificial intelligence technologies, offer great potential in the transformation of the current urban governance paradigm toward smart cities. In this paper, the concept of a digital twin city (DTC) is proposed. The characteristics, key technologies, and application scenarios of a DTC are elaborated upon. Further, we discuss the theories, research directions, and framework regarding DTCs. (c) 2021 China Science Publishing \& Media Ltd. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, Publisher = {SCIENCE PRESS}, Address = {16 DONGHUANGCHENGGEN NORTH ST, BEIJING, 100717, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Deng, TH (Corresponding Author), Tsinghua Univ, Beijing 100084, Peoples R China. Deng, Tianhu; Zhang, Keren; Shen, Zuo-Jun (Max), Tsinghua Univ, Beijing 100084, Peoples R China. Shen, Zuo-Jun (Max), Univ Calif Berkeley, Berkeley, CA 94720 USA.}, DOI = {10.1016/j.jmse.2021.03.003}, ISSN = {2096-2320}, EISSN = {2589-5532}, Keywords = {Digital twin; Smart city; Urban governance; IoT; Blockchain}, Keywords-Plus = {INFORMATION; INTERNET; FUTURE; RECONSTRUCTION; SUSTAINABILITY; FRAMEWORK; IOT}, Research-Areas = {Business \& Economics; Operations Research \& Management Science}, Web-of-Science-Categories = {Business, Finance; Economics; Management; Operations Research \& Management Science}, Author-Email = {deng13@tsinghua.edu.cn}, Affiliations = {Tsinghua University; University of California System; University of California Berkeley}, Cited-References = {Alavi AH, 2018, MEASUREMENT, V129, P589, DOI 10.1016/j.measurement.2018.07.067. Albino V, 2015, J URBAN TECHNOL, V22, P3, DOI 10.1080/10630732.2014.942092. Angelidou M, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1348880. {[}Anonymous], 2016, MECHATRONIC FUTURES, DOI DOI 10.1007/978-3-319-32156-1\_5. Bagloee SA, 2019, INTERNET THINGS-NETH, V8, DOI 10.1016/j.iot.2019.100103. Behrad S, 2020, FUTURE GENER COMP SY, V108, P46, DOI 10.1016/j.future.2020.02.014. Beretta Filipe, 2018, REM, Int. Eng. J., V71, P463, DOI 10.1590/0370-44672017710074. Bibri SE, 2018, SUSTAIN CITIES SOC, V38, P230, DOI 10.1016/j.scs.2017.12.034. Bifulco F, 2016, INT J PUBLIC SECT MA, V29, P132, DOI 10.1108/IJPSM-07-2015-0132. Cao WP, 2020, REMOTE SENS ENVIRON, V241, DOI 10.1016/j.rse.2020.111730. Caragliu A, 2019, TECHNOL FORECAST SOC, V142, P373, DOI 10.1016/j.techfore.2018.07.022. Cavada M, 2019, SMART CITY EMERGENCE: CASES FROM AROUND THE WORLD, P295, DOI 10.1016/B978-0-12-816169-2.00014-6. Chen K, 2018, AUTOMAT CONSTR, V93, P22, DOI 10.1016/j.autcon.2018.05.009. Chen Y., 2020, J BUS VENTURING INSI, V13, DOI DOI 10.1016/J.JBVI.2019.E00151. Chourabi H., 2012, 2012 45th Hawaii International Conference on System Sciences (HICSS), P2289, DOI 10.1109/HICSS.2012.615. Christidis K, 2016, IEEE ACCESS, V4, P2292, DOI 10.1109/ACCESS.2016.2566339. Cocchia A, 2014, PROGR IS, P13, DOI 10.1007/978-3-319-06160-3\_2. Das S, 2018, MEASUREMENT, V129, P68, DOI 10.1016/j.measurement.2018.07.008. el Meouche R, 2016, INT ARCH PHOTOGRAMME, V42, DOI {[}10.5194/isprs-archives-XLII-2-W2-107-2016, DOI 10.5194/ISPRS-ARCHIVES-XLII-2-W2-107-2016]. Fan C, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000745. Gao ZG, 2017, INT ARCH PHOTOGRAMM, V42-2, P121, DOI 10.5194/isprs-archives-XLII-2-W6-121-2017. Glaessgen EH, 2012, 53 AIAAASMEASCEAHSAS, DOI DOI 10.2514/6.2012-1818. Grieves M., 2017, TRANSDISCIPLINARY PE, P85, DOI 10.1007/978-3-319-38756-7\_4. Grimaldi Didier, 2019, Journal of High Technology Management Research, V30, P27, DOI 10.1016/j.hitech.2018.12.003. Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010. Haklay M, 2010, ENVIRON PLANN B, V37, P682, DOI 10.1068/b35097. Ham Y, 2020, J MANAGE ENG, V36, DOI {[}10.1061/(ASCE)ME.1943-5479.0000748, 10.17232/KSET.36.1.001]. Hossain SKA, 2018, J PARALLEL DISTR COM, V122, P226, DOI 10.1016/j.jpdc.2018.08.009. Kavitha BC, 2020, MICROPROCESS MICROSY, V74, DOI 10.1016/j.micpro.2020.103021. Lee JH, 2014, TECHNOL FORECAST SOC, V89, P80, DOI 10.1016/j.techfore.2013.08.033. Li L, 2019, CR GEOSCI, V351, P508, DOI 10.1016/j.crte.2019.09.004. Li M, 2019, COMPUT IND ENG, V135, P950, DOI 10.1016/j.cie.2019.07.003. Lu QC, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000763. Ma ZL, 2018, ADV ENG INFORM, V37, P163, DOI 10.1016/j.aei.2018.05.005. Mergel I, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.06.002. Mistry I, 2020, MECH SYST SIGNAL PR, V135, DOI 10.1016/j.ymssp.2019.106382. Mohammadi N, 2017, 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI). Nikoohemat S, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103109. O'Brien P, 2019, PROG PLANN, V132, DOI 10.1016/j.progress.2018.02.001. Olsen TL, 2020, M\&SOM-MANUF SERV OP, V22, P113, DOI 10.1287/msom.2019.0796. Perera S, 2020, J IND INF INTEGR, V17, DOI 10.1016/j.jii.2020.100125. Qi QL, 2021, J MANUF SYST, V58, P3, DOI 10.1016/j.jmsy.2019.10.001. Tao F., 2019, DIGITAL TWIN DRIVEN, P111. Tao F, 2019, INT J PROD RES, V57, P3935, DOI 10.1080/00207543.2018.1443229. Tao F, 2017, IEEE ACCESS, V5, P20418, DOI 10.1109/ACCESS.2017.2756069. Tilson D, 2010, INFORM SYST RES, V21, P748, DOI 10.1287/isre.1100.0318. Vojnovic I, 2014, CITIES, V41, pS30, DOI 10.1016/j.cities.2014.06.002. Xu X, 2012, ROBOT CIM-INT MANUF, V28, P75, DOI 10.1016/j.rcim.2011.07.002. Xue F, 2018, AUTOMAT CONSTR, V93, P241, DOI 10.1016/j.autcon.2018.05.023. Yao H, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11121443. Yu CY, 2020, ROBOT CIM-INT MANUF, V64, DOI 10.1016/j.rcim.2019.101931. Zhang XQ, 2016, HABITAT INT, V54, P241, DOI 10.1016/j.habitatint.2015.11.018. Zhao ZH, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2020.101044. Zheng CJ, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120689. Zheng Y, 2019, J AMB INTEL HUM COMP, V10, P1141, DOI 10.1007/s12652-018-0911-3. Zheng ZB, 2017, IEEE INT CONGR BIG, P557, DOI 10.1109/BigDataCongress.2017.85. Zhou Y, 2019, ADV ENG INFORM, V42, DOI 10.1016/j.aei.2019.100961. Zhuang CB, 2018, INT J ADV MANUF TECH, V96, P1149, DOI 10.1007/s00170-018-1617-6.}, Number-of-Cited-References = {58}, Times-Cited = {63}, Usage-Count-Last-180-days = {42}, Usage-Count-Since-2013 = {75}, Journal-ISO = {J. Manag. Sci. Eng.}, Doc-Delivery-Number = {0V3WG}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000788276000001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000803500600006, Author = {Noaeen, Mohammad and Naik, Atharva and Goodman, Liana and Crebo, Jared and Abrar, Taimoor and Abad, Zahra Shakeri Hossein and Bazzan, Ana L. C. and Far, Behrouz}, Title = {Reinforcement learning in urban network traffic signal control: A systematic literature review}, Journal = {EXPERT SYSTEMS WITH APPLICATIONS}, Year = {2022}, Volume = {199}, Month = {AUG 1}, Abstract = {Improvement of traffic signal control (TSC) efficiency has been found to lead to improved urban transportation and enhanced quality of life. Recently, the use of reinforcement learning (RL) in various areas of TSC has gained significant traction; thus, we conducted a systematic literature review as a systematic, comprehensive, and reproducible review to dissect all the existing research that applied RL in the network-level TSC domain, called as RL in NTSC or RL-NTSC for brevity. The review only targeted the network-level articles that tested the proposed methods in networks with two or more intersections. This review covers 160 peer-reviewed articles from 30 countries published from 1994 to March 2020. The goal of this study is to provide the research community with statistical and conceptual knowledge, summarize existence evidence, characterize RL applications in NTSC domains, explore all applied methods and major first events in the defined scope, and identify areas for further research based on the explored research problems in current research. We analyzed the extracted data from the included articles in the following seven categories: (i) publication and authors' data, (ii) method identification and analysis, (iii) environment attributes and traffic simulation, (iv) application domains of RL-NTSC, (v) major first events of RL-NTSC and authors' key statements, (vi) code availability, and (vii) evaluation. This paper provides a comprehensive view of the past 26 years of research on applying RL to NTSC. It also reveals the role of advancing deep learning methods in the revival of the research area, the rise of using non-commercial microscopic traffic simulators, a lack of interaction between traffic and transportation engineering practitioners and researchers, and a lack of proposal and creation of testbeds which can likely bring different communities together around common goals.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Noaeen, M (Corresponding Author), Harvard Univ, Harvard Business Sch, Boston, MA 02115 USA. Noaeen, Mohammad, Harvard Univ, Harvard Business Sch, Boston, MA 02115 USA. Noaeen, Mohammad, Univ Toronto, Dept Civil \& Mineral Engn, Toronto, ON, Canada. Naik, Atharva; Goodman, Liana; Abrar, Taimoor; Far, Behrouz, Univ Calgary, Dept Elect \& Software Engn, Calgary, AB, Canada. Crebo, Jared, Univ Calgary, Dept Mech \& Mfg Engn, Calgary, AB, Canada. Crebo, Jared, Univ Calgary, Dept Phys \& Astron, Calgary, AB, Canada. Abad, Zahra Shakeri Hossein, Harvard Univ, Dept Biomed Informat, Boston, MA 02115 USA. Bazzan, Ana L. C., Univ Fed Rio Grande do Sul UFRGS, Inst Informat, Porto Alegre, RS, Brazil.}, DOI = {10.1016/j.eswa.2022.116830}, EarlyAccessDate = {APR 2022}, Article-Number = {116830}, ISSN = {0957-4174}, EISSN = {1873-6793}, Keywords = {Reinforcement learning; Traffic light control; Urban network; Multi-agent system; Intelligent transportation system; Artificial intelligence}, Keywords-Plus = {CELL TRANSMISSION MODEL; NEURAL-NETWORKS; FUNCTION APPROXIMATION; MULTIAGENT SYSTEM; ALGORITHMS; OPTIMIZATION; INTELLIGENCE; COORDINATION; EFFICIENCY; DESIGN}, Research-Areas = {Computer Science; Engineering; Operations Research \& Management Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Engineering, Electrical \& Electronic; Operations Research \& Management Science}, Author-Email = {m.noaeen@utoronto.ca atharva.naik@ucalgary.ca liana.goodman@ucalgary.ca jared.crebo@ucalgary.ca taimoor.abrar@ucalgary.ca zahra\_shakeri@hms.harvard.edu bazzan@inf.ufrgs.br far@ucalgary.ca}, Affiliations = {Harvard University; University of Toronto; University of Calgary; University of Calgary; University of Calgary; Harvard University; Universidade Federal do Rio Grande do Sul}, ORCID-Numbers = {Bazzan, Ana/0000-0002-2803-9607}, Cited-References = {Abad ZSH, 2019, PROC INT CONF SOFTW, P442, DOI 10.1109/ICSE.2019.00057. Abad ZSH, 2016, INT REQUIR ENG CONF, P6, DOI 10.1109/RE.2016.61. Abdelgawad H, 2015, CAN J CIVIL ENG, V42, P353, DOI 10.1139/cjce-2014-0503. Abdoos M, 2015, INTELL DATA ANAL, V19, P211, DOI 10.3233/IDA-150714. Abdoos M, 2014, APPL INTELL, V40, P201, DOI 10.1007/s10489-013-0455-3. Abdoos M, 2013, ENG APPL ARTIF INTEL, V26, P1575, DOI 10.1016/j.engappai.2013.01.007. Abdoos M, 2011, IEEE INT C INTELL TR, P1580, DOI 10.1109/ITSC.2011.6083114. Abdulhai B, 2003, CAN J CIVIL ENG, V30, P981, DOI 10.1139/L03-014. Abdulhai B, 2003, J TRANSP ENG, V129, P278, DOI 10.1061/(ASCE)0733-947X(2003)129:3(278). Ajorlou A., 2015, 2015 AM CONTR C, V103, P1035. {[}Anonymous], 2013, PLOS ONE, DOI {[}DOI 10.1371/journal.pone.0053995, DOI 10.1371/journal.pone.0053931]. Araghi S, 2015, LECT NOTES COMPUT SC, V9489, P337, DOI 10.1007/978-3-319-26532-2\_37. Arel I, 2010, IET INTELL TRANSP SY, V4, P128, DOI 10.1049/iet-its.2009.0070. Aslani M, 2018, CAN J CIVIL ENG, V45, P690, DOI 10.1139/cjce-2017-0408. Aslani M, 2018, ADV ENG INFORM, V38, P639, DOI 10.1016/j.aei.2018.08.002. Aslani M, 2019, P I CIVIL ENG-TRANSP, V172, P289, DOI 10.1680/jtran.17.00085. Aslani M, 2017, TRANSPORT RES C-EMER, V85, P732, DOI 10.1016/j.trc.2017.09.020. Aziz HMA, 2018, J INTELL TRANSPORT S, V22, P40, DOI 10.1080/15472450.2017.1387546. Baird L. C., 1999, THESIS. Bakker B., 2005, COOPERATIVE MULTIAGE. Balaji PG, 2010, IET INTELL TRANSP SY, V4, P177, DOI 10.1049/iet-its.2009.0096. Baldazo D, 2019, EUR SIGNAL PR CONF. Bazzan ALC, 2007, LECT NOTES ARTIF INT, V4874, P195. Bazzan ALC, 2014, KNOWL ENG REV, V29, P375, DOI 10.1017/S0269888913000118. Bazzan ALC, 2010, ENG APPL ARTIF INTEL, V23, P560, DOI 10.1016/j.engappai.2009.11.009. Bazzan ALC, 2009, AUTON AGENT MULTI-AG, V18, P342, DOI 10.1007/s10458-008-9062-9. Bellemare MG, 2013, J ARTIF INTELL RES, V47, P253, DOI 10.1613/jair.3912. Bin Al Islam SMA, 2018, IEEE INT C INTELL TR, P1870, DOI 10.1109/ITSC.2018.8569891. Blockeel H, 1998, ARTIF INTELL, V101, P285, DOI 10.1016/S0004-3702(98)00034-4. Bouderba Saif Islam, 2019, P 4 INT C BIG DAT IN, P1. Box S, 2013, ENG APPL ARTIF INTEL, V26, P652, DOI 10.1016/j.engappai.2012.02.013. Brys T, 2014, AAAI CONF ARTIF INTE, P1687. Butz MV, 2005, STUD FUZZ SOFT COMP, V183, P91. Cai C, 2009, TRANSPORT RES C-EMER, V17, P456, DOI 10.1016/j.trc.2009.04.005. Camponogara E, 2003, LECT NOTES ARTIF INT, V2902, P324. Cao YJ, 1999, LECT NOTES COMPUT SC, V1625, P342. Cao YJ, 2000, LECT NOTES COMPUT SC, V1803, P117. Central Intelligence Agency C. C. R., 2020, US. Chanloha P, 2014, COMPUT J, V57, P451, DOI 10.1093/comjnl/bxt126. Chen P, 2019, IEEE INT C INTELL TR, P3553, DOI 10.1109/ITSC.2019.8917051. Chen Y, 2017, LECT NOTES COMPUT SC, V10393, P180, DOI 10.1007/978-3-319-65482-9\_12. Chin Y. K., 2013, OPTIMIZATION URBAN M. Chong LS, 2018, TRANSPORT SCI, V52, P637, DOI 10.1287/trsc.2016.0717. Choy MC, 2003, IEEE T SYST MAN CY A, V33, P597, DOI 10.1109/TSMCA.2003.817394. Choy MC, 2006, IEEE T NEURAL NETWOR, V17, P1511, DOI 10.1109/TNN.2006.881710. Chu TS, 2020, IEEE T INTELL TRANSP, V21, P1086, DOI 10.1109/TITS.2019.2901791. Chu TS, 2017, P AMER CONTR CONF, P5095, DOI 10.23919/ACC.2017.7963745. Chu TS, 2016, IEEE DECIS CONTR P, P7592, DOI 10.1109/CDC.2016.7799442. Chu TS, 2016, P AMER CONTR CONF, P815, DOI 10.1109/ACC.2016.7525014. Claus C, 1998, FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, P746. Cools SB, 2008, ADV INFORM KNOWL PRO, P41, DOI 10.1007/978-1-84628-982-8\_3. Da Silva B. C., 2006, P 23 INT C MACH LEAR, P217. Da Silva BC, 2006, LECT NOTES COMPUT SC, V3473, P224, DOI 10.1007/11553762\_22. Daeichian A, 2018, ARAB J SCI ENG, V43, P3241, DOI 10.1007/s13369-017-3018-9. Daeinabi A, 2011, J NETW COMPUT APPL, V34, P207, DOI 10.1016/j.jnca.2010.07.016. DAGANZO CF, 1995, TRANSPORT RES B-METH, V29, P79, DOI 10.1016/0191-2615(94)00022-R. Dai Y., 2010, 2010 INT JOINT C NEU, P1. Dai YJ, 2011, IEEE INT C INTELL TR, P1045, DOI 10.1109/ITSC.2011.6083027. Darmoul S, 2017, TRANSPORT RES C-EMER, V82, P290, DOI 10.1016/j.trc.2017.07.003. Davarynejad Mohsen, 2010, 2010 International Conference on Networking, Sensing and Control (ICNSC 2010), P14, DOI 10.1109/ICNSC.2010.5461556. de Oliveira D., 2006, EUMAS. Diakaki C, 2002, CONTROL ENG PRACT, V10, P183, DOI 10.1016/S0967-0661(01)00121-6. Dietterich T. G., 2004, P 21 INT C MACHINE L, P28, DOI {[}10.1145/1015330.1015428, DOI 10.1145/1015330.101542832]. Dowling J, 2005, LECT NOTES COMPUT SC, V3460, P63. Dresner K, 2008, J ARTIF INTELL RES, V31, P591, DOI 10.1613/jair.2502. Duan HL, 2010, EURASIP J ADV SIG PR, DOI 10.1155/2010/724035. Duan Y, 2016, PR MACH LEARN RES, V48. Dumais Susan, 2019, ARXIV PREPRINT ARXIV. Dusparic I, 2016, 2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P2065, DOI 10.1109/ITSC.2016.7795890. Dusparic I, 2012, ACM T AUTON ADAP SYS, V7, DOI 10.1145/2168260.2168271. Dusparic I, 2009, ACM/IEEE SIXTH INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND COMMUNICATIONS (ICAC `09), P63. Dusparic I, 2009, INT CONF SELF SELF, P20, DOI 10.1109/SASO.2009.23. Dusparic I, 2009, LECT NOTES COMPUT SC, V5586, P105, DOI 10.1007/978-3-642-02704-8\_9. El Hatri C, 2017, INTELL DECIS TECHNOL, V11, P199, DOI 10.3233/IDT-170288. El-Tantawy S, 2015, IEEE INT C INTELL TR, P2398, DOI 10.1109/ITSC.2015.387. El-Tantawy S, 2014, J INTELL TRANSPORT S, V18, P227, DOI 10.1080/15472450.2013.810991. El-Tantawy S, 2013, IEEE T INTELL TRANSP, V14, P1140, DOI 10.1109/TITS.2013.2255286. El-Tantawy S, 2010, TRANSP LETT, V2, P89, DOI 10.3328/TL.2010.02.02.89-110. Eom M, 2020, EUR TRANSP RES REV, V12, DOI 10.1186/s12544-020-00440-8. Fagan D, 2014, P INT CONF INTELL, P99, DOI 10.1109/ISMS.2014.23. Fink A., 2019, CONDUCTING RES LIT R. Gaikwad V. V., 2016, 2016 IEEE 84 VEHICUL, P1. Gan XL, 2019, IEEE ACCESS, V7, P162127, DOI 10.1109/ACCESS.2019.2946848. Gao J., 2017, ARXIV PREPRINT ARXIV. Gao R., 2019, INT C BLOCKCHAIN TRU, P787. Ge HW, 2019, IEEE ACCESS, V7, P40797, DOI 10.1109/ACCESS.2019.2907618. Genders W, 2020, J COMPUT CIVIL ENG, V34, DOI 10.1061/(ASCE)CP.1943-5487.0000859. Gershenson C., 2004, ARXIV PREPRINT ARXIV. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Greenhalgh T, 2005, BRIT MED J, V331, P1064, DOI 10.1136/bmj.38636.593461.68. Greguric M, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10114011. Haydari A, 2022, IEEE T INTELL TRANSP, V23, P11, DOI 10.1109/TITS.2020.3008612. Heinen MR, 2011, IEEE INT C INTELL TR, P890, DOI 10.1109/ITSC.2011.6083107. Henry A, 2018, STATISTIKA, V98, P352. Higuera Carolina, 2019, Advances in Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection. 17th International Conference, PAAMS 2019. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11523), P115, DOI 10.1007/978-3-030-24209-1\_10. Nguyen H, 2018, IET INTELL TRANSP SY, V12, P998, DOI 10.1049/iet-its.2018.0064. Horsuwan T., 2019, SUMO, P29. Hua Wei, 2020, ACM SIGKDD Explorations Newsletter, V22, P12, DOI 10.1145/3447556.3447565. Vu H, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P527. Huang R, 2019, CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, P2959. Huttenrauch M, 2019, J MACH LEARN RES, V20. Humphrys M., 1996, From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, P135. Hunt P., 1981, TECHNICAL REPORT. Index T., 2014, US. INRIX, 2020, SCOR. Iyer V, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), P156, DOI 10.1109/CAST.2016.7914958. Jacome L, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION/XXIII CONGRESS OF THE CHILEAN ASSOCIATION OF AUTOMATIC CONTROL (ICA-ACCA). Jadhao M. N. S., 2012, INT J ENG RES TECHNO, V1. Jadhao NS, 2014, INT CONF COMM SYST, P1130, DOI 10.1109/CSNT.2014.231. Jin JC, 2019, IEEE T INTELL TRANSP, V20, P3900, DOI 10.1109/TITS.2019.2906260. Jin JC, 2017, ASIA CONTROL CONF AS, P1199. Jin JC, 2018, ENG APPL ARTIF INTEL, V68, P236, DOI 10.1016/j.engappai.2017.10.013. Jiong Song, 2011, Proceedings of 2011 International Conference on Computer Science and Network Technology, P2578. Junping Xiang, 2015, 4th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2015). Proceedings, P295. Kao YC, 2018, CONF REC ASILOMAR C, P2060, DOI 10.1109/ACSSC.2018.8645125. KEONG CK, 1993, TRANSPORT REV, V13, P295, DOI 10.1080/01441649308716854. Khamis MA, 2014, ENG APPL ARTIF INTEL, V29, P134, DOI 10.1016/j.engappai.2014.01.007. Khamis MA, 2012, 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, P586, DOI 10.1109/ICMLA.2012.108. Khamis MA, 2012, IEEE INT C INTELL TR, P995, DOI 10.1109/ITSC.2012.6338853. Kim D, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20010137. Kingma D., 2014, 14126980 ARXIV, DOI DOI 10.48550/ARXIV.1412.6980. Kitagawa S, 2019, LECT NOTES ARTIF INT, V11672, P337, DOI 10.1007/978-3-030-29894-4\_28. Kohonen T., 1997, SELF ORG MAPS. Konda VR, 1999, SIAM J CONTROL OPTIM, V38, P94, DOI 10.1137/S036301299731669X. Koonce P., 2008, TRAFFIC SIGNAL TIMIN. Kristensen T, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), P459, DOI 10.1109/ICInfA.2017.8078952. Kuyer L, 2008, LECT NOTES ARTIF INT, V5211, P656, DOI 10.1007/978-3-540-87479-9\_61. Lammer S, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/04/P04019. Lee J, 2020, IEEE T VEH TECHNOL, V69, P1375, DOI 10.1109/TVT.2019.2962514. Lemos L. L., 2018, 2018 IEEE C EVOLUTIO, P1. Li Chun-gui, 2011, 2011 Seventh International Conference on Natural Computation (ICNC 2011), P185, DOI 10.1109/ICNC.2011.6022063. Li CC, 2018, CHIN CONTR CONF, P7690. Li T, 2008, IEEE IJCNN, P1840, DOI 10.1109/IJCNN.2008.4634048. Li T, 2008, PROCEEDINGS OF THE 11TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, P286, DOI 10.1109/ITSC.2008.4732718. Liang XY, 2018, IEEE INTERNET THINGS, V5, P1924, DOI 10.1109/JIOT.2018.2817459. Lillicrap T. P., 2015, ARXIV150902971. Ling K., 2005, J INTELL TRANSPORT S, V9, P59, DOI DOI 10.1080/15472450590934615. Little John D.C., 1981, MAXBAND VERSATILE PR. Liu WR, 2017, IEEE T VEH TECHNOL, V66, P8667, DOI 10.1109/TVT.2017.2702388. Liu WR, 2014, IEEE ICC, P2562, DOI 10.1109/ICC.2014.6883709. Liu X, 2018, INT CONF DAT MIN WOR, P905, DOI 10.1109/ICDMW.2018.00132. Liu Y, 2017, IEEE INT C INTELL TR. Liu ZY, 2007, INT J COMPUT SCI NET, V7, P105. Lu C., 2017, INT C MANAGEMENT SCI, P1752. Mannion P, 2016, AUTON SYST, P47, DOI 10.1007/978-3-319-25808-9\_4. Marsetic R, 2014, PROMET-ZAGREB, V26, P101, DOI 10.7307/ptt.v26i2.1318. Mashayekhi M., 2015, IJCAI WORKSHOPS SYNE, P13. Medina J. C., 2010, 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010), P525, DOI 10.1109/ITSC.2010.5624977. Medina JC, 2012, IEEE INT C INTELL TR, P596, DOI 10.1109/ITSC.2012.6338911. Mikami S., 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (Cat. No.94TH0650-2), P223, DOI 10.1109/ICEC.1994.350012. MILLER AJ, 1963, OPER RES QUART, V14, P373, DOI 10.2307/3006800. Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236. Moghadam M. H., 2013, RES J APPL SCI ENG T, V6, P2943. Mohajerpoor R, 2019, TRANSPORT RES B-METH, V119, P45, DOI 10.1016/j.trb.2018.11.004. Natarajan S., 2010, 2010 Ninth International Conference on Machine Learning and Applications (ICMLA 2010), P395, DOI 10.1109/ICMLA.2010.65. Natarajan S., 2011, P 22 INT JOINT C ART, P1414. Ng A. Y., 2000, ICML, V1, P1. Ngai DCK, 2011, IEEE T INTELL TRANSP, V12, P509, DOI 10.1109/TITS.2011.2106158. Ni W, 2019, TRANSPORT RES C-EMER, V98, P358, DOI 10.1016/j.trc.2018.12.007. Nishi T, 2018, IEEE INT C INTELL TR, P877, DOI 10.1109/ITSC.2018.8569301. Noaeen M, 2021, MANAGING URBAN TRAFF. Noaeen M., 2019, P 14 INT C GLOB SOFT, P72. Noaeen M, 2021, TRANSPORT RES C-EMER, V133, DOI 10.1016/j.trc.2021.103407. Noaeen M, 2020, 2020 4TH INTERNATIONAL WORKSHOP ON CROWD-BASED REQUIREMENTS ENGINEERING (CROWDRE 2020), P11, DOI 10.1109/CrowdRE51214.2020.00009. Noaeen M, 2016, International Conference on Transportation and Development 2016: Projects and Practices for Prosperity, P397. Nuli S, 2013, PROCD SOC BEHV, V104, P765, DOI 10.1016/j.sbspro.2013.11.171. Okoli C., 2010, SPROUTS WORKING PAPE, V10, P10, DOI {[}DOI 10.2139/SSRN.1954824, 10.17705/1CAIS.03743]. Oroojlooy Jadid A., 2019, ARXIV PREPRINT ARXIV. Osorio C, 2017, TRANSPORT SCI, V51, P395, DOI 10.1287/trsc.2016.0673. Ozan C, 2015, TRANSPORT RES C-EMER, V54, P40, DOI 10.1016/j.trc.2015.03.010. Pham T. T., 2013, P ADAPTIVE LEARNING, V10, P1196. Platt J. C., 2007, ADV NEURAL INFORM PR, V19, P1169. Prabuchandran KJ, 2015, INT CONF COMMUN SYST. Prabuchandran KJ, 2014, 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P2529, DOI 10.1109/ITSC.2014.6958095. Prashanth LA, 2016, PR MACH LEARN RES, V48. Prashanth LA, 2016, MACH LEARN, V105, P367, DOI 10.1007/s10994-016-5569-5. Prashanth LA, 2011, IEEE INT C INTELL TR, P1640, DOI 10.1109/ITSC.2011.6082823. Prashanth LA, 2011, IEEE T INTELL TRANSP, V12, P412, DOI 10.1109/TITS.2010.2091408. Prothmann Holger, 2009, International Journal of Automomous and Adaptive Communications Systems, V2, P203, DOI 10.1504/IJAACS.2009.026783. Qu ZW, 2020, IEEE ACCESS, V8, P19750, DOI 10.1109/ACCESS.2020.2968937. Ratliff N., 2006, INT C MACH LEARN. Reda M., 2019, 2019 INT C WIRELESS, P1. Richter S., 2006, LEARNING ROAD TRAFFI. Riedmiller M, 2005, LECT NOTES ARTIF INT, V3720, P317, DOI 10.1007/11564096\_32. Ritcher S., 2007, INT C AUT PLANN SCHE. Rizzo SG, 2019, IEEE INT C INTELL TR, P3567, DOI 10.1109/ITSC.2019.8917519. Rizzo SG, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1654, DOI 10.1145/3292500.3330988. Robertson D. I., 1970, TRANSYT: A traffic network study tool. Rosyadi AR, 2016, 2016 4 INT C INF COM, P1, DOI DOI 10.1109/ICOICT.2016.7571925. Sadigh D, 2014, IEEE DECIS CONTR P, P1091, DOI 10.1109/CDC.2014.7039527. Salkham A., 2010, 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010), P531, DOI 10.1109/ITSC.2010.5625145. Salkham As'ad, 2008, 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, P560, DOI 10.1109/WIIAT.2008.88. Schutera M., 2018, ARXIV PREPRINT ARXIV. Shabestray SMA, 2019, IEEE INT C INTELL TR, P4532, DOI 10.1109/ITSC.2019.8917493. Shen M., 2016, INT C COMMUNICATION. Shi S., 2018, INT J AP MAT COM-POL, V27, P1, DOI {[}10.9734/JAMCS/2018/41281, DOI 10.9734/JAMCS/2018/41281]. Shoufeng Lu, 2008, 2008 IEEE Conference on Cybernetics and Intelligent Systems, P765, DOI 10.1109/ICCIS.2008.4670819. Shu LZ, 2019, IEEE INT C INTELL TR, P3547, DOI 10.1109/ITSC.2019.8917513. Silver D., 2013, CORR, V1312, P5602, DOI DOI 10.1038/NATURE14236. Sims A., 1981, S COMP CONTR TRANSP, P22. Spall JC, 1997, TRANSPORT RES C-EMER, V5, P153, DOI 10.1016/S0968-090X(97)00012-0. Srinivasan D, 2006, IEEE T INTELL TRANSP, V7, P261, DOI 10.1109/TITS.2006.874716. Srinivasan D, 2007, STUD COMPUT INTELL, V66, P211. Srivastava N, 2014, J MACH LEARN RES, V15, P1929. Su SY, 2007, PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING, P443. Sutton R. S., 1998, INTRO REINFORCEMENT, V2, DOI DOI 10.1109/TNN.1998.712192. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. Tahifa M, 2015, 2015 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV). Tahilyani S, 2013, AASRI PROC, V4, P206, DOI 10.1016/j.aasri.2013.10.032. Tan Ming, 1993, P 10 INT C MACHINE L, V10, P330, DOI DOI 10.1016/B978-1-55860-307-3.50049-6. Tan T, 2020, IEEE T CYBERNETICS, V50, P2687, DOI 10.1109/TCYB.2019.2904742. Teo K. T. K., 2014, INT J SIMULATION SYS, V15, P90. Torabi B, 2018, LECT NOTES ARTIF INT, V10978, P357, DOI 10.1007/978-3-319-94580-4\_38. Torabi B., 2018, 2018 IEEE INT SMART, P1. Tricco AC, 2018, ANN INTERN MED, V169, P467, DOI 10.7326/M18-0850. Urbanik T., 2015, SIGNAL TIMING MANUAL, V1. US Department of Transportation, 2008, NGSIM NEXT GEN SIM. Van der Pol E., 2016, P LEARNING INFERENCE, VVolume 8, P21. Varaiya P, 2013, TRANSPORT RES C-EMER, V36, P177, DOI 10.1016/j.trc.2013.08.014. Vidhate D. A., 2017, INT C SMART TRENDS I, P71. Vinitsky E., 2018, C ROB LEARN, P399. Wang YZ, 2018, J ADV TRANSPORT, DOI 10.1155/2018/3631489. Wang YZ, 2018, J ADV TRANSPORT, DOI 10.1155/2018/1096123. Wang YH, 2016, MATEC WEB CONF, V77, DOI 10.1051/matecconf/20167709004. Wang Y, 2019, TRANSPORT RES C-EMER, V99, P144, DOI 10.1016/j.trc.2018.12.004. Wang ZG, 2008, IEEE T SYST MAN CY C, V38, P201, DOI 10.1109/TSMCC.2007.913917. Wang ZY, 2016, PR MACH LEARN RES, V48. Waskow SJ, 2010, LECT NOTES ARTIF INT, V6404, P153, DOI 10.1007/978-3-642-16138-4\_16. WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698. Webster F., 1958, 39 ROAD RES LAB HER. Wei H, 2019, ARXIV190408117. Wei H, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION \& KNOWLEDGE MANAGEMENT (CIKM `19), P1913, DOI 10.1145/3357384.3357902. Wei H, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1290, DOI 10.1145/3292500.3330949. Wei H, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P2496, DOI 10.1145/3219819.3220096. Wei Lu, 2011, 2011 IEEE Forum on Integrated and Sustainable Transportation Systems (FISTS 2011), P233, DOI 10.1109/FISTS.2011.5973658. Wei W, 2009, INT C INTELL ENG SYS, P243. Wiering M, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P453. Wiering M., 2000, P 17 INT C MACH LEAR, P1151. Wu C., 2017, FLOW ARCHITECTURE BE. Wu Q, 2019, FUTURE GENER COMP SY, V97, P825, DOI 10.1016/j.future.2019.02.058. Wunderlich R, 2007, 2007 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY, PROCEEDINGS, P65. Xia XH, 2009, 2009 INTERNATIONAL FORUM ON COMPUTER SCIENCE-TECHNOLOGY AND APPLICATIONS, VOL 1, PROCEEDINGS, P164, DOI 10.1109/IFCSTA.2009.47. Xiaohua Zhao, 2009, Proceedings of the 2009 Fifth International Conference on Natural Computation (ICNC 2009), P551, DOI 10.1109/ICNC.2009.518. Xu LH, 2013, MATH PROBL ENG, V2013, DOI 10.1155/2013/962869. Xu M, 2020, J INTELL TRANSPORT S, V24, P1, DOI 10.1080/15472450.2018.1527694. Xu N, 2019, LECT NOTES ARTIF INT, V11440, P175, DOI 10.1007/978-3-030-16145-3\_14. Xu W., 2015, 3 RD INT C MANAGEMEN. Yang ST, 2019, KNOWL-BASED SYST, V183, DOI 10.1016/j.knosys.2019.07.026. Yau KLA, 2017, ACM COMPUT SURV, V50, DOI 10.1145/3068287. Yen G., 2002, IEEE IJCNN, V4, P177, DOI {[}10.1109/IJCNN.2001.939499, DOI 10.1109/IJCNN.2001.939499]. Yin B, 2016, IET INTELL TRANSP SY, V10, P186, DOI 10.1049/iet-its.2015.0108. Yin B, 2015, PROC INT C TOOLS ART, P49, DOI 10.1109/ICTAI.2015.21. Zhang X., 2007, P 24 INT C MACH LEAR, P1143. Zhao DB, 2012, IEEE T SYST MAN CY C, V42, P485, DOI 10.1109/TSMCC.2011.2161577. Zhao Y, 2020, J ADV TRANSPORT, V2020, DOI 10.1155/2020/6489027. Zheng GJ, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION \& KNOWLEDGE MANAGEMENT (CIKM `19), P1963, DOI 10.1145/3357384.3357900. Zhou PY, 2019, INT CONF PERVAS COMP, P849, DOI 10.1109/PERCOMW.2019.8730706. Zhu F, 2015, TRANSPORT RES C-EMER, V58, P487, DOI 10.1016/j.trc.2014.12.009.}, Number-of-Cited-References = {258}, Times-Cited = {13}, Usage-Count-Last-180-days = {34}, Usage-Count-Since-2013 = {70}, Journal-ISO = {Expert Syst. Appl.}, Doc-Delivery-Number = {1R6TQ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000803500600006}, OA = {Green Submitted, hybrid}, DA = {2023-04-22}, } @article{ WOS:000665912200001, Author = {Saad, Mohamad Hanif Md and Hamdan, Nurul Maisarah and Sarker, Mahidur R.}, Title = {State of the Art of Urban Smart Vertical Farming Automation System: Advanced Topologies, Issues and Recommendations}, Journal = {ELECTRONICS}, Year = {2021}, Volume = {10}, Number = {12}, Month = {JUN}, Abstract = {The global economy is now under threat due to the ongoing domestic and international lockdown for COVID-19. Many have already lost their jobs, and businesses have been unstable in the Corona era. Apart from educational institutions, banks, privately owned institutions, and agriculture, there are signs of economic recession in almost all sectors. The roles of modern technology, the Internet of things, and artificial intelligence are undeniable in helping the world achieve economic prosperity in the post-COVID-19 economic downturn. Food production must increase by 60\% by 2050 to meet global food security demands in the face of uncertainty such as the COVID-19 pandemic and a growing population. Given COVID 19's intensity and isolation, improving food production and distribution systems is critical to combating hunger and addressing the double burden of malnutrition. As the world's population is growing day by day, according to an estimation world's population reaches 9.6 billion by 2050, so there is a growing need to modify the agriculture methods, technologies so that maximum crops can be attained and human effort can be reduced. The urban smart vertical farming (USVF) is a solution to secure food production, which can be introduced at any adaptive reuse, retrofit, or new buildings in vertical manners. This paper aims to provide a comprehensive review of the concept of USVF using various techniques to enhance productivity as well as its types, topologies, technologies, control systems, social acceptance, and benefits. This review has focused on numerous issues, challenges, and recommendations in the development of the system, vertical farming management, and modern technologies approach.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Sarker, MR (Corresponding Author), Univ Kebangsaan Malaysia, Inst IR 4 0, Bangi 43600, Selangor, Malaysia. Sarker, MR (Corresponding Author), Nebrija Univ, Ind Engn \& Automot, Campus Dehesa Villa,Calle Pirineos,55, Madrid 28040, Spain. Saad, Mohamad Hanif Md; Hamdan, Nurul Maisarah; Sarker, Mahidur R., Univ Kebangsaan Malaysia, Inst IR 4 0, Bangi 43600, Selangor, Malaysia. Sarker, Mahidur R., Nebrija Univ, Ind Engn \& Automot, Campus Dehesa Villa,Calle Pirineos,55, Madrid 28040, Spain.}, DOI = {10.3390/electronics10121422}, Article-Number = {1422}, EISSN = {2079-9292}, Keywords = {automation; smart vertical farming; sensors; Internet of Things; urban farming}, Keywords-Plus = {BUILDING-INTEGRATED AGRICULTURE; SOIL-MOISTURE; LOW-COST; PERFORMANCE ANALYSIS; ABOVEGROUND BIOMASS; FOOD SECURITY; IOT; IRRIGATION; SENSOR; FIELD}, Research-Areas = {Computer Science; Engineering; Physics}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Physics, Applied}, Author-Email = {hanifsaad@ukm.edu.my nmaisarah.hamdan@gmail.com mahidursarker@ukm.edu.my}, Affiliations = {Universiti Kebangsaan Malaysia; Universidad Antonio de Nebrija}, ResearcherID-Numbers = {Saad, Mohamad Hanif Md/AAO-9476-2020}, Funding-Acknowledgement = {Ministry of Higher Education of Malaysia {[}LRGS/1/2019/UKM-UKM/5/2]}, Funding-Text = {This work was carried out with the financial support from the Ministry of Higher Education of Malaysia under the research grant LRGS/1/2019/UKM-UKM/5/2.}, Cited-References = {Abu Dardak R, 2014, PROCD SOC BEHV, V115, P346, DOI 10.1016/j.sbspro.2014.02.441. Agrawal H, 2020, J AMB INTEL HUM COMP, V11, P2337, DOI 10.1007/s12652-019-01359-2. Al-Kodmany K, 2018, BUILDINGS-BASEL, V8, DOI 10.3390/buildings8020024. Alam ASAF, 2020, INT J DISAST RISK RE, V47, DOI 10.1016/j.ijdrr.2020.101626. Antonacci A, 2018, TRAC-TREND ANAL CHEM, V98, P95, DOI 10.1016/j.trac.2017.10.022. Ariff MH, 2013, 2013 IEEE CONFERENCE ON SYSTEMS, PROCESS \& CONTROL (ICSPC), P154, DOI 10.1109/SPC.2013.6735123. Arnalte-Mur L, 2020, GLOB FOOD SECUR-AGR, V26, DOI 10.1016/j.gfs.2020.100395. Artmann M, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10061937. Aruna Aruna M.S. M.S., 2012, INT J ADV TECHNOL EN, V2 2, P50. Avgoustaki DD, 2020, ADV FOOD SECUR SUSTA, V5, P1, DOI 10.1016/bs.af2s.2020.08.002. Avtar R, 2019, RESOURCES-BASEL, V8, DOI 10.3390/resources8030136. Bantis F, 2018, SCI HORTIC-AMSTERDAM, V235, P437, DOI 10.1016/j.scienta.2018.02.058. Barbosa GL, 2015, INT J ENV RES PUB HE, V12, P6879, DOI 10.3390/ijerph120606879. Bauer J, 2018, 2018 IOT VERTICAL TO, P1, DOI DOI 10.1109/IOT-TUSCANY.2018.8373022. Beacham AM, 2019, J HORTIC SCI BIOTECH, V94, P277, DOI 10.1080/14620316.2019.1574214. Belista FCL, 2018, I C HUMANOID NANOTEC, DOI 10.1109/HNICEM.2018.8666382. Benaissa S, 2020, COMPUT ELECTRON AGR, V168, DOI 10.1016/j.compag.2019.105153. Benis K., 2017, 15 INT BUILD PERFORM, V10, P7, DOI {[}DOI 10.26868/25222708.2017.479, 10.26868/25222708.2017.479]. Benis K, 2018, GLOB FOOD SECUR-AGR, V17, P30, DOI 10.1016/j.gfs.2018.03.005. Benis K, 2017, J CLEAN PROD, V147, P589, DOI 10.1016/j.jclepro.2017.01.130. Bezzon VDN, 2019, ADV MATER SCI ENG, V2019, DOI 10.1155/2019/4293073. Bhowmick Sutanni, 2019, Advances in Communication, Devices and Networking. ICCDN 2018. Proceedings: Lecture Notes in Electrical Engineering (LNEE 537), P521, DOI 10.1007/978-981-13-3450-4\_56. Boursianis AD, 2022, INTERNET THINGS-NETH, V18, DOI 10.1016/j.iot.2020.100187. Castaneda-Miranda A, 2020, COMPUT ELECTRON AGR, V176, DOI 10.1016/j.compag.2020.105614. Chang CL, 2018, ROBOTICS, V7, DOI 10.3390/robotics7030038. Chatterjee A., 2020, URBAN HORTICULTURE N, DOI {[}10.5772/intechopen.91133, DOI 10.5772/INTECHOPEN.91133]. Chehri Abdellah, 2020, Procedia Computer Science, V176, P2414, DOI 10.1016/j.procs.2020.09.312. Cho J, 2020, ENERGIES, V13, DOI 10.3390/en13184815. Chuah Chuah Y.D. Y.D., 2018, IOP C SERIES EARTH E, V268 268, P12083. Codeluppi G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20072028. Davidson JR, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P634, DOI 10.1109/IROS.2016.7759119. de Amorim WS, 2019, LAND USE POLICY, V87, DOI 10.1016/j.landusepol.2019.104065. de Oliveira FB., 2020, P CIRP, V93, P712, DOI {[}10.1016/j.procir.2020.03.017, DOI 10.1016/J.PROCIR.2020.03.017]. Deebak BD, 2020, FUTURE GENER COMP SY, V109, P368, DOI 10.1016/j.future.2020.03.050. Deng X, 2020, MEASUREMENT, V150, DOI 10.1016/j.measurement.2019.107052. Doshi J, 2019, PROCEDIA COMPUT SCI, V160, P746, DOI 10.1016/j.procs.2019.11.016. Duan Y., 2011, 4 INT C INT COMP TEC, V1, P1045. Dubois A, 2021, COMPUT ELECTRON AGR, V180, DOI 10.1016/j.compag.2020.105902. Effendi MKR, 2020, INT J INTEGR ENG, V12, P240, DOI 10.30880/ijie.2020.12.08.023. El-Kazzaz El-Kazzaz K.A. K.A., 2017, AGR RES TECHNOL OPEN, V3 3, P63, DOI {[}DOI 10.19080/ARTOAJ.2017.03.555610, 10.19080/artoaj.2017.03.555610]. Elijah O, 2018, IEEE INTERNET THINGS, V5, P3758, DOI 10.1109/JIOT.2018.2844296. Fahmi F., 2017, P 2 INT C COMP APPL, V978, P12064. Faid Amine, 2020, 2020 International Wireless Communications and Mobile Computing (IWCMC), P1296, DOI 10.1109/IWCMC48107.2020.9148455. Farago D, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00219. Farooq MS, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9020319. Farooq MS, 2019, IEEE ACCESS, V7, P156237, DOI 10.1109/ACCESS.2019.2949703. Fatemeh Kalantari, 2018, Journal of Landscape Ecology, V11, P35, DOI 10.1515/jlecol-2017-0016. Fernandez-Cabanas VM, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10091414. Ferrante Ferrante A. A., 2016, NEARLY ZERO ENERGY, P1. Firouzjaei RA, 2018, J FOOD MEAS CHARACT, V12, P1513, DOI 10.1007/s11694-018-9766-8. Fountas S, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20092672. Frazao J, 2019, GEODERMA, V338, P453, DOI 10.1016/j.geoderma.2018.07.033. Fu QQ, 2019, ANAL CHIM ACTA, V1092, P126, DOI 10.1016/j.aca.2019.09.059. Gentry M, 2019, ENERGY, V174, P191, DOI 10.1016/j.energy.2019.02.119. Gerarden T.D., 2015, ASSESSING ENERGY ENV. Germer J, 2011, J VERBRAUCH LEBENSM, V6, P237, DOI 10.1007/s00003-011-0691-6. Gill SS, 2017, J ORGAN END USER COM, V29, P1, DOI 10.4018/JOEUC.2017100101. Glaroudis D, 2020, COMPUT NETW, V168, DOI 10.1016/j.comnet.2019.107037. Gorjian Gorjian S. S., 2020, PHOTOVOLT SOL ENERGY, P191, DOI {[}10.1016/B978-0-12-819610-6.00007-7, DOI 10.1016/B978-0-12-819610-6.00007-7]. Grieve BD, 2019, GLOB FOOD SECUR-AGR, V23, P116, DOI 10.1016/j.gfs.2019.04.011. Hallett S., 2016, Horticultural Reviews, V44, P65. Han L, 2019, PLANT METHODS, V15, DOI 10.1186/s13007-019-0394-z. Haris I, 2019, 2019 IEEE 23RD INTERNATIONAL SYMPOSIUM ON CONSUMER TECHNOLOGIES (ISCT), P47, DOI 10.1109/ISCE.2019.8900974. Hossain MS, 2019, IEEE T IND INFORM, V15, P1027, DOI 10.1109/TII.2018.2875149. Islam M. J., 2019, P 4 INT C EL INF COM, P1. Jaiganesh S, 2017, 2017 CONFERENCE ON EMERGING DEVICES AND SMART SYSTEMS (ICEDSS), P260, DOI 10.1109/ICEDSS.2017.8073690. Jayne TS, 2014, FOOD POLICY, V48, P1, DOI 10.1016/j.foodpol.2014.05.014. Jha K., 2019, ARTIF INTELL AGR, V2, P1, DOI {[}10.1016/j.aiia.2019.05.004, DOI 10.1016/J.AIIA.2019.05.004]. Ji W, 2018, INT J ADV ROBOT SYST, V15, DOI 10.1177/1729881417753871. Jiang JL, 2020, IEEE J-STARS, V13, P4607, DOI 10.1109/JSTARS.2020.3016135. Ju C, 2018, ELECTRONICS-SWITZ, V7, DOI 10.3390/electronics7090162. Kalantari F., 2017, ADV ENG FORUM, V24, P76, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AEF.24.76. Kamilaris A, 2016, 2016 IEEE 3RD WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P442, DOI 10.1109/WF-IoT.2016.7845467. Kassim Mohamed Rawidean Mohd, 2020, 2020 IEEE Conference on Open Systems (ICOS), P19, DOI 10.1109/ICOS50156.2020.9293672. Katsoulas N, 2017, ACTA HORTIC, V1154, P221, DOI {[}10.17660/actahortic.2017.1154.29, 10.17660/ActaHortic.2017.1154.29]. Kerns S.C., 2017, P 8 INT SCI FORUM IS, DOI DOI 10.19044/ESJ.2017.C1P10. Khan R, 2018, SUSTAIN CITIES SOC, V37, P594, DOI 10.1016/j.scs.2017.10.027. Kim E, 2018, BUILD ENVIRON, V146, P206, DOI 10.1016/j.buildenv.2018.09.046. Kim Kim C. C., 2016, ENG AGR ENV FOOD, V9 9, P151, DOI {[}10.1016/j.eaef.2016.04.006 10.1016/j.eaef.2016.04.006, DOI 10.1016/J.EAEF.2016.04.006]. Klerkx L, 2019, NJAS-WAGEN J LIFE SC, V90-91, DOI 10.1016/j.njas.2019.100315. Kozai T., 2019, ROLE PLANT FACTORY A, V7, P34. Lajoie-O'Malley A, 2020, ECOSYST SERV, V45, DOI 10.1016/j.ecoser.2020.101183. Lakhiar IA, 2018, J SENSORS, V2018, DOI 10.1155/2018/8672769. Lan LY, 2020, BIOSENS BIOELECTRON, V165, DOI 10.1016/j.bios.2020.112360. Lazaro M., 2013, OPT PHOTONICS J, V3, P74, DOI {[}10.4236/opj.2013.31012, DOI 10.4236/OPJ.2013.31012]. Lezoche M, 2020, COMPUT IND, V117, DOI 10.1016/j.compind.2020.103187. Li J, 2013, ELECTRONICS-SWITZ, V2, P387, DOI 10.3390/electronics2040387. Li LY, 2020, J CLEAN PROD, V268, DOI 10.1016/j.jclepro.2020.121928. Li XL, 2017, INT J AGR BIOL ENG, V10, P134, DOI 10.25165/j.ijabe.20171005.3084. Li XM, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9060907. Liu HJ, 2018, COMPUT ELECTRON AGR, V150, P279, DOI 10.1016/j.compag.2018.05.002. Lopez-Morales JA, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10030250. Lork C, 2020, IEEE IND ELEC, P297, DOI 10.1109/IECON43393.2020.9255061. Lu Lu C. C., 2017, ENCY SUSTAINABLE TEC, P393, DOI {[}https://doi.org/10.1016/B978-0-12-409548-9.10184-8, DOI 10.1016/B978-0-12-409548-9.10184-8]. Lu YQ, 2020, J MANUF SYST, V56, P312, DOI 10.1016/j.jmsy.2020.06.010. Magwaza ST, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134154. Maharlooei M, 2017, COMPUT ELECTRON AGR, V132, P63, DOI 10.1016/j.compag.2016.11.019. Mahbub M, 2020, INTERNET THINGS-NETH, V9, DOI 10.1016/j.iot.2020.100161. Mahdavian M, 2017, MATH PROBL ENG, V2017, DOI 10.1155/2017/6862038. Majid M, 2021, AGR WATER MANAGE, V245, DOI 10.1016/j.agwat.2020.106572. Maksimovic M., 2017, VIII International Scientific Agriculture Symposium, ``Agrosym 2017{''}, Jahorina, Bosnia and Herzegovina, October 2017. Book of Proceedings, P2290. Maldonado W, 2016, COMPUT ELECTRON AGR, V127, P572, DOI 10.1016/j.compag.2016.07.023. Martinez G, 2021, AGR WATER MANAGE, V245, DOI 10.1016/j.agwat.2020.106652. Maskova L, 2019, CHEMOSPHERE, V219, P58, DOI 10.1016/j.chemosphere.2018.11.155. McCool C, 2016, IEEE INT CONF ROBOT, P2506, DOI 10.1109/ICRA.2016.7487405. Mehanna WA, 2019, ALEX ENG J, V58, P1127, DOI 10.1016/j.aej.2019.09.015. Mekala MS, 2019, MEASUREMENT, V134, P236, DOI 10.1016/j.measurement.2018.10.072. Miller A., VERTICAL FARMING HYD. Mishra P, 2018, NANOMATERIALS IN PLANTS, ALGAE, AND MICROORGANISMS: CONCEPTS AND CONTROVERSIES, VOL 1, P453, DOI 10.1016/B978-0-12-811487-2.00020-7. Mukherjee A, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00172. Munir MS, 2019, COMPUT ELECTR ENG, V77, P109, DOI 10.1016/j.compeleceng.2019.05.006. Nawandar NK, 2019, COMPUT ELECTRON AGR, V162, P979, DOI 10.1016/j.compag.2019.05.027. Ndukwu M C, 2020, Mater Sci Energy Technol, V3, P690, DOI 10.1016/j.mset.2020.07.006. Nhamo L, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10050712. Niu YX, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111261. Nogeire-McRae T, 2018, BIOSCIENCE, V68, P748, DOI 10.1093/biosci/biy071. Nwoba EG, 2019, ALGAL RES, V39, DOI 10.1016/j.algal.2019.101433. Oliveira A, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20123511. Omran Omran E.-S.E. E.-S.E., 2020, SMART SENSING SYSTEM, P77. Palazzi V, 2019, IEEE TOPIC CONF WIRE, P453. dos Santos MJPL, 2016, URBAN FOR URBAN GREE, V20, P402, DOI 10.1016/j.ufug.2016.10.004. Panigrahi S., 2020, SSRN ELECT J. Pathan M., 2020, ARTIF INTELL AGR, V4, P81, DOI {[}DOI 10.1016/J.AIIA.2020.06.001, 10.1016/j.aiia.2020.06.001]. Patil G.L., 2017, INT J COMPUTER APPL, V176, P1. Perez V.M., 2014, THESIS. Perez-Zavala R, 2018, COMPUT ELECTRON AGR, V151, P136, DOI 10.1016/j.compag.2018.05.019. Pisanu T, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9050726. Pongnumkul S, 2015, J SENSORS, V2015, DOI 10.1155/2015/195308. Promratrak Promratrak L L, 2017, INT J SMART GRID CLE, V6 6, P133, DOI {[}10.12720/sgce.6.2.133-140 10.12720/sgce.6.2.133-140, DOI 10.12720/SGCE.6.2.133-140]. Puranik V., 2019, PROC INT C INTERNET, DOI DOI 10.1109/IOT-SIU.2019.8777619. Rahimi Mohamad Khairul Hafizi, 2020, 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC), P214, DOI 10.1109/ICSPC50992.2020.9305792. Ratnaparkhi S., 2020, MATER TODAY-PROC, V2020, DOI {[}10.1016/j.matpr.2020.11.138, DOI 10.1016/J.MATPR.2020.11.138]. Ravansari R, 2021, GEODERMA, V382, DOI 10.1016/j.geoderma.2020.114728. Ray PP, 2017, J AMB INTEL SMART EN, V9, P395, DOI 10.3233/AIS-170440. Rettore de Araujo Zanella A., 2020, ARRAY, V8, DOI {[}10.1016/j.array.2020.100048, DOI 10.1016/J.ARRAY.2020.100048]. Rico-Fernandez MP, 2019, COMPUT ELECTRON AGR, V156, P378, DOI 10.1016/j.compag.2018.11.033. Rodriguez-Robles J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12155913. Rossel RAV, 2016, AGR SYST, V148, P71, DOI 10.1016/j.agsy.2016.07.001. Royston Royston R.M. R.M., 2018, INT J ENG TECHNIQUES, V4 4, P500. Rueda-Ayala VP, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19030535. Sabri NSA, 2018, MICROBES ENVIRON, V33, P144, DOI {[}10.1264/jsme2.me17181, 10.1264/jsme2.ME17181]. Sabzi S, 2018, COMPUT IND, V98, P80, DOI 10.1016/j.compind.2018.03.001. Sadeghi-Tehran P, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00252. Saeed IA, 2019, SOIL WATER RES, V14, P195, DOI 10.17221/74/2018-SWR. Tyagi SKS, 2021, IEEE SENS J, V21, P17439, DOI 10.1109/JSEN.2020.3020889. Saxena M, 2020, 2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT). Scheberl L, 2019, URBAN FOR URBAN GREE, V38, P267, DOI 10.1016/j.ufug.2019.01.001. Serrano-Finetti E, 2019, COMPUT ELECTRON AGR, V165, DOI 10.1016/j.compag.2019.104940. Shafi U, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19173796. Shahrulakram Shahrulakram M.A.I. M.A.I., 2017, WATER STORAGE MONITO, P46. Shamshiri RR, 2018, INT J AGR BIOL ENG, V11, P1, DOI 10.25165/j.ijabe.20181101.3210. Sharma S, 2014, ANNU IEEE IND CONF. Shi W, 2018, IFAC PAPERSONLINE, V51, P586, DOI 10.1016/j.ifacol.2018.08.134. Shi X, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19132880. Singh N, 2020, COMPUT ELECTRON AGR, V171, DOI 10.1016/j.compag.2020.105328. Sishodia RP, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12193136. Sivamani S, 2013, INT J DISTRIB SENS N, DOI 10.1155/2013/161495. Specht K, 2014, AGR HUM VALUES, V31, P33, DOI 10.1007/s10460-013-9448-4. Stein EW, 2021, AIR SOIL WATER RES, V14, DOI 10.1177/1178622121995819. Stoces M., 2016, AGRIS On-line Papers in Economics and Informatics, V8, P83. Subic J, 2015, PROC ECON FINANC, V22, P131, DOI 10.1016/S2212-5671(15)00241-5. Sudduth KA, 2001, COMPUT ELECTRON AGR, V31, P239, DOI 10.1016/S0168-1699(00)00185-X. Suh J, 2018, SUSTAIN AGR REV, V27, P193, DOI 10.1007/978-3-319-75190-0\_7. Sun YY, 2018, J SPECTROSC, V2018, DOI 10.1155/2018/1469314. Surya SG, 2020, SENSOR ACTUAT B-CHEM, V321, DOI 10.1016/j.snb.2020.128542. Sushanth G, 2018, 2018 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET). Tablada A, 2020, FRONT ARCHIT RES, V9, P301, DOI 10.1016/j.foar.2019.12.005. Thakur D, 2020, PROCEDIA COMPUT SCI, V167, P154, DOI 10.1016/j.procs.2020.03.193. Tian F, 2016, PROC SPIE, V9864, DOI 10.1117/12.2223292. Tian HongKun, 2020, Information Processing in Agriculture, V7, P1, DOI 10.1016/j.inpa.2019.09.006. Tomar P., 2021, ARTIFICIAL INTELLIGE. Tong ZM, 2016, ENVIRON POLLUT, V208, P256, DOI 10.1016/j.envpol.2015.07.006. Trilles S, 2018, ELECTRONICS-SWITZ, V7, DOI 10.3390/electronics7120419. Tsipis A, 2020, AGRIENGINEERING, V2, P175, DOI 10.3390/agriengineering2010011. Tuomisto HL, 2019, ONE EARTH, V1, P275, DOI 10.1016/j.oneear.2019.10.024. Uddin Uddin M.A. M.A., P 27 INT TEL NETW AP P 27 INT TEL NETW AP, V2017 2017, P1. Valente A, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9060987. Verdouw C, 2019, COMPUT ELECTRON AGR, V165, DOI 10.1016/j.compag.2019.104939. Villa-Henriksen A, 2020, BIOSYST ENG, V191, P60, DOI 10.1016/j.biosystemseng.2019.12.013. Virginia A, 2018, AGR SYST, V167, P103, DOI 10.1016/j.agsy.2018.09.005. Visconti F, 2016, NEW TRENDS AND DEVELOPMENTS IN METROLOGY, P99, DOI 10.5772/62741. Vivaldi F, 2020, SENSOR ACTUAT B-CHEM, V322, DOI 10.1016/j.snb.2020.128650. de Souza CHW, 2017, COMPUT ELECTRON AGR, V143, P49, DOI 10.1016/j.compag.2017.10.006. Wan P, 2018, COMPUT ELECTRON AGR, V146, P43, DOI 10.1016/j.compag.2018.01.011. Wang G, 2017, COMPUT INTEL NEUROSC, V2017, DOI 10.1155/2017/2917536. Wang JW, 2018, COMPUT IND ENG, V125, P668, DOI 10.1016/j.cie.2017.12.021. Wang ZD, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18041126. Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023. Wong CE, 2020, TRENDS FOOD SCI TECH, V106, P48, DOI 10.1016/j.tifs.2020.09.031. Wood L., 2018, AGR ROBOTS DRONES 20. Yang RM, 2016, PEDOSPHERE, V26, P699, DOI 10.1016/S1002-0160(15)60078-9. Yuan CW, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21041234. Yuan T, 2009, SPECTROSC SPECT ANAL, V29, P2054, DOI 10.3964/j.issn.1000-0593(2009)08-2054-05. Zhang QR, 2017, IOP C SER EARTH ENV, V61, DOI 10.1088/1755-1315/61/1/012021. Zhang WJ, 2011, CIRP ANN-MANUF TECHN, V60, P469, DOI 10.1016/j.cirp.2011.03.041. Zhang XL, 2017, SENSORS-BASEL, V17, DOI {[}10.3390/s17030447, 10.3390/s17050978]. Zhang Y, 2020, SENSOR ACTUAT B-CHEM, V324, DOI 10.1016/j.snb.2020.128733. Zhong C, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.122686. Zhong YH, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18051489. Zhou WC, 2019, SENSOR ACTUAT B-CHEM, V298, DOI 10.1016/j.snb.2019.126857. Zhu YJ, 2016, BIOSYST ENG, V143, P28, DOI 10.1016/j.biosystemseng.2015.12.015.}, Number-of-Cited-References = {201}, Times-Cited = {10}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {75}, Journal-ISO = {Electronics}, Doc-Delivery-Number = {SY5EX}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000665912200001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000629356000003, Author = {Su, Fang and Chang, Jiangbo and Li, Xi and Zhou, Dan and Xue, Bing}, Title = {Urban Circular Economy in China: A Review Based on Chinese Literature Studies}, Journal = {COMPLEXITY}, Year = {2021}, Volume = {2021}, Month = {MAR 4}, Abstract = {Circular economy is a critical approach to realize the coordinated development of society, economy, and ecological environment. Given the fact that urban is a complex system in which human beings integrate material, energy, information, and natural environment and interact and influence each other, reviewing the urban circular economy research and development could benefit for having a better and comprehensive understanding on urban complexity. Mainly based on the Chinese literature studies from 1999 to 2020, this study aims to present an in-depth analysis of the research themes, policy systems, and index system of China's urban-scale circular economy, discuss the changes and evolution trends of themes, levels, and perspectives in time series, sort out the policy systems at both the national and local levels, and analyze the design principles and application fields of indicators. Finally, we propose that future development of an urban circular economy should be built based on modern techniques, technologies, and models. The construction of development mechanism on the circular economy should be framed as ``government-led, market-driven, legal norms, policy support, technological support, and public participation{''} and inject concepts such as ``Internet +,{''} ``sharing economy,{''} ``Internet of Things,{''} and ``artificial intelligence.{''}}, Publisher = {WILEY-HINDAWI}, Address = {ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Xue, B (Corresponding Author), Jiangxi Univ Sci \& Technol, Jiangxi Key Lab Min \& Met Environm Pollut Control, Ganzhou 341000, Peoples R China. Xue, B (Corresponding Author), Chinese Acad Sci, Inst Appl Ecol, Key Lab Pollut Ecol \& Environm Engn, Shenyang 110016, Peoples R China. Su, Fang; Chang, Jiangbo; Li, Xi, Shaanxi Univ Sci \& Technol, Sch Econ \& Management, Xian 710021, Peoples R China. Zhou, Dan; Xue, Bing, Jiangxi Univ Sci \& Technol, Jiangxi Key Lab Min \& Met Environm Pollut Control, Ganzhou 341000, Peoples R China. Xue, Bing, Chinese Acad Sci, Inst Appl Ecol, Key Lab Pollut Ecol \& Environm Engn, Shenyang 110016, Peoples R China.}, DOI = {10.1155/2021/8810267}, Article-Number = {8810267}, ISSN = {1076-2787}, EISSN = {1099-0526}, Research-Areas = {Mathematics; Science \& Technology - Other Topics}, Web-of-Science-Categories = {Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences}, Author-Email = {sufang@sust.edu.cn 18335927039@163.com 821693615@qq.com zhoudan1122@163.com xuebing@iae.ac.cn}, Affiliations = {Shaanxi University of Science \& Technology; Jiangxi University of Science \& Technology; Chinese Academy of Sciences; Shenyang Institute of Applied Ecology, CAS}, Funding-Acknowledgement = {Key Program of ``Thousand People Plan{''} of Jiangxi Province and Shaanxi Province; Social Science Foundation of China {[}17XJY018]; Natural Science Foundation of China {[}41971166]; MOE Project of Humanities and Social Sciences of China {[}19YJAZH076]}, Funding-Text = {This work was supported by the Key Program of ``Thousand People Plan{''} of Jiangxi Province and Shaanxi Province, the Social Science Foundation of China (Grant ID: 17XJY018), Natural Science Foundation of China (Grant ID: 41971166), and MOE Project of Humanities and Social Sciences of China (Grant ID: 19YJAZH076).}, Cited-References = {Akerman M, 2020, GEOFORUM, V116, P73, DOI 10.1016/j.geoforum.2020.07.013. Bassi F, 2020, BUS STRATEG ENVIRON, V29, P2528, DOI 10.1002/bse.2518. Blomsma F, 2017, J IND ECOL, V21, P603, DOI 10.1111/jiec.12603. Brunner PH, 2011, J IND ECOL, V15, P339, DOI 10.1111/j.1530-9290.2011.00345.x. Chen D.M., 2003, ECON ISS, V9, P34. Chen X.P., 2005, RESOURCE SCI, V1, P52. Chen Y., 2019, ENV PROT, V47, P21. Chen Z.H., 2018, WATER CONSERVANCY PL, V5, P83. Dong C.H., 2016, J GUANGDONG U FINANC, V5, P4. Dong M., 2012, REGIONAL RES DEV, V31, P126. Feng J., 2003, RESOURCES ENV, V2, P31. Fu L., 2013, RESOURCES ENV, V23, P169. GBM, 2018, PEOPL GOV BEIJ MUN G. Geissdoerfer M, 2017, J CLEAN PROD, V143, P757, DOI 10.1016/j.jclepro.2016.12.048. Geng Y, 2019, NATURE, V565, P153, DOI 10.1038/d41586-019-00017-z. Geng Y, 2013, SCIENCE, V339, P1526, DOI 10.1126/science.1227059. Geng Y, 2012, J CLEAN PROD, V23, P216, DOI 10.1016/j.jclepro.2011.07.005. Ghisellini P, 2016, J CLEAN PROD, V114, P11, DOI 10.1016/j.jclepro.2015.09.007. Govindan K, 2016, ANN OPER RES, V238, P243, DOI 10.1007/s10479-015-2004-4. Gregson N, 2015, ECON SOC, V44, P218, DOI 10.1080/03085147.2015.1013353. Grey CP, 2017, NAT MATER, V16, P45, DOI {[}10.1038/nmat4777, 10.1038/NMAT4777]. Guo L.J., 2017, HUXIANG FORUM, V30, P92. He GH, 2019, J GEOGR SCI, V29, P959, DOI 10.1007/s11442-019-1639-5. Huang H.P., 2007, ACTA ECOL SIN, V1, P368. {[}蒋艳灵 Jiang Yanling], 2015, {[}地理研究, Geographical Research], V34, P2222. Jiangsu Provincial Government, 2019, LOW CARB DEV REP JIA. Jones PT, 2013, J CLEAN PROD, V55, P45, DOI 10.1016/j.jclepro.2012.05.021. Kalmykova Y, 2018, RESOUR CONSERV RECY, V135, P190, DOI 10.1016/j.resconrec.2017.10.034. Kraus S, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020444. Lazarevic D, 2017, ENERGY RES SOC SCI, V31, P60, DOI 10.1016/j.erss.2017.05.006. Leng H., 2020, URBAN PLANNING INT, V35, P103. Li W.F., 2005, SCI SCI MANAGEMENT S, V8, P82. Li Y.X., 2020, W ACCOUNTING, V1, P74. Liu D., 2005, OUTLOOK NEWSWEEK, V49, P58. Ruiz-Real JL, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122699. Ma SF, 2020, CHINESE GEOGR SCI, V30, P665, DOI 10.1007/s11769-020-1140-1. Ma X, 2017, BUSINESS EC RES, V6, P212. Nascimento DLM, 2019, J MANUF TECHNOL MANA, V30, P607, DOI 10.1108/JMTM-03-2018-0071. MEE (Ministry of Ecological Environment of China), 2019, ANN ISS LIST PIL PRO. MEE (Ministry of Ecological Environment of China), 2013, NAT SUST DEV PLAN RE. Miskolc City Council, 2019, MISK MEG JOG VAR ONK. Moraga G, 2019, RESOUR CONSERV RECY, V146, P452, DOI 10.1016/j.resconrec.2019.03.045. Municipal Government of Kunming (MGK), 2019, REG MAN URB DOM WAST. National Development and Reform Commission Ministry of Finance, 2014, NOT CARR OUT CONSTR. Peng Yun, 2018, China Environmental Science, V38, P3874. {[}秦伟山 Qin Weishan], 2013, {[}资源科学, Resources Science], V35, P1677. Ren Y., 2005, RESOURCES ENV, V5, P141. Ren YF, 2019, J GEOGR SCI, V29, P1315, DOI 10.1007/s11442-019-1661-7. Shao X.M., 2006, PROGR GEOGRAPHICAL S, V2, P85. Shi Z., 2004, ENV PROTECTION, V2, P12. Stahel WR, 2016, NATURE, V531, P435, DOI 10.1038/531435a. Sun W, 2019, CHINESE GEOGR SCI, V29, P352, DOI 10.1007/s11769-019-1032-4. Vallaster C, 2019, INT J ENTREP BEHAV R, V25, P538, DOI 10.1108/IJEBR-04-2018-0206. {[}王昶 Wang Chang], 2014, {[}资源科学, Resources Science], V36, P1618. Wang P, 2008, J JILIN I TECHNOLOGY, V5, P72. Wang Y., 2016, Planners, V32, P10. Wang Z., 2006, COAL FIELD GEOLOGY E, V4, P45. Wu Z.J, 2007, CONT FINANCE EC, V11, P66. Xu H., 2012, SCI TECHNOLOGY ENG, V12, P2499. Xue B., 2019, RESOURCE ENV MANAGEM, V3rd. Xue B, 2020, GEOGR SUSTAIN, V1, P152, DOI 10.1016/j.geosus.2020.06.003. Xue B, 2010, RESOUR CONSERV RECY, V54, P1296, DOI 10.1016/j.resconrec.2010.05.010. Yang J, 2019, SUSTAIN CITIES SOC, V47, DOI 10.1016/j.scs.2019.101487. Yang Z.P., 2005, CHEM ENV PROTECTION, V2, P160. Yu JH, 2019, J GEOGR SCI, V29, P1300, DOI 10.1007/s11442-019-1660-8. Yu L.Y., 2005, CHINA SOFT SCI, V12, P44. Zhang B., 2005, RESOURCES ENV, V3, P22. Zhang J.H., 2007, REGIONAL RES DEV, V2, P90. Zhang L., 2017, WATER SUPPLY DRAINAG, V53, P1, DOI {[}10.13789/j.cnki.wwe1964.2017.0256, DOI 10.13789/J.CNKI.WWE1964.2017.0256]. Zhang M.D, 2016, J CHINA U GEOSCIENCE, V16, P95. Zhang Q.C, 2019, J JIANGNAN U HUMANIT, V18, P83. Zhang Y., 2008, ENVIRON SCI TECHNOL, V10, P154. {[}赵卉卉 Zhao Huihui], 2012, {[}生态学报, Acta Ecologica Sinica], V32, P2025. {[}钟方潜 Zhong Fangqian], 2017, {[}气候与环境研究, Climatic and Environmental Research], V22, P149. Zhou Y., 2012, ACAD FORUM, V35, P118. Zou Q., 2020, ENV PROTECTION, V48, P46.}, Number-of-Cited-References = {76}, Times-Cited = {2}, Usage-Count-Last-180-days = {10}, Usage-Count-Since-2013 = {63}, Journal-ISO = {Complexity}, Doc-Delivery-Number = {QX4ZI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000629356000003}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000879561000004, Author = {Fu, Guangtao and Jin, Yiwen and Sun, Siao and Yuan, Zhiguo and Butler, David}, Title = {The role of deep learning in urban water management: A critical review}, Journal = {WATER RESEARCH}, Year = {2022}, Volume = {223}, Month = {SEP 1}, Abstract = {Deep learning techniques and algorithms are emerging as a disruptive technology with the potential to transform global economies, environments and societies. They have been applied to planning and management problems of urban water systems in general, however, there is lack of a systematic review of the current state of deep learning applications and an examination of potential directions where deep learning can contribute to solving urban water challenges. Here we provide such a review, covering water demand forecasting, leakage and contamination detection, sewer defect assessment, wastewater system state prediction, asset monitoring and urban flooding. We find that the application of deep learning techniques is still at an early stage as most studies used benchmark networks, synthetic data, laboratory or pilot systems to test the performance of deep learning methods with no practical adoption reported. Leakage detection is perhaps at the forefront of receiving practical implementation into day-to-day operation and management of urban water systems, compared with other problems reviewed. Five research challenges, i.e., data privacy, algorithmic development, explainability and trustworthiness, multi-agent systems and digital twins, are identified as key areas to advance the application and implementation of deep learning in urban water management. Future research and application of deep learning systems are expected to drive urban water systems towards high intelligence and autonomy. We hope this review will inspire research and development that can harness the power of deep learning to help achieve sustainable water management and digitalise the water sector across the world.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Fu, GT (Corresponding Author), Univ Exeter, Ctr Water Syst, Exeter EX4 4QF, Devon, England. Sun, SA (Corresponding Author), Chinese Acad Sci, Inst Geog Sci \& Nat Resources Res, Key Lab Reg Sustainable Dev Modelling, Beijing 100101, Peoples R China. Fu, Guangtao; Jin, Yiwen; Butler, David, Univ Exeter, Ctr Water Syst, Exeter EX4 4QF, Devon, England. Sun, Siao, Chinese Acad Sci, Inst Geog Sci \& Nat Resources Res, Key Lab Reg Sustainable Dev Modelling, Beijing 100101, Peoples R China. Yuan, Zhiguo, Univ Queensland, Adv Water Management Ctr, St Lucia, Qld 4072, Australia.}, DOI = {10.1016/j.watres.2022.118973}, EarlyAccessDate = {AUG 2022}, Article-Number = {118973}, ISSN = {0043-1354}, EISSN = {1879-2448}, Keywords = {Artificial intelligence; Data analytics; Deep learning; Digital twin; Water management}, Keywords-Plus = {NEURAL-NETWORKS; DEFECT CLASSIFICATION; ANOMALY DETECTION; PREDICTION; MODEL; LOCALIZATION; FRAMEWORK; TIME}, Research-Areas = {Engineering; Environmental Sciences \& Ecology; Water Resources}, Web-of-Science-Categories = {Engineering, Environmental; Environmental Sciences; Water Resources}, Author-Email = {g.fu@exeter.ac.uk suns@igsnrr.ac.cn}, Affiliations = {University of Exeter; Chinese Academy of Sciences; Institute of Geographic Sciences \& Natural Resources Research, CAS; University of Queensland}, ResearcherID-Numbers = {Butler, David/I-2991-2012 yuan, zhiguo/C-4980-2013}, ORCID-Numbers = {Jin, Yiwen/0000-0002-7002-2518 Butler, David/0000-0001-5515-3416 Fu, Guangtao/0000-0003-1045-9125 yuan, zhiguo/0000-0002-7566-1482}, Funding-Acknowledgement = {Royal Society under the Industry Fellowship Scheme {[}IF160108]; UK Engineering and Physical Sciences Research Council under the Alan Turing Institute {[}EP/N510129/1]; National Natural Science Foundation of China {[}42071272]}, Funding-Text = {This work was supported by the Royal Society under the Industry Fellowship Scheme (Ref: IF160108), the UK Engineering and Physical Sciences Research Council under the Alan Turing Institute (Ref: EP/N510129/1) and the National Natural Science Foundation of China (Grant No. 42071272).}, Cited-References = {{[}Anonymous], 2013, PLOS ONE, DOI {[}DOI 10.1371/journal.pone.0053995, DOI 10.1371/journal.pone.0053931]. Arad J, 2013, WATER RES, V47, P1899, DOI 10.1016/j.watres.2013.01.017. Barrington L., 2019, 33 C NEURAL INF PROC. Bartos M, 2021, ENVIRON MODELL SOFTW, V144, DOI 10.1016/j.envsoft.2021.105120. Belghaddar Y, 2021, WATER-SUI, V13, DOI 10.3390/w13121681. Blumensaat F, 2019, ENVIRON SCI TECHNOL, V53, P8488, DOI 10.1021/acs.est.8b06481. Boltz T., 2019, ACM T INTEL SYST TEC, P1, DOI DOI 10.1145/3298981. Bonilla CA, 2022, WATER-SUI, V14, DOI 10.3390/w14040514. Bowes BD, 2021, J HYDROINFORM, V23, P529, DOI 10.2166/hydro.2020.080. Butler D, 2017, GLOB CHALL, V1, P63, DOI 10.1002/gch2.1010. Cao K, 2018, J INF PROCESS SYST, V14, P1508, DOI 10.3745/JIPS.02.0104. Chandy SE, 2019, J WATER RES PLAN MAN, V145, DOI {[}10.1061/(ASCE)WR.1943-5452.0001007, 10.1061/(asce)wr.1943-5452.0001007]. Chen KH, 2021, CHEMOSPHERE, V279, DOI 10.1016/j.chemosphere.2021.130498. Chen X, 2018, P GENETIC EVOLUTIONA, P3, DOI {[}10.1145/3205651.3208203, DOI 10.1145/3205651.3208203]. Chen Y., 2019, P 2019 2 INT C SIGNA, DOI {[}10.1145/3372806.3372816, DOI 10.1145/3372806.3372816]. Cheng JCP, 2018, AUTOMAT CONSTR, V95, P155, DOI 10.1016/j.autcon.2018.08.006. Cheng TY, 2020, IEEE ACCESS, V8, P184475, DOI 10.1109/ACCESS.2020.3030820. Cody RA, 2020, J COMPUT CIVIL ENG, V34, DOI 10.1061/(ASCE)CP.1943-5487.0000881. Dairi A, 2019, SUSTAIN CITIES SOC, V50, DOI 10.1016/j.scs.2019.101670. de Vitry MM, 2019, HYDROL EARTH SYST SC, V23, P4621, DOI 10.5194/hess-23-4621-2019. Deng AL, 2021, AAAI CONF ARTIF INTE, V35, P4027. Dogo EM, 2019, URBAN WATER J, V16, P235, DOI 10.1080/1573062X.2019.1637002. Du BG, 2021, EXPERT SYST APPL, V171, DOI 10.1016/j.eswa.2021.114571. Erba A., 2020, ANN COMPUTER SECURIT. Fan X., 2021, J INFRASTRUCT PRESER, V2, DOI {[}10.1186/s43065-021-00021-6, DOI 10.1186/S43065-021-00021-6]. Fang QS, 2019, WATER SUPPLY, V19, P2231, DOI 10.2166/ws.2019.105. Feng J, 2021, IEEE T IND ELECTRON, V68, P3454, DOI 10.1109/TIE.2020.2982085. Filipe J, 2019, APPL ENERG, V252, DOI 10.1016/j.apenergy.2019.113423. Garrido-Baserba M, 2020, ENVIRON SCI TECHNOL, V54, P4698, DOI 10.1021/acs.est.9b04251. Gernaey K.V., 2014, IWA SCI TECHNICAL RE, DOI 10.2166/9781780401171. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Guo GC, 2021, J WATER RES PLAN MAN, V147, DOI 10.1061/(ASCE)WR.1943-5452.0001317. Guo GC, 2018, J WATER RES PLAN MAN, V144, DOI 10.1061/(ASCE)WR.1943-5452.0000992. Guo ZF, 2021, J FLOOD RISK MANAG, V14, DOI 10.1111/jfr3.12684. Gutierrez-Mondragon MA, 2020, Arxiv. Hajgató G, 2021, Arxiv. Hajgato G, 2020, J WATER RES PLAN MAN, V146, DOI 10.1061/(ASCE)WR.1943-5452.0001287. Hashemi-Beni L, 2021, IEEE J-STARS, V14, P2127, DOI 10.1109/JSTARS.2021.3051873. Hassan SI, 2019, AUTOMAT CONSTR, V106, DOI 10.1016/j.autcon.2019.102849. Hassanzadeh A, 2020, J ENVIRON ENG, V146, DOI 10.1061/(ASCE)EE.1943-7870.0001686. Haurum JB, 2021, PROC CVPR IEEE, P13451, DOI 10.1109/CVPR46437.2021.01325. He K. M., 2016, PROC IEEE C COMPUT V, DOI DOI 10.1109/CVPR.2016.90. Hernandez-del-Olma F, 2018, KNOWL-BASED SYST, V144, P9, DOI 10.1016/j.knosys.2017.12.019. Hernandez-del-Olmo F, 2016, ENERGIES, V9, DOI 10.3390/en9090755. Hu P, 2019, IEEE C EVOL COMPUTAT, P1088, DOI 10.1109/CEC.2019.8790060. Hu X, 2021, J CLEAN PROD, V278, DOI 10.1016/j.jclepro.2020.123611. Inoue J, 2017, INT CONF DAT MIN WOR, P1058, DOI 10.1109/ICDMW.2017.149. Iqbal U, 2021, INT J DISAST RISK RE, V53, DOI 10.1016/j.ijdrr.2020.102030. IWA, 2019, DIG WAT IND LEAD CHA. Javadiha M, 2019, INT C CONTROL DECISI, P1426, DOI 10.1109/CoDIT.2019.8820627. Jiao YT, 2021, MEASUREMENT, V174, DOI 10.1016/j.measurement.2021.109020. Kabir S, 2020, J HYDROL, V590, DOI 10.1016/j.jhydrol.2020.125481. Kang J, 2018, IEEE T IND ELECTRON, V65, P4279, DOI 10.1109/TIE.2017.2764861. Karimi HS, 2019, J HYDROL, V577, DOI 10.1016/j.jhydrol.2019.123977. Kefan Chen, 2018, 2018 IEEE International Conference on Information and Automation (ICIA). Proceedings, P1301, DOI 10.1109/ICInfA.2018.8812445. Kharazi BA, 2021, COMPUT ENVIRON URBAN, V88, DOI 10.1016/j.compenvurbsys.2021.101628. Kingma D.P., 2014, 3 INT C LEARN REPR I. Kuhnert C, 2021, WATER-SUI, V13, DOI 10.3390/w13050644. Kumar S.S., 2020, CONSTRUCTION RES C 2. Kumar SS, 2018, AUTOMAT CONSTR, V91, P273, DOI 10.1016/j.autcon.2018.03.028. Kumar SS, 2020, J COMPUT CIVIL ENG, V34, DOI 10.1061/(ASCE)CP.1943-5487.0000866. Kunzel J, 2018, IEEE WINT CONF APPL, P2019, DOI 10.1109/WACV.2018.00223. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Leigh C, 2019, SCI TOTAL ENVIRON, V664, P885, DOI 10.1016/j.scitotenv.2019.02.085. Li D, 2019, LECT NOTES COMPUT SC, V11730, P703, DOI 10.1007/978-3-030-30490-4\_56. Li DS, 2019, AUTOMAT CONSTR, V101, P199, DOI 10.1016/j.autcon.2019.01.017. Li LB, 2022, WATER RES, V211, DOI 10.1016/j.watres.2022.118078. Li T, 2020, IEEE SIGNAL PROC MAG, V37, P50, DOI 10.1109/MSP.2020.2975749. Li ZL, 2022, SCI TOTAL ENVIRON, V828, DOI 10.1016/j.scitotenv.2022.154284. Liu HX, 2020, J WATER RES PLAN MAN, V146, DOI 10.1061/(ASCE)WR.1943-5452.0001299. Liu RQ, 2020, LUMINESCENCE, V35, P129, DOI 10.1002/bio.3705. Lowe R, 2021, J HYDROL, V603, DOI 10.1016/j.jhydrol.2021.126898. Makropoulos C, 2019, WATER-SUI, V11, DOI 10.3390/w11101959. Mehmood H., 2020, UNU INWEH REPORT SER. Meijer D, 2019, AUTOMAT CONSTR, V104, P281, DOI 10.1016/j.autcon.2019.04.013. Moradi S, 2020, J INFRASTRUCT SYST, V26, DOI 10.1061/(ASCE)IS.1943-555X.0000553. Moreno-Rodenas AM, 2021, WATER RES, V202, DOI 10.1016/j.watres.2021.117482. Mu L, 2020, J WATER RES PLAN MAN, V146, DOI 10.1061/(ASCE)WR.1943-5452.0001276. Muharemi F, 2019, J INFORM TELECOMMUN, V3, P294, DOI 10.1080/24751839.2019.1565653. Mullapudi A, 2020, ADV WATER RESOUR, V140, DOI 10.1016/j.advwatres.2020.103600. Nam YW, 2021, WATER SUPPLY, V21, P3477, DOI 10.2166/ws.2021.109. Nasser AA, 2020, IEEE ACCESS, V8, P147647, DOI 10.1109/ACCESS.2020.3015655. Nearing GS, 2021, WATER RESOUR RES, V57, DOI 10.1029/2020WR028091. Nevo S., 2019, ML FLOOD FORECASTING. Ng A, 2022, MLOPS MODEL CENTRIC. Palmitessa R, 2021, J HYDRO-ENVIRON RES, V38, P106, DOI 10.1016/j.jher.2021.01.006. Pan G, 2020, AUTOMAT CONSTR, V119, DOI 10.1016/j.autcon.2020.103383. Pang JW, 2019, WATER-SUI, V11, DOI 10.3390/w11050927. Park J, 2019, WATER-SUI, V11, DOI 10.3390/w11071338. Pesantez JE, 2022, SUSTAIN CITIES SOC, V77, DOI 10.1016/j.scs.2021.103520. Pollard JA, 2018, WIRES CLIM CHANGE, V9, DOI 10.1002/wcc.543. Qian K., 2020, 2020 IEEE INT C NETW, DOI {[}10.1109/ICNSC48988.2020.9238099, DOI 10.1109/ICNSC48988.2020.9238099]. Rahimi M, 2020, INFORMATICS-BASEL, V7, DOI 10.3390/informatics7040049. Reuss M, 2003, J WATER RES PL-ASCE, V129, P357, DOI 10.1061/(ASCE)0733-9496(2003)129:5(357). Rodriguez-Perez J, 2020, ENVIRON SCI TECHNOL, V54, P13719, DOI 10.1021/acs.est.0c04069. Sadr SMK, 2020, WATER RES, V182, DOI 10.1016/j.watres.2020.116013. Saliba SM, 2020, WATER-SUI, V12, DOI 10.3390/w12113222. Samek W, 2021, P IEEE, V109, P247, DOI 10.1109/JPROC.2021.3060483. Shen CP, 2018, WATER RESOUR RES, V54, P8558, DOI 10.1029/2018WR022643. Shukla H, 2020, AUTOMAT CONSTR, V117, DOI 10.1016/j.autcon.2020.103256. Syafiie S, 2011, APPL SOFT COMPUT, V11, P73, DOI 10.1016/j.asoc.2009.10.018. Tang R, 2020, WATER RESOUR MANAG, V34, P1005, DOI 10.1007/s11269-020-02485-9. Taormina R, 2018, J WATER RES PLAN MAN, V144, DOI 10.1061/(ASCE)WR.1943-5452.0000983. Taormina R, 2018, J WATER RES PLAN MAN, V144, DOI 10.1061/(ASCE)WR.1943-5452.0000969. The Royal Society, 2017, MACH LEARN POW PROM, DOI {[}10.1126/scitranslmed.3002564, DOI 10.1126/SCITRANSLMED.3002564]. The Royal Society, 2019, EXPL AI BAS. Therrien JD, 2020, WATER SCI TECHNOL, V82, P2613, DOI 10.2166/wst.2020.393. Tsiami L, 2021, WATER-SUI, V13, DOI 10.3390/w13091247. U.S. EPA, 2012, EPA600R08040B. Valverde-Perez B., 2021, INT WATER ASS. Varadharajan C, 2022, HYDROL PROCESS, V36, DOI 10.1002/hyp.14565. Vaswani A, 2017, ADV NEUR IN, V30. Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y. Wang MZ, 2021, TUNN UNDERGR SP TECH, V110, DOI 10.1016/j.tust.2021.103840. Wang MZ, 2021, AUTOMAT CONSTR, V121, DOI 10.1016/j.autcon.2020.103438. Wang MZ, 2020, COMPUT-AIDED CIV INF, V35, P162, DOI 10.1111/mice.12481. Wang XT, 2020, J WATER RES PLAN MAN, V146, DOI 10.1061/(ASCE)WR.1943-5452.0001223. Wang ZF, 2019, ENVIRON SCI-WAT RES, V5, P2210, DOI {[}10.1039/c9ew00505f, 10.1039/C9EW00505F]. Wu ZY, 2017, PROCEDIA ENGINEER, V186, P261, DOI 10.1016/j.proeng.2017.03.240. Xie Q, 2019, IEEE T AUTOM SCI ENG, V16, P1836, DOI 10.1109/TASE.2019.2900170. Xie XZ, 2021, MED IMAGE ANAL, V69, DOI 10.1016/j.media.2021.101985. Xu TF, 2021, WIRES WATER, V8, DOI 10.1002/wat2.1533. Xu W, 2020, HYDROL RES, V51, P1358, DOI 10.2166/nh.2020.026. Yang L, 2019, SOFT COMPUT, V23, P13393, DOI 10.1007/s00500-019-03878-8. Yang YCE, 2009, WATER RESOUR RES, V45, DOI 10.1029/2008WR007634. Yin XF, 2020, AUTOMAT CONSTR, V109, DOI 10.1016/j.autcon.2019.102967. Zhang D, 2018, Arxiv. Zhang D, 2018, J HYDROL, V567, P792, DOI 10.1016/j.jhydrol.2017.11.029. Zhang D, 2018, WATER RESOUR MANAG, V32, P2079, DOI 10.1007/s11269-018-1919-3. Zhang Z., 2018, DESTECH T COMPUT SCI, P469, DOI {[}10.12783/dtcse/ammms2018/27322, DOI 10.12783/DTCSE/AMMMS2018/27322]. Zhou MF, 2021, IEEE ACCESS, V9, P47565, DOI 10.1109/ACCESS.2021.3068292. Zhou MF, 2019, IEEE ACCESS, V7, P30457, DOI 10.1109/ACCESS.2019.2902711. Zhou X, 2019, WATER RES, V166, DOI 10.1016/j.watres.2019.115058. Zhu XX, 2017, IEEE GEOSC REM SEN M, V5, P8, DOI 10.1109/MGRS.2017.2762307.}, Number-of-Cited-References = {134}, Times-Cited = {2}, Usage-Count-Last-180-days = {94}, Usage-Count-Since-2013 = {114}, Journal-ISO = {Water Res.}, Doc-Delivery-Number = {5Y8WD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000879561000004}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000798828000001, Author = {Chen, Kexin and Yang, Mingxia and Zhou, Xiaolu and Liu, Zelin and Li, Peng and Tang, Jiayi and Peng, Changhui}, Title = {Recent advances in carbon footprint studies of urban ecosystems: overview, application, and future challenges}, Journal = {ENVIRONMENTAL REVIEWS}, Year = {2022}, Volume = {30}, Number = {2}, Pages = {342-356}, Month = {JUN}, Abstract = {Urban ecosystems are complex systems with anthropogenic features that generate considerable CO2 emissions, which contributes to global climate change. Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-carbon development policies to mitigate climate change. Herein, we reviewed more than 195 urban carbon footprint and carbon footprint related studies, collated the recent progress in carbon footprint calculation methods and research applications of the urban ecosystem carbon footprint, analyzed the research applications of the carbon footprint of different cities, and focused on the need to study the urban ecosystem carbon footprint from a holistic perspective. Specifically, we aimed to: (i) compare the strengths and weaknesses of five existing carbon footprint calculation methods {[}life cycle assessment, input???output analysis, hybrid life cycle assessment, carbon footprint calculator, and Intergovernmental Panel on Climate Change (IPCC)]; (ii) analyze the status of current research on the carbon footprint of different urban subregions based on different features; and (iii) highlight new methods and areas of research on the carbon footprint of future urban ecosystems. Not all carbon footprint accounting methods are applicable to the carbon footprint determination of urban ecosystems; although the IPCC method is more widely used than the others, the hybrid life cycle assessment method is more accurate. With the emergence of new science and technology, quantitative methods to calculate the carbon footprint of urban ecosystems have evolved, becoming more accurate. Further development of new technologies, such as big data and artificial intelligence, to assess the carbon footprint of urban ecosystems is anticipated to help address the emerging challenges in urban ecosystem research effectively to achieve carbon neutrality and urban sustainability under global change.}, Publisher = {CANADIAN SCIENCE PUBLISHING}, Address = {65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA}, Type = {Review}, Language = {English}, Affiliation = {Peng, CH (Corresponding Author), Hunan Normal Univ, Sch Geog Sci, Changsha 410081, Peoples R China. Peng, CH (Corresponding Author), Univ Quebec Montreal, Inst Environm Sci, Dept Biol Sci, CP 8888, Montreal, PQ H3C 3P8, Canada. Chen, Kexin; Yang, Mingxia; Zhou, Xiaolu; Liu, Zelin; Li, Peng; Tang, Jiayi; Peng, Changhui, Hunan Normal Univ, Sch Geog Sci, Changsha 410081, Peoples R China. Peng, Changhui, Univ Quebec Montreal, Inst Environm Sci, Dept Biol Sci, CP 8888, Montreal, PQ H3C 3P8, Canada.}, DOI = {10.1139/er-2021-0111}, EarlyAccessDate = {MAR 2022}, ISSN = {1208-6053}, EISSN = {1181-8700}, Keywords = {accounting systems; climate change; carbon sequestration; CO 2 emissions assessment; hybrid life cycle assessment}, Keywords-Plus = {INPUT-OUTPUT-ANALYSIS; LIFE-CYCLE INVENTORY; FOREST CARBON; ENERGY-CONSUMPTION; HUMAN-SETTLEMENTS; DRIVING FACTORS; DIOXIDE FLUXES; METABOLISM; EMISSIONS; ECONOMY}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {peng.changhui@uqam.ca}, Affiliations = {Hunan Normal University; University of Quebec; University of Quebec Montreal}, ORCID-Numbers = {chen, kexin/0000-0003-4081-6592}, Funding-Acknowledgement = {Key Research and Development Program of Hunan Province {[}2021NK2031]; National Natural Science Foundation of China {[}41901117]; Research and Development Project of Hunan Province; Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant}, Funding-Text = {This study was financially supported by the Key Research and Development Program of Hunan Province (2021NK2031), the National Natural Science Foundation of China (41901117), the Research and Development Project of Hunan Province, and a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.}, Cited-References = {Abraham Martin A, 2017, ENCY SUSTAINABLE TEC, P43, DOI DOI 10.1016/B978-0-12-409548-9.10170-8. Alam MK, 2019, J CLEAN PROD, V224, P72, DOI 10.1016/j.jclepro.2019.03.215. Andreo-Martinez P, 2021, ENVIRON MODELL SOFTW, V135, DOI 10.1016/j.envsoft.2020.104898. Ariluoma M, 2021, URBAN FOR URBAN GREE, V57, DOI 10.1016/j.ufug.2020.126939. Athanassiadis A, 2015, LIVING AND LEARNING: RESEARCH FOR A BETTER BUILT ENVIRONMENT, P547. Bai C.M., 2015, HUBEI AGR SCI, V54, P313, DOI {[}10.14088/j.cnki.issn0439-8114.2015.02.015, DOI 10.14088/J.CNKI.ISSN0439-8114.2015.02.015]. Barcza Z, 2009, AGR FOREST METEOROL, V149, P795, DOI 10.1016/j.agrformet.2008.10.021. Beets Peter N., 2011, New Zealand Journal of Forestry Science, V41, P177. Beloin-Saint-Pierre D, 2017, J CLEAN PROD, V163, pS223, DOI 10.1016/j.jclepro.2016.09.014. Brandt J, 2021, INT J REMOTE SENS, V42, P1713, DOI 10.1080/01431161.2020.1841324. Brown M.A., 2009, POLICY SOC, V27, P285, DOI DOI 10.1016/J.POLSOC.2009.01.001. Browne D, 2009, RESOUR CONSERV RECY, V54, P113, DOI 10.1016/j.resconrec.2009.07.003. Cai SY, 2018, J CLEAN PROD, V195, P289, DOI 10.1016/j.jclepro.2018.05.115. Carlson BR, 2017, COMPUT ELECTRON AGR, V142, P211, DOI 10.1016/j.compag.2017.09.007. Carpio A, 2021, URBAN CLIM, V39, DOI 10.1016/j.uclim.2021.100947. Chang FC, 2020, BIORESOURCES, V15, P641, DOI 10.15376/biores.15.1.641-653. Chen B, 2018, RENEW SUST ENERG REV, V82, P4100, DOI 10.1016/j.rser.2017.10.063. Chen BZ, 2009, SENSORS-BASEL, V9, P8624, DOI 10.3390/s91108624. Chen BZ, 2008, GLOBAL BIOGEOCHEM CY, V22, DOI 10.1029/2007GB003024. Chen CC, 2019, ECOL INDIC, V98, P575, DOI 10.1016/j.ecolind.2018.11.049. Chen G, 2017, J ENVIRON MANAGE, V187, P229, DOI 10.1016/j.jenvman.2016.11.062. Chen GW, 2016, ENERGIES, V9, DOI 10.3390/en9080602. Chen JD, 2020, APPL ENERG, V267, DOI 10.1016/j.apenergy.2020.114914. Chen PH, 2021, TRANSPORT RES D-TR E, V97, DOI 10.1016/j.trd.2021.102949. Chen SQ, 2020, APPL ENERG, V259, DOI 10.1016/j.apenergy.2019.114201. Chen SQ, 2019, APPL ENERG, V235, P835, DOI 10.1016/j.apenergy.2018.11.018. Chen XH, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.124041. Chen ZD, 2020, GLOB ECOL CONSERV, V22, DOI 10.1016/j.gecco.2019.e00895. Cheng SH, 2020, TRANSPORT RES D-TR E, V82, DOI 10.1016/j.trd.2020.102314. Chetty S, 2015, WATER SA, V41, P263, DOI 10.4314/wsa.v41i2.12. Churkina G, 2010, GLOBAL CHANGE BIOL, V16, P135, DOI 10.1111/j.1365-2486.2009.02002.x. Crawford RH, 2018, J CLEAN PROD, V172, P1273, DOI 10.1016/j.jclepro.2017.10.176. Curran MA, 2005, J CLEAN PROD, V13, P853, DOI 10.1016/j.jclepro.2002.03.001. Da Schio, 2013, WORKING PAPERS PROGR, DOI {[}10.13140/RG.2.2.19614.95047, DOI 10.13140/RG.2.2.19614.95047]. Dakhia K, 2010, MANAG ENVIRON QUAL, V21, P78, DOI 10.1108/14777831011010874. Das A, 2020, ECOL INDIC, V114, DOI 10.1016/j.ecolind.2020.106274. Desjardins R., 2020, CARBON FOOTPRINTS EN, DOI {[}10.1007/978-981-13-7916-1\_1, DOI 10.1007/978-981-13-7916-1\_1]. Desjardins RL, 2004, ATMOS ENVIRON, V38, P6855, DOI 10.1016/j.atmosenv.2004.09.008. Dong HJ, 2013, ENERG POLICY, V57, P298, DOI 10.1016/j.enpol.2013.01.057. Dou XY, 2021, RESOUR CONSERV RECY, V164, DOI 10.1016/j.resconrec.2020.105167. Druckman A, 2009, ECOL ECON, V68, P2066, DOI 10.1016/j.ecolecon.2009.01.013. Du, 2016, J CENT S U TECHNOL S, V10, P32, DOI {[}10.14067/j.cnki.1673-9272.2016.06.006, DOI 10.14067/J.CNKI.1673-9272.2016.06.006]. Duman T, 2018, ECOL ENG, V114, P16, DOI 10.1016/j.ecoleng.2017.08.031. Ekvall T, 2005, J CLEAN PROD, V13, P1225, DOI 10.1016/j.jclepro.2005.05.010. Esch T, 2017, ISPRS J PHOTOGRAMM, V134, P30, DOI 10.1016/j.isprsjprs.2017.10.012. Escobar N, 2020, GLOBAL ENVIRON CHANG, V62, DOI 10.1016/j.gloenvcha.2020.102067. Fang K, 2017, ECOL MODEL, V365, P30, DOI 10.1016/j.ecolmodel.2017.09.024. Ferrari CR, 2009, ENVIRON PRAC, V11, P322, DOI 10.1017/S1466046609990329. Finnveden G, 2009, J ENVIRON MANAGE, V91, P1, DOI 10.1016/j.jenvman.2009.06.018. Flores L, 2020, ECOL ENG, V156, DOI 10.1016/j.ecoleng.2020.105959. Fu W, 2020, PHYS CHEM EARTH, V120, DOI 10.1016/j.pce.2020.102904. Galli A, 2012, ECOL INDIC, V16, P100, DOI 10.1016/j.ecolind.2011.06.017. Ghate AT, 2020, CASE STUD TRANSP POL, V8, P245, DOI 10.1016/j.cstp.2019.01.005. Guo Z, 2020, ECOL MODEL, V431, DOI 10.1016/j.ecolmodel.2020.109178. Hafeez M, 2019, ENVIRON SCI POLLUT R, V26, P25026, DOI 10.1007/s11356-019-05757-z. He GS, 2021, AGR FOREST METEOROL, V296, DOI 10.1016/j.agrformet.2020.108212. Heinonen J, 2020, J CLEAN PROD, V256, DOI 10.1016/j.jclepro.2020.120335. Hillman T, 2010, ENVIRON SCI TECHNOL, V44, P1902, DOI 10.1021/es9024194. Holm GO, 2016, WETLANDS, V36, P401, DOI 10.1007/s13157-016-0746-7. Hu YJ, 2019, J CLEAN PROD, V234, P615, DOI 10.1016/j.jclepro.2019.06.122. Hu YC, 2016, ENVIRON SCI TECHNOL, V50, P6154, DOI 10.1021/acs.est.6b00985. Huang L., 2017, FOREST RESOUR MANAG, V2, P65, DOI {[}10.13466/j.cnki.lyzygl.2017.02.012, DOI 10.13466/J.CNKI.LYZYGL.2017.02.012]. Huang W, 2017, PROCEDIA ENGINEER, V198, P1007, DOI 10.1016/j.proeng.2017.07.146. Hudak AT, 2012, REMOTE SENS ENVIRON, V123, P25, DOI 10.1016/j.rse.2012.02.023. Huppes G, 2006, J IND ECOL, V10, P129, DOI 10.1162/jiec.2006.10.3.129. Isard W., 1968, PAP REG SCI, V21, P79, DOI {[}DOI 10.1007/BF01952722, 10.1007/BF01952722]. ISO, 2006, 14040 ISO. Ivanova D, 2017, ENVIRON RES LETT, V12, DOI 10.1088/1748-9326/aa6da9. {[}贾庆宇 Jia Qingyu], 2011, {[}生态环境学报, Ecology and Environmental Sciences], V20, P1569. Joshi S., 2001, J INDUS ECOLOGY, V3, P95, DOI {[}10.1162/108819899569449, DOI 10.1162/108819899569449]. Kennedy C, 2009, ENVIRON SCI TECHNOL, V43, P7297, DOI 10.1021/es900213p. Kenny T, 2009, ENVIRON IMPACT ASSES, V29, P1, DOI 10.1016/j.eiar.2008.06.001. Kleingeld E, 2018, URBAN CLIM, V24, P994, DOI 10.1016/j.uclim.2017.12.003. Koc M, 2021, URBAN CLIM, V37, DOI 10.1016/j.uclim.2021.100820. Kumar, 2019, J URBAN ENV ENG, V13, P257, DOI {[}10.4090/juee.2019.v13n2.257264, DOI 10.4090/JUEE.2019.V13N2.257264]. Lambin EF, 2001, GLOBAL ENVIRON CHANG, V11, P261, DOI 10.1016/S0959-3780(01)00007-3. LAVE LB, 1995, ENVIRON SCI TECHNOL, V29, pA420, DOI 10.1021/es00009a003. Leite RV, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12213599. Lenzen M, 2004, ECOL ECON, V49, P375, DOI 10.1016/j.ecolecon.2004.01.019. Lenzen M., 2004, ECON SYST RES, V16, P391, DOI {[}10.1080/0953531042000304272, DOI 10.1080/0953531042000304272]. Lenzen M., 2000, J IND ECOL, V4, P127, DOI DOI 10.1162/10881980052541981. Lenzen M, 2010, J IND ECOL, V14, P73, DOI 10.1111/j.1530-9290.2009.00190.x. Lenzen M, 2009, ENVIRON SCI TECHNOL, V43, P8251, DOI 10.1021/es902090z. Leontief WW, 1936, REV ECON STATISTICS, V18, P105, DOI 10.2307/1927837. Li JS, 2016, RENEW SUST ENERG REV, V53, P1602, DOI 10.1016/j.rser.2015.09.090. Li JS, 2018, APPL ENERG, V226, P1076, DOI 10.1016/j.apenergy.2018.06.004. Li JBA, 2021, CITIES, V116, DOI 10.1016/j.cities.2021.103275. Li X, 2021, APPL ENERG, V286, DOI 10.1016/j.apenergy.2021.116462. Li XJ, 2021, J CLEAN PROD, V279, DOI 10.1016/j.jclepro.2020.123454. Li XJ, 2020, J CLEAN PROD, V245, DOI 10.1016/j.jclepro.2019.118754. Li XF, 2020, BIOGEOSCIENCES, V17, P3409, DOI 10.5194/bg-17-3409-2020. Liang L, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-74524-9. Lim HJ, 2009, ENERG POLICY, V37, P686, DOI 10.1016/j.enpol.2008.10.025. Linden L, 2020, URBAN FOR URBAN GREE, V49, DOI 10.1016/j.ufug.2020.126633. Liu L., 2017, J BEIJING JIAOTONG U, V16, P17, DOI {[}10.16797/j.cnki.11-5224/c.20171009.008, DOI 10.16797/J.CNKI.11-5224/C.20171009.008]. Liu OY, 2021, SUSTAIN CITIES SOC, V68, DOI 10.1016/j.scs.2021.102772. Liu Y., 2019, CHINESE LANDSCAPE AR, V35, P124, DOI {[}10.19775/j.cla.2019.10.0124, DOI 10.19775/J.CLA.2019.10.0124]. Liu Z, 2015, NATURE, V524, P335, DOI 10.1038/nature14677. Lombardi M, 2017, ENVIRON IMPACT ASSES, V66, P43, DOI 10.1016/j.eiar.2017.06.005. Long Y, 2020, J ENVIRON MANAGE, V260, DOI 10.1016/j.jenvman.2020.110108. Lopez-Bellido PJ, 2016, CARBON MANAG, V7, P161, DOI 10.1080/17583004.2016.1213126. Lucas R, 2015, CIV ENG ENVIRON SYST, V32, P251, DOI 10.1080/10286608.2014.958472. Mao RC, 2017, J CLEAN PROD, V166, P40, DOI 10.1016/j.jclepro.2017.07.173. Martinez S, 2018, SCI TOTAL ENVIRON, V636, P569, DOI 10.1016/j.scitotenv.2018.04.340. Martinez-Rocamora A, 2016, RENEW SUST ENERG REV, V58, P565, DOI 10.1016/j.rser.2015.12.243. Mastrucci A, 2020, RENEW SUST ENERG REV, V126, DOI 10.1016/j.rser.2020.109834. McInerney E, 2016, WETLANDS, V36, P275, DOI 10.1007/s13157-016-0736-9. Miller R.W., 1997, URBAN FORESTRY PLANN. Milojevic-Dupont N, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102526. Mozner ZV, 2013, J CLEAN PROD, V42, P83, DOI 10.1016/j.jclepro.2012.10.014. Mulrow J, 2019, SUSTAIN PROD CONSUMP, V18, P33, DOI 10.1016/j.spc.2018.12.001. Munksgaard J, 2005, J IND ECOL, V9, P169, DOI 10.1162/1088198054084699. Munoz P, 2020, J CLEAN PROD, V263, DOI 10.1016/j.jclepro.2020.121326. MURILLO JCR, 1994, BIOGEOCHEMISTRY, V25, P197, DOI 10.1007/BF00024392. Niu SL, 2020, SCI CHINA EARTH SCI, V63, P1429, DOI 10.1007/s11430-020-9664-6. Onat NC, 2014, BUILD ENVIRON, V72, P53, DOI 10.1016/j.buildenv.2013.10.009. Owens S., 1992, SUSTAINABLE DEV URBA, P79. Pachauri RK, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, pVII. Padgett JP, 2008, ENVIRON IMPACT ASSES, V28, P106, DOI 10.1016/j.eiar.2007.08.001. Pandey D, 2011, ENVIRON MONIT ASSESS, V178, P135, DOI 10.1007/s10661-010-1678-y. Paravantis JA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13031379. Pasher J, 2014, URBAN FOR URBAN GREE, V13, P484, DOI 10.1016/j.ufug.2014.05.001. Pataki DE, 2011, ECOL APPL, V21, P661, DOI 10.1890/09-1717.1. Perez-Neira D, 2018, LANDSCAPE URBAN PLAN, V172, P60, DOI 10.1016/j.landurbplan.2018.01.001. Peters GP, 2010, CURR OPIN ENV SUST, V2, P245, DOI 10.1016/j.cosust.2010.05.004. Qi ZQ, 2018, RESOUR CONSERV RECY, V132, P352, DOI 10.1016/j.resconrec.2017.05.016. Rahman A, 2020, REMOTE SENS APPL, V20, DOI 10.1016/j.rsase.2020.100410. Rahman F, 2011, SUSTAIN COMPUT-INFOR, V1, P257, DOI 10.1016/j.suscom.2011.06.001. Rama M, 2021, SCI TOTAL ENVIRON, V762, DOI 10.1016/j.scitotenv.2020.143133. Raupp Michael J., 2006, Arboriculture \& Urban Forestry, V32, P297. Ren YY, 2019, CARBON MANAG, V10, P551, DOI 10.1080/17583004.2019.1676096. Ribau JP, 2015, ENERGY, V93, P1089, DOI 10.1016/j.energy.2015.09.112. Sanchez-Barroso G, 2021, J TRANSP HEALTH, V20, DOI 10.1016/j.jth.2021.101017. Schafer KVR, 2019, AGR FOREST METEOROL, V275, P223, DOI 10.1016/j.agrformet.2019.05.026. Seyedabadi MR, 2021, ENV CHALLENGES, P4, DOI {[}10.1016/j.envc.2021.100119, DOI 10.1016/J.ENVC.2021.100119]. Shalini Dhyani, 2021, Acta Ecologica Sinica - International Journal, V41, P193, DOI 10.1016/j.chnaes.2021.01.006. Shao L, 2020, J CLEAN PROD, V245, DOI 10.1016/j.jclepro.2019.118774. Shao WW, 2018, ENRGY PROCED, V152, P1145, DOI 10.1016/j.egypro.2018.09.145. Shi SQ, 2021, ENVIRON IMPACT ASSES, V89, DOI 10.1016/j.eiar.2021.106571. Shi Yu, 2017, Yingyong Shengtai Xuebao, V28, P2040, DOI 10.13287/j.1001-9332.201706.007. Strohbach MW, 2012, LANDSCAPE URBAN PLAN, V104, P220, DOI 10.1016/j.landurbplan.2011.10.013. Strunk JL, 2016, URBAN FOR URBAN GREE, V18, P100, DOI 10.1016/j.ufug.2016.04.006. Strutt J, 2008, J AM WATER WORKS ASS, V100, P80. Suh S, 2005, J CLEAN PROD, V13, P687, DOI 10.1016/j.jclepro.2003.04.001. Suh S, 2004, ENVIRON SCI TECHNOL, V38, P657, DOI 10.1021/es0263745. Suh S, 2002, INT J LIFE CYCLE ASS, V7, P134, DOI 10.1007/BF02994047. Suh S., 2003, INT J LIFE CYCLE ASS, V8, P257, DOI DOI 10.1007/BF02978914. Suh S, 2007, INT J LIFE CYCLE ASS, V12, P351, DOI 10.1065/lca2007.08.358. Sun Q, 2019, APPL ECOL ENV RES, V17, P8381, DOI 10.15666/aeer/1704\_83818394. Sun Y, 2019, GLOBAL CHANGE BIOL, V25, P1717, DOI 10.1111/gcb.14566. Sun Y, 2021, SCI TOTAL ENVIRON, V787, DOI 10.1016/j.scitotenv.2021.147653. Tillman A-M., 2000, ENVIRON IMPACT ASSES, V20, P113, DOI 10.1016/S0195-9255(99)00035-9. Tomas M, 2020, J CLEAN PROD, V266, DOI 10.1016/j.jclepro.2020.121798. Treloar G., 1997, ECON SYST RES, V9, P375, DOI DOI 10.1080/09535319700000032. Treloar G. J., 2010, DATABASE EMBODIED EN. Treloar G. J., 2000, CONSTRUCT MANAG EC, V18, P5, DOI {[}10.1080/014461900370898, DOI 10.1080/014461900370898]. Trlica A, 2020, SCI TOTAL ENVIRON, V709, DOI 10.1016/j.scitotenv.2019.136196. Uggetti E, 2012, ECOL ENG, V44, P298, DOI 10.1016/j.ecoleng.2012.04.020. VanderZaag AC, 2014, AGR FOREST METEOROL, V194, P259, DOI 10.1016/j.agrformet.2014.02.003. Velasco E, 2014, ATMOS ENVIRON, V97, P226, DOI 10.1016/j.atmosenv.2014.08.018. Villalba G, 2013, ENERG POLICY, V62, P1336, DOI 10.1016/j.enpol.2013.07.024. Wang Q, 2020, SCI TOTAL ENVIRON, V739, DOI 10.1016/j.scitotenv.2020.140070. Wang RS., 2000, ACTA ECOLOGICA SINIC, V20, P830. {[}王微 Wang Wei], 2010, {[}环境科学与技术, Enuivonmental Science and Technology], V33, P71. {[}王效科 Wang Xiaoke], 2020, {[}生态学报, Acta Ecologica Sinica], V40, P5093. Wang YQ, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL019732. Wei T, 2020, APPL ENERG, V277, DOI 10.1016/j.apenergy.2020.115554. Weidema BP, 2008, J IND ECOL, V12, P3, DOI 10.1111/j.1530-9290.2008.00005.x. Wiedmann T., 2008, ECOLOGICAL EC RES TR, P1, DOI DOI 10.1088/978-0-750-31040-6. Wiedmann T, 2009, ECOL ECON, V69, P211, DOI 10.1016/j.ecolecon.2009.08.026. Wu, 2015, J SW NORM U NA SCI E, V40, P65, DOI {[}10.13718/j.cnki.xsxb.2015.01.013, DOI 10.13718/J.CNKI.XSXB.2015.01.013]. Xia LL, 2021, J CLEAN PROD, V281, DOI 10.1016/j.jclepro.2020.124694. Xia LL, 2017, J CLEAN PROD, V140, P1644, DOI 10.1016/j.jclepro.2016.09.175. Xiao Heng, 2011, 2011 China located International Conference on Information Systems for Crisis Response and Management (ISCRAM-CHINA), P50, DOI 10.1109/ISCRAM.2011.6184078. Yan Feng, 2018, Transactions of the Chinese Society of Agricultural Engineering, V34, P15. Yan NY, 2020, ECOSYST HEALTH SUST, V6, P1, DOI 10.1080/20964129.2020.1839358. Yang J, 2020, SCI CHINA EARTH SCI, V63, P1443, DOI 10.1007/s11430-020-9666-3. Yang Y, 2020, ECOL INDIC, V112, DOI 10.1016/j.ecolind.2020.106125. Yang Y, 2019, SUSTAIN CITIES SOC, V44, P783, DOI 10.1016/j.scs.2018.11.012. {[}杨一鹏 Yang Yipeng], 2013, {[}地理研究, Geographical Research], V32, P73. Yin L, 2018, ECOL MODEL, V377, P16, DOI 10.1016/j.ecolmodel.2018.03.008. Yin XinZhe, 2021, Environmental Impact Assessment Review, V86, DOI 10.1016/j.eiar.2020.106493. Yin XM, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120698. Yuan Q., 2018, STAT DECIS, V34, P107, DOI {[}10.13546/j.cnki.tjyjc.2018.18.024.15, DOI 10.13546/J.CNKI.TJYJC.2018.18.024.15]. Yuan RQ, 2019, ADV CLIM CHANG RES, V10, P59, DOI 10.1016/j.accre.2019.03.005. Yuan XL, 2022, SCI TOTAL ENVIRON, V803, DOI 10.1016/j.scitotenv.2021.149993. Zeng ZZ, 2012, APPL MECH MATER, V178-181, P300, DOI 10.4028/www.scientific.net/AMM.178-181.300. Zhang C, 2016, GLOBAL ENVIRON CHANG, V39, P285, DOI 10.1016/j.gloenvcha.2016.06.003. {[}张琦峰 Zhang Qifeng], 2018, {[}自然资源学报, Journal of Natural Resources], V33, P696. Zhang W., 2013, GUANGZHOU CHEM IND, V41, P166, DOI {[}10.3969/j.issn.1001-9677.2013.11.062, DOI 10.3969/J.ISSN.1001-9677.2013.11.062]. Zhang Wei, 2021, ECO EC, V37, P25. Zhang Y, 2014, ENERG POLICY, V73, P540, DOI 10.1016/j.enpol.2014.04.029. {[}赵荣钦 Zhao Rongqin], 2013, {[}生态学报, Acta Ecologica Sinica], V33, P358. Zheng HM, 2017, J IND ECOL, V21, P166, DOI 10.1111/jiec.12432. Zhou DC, 2014, REMOTE SENS ENVIRON, V152, P51, DOI 10.1016/j.rse.2014.05.017.}, Number-of-Cited-References = {195}, Times-Cited = {1}, Usage-Count-Last-180-days = {108}, Usage-Count-Since-2013 = {200}, Journal-ISO = {Environ. Rev.}, Doc-Delivery-Number = {1N0IP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000798828000001}, DA = {2023-04-22}, } @article{ WOS:000825514600002, Author = {Zhou, Xiao-min and Jiang, Guojing and Li, Fangzheng and Gao, Wei and Han, Yufu and Wu, Tao and Ma, Wenzhu}, Title = {Comprehensive Review of Artificial Ground Freezing Applications to Urban Tunnel and Underground Space Engineering in China in the Last 20 Years}, Journal = {JOURNAL OF COLD REGIONS ENGINEERING}, Year = {2022}, Volume = {36}, Number = {3}, Month = {SEP 1}, Abstract = {Artificial ground freezing (AGF) has been applied widely in the construction of urban transportation infrastructure in China for the last two decades. This study provides a comprehensive review of the regional application, distribution, new developments, existing problems, and challenges of AGF. The innovative achievements of AGF in theory and technology are presented using selected prominent or typical engineering examples. Accidents or problems occurring in previous projects and the engineering risks of AGF technology were analyzed. In addition, the competition and integration of AGF technology with other construction methods are discussed. Furthermore, future research needs, including freezing tube installation issues related to directional drilling, miniaturization of construction equipment, artificial intelligence, information technology, and construction safety, are proposed. Finally, the expectations of AGF technology in urban development are predicted based on the new policies of urban groundwater protection issued in recent years. (C) 2022 American Society of Civil Engineers.}, Publisher = {ASCE-AMER SOC CIVIL ENGINEERS}, Address = {1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA}, Type = {Review}, Language = {English}, Affiliation = {Jiang, GJ (Corresponding Author), Univ Sci \& Technol Beijing, Sch Civil \& Resource Engn, Beijing Key Lab Urban Underground Space Engn, Beijing 100083, Peoples R China. Zhou, Xiao-min; Jiang, Guojing; Wu, Tao; Ma, Wenzhu, Univ Sci \& Technol Beijing, Sch Civil \& Resource Engn, Beijing Key Lab Urban Underground Space Engn, Beijing 100083, Peoples R China. Zhou, Xiao-min, Univ Alaska Anchorage, Anchorage, AK USA. Jiang, Guojing, Univ British Columbia, Vancouver, BC V6T 1Z4, Canada. Jiang, Guojing; Li, Fangzheng, Beijing China Coal Mine Engn Co Ltd, Beijing 100013, Peoples R China. Gao, Wei; Han, Yufu, Beijing China Coal Mine Engn Co Ltd, Ground Freezing Res Inst, Beijing 100013, Peoples R China. Wu, Tao, China Construct Infrastruct Co Ltd, Beijing 100022, Peoples R China.}, DOI = {10.1061/(ASCE)CR.1943-5495.0000273}, Article-Number = {04022002}, ISSN = {0887-381X}, EISSN = {1943-5495}, Keywords-Plus = {CLAY; THAW}, Research-Areas = {Engineering; Geology}, Web-of-Science-Categories = {Engineering, Environmental; Engineering, Civil; Geosciences, Multidisciplinary}, Author-Email = {sean\_ustb@ustb.edu.cn jiangguojing2006@126.com Lifangzheng@tdbmc.com ccrigw@126.com hanyufu82@163.com w616000360@126.com 294085338@qq.com}, Affiliations = {University of Science \& Technology Beijing; University of Alaska System; University of Alaska Anchorage; University of British Columbia}, Cited-References = {Alan A., 2019, ARTIFICIAL GROUND FR. Bai Y., 2007, CHINA EMERG MANAGE, P50. Brookhart S.M., 2013, CREATE USE RUBRICS F, VVolume 148. Cai HB, 2020, J COLD REG ENG, V34, DOI 10.1061/(ASCE)CR.1943-5495.0000204. Cai HB, 2018, AIP ADV, V8, DOI 10.1063/1.5030442. {[}蔡海兵 Cai Haibing], 2015, {[}岩石力学与工程学报, Chinese Journal of Rock Mechanics and Engineering], V34, P1667. {[}陈成 Chen Cheng], 2012, {[}岩土工程学报, Chinese Journal of Geotechnical Engineering], V34, P145. {[}陈维健 CHEN Weijian], 2008, {[}煤炭学报, Journal of China Coal Society], V33, P1006. Chen X.S., 1995, PROC 40 ANNIVERSARY, P11. {[}崔兵兵 Cui Bingbing], 2015, {[}地下空间与工程学报, Chinese Journal of Underground Space and Engineering], V11, P1235. Fan WH, 2020, COLD REG SCI TECHNOL, V173, DOI 10.1016/j.coldregions.2020.102996. Fan WH, 2019, COLD REG SCI TECHNOL, V168, DOI 10.1016/j.coldregions.2019.102873. Feng A.J., 2018, J TUNNEL CONSTR, V38, P514. Fu C., 2012, CONSTR TECHNOL, V41, P88. Gallavresi F., 1980, PROC 2 INT S GROUND, P928. Group N.R.T., 2018, URBAN RAPID RAIL TRA, V1, P85. Guo L.Z., 1984, MIN CONSTR, V1984, P7, DOI {[}10.19458/j.cnki.cn11-2456/td.1984.01.003, DOI 10.19458/J.CNKI.CN11-2456/TD.1984.01.003]. Harris J.S., 1995, GROUND FREEZING PRAC. Hu X., 2015, MINE CONSTR TECHNOL, V36, P1. Hu X.D., 2014, MOD TUNN TECHNOL, V51, P92. Hu X.D., 2016, J MINE CONSTR TECHNO, V37, P25, DOI {[}10.19458/j.cnki.cn11-2456/td.2016.03.008, DOI 10.19458/J.CNKI.CN11-2456/TD.2016.03.008]. {[}胡向东 Hu Xiangdong], 2014, {[}工程力学, Engineering Mechanics], V31, P145. Huang J.F., 2009, CHINA MUNIC ENG, V5, P62. Huang SB, 2018, APPL THERM ENG, V135, P435, DOI 10.1016/j.applthermaleng.2018.02.090. Jessberger H.L., 1988, 5 INT S GROUND FREEZ, P349. Kinoshita S., 1982, PHYS FROZEN SOIL. Li D.J., 2007, URBAN RAPID RAIL TRA, V20, P55. Li F.Z., 2017, MINE CONSTR TECHNOL, V38, P18. Li F.Z., 2017, MINE CONSTR TECHNOL, V38, P55. Li F.Z., 2007, CONSTR TECHNOL, V36, P31. {[}李方政 Li Fangzheng], 2015, {[}工业建筑, Industrial Construction], V45, P187. {[}李方政 Li Fangzheng], 2013, {[}地下空间与工程学报, Chinese Journal of Underground Space and Engineering], V9, P590. Liu JP, 2020, COLD REG SCI TECHNOL, V178, DOI 10.1016/j.coldregions.2020.103127. Luo J.C., 2002, MOD TUNNELING TECHNO, V39, P22. Partenio M., 2014, GROUND IMPROVEMENT G. Pei L.F., 2005, SHANGHAI CONSTR SCI, P9. Rojo J.L., 1988, 5 INT S GROUND FREEZ, P525. SHI Rong-jian, 2012, CHIN J ROCK MECH ENG, V3, P2894. {[}宋雷 Song Lei], 2005, {[}中国矿业大学学报. 自然科学版, Journal of China University of Mining \& Technology], V34, P143. Su W.D., 2014, COAL CHEM IND, V37, P109. Sun Y., 1993, MINE CONSTR TECHNOL, V6, P29, DOI {[}10.19458/j.cnki.cn11-2456/td.1993.06.012, DOI 10.19458/J.CNKI.CN11-2456/TD.1993.06.012]. Wang G.B., 2009, BUILD CONSTR, V31, P433. Wang H.-Y., 1995, PROC 40 ANNIVERSARY. Wang L.M., 2005, BUILD CONSTR, V27, P54. Wang M.S., 2004, GEN THEORY SHALLOW T, V1st. Wang M.S., 2000, GEOTECH ENG WORLD, P2. Wang SF, 2018, COLD REG SCI TECHNOL, V148, P13, DOI 10.1016/j.coldregions.2018.01.001. Wang SF, 2017, COLD REG SCI TECHNOL, V138, P108, DOI 10.1016/j.coldregions.2017.03.007. Wang W.S., 2012, MINE CONSTR TECHNOL, V33, P12, DOI {[}10.19458/j.cnki.cn11-2456/td.2012.02.003, DOI 10.19458/J.CNKI.CN11-2456/TD.2012.02.003]. Wang XY, 2020, KSCE J CIV ENG, V24, P1632, DOI 10.1007/s12205-020-1591-z. Wang Z., 2012, TUNNEL CONSTR, V23, P576, DOI {[}10.3973/j.issn.1672-741X.2012.04.026, DOI 10.3973/J.ISSN.1672-741X.2012.04.026]. Wang Z.H., 1998, J ZHEJIANG U NAT SCI, V32, P534. Weng J., 1994, COAL SCI TECHNOL, V22, P11. Wu T., 2020, COAL ENG, V52, P51, DOI {[}10.11799/ce202012012, DOI 10.11799/CE202012012]. Yang T.H., 2010, CHIN J UNDERGROUND S, P1201. Yanzhong Z., 2011, COAL SCI TECHNOLOGY, V39, P104. Yin ZY, 2020, J ZHEJIANG UNIV-SC A, V21, P407, DOI 10.1631/jzus.A20AIGE1. Ying X., 2006, CHINA MUNIC ENG, V120, P52. Yu G.L., 2018, J SOIL ENG FOUND, V2, P173. Yu X., 1995, PROC 40 ANNIVERSARY, P11. Zhang H., 2016, J URBAN RAIL TRANSIT, V19, P27, DOI {[}10.16037/j.1007-869x.2016.07.006, DOI 10.16037/J.1007-869X.2016.07.006]. Zhang J., 2019, TUNNEL CONSTR, V39, P164, DOI {[}10.15064/jjpm.54.12\_1146\_2, DOI 10.15064/JJPM.54.12\_1146\_2]. Zhang JW, 2021, PERMAFROST PERIGLAC, V32, P76, DOI 10.1002/ppp.2075. Zhang W., 2012, MINE CONSTR TECHNOL, V33, P4, DOI {[}10.19458/j.cnki.cn11-2456/td.2012.03.001, DOI 10.19458/J.CNKI.CN11-2456/TD.2012.03.001]. Zhang Y.N., 2010, J URBAN ROADS BRIDGE, P128, DOI {[}10.16799/j.cnki.csdqyfh.2010.10.036, DOI 10.16799/J.CNKI.CSDQYFH.2010.10.036]. Zhao Y.C., 2008, MOD TUNNELLING TECHN, P86. Zhao Y.S., 1985, J CHINA COAL SOC, P40. Zheng S., 2010, MOD TUNNELLING TECHN, V47, P51, DOI {[}10.13807/j.cnki.mtt.2010.06.010, DOI 10.13807/J.CNKI.MTT.2010.06.010]. Zhou X.M., 2014, MINE CONSTR TECHNOL, V35, P37, DOI {[}10.19458/j.cnki.cn11-2456/td.2014.05.018, DOI 10.19458/J.CNKI.CN11-2456/TD.2014.05.018]. Zhou X.M., 2005, J CHINA U MIN TECHNO, V15, P370. Zhou X.M., 1999, CHIN J GEOTECH ENG, V21, P319. Zhou X.M., 2004, 2004 ANN M URBAN RAP, V77, P77. {[}周晓敏 ZHOU Xiaomin], 2007, {[}煤炭学报, Journal of China Coal Society], V32, P24. {[}周晓敏 Zhou Xiaomin], 2005, {[}煤炭学报, Journal of China Coal Society], V30, P196. {[}周晓敏 Zhou Xiaomin], 2003, {[}煤炭学报, Journal of China Coal Society], V28, P162. {[}周晓敏 Zhou Xiaomin], 2003, {[}岩土工程学报, Chinese Journal of Geotechnical Engineering], V25, P676. Zhou XM, 1997, GROUND FREEZING 97, P537. Zhu J., 2009, BUILD CONSTR, V31, P213.}, Number-of-Cited-References = {78}, Times-Cited = {2}, Usage-Count-Last-180-days = {20}, Usage-Count-Since-2013 = {36}, Journal-ISO = {J. Cold Reg. Eng.}, Doc-Delivery-Number = {2X9KB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000825514600002}, DA = {2023-04-22}, } @article{ WOS:000677675100003, Author = {Takahashi, Hiroyuki and Inoue, Eiji and Inoue, Nobuyuki and Komori, Yuji and Konishi, Masakazu and Noda, Mizuki and Mizue, Taichi}, Title = {``Urban Mines{''} Recycling in Astec-irie Co., Ltd.}, Journal = {JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS}, Year = {2021}, Volume = {85}, Number = {8, SI}, Pages = {279-284}, Abstract = {This paper reviews recycling technologies in Astec-irie Co., Ltd. Repellent substances and valuable metals, such as precious metals and rare metals, contained in waste electronics were separated and concentrated using superheated steam, an aqueous iron (III) chloride solution, and AI. The electronic components and substrates were separated by melting the solder with superheated steam, and the repellent substance in noniron smelting was removed from them. The gold-plated parts contained in the electronic components were separated back into gold by dissolving the copper and nickel in the aqueous iron (III) chloride solution. The copper and nickel dissolved into the solution were separated and recovered respectively as solid components by adding iron powder. The useful metals were concentrated from the separated electronic components, which are sorted out using AI. As a result, valuable metals such as precious metals could be concentrated while reducing the concentration of repellents, thus making it possible to treat the removed repellents as useful substance.}, Publisher = {JAPAN INST METALS \& MATERIALS}, Address = {1-14-32, ICHIBANCHO, AOBA-KU, SENDAI, 980-8544, JAPAN}, Type = {Review}, Language = {Japanese}, Affiliation = {Takahashi, H (Corresponding Author), Astec Irie Co Ltd, Kitakyushu, Fukuoka 8080002, Japan. Takahashi, Hiroyuki; Inoue, Eiji; Inoue, Nobuyuki; Komori, Yuji; Konishi, Masakazu; Noda, Mizuki; Mizue, Taichi, Astec Irie Co Ltd, Kitakyushu, Fukuoka 8080002, Japan.}, DOI = {10.2320/jinstmet.JA202103}, ISSN = {0021-4876}, EISSN = {1880-6880}, Keywords = {urban mines; gold; recycle; aqueous iron chloride solution; copper; nickel; printed circuit board; electronic components; artificial intelligence (AI); superheated steam; iron powder}, Research-Areas = {Metallurgy \& Metallurgical Engineering}, Web-of-Science-Categories = {Metallurgy \& Metallurgical Engineering}, Cited-References = {{[}Anonymous], 2000, DENKIKAGAKUBINRAN, P92. {[}Anonymous], 2019, HIT KINZ SEIR OK E S HIT KINZ SEIR OK E S. {[}Anonymous], 2020, KOGATA KADEN RISAIKU. Harada K., 2019, J SOC INORG MAT JAPA, V26, P288. Harada K., 2018, J CHEM ENG JPN, V82, P410. Nakamura T., 2014, HYOMEN KAGAKU, V35, P577. Nakamura T., 2012, CHEM ED, V60, P464. Nakamura T., 2016, MAT CYCLES WASTE MAN, V27, P275. Nanjo M., 2008, B RES I MINERAL DRES, P239. Okabe T., 2017, MAT JAPAN, V56, P157. Okabe T., 2011, MAT CYCLES WASTE MAN, V22, P50. Okabe T.H., 2019, MAT JAPAN, V58, P557. Owada S., 2011, MAT CYCLES WASTE MAN, V22, P28.}, Number-of-Cited-References = {13}, Times-Cited = {0}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {7}, Journal-ISO = {J. Jpn. Inst. Met. Mater.}, Doc-Delivery-Number = {TP5YO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000677675100003}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000770290800003, Author = {Pokhrel, Sarin Raj and Chhipi-Shrestha, Gyan and Hewage, Kasun and Sadiq, Rehan}, Title = {Sustainable, resilient, and reliable urban water systems: making the case for a ``one water{''} approach}, Journal = {ENVIRONMENTAL REVIEWS}, Year = {2022}, Volume = {30}, Number = {1}, Pages = {10-29}, Month = {MAR}, Abstract = {An urban water system (UWS) has three main service components: (i) drinking-water; (ii) waste-water; and (iii) storm-water. Historically, each component in urban water development evolved over time with different objectives for ``different{''} types of water. Even today, the trend continues, as different urban water services are managed in silos. This trend is less sustainable, resilient, and reliable, mainly because of significant pressures on freshwater supplies exerted by the increasing population, demand for high living standards, rapid urbanization, and climate change. To cope with these challenges, the conventional thinking needs to change. This paper identifies a number of significant research gaps related to inter-relationships among various UWS service components. An innovative paradigm, the ``one water{''} approach (OWA), which considers ``urban water{''} as a single entity, is investigated herein. Currently, Australia, the USA, and Singapore are leading the implementation of the OWA, whereas only a few Canadian municipalities have embraced OWA at a very basic level. Among the EU nations, the Netherlands have emphasized the need for integrated water resource management in an urban environment. This review highlights the challenges in adopting the OWA, and also proposes guiding principles in ongoing water management practices. Institutional complexities involving an intricate regulatory structure for different UWS service components, a wider fragmentation in decision making at government levels, and insufficient stakeholder engagement within and between water utilities and other institutions present serious challenges. Various strategies such as, data sharing between water utilities, use of novel technologies (e.g., artificial intelligence, sensor technologies), and visionary leadership at different government levels have been identified as key drivers for the adoption and implementation of the OWA. The authors believe that a paradigm shift from ``conventional{''} approach to OWA is needed to increase resiliency and reliability of water services and assist decision-makers of UWSs.}, Publisher = {CANADIAN SCIENCE PUBLISHING}, Address = {65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA}, Type = {Review}, Language = {English}, Affiliation = {Pokhrel, SR (Corresponding Author), Univ British Columbia, Fac Appl Sci, Sch Engn, Okanagan Campus, Kelowna, BC V1V 1V7, Canada. Pokhrel, Sarin Raj; Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan, Univ British Columbia, Fac Appl Sci, Sch Engn, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.}, DOI = {10.1139/er-2020-0090}, ISSN = {1208-6053}, EISSN = {1181-8700}, Keywords = {drinking-water; waste-water; storm-water; one-water approach; sustainability}, Keywords-Plus = {CLIMATE-CHANGE; RESOURCES MANAGEMENT; CITY BLUEPRINT; SURFACE-WATER; GROUNDWATER; IMPACTS; QUALITY; LEAKAGE; DESIGN; PHARMACEUTICALS}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {pokhrelsarin@gmail.com}, Affiliations = {University of British Columbia}, Funding-Acknowledgement = {Natural Science and Engineering Research Council of Canada's Collaborative Research and Development Grants}, Funding-Text = {The authors would like to thank the Natural Science and Engineering Research Council of Canada's Collaborative Research and Development Grants for providing the financial assistance to conduct this research.}, Cited-References = {Abdalla F, 2018, J AFR EARTH SCI, V141, P164, DOI 10.1016/j.jafrearsci.2018.02.016. ACTEON, 2010, NOT FIN WAT RES MAN. Andoh R.Y.G., 2011, P 8 INT C URB STORM, P1997. Angelakis AN, 2012, EVOLUTION OF WATER SUPPLY THROUGHOUT THE MILLENNIA, P1. {[}Anonymous], 2016, LIV BUILD CHALL 3 1. {[}Anonymous], 2019, SAN FRANC WAT POW SE. Aquatech, 2019, SUST WAT OUR ESS GUI. Ashley R, 2013, P I CIVIL ENG-MUNIC, V166, P65, DOI 10.1680/muen.12.00046. Astaraie-Imani M, 2012, J ENVIRON MANAGE, V112, P1, DOI 10.1016/j.jenvman.2012.06.039. Barraclough C.L., 2008, WATER SENSITIVE URBA. Bazza M, 2007, WA SCI TECHNOL, V7, P201, DOI 10.2166/ws.2007.023. Biswas AK, 2001, INT J WATER RESOUR D, V17, P489, DOI 10.1080/07900620120094082. Brown R., 2008, P 11 INT C URB DRAIN. Brown RS, 2003, ANALYST, V128, P320, DOI 10.1039/b301945b. Burian S.J., 2002, 9 INT C URBAN DRAINA, P1, DOI {[}10.1061/40644(2002)284, DOI 10.1061/40644(2002)284]. Cardone R., 2018, ADV ONE WATER TEXAS. Carvalho L, 2019, SCI TOTAL ENVIRON, V658, P1228, DOI 10.1016/j.scitotenv.2018.12.255. CCME, 2019, MUN WAST WAT EFFL ST. Chhetri RK, 2016, J IND ENG CHEM, V37, P372, DOI 10.1016/j.jiec.2016.03.049. Chhipi-Shrestha G, 2018, J SUSTAIN WATER BUIL, V4, DOI 10.1061/JSWBAY.0000854. Chhipi-Shrestha G, 2017, SCI TOTAL ENVIRON, V607, P600, DOI 10.1016/j.scitotenv.2017.06.269. Chhipi-Shrestha G, 2017, SCI TOTAL ENVIRON, V607, P403, DOI 10.1016/j.scitotenv.2017.06.268. Chocat B, 2001, WATER SCI TECHNOL, V43, P61, DOI 10.2166/wst.2001.0251. City of Sydney, 2012, DEC WAT MAST PLAN 20. City of Vancouver, 2020, ON WAT. City of Vancouver, 2020, WATER TREATMENT. City of Vancouver, 2020, WAT QUAL PRESS. Cooper P.F., 2001, DECENTRALISED SANITA. Copeland C., 2017, ENERGY WATER NEXUS W. Couillard E, 2015, J AM WATER WORKS ASS, V107, P62, DOI 10.5942/jawwa.2015.107.0061. Credit Valley Conservation, 2016, ON WAT APPR FRAM INT. Credit Valley Conservation, 2016, DEV INT RISK MAN FRA. Curriero FC, 2001, AM J PUBLIC HEALTH, V91, P1194, DOI 10.2105/AJPH.91.8.1194. Daelman MRJ, 2013, WATER SCI TECHNOL, V67, P2350, DOI 10.2166/wst.2013.109. Daigger G.T., 2011, BRIDGE, V41, P13. Daigger GT, 2009, WATER ENVIRON RES, V81, P809, DOI 10.2175/106143009X425898. Damvergis C. N., 2014, WATER UTILITY J, V8, P17. De Feo G, 2014, SUSTAINABILITY-BASEL, V6, P3936, DOI 10.3390/su6063936. Du P, 2007, WA SCI TECHNOL, V7, P173, DOI 10.2166/ws.2007.020. Edalat FD, 2015, WATER RESOUR MANAG, V29, P5569, DOI 10.1007/s11269-015-1135-3. Elfithri R., 2019, WORLD WATER POLICY, V5, P43, DOI {[}10.1002/wwp2.12002, DOI 10.1002/WWP2.12002]. European Commission, 2015, REP PROGR IMPL WAT F. European Commission, 2012, IMPL WAT FRAM DIR 20. Exall K, 2004, WATER QUAL RES J CAN, V39, P1. Fam Dena, 2014, International Journal of Water, V8, P149, DOI 10.1504/IJW.2014.060962. Fatta D, 1999, ENVIRON GEOCHEM HLTH, V21, P175, DOI 10.1023/A:1006613530137. Feingold D, 2018, ENVIRON MANAGE, V61, P9, DOI 10.1007/s00267-017-0952-y. Ferguson BC, 2013, WATER RES, V47, P7300, DOI 10.1016/j.watres.2013.09.045. Fryd O, 2012, WATER POLICY, V14, P865, DOI 10.2166/wp.2012.025. Furlong C, 2017, UTIL POLICY, V45, P84, DOI 10.1016/j.jup.2017.02.004. Furlong C, 2015, WATER POLICY, V17, P46, DOI 10.2166/wp.2014.185. Gadipelly C, 2014, IND ENG CHEM RES, V53, P11571, DOI 10.1021/ie501210j. Geriesh M.H., 2004, 7 C GEOL SIN ISM, P41. Global Water Institute, 2013, FUT WAT INS FACTS FI. Government of Canada, 2013, WAT CAN. Government of Canada, 2008, WAT TALK DRINK WAT Q. Government of Canada, 2013, SCI ASS IMP MUN WAST. Government of Canada, 2013, MUN WAST WAT STAT. Guthrie L, 2017, UTIL POLICY, V48, P92, DOI 10.1016/j.jup.2017.08.007. Hamel P, 2013, J HYDROL, V485, P201, DOI 10.1016/j.jhydrol.2013.01.001. Hanchang S.H.I., 2009, POINT SOURCES POLLUT, V2, P191. Healey M, 2012, WATER PRACT TECHNOL, V7, DOI 10.2166/wpt.2012.092. Health Canada, 2009, CANADIAN GUIDELINES. Hirschman D, 2016, HANDB ENVIRON CHEM, V47, P83, DOI 10.1007/978-3-319-29337-0\_4. Hodge A.T., 1995, ROMAN AQUEDUCTS WATE. Howard G, 2016, ANNU REV ENV RESOUR, V41, P253, DOI 10.1146/annurev-environ-110615-085856. Howe C., 2015, PATHWAYS ONE WATER A. Ibatullin S., 2009, IMPACTS CLIMATE CHAN. IWA, 2020, COMM IS FOC SUNN AUS. IWA, 2019, AI BAS ADV WAT WIS 1. IWA, 2019, DAT IS NEW WAT DAT R. Jager NW, 2016, WATER-SUI, V8, DOI 10.3390/w8040156. Jalliffier-Verne I, 2015, SCI TOTAL ENVIRON, V508, P462, DOI 10.1016/j.scitotenv.2014.11.059. Jha A., 2011, 5 FEET HIGH RISING C, DOI {[}10.1596/1813-9450-5648, DOI 10.1596/1813-9450-5648]. Kataki S, 2021, RESOUR CONSERV RECY, V164, DOI 10.1016/j.resconrec.2020.105156. Katusiime J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041667. Khetan SK, 2007, CHEM REV, V107, P2319, DOI 10.1021/cr020441w. Kim SB, 2015, PADDY WATER ENVIRON, V13, P557, DOI 10.1007/s10333-014-0471-x. Kiparsky M, 2013, ENVIRON ENG SCI, V30, P395, DOI 10.1089/ees.2012.0427. Klavarioti M, 2009, ENVIRON INT, V35, P402, DOI 10.1016/j.envint.2008.07.009. Konrad CP, 2005, AM FISH S S, V47, P157. Koutsoyiannis D, 2008, J WATER RES PLAN MAN, V134, P45, DOI 10.1061/(ASCE)0733-9496(2008)134:1(45). Leigh NG, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11030918. Li L, 2018, CITIES, V74, P126, DOI 10.1016/j.cities.2017.11.013. Limphitakphong N, 2016, INT J LIFE CYCLE ASS, V21, P1789, DOI 10.1007/s11367-016-1130-9. Liu L, 2020, NAT SUSTAIN, V3, P548, DOI 10.1038/s41893-020-0518-5. Marsalek J., 2008, URBAN WATER CYCLE PR. McBean E., 2015, LOW IMPACT DEV INTEG. Meehl G.A., 2007, CLIMATE CHANGE 2007. Metro Vancouver, 2020, STORM WATER MANAGEME. Mitchell VG, 2006, ENVIRON MANAGE, V37, P589, DOI 10.1007/s00267-004-0252-1. Mukheibir P., 2014, WATER J AUST WATER A, V41, P67. Mukheibir P., 2015, I ISSUES INTEGRATED, P206, DOI 10453/36204. Mukheibir P., 2016, WATER UTIL J, V12, P27, DOI 10453/43940. Ng PJH, 2020, INT J WATER RESOUR D, V36, P269, DOI 10.1080/07900627.2019.1680350. OBWB, 2019, ANN M. OBWB, 2015, WATER USE. OBWB, 2008, ON WAT ON WAT, P1. OECD, 2015, STAK ENG INCL WAT GO. OSHA, 2020, STAND DIR COVID 19. Our Living Waters, 2018, COMB SEW OV. Our World in Data, 2018, WAT US STRESS. OWCA, 2010, ON WAT SUPP WAT MAN. Oyiboka I.J., 2014, THESIS LAGOS STATE. Peat M, 2017, J ENVIRON MANAGE, V202, P188, DOI 10.1016/j.jenvman.2017.06.059. Raju KV, 2017, WATER AND SCRIPTURES: ANCIENT ROOTS FOR SUSTAINABLE DEVELOPMENT, P1, DOI 10.1007/978-3-319-50562-6. Reynolds JH, 2003, J CHART INST WATER E, V17, P34. Rodriguez M, 2017, WIT TRANS ECOL ENVIR, V223, P573, DOI 10.2495/SC170501. Roehrdanz PR, 2017, ENVIRON SCI TECHNOL, V51, P1213, DOI 10.1021/acs.est.6b05015. Santelmann M, 2019, URBAN ECOSYST, V22, P1149, DOI 10.1007/s11252-019-00882-6. Sapkota M, 2015, WATER-SUI, V7, P153, DOI 10.3390/w7010153. Savenije HHG, 2008, PHYS CHEM EARTH, V33, P290, DOI 10.1016/j.pce.2008.02.003. Sharma AK, 2016, WATER-SUI, V8, DOI 10.3390/w8070272. Singh S., 2019, WATER CONSERVATION R, P203. Statista, 2020, CAN DEGR URB 2008 20. Statistics Canada, 2019, MUN WAST WAT SYST CA. Sydney Water, 2020, DROUGHT RESP. The Regional Municipality of York, 2016, WAT WAST WAT MAST PL. The World Bank, 2019, WHAT WAST 2 0 GLOB S. UN Water, 2017, UN WORLD WAT DEV REP. UNESCO, 2017, 2017 UN WORLD WAT DE. United Nations, 2015, WORLD POPULATION PRO. United Nations, 2016, SUST DEV GOAL 3 ENS. United Nations, NEWS. Urrutiaguer M, 2010, WATER SCI TECHNOL, V61, P2333, DOI 10.2166/wst.2010.045. US Water Alliance, 2016, ON WAT ROADM SUST MA. US Water Alliance and Water Research Foundation, 2017, ON WAT IMPL PATH REL. USEPA, 2016, CLIMATE CHANGE INDIC. USEPA, 2016, NET ZER CONC DEF. USEPA, 2014, SAN SEW OV PEAK FLOW. USEPA, 2015, GETT SPEED GROUND WA. Van Leeuwen CJ, 2015, WATER SCI TECH-W SUP, V15, P404, DOI 10.2166/ws.2014.127. Venkatesh G, 2012, URBAN WATER J, V9, P277, DOI 10.1080/1573062X.2012.660960. Water Research Foundation, 2017, BLUEPR ON WAT. Watson N, 2014, INT J WATER RESOUR D, V30, P445, DOI 10.1080/07900627.2014.899892. Westbrook SJ, 2005, J HYDROL, V302, P255, DOI 10.1016/j.jhydrol.2004.07.007. WHO/UNICEF, 2017, PROGR DRINKING WATER. Wiest L, 2018, ENVIRON SCI POLLUT R, V25, P9207, DOI 10.1007/s11356-017-9662-5. Wong THF, 2006, AUSTRALAS J WAT RESO, V10, P213, DOI 10.1080/13241583.2006.11465296. Worldometer, 2020, WORLD POP YEAR. WSSC, 2015, COMM DES GUID. WWAP (United Nations World Water Assessment Programme), 2015, UN WORLD WAT DEV REP. Zaman AU, 2014, J CLEAN PROD, V66, P407, DOI 10.1016/j.jclepro.2013.10.032.}, Number-of-Cited-References = {143}, Times-Cited = {6}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {13}, Journal-ISO = {Environ. Rev.}, Doc-Delivery-Number = {ZV1JI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000770290800003}, DA = {2023-04-22}, } @article{ WOS:000524096800021, Author = {Yigitcanlar, Tan and Desouza, Kevin C. and Butler, Luke and Roozkhosh, Farnoosh}, Title = {Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature}, Journal = {ENERGIES}, Year = {2020}, Volume = {13}, Number = {6}, Month = {MAR}, Abstract = {Artificial intelligence (AI) is one of the most disruptive technologies of our time. Interest in the use of AI for urban innovation continues to grow. Particularly, the rise of smart cities urban locations that are enabled by community, technology, and policy to deliver productivity, innovation, livability, wellbeing, sustainability, accessibility, good governance, and good planning has increased the demand for AI-enabled innovations. There is, nevertheless, no scholarly work that provides a comprehensive review on the topic. This paper generates insights into how AI can contribute to the development of smarter cities. A systematic review of the literature is selected as the methodologic approach. Results are categorized under the main smart city development dimensions, i.e., economy, society, environment, and governance. The findings of the systematic review containing 93 articles disclose that: (a) AI in the context of smart cities is an emerging field of research and practice. (b) The central focus of the literature is on AI technologies, algorithms, and their current and prospective applications. (c) AI applications in the context of smart cities mainly concentrate on business efficiency, data analytics, education, energy, environmental sustainability, health, land use, security, transport, and urban management areas. (d) There is limited scholarly research investigating the risks of wider AI utilization. (e) Upcoming disruptions of AI in cities and societies have not been adequately examined. Current and potential contributions of AI to the development of smarter cities are outlined in this paper to inform scholars of prospective areas for further research.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Yigitcanlar, T (Corresponding Author), Queensland Univ Technol, Sch Built Environm, 2 George St, Brisbane, Qld 4000, Australia. Yigitcanlar, Tan; Butler, Luke, Queensland Univ Technol, Sch Built Environm, 2 George St, Brisbane, Qld 4000, Australia. Desouza, Kevin C., Queensland Univ Technol, QUT Business Sch, 2 George St, Brisbane, Qld 4000, Australia. Roozkhosh, Farnoosh, Guilan Univ, Sch Arts \& Architecture, Rasht 4199843653, Guilan, Iran.}, DOI = {10.3390/en13061473}, Article-Number = {1473}, EISSN = {1996-1073}, Keywords = {artificial intelligence (AI); AI technologies; AI algorithms; disruptive technology; smart city; smart urban technology; urban informatics; sustainable urban development; climate change}, Keywords-Plus = {BIG DATA ANALYTICS; PUBLIC-SECTOR; SURVEILLANCE; TECHNOLOGY; CHALLENGES; MANAGEMENT; EDUCATION; INTERNET; CLIMATE; FUTURE}, Research-Areas = {Energy \& Fuels}, Web-of-Science-Categories = {Energy \& Fuels}, Author-Email = {tan.yigitcanlar@qut.edu.au kevin.desouza@qut.edu.au luke.butler@hdr.qut.edu.au farnoosh\_r@msc.guilan.ac.ir}, Affiliations = {Queensland University of Technology (QUT); Queensland University of Technology (QUT); University of Guilan}, ResearcherID-Numbers = {Yigitcanlar, Tan/J-1142-2012 }, ORCID-Numbers = {Yigitcanlar, Tan/0000-0001-7262-7118 Roozkhosh, Farnoosh/0000-0003-2523-149X Butler, Luke/0000-0003-0708-8896}, Cited-References = {ABDULJABBAR R, 2019, SUSTAINABILITY-BASEL, V11, DOI {[}DOI 10.3390/SU11010189, DOI 10.3390/su11010189]. Ajerla D, 2019, WIREL COMMUN MOB COM, V2019, DOI 10.1155/2019/9507938. Alam F, 2017, IEEE ACCESS, V5, P9533, DOI 10.1109/ACCESS.2017.2697839. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Alsamhi SH, 2019, IEEE ACCESS, V7, P128125, DOI 10.1109/ACCESS.2019.2934998. Altulyan M, 2020, MULTIMED TOOLS APPL, V79, P4989, DOI 10.1007/s11042-019-7182-7. Alzoubi I., 2019, J ENV HLTH SCI ENG, V16, P65. {[}Anonymous], WIRED. {[}Anonymous], HOUSTON CHRONICLE. {[}Anonymous], SMASHING MAGAZINE. {[}Anonymous], FORBES. {[}Anonymous], WASHINGTON POST. {[}Anonymous], THE JAPAN TIMES. {[}Anonymous], GUARDIAN. {[}Anonymous], NEW YORK TIMES. Arbolino R, 2018, J CLEAN PROD, V178, P220, DOI 10.1016/j.jclepro.2017.12.183. Aziz K, 2017, STOCH ENV RES RISK A, V31, P1499, DOI 10.1007/s00477-016-1272-0. Bajaj R., 2018, PROCEDIA COMPUTER SC, V132, P834, DOI {[}10.1016/j.procs.2018.05.095, DOI 10.1016/J.PROCS.2018.05.095]. Batty M, 2018, ENVIRON PLAN B-URBAN, V45, P3, DOI 10.1177/2399808317751169. Ben Rjab A., 2018, P 19 ANN INT C DIG G, P1. Bennett CC, 2013, ARTIF INTELL MED, V57, P9, DOI 10.1016/j.artmed.2012.12.003. Bose BK, 2017, P IEEE, V105, P2262, DOI 10.1109/JPROC.2017.2756596. Bowman S, 2020, RURAL REMOTE HEALTH, V20, DOI 10.22605/RRH5448. Brady HE, 2019, ANNU REV POLIT SCI, V22, P297, DOI 10.1146/annurev-polisci-090216-023229. Braun T, 2018, SUSTAIN CITIES SOC, V39, P499, DOI 10.1016/j.scs.2018.02.039. Bui KHN, 2019, INFORM SCIENCES, V480, P222, DOI 10.1016/j.ins.2018.12.046. Cai BY, 2019, IEEE INTERNET THINGS, V6, P7693, DOI 10.1109/JIOT.2019.2902887. Casares AP, 2018, FUTURES, V103, P5, DOI 10.1016/j.futures.2018.05.002. Castelli M, 2017, J AMB INTEL HUM COMP, V8, P29, DOI 10.1007/s12652-015-0334-3. Chang CW, 2018, INVENTIONS-BASEL, V3, DOI 10.3390/inventions3030041. Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233. Chatterjee S, 2018, GOV INFORM Q, V35, P349, DOI 10.1016/j.giq.2018.05.002. Chau KW, 2006, MAR POLLUT BULL, V52, P726, DOI 10.1016/j.marpolbul.2006.04.003. Chen M, 2019, IEEE T GREEN COMMUN, V3, P409, DOI 10.1109/TGCN.2018.2873783. Chen N, 2019, IEEE COMMUN MAG, V57, P91, DOI 10.1109/MCOM.001.1900094. Chmiel W, 2016, MULTIMED TOOLS APPL, V75, P10529, DOI 10.1007/s11042-016-3367-5. Chui KT, 2018, ENERGIES, V11, DOI 10.3390/en11112869. Cook J, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/2/024024. Corea F, AI KNOWLEDGE MAP CLA. Cortes U, 2000, APPL INTELL, V13, P77, DOI 10.1023/A:1008331413864. Cui QM, 2019, IEEE INTERNET THINGS, V6, P2021, DOI 10.1109/JIOT.2018.2872442. Dayal K, 2017, CLIM CHANG MANAG, P177, DOI 10.1007/978-3-319-50094-2\_11. De Paz JF, 2016, INFORM SCIENCES, V372, P241, DOI 10.1016/j.ins.2016.08.045. de Sousa MA, 2020, BIOTECHNOL PROGR, V36, DOI 10.1002/btpr.2937. Desouza K., 2006, AGILE INFORM SYSTEMS. Desouza K.C., 2015, ISSUES TECHNOL INNOV, V27, P27. Desouza K.C., 2016, BIG DATA PLANNING, V585, P2. Desouza K.C., 2018, DELIVERING ARTIFICIA. Desouza KC, 2020, BUS HORIZONS, V63, P205, DOI 10.1016/j.bushor.2019.11.004. Desouza KC, 2014, J URBAN TECHNOL, V21, P25, DOI 10.1080/10630732.2014.954898. Devedzik V, 2004, EDUC TECHNOL SOC, V7, P29. Din IU, 2019, FUTURE GENER COMP SY, V100, P826, DOI 10.1016/j.future.2019.04.017. Dobrescu E. M., 2018, GLOBAL EC OBSERVER B, V6, P71. Dong YF, 2019, IEEE INTERNET THINGS, V6, P7543, DOI 10.1109/JIOT.2019.2901532. Drigas AS, 2012, INT J ENG EDUC, V28, P1366. Edwards C, 2018, COMMUN EDUC, V67, P473, DOI 10.1080/03634523.2018.1502459. Eldrandaly KA, 2019, INT J INFORM MANAGE, V49, P520, DOI 10.1016/j.ijinfomgt.2019.04.017. EU, ART INT EUR APPR EXC. Faisal A, 2019, J TRANSP LAND USE, V12, P45, DOI 10.5198/jtlu.2019.1405. Falco G, 2018, IEEE ACCESS, V6, P48360, DOI 10.1109/ACCESS.2018.2867556. Feng S, 1999, EXPERT SYST APPL, V16, P21, DOI 10.1016/S0957-4174(98)00028-1. Fernandez J, 2013, SENSORS-BASEL, V13, P7414, DOI 10.3390/s130607414. Friedman B, 2019, VALUE SENSITIVE DESIGN: SHAPING TECHNOLOGY WITH MORAL IMAGINATION, P1, DOI 10.7551/mitpress/7585.001.0001. Garlik B, 2017, NEURAL NETW WORLD, V27, P415, DOI 10.14311/NNW.2017.27.023. Gatzweiler F.W., 2020, URBAN HLTH WELLBEING, P33. GHERHES V, 2018, SUSTAINABILITY-BASEL, V10, DOI DOI 10.3390/su10093066. Gonzales A., 2016, AZCENTRAL. Guilherme A, 2019, AI SOC, V34, P47, DOI 10.1007/s00146-017-0693-8. Gunkel DJ, 2012, MACHINE QUESTION: CRITICAL PERSPECTIVES ON AI, ROBOTS, AND ETHICS, P1. Guo J, 2018, HEALTH EQUITY, V2, P174, DOI 10.1089/heq.2018.0037. Guo K, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18051341. Hakansson A, 2018, PROCEDIA COMPUT SCI, V126, P2107, DOI 10.1016/j.procs.2018.07.241. Hanson CW, 2001, CRIT CARE MED, V29, P427, DOI 10.1097/00003246-200102000-00038. Hariri RH, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0206-3. Ibrahim M.R., 2019, ENV PLAN B. Incezan D, 2017, J ARTIF INTELL RES, V60, P681, DOI 10.1613/jair.5660. Iqbal R, 2019, IEEE NETWORK, V33, P23, DOI 10.1109/MNET.2019.1800459. Jha SK, 2017, RENEW SUST ENERG REV, V77, P297, DOI 10.1016/j.rser.2017.04.018. Jiafeng Z., 2019, INT J PERFORM ENG, V15, P602. Kankanamge N, 2020, INT J DISAST RISK RE, V42, DOI 10.1016/j.ijdrr.2019.101360. Kankanamge N, 2019, INT J DISAST RISK RE, V35, DOI 10.1016/j.ijdrr.2019.101097. Khalifa E., 2019, J STRATEG INNOV SUST, V14, P79, DOI DOI 10.33423/JSIS.V14I3.2108. King B.A., 2017, J STRATEG INNOV SUST, V12, P53, DOI DOI 10.33423/JSIS.V12I2.801. Kinniburgh C, 2020, DISSENT, V67, P125. Komninos N., 2016, TECHNOLOGY CITY SYST. Kopytko V., 2018, TRAEKTORIA NAUKI, V4, P2007, DOI 10.22178/pos.38-2. Krishnamurthy R, 2017, SPRING GEOGR, P163, DOI 10.1007/978-3-319-40902-3\_10. Kundu D, 2019, ENVIRON URBAN ASIA, V10, P31, DOI 10.1177/0975425319832392. Kyriazopoulou C, 2015, SMARTGREENS 2015 PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON SMART CITIES AND GREEN ICT SYSTEMS, P5. Le LT, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9132630. Leung CK, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19061345. Lin YP, 2018, ENVIRONMENTS, V5, DOI 10.3390/environments5030034. Lipsitch M, 2013, TEXTBOOK OF INFLUENZA, 2ND EDITION, P434. Liu GC, 2018, IEEE ACCESS, V6, P29283, DOI 10.1109/ACCESS.2018.2834916. Liu N., 2019, IEEE ACCESS, V7. Liu Y., 2017, WORLD J ENG TECHNOL, V5, P122, DOI {[}DOI 10.4236/WJET.2017.53B014, 10.4236/wjet.2017.53B014]. Liu ZM, 2019, NAT CLIM CHANGE, V9, P494, DOI 10.1038/s41558-019-0519-4. Lukowicz P., 2018, INTERACTIONS, V25, P72. Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192. Lytras MD, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9142812. Madaio M., 2015, IDENTIFYING PRIORITI. Makarynskyy O, 2004, ESTUAR COAST SHELF S, V61, P351, DOI 10.1016/j.ecss.2004.06.004. Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006. Martinez-Rodriguez J, 2018, REV TECNOLOGIA INFOR, V8, P1. McArthur D., 2005, J ED TECHNOLOGY, V1, P42, DOI DOI 10.26634/JET.1.4.972. Meena NK, 2017, ENRGY PROCED, V142, P2202, DOI 10.1016/j.egypro.2017.12.589. de Andrade CSM, 2019, TEXTO LIVRE, V12, P30, DOI 10.17851/1983-3652.12.2.30-46. Mendling J, 2018, COMMUN ASSOC INF SYS, V43, P297, DOI 10.17705/1CAIS.04319. Mergel I, 2013, PUBLIC ADMIN REV, V73, P882, DOI 10.1111/puar.12141. Morishita L, 2017, GEO-RESOUR ENVIRON E, V2, P265, DOI 10.15273/gree.2017.02.048. Muhammad K, 2019, IEEE COMMUN MAG, V57, P60, DOI 10.1109/MCOM.2018.1800371. Napoles V.M., 2018, MULTIDISCIP DIGIT PU, V2, P1215. Neuhauser L, 2013, PATIENT EDUC COUNS, V92, P211, DOI 10.1016/j.pec.2013.04.006. NHTSA, AUT EN BRAK AEB AUT. Nica E., 2018, J SELF GOVERNANCE MA, V6, P25. Noorbakhsh-Sabet N, 2019, AM J MED, V132, P795, DOI 10.1016/j.amjmed.2019.01.017. NTSB, PREL REP REL CRASH I. O'Gorman PA, 2018, J ADV MODEL EARTH SY, V10, P2548, DOI 10.1029/2018MS001351. Oreskes N, 2004, SCIENCE, V306, P1686, DOI 10.1126/science.1103618. Pannu A, 2015, ARTIF INTELL, V4, P79. Park JH, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19092025. Patel VL, 2009, ARTIF INTELL MED, V46, P5, DOI 10.1016/j.artmed.2008.07.017. Pence Harry E., 2019, Journal of Educational Technology Systems, V48, P5, DOI 10.1177/0047239519865577. Perng SY, 2018, GEOFORUM, V97, P189, DOI 10.1016/j.geoforum.2018.08.024. Pieters W, 2011, ETHICS INF TECHNOL, V13, P53, DOI 10.1007/s10676-010-9253-3. Ponce H, 2019, MEASUREMENT, V135, P170, DOI 10.1016/j.measurement.2018.11.043. Purao S., 2012, E SERV J, V8, P84. Puri V, 2019, IEEE ACCESS, V7, P111181, DOI 10.1109/ACCESS.2019.2934228. Quan SJ, 2019, ENVIRON PLAN B-URBAN, V46, P1581, DOI 10.1177/2399808319867946. Rahman A.A., 2017, PERINTIS EJOURNAL, V7, P111. Rahman MA, 2019, IEEE ACCESS, V7, P18611, DOI 10.1109/ACCESS.2019.2896065. Ramesh AN, 2004, ANN ROY COLL SURG, V86, P334, DOI 10.1308/147870804290. Reaz M., 2013, ACTA TECH CORVININES, V6, P51. Rho S, 2012, ENG APPL ARTIF INTEL, V25, P1299, DOI 10.1016/j.engappai.2012.07.007. Rotta MJR, 2019, ENERGIES, V12, DOI 10.3390/en12142813. Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3. Rolnick D., 2019, ARXIV190605433. Ruohomaa H, 2019, TECHNOL INNOV MANAG, V9, P5, DOI 10.22215/timreview/1264. Sadilek A, 2016, AAAI CONF ARTIF INTE, P3982. Schalkoff R., 1990, ARTIFICIAL INTELLIGE. Schleiger E., ARTIFICIAL INTELLIGE. Selby JD, 2019, CITIES, V91, P180, DOI 10.1016/j.cities.2018.11.018. Sgantzos K, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11080170. Sheikhnejad Y, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041293. Shi JD, 2020, ADV MATER, V32, DOI 10.1002/adma.201901958. Shrivastava Rishabh, 2016, Science \& Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023. Soomro K, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1319. Sotto D, 2019, ENERGIES, V12, DOI 10.3390/en12183418. Stefanelli M, 2001, ARTIF INTELL MED, V23, P25, DOI 10.1016/S0933-3657(01)00074-4. Streitz N, 2019, J AMB INTEL HUM COMP, V10, P791, DOI 10.1007/s12652-018-0824-1. Swindell D., 2018, DUBAI OFFERS LESSONS. Syifa M, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19030542. Tegmark M., 2017, LIFE 3 0 BEING HUMAN. Thakuriah P, 2017, SPRING GEOGR, P1, DOI 10.1007/978-3-319-40902-3\_1. Tomitsch M, 2015, J URBAN TECHNOL, V22, P37, DOI 10.1080/10630732.2015.1040296. Wan CH, 2018, IET INTELL TRANSP SY, V12, P1005, DOI 10.1049/iet-its.2018.5170. Wang PZ, 2019, SCI TOTAL ENVIRON, V693, DOI 10.1016/j.scitotenv.2019.07.246. Wang ZY, 2017, RENEW SUST ENERG REV, V75, P796, DOI 10.1016/j.rser.2016.10.079. Watson RT, 2013, INFORM TECHNOL DEV, V19, P176, DOI 10.1080/02681102.2012.714349. Wei N, 2019, J PETROL SCI ENG, V181, DOI 10.1016/j.petrol.2019.106187. Wirtz BW, 2019, INT J PUBLIC ADMIN, V42, P596, DOI 10.1080/01900692.2018.1498103. Wogu IAP, 2019, J CASES INF TECHNOL, V21, P66, DOI 10.4018/JCIT.2019070105. Wu N, 2010, J PLAN LIT, V24, P246, DOI 10.1177/0885412210361571. Yigitcanlar T., SMART CITY NOT NOW Y. Yigitcanlar T., 2019, GEOGRAPHIES DISRUPTI. Yigitcanlar T., 2018, WORLD TECHNOPOLIS RE, V7, P97, DOI DOI 10.7165/WTR18A1121.19. Yigitcanlar T., SMART CITIES SUNSHIN. Yigitcanlar T., 2019, J OPEN INNOV TECHNOL, V5, DOI DOI 10.3390/JOITMC5020024. Yigitcanlar T, 2019, ENERGIES, V12, DOI 10.3390/en12234554. Yigitcanlar T, 2019, LAND USE POLICY, V88, DOI 10.1016/j.landusepol.2019.104187. Yigitcanlar T, 2019, J URBAN TECHNOL, V26, P21, DOI 10.1080/10630732.2018.1476794. Yigitcanlar T, 2019, SUSTAIN CITIES SOC, V45, P348, DOI 10.1016/j.scs.2018.11.033. Yigitcanlar T, 2019, J URBAN TECHNOL, V26, P147, DOI 10.1080/10630732.2018.1524249. Yigitcanlar T, 2018, CITIES, V81, P145, DOI 10.1016/j.cities.2018.04.003. Yigitcanlar T, 2018, LAND USE POLICY, V73, P49, DOI 10.1016/j.landusepol.2018.01.034. Yigitcanlar T, 2015, AUST PLAN, V52, P27, DOI 10.1080/07293682.2015.1019752. Yu HY, 2019, IEEE ACCESS, V7, P6288, DOI 10.1109/ACCESS.2018.2888940. Yu P, 2020, LANCET PLANET HEALTH, V4, pE7, DOI 10.1016/S2542-5196(19)30267-0. YUN JJ, 2016, SUSTAINABILITY-BASEL, V8, DOI DOI 10.3390/SU8080797. Yuttapongsontorn Nina, 2008, PUBLIC PERFORM MANAG, V31, P443. Zhang PF, 2019, LIGHT-SCI APPL, V8, DOI 10.1038/s41377-019-0147-9. Zou Y, 2019, CMES-COMP MODEL ENG, V119, P295, DOI 10.32604/cmes.2019.03873.}, Number-of-Cited-References = {182}, Times-Cited = {103}, Usage-Count-Last-180-days = {117}, Usage-Count-Since-2013 = {423}, Journal-ISO = {Energies}, Doc-Delivery-Number = {LA7AN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000524096800021}, OA = {Green Submitted, gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000938634800001, Author = {Vallejo-Gomez, David and Osorio, Marisol and Hincapie, Carlos A.}, Title = {Smart Irrigation Systems in Agriculture: A Systematic Review}, Journal = {AGRONOMY-BASEL}, Year = {2023}, Volume = {13}, Number = {2}, Month = {FEB}, Abstract = {This research aims to carry out a systematic review of the available literature about smart irrigation systems. It will be focused on systems using artificial intelligence techniques in urban and rural agriculture for soil crops to identify those that are currently being used or can be adapted to urban agriculture. To this end, a modified PRISMA 2020 method is applied, and three search equations are formulated. From those filters, and after a screening process, 170 articles are obtained. These articles are analyzed through VantagePoint, a text processing software. After this, they are taken through a detailed analysis phase in which 50 sources are selected as the most relevant to be read and analyzed by topic. Finally, the different phases of the analysis are used to draw conclusions that might be interesting for researchers working in this specific field or for the general public interested in rural and urban agriculture and its automation.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Vallejo-Gomez, D (Corresponding Author), Univ Pontificia Bolivariana, Grp Invest Gest Tecnol \& Innovac GTI, Maestria Ingn, Medellin 050031, Colombia. Vallejo-Gomez, David, Univ Pontificia Bolivariana, Grp Invest Gest Tecnol \& Innovac GTI, Maestria Ingn, Medellin 050031, Colombia. Osorio, Marisol, Univ Pontificia Bolivariana, Ctr Ciencia Bas, Grp Invest Gest Tecnol \& Innovac GTI, Medellin 050031, Colombia. Hincapie, Carlos A., Univ Pontificia Bolivariana, Fac Ingn Agroind, Grp Invest Agroind GRAIN, Medellin 050031, Colombia.}, DOI = {10.3390/agronomy13020342}, Article-Number = {342}, EISSN = {2073-4395}, Keywords = {agriculture; urban agriculture; smart irrigation system; Internet of Things (IoT); fuzzy logic; artificial intelligence (AI); machine learning (ML)}, Keywords-Plus = {NETWORK PATTERN-CLASSIFICATION; NEURAL-NETWORK; LOW-COST; BIG DATA; IOT; MODEL; INTERNET; THINGS; MANAGEMENT}, Research-Areas = {Agriculture; Plant Sciences}, Web-of-Science-Categories = {Agronomy; Plant Sciences}, Author-Email = {david.vallejo@upb.edu.co}, Affiliations = {Universidad Pontificia Bolivariana; Universidad Pontificia Bolivariana; Universidad Pontificia Bolivariana}, Funding-Acknowledgement = {Ministerio de Ciencia, Tecnologia e Innovacion, Colombia {[}Minciencias 852]}, Funding-Text = {This is a product of the Tecnologias en Agricultura Urbana (Urban Agriculture Technologies) program, call Minciencias 852. It is funded with resources from the ``Patrimonio Autonomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnologia y La Innovacion Francisco Jose de Caldas{''} (Francisco Jose de Caldas National Fund for Science, Technology and Innovation), Ministerio de Ciencia, Tecnologia e Innovacion, Colombia. Research Program: ``Technologies in Urban Farming{''}. (Grant Number: 127-2021).}, Cited-References = {Abdellah N.A.A., 2021, P 2020 INT C COMPUTE, DOI {[}10.1109/ICCCEEE49695.2021.9429606, DOI 10.1109/ICCCEEE49695.2021.9429606]. Abhishek L., 2019, INT J INNOV TECHNOL, V8, P1520. Alexandratos N., 2012, WORLD AGR 20302050 2, DOI {[}10.22004/ag.econ.288998, DOI 10.22004/AG.ECON.288998, DOI 10.1016/S0264-8377(03)00047-4]. Alomar B, 2018, 2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, P175, DOI 10.1109/CTIT.2018.8649531. Aruul Mozhi Varman S., 2018, P 2017 IEEE INT C CO. Aytek A, 2009, SOFT COMPUT, V13, P691, DOI 10.1007/s00500-008-0342-8. Biabi H, 2019, COMPUT ELECTRON AGR, V160, P131, DOI 10.1016/j.compag.2019.03.019. Bwambale E, 2022, AGR WATER MANAGE, V260, DOI 10.1016/j.agwat.2021.107324. Carrasquilla-Batista Arys, 2019, 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), P574, DOI 10.1109/IESTEC46403.2019.00108. Castaneda-Miranda A, 2020, COMPUT ELECTRON AGR, V176, DOI 10.1016/j.compag.2020.105614. Chang CL, 2018, ROBOTICS, V7, DOI 10.3390/robotics7030038. Chen YA, 2021, 35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), P311, DOI 10.1109/ICOIN50884.2021.9333852. Dernoncourt F., 2013, INTRO FUZZY LOGIC. Doshi J, 2019, PROCEDIA COMPUT SCI, V160, P746, DOI 10.1016/j.procs.2019.11.016. El Mezouari Asmae, 2019, 2019 15th International Conference on Signal-Image Technology \& Internet-Based Systems (SITIS), P681, DOI 10.1109/SITIS.2019.00111. Elijah O, 2018, IEEE INTERNET THINGS, V5, P3758, DOI 10.1109/JIOT.2018.2844296. FAO, 2017, FOOD AGR, P1. FAO, 2021, PERSP AGR DES RUR AM. FAO, 2017, STAT FOOD AGR 2017 L, DOI DOI 10.2307/2938399. FAO, 2021, STAT WORLDS LAND WAT, DOI 10.4060/cb7654-n. FAO, 2011, STAT WORLDS LAND WAT, DOI DOI 10.1007/978-3-319-92049-8\_31. Farooq M, 2020, UEEE INT SYM PERS IN. Fierro-Chacon A, 2019, INT CONF EDEMOC EGOV, P230, DOI 10.1109/ICEDEG.2019.8734313. Food and Agriculture Organization (FAO), 2014, CIUD MAS VERD AM LAT. Food and Agriculture Organization (FAO), 2017, FUT FOOD AGR TRENDS. Gloria A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21093079. Goap A, 2018, COMPUT ELECTRON AGR, V155, P41, DOI 10.1016/j.compag.2018.09.040. Garcia CG, 2019, INT J INTERACT MULTI, V5, P9, DOI 10.9781/ijimai.2018.03.004. Gunawan R., 2019, P 2019 IEEE 5 INT C, DOI {[}10.1109/ICWT47785.2019.8978223, DOI 10.1109/ICWT47785.2019.8978223]. Guzman-Toloza J.M., 2019, COMMUN COMPUT INF SC, V1053, P294, DOI {[}10.1007/978-3-030-33229-7\_25, DOI 10.1007/978-3-030-33229-7\_25]. Hamouda YEM, 2017, 2017 INTERNATIONAL CONFERENCE ON PROMISING ELECTRONIC TECHNOLOGIES (ICPET 2017), P109, DOI 10.1109/ICPET.2017.26. HUNT E, 1987, J MATH PSYCHOL, V31, P299, DOI 10.1016/0022-2496(87)90031-9. Jamroen C, 2020, IEEE ACCESS, V8, P172756, DOI 10.1109/ACCESS.2020.3025590. Jayalakshmi B., 2020, Proceedings of Second International Conference on Inventive Research in Computing Applications (ICIRCA 2020), P1183, DOI 10.1109/ICIRCA48905.2020.9183154. Jimenez Andres Fernando, 2019, Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II. Proceedings of the 2nd International Conference of ICT for Adapting Agriculture to Climate Change (AACC18). Advances in Intelligent Systems and Computing (AISC 893), P1, DOI 10.1007/978-3-030-04447-3\_1. Kamilaris A, 2018, COMPUT ELECTRON AGR, V147, P70, DOI 10.1016/j.compag.2018.02.016. Kanmani R., 2021, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), P592, DOI 10.1109/ICACCS51430.2021.9441917. Karimah SA, 2019, J PHYS CONF SER, V1192, DOI 10.1088/1742-6596/1192/1/012058. Kashyap PK, 2021, IEEE SENS J, V21, P17479, DOI 10.1109/JSEN.2021.3069266. Keswani B, 2020, ENTERP INF SYST-UK, V14, P1494, DOI 10.1080/17517575.2020.1713406. Keswani B, 2019, NEURAL COMPUT APPL, V31, P277, DOI 10.1007/s00521-018-3737-1. Khanna A, 2019, COMPUT ELECTRON AGR, V157, P218, DOI 10.1016/j.compag.2018.12.039. Khatri V., 2018, INT RES J ENG TECHNO, V5, P3372. Lauguico S, 2020, I C HUMANOID NANOTEC, DOI 10.1109/HNICEM51456.2020.9400103. Lenka SK, 2016, SMART INNOV SYST TEC, V50, P291, DOI 10.1007/978-3-319-30933-0\_30. Liakos KG, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082674. Mason B, 2019, AGR WATER MANAGE, V226, DOI 10.1016/j.agwat.2019.105812. Masson-Delmotte V., 2020, CAMBIO CLIMATICO TIE. Math RM, 2020, INT J AGRIC ENVIRON, V11, P1, DOI 10.4018/IJAEIS.2020100101. McCulloch Warren S., 1943, BULL MATH BIOPHYS, V5, P115, DOI 10.1007/BF02478259. Misra NN, 2022, IEEE INTERNET THINGS, V9, P6305, DOI 10.1109/JIOT.2020.2998584. Mizuno R, 2020, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON SMART CITIES AND GREEN ICT SYSTEMS (SMARTGREENS), P177, DOI 10.5220/0009339801770184. Mohamed ES, 2021, EGYPT J REMOTE SENS, V24, P971, DOI 10.1016/j.ejrs.2021.08.007. Mohapatra AG, 2019, P NATL A SCI INDIA A, V89, P67, DOI 10.1007/s40010-017-0401-6. Mohapatra AG, 2016, PROCEDIA COMPUT SCI, V78, P499, DOI 10.1016/j.procs.2016.02.094. Murlidharan Sharvane, 2021, Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), P34, DOI 10.1109/ICIEM51511.2021.9445312. Nakanishi Gota, 2020, 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), P743, DOI 10.1109/GCCE50665.2020.9291786. Naveenkumar K.H., 2021, LEARNING OUTCOMES CL, P82. Nawandar NK, 2019, COMPUT ELECTRON AGR, V162, P979, DOI 10.1016/j.compag.2019.05.027. Ng A.K., 2021, J PHYS C SER, V2003, P012008, DOI {[}DOI 10.1088/1742-6596/2003/1/012008, 10.1088/1742-6596/2003/1/012008]. Obaideen K., 2022, ENERGY NEXUS, V7, DOI {[}10.1016/j.nexus.2022.100124, DOI 10.1016/J.NEXUS.2022.100124]. Oh A.S., 2020, INDONES J ELECT ENG, V20, P320, DOI {[}10.11591/IJEECS.V20.I1.PP320-328, DOI 10.11591/IJEECS.V20.I1.PP320-328]. Page MJ, 2021, J CLIN EPIDEMIOL, V134, P178, DOI 10.1016/j.jclinepi.2021.03.001. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Pezol NS, 2020, 2020 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS 2020), P69, DOI 10.1109/I2CACIS49202.2020.9140199. Podder AK, 2021, MICROPROCESS MICROSY, V82, DOI 10.1016/j.micpro.2021.104025. Pratyush Reddy Kasara Sai, 2020, Proceedings of Second International Conference on Inventive Research in Computing Applications (ICIRCA 2020), P130, DOI 10.1109/ICIRCA48905.2020.9183373. Priyadharshini S., 2020, J CRIT REV, P7, DOI {[}10.31838/jcr.07.13.210, DOI 10.31838/JCR.07.13.210]. Raikar MM, 2018, 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P185, DOI 10.1109/ICACCI.2018.8554406. Roy DK, 2021, AGR WATER MANAGE, V255, DOI 10.1016/j.agwat.2021.107003. Ruiz-Real JL, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111839. Salazar J., 2019, P 2019 IEEE INT C AP, P1, DOI {[}10.1109/iCASAT48251.2019.9069533, DOI 10.1109/ICASAT48251.2019.9069533]. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Shekhar Y., 2017, INT J APPL ENG RES, V12, P7306. Singh G, 2019, IEEE INT CONF SIG PR, P175, DOI 10.1109/ISPCC48220.2019.8988313. Singh U., 2019, PRECISION IRRIGATION, P181. Smith MJ, 2020, ANIM PROD SCI, V60, P46, DOI 10.1071/AN18522. Srithar Vejay Karthy, 2021, Inventive Systems and Control. Proceedings of ICISC 2021. Lecture Notes in Networks and Systems (LNNS 204), P461, DOI 10.1007/978-981-16-1395-1\_34. Sudharshan N, 2019, PROCEDIA COMPUT SCI, V165, P615, DOI 10.1016/j.procs.2020.01.055. Sunehra D., 2020, P 2020 IEEE INT C IN, DOI {[}10.1109/INOCON50539.2020.9298357, DOI 10.1109/INOCON50539.2020.9298357]. Tantalaki N, 2019, J AGRIC FOOD INF, V20, P344, DOI 10.1080/10496505.2019.1638264. Tao H, 2018, AGR WATER MANAGE, V208, P140, DOI 10.1016/j.agwat.2018.06.018. thevantagepoint, VANTAGEPOINT. Torres ABB, 2020, COMPUT ELECTRON AGR, V171, DOI 10.1016/j.compag.2020.105309. Tzounis A, 2017, BIOSYST ENG, V164, P31, DOI 10.1016/j.biosystemseng.2017.09.007. Vallejo-Gomez D., DATASET SMART IRRIGA. Vij A, 2020, PROCEDIA COMPUT SCI, V167, P1250, DOI 10.1016/j.procs.2020.03.440. Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023. Wortmann F, 2015, BUS INFORM SYST ENG+, V57, P221, DOI 10.1007/s12599-015-0383-3. Zadeh L. A., 1975, SYNTHESE, V30, P407, DOI DOI 10.1007/BF00485052.}, Number-of-Cited-References = {90}, Times-Cited = {0}, Usage-Count-Last-180-days = {10}, Usage-Count-Since-2013 = {10}, Journal-ISO = {Agronomy-Basel}, Doc-Delivery-Number = {9H1YL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000938634800001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000916165200001, Author = {Wang, Tong and Liu, Yang and Li, Qiyuan and Du, Peng and Zheng, Xiaogong and Gao, Qingfei}, Title = {State-of-the-Art Review of the Resilience of Urban Bridge Networks}, Journal = {SUSTAINABILITY}, Year = {2023}, Volume = {15}, Number = {2}, Month = {JAN}, Abstract = {With the rapid advancement of the urbanization process, the bridge networks in cities are becoming increasingly optimized, playing an important role in ensuring the normal operation of cities. However, with the gradual deterioration of bridges and the further attenuation of their capacity, many bridges are prone to damage or even collapse under extreme loads. After a natural disaster or human-derived accident occurs in a city, the normal operation of the bridge network in the city will play an irreplaceable role in emergency rescue and long-term recovery after the disaster. In this paper, the resilience of urban bridge networks, as a comprehensive indicator that integrates predisaster early warning, disaster response and postdisaster recovery information, is considered. This indicator has been applied in many disciplines, such as civil engineering, sociology, management and economics. The concept of resilience is expounded, and functional and resilience assessment indicators for bridge networks are established. Additionally, the research progress on bridge network resilience is described. Finally, combined with research hotspots such as big data, artificial intelligence and bridge structural health monitoring, the development trends and prospects of bridge network resilience research are discussed.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Gao, QF (Corresponding Author), Harbin Inst Technol, Sch Transportat Sci \& Engn, Harbin 150090, Peoples R China. Wang, Tong; Liu, Yang; Li, Qiyuan; Gao, Qingfei, Harbin Inst Technol, Sch Transportat Sci \& Engn, Harbin 150090, Peoples R China. Du, Peng, Elect Engn Co Ltd, China Railway Bur Grp 5, Changsha 410006, Peoples R China. Zheng, Xiaogong, Heilongjiang Dingjie Rd \& Bridge Engn Co Ltd, Harbin 150090, Peoples R China.}, DOI = {10.3390/su15020989}, Article-Number = {989}, EISSN = {2071-1050}, Keywords = {resilience; bridge network; multihazard; structural health monitoring of bridge}, Keywords-Plus = {SEISMIC FRAGILITY; TRANSPORTATION NETWORK; ROADWAY NETWORKS; EARTHQUAKE; RISK; SUSTAINABILITY; PERFORMANCE; FRAMEWORK; CURVES; IMPACT}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {gaoqingfei@hit.edu.cn}, Affiliations = {Harbin Institute of Technology}, ORCID-Numbers = {Liu, Yang/0000-0002-1187-6388}, Funding-Acknowledgement = {Key Research and Development Program of Shandong Province of China {[}2019JZZY010427]; Key Research and Development Program of Heilongjiang Province of China {[}GY2021ZB0063]}, Funding-Text = {This study is supported by the Key Research and Development Program of Shandong Province of China (Grant No: 2019JZZY010427) and the Key Research and Development Program of Heilongjiang Province of China (Grant No: GY2021ZB0063).}, Cited-References = {Akiyama M, 2011, EARTHQ ENG STRUCT D, V40, P1671, DOI 10.1002/eqe.1108. Alipour A, 2016, J STRUCT ENG, V142, DOI 10.1061/(ASCE)ST.1943-541X.0001399. Alipour A, 2016, J INFRASTRUCT SYST, V22, DOI 10.1061/(ASCE)IS.1943-555X.0000253. {[}Anonymous], 2016 2022 CHINA BRID. {[}Anonymous], 2018, SHANGH URB MAST PLAN. {[}Anonymous], 2021, WHIT PAP URB RES. {[}Anonymous], 2016, BEIJING MASTER PLAN. {[}Anonymous], 2015, P UN WORLD C DIS RIS. {[}Anonymous], IN M URB RUR RES DIS. Anwar GA, 2020, ADV STRUCT ENG, V23, P1454, DOI 10.1177/1369433219895363. asce.org, 2005, REP CARD AM INFR. Bhatkoti R, 2016, J HYDROL ENG, V21, DOI 10.1061/(ASCE)HE.1943-5584.0001448. Biondini F, 2014, STRUCT INFRASTRUCT E, V10, P880, DOI 10.1080/15732479.2012.761248. Bocchini P, 2011, PROBABILIST ENG MECH, V26, P182, DOI 10.1016/j.probengmech.2010.11.007. Bocchini P, 2011, RELIAB ENG SYST SAFE, V96, P332, DOI 10.1016/j.ress.2010.09.001. Bocchini P, 2012, J BRIDGE ENG, V17, P117, DOI 10.1061/(ASCE)BE.1943-5592.0000201. Bruneau M, 2003, EARTHQ SPECTRA, V19, P733, DOI 10.1193/1.1623497. Capacci L, 2020, STRUCT INFRASTRUCT E, V16, P266, DOI 10.1080/15732479.2019.1653937. Chang L, 2012, J INFRASTRUCT SYST, V18, P75, DOI 10.1061/(ASCE)IS.1943-555X.0000082. Chang S.E., 2003, ASSESSING ROLE LIFEL. Chien-Kuo C, 2022, J EARTHQ ENG, V26, P7979, DOI 10.1080/13632469.2021.1982797. Choko OP, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11113100. Cimellaro GP, 2015, J INFRASTRUCT SYST, V21, DOI 10.1061/(ASCE)IS.1943-555X.0000204. Cimellaro GP, 2019, COMPUT-AIDED CIV INF, V34, P3, DOI 10.1111/mice.12364. Cimellaro GP, 2010, ENG STRUCT, V32, P3639, DOI 10.1016/j.engstruct.2010.08.008. Cimellaro GP, 2010, STRUCT INFRASTRUCT E, V6, P127, DOI 10.1080/15732470802663847. Cui F.S, 2018, THESIS CHANGAN U XIA. Dong Y, 2016, J PERFORM CONSTR FAC, V30, DOI 10.1061/(ASCE)CF.1943-5509.0000883. Dong Y, 2014, J EARTHQ ENG, V18, P41, DOI 10.1080/13632469.2013.841600. Dong Y, 2013, EARTHQ ENG STRUCT D, V42, P1451, DOI 10.1002/eqe.2281. Economic, IMP HURR SAND POT EC. Experts from Various Countries, DISC CHENGD DECL MAK. Faturechi R, 2014, TRANSPORT RES B-METH, V70, P47, DOI 10.1016/j.trb.2014.08.007. Feng KR, 2020, STRUCT INFRASTRUCT E, V16, P1578, DOI 10.1080/15732479.2020.1713170. Fereshtehnejad E, 2021, NAT HAZARDS REV, V22, DOI 10.1061/(ASCE)NH.1527-6996.0000459. Francis R, 2014, RELIAB ENG SYST SAFE, V121, P90, DOI 10.1016/j.ress.2013.07.004. Frangopol D.M., 2019, STRUCT INFRASTRUCT E, V8, P30. Gehl P, 2016, STRUCT SAF, V60, P37, DOI 10.1016/j.strusafe.2016.01.006. Ghobarah A, 2006, ENG STRUCT, V28, P312, DOI 10.1016/j.engstruct.2005.09.028. Ghosh J, 2014, EARTHQ SPECTRA, V30, P795, DOI 10.1193/040512EQS155M. Ribeiro PJG, 2019, SUSTAIN CITIES SOC, V50, DOI 10.1016/j.scs.2019.101625. Holling C.S., 1973, Annual Rev Ecol Syst, V4, P1, DOI 10.1146/annurev.es.04.110173.000245. Hou GY, 2019, J AEROSPACE ENG, V32, DOI 10.1061/(ASCE)AS.1943-5525.0001050. Hu X.T., 2021, RES URBAN ROAD NE. Huang M.G, 2009, THESIS HARBIN I TECH. Ikpong A, 2015, J COLD REG ENG, V29, DOI 10.1061/(ASCE)CR.1943-5495.0000079. Ishibashi H, 2021, STRUCT INFRASTRUCT E, V17, P494, DOI 10.1080/15732479.2020.1843503. Kameshwar S, 2014, ENG STRUCT, V78, P154, DOI 10.1016/j.engstruct.2014.05.016. Karamlou A, 2015, EARTHQ ENG STRUCT D, V44, P1959, DOI 10.1002/eqe.2567. Kiani J, 2019, COMPUT STRUCT, V218, P108, DOI 10.1016/j.compstruc.2019.03.004. Kilanitis I, 2019, B EARTHQ ENG, V17, P181, DOI 10.1007/s10518-018-0457-y. Kosmidis K, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0237304. Leitner H, 2018, URBAN GEOGR, V39, P1276, DOI 10.1080/02723638.2018.1446870. Li J., 2017, CITESPACE TEXT MININ, V2, P200. Li QF, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142114174. Liu KZ, 2021, STRUCT INFRASTRUCT E, V17, P1141, DOI 10.1080/15732479.2020.1801764. Liu Z.L, 2021, THESIS HARBIN I TECH. Long GB, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10234403. {[}吕彪 Lu Biao], 2020, {[}西南交通大学学报, Journal of Southwest Jiaotong University], V55, P1181. Lu X.Z., 2017, CITY DISASTER REDUCT, V4, P29. Mahmoudi SN, 2016, B EARTHQ ENG, V14, P1571, DOI 10.1007/s10518-016-9894-7. Merschman E, 2020, TRANSPORT RES REC, V2674, P81, DOI 10.1177/0361198120908870. {[}缪惠全 Miao Huiquan], 2021, {[}自然灾害学报, Journal of Natural Disasters], V30, P10. Mitropoulou CC, 2011, ENG STRUCT, V33, P3409, DOI 10.1016/j.engstruct.2011.07.005. Moghtadernejad S, 2022, J INFRASTRUCT SYST, V28, DOI 10.1061/(ASCE)IS.1943-555X.0000725. Moghtadernejad S, 2022, J INFRASTRUCT SYST, V28, DOI 10.1061/(ASCE)IS.1943-555X.0000700. Nasr A, 2021, SUSTAIN RESIL INFRAS, V6, P192, DOI 10.1080/23789689.2019.1593003. National Research Council, 2011, NAT EARTHQ RES RES I. Nielson BG, 2007, EARTHQ SPECTRA, V23, P615, DOI 10.1193/1.2756815. Nielson BG, 2007, EARTHQ ENG STRUCT D, V36, P823, DOI 10.1002/eqe.655. Ouyang M, 2015, RELIAB ENG SYST SAFE, V141, P74, DOI 10.1016/j.ress.2015.03.011. Ouyang M, 2014, STRUCT SAF, V48, P15, DOI 10.1016/j.strusafe.2014.01.001. Pan P., 2020, STANDARD SEISMIC RES, P1. Pan YX, 2017, ENG STRUCT, V151, P788, DOI 10.1016/j.engstruct.2017.08.028. Qi QJ, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141811555. Ren JZ, 2021, ENG STRUCT, V239, DOI 10.1016/j.engstruct.2021.112363. Shafei B, 2012, CEMENT CONCRETE RES, V42, P365, DOI 10.1016/j.cemconres.2011.11.001. Shao Y.W., 2017, URBAN DISASTER REDUC, V4, P71. Sun L, 2021, RELIAB ENG SYST SAFE, V216, DOI 10.1016/j.ress.2021.108030. Tang H.F., 2019, INN MONG SOC SCI, V40, P46. The Central Committee of the Communist Party of China', PROP FORM 14 5 YEAR. Timmerman, 1981, ENV MONOGRAPHS, V1. Torbol M, 2013, COMPUT-AIDED CIV INF, V28, P178, DOI 10.1111/j.1467-8667.2012.00805.x. Twumasi-Boakye R, 2021, SUSTAIN RESIL INFRAS, V6, P235, DOI 10.1080/23789689.2019.1605754. Twumasi-Boakye R, 2018, J TRANSP ENG A-SYST, V144, DOI 10.1061/JTEPBS.0000186. Viriyasitavat W, 2011, IEEE J SEL AREA COMM, V29, P515, DOI 10.1109/JSAC.2011.110303. Vishwanath BS, 2019, J BRIDGE ENG, V24, DOI 10.1061/(ASCE)BE.1943-5592.0001491. Wang K.H, 2020, THESIS HARBIN I TECH. Wang ZH, 2014, ENG STRUCT, V76, P202, DOI 10.1016/j.engstruct.2014.06.026. Wei W., 2016, FIRE TEMPERATURE. Wu YY, 2019, SUSTAIN RESIL INFRAS, V4, P82, DOI 10.1080/23789689.2018.1518026. www.chengdu.gov.cn, 2016, RES CHENGD URB MAST. www.gfdrr.org, CIT RES. www.mohurd.gov.cn, COMMUNICATION. /www.newsecuritybeat.org, WEATH STORM WAST RES. www.zj.gov.cn, NOT PROV DEV REF COM. Xiao BQ, 2022, FRACTALS, V30, DOI 10.1142/S0218348X22501043. Xiao BQ, 2022, FRACTALS, V30, DOI 10.1142/S0218348X22500724. Yuan YF, 2008, EARTHQ ENG ENG VIB, V7, P247, DOI 10.1007/s11803-008-0893-9. Zhang J.R., 2020, PHDTH. Zhang W., 2022, CARBON RES, V1, P1, DOI {[}10.1007/s44246-022-00009-1, DOI 10.1007/S44246-022-00009-1]. Zhang WL, 2017, STRUCT INFRASTRUCT E, V13, P1404, DOI 10.1080/15732479.2016.1271813. Zhang WL, 2016, STRUCT SAF, V62, P57, DOI 10.1016/j.strusafe.2016.06.003. Zou QL, 2020, J INFRASTRUCT SYST, V26, DOI 10.1061/(ASCE)IS.1943-555X.0000524.}, Number-of-Cited-References = {104}, Times-Cited = {0}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {9}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {8A3TX}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000916165200001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000795423800001, Author = {Joseph, Kiran and Sharma, Ashok K. and van Staden, Rudi}, Title = {Development of an Intelligent Urban Water Network System}, Journal = {WATER}, Year = {2022}, Volume = {14}, Number = {9}, Month = {MAY}, Abstract = {Water and wastewater services have been provided through centralised systems for more than a century. The operational and management approaches of the water systems face challenges induced by population growth, urbanisation, and ageing infrastructure. Recent advancements in water system engineering include the development of intelligent water networks. These intelligent networks address management and operational challenges associated with pressure and flow variations in the water network and it reduces the time for identification of pipe bursts and leakages. Research is required into the development of intelligent water networks to ensure consistent data collection and analysis that can filter and aggregate into actionable events to reduce water leakage, leakage cost, customer disruptions, and damages. Implementation of an intelligent algorithm with an integrated Supervisory Control and Data Acquisition (SCADA) system, high-efficiency smart sensors, and flow meters, including a tracking mechanism, will significantly reduce system management and operational issues and ensure improved service delivery for the community. This paper discusses the history of water systems, traditional water supply systems, need for intelligent water network, and design/development of the intelligent water networks. A framework for the intelligent water network has also been presented in this paper.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Sharma, AK (Corresponding Author), Victoria Univ, Inst Sustainable Ind \& Liveable Cities ISILC, Melbourne, Vic 3011, Australia. Joseph, Kiran; Sharma, Ashok K.; van Staden, Rudi, Victoria Univ, Inst Sustainable Ind \& Liveable Cities ISILC, Melbourne, Vic 3011, Australia.}, DOI = {10.3390/w14091320}, Article-Number = {1320}, EISSN = {2073-4441}, Keywords = {intelligent water network; smart water systems; leakage detection; water pipeline burst detection; cyber-physical security; artificial intelligence; IoT; wastewater; smart water management; smart water grids; drinking water networks}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; SMART METERS; WASTE-WATER; MANAGEMENT; CHALLENGES; EFFICIENCY; OPTIMIZATION; INTERNET; TECHNOLOGIES; AQUEDUCTS}, Research-Areas = {Environmental Sciences \& Ecology; Water Resources}, Web-of-Science-Categories = {Environmental Sciences; Water Resources}, Author-Email = {kiran.joseph2@live.vu.edu.au ashok.sharma@vu.edu.au rudi.vanstaden@vu.edu.au}, Affiliations = {Victoria University}, ResearcherID-Numbers = {Sharma, Ashok/A-4945-2008 }, ORCID-Numbers = {Sharma, Ashok/0000-0002-0172-5033 Joseph, Kiran/0000-0003-4992-3933}, Funding-Acknowledgement = {Victoria University, Melbourne Australia; Greater Western Water, Melbourne, Australia}, Funding-Text = {This research is funded by Victoria University, Melbourne Australia and Greater Western Water, Melbourne, Australia.}, Cited-References = {Abdalla H, 2021, RESOUR CONSERV RECY, V172, DOI 10.1016/j.resconrec.2021.105681. Abdulla Mohammad Burhan, 2013, 2013 5th International Conference on Modelling, Identification and Control (ICMIC), P328. Adeoti O, 2020, UTIL POLICY, V63, DOI 10.1016/j.jup.2019.100983. Airaksinen M., 2015, SMART CITY RES HIGHL, P21. Aldhouse-Green M.J., 1992, DICT CELTIC MYTH LEG. Alliance for Water Efficiency, 2010, ALLIANCE WATER EFFIC. Campos JCA, 2020, AGR WATER MANAGE, V227, DOI 10.1016/j.agwat.2019.105857. Amaitik N.M., 2008, PIP C, P1, DOI 10.1061/40994(321)128. Andreas A, 2012, EVOLUTION WATER SUPP. Angelakis A., 2012, GLOBAL TRENDS CHALLE, P90. Angelakis A, 2019, EVOLUTION WATER SUPP, V1. Angelakis AN, 2015, WATER-SUI, V7, P455, DOI 10.3390/w7020455. Araujo L, 2006, WATER RESOUR MANAG, V20, P133, DOI 10.1007/s11269-006-4635-3. Asnaashari A, 2013, CAN WATER RESOUR J, V38, P24, DOI 10.1080/07011784.2013.774153. Australian Bureau of Statistics, 2020, NAT STAT TERR POP. Australian Governement Bureau of Meterorology, 2020, FUT CLIM STAT CLIM. Australian Governement Bureau of Meterorology, AUSTR CHANG CLIM. Bakker K, 2012, SCIENCE, V337, P914, DOI 10.1126/science.1226337. Baldwin T., 2021, SMART WATER METERS. Baptista J., 2016, RELATORIO ANUAL SECT, V1, P186. Barate P.R, 2017, INT J INNOV SCI RES, V2, P255. Beal CD, 2015, UTIL POLICY, V32, P29, DOI 10.1016/j.jup.2014.12.006. Berardi L, 2021, WATER RESOUR MANAG, V35, P2537, DOI 10.1007/s11269-021-02847-x. Boulos P, 2013, OPFLOW. Boyer SA, 2004, SCADA SUPERVISORY CO. Boyle T, 2013, WATER-SUI, V5, P1052, DOI 10.3390/w5031052. Briamonte L, 2020, EC AGROALIMENT FOOD, V22, P1, DOI {[}10.3280/ecag2-2020oa10404, DOI 10.3280/ECAG2-2020OA10404]. Britton TC, 2013, J CLEAN PROD, V54, P166, DOI 10.1016/j.jclepro.2013.05.018. Bubtiena A. M., 2011, 2011 Proceedings of IEEE 7th International Colloquium on Signal Processing \& its Applications (CSPA 2011), P50, DOI 10.1109/CSPA.2011.5759841. Bush CA, 1998, J WATER RES PL-ASCE, V124, P334, DOI 10.1061/(ASCE)0733-9496(1998)124:6(334). Cetrulo TB, 2020, SCI TOTAL ENVIRON, V727, DOI 10.1016/j.scitotenv.2020.138746. Cheng WP, 2018, WATER-SUI, V10, DOI 10.3390/w10121727. Clark RM, 2014, PROT CRIT INFRASTRUC, V2, P1, DOI 10.1007/978-3-319-01092-2\_1. Colldahl C., 2013, THESIS BLEKINGE I TE. Cominola A, 2015, ENVIRON MODELL SOFTW, V72, P198, DOI 10.1016/j.envsoft.2015.07.012. Davis P, 2013, EXPERT SYST APPL, V40, P1947, DOI 10.1016/j.eswa.2012.10.004. Dawood T, 2020, AUTOMAT CONSTR, V120, DOI 10.1016/j.autcon.2020.103398. De Feo G, 2013, WATER-SUI, V5, P1996, DOI 10.3390/w5041996. El-Zahab Samer, 2019, Smart Water, V4, DOI 10.1186/s40713-019-0017-x. EPA Distribution System, 2009, WATER QUALITY MONITO. Erbe V, 2002, WATER SCI TECHNOL, V46, P141, DOI 10.2166/wst.2002.0673. Farley M., 2003, WATER INTELL ONLINE. Furht B, 2010, HANDBOOK OF CLOUD COMPUTING, P3, DOI 10.1007/978-1-4419-6524-0\_1. GIFFINGER R., 2007, SMART CITIES RANKING. Gourbesville P., 2011, ICT WATER EFFICIENCY. Gourbesville P, 2016, PROCEDIA ENGINEER, V154, P11, DOI 10.1016/j.proeng.2016.07.412. Gurung TR, 2015, J CLEAN PROD, V87, P642, DOI 10.1016/j.jclepro.2014.09.054. Gurung TR, 2014, RESOUR CONSERV RECY, V90, P34, DOI 10.1016/j.resconrec.2014.06.005. Hameed M, 2017, NEURAL COMPUT APPL, V28, pS893, DOI 10.1007/s00521-016-2404-7. Hassan FA, 1998, NATURE RESOUR, V34, P34. HAUCK GFW, 1988, AM J ARCHAEOL, V92, P393, DOI 10.2307/505555. Hellstrom D, 2000, ENVIRON IMPACT ASSES, V20, P311, DOI 10.1016/S0195-9255(00)00043-3. Hodge A.T., 1995, ROMAN AQUEDUCTS WATE. Howell S, 2017, AUTOMAT CONSTR, V81, P434, DOI 10.1016/j.autcon.2017.02.004. Jagtap S., 2018, IMPLEMENTING DATA AN, P18, DOI {[}10.4018/978-1-7998-6988-7.ch002, DOI 10.4018/978-1-7998-6988-7.CH003, DOI 10.4018/978-1-7998-6988-7.CH002]. Jagtap S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063343. Jagtap S, 2021, LOGISTICS-BASEL, V5, DOI 10.3390/logistics5010002. Jagtap S, 2021, COMPUT IND, V127, DOI 10.1016/j.compind.2021.103397. Kalavrouziotis I., 2014, E P IWA REG S WAT WA. Kayaalp F, 2017, NEURAL COMPUT APPL, V28, P2905, DOI 10.1007/s00521-017-2872-4. Kleiner Y., 2004, P PIP ENG CONSTR WHA, P1, DOI 10.1061/40745(146)7. Koutsoyiannis D, 2008, J WATER RES PLAN MAN, V134, P45, DOI 10.1061/(ASCE)0733-9496(2008)134:1(45). Kutylowska M, 2015, ENG FAIL ANAL, V47, P41, DOI 10.1016/j.engfailanal.2014.10.007. Laureano P, 2001, TRADITIONAL KNOWLEDG. Lee I, 2015, BUS HORIZONS, V58, P431, DOI 10.1016/j.bushor.2015.03.008. Lewis M.J.T., 2001, SURVEYING INSTRUMENT, V1st ed.. Lin Y. -C., 2009, STRUCT C 2009 DONT M, P1. Liu L, 2007, HOLOCENE, V17, P1059, DOI 10.1177/0959683607085121. Lombardi P, 2012, INNOVATION-ABINGDON, V25, P137, DOI 10.1080/13511610.2012.660325. Mamassis N, 2010, ANCIENT WATER TECHNOLOGIES, P103, DOI 10.1007/978-90-481-8632-7\_6. Marney D, 2012, WATER J AUST WATER A, V39, P86. Martyusheva O, 2014, SMARTWATER GRID. Mays L.W., 2010, BRIEF HIST WATER TEC, V1, P28, DOI {[}10.1007/978-90-481-8632-7\_1, DOI 10.1007/978-90-481-8632-7\_1]. Mays L, 2008, ENVIRON FLUID MECH, V8, P471, DOI 10.1007/s10652-008-9095-2. Garcia AVM, 2021, WATER-SUI, V13, DOI 10.3390/w13091268. Morosini AF, 2017, PROCEDIA ENGINEER, V186, P428, DOI 10.1016/j.proeng.2017.03.247. Mounce SR, 2015, PROCEDIA ENGINEER, V119, P43, DOI 10.1016/j.proeng.2015.08.851. Nam T., 2011, P 12 ANN INT DIG GOV, V11, P282, DOI {[}https://doi.org/10.1145/2037556.2037602, DOI 10.1145/2037556.2037602, 10.1145/2037556.2037602]. Nazari A, 2008, INSTRUCTING WATERGEM. Ntuli N, 2016, PROCEDIA COMPUT SCI, V83, P1164, DOI 10.1016/j.procs.2016.04.239. Ormsbee L.E., 2006, PROC WATER DISTRIBUT, V2006, P1, DOI {[}10.1061/40941(247)3, DOI 10.1061/9780784409411]. Osborn H., 2010, RAPID RESPONSE ASSES. Perez-Sanchez M, 2017, TECNOL CIENC AGUA, V8, P19, DOI 10.24850/j-tyca-2017-04-02. Perumal T, 2015, 2015 IEEE 4TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), P86, DOI 10.1109/GCCE.2015.7398710. PLAS R., LOOK AVERAGE AUSTR H. Pradhan S, 2019, SCI TOTAL ENVIRON, V652, P330, DOI 10.1016/j.scitotenv.2018.10.226. Puust R, 2010, URBAN WATER J, V7, P25, DOI 10.1080/15730621003610878. Ramos HM, 2020, WATER-SUI, V12, DOI 10.3390/w12010058. Randall T., 2019, WATER E J, V4, DOI {[}10.21139/wej.2019.001, DOI 10.21139/WEJ.2019.001]. Rauch W, 2005, ENVIRON MANAGE, V35, P396, DOI 10.1007/s00267-003-0114-2. REUTERS, REUTERS WATER USE RI. Ritzema H, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8050440. Romano M, 2014, ENVIRON MODELL SOFTW, V60, P265, DOI 10.1016/j.envsoft.2014.06.016. Rossman L. A., 2000, EPANET 2 USERS MANUA. Roy U, 2017, WATER CONSERV SCI EN, V2, P145, DOI 10.1007/s41101-017-0035-1. Sachidananda M, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8121222. Sadiq R., 2004, 4 INT C DEC MAK URB, P1. Sage M., 2012, ROMAN CONQUESTS GAUL. Samora I, 2016, WATER RESOUR MANAG, V30, P1533, DOI 10.1007/s11269-016-1238-5. Sanchis R, 2019, WATER-SUI, V11, DOI 10.3390/w11122432. Sattar AMA, 2019, NEURAL COMPUT APPL, V31, P157, DOI 10.1007/s00521-017-2987-7. Secretary-General UN, 2013, SECR GEN MESS WORLD. Selek B., 2018, TURKISH J WATER SCI, V2, P58, DOI {[}10.31807/TJWSM.354298, DOI 10.31807/TJWSM.354298]. Sharvelle S, 2017, ENVIRON MODELL SOFTW, V97, P213, DOI 10.1016/j.envsoft.2017.08.009. Smit S., 2015, P 36 IAHR WORLD C, V28. Sorbello J., 2014, WATER J AUST WATER A, V41, P75. Stair R., 2012, FUNDAMENTALS INFORM. Tadokoro H., 2011, HITACHI REV, V60, P164. The Editing Committee, 1979, HIST CHIN HYDR ENG. Thompson K., 2012, WATER J AUST WATER A, V39, P101. Turner A., 2010, 3 PARTY EVALUATION W. UN, 2017, UN WORLD POPULATION. Voudouris KS, 2013, WATER-SUI, V5, P1326, DOI 10.3390/w5031326. Wachla D., 2015, IFAC - Papers Online, V48, P1216, DOI 10.1016/j.ifacol.2015.09.692. Western Water, NETWORK INTELLIGENCE. WorldWater, 2021, WATER INFRASTRUCTURE. WSAA, 2012, OCC PAP 27 CLIM CHAN. Wu W, 2011, P 2011 INT C NETW SE. Wu W., 2011, P 19 INT C MODELLING, P1118. Zhang J., 1997, PIPES PIPELINES INT, V42, P20. Zheng XY, 2018, WATER SCI TECH-W SUP, V18, P2208, DOI 10.2166/ws.2018.038. Zheng XiaoYun, 2015, International Journal of Global Environmental Issues, V14, P187.}, Number-of-Cited-References = {122}, Times-Cited = {1}, Usage-Count-Last-180-days = {38}, Usage-Count-Since-2013 = {70}, Journal-ISO = {Water}, Doc-Delivery-Number = {1F8PL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000795423800001}, OA = {gold, Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000531562000002, Author = {Yan, Yu and Hou, Xiaomeng and Fei, Honglu}, Title = {Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities}, Journal = {JOURNAL OF CLEANER PRODUCTION}, Year = {2020}, Volume = {260}, Month = {JUL 1}, Abstract = {Drilling and blasting is widely used in mining and construction industries, and ground vibration is one of the detrimental effects caused by blasting. To determine the fragmentation of rocks and to ensure the safety of ambient urban areas and residents, it is necessary to determine the parameters that have a reasonable influence on blast-induced vibration. This review firstly presents the mechanism of influential parameters governing the ground vibration. The collected results show that these parameters such as free faces, decoupling, hole diameter, hole depth, charge type, delay blasting and geological conditions affect the prediction of ground vibration. Meanwhile, the influence of burden and hole numbers on the ground vibration is controversial in the current literature, and the few studies on the stemming and spacing are not enough to prove the impact of these factors on the prediction of peak particle velocity. While several methods are used for predicting ground vibration, four methods are summarized in this review, namely, empirical equation, AI algorithm, multiple regression analysis and numerical simulation methods. The details of the four methods for predicting the blast-induced vibration are discussed. Finally, performance assessments and sensitivity analysis are described, respectively, to compare the four methods for the accuracy of predicting the blast-induced vibration and to evaluate the effectiveness of various parameters in predicting the PPV. (C) 2020 Elsevier Ltd. All rights reserved.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Hou, XM (Corresponding Author), Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav \& Control, Harbin 150090, Peoples R China. Yan, Yu; Hou, Xiaomeng, Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav \& Control, Harbin 150090, Peoples R China. Yan, Yu; Hou, Xiaomeng, Harbin Inst Technol, Key Lab Smart Prevent \& Mitigat Civil Engn Disast, Minist Ind \& Informat Technol, Harbin 150090, Peoples R China. Fei, Honglu, Liaoning Tech Univ, Inst Engn Blasting, Fuxing 123000, Liaoning, Peoples R China.}, DOI = {10.1016/j.jclepro.2020.121135}, Article-Number = {121135}, ISSN = {0959-6526}, EISSN = {1879-1786}, Keywords = {Ground vibration; Influence factor; Peak particle velocity; Empirical equations; Artificial intelligence; Numerical simulation}, Keywords-Plus = {PEAK PARTICLE-VELOCITY; NEURAL-NETWORK; ROCK; MODEL; SIMULATION; FREQUENCY; MINE; FRAGMENTATION; REGRESSION; EXCAVATION}, Research-Areas = {Science \& Technology - Other Topics; Engineering; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Engineering, Environmental; Environmental Sciences}, Author-Email = {houxiaomeng@gmail.com}, Affiliations = {Harbin Institute of Technology; Harbin Institute of Technology; Liaoning Technical University}, ResearcherID-Numbers = {YAN, Yu/GWQ-9653-2022}, Funding-Acknowledgement = {National Key R\&D Program of China {[}2017YFC0806100]; National Natural Science Foundation of China {[}51578184]; Excellent Youth Foundation of Heilongjiang Province {[}YQ2019E028]}, Funding-Text = {The study is supported by National Key R\&D Program of China (2017YFC0806100), the National Natural Science Foundation of China (No.51578184), and Excellent Youth Foundation of Heilongjiang Province (No. YQ2019E028).}, Cited-References = {Ak H, 2009, SOIL DYN EARTHQ ENG, V29, P669, DOI 10.1016/j.soildyn.2008.07.003. Aki K., 2002, QUANTITATIVE SEISMOL, V2nd edn. Aldas GGU, 2008, J APPL GEOPHYS, V66, P25, DOI 10.1016/j.jappgeo.2008.08.004. Alvarez-Vigil AE, 2012, INT J ROCK MECH MIN, V55, P108, DOI 10.1016/j.ijrmms.2012.05.002. Ambraseys NR., 1968, DYNAMIC BEHAV ROCK M, P203. Amiri M, 2016, ENG COMPUT-GERMANY, V32, P631, DOI 10.1007/s00366-016-0442-5. Amnieh HB, 2010, SAFETY SCI, V48, P319, DOI 10.1016/j.ssci.2009.10.009. {[}Anonymous], 2005, 31 ANN C EXPL BLAST. Armaghani DJ, 2015, ENVIRON EARTH SCI, V74, P2845, DOI 10.1007/s12665-015-4305-y. BERGMANN OR, 1973, INT J ROCK MECH MIN, V10, P585, DOI 10.1016/0148-9062(73)90007-7. Bilgin A., 1998, TKI BELL LIGNITE PLA. Blair D., 2001, FRAGBLAST, V5, P108, DOI {[}10.1076/frag.5.1.108.3315, DOI 10.1076/FRAG.5.1.108.3315]. Blair DP, 2015, INT J ROCK MECH MIN, V77, P182, DOI 10.1016/j.ijrmms.2015.04.006. Blair DP, 2014, INT J ROCK MECH MIN, V65, P29, DOI 10.1016/j.ijrmms.2013.11.007. Blair D. P., 2004, Fragblast, V8, P221, DOI 10.1080/13855140412331291610. Blair D.P., 1994, VIBRATION SIGNATURES, V10. Blair D.P., 1999, FRAGBLAST, V3, P303. Blair D, 2010, GEOPHYSICS, V75, pE55, DOI 10.1190/1.3294860. BLAIR DP, 1995, INT J ROCK MECH MIN, V32, P149, DOI 10.1016/0148-9062(94)00036-3. BLAIR DP, 1993, INT J NUMER ANAL MET, V17, P95, DOI 10.1002/nag.1610170203. Blair DP., 2003, FRAGBLAST INT J BLAS, V7, P205, DOI {[}10.1076/frag.7.4.205.23533, DOI 10.1076/FRAG.7.4.205.23533]. Blair DP, 2015, P 11 INT S ROCK FRAG, P13. Bureau of Indian Standard, 1973, ISI B. Cevizci H, 2012, INT J ROCK MECH MIN, V53, P32, DOI 10.1016/j.ijrmms.2012.04.005. Chandar KR, 2017, GEOMECH GEOENGIN, V12, P207, DOI 10.1080/17486025.2016.1184763. Chen SH, 2011, ROCK SOIL MECH, V32, P3003. {[}陈星明 CHEN Xing-ming], 2009, {[}爆破, Blasting], V26, P38. Cho S.H., 2003, J SC TECH ENERG MAT, V64, P116. Cho SH, 2004, MATER TRANS, V45, P1722, DOI 10.2320/matertrans.45.1722. Cooper P. W., 2018, EXPLOSIVES ENG. CUNDALL PA, 1979, GEOTECHNIQUE, V29, P47, DOI 10.1680/geot.1979.29.1.47. Dehghani H, 2011, INT J ROCK MECH MIN, V48, P51, DOI 10.1016/j.ijrmms.2010.08.005. Devine JF, 1963, EARTHQUAKE NOTES, VXXXIV, P17. Dick R.A., 1983, 8925US DEP INT BUR M. Duan BF, 2018, TUNN UNDERGR SP TECH, V71, P605, DOI 10.1016/j.tust.2017.10.012. Duvall W.I., 1953, GEOPHYSICS, V18, P310, DOI {[}10.1190/1.1437875, DOI 10.1190/1.1437875]. Duvall W. I., 1962, REV CRITERIA ESTIMAT, V5968. Duvall W.I., 1958, SPHERICAL PROPAGATIO, P21. Duvall W.I., 1959, SPHERICAL PROPAGATIO, V5483, P21. Fakhimi A, 2014, COMPUT GEOTECH, V55, P158, DOI 10.1016/j.compgeo.2013.08.008. Faradonbeh RS, 2016, INT J ENVIRON SCI TE, V13, P1453, DOI 10.1007/s13762-016-0979-2. Faradonbeh RS, 2017, ENG COMPUT-GERMANY, V33, P835, DOI 10.1007/s00366-017-0501-6. Faradonbeh RS, 2018, NEURAL COMPUT APPL, V29, P269, DOI 10.1007/s00521-016-2537-8. Ferreira C., 2001, Complex Systems, V13, P87. Ferreira C, 2015, J CLEAN PROD, V89, P159, DOI 10.1016/j.jclepro.2014.11.027. Fourney W. L., 2006, Fragblast, V10, P47, DOI 10.1080/13855140600858198. FOURNEY WL, 1981, INT J ROCK MECH MIN, V18, P113, DOI 10.1016/0148-9062(81)90737-3. Ghoraba S, 2016, ENVIRON EARTH SCI, V75, DOI 10.1007/s12665-016-5961-2. Ghosh A., 1983, P 24 US S ROCK MECH. GINGOLD RA, 1977, MON NOT R ASTRON SOC, V181, P375, DOI 10.1093/mnras/181.3.375. Gui YL, 2018, INT J ROCK MECH MIN, V101, P63, DOI 10.1016/j.ijrmms.2017.11.016. Gupta RN., 1988, PROC 22 INT C SAFETY, P1015. Haghnejad A, 2019, NAT HAZARDS, V96, P587, DOI 10.1007/s11069-018-3559-6. Hajihassani M, 2015, B ENG GEOL ENVIRON, V74, P873, DOI 10.1007/s10064-014-0657-x. Harsha SP., 2010, MINING SCI TECHNOLOG, V20, P64, DOI {[}10.1016/S1674-5264(09)60162-9, DOI 10.1016/S1674-5264(09)60162-9]. Hasanipanah M, 2017, ENG COMPUT-GERMANY, V33, P307, DOI 10.1007/s00366-016-0475-9. Hasanipanah M, 2015, MEASUREMENT, V75, P289, DOI 10.1016/j.measurement.2015.07.019. He R., 2016, ELECT J GEOTECH ENG, V21, P10121. Hou XM, 2018, INT J IMPACT ENG, V120, P171, DOI 10.1016/j.ijimpeng.2018.06.006. Hu Liang, 2014, MIN TECHNOL, V5, P144. {[}胡英国 Hu Yingguo], 2017, {[}岩土工程学报, Chinese Journal of Geotechnical Engineering], V39, P2139. Hu YG, 2015, SIMUL MODEL PRACT TH, V56, P55, DOI 10.1016/j.simpat.2015.04.001. JANG JSR, 1993, IEEE T SYST MAN CYB, V23, P665, DOI 10.1109/21.256541. Jiang GA, 1996, 26TH PROCEEDINGS OF THE APPLICATIONS OF COMPUTERS AND OPERATIONS RESEARCH IN THE MINERAL INDUSTRY, P451. JIANG J, 1995, INT J NUMER ANAL MET, V19, P181, DOI 10.1002/nag.1610190303. Jiang JJ, 1998, GEOPHYS J INT, V132, P577, DOI 10.1046/j.1365-246X.1998.00479.x. Jiang N, 2018, TUNN UNDERGR SP TECH, V81, P590, DOI 10.1016/j.tust.2018.08.022. Jommi C., 2008, RIV ITALIANA GEOTECN, V20, P77. Katayoun B., 2018, EC0820170290. Katsabanis P. D., 2006, Fragblast, V10, P83, DOI 10.1080/13855140600858339. Khandelwal M, 2006, J SOUND VIB, V289, P711, DOI 10.1016/j.jsv.2005.02.044. Khandelwal M, 2007, SOIL DYN EARTHQ ENG, V27, P116, DOI 10.1016/j.soildyn.2006.06.004. Khandelwal M, 2017, ENG COMPUT-GERMANY, V33, P45, DOI 10.1007/s00366-016-0455-0. Kocaslan A, 2017, ENVIRON EARTH SCI, V76, DOI 10.1007/s12665-016-6306-x. Kumar R, 2016, J ROCK MECH GEOTECH, V8, P341, DOI 10.1016/j.jrmge.2015.10.009. Kuzu C, 2008, SOIL DYN EARTHQ ENG, V28, P405, DOI 10.1016/j.soildyn.2007.06.013. Langefors U., 1963, MODERN TECHNIQUES RO, V2, P405. Lin Z.Y., 2014, EXPT APPL RES BLASTI. Liu R., 2018, INFLUENCE DIFFERENT. Lu W., 2003, FRAGBLAST, V7, P231, DOI {[}10.1076/frag.7.4.231.23532, DOI 10.1076/FRAG.7.4.231.23532]. Lu W., 2001, BLASTING, V18, p26e29. Lye, 2002, FRAGBLAST, V6, P189, DOI {[}10.1076/frag.6.2.189.8665, DOI 10.1076/FRAG.6.2.189.8665]. MCHUGH S, 1983, INT J FRACTURE, V21, P163, DOI 10.1007/BF00963386. MELNIKOV NV, 1979, SOV MIN SCI+, V15, P565, DOI 10.1007/BF02499599. Minchinton A, 2015, 11 INT S ROCK FRAGM, P41. Mohamadnejad M, 2012, TUNN UNDERGR SP TECH, V28, P238, DOI 10.1016/j.tust.2011.12.001. Monjezi M, 2011, TUNN UNDERGR SP TECH, V26, P46, DOI 10.1016/j.tust.2010.05.002. Murmu S, 2018, INT J ROCK MECH MIN, V103, P267, DOI 10.1016/j.ijrmms.2018.01.038. Nateghi R, 2011, INT J ROCK MECH MIN, V48, P899, DOI 10.1016/j.ijrmms.2011.04.014. Torres VFN, 2018, J CLEAN PROD, V187, P514, DOI 10.1016/j.jclepro.2018.03.210. Oliveira R, 2017, J CLEAN PROD, V142, P2364, DOI 10.1016/j.jclepro.2016.11.039. Pal Roy P., 1991, COLLIERY GAURDIAN, V239, P210. Parida A, 2015, PROCED EARTH PLAN SC, V11, P337, DOI 10.1016/j.proeps.2015.06.070. Park D, 2010, INT J ROCK MECH MIN, V47, P752, DOI 10.1016/j.ijrmms.2010.04.011. Qiu XY, 2018, TUNN UNDERGR SP TECH, V74, P119, DOI 10.1016/j.tust.2018.01.014. Rossmanith H.P., 2002, FRAGBLAST, V6, P104, DOI {[}10.1076/frag.6.1.104.8854, DOI 10.1076/FRAG.6.1.104.8854]. Roy MP, 2012, ROCK FRAGMENTATION B, P457. Saadat M, 2014, J ROCK MECH GEOTECH, V6, P67, DOI 10.1016/j.jrmge.2013.11.001. Saharan MR, 2008, ROCK MECH ROCK ENG, V41, P641, DOI 10.1007/s00603-007-0136-9. Sharpe JA, 1942, GEOPHYSICS, V7, p144?154, DOI {[}10.1190/1.1445002, DOI 10.1190/1.1445002]. Sheykhi H, 2018, ENG COMPUT-GERMANY, V34, P357, DOI 10.1007/s00366-017-0546-6. Shi XZ, 2011, SOIL DYN EARTHQ ENG, V31, P1154, DOI 10.1016/j.soildyn.2011.04.004. Shi XZ, 2016, SHOCK VIB, V2016, DOI 10.1155/2016/2143575. Simangunsong GM, 2015, INT J ROCK MECH MIN, V79, P1, DOI 10.1016/j.ijrmms.2015.08.004. Singh PK, 2008, ENVIRON GEOL, V53, P1201, DOI 10.1007/s00254-007-0709-7. Siskind DE, 2000, VIBRATIONS BLASTING. TAKAGI T, 1985, IEEE T SYST MAN CYB, V15, P116, DOI 10.1109/TSMC.1985.6313399. Tete Aruna D., 2016, International Journal of Mining and Mineral Engineering, V7, P113. Turcotte R, 2003, J HAZARD MATER, V101, P1, DOI 10.1016/S0304-3894(03)00114-6. Uysal O, 2007, ENVIRON GEOL, V53, P643, DOI 10.1007/s00254-007-0679-9. Wang X.G., 2008, EMULSION EXPLOSIVE. Wang ZY, 2013, INT J ROCK MECH MIN, V60, P389, DOI 10.1016/j.ijrmms.2012.12.032. Worsey PN, 1986, J EXPLOSIVES ENG, V3, P25. {[}吴从师 Wu Congshi], 2017, {[}爆炸与冲击, Explosion and Shock Waves], V37, P907. Xue XH, 2017, GEOTECH GEOL ENG, V35, P1231, DOI 10.1007/s10706-017-0162-7. Yan P, 2016, INT J IMPACT ENG, V90, P132, DOI 10.1016/j.ijimpeng.2015.11.015. Yang JH, 2018, KSCE J CIV ENG, V22, P2593, DOI 10.1007/s12205-017-0240-7. Yang JH, 2016, ROCK MECH ROCK ENG, V49, P2825, DOI 10.1007/s00603-016-0964-6. Yi CP, 2018, COMPUT GEOTECH, V104, P321, DOI 10.1016/j.compgeo.2017.12.004. Yi CP, 2016, ROCK MECH ROCK ENG, V49, P1803, DOI 10.1007/s00603-015-0876-x. Yilmaz O, 2016, ENVIRON EARTH SCI, V75, DOI 10.1007/s12665-015-5011-5. Yuvka S, 2017, ENVIRON EARTH SCI, V76, DOI 10.1007/s12665-017-6959-0. Zhang L., 2005, J LIAON TU, V24, P187. Zhou JR, 2016, ROCK MECH ROCK ENG, V49, P4061, DOI 10.1007/s00603-016-1046-5.}, Number-of-Cited-References = {124}, Times-Cited = {22}, Usage-Count-Last-180-days = {21}, Usage-Count-Since-2013 = {72}, Journal-ISO = {J. Clean Prod.}, Doc-Delivery-Number = {LL4XZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000531562000002}, DA = {2023-04-22}, } @article{ WOS:000946297200001, Author = {Liu, Yiqi and Ramin, Pedram and Flores-Alsina, Xavier and Gernaey, V, Krist.}, Title = {Transforming data into actionable knowledge for fault detection, diagnosis and prognosis in urban wastewater systems with AI techniques: A mini-review}, Journal = {PROCESS SAFETY AND ENVIRONMENTAL PROTECTION}, Year = {2023}, Volume = {172}, Pages = {501-512}, Month = {APR}, Abstract = {Recent advances in artificial intelligence (AI) and data analytics (DA) could provide opportunities for the fault management and the decision-making of the urban wastewater treatment systems (UWS) operations. The UWS is typically a large system, including Sewer networks (SNs), Wastewater Treatment plants (WWTPs) and also considering the Receiving media (RM). However, applications of AI and DA in the UWS can be challenging due to the complexities and size of systems, the large variation in the level of UWS instrumentation, and the relatively poor data quality. This review goes beyond the state of the art by critically analyzing previous work on AI-based data-driven methodologies to system-wide fault detection, life cycle fault management and transformation of big and small data into analytics, particularly, considering two different points of view: process faults (such as bulking sludge, sewer corrosion \& technology specifics) and instrumentation faults (such as sensors and actua-tors), thereby offering more opportunities to distinguish complex patterns and dynamics. Our analysis reveals the relative strengths and weaknesses of the different approaches to design fault diagnosis tools and to apply these in the UWS. Finally, the opportunities and challenges about the inter-play among UWS, data and AI are discussed.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Liu, YQ (Corresponding Author), South China Univ Technol, Minist Educ, Sch Automat Sci \& Engn, Key Lab Autonomous Syst \& Networked Control, Guangzhou 510641, Guangdong, Peoples R China. Liu, Yiqi, South China Univ Technol, Minist Educ, Sch Automat Sci \& Engn, Key Lab Autonomous Syst \& Networked Control, Guangzhou 510641, Guangdong, Peoples R China. Liu, Yiqi; Ramin, Pedram; Flores-Alsina, Xavier; Gernaey, Krist., V, Tech Univ Denmark, Proc \& Syst Engn Ctr PROSYS, Dept Chem \& Biochem Engn, Bldg 228 A, DK-2800 Lyngby, Denmark.}, DOI = {10.1016/j.psep.2023.02.043}, EarlyAccessDate = {FEB 2023}, ISSN = {0957-5820}, EISSN = {1744-3598}, Keywords = {Fault detection; Fault diagnosis; Fault prognosis; Data analytics; Artificial intelligence}, Keywords-Plus = {CONCRETE CORROSION; ANOMALY DETECTION; BIG DATA; MODEL; PERFORMANCE; PREDICTION; REGRESSION; SEWERS}, Research-Areas = {Engineering}, Web-of-Science-Categories = {Engineering, Environmental; Engineering, Chemical}, Author-Email = {aulyq@scut.edu.cn pear@kt.dtu.dk xfa@kt.dtu.dk kvg@kt.dtu.dk}, Affiliations = {South China University of Technology; Technical University of Denmark}, Funding-Acknowledgement = {Horizon 2020 Framework Programme -Marie Sklodowska-Curie Individual Fellowships {[}891627]; National Natural Science Foundation of China {[}62273151, 61873096, 62073145]; Basic and Applied Basic Research Foundation of Guangdong Province {[}2020A1515011057, 2021B1515420003]; Guangdong International Scientific Cooperation Research Foundation {[}2020A0505100024, 2021A0505060001]}, Funding-Text = {Yiqi Liu thanks for the support of Horizon 2020 Framework Programme -Marie Sklodowska-Curie Individual Fellowships (891627) . This work was partially supported by the National Natural Science Founda- tion of China (62273151, 61873096, 62073145) , the Basic and Applied Basic Research Foundation of Guangdong Province (2020A1515011057, 2021B1515420003) , the Guangdong International Scientific Cooperation Research Foundation (2020A0505100024, 2021A0505060001) .}, Cited-References = {Abid A, 2021, ARTIF INTELL REV, V54, P3639, DOI 10.1007/s10462-020-09934-2. Aguado D, 2008, ENG APPL ARTIF INTEL, V21, P1080, DOI 10.1016/j.engappai.2007.08.004. Alani AM, 2014, ENVIRON TECHNOL, V35, P1721, DOI 10.1080/09593330.2014.881403. Amand L, 2013, WATER SCI TECHNOL, V67, P2374, DOI 10.2166/wst.2013.139. Andersson MP, 2022, CURR OPIN CHEM ENG, V36, DOI 10.1016/j.coche.2021.100754. Anter AM, 2020, SOFT COMPUT, V24, P111, DOI 10.1007/s00500-019-04225-7. Ba-Alawi AH, 2022, CHEMOSPHERE, V288, DOI 10.1016/j.chemosphere.2021.132647. Chen J., 2022, APPL SCI-BASEL. Cheng H., 2020, MILITARY MED RES, V20, P1. Chi HM, 2018, STUD BIG DATA, V26, P107, DOI 10.1007/978-3-319-53817-4\_5. Colomer J, 2013, J CHEM TECHNOL BIOT, V88, P1305, DOI 10.1002/jctb.3976. Comas J, 2008, ENVIRON MODELL SOFTW, V23, P1250, DOI 10.1016/j.envsoft.2008.02.013. Darvishi H, 2021, IEEE SENS J, V21, P4827, DOI 10.1109/JSEN.2020.3029459. Dovzan D, 2015, IEEE T FUZZY SYST, V23, P1761, DOI 10.1109/TFUZZ.2014.2379252. Ferguson AR, 2014, NAT NEUROSCI, V17, P1442, DOI 10.1038/nn.3838. Flores-Alsina X, 2012, WATER SCI TECHNOL, V65, P1912, DOI 10.2166/wst.2012.089. Fragkoulis D, 2011, APPL MATH MODEL, V35, P522, DOI 10.1016/j.apm.2010.07.019. Ge ZQ, 2017, CHEMOMETR INTELL LAB, V171, P16, DOI 10.1016/j.chemolab.2017.09.021. Haimi H, 2016, ENG APPL ARTIF INTEL, V52, P65, DOI 10.1016/j.engappai.2016.02.003. Han HG, 2019, CONTROL ENG PRACT, V90, P27, DOI 10.1016/j.conengprac.2019.06.010. Henze M, 1999, WATER SCI TECHNOL, V39, P165, DOI 10.1016/S0273-1223(98)00829-4. Hernandez-del-Olmo F., 2011, REINFORCEMENT LEARNI, P215. Jiang GM, 2016, WATER RES, V92, P52, DOI 10.1016/j.watres.2016.01.029. Jiang GM, 2015, CURR OPIN BIOTECH, V33, P192, DOI 10.1016/j.copbio.2015.03.007. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Kazemi P, 2021, PROCESS SAF ENVIRON, V146, P905, DOI 10.1016/j.psep.2020.12.016. Kazemi P, 2020, WATER SCI TECHNOL, V82, P2711, DOI 10.2166/wst.2020.368. Kazor K, 2016, STOCH ENV RES RISK A, V30, P1527, DOI 10.1007/s00477-016-1246-2. Leturiondo U., 2016, DOCTORAL THESIS COMP. Li DL, 2020, SENSOR ACTUAT A-PHYS, V309, DOI 10.1016/j.sna.2020.111990. Liu HB, 2021, PROCESS SAF ENVIRON, V147, P274, DOI 10.1016/j.psep.2020.09.034. Liu YQ, 2020, J PROCESS CONTR, V89, P58, DOI 10.1016/j.jprocont.2020.03.012. Liu YQ, 2020, MEASUREMENT, V155, DOI 10.1016/j.measurement.2020.107548. Liu YQ, 2018, IEEE T IND ELECTRON, V65, P6478, DOI 10.1109/TIE.2017.2786253. Liu YQ, 2017, RSC ADV, V7, P30894, DOI 10.1039/c7ra03959j. Liu YQ, 2017, CONTROL ENG PRACT, V62, P46, DOI 10.1016/j.conengprac.2017.02.003. Liu YQ, 2016, SCI REP-UK, V6, DOI 10.1038/srep31303. Loquercio A, 2020, IEEE ROBOT AUTOM LET, V5, P3153, DOI 10.1109/LRA.2020.2974682. Luca AV, 2021, PROCESSES, V9, DOI 10.3390/pr9091633. Mali B, 2020, SN APPL SCI, V2, DOI 10.1007/s42452-020-03910-9. Matheri AN, 2022, INT J ENVIRON SCI TE, DOI 10.1007/s13762-022-03982-7. McLamore ES, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64789-5. Moretta F, 2021, BIORESOURCE TECHNOL, V341, DOI 10.1016/j.biortech.2021.125845. Newhart KB, 2019, WATER RES, V157, P498, DOI 10.1016/j.watres.2019.03.030. Nor NM, 2020, REV CHEM ENG, V36, P513, DOI 10.1515/revce-2017-0069. Olsson G., 2012, ENCY SUSTAINABILITY, P11946. Olsson G, 2012, WATER RES, V46, P1585, DOI 10.1016/j.watres.2011.12.054. Park YJ, 2020, PROCESSES, V8, DOI 10.3390/pr8091123. Picabea J, 2021, CHEM PROD PROCESS MO, V16, P169, DOI 10.1515/cppm-2020-0004. Pikaar I, 2014, SCIENCE, V345, P812, DOI 10.1126/science.1251418. Poh PE, 2016, WATER CONSERV SCI EN, V1, P1, DOI 10.1007/s41101-016-0001-3. Prochaska C, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156133. Purbowaskito W, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21175865. Rosen C, 2004, WATER SCI TECHNOL, V50, P41, DOI 10.2166/wst.2004.0669. Russo S, 2021, WATER RES, V206, DOI 10.1016/j.watres.2021.117695. Russo S, 2020, ENVIRON MODELL SOFTW, V134, DOI 10.1016/j.envsoft.2020.104869. Samuelsson O, 2017, WATER SCI TECHNOL, V75, P2952, DOI 10.2166/wst.2017.162. Santos AV, 2021, CHEM ENG J, V426, DOI 10.1016/j.cej.2021.131291. Slimani A, 2018, IFAC PAPERSONLINE, V51, P1205, DOI 10.1016/j.ifacol.2018.09.698. Sun WK, 2020, COMPUT CHEM ENG, V141, DOI 10.1016/j.compchemeng.2020.106991. Sweetapple C, 2018, WATER RES, V147, P1, DOI 10.1016/j.watres.2018.09.032. Teh HY, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-0285-1. Torfs E, 2022, WATER SCI TECHNOL, V85, P2840, DOI 10.2166/wst.2022.107. Udugama A., 2021, FRONT CHEM ENG, V3. Wang D, 2021, SCI TOTAL ENVIRON, V784, DOI 10.1016/j.scitotenv.2021.147138. Wen YX, 2022, MEASUREMENT, V187, DOI 10.1016/j.measurement.2021.110276. Wilhelm Y., 2021, PROCEDIA CIRP, V99, P278, DOI {[}10.1016/j.procir.2021.03.041, DOI 10.1016/J.PROCIR.2021.03.041]. Xiao CY, 2021, IEEE T AUTOM SCI ENG, V18, P1766, DOI 10.1109/TASE.2020.3017755. Zhang LW, 2018, KNOWL-BASED SYST, V139, P50, DOI 10.1016/j.knosys.2017.10.009. Zhao LJ, 2019, SENSOR MATER, V31, P2013, DOI 10.18494/SAM.2019.2406. Zhou FN, 2016, NEUROCOMPUTING, V202, P27, DOI 10.1016/j.neucom.2016.03.007. Zhou J, 2021, PROCESS SAF ENVIRON, V146, P9, DOI 10.1016/j.psep.2020.08.032. Zounemat-Kermani M, 2021, FRONT STRUCT CIV ENG, V15, P444, DOI 10.1007/s11709-021-0697-9.}, Number-of-Cited-References = {73}, Times-Cited = {0}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {1}, Journal-ISO = {Process Saf. Environ. Protect.}, Doc-Delivery-Number = {9S4FG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000946297200001}, DA = {2023-04-22}, } @article{ WOS:000858733500001, Author = {Ndaguba, Emeka Austin and Cilliers, Jua and Ghosh, Sumita}, Title = {A Systematic Review of a City in a City: An Aerotropolitan Perspective}, Journal = {LAND}, Year = {2022}, Volume = {11}, Number = {9}, Month = {SEP}, Abstract = {The purpose of this research is to demystify literature on aerotropolis using systematic review. Literature on aerial life and aeronautical studies suggests that airports are frequently cited outside urban centres. However, recent events surrounding the growth of aerotropolis contradicts existing realities. In fact, the pull and push factors constitute the life cycle of aerotropolis in urban enclaves. In generating data for this study, Dimensions, an artificial intelligence databank, was adopted, and a hybrid method which combines both VOSviewer and Citespace software was the preferred analytical tool for analysis. Key findings were imperative in establishing certain parameters regarding aerial life, including but not limited to knowledge about the technologies adopted, quality of stakeholders, in addition to existing relationships of urban space, urbanisation, and geography. Furthermore, two recurrent themes were identified, such as the development in ICT, and smart technologies, which corresponds with the multiple potentials that exist for developing sustainable airports, such as eco-innovation, greenovation, and social innovation. This study contributes to the concept of transit-bound tourism, a concept we coined to depict the role tourism can play in transit philosophy and economics.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Ndaguba, EA (Corresponding Author), Univ Technol Sydney, Fac Design Architecture \& Bldg DAB, Sch Built Environm, Ultimo, NSW 2007, Australia. Ndaguba, EA (Corresponding Author), Univ South Africa, Coll Econ \& Management Sci, Sch Publ \& Operat Management, ZA-0002 Pretoria, South Africa. Ndaguba, Emeka Austin; Cilliers, Jua; Ghosh, Sumita, Univ Technol Sydney, Fac Design Architecture \& Bldg DAB, Sch Built Environm, Ultimo, NSW 2007, Australia. Ndaguba, Emeka Austin, Univ South Africa, Coll Econ \& Management Sci, Sch Publ \& Operat Management, ZA-0002 Pretoria, South Africa. Cilliers, Jua, North West Univ, Unit Environm Sci \& Management, ZA-2531 Potchefstroom, South Africa.}, DOI = {10.3390/land11091499}, Article-Number = {1499}, EISSN = {2073-445X}, Keywords = {aerotropolis; urbanisation; transit-bound tourism; VOSviewer; citespace; technology; new urban extension; transportation; transitional cities; built cities}, Keywords-Plus = {URBANIZATION}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Studies}, Author-Email = {emeka.ndaguba@uts.edu.au}, Affiliations = {University of Technology Sydney; University of South Africa; North West University - South Africa}, ResearcherID-Numbers = {Ndaguba, Emeka/R-2389-2019}, ORCID-Numbers = {Ndaguba, Emeka/0000-0002-7447-5565}, Cited-References = {Adey P, 2010, AERIAL LIFE SPACES M. Appold SJ, 2013, URBAN STUD, V50, P1239, DOI 10.1177/0042098012464401. Arbulu I, 2021, J DESTIN MARK MANAGE, V20, DOI 10.1016/j.jdmm.2021.100568. Bai XM, 2017, ANNU REV ENV RESOUR, V42, P215, DOI 10.1146/annurev-environ-102016-061128. BAIROCH P, 1986, URBAN STUD, V23, P285, DOI 10.1080/00420988620080351. Balducci A, 2009, INT PLAN STUD, V14, P25, DOI 10.1080/13563470902726352. Banai R, 2017, J TRANSP LAND USE, V10, P357, DOI 10.5198/jtlu.2016.889. Cha-Jua S., 2007, ENCY AM URBAN HIST, P13. Charbonneau L., 1993, GEOCARTO INT, V8, P17, DOI DOI 10.1080/10106049309354395. Chen MX, 2019, J GEOGR SCI, V29, P1681, DOI 10.1007/s11442-019-1685-z. Chiaramonti D, 2019, ENRGY PROCED, V158, P1202, DOI 10.1016/j.egypro.2019.01.308. Cohen AP, 2021, IEEE T INTELL TRANSP, V22, P6074, DOI 10.1109/TITS.2021.3082767. Cooley C.H., 1893, THEORY TRANSPORTATIO, V9. Craven N, 2021, IEEEAAIA DIGIT AVION, DOI 10.1109/DASC52595.2021.9594371. Djabbarov I, 2022, GALAXY INT INTERDISC, V10, P409. Dominoni DM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0593. ELKABIR YA, 1983, EKISTICS, V50, P232. Elliott S., 2021, S P GLOBAL PLATTS S. Ellsmoor J., 2019, SMART CITIES FUTURE. Express News Service, 2015, NEW INDIAN EXPRESS. Goulding C.R., 2010, EPACT TAX ASPECTS AE. Kasarda J., 2014, CULTURES MOBILITY. Kasarda J.D, 2019, WILEY BLACKWELL ENCY, P1, DOI {[}DOI 10.1002/9781118568446.EURS0436, 10.1002/9781118568446.eurs0436]. Kasarda J.D., 3D AEROTROPOLIS SCHE. Kasarda J.D., 2013, AIRPORT CITIES EVOLU. Kasarda J.D, 2008, AIRPORT CITIES EVOLU. Kasarda John D., 2011, AEROTROPOLIS WAY WEL. Kropf K, 2009, URBAN MORPHOL, V13, P105. Lindsay G., 2011, WALL STR J, V26. McLuhan M., 1969, GUTENBERG GALAXY 196. Melia M., 2022, HDB RES MUSEUM MANAG, P37. Mondal P., 2019, TOP 8 CHARACTERISTIC. Ndlela A.E., 2021, THESIS U KWAZULU NAT. Ohakawa T.C., 2021, THESIS U MARYLAND CO. Park Robert E., 2019, CITY. Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695. Pohunek J., 2019, ESK LID, V106, P403. Ravisankar S., 2021, URBAN MORPHOLOGICAL. Schaafsma M., 2010, P 1 INT C AIRP SPAT, P173. Shao Z., 2015, NEW URBAN AREA DEV C. Skatssoon J., 2020, AEROTROPOLIS MUST PR. Spilerman S, 2009, EUR SOCIOL REV, V25, P73, DOI 10.1093/esr/jcn056. Splinter E, 2019, INT PLAN STUD, V24, P308, DOI 10.1080/13563475.2019.1661831. Tigu G, 2018, AMFITEATRU ECON, V20, P967, DOI 10.24818/EA/2018/S12/967. Turner B. S., 1999, BODY SOC, V5, P39. Turner J. C., 2010, REDISCOVERING SOCIAL, P13. van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3. Wang KJ, 2011, TRANSPORT POLICY, V18, P276, DOI 10.1016/j.tranpol.2010.08.011. Williams K. M., 2014, URBAN INFRASTRUCTURE, P1. Wirtz J, 2020, J SERV MANAGE, V31, P665, DOI 10.1108/JOSM-11-2019-0342. Wissink H., 2020, REFLECTIONS AFRICAN, P183. Worchel, 1979, SOCIAL PSYCHOL INTER, P33.}, Number-of-Cited-References = {52}, Times-Cited = {0}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {12}, Journal-ISO = {Land}, Doc-Delivery-Number = {4U3YM}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000858733500001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000720107800001, Author = {Khanna, Abhirup and Sah, Anushree and Bolshev, Vadim and Jasinski, Michal and Vinogradov, Alexander and Leonowicz, Zbigniew and Jasinski, Marek}, Title = {Blockchain: Future of e-Governance in Smart Cities}, Journal = {SUSTAINABILITY}, Year = {2021}, Volume = {13}, Number = {21}, Month = {NOV}, Abstract = {In recent times, Blockchain has emerged as a transformational technology with the ability to disrupt and evolve multiple domains. As a decentralized, immutable distributed ledger, Blockchain technology is one of the most recent entrants to the comprehensive ideology of Smart Cities. The rise of urbanization and increased citizen participation have led to various technology integrations in our present-day cities. For cities to become smart, we need standard frameworks and procedures for integrating technology, citizens and governments. In this paper, we explore the potential of Blockchain technology as an enabler for e-governance in smart cities. We examine the daily challenges of citizens and compare them with the benefits being offered by Blockchain integration. On the basis of a comprehensive literature review, we identified four key areas of e-governance wherein Blockchain can provide monumental advantages. In the context of Blockchain integration for e-governance, the paper presents a survey of prominent published works discussing various urban applications.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Khanna, A; Sah, A (Corresponding Author), Univ Petr \& Energy Studies, Sch Comp Sci, Dehra Dun 248007, Uttarakhand, India. Bolshev, V (Corresponding Author), Fed Sci Agroengn Ctr VIM, Lab Power Supply \& Heat Supply, Moscow 109428, Russia. Bolshev, V (Corresponding Author), Don State Syst Univ, Lab Intelligent Agr Machines \& Complexes, Rostov Na Donu 344000, Russia. Khanna, Abhirup; Sah, Anushree, Univ Petr \& Energy Studies, Sch Comp Sci, Dehra Dun 248007, Uttarakhand, India. Bolshev, Vadim; Vinogradov, Alexander, Fed Sci Agroengn Ctr VIM, Lab Power Supply \& Heat Supply, Moscow 109428, Russia. Bolshev, Vadim, Don State Syst Univ, Lab Intelligent Agr Machines \& Complexes, Rostov Na Donu 344000, Russia. Jasinski, Michal; Leonowicz, Zbigniew, Wroclaw Univ Sci \& Technol, Fac Elect Engn, Dept Elect Engn Fundamentals, PL-50370 Wroclaw, Poland. Jasinski, Marek, WWSIS Horyzont, PL-54239 Wroclaw, Poland.}, DOI = {10.3390/su132111840}, Article-Number = {11840}, EISSN = {2071-1050}, Keywords = {Blockchain; IoT; e-governance; smart cities; urban planning}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; HEALTH-CARE; MANAGEMENT; SYSTEM; TRANSPORTATION; TRANSACTIONS; TECHNOLOGY; INTERNET; DECISION; THINGS}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {abhirupkhanna@yahoo.com asah@ddn.upes.ac.in vadimbolshev@gmail.com michal.jasinski@pwr.edu.pl schkolamolen@gmail.com zbigniew.leonowicz@pwr.edu.pl jasinski.lubin@gmail.com}, Affiliations = {University of Petroleum \& Energy Studies (UPES); Federal Scientific Agroengineering Center VIM; Wroclaw University of Science \& Technology}, ResearcherID-Numbers = {Jasinski, Michal/B-1775-2019 Leonowicz, Zbigniew M./K-8650-2017 Bolshev, Vadim/M-8440-2018 }, ORCID-Numbers = {Jasinski, Michal/0000-0002-0983-2562 Leonowicz, Zbigniew M./0000-0002-2388-3710 Bolshev, Vadim/0000-0002-5787-8581 Khanna, Abhirup/0000-0003-4451-0558 VINOGRADOV, Aleksandr/0000-0002-8845-9718 Jasinski, Marek/0000-0001-8648-8219}, Funding-Acknowledgement = {Chair of Electrical Engineering Fundamentals, Wroclaw University of Technology, Wroclaw, Poland {[}K38W05D02]}, Funding-Text = {This research received funding from the Chair of Electrical Engineering Fundamentals (K38W05D02), Wroclaw University of Technology, Wroclaw, Poland.}, Cited-References = {Agbo CC, 2019, HEALTHCARE-BASEL, V7, DOI 10.3390/healthcare7020056. Ali R., 2020, EAI SPRINGER INNOVAT, P1, DOI {[}10.1007/978-3-030-40037-8\_1, DOI 10.1007/978-3-030-40037-8\_1]. Alreshidi E, 2019, INT J ADV COMPUT SC, V10, P93. Ammi M, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102482. Arslanian H., 2019, FUTURE FINANCE IMPAC, DOI DOI 10.1007/978-3-030-14533-0. Ashena Elnaz, 2021, 2021 7th International Conference on Web Research (ICWR), P260, DOI 10.1109/ICWR51868.2021.9443118. Babbar H, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13168910. Badr MM, 2020, IEEE ACCESS, V8, P150823, DOI 10.1109/ACCESS.2020.3016945. Baldo D, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21082600. Bhushan B, 2021, COMPUT ELECTR ENG, V90, DOI 10.1016/j.compeleceng.2020.106897. Bhushan B, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102360. Bhushan B, 2021, WIREL NETW, V27, P55, DOI 10.1007/s11276-020-02445-6. Bulut R, 2019, 2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P183, DOI 10.1109/UBMK.2019.8907102. Celesti A, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20092590. Clauson K. A., 2018, BLOCKCHAIN HEALTHCAR, V1, P1, DOI {[}DOI 10.30953/BHTY.V1.20, 10.30953/bhty.v1.20]. Contreras-Masse R, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12030368. Cugurullo F, 2020, FRONT SUSTAIN CITIES, V2, DOI 10.3389/frsc.2020.00038. Daramola O, 2020, INFORMATICS-BASEL, V7, DOI 10.3390/informatics7020016. Dijkstra M., 2017, BLOCKCHAIN DISRUPTIO. Duan J, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17051784. Dumka A, 2020, ADV UBIQUIT SENS APP, V7, P215, DOI 10.1016/B978-0-12-815369-7.00009-4. Dzhuguryan T, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13031540. ElHusseini Hossam, 2020, IEEE Internet of Things Magazine, V3, P24, DOI 10.1109/IOTM.0001.1900081. Esmat A, 2021, APPL ENERG, V282, DOI 10.1016/j.apenergy.2020.116123. Farouk A, 2020, COMPUT COMMUN, V154, P223, DOI 10.1016/j.comcom.2020.02.058. Feng HH, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.121031. Francisco K, 2018, LOGISTICS-BASEL, V2, DOI 10.3390/logistics2010002. Fusco A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17197167. Gai KK, 2019, IEEE T IND INFORM, V15, P3548, DOI 10.1109/TII.2019.2893433. Garcia-Teruel RM, 2020, J PROP PLAN ENV LAW, V12, P129, DOI 10.1108/JPPEL-07-2019-0039. Gehlot A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116398. Gopikumar S, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102521. Guo JX, 2021, IEEE INTERNET THINGS, V8, P2040, DOI 10.1109/JIOT.2020.3015980. Hanifatunnisa R., 2017, PROC 11 INT C TELECO, P1. Haque AKMB, 2022, EXPERT SYST, V39, DOI 10.1111/exsy.12753. Hasavari S, 2019, 2019 IEEE/ACIS 17TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), P71, DOI 10.1109/SERA.2019.8886792. Hassani H., 2018, BIG DATA COGN COMPUT, V2, DOI {[}10.3390/bdcc2040034, DOI 10.3390/BDCC2040034]. Hlaing Su Su, 2020, 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), P299, DOI 10.1109/GCCE50665.2020.9291790. Hoxha V, 2019, PROP MANAG, V37, P684, DOI 10.1108/PM-01-2019-0002. Ighalo JO, 2021, MODEL EARTH SYST ENV, V7, P669, DOI 10.1007/s40808-020-01041-z. Javed IT, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9060712. Khanna A., 2019, COMMUNICATIONS COMPU, DOI {[}10.1007/978-981-13-3804-5\_12, DOI 10.1007/978-981-13-3804-5\_12]. Khattak HA, 2020, J INF SECUR APPL, V55, DOI 10.1016/j.jisa.2020.102615. Kim M, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12050090. Konigstorfer F, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100352. Kolahan A, 2021, SUSTAIN CITIES SOC, V75, DOI 10.1016/j.scs.2021.103316. Kumar NM, 2020, ENERGIES, V13, DOI 10.3390/en13215739. Li ZP, 2021, IEEE T VEH TECHNOL, V70, P4037, DOI 10.1109/TVT.2021.3074820. Li ZT, 2018, IEEE T IND INFORM, V14, P3690, DOI 10.1109/TII.2017.2786307. Liu SY, 2020, IT PROF, V22, P14, DOI 10.1109/MITP.2020.2986121. Lu TG, 2021, IEEE T SMART GRID, V12, P2176, DOI 10.1109/TSG.2020.3027728. Lv ZH, 2021, IEEE T INTELL TRANSP, V22, P4579, DOI 10.1109/TITS.2020.3017183. Ciruela-Lorenzo AM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041325. Max R., 2021, INT HDB BUSINESS ETH, P577. Mhlanga D, 2020, INT J FINANC STUD, V8, DOI 10.3390/ijfs8030045. Mishra S, 2021, 2020 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND INTELLIGENCE SYSTEM (IOTAIS), P49, DOI 10.1109/IoTaIS50849.2021.9359715. Mora H, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106854. Negi D., 2021, BLOCKCHAIN APPL IOT, P65, DOI 10.1007/978-3-030-65691-1\_5. Nguyen DC, 2020, J NETW COMPUT APPL, V166, DOI 10.1016/j.jnca.2020.102693. Niels H., 2017, DIGITALIZATION SUPPL, V23, P3. Oliveira TA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072926. Paul R, 2021, COMPUT NETW, V196, DOI 10.1016/j.comnet.2021.108234. Qiu JL, 2018, IEEE INT SM C CONF. Ragavi B., 2020, P 2020 4 INT C COMPU, P1. Rajashree S., 2022, SMART IOT RES IND, P189. Ramson SRJ, 2021, J MATER CYCLES WASTE, V23, P516, DOI 10.1007/s10163-020-01137-9. Rathee G, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102526. Rawat S., 2012, IISTE, V3, P126. Rejeb A, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11070161. Saberi S, 2019, INT J PROD RES, V57, P2117, DOI 10.1080/00207543.2018.1533261. Sah A., 2018, HDB RES CONT PERSPEC, P24. Said D, 2021, IEEE T IND INFORM, V17, P6594, DOI 10.1109/TII.2020.3045011. Sankaranarayanan S., 2021, AI BASED SERVICES SM, P277, DOI {[}10.4018/978-1-7998-5024-3.ch013, DOI 10.4018/978-1-7998-5024-3.CH013]. Schmidt CG, 2019, J PURCH SUPPLY MANAG, V25, DOI 10.1016/j.pursup.2019.100552. Selim M, 2021, ENERGIES, V14, DOI 10.3390/en14010247. Sen Gupta Y, 2022, INT J ENVIRON SCI TE, V19, P7833, DOI 10.1007/s13762-021-03507-8. Serban AC, 2020, IEEE ACCESS, V8, P77364, DOI 10.1109/ACCESS.2020.2990123. Shadrin D, 2020, IEEE T INSTRUM MEAS, V69, P4103, DOI 10.1109/TIM.2019.2947125. Shaikh RAJ., 2021, EVOLUTIONARY COMPUTI, V53, P181, DOI {[}10.1007/978-981-15-5258-8\_20, DOI 10.1007/978-981-15-5258-8\_20]. Sharma A, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9101609. Sharma U, 2021, ARTIF INTELL, P25. Sheng-Ming Wang, 2021, HCI in Mobility, Transport, and Automotive Systems. Third International Conference, MobiTAS 2021. Held as Part of the 23rd HCI International Conference, HCII 2021. Proceedings. Lecture Notes in Computer Science (LNCS 12791), P144, DOI 10.1007/978-3-030-78358-7\_9. Shuaib M., 2020, COMMUN COMPUT PHYS, V1347, P3. Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364. Sladic G, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10010035. Soomro Safeeullah, 2018, IET 2018 SMART CITIE, P81. Sunny AI, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010214. Swain A, 2021, ENERGIES, V14, DOI 10.3390/en14051451. Tas R, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12081328. Tian F, 2017, I C SERV SYST SERV M. Truong Thi My Thanh, 2020, CIGOS 2019, Innovation for Sustainable Infrastructure. Proceedings of the 5th International Conference on Geotechnics, Civil Engineering Works and Structures. Lecture Notes in Civil Engineering (LNCE 54), P1179, DOI 10.1007/978-981-15-0802-8\_189. Umair M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21113838. Vamsi T. M. N., 2021, Proceedings of 5th International Conference on Computing Methodologies and Communication (ICCMC 2021), P438, DOI 10.1109/ICCMC51019.2021.9418289. Veuger J, 2018, FACILITIES, V36, P103, DOI 10.1108/F-11-2017-0106. Vincent DR, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19173667. Wang H, 2020, INFORM SCIENCES, V519, P348, DOI 10.1016/j.ins.2020.01.051. Wang S, 2019, IEEE T SYST MAN CY-S, V49, P1612, DOI 10.1109/TSMC.2019.2916565. Wang ZY, 2020, J PARALLEL DISTR COM, V142, P1, DOI 10.1016/j.jpdc.2020.03.004. Weitao Xu, 2020, BuildSys `20: Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, P330, DOI 10.1145/3408308.3431129. Wouda HP, 2019, J PROP INVEST FINANC, V37, P570, DOI 10.1108/JPIF-06-2019-0085. Xu L., 2017, P 12 INT C COLLABORA, P490. Yang Q, 2021, IEEE INTERNET THINGS, V8, P11463, DOI 10.1109/JIOT.2021.3051323. Ye ZP, 2020, SCI TOTAL ENVIRON, V699, DOI 10.1016/j.scitotenv.2019.134279. Zhang C, 2020, IEEE T VEH TECHNOL, V69, P6578, DOI 10.1109/TVT.2020.2984621. Zhang SF, 2020, INT J INF SECUR, V19, P323, DOI 10.1007/s10207-019-00465-8.}, Number-of-Cited-References = {105}, Times-Cited = {5}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {52}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {WZ6XA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000720107800001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000652733900001, Author = {Paiva, Sara and Ahad, Mohd Abdul and Tripathi, Gautami and Feroz, Noushaba and Casalino, Gabriella}, Title = {Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges}, Journal = {SENSORS}, Year = {2021}, Volume = {21}, Number = {6}, Month = {MAR}, Abstract = {The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encouraging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobility-as-a-service, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Ahad, MA (Corresponding Author), Jamia Hamdard, Dept Comp Sci \& Engn, New Delhi 110062, India. Casalino, G (Corresponding Author), Univ Bari Aldo Moro, Dept Comp Sci, I-70125 Bari, Italy. Paiva, Sara, Inst Politecn Viana Do Castelo, P-4900367 Viana Do Castelo, Portugal. Ahad, Mohd Abdul; Tripathi, Gautami; Feroz, Noushaba, Jamia Hamdard, Dept Comp Sci \& Engn, New Delhi 110062, India. Casalino, Gabriella, Univ Bari Aldo Moro, Dept Comp Sci, I-70125 Bari, Italy.}, DOI = {10.3390/s21062143}, Article-Number = {2143}, EISSN = {1424-8220}, Keywords = {smart mobility; sustainability; smart cities; smart services}, Keywords-Plus = {INTELLIGENT TRANSPORT-SYSTEMS; PRIVACY PRESERVATION; ICT INTENSITY; VEHICLE; CITIES; SERVICE; CITY; DECARBONIZATION; RESPONSIBILITY; BLOCKCHAIN}, Research-Areas = {Chemistry; Engineering; Instruments \& Instrumentation}, Web-of-Science-Categories = {Chemistry, Analytical; Engineering, Electrical \& Electronic; Instruments \& Instrumentation}, Author-Email = {sara.paiva@estg.ipvc.pt itsmeahad@gmail.com gautami1489@gmail.com noushaba.feroz@gmail.com gabriella.casalino@uniba.it}, Affiliations = {Polytechnic Institute of Viana do Castelo; Jamia Hamdard University; Universita degli Studi di Bari Aldo Moro}, ResearcherID-Numbers = {Paiva, Sara/O-9328-2015 Tripathi, Gautami/AAG-7185-2019 Casalino, Gabriella/N-6374-2017 }, ORCID-Numbers = {Paiva, Sara/0000-0002-0041-8939 Tripathi, Gautami/0000-0001-7140-1563 Casalino, Gabriella/0000-0003-0713-2260 Feroz, Noushaba/0000-0002-5016-341X Ahad, Mohd Abdul/0000-0002-3880-3680}, Funding-Acknowledgement = {Italian Ministry of Education, University and Research through the European PON project AIM (Attraction and International Mobility) {[}1852414]}, Funding-Text = {Gabriella Casalino acknowledges funding from the Italian Ministry of Education, University and Research through the European PON project AIM (Attraction and International Mobility), nr. 1852414, activity 2, line 1.}, Cited-References = {Abbasi IA, 2018, FUTURE INTERNET, V10, DOI 10.3390/fi10020014. Adam MS, 2020, FUTURE GENER COMP SY, V107, P909, DOI 10.1016/j.future.2017.12.011. Ahad MA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102301. AI4CITIES, 2020, MOBILITY. Akabane AT, 2018, IEEE VEHIC NETW CONF. Alonso J.M., 2017, CEX AI IA. Amoretti M, 2017, PERVASIVE MOB COMPUT, V38, P474, DOI 10.1016/j.pmcj.2016.08.008. {[}Anonymous], 2009, ADV VEHICULAR AD HOC. Anup S, 2017, TENCON IEEE REGION, P1027. Backhouse J., 2020, P 13 INT C THEOR PRA. Balakrishna C, 2012, INT CONF NEXT GEN, P223, DOI 10.1109/NGMAST.2012.51. Basis, 2020, MOBILITY. Battarra R, 2018, SUSTAIN CITIES SOC, V41, P556, DOI 10.1016/j.scs.2018.06.006. Aleta NB, 2017, TRANSP RES PROC, V24, P163, DOI 10.1016/j.trpro.2017.05.084. Bauza R, 2013, J NETW COMPUT APPL, V36, P1295, DOI 10.1016/j.jnca.2012.02.007. Baza M, 2019, IEEE WCNC. Belbachir A, 2019, PROCEDIA COMPUT SCI, V151, P447, DOI 10.1016/j.procs.2019.04.061. Benevolo C, 2016, L N INF SYST ORGAN, V11, P13, DOI 10.1007/978-3-319-23784-8\_2. Bhushan B, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102360. Bilal S.M., 2016, WIREL PERS AREA COMM, V1, P559. Birnbacher D, 2017, IEEE INTELL SYST, V32, P3, DOI 10.1109/MIS.2017.3711644. Bittencourt LF, 2017, IEEE CLOUD COMPUT, V4, P26, DOI 10.1109/MCC.2017.27. Bravo Y, 2016, LECT NOTES COMPUT SC, V9704, P147, DOI 10.1007/978-3-319-39595-1\_15. Brodsky J.S., 2016, BERKELEY TECHNOL LAW, V31, P851. Bucchiarone A, 2019, ACM T AUTON ADAP SYS, V14, DOI 10.1145/3355562. Camero A, 2019, LECT NOTES COMPUT SC, V11353, P386, DOI 10.1007/978-3-030-05348-2\_32. Campolo C, 2020, IEEE ACM DIS SIM, P1. Campos C, 2019, PHYS OCCUP THER PEDI, V39, P614, DOI 10.1080/01942638.2019.1585405. Choi Y.K., 2010, P 13 INT IEEE ANN C. Chourabi H., 2012, 2012 45th Hawaii International Conference on System Sciences (HICSS), P2289, DOI 10.1109/HICSS.2012.615. Cledou G, 2018, GOV INFORM Q, V35, P61, DOI 10.1016/j.giq.2017.11.008. Coeckelbergh M, 2016, APPL ARTIF INTELL, V30, P748, DOI 10.1080/08839514.2016.1229759. Dameri RP, 2017, PROGR IS, P85, DOI 10.1007/978-3-319-45766-6\_5. Danesin A, 2018, ENERG POLICY, V118, P41, DOI 10.1016/j.enpol.2017.12.019. Das Subhranil, 2019, 2019 International Conference on Information Technology (ICIT), P500, DOI 10.1109/ICIT48102.2019.00094. Dave R., 2019, J COMPUT SCI APPL, V7, P31. Davies E. R., 2017, COMPUTER VISION PRIN. de Blas I, 2020, ENERGY STRATEG REV, V32, DOI 10.1016/j.esr.2020.100543. de Souza AM, 2017, INT J DISTRIB SENS N, V13, DOI 10.1177/1550147716683612. de Souza AM, 2016, COMPUT NETW, V110, P118, DOI 10.1016/j.comnet.2016.09.011. Debnath AK, 2014, CITIES, V37, P47, DOI 10.1016/j.cities.2013.11.004. Deebak BD, 2020, COMPUT COMMUN, V162, P102, DOI 10.1016/j.comcom.2020.08.016. Del Vecchio P, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119771. Docherty I., 2018, GOVERNANCE SMART MOB. Docherty I, 2018, TRANSPORT RES A-POL, V115, P114, DOI 10.1016/j.tra.2017.09.012. Doolan R, 2017, IEEE T INTELL TRANSP, V18, P608, DOI 10.1109/TITS.2016.2585925. Dowling R., 2018, GOVERNANCE SMART MOB. Duong T, 2019, IEEE INTL CONF IND I, P1795, DOI 10.1109/INDIN41052.2019.8972225. El-Din D.M., 2020, SOCIAL INTERNET THIN, P99. Faria R., 2017, P 2017 INT C INT THI, P1. Garau C, 2016, CITIES, V56, P35, DOI 10.1016/j.cities.2016.02.012. Garau C, 2015, LECT NOTES COMPUT SC, V9156, P612, DOI 10.1007/978-3-319-21407-8\_43. Garcia-Font V, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16060868. Giesecke R., 2016, P 2016 11 INT C ECOL, P1, DOI {[}10.1109/EVER.2016.7476443, DOI 10.1109/EVER.2016.7476443]. Gouveia J. P., 2016, P 25 INT C COMP WORL, P345, DOI 10.1145/2872518.2888617. Groth S, 2019, TRANSPORT RES A-POL, V125, P56, DOI 10.1016/j.tra.2019.04.018. Guo H., 2020, IEEE ACCESS, V8, P182776, DOI {[}10.1109/ACCESS.2020.3029512, DOI 10.1109/ACCESS.2020.3029512]. Hank P, 2013, DES AUT TEST EUROPE, P1735. Hasan MGMM, 2018, 2018 IEEE/ACM THIRD INTERNATIONAL CONFERENCE ON INTERNET-OF-THINGS DESIGN AND IMPLEMENTATION (IOTDI 2020), P298, DOI 10.1109/IoTDI.2018.00048. Hevelke A, 2015, SCI ENG ETHICS, V21, P619, DOI 10.1007/s11948-014-9565-5. Hietanen S., 2014, NEW TRANSP MODEL, V12, P2. Holstein T., 2018, ARXIV180204103. Hwang T., P 2018 18 INT C CONT, P1760. Ilarri S, 2015, EXPERT SYST APPL, V42, P1418, DOI 10.1016/j.eswa.2014.08.057. International Energy Agency (IEA), 2014, CO 2 EM FUEL COMB HI. Jeekel H, 2017, TRANSP RES PROC, V25, DOI 10.1016/j.trpro.2017.05.254. Jerbi M, 2007, IEEE ICC, P3972, DOI 10.1109/ICC.2007.654. Jin X., 2020, CHEM ENG J ADV, V4, P100034, DOI {[}10.1016/j.ceja.2020.100034, DOI 10.1016/J.CEJA.2020.100034]. Jittrapirom P, 2017, URBAN PLAN, V2, P13, DOI 10.17645/up.v2i2.931. Junior J, 2013, REV BRAS GEOMATICA, V1, P8, DOI {[}10.3895/rbgeo.v1n1.5432, DOI 10.3895/RBGEO.V1N1.5432]. Kaplan C.J., 2006, UNDERSTANDING GPS PR. Karagiannis G, 2011, IEEE COMMUN SURV TUT, V13, P584, DOI 10.1109/SURV.2011.061411.00019. Karballaeezadeh N, 2020, ENERGIES, V13, DOI 10.3390/en13071718. Karinsalo A, 2018, 2018 IEEE 18TH INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C), P135, DOI 10.1109/QRS-C.2018.00036. Kourogi M., 2006, ADV ARTIFICIAL REALI. Krech M, 2017, PROCEDIA ENGINEER, V207, P1427, DOI 10.1016/j.proeng.2017.10.906. Kronsell Annica., 2020, SHAPING SMART MOBILI, P119. Kudo Hiroko, 2016, Cross-Cultural Design. 8th International Conference, CCD 2016, held as part of HCI International 2016. Proceedings: LNCS 9741, P551, DOI 10.1007/978-3-319-40093-8\_54. Kuhi K., 2018, 2018 IEEE INT C SERV, P256. Lee J., 2009, INT ENCY HUMAN GEOGR, P548. Liang SF, 2019, INT SYMP DISTR COMPU, P186, DOI 10.1109/DCABES48411.2019.00053. Lin H.Y., 2005, P IEEE C INT TRANSP. Lin YW, 2010, J INF SCI ENG, V26, P913. Liu JQ, 2016, TELECOMMUN SYST, V62, P15, DOI 10.1007/s11235-015-9979-7. Loewy RG, 1999, AIAA J, V37, P1337. Longo A, 2019, J PARALLEL DISTR COM, V127, P118, DOI 10.1016/j.jpdc.2018.12.009. Lopez D, 2018, IEEE INT SM C CONF. Lopez D, 2020, TRANSPORT RES C-EMER, V111, P588, DOI 10.1016/j.trc.2020.01.002. Lutge C, 2021, INT J TECHNOETHICS, V12, P101, DOI 10.4018/IJT.20210101.oa2. Lyons G, 2018, TRANSPORT RES A-POL, V115, P4, DOI 10.1016/j.tra.2016.12.001. Mangiaracina R, 2017, INT J LOGIST-RES APP, V20, P39, DOI 10.1080/13675567.2016.1241220. Mark S., 2018, MOBILITY SERVICE. Martinho A, 2021, TRANSPORT REV, V41, P556, DOI 10.1080/01441647.2020.1862355. Mauri A, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20020532. Mboup G, 2017, ADV 21ST CENT HUMAN, P871, DOI 10.1007/978-981-10-1610-3\_31. Melo S, 2017, RES TRANSP ECON, V65, P24, DOI 10.1016/j.retrec.2017.09.007. Meng Zhang, 2019, 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Proceedings, P513. Mirri S, 2016, MOB INF SYST, V2016, DOI 10.1155/2016/2821680. Moscholidou I, 2020, TRANSPORT POLICY, V98, P170, DOI 10.1016/j.tranpol.2019.10.015. Najada H. A., 2016, P IEEE 7 ANN UB COMP, P1. Nguyen T.H., 2019, PROC 28 INT C COMPUT, P1. Ning ZL, 2017, IEEE COMMUN MAG, V55, P49, DOI 10.1109/MCOM.2017.1600263. Nkenyereye L, 2021, FUTURE GENER COMP SY, V120, P61, DOI 10.1016/j.future.2021.02.008. Oliveira TA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072926. Orlowski A, 2019, CYBERNET SYST, V50, P118, DOI 10.1080/01969722.2019.1565120. Ozbayoglu M, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P1807, DOI 10.1109/BigData.2016.7840798. Pandey A, 2018, PROC INT C TOOLS ART, P859, DOI 10.1109/ICTAI.2018.00134. Pangbourne Kate., 2018, GOVERNANCE SMART MOB, P33, DOI DOI 10.1108/978-1-78754-317-120181003. Panzieri S, 2002, IEEE-ASME T MECH, V7, P134, DOI 10.1109/TMECH.2002.1011250. Papa E, 2015, 20 INT C URB PLANN R, P543. Parkinson S, 2017, IEEE T INTELL TRANSP, V18, P2898, DOI 10.1109/TITS.2017.2665968. Pattinson JA, 2020, HUM SOC SCI COMMUN, V7, DOI 10.1057/s41599-020-00644-2. Peprah C, 2019, SUSTAIN CITIES SOC, V44, P739, DOI 10.1016/j.scs.2018.10.025. Pereira J, 2019, FUTURE GENER COMP SY, V94, P317, DOI 10.1016/j.future.2018.11.043. Petrenya N, 2020, PUBLIC HEALTH NUTR, V23, P1186, DOI 10.1017/S1368980018003816. Putnam D., 2019, CONT READ LAW SOC JU, V11, DOI DOI 10.22381/CRLSJ11120193. Rakha H, 2011, IEEE INT C INTELL TR, P341, DOI 10.1109/ITSC.2011.6083084. Ramesh K., 4 INT C ELECT COMMUN, P651, DOI 10.1109/ICECA49313.2020.9297631. Rein De Viet, 2020, 2020 Forum on Integrated and Sustainable Transportation Systems (FISTS), P192, DOI 10.1109/FISTS46898.2020.9264902. Ren K, 2020, P IEEE, V108, P357, DOI 10.1109/JPROC.2019.2948775. Ruhlandt RWS, 2018, CITIES, V81, P1, DOI 10.1016/j.cities.2018.02.014. SAE, 2018, 16232 ISO. Saponara S, 2016, 2016 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS 2016) PROCEEDINGS, P417. Schlingensiepen J, 2016, STUD SYST DECIS CONT, V32, P3, DOI 10.1007/978-3-319-19150-8\_1. Schnieder Maren, 2019, 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI). Proceedings, P296, DOI 10.1109/RTSI.2019.8895556. Shi T., 2016, P 2015 INT C FUZZ SY, P340. Shukla N, 2013, INT J PROD ECON, V141, P146, DOI 10.1016/j.ijpe.2012.07.007. Sigg S., 2014, P 2014 ACM INT WORKS, P83. Singh YJ, 2020, J GENDER STUD, V29, P832, DOI 10.1080/09589236.2019.1650728. Spilker JJJ., 1996, GLOBAL POSITIONING S. Sreekumar UK, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE), P140, DOI 10.1109/EDGE.2018.00028. Steinhoff U, 2007, LECT NOTES COMPUT SC, V4794, P124. Sun CY, 2019, IEEE ACCESS, V7, P53103, DOI 10.1109/ACCESS.2019.2912094. Sun G, 2019, J NETW COMPUT APPL, V134, P89, DOI 10.1016/j.jnca.2019.02.018. Sun JJ, 2016, FINANC INNOV, V2, DOI 10.1186/s40854-016-0040-y. Talukder MZ, 2017, INT CONF COMPUT. Taraba M., 2018, 12 INT C ELEKTRO MAY, P1, DOI 10.1109/ELEKTRO.2018.8398279. Zan TTT, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), P170, DOI 10.1109/SmartCity.2015.66. Torres-Sospedra J, 2015, INT J GEOGR INF SCI, V29, P1955, DOI 10.1080/13658816.2015.1049541. Barba CT, 2012, 2012 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), P902, DOI 10.1109/IVS.2012.6232229. Turetken O, 2019, BUS INFORM SYST ENG+, V61, P9, DOI 10.1007/s12599-018-0565-x. United Nation, 2020, WORLD POP PROSP. United Nations, 2020, MATCHING HLPFS AMBIT. US -DoT, 2015, TRAFF CONG REL TREND. Vaa T, 2007, IET INTELL TRANSP SY, V1, P81, DOI 10.1049/iet-its:20060081. Vouros GA, 2020, 2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), P25, DOI 10.1109/BigDataService49289.2020.00012. Wellenhof B.H., 1992, GLOBAL POSITIONING S, V5th. Wendel A., P 2012 2 INT C 3D IM, P278. Wifi Attendance, VIS POS SYST ALL YOU. Yaqoob I, 2020, IEEE NETWORK, V34, P174, DOI 10.1109/MNET.2019.1900120. Yigitcanlar T, 2019, J URBAN TECHNOL, V26, P21, DOI 10.1080/10630732.2018.1476794. Younes MB, 2013, IEEE ICC, P3764, DOI 10.1109/ICC.2013.6655141. Zaffiro G., 2019, P 2019 AEIT INT C EL, P1, DOI {[}10.23919/EETA.2019.8804575, DOI 10.23919/EETA.2019.8804575]. Zawieska J, 2018, TRANSPORT POLICY, V63, P39, DOI 10.1016/j.tranpol.2017.11.004. Zhan HQ, 2019, ADV SOC SCI EDUC HUM, V336, P1. Zhang MZ, 2020, TRANSPORT POLICY, V99, P175, DOI 10.1016/j.tranpol.2020.08.016. Zhu J.J., 2018, P 2018 IEEE GLOB HUM, P1, DOI {[}10.1115/dscc2018-9195, DOI 10.1109/GHTC.2018.8601884]. Zoria S., 2020, SMART CITIES NEW LOO.}, Number-of-Cited-References = {158}, Times-Cited = {38}, Usage-Count-Last-180-days = {24}, Usage-Count-Since-2013 = {102}, Journal-ISO = {Sensors}, Doc-Delivery-Number = {SF4NF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000652733900001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000717749300001, Author = {Rani, Sita and Mishra, Ram Krishn and Usman, Mohammed and Kataria, Aman and Kumar, Pramod and Bhambri, Pankaj and Mishra, Amit Kumar}, Title = {Amalgamation of Advanced Technologies for Sustainable Development of Smart City Environment: A Review}, Journal = {IEEE ACCESS}, Year = {2021}, Volume = {9}, Pages = {150060-150087}, Abstract = {The concept of smart city evolved with the integration of information and communication technology (ICT) in various sub-systems and processes in urban environment. The development of the smart cities is the best possible solution to major urban issues. It contributes towards economic and social development of the residents. It aims to provide the cordial environment in the domains of healthcare, education, transportation, power generation and dissipation, security, living, industry, etc., to the inhabitants to make their lives comfortable. Sustainability of these services is another major objective in a smart city framework. Along with the true realization of the idea of a smart city, advanced computational and communication technologies are contributing hugely towards its sustainable development. Communication technologies act as backbone to ensure connectivity at the various levels in a smart city framework. Novel smart city solutions for different application domains are designed and deployed by the industry using advanced computational technologies like IoT, Artificial Intelligence, Blockchain, Big Data and Cloud Computing. In this work, authors discuss the concept of smart city, its architecture and sustainability. Different operational domains in a smart city ecosystem are elaborated. The cyber physical aspect of the smart cities is discussed in brief. The role of various computational and communication technologies in the sustainable development of smart cities is presented. Limiting factors in the deployment of various advanced technologies in different smart city domains are highlighted. Security issues associated with the technological sustainable development of different smart city services along with existing solutions are discussed. The article is concluded by highlighting the future research directions.}, Publisher = {IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC}, Address = {445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA}, Type = {Review}, Language = {English}, Affiliation = {Mishra, RK (Corresponding Author), Birla Inst Technol \& Sci Pilani, Dept Comp Sci, Dubai Campus, Dubai, U Arab Emirates. Kumar, P (Corresponding Author), Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect \& Commun Engn, Manipal 576104, India. Rani, Sita, Gulzar Grp Inst, Dept Comp Sci \& Engn, Khanna 141401, Punjab, India. Mishra, Ram Krishn, Birla Inst Technol \& Sci Pilani, Dept Comp Sci, Dubai Campus, Dubai, U Arab Emirates. Usman, Mohammed, King Khalid Univ, Dept Elect Engn, Abha 61411, Saudi Arabia. Kataria, Aman, CSIR CSIO, Opt Devices \& Syst, Chandigarh 160030, India. Kumar, Pramod, Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect \& Commun Engn, Manipal 576104, India. Bhambri, Pankaj, Guru Nanak Dev Engn Coll, Dept Informat Technol, Ludhiana 141006, Punjab, India. Mishra, Amit Kumar, DIT Univ, Sch Comp, Dehra Dun 248009, Uttarakhand, India.}, DOI = {10.1109/ACCESS.2021.3125527}, ISSN = {2169-3536}, Keywords = {Smart cities; Urban areas; Sustainable development; Buildings; Wireless sensor networks; Statistics; Sociology; Artificial intelligence; big data; blockchain; cloud computing; Internet of Things; smart cities; sustainability; wireless sensor networks}, Keywords-Plus = {BIG DATA-ANALYSIS; ARTIFICIAL-INTELLIGENCE; COMMUNICATION TECHNOLOGIES; WASTE MANAGEMENT; CITIES; INTERNET; CHALLENGES; FUTURE; TRENDS; THINGS}, Research-Areas = {Computer Science; Engineering; Telecommunications}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Telecommunications}, Author-Email = {therkmishra@gmail.com p.kumar@manipal.edu}, Affiliations = {King Khalid University; Council of Scientific \& Industrial Research (CSIR) - India; CSIR - Central Scientific Instruments Organisation (CSIO); Manipal Academy of Higher Education (MAHE); Guru Nanak Dev Engineering College Ludhiana; DIT University}, ResearcherID-Numbers = {Kumar, Pramod/AAG-9154-2021 Mishra, Ram Krishn/AAX-2543-2021 Usman, Mohammed/G-9132-2011 Mishra, Dr. Amit Kumar/AHB-4242-2022 Usman, Mohammed/GPX-1230-2022 Bhambri, Pankaj/D-6024-2016 }, ORCID-Numbers = {Usman, Mohammed/0000-0002-3352-472X Mishra, Dr. Amit Kumar/0000-0001-8079-5066 Usman, Mohammed/0000-0002-3352-472X Bhambri, Pankaj/0000-0003-4437-4103 Kumar, Pramod/0000-0003-0321-7187 Rani, Sita/0000-0003-2778-0214 Mishra, Ram Krishn/0000-0002-7384-6635}, Funding-Acknowledgement = {Deanship of Scienti\~{}c Research at King Khalid University {[}RGP.1/376/42]}, Funding-Text = {The authors extend their appreciation to the Deanship of Scienti\~{}c Research at King Khalid University for funding this work through General Research Project under grant number (RGP.1/376/42).}, Cited-References = {Abhishek R., 2016, P IEEE INT SMART CIT, P16, DOI {[}10.1109/ISC2.2016.7580854, DOI 10.1109/ISC2.2016.7580854]. Adio-Moses D., 2016, P 9 CIDB POSTGR C FE, P1. Afzal MK, 2017, IEEE ACCESS, V5, P27836, DOI 10.1109/ACCESS.2017.2783079. Agarwal P. K., 2015, JTETS, V1, P20. Ageed Z.S., 2021, QUBAHAN ACAD J, V1, P91, DOI {[}10.48161/qaj.v1n2a52, DOI 10.48161/QAJ.V1N2A52]. Ahad MA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102301. Al Nuaimi E, 2015, J INTERNET SERV APPL, V6, DOI 10.1186/s13174-015-0041-5. Al-Nasrawi Sukaina, 2015, JISTEM J.Inf.Syst. Technol. Manag., V12, P541, DOI 10.4301/S1807-17752015000300003. Ali H, 2017, 2017 5TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE), P264, DOI 10.1109/SEGE.2017.8052810. Ali MS, 2017, IEEE COMMUN MAG, V55, P76, DOI 10.1109/MCOM.2017.1600215CM. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Allen S, 2020, IEEE PULSE, V11, P2, DOI 10.1109/MPULS.2020.2993657. Anagnostopoulos T, 2017, IEEE T SUST COMPUT, V2, P275, DOI 10.1109/TSUSC.2017.2691049. Angelidou M, 2018, J SCI TECHNOL POLICY, V9, P146, DOI 10.1108/JSTPM-05-2017-0016. Angelidou M, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1348880. {[}Anonymous], SMART WIFI EVEN SMAR. {[}Anonymous], HELPING CIOS UNDERST. {[}Anonymous], 2020, SMART CITIES INCLUSI, P1. {[}Anonymous], SECURE YOUR SMART CA. Anthony B, 2021, ENTERP INF SYST-UK, V15, P299, DOI 10.1080/17517575.2020.1812006. Anthony B, 2020, INT J SUSTAIN ENERGY, V39, P263, DOI 10.1080/14786451.2019.1684287. Arenas AE, 2019, INT J INFORM MANAGE, V45, P149, DOI 10.1016/j.ijinfomgt.2018.10.015. Arora V, 2020, MOB INF SYST, V2020, DOI 10.1155/2020/8885269. Arroub A, 2016, 2016 INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), pP180. Baitha A. K., 2018, INT J ENG TECHNOL, V7, P193, DOI {[}10.14419/ijet.v7i2.6.10566, DOI 10.14419/IJET.V7I2.6.10566]. Balakrishna C, 2012, INT CONF NEXT GEN, P223, DOI 10.1109/NGMAST.2012.51. Barresi A, 2018, TECHNE, P28, DOI 10.13128/Techne-22713. Batty M, 2012, EUR PHYS J-SPEC TOP, V214, P481, DOI 10.1140/epjst/e2012-01703-3. Batty M, 2018, ENVIRON PLAN B-URBAN, V45, P3, DOI 10.1177/2399808317751169. Batty Michael, 2013, Dialogues Hum Geogr, V3, P274, DOI 10.1177/2043820613513390. Ben Atitallah S, 2020, COMPUT SCI REV, V38, DOI 10.1016/j.cosrev.2020.100303. Ben R.A., 2021, SPRINGER SMART CITIE, V37, P259. Ben Rjab A, 2019, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON THEORY AND PRACTICE OF ELECTRONIC GOVERNANCE (ICEGOV2019), P259, DOI 10.1145/3326365.3326400. Bendell J., 2017, HEALING CAPITALISM 5, V300, P129, DOI {[}10.4324/9781351276481, DOI 10.4324/9781351276481]. Bhattacharjee AK, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP), P289. Bhushan B, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102360. Bibri Simon Elias, 2020, Energy Informatics, V3, DOI {[}10.1186/s42162-020-00130-8, 10.1186/s42162-020-00108-6]. Bibri SE, 2015, ATL AMB PERVAS INTEL, V10, P1, DOI 10.2991/978-94-6239-142-0. Bibri SE, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0182-7. Bibri SE, 2017, SUSTAIN CITIES SOC, V31, P183, DOI 10.1016/j.scs.2017.02.016. Bibria SE, 2017, SUSTAIN CITIES SOC, V29, P219, DOI 10.1016/j.scs.2016.11.004. Bisio I, 2017, T EMERG TELECOMMUN T, V28, DOI 10.1002/ett.3002. Bisio I, 2013, IEEE T MULTIMEDIA, V15, P858, DOI 10.1109/TMM.2013.2239631. Biswas K, 2016, PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), P1392, DOI {[}10.1109/HPCC-SmartCity-DSS.2016.178, 10.1109/HPCC-SmartCity-DSS.2016.0198]. Bohli JM, 2015, 2015 INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN INTERNET OF THINGS (RIOT). Bonafini F, 2019, 2019 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 AND INTERNET OF THINGS (METROIND4.0\&IOT), P300, DOI 10.1109/METROI4.2019.8792901. Bonino D, 2015, 2015 3RD INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD) AND INTERNATIONAL CONFERENCE ON OPEN AND BIG (OBD), P309, DOI 10.1109/FiCloud.2015.32. Bosnjak L, 2018, 2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P1161. Brahara B., 2020, J INF SYST INFORM, V2, P131, DOI 10.33557/ journalisi.v2i1.30. Bronk Krzysztof, 2018, 2018 Baltic URSI Symposium (URSI), P269, DOI 10.23919/URSI.2018.8406722. Campisi T, 2021, INFRASTRUCTURES-BASE, V6, DOI 10.3390/infrastructures6070100. Caragliu A, 2011, J URBAN TECHNOL, V18, P65, DOI 10.1080/10630732.2011.601117. Cassandras CG, 2016, ENGINEERING, V2, P156, DOI 10.1016/J.ENG.2016.02.012. Chen BC, 2009, FOUND TRENDS DATABAS, V2, P1, DOI 10.1561/1900000008. Cherkaoui S, 2016, IFIP WIREL DAY. Chi HR, 2016, IEEE IND ELEC, P5663, DOI 10.1109/IECON.2016.7793851. Dabeedooal YJ, 2019, SMART CITIES-BASEL, V2, P153, DOI 10.3390/smartcities2020011. Degbelo A, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5020016. Dijkman RM, 2015, INT J INFORM MANAGE, V35, P672, DOI 10.1016/j.ijinfomgt.2015.07.008. Dodman D., 2017, INT ENCY GEOGRAPHY P, P1, DOI {[}10.1002/9781118786352.wbieg0623, DOI 10.1002/9781118786352.WBIEG0623]. Dong LJ, 2016, IEEE VTS VEH TECHNOL, DOI 10.1109/VTCSpring.2016.7504212. Dyllick T, 2016, ORGAN ENVIRON, V29, P156, DOI 10.1177/1086026615575176. Efremov S, 2015, PROCEDIA ENGINEER, V100, P1215, DOI 10.1016/j.proeng.2015.01.486. Elkington J, 2006, CORP GOV-OXFORD, V14, P522, DOI 10.1111/j.1467-8683.2006.00527.x. Elmaghraby AS, 2014, J ADV RES, V5, P491, DOI 10.1016/j.jare.2014.02.006. Elshenawy M, 2018, FUTURE GENER COMP SY, V79, P575, DOI 10.1016/j.future.2017.09.047. Englund C, 2021, SMART CITIES-BASEL, V4, P783, DOI 10.3390/smartcities4020040. Eslambolchilar P., 2021, INTELLIGENT COMPUTIN, V34. Falco G, 2018, IEEE ACCESS, V6, P48360, DOI 10.1109/ACCESS.2018.2867556. Fatnassi M, 2015, 2015 SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P950, DOI 10.1109/IntelliSys.2015.7361257. Ferrag MA, 2017, IEEE COMMUN SURV TUT, V19, P3015, DOI 10.1109/COMST.2017.2718178. Fromhold-Eisebith Martina, 2017, SMART CITIES FDN PRI, P1, DOI DOI 10.1002/9781119226444.CH1. Ghoneim M, 2019, 2019 5 INT C OPT APP, P1. Guelzim T., 2016, INTRO OVERVIEW KEY E. Habibzadeh H, 2019, SUSTAIN CITIES SOC, V50, DOI 10.1016/j.scs.2019.101660. Hakak S, 2020, IEEE NETWORK, V34, P8, DOI 10.1109/MNET.001.1900178. Hamid B, 2019, 2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13). Han J, 2017, J CLEAN PROD, V141, P1040, DOI 10.1016/j.jclepro.2016.09.177. Hasan R., 2020, 2020 IEEE 6 WORLD, P1, DOI 10.1109/ WF-IoT48130.2020.9221118. Hasan R, 2021, CONSUM COMM NETWORK, DOI 10.1109/CCNC49032.2021.9369621. Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002. Hassan R.J., 2021, ASIAN J RES COMPUT S, V22, P32, DOI DOI 10.9734/AJRCOS/2021/V8I330202. Hayat MS, 2016, 2016 3RD MEC INTERNATIONAL CONFERENCE ON BIG DATA AND SMART CITY (ICBDSC), P161. Hilty L., 2015, ICT INNOVATIONS SUST, V310, P333, DOI {[}10.1007/ 978-3-319-09228-7, DOI 10.1007/978-3-319-09228-7]. Hollands R., 2008, CITY, V12, P303, DOI {[}10.1080/1360481080247926, 10.1080/13604810802479126, DOI 10.1080/13604810802479126]. Hong W., 2011, J ACUPUNCTURE TUINA, V9, P237, DOI {[}10.1007/s11726-011-0521-5, DOI 10.1007/S11726-011-0521-5]. Ibba S., 2018, P XP SCI WORKSH, P379, DOI {[}10.1145/3274783.3275192, DOI 10.1145/3274783.3275192]. Ijaz S, 2016, INT J ADV COMPUT SC, V7, P612. Incezan D, 2017, J ARTIF INTELL RES, V60, P681, DOI 10.1613/jair.5660. Iqbal H., 2021, INT J ELECT COMPUT E, V11, P489, DOI {[}10.11591/ijece.v11i1, DOI 10.11591/IJECE.V11I1]. Isern J, 2020, PATTERN RECOGN LETT, V140, P303, DOI 10.1016/j.patrec.2020.11.004. Jaime J, 2018, INT SYMP WIREL, P35, DOI 10.1109/WPMC.2018.8713146. Javadzadeh G, 2020, WIREL NETW, V26, P1433, DOI 10.1007/s11276-019-02208-y. Jiang DF, 2020, COMPUT COMMUN, V150, P158, DOI 10.1016/j.comcom.2019.10.035. Kakderi C., 2019, J SMART CITIES, V1, P4, DOI DOI 10.18063/JSC.2016.01.002. Kalogeras AP, 2019, 2019 FIRST INTERNATIONAL CONFERENCE ON SOCIETAL AUTOMATION (SA). Kataria A, 2018, J SCI IND RES INDIA, V77, P288. Khan HH, 2020, SUSTAIN DEV, V28, P1507, DOI 10.1002/sd.2090. Khan LU, 2020, IEEE INTERNET THINGS, V7, P10200, DOI 10.1109/JIOT.2020.2987070. Khan MA, 2019, IEEE INT SM C CONF, P438, DOI 10.1109/ISC246665.2019.9071695. Khan Z, 2012, INT CONF UTIL CLOUD, P315, DOI 10.1109/UCC.2012.43. Nguyen KT, 2015, AD HOC NETW, V32, P17, DOI 10.1016/j.adhoc.2015.01.006. Kirimtat A, 2020, IEEE ACCESS, V8, P86448, DOI 10.1109/ACCESS.2020.2992441. Klaina H, 2020, IEEE ACCESS, V8, P124688, DOI 10.1109/ACCESS.2020.3007597. Klein C, 2008, LECT NOTES COMPUT SC, V5174, P260, DOI 10.1007/978-3-540-85500-2\_24. Kumar BGA, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION \& COMMUNICATION TECHNOLOGY (RTEICT), P1181, DOI 10.1109/RTEICT.2016.7808018. Kumar P. M., 2017, INT J COMPUT SYST EN, V3, P3, DOI {[}10.1504/ijcsyse.2017.10004012, DOI 10.1504/IJCSYSE.2017.10004012]. Kumari A, 2020, SUSTAIN COMPUT-INFOR, V28, DOI 10.1016/j.suscom.2020.100427. Kuru K, 2021, IEEE ACCESS, V9, P6571, DOI 10.1109/ACCESS.2020.3049094. Lavalle A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12145595. Lea R, 2014, INT CONF CLOUD COMP, P799, DOI 10.1109/CloudCom.2014.65. Lee I, 2015, BUS HORIZONS, V58, P431, DOI 10.1016/j.bushor.2015.03.008. Li B., 2020, ARXIV200810771. Li CM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072957. Li MF, 2019, IEEE T MOBILE COMPUT, V18, P334, DOI 10.1109/TMC.2018.2836421. Li X, 2011, IEEE COMMUN MAG, V49, P68, DOI 10.1109/MCOM.2011.6069711. Li Z., 2017, ELECT J, V30, P52, DOI {[}10.1016/j.tej.2017.04.003, DOI 10.1016/J.TEJ.2017.04.003]. Liang XP, 2018, IEEE INT SM C CONF. Liao C.-C., 2014, P 1 INT WORKSH ENG M, P3, DOI 10.1145/2661704. Liu Y, 2019, IEEE NETWORK, V33, P111, DOI 10.1109/MNET.2019.1800254. Lofgren K, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720912775. Loriot M, 2017, 2017 SENSORS NETWORKS SMART AND EMERGING TECHNOLOGIES (SENSET). Carrasco-Saez JL, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9122258. Lv ZH, 2021, IEEE T INTELL TRANSP, V22, P1807, DOI 10.1109/TITS.2020.3008884. Lytras MD, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P247. Majeed U, 2021, J NETW COMPUT APPL, V181, DOI 10.1016/j.jnca.2021.103007. Marques P, 2019, AD HOC NETW, V87, P200, DOI 10.1016/j.adhoc.2018.12.009. Masera M, 2018, P IEEE, V106, P613, DOI 10.1109/JPROC.2018.2812212. Massobrio R, 2018, PROGRAM COMPUT SOFT+, V44, P181, DOI 10.1134/S0361768818030052. Mathur S., 2016, 2016 IEEE STUDENTSCO, P1, DOI 10.1109/SCEECS.2016.7509291. Mazza D, 2017, IEEE COMMUN MAG, V55, P30, DOI 10.1109/MCOM.2017.1600247CM. Mehmood Y, 2017, IEEE COMMUN MAG, V55, P16, DOI 10.1109/MCOM.2017.1600514. Michalik P, 2014, 2014 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI), P331, DOI 10.1109/SAMI.2014.6822433. Michelin RA, 2018, PROCEEDINGS OF THE 15TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS 2018), P145, DOI 10.1145/3286978.3287019. Moretti N, 2021, INTELL BUILD INT, V13, P4, DOI 10.1080/17508975.2020.1765723. Moriniere L, 2012, URBAN STUD, V49, P435, DOI 10.1177/0042098011402233. Naik D., 2018, P TECHN SMART CIT EN, P1, DOI DOI 10.1109/ICSESP.2018.8376693. Naik DR, 2018, PROCEEDINGS ON 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS), P46, DOI 10.1109/CCCS.2018.8586819. Naik Sulochan, 2018, 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Proceedings, P998, DOI 10.1109/HPCC/SmartCity/DSS.2018.00165. Nam T., 2011, P 12 ANN INT DIG GOV, V11, P282, DOI {[}https://doi.org/10.1145/2037556.2037602, DOI 10.1145/2037556.2037602, 10.1145/2037556.2037602]. Naqvi N, 2020, AUSTRALAS J INF SYST, V24, DOI 10.3127/ajis.v24i0.2531. Natarajan S., 2017, INT J PHARM TECHNOL, V8, P25990. Neirotti P, 2014, CITIES, V38, P25, DOI 10.1016/j.cities.2013.12.010. Luong NC, 2016, IEEE COMMUN SURV TUT, V18, P2546, DOI 10.1109/COMST.2016.2582841. Nill J, 2009, RES POLICY, V38, P668, DOI 10.1016/j.respol.2009.01.011. O'Dwyer E, 2019, APPL ENERG, V237, P581, DOI 10.1016/j.apenergy.2019.01.024. Okai E, 2018, IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), P1726, DOI 10.1109/HPCC/SmartCity/DSS.2018.00282. Oliveira TA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072926. Oproiu EM, 2017, 2017 25TH TELECOMMUNICATION FORUM (TELFOR), P83. Osman AMS, 2019, FUTURE GENER COMP SY, V91, P620, DOI 10.1016/j.future.2018.06.046. Painuly Sakshi, 2021, Proceedings of 5th International Conference on Computing Methodologies and Communication (ICCMC 2021), P354, DOI 10.1109/ICCMC51019.2021.9418471. Pal D., 2018, INDONES J ELECT ENG, V6, P351, DOI {[}10.11591/ijeei.v6i1.543, DOI 10.11591/IJEEI.V6I4.543]. Paskaleva K, 2017, INFORMATICS-BASEL, V4, DOI 10.3390/informatics4040041. Patel S. J., 2019, 11 I INFR TECHN RES. Patrao C, 2020, SMART CITIES-BASEL, V3, P1117, DOI 10.3390/smartcities3040055. Piro G, 2014, J SYST SOFTWARE, V88, P169, DOI 10.1016/j.jss.2013.10.029. Plageras AP, 2018, FUTURE GENER COMP SY, V82, P349, DOI 10.1016/j.future.2017.09.082. Polese M, 2016, IEEE ICC, DOI 10.1109/ICC.2016.7511430. Pramanik MI, 2017, EXPERT SYST APPL, V87, P370, DOI 10.1016/j.eswa.2017.06.027. Privat G., 2014, P INT WORKSH EM TREN, P1. Puliafito A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21103349. Puri V, 2021, T EMERG TELECOMMUN T, DOI 10.1002/ett.4245. Qiu JL, 2018, IEEE INT SM C CONF. Rahman MA, 2018, IEEE COMMUN MAG, V56, P80, DOI 10.1109/MCOM.2018.1700907. Rajab H., 2018, P 2018 INT S NETWORK, P2018, DOI 10.1109/ISNCC.2018.8530997. Lopez LJR, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010181. Ramos HM, 2020, WATER-SUI, V12, DOI 10.3390/w12010058. Rani Sita, 2022, Energy Conservation Solutions for Fog-Edge Computing Paradigms. Lecture Notes on Data Engineering and Communications Technologies (74), P173, DOI 10.1007/978-981-16-3448-2\_9. Rani S, 2021, WIREL COMMUN MOB COM, V2021, DOI 10.1155/2021/5579148. Rao PS, 2018, J BIG DATA-GER, V5, DOI 10.1186/s40537-018-0130-y. Raza A, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND INNOVATIVE BUSINESS PRACTICES FOR THE TRANSFORMATION OF SOCIETIES (EMERGITECH), P34, DOI 10.1109/EmergiTech.2016.7737306. Reddy K. K., 2018, INT J ENG TECHNOL, V7, P36, DOI 10.14419/ijet.v7i4.6.20229. Rodriguez J. A., 2018, PROCEEDINGS, V2, P1485, DOI {[}10.3390/proceedings2231485, DOI 10.3390/PROCEEDINGS2231485]. Ruhlandt RWS, 2018, CITIES, V81, P1, DOI 10.1016/j.cities.2018.02.014. Rusti B, 2019, EUR CONF NETW COMMUN, P149, DOI 10.1109/EuCNC.2019.8802054. Samih H., 2019, Journal of Information Technology Case and Application Research, V21, P3, DOI 10.1080/15228053.2019.1587572. Samoilenko R, 2020, UEEE INT SYM PERS IN. Sanchez-Corcuera R, 2019, INT J DISTRIB SENS N, V15, DOI 10.1177/1550147719853984. Sanchez-Gomez J, 2019, 2019 IEEE 2ND 5G WORLD FORUM (5GWF), P58, DOI 10.1109/5GWF.2019.8911676. Sayah Z, 2021, SMART SUSTAIN BUILT, V10, P169, DOI 10.1108/SASBE-07-2019-0087. Sembroiz D, 2019, INFORM SCIENCES, V476, P439, DOI 10.1016/j.ins.2018.06.003. Serban AC, 2020, IEEE ACCESS, V8, P77364, DOI 10.1109/ACCESS.2020.2990123. Shahriar H., 2013, INT J NETW SECUR ITS, V5, P53, DOI {[}10.5121/ijnsa.2013.5404, DOI 10.5121/IJNSA.2013.5404]. Sharma S., 2018, INT C SMART CIT EM T, DOI 10.1109/ICSCET.2018.8537254. Shorfuzzaman M, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102582. Shpenst Vadim, 2021, Proceedings of International Scientific Conference on Telecommunications, Computing and Control. TELECCON 2019. Smart Innovation, Systems and Technologies (SIST 220), P513, DOI 10.1007/978-981-33-6632-9\_45. Sikder AK, 2018, 2018 IEEE 8TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), P639. Silva BN, 2018, SUSTAIN CITIES SOC, V38, P697, DOI 10.1016/j.scs.2018.01.053. Sodhro AH, 2019, J CLEAN PROD, V220, P1167, DOI 10.1016/j.jclepro.2019.01.188. Song JS, 2019, ASIA-PAC CONF COMMUN, P215, DOI 10.1109/APCC47188.2019.9026478. Sookhak M, 2019, IEEE COMMUN SURV TUT, V21, P1718, DOI 10.1109/COMST.2018.2867288. Srivastava S, 2017, PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), P130, DOI 10.1109/CONFLUENCE.2017.7943136. Sun JJ, 2016, FINANC INNOV, V2, DOI 10.1186/s40854-016-0040-y. Sun W, 2017, IEEE WIREL COMMUN, V24, P58, DOI 10.1109/MWC.2017.1600423. Syed AS, 2021, SMART CITIES-BASEL, V4, P429, DOI 10.3390/smartcities4020024. Taghavi M., 2015, ELECT LIB, V34, P1. Talari S, 2017, ENERGIES, V10, DOI 10.3390/en10040421. Tan SY, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030899. Tanguay GA, 2010, ECOL INDIC, V10, P407, DOI 10.1016/j.ecolind.2009.07.013. Trindade E., 2017, J OPEN INNOV, V3, P11, DOI DOI 10.1186/S40852-017-0063-2. Tukker A, 2015, J CLEAN PROD, V97, P76, DOI 10.1016/j.jclepro.2013.11.049. Vaidya V. D., 2018, 2018 INT C SMART CIT, P1, DOI 10.1109/ ICSCET.2018.8537381. Villegas-Ch W, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102857. Visvizi A, 2018, J SCI TECHNOL POLICY, V9, P126, DOI 10.1108/JSTPM-07-2018-079. Voordijk H., 2021, URBAN RES PRACT, V14, P1, DOI {[}10.1080/17535069.2019.1634141, DOI 10.1080/17535069.2019.1634141]. Warleigh-Lack A, 2010, INNOVATION-ABINGDON, V23, P297, DOI 10.1080/13511610.2010.545274. Wong R. C. W., 2010, SYNTHESIS LECT DATA, V2, P1, DOI {[}DOI 10.2200/S00237ED1V01Y201003DTM002, 10.2200/S00237ED1V01Y201003DTM002]. Wu BC, 2018, IEEE INT CONF ROBOT, P1887. Wu J, 2016, IEEE ACCESS, V4, P416, DOI 10.1109/ACCESS.2016.2517321. Wu YC, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072916. Xie JF, 2019, IEEE COMMUN SURV TUT, V21, P2794, DOI 10.1109/COMST.2019.2899617. Yaqoob I, 2017, IEEE COMMUN MAG, V55, P112, DOI 10.1109/MCOM.2017.1600232CM. Yigitcanlar T., 2020, J OPEN INNOV TECHNOL, V6, P187, DOI DOI 10.3390/JOITMC6040187. Yigitcanlar T, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20102988. Yu FH, 2017, IEEE CONF WIREL MOB, P334. Zemrane H, 2018, 2018 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH). Zhang HB, 2018, IEEE INTERNET THINGS, V5, P1550, DOI 10.1109/JIOT.2018.2792423. Zhang K, 2017, IEEE COMMUN MAG, V55, P122, DOI 10.1109/MCOM.2017.1600267CM. Zhao L, 2019, IEEE NETWORK, V33, P30, DOI 10.1109/MNET.2019.1800221. Zhu FH, 2016, IEEE T INTELL TRANSP, V17, P1576, DOI 10.1109/TITS.2015.2506156. Zhuang Yufeng, 2015, 2015 International Conference on Intelligent Transportation, Big Data and Smart City (ICITBS). Proceedings, P286, DOI 10.1109/ICITBS.2015.77.}, Number-of-Cited-References = {221}, Times-Cited = {9}, Usage-Count-Last-180-days = {21}, Usage-Count-Since-2013 = {63}, Journal-ISO = {IEEE Access}, Doc-Delivery-Number = {WW2JI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000717749300001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000816827300001, Author = {Shivaprakash, Kadukothanahally Nagaraju and Swami, Niraj and Mysorekar, Sagar and Arora, Roshni and Gangadharan, Aditya and Vohra, Karishma and Jadeyegowda, Madegowda and Kiesecker, Joseph M.}, Title = {Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India}, Journal = {SUSTAINABILITY}, Year = {2022}, Volume = {14}, Number = {12}, Month = {JUN}, Abstract = {The recent advancement in data science coupled with the revolution in digital and satellite technology has improved the potential for artificial intelligence (AI) applications in the forestry and wildlife sectors. India shares 7\% of global forest cover and is the 8th most biodiverse region in the world. However, rapid expansion of developmental projects, agriculture, and urban areas threaten the country's rich biodiversity. Therefore, the adoption of new technologies like AI in Indian forests and biodiversity sectors can help in effective monitoring, management, and conservation of biodiversity and forest resources. We conducted a systematic search of literature related to the application of artificial intelligence (AI) and machine learning algorithms (ML) in the forestry sector and biodiversity conservation across globe and in India (using ISI Web of Science and Google Scholar). Additionally, we also collected data on AI-based startups and non-profits in forest and wildlife sectors to understand the growth and adoption of AI technology in biodiversity conservation, forest management, and related services. Here, we first provide a global overview of AI research and application in forestry and biodiversity conservation. Next, we discuss adoption challenges of AI technologies in the Indian forestry and biodiversity sectors. Overall, we find that adoption of AI technology in Indian forestry and biodiversity sectors has been slow compared to developed, and to other developing countries. However, improving access to big data related to forest and biodiversity, cloud computing, and digital and satellite technology can help improve adoption of AI technology in India. We hope that this synthesis will motivate forest officials, scientists, and conservationists in India to explore AI technology for biodiversity conservation and forest management.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Shivaprakash, KN (Corresponding Author), Nat Conservancy Ctr, 37 Link Rd Lajpatnagar 3, New Delhi 110024, India. Shivaprakash, Kadukothanahally Nagaraju; Mysorekar, Sagar; Arora, Roshni; Gangadharan, Aditya; Vohra, Karishma, Nat Conservancy Ctr, 37 Link Rd Lajpatnagar 3, New Delhi 110024, India. Swami, Niraj, Nature Conservancy, Arington, VA 22201 USA. Jadeyegowda, Madegowda, Keladi Shivappa Nayaka Univ Agr \& Hort Sci, Coll Forestry, Ponnampet 571216, India. Kiesecker, Joseph M., Nature Conservancy, Global Lands Program, Ft Collins, CO 80524 USA.}, DOI = {10.3390/su14127154}, Article-Number = {7154}, EISSN = {2071-1050}, Keywords = {forest; artificial intelligence; forest resource management; machine learning; biodiversity conservation}, Keywords-Plus = {WATER-QUALITY ASSESSMENT; NEURAL-NETWORK MODEL; SELF-ORGANIZING MAP; FUZZY SYSTEM; FISH; PREDICTION; MANAGEMENT; ABUNDANCE; FLOW; CLASSIFICATION}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {shivaprakash.kn@tnc.org niraj.swami@tnc.org sagarmysorekar@hotmail.com roshni.arora@tnc.org a.gangadharan@tnc.org karishma.vohra90@gmail.com mjadegowda@gmail.com jkiesecker@tnc.org}, Affiliations = {Nature Conservancy; Nature Conservancy}, Cited-References = {Adikari KE, 2021, ENVIRON MODELL SOFTW, V144, DOI 10.1016/j.envsoft.2021.105136. Ahmadi V., 2018, PREPRINT, DOI {[}10.20944/preprints201803.0048.v2, DOI 10.20944/PREPRINTS201803.0048.V2]. Allken V, 2019, ICES J MAR SCI, V76, P342, DOI 10.1093/icesjms/fsy147. Alvarez-Ellacuria A, 2020, ICES J MAR SCI, V77, P1330, DOI 10.1093/icesjms/fsz216. Amatya DM, 2011, T ASABE, V54, P2049, DOI 10.13031/2013.40672. Ampatzidis Y, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9061010. Anandhi V., 2012, INT J COMPUT SCI TEL, V3, P35. {[}Anonymous], INDIA STATE FOREST R. Antanasijevic D, 2015, ENERGY, V84, P816, DOI 10.1016/j.energy.2015.03.060. Arekhi S, 2014, ARAB J GEOSCI, V7, P1073, DOI 10.1007/s12517-012-0785-1. Atanbori J, 2016, PATTERN RECOGN LETT, V81, P53, DOI 10.1016/j.patrec.2015.08.015. Awad M, 2014, ECOL INFORM, V24, P60, DOI 10.1016/j.ecoinf.2014.07.004. Azlah MAF, 2019, COMPUTERS, V8, DOI 10.3390/computers8040077. Backs JAJ, 2020, TRANSPORT RES D-TR E, V87, DOI 10.1016/j.trd.2020.102502. Barzegar R, 2016, STOCH ENV RES RISK A, V30, P1797, DOI 10.1007/s00477-016-1213-y. Bastin JF, 2019, SCIENCE, V365, P76, DOI 10.1126/science.aax0848. Bedoya C, 2014, ECOL INFORM, V24, P200, DOI 10.1016/j.ecoinf.2014.08.009. Bellassen V, 2014, NATURE, V506, P153, DOI 10.1038/506153a. Berberoglu S, 2004, BIODIVERS CONSERV, V13, P615, DOI 10.1023/B:BIOC.0000009493.34669.ec. Bevan Elizabeth, 2015, Marine Turtle Newsletter, P19. Bhanja SN, 2019, GEOPHYS RES LETT, V46, P8082, DOI 10.1029/2019GL083015. Borowicz A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212532. Nunez GB, 2018, ECOL INFORM, V46, P97, DOI 10.1016/j.ecoinf.2018.05.005. Brey T, 2012, LIMNOL OCEANOGR-METH, V10, P581, DOI 10.4319/lom.2012.10.581. Brosse S, 2001, NEW ZEAL J MAR FRESH, V35, P135, DOI 10.1080/00288330.2001.9516983. Brust CA, 2017, IEEE INT CONF COMP V, P2820, DOI 10.1109/ICCVW.2017.333. Burivalova Z, 2019, SCIENCE, V363, P28, DOI 10.1126/science.aav1902. Carreiras JMB, 2006, PHOTOGRAMM ENG REM S, V72, P897, DOI 10.14358/PERS.72.8.897. Ceccaroni L, 2018, ISSI SCI REP SER, V15, P311, DOI 10.1007/978-3-319-65633-5\_18. Chang NB, 2015, ECOL INFORM, V28, P42, DOI 10.1016/j.ecoinf.2015.05.001. Chau KW, 2006, MAR POLLUT BULL, V52, P726, DOI 10.1016/j.marpolbul.2006.04.003. Cheng L, 2012, LIMNOLOGICA, V42, P127, DOI 10.1016/j.limno.2011.09.007. Cheung WWL, 2005, BIOL CONSERV, V124, P97, DOI 10.1016/j.biocon.2005.01.017. Christin S, 2019, METHODS ECOL EVOL, V10, P1632, DOI 10.1111/2041-210X.13256. Coad P, 2014, ENVIRON MODELL SOFTW, V61, P393, DOI 10.1016/j.envsoft.2014.07.011. COULSON RN, 1987, SCIENCE, V237, P262, DOI 10.1126/science.237.4812.262. Curtis PG, 2018, SCIENCE, V361, P1108, DOI 10.1126/science.aau3445. Dao D., 2019, P 5 INT C SUST DES M. de Oliveira VA, 2021, EUR J SOIL SCI, V72, P1969, DOI 10.1111/ejss.13123. Deb D, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-017-6307-6. Di Minin E, 2019, CONSERV BIOL, V33, P210, DOI 10.1111/cobi.13104. Di Minin E, 2018, NAT ECOL EVOL, V2, P406, DOI 10.1038/s41559-018-0466-x. Dikshit A, 2021, GONDWANA RES, V100, P290, DOI 10.1016/j.gr.2020.08.007. Dominguez D, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14020691. dos Santos AA, 2019, ECOL INFORM, V53, DOI 10.1016/j.ecoinf.2019.100977. Dou XM, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010203. Dube T, 2017, PHYS CHEM EARTH, V100, P73, DOI 10.1016/j.pce.2017.02.016. El Din ES, 2017, INT J REMOTE SENS, V38, P1023, DOI 10.1080/01431161.2016.1275056. Elkiran G, 2019, J HYDROL, V577, DOI 10.1016/j.jhydrol.2019.123962. Toro CHF, 2013, APPL SOFT COMPUT, V13, P3449, DOI 10.1016/j.asoc.2013.04.014. FAO Global Forest Resources Assessment 2020, SYNTHESIS REPORT. Fathian F, 2019, J HYDROL, V575, P1200, DOI 10.1016/j.jhydrol.2019.06.025. Feio MJ, 2011, INT REV HYDROBIOL, V96, P321, DOI 10.1002/iroh.201111376. Fijani E, 2019, SCI TOTAL ENVIRON, V648, P839, DOI 10.1016/j.scitotenv.2018.08.221. Flombaum P, 2013, P NATL ACAD SCI USA, V110, P9824, DOI 10.1073/pnas.1307701110. Franceschini S, 2019, MAR POLLUT BULL, V149, DOI 10.1016/j.marpolbul.2019.110580. Fromm M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11212585. Gan JianBang, 2016, IUFRO World Series, V35, P37. Garske B, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13094652. Gharibi H, 2012, J ENVIRON MANAGE, V112, P87, DOI 10.1016/j.jenvman.2012.07.007. Giannetti F, 2018, ANN FOREST SCI, V75, DOI 10.1007/s13595-017-0674-6. Gillard M, 2017, BIOL INVASIONS, V19, P2159, DOI 10.1007/s10530-017-1428-y. Goethals PLM, 2007, AQUAT ECOL, V41, P491, DOI 10.1007/s10452-007-9093-3. Gomes C, 2019, COMMUN ACM, V62, P56, DOI 10.1145/3339399. Gray PC, 2019, METHODS ECOL EVOL, V10, P345, DOI 10.1111/2041-210X.13132. Guenard G, 2020, ESTUAR COAST SHELF S, V238, DOI 10.1016/j.ecss.2020.106713. Gunda NSK, 2019, J ELECTROCHEM SOC, V166, pB3031, DOI 10.1149/2.0081909jes. Guswa AJ, 2020, ECOHYDROLOGY, V13, DOI 10.1002/eco.2208. Hameed M, 2017, NEURAL COMPUT APPL, V28, pS893, DOI 10.1007/s00521-016-2404-7. Harrison JR, 2016, CONSERV BIOL, V30, P900, DOI 10.1111/cobi.12707. Hatzikos EV, 2008, KNOWL-BASED SYST, V21, P471, DOI 10.1016/j.knosys.2008.03.005. Hatzikos EV, 2007, EXPERT SYST, V24, P143, DOI 10.1111/j.1468-0394.2007.00426.x. He Taibo, 2020, Revista Cientifica - Maracaibo, V30, P2390. Herrera F, 2018, BIORXIV, DOI {[}10.1101/443671, DOI 10.1101/443671]. Hodgson A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079556. Hu JH, 2020, ENVIRON RES, V184, DOI 10.1016/j.envres.2020.109262. Imada A, 2014, COMM COM INF SC, V440, P9. Innes JL, 2009, J INTEGR ENVIRON SCI, V6, P201, DOI 10.1080/19438150903090517. Irrgang C, 2020, GEOPHYS RES LETT, V47, DOI 10.1029/2020GL089258. Isabelle DA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14041979. Jaafari A, 2019, AGR FOREST METEOROL, V266, P198, DOI 10.1016/j.agrformet.2018.12.015. Jha K., 2019, ARTIF INTELL AGR, V2, P1, DOI {[}10.1016/j.aiia.2019.05.004, DOI 10.1016/J.AIIA.2019.05.004]. Joppa LN, 2017, NATURE, V552, P325, DOI 10.1038/d41586-017-08675-7. Kamarudin MH, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11041403. Kamlesh Golhani, 2018, Information Processing in Agriculture, V5, P354, DOI 10.1016/j.inpa.2018.05.002. Karanth KU, 1998, ECOLOGY, V79, P2852. Kehoe B, 2015, IEEE T AUTOM SCI ENG, V12, P398, DOI 10.1109/TASE.2014.2376492. Khaki M, 2015, CLEAN-SOIL AIR WATER, V43, P551, DOI 10.1002/clen.201400267. Khan S., 2018, INT ARCH PHOTOGRAMM, V5, P801, DOI DOI 10.5194/ISPRS-ARCHIVES-XLII-5-801-2018. Knudby A, 2010, ECOL MODEL, V221, P503, DOI 10.1016/j.ecolmodel.2009.11.008. Kocev D, 2010, ECOL MODEL, V221, P330, DOI 10.1016/j.ecolmodel.2009.09.002. KOURTZ P, 1990, CAN J FOREST RES, V20, P428, DOI 10.1139/x90-060. Kroodsma DA, 2018, SCIENCE, V359, P904, DOI 10.1126/science.aao5646. Labao Alfonso B., 2019, Ecological Informatics, V52, P103. Lachkar Z, 2012, BIOGEOSCIENCES, V9, P293, DOI 10.5194/bg-9-293-2012. Lamba A, 2019, CURR BIOL, V29, pR977, DOI 10.1016/j.cub.2019.08.016. Larrea-Gallegos G, 2022, J IND ECOL, V26, P225, DOI 10.1111/jiec.13185. Lavorgna A, 2020, J CONTEMP CRIM JUST, V36, P428, DOI 10.1177/1043986220910297. Lee CS, 2019, GISCI REMOTE SENS, V56, P43, DOI 10.1080/15481603.2018.1489943. Levia D.F., 2020, FOREST WATER INTERAC, DOI {[}10.1007/978-3-030-26086-6, DOI 10.1007/978-3-030-26086-6]. Li RR, 2016, J ENVIRON SCI-CHINA, V50, P87, DOI 10.1016/j.jes.2016.03.030. Lin P, 2020, NAT RESOUR MODEL, V33, DOI 10.1111/nrm.12248. Liu Y., 2019, ARXIV190711692. Liu ZL, 2018, ENVIRON REV, V26, P339, DOI 10.1139/er-2018-0034. Liu ZL, 2010, CHINESE SCI BULL, V55, P3853, DOI 10.1007/s11434-010-4183-3. Lu XL, 2010, REMOTE SENS ENVIRON, V114, P1924, DOI 10.1016/j.rse.2010.04.001. Luo XR, 2022, GEOCARTO INT, V37, P2717, DOI 10.1080/10106049.2020.1861662. Mandal R, 2018, IEEE IJCNN. Mao J., 2021, AI4ES1089 COLL, DOI {[}10.2172/1769666, DOI 10.2172/1769666]. Marini S, 2018, MEASUREMENT, V126, P72, DOI 10.1016/j.measurement.2018.05.035. Mastrorillo S, 1997, FRESHWATER BIOL, V38, P237, DOI 10.1046/j.1365-2427.1997.00209.x. Mayfield H, 2017, ENVIRON MODELL SOFTW, V87, P17, DOI 10.1016/j.envsoft.2016.10.006. Mayfield HJ, 2020, ENVIRON MODELL SOFTW, V131, DOI 10.1016/j.envsoft.2020.104741. Metcalf OC, 2019, METHODS ECOL EVOL, V10, P626, DOI 10.1111/2041-210X.13147. Milovanovic MB, 2018, EUR J WOOD WOOD PROD, V76, P687, DOI 10.1007/s00107-017-1223-6. Mohiuddin G., 2015, THESIS U CENTRAL FLO. Moitinho-Silva L, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00752. Mosleh MAA, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-S17-S25. Munoz-Mas R, 2015, ECOL MODEL, V309, P72, DOI 10.1016/j.ecolmodel.2015.04.025. Najah A., 2009, EUR J SCI RES, V28, P422. Nay J, 2018, INT J REMOTE SENS, V39, P1800, DOI 10.1080/01431161.2017.1410296. Nayha A, 2015, FORESIGHT, V17, P378, DOI 10.1108/FS-08-2013-0034. Norouzzadeh MS, 2018, P NATL ACAD SCI USA, V115, pE5716, DOI 10.1073/pnas.1719367115. Novotny V, 2006, SCIENCE, V313, P1115, DOI 10.1126/science.1129237. Nunes JACC, 2020, NAT MACH INTELL, V2, P292, DOI 10.1038/s42256-020-0192-3. Olaya-Marin EJ, 2013, KNOWL MANAG AQUAT EC, DOI 10.1051/kmae/2013052. Olden JD, 2001, T AM FISH SOC, V130, P878, DOI 10.1577/1548-8659(2001)130<0878:FHRILG>2.0.CO;2. Pachauri RK, 2014, 2014 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS). Padovese B.T., 2019, J ENV INFORM LETT, V2, P19. Pal S., 2021, EARTH, V2, P174, DOI {[}10.3390/earth2010011, DOI 10.3390/EARTH2010011]. Palaniswami M, 2017, ITU J, V1, P1. Palialexis A, 2011, HYDROBIOLOGIA, V670, P241, DOI 10.1007/s10750-011-0673-9. Pan SF, 2020, HYDROL EARTH SYST SC, V24, P1485, DOI 10.5194/hess-24-1485-2020. Panda S, 2018, WATER-SUI, V10, DOI 10.3390/w10111687. 김강석, 2009, Environmental Engineering Research, V14, P102. Park YS, 2006, ECOL INFORM, V1, P247, DOI 10.1016/j.ecoinf.2006.03.005. Park YS, 2003, ECOL MODEL, V160, P265, DOI 10.1016/S0304-3800(02)00258-2. Penczak T, 2012, ECOL MODEL, V227, P64, DOI 10.1016/j.ecolmodel.2011.12.006. Peng C., 1999, AM ASS ARTIFICIAL IN. Pereira GC, 2011, EXPERT SYST APPL, V38, P9626, DOI 10.1016/j.eswa.2011.01.140. Pisupati B., 2011, RACISM COLONIALISM I. Pittman SJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020583. Rajaee T, 2020, CHEMOMETR INTELL LAB, V200, DOI 10.1016/j.chemolab.2020.103978. Rammer W, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01327. Rana P, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/aafa8f. Ravindranath NH, 1997, CLIMATIC CHANGE, V35, P297, DOI 10.1023/A:1005303405404. Recknagel F, 1997, HYDROBIOLOGIA, V349, P47, DOI 10.1023/A:1003041427672. Russo T, 2019, FRONT MAR SCI, V6, DOI 10.3389/fmars.2019.00670. Sakizadeh M, 2016, MODEL EARTH SYST ENV, V2, DOI 10.1007/s40808-015-0063-9. Salman A, 2020, ICES J MAR SCI, V77, P1295, DOI 10.1093/icesjms/fsz025. Satir O, 2016, GEOMAT NAT HAZ RISK, V7, P1645, DOI 10.1080/19475705.2015.1084541. Schletterer M, 2010, ECOL INDIC, V10, P1083, DOI 10.1016/j.ecolind.2010.03.004. Schmitt CB, 2009, BIOL CONSERV, V142, P2122, DOI 10.1016/j.biocon.2009.04.012. Sengar N, 2017, INT J FOOD PROP, V20, P2192, DOI 10.1080/10942912.2017.1368553. Sengorur B, 2015, WATER QUAL EXPOS HEA, V7, P469, DOI 10.1007/s12403-015-0163-9. Sharma J. V., 2017, J ENVIRON SCI ENG, V5, P2. Sharma V., 2013, OVERVIEW INDIAN FORE, DOI DOI 10.1155/2013/298735. Shi CM, 2020, INTEGR ZOOL, V15, P461, DOI 10.1111/1749-4877.12453. Shi Z., 2020, ARXIV. Siddiqui SA, 2018, ICES J MAR SCI, V75, P374, DOI 10.1093/icesjms/fsx109. da Rocha SJSS, 2018, SCI TOTAL ENVIRON, V645, P655, DOI 10.1016/j.scitotenv.2018.07.123. Silvestro D, 2022, NAT SUSTAIN, V5, P415, DOI 10.1038/s41893-022-00851-6. Singh KP, 2013, ECOTOX ENVIRON SAFE, V95, P221, DOI 10.1016/j.ecoenv.2013.05.017. Sinha B., 2010, ENHANCING LIVELIHOOD. Song HJ, 2015, OCEANS-IEEE. Stravs L., 2009, PRACTICAL HYDROINFOR, P347. Strobl RO, 2006, WATER INT, V31, P198, DOI 10.1080/02508060.2006.9709670. Sun Y, 2017, COMPUT INTEL NEUROSC, V2017, DOI 10.1155/2017/7361042. Tang M, 2014, FISH RES, V149, P24, DOI 10.1016/j.fishres.2013.09.005. Tiyasha, 2020, J HYDROL, V585, DOI 10.1016/j.jhydrol.2020.124670. Trombetti M, 2008, REMOTE SENS ENVIRON, V112, P203, DOI 10.1016/j.rse.2007.04.013. Tsai WP, 2017, SCI TOTAL ENVIRON, V579, P474, DOI 10.1016/j.scitotenv.2016.11.071. Tuia D, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-27980-y. Villon S, 2018, ECOL INFORM, V48, P238, DOI 10.1016/j.ecoinf.2018.09.007. Volf G, 2011, ECOL MODEL, V222, P2502, DOI 10.1016/j.ecolmodel.2011.02.013. Waldchen J, 2018, PLOS COMPUT BIOL, V14, DOI 10.1371/journal.pcbi.1005993. Wang PZ, 2019, SCI TOTAL ENVIRON, V693, DOI 10.1016/j.scitotenv.2019.07.246. Watanabe S., 2018, BIORXIV, DOI {[}10.1101/351643, DOI 10.1101/351643]. Watts MJ, 2011, ECOL MODEL, V222, P2606, DOI 10.1016/j.ecolmodel.2011.04.024. Were K, 2015, ECOL INDIC, V52, P394, DOI 10.1016/j.ecolind.2014.12.028. Wiesner-Hanks T, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01550. Willi M, 2019, METHODS ECOL EVOL, V10, P80, DOI 10.1111/2041-210X.13099. Wood CM, 2019, ECOLOGY, V100, DOI 10.1002/ecy.2764. Xia CL, 2018, J TOXICOL-US, V2018, DOI 10.1155/2018/2591924. Xu L., 2019, HDB DEEP LEARNING AP, P129, DOI {[}10.1007/978-3-030-11479-4\_7, DOI 10.1007/978-3-030-11479-47]. Yaseen ZM, 2016, WATER RESOUR MANAG, V30, P4125, DOI 10.1007/s11269-016-1408-5. Yoo JW, 2013, MAR ENVIRON RES, V83, P1, DOI 10.1016/j.marenvres.2012.10.001. Zarkami R, 2012, ECOL MODEL, V230, P44, DOI 10.1016/j.ecolmodel.2012.01.011. Zhang FF, 2021, SOIL SCI SOC AM J, V85, P989, DOI 10.1002/saj2.20193. Zhang GL, 2019, INT J DISAST RISK SC, V10, P386, DOI 10.1007/s13753-019-00233-1. Zhu XN, 2010, COMPUT ELECTRON AGR, V71, pS3, DOI 10.1016/j.compag.2009.10.004.}, Number-of-Cited-References = {191}, Times-Cited = {1}, Usage-Count-Last-180-days = {26}, Usage-Count-Since-2013 = {31}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {2L2CG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000816827300001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000867038500001, Author = {Li, Zhichao and Dong, Jinwei}, Title = {Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review}, Journal = {REMOTE SENSING}, Year = {2022}, Volume = {14}, Number = {19}, Month = {OCT}, Abstract = {With advancements in big geospatial data and artificial intelligence, multi-source data and diverse data-driven methods have become common in dengue risk prediction. Understanding the current state of data and models in dengue risk prediction enables the implementation of efficient and accurate prediction in the future. Focusing on predictors, data sources, spatial and temporal scales, data-driven methods, and model evaluation, we performed a literature review based on 53 journal and conference papers published from 2018 to the present and concluded the following. (1) The predominant predictors include local climate conditions, historical dengue cases, vegetation indices, human mobility, population, internet search indices, social media indices, landscape, time index, and extreme weather events. (2) They are mainly derived from the official meteorological agency satellite-based datasets, public websites, department of health services and national electronic diseases surveillance systems, official statistics, and public transport datasets. (3) Country-level, province/state-level, city-level, district-level, and neighborhood-level are used as spatial scales, and the city-level scale received the most attention. The temporal scales include yearly, monthly, weekly, and daily, and both monthly and weekly are the most popular options. (4) Most studies define dengue risk forecasting as a regression task, and a few studies define it as a classification task. Data-driven methods can be categorized into single models, ensemble learning, and hybrid learning, with single models being further subdivided into time series, machine learning, and deep learning models. (5) Model evaluation concentrates primarily on the quantification of the difference/correlation between time-series observations and predicted values, the ability of models to determine whether a dengue outbreak occurs or not, and model uncertainty. Finally, we highlighted the importance of big geospatial data, data cloud computing, and other deep learning models in future dengue risk forecasting.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Li, ZC (Corresponding Author), Chinese Acad Sci, Inst Geog Sci \& Nat Resources Res, Key Lab Land Surface Pattern \& Simulat, Beijing 100101, Peoples R China. Li, Zhichao; Dong, Jinwei, Chinese Acad Sci, Inst Geog Sci \& Nat Resources Res, Key Lab Land Surface Pattern \& Simulat, Beijing 100101, Peoples R China.}, DOI = {10.3390/rs14195052}, Article-Number = {5052}, EISSN = {2072-4292}, Keywords = {dengue; risk forecasting; big geospatial data; data-driven models; review}, Keywords-Plus = {GOOGLE EARTH ENGINE; MODEL; DISEASES; BURDEN}, Research-Areas = {Environmental Sciences \& Ecology; Geology; Remote Sensing; Imaging Science \& Photographic Technology}, Web-of-Science-Categories = {Environmental Sciences; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science \& Photographic Technology}, Author-Email = {lizc@igsnrr.ac.cn}, Affiliations = {Chinese Academy of Sciences; Institute of Geographic Sciences \& Natural Resources Research, CAS}, ResearcherID-Numbers = {Dong, Jinwei/C-4949-2009}, ORCID-Numbers = {Dong, Jinwei/0000-0001-5687-803X}, Funding-Acknowledgement = {Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CAS) {[}QYZDBSSW-DQC005]; CAS {[}XDA19040301]; Institute of Geographic Sciences and Natural Resources Research of the CAS {[}E0V00110YZ]}, Funding-Text = {This study was supported by the Key Research Program of Frontier Sciences (QYZDBSSW-DQC005) of the Chinese Academy of Sciences (CAS), the Strategic Priority Research Program (XDA19040301) of the CAS, and the Institute of Geographic Sciences and Natural Resources Research of the CAS (E0V00110YZ).}, Cited-References = {Amani M, 2020, IEEE J-STARS, V13, P5326, DOI 10.1109/JSTARS.2020.3021052. Angelo M, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17062062. Anggraeni W., 2019, 2019 IEEE 7 INT C SE, P1, DOI {[}10.1109/SeGAH.2019.8882433, DOI 10.1109/SEGAH.2019.8882433]. Appice A, 2020, IEEE ACCESS, V8, P52713, DOI 10.1109/ACCESS.2020.2980634. Baiwei L., 2021, P 2021 1 INT C EMERG, P1. Baker QB, 2021, INT CONF INFORM COMM, P157, DOI 10.1109/ICICS52457.2021.9464619. Bal S, 2020, INT J BIOMETEOROL, V64, P1379, DOI 10.1007/s00484-020-01918-9. Baquero OS, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195065. Benedum CM, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008710. Bhatt S, 2013, NATURE, V496, P504, DOI 10.1038/nature12060. Bomfim R, 2020, J R SOC INTERFACE, V17, DOI 10.1098/rsif.2020.0691. Buczak AL, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189988. Carvajal TM, 2018, BMC INFECT DIS, V18, DOI 10.1186/s12879-018-3066-0. Ceccato P, 2018, INFECT DIS POVERTY, V7, DOI 10.1186/s40249-018-0501-9. Chakraborty A., 2020, ARXIV, DOI {[}10.1007/s41745-020-00202-4, DOI 10.1007/S41745-020-00202-4]. Chakraborty T, 2019, PHYSICA A, V527, DOI 10.1016/j.physa.2019.121266. Chen JD, 2022, SCI DATA, V9, DOI 10.1038/s41597-022-01322-5. Chen YR, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1108-5. Cheng YC, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008434. Chovatiya Megha, 2019, 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). Proceedings, P926, DOI 10.1109/ICOEI.2019.8862581. Codeco C., 2018, REV EPIDEMIOL SANTE, V66, pS386, DOI DOI 10.1016/J.RESPE.2018.05.408. Cortes F, 2018, ACTA TROP, V182, P190, DOI 10.1016/j.actatropica.2018.03.006. Neto SRD, 2022, SCI DATA, V9, DOI 10.1038/s41597-022-01312-7. Dong XB, 2020, FRONT COMPUT SCI-CHI, V14, P241, DOI 10.1007/s11704-019-8208-z. Fakhruddin M, 2019, ECOL COMPLEX, V39, DOI 10.1016/j.ecocom.2019.100768. Findlater A, 2019, TRAVEL MED INFECT DI, V31, DOI 10.1016/j.tmaid.2019.07.002. Frake AN, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235697. Francisco ME, 2021, SCI TOTAL ENVIRON, V792, DOI 10.1016/j.scitotenv.2021.148406. Gabriel AFB, 2019, EPIDEMIOL INFECT, V147, DOI 10.1017/S0950268819000311. Ganapathi Raju N. V., 2019, 2019 International Conference on Communication and Electronics Systems (ICCES), P51, DOI 10.1109/ICCES45898.2019.9002147. Guo P, 2019, SCI TOTAL ENVIRON, V647, P752, DOI 10.1016/j.scitotenv.2018.08.044. Hajirahimi Z, 2019, ENG APPL ARTIF INTEL, V86, P83, DOI 10.1016/j.engappai.2019.08.018. Hashizume M, 2012, BMC INFECT DIS, V12, DOI 10.1186/1471-2334-12-98. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Hochreiter S, 1998, INT J UNCERTAIN FUZZ, V6, P107, DOI 10.1142/S0218488598000094. Hoyos W, 2021, ARTIF INTELL MED, V119, DOI 10.1016/j.artmed.2021.102157. Jain R, 2019, BMC INFECT DIS, V19, DOI 10.1186/s12879-019-3874-x. Jayaraj VJ, 2019, ACTA TROP, V197, DOI 10.1016/j.actatropica.2019.105055. Jayasani Chathurika, 2021, 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), P416, DOI 10.1109/ICIAfS52090.2021.9606032. Jia N, 2018, INT C DIGITAL HOME, P213, DOI 10.1109/ICDH.2018.00045. Kerdprasop Nittaya, 2020, 2020 International Conference on Decision Aid Sciences and Application (DASA), P214, DOI 10.1109/DASA51403.2020.9317204. Koh YM, 2018, INT J ENVIRON HEAL R, V28, P535, DOI 10.1080/09603123.2018.1496234. Kummu M, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.4. Kurnianingsih, 2020, P 2020 INT S COMM CE, P1. Li ZC, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14133147. Li ZC, 2022, BIOLOGY-BASEL, V11, DOI 10.3390/biology11020169. Estallo EL, 2016, IEEE J-STARS, V9, P5461, DOI 10.1109/JSTARS.2016.2604577. Liu D, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0226841. Liu K, 2021, INFECT DIS POVERTY, V10, DOI 10.1186/s40249-021-00824-5. Liu K, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008924. Louis VR, 2014, INT J HEALTH GEOGR, V13, DOI 10.1186/1476-072X-13-50. Marti R, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060932. McGough SF, 2021, J R SOC INTERFACE, V18, DOI 10.1098/rsif.2020.1006. Mishra VK, 2019, INT CONF ADV COMPU, P182, DOI 10.1109/IACC48062.2019.8971567. Moher D, 2009, PLOS MED, V6, DOI {[}10.1371/journal.pmed.1000097, 10.1136/bmj.b2700, 10.7326/0003-4819-151-4-200908180-00136, 10.1136/bmj.b4037]. Mussumeci E, 2020, SPAT SPATIO-TEMPORAL, V35, DOI 10.1016/j.sste.2020.100372. Mustaffa Z, 2019, 2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), P731, DOI 10.1109/JEEIT.2019.8717436. Mustaffa Z, 2018, 2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P271, DOI 10.1109/SNPD.2018.8441095. Nguyen V, 2022, PLOS NEGLECT TROP D, V16, DOI 10.1371/journal.pntd.0010509. NOAA Dengue forecasting project, US. Ong J., 2021, PLoS Neglected Tropical Diseases, V15, DOI 10.1371/journal.pntd.0009475. Parselia E, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11161862. Pham DN., 2018, P 2018 4 INT C ADV C, P1, DOI 10.1109/ICACCAF.2018.8776790. Polwiang S, 2020, BMC INFECT DIS, V20, DOI 10.1186/s12879-020-4902-6. Puengpreeda A, 2020, ENG J-THAIL, V24, P71, DOI 10.4186/ej.2020.24.3.71. Ramadona AL, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007298. Rangarajan P, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1007518. Ryan SJ, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007213. Sanchez L, 2006, EMERG INFECT DIS, V12, P800. Saptarini N. G. A. P. H., 2018, 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT). Proceedings, P188, DOI 10.1109/EIConCIT.2018.8878529. Shashvat K, 2019, TROP BIOMED, V36, P822. Shashvat K, 2021, J PUBLIC HEALTH-HEID, V29, P433, DOI 10.1007/s10389-019-01136-7. Shepard DS, 2016, LANCET INFECT DIS, V16, P935, DOI 10.1016/S1473-3099(16)00146-8. Siriyasatien P, 2018, IEEE ACCESS, V6, P53757, DOI 10.1109/ACCESS.2018.2871241. Stolerman LM, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220106. Sylvestre E, 2022, PLOS NEGLECT TROP D, V16, DOI 10.1371/journal.pntd.0010056. Tamiminia H, 2020, ISPRS J PHOTOGRAMM, V164, P152, DOI 10.1016/j.isprsjprs.2020.04.001. Tanawi IN, 2021, PROCEDIA COMPUT SCI, V179, P747, DOI 10.1016/j.procs.2021.01.063. Thiruchelvam Loshini, 2021, 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), P162, DOI 10.1109/ICSIPA52582.2021.9576776. Valencia VN, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182212108. Viana J, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9121225. Withanage GP, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2828-2. Xu JC, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17020453. Yang SH, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005607. Yin JD, 2021, INT J APPL EARTH OBS, V103, DOI 10.1016/j.jag.2021.102514. Yin JD, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13081579. Yuan HY, 2019, INT J BIOMETEOROL, V63, P259, DOI 10.1007/s00484-018-01659-w. Yue YJ, 2018, INT J INFECT DIS, V75, P39, DOI 10.1016/j.ijid.2018.07.023. Zhang YT, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004473. Zhao NZ, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008056. Zhu BH, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0225811. Zhu QM, 2020, IEEE T SUSTAIN ENERG, V11, P509, DOI 10.1109/TSTE.2019.2897136.}, Number-of-Cited-References = {92}, Times-Cited = {2}, Usage-Count-Last-180-days = {20}, Usage-Count-Since-2013 = {20}, Journal-ISO = {Remote Sens.}, Doc-Delivery-Number = {5G5KV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000867038500001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000457127300189, Author = {Abduljabbar, Rusul and Dia, Hussein and Liyanage, Sohani and Bagloee, Saeed Asadi}, Title = {Applications of Artificial Intelligence in Transport: An Overview}, Journal = {SUSTAINABILITY}, Year = {2019}, Volume = {11}, Number = {1}, Month = {JAN 1}, Abstract = {The rapid pace of developments in Artificial Intelligence (AI) is providing unprecedented opportunities to enhance the performance of different industries and businesses, including the transport sector. The innovations introduced by AI include highly advanced computational methods that mimic the way the human brain works. The application of AI in the transport field is aimed at overcoming the challenges of an increasing travel demand, CO2 emissions, safety concerns, and environmental degradation. In light of the availability of a huge amount of quantitative and qualitative data and AI in this digital age, addressing these concerns in a more efficient and effective fashion has become more plausible. Examples of AI methods that are finding their way to the transport field include Artificial Neural Networks (ANN), Genetic algorithms (GA), Simulated Annealing (SA), Artificial Immune system (AIS), Ant Colony Optimiser (ACO) and Bee Colony Optimization (BCO) and Fuzzy Logic Model (FLM) The successful application of AI requires a good understanding of the relationships between AI and data on one hand, and transportation system characteristics and variables on the other hand. Moreover, it is promising for transport authorities to determine the way to use these technologies to create a rapid improvement in relieving congestion, making travel time more reliable to their customers and improve the economics and productivity of their vital assets. This paper provides an overview of the AI techniques applied worldwide to address transportation problems mainly in traffic management, traffic safety, public transportation, and urban mobility. The overview concludes by addressing the challenges and limitations of AI applications in transport.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Abduljabbar, R; Dia, H (Corresponding Author), Swinburne Univ Technol, Dept Civil \& Construct Engn, Hawthorn, Vic 3122, Australia. Abduljabbar, Rusul; Dia, Hussein; Liyanage, Sohani; Bagloee, Saeed Asadi, Swinburne Univ Technol, Dept Civil \& Construct Engn, Hawthorn, Vic 3122, Australia.}, DOI = {10.3390/su11010189}, Article-Number = {189}, EISSN = {2071-1050}, Keywords = {Artificial Intelligence; Genetic algorithms; Simulated Annealing; Artificial Immune system; Ant Colony Optimiser; Bee Colony Optimization; public transport; Auto Urban Mobility; traffic management}, Keywords-Plus = {NETWORK DESIGN PROBLEM; NEURAL-NETWORKS; AUTONOMOUS VEHICLES; PUBLIC-TRANSPORT; BLACK-BOX; BUS; MODEL; OPTIMIZATION; PREDICTION; SYSTEMS}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {rabduljabbar@swin.edu.au hdia@swin.edu.au sliyanage@swin.edu.au sasadibagloee@swin.edu.au}, Affiliations = {Swinburne University of Technology}, ResearcherID-Numbers = {Liyanage, Sohani/Q-6258-2019 abduljabbar, rusul/AAO-1128-2020 }, ORCID-Numbers = {Liyanage, Sohani/0000-0002-1875-5300 abduljabbar, rusul/0000-0002-5943-8176 Asadi Bagloee, Saeed/0000-0001-6078-6314 Dia, Hussein/0000-0001-8778-7296}, Funding-Acknowledgement = {Iraqi Government; Swinburne University of Technology}, Funding-Text = {Rusul Abduljabbar acknowledges her Ph.D. scholarship provided by the Iraqi Government and Swinburne University of Technology. Sohani Liyanage acknowledges her Ph.D. scholarship provided by the Swinburne University of Technology.}, Cited-References = {Abraham Ajith., 2005, HDB MEASURING SYSTEM, P909. Adoni A.H., 2017, P 2017 INT C LOG SUP. Agafonov A, 2018, LECT NOTES COMPUT SC, V11314, P253, DOI 10.1007/978-3-030-03493-1\_27. Akgungor AP, 2009, TRANSPORT-VILNIUS, V24, P135, DOI 10.3846/1648-4142.2009.24.135-142. Anderson J.M., 2016, SAN FRANCISCO PARKIN. {[}Anonymous], ARXIV171204135. {[}Anonymous], 2015, INFR AUSTR OUR INFR. {[}Anonymous], 2010, BIG O NOT. Aretakis N, 2015, J ENG GAS TURB POWER, V137, DOI 10.1115/1.4028566. ATOS, 2012, EXP UN BUS PATT MAN. Bacciu D, 2012, IEEE T NEUR NET LEAR, V23, P1987, DOI 10.1109/TNNLS.2012.2222044. Bagloee SA, 2017, COMPUT-AIDED CIV INF, V32, P319, DOI 10.1111/mice.12224. Bagloee SA, 2016, J MOD TRANSP, V24, P284, DOI 10.1007/s40534-016-0117-3. Barabino B, 2015, TRANSPORT RES A-POL, V75, P84, DOI 10.1016/j.tra.2015.03.012. Bausch J., LOCAL MOTORS IBM PAV. Bell JE, 2004, ADV ENG INFORM, V18, P41, DOI 10.1016/j.aei.2004.07.001. Bin Li, 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops 2011). PerCom-Workshops 2011: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops 2011), P63, DOI 10.1109/PERCOMW.2011.5766967. Black P., BIG O NOTATION DICT. Budalakoti S, 2009, IEEE T SYST MAN CY C, V39, P101, DOI 10.1109/TSMCC.2008.2007248. Caterini D.E., 2018, DEEP NEURAL NETWORKS. Ceylan H, 2004, TRANSPORT RES B-METH, V38, P329, DOI 10.1016/S0191-2615(03)00015-8. Chee M, 2003, TRANSPORT RES REC, P64, DOI 10.3141/1836-09. Chen QJ, 2016, AAAI CONF ARTIF INTE, P338. Chien SIJ, 2002, J TRANSP ENG, V128, P429, DOI 10.1061/(ASCE)0733-947X(2002)128:5(429). Chong Z.J., 2013, AUTONOMY MOBILITY DE, V127. Chowdhury A.W., ADVANTAGES LIMITATIO. Choy MC, 2003, IEEE T SYST MAN CY A, V33, P597, DOI 10.1109/TSMCA.2003.817394. Cohen B, 2014, ORGAN ENVIRON, V27, P279, DOI 10.1177/1086026614546199. Cook S., 2006, MILLENNIUM PRIZE PRO, P86. Dasgupta D, 2003, IEEE C EVOL COMPUTAT, P123, DOI 10.1109/CEC.2003.1299565. Dayhoff JE, 2001, CANCER, V91, P1615, DOI 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L. Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE `04), P137. Department of Infrastructure and Regional Development, 2015, TRAFF CONG COST TREN, P1, DOI DOI 10.1002/EJOC.201200111. Dia H, 1997, TRANSPORT RES C-EMER, V5, P313, DOI 10.1016/S0968-090X(97)00016-8. Dia H, 2001, EUR J OPER RES, V131, P253, DOI 10.1016/S0377-2217(00)00125-9. Dogan E, 2013, NEURAL COMPUT APPL, V22, P869, DOI 10.1007/s00521-011-0778-0. Dong J., 2010, J TRANSP SYST ENG IN, V1, P22. Dorigo M., 2008, P 6 INT C ANTS 2008. Dresner K, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1263. Du M. N. S., 2014, NEURAL NETWORKS STAT. Fagnant DJ, 2015, TRANSPORT RES A-POL, V77, P167, DOI 10.1016/j.tra.2015.04.003. Fagnant DJ, 2014, TRANSPORT RES C-EMER, V40, P1, DOI 10.1016/j.trc.2013.12.001. Fajardo D, 2011, TRANSPORT RES REC, P223, DOI 10.3141/2259-21. Feynman R. P., 2018, FEYNMAN LECT COMPUTA. Firnkorn J, 2011, ECOL ECON, V70, P1519, DOI 10.1016/j.ecolecon.2011.03.014. Fortnow L, 2009, COMMUN ACM, V52, P78, DOI 10.1145/1562164.1562186. Fries R., 2008, TRANSPORTATION INFRA. Geissinger A, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2018.06.012. Getoor B., 2007, INTRO STAT RELATIONA, VL. GILMORE JF, 1995, IVHS J, V2, P231, DOI 10.1080/10248079508903828. Grand View Research, 2017, DEEP LEARN MARK SIZ. Gu YM, 2016, TRANSPORT RES C-EMER, V67, P321, DOI 10.1016/j.trc.2016.02.011. Guarino SL, 2009, INT J APPROX REASON, V50, P437, DOI 10.1016/j.ijar.2008.04.009. Han W., ARCHITECTURE IBUS SE. Harcourt P., ROUTE OPTIMIZATION T. Held K., 2018, P 18 SWISS TRANSP RE. Hounsell NB, 2012, TRANSPORT RES C-EMER, V22, P76, DOI 10.1016/j.trc.2011.12.005. Huang WH, 2014, IEEE T INTELL TRANSP, V15, P2191, DOI 10.1109/TITS.2014.2311123. Hubner H.P., AUTOMATED DRIVING AR. Huiling E, 2017, FIELD ACTIONS SCI RE, V17, P26. Inside BigData, 2018, INSIDE BIGDATA. Jeong R, 2004, ITSC 2004: 7TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, P988, DOI 10.1109/ITSC.2004.1399041. Jian Zhang, 2017, 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), P296, DOI 10.1109/ICBDA.2017.8078828. Jiang H, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/9236156. Jianming Hu, 2001, IVEC2001. Proceedings of the IEEE International Vehicle Electronics Conference 2001. IVEC 2001 (Cat. No.01EX522), P215, DOI 10.1109/IVEC.2001.961756. Jung J, 2017, IET INTELL TRANSP SY, V11, P334, DOI 10.1049/iet-its.2016.0276. Kahraman C, 2008, SPRINGER SER OPTIM A, V16, P1, DOI 10.1007/978-0-387-76813-7. Kanungo DP, 2006, ENG GEOL, V85, P347, DOI 10.1016/j.enggeo.2006.03.004. Karoonsoontawong A, 2006, TRANSPORT RES REC, P104. Khiari J, 2016, LECT NOTES ARTIF INT, V9651, P552, DOI 10.1007/978-3-319-31753-3\_44. Kim P., 2017, CONVOLUTIONAL NEURAL. KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671. Klugl F, 2010, TRANSPORT RES C-EMER, V18, P69, DOI 10.1016/j.trc.2009.08.002. Kornhauser A., 2013, OPERATIONS RES FINAN, VVolume 23. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Krol A, 2016, TRANSP RES PROC, V14, P4532, DOI 10.1016/j.trpro.2016.05.376. Kulak O, 2005, J MATER PROCESS TECH, V169, P337, DOI 10.1016/j.jmatprotec.2005.03.030. Kumar R., 2015, ACM T PARALLEL COMPU, V2, P14. Larose D.T., 2014, DISCOVERING KNOWLEDG, V2nd. Laurell C, 2017, TECHNOL FORECAST SOC, V125, P58, DOI 10.1016/j.techfore.2017.05.038. Ledoux C, 1997, TRANSPORT RES C-EMER, V5, P287, DOI 10.1016/S0968-090X(97)00015-6. Levene C., 2018, ADV ANAL CAN BENEFIT. Li T, 2018, INFORMATION, V9, DOI 10.3390/info9010018. Li X, 2011, ANN ASSOC AM GEOGR, V101, P1032, DOI 10.1080/00045608.2011.577366. Liao SY, 2018, ASIA S PACIF DES AUT, P428. Linking Melbourne Authority, LINK MELB AUTH ANN R. Liu T, 2015, TRANSPORT POLICY, V39, P63, DOI 10.1016/j.tranpol.2015.02.004. Liu X-Y, 2018, ACADEMICS INTELLIGEN. Loboda I., 2016, NEURAL NETWORKS GAS. Lucic D., 2002, P 14 IEEE INT C TOOL. Lucic P., 2003, International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), V12, P375, DOI 10.1142/S0218213003001289. Lucic P, 2003, STUD FUZZ SOFT COMP, V126, P67. Lui D.B., 2001, P TRISTAN 4 TRIENN S. Lv YS, 2015, IEEE T INTELL TRANSP, V16, P865, DOI 10.1109/TITS.2014.2345663. Ma JH, 2017, J ADV TRANSPORT, DOI 10.1155/2017/3865701. Mahamuni A., 2018, DEF TRANSP J, V74, P14. Manyika J., 2013, DISRUPTIVE TECHNOLOG, VMay, P163. McCann MT, 2017, IEEE SIGNAL PROC MAG, V34, P85, DOI 10.1109/MSP.2017.2739299. McKinsey Global Institute, 2018, NOT AI FRONT INS 100, P36. Mendes-Moreira J, 2015, INFORM SCIENCES, V293, P299, DOI 10.1016/j.ins.2014.09.005. Minsky M., 1969, PERCEPTRON EXPANDED. More R, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), P52, DOI 10.1109/CAST.2016.7914939. Moreira-Matias L, 2015, IEEE T INTELL TRANSP, V16, P1636, DOI 10.1109/TITS.2014.2376772. Mukai N, 2008, LECT NOTES ARTIF INT, V5178, P567, DOI 10.1007/978-3-540-85565-1\_70. Murat YS, 2008, J SCI IND RES INDIA, V67, P19. Nakatsuji T., 1991, TRANSP RES REC, V1324, P137. NaotoMukai Naoto, 2012, INTELLIGENT INTERACT, P589, DOI DOI 10.1007/978-3-642-29934-6\_57. Nuzzolo A, 2016, TRANSPORTMETRICA A, V12, P674, DOI 10.1080/23249935.2016.1166158. Olden JD, 2002, ECOL MODEL, V154, P135, DOI 10.1016/S0304-3800(02)00064-9. Optibus \& Metropoline, SCHED OPT ACH MUCH M. Oza N, 2009, IEEE T SYST MAN CY C, V39, P670, DOI 10.1109/TSMCC.2009.2020788. Parker D., 1985, TR87 CTR COMP RES EC. Patterson D. W., 1990, INTRO ARTIFICIAL INT. Poczter S. L., 2014, J BUSINESS CASE STUD, V10, P7, DOI DOI 10.19030/JBCS.V10I1.8324. Qureshi M.F., 2013, EUR CTR RES TRAIN DE, P27. Raymond Rudy, 2011, P 19 ACM SIGSPATIAL, P377. Ren HL, 2018, IEEE INT C INTELL TR, P3346, DOI 10.1109/ITSC.2018.8569437. Rodrigue JP, 1997, TRANSPORT RES C-EMER, V5, P259, DOI 10.1016/S0968-090X(97)00014-4. Rosin J., 2018, OPTIBUS USES ARTIFIC. Sadek A., 2007, TRANSP RES CIRC, VE-C113, P72. Samaras P., 2015, PROC 19 PANHELLENIC, P129. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Setiono J.Y., 2000, P 21 INT C INF SYST, P176. Stanley B., 2016, NEW RELATIONSHIP PEO, P21. Stojmenovic M, 2006, MACH VISION APPL, V17, P163, DOI 10.1007/s00138-006-0022-6. Such F. P., 2017, ARXIV PREPRINT ARXIV. Sun MM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176765. Taamneh M, 2017, J TRANSP SAF SECUR, V9, P146, DOI 10.1080/19439962.2016.1152338. Theofilatos A, 2016, TRANSP RES PROC, V14, P3399, DOI 10.1016/j.trpro.2016.05.293. Tilocca P, 2017, TRANSP RES PROC, V25, P1904, DOI 10.1016/j.trpro.2017.05.184. Timmis J, 2000, BIOSYSTEMS, V55, P143, DOI 10.1016/S0303-2647(99)00092-1. Ulusoy G, 1997, COMPUT OPER RES, V24, P335, DOI 10.1016/S0305-0548(96)00061-5. Vasavi S, 2018, ADV INTELL SYST, V625, P13, DOI 10.1007/978-981-10-5508-9\_2. Vlahogianni EI, 2014, TRANSPORT RES C-EMER, V43, P3, DOI 10.1016/j.trc.2014.01.005. Voracek J., 2001, Applied Soft Computing, V1, P119, DOI 10.1016/S1568-4946(01)00012-6. Waltz DL, 1997, AI MAG, V18, P49. Wang C, 2016, APPL SOFT COMPUT, V38, P1099, DOI 10.1016/j.asoc.2015.06.006. Wang R, 2016, TRANSPORT RES C-EMER, V71, P521, DOI 10.1016/j.trc.2016.08.003. Wang R, 2014, 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P804, DOI 10.1109/ITSC.2014.6957788. Wen SY, 2011, ADV MATER RES-SWITZ, V217-218, P1044, DOI 10.4028/www.scientific.net/AMR.217-218.1044. Williams JK, 2014, MACH LEARN, V95, P51, DOI 10.1007/s10994-013-5346-7. Wolpert D.H., 1993, ADV NEURAL INF PROCE, V6, P200. Wu YK, 2018, TRANSPORT RES C-EMER, V90, P166, DOI 10.1016/j.trc.2018.03.001. Wysocki A, 2015, 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), P145, DOI 10.1109/MMAR.2015.7283862. Xu TZ, 2009, EXPERT SYST APPL, V36, P2735, DOI 10.1016/j.eswa.2008.01.071. Xu TZ, 2009, EXPERT SYST APPL, V36, P1322, DOI 10.1016/j.eswa.2007.11.023. Yao HX, 2018, AAAI CONF ARTIF INTE, P2588. Yaseen SG, 2008, INT J COMPUT SCI NET, V8, P351. Yegnanarayana B., 1999, ARTIFICIAL NEURAL NE, P476. Yu E., SINGAPORE AIMS DRIVE. Zhang WW, 2015, SUSTAIN CITIES SOC, V19, P34, DOI 10.1016/j.scs.2015.07.006. Zhang XY, 2018, IEEE T PATTERN ANAL, V40, P849, DOI 10.1109/TPAMI.2017.2695539. Zhou C., 2016, P INT C GREEN COMP I, P1430. Zhou CJ, 2013, INT CONF DAT MIN WOR, P1069, DOI 10.1109/ICDMW.2013.20.}, Number-of-Cited-References = {154}, Times-Cited = {99}, Usage-Count-Last-180-days = {40}, Usage-Count-Since-2013 = {165}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {HJ4ER}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000457127300189}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000811546000001, Author = {Band, Shahab S. and Ardabili, Sina and Sookhak, Mehdi and Chronopoulos, Anthony Theodore and Elnaffar, Said and Moslehpour, Massoud and Csaba, Mako and Torok, Bernat and Pai, Hao-Ting and Mosavi, Amir}, Title = {When Smart Cities Get Smarter via Machine Learning: An In-Depth Literature Review}, Journal = {IEEE ACCESS}, Year = {2022}, Volume = {10}, Pages = {60985-61015}, Abstract = {The manuscript represents a comeprehensive and systematic literature review on the machine learning methods in the emerging applications of the smart cities. Application domains include the essential aspects of the smart cities including the energy, healthcare, transportation, security, and pollution. The research methodology presents a state-of-the-art taxonomy, evaluation and model performance where the ML algorithms are classified into one of the following four categories: decision trees, support vector machines, artificial neural networks, and advanced machine learning methods, i.e., hybrid methods, ensembles, and Deep Learning. The study found that the hybrid models and ensembles have better performance since they exhibit both a high accuracy and low overall cost. On the other hand, the deep learning (DL) techniques had a higher accuracy than the hybrid models and ensembles, but they demanded relatively higher computation power. Moreover, all these advanced ML methods had a slower processing speed than the single methods. Likewise, the support vector machine (SVM) and decision tree (DT) generally outperformed the artificial neural network (ANN) for accuracy and other metrics. However, since the difference was negligible, it can be concluded that using either of them is appropriate.}, Publisher = {IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC}, Address = {445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA}, Type = {Review}, Language = {English}, Affiliation = {Moslehpour, M (Corresponding Author), Asia Univ, Dept Business Adm, Coll Management, Taichung 413, Taiwan. Moslehpour, M (Corresponding Author), Calif State Univ San Bernardino, Dept Management, San Bernardino, CA 92407 USA. Pai, HT (Corresponding Author), Natl Yunlin Univ Sci \& Technol, Int Grad Inst Artificial Intelligence, Touliu 64002, Taiwan. Mosavi, A (Corresponding Author), Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary. Mosavi, A (Corresponding Author), Slovak Univ Technol Bratislava, Inst Informat Engn Automat \& Math, Bratislava 81107, Slovakia. Band, Shahab S., Natl Yunlin Univ Sci \& Technol, Coll Future, Future Technol Res Ctr, Touliu 64002, Taiwan. Ardabili, Sina, J Selye Univ, Dept Informat, Komarom 94505, Slovakia. Sookhak, Mehdi, Texas A\&M Univ, Dept Comp Sci, Corpus Christi, TX 78412 USA. Chronopoulos, Anthony Theodore, Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA. Chronopoulos, Anthony Theodore, Univ Patras, Dept Comp Engn \& Informat, Patras 26500, Greece. Elnaffar, Said, Canadian Univ Dubai, Fac Engn Appl Sci \& Technol, Dubai, U Arab Emirates. Moslehpour, Massoud, Asia Univ, Dept Business Adm, Coll Management, Taichung 413, Taiwan. Moslehpour, Massoud, Calif State Univ San Bernardino, Dept Management, San Bernardino, CA 92407 USA. Csaba, Mako; Torok, Bernat, Univ Publ Serv, Inst Informat Soc, H-1083 Budapest, Hungary. Pai, Hao-Ting, Natl Yunlin Univ Sci \& Technol, Int Grad Inst Artificial Intelligence, Touliu 64002, Taiwan. Mosavi, Amir, Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary. Mosavi, Amir, Slovak Univ Technol Bratislava, Inst Informat Engn Automat \& Math, Bratislava 81107, Slovakia.}, DOI = {10.1109/ACCESS.2022.3181718}, ISSN = {2169-3536}, Keywords = {Smart cities; Databases; Urban areas; Regression tree analysis; Medical services; Machine learning; Taxonomy; Smart city; big data; machine learning; ensemble; artificial intelligence; deep learning; data science; smart grid}, Keywords-Plus = {NEURAL-NETWORK ANN; SUPPORT VECTOR MACHINE; OF-THE-ART; HEALTH-CARE; CITY; INTERNET; CLASSIFICATION; INTELLIGENCE; PLATFORM; MODELS}, Research-Areas = {Computer Science; Engineering; Telecommunications}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Telecommunications}, Author-Email = {writetodrm@gmail.com htpai@yuntech.edu.tw amir.mosavi@uni-obuda.hu}, Affiliations = {National Yunlin University Science \& Technology; Texas A\&M University System; University of Texas System; University of Texas at San Antonio (UTSA); University of Patras; Canadian University Dubai; Asia University Taiwan; California State University System; California State University San Bernardino; University of Public Service; National Yunlin University Science \& Technology; Obuda University; Slovak University of Technology Bratislava}, ResearcherID-Numbers = {Sookhak, Mehdi/D-4684-2016 S. Band, Shahab/ABB-2469-2020 Mosavi, Amir/I-7440-2018 Moslehpour, Massoud/N-5923-2018 }, ORCID-Numbers = {Sookhak, Mehdi/0000-0001-5822-3432 S. Band, Shahab/0000-0001-6109-1311 Mosavi, Amir/0000-0003-4842-0613 Moslehpour, Massoud/0000-0001-8808-2407 Pai, Hao-Ting/0000-0002-6993-1343}, Funding-Acknowledgement = {European Union's Horizon 2020 Research and Innovation Programme under the Programme SASPRO 2 COFUND Marie Sklodowska-Curie {[}945478]}, Funding-Text = {This work was supported by the European Union's Horizon 2020 Research and Innovation Programme under the Programme SASPRO 2 COFUND Marie Sklodowska-Curie under Grant 945478.}, Cited-References = {Aborokbah MM, 2018, SUSTAIN CITIES SOC, V41, P919, DOI 10.1016/j.scs.2017.09.004. Aceto G, 2019, IEEE T NETW SERV MAN, V16, P445, DOI 10.1109/TNSM.2019.2899085. Aceto G, 2018, J NETW COMPUT APPL, V103, P131, DOI 10.1016/j.jnca.2017.11.007. Agatonovic-Kustrin S, 2000, J PHARMACEUT BIOMED, V22, P717, DOI 10.1016/S0731-7085(99)00272-1. Al Omar A, 2021, IEEE ACCESS, V9, P90738, DOI 10.1109/ACCESS.2021.3089601. Al-Rahamneh A, 2021, IEEE ACCESS, V9, P41628, DOI 10.1109/ACCESS.2021.3065412. Alagumalai A, 2021, NANO ENERGY, V83, DOI 10.1016/j.nanoen.2021.105844. Alajali Walaa, 2017, INT C SEC PRIV AN CO, P641, DOI {[}10.1007/978-3-319-72395-2\_58, DOI 10.1007/978-3-319-72395-2\_58]. Almalki FA, 2021, MOBILE NETW APPL, DOI 10.1007/s11036-021-01790-w. Almalki FA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13115908. Aloqaily M, 2019, AD HOC NETW, V90, DOI 10.1016/j.adhoc.2019.02.001. Alrashdi I, 2019, 2019 IEEE 9TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), P305, DOI 10.1109/CCWC.2019.8666450. Alsamhi SH, 2021, AD HOC NETW, V117, DOI 10.1016/j.adhoc.2021.102505. Alsamhi SH, 2019, TELECOMMUN SYST, V72, P609, DOI 10.1007/s11235-019-00597-1. Alsamhi SH, 2021, COMPUT INTEL NEUROSC, V2021, DOI 10.1155/2021/6805151. Alsamhi SH, 2022, IEEE T GREEN COMMUN, V6, P295, DOI {[}10.1109/TGCN.2021.3132561, 10.1109/TMC.2021.3074442]. AlZoman RM, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21144677. Amid S, 2017, ENVIRON PROG SUSTAIN, V36, P577, DOI 10.1002/ep.12448. {[}Anonymous], EXPT INDUCTION. Anthopoulos LG, 2017, PUB ADMIN INF TECH, V22, P47, DOI 10.1007/978-3-319-57015-0\_3. Ardabili SF, 2018, ENERGIES, V11, DOI 10.3390/en11112889. Awan FM, 2021, IEEE SENS J, V21, P20722, DOI 10.1109/JSEN.2021.3100324. Aymen F, 2019, ENERGIES, V12, DOI 10.3390/en12050929. Bakhshil T, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON ENERGY CONSERVATION AND EFFICIENCY (ICECE), P66, DOI 10.1109/ECE.2018.8554985. Balta M, 2020, FUTURE GENER COMP SY, V104, P142, DOI 10.1016/j.future.2019.10.020. Banach M., 2019, CONCURRENCY COMPUT P, V32. Bardhan R, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102315. Batty M, 2018, ARTIFICIAL INTELLIGE. Behrang MA, 2010, SOL ENERGY, V84, P1468, DOI 10.1016/j.solener.2010.05.009. Belhajem I, 2018, MOBILE NETW APPL, V23, P854, DOI 10.1007/s11036-017-0879-9. Belhajem I, 2017, LECT NOTES ELECTR EN, V397, P559, DOI 10.1007/978-981-10-1627-1\_44. Benedict S, 2017, 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P437, DOI 10.1109/ICACCI.2017.8125879. Bennati S, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18113707. Bhattacharya S, 2022, INTERNET TECHNOL LET, V5, DOI 10.1002/itl2.187. Bilen T, 2018, IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), P1314, DOI 10.1109/HPCC/SmartCity/DSS.2018.00219. Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401. Carli R, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9051025. Carli R, 2015, IEEE INT C EMERG. Carrera B, 2021, SUSTAIN CITIES SOC, V72, DOI 10.1016/j.scs.2021.103025. Chackravarthy S, 2018, 2018 4TH IEEE INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC 2018), P399, DOI 10.1109/CIC.2018.00060. Chapelle O, 1999, IEEE T NEURAL NETWOR, V10, P1055, DOI 10.1109/72.788646. Chin J, 2017, PROC IEEE INT SYMP, P2050, DOI 10.1109/ISIE.2017.8001570. Chui KT, 2018, ENERGIES, V11, DOI 10.3390/en11112869. Chung C.-C., 2018, PROC CAADRIA, P515. CRAMER GM, 1978, FOOD COSMET TOXICOL, V16, P255, DOI 10.1016/S0015-6264(76)80522-6. Cuenca-Jara J, 2020, APPL SOFT COMPUT, V86, DOI 10.1016/j.asoc.2019.105916. Cvar N, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20143897. Dainotti A, 2009, J COMPUT SECUR, V17, P945, DOI 10.3233/JCS-2009-0350. de Souza JT, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11041077. Desdemoustier J, 2019, TECHNOL FORECAST SOC, V142, P129, DOI 10.1016/j.techfore.2018.10.029. Deshpande Adit, 2016, BEGINNERS GUIDE UNDE. Din IU, 2019, FUTURE GENER COMP SY, V100, P826, DOI 10.1016/j.future.2019.04.017. Dineva A, 2019, ENERGIES, V12, DOI 10.3390/en12061049. Dou J, 2020, LANDSLIDES, V17, P641, DOI 10.1007/s10346-019-01286-5. Du W., 2002, IEEE INT C DAT MIN W, V14, P1. Edelenbos J, 2018, PUB ADMIN INF TECH, V24, P35, DOI 10.1007/978-3-319-58577-2\_3. El-Wakeel AS, 2017, IEEE GLOB CONF SIG, P828. Elmolla ES, 2010, J HAZARD MATER, V179, P127, DOI 10.1016/j.jhazmat.2010.02.068. Elsamadouny A., 2019, IEEE VTS VEH TECHNOL, P1. Farias RS, 2019, EMPIR SOFTW ENG, V24, P3255, DOI 10.1007/s10664-019-09723-8. Freund Y, 1999, MACHINE LEARNING, PROCEEDINGS, P124. Friedl MA, 1997, REMOTE SENS ENVIRON, V61, P399, DOI 10.1016/S0034-4257(97)00049-7. Ftaimi S., 2020, ADV SCI TECHNOL ENG, V5, P1422. Garcia-Font V, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18103198. Gensler A, 2016, IEEE SYS MAN CYBERN, P2858, DOI 10.1109/SMC.2016.7844673. Ghahramani M, 2021, IEEE INTERNET THINGS, V9, P11883, DOI 10.1109/JIOT.2021.3132126. Giffinger R, 2010, ACE-ARCHIT CITY ENVI, V4, P7. Gladwin Christina H., 1989, ETHNOGRAPHIC DECISIO. Gomede E, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18010267. Hansen C, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2095, DOI 10.1145/3132847.3133101. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Jiang JM, 2017, HARDWAREX, V1, P22, DOI 10.1016/j.ohx.2017.01.001. Keung KL, 2018, IN C IND ENG ENG MAN, P521, DOI 10.1109/IEEM.2018.8607303. Kolomvatsos K, 2017, INFORMATICS-BASEL, V4, DOI 10.3390/informatics4030016. Kumar A, 2020, COMPUT COMMUN, V152, P272, DOI 10.1016/j.comcom.2020.01.041. Kwon O, 2020, J INTELL MANUF, V31, P375, DOI 10.1007/s10845-018-1451-6. Law KH, 2019, IT PROF, V21, P46, DOI 10.1109/MITP.2019.2935405. Le LT, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9132630. Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791. Liou CY, 2014, NEUROCOMPUTING, V139, P84, DOI 10.1016/j.neucom.2013.09.055. Lourenco V., 2018, P 2018 INT JOINT C N, P1. Manogaran G, 2022, IEEE T COMPUT SOC SY, V9, P174, DOI 10.1109/TCSS.2021.3051330. Manzanilla-Salazar O, 2019, I C DES RELIABL COMM, P51, DOI 10.1109/DRCN.2019.8713687. Martinez-Espana R, 2018, J UNIVERS COMPUT SCI, V24, P261. MCCULLOCH WS, 1990, B MATH BIOL, V52, P99, DOI 10.1016/S0092-8240(05)80006-0. Meenal R., 2019, Advances in Big Data and Cloud Computing. Proceedings of ICBDCC18. Advances in Intelligent Systems and Computing (AISC 750), P27, DOI 10.1007/978-981-13-1882-5\_3. Mei HB, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17122874. Mohammadi M, 2018, IEEE COMMUN MAG, V56, P94, DOI 10.1109/MCOM.2018.1700298. Mohammadpourfard M, 2021, SUSTAIN CITIES SOC, V75, DOI 10.1016/j.scs.2021.103116. Mora-Sanchez OB, 2021, IEEE T ENG MANAGE, V68, P899, DOI 10.1109/TEM.2020.3002250. MORGAN JN, 1963, J AM STAT ASSOC, V58, P415, DOI 10.2307/2283276. Mosavi A, 2019, ENERGIES, V12, DOI 10.3390/en12071301. Mujeeb S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11040987. Ngabo D, 2021, MATH BIOSCI ENG, V18, P8444, DOI 10.3934/mbe.2021418. Nosratabadi S, 2020, LECT NOTE NETW SYST, V101, P228, DOI 10.1007/978-3-030-36841-8\_22. Obinikpo AA, 2017, J SENS ACTUAT NETW, V6, DOI 10.3390/jsan6040026. Orlowski Cezary, 2018, Transactions on Computational Collective Intelligence XXXI. Lecture Notes in Computer Science (LNCS 11290), P136, DOI 10.1007/978-3-662-58464-4\_12. Perera C, 2014, T EMERG TELECOMMUN T, V25, P81, DOI 10.1002/ett.2704. Petrillo A, 2018, COMPUT COMMUN, V122, P59, DOI 10.1016/j.comcom.2018.03.014. Pribadi A, 2017, 2017 INTERNATIONAL SEMINAR ON INTELLIGENT TECHNOLOGY AND ITS APPLICATIONS (ISITIA), P21. Pujol FA, 2020, SOFT COMPUT, V24, P11007, DOI 10.1007/s00500-019-04310-x. Rashid MM, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17249347. Ratti C., 2021, CITIES, V119, DOI DOI 10.1016/j.cities.2021.103395. Reid AR, 2018, INT J INTERACT DES M, V12, P459, DOI 10.1007/s12008-017-0404-1. Shafiq SM, 2020, SUSTAIN CITIES SOC, V60, DOI 10.1016/j.scs.2020.102177. Shahriar S, 2020, IEEE ACCESS, V8, P168980, DOI 10.1109/ACCESS.2020.3023388. Sharad S., 2016, IEEE INT C ADV NETW, P1, DOI DOI 10.1109/ANTS.2016.7947850. Shen M, 2019, IEEE INTERNET THINGS, V6, P7702, DOI 10.1109/JIOT.2019.2901840. Shetty V., 1997, Communications International, V24, P16. Shon T, 2007, INFORM SCIENCES, V177, P3799, DOI 10.1016/j.ins.2007.03.025. Shrivastava VP, 2019, DEFINITION ITS PRACT, V8. Singh A, 2020, GEOCHEMISTRY-GERMANY, V80, DOI 10.1016/j.chemer.2019.125590. Suykens JAK, 1999, INT J CIRC THEOR APP, V27, P605, DOI 10.1002/(SICI)1097-007X(199911/12)27:6<605::AID-CTA86>3.0.CO;2-Z. Syarif Iwan, 2012, Machine Learning and Data Mining in Pattern Recognition. Proceedings 8th International Conference, MLDM 2012, P593, DOI 10.1007/978-3-642-31537-4\_46. Tang J, 2020, IET INTELL TRANSP SY, V14, P1278, DOI 10.1049/iet-its.2019.0736. Ullah I, 2019, WIRELESS PERS COMMUN, V106, P1743, DOI 10.1007/s11277-018-5383-4. Ullah Z, 2020, COMPUT NETW, V182, DOI 10.1016/j.comnet.2020.107478. Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069. van den Buuse D, 2019, TECHNOL FORECAST SOC, V142, P220, DOI 10.1016/j.techfore.2018.07.029. Vasudavan H., 2019, J COMPUT THEOR NANOS, V16, P3525, DOI {[}10.1166/jctn.2019.8318, DOI 10.1166/JCTN.2019.8318]. Xu TT, 2018, 2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), P49, DOI 10.1109/MSN.2018.00015. Yilmaz I, 2008, ROCK MECH ROCK ENG, V41, P781, DOI 10.1007/s00603-007-0138-7. Yin Q., 2019, ACO RR ANT COLONY OP, V11602, P204.}, Number-of-Cited-References = {123}, Times-Cited = {4}, Usage-Count-Last-180-days = {25}, Usage-Count-Since-2013 = {37}, Journal-ISO = {IEEE Access}, Doc-Delivery-Number = {2D4VE}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000811546000001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000816853300001, Author = {Kappel, Coralea and Rushton-Marovac, Moira and Leong, Darryl and Dent, Susan}, Title = {Pursuing Connectivity in Cardio-Oncology Care-The Future of Telemedicine and Artificial Intelligence in Providing Equity and Access to Rural Communities}, Journal = {FRONTIERS IN CARDIOVASCULAR MEDICINE}, Year = {2022}, Volume = {9}, Month = {JUN 13}, Abstract = {The aim of this review is to discuss the current health disparities in rural communities and to explore the potential role of telehealth and artificial intelligence in providing cardio-oncology care to underserviced communities. With advancements in early detection and cancer treatment, survivorship has increased. The interplay between cancer and cardiovascular disease, which are the leading causes of morbidity and mortality in this population, has been increasingly recognized. Worldwide, cardio-oncology clinics (COCs) have emerged to deliver a multidisciplinary approach to the care of patients with cancer to mitigate cardiovascular risks while minimizing interruptions in cancer treatment. Despite the value of COCs, the accessibility gap between urban and rural communities in both oncology and cardio-oncology contributes to health care disparities and may be an underrecognized determinant of health globally. Telehealth and artificial intelligence offer opportunities to provide timely care irrespective of rurality. We therefore explore current developments within this sphere and propose a novel model of care to address the disparity in urban vs. rural cardio-oncology using the experience in Canada, a geographically large country with many rural communities.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Dent, S (Corresponding Author), Duke Univ, Duke Canc Inst, Div Med Oncol, Durham, NC 27708 USA. Kappel, Coralea; Leong, Darryl, McMaster Univ, Dept Med, Hamilton, ON, Canada. Rushton-Marovac, Moira, Univ Ottawa, Ottawa Hosp Canc Ctr, Div Med Oncol, Ottawa, ON, Canada. Leong, Darryl, McMaster Univ, Dept Hlth Res Methods Evidence \& Impact, Hamilton, ON, Canada. Leong, Darryl, McMaster Univ, Populat Hlth Res Inst, Hamilton, ON, Canada. Leong, Darryl, Hamilton Hlth Sci, Hamilton, ON, Canada. Dent, Susan, Duke Univ, Duke Canc Inst, Div Med Oncol, Durham, NC 27708 USA.}, DOI = {10.3389/fcvm.2022.927769}, Article-Number = {927769}, ISSN = {2297-055X}, Keywords = {cardio-oncology; telehealth; artificial intelligence; innovation; care delivery model}, Keywords-Plus = {HEALTH-CARE; HEART-FAILURE; CANCER CARE; TELEHEALTH; PEOPLE; RADIOTHERAPY; EXPERIENCE; MORTALITY; SERVICES; BENEFITS}, Research-Areas = {Cardiovascular System \& Cardiology}, Web-of-Science-Categories = {Cardiac \& Cardiovascular Systems}, Author-Email = {susan.dent@duke.edu}, Affiliations = {McMaster University; University of Ottawa; Ottawa Hospital Research Institute; McMaster University; McMaster University; Population Health Research Institute; McMaster University; Duke University}, Cited-References = {Abbott Press Releases, 2022, ABB CARDIOMEMS TM HF. Abraham WT, 2011, LANCET, V377, P658, DOI 10.1016/S0140-6736(11)60101-3. ABU R, 2022, J AM COLL CARDIOL, V79, P1932, DOI DOI 10.1016/S0735-1097(22)02923-0. Addison D, 2020, J AM HEART ASSOC, V9, DOI 10.1161/JAHA.120.017787. Ahmed S, 2012, CURR ONCOL, V19, pE376, DOI 10.3747/co.19.1177. Allemani C, 2015, LANCET, V385, P977, DOI 10.1016/S0140-6736(14)62038-9. Ambroggi M, 2015, ONCOLOGIST, V20, P1378, DOI 10.1634/theoncologist.2015-0110. {[}Anonymous], 2018, SURF CAN. Arnold RH, 2020, HEART LUNG CIRC, V29, pE88, DOI 10.1016/j.hlc.2020.05.001. BC Cancer, 2022, COMMUNITY ONCOLOGY N. Bjorklund RW, 1999, COMMUNITY MENT HLT J, V35, P347, DOI 10.1023/A:1018714024063. Blake KD, 2017, CANCER EPIDEM BIOMAR, V26, P992, DOI {[}10.1158/1055-9965.EPI-17-0092, 10.1158/1055-9965.epi-17-0092]. Bradford NK, 2016, RURAL REMOTE HEALTH, V16. Brophy PD, 2017, ADV CHRONIC KIDNEY D, V24, P17, DOI 10.1053/j.ackd.2016.12.003. Brown SA, 2021, CARDIO-ONCOLOGY, V7, DOI 10.1186/s40959-020-00088-2. Brown SA, 2020, FRONT CARDIOVASC MED, V7, DOI 10.3389/fcvm.2020.00145. Brundisini F, 2013, Ont Health Technol Assess Ser, V13, P1. Cameron BL, 2014, ADV NURS SCI, V37, pE1, DOI 10.1097/ANS.0000000000000039. Canadian Cancer Society, 2017, CAN CANC SOC ADV COM. Cardinale D, 2015, CIRCULATION, V131, P1981, DOI 10.1161/CIRCULATIONAHA.114.013777. Demissei BG, 2020, J AM HEART ASSOC, V9, DOI 10.1161/JAHA.119.014708. Febbraro M, 2020, CURR ONCOL, V27, pE271, DOI 10.3747/co.27.5717. Frieden TR, 2010, AM J PUBLIC HEALTH, V100, P590, DOI 10.2105/AJPH.2009.185652. Gawalko M, 2021, EUROPACE, V23, P1003, DOI 10.1093/europace/euab050. Hassoon A, 2018, JMIR RES PROTOC, V7, DOI 10.2196/resprot.9096. Hegney D, 2005, EUR J CANCER CARE, V14, P75, DOI 10.1111/j.1365-2354.2005.00525.x. Heron N, 2019, BRIT J GEN PRACT, V69, pE706, DOI 10.3399/bjgp19X705509. Hinrichs L, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00740. Hull MC, 2003, JAMA-J AM MED ASSOC, V290, P2831, DOI 10.1001/jama.290.21.2831. International Cardio-Oncology Society, 2022, INT DIR CARD ONC PRO. Jemal A, 2011, CA-CANCER J CLIN, V61, P69, DOI {[}10.3322/caac.20107, 10.3322/caac.21660, 10.3322/caac.20115, 10.3322/caac.21590]. Jewett PI, 2022, J CANCER SURVIV, V16, P44, DOI 10.1007/s11764-021-01133-4. Jin P, 2020, J CANCER RES CLIN, V146, P2339, DOI 10.1007/s00432-020-03304-9. Kappel C, 2019, CURR ONCOL, V26, pE322, DOI 10.3747/co.26.4509. Kitamura C, 2010, CURR ONCOL, V17, P105. Kuziemsky Craig, 2019, Yearb Med Inform, V28, P35, DOI 10.1055/s-0039-1677897. Lancellotti P, 2019, EUR HEART J, V40, P1756, DOI 10.1093/eurheartj/ehy453. Lavergne MR, 2011, PALLIATIVE MED, V25, P101, DOI 10.1177/0269216310384900. Leong DP, 2022, HEART FAIL CLIN, V18, P489, DOI 10.1016/j.hfc.2022.02.002. Lou N., 2022, MED NEWS. Lyon AR, 2020, EUR J HEART FAIL, V22, P1945, DOI 10.1002/ejhf.1920. Madan Nidhi, 2022, Am Heart J Plus, V15, DOI 10.1016/j.ahjo.2022.100126. Maddison Andre R, 2012, Healthc Policy, V8, P71. Mantena S, 2021, LANCET DIGIT HEALTH, V3, pE280, DOI 10.1016/S2589-7500(21)00054-6. Merckaert I, 2007, PSYCHO-ONCOL, V16, pS25, DOI 10.1002/pon. Moffatt JJ, 2010, AUST HEALTH REV, V34, P276, DOI 10.1071/AH09794. Morrison KS, 2020, SEMIN ONCOL NURS, V36, DOI 10.1016/j.soncn.2020.151092. Moslehi J, 2013, NEW ENGL J MED, V368, P1055, DOI 10.1056/NEJMe1215300. Nickelson DW, 1998, PROF PSYCHOL-RES PR, V29, P527, DOI 10.1037/0735-7028.29.6.527. Oeffinger KC, 2006, NEW ENGL J MED, V355, P1572, DOI 10.1056/NEJMsa060185. Orlando JF, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221848. Pan JL, 2021, CURR OPIN SUPPORT PA, V15, P134, DOI 10.1097/SPC.0000000000000544. Parikh A, 2020, JACC-CARDIOONCOL, V2, P356, DOI 10.1016/j.jaccao.2020.04.003. Pong RW, 2005, OTTAWA CAN I HLTH IN. Population Health Research Institute, 2021, VIRT CAR RAM PER CAN. Quaresma M, 2015, LANCET, V385, P1206, DOI 10.1016/S0140-6736(14)61396-9. Quinton JK, 2021, BMC HEALTH SERV RES, V21, DOI 10.1186/s12913-021-06746-0. Raza T, 2009, INT J MED INFORM, V78, P53, DOI 10.1016/j.ijmedinf.2008.07.010. Roth GA, 2018, LANCET, V392, P1736, DOI {[}10.1016/s0140-6736(18)32279-7, 10.1016/s0140-6736(18)32203-7, 10.1016/S0140-6736(18)32279-7]. Sabesan S, 2009, RURAL REMOTE HEALTH, V9. Sadler D, 2020, CARDIO-ONCOLOGY, V6, DOI 10.1186/s40959-020-00085-5. Santaguida PL, 2014, HEART FAIL REV, V19, P453, DOI 10.1007/s10741-014-9442-y. Scheil-Adlung X, 2015, GLOBAL EVIDENCE INEQ. Shimizu H, 2020, CANCER SCI, V111, P1452, DOI 10.1111/cas.14377. Spinner, 2021, AI BASED BLOOD ANAL. Styczkiewicz K, 2019, POL ARCH INTERN MED, V129, P295, DOI 10.20452/pamw.4450. Tzelepis F, 2018, ANN HEMATOL, V97, P1283, DOI 10.1007/s00277-018-3285-x. Vimalananda VG, 2020, J AM MED INFORM ASSN, V27, P471, DOI 10.1093/jamia/ocz185. Vimalananda VG, 2015, J TELEMED TELECARE, V21, P323, DOI 10.1177/1357633X15582108. Wade VA, 2010, BMC HEALTH SERV RES, V10, DOI 10.1186/1472-6963-10-233. Whaley Jim, 2020, Healthc Manage Forum, V33, P53, DOI 10.1177/0840470419886617. Wilson CR, 2020, CAN J RURAL MED, V25, P14, DOI 10.4103/CJRM.CJRM\_84\_19. Zhou YD, 2020, J AM HEART ASSOC, V9, DOI 10.1161/JAHA.120.019628.}, Number-of-Cited-References = {73}, Times-Cited = {1}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Front. Cardiovasc. Med.}, Doc-Delivery-Number = {2L2MG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000816853300001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000603196300001, Author = {Serey, Joel and Quezada, Luis and Alfaro, Miguel and Fuertes, Guillermo and Ternero, Rodrigo and Gatica, Gustavo and Gutierrez, Sebastian and Vargas, Manuel}, Title = {Methodological Proposals for the Development of Services in a Smart City: A Literature Review}, Journal = {SUSTAINABILITY}, Year = {2020}, Volume = {12}, Number = {24}, Month = {DEC}, Abstract = {This literature review analyzes and classifies methodological contributions that answer the different challenges faced by smart cities. This study identifies city services that require the use of artificial intelligence (AI); which they refer to as AI application areas. These areas are classified and evaluated, taking into account the five proposed domains (government, environment, urban settlements, social assistance, and economy). In this review, 168 relevant studies were identified that make methodological contributions to the development of smart cities and 66 AI application areas, along with the main challenges associated with their implementation. The review methodology was content analysis of scientific literature published between 2013 and 2020. The basic terminology of this study corresponds to AI, the internet of things, and smart cities. In total, 196 references were used. Finally, the methodologies that propose optimization frameworks and analytical frameworks, the type of conceptual research, the literature published in 2018, the urban settlement macro-categories, and the group city monitoring-smart electric grid, make the greater contributions.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Fuertes, G (Corresponding Author), Univ Santiago Chile, Ind Engn Dept, Ave Ecuador 3769, Santiago 9170124, Chile. Fuertes, G (Corresponding Author), Univ Bernardo OHiggins, Fac Ingn Ciencia \& Tecnol, Ave Viel 1497,Ruta 5 Sur, Santiago 8370993, Chile. Serey, Joel; Quezada, Luis; Alfaro, Miguel; Fuertes, Guillermo; Ternero, Rodrigo; Vargas, Manuel, Univ Santiago Chile, Ind Engn Dept, Ave Ecuador 3769, Santiago 9170124, Chile. Fuertes, Guillermo, Univ Bernardo OHiggins, Fac Ingn Ciencia \& Tecnol, Ave Viel 1497,Ruta 5 Sur, Santiago 8370993, Chile. Ternero, Rodrigo, Univ Amer, Inst Matemat Fis \& Estadist, Ave Republ 71, Santiago 7500975, Chile. Gatica, Gustavo, Univ Andres Bello, Fac Ingn, Antonio Varas 880, Santiago 7500971, Chile. Gutierrez, Sebastian, Univ Cent Chile, Fac Econ Gobierno \& Comunicac, Lord Cochrane 417, Santiago 8330507, Chile. Gutierrez, Sebastian, Univ Mayor, Fac Ciencias, Manuel Montt 318, Santiago 7500628, Chile.}, DOI = {10.3390/su122410249}, Article-Number = {10249}, EISSN = {2071-1050}, Keywords = {artificial intelligence; internet of things; city services; smart cities}, Keywords-Plus = {DATA ANALYTICS FRAMEWORK; BIG DATA ANALYTICS; ARTIFICIAL-INTELLIGENCE; HEALTH-CARE; E-GOVERNMENT; TRAFFIC MANAGEMENT; MONITORING-SYSTEM; CITIES LESSONS; PUBLIC VALUE; INTERNET}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {joel.serey@usach.cl luis.quezada@usach.cl miguel.alfaro@usach.cl guillermo.fuertes@usach.cl rodrigo.ternero@usach.cl ggatica@unab.cl sebastian.gutierrez@ucentral.cl manuel.vargasg@usach.cl}, Affiliations = {Universidad de Santiago de Chile; Universidad Bernardo O'Higgins; Universidad de Las Americas - Chile; Universidad Andres Bello; Universidad Central de Chile; Universidad Mayor}, ResearcherID-Numbers = {Fuertes, Guillermo/Q-2341-2016 }, ORCID-Numbers = {Fuertes, Guillermo/0000-0003-3044-5919 Alfaro, Miguel/0000-0002-1633-8853 Vargas Guzman, Manuel Eduardo/0000-0003-4161-6621 Gustavo, Gatica/0000-0002-1816-6856}, Funding-Acknowledgement = {DICYT (Scientific and Technological Research Bureau) of the University of Santiago of Chile (USACH); Department of Industrial Engineering; Project FONDEF: ``Multiuser VLC for Underground Mining{''} {[}IT17M10012]}, Funding-Text = {This research was supported by DICYT (Scientific and Technological Research Bureau) of the University of Santiago of Chile (USACH) and the Department of Industrial Engineering. Project FONDEF IT17M10012: ``Multiuser VLC for Underground Mining{''}.}, Cited-References = {Abbate T, 2019, TECHNOL FORECAST SOC, V142, P183, DOI 10.1016/j.techfore.2018.07.031. Aborokbah MM, 2018, SUSTAIN CITIES SOC, V41, P919, DOI 10.1016/j.scs.2017.09.004. Abu Zaid A, 2017, IEEE JORDAN CONF APP. Adapa S, 2018, J CLEAN PROD, V172, P3351, DOI 10.1016/j.jclepro.2017.11.250. Agiwal M, 2019, IETE TECH REV, V36, P190, DOI 10.1080/02564602.2018.1444516. Agrawal A., 2018, PREDICTION MACHINES. Aguaded-Ramirez E, 2017, PROCD SOC BEHV, V237, P326, DOI 10.1016/j.sbspro.2017.02.010. Aheleroff S, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2020.101043. Ahmed SH, 2018, FUTURE GENER COMP SY, V79, P941, DOI 10.1016/j.future.2017.08.054. Al-Turjman F, 2018, FUTURE GENER COMP SY, V82, P327, DOI 10.1016/j.future.2017.09.033. Al-Turjman F, 2017, 2017 IEEE 42ND CONFERENCE ON LOCAL COMPUTER NETWORKS WORKSHOPS (LCN WORKSHOPS 2017), P61, DOI 10.1109/LCN.Workshops.2017.65. Alamaniotis M, 2017, PROC INT C TOOLS ART, P1021, DOI 10.1109/ICTAI.2017.00157. Alamsyah N, 2016, INT CONF ICT SMART S, P111, DOI 10.1109/ICTSS.2016.7792859. AlDairi A, 2017, PROCEDIA COMPUT SCI, V109, P1086, DOI 10.1016/j.procs.2017.05.391. Alfeo AL, 2017, LECT NOTES COMPUT SC, V10354, P292, DOI 10.1007/978-3-319-60240-0\_35. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Alvi AN, 2016, IEEE ACCESS, V4, P312, DOI 10.1109/ACCESS.2016.2515096. Arroub A, 2016, 2016 INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), pP180. Artmann M, 2019, ECOL INDIC, V96, P10, DOI 10.1016/j.ecolind.2017.07.001. Bagozi A, 2019, 2019 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2019), P224, DOI 10.1109/ICWS.2019.00046. Bakker K, 2018, GLOBAL ENVIRON CHANG, V52, P201, DOI 10.1016/j.gloenvcha.2018.07.011. Banguera L, 2017, S AFR J IND ENG, V28, P120, DOI 10.7166/28-4-1701. Baudier P, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.06.043. Beltran-Ramirez R., 2015, P IEEE INT SMART CIT, P75. Ben Rjab A, 2019, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON THEORY AND PRACTICE OF ELECTRONIC GOVERNANCE (ICEGOV2019), P259, DOI 10.1145/3326365.3326400. Bencke L, 2020, FUTURE GENER COMP SY, V109, P218, DOI 10.1016/j.future.2020.03.057. Benmansour NA, 2019, INT J PUBLIC ADM DIG, V6, P1, DOI 10.4018/IJPADA.2019100101. Bhati A, 2017, ENERG POLICY, V104, P230, DOI 10.1016/j.enpol.2017.01.032. Bibri SE, 2018, SUSTAIN CITIES SOC, V38, P758, DOI 10.1016/j.scs.2017.12.032. Bibri SE, 2018, SUSTAIN CITIES SOC, V38, P230, DOI 10.1016/j.scs.2017.12.034. Birtchnell T, 2018, GEOFORUM, V96, P77, DOI 10.1016/j.geoforum.2018.08.005. Brisimi TS, 2016, IEEE ACCESS, V4, P1301, DOI 10.1109/ACCESS.2016.2529562. Brock K, 2019, TECHNOL FORECAST SOC, V142, P194, DOI 10.1016/j.techfore.2018.07.021. Buhalis D, 2018, INT J HOSP MANAG, V71, P41, DOI 10.1016/j.ijhm.2017.11.011. Butryn K, 2019, E3S WEB CONF, V86, DOI 10.1051/e3sconf/20198600010. Calvillo CF, 2016, RENEW SUST ENERG REV, V55, P273, DOI 10.1016/j.rser.2015.10.133. Campbell HA, 2014, J CONTEMP RELIG, V29, P267, DOI 10.1080/13537903.2014.903662. Caragliu A, 2011, J URBAN TECHNOL, V18, P65, DOI 10.1080/10630732.2011.601117. Carli R, 2017, IFAC PAPERSONLINE, V50, P14460, DOI 10.1016/j.ifacol.2017.08.2292. Casares AP, 2018, FUTURES, V103, P5, DOI 10.1016/j.futures.2018.05.002. Chamoso P, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/3086854. Chatterjee S, 2018, GOV INFORM Q, V35, P349, DOI 10.1016/j.giq.2018.05.002. Chen C, 2016, EUR J INORG CHEM, P1340, DOI 10.1002/ejic.201600005. Chen YH, 2018, AUTOMAT CONSTR, V89, P307, DOI 10.1016/j.autcon.2018.02.008. Cui L, 2018, IEEE ACCESS, V6, P46134, DOI 10.1109/ACCESS.2018.2853985. Das D.K., 2020, URBANIZATION REGIONA, P245. Das Mohapatra A, 2018, SUSTAIN CITIES SOC, V43, P624, DOI 10.1016/j.scs.2018.03.029. De Paz JF, 2016, INFORM SCIENCES, V372, P241, DOI 10.1016/j.ins.2016.08.045. Dellermann D, 2019, BUS INFORM SYST ENG+, V61, P637, DOI 10.1007/s12599-019-00595-2. Di Santo KG, 2018, MEASUREMENT, V115, P152, DOI 10.1016/j.measurement.2017.10.010. Dincer I, 2018, INT J HYDROGEN ENERG, V43, P8579, DOI 10.1016/j.ijhydene.2018.03.120. Du J, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000740. Duvier C, 2018, SUSTAIN CITIES SOC, V39, P358, DOI 10.1016/j.scs.2018.02.015. Edgar TF, 2018, COMPUT CHEM ENG, V114, P130, DOI 10.1016/j.compchemeng.2017.10.027. Elshenawy M, 2018, FUTURE GENER COMP SY, V79, P575, DOI 10.1016/j.future.2017.09.047. Engin Z, 2020, J URBAN MANAG, V9, P140, DOI 10.1016/j.jum.2019.12.001. Fuertes G., 2014, INT J SENSORS WIREL, V4, P96, DOI {[}10.2174/221032790402150514160956, DOI 10.2174/221032790402150514160956]. FUERTES G, 2016, J SENSORS, V2016, DOI DOI 10.1155/2016/4046061. Fuertes G, 2020, J ENG-NY, V2020, DOI 10.1155/2020/6253013. Fuertes G, 2016, J SENSORS, V2016, DOI 10.1155/2016/7980476. Garcia VJ, 2018, COMPUT ELECTR ENG, V70, P37, DOI 10.1016/j.compeleceng.2018.05.016. Garlik B, 2018, IEEE INT C INT ROBOT, P300, DOI 10.1109/ICRIS.2018.00083. Gohar M, 2018, SUSTAIN CITIES SOC, V41, P114, DOI 10.1016/j.scs.2018.05.008. Garcia CG, 2017, FUTURE GENER COMP SY, V76, P301, DOI 10.1016/j.future.2016.12.033. Gonzalez-Landero F, 2018, IEEE ACCESS, V6, P14141, DOI 10.1109/ACCESS.2018.2811900. Gupta DK, 2020, RAD HEA MET ENVIR, P149, DOI 10.1007/978-3-030-14961-1\_7. Gutierrez JM, 2015, PROCEDIA COMPUT SCI, V61, P120, DOI 10.1016/j.procs.2015.09.170. Habibzadeh H, 2018, COMPUT NETW, V144, P163, DOI 10.1016/j.comnet.2018.08.001. Hardy A, 2020, J SUSTAIN TOUR, V28, P263, DOI 10.1080/09669582.2019.1670186. Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002. Hawken S, 2017, PROCEDIA ENGINEER, V198, P549, DOI 10.1016/j.proeng.2017.07.110. Heartfield R, 2018, COMPUT SECUR, V78, P398, DOI 10.1016/j.cose.2018.07.011. Hopkins JL, 2019, TECHNOL FORECAST SOC, V142, P258, DOI 10.1016/j.techfore.2018.07.032. Hossain MS, 2018, FUTURE GENER COMP SY, V88, P333, DOI 10.1016/j.future.2018.05.050. Hu XY, 2018, IEEE ACCESS, V6, P39692, DOI 10.1109/ACCESS.2018.2854928. Huang CD, 2017, INFORM MANAGE-AMSTER, V54, P757, DOI 10.1016/j.im.2016.11.010. Hui TKL, 2017, FUTURE GENER COMP SY, V76, P358, DOI 10.1016/j.future.2016.10.026. Ianuale N, 2016, IEEE ACCESS, V4, P41, DOI 10.1109/ACCESS.2015.2500733. Incki K, 2018, PROCEDIA COMPUT SCI, V134, P75, DOI 10.1016/j.procs.2018.07.146. International Organization for Standardization, 2019, 37122 ISO. International Organization for Standardization (ISO), 2016, 371012016 ISO. Iqbal MM, 2018, COMPUT ELECTR ENG, V67, P291, DOI 10.1016/j.compeleceng.2018.03.021. Iqbal R, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.03.024. ISO, 2019, 371232019 ISO. ISO, 2018, 3712020142018 ISO. Jara AJ, 2013, 2013 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY - WORKSHOPS (WI-IAT), VOL 3, P109, DOI 10.1109/WI-IAT.2013.161. Jawhar I, 2018, J INTERNET SERV APPL, V9, DOI 10.1186/s13174-018-0097-0. Jia GY, 2016, IEEE ACCESS, V4, P108, DOI 10.1109/ACCESS.2015.2507576. Jiang X., 2017, SMART CITIES FDN PRI, P725. Jucevicius R, 2014, PROCD SOC BEHV, V156, P146, DOI 10.1016/j.sbspro.2014.11.137. Kelimeler A., 2017, P IEEE INT ART INT D, P1, DOI DOI 10.1109/IDAP.2017.8090284. Keung KL, 2018, IN C IND ENG ENG MAN, P521, DOI 10.1109/IEEM.2018.8607303. Kotevska O, 2017, IEEE ACCESS, V5, P20524, DOI 10.1109/ACCESS.2017.2757841. Kousiouris G, 2018, FUTURE GENER COMP SY, V78, P516, DOI 10.1016/j.future.2017.07.026. Kufner T, 2018, PROC CIRP, V72, P219, DOI 10.1016/j.procir.2018.03.125. Kulkarni P, 2016, IEEE ACCESS, V4, P660, DOI 10.1109/ACCESS.2016.2525041. Kumar H, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.04.024. Kumar S, 2018, J PARALLEL DISTR COM, V118, P344, DOI 10.1016/j.jpdc.2017.03.002. Kummitha RKR, 2018, TECHNOL FORECAST SOC, V137, P330, DOI 10.1016/j.techfore.2018.07.010. Kunst R, 2018, COMPUT NETW, V134, P228, DOI 10.1016/j.comnet.2018.01.042. Lecomte P, 2019, J PROP INVEST FINANC, V37, P118, DOI 10.1108/JPIF-10-2018-0083. Lee JH, 2014, TECHNOL FORECAST SOC, V89, P80, DOI 10.1016/j.techfore.2013.08.033. Lee JH, 2013, TECHNOL FORECAST SOC, V80, P286, DOI 10.1016/j.techfore.2012.09.020. Lee S.H., 2008, KNOWLEDGE BASED URBA, P148, DOI DOI 10.4018/978-1-59904-720-1.CH009. Lin YL, 2018, TELECOMMUN POLICY, V42, P800, DOI 10.1016/j.telpol.2018.07.003. Liu HP, 2021, IEEE T IND INFORM, V17, P830, DOI 10.1109/TII.2020.2969680. Liu JX, 2017, IEEE ACCESS, V5, P9348, DOI 10.1109/ACCESS.2017.2703847. Logesh R, 2018, FUTURE GENER COMP SY, V83, P653, DOI 10.1016/j.future.2017.08.060. Lopez Noguero F., 2002, REV EDUC-MADRID, V4, P167. Lv ZH, 2016, IEEE ACCESS, V4, P407, DOI 10.1109/ACCESS.2016.2517076. Lyons G, 2018, TRANSPORT RES A-POL, V115, P4, DOI 10.1016/j.tra.2016.12.001. Ma JH, 2015, IEEE ACCESS, V3, P2475, DOI 10.1109/ACCESS.2015.2504123. Mahalakshmi J, 2020, LEC NO MULTI IND ENG, P39, DOI 10.1007/978-981-13-7968-0\_4. Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006. Malik H, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENTAL ENGINEERING (EE). Marek L, 2017, CITIES, V63, P41, DOI 10.1016/j.cities.2016.12.013. Markova E, 2017, IEEE ACCESS, V5, P22252, DOI 10.1109/ACCESS.2017.2758840. Mathur S, 2016, 2016 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS). Quero JM, 2018, IEEE ACCESS, V6, P25081, DOI 10.1109/ACCESS.2018.2828652. Meena NK, 2017, ENRGY PROCED, V142, P2202, DOI 10.1016/j.egypro.2017.12.589. Mettler T, 2019, GOV PUBLIC MANAG, P175, DOI 10.1007/978-3-319-92381-9\_10. Muhammad G, 2017, IEEE ACCESS, V5, P10871, DOI 10.1109/ACCESS.2017.2712788. Muhammed T, 2018, IEEE ACCESS, V6, P32258, DOI 10.1109/ACCESS.2018.2846609. Murtadho Fauzi, 2019, 2019 International Seminar on Application for Technology of Information and Communication (iSemantic). Proceedings, P246, DOI 10.1109/ISEMANTIC.2019.8884289. Musolino G, 2019, TRANSPORT POLICY, V80, P157, DOI 10.1016/j.tranpol.2018.04.006. Nagasawa S., 2017, 3 IEEE INT C COMPUTA, P1. Ng ST, 2017, PROCEDIA ENGINEER, V196, P939, DOI 10.1016/j.proeng.2017.08.034. Vo NS, 2018, IEEE ACCESS, V6, P31457, DOI 10.1109/ACCESS.2018.2839669. Niaros V, 2017, TELEMAT INFORM, V34, P1143, DOI 10.1016/j.tele.2017.05.004. Nitoslawski SA, 2019, SUSTAIN CITIES SOC, V51, DOI 10.1016/j.scs.2019.101770. Nowakowski P, 2018, TRANSPORT RES D-TR E, V63, P1, DOI 10.1016/j.trd.2018.04.007. Oktaria D, 2017, INT C INF TECH SYST, P206, DOI 10.1109/ICITSI.2017.8267944. Osman AMS, 2019, FUTURE GENER COMP SY, V91, P620, DOI 10.1016/j.future.2018.06.046. Palaco I, 2019, EVAL PROGRAM PLANN, V72, P205, DOI 10.1016/j.evalprogplan.2018.10.015. Pantano E., 2014, PROCEDIA ENV SCI, V22, P101. Pappel I, 2019, COMM COM INF SC, V947, P223, DOI 10.1007/978-3-030-13283-5\_17. Parasol M, 2018, COMPUT LAW SECUR REV, V34, P67, DOI 10.1016/j.clsr.2017.05.022. Park CM, 2017, IEEE ACCESS, V5, P11054, DOI 10.1109/ACCESS.2017.2715407. Ponte B, 2013, 2013 INTERNATIONAL CONFERENCE ON NEW CONCEPTS IN SMART CITIES: FOSTERING PUBLIC AND PRIVATE ALLIANCES (SMARTMILE). Pouryazdan M, 2016, IEEE ACCESS, V4, P529, DOI 10.1109/ACCESS.2016.2519820. Pramanik MI, 2017, EXPERT SYST APPL, V87, P370, DOI 10.1016/j.eswa.2017.06.027. Prieto A, 2013, NEUROCOMPUTING, V121, P1, DOI 10.1016/j.neucom.2013.01.008. Puiu D, 2016, IEEE ACCESS, V4, P1086, DOI 10.1109/ACCESS.2016.2541999. Qin XB, 2019, J ADVERTISING, V48, P338, DOI 10.1080/00913367.2019.1652122. Qiu J, 2020, IEEE T IND INFORM, V16, P2659, DOI 10.1109/TII.2019.2943906. Raaijen T, 2017, 2017 SMART CITY SYMPOSIUM PRAGUE (SCSP). Raman R, 2016, IEEE ACCESS, V4, P5788, DOI 10.1109/ACCESS.2016.2608844. RAMOS HM, 2020, WATER-SUI, V12, DOI DOI 10.3390/w12010058. Rathore MM, 2018, SUSTAIN CITIES SOC, V40, P600, DOI 10.1016/j.scs.2017.12.022. Rathore MM, 2016, COMPUT NETW, V101, P63, DOI 10.1016/j.comnet.2015.12.023. Ray A, 2019, J INDIAN BUS RES, V12, P215, DOI 10.1108/JIBR-11-2018-0295. Rego A, 2018, FUTURE GENER COMP SY, V88, P243, DOI 10.1016/j.future.2018.05.054. Reka SS, 2018, RENEW SUST ENERG REV, V91, P90, DOI 10.1016/j.rser.2018.03.089. Rice J, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.03.027. Rolim CO, 2016, COMPUT NETW, V111, P55, DOI 10.1016/j.comnet.2016.07.014. Ruan L, 2019, COMPUT ENVIRON URBAN, V77, DOI 10.1016/j.compenvurbsys.2018.07.002. Sajjad M, 2019, INFORM SCIENCES, V479, P416, DOI 10.1016/j.ins.2018.07.027. Sajjad M, 2017, IEEE ACCESS, V5, P3475, DOI 10.1109/ACCESS.2016.2636218. Saleem AA, 2020, ADV INTELL SYST COMP, V978, P264, DOI 10.1007/978-3-030-36056-6\_26. Salehi H, 2018, ENG STRUCT, V171, P170, DOI 10.1016/j.engstruct.2018.05.084. Samani H, 2016, IEEE ACCESS, V4, P268, DOI 10.1109/ACCESS.2016.2514263. Sancino A, 2020, PUBLIC MANAG REV, V22, P701, DOI 10.1080/14719037.2020.1718189. Sarangi M, 2020, ADV INTELL SYST COMP, V1040, P469, DOI 10.1007/978-981-15-1451-7\_50. Sasu L, 2016, IEEE INT CONF INTELL, P57, DOI 10.1109/INES.2016.7555093. Scalenghe R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010093. Scholta H, 2019, GOV INFORM Q, V36, P11, DOI 10.1016/j.giq.2018.11.010. Sharma PK, 2018, FUTURE GENER COMP SY, V86, P650, DOI 10.1016/j.future.2018.04.060. Shum C, 2018, IEEE ACCESS, V6, P20531, DOI 10.1109/ACCESS.2018.2824341. Sotres P, 2017, IEEE ACCESS, V5, P14309, DOI 10.1109/ACCESS.2017.2723659. Srivastava S, 2017, PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), P130, DOI 10.1109/CONFLUENCE.2017.7943136. Suliman A, 2019, IET NETW, V8, P32, DOI 10.1049/iet-net.2018.5026. Sun YC, 2016, IEEE ACCESS, V4, P766, DOI 10.1109/ACCESS.2016.2529723. Tang B, 2017, IEEE T IND INFORM, V13, P2140, DOI 10.1109/TII.2017.2679740. Tang XX, 2017, IEEE ACCESS, V5, P13001, DOI 10.1109/ACCESS.2017.2727516. Tao F, 2018, J MANUF SYST, V48, P157, DOI 10.1016/j.jmsy.2018.01.006. Tawalbeh LA, 2016, IEEE ACCESS, V4, P858, DOI 10.1109/ACCESS.2016.2532745. Terziyan V, 2018, J MANUF SYST, V48, P204, DOI 10.1016/j.jmsy.2018.04.019. Tompson T., 2017, SHE JI J EC INNOVATI, V3, P210, DOI {[}10.1016/j.sheji.2017.11.004, DOI 10.1016/J.SHEJI.2017.11.004]. Twizeyimana JD, 2019, GOV INFORM Q, V36, P167, DOI 10.1016/j.giq.2019.01.001. Ullah R, 2017, IEEE ACCESS, V5, P13799, DOI 10.1109/ACCESS.2017.2728623. Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069. Ulrich J, 2020, ADV INTELL SYST COMP, V1137, P14, DOI 10.1007/978-3-030-40690-5\_2. Urbieta A, 2017, FUTURE GENER COMP SY, V76, P262, DOI 10.1016/j.future.2016.12.038. Uribe-Perez N, 2017, FUTURE GENER COMP SY, V76, P314, DOI 10.1016/j.future.2016.12.035. van den Buuse D, 2019, TECHNOL FORECAST SOC, V142, P220, DOI 10.1016/j.techfore.2018.07.029. Varghese P, 2016, PROC TECH, V24, P1858, DOI 10.1016/j.protcy.2016.05.238. Wan S, 2018, IEEE ACCESS, V6, P1451, DOI 10.1109/ACCESS.2017.2779137. Wang H, 2020, INFORM SCIENCES, V519, P348, DOI 10.1016/j.ins.2020.01.051. Wang XJ, 2019, IEEE T VEH TECHNOL, V68, P1093, DOI 10.1109/TVT.2018.2886010. Wirtz BW, 2020, INT J PUBLIC ADMIN, V43, P499, DOI 10.1080/01900692.2019.1636395. Wu J, 2016, IEEE ACCESS, V4, P416, DOI 10.1109/ACCESS.2016.2517321. Wu M, 2018, IEEE ACCESS, V6, P23325, DOI 10.1109/ACCESS.2018.2810891. Yang JC, 2018, FUTURE GENER COMP SY, V81, P244, DOI 10.1016/j.future.2017.11.015. Yu J, 2019, TECHNOL FORECAST SOC, V142, P168, DOI 10.1016/j.techfore.2018.11.017. Zanella A, 2014, IEEE INTERNET THINGS, V1, P22, DOI 10.1109/JIOT.2014.2306328. Zhang Y, 2020, IEEE NETWORK, V34, P122, DOI 10.1109/MNET.001.1900064.}, Number-of-Cited-References = {196}, Times-Cited = {8}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {49}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {PL5YE}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000603196300001}, OA = {gold, Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000845100100001, Author = {Li, Yongchang and Peng, Li and Wu, Chengwei and Zhang, Jiazhen}, Title = {Street View Imagery (SVI) in the Built Environment: A Theoretical and Systematic Review}, Journal = {BUILDINGS}, Year = {2022}, Volume = {12}, Number = {8}, Month = {AUG}, Abstract = {Street view imagery (SVI) provides efficient access to data that can be used to research spatial quality at the human scale. The previous reviews have mainly focused on specific health findings and neighbourhood environments. There has not been a comprehensive review of this topic. In this paper, we systematically review the literature on the application of SVI in the built environment, following a formal innovation-decision framework. The main findings are as follows: (I) SVI remains an effective tool for automated research assessments. This offers a new research avenue to expand the built environment-measurement methods to include perceptions in addition to physical features. (II) Currently, SVI is functional and valuable for quantifying the built environment, spatial sentiment perception, and spatial semantic speculation. (III) The significant dilemmas concerning the adoption of this technology are related to image acquisition, the image quality, spatial and temporal distribution, and accuracy. (IV) This research provides a rapid assessment and provides researchers with guidance for the adoption and implementation of SVI. Data integration and management, proper image service provider selection, and spatial metrics measurements are the critical success factors. A notable trend is the application of SVI towards a focus on the perceptions of the built environment, which provides a more refined and effective way to depict urban forms in terms of physical and social spaces.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Zhang, JZ (Corresponding Author), Univ Mons, Fac Architecture \& Urban Planning, Rue Havre 88, B-7000 Mons, Belgium. Li, Yongchang; Peng, Li; Wu, Chengwei, Nanjing Forestry Univ, Coll Art \& Design, 159 Longpan Rd, Nanjing 210037, Peoples R China. Zhang, Jiazhen, Univ Mons, Fac Architecture \& Urban Planning, Rue Havre 88, B-7000 Mons, Belgium.}, DOI = {10.3390/buildings12081167}, Article-Number = {1167}, EISSN = {2075-5309}, Keywords = {adoption strengths; artificial intelligence; building environment; critical success factors; computer vision; deep learning; street view image; visual analytics}, Keywords-Plus = {THERMAL COMFORT; URBAN GREENERY; MENTAL-HEALTH; WEB; SCIENCE; AUDIT; LANDSCAPE; STRENGTHS; PHOENIX; QUALITY}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil}, Author-Email = {jiazhen.zhang@umons.ac.be}, Affiliations = {Nanjing Forestry University; University of Mons}, ORCID-Numbers = {Peng, Li/0000-0001-6856-488X /0000-0001-7455-0548}, Funding-Acknowledgement = {National Social Science Foundation in Art, PRC {[}21ZD11]; Theoretical and Practical Innovation Research Artistic Evaluation System}, Funding-Text = {This research was funded by the National Social Science Foundation in Art, PRC, grant number 21ZD11. The APC was funded by the Theoretical and Practical Innovation Research Artistic Evaluation System.}, Cited-References = {Alexeeff SE, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0382-1. Amiruzzaman M, 2021, J COMPUT SOC SCI, V4, P813, DOI 10.1007/s42001-021-00107-x. {[}Anonymous], APPLE MAP USAGE. {[}Anonymous], MAPB PRIC. {[}Anonymous], STREET VIEW STAT API. Arietta SM, 2014, IEEE T VIS COMPUT GR, V20, P2624, DOI 10.1109/TVCG.2014.2346446. Callau AA, 2019, OPEN GEOSCI, V11, P558, DOI 10.1515/geo-2019-0046. Ayala C, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13163135. Badland HM, 2010, J URBAN HEALTH, V87, P1007, DOI 10.1007/s11524-010-9505-x. Barranco-Gutierrez Alejandro Israel, 2014, Image and Video Technology - PSIVT 2013 Workshops. GCCV 2013, GPID 2013, PAESNPR 2013, and QACIVA 2013. Revised Selected Papers: LNCS 8334, P113, DOI 10.1007/978-3-642-53926-8\_11. Berland A, 2017, URBAN FOR URBAN GREE, V21, P11, DOI 10.1016/j.ufug.2016.11.006. Biljecki F, 2021, LANDSCAPE URBAN PLAN, V215, DOI 10.1016/j.landurbplan.2021.104217. Bin JC, 2020, NEUROCOMPUTING, V404, P70, DOI 10.1016/j.neucom.2020.05.013. Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss\_a\_00018. Bissell William Cunningham, 2011, URBAN DESIGN CHAOS C, DOI DOI 10.1080/02582473.2014.932003. Brantley HL, 2014, ATMOS MEAS TECH, V7, P2169, DOI 10.5194/amt-7-2169-2014. Braun V, 2006, QUALITATIVE RES PSYC, V3, P77, DOI {[}DOI 10.1191/1478088706QP063OA, 10.1191/1478088706qp063oa]. Byun G, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0263775. Candido RL, 2018, AM J PREV MED, V55, P662, DOI 10.1016/j.amepre.2018.04.047. Carrasco-Hernandez R, 2015, ENERG BUILDINGS, V86, P340, DOI 10.1016/j.enbuild.2014.10.001. Charreire H, 2014, HEALTH PLACE, V25, P1, DOI {[}10.1016/j.healthplace.2013.09.017, 10.1010/j.healthplace.2013.09.017]. Charreire H, 2010, PUBLIC HEALTH NUTR, V13, P1773, DOI 10.1017/S1368980010000753. Coleman Cody, 2017, TRAINING, V100. Conley G, 2022, COMPUT ENVIRON URBAN, V93, DOI 10.1016/j.compenvurbsys.2021.101752. Cordts M, 2016, PROC CVPR IEEE, P3213, DOI 10.1109/CVPR.2016.350. Dalal N, 2005, PROC CVPR IEEE, P886, DOI 10.1109/cvpr.2005.177. Doersch C, 2012, ACM T GRAPHIC, V31, DOI 10.1145/2185520.2185597. Everingham M, 2010, INT J COMPUT VISION, V88, P303, DOI 10.1007/s11263-009-0275-4. Ewing R, 2009, J URBAN DES, V14, P65, DOI 10.1080/13574800802451155. Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF. Faryadi S, 2009, INT J ENVIRON RES, V3, P199. Gabbe CJ, 2019, J TRANSP HEALTH, V13, P78, DOI 10.1016/j.jth.2019.03.011. Gebru T, 2017, P NATL ACAD SCI USA, V114, P13108, DOI 10.1073/pnas.1700035114. Goel R, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196521. Gonzalez D, 2020, BUILD ENVIRON, V177, DOI 10.1016/j.buildenv.2020.106805. Gustat J, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-09509-4. Haddawy P, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007555. Hankey S, 2015, ATMOS ENVIRON, V122, P65, DOI 10.1016/j.atmosenv.2015.09.025. Hanson CS, 2013, J TRANSP GEOGR, V33, P42, DOI 10.1016/j.jtrangeo.2013.09.002. Hao X.H., 2017, SHANGHAI URBAN PLAN, V1, P32. Hart EAC, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0190387. He L, 2017, COMPUT ENVIRON URBAN, V66, P83, DOI 10.1016/j.compenvurbsys.2017.08.001. He N., 2021, ENV CHALL, V4, P100090, DOI {[}10.1016/j.envc.2021.100090, DOI 10.1016/J.ENVC.2021.100090]. Helbich M, 2019, ENVIRON INT, V126, P107, DOI 10.1016/j.envint.2019.02.013. Idso CD, 1998, PHYS GEOGR, V19, P95, DOI 10.1080/02723646.1998.10642642. Johansson E, 2006, BUILD ENVIRON, V41, P1326, DOI 10.1016/j.buildenv.2005.05.022. Justus D, 2018, IEEE INT CONF BIG DA, P3873, DOI 10.1109/BigData.2018.8622396. Kang J, 2018, ISPRS J PHOTOGRAMM, V145, P44, DOI 10.1016/j.isprsjprs.2018.02.006. Kang YH, 2020, ANN GIS, V26, P261, DOI 10.1080/19475683.2020.1791954. Kelly CM, 2013, ANN BEHAV MED, V45, pS108, DOI 10.1007/s12160-012-9419-9. Keralis JM, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-8300-1. Kharazi BA, 2021, COMPUT ENVIRON URBAN, V88, DOI 10.1016/j.compenvurbsys.2021.101628. Kim ES, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14020260. Kim H, 2018, MULTIMED TOOLS APPL, V77, P27387, DOI 10.1007/s11042-018-5926-4. Kim S, 2020, VISUAL COMPUT, V36, P911, DOI 10.1007/s00371-019-01701-x. Koch D, 2018, RETECH'18: PROCEEDINGS OF THE 2018 ACM WORKSHOP ON MULTIMEDIA FOR REAL ESTATE TECH, P12, DOI 10.1145/3210499.3210526. Kreft H, 2007, P NATL ACAD SCI USA, V104, P5925, DOI 10.1073/pnas.0608361104. Kruse J, 2021, COMPUT ENVIRON URBAN, V90, DOI 10.1016/j.compenvurbsys.2021.101693. Kwan MP, 2012, ANN ASSOC AM GEOGR, V102, P958, DOI 10.1080/00045608.2012.687349. Larkin A, 2021, LANDSCAPE URBAN PLAN, V216, DOI 10.1016/j.landurbplan.2021.104257. Larkin A, 2019, J EXPO SCI ENV EPID, V29, P447, DOI 10.1038/s41370-018-0017-1. Lauko IG, 2020, GEO-SPAT INF SCI, V23, P222, DOI 10.1080/10095020.2020.1805367. Laupheimer D., 2018, ISPRS ANN PHOTOGRAMM, V4, P177, DOI {[}DOI 10.5194/ISPRS-ANNALS-IV-2-177-2018, 10.5194/isprs-annals-IV-2-177-2018]. Law S, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3342240. Leon LFA, 2019, GEOJOURNAL, V84, P395, DOI 10.1007/s10708-018-9865-4. Leslie E, 2008, PREV MED, V47, P273, DOI 10.1016/j.ypmed.2008.01.014. Li XJ, 2021, ENVIRON PLAN B-URBAN, V48, P2039, DOI 10.1177/2399808320962511. Li XJ, 2018, LANDSCAPE URBAN PLAN, V169, P81, DOI 10.1016/j.landurbplan.2017.08.011. Li XJ, 2015, URBAN FOR URBAN GREE, V14, P751, DOI 10.1016/j.ufug.2015.07.006. Li XJ, 2015, URBAN FOR URBAN GREE, V14, P675, DOI 10.1016/j.ufug.2015.06.006. Li XJ, 2015, ISPRS INT J GEO-INF, V4, P1166, DOI 10.3390/ijgi4031166. Lin T., 2014, P 31 EUR C COMP VIS, VVolume 8693, P740, DOI {[}DOI 10.1007/978-3-319-10602-1\_48, 10.1007/978-3-319-10602-1\_48]. Liu M, 2019, LECT NOTES COMPUT SC, V11902, P690, DOI 10.1007/978-3-030-34110-7\_58. Lowe D. G., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P1150, DOI 10.1109/ICCV.1999.790410. Lu Y, 2019, CITIES, V88, P10, DOI 10.1016/j.cities.2019.01.003. Lu Yifan, 2018, {[}Computational Visual Media, 计算可视媒体], V4, P253. Lurig MD, 2021, FRONT ECOL EVOL, V9, DOI 10.3389/fevo.2021.642774. Ma RX, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-52423-y. MACINTYRE S, 2000, SOCIAL EPIDEMIOLOGY. Mahabir R, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9060341. Masoumi HE, 2017, REV ENVIRON HEALTH, V32, P315, DOI 10.1515/reveh-2016-0046. Mayer M, 2020, ARCHIT SCI REV, V63, P351, DOI 10.1080/00038628.2019.1689914. McCurley JL, 2017, AM J PREV MED, V52, P519, DOI 10.1016/j.amepre.2016.10.028. Meng LC, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12051799. {[}苗夺谦 Miao Duoqian], 2016, {[}智能系统学报, CAAI Transactions on Intelligent Systems], V11, P743. Middel A, 2017, URBAN PLAN, V2, P19, DOI 10.17645/up.v2i1.855. Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5. Mooney SJ, 2016, AM J PUBLIC HEALTH, V106, P462, DOI 10.2105/AJPH.2015.302978. Najafizadeh L, 2018, ASSETS'18: PROCEEDINGS OF THE 20TH INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS AND ACCESSIBILITY, P340, DOI 10.1145/3234695.3240999. Nassar A, 2019, IEEE GLOB CONF SIG. Nguyen TT, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph181910428. Novack T, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9020098. Oliva A, 2001, INT J COMPUT VISION, V42, P145, DOI 10.1023/A:1011139631724. Oteros-Rozas E, 2018, ECOL INDIC, V94, P74, DOI 10.1016/j.ecolind.2017.02.009. Pang HE, 2022, INT J APPL EARTH OBS, V112, DOI 10.1016/j.jag.2022.102859. Patterson G, 2012, PROC CVPR IEEE, P2751, DOI 10.1109/CVPR.2012.6247998. Plascak JJ, 2020, AM J PREV MED, V58, P152, DOI 10.1016/j.amepre.2019.08.032. Pliakas T, 2017, HEALTH PLACE, V43, P75, DOI 10.1016/j.healthplace.2016.10.001. Porzi L, 2015, MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, P139, DOI 10.1145/2733373.2806273. Qi H., 2016, P INT C LEARN REPR I. Qin K, 2020, T GIS, V24, P1382, DOI 10.1111/tgis.12641. Qiu LY, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18042132. Nguyen QC, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176359. Ren ZH, 2022, INT J PR ENG MAN-GT, V9, P661, DOI 10.1007/s40684-021-00343-6. Revaud J, 2019, PROC CVPR IEEE, P4081, DOI 10.1109/CVPR.2019.00421. Ringland J, 2021, EARTH SCI INFORM, V14, P179, DOI 10.1007/s12145-020-00557-3. Rogers E.M., 2014, INTEGRATED APPROACH, P432, DOI DOI 10.4324/9780203887011-36/DIFFUSI0N-INN0VATI0NS-EVERETT-R0GERS-ARVIND-SINGHAL-MARGARET-QUINLAN. Rosenfelder M, 2021, APPL ENERG, V301, DOI 10.1016/j.apenergy.2021.117407. Rundle AG, 2011, AM J PREV MED, V40, P94, DOI 10.1016/j.amepre.2010.09.034. Rzotkiewicz A, 2018, HEALTH PLACE, V52, P240, DOI 10.1016/j.healthplace.2018.07.001. Salesses P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068400. Seligman L, 2006, EUR J INNOV MANAG, V9, P108, DOI 10.1108/14601060610640050. Skurowski P, 2018, AIP CONF PROC, V1978, DOI 10.1063/1.5043761. Suel E, 2021, REMOTE SENS ENVIRON, V257, DOI 10.1016/j.rse.2021.112339. Szczepanska A, 2020, LAND-BASEL, V9, DOI 10.3390/land9110419. Szczesniak JT, 2022, BUILD ENVIRON, V207, DOI 10.1016/j.buildenv.2021.108108. Tang YW, 2022, ISPRS INT J GEO-INF, V11, DOI 10.3390/ijgi11060325. Taylor BT, 2011, AM J PREV MED, V40, P105, DOI 10.1016/j.amepre.2010.10.024. Toker A, 2021, PROC CVPR IEEE, P6484, DOI 10.1109/CVPR46437.2021.00642. Vishnani Vinay, 2020, 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), P684, DOI 10.1109/ICSSIT48917.2020.9214219. Wang RY, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102664. Wang RY, 2019, HEALTH PLACE, V59, DOI 10.1016/j.healthplace.2019.102186. Wang RY, 2019, J TRANSP HEALTH, V13, P90, DOI 10.1016/j.jth.2019.02.009. Wang X., 2019, P 24 CAADRIA C, DOI {[}10.52842/conf.caadria.2019.1.757, DOI 10.52842/CONF.CAADRIA.2019.1.757]. Weichenthal S, 2019, ENVIRON INT, V122, P3, DOI 10.1016/j.envint.2018.11.042. Whitehead J, 2021, INT J HEALTH GEOGR, V20, DOI 10.1186/s12942-021-00288-8. Wu CW, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12050516. Wu D, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9090500. Xia YX, 2021, URBAN FOR URBAN GREE, V59, DOI 10.1016/j.ufug.2021.126995. Xie J.P., 2004, GREEN DESIGN EVALUAT. Xue F, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10080561. Yang YY, 2020, TRAVEL BEHAV SOC, V20, P104, DOI 10.1016/j.tbs.2020.03.001. Ye Y, 2019, LANDSCAPE URBAN PLAN, V191, DOI 10.1016/j.landurbplan.2018.08.028. Yin L, 2016, APPL GEOGR, V76, P147, DOI 10.1016/j.apgeog.2016.09.024. Yin L, 2015, APPL GEOGR, V63, P337, DOI 10.1016/j.apgeog.2015.07.010. Yu Q, 2020, EARTHQ ENG ENG VIB, V19, P827, DOI 10.1007/s11803-020-0598-2. Zeppelzauer M, 2018, ICMR `18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, P126, DOI 10.1145/3206025.3206060. Zhai W, 2020, APPL GEOGR, V123, DOI 10.1016/j.apgeog.2020.102252. Zhang F, 2018, LANDSCAPE URBAN PLAN, V180, P148, DOI 10.1016/j.landurbplan.2018.08.020. Zhang GW, 2022, AUTOMAT CONSTR, V133, DOI 10.1016/j.autcon.2021.104016. Zhang K, 2022, SUSTAIN CITIES SOC, V78, DOI 10.1016/j.scs.2021.103598. Zhang QS, 2018, FRONT INFORM TECH EL, V19, P27, DOI 10.1631/FITEE.1700808. Zhang Y, 2021, BUILD ENVIRON, V198, DOI 10.1016/j.buildenv.2021.107883. Zhang YH, 2020, INFORM SYST, V92, DOI 10.1016/j.is.2020.101536. Zhao YL, 2021, SCI TOTAL ENVIRON, V797, DOI 10.1016/j.scitotenv.2021.149067. Zhi LY, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13234876. Zhong T, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13081591. Zhou BL, 2018, IEEE T PATTERN ANAL, V40, P1452, DOI 10.1109/TPAMI.2017.2723009. Zhou HL, 2021, COMPUT ENVIRON URBAN, V88, DOI 10.1016/j.compenvurbsys.2021.101631. Zhu YX, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12050674.}, Number-of-Cited-References = {150}, Times-Cited = {5}, Usage-Count-Last-180-days = {41}, Usage-Count-Since-2013 = {51}, Journal-ISO = {BUILDINGS-BASEL}, Doc-Delivery-Number = {4A4VD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000845100100001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000690510700001, Author = {Ghazal, Taher M. and Hasan, Mohammad Kamrul and Alshurideh, Muhammad Turki and Alzoubi, Haitham M. and Ahmad, Munir and Akbar, Syed Shehryar and Al Kurdi, Barween and Akour, Iman A.}, Title = {IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare-A Review}, Journal = {FUTURE INTERNET}, Year = {2021}, Volume = {13}, Number = {8}, Month = {AUG}, Abstract = {Smart city is a collective term for technologies and concepts that are directed toward making cities efficient, technologically more advanced, greener and more socially inclusive. These concepts include technical, economic and social innovations. This term has been tossed around by various actors in politics, business, administration and urban planning since the 2000s to establish tech-based changes and innovations in urban areas. The idea of the smart city is used in conjunction with the utilization of digital technologies and at the same time represents a reaction to the economic, social and political challenges that post-industrial societies are confronted with at the start of the new millennium. The key focus is on dealing with challenges faced by urban society, such as environmental pollution, demographic change, population growth, healthcare, the financial crisis or scarcity of resources. In a broader sense, the term also includes non-technical innovations that make urban life more sustainable. So far, the idea of using IoT-based sensor networks for healthcare applications is a promising one with the potential of minimizing inefficiencies in the existing infrastructure. A machine learning approach is key to successful implementation of the IoT-powered wireless sensor networks for this purpose since there is large amount of data to be handled intelligently. Throughout this paper, it will be discussed in detail how AI-powered IoT and WSNs are applied in the healthcare sector. This research will be a baseline study for understanding the role of the IoT in smart cities, in particular in the healthcare sector, for future research works.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Alzoubi, HM (Corresponding Author), Skyline Univ Coll, Sch Business, Sharjah 1797, U Arab Emirates. Ghazal, Taher M.; Hasan, Mohammad Kamrul, Univ Kebansaan Malaysia UKM, Ctr Cyber Secur, Fac Informat Sci \& Technol, Bangi 43600, Selangor, Malaysia. Ghazal, Taher M., Skyline Univ Coll, Sch Informat Technol, Sharjah 1797, U Arab Emirates. Alshurideh, Muhammad Turki, Univ Jordan, Dept Mkt, Sch Business, Amman 11942, Jordan. Alshurideh, Muhammad Turki, Univ Sharjah, Coll Business, Dept Management, Sharjah 27272, U Arab Emirates. Alzoubi, Haitham M., Skyline Univ Coll, Sch Business, Sharjah 1797, U Arab Emirates. Ahmad, Munir; Akbar, Syed Shehryar, Natl Coll Business Adm \& Econ, Sch Comp Sci, Lahore 54000, Pakistan. Al Kurdi, Barween, Hashemite Univ, Dept Business Adm, Fac Econ \& Adm Sci, Zarqa 13115, Jordan. Akour, Iman A., Univ Sharjah, Dept Informat Syst, Coll Comp \& Informat, Sharjah 27272, U Arab Emirates.}, DOI = {10.3390/fi13080218}, Article-Number = {218}, EISSN = {1999-5903}, Keywords = {smart cities; IoT; machine learning; sensor networks; artificial intelligence; healthcare}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; INTERNET; SCHEME}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Information Systems}, Author-Email = {ghazal1000@gmail.com mkhasan@ukm.edu.my malshurideh@sharjah.ac.ae haitham.alzubi@skylineuniversity.ac.ae munir@ncbae.edu.pk syedshehryar@live.com barween@hu.edu.jo iakour@sharjah.ac.ae}, Affiliations = {University of Jordan; University of Sharjah; Hashemite University; University of Sharjah}, ResearcherID-Numbers = {Ghazal, Taher M./AAS-7443-2021 Hasan, Mohammad Kamrul/F-4782-2015 Al Kurdi, Barween/AAA-4558-2022 Alzoubi, Haitham M./A-9678-2018 Ahmad, Munir/F-7482-2018 }, ORCID-Numbers = {Ghazal, Taher M./0000-0003-0672-7924 Hasan, Mohammad Kamrul/0000-0001-5511-0205 Al Kurdi, Barween/0000-0002-0825-4617 Alzoubi, Haitham M./0000-0003-3178-4007 Ahmad, Munir/0000-0002-5240-0984 Alshurideh, D. Muhammad Turki/0000-0002-7336-381X Akbar, Syed Shehryar/0000-0002-3024-9419}, Cited-References = {Akhtaruzzaman M., 2011, Proceedings of the 2011 IEEE Student Conference on Research and Development (SCOReD 2011), P425, DOI 10.1109/SCOReD.2011.6148777. Akhtaruzzaman M, 2020, IEEE ACCESS, V8, P222977, DOI 10.1109/ACCESS.2020.3040083. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Alpaydin E., 2020, INTRO MACHINE LEARNI. Alsamhi SH, 2019, IEEE ACCESS, V7, P128125, DOI 10.1109/ACCESS.2019.2934998. Arasteh H, 2016, 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC). Bahl M, 2018, RADIOLOGY, V286, P810, DOI 10.1148/radiol.2017170549. Bloch-Budzier S, 2016, BBC NEWS, V22. Bosman HHWJ, 2015, AD HOC NETW, V35, P14, DOI 10.1016/j.adhoc.2015.07.013. Cugurullo F, 2021, FRANKENSTEIN URBANIS. Cugurullo F, 2020, FRONT SUSTAIN CITIES, V2, DOI 10.3389/frsc.2020.00038. Cugurullo F, 2018, ENVIRON PLANN A, V50, P73, DOI 10.1177/0308518X17738535. Ghazal T.M., 2020, SOLID STATE TECHNOL, V63, P2513. Habibzadeh H., 2019, CONNECTED HLTH SMART. Hamet P, 2017, METABOLISM, V69, pS36, DOI 10.1016/j.metabol.2017.01.011. Hasan MK, 2020, WIRELESS PERS COMMUN, V114, P1067, DOI 10.1007/s11277-020-07408-w. Huang G., 2018, P 4 IEEE INT C UN VI, DOI {[}10.1109/UV.2018.8642125, DOI 10.1109/UV.2018.8642125]. Islam S, 2020, WIRELESS PERS COMMUN, V114, P1133, DOI 10.1007/s11277-020-07412-0. Islam S, 2017, WIRELESS PERS COMMUN, V95, P457, DOI 10.1007/s11277-016-3903-7. Jha S, 2020, CMC-COMPUT MATER CON, V65, P1059, DOI 10.32604/cmc.2020.011754. Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101. Kharel J., 2017, J COMMUN, V12, P228, DOI {[}10.12720/jcm.12.4.228-233, DOI 10.12720/JCM.12.4.228-233]. Latif S., P 5 INT C AER SCI EN, P1, DOI {[}10.1109/ICASE.2017.8374288, DOI 10.1109/ICASE.2017.8374288]. Li W, 2021, MOBILE NETW APPL, V26, P234, DOI 10.1007/s11036-020-01700-6. Majeed U, 2021, J NETW COMPUT APPL, V181, DOI 10.1016/j.jnca.2021.103007. Memon I, 2020, SECUR COMMUN NETW, V2020, DOI 10.1155/2020/8897098. Muhammad K, 2021, IEEE T NEUR NET LEAR, V32, P507, DOI 10.1109/TNNLS.2020.2995800. Nafi N. S., 2012, 2012 International Conference on Computer and Communication Engineering (ICCCE), P738, DOI 10.1109/ICCCE.2012.6271315. Nordling L, 2019, NATURE, V573, pS103, DOI 10.1038/d41586-019-02872-2. Nurelmadina N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010338. Panarello A, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082575. Przydatek B., 2003, P 1 INT C EMB NETW S, P255, DOI DOI 10.1145/958491.958521. Shah R., 2018, ISSUES INFORM SYSTEM, V19, P33. Singh SK, 2021, HUM-CENT COMPUT INFO, V11, DOI 10.22967/HCIS.2021.11.012. Singh SK, 2021, COMPUT SCI INF SYST, V18, P597, DOI 10.2298/CSIS200330012S. Singh SK, 2021, CMC-COMPUT MATER CON, V66, P2905, DOI 10.32604/cmc.2021.014151. Soomro Safeeullah, 2018, IET 2018 SMART CITIE, P81. Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069. Ullo SL, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20113113. Zhang WX, 2020, CMC-COMPUT MATER CON, V63, P787, DOI 10.32604/cmc.2020.07620.}, Number-of-Cited-References = {40}, Times-Cited = {59}, Usage-Count-Last-180-days = {10}, Usage-Count-Since-2013 = {32}, Journal-ISO = {Future Internet}, Doc-Delivery-Number = {UI3KN}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000690510700001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000909133200001, Author = {Zinno, Raffaele and Haghshenas, Sina Shaffiee and Guido, Giuseppe and Rashvand, Kaveh and Vitale, Alessandro and Sarhadi, Ali}, Title = {The State of the Art of Artificial Intelligence Approaches and New Technologies in Structural Health Monitoring of Bridges}, Journal = {APPLIED SCIENCES-BASEL}, Year = {2023}, Volume = {13}, Number = {1}, Month = {JAN}, Abstract = {The challenges of urban administration are growing, as the population, automobiles, and cities rise. Making cities smarter is thus one of the most effective solutions to urban issues. A key feature of the ``smart cities{''} of today is that they use cutting-edge technology in their infrastructure and services. With strategic planning, the smart city utilizes its resources in the most efficient manner. With reduced expenses and enhanced infrastructure, smart cities provide their residents with more and better services. One of these important urban services that can be very helpful in managing cities is structural health monitoring (SHM). By combining leading new technologies like the Internet of Things (IoT) with structural health monitoring, important urban infrastructure can last longer and work better. A thorough examination of recent advances in SHM for infrastructure is thus warranted. Bridges are one of the most important parts of a city's infrastructure, and their building, development, and proper maintenance are some of the most important aspects of managing a city. The main goal of this study is to look at how artificial intelligence (AI) and some technologies, like drone technology and 3D printers, could be used to improve the current state of the art in SHM systems for bridges, including conceptual frameworks, benefits and problems, and existing methods. An outline of the role AI and other technologies will play in SHM systems of bridges in the future was provided in this study. Some novel technology-aided research opportunities are also highlighted, explained, and discussed.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Zinno, R (Corresponding Author), Univ Calabria, Dept Environm Engn, Via Bucci, I-87036 Arcavacata Di Rende, Italy. Zinno, Raffaele, Univ Calabria, Dept Environm Engn, Via Bucci, I-87036 Arcavacata Di Rende, Italy. Haghshenas, Sina Shaffiee; Guido, Giuseppe; Vitale, Alessandro, Univ Calabria, Dept Civil Engn, Via Bucci, I-87036 Arcavacata Di Rende, Italy. Rashvand, Kaveh; Sarhadi, Ali, Tech Univ Denmark, Dept Wind \& Energy Syst, Riso Campus,Frederiksborgvej 399, DK-4000 Roskilde, Denmark.}, DOI = {10.3390/app13010097}, Article-Number = {97}, EISSN = {2076-3417}, Keywords = {smart cities; SHM; bridge; IoT; AI; drone technology; 3D printer}, Keywords-Plus = {DAMAGE DETECTION; SMART CITIES; IDENTIFICATION; CHALLENGES; MANAGEMENT; SYSTEM; MODEL}, Research-Areas = {Chemistry; Engineering; Materials Science; Physics}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied}, Author-Email = {raffaele.zinno@unical.it}, Affiliations = {University of Calabria; University of Calabria; Technical University of Denmark}, ResearcherID-Numbers = {Shaffiee Haghshenas, Sina/J-3688-2019 Rashvand, Kaveh/AAO-6762-2020 Guido, Giuseppe/P-3632-2015}, ORCID-Numbers = {Shaffiee Haghshenas, Sina/0000-0003-2859-3920 Rashvand, Kaveh/0000-0002-7384-2335 Guido, Giuseppe/0000-0001-7570-4123}, Cited-References = {Ahvenniemi H, 2017, CITIES, V60, P234, DOI 10.1016/j.cities.2016.09.009. Akbarzadeh M, 2022, GEOTECH GEOL ENG, V40, P4685, DOI 10.1007/s10706-022-02178-7. Al Nuaimi E, 2015, J INTERNET SERV APPL, V6, DOI 10.1186/s13174-015-0041-5. Alavi A., 2022, RISE SMART CITIES AD. Aldana-Rodríguez Didier, 2021, Dyna rev.fac.nac.minas, V88, P32, DOI 10.15446/dyna.v88n217.91879. AlHamaydeh M, 2022, PRACT PERIOD STRUCT, V27, DOI 10.1061/(ASCE)SC.1943-5576.0000703. Altunisik AC, 2019, NONDESTRUCT TEST EVA, V34, P33, DOI 10.1080/10589759.2018.1518445. Artese S, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10031182. Artese S, 2016, PROCEEDINGS OF THE 8TH INTERNATIONAL CONGRESS ON ARCHAEOLOGY, COMPUTER GRAPHICS, CULTURAL HERITAGE AND INNOVATION ( ARQUEOLOGICA 2.0): ADVANCED 3D DOCUMENTATION, MODELLING AND RECONSTRUCTION OF CULTURAL HERITAGE OBJECTS, MONUMENTS AND SITES, P162, DOI 10.4995/arqueologica8.2016.3559. Artese S, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020338. Artikis Alexander, 2013, 2013 IEEE International Conference on Big Data, P319, DOI 10.1109/BigData.2013.6691590. Asgrimsson Davio Steinar, 2022, Structural Health Monitoring Based on Data Science Techniques. Structural Integrity (21), P27, DOI 10.1007/978-3-030-81716-9\_2. Azari H, 2022, TRANSPORT RES REC, V2676, P401, DOI 10.1177/03611981211031896. Azimi M, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20102778. Baba S, 2022, ENG STRUCT, V262, DOI 10.1016/j.engstruct.2022.114323. Baduge SK, 2022, AUTOMAT CONSTR, V141, DOI 10.1016/j.autcon.2022.104440. Barthorpe R. J, 2022, MODEL VALIDATION UNC, P119. Bhushan B, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102360. Biliszczuk J, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21061927. Biswas K, 2016, PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), P1392, DOI {[}10.1109/HPCC-SmartCity-DSS.2016.178, 10.1109/HPCC-SmartCity-DSS.2016.0198]. Bono A, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14081858. Bud MA, 2022, STRUCT CONTROL HLTH, V29, DOI 10.1002/stc.2950. Carroll S, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11188560. Casas J. R., 2017, FRONT BUILT ENVIRON, V3, P4. Castro-Toscano MJ, 2021, IEEE SENS J, V21, P11318, DOI 10.1109/JSEN.2020.3031882. Chang SW, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18010019. Chou JY, 2022, SMART STRUCT SYST, V29, P77, DOI 10.12989/sss.2022.29.1.077. Civera M, 2022, STRUCT CONTROL HLTH, V29, DOI 10.1002/stc.3028. Collins J., 2014, FHWAHRT09040. Comisu CC, 2017, PROCEDIA ENGINEER, V199, P2054, DOI 10.1016/j.proeng.2017.09.472. Cui L, 2018, IEEE ACCESS, V6, P46134, DOI 10.1109/ACCESS.2018.2853985. Cuong-Le T, 2022, ENG FAIL ANAL, V142, DOI 10.1016/j.engfailanal.2022.106829. Cuong-Le T, 2022, ENG COMPUT-GERMANY, V38, P3069, DOI 10.1007/s00366-021-01299-6. Delgadillo RM, 2022, STRUCT CONTROL HLTH, V29, DOI 10.1002/stc.2966. Diaz M, 2022, COMPUT STRUCT, V264, DOI 10.1016/j.compstruc.2022.106746. Doole M, 2020, J AIR TRANSP MANAG, V88, DOI 10.1016/j.jairtraman.2020.101862. Enshaeian A., 2022, P HLTH MONITORING ST, V12048, P395. Enshaeian A, 2023, LECT NOTES CIVIL ENG, P709, DOI 10.1007/978-3-031-07322-9\_71. Entezami A, 2020, ADV ENG SOFTW, V150, DOI 10.1016/j.advengsoft.2020.102923. Entezami A, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20082328. Estes A. C., 2001, J BRIDGE ENG, V6, P523, DOI DOI 10.1061/(ASCE)1084-0702(2001)6:6(523). Fakharian P, 2023, STRUCTURES, V47, P1790, DOI 10.1016/j.istruc.2022.12.007. Figueiredo E, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22218483. Figueiredo E, 2022, STRUCT HEALTH MONIT, V21, P3018, DOI 10.1177/14759217221075241. Morosini AF, 2021, WATER-SUI, V13, DOI 10.3390/w13081116. Flah M, 2021, ARCH COMPUT METHOD E, V28, P2621, DOI 10.1007/s11831-020-09471-9. Friswell MI, 2007, PHILOS T R SOC A, V365, P393, DOI 10.1098/rsta.2006.1930. Ghazal TM, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13080218. Ghiasi A, 2022, STRUCTURES, V45, P1920, DOI 10.1016/j.istruc.2022.10.019. Ghoushchi SJ, 2023, NEURAL COMPUT APPL, V35, P4549, DOI 10.1007/s00521-022-07929-4. Ginan C. P., 2022, A System Engineering Approach to Disaster Resilience: Select Proceedings of VCDRR 2021. Lecture Notes in Civil Engineering (205), P351, DOI 10.1007/978-981-16-7397-9\_25. Glisic B, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22062397. Gomes GF, 2018, COMPOS STRUCT, V196, P44, DOI 10.1016/j.compstruct.2018.05.002. Gomez-Cabrera A, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122110754. Gordan M., 2021, J AI DATA MIN, V9, P415. Gordan M., 2021, ENG ADV, V1, P9, DOI 10.26855/ea.2021.06.002. Gordan M., 2020, J CIV ENG MANAG, V9, P14, DOI {[}10.32732/jcec.2020.9.1.14, DOI 10.32732/JCEC.2020.9.1.14]. Gordan M., 2022, APPL METHODS DESIGN. Gordan M, 2022, MEASUREMENT, V193, DOI 10.1016/j.measurement.2022.110939. Gordan M, 2018, LAT AM J SOLIDS STRU, V15, DOI 10.1590/1679-78254546. Greco F, 2002, INT J SOLIDS STRUCT, V39, P2435, DOI 10.1016/S0020-7683(02)00118-X. Guido G, 2022, COMPUTERS, V11, DOI 10.3390/computers11100145. Guido G, 2022, INT C CONTROL DECISI, P587, DOI {[}10.1109/CoDIT55151.2022.9804014, 10.1109/CODIT55151.2022.9804014]. Guido G, 2022, SAFETY, V8, DOI 10.3390/safety8020035. Guido G, 2022, SAFETY, V8, DOI 10.3390/safety8020028. Guido G, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176735. Haas C., 1992, P 9 INT S AUT ROB CO, P313. Hajializadeh D, 2023, STRUCT HEALTH MONIT, V22, P897, DOI 10.1177/14759217221087147. Haritos N, 2004, STRUCT HEALTH MONIT, V3, P141, DOI 10.1177/1475921704042698. He ZG, 2022, AUTOMAT CONSTR, V136, DOI 10.1016/j.autcon.2022.104168. Heiza K, 2016, P 11 INT C CIVIL ARC, V11, P1. Ho GTS, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19081796. Ibba S, 2017, P XP2017 SCI WORKSHO. Ibrahim H, 2015, CAN CON EL COMP EN, P507, DOI 10.1109/CCECE.2015.7129327. Indhu R., 2022, 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), P418, DOI 10.1109/ICAIS53314.2022.9742818. Islam MS, 2013, J CIV STRUCT HEALTH, V3, P195, DOI 10.1007/s13349-013-0040-9. Ismagilova E, 2022, INFORM SYST FRONT, V24, P393, DOI 10.1007/s10796-020-10044-1. Jamwal A, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11125725. Jeong JH, 2022, MEASUREMENT, V202, DOI 10.1016/j.measurement.2022.111789. Jeong Y, 2018, J STRUCT INTEGR MAIN, V3, P126, DOI 10.1080/24705314.2018.1461548. Kaewunruen S, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062436. Kamal Marzuki, 2022, Intelligence of Things: Technologies and Applications: The First International Conference on Intelligence of Things (ICIot 2022), Proceedings. Lecture Notes on Data Engineering and Communications Technologies (148), P3, DOI 10.1007/978-3-031-15063-0\_1. Khosravikia F., 2018, FHWATX18069161 CTR T. Kim YS, 2009, AUTOMAT CONSTR, V18, P513, DOI 10.1016/j.autcon.2009.02.007. Ko JM, 2005, ENG STRUCT, V27, P1715, DOI 10.1016/j.engstruct.2005.02.021. Komarizadehasl S, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155725. Krichen M, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22145274. Krichen M, 2021, IEEE SENS J, V21, P7207, DOI 10.1109/JSEN.2021.3051931. Krichen M, 2020, EAI SPRINGER INNOVAT, P629, DOI 10.1007/978-3-030-13705-2\_26. Kumar A, 2021, VEH COMMUN, V28, DOI 10.1016/j.vehcom.2020.100313. Kumarapu K, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12136574. Lee T, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21020561. Lin TK, 2021, SMART MATER STRUCT, V30, DOI 10.1088/1361-665X/abbb14. Liu JW, 2022, INT J PAVEMENT ENG, V23, P2969, DOI 10.1080/10298436.2021.1875225. Liu L, 2018, J BRIDGE ENG, V23, DOI 10.1061/(ASCE)BE.1943-5592.0001296. Lv ZH, 2021, ACM T INTERNET TECHN, V21, DOI 10.1145/3406115. Lydon D, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21041246. Malekian A., 2021, ADV STREAMFLOW FOREC, P115, DOI {[}10.1016/B978-0-12-820673-7.00003-2, DOI 10.1016/B978-0-12-820673-7.00003-2]. Malekloo A., 2020, SMART GRID IOT ENABL, P139. Malekloo A, 2022, STRUCT HEALTH MONIT, V21, P1906, DOI 10.1177/14759217211036880. Mandirola M, 2022, INT J DISAST RISK RE, V72, DOI 10.1016/j.ijdrr.2022.102824. Maroni A., 2022, P I CIVIL ENG SMART, V175, P92, DOI {[}https://doi.org/10.1680/jsmic.21.00016, DOI 10.1680/JSMIC.21.00016]. Mikaeil R, 2022, J MIN ENVIRON, V13, P693, DOI 10.22044/jme.2022.12092.2206. Mikaeil R, 2018, NEURAL COMPUT APPL, V29, P283, DOI 10.1007/s00521-016-2557-4. Milillo P, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11121403. Mishra M, 2022, J BUILD ENG, V48, DOI 10.1016/j.jobe.2021.103954. Moallemi A, 2021, IEEE IMTC P, DOI 10.1109/I2MTC50364.2021.9459999. Modir A, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14183755. Momeni H., 2022, SENSORS SMART STRUCT, V12046, P237. Momeni H., 2021, ASME INT MECH ENG C, V85543, DOI {[}10.1115/IMECE2021-72141, DOI 10.1115/IMECE2021-72141]. Momeni H, 2022, SMART MATER STRUCT, V31, DOI 10.1088/1361-665X/ac50f4. Morosini AF, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10093029. Moss R., 1995, STRUCT ENG, V73, P23. Moughty JJ, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7050510. Mousa MA, 2021, INFRASTRUCTURES-BASE, V6, DOI 10.3390/infrastructures6120176. Mousavi M, 2022, STRUCT CONTROL HLTH, V29, DOI 10.1002/stc.3112. Mousavi M, 2021, J SOUND VIB, V512, DOI 10.1016/j.jsv.2021.116370. Noel AB, 2017, IEEE COMMUN SURV TUT, V19, P1403, DOI 10.1109/COMST.2017.2691551. Noori AM, 2020, GEOTECH GEOL ENG, V38, P3125, DOI 10.1007/s10706-020-01213-9. Pallares FJ, 2021, CONSTR BUILD MATER, V297, DOI 10.1016/j.conbuildmat.2021.123768. Perry BJ, 2021, BRIDGE MAINTENANCE, SAFETY, MANAGEMENT, LIFE-CYCLE SUSTAINABILITY AND INNOVATIONS, P279, DOI 10.1201/9780429279119-34. Polydorou Efstathios, 2021, Civil Structural Health Monitoring: Proceedings of CSHM-8 Workshop. Lecture Notes in Civil Engineering (156), P243, DOI 10.1007/978-3-030-74258-4\_17. Prus P, 2021, AGRICULTURE-BASEL, V11, DOI 10.3390/agriculture11040279. Ragab M, 2022, AUTOMAT CONSTR, V139, DOI 10.1016/j.autcon.2022.104271. Ranyal E, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22083044. Razmjoo A, 2021, ENERGY RES SOC SCI, V79, DOI 10.1016/j.erss.2021.102175. Reddy A, 2019, MEASUREMENT, V147, DOI 10.1016/j.measurement.2019.07.051. Vazquez-Ontiveros JR, 2021, MEASUREMENT, V173, DOI 10.1016/j.measurement.2020.108677. Rytter A., 1993, THESIS AALBORG U AAL. Salehi H, 2018, ENG STRUCT, V171, P170, DOI 10.1016/j.engstruct.2018.05.084. Schulz A, 2017, MITIG ADAPT STRAT GL, V22, P175, DOI 10.1007/s11027-015-9672-x. Shahmoradi J, 2020, DRONES-BASEL, V4, DOI 10.3390/drones4030034. Sharma VB, 2021, METALS-BASEL, V11, DOI 10.3390/met11101537. Sharry T, 2022, INFRASTRUCTURES-BASE, V7, DOI 10.3390/infrastructures7010008. Sheng ZG, 2022, COMPUT-AIDED CIV INF, V37, P746, DOI 10.1111/mice.12771. Silva BN, 2018, SUSTAIN CITIES SOC, V38, P697, DOI 10.1016/j.scs.2018.01.053. Sohn H., 2004, REV STRUCTURAL HLTH. Song GB, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7080789. Sony S, 2021, ENG STRUCT, V226, DOI 10.1016/j.engstruct.2020.111347. Sony S, 2019, STRUCT CONTROL HLTH, V26, DOI 10.1002/stc.2321. Tian YD, 2021, STRUCT CONTROL HLTH, V28, DOI 10.1002/stc.2667. Van Khang Nguyen, 2019, Mobile, Secure, and Programmable Networking. 4th International Conference, MSPN 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11005), P86, DOI 10.1007/978-3-030-03101-5\_8. Vardanega PJ, 2016, INNOVATIVE BRIDGE DESIGN HANDBOOK: CONSTRUCTION, REHABILITATION AND MAINTENANCE, P759, DOI 10.1016/B978-0-12-800058-8.00029-3. Wang CW, 2022, ADV STRUCT ENG, V25, P3450, DOI 10.1177/13694332221133604. Wang XP, 2021, IEEE ACCESS, V9, P80043, DOI 10.1109/ACCESS.2021.3083749. Wang Y.W., 2022, INTELL TRANSP SYST, V1, DOI {[}10.1093/iti/liac009, DOI 10.1093/ITI/LIAC009]. Wu ZH, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11115111. Yeon J, 2018, AUTOMAT CONSTR, V89, P266, DOI 10.1016/j.autcon.2018.02.003. Zhang JL, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22166045. Zhang Y, 2022, ADV MECH ENG, V14, DOI 10.1177/16878132221122770. Zheng JY, 2022, MEASUREMENT, V200, DOI 10.1016/j.measurement.2024.111636. Zheng T, 2021, INT J PROD RES, V59, P1922, DOI 10.1080/00207543.2020.1824085. Zinno R, 2022, IEEE ACCESS, V10, P88058, DOI 10.1109/ACCESS.2022.3199443. Zinno R, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11031140. Zinno R, 2019, INTERNET THINGS-TECH, P225, DOI 10.1007/978-3-319-96550-5\_10.}, Number-of-Cited-References = {155}, Times-Cited = {1}, Usage-Count-Last-180-days = {17}, Usage-Count-Since-2013 = {17}, Journal-ISO = {Appl. Sci.-Basel}, Doc-Delivery-Number = {7Q1BU}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000909133200001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000798064000048, Author = {Yaminifar, Leila and Altisench Jane, Barbara and Tarraga Lopez, Pedro Juan and Doudaran, Pooya Jafari and Endo Milan, Jesus Yasoda and Hivechi, Nafiseh}, Title = {A review on endometrial cancer; artificial intelligence, imaging modalities}, Journal = {MEDICINA BALEAR}, Year = {2022}, Volume = {37}, Number = {3}, Pages = {102-107}, Month = {MAY-JUN}, Abstract = {Endometrial cancer is one of the most common cancers among women especially in urban areas. The appearance of symptoms such as abnormal uterine bleeding or infertility on clinical examination increases the risk of endometrial lesion. Vaginal ultrasound and diagnostic hysteroscopy are common gynecological examinations for endometrial lesions. Endometrial cancer is often diagnosed in the early stages, in which case surgical removal of the uterus often cures endometrial cancer. However, screening and treatment programs are important in the timely diagnosis and treatment of this disease. Due to the importance of the topic, the present study was conducted to investigate the prevalence of this disease, the relationship between artificial intelligence as well as various imaging methods and the diagnosis of endometrial cancer.}, Publisher = {REIAL ACAD MEDICINA ILLES BALEARS}, Address = {CALLE COMPANER 4, PALMA DE MALLORCA, 07003, SPAIN}, Type = {Review}, Language = {English}, Affiliation = {Hivechi, N (Corresponding Author), Univ Tehran Med Sci, Imam Khomeini Hosp Complex, Obstet \& Gynecol Dept, Tehran, Iran. Yaminifar, Leila, Shahid Beheshti Univ Med Sci, Tehran, Iran. Altisench Jane, Barbara, Atenc Primaria Mallorca, Palma De Mallorca, Illes Balears, Spain. Tarraga Lopez, Pedro Juan, Univ Castilla La Mancha, Ciudad Real, Spain. Doudaran, Pooya Jafari, Qom Univ Med Sci, Fac Med, Qom, Iran. Endo Milan, Jesus Yasoda, Univ Ciencias Med Villa Clara, Santa Clara, Cuba. Hivechi, Nafiseh, Univ Tehran Med Sci, Imam Khomeini Hosp Complex, Obstet \& Gynecol Dept, Tehran, Iran.}, DOI = {10.3306/AJHS.2022.37.03.102}, ISSN = {1579-5853}, EISSN = {2255-0569}, Keywords = {Artificial intelligence; endometrial cancer; imaging modalities}, Keywords-Plus = {PREOPERATIVE RISK STRATIFICATION; MYOMETRIAL INVASION; MRI; MODEL}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {unicahinvestigacion20219@gmail.com}, Affiliations = {Shahid Beheshti University Medical Sciences; Universidad de Castilla-La Mancha; Tehran University of Medical Sciences}, Cited-References = {Bacon JL, 2017, OBSTET GYN CLIN N AM, V44, P179, DOI 10.1016/j.ogc.2017.02.012. Bereby-Kahane M, 2020, DIAGN INTERV IMAG, V101, P401, DOI 10.1016/j.diii.2020.01.003. Bi WL, 2019, CA-CANCER J CLIN, V69, P127, DOI 10.3322/caac.21552. Cai SL, 2020, ACTA RADIOL, V61, P705, DOI 10.1177/0284185119877331. Chen JY, 2021, J CANCER, V12, P726, DOI 10.7150/jca.50872. Chen XJ, 2020, EUR RADIOL, V30, P4985, DOI 10.1007/s00330-020-06870-1. Cooper NAM, 2014, HEALTH TECHNOL ASSES, V18, P1, DOI 10.3310/hta18240. De Bernardi E, 2018, EJNMMI RES, V8, DOI 10.1186/s13550-018-0441-1. Dong HC, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17165993. Fasmer KE, 2021, J MAGN RESON IMAGING, V53, P928, DOI 10.1002/jmri.27444. Gillen J, 2019, GYNECOL ONCOL REP, V30, DOI 10.1016/j.gore.2019.100502. Han YQ, 2020, J CANCER RES THER, V16, P1648, DOI 10.4103/jcrt.JCRT\_1393\_20. Hwang DK, 2019, THERANOSTICS, V9, P232, DOI 10.7150/thno.28447. Jacob H, 2021, J CLIN MED, V10, DOI 10.3390/jcm10030538. Koplay M, 2014, J MED IMAG RADIAT ON, V58, P538, DOI 10.1111/1754-9485.12209. Lee YH, 2016, ENDOCRINOL METAB, V31, P38, DOI 10.3803/EnM.2016.31.1.38. Lee YJ, 2016, ABDOM RADIOL, V41, P127, DOI 10.1007/s00261-015-0607-5. Luo Y, 2020, J MAGN RESON IMAGING, V52, P1257, DOI 10.1002/jmri.27142. Nougaret S, 2019, EUR RADIOL, V29, P792, DOI 10.1007/s00330-018-5515-y. Sala E, 2013, RADIOLOGY, V266, P717, DOI 10.1148/radiol.12120315. Siegel RL, 2019, CA-CANCER J CLIN, V69, P7, DOI 10.3322/caac.21551. Stanzione A, 2021, ACAD RADIOL, V28, P737, DOI 10.1016/j.acra.2020.02.028. Sun H, 2020, IEEE J BIOMED HEALTH, V24, P1664, DOI 10.1109/JBHI.2019.2944977. Ueno Y, 2017, RADIOLOGY, V284, P748, DOI 10.1148/radiol.2017161950. von Gruenigen VE, 2011, OBSTET GYNECOL, V117, P93, DOI 10.1097/AOG.0b013e31820205b3. Xu XJ, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01007. Yan BC, 2021, EUR RADIOL, V31, P411, DOI 10.1007/s00330-020-07099-8. Yan BC, 2020, J MAGN RESON IMAGING, V52, P1872, DOI 10.1002/jmri.27289. Yela DA, 2018, INT J GYNECOL OBSTET, V143, P32, DOI 10.1002/ijgo.12567. Zhang YZ, 2021, J TRANSL MED, V19, DOI 10.1186/s12967-020-02660-x.}, Number-of-Cited-References = {30}, Times-Cited = {0}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {10}, Journal-ISO = {Med. Balear}, Doc-Delivery-Number = {1J6YY}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000798064000048}, DA = {2023-04-22}, } @article{ WOS:000520407400011, Author = {Hong, Tianzhen and Wang, Zhe and Luo, Xuan and Zhang, Wanni}, Title = {State-of-the-art on research and applications of machine learning in the building life cycle}, Journal = {ENERGY AND BUILDINGS}, Year = {2020}, Volume = {212}, Month = {APR 1}, Abstract = {Fueled by big data, powerful and affordable computing resources, and advanced algorithms, machine learning has been explored and applied to buildings research for the past decades and has demonstrated its potential to enhance building performance. This study systematically surveyed how machine learning has been applied at different stages of building life cycle. By conducting a literature search on the Web of Knowledge platform, we found 9579 papers in this field and selected 153 papers for an in-depth review. The number of published papers is increasing year by year, with a focus on building design, operation, and control. However, no study was found using machine learning in building commissioning. There are successful pilot studies on fault detection and diagnosis of HVAC equipment and systems, load prediction, energy baseline estimate, load shape clustering, occupancy prediction, and learning occupant behaviors and energy use patterns. None of the existing studies were adopted broadly by the building industry, due to common challenges including (1) lack of large scale labeled data to train and validate the model, (2) lack of model transferability, which limits a model trained with one data-rich building to be used in another building with limited data, (3) lack of strong justification of costs and benefits of deploying machine learning, and (4) the performance might not be reliable and robust for the stated goals, as the method might work for some buildings but could not be generalized to others. Findings from the study can inform future machine learning research to improve occupant comfort, energy efficiency, demand flexibility, and resilience of buildings, as well as to inspire young researchers in the field to explore multidisciplinary approaches that integrate building science, computing science, data science, and social science. (C) 2020 Elsevier B.V. All rights reserved.}, Publisher = {ELSEVIER SCIENCE SA}, Address = {PO BOX 564, 1001 LAUSANNE, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Hong, TZ (Corresponding Author), Lawrence Berkeley Natl Lab, Bldg Technol \& Urban Syst Div, One Cyclotron Rd, Berkeley, CA 94720 USA. Hong, Tianzhen; Wang, Zhe; Luo, Xuan; Zhang, Wanni, Lawrence Berkeley Natl Lab, Bldg Technol \& Urban Syst Div, One Cyclotron Rd, Berkeley, CA 94720 USA.}, DOI = {10.1016/j.enbuild.2020.109831}, Article-Number = {109831}, ISSN = {0378-7788}, EISSN = {1872-6178}, Keywords = {Machine learning; Artificial intelligence; Buildings; Building life cycle; Building control; Building performance}, Keywords-Plus = {CLOSE-RANGE PHOTOGRAMMETRY; ARTIFICIAL NEURAL-NETWORKS; MODEL-PREDICTIVE CONTROL; ONLINE FAULT-DETECTION; DATA-DRIVEN; ENERGY PERFORMANCE; THERMAL COMFORT; AUTOMATED MEASUREMENT; DATA ANALYTICS; FDD STRATEGY}, Research-Areas = {Construction \& Building Technology; Energy \& Fuels; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Energy \& Fuels; Engineering, Civil}, Author-Email = {thong@lbl.gov}, Affiliations = {United States Department of Energy (DOE); Lawrence Berkeley National Laboratory}, ResearcherID-Numbers = {Hong, Tianzhen/D-3256-2013 }, ORCID-Numbers = {Hong, Tianzhen/0000-0003-1886-9137 Wang, Zhe/0000-0002-2231-1606}, Funding-Acknowledgement = {Laboratory Directed Research and Development (LDRD) from Lawrence Berkeley National Laboratory; Office of Science, of the U.S. Department of Energy {[}DE-AC02-05CH11231]}, Funding-Text = {This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231}, Cited-References = {Ahmad T, 2018, ENERG BUILDINGS, V165, P301, DOI 10.1016/j.enbuild.2018.01.017. Akinci B, 2006, AUTOMAT CONSTR, V15, P124, DOI 10.1016/j.autcon.2005.01.008. Al-jabery K, 2017, IEEE T COMPUT AID D, V36, P775, DOI 10.1109/TCAD.2016.2598563. Amasyali K, 2018, RENEW SUST ENERG REV, V81, P1192, DOI 10.1016/j.rser.2017.04.095. Hosseini SMA, 2016, J CONSTR ENG M, V142, DOI 10.1061/(ASCE)CO.1943-7862.0001137. Amos B, 2018, ADV NEUR IN, V31. An JJ, 2018, ENERG BUILDINGS, V174, P214, DOI 10.1016/j.enbuild.2018.06.035. {[}Anonymous], ISARC 2018 35 INT S. {[}Anonymous], ENERGYSTAR EXPLANATO. {[}Anonymous], 2013, J BUILD CONSTR PLAN, DOI DOI 10.4236/JBCPR.2013.11001. {[}Anonymous], 2017, S SIM ARCH URB DES S. {[}Anonymous], QUANTIFICATION ENERG. {[}Anonymous], 2014, ONLINE SIMULTANEOUS. {[}Anonymous], S SIM ARCH URB DES. {[}Anonymous], HUMANIZING DIGITAL R. {[}Anonymous], SIMUL SER. {[}Anonymous], GENERATIVE DESIGN AR. {[}Anonymous], FUTUR GENER COMPUT S. {[}Anonymous], 2015, AM J CIV ENG ARCHITE. {[}Anonymous], ARXIV171004055CSEESS. {[}Anonymous], S SIM ARCH URB DES. {[}Anonymous], MSEC20173003. {[}Anonymous], ARXIV190305196CSSTAT. Arendt K, 2018, PROC 1 AM MODEL C, V154, P121, DOI {[}10.3384/ecp18154121, DOI 10.3384/ECP18154121]. Arias P, 2007, BUILD ENVIRON, V42, P1817, DOI 10.1016/j.buildenv.2006.02.002. Arias P, 2005, COMPUT STRUCT, V83, P1754, DOI 10.1016/j.compstruc.2005.02.018. Ascione F, 2017, ENERGY, V118, P999, DOI 10.1016/j.energy.2016.10.126. Baatar N, 2010, PROCEEDINGS OF THE 2010 IEEE ASIA PACIFIC CONFERENCE ON CIRCUIT AND SYSTEM (APCCAS), P492, DOI 10.1109/APCCAS.2010.5774938. Bahraini S, 2018, IEEE T SMART GRID, V9, P4712, DOI 10.1109/TSG.2017.2667599. Baydin AG, 2018, J MACH LEARN RES, V18. Beghi A, 2016, CONTROL ENG PRACT, V53, P79, DOI 10.1016/j.conengprac.2016.04.018. Blum DH, 2019, APPL ENERG, V236, P410, DOI 10.1016/j.apenergy.2018.11.093. Bonvini M, 2014, APPL ENERG, V124, P156, DOI 10.1016/j.apenergy.2014.03.009. Bourdeau M, 2019, SUSTAIN CITIES SOC, V48, DOI 10.1016/j.scs.2019.101533. Brilakis I, 2005, J COMPUT CIVIL ENG, V19, P341, DOI 10.1061/(ASCE)0887-3801(2005)19:4(341). Brilakis IK, 2008, J COMPUT CIVIL ENG, V22, P14, DOI 10.1061/(ASCE)0887-3801(2008)22:1(14). Brown M, 2007, INT J COMPUT VISION, V74, P59, DOI 10.1007/s11263-006-0002-3. Brown N., 2017, PROC 37 ANN C ASS CO, P154. Brown NC, 2019, INT J ARCHIT COMPUT, V17, P36, DOI 10.1177/1478077118799491. Capozzoli A, 2018, ENERGY, V157, P336, DOI 10.1016/j.energy.2018.05.127. Cecconi FR, 2019, RENEW SUST ENERG REV, V110, P266, DOI 10.1016/j.rser.2019.04.073. Chatzikonstantinou I, 2016, ARCHIT SCI REV, V59, P307, DOI 10.1080/00038628.2015.1072705. Chaudhuri T, 2018, ENERG BUILDINGS, V166, P391, DOI 10.1016/j.enbuild.2018.02.035. Chaudhuri T, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC), P72, DOI 10.1109/ICSGSC.2017.8038552. Chen BQ, 2019, BUILDSYS'19: PROCEEDINGS OF THE 6TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, P316, DOI 10.1145/3360322.3360849. Cheng MY, 2010, AUTOMAT CONSTR, V19, P619, DOI 10.1016/j.autcon.2010.02.008. Chung W, 2012, APPL ENERG, V95, P45, DOI 10.1016/j.apenergy.2012.01.061. Congradac V, 2012, ENERG BUILDINGS, V47, P651, DOI 10.1016/j.enbuild.2012.01.007. Cotrufo N, 2016, ENERG BUILDINGS, V130, P443, DOI 10.1016/j.enbuild.2016.08.083. Dai CZ, 2017, BUILD ENVIRON, V114, P1, DOI 10.1016/j.buildenv.2016.12.005. Dalamagkidis K, 2007, BUILD ENVIRON, V42, P2686, DOI 10.1016/j.buildenv.2006.07.010. De Somer O, 2017, IEEE PES INNOV SMART. Tran DAT, 2015, ENERG BUILDINGS, V108, P441, DOI 10.1016/j.enbuild.2015.09.044. Djenouri D, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3311950. Du DJ, 2008, APPL MATH COMPUT, V205, P26, DOI 10.1016/j.amc.2008.05.062. Du ZM, 2014, BUILD ENVIRON, V73, P1, DOI 10.1016/j.buildenv.2013.11.021. El-Omari S, 2008, AUTOMAT CONSTR, V18, P1, DOI 10.1016/j.autcon.2008.05.006. Extance A, 2018, NATURE, V561, P273, DOI 10.1038/d41586-018-06617-5. Fan B, 2010, BUILD ENVIRON, V45, P2698, DOI 10.1016/j.buildenv.2010.05.031. Fan C, 2018, APPL ENERG, V224, P116, DOI 10.1016/j.apenergy.2018.04.118. Fan C, 2018, BUILD SERV ENG RES T, V39, P117, DOI 10.1177/0143624417704977. Farhan AA, 2015, IEEE INT CON AUTO SC, P708, DOI 10.1109/CoASE.2015.7294164. Fonseca JA, 2017, ENRGY PROCED, V122, P229, DOI 10.1016/j.egypro.2017.07.350. Fuhrimann L., 2018, DATA DRIVEN DESIGN E. Fuselli D, 2013, INT J ELEC POWER, V48, P148, DOI 10.1016/j.ijepes.2012.11.023. Fux SF, 2014, ENERG BUILDINGS, V68, P811, DOI 10.1016/j.enbuild.2012.06.016. Gallagher CV, 2018, ENERG BUILDINGS, V167, P8, DOI 10.1016/j.enbuild.2018.02.023. Gao XF, 2014, ENERG BUILDINGS, V84, P607, DOI 10.1016/j.enbuild.2014.08.030. Geyer P, 2018, APPL ENERG, V228, P1439, DOI 10.1016/j.apenergy.2018.07.011. Geyer P, 2017, ADV ENG INFORM, V31, P32, DOI 10.1016/j.aei.2016.02.001. Ghahramani A, 2018, APPL ENERG, V211, P41, DOI 10.1016/j.apenergy.2017.11.021. Ghahramani A, 2015, BUILD ENVIRON, V92, P86, DOI 10.1016/j.buildenv.2015.04.017. Gouda MM, 2006, BUILD ENVIRON, V41, P1881, DOI 10.1016/j.buildenv.2005.07.008. Granderson J, 2017, ENERG BUILDINGS, V142, P191, DOI 10.1016/j.enbuild.2017.02.040. Granderson J, 2016, APPL ENERG, V173, P296, DOI 10.1016/j.apenergy.2016.04.049. Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010. Guyot D, 2019, INT J ENERG RES, V43, P6680, DOI 10.1002/er.4706. Harb H, 2016, ENERG BUILDINGS, V117, P199, DOI 10.1016/j.enbuild.2016.02.021. He SW, 2016, APPL THERM ENG, V107, P37, DOI 10.1016/j.applthermaleng.2016.06.153. Henn A, 2012, GEOINFORMATICA, V16, P281, DOI 10.1007/s10707-011-0131-x. Huang W., 2018, P 38 ANN C ASS COMPU, P18. Jampani V, 2015, IEEE WINT CONF APPL, P1038, DOI 10.1109/WACV.2015.143. Jiang RN, 2008, MEASUREMENT, V41, P823, DOI 10.1016/j.measurement.2007.12.005. Jingwen Tian, 2009, Proceedings of the 2009 International Conference on Computational Intelligence and Security (CIS 2009), P648, DOI 10.1109/CIS.2009.252. Khan R, 2012, 10TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2012), P257, DOI 10.1109/FIT.2012.53. Kim J, 2018, BUILD ENVIRON, V129, P96, DOI 10.1016/j.buildenv.2017.12.011. Klepeis NE, 2001, J EXPO ANAL ENV EPID, V11, P231, DOI 10.1038/sj.jea.7500165. Kreider J. F., 1992, Automation in Construction, V1, P225, DOI 10.1016/0926-5805(92)90015-C. Kuritcyn P, 2015, J PHYS CONF SER, V588, DOI 10.1088/1742-6596/588/1/012035. Lee KH, 2008, BUILD ENVIRON, V43, P1633, DOI 10.1016/j.buildenv.2007.10.009. Lee S, 2019, BUILD ENVIRON, V148, P714, DOI 10.1016/j.buildenv.2018.10.027. Leurs T., 2016, IEEE INT ENER CONF, P1. Li D, 2016, ENERG BUILDINGS, V128, P519, DOI 10.1016/j.enbuild.2016.07.014. Li D, 2016, ENERG BUILDINGS, V127, P540, DOI 10.1016/j.enbuild.2016.06.017. Li GN, 2018, APPL THERM ENG, V129, P1292, DOI 10.1016/j.applthermaleng.2017.10.013. Li GN, 2017, APPL ENERG, V185, P846, DOI 10.1016/j.apenergy.2016.10.091. Li GN, 2016, ENERG BUILDINGS, V116, P104, DOI 10.1016/j.enbuild.2015.12.045. Li S, 2014, ENERG BUILDINGS, V68, P63, DOI 10.1016/j.enbuild.2013.08.044. Licina VF, 2018, BUILD ENVIRON, V142, P502, DOI 10.1016/j.buildenv.2018.06.022. Liu C, 2017, IEEE I CONF COMP VIS, P2214, DOI 10.1109/ICCV.2017.241. Liu HT, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2301. Liu L, 2017, COMPUT ENVIRON URBAN, V65, P113, DOI 10.1016/j.compenvurbsys.2017.06.003. Liu SM, 2007, J SOL ENERG-T ASME, V129, P215, DOI 10.1115/1.2710491. Liu SM, 2006, ENERG BUILDINGS, V38, P142, DOI 10.1016/j.enbuild.2005.06.002. Luo N, 2017, APPL ENERG, V204, P459, DOI 10.1016/j.apenergy.2017.07.048. Luo X, 2017, APPL ENERG, V204, P715, DOI 10.1016/j.apenergy.2017.07.108. Magnier L, 2010, BUILD ENVIRON, V45, P739, DOI 10.1016/j.buildenv.2009.08.016. Marasco DE, 2016, ENERG BUILDINGS, V128, P431, DOI 10.1016/j.enbuild.2016.06.092. May R., 2019, REINFORCEMENT LEARNI. Miller C, 2017, BUILDSYS'17: PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, DOI 10.1145/3137133.3137160. Miller C, 2017, ENERG BUILDINGS, V156, P360, DOI 10.1016/j.enbuild.2017.09.056. Miller C, 2017, ENRGY PROCED, V122, P439, DOI 10.1016/j.egypro.2017.07.400. Papadopoulos S, 2019, APPL ENERG, V233, P244, DOI 10.1016/j.apenergy.2018.10.053. Park JY, 2019, BUILD ENVIRON, V147, P397, DOI 10.1016/j.buildenv.2018.10.028. Qolomany B, 2019, IEEE ACCESS, V7, P90316, DOI 10.1109/ACCESS.2019.2926642. Ranjan J, 2016, UBICOMP'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P1212, DOI 10.1145/2971648.2971659. Ruelens F, 2015, ENERGIES, V8, P8300, DOI 10.3390/en8088300. Runge J, 2019, ENERGIES, V12, DOI 10.3390/en12173254. Rusu RB, 2008, ROBOT AUTON SYST, V56, P927, DOI 10.1016/j.robot.2008.08.005. Saha H, 2019, ENERG BUILDINGS, V188, P278, DOI 10.1016/j.enbuild.2019.02.030. Sha HJ, 2019, RENEW SUST ENERG REV, V108, P76, DOI 10.1016/j.rser.2019.03.018. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. Tamke M, 2018, INT J ARCHIT COMPUT, V16, P123, DOI 10.1177/1478077118778580. Tang PB, 2010, AUTOMAT CONSTR, V19, P829, DOI 10.1016/j.autcon.2010.06.007. Tooke TR, 2014, ENERG BUILDINGS, V68, P603, DOI 10.1016/j.enbuild.2013.10.004. Vazquez-Canteli JR, 2019, APPL ENERG, V235, P1072, DOI 10.1016/j.apenergy.2018.11.002. Vazquez-Canteli JR, 2019, SUSTAIN CITIES SOC, V45, P243, DOI 10.1016/j.scs.2018.11.021. Wang ED, 2015, APPL ENERG, V146, P92, DOI 10.1016/j.apenergy.2015.02.048. Wang SW, 2006, INT J THERM SCI, V45, P419, DOI 10.1016/j.ijthermalsci.2005.06.009. Wang W, 2019, APPL ENERG, V236, P55, DOI 10.1016/j.apenergy.2018.11.079. Wang Z, 2020, RENEW SUST ENERG REV, V119, DOI 10.1016/j.rser.2019.109593. Wang Z, 2019, APPL ENERG, V240, P386, DOI 10.1016/j.apenergy.2019.02.066. Wang Z, 2018, APPL ENERG, V215, P211, DOI 10.1016/j.apenergy.2018.01.088. Wang Z, 2015, BUILD ENVIRON, V92, P380, DOI 10.1016/j.buildenv.2015.05.014. Wei QL, 2015, IEEE T IND ELECTRON, V62, P2509, DOI 10.1109/TIE.2014.2361485. Wu SY, 2011, ENERG BUILDINGS, V43, P2134, DOI 10.1016/j.enbuild.2011.04.020. Xiao F, 2014, AUTOMAT CONSTR, V41, P106, DOI 10.1016/j.autcon.2013.10.019. Xiong XH, 2013, AUTOMAT CONSTR, V31, P325, DOI 10.1016/j.autcon.2012.10.006. Xu XH, 2008, INT J THERM SCI, V47, P1249, DOI 10.1016/j.ijthermalsci.2007.10.011. Yalcintas M, 2006, INT J ENERG RES, V30, P1158, DOI 10.1002/er.1212. Yan K, 2018, INT J REFRIG, V86, P401, DOI 10.1016/j.ijrefrig.2017.11.003. Yan K, 2017, NEUROCOMPUTING, V228, P205, DOI 10.1016/j.neucom.2016.09.076. Yan K, 2014, ENERG BUILDINGS, V81, P287, DOI 10.1016/j.enbuild.2014.05.049. Yang J, 2016, INT J AUTOM COMPUT, V13, P338, DOI 10.1007/s11633-016-0965-7. Yang Z, 2018, ENERG BUILDINGS, V163, P58, DOI 10.1016/j.enbuild.2017.12.040. Yildiz B, 2017, RENEW SUST ENERG REV, V73, P1104, DOI 10.1016/j.rser.2017.02.023. Yu Z, 2010, CONTROL ENG PRACT, V18, P532, DOI 10.1016/j.conengprac.2010.01.018. Yu Z, 2016, SUSTAIN CITIES SOC, V25, P33, DOI 10.1016/j.scs.2015.12.001. Zakula T, 2014, ENERG BUILDINGS, V85, P549, DOI 10.1016/j.enbuild.2014.09.039. Zhang XS, 2017, ENERGY, V133, P348, DOI 10.1016/j.energy.2017.05.114. Zhang Y, 2018, STRUCT SAF, V72, P1, DOI 10.1016/j.strusafe.2017.12.001. Zhao XZ, 2015, ENERG BUILDINGS, V94, P43, DOI 10.1016/j.enbuild.2015.02.039. Zheng JX, 2013, IEEE GREEN TECHNOL, P57, DOI 10.1109/GreenTech.2013.17. Zhou SY, 2019, CSEE J POWER ENERGY, V5, P1, DOI 10.17775/CSEEJPES.2018.00840. Zhu ZH, 2010, AUTOMAT CONSTR, V19, P944, DOI 10.1016/j.autcon.2010.06.008. Zhu ZH, 2010, J CONSTR ENG M, V136, P210, DOI 10.1061/(ASCE)CO.1943-7862.0000126.}, Number-of-Cited-References = {156}, Times-Cited = {102}, Usage-Count-Last-180-days = {35}, Usage-Count-Since-2013 = {141}, Journal-ISO = {Energy Build.}, Doc-Delivery-Number = {KV3UD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000520407400011}, OA = {Green Submitted}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000615635500001, Author = {Feroz, Abdul Karim and Zo, Hangjung and Chiravuri, Ananth}, Title = {Digital Transformation and Environmental Sustainability: A Review and Research Agenda}, Journal = {SUSTAINABILITY}, Year = {2021}, Volume = {13}, Number = {3}, Month = {FEB}, Abstract = {Digital transformation refers to the unprecedented disruptions in society, industry, and organizations stimulated by advances in digital technologies such as artificial intelligence, big data analytics, cloud computing, and the Internet of Things (IoT). Presently, there is a lack of studies to map digital transformation in the environmental sustainability domain. This paper identifies the disruptions driven by digital transformation in the environmental sustainability domain through a systematic literature review. The results present a framework that outlines the transformations in four key areas: pollution control, waste management, sustainable production, and urban sustainability. The transformations in each key area are divided into further sub-categories. This study proposes an agenda for future research in terms of organizational capabilities, performance, and digital transformation strategy regarding environmental sustainability.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Zo, HJ (Corresponding Author), Korea Adv Inst Sci \& Technol KAIST, Sch Business \& Technol Management, Coll Business, Daejeon 34141, South Korea. Feroz, Abdul Karim; Zo, Hangjung, Korea Adv Inst Sci \& Technol KAIST, Sch Business \& Technol Management, Coll Business, Daejeon 34141, South Korea. Chiravuri, Ananth, United Arab Emirates Univ, Coll Business \& Econ, Al Ain 15551, U Arab Emirates.}, DOI = {10.3390/su13031530}, Article-Number = {1530}, EISSN = {2071-1050}, Keywords = {digital transformation; environmental sustainability; artificial intelligence; big data analytics; Internet of Things; systematic literature review}, Keywords-Plus = {BIG DATA ANALYTICS; ARTIFICIAL-INTELLIGENCE; DYNAMIC CAPABILITIES; SMART; WASTE; FRAMEWORK; TECHNOLOGIES; CHALLENGES; INDUSTRIAL; POLLUTION}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {akferoz@kaist.ac.kr joezo@kaist.edu ananth.chiravuri@uaeu.ac.ae}, Affiliations = {Korea Advanced Institute of Science \& Technology (KAIST); United Arab Emirates University}, ResearcherID-Numbers = {Zo, Hangjung/C-1786-2011}, ORCID-Numbers = {Zo, Hangjung/0000-0002-2892-1659}, Funding-Acknowledgement = {BK21 FOUR program - Ministry of Education (MOE, Republic of Korea) {[}5199990114726]; National Research Foundation of Korea (NRF)}, Funding-Text = {This research was supported by the BK21 FOUR program (Project No. 5199990114726) funded by the Ministry of Education (MOE, Republic of Korea) and National Research Foundation of Korea (NRF).}, Cited-References = {Adamovic Vladimir M, 2017, Environ Sci Pollut Res Int, V24, P299, DOI 10.1007/s11356-016-7767-x. Agarwal R, 2010, INFORM SYST RES, V21, P796, DOI 10.1287/isre.1100.0327. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. ALTURJMAN F, 2019, J CLEAN PROD, V49, DOI DOI 10.1016/J.SCS.2019.101608. AN QX, 2017, ANN INTERN MED, V142, P886, DOI DOI 10.1016/J.JCLEPRO.2016.07.072. Ancion PY, 2010, ENVIRON POLLUT, V158, P2738, DOI 10.1016/j.envpol.2010.04.013. Andriole SJ, 2017, MIT SLOAN MANAGE REV, V58, P20. ARON AS, 2019, ENVIRON SCI POLLUT R, V7, P353, DOI DOI 10.1016/J.EXIS.2019.09.002. BAG S, 2020, J CLEAN PROD, V153, DOI DOI 10.1016/J.RESCONREC.2019.104559. Balogun AL, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101888. Bandara W., 2011, P 19 EUR C INF SYST. Beier G., 2020, IASS FACT SHEET 2020. BELAUD JP, 2019, INT J INFORM MANAGE, V111, P41, DOI DOI 10.1016/J.COMPIND.2019.06.006. Bharadwaj A, 2013, MIS QUART, V37, P471, DOI 10.25300/MISQ/2013/37:2.3. BIBRI SE, 2017, LANDSCAPE ECOL, V31, P183, DOI DOI 10.1016/J.SCS.2017.02.016. Bibri SE, 2018, SUSTAIN CITIES SOC, V38, P230, DOI 10.1016/j.scs.2017.12.034. BILAL M, 2016, ENVIRON SCI POLLUT R, V6, P144, DOI DOI 10.1016/J.JOBE.2016.03.002. Bressanelli G, 2018, PROC CIRP, V73, P216, DOI 10.1016/j.procir.2018.03.322. BUI DT, 2019, J CLEAN PROD, V668, P1038, DOI DOI 10.1016/J.SCITOTENV.2019.02.422. Chan J, 2016, MIS QUART, V40, P381, DOI 10.25300/MISQ/2016/40.2.05. CHATTERJEE S, 2018, SUSTAIN CITIES SOC, V35, P349, DOI DOI 10.1016/J.GIQ.2018.05.002. CHUAI X, 2019, J CLEAN PROD, V686, P828, DOI DOI 10.1016/J.SCITOTENV.2019.05.138. Cleven, 2009, RECONSTRUCTING GIANT. COHEN B, 2014, WASTE MANAGE, V27, P279, DOI DOI 10.1177/1086026614546199. DEGENNARO M, 2016, SCI TOTAL ENVIRON, V6, P11, DOI DOI 10.1016/J.BDR.2016.04.003. Demartini M, 2019, PROCEDIA MANUF, V33, P264, DOI 10.1016/j.promfg.2019.04.032. El-Haggar S., 2007, SUSTAINABLE IND DESI. ELMASSAH S, 2020, RESOUR CONSERV RECY, V169, DOI DOI 10.1016/J.ECOLECON.2019.106490. ESMAEILIAN B, 2020, RENEW SUST ENERG REV, V163, DOI DOI 10.1016/J.RESCONREC.2020.105064. ESMAEILIAN B, 2018, GOV INFORM Q, V81, P177, DOI DOI 10.1016/J.WASMAN.2018.09.047. Nunez EGF, 2017, J CHEM TECHNOL BIOT, V92, P684, DOI 10.1002/jctb.5054. Ferrari F, 2020, J CLEAN PROD, V247, DOI 10.1016/j.jclepro.2019.119618. FIJANI E, 2019, J CLEAN PROD, V648, P839, DOI DOI 10.1016/J.SCITOTENV.2018.08.221. Fitzgerald M., 2013, MIT SLOAN MANAGE REV, V54, P1. Fitzgerald M, 2013, MIT SLOAN MANAGE REV, V54, P15. GARRIDOHIDALGO C, 2020, J CLEAN PROD, V103, P32, DOI DOI 10.1016/J.WASMAN.2019.09.045. GARRIDOHIDALGO C, 2019, HELIYON, V112, DOI DOI 10.1016/J.COMPIND.2019.103127. Genuino DAD, 2017, J ENVIRON CHEM ENG, V5, P4101, DOI 10.1016/j.jece.2017.07.071. GHOBAKHLOO M, 2020, J ENVIRON CHEM ENG, V252, DOI DOI 10.1016/J.JCLEPRO.2019.119869. Gohar M, 2018, SUSTAIN CITIES SOC, V41, P114, DOI 10.1016/j.scs.2018.05.008. GORALSKI MA, 2020, TECHNOL SOC, V18, DOI DOI 10.1016/J.IJME.2019.100330. GU F, 2017, COMPUT IND, V68, P434, DOI DOI 10.1016/J.WASMAN.2017.07.037. HADIPOUR M, 2020, SCI TOTAL ENVIRON, V96, P309, DOI DOI 10.1016/J.ISATRA.2019.06.026. HAMALAINEN E, 2019, J CLEAN PROD, V16, DOI DOI 10.1016/J.JII.2019.100105. HARZING AW, 2016, J ADV NURS, V106, P787, DOI DOI 10.1007/S11192-015-1798-9. Herman J, 2018, J CLEAN PROD, V197, P1352, DOI 10.1016/j.jclepro.2018.06.290. Hess T, 2016, MIS Q EXEC, V15, P123. HONARVAR AR, 2019, SCI TOTAL ENVIRON, V17, P56, DOI DOI 10.1016/J.BDR.2018.05.006. HONG I, 2014, J CLEAN PROD, V2014, DOI DOI 10.1155/2014/646953. HUANG L, 2015, J CLEAN PROD, V30, P1175, DOI DOI 10.1007/S10980-015-0208-2. HUANG YL, 1993, WASTE MANAGE, V22, P117, DOI DOI 10.1016/0166-3615(93)90059-A. HUANG YW, 2015, ISA T, V73, P640, DOI DOI 10.1016/J.MEASUREMENT.2015.06.014. HUANG ZF, 2017, BIG DATA RES, V142, P946, DOI DOI 10.1016/J.JCLEPRO.2016.09.129. Idrees Z, 2020, J IND INF INTEGR, V17, DOI 10.1016/j.jii.2019.100123. JIANG P, 2020, J CLEAN PROD, V103, P285, DOI DOI 10.1016/J.WASMAN.2019.12.041. JONES ML, 2004, BRIT J MANAGE, V48, P271, DOI DOI 10.1111/J.1365-2648.2004.03196.X. JU JR, 2018, WASTE MANAGE, V42, P881, DOI DOI 10.1016/J.TELPOL.2018.01.003. Kamble SS, 2018, PROCESS SAF ENVIRON, V117, P408, DOI 10.1016/j.psep.2018.05.009. KANABKAEW T, 2019, BIG DATA RES, V252, P543, DOI DOI 10.1016/J.ENVPOL.2019.05.082. KANG KD, 2020, WASTE MANAGE, V252, DOI DOI 10.1016/J.JCLEPRO.2019.119801. KAPLAN A, 2020, PROCESS SAF ENVIRON, V63, P37, DOI DOI 10.1016/J.BUSHOR.2019.09.003. Karimi J, 2015, J MANAGE INFORM SYST, V32, P39, DOI 10.1080/07421222.2015.1029380. KASHIWAO T, 2017, SCI TOTAL ENVIRON, V56, P317, DOI DOI 10.1016/J.ASOC.2017.03.015. Kaswan V., 2019, ENCY FOOD SECURITY S, V1, P492. KAUR H, 2018, J CLEAN PROD, V98, P301, DOI DOI 10.1016/J.COR.2017.05.008. KAVOTA JK, 2020, J CLEAN PROD, V52, DOI DOI 10.1016/J.IJINFOMGT.2020.102068. KERDLAP P, 2019, ENGINEERING, V151, DOI DOI 10.1016/J.RESCONREC.2019.104438. Khan ZA, 2018, SUSTAIN CITIES SOC, V40, P1, DOI 10.1016/j.scs.2018.03.026. KIM PW, 2018, FUTURE GENER COMP SY, V37, P1, DOI DOI 10.1016/J.SCS.2017.10.019. Kim S, 2019, APPL OCEAN RES, V91, DOI 10.1016/j.apor.2019.101871. KUMAR A, 2018, COMPUT OPER RES, V27, P428, DOI DOI 10.1016/J.JOCS.2017.06.006. Kunkel S, 2020, ENVIRON SCI POLICY, V112, P318, DOI 10.1016/j.envsci.2020.06.022. LAMBA K, 2019, SUSTAIN CITIES SOC, V128, P1052, DOI DOI 10.1016/J.CIE.2018.04.028. Lazega E., 1995, INFORM SCI INT J EME, V36, P781, DOI {[}DOI 10.28945/479, 10.28945/479, 10.2307/3322457]. Legner C, 2017, BUS INFORM SYST ENG+, V59, P301, DOI 10.1007/s12599-017-0484-2. Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420. LENG J, 2020, SUSTAIN CITIES SOC, V132, DOI DOI 10.1016/J.RSER.2020.110112. LENG X, 2017, J CLEAN PROD, V180, P513, DOI DOI 10.1016/J.CHEMOSPHERE.2017.04.015. Li L, 2018, INFORM SYST J, V28, P1129, DOI 10.1111/isj.12153. Liere-Netheler K, 2018, PROCEEDINGS OF THE 51ST ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), P3926. LIM C, 2018, TELECOMMUN POLICY, V82, P86, DOI DOI 10.1016/J.CITIES.2018.04.011. LIU P, 2019, ENVIRON POLLUT, V210, P343, DOI DOI 10.1016/J.JCLEPRO.2018.10.328. Liu YZ, 2020, J CLEAN PROD, V249, DOI 10.1016/j.jclepro.2019.119350. LOGAN M, 2019, COMPUT IND, V127, P277, DOI DOI 10.1016/J.PSEP.2019.05.025. Jabbour ABLD, 2018, ANN OPER RES, V270, P273, DOI 10.1007/s10479-018-2772-8. LU W, 2019, TRANSPORT RES D-TR E, V141, P264, DOI DOI 10.1016/J.RESCONREC.2018.10.039. LU W, 2015, WASTE MANAGE, V105, P49, DOI DOI 10.1016/J.RESCONREC.2015.10.013. LU W, 2016, COMPUT IND, V112, P521, DOI DOI 10.1016/J.JCLEPRO.2015.06.106. Lu WS, 2018, WASTE MANAGE, V79, P142, DOI 10.1016/j.wasman.2018.07.030. Ma J, 2019, J CLEAN PROD, V237, DOI 10.1016/j.jclepro.2019.117729. Majchrzak A., 2016, MIS Q MANAG INF SYST, V40, P267, DOI {[}10.25300/misq/2016/40:2.03, DOI 10.25300/MISQ/2016/40:2.03, DOI 10.25300/MISQ/2016/40]. Malik KR, 2018, SUSTAIN CITIES SOC, V39, P548, DOI 10.1016/j.scs.2017.11.031. MANAVALAN E, 2019, J COMPUT SCI-NETH, V127, P925, DOI DOI 10.1016/J.CIE.2018.11.030. Mani M., 1998, J ENVIRON DEV, V7, P215, DOI DOI 10.1177/107049659800700302. MAO S, 2019, J CLEAN PROD, V5, P995, DOI DOI 10.1016/J.ENG.2019.08.013. MARQUES P, 2019, RESOUR CONSERV RECY, V87, P200, DOI DOI 10.1016/J.ADHOC.2018.12.009. Martin C, 2019, SUSTAIN CITIES SOC, V45, P640, DOI 10.1016/j.scs.2018.11.028. MATT C, 2015, LONG RANGE PLANN, V57, P339, DOI DOI 10.1007/S12599-015-0401-5. MEHMOOD MU, 2019, J CLEAN PROD, V202, DOI DOI 10.1016/J.ENBUILD.2019.109383. MEZA JKS, 2019, J CLEAN PROD, V5, DOI DOI 10.1016/J.HELIYON.2019.E02810. Mihaita AS, 2019, J CLEAN PROD, V221, P398, DOI 10.1016/j.jclepro.2019.02.179. Miranda J, 2019, COMPUT IND, V108, P21, DOI 10.1016/j.compind.2019.02.002. Moher D, 2015, SYST REV-LONDON, V4, DOI {[}10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1186/s13643-015-0087-2]. Morakanyane R., 2017, 30 BLED ECONFERENCE, DOI {[}DOI 10.18690/978-961-286-043-1.30, 10.18690/978-961-286-043-1.30, DOI 10.18690/978-961-286-043-1]. NAG S, 2018, MEASUREMENT, V11, P83, DOI DOI 10.1016/J.ETI.2018.04.009. Narvanen E, 2018, J CLEAN PROD, V195, P102, DOI 10.1016/j.jclepro.2018.05.202. NEUTZLING DM, 2018, EXTRACT IND SOC, V172, P3448, DOI DOI 10.1016/J.JCLEPRO.2017.11.091. NOWAKOWSKI P, 2018, J CLEAN PROD, V63, P1, DOI DOI 10.1016/J.TRD.2018.04.007. NWANKPA JK, 2017, MIS Q EXEC, V26, P469, DOI DOI 10.1057/S41303-017-0049-Y. OSMAN AMS, 2019, COMPUT COMMUN, V91, P620, DOI DOI 10.1016/J.FUTURE.2018.06.046. Paavola R., 2017, 25 EUR C INF SYST EC, P887. PAPADOPOULOS T, 2017, COMPUT IND ENG, V142, P1108, DOI DOI 10.1016/J.JCLEPRO.2016.03.059. PAPARGYROPOULOU E, 2014, SCI TOTAL ENVIRON, V76, P106, DOI DOI 10.1016/J.JCLEPRO.2014.04.020. PARTEL V, 2019, WASTE MANAGE, V157, P339, DOI DOI 10.1016/J.COMPAG.2018.12.048. Piccinini E., 2015, INT C INF SYST EXPLO. Pimpinella A, 2019, COMPUT NETW, V162, DOI 10.1016/j.comnet.2019.07.013. QI C, 2018, WASTE MANAGE, V183, P566, DOI DOI 10.1016/J.JCLEPRO.2018.02.154. Raut RD, 2019, J CLEAN PROD, V224, P10, DOI 10.1016/j.jclepro.2019.03.181. Ren S, 2019, J CLEAN PROD, V210, P1343, DOI 10.1016/j.jclepro.2018.11.025. Roy V, 2017, J CLEAN PROD, V150, P224, DOI 10.1016/j.jclepro.2017.03.040. SARC R, 2019, BUS INFORM SYST ENG+, V95, P476, DOI DOI 10.1016/J.WASMAN.2019.06.035. SEBASTIAN IM, 2017, SCIENTOMETRICS, V16, P197. SELES BMR, 2018, APPL SOFT COMPUT, V189, P763, DOI DOI 10.1016/J.JCLEPRO.2018.04.113. SHANG Z, 2019, CHEMOSPHERE, V651, P3043, DOI DOI 10.1016/J.SCITOTENV.2018.10.193. Sharma GD, 2020, SUSTAIN FUTURES, V2, DOI 10.1016/j.sftr.2019.100004. Shivajee V, 2019, J CLEAN PROD, V237, DOI 10.1016/j.jclepro.2019.117678. SHUKLA N, 2019, J CLEAN PROD, V128, P905, DOI DOI 10.1016/J.CIE.2018.12.026. SINGH A, 2018, COMPUT IND, V202, P139, DOI DOI 10.1016/J.JCLEPRO.2018.07.236. Singh AK, 2017, MULTIMED SYST APPL, P1, DOI 10.1007/978-3-319-57699-2\_1. SODHRO AH, 2019, SUSTAIN CITIES SOC, V220, P1167, DOI DOI 10.1016/J.JCLEPRO.2019.01.188. SOLEYMANI AR, 2018, ENVIRON TECHNOL INNO, V347, P243, DOI DOI 10.1016/J.CEJ.2018.04.093. SONG M, 2018, J CLEAN PROD, V25, P13745, DOI DOI 10.1007/S11356-018-1574-5. SUJATA M, 2019, PROCESS SAF ENVIRON, V20, P365, DOI DOI 10.1016/J.SPC.2019.08.005. SUN M, 2020, J CLEAN PROD, V149, P332, DOI DOI 10.1016/J.COMCOM.2019.10.031. Sun Y, 2016, J CLEAN PROD, V131, P1, DOI {[}10.1016/j.jclepro.2016.05.068, 10.1016/j.jcle]. TAO F, 2018, ENERG BUILDINGS, V48, P157, DOI DOI 10.1016/J.JMSY.2018.01.006. TARIQ A, 2017, J CLEAN PROD, V51, P8, DOI DOI 10.1016/J.TECHSOC.2017.06.002. Teece D.J., 2010, STRATEGIC MANAGE J, V28, P1319, DOI DOI 10.1002/SMJ.640. Tober M., 2011, MED LASER APPL, V26, P139, DOI DOI 10.1016/J.MLA.2011.05.006. Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375. UKKO J, 2019, ORGAN ENVIRON, V236, DOI DOI 10.1016/J.JCLEPRO.2019.117626. Venkatesan G, 2020, MATER TODAY-PROC, V33, P2729, DOI 10.1016/j.matpr.2020.01.498. Verhoef PC, 2021, J BUS RES, V122, P889, DOI 10.1016/j.jbusres.2019.09.022. Vial G, 2019, J STRATEGIC INF SYST, V28, P118, DOI 10.1016/j.jsis.2019.01.003. WANG S, 2018, RESOUR CONSERV RECY, V195, P507, DOI DOI 10.1016/J.JCLEPRO.2018.05.203. WANG Z, 2019, J MANUF SYST, V236, DOI DOI 10.1016/J.JCLEPRO.2019.06.330. Warner KSR, 2019, LONG RANGE PLANN, V52, P326, DOI 10.1016/j.lrp.2018.12.001. Weersink A, 2018, ANNU REV RESOUR ECON, V10, P19, DOI 10.1146/annurev-resource-100516-053654. WEN Z, 2018, SCI WORLD J, V73, P26, DOI DOI 10.1016/J.WASMAN.2017.11.054. Wlomert N, 2016, INT J RES MARK, V33, P314, DOI 10.1016/j.ijresmar.2015.11.002. WU Y, 2018, SUSTAIN CITIES SOC, V173, P60, DOI DOI 10.1016/J.JCLEPRO.2017.01.047. Xiang F, 2019, PROC CIRP, V81, P1290, DOI 10.1016/j.procir.2019.04.015. XIE Y, 2018, SCI TOTAL ENVIRON, V185, P912, DOI DOI 10.1016/J.JCLEPRO.2018.03.101. Xu FC, 2019, J CLEAN PROD, V209, P782, DOI 10.1016/j.jclepro.2018.10.240. Yalina N., 2020, IOP Conference Series: Earth and Environmental Science, V456, DOI 10.1088/1755-1315/456/1/012022. Yazdani M, 2021, J CLEAN PROD, V280, DOI 10.1016/j.jclepro.2020.124138. YE Z, 2020, ENVIRON POLLUT, V699, DOI DOI 10.1016/J.SCITOTENV.2019.134279. Yu RF, 2013, CHEM ENG J, V218, P341, DOI 10.1016/j.cej.2012.12.061. Zhang D, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2019.103231. ZHANG R, 2019, BUS HORIZONS, V665, P338, DOI DOI 10.1016/J.SCITOTENV.2019.01.431. ZHANG Y, 2017, COMPUT ELECTRON AGR, V142, P626, DOI DOI 10.1016/J.JCLEPRO.2016.07.123. Zhang YF, 2018, J CLEAN PROD, V197, P57, DOI 10.1016/j.jclepro.2018.06.170. ZHAO L, 2020, CHEM ENG J, V133, P169, DOI DOI 10.1016/J.PSEP.2019.11.014.}, Number-of-Cited-References = {163}, Times-Cited = {89}, Usage-Count-Last-180-days = {192}, Usage-Count-Since-2013 = {501}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {QD6OS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000615635500001}, OA = {Green Published, gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000610927300001, Author = {Farzaneh, Hooman and Malehmirchegini, Ladan and Bejan, Adrian and Afolabi, Taofeek and Mulumba, Alphonce and Daka, Precious P.}, Title = {Artificial Intelligence Evolution in Smart Buildings for Energy Efficiency}, Journal = {APPLIED SCIENCES-BASEL}, Year = {2021}, Volume = {11}, Number = {2}, Month = {JAN}, Abstract = {The emerging concept of smart buildings, which requires the incorporation of sensors and big data (BD) and utilizes artificial intelligence (AI), promises to usher in a new age of urban energy efficiency. By using AI technologies in smart buildings, energy consumption can be reduced through better control, improved reliability, and automation. This paper is an in-depth review of recent studies on the application of artificial intelligence (AI) technologies in smart buildings through the concept of a building management system (BMS) and demand response programs (DRPs). In addition to elaborating on the principles and applications of the AI-based modeling approaches widely used in building energy use prediction, an evaluation framework is introduced and used for assessing the recent research conducted in this field and across the major AI domains, including energy, comfort, design, and maintenance. Finally, the paper includes a discussion on the open challenges and future directions of research on the application of AI in smart buildings.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Farzaneh, H (Corresponding Author), Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Fukuoka 8168580, Japan. Farzaneh, Hooman; Malehmirchegini, Ladan; Afolabi, Taofeek; Mulumba, Alphonce; Daka, Precious P., Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Fukuoka 8168580, Japan. Bejan, Adrian, Duke Univ, Dept Mech Engn \& Mat Sci, Durham, NC 27708 USA.}, DOI = {10.3390/app11020763}, Article-Number = {763}, EISSN = {2076-3417}, Keywords = {artificial intelligence; smart buildings; energy efficiency}, Research-Areas = {Chemistry; Engineering; Materials Science; Physics}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied}, Author-Email = {farzaneh.hooman.961@m.kyushu-u.ac.jp malehmirchegini.ladan.982@s.kyushu-u.ac.jp abejan@duke.edu afolabi.taofeek.203@s.kyushu-u.ac.jp mulumba.alphonce.203@s.kyushu-u.ac.jp daka.preciousp.203@s.kyushu-u.ac.jp}, Affiliations = {Kyushu University; Duke University}, ResearcherID-Numbers = {Farzaneh, Hooman/AAS-7993-2020 }, ORCID-Numbers = {Farzaneh, Hooman/0000-0002-3753-5928 Mulumba, Alphonce/0000-0001-6237-3038 Bejan, Adrian/0000-0002-2419-2698 Afolabi, Taofeek/0000-0002-4983-3236}, Funding-Acknowledgement = {Kyushu Natural Energy Promotion Organization; Hitachi Global Foundation}, Funding-Text = {This research was supported by the Kyushu Natural Energy Promotion Organization and Hitachi Global Foundation for supporting of financial support of this research.}, Cited-References = {Ahmad MW, 2017, ENERG BUILDINGS, V147, P77, DOI 10.1016/j.enbuild.2017.04.038. Al Dakheel J, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102328. Al Raees Nihal, 2014, American Journal of Engineering and Applied Sciences, V7, P58, DOI 10.3844/ajeassp.2014.58.65. Alahakoon D, 2016, IEEE T IND INFORM, V12, P425, DOI 10.1109/TII.2015.2414355. Aliyan E, 2020, ELECTR POW SYST RES, V178, DOI 10.1016/j.epsr.2019.106036. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Allen WH, 2016, IEEE T IND APPL, V52, P2513, DOI 10.1109/TIA.2015.2511160. Pham AD, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.121082. {[}Anonymous], 2002, ARTIF INTELL. Arena F., 2020, B ELECT ENG INFORM, V9, DOI {[}10.11591/eei.v9i4.2359, DOI 10.11591/EEI.V9I4.2359]. Ascione F, 2017, ENERGY, V118, P999, DOI 10.1016/j.energy.2016.10.126. Bayindir R, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P523, DOI 10.1109/ICMLA.2017.0-108. Bejan A, 2020, ENERGY, V1. Bejan A, 2015, EUR REV, V23, P481, DOI 10.1017/S1062798715000216. BELLMAN RE, 1970, MANAGE SCI B-APPL, V17, pB141. Berrar D., 2019, ENCY BIOINFORMATICS, V1, P403, DOI DOI 10.1016/B978-0-12-809633-8.20473-1. Bonetto R., 2017, MACHINE LEARNING APP. Boukerche A, 2020, COMPUT NETW, V182, DOI 10.1016/j.comnet.2020.107484. Brynjolfsson E., WORKING PAPER 24001. Bryson J., 2020, OXFORD HDB ETHICS, P1. Camarena S, 2020, J CLEAN PROD, V271, DOI 10.1016/j.jclepro.2020.122574. Catalina T, 2008, ENERG BUILDINGS, V40, P1825, DOI 10.1016/j.enbuild.2008.04.001. Chae YT, 2016, ENERG BUILDINGS, V111, P184, DOI 10.1016/j.enbuild.2015.11.045. Chemali E, 2018, J POWER SOURCES, V400, P242, DOI 10.1016/j.jpowsour.2018.06.104. Chen WZ, 2020, CITIES, V101, DOI 10.1016/j.cities.2020.102703. Chui KT, 2018, ENERGIES, V11, DOI 10.3390/en11112869. Coppin B., 2004, ARTIF INTELL. Das S, 2020, ENERGY, V190, DOI 10.1016/j.energy.2019.116441. Daut MAM, 2017, RENEW SUST ENERG REV, V70, P1108, DOI 10.1016/j.rser.2016.12.015. Doll CNH, 2017, ROUT ADV CLIMATE, P1, DOI 10.4324/9781315667300. Doucoure B, 2016, RENEW ENERG, V92, P202, DOI 10.1016/j.renene.2016.02.003. Errera MR, 2014, INT J HEAT MASS TRAN, V75, P327, DOI 10.1016/j.ijheatmasstransfer.2014.03.039. Ertel W., 2018, INTRO ARTIFICIAL INT. Ewert M., 2018, CORP REAL ESTATE J, V7, P337. Fan GF, 2019, ENERGIES, V12, DOI 10.3390/en12050916. Farzana S, 2014, ENERG BUILDINGS, V81, P161, DOI 10.1016/j.enbuild.2014.06.007. Farzaneh H., 2019, ENERGY SYSTEMS MODEL, DOI DOI 10.1007/978-981-13-6221-7. Farzaneh Hooman, 2018, DEVISING CLEAN ENERG, P1, DOI {[}10.1007/978-981-13-0782-9, DOI 10.1007/978-981-13-0782-9]. Gao GY, 2020, IEEE INTERNET THINGS, V7, P8472, DOI 10.1109/JIOT.2020.2992117. Ghasemi A, 2016, APPL ENERG, V177, P40, DOI 10.1016/j.apenergy.2016.05.083. Ghorashi SM, 2020, SUSTAIN CITIES SOC, V60, DOI 10.1016/j.scs.2020.102150. Gomes PV, 2017, INT CONF EUR ENERG, DOI 10.1109/EEM.2017.7981850. Grueneich Dian M., 2015, Electricity Journal, V28, P44, DOI 10.1016/j.tej.2015.07.001. Grygierek K, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18041144. Hafeez G, 2019, PROCESSES, V7, DOI 10.3390/pr7080499. Imani MH, 2019, 2019 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), DOI 10.1109/TPEC.2019.8662184. International Energy Agency (IEA), 2008, INT EN AG WORLD EN O. Kato Takaaki, 2016, Electricity Journal, V29, P12, DOI 10.1016/j.tej.2016.02.002. Katz D, 2009, INTELL BUILD INT, V1, P277, DOI 10.3763/inbi.2009.SI05. Keshavarz A., 2014, P IEEE EL COMP ENG C, P1, DOI {[}10.2118/167757-MS, DOI 10.1109/CCECE.2014.6901160]. Khalid A, 2018, IEEE ACCESS, V6, P19509, DOI 10.1109/ACCESS.2018.2791546. Khan ASM, 2018, APPL ENERG, V214, P39, DOI 10.1016/j.apenergy.2018.01.057. Kim J, 2018, BUILD ENVIRON, V129, P96, DOI 10.1016/j.buildenv.2017.12.011. Kiran MS, 2012, KNOWL-BASED SYST, V36, P93, DOI 10.1016/j.knosys.2012.06.009. Kirwan CG, 2020, SMART CITIES ARTIFIC. Konstantakopoulos I.C., 2018, DEEP LEARNING GAMIFI. Kyriacou A, 2017, IEEE TETCI, V1, P72, DOI 10.1109/TETCI.2017.2665119. Li KJ, 2011, ENERG BUILDINGS, V43, P2893, DOI 10.1016/j.enbuild.2011.07.010. Li Q, 2009, APPL ENERG, V86, P2249, DOI 10.1016/j.apenergy.2008.11.035. Li Q, 2009, ENERG CONVERS MANAGE, V50, P90, DOI 10.1016/j.enconman.2008.08.033. Lin CM, 2022, MICROSYST TECHNOL, V28, P121, DOI 10.1007/s00542-019-04479-z. Lorente S, 2012, INT J HEAT MASS TRAN, V55, P2213, DOI 10.1016/j.ijheatmasstransfer.2012.01.020. Ma GF, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11184972. Ma ZT, 2019, ENRGY PROCED, V158, P3433, DOI 10.1016/j.egypro.2019.01.931. Manzoor A, 2017, ENERGIES, V10, DOI 10.3390/en10091258. Mariano-Hernandez D, 2021, J BUILD ENG, V33, DOI 10.1016/j.jobe.2020.101692. Marsland S., 2015, MACHINE LEARNING ALG, V2nd ed., DOI DOI 10.1016/S0967-2109(97)89838-9. Marzband M, 2018, RENEW ENERG, V126, P95, DOI 10.1016/j.renene.2018.03.021. Marzband M, 2018, SUSTAIN CITIES SOC, V40, P136, DOI 10.1016/j.scs.2018.04.010. Massana J, 2015, ENERG BUILDINGS, V92, P322, DOI 10.1016/j.enbuild.2015.02.007. Mazidi M, 2014, ENERG CONVERS MANAGE, V86, P1118, DOI 10.1016/j.enconman.2014.06.078. McCarthy J, 2006, AI MAG, V27, P12. Mehmood MU, 2019, ENERG BUILDINGS, V202, DOI 10.1016/j.enbuild.2019.109383. Mena R, 2014, ENERG BUILDINGS, V82, P142, DOI 10.1016/j.enbuild.2014.06.052. Mohammadi S, 2015, P 19 TRIENNIAL C INT, P1. Mohsenian-Rad AH, 2010, IEEE T SMART GRID, V1, P120, DOI 10.1109/TSG.2010.2055903. Moradzadeh A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083158. Mosavi A, 2019, ENERGIES, V12, DOI 10.3390/en12071301. Moutis P, 2016, APPL ENERG, V161, P197, DOI 10.1016/j.apenergy.2015.10.002. Oladeji O., P 2014 IEEE 6 INT C, DOI {[}10.1109/ICASTECH.2014.7068096, DOI 10.1109/ICASTECH.2014.7068096]. Olayode O. I., 2020, Procedia CIRP, V91, P194, DOI 10.1016/j.procir.2020.02.167. Ozturk Y, 2013, IEEE T SMART GRID, V4, P694, DOI 10.1109/TSG.2012.2235088. Panchalingam Rav, 2021, Intelligent Buildings International, V13, P203, DOI 10.1080/17508975.2019.1613219. Pau G, 2018, FUTURE INTERNET, V10, DOI 10.3390/fi10020015. Prasetiyo B., 2019, Journal of Physics: Conference Series, V1321, DOI 10.1088/1742-6596/1321/3/032016. Qurat-ul A, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18092802. Raza MQ, 2015, RENEW SUST ENERG REV, V50, P1352, DOI 10.1016/j.rser.2015.04.065. Reynolds J, 2018, ENERGY, V151, P729, DOI 10.1016/j.energy.2018.03.113. Rivera Wilson, 2017, SUSTAINABLE CLOUD EN. Rocha LAO, 2010, J APPL PHYS, V108, DOI 10.1063/1.3516155. Runge J, 2019, ENERGIES, V12, DOI 10.3390/en12173254. Saebi J., 2010, 2010 IEEE International Energy Conference (ENERGYCON 2010), P791, DOI 10.1109/ENERGYCON.2010.5771788. Sarshar J, 2017, ENERGY, V139, P680, DOI 10.1016/j.energy.2017.07.138. Sarwat AI, 2016, J MOD POWER SYST CLE, V4, P308, DOI 10.1007/s40565-015-0120-4. Sembroiz D, 2019, INFORM SCIENCES, V476, P439, DOI 10.1016/j.ins.2018.06.003. Sengupta S, 2019, MACH LEARN KNOW EXTR, V1, P157, DOI 10.3390/make1010010. Seyedzadeh Saleh, 2018, Visualization in Engineering, V6, DOI 10.1186/s40327-018-0064-7. Shahinzadeh H, 2019, 2019 INTERNATIONAL CONFERENCE ON PROTECTION AND AUTOMATION OF POWER SYSTEM (IPAPS), P22, DOI 10.1109/IPAPS.2019.8641944. Sharma K, 2015, RENEW SUST ENERG REV, V49, P720, DOI 10.1016/j.rser.2015.04.170. Sharma SK, 2020, IEEE COMMUN SURV TUT, V22, P426, DOI 10.1109/COMST.2019.2916177. Smarra F, 2018, APPL ENERG, V226, P1252, DOI 10.1016/j.apenergy.2018.02.126. Stankovic L, 2016, APPL ENERG, V183, P1565, DOI 10.1016/j.apenergy.2016.09.087. Sun W, 2017, ENVIRON ENG RES, V22, P302, DOI 10.4491/eer.2016.153. Takatsu N, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10124061. Tascikaraoglu A, 2019, IEEE T SUSTAIN ENERG, V10, P137, DOI 10.1109/TSTE.2018.2828337. Tavakoli M, 2018, INT J ELEC POWER, V100, P1, DOI 10.1016/j.ijepes.2018.02.022. Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069. Vardakas JS, 2015, IEEE COMMUN SURV TUT, V17, P152, DOI 10.1109/COMST.2014.2341586. Vazquez-Canteli JR, 2019, APPL ENERG, V235, P1072, DOI 10.1016/j.apenergy.2018.11.002. Vesnic-Alujevic L, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101961. VITO NV, SMART READINESS INDI. Voyant C, 2017, RENEW ENERG, V105, P569, DOI 10.1016/j.renene.2016.12.095. Wahid F., 2016, INT J SMART HOME, V10, P97, DOI {[}10.14257/ijsh.2016.10.2.10, DOI 10.14257/IJSH.2016.10.2.10]. Walk Score, 2011, WALK SCORE METHODOLO. Wang YL, 2017, PROCEDIA ENGINEER, V205, P3585, DOI 10.1016/j.proeng.2017.10.207. Wang ZY, 2018, ENERG BUILDINGS, V171, P11, DOI 10.1016/j.enbuild.2018.04.008. Wang ZY, 2017, RENEW SUST ENERG REV, V75, P796, DOI 10.1016/j.rser.2016.10.079. Wei YX, 2018, RENEW SUST ENERG REV, V82, P1027, DOI 10.1016/j.rser.2017.09.108. Yokoyama R, 2009, ENERG CONVERS MANAGE, V50, P319, DOI 10.1016/j.enconman.2008.09.017. Yoshida Y, 2020, ENERGIES, V13, DOI 10.3390/en13071737. Yu SW, 2012, ENERG POLICY, V42, P329, DOI 10.1016/j.enpol.2011.11.090. ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X. Zhang J, 2012, ENRGY PROCED, V16, P1913, DOI 10.1016/j.egypro.2012.01.292. Zhao HX, 2012, RENEW SUST ENERG REV, V16, P3586, DOI 10.1016/j.rser.2012.02.049. Zhao Y, 2019, RENEW SUST ENERG REV, V109, P85, DOI 10.1016/j.rser.2019.04.021. Zhong H, 2019, APPL ENERG, V242, P403, DOI 10.1016/j.apenergy.2019.03.078.}, Number-of-Cited-References = {126}, Times-Cited = {23}, Usage-Count-Last-180-days = {25}, Usage-Count-Since-2013 = {77}, Journal-ISO = {Appl. Sci.-Basel}, Doc-Delivery-Number = {PW8OK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000610927300001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000925307900001, Author = {Bahramian, Majid and Dereli, Recep Kaan and Zhao, Wanqing and Giberti, Matteo and Casey, Eoin}, Title = {Data to intelligence: The role of data-driven models in wastewater treatment}, Journal = {EXPERT SYSTEMS WITH APPLICATIONS}, Year = {2023}, Volume = {217}, Month = {MAY 1}, Abstract = {Increasing energy efficiency in wastewater treatment plants (WWTPs) is becoming more important. An emerging approach to addressing this issue is to exploit development in data science and modelling. Deployment of sensors to measure various parameters in WWTPs opens greater opportunities for exploiting the wealth of data. Artificial intelligence (AI) is emerging as a solution for automation and digitalization in the wastewater sector. This review aims to comprehensively investigate, summarize and analyze recent developments in AI methods applied to the modelling of WWTPs. The review shows that among the standalone models, Artificial Neural Networks (ANN) was the most popular model followed by, in descending order: Decision Trees (DT), Fuzzy Logic (FL), Genetic algorithm (GA) and Support Vector Machine (SVM). In the case of incomplete data, FL was the most frequently used method as it uses linguistic expert rules to find an approximation for the missing data. Regarding accuracy and precision, hybrid models demonstrated relatively better performance than the standalone ones. Among these models, the Machine Learning (ML)-metaheuristic, which integrates an AI model with a bioinspired optimization method, was the most preferred type as it was used in more than 45\% of the hybrid models. Correlation coefficient (R), Correlation of Determination (R2) and Root Mean Square Error (RMSE) were the frequently used metrics for model performance evaluation. Finally, the review shows that despite recent developments, industrial deployment is still lacking. The industrial application requires close interaction of interested parties, among which research institutes, private sector and public sector play an inevitable role. The future research should focus on mitigating the barriers for more in-depth collaboration of interested parties and finding new paths for more cooperative and harmonized activity of them.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Bahramian, M (Corresponding Author), Univ Coll Dublin, Sch Chem \& Bioproc Engn, Dublin, Ireland. Bahramian, Majid; Dereli, Recep Kaan; Giberti, Matteo; Casey, Eoin, Univ Coll Dublin, Sch Chem \& Bioproc Engn, Dublin, Ireland. Zhao, Wanqing, Newcastle Univ, Sch Comp, Urban Sci Bldg,1 Sci Sq, Newcastle Upon Tyne NE4 5TG, England.}, DOI = {10.1016/j.eswa.2022.119453}, EarlyAccessDate = {JAN 2023}, Article-Number = {119453}, ISSN = {0957-4174}, EISSN = {1873-6793}, Keywords = {Artificial intelligence; Machine learning; Modeling; Optimization; Deep learning; Wastewater treatment}, Keywords-Plus = {RESPONSE-SURFACE METHODOLOGY; EFFLUENT QUALITY PARAMETERS; NEURAL-NETWORK APPROACH; TREATMENT-PLANT; FUZZY-LOGIC; ARTIFICIAL-INTELLIGENCE; GENETIC ALGORITHM; REVERSE-OSMOSIS; ANAEROBIC-DIGESTION; PREDICTION MODEL}, Research-Areas = {Computer Science; Engineering; Operations Research \& Management Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Engineering, Electrical \& Electronic; Operations Research \& Management Science}, Author-Email = {Majid.bahramian@ucd.ie Wanqing.Zhao@newcastle.ac.uk}, Affiliations = {University College Dublin; Newcastle University - UK}, Funding-Acknowledgement = {Science Foundation Ireland under the SFI Strategic Partnership Programme {[}SFI/15/SPP/E3125]}, Funding-Text = {This publication has been financially supported by Science Founda- tion Ireland under the SFI Strategic Partnership Programme Grant No. SFI/15/SPP/E3125. The opinions, findings and conclusions or recom- mendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the Science Foundation Ireland.}, Cited-References = {Abdallah M, 2020, WASTE MANAGE, V109, P231, DOI 10.1016/j.wasman.2020.04.057. Adeogun AI, 2021, J ENVIRON MANAGE, V281, DOI 10.1016/j.jenvman.2020.111897. Aghilesh K, 2021, J CLEAN PROD, V289, DOI 10.1016/j.jclepro.2020.125690. Ahmed AN, 2019, J HYDROL, V578, DOI 10.1016/j.jhydrol.2019.124084. Aish AM, 2015, DESALINATION, V367, P240, DOI 10.1016/j.desal.2015.04.008. Akbas H, 2015, BIORESOURCE TECHNOL, V196, P566, DOI 10.1016/j.biortech.2015.08.017. Al-Obaidi MA, 2018, CHEM ENG J, V350, P824, DOI 10.1016/j.cej.2018.06.022. Al-Obaidi MA, 2017, CHEM ENG J, V316, P91, DOI 10.1016/j.cej.2016.12.096. Almomani F, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140854. Alsadaie S., 2016, DEV HYBRID FUZZY GMC, DOI {[}10.1016/B978-0-444-63428-3.50156-9, DOI 10.1016/B978-0-444-63428-3.50156-9]. Alwan G., 2012, CHEM PROCESS ENG RES, V5, P22. Ansari M, 2020, SCI TOTAL ENVIRON, V722, DOI 10.1016/j.scitotenv.2020.137878. Asadi M, 2020, J ENVIRON MANAGE, V253, DOI 10.1016/j.jenvman.2019.109708. Asfaram A, 2016, ULTRASON SONOCHEM, V32, P418, DOI 10.1016/j.ultsonch.2016.04.011. Attwa M, 2020, J APPL GEOPHYS, V175, DOI 10.1016/j.jappgeo.2020.103992. Ayodele BV, 2021, PROCESS SAF ENVIRON, V145, P120, DOI 10.1016/j.psep.2020.07.053. Babic S, 2007, CHROMATOGRAPHIA, V65, P105, DOI 10.1365/s10337-006-0109-2. Badrnezhad R, 2014, J IND ENG CHEM, V20, P528, DOI 10.1016/j.jiec.2013.05.012. Bae H, 2006, WATER SCI TECHNOL, V53, P217, DOI 10.2166/wst.2006.024. Baki OT, 2018, MEMBR WATER TREAT, V9, P455, DOI 10.12989/mwt.2018.9.6.455. Balasubramani K, 2020, J MOL LIQ, V319, DOI 10.1016/j.molliq.2020.114371. Beigi AAM, 2020, J ANAL CHEM+, V75, P1486, DOI 10.1134/S1061934820110039. Beigman E., 2009, P JOINT C 47 ANN M A, P280, DOI DOI 10.3115/1687878.1687919. Bello O., 2014, J ELECTR SYST INF TE, V1, P129, DOI {[}10.1016/j.jesit.2014.08.001, DOI 10.1016/J.JESIT.2014.08.001]. Beltramo Tanja, 2019, Information Processing in Agriculture, V6, P349, DOI 10.1016/j.inpa.2019.01.002. Beraud B, 2007, WATER SCI TECHNOL, V56, P109, DOI 10.2166/wst.2007.592. Bernardelli A, 2020, WATER SCI TECHNOL, V81, P2391, DOI 10.2166/wst.2020.298. Bertanza G, 2020, WATER SCI TECHNOL, V81, P1552, DOI 10.2166/wst.2020.084. Fard MB, 2020, INT J ENVIRON RES, V14, P527, DOI 10.1007/s41742-020-00274-1. Bhagat SK, 2020, J CLEAN PROD, V250, DOI 10.1016/j.jclepro.2019.119473. Bhatti MS, 2011, DESALINATION, V274, P74, DOI 10.1016/j.desal.2011.01.083. Bijlsma L, 2021, SCI TOTAL ENVIRON, V772, DOI 10.1016/j.scitotenv.2020.144794. Bishoff D, 2021, J ENVIRON MANAGE, V290, DOI 10.1016/j.jenvman.2021.112543. Boiocchi R, 2016, IFAC PAPERSONLINE, V49, P1157, DOI 10.1016/j.ifacol.2016.07.359. Borges RM, 2016, WATER SCI TECHNOL, V74, P309, DOI 10.2166/wst.2016.156. Boztoprak H, 2016, DESALIN WATER TREAT, V57, P17195, DOI 10.1080/19443994.2015.1085909. Brand N, 2011, WATER ENVIRON RES, V83, P53, DOI 10.2175/106143010X12780288628219. Brodley CE, 1999, J ARTIF INTELL RES, V11, P131, DOI 10.1613/jair.606. Bylinski H, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164407. Cai WF, 2019, BIOSENS BIOELECTRON, V133, P64, DOI 10.1016/j.bios.2019.03.021. Caraman S, 2020, PROCESSES, V8, DOI 10.3390/pr8101203. Carrasco EF, 2002, EXPERT SYST APPL, V22, P11, DOI 10.1016/S0957-4174(01)00045-8. Celik U., 2013, J SELCUK, V1, P138. Chang NB, 2001, CIV ENG ENVIRON SYST, V18, P1, DOI 10.1080/02630250108970290. Chang W., 2012, FUZZY DECISION MAKIN. Chen HW, 2010, RESOUR CONSERV RECY, V54, P235, DOI 10.1016/j.resconrec.2009.08.005. Chen YF, 2019, BIORESOURCE TECHNOL, V293, DOI 10.1016/j.biortech.2019.122103. Chen YY, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/6564202. Cheng TY, 2020, IEEE ACCESS, V8, P184475, DOI 10.1109/ACCESS.2020.3030820. Chiu YC, 2017, WATER SCI TECHNOL, V76, P1739, DOI 10.2166/wst.2017.359. Chung ES, 2014, J ENVIRON MANAGE, V146, P505, DOI 10.1016/j.jenvman.2014.08.013. Belchior CAC, 2012, COMPUT CHEM ENG, V37, P152, DOI 10.1016/j.compchemeng.2011.09.011. Cong Q, 2022, INTEGRATED SOFT SENS, DOI {[}10.1177/00202940221089272COPY.MeasurementandControl;0(0), DOI 10.1177/00202940221089272COPY.MEASUREMENTANDCONTROL;0(0)]. Corominas L, 2018, ENVIRON MODELL SOFTW, V106, P89, DOI 10.1016/j.envsoft.2017.11.023. Dawood AS, 2013, WATER-SUI, V5, P342, DOI 10.3390/w5020342. Soares APDR, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.103952. Deepnarain N, 2019, PROCESS SAF ENVIRON, V126, P25, DOI 10.1016/j.psep.2019.02.023. Dehghani M, 2019, J HYDROL, V576, P698, DOI 10.1016/j.jhydrol.2019.06.065. Du XJ, 2020, WATER-SUI, V12, DOI 10.3390/w12092604. Durrenmatt DJ, 2012, ENVIRON MODELL SOFTW, V30, P47, DOI 10.1016/j.envsoft.2011.11.007. Ehteram M, 2020, ENVIRON SCI POLLUT R, V27, P15278, DOI 10.1007/s11356-020-08023-9. Environmental Protection Agency (EPA), 2019, URB WAST WAT TREATM. Lopez ME, 2017, J HAZARD MATER, V324, P100, DOI 10.1016/j.jhazmat.2016.03.018. Fan W, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110527. Fan Wenbing, 2020, 2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), P90, DOI 10.1109/CTISC49998.2020.00022. Fang AD, 2019, DESALIN WATER TREAT, V163, P415, DOI 10.5004/dwt.2019.24216. Farzin S, 2020, J CLEAN PROD, V266, DOI 10.1016/j.jclepro.2020.122075. Fawzy M, 2016, ECOL ENG, V95, P743, DOI 10.1016/j.ecoleng.2016.07.007. Femandez FJ, 2009, ENVIRON MODELL SOFTW, V24, P686, DOI 10.1016/j.envsoft.2008.10.010. de Canete JF, 2021, COMPUT CHEM ENG, V144, DOI 10.1016/j.compchemeng.2020.107146. Fine TL., 2005, IEEE T INFORM THEORY, V42, P1322, DOI {[}10.1109/TIT.1996.508868, DOI 10.1109/TIT.1996.508868, 10.1109/tit.1996.508868]. Fiter M, 2005, ENVIRON TECHNOL, V26, P1263, DOI 10.1080/09593332608618596. Fonseca RR, 2018, WATER SCI TECHNOL, V78, P2586, DOI 10.2166/wst.2019.015. Foroughi M, 2020, ENVIRON MODEL ASSESS, V25, P327, DOI 10.1007/s10666-019-09675-9. Fu Z, 2020, COMPUT ELECTR ENG, V85, DOI 10.1016/j.compeleceng.2020.106701. Ghandehari S, 2011, DESALINATION, V277, P348, DOI 10.1016/j.desal.2011.04.057. Ghazali A, 2018, J ENVIRON CHEM ENG, V6, P3942, DOI 10.1016/j.jece.2018.05.043. Godini K, 2021, PROCESS SAF ENVIRON, V148, P114, DOI 10.1016/j.psep.2020.09.057. Golzar F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166386. Granata F, 2017, WATER-SUI, V9, DOI 10.3390/w9020105. Guan NY, 2019, IEEE T PATTERN ANAL, V41, P246, DOI 10.1109/TPAMI.2017.2777841. Guo H, 2015, J ENVIRON SCI-CHINA, V32, P90, DOI 10.1016/j.jes.2015.01.007. Gupta SK, 2017, J CLEAN PROD, V147, P419, DOI 10.1016/j.jclepro.2017.01.144. Haghiri S., 2018, Drinking Water Engineering and Science, V11, P1, DOI 10.5194/dwes-11-1-2018. Hamed MM, 2004, ENVIRON MODELL SOFTW, V19, P919, DOI 10.1016/j.envsoft.2003.10.005. Han HG, 2011, APPL SOFT COMPUT, V11, P3812, DOI 10.1016/j.asoc.2011.02.014. Han HG, 2018, WATER SCI TECHNOL, V77, P617, DOI 10.2166/wst.2017.574. Han HG, 2018, WATER SCI TECHNOL, V77, P467, DOI 10.2166/wst.2017.562. Hashimoto S, 2021, CHEMOSPHERE, V276, DOI 10.1016/j.chemosphere.2021.130085. Hayder G, 2014, J WATER PROCESS ENG, V4, P1, DOI 10.1016/j.jwpe.2014.08.006. Heddam S, 2012, ENVIRON MONIT ASSESS, V184, P1953, DOI 10.1007/s10661-011-2091-x. Heo S, 2021, IEEE T IND INFORM, V17, P6925, DOI 10.1109/TII.2020.3039272. Heo S, 2021, J CLEAN PROD, V291, DOI 10.1016/j.jclepro.2021.125853. Hocaoglu SM, 2017, RESOUR CONSERV RECY, V122, P43, DOI 10.1016/j.resconrec.2017.01.022. Holubar P, 2002, WATER RES, V36, P2582, DOI 10.1016/S0043-1354(01)00487-0. Hsu LC, 2009, EXPERT SYST APPL, V36, P7898, DOI 10.1016/j.eswa.2008.11.004. Huang MZ, 2010, BIORESOURCE TECHNOL, V101, P1642, DOI 10.1016/j.biortech.2009.08.111. Huang MZ, 2016, J CHEM TECHNOL BIOT, V91, P226, DOI 10.1002/jctb.4568. Huang MZ, 2015, APPL SOFT COMPUT, V27, P1, DOI 10.1016/j.asoc.2014.10.034. Huang MZ, 2011, IND ENG CHEM RES, V50, P13500, DOI 10.1021/ie201296p. Huang SG, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17092087. Huang Y, 2020, SCI TOTAL ENVIRON, V715, DOI 10.1016/j.scitotenv.2020.136816. Huang YK, 2019, ENVIRON SCI TECHNOL, V53, P3140, DOI 10.1021/acs.est.8b05928. Huang ZH, 2019, COMPLEXITY, V2019, DOI 10.1155/2019/2468189. Hwang TM, 2009, DESALINATION, V247, P285, DOI 10.1016/j.desal.2008.12.031. Hwangbo S, 2021, ENVIRON SCI TECHNOL, V55, P2143, DOI 10.1021/acs.est.0c05231. Iqbal J, 2009, CHEM ENG RES DES, V87, P1481, DOI 10.1016/j.cherd.2009.04.010. Jiang W, 2019, J CLEAN PROD, V212, P1210, DOI 10.1016/j.jclepro.2018.12.093. Jun LY, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2020.113940. Jung Yong-Jun, 2016, {[}Journal of Korean Society on Water Environment, 한국물환경학회지], V32, P253. Karimi A. R., 2011, INT J CIV ENG, V5, P27. Karri RR, 2020, IND CROP PROD, V143, DOI 10.1016/j.indcrop.2019.111927. Kazemi P, 2021, PROCESS SAF ENVIRON, V146, P905, DOI 10.1016/j.psep.2020.12.016. Khac-Uan D., 2020, MODELING MEMBRANES M, DOI {[}10.1002/9781119536260.ch9, DOI 10.1002/9781119536260.CH9]. Khan SU, 2020, CHEMOSPHERE, V253, DOI 10.1016/j.chemosphere.2020.126673. Khawaga RI, 2019, J WATER PROCESS ENG, V32, DOI 10.1016/j.jwpe.2019.100936. Kundu P., 2013, ADV ARTIFICIAL NEURA, V2013, P1, DOI {[}10.1155/2013/268064, DOI 10.1155/2013/268064]. Kusiak A, 2013, ENVIRON MONIT ASSESS, V185, P2197, DOI 10.1007/s10661-012-2701-2. Lariche MJ, 2020, ENERG SOURCE PART A, V42, P1247, DOI 10.1080/15567036.2019.1602233. Li TL, 2017, WATER RES, V121, P248, DOI 10.1016/j.watres.2017.05.040. Li XY, 2021, J CLEAN PROD, V294, DOI 10.1016/j.jclepro.2021.126343. Li ZC, 2019, CONTROL ENG PRACT, V88, P38, DOI 10.1016/j.conengprac.2019.04.008. Libotean D, 2009, J MEMBRANE SCI, V326, P408, DOI 10.1016/j.memsci.2008.10.028. Lipponen A., 2017, WASTEWATER UNTAPPED. Liu HB, 2020, APPL SOFT COMPUT, V90, DOI 10.1016/j.asoc.2020.106149. Liu ZJ, 2019, ENVIRON SCI POLLUT R, V26, P12828, DOI 10.1007/s11356-019-04671-8. Lotfi K, 2020, J ENVIRON HEALTH SCI, V18, P1099, DOI 10.1007/s40201-020-00530-8. Lu H, 2019, SCI TOTAL ENVIRON, V694, DOI 10.1016/j.scitotenv.2019.133591. Ma YW, 2011, BIORESOURCE TECHNOL, V102, P4410, DOI 10.1016/j.biortech.2011.01.004. Mahata C, 2020, ENERG CONVERS MANAGE, V219, DOI 10.1016/j.enconman.2020.113047. Mahjouri M, 2017, PROCESS SAF ENVIRON, V107, P54, DOI 10.1016/j.psep.2017.01.016. Mahmoodi NM, 2017, J ENVIRON CHEM ENG, V5, P3684, DOI 10.1016/j.jece.2017.07.010. Mahshidnia M, 2016, ENG TECHNOL APPL SCI, V6, P1175. Majhi B, 2011, EXPERT SYST APPL, V38, P321, DOI 10.1016/j.eswa.2010.06.070. Mamandipoor B, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-8064-1. Mandal S, 2015, PROCESS SAF ENVIRON, V93, P249, DOI 10.1016/j.psep.2014.02.016. Manwani N, 2013, IEEE T CYBERNETICS, V43, P1146, DOI 10.1109/TSMCB.2012.2223460. Marsili-Libelli S, 2002, WATER SCI TECHNOL, V45, P37, DOI 10.2166/wst.2002.0546. Mazhar S, 2019, CHEMOSPHERE, V227, P256, DOI 10.1016/j.chemosphere.2019.04.022. Messikh N, 2015, DESALIN WATER TREAT, V56, P399, DOI 10.1080/19443994.2014.936513. Metcalf and Eddy, 2002, WASTEWATER ENG TREAT, V4. Mjalli FS, 2007, J ENVIRON MANAGE, V83, P329, DOI 10.1016/j.jenvman.2006.03.004. Mohammad AT, 2020, J WATER PROCESS ENG, V33, DOI 10.1016/j.jwpe.2019.100993. Mohammadi F, 2020, BIOCHEM ENG J, V161, DOI 10.1016/j.bej.2020.107685. Mohan S, 2015, PROCESS SAF ENVIRON, V96, P156, DOI 10.1016/j.psep.2015.05.005. Mojiri A, 2020, J CLEAN PROD, V243, DOI 10.1016/j.jclepro.2019.118638. Moral H, 2008, COMPUT CHEM ENG, V32, P2471, DOI 10.1016/j.compchemeng.2008.01.008. Murnleitner E, 2002, WATER RES, V36, P201, DOI 10.1016/S0043-1354(01)00186-5. Nadiri AA, 2018, J CLEAN PROD, V180, P539, DOI 10.1016/j.jclepro.2018.01.139. Naik SS, 2014, INT J ENVIRON SCI TE, V11, P823, DOI 10.1007/s13762-013-0266-4. Najafzadeh M, 2019, MEASUREMENT, V138, P690, DOI 10.1016/j.measurement.2019.02.014. Nassef AM, 2019, SUSTAIN ENERGY TECHN, V35, P73, DOI 10.1016/j.seta.2019.06.003. Nawaz A, 2019, IND ENG CHEM RES, V58, P9552, DOI 10.1021/acs.iecr.9b00722. Nesfchi MM, 2021, MAT SCI SEMICON PROC, V122, DOI 10.1016/j.mssp.2020.105465. Newhart KB, 2019, WATER RES, V157, P498, DOI 10.1016/j.watres.2019.03.030. Niu GQ, 2020, J CLEAN PROD, V265, DOI 10.1016/j.jclepro.2020.121787. Onu Chijioke Elijah, 2021, South African Journal of Chemical Engineering, V36, P24, DOI 10.1016/j.sajce.2020.12.003. Otchere DA, 2021, J PETROL SCI ENG, V200, DOI 10.1016/j.petrol.2020.108182. Pan D, 2015, PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC, SOCIO-CULTURAL COMPUTING (BESC), P83, DOI 10.1109/BESC.2015.7365963. Pang JW, 2019, WATER-SUI, V11, DOI 10.3390/w11050927. Park S, 2020, WATER RES, V176, DOI 10.1016/j.watres.2020.115711. Patel N, 2020, J WATER PROCESS ENG, V34, DOI 10.1016/j.jwpe.2020.101146. Pelalak R, 2021, J HAZARD MATER, V411, DOI 10.1016/j.jhazmat.2021.125074. Peng C, 2021, APPL SOFT COMPUT, V105, DOI 10.1016/j.asoc.2021.107227. Picos-Benitez AR, 2020, PROCESS SAF ENVIRON, V143, P36, DOI 10.1016/j.psep.2020.06.020. Piotrowski R, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9112268. Pires O. C., 2005, ENPROMER, P1. Qi JM, 2020, MATER TODAY COMMUN, V24, DOI 10.1016/j.mtcomm.2019.100709. Qiao ZH, 2013, AICHE J, V59, P215, DOI 10.1002/aic.13781. Qiu Y, 2018, WATER-SUI, V10, DOI 10.3390/w10101342. Rahimian P., 2020, INT J IND ENG PRODUC, V31, P423, DOI {[}10.22068/ijiepr.31.3.423, DOI 10.22068/IJIEPR.31.3.423]. Rahmani A, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104468. Ranade NV, 2021, ULTRASON SONOCHEM, V72, DOI 10.1016/j.ultsonch.2020.105428. Rastegaripour F, 2019, INT J ENVIRON SCI TE, V16, P5835, DOI 10.1007/s13762-018-1943-0. Reis I, 2019, ASTRON J, V157, DOI 10.3847/1538-3881/aaf101. Revollar S, 2018, COMPUT-AIDED CHEM EN, V43, P1237, DOI 10.1016/B978-0-444-64235-6.50215-1. Ribeiro TD, 2019, MINER ENG, V131, P8, DOI 10.1016/j.mineng.2018.10.016. Rolnick D., 2018, INT C LEARN REPR ICL. Rustum R., 2012, INT J COMPUTER SCI A, V2, P14, DOI DOI 10.5963/IJCSAI0204002. Sakinah A.Y. Nur, 2020, B ELECT ENG INFORMAT, V9, P1835, DOI {[}10.11591/eei.v9i5.2264, DOI 10.11591/EEI.V9I5.2264]. Santin I, 2018, ISA T, V77, P146, DOI 10.1016/j.isatra.2018.04.006. Santin I, 2015, J PROCESS CONTR, V28, P40, DOI 10.1016/j.jprocont.2015.02.005. Santin I, 2015, IND ENG CHEM RES, V54, P2763, DOI 10.1021/ie504079q. Sattar AA, 2019, FLOW MEAS INSTRUM, V65, P78, DOI 10.1016/j.flowmeasinst.2018.11.017. Sedaqatvand R, 2013, BIORESOURCE TECHNOL, V146, P247, DOI 10.1016/j.biortech.2013.07.054. Seifi A, 2020, J HYDROL, V587, DOI 10.1016/j.jhydrol.2020.124977. Sellami A, 2020, DESALIN WATER TREAT, V204, P10, DOI 10.5004/dwt.2020.26229. Shamshirband S, 2019, ENG APPL COMP FLUID, V13, P91, DOI 10.1080/19942060.2018.1553742. Sharafati A, 2020, PROCESS SAF ENVIRON, V140, P68, DOI 10.1016/j.psep.2020.04.045. Shen WH, 2018, WATER SCI TECHNOL, V78, P310, DOI 10.2166/wst.2018.299. Shi S, 2018, CHEM ENG J, V347, P280, DOI 10.1016/j.cej.2018.04.087. Shi Y, 2009, J BIOTECHNOL, V144, P70, DOI 10.1016/j.jbiotec.2009.08.014. Shokrkar H, 2012, CHEM ENG RES DES, V90, P846, DOI 10.1016/j.cherd.2011.10.002. Song MJ, 2020, WATER RES, V184, DOI 10.1016/j.watres.2020.116144. Staples M, 2008, INFORM SOFTWARE TECH, V50, P605, DOI 10.1016/j.infsof.2007.07.003. Struk-Sokolowska J, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104405. Su Y, 2020, J CLEAN PROD, V273, DOI 10.1016/j.jclepro.2020.123145. Suggala SV, 2003, IND ENG CHEM RES, V42, P3118, DOI 10.1021/ie020183t. Sulthana A, 2014, WATER SCI TECHNOL, V70, P1040, DOI 10.2166/wst.2014.333. Tanzifi M, 2020, CHEMOSPHERE, V255, DOI 10.1016/j.chemosphere.2020.127052. Tashvigh AA, 2017, DESALIN WATER TREAT, V76, P30, DOI 10.5004/dwt.2017.20696. Tejaswini ESS, 2020, IFAC PAPERSONLINE, V53, P208, DOI 10.1016/j.ifacol.2020.06.036. Teychene B, 2020, WATER SUPPLY, V20, P975, DOI 10.2166/ws.2020.020. Van Horn G, 2015, PROC CVPR IEEE, P595, DOI 10.1109/CVPR.2015.7298658. Vasilaki V, 2020, COMPUT CHEM ENG, V141, DOI 10.1016/j.compchemeng.2020.106997. Verma A, 2013, ENG APPL ARTIF INTEL, V26, P1366, DOI 10.1016/j.engappai.2012.08.015. Wang C, 2021, SEP PURIF TECHNOL, V259, DOI 10.1016/j.seppur.2020.118211. Wang YL, 2020, ENERGY, V200, DOI 10.1016/j.energy.2020.117309. Wu J, 2020, ENVIRON SCI POLLUT R, V27, P28986, DOI 10.1007/s11356-020-09192-3. Xie WM, 2011, BIOCHEM ENG J, V56, P9, DOI 10.1016/j.bej.2011.04.010. Yan JZ, 2019, WATER-SUI, V11, DOI 10.3390/w11071317. Yang SS, 2021, WATER RES, V189, DOI 10.1016/j.watres.2020.116576. Yazdankish E, 2020, J HAZARD MATER, V389, DOI 10.1016/j.jhazmat.2020.122151. Ye ZP, 2020, SCI TOTAL ENVIRON, V699, DOI 10.1016/j.scitotenv.2019.134279. Yel E, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-05940-4. Yel E, 2011, PROCEDIA COMPUT SCI, V3, DOI 10.1016/j.procs.2010.12.110. Yetilmezsoy K, 2011, NEURAL NETW WORLD, V21, P193, DOI 10.14311/NNW.2011.21.012. Yue Bo., 2020, ACTA MICROSC, V29. Zaghloul MS, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.103742. Zakeri HR, 2021, INT J ENVIRON SCI TE, V18, P3929, DOI 10.1007/s13762-021-03149-w. Zhang L., 2021, DYNAMIC MULTIOBJECTI, P72, DOI {[}10.1109/iccss52145.2020.9336933, DOI 10.1109/ICCSS52145.2020.9336933]. Zhang X., 2020, CURRENT DEV BIOTECHN, P79. Zhang YY, 2019, WATER RES, V164, DOI 10.1016/j.watres.2019.114888. Zhang YY, 2014, CHEM ENG J, V249, P111, DOI 10.1016/j.cej.2014.03.073. Zhao LJ, 2012, INT J AUTOM COMPUT, V9, P627, DOI 10.1007/s11633-012-0688-3. Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014. Zhiqing Huang, 2009, 2009 1st International Conference on Information Science and Engineering (ICISE 2009), P4058, DOI 10.1109/ICISE.2009.846. Zhou PX, 2019, STOCH ENV RES RISK A, V33, P1781, DOI 10.1007/s00477-019-01732-9. Zhu A, 2015, SCI REP-UK, V5, DOI 10.1038/srep08493. Zhu XZ, 2021, CHEM ENG J, V406, DOI 10.1016/j.cej.2020.126782. Zhu XZ, 2019, J HAZARD MATER, V378, DOI 10.1016/j.jhazmat.2019.06.004.}, Number-of-Cited-References = {231}, Times-Cited = {0}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {14}, Journal-ISO = {Expert Syst. Appl.}, Doc-Delivery-Number = {8N7DK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000925307900001}, DA = {2023-04-22}, } @article{ WOS:000903564700001, Author = {Megahed, Naglaa A. and Hassan, Asmaa M.}, Title = {Evolution of BIM to DTs: A Paradigm Shift for the Post-Pandemic AECO Industry}, Journal = {URBAN SCIENCE}, Year = {2022}, Volume = {6}, Number = {4}, Month = {DEC}, Abstract = {The architecture, engineering, construction, and operation (AECO) industry is evolving rapidly. In particular, technological advancements and lessons learned from the COVID-19 pandemic are shaping the industry's future. Various artificial intelligence (AI), building information modeling (BIM), and Internet of Things (IoT) techniques have contributed to the industry's modernization by enabling more self-reliable, self-automated, self-learning, time-saving, and cost-effective processes throughout the various life cycle phases of a smart building or city. As a result, the concept of digital twins (DTs) has recently emerged as a potential solution to optimize the AECO sector to achieve the required cyber-physical integration, particularly following the pandemic. Based on a systematic review, the study develops and proposes theoretical models that examine the evolution of DTs in the context of BIM, cutting-edge technologies, platforms, and applications throughout the project's life cycle phases. This study demonstrates DTs' high potential as a comprehensive approach to planning, managing, predicting, and optimizing AECO projects that will achieve more Sustainable Development Goals (SDGs). However, while DTs offer many new opportunities, they also pose technical, societal, and operational challenges that must be addressed.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Megahed, NA (Corresponding Author), Port Said Univ, Fac Engn, Architectural Engn \& Urban Planning Dept, Port Said 42523, Egypt. Megahed, Naglaa A.; Hassan, Asmaa M., Port Said Univ, Fac Engn, Architectural Engn \& Urban Planning Dept, Port Said 42523, Egypt.}, DOI = {10.3390/urbansci6040067}, Article-Number = {67}, EISSN = {2413-8851}, Keywords = {artificial intelligence; building information modeling; digital twins; life cycle; smart building and cities; Sustainable Development Goals}, Keywords-Plus = {DIGITAL TWINS; CONSTRUCTION; CHALLENGES; INTERNET}, Research-Areas = {Environmental Sciences \& Ecology; Geography; Public Administration; Urban Studies}, Web-of-Science-Categories = {Environmental Sciences; Environmental Studies; Geography; Regional \& Urban Planning; Urban Studies}, Author-Email = {naglaaali257@eng.psu.edu.eg}, Affiliations = {Egyptian Knowledge Bank (EKB); Port Said University}, ResearcherID-Numbers = {Megahed, Naglaa Ali/L-5089-2019 }, ORCID-Numbers = {Megahed, Naglaa Ali/0000-0001-5388-5066 M. Hassan, Asmaa/0000-0001-5047-2442}, Cited-References = {Abd Elraouf R, 2022, J BUILD PERFORM SIMU, V15, P268, DOI 10.1080/19401493.2022.2046165. Abruzzini A., 2021, IND 4 0 SOLUTIONS BU, V20. Alizadehsalehi S, 2020, AUTOMAT CONSTR, V116, DOI 10.1016/j.autcon.2020.103254. Alonso R., 2019, PROCEEDINGS, V20, P9, DOI 10.3390/proceedings2019020009. Alshammari K, 2021, J INF TECHNOL CONSTR, V26, P159, DOI 10.36680/j.itcon.2021.010. Alsharef A, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18041559. Ammar A, 2022, FRONT BUILT ENVIRON, V8, DOI 10.3389/fbuil.2022.834671. Awan U, 2021, BUS STRATEG ENVIRON, V30, P2038, DOI 10.1002/bse.2731. Azhar S, 2011, LEADERSHIP MANAGE EN, V11, P241, DOI 10.1061/(ASCE)LM.1943-5630.0000127. Batty M, 2018, ENVIRON PLAN B-URBAN, V45, P817, DOI 10.1177/2399808318796416. Bhattacharya S, 2022, SUPPLY CHAIN MANAG, V27, P283, DOI 10.1108/SCM-12-2020-0641. Bock T, 2015, AUTOMAT CONSTR, V59, P113, DOI 10.1016/j.autcon.2015.07.022. Boje C, 2020, AUTOMAT CONSTR, V114, DOI 10.1016/j.autcon.2020.103179. Bolton RN, 2018, J SERV MANAGE, V29, P776, DOI 10.1108/JOSM-04-2018-0113. Borth M, 2019, 2019 14TH ANNUAL CONFERENCE SYSTEM OF SYSTEMS ENGINEERING (SOSE), P164, DOI 10.1109/SYSOSE.2019.8753860. Canedo A, 2016, 2016 INTERNATIONAL CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM SYNTHESIS (CODES+ISSS), DOI 10.1145/2968456.2974007. Ciribini ALC, 2016, AUTOMAT CONSTR, V71, P62, DOI 10.1016/j.autcon.2016.03.005. Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081. Dawkins O., 2018, GISCI REMOTE SENS. Dawood N, 2020, P 20 INT C CONSTRUCT. Delgado JMD, 2021, ADV ENG INFORM, V49, DOI 10.1016/j.aei.2021.101332. Demir Kadir Alpaslan, 2019, Procedia Computer Science, V158, P688, DOI 10.1016/j.procs.2019.09.104. Deng M, 2021, J INF TECHNOL CONSTR, V26, P58, DOI 10.36680/j.itcon.2021.005. Elrefaey O, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12040489. Ford DN, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000779. Fuller A, 2020, IEEE ACCESS, V8, P108952, DOI 10.1109/ACCESS.2020.2998358. Gabor T, 2016, PR INT CONF AUTONOM, P374, DOI 10.1109/ICAC.2016.29. Grabowska S, 2022, SCIENTOMETRICS, V127, P3117, DOI 10.1007/s11192-022-04370-1. Grieves M., 2017, TRANSDISCIPLINARY PE, P85, DOI 10.1007/978-3-319-38756-7\_4. Hassan AM, 2021, BUILD ENVIRON, V204, DOI 10.1016/j.buildenv.2021.108131. Hassan AM, 2020, J BUILD ENG, V29, DOI 10.1016/j.jobe.2020.101204. Hassan AM, 2020, FRONT ARCHIT RES, V9, P319, DOI 10.1016/j.foar.2020.01.001. Hassan SR, 2022, ENERG BUILDINGS, V267, DOI 10.1016/j.enbuild.2022.112144. Hou L, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11020821. Ismail RM, 2022, ARCHIT SCI REV, V65, P196, DOI 10.1080/00038628.2022.2058459. Jafari N, 2022, LOGISTICS-BASEL, V6, DOI 10.3390/logistics6020026. Javaid M, 2020, J IND INTEGR MANAG, V5, P507, DOI 10.1142/S2424862220500220. Jiang F, 2021, AUTOMAT CONSTR, V130, DOI 10.1016/j.autcon.2021.103838. Jouan P, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9040228. Khajavi SH, 2019, IEEE ACCESS, V7, P147406, DOI 10.1109/ACCESS.2019.2946515. Kor M, 2022, SMART SUSTAIN BUILT, DOI 10.1108/SASBE-08-2021-0148. Kritzinger W, 2018, IFAC PAPERSONLINE, V51, P1016, DOI 10.1016/j.ifacol.2018.08.474. Kunz J, 2020, CONSTR MANAG ECON, V38, P355, DOI 10.1080/01446193.2020.1714068. Lu QC, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000763. Lu YQ, 2020, ROBOT CIM-INT MANUF, V61, DOI 10.1016/j.rcim.2019.101837. Lv ZH, 2022, ACM T MULTIM COMPUT, V18, DOI 10.1145/3529395. Lydon GP, 2019, ENERG BUILDINGS, V202, DOI 10.1016/j.enbuild.2019.07.015. Ma XZ, 2018, J MANAGE ENG, V34, DOI 10.1061/(ASCE)ME.1943-5479.0000647. Mahalingam A, 2010, AUTOMAT CONSTR, V19, P148, DOI 10.1016/j.autcon.2009.11.015. Marra A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21175956. Megahed Naglaa A, 2022, Sci Afr, V17, pe01374, DOI 10.1016/j.sciaf.2022.e01374. Megahed NA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102350. Megahed NA, 2015, ARCHNET-IJAR, V9, P130. Mohammadi N., 2020, P 53 HAWAII INT C SY, P1656. Motawa I, 2013, AUTOMAT CONSTR, V29, P173, DOI 10.1016/j.autcon.2012.09.008. Nakicenovic N, 2019, DIGITAL REVOLUTION S. Noaman DS, 2022, J BUILD ENG, V56, DOI 10.1016/j.jobe.2022.104658. Ogunnusi M., 2020, INT J REAL ESTATE ST, V14, P120. Opoku DJ, 2021, J BUILD ENG, V40, DOI 10.1016/j.jobe.2021.102726. Pan Y, 2021, AUTOMAT CONSTR, V124, DOI 10.1016/j.autcon.2021.103564. Paschek D., 2022, SUSTAINABILITY INNOV, P17, DOI 10.1007/978-981-16-7365-8\_2. Pierce P., 2017, P 50 HAWAII INT C SY, P2804. Qi QL, 2021, J MANUF SYST, V58, P3, DOI 10.1016/j.jmsy.2019.10.001. Qin Y, 2022, IEEE T IND INFORM, V18, P1530, DOI 10.1109/TII.2021.3089340. Rafsanjani H.N., 2021, ENERGY BUILT ENV, V4, P169, DOI {[}10.1016/j.enbenv.2021.10.004, DOI 10.1016/J.ENBENV.2021.10.004]. Rausch C, 2020, CONSTRUCTION RESEARCH CONGRESS 2020: COMPUTER APPLICATIONS, P191. Sacks R, 2020, DATA-CENTRIC ENG, V1, DOI 10.1017/dce.2020.16. Sarfraz Z, 2021, PAK J MED SCI, V37, P591, DOI 10.12669/pjms.37.2.3387. Schluse M, 2016, 2016 IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (ISSE), P273. Schrotter G, 2020, PFG-J PHOTOGRAMM REM, V88, P99, DOI 10.1007/s41064-020-00092-2. Sepasgozar SME, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11040151. Shahda M.M., 2019, PORT SAID ENG RES J, V23, P1. Shahda M.M, 2020, ARCHIT RES, V2020, P1, DOI {[}DOI 10.5923/J.ARCH.20201001.01, 10.5923/j.arch.20201001.01]. Shahzad M, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12020120. Shehata AO, 2022, BUILD ENVIRON, V224, DOI 10.1016/j.buildenv.2022.109523. Shen J, 2021, DATA DRIVEN ANALYTIC, P411. Soliman K, 2022, J ENG RES-KUWAIT, V10, p1a. Syafrudin M, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18092946. Tang S, 2019, AUTOMAT CONSTR, V101, P127, DOI 10.1016/j.autcon.2019.01.020. Tao F, 2019, ENGINEERING-PRC, V5, P653, DOI 10.1016/j.eng.2019.01.014. Tao F, 2019, INT J PROD RES, V57, P3935, DOI 10.1080/00207543.2018.1443229. Tao F, 2019, IEEE T IND INFORM, V15, P2405, DOI 10.1109/TII.2018.2873186. Vanlande R, 2008, AUTOMAT CONSTR, V18, P70, DOI 10.1016/j.autcon.2008.05.001. Wang WX, 2022, J IND INF INTEGR, V28, DOI 10.1016/j.jii.2022.100351. Wang WS, 2021, BUILD RES INF, V49, P930, DOI 10.1080/09613218.2021.1921565. Woodhead R, 2018, AUTOMAT CONSTR, V93, P35, DOI 10.1016/j.autcon.2018.05.004. Yang B, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12060856. Yitmen I, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11094276. Yu-Wen Lin, 2021, e-Energy `21: Proceedings of the Twelfth International Conference on Future Energy Systems, P450, DOI 10.1145/3447555.3466585. Zhang JS, 2020, ADV CIV ENG, V2020, DOI 10.1155/2020/8842113. Zhang XX, 2021, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.663269. Zhong RY, 2017, AUTOMAT CONSTR, V76, P59, DOI 10.1016/j.autcon.2017.01.006.}, Number-of-Cited-References = {92}, Times-Cited = {2}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Urban Sci.}, Doc-Delivery-Number = {7I0DA}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000903564700001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000912755700001, Author = {Masoumi, Homa and Shirowzhan, Sara and Eskandarpour, Paria and Pettit, Christopher James}, Title = {City Digital Twins: their maturity level and differentiation from 3D city models}, Journal = {BIG EARTH DATA}, Year = {2023}, Volume = {7}, Number = {1}, Pages = {1-46}, Month = {JAN 2}, Abstract = {The emerging field of City Digital Twins has advanced in recent years with the help of digital infrastructure and technologies connected to the Internet of Things (IoT). However, the evolution of this field has been so fast that a gap has opened in relation to systematic reviews of the relevant literature and the maturation of City Digital Twins on an urban scale. Our work bridges this gap by highlighting maturity in the field. We conducted a systematic literature review with bibliometric and content analysis of 41 selected papers published in Web of Science and Scopus databases, covering five areas: data types and sources, case studies, applied technologies and methods, maturity spectrum, and applications. Based on maturity indicators, the majority of the reviewed studies (90\%) were at initial to medium stages of maturity (up to element 3), most of them focused on 3D modelling, monitoring and visualisation. However, digital twins cannot be limited to 3D models, monitoring and visualisation, for they can be developed to include two-directional interactions between humans and computers. Such a high level of maturity, which was not found in the reviewed studies, requires advanced technologies and methods such as cloud computing, artificial intelligence, BIM and GIS. We also found that further studies are essential if the field is to handle the complex urban challenges of multidisciplinary digital twins . While City Digital Twins extend by definition beyond mere 3D city modelling, some studies involving 3D city models still refer to their subjects as City Digital Twins. Among the research gaps we identified, we'd like to highlight the need for near-real-time data analytics algorithms, which could furnish City Digital Twins with big data insights. Other opportunities include public participation capabilities to increase social collaboration, integrating BIM and GIS technologies and improving storage and computation infrastructure.}, Publisher = {TAYLOR \& FRANCIS LTD}, Address = {2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Shirowzhan, S (Corresponding Author), Red Ctr, West Wing,UNSW Kensington Campus, Kensington, NSW 2052, Australia. Masoumi, Homa, Shahid Beheshti Univ, Dept Urban \& Reg Planning, Tehran, Iran. Shirowzhan, Sara, UNSW Sydney, Sch Built Environm, Sydney, Australia. Eskandarpour, Paria, Monash Univ, Fac Informat Technol, Clayton, Vic, Australia. Pettit, Christopher James, UNSW Sydney, Fac Arts Design \& Architecture, City Futures Res Ctr, Sydney, NSW, Australia. Shirowzhan, Sara, Red Ctr, West Wing,UNSW Kensington Campus, Kensington, NSW 2052, Australia.}, DOI = {10.1080/20964471.2022.2160156}, EarlyAccessDate = {JAN 2023}, ISSN = {2096-4471}, EISSN = {2574-5417}, Keywords = {City Digital Twins; big data; IoT; artificial intelligence; city information modelling}, Keywords-Plus = {BUILT ENVIRONMENT; SMART CITY; GENERATION; BLOCKCHAIN; BIM}, Research-Areas = {Computer Science; Geology; Remote Sensing}, Web-of-Science-Categories = {Computer Science, Information Systems; Geosciences, Multidisciplinary; Remote Sensing}, Author-Email = {s.shirowzhan@unsw.edu.au}, Affiliations = {Shahid Beheshti University; University of New South Wales Sydney; Monash University; University of New South Wales Sydney}, ORCID-Numbers = {Shirowzhan, Sara/0000-0003-1511-3617}, Cited-References = {Abdeen F.N., 2021, ENV SCI PROC, V12, P19, DOI {[}10.3390/environsciproc2021012019, DOI 10.3390/ENVIRONSCIPROC2021012019]. Agostinelli S, 2020, 2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I\&CPS EUROPE). Al-Ali AR, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12100163. Al-Sehrawy R, 2021, J INF TECHNOL CONSTR, V26, P832, DOI 10.36680/j.itcon.2021.045. Albuquerque V, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10020062. Alghamdi NS, 2021, CMC-COMPUT MATER CON, V66, P2509, DOI 10.32604/cmc.2021.014180. Allam Z, 2021, LAND USE POLICY, V101, DOI 10.1016/j.landusepol.2020.105201. Alshammari K, 2021, J INF TECHNOL CONSTR, V26, P159, DOI 10.36680/j.itcon.2021.010. Anda C, 2021, TRANSPORT RES C-EMER, V128, DOI 10.1016/j.trc.2021.103118. {[}Anonymous], 2011, P 12 INT DIG GOV RES, DOI DOI 10.1145/2037556.2037602. Barricelli BR, 2019, IEEE ACCESS, V7, P167653, DOI 10.1109/ACCESS.2019.2953499. Bass B, 2021, ENERGIES, V14, DOI 10.3390/en14010132. Batty M, 2018, ENVIRON PLAN B-URBAN, V45, P817, DOI 10.1177/2399808318796416. Beil C, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9100603. Boje C, 2020, AUTOMAT CONSTR, V114, DOI 10.1016/j.autcon.2020.103179. Borodulin K, 2017, PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC' 17), P209, DOI 10.1145/3147213.3149234. Botin-Sanabria DM, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14061335. Broekman A., 2021, TRANSP ENG AUST, V4, pArticl, DOI {[}https://doi.org/10.1016/j.treng.2021.100068, DOI 10.1016/J.TRENG.2021.100068]. Buckley N, 2021, ENERGIES, V14, DOI 10.3390/en14154445. Callcut M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132011549. Caprari G, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14106263. Carstens A., 2019, J DIGIT LANDS ARCHI, V2019, P114, DOI {[}10.14627/537663012, DOI 10.14627/537663012]. Celeste G, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14020766. Cetin S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116348. Chan APC, 2009, J CONSTR ENG M, V135, P1241, DOI 10.1061/(ASCE)CO.1943-7862.0000099. Chaves TR, 2021, ENERGIES, V14, DOI 10.3390/en14196072. Chen L, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13158224. Chen Q, 2019, IEEE TETCI, V3, P392, DOI 10.1109/TETCI.2019.2907718. Chen Y., 2021, IFIP INT C PRODUCT L. Cimino C, 2019, COMPUT IND, V113, DOI 10.1016/j.compind.2019.103130. Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525. Fuertes PC, 2020, URBAN WATER J, V17, P704, DOI 10.1080/1573062X.2020.1771382. Delgado JMD, 2021, ADV ENG INFORM, V49, DOI 10.1016/j.aei.2021.101332. Dembski F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062307. Deng TH, 2021, J MANAGE SCI ENG, V6, P125, DOI 10.1016/j.jmse.2021.03.003. Dignan J, 2020, IET SMART CITIES, V2, P109, DOI 10.1049/iet-smc.2020.0071. Eberendu A. C., 2016, INT J COMPUTER TREND, V38, P46, DOI {[}10.14445/22312803/IJCTT-V38P109, DOI 10.14445/22312803/IJCTT-V38P109]. El Marai O, 2021, IEEE NETWORK, V35, P136, DOI 10.1109/MNET.011.2000398. El Saddik A, 2018, IEEE MULTIMEDIA, V25, P87, DOI 10.1109/MMUL.2018.023121167. Evans S., 2019, BUILT ENV NEWS. Fan C, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2019.102049. Ferdousi R., 2022, DIGITAL TWIN, V1, P7, DOI {[}10.12688/digitaltwin.17475.2, DOI 10.12688/DIGITALTWIN.17475.2]. Ford DN, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000779. Francisco A, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000741. Glaessgen EH, 2012, 53 AIAAASMEASCEAHSAS, DOI DOI 10.2514/6.2012-1818. Gn??dinger J., 2021, J DIGIT LANDS ARCHI, V1, P324. Grieves M, 2014, CISC VIS NETW IND GL, V1, P1, DOI DOI 10.5281/ZENODO.1493930. Grieves M., 2019, COMPLEX SYSTEMS ENG. Grieves M., 2022, DIGITAL TWIN, V2, P8, DOI {[}10.12688/digitaltwin.17574.1, DOI 10.12688/DIGITALTWIN.17574.1]. Grieves M., 2016, ORIGINS DIGITAL TWIN, DOI {[}DOI 10.13140/RG.2.2.26367.61609, 10.13140/RG.2.2.26367.61609]. Grieves M. W., 2005, International Journal of Product Development, V2, P71, DOI 10.1504/IJPD.2005.006669. Gutierrez-Franco E, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116230. H??m??l??inen, 2020, ONLINE C P. Haag S, 2019, PROC CIRP, V84, P1082, DOI 10.1016/j.procir.2019.04.305. Hamalainen M, 2021, IET SMART CITIES, V3, P201, DOI 10.1049/smc2.12015. Han TR, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229701. Hartley Kris, 2022, Environmental Research: Infrastructure and Sustainability, DOI 10.1088/2634-4505/ac442a. Huo YH, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10100643. Javed AR, 2021, SUSTAIN CITIES SOC, V71, DOI 10.1016/j.scs.2021.102970. Jiang HX, 2022, GEOJOURNAL, V87, P1639, DOI 10.1007/s10708-020-10326-w. Jiang YC, 2021, PHILOS T R SOC A, V379, DOI 10.1098/rsta.2020.0360. Kaewunruen S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010159. Ketzler B., 2020, BUILD ENVIRON, V46, P547, DOI {[}10.2148/benv.46.4.547, DOI 10.2148/BENV.46.4.547]. Krippendorff K, 2018, CONTENT ANAL INTRO I. Laamarti F, 2020, IEEE ACCESS, V8, P105950, DOI 10.1109/ACCESS.2020.2999871. LEE DB, 1973, J AM I PLANNERS, V39, P163, DOI 10.1080/01944367308977851. Lee J, 2019, T GIS, V23, P1, DOI 10.1111/tgis.12494. Lenfers UA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13137000. Li M, 2021, INT J PROD RES, DOI 10.1080/00207543.2021.1966118. Lu QC, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000763. Madni AM, 2019, SYSTEMS-BASEL, V7, DOI 10.3390/systems7010007. Major P, 2021, IEEE INSTRU MEAS MAG, V24, P39, DOI 10.1109/MIM.2021.9549127. Marcucci E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410623. MarketsandMarkets, 2020, DIG TWIN MARK TECHN. Matthys M, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10070460. Mylonas G, 2021, IEEE ACCESS, V9, P143222, DOI 10.1109/ACCESS.2021.3120843. Neves FT, 2020, CITIES, V106, DOI 10.1016/j.cities.2020.102860. Nguyen DC, 2021, IEEE COMMUN SURV TUT, V23, P1622, DOI 10.1109/COMST.2021.3075439. Nochta T, 2021, J URBAN TECHNOL, V28, P263, DOI 10.1080/10630732.2020.1798177. O'Dwyer E, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102412. Ojo A, 2015, PUB ADMIN INF TECH, V8, P43, DOI 10.1007/978-3-319-03167-5\_4. Orozco-Messana J, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13094654. Pan SL, 2021, INT J PROD RES, V59, P2079, DOI 10.1080/00207543.2021.1893970. Pan ZY, 2020, ADV CIV ENG, V2020, DOI 10.1155/2020/8865107. Pang JJ, 2021, TSINGHUA SCI TECHNOL, V26, P759, DOI 10.26599/TST.2021.9010026. Park J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219186. Park S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164479. PAULK MC, 1993, IEEE SOFTWARE, V10, P18, DOI 10.1109/52.219617. Pettit C, 2020, ENVIRON PLAN B-URBAN, V47, P1490, DOI 10.1177/2399808320924678. Qiuchen Lu V., 2019, INT C SMART INFRASTR. Rikakis T., 2018, INTERACTIONS, V25, P52, DOI {[}https://doi.org/10.1145/3231559, DOI 10.1145/3231559]. Rittenbruch M, 2022, J URBAN TECHNOL, V29, P7, DOI 10.1080/10630732.2021.1980319. Rupali M., 2017, INT ADV RES J SCI EN, V4, P79, DOI {[}10.17148/IARJSET/NCIARCSE.2017.22, DOI 10.17148/IARJSET/NCIARCSE.2017.22, 10.17148/iarjset/nciarcse.2017.22]. Saddik AE., 2019, IEEE COMSOC MMTC COM, V14, P39. Salkuti S. R., 2021, INT J ELECTR COMPUT, V11, P3137, DOI {[}https://doi.org/10.11591/ijece.v11i4.pp3137-3144, DOI 10.11591/IJECE.V11I4.PP3137-3144]. Schrotter G, 2020, PFG-J PHOTOGRAMM REM, V88, P99, DOI 10.1007/s41064-020-00092-2. Sepasgozar S, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10093074. Shafto M., 2012, NATL AERONAUT SPACE, V32, P1. Shahat E, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063386. Shahzad M, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12020120. Shan PY, 2021, ECOL INFORM, V63, DOI 10.1016/j.ecoinf.2021.101287. Shemyakina T. Y., 2022, P INT SCI C SMART NA. Sheng-Wen Jeng, 2021, Sensor Networks and Signal Processing. Proceedings of the 2nd Sensor Networks and Signal Processing (SNSP 2019). Smart Innovation, Systems and Technologies (SIST 176), P411, DOI 10.1007/978-981-15-4917-5\_30. Shirowzhan S, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9040240. Shkundalov D, 2021, AUTOMAT CONSTR, V128, DOI 10.1016/j.autcon.2021.103757. Simonsson J, 2021, RESOURCES-BASEL, V10, DOI 10.3390/resources10020010. Singh M, 2021, APPL SYST INNOV, V4, DOI 10.3390/asi4020036. Song YZ, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13081528. Song YZ, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6120397. Souza L, 2022, BUILD ENVIRON, V207, DOI 10.1016/j.buildenv.2021.108403. Sun CC, 2020, WATER-SUI, V12, DOI 10.3390/w12020406. Thoneick R, 2021, INT J E-PLAN RES, V10, P1, DOI 10.4018/IJEPR.2021010101. Topping D, 2021, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.786563. Truu M, 2021, WATER-SUI, V13, DOI 10.3390/w13233340. van der Aalst W. M., 2021, RESILIENT DIGITAL TW, V63, P615. Vetro A, 2016, GOV INFORM Q, V33, P325, DOI 10.1016/j.giq.2016.02.001. Visconti E, 2021, SOFTW SYST MODEL, V20, P2003, DOI 10.1007/s10270-020-00851-0. Wang C., 2021, ZHONGGUO DIANJI GONG. Wang H, 2019, AUTOMAT CONSTR, V103, P41, DOI 10.1016/j.autcon.2019.03.005. Wu ZH, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11091413. Xia HS, 2022, SUSTAIN CITIES SOC, V84, DOI 10.1016/j.scs.2022.104009. Yang YY, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133713. Yaqoob I, 2020, IEEE NETWORK, V34, P290, DOI 10.1109/MNET.001.1900661. Yun Y., 2019, J OPEN INNOV TECHNOL, V5, DOI {[}DOI 10.3390/joitmc5040092, 10.3390/joitmc5040092, DOI 10.3390/JOITMC5040092]. Zhang M, 2018, IEEE INT C NETW SENS, DOI 10.1109/TCYB.2018.2842434. Zhao XB, 2017, AUTOMAT CONSTR, V80, P37, DOI 10.1016/j.autcon.2017.04.002. Zhu JX, 2022, AUTOMAT CONSTR, V136, DOI 10.1016/j.autcon.2022.104166. Zhu JX, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13101889.}, Number-of-Cited-References = {128}, Times-Cited = {0}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {14}, Journal-ISO = {Big Earth Data}, Doc-Delivery-Number = {9E5RJ}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000912755700001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000628582900001, Author = {Lee, Keeheon}, Title = {A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design}, Journal = {SUSTAINABILITY}, Year = {2021}, Volume = {13}, Number = {5}, Month = {MAR}, Abstract = {Emerging technologies such as artificial intelligence help operations management achieve sustainability. However, in sustainable operations management studies, scholars pay less attention to product design, which can be highly affected by artificial intelligence. In addition, sustainability is perceived as maintaining economic development while limiting environmental harm caused by human activity. Therefore, social sustainability is treated as peripheral compared to economic and environmental sustainability. However, social sustainability now has gained more attention because it is the basis on which meaningful economic and environmental sustainability can be valid. Thus, I systematically reviewed present studies on product design considering artificial intelligence to understand what types of social sustainability are achieved when applying artificial intelligence to product design. This study discovered artificial intelligence can improve social sustainability in product design, but social sustainability diversity is necessary. These findings can contribute to the inclusion of different types of social sustainability in product design when using artificial intelligence.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Lee, K (Corresponding Author), Yonsei Univ, Creat Technol Management, Underwood Int Coll, Incheon 21983, South Korea. Lee, Keeheon, Yonsei Univ, Creat Technol Management, Underwood Int Coll, Incheon 21983, South Korea.}, DOI = {10.3390/su13052668}, Article-Number = {2668}, EISSN = {2071-1050}, Keywords = {sustainable operation; product design; artificial intelligence; social sustainability; systematic review}, Keywords-Plus = {SEMANTIC NETWORK ANALYSIS; DECISION-SUPPORT-SYSTEM; SUPPLY CHAIN; ENGINEERING DESIGN; LIFE; OPTIMIZATION; ROBOTS; AI}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {keeheon@yonsei.ac.kr}, Affiliations = {Yonsei University}, Funding-Acknowledgement = {Korean Ministry of Education through National Research Foundation of Korea {[}NRF-2017R1C1B1010094]; Yonsei University through Yonsei Future-leading Research Initiative {[}2017-22-0067]; AI-Factory Research Center, Urban Communication Center, and Design Thinking Research Center in ICONS (Institute of Convergence Science), Yonsei University}, Funding-Text = {This research was funded by the Korean Ministry of Education through National Research Foundation of Korea, grant number NRF-2017R1C1B1010094; by Yonsei University through Yonsei Future-leading Research Initiative, grant number 2017-22-0067; by AI-Factory Research Center, Urban Communication Center, and Design Thinking Research Center in ICONS (Institute of Convergence Science), Yonsei University.}, Cited-References = {Acemoglu D, 2018, ARTIFICIAL INTELLIGE, DOI DOI 10.2139/SSRN.3098384. AGARWAL R, 1999, WASTE MANAGE, V31, P125, DOI DOI 10.1146/ANNUREV.FLUID.31.1.125. AHMED S, 2004, IEEE ROBOT AUTOM MAG, V15, P475, DOI DOI 10.1080/095448208410001708430. Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002. {[}Anonymous], REPRESENTATION UNDER. {[}Anonymous], 1923, ANGLOBELGIAN NOTES, V1, P195. Anthony L. F. W., 2020, CARBONTRACKER TRACKI. Bae JK, 2011, EXPERT SYST APPL, V38, P9274, DOI 10.1016/j.eswa.2011.01.030. BALAKRISHNAN P, 2004, J MATER PROCESS TECH, V34, P468, DOI DOI 10.1109/TSMCB.2003.817051. Barron L, 2002, P SUST OUR COMM INT, P3. BATORY D, 2006, AI EDAM, V49, P45, DOI DOI 10.1145/1183236.1183264. BATTINENI G, 2020, INT J ADV MANUF TECH, V8, P154, DOI DOI 10.3390/HEALTHCARE8020154. Benardos PG, 2003, INT J MACH TOOL MANU, V43, P833, DOI 10.1016/S0890-6955(03)00059-2. Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826. Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993. Bloom B. S., 1956, HDB 1 COGNITIVE DOMA, DOI DOI 10.1300/J104V03N01\_03. Bolukbasi Tolga., 2016, ADV NEURAL INFORM PR, P4349, DOI DOI 10.5555/3157382. Borenstein J, 2017, AI SOC, V32, P499, DOI 10.1007/s00146-016-0684-1. Cai YJ, 2020, TRANSPORT RES E-LOG, V141, DOI 10.1016/j.tre.2020.102010. CASTILHO M, 2020, DECISION SCI, V38, P1316, DOI DOI 10.1016/J.TIBTECH.2020.04.014. CATALANO CE, 2007, IEEE T ENG MANAGE, V21, P73, DOI DOI 10.1017/S0890060407070151. Cavallucci D, 2001, CIRP ANN-MANUF TECHN, V50, P115, DOI 10.1016/S0007-8506(07)62084-8. Ceres R, 1998, IND ROBOT, V25, P337, DOI 10.1108/01439919810232440. CHAN SL, 2011, AI MAG, V52, P178, DOI DOI 10.1016/J.DSS.2011.07.002. CHANG HH, 2008, INT J ADV MANUF TECH, V35, P1095, DOI DOI 10.1016/J.ESWA.2007.08.005. CLOSS DJ, 2007, INT J PROD ECON, V26, P590, DOI DOI 10.1016/J.JOM.2007.10.003. Cook DJ, 1997, ANN INTERN MED, V126, P376, DOI 10.7326/0003-4819-126-5-199703010-00006. Corsini L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133562. Cruz JM, 2008, INT J PROD ECON, V116, P61, DOI 10.1016/j.ijpe.2008.07.011. David J.-M, 1993, 2 GENERATION EXPERT, P3. DENG YM, 2002, RES ENG DES, V16, P343, DOI DOI 10.1017/S0890060402165024. Doerfel ML, 1999, HUM COMMUN RES, V25, P589, DOI 10.1111/j.1468-2958.1999.tb00463.x. DUTTA S, 1993, ENG APPL ARTIF INTEL, V40, P237, DOI DOI 10.1109/17.233185. Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002. Egger M, 1997, BMJ-BRIT MED J, V315, P1371, DOI 10.1136/bmj.315.7119.1371. Elkington J., 1998, CANNIBALS FORKS TRIP, DOI {[}DOI 10.1002/TQEM.3310080106, 10.1002/tqem.3310080106]. Engelberger J.F., 1983, ROBOTICS PRACTICE. Er o., 2008, DES J, V11, P159, DOI {[}10.2752/175630608X329235, DOI 10.2752/175630608X329235]. FALCO J, 2015, DECIS SUPPORT SYST, V22, P125, DOI DOI 10.1109/MRA.2015.2460891. FAR BH, 2005, J ENG DESIGN, V19, P75, DOI DOI 10.1017/S0890060405050080. Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185. FROMHERZ MP, 2003, INT J COMPUT INTEG M, V24, P120. Frydendal J., 2007, LIFE CYCLE MANAGEMEN. Gimenez C, 2012, INT J PROD ECON, V140, P149, DOI 10.1016/j.ijpe.2012.01.035. Hammond K. J., 1986, Proceedings AAAI-86: Fifth National Conference on Artificial Intelligence, P267. Hayes-Roth F., 1977, FOCUS ATTENTION HEAR. HE YH, 2016, ANNU REV FLUID MECH, V47, P25, DOI DOI 10.1016/J.ENGAPPAI.2015.06.002. Hewitt C., 1971, P IJCAI LOND UK 1 3, V2. Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557. Holland JH., 1992, ADAPTATION NATURAL A. Huang GQ, 1999, J INTELL MANUF, V10, P267, DOI 10.1023/A:1008999908120. Hutchins MJ, 2008, J CLEAN PROD, V16, P1688, DOI 10.1016/j.jclepro.2008.06.001. ISHII K, 1995, J MECH DESIGN, V117, P42. KATHURIA R, 1999, J MANUF SYST, V30, P959, DOI DOI 10.1111/J.1540-5915.1999.TB00915.X. Khakurel J, 2018, TECHNOLOGIES, V6, DOI 10.3390/technologies6040100. Khakurel J, 2018, INFORM TECHNOL PEOPL, V31, P791, DOI 10.1108/ITP-03-2017-0076. Kirkpatrick K, 2017, COMMUN ACM, V60, P18, DOI 10.1145/3105442. Kleindorfer PR, 2005, PROD OPER MANAG, V14, P482, DOI 10.1111/j.1937-5956.2005.tb00235.x. Koh SCL, 2013, INT J PROD RES, V51, P2092, DOI 10.1080/00207543.2012.705042. Koutsos TM, 2019, SCI TOTAL ENVIRON, V682, P106, DOI 10.1016/j.scitotenv.2019.04.354. KRISTIANTO Y, 2012, AI EDAM, V52, P790, DOI DOI 10.1016/J.DSS.2011.11.014. KUSIAK A, 2017, FUTURE GENER COMP SY, V56, P508, DOI DOI 10.1080/00207543.2017.1351644. Kwong CK, 2002, J MATER PROCESS TECH, V128, P136, DOI 10.1016/S0924-0136(02)00440-5. KWONG CK, 2016, J MATER ENG PERFORM, V47, P49, DOI DOI 10.1016/J.ENGAPPAI.2015.04.001. Lahsen M, 2020, IEEE TECHNOL SOC MAG, V39, P60, DOI 10.1109/MTS.2020.2991502. Lazega E., 1995, INFORM SCI INT J EME, V36, P781, DOI {[}DOI 10.28945/479, 10.28945/479, 10.2307/3322457]. Lebeuf C, 2018, IEEE SOFTWARE, V35, P18. Lee K, 2019, J CLEAN PROD, V233, P1510, DOI 10.1016/j.jclepro.2019.05.390. Lee K, 2017, J ASSOC INF SCI TECH, V68, P1295, DOI 10.1002/asi.23752. Lee K, 2016, SCIENTOMETRICS, V109, P1761, DOI 10.1007/s11192-016-2135-7. LEI N, 2015, COMPUT IND, V69, P82, DOI DOI 10.1016/J.DSS.2014.11.010. LEYDESDORFF L, 2016, THE J, V68, P1024, DOI DOI 10.1002/ASI.23740. LIU TI, 1995, INT J PROD RES, V4, P599, DOI DOI 10.1007/BF02649593. Liu XM, 2018, FUTURE GENER COMP SY, V78, P825, DOI 10.1016/j.future.2017.03.018. MAES P, 1995, COMMUN ACM, V38, P108, DOI 10.1145/219717.219808. MARR D, 1977, ARTIF INTELL, V9, P37, DOI 10.1016/0004-3702(77)90013-3. Ming-Chuan Chiu, 2016, Industrial Management \& Data Systems, V116, P322, DOI 10.1108/IMDS-07-2015-0266. Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002. MINSKY M, 1961, P IRE, V49, P8, DOI 10.1109/JRPROC.1961.287775. Minsky M., 1974, PSYCHOL COMPUTER VIS. Moher D, 2015, SYST REV-LONDON, V4, DOI {[}10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1186/s13643-015-0087-2]. MONDADA F, 2004, CIRP ANN-MANUF TECHN, V17, P193, DOI DOI 10.1023/B:AURO.0000033972.50769.1C. Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024. Murphy RR, 2001, IEEE ROBOT AUTOM MAG, V8, P44, DOI 10.1109/100.932757. Nakandala D, 2016, IND MANAGE DATA SYST, V116, P564, DOI 10.1108/IMDS-04-2015-0151. Nalimov VV, 1971, FTDMT2483571. NEWELL A, 1976, COMMUN ACM, V19, P113, DOI 10.1145/360018.360022. NG F, 2000, INT J PROD RES, V107, P37, DOI DOI 10.1016/S0924-0136(00)00725-1. Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104. NISSIM M, 2020, COMPUTER, DOI DOI 10.1162/COLI\_A\_00379. Norouzzadeh MS, 2018, P NATL ACAD SCI USA, V115, pE5716, DOI 10.1073/pnas.1719367115. Ohashi H, 1999, J FLUID ENG-T ASME, V121, P254, DOI 10.1115/1.2822199. ONUH SO, 1999, INT J SURG, V10, P301, DOI DOI 10.1023/A:1008956126775. PAWLAK Z, 1995, COMMUN ACM, V38, P89, DOI 10.1145/219717.219791. PEIEN F, 1996, ARTIF INTELL, V10, P347, DOI DOI 10.1017/S0890060400001669. QIU L, 2009, AI EDAM, V25, P145, DOI DOI 10.2753/MIS0742-1222250405. Rao SS, 1999, J INTELL MANUF, V10, P231, DOI 10.1023/A:1008943723141. Renzi C, 2014, INT J ADV MANUF TECH, V72, P403, DOI 10.1007/s00170-014-5674-1. RODGERS PA, 1999, IEEE T SYST MAN CY B, V11, P31, DOI DOI 10.1007/S001630050003. ROSENMAN M, 1999, INT J PROD RES, V11, P193, DOI DOI 10.1007/S001630050014. SABBAGHI M, 2015, IEEE INTELL SYST APP, V36, P305, DOI DOI 10.1016/J.WASMAN.2014.11.024. Sachs JD, 2019, NAT SUSTAIN, V2, P805, DOI 10.1038/s41893-019-0352-9. SALVADOR F, 2004, COMMUN ACM, V91, P273, DOI DOI 10.1016/J.IJPE.2003.09.003. SANTILLANGUTIER.SD, 1996, SYSTEM SUPPORT CONCE, P37. Saridakis KM, 2008, ADV ENG INFORM, V22, P202, DOI 10.1016/j.aei.2007.10.001. Selfridge O., 1959, P MECH THOUGHT PROC. Serholt S, 2017, AI SOC, V32, P613, DOI 10.1007/s00146-016-0667-2. SERMAN J, 2018, IND MANAGE DATA SYST, V13, P55002, DOI DOI 10.1088/1748-9326/AABE1C. SERSON AC, 1990, J MECH DESIGN, V11, P62. SHIH LH, 2006, DECIS SUPPORT SYST, V20, P137, DOI DOI 10.1016/J.AEI.2005.11.003. Sim SK, 2003, RES ENG DES, V14, P200, DOI 10.1007/s00163-003-0037-1. Sklar A, 2010, ERGON DES, V18, P4, DOI 10.1518/106480410X12737888532921. Smith R.G., 1977, MODEL LEARNING SYSTE. SMITH S, 2012, DECIS SUPPORT SYST, V26, P306, DOI DOI 10.1016/J.AEI.2011.11.003. Song M, 2017, J ASSOC INF SCI TECH, V68, P1564, DOI 10.1002/asi.23840. SOROOR J, 2012, AI MAG, V31, P240, DOI DOI 10.1016/J.JMSY.2011.09.002. STEPHANE N, 2008, AI EDAM, V86, P648, DOI DOI 10.1016/J.CHERD.2008.02.011. Valiance S, 2011, GEOFORUM, V42, P342, DOI 10.1016/j.geoforum.2011.01.002. Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y. WANG JF, 2003, INT J PROD RES, V17, P325, DOI DOI 10.1017/S0890060403174045. Wang K, 2007, J INTELL MANUF, V18, P487, DOI 10.1007/s10845-007-0053-5. Wang X, 2014, J OPER RES SOC, V65, P917, DOI 10.1057/jors.2013.23. Wang XJ, 2015, EUR J OPER RES, V241, P212, DOI 10.1016/j.ejor.2014.08.007. Whitby B, 2008, INTERACT COMPUT, V20, P326, DOI 10.1016/j.intcom.2008.02.002. Wisskirchen G., 2017, IBA GLOBAL EMPLOYMEN, V11, P49. Yan HS, 2007, IEEE T NEURAL NETWOR, V18, P721, DOI 10.1109/TNN.2007.894080. Yano K., 2017, PEOPLE STRATEGY, V40, P42. YOUNG RE, 1992, ENG APPL ARTIF INTEL, V30, P1715, DOI DOI 10.1080/00207549208948116. YU B, 1998, CHEM ENG RES DES, V13, P34, DOI DOI 10.1109/5254.708431. ZHA X, 2001, ADV ENG INFORM, V14, P61, DOI DOI 10.1016/S0952-1976(00)00060-9. Zha XF, 1998, INT J ADV MANUF TECH, V14, P664, DOI 10.1007/BF01192287. ZHA XF, 2000, RES ENG DES, V38, P3639, DOI DOI 10.1080/002075400422833. ZHA XF, 1999, AI EDAM, V12, P211, DOI DOI 10.1080/095119299130281. Zhan YZ, 2019, INT J PROD RES, V57, P6335, DOI 10.1080/00207543.2019.1566662. ZHANG S, 2016, J MANAGE INFORM SYST, V65, P87, DOI DOI 10.1016/J.ESWA.2016.08.037. ZHANG W, 2004, J MATER PROCESS TECH, V25, P221, DOI DOI 10.1007/S00170-003-1827-3. Zhang XG, 2017, INT J PROD RES, V55, P244, DOI 10.1080/00207543.2016.1203075. ZHANG Y, 1999, EXPERT SYST APPL, V37, P4179, DOI DOI 10.1080/002075499189727. ZHAO G, 2001, ENG APPL ARTIF INTEL, V45, P261, DOI DOI 10.1016/S0166-3615(01)00097-5. Zhao RC, 2019, AAAI CONF ARTIF INTE, P809. Zhou ZY, 2000, COMPUT CHEM ENG, V24, P1151, DOI 10.1016/S0098-1354(00)00496-8. Zhu JY, 2003, ENG APPL ARTIF INTEL, V16, P91, DOI 10.1016/S0952-1976(03)00057-5.}, Number-of-Cited-References = {142}, Times-Cited = {3}, Usage-Count-Last-180-days = {31}, Usage-Count-Since-2013 = {90}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {QW3WB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000628582900001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000617436500026, Author = {Guo, Jonathan and Li, Bin}, Title = {The Application of Medical Artificial Intelligence Technology in Rural Areas of Developing Countries}, Journal = {HEALTH EQUITY}, Year = {2018}, Volume = {2}, Number = {1}, Pages = {174-181}, Abstract = {Background: Artificial intelligence (AI) is a rapidly developing computer technology that has begun to be widely used in the medical field to improve the professional level and efficiency of clinical work, in addition to avoiding medical errors. In developing countries, the inequality between urban and rural health services is a serious problem, of which the shortage of qualified healthcare providers is the major cause of the unavailability and low quality of healthcare in rural areas. Some studies have shown that the application of computer-assisted or AI medical techniques could improve healthcare outcomes in rural areas of developing countries. Therefore, the development of suitable medical AI technology for rural areas is worth discussing and probing. Methods: This article reviews and discusses the literature concerning the prospects of medical AI technology, the inequity of healthcare, and the application of computer-assisted or AI medical techniques in rural areas of developing countries. Results: Medical AI technology not only could improve physicians' efficiency and quality of medical services, but other health workers could also be trained to use this technique to compensate for the lack of physicians, thereby improving the availability of healthcare access and medical service quality. This article proposes a multilevel medical AI service network, including a frontline medical AI system (basic level), regional medical AI support centers (middle levels), and a national medical AI development center (top level). Conclusion: The promotion of medical AI technology in rural areas of developing countries might be one means of alleviating the inequality between urban and rural health services. The establishment of a multilevel medical AI service network system may be a solution.}, Publisher = {MARY ANN LIEBERT, INC}, Address = {140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA}, Type = {Review}, Language = {English}, Affiliation = {Li, B (Corresponding Author), Georgetown Univ, Med Ctr, Dept Neurosci, 3800 Reservoir Rd NW, Washington, DC 20007 USA. Guo, Jonathan; Li, Bin, Washington Inst Hlth Sci, Dept Social Med, Arlington, VA USA. Li, Bin, Georgetown Univ, Med Ctr, Dept Neurosci, 3800 Reservoir Rd NW, Washington, DC 20007 USA.}, DOI = {10.1089/heq.2018.0037}, EISSN = {2473-1242}, Keywords = {artificial intelligence; developing countries; healthcare; rural areas; service network}, Research-Areas = {Public, Environmental \& Occupational Health}, Web-of-Science-Categories = {Public, Environmental \& Occupational Health}, Author-Email = {bl444@georgetown.edu}, Affiliations = {Georgetown University}, Funding-Acknowledgement = {Washington Institute for Health Sciences {[}G20171003]}, Funding-Text = {This study was supported by a grant from the Washington Institute for Health Sciences (G20171003). The authors would like to thank Editage (www.editage.com) for English language editing.}, Cited-References = {Adepoju Ibukun-Oluwa Omolade, 2017, JMIR Mhealth Uhealth, V5, pe38, DOI 10.2196/mhealth.7185. {[}Anonymous], 2018, S CHINA MORNING POST. Blumenthal D, 2010, NEW ENGL J MED, V362, P382, DOI 10.1056/NEJMp0912825. Caprara R, 2015, IEEE T BIO-MED ENG, V62, P1324, DOI 10.1109/TBME.2014.2386309. Chen Y, 2016, CLIN THER, V38, P688, DOI 10.1016/j.clinthera.2015.12.001. Curioni-Fontecedro A, 2017, ESMO OPEN, V2, DOI 10.1136/esmoopen-2017-000198. Dalaba MA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106416. Dawes TJW, 2017, RADIOLOGY, V283, P381, DOI 10.1148/radiol.2016161315. DEDOMBAL FT, 1969, LANCET, V1, P145. Deliberato Rodrigo Octavio, 2017, JMIR Med Inform, V5, pe24, DOI 10.2196/medinform.7627. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056. Friedman EA, 2009, IEEE TECHNOL SOC MAG, V28, P18, DOI 10.1109/MTS.2009.934143. Furukawa MF, 2014, HEALTH AFFAIR, V33, P1672, DOI 10.1377/hlthaff.2014.0445. Goher K M, 2017, Robotics Biomim, V4, P5, DOI 10.1186/s40638-017-0061-7. Hamet P, 2017, METABOLISM, V69, pS36, DOI 10.1016/j.metabol.2017.01.011. Harrison R, 2015, INT J QUAL HEALTH C, V27, P240, DOI 10.1093/intqhc/mzv041. Holl M, 2017, ARTIF INTELL. HORROCKS JC, 1972, BMJ-BRIT MED J, V2, P5, DOI 10.1136/bmj.2.5804.5. International Labour Office, 2015, GLOBAL EVIDENCE INEQ. Escalante HJ, 2012, ARTIF INTELL MED, V55, P163, DOI 10.1016/j.artmed.2012.03.005. Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101. Kim HS, 2015, ENDOCRINOL METAB, V30, P159, DOI 10.3803/EnM.2015.30.2.159. Komorowski M, 2017, CRIT CARE MED, V45, P912, DOI 10.1097/CCM.0000000000002351. Krittanawong C, 2017, J AM COLL CARDIOL, V69, P2657, DOI 10.1016/j.jacc.2017.03.571. Kunhimangalam R, 2014, J MED SYST, V38, DOI 10.1007/s10916-014-0038-9. Lee EJ, 2017, J STROKE, V19, P277, DOI 10.5853/jos.2017.02054. Liu XY, 2012, INT J EQUITY HEALTH, V11, DOI 10.1186/1475-9276-11-10. Liu Y, 2017, SIIM DETECTING CANC. McCarthy J, 2006, AI MAG, V27, P12. Mesko B, 2017, EXPERT REV PRECIS ME, V2, P239, DOI 10.1080/23808993.2017.1380516. Miller DD, 2018, AM J MED, V131, P129, DOI 10.1016/j.amjmed.2017.10.035. MILLER RA, 1994, J AM MED INFORM ASSN, V1, P8, DOI 10.1136/jamia.1994.95236141. Moss TJ, 2017, CRIT CARE MED, V45, P790, DOI 10.1097/CCM.0000000000002325. National Institutes of Health, 2016, MOB APPL IMPR MED AD. Nunez A, 2017, HEALTH EQUITY, V1, P1, DOI 10.1089/heq.2016.29001.edi. Olajubu EA, 2014, TECHNOL HEALTH CARE, V22, P561, DOI 10.3233/THC-140828. Oliveira Allisson Dantas, 2017, JMIR Res Protoc, V6, pe70, DOI 10.2196/resprot.6758. Peters BS, 2018, SURG ENDOSC, V32, P1636, DOI 10.1007/s00464-018-6079-2. Ridley EL, 2017, SIIM AI POISED ENHAN. Shortliffe E. H, 1976, ARTIFICIAL INTELLIGE. Singh H, 2014, BMJ QUAL SAF, V23, P727, DOI 10.1136/bmjqs-2013-002627. Strasser R, 2016, ANNU REV PUBL HEALTH, V37, P395, DOI 10.1146/annurev-publhealth-032315-021507. The MITRE Corporation, 2017, ART INT HLTH HLTH CA. The World Bank, 2013, LAB MARK HLTH WORK A. The World Bank, 2016, RUR POP. Vedanthan R, 2015, INT J MED INFORM, V84, P207, DOI 10.1016/j.ijmedinf.2014.12.005. Wan TTH, 2018, POPUL HEALTH MANAG, P165. WARNER HR, 1961, JAMA-J AM MED ASSOC, V177, P177, DOI 10.1001/jama.1961.03040290005002. WHO, 2010, INCREASING ACCESS TO HEALTH WORKERS IN REMOTE AND RURAL AREAS THROUGH IMPROVED RETENTION: GLOBAL POLICY RECOMMENDATIONS, P1. Wilson NW, 2009, RURAL REMOTE HEALTH, V9. World Health Organization, 2016, HLTH WORKF IND. Zhou KY, 2015, HUM RESOUR HEALTH, V13, DOI 10.1186/s12960-015-0089-0. Zhu JM, 2016, LANCET, V388, P1922, DOI 10.1016/S0140-6736(16)00582-1.}, Number-of-Cited-References = {53}, Times-Cited = {71}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {33}, Journal-ISO = {Health Equity}, Doc-Delivery-Number = {VJ6UP}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000617436500026}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000594149700003, Author = {Dawood, Thikra and Elwakil, Emad and Mayol Novoa, Hector and Garate Delgado, Jose Fernando}, Title = {Artificial intelligence for the modeling of water pipes deterioration mechanisms}, Journal = {AUTOMATION IN CONSTRUCTION}, Year = {2020}, Volume = {120}, Month = {DEC}, Abstract = {Water pipes deterioration modeling has been a prevalent research topic in the last two decades due to high water break incidents and contamination rates. Failure processes are de facto very intricate to be diagnosed since there is a time lag between the failure incidence and consequences. Artificial intelligence (A.I.) techniques have gained much momentum during the last two decades, specifically for the deterioration modeling and assessment of water distribution networks. However, a comprehensive critical review on water infrastructure modeling via artificial intelligence and machine learning techniques is missing in the literature. This paper aims to bridge the gap in the body of knowledge and address the aforementioned limitations. The intellectual contributions of this paper are twofold. First, a comprehensive literature review method is presented through sequential steps that systematize and synthesize the literature in a scientific way. The state-ofthe-art of AI-based deterioration modeling for urban water systems is revealed along with models' methodologies, contributions, drawbacks, comparisons, and critiques. Second, future research directions and challenges are recommended to assist the construction automation research community in setting a vibrant agenda for the upcoming years.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Dawood, T (Corresponding Author), Purdue Univ, Sch Construct Management, 401 N Grant St, W Lafayette, IN 47907 USA. Dawood, Thikra; Elwakil, Emad, Purdue Univ, Sch Construct Management, 401 N Grant St, W Lafayette, IN 47907 USA. Mayol Novoa, Hector; Garate Delgado, Jose Fernando, Natl Univ St Augustin Arequipa, Sch Civil Engn, Arequipa, Peru.}, DOI = {10.1016/j.autcon.2020.103398}, Article-Number = {103398}, ISSN = {0926-5805}, EISSN = {1872-7891}, Keywords = {Artificial intelligence; Machine learning; Pipe failure; Condition assessment; Water Main deterioration; Infrastructure; State-of-the-art review}, Keywords-Plus = {NEURAL-NETWORK; LEAK DETECTION; FAILURE RATE; PREDICTION; LOCALIZATION; REPLACEMENT; RELIABILITY; PERFORMANCE; INFERENCE; SYSTEM}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil}, Author-Email = {dawoodt@purdue.edu}, Affiliations = {Purdue University System; Purdue University; Purdue University West Lafayette Campus}, ResearcherID-Numbers = {Novoa, Héctor Mayol/AAE-7687-2021}, ORCID-Numbers = {Novoa, Héctor Mayol/0000-0002-1333-8903}, Funding-Acknowledgement = {Universidad Nacional de San Agustin (UNSA) in Arequipa, Peru; Purdue University in Indiana, U.S.A. through Discovery Park's Center for the Environment (C4E)}, Funding-Text = {This work is supported by the collaboration of the Universidad Nacional de San Agustin (UNSA) in Arequipa, Peru, and Purdue University in Indiana, U.S.A. through Discovery Park's Center for the Environment (C4E).}, Cited-References = {Achim D, 2007, J INFRASTRUCT SYST, V13, P26, DOI 10.1061/(ASCE)1076-0342(2007)13:1(26). Al-Barqawi H, 2006, J PERFORM CONSTR FAC, V20, P126, DOI 10.1061/(ASCE)0887-3828(2006)20:2(126). Al-Barqawi H, 2008, J INFRASTRUCT SYST, V14, P305, DOI 10.1061/(ASCE)1076-0342(2008)14:4(305). Amaitik N.M., 2008, PIP C, P1, DOI 10.1061/40994(321)128. {[}Anonymous], 2003, DETERIORATION INSPEC. ASCE, 2021, 2017 INFRASTRUCTURE. Asnaashari A, 2013, CAN WATER RESOUR J, V38, P24, DOI 10.1080/07011784.2013.774153. Aydogdu M, 2015, WATER RESOUR MANAG, V29, P1575, DOI 10.1007/s11269-014-0895-5. Bubtiena A. M., 2011, 2011 Proceedings of IEEE 7th International Colloquium on Signal Processing \& its Applications (CSPA 2011), P50, DOI 10.1109/CSPA.2011.5759841. Candelieri A, 2014, PROCEDIA ENGINEER, V89, P1080, DOI 10.1016/j.proeng.2014.11.228. Carter A. D., 2016, MECH RELIABILITY. Christodoulou S., 2003, WORLD WAT ENV RES C, P1, DOI DOI 10.1061/40685(2003)134. Christodoulou S, 2010, WATER RESOUR MANAG, V24, P3715, DOI 10.1007/s11269-010-9629-5. Christodoulou S, 2010, WATER RESOUR MANAG, V24, P139, DOI 10.1007/s11269-009-9441-2. Christodoulou S, 2009, COMPUT ENVIRON URBAN, V33, P138, DOI 10.1016/j.compenvurbsys.2008.12.001. Clair A.M.St., 2011, PIPELINES 2011 SOUND, P24, DOI {[}10.1061/41187(420)3, DOI 10.1061/41187(420)3]. Clair AMS, 2012, URBAN WATER J, V9, P85, DOI 10.1080/1573062X.2011.644566. Dawood T., 2019, P INT C ENG SCI TECH, P31. Dawood T, 2020, CAN J CIVIL ENG, V47, P1117, DOI 10.1139/cjce-2019-0481. Dawood T, 2018, J COMPUT CIVIL ENG, V32, DOI 10.1061/(ASCE)CP.1943-5487.0000728. Dridi L, 2009, J WATER RES PLAN MAN, V135, P344, DOI 10.1061/(ASCE)0733-9496(2009)135:5(344). El-Abbasy MS, 2016, STRUCT INFRASTRUCT E, V12, P1505, DOI 10.1080/15732479.2016.1144620. El-Zahab S, 2018, MECH SYST SIGNAL PR, V108, P276, DOI 10.1016/j.ymssp.2018.02.030. Elwakil E., 2016, INT J ARCHIT ENG CON, V5, P1, DOI {[}10.7492/IJAEC.2016.001, DOI 10.7492/IJAEC.2016.001]. Ertugrul Omer Faruk, 2014, AM J COMPUTER SCI EN, V1, P43. Fahmy M, 2009, J PERFORM CONSTR FAC, V23, P269, DOI 10.1061/(ASCE)0887-3828(2009)23:4(269). Fares H., 2009, CONSTR RES C, P1125, DOI 10.1061/41020(339)114.. Fares H, 2010, J PIPELINE SYST ENG, V1, P53, DOI 10.1061/(ASCE)PS.1949-1204.0000037. Fayaz M, 2018, PROCESSES, V6, DOI 10.3390/pr6080103. Fayaz M, 2018, PROCESSES, V6, DOI 10.3390/pr6050061. Folkman S., 2018, WATER MAIN BREAK RAT, P425, DOI {[}10.1061/(ASCE)WR.1943-5452.0000354., DOI 10.1061/(ASCE)WR.1943-5452.0000354]. Ge SQ, 2014, J PERFORM CONSTR FAC, V28, P618, DOI 10.1061/(ASCE)CF.1943-5509.0000424. Geem Z.W., 2007, PIPELINES 2007, P1, DOI 10.1061/40934(252)26. Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201. Hao T, 2012, TUNN UNDERGR SP TECH, V28, P331, DOI 10.1016/j.tust.2011.10.011. Harvey R, 2014, J WATER RES PLAN MAN, V140, P425, DOI 10.1061/(ASCE)WR.1943-5452.0000354. Ho CI, 2010, ENVIRON MONIT ASSESS, V166, P177, DOI 10.1007/s10661-009-0994-6. Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126. Islam MS, 2011, URBAN WATER J, V8, P351, DOI 10.1080/1573062X.2011.617829. Jafar R, 2010, MATH COMPUT MODEL, V51, P1170, DOI 10.1016/j.mcm.2009.12.033. Jang D, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030750. Ji J, 2015, ENG FAIL ANAL, V55, P131, DOI 10.1016/j.engfailanal.2015.05.010. Kaminski K, 2017, ECOL CHEM ENG S, V24, P31, DOI 10.1515/eces-2017-0003. Kang J, 2018, IEEE T IND ELECTRON, V65, P4279, DOI 10.1109/TIE.2017.2764861. KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868. Kayaalp F, 2017, NEURAL COMPUT APPL, V28, P2905, DOI 10.1007/s00521-017-2872-4. Klein JP., 2004, SURVIVAL ANAL TECHNI. Kleiner Y., 2001, URBAN WATER, V3, P131, DOI DOI 10.1016/S1462-0758(01)00033-4. Kleiner Y., 2004, AWWA 2004 ANN C ORL, P1. Kleiner Y., 2004, PIPELINE ENG CONSTRU, DOI {[}10.1061/40745(146)7, DOI 10.1061/40745(146)7]. Kutylowska M, 2017, PERIOD POLYTECH-CIV, V61, P1, DOI 10.3311/PPci.8737. Kutylowska M, 2015, ENG FAIL ANAL, V47, P41, DOI 10.1016/j.engfailanal.2014.10.007. Lau HCW, 2011, EXPERT SYST APPL, V38, P13342, DOI 10.1016/j.eswa.2011.04.158. Li D, 2016, 2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), P1096, DOI 10.1109/FSKD.2016.7603331. Li SZ, 2018, MEASUREMENT, V115, P39, DOI 10.1016/j.measurement.2017.10.021. Liu Z, 2013, MEASUREMENT, V46, P1, DOI 10.1016/j.measurement.2012.05.032. Liu Z, 2012, IEEE SENS J, V12, P1987, DOI 10.1109/JSEN.2011.2181161. Makropoulos C. K., 2005, URBAN WATER J, V2, P141, DOI DOI 10.1080/15730620500236674. Malinowska AA, 2017, NAT HAZARDS, V85, P621, DOI 10.1007/s11069-016-2594-4. Marzouk M, 2017, INT J COMPUT INT SYS, V10, P745, DOI 10.2991/ijcis.2017.10.1.50. Mashford J, 2012, APPL ARTIF INTELL, V26, P429, DOI 10.1080/08839514.2012.670974. Mashford J, 2009, NSS: 2009 3RD INTERNATIONAL CONFERENCE ON NETWORK AND SYSTEM SECURITY, P534, DOI 10.1109/NSS.2009.38. Mathworks, 2013, TECHN COMP COMP SOFT. McNeill F. M., 1994, FUZZY LOGIC PRACTICA. Mounce S. R., 2003, Information Fusion, V4, P217, DOI 10.1016/S1566-2535(03)00034-4. Mounce SR, 2011, J HYDROINFORM, V13, P672, DOI 10.2166/hydro.2010.144. Najjaran H, 2005, IEEE SYS MAN CYBERN, P3466. Najjaran H, 2004, NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2, P373. Nasir MT, 2014, P 2014 IEEE 11 INT M, P1, DOI {[}10.1109/SSD.2014.6808847, DOI 10.1109/SSD.2014.6808847]. Nazif S, 2010, WATER RESOUR MANAG, V24, P437, DOI 10.1007/s11269-009-9454-x. Nishiyama M, 2013, CAN J CIVIL ENG, V40, P972, DOI 10.1139/cjce-2012-0424. Rajani B., 2001, URBAN WATER, V3, P151, DOI {[}10.1016/S1462-0758(01)00032-2, DOI 10.1016/S1462-0758(01)00032-2, 10.1016/ S1462-0758(01)00 032-2.]. Rajani B., 2005, WATER MANAGEMENT 21, P1. Sadiq R., 2004, J INFRASTRUCT SYST, V10, P149, DOI DOI 10.1061/(ASCE)1076-0342(2004)10:4(149). Sadiq R., 2004, 4 INT C DEC MAK URB, P1. Sadiq R, 2007, RISK ANAL, V27, P1381, DOI 10.1111/j.1539-6924.2007.00972.x. Sattar AMA, 2019, NEURAL COMPUT APPL, V31, P157, DOI 10.1007/s00521-017-2987-7. Shirzad A, 2014, KSCE J CIV ENG, V18, P941, DOI 10.1007/s12205-014-0537-8. St Clair AM, 2014, J PIPELINE SYST ENG, V5, DOI 10.1061/(ASCE)PS.1949-1204.0000168. Tabesh M, 2009, J HYDROINFORM, V11, P1, DOI 10.2166/hydro.2009.008. Tee KF, 2018, J PIPELINE SYST ENG, V9, DOI 10.1061/(ASCE)PS.1949-1204.0000304. Tesfamariam S, 2006, CAN J CIVIL ENG, V33, P1050, DOI 10.1139/L06-042. Valizadeh S, 2009, AIP CONF PROC, V1159, P72, DOI 10.1063/1.3223958. Wilson D, 2017, URBAN WATER J, V14, P173, DOI 10.1080/1573062X.2015.1080848. Wu WY, 2011, 19TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2011), P1112. Xie MJ, 2018, ENG FAIL ANAL, V92, P222, DOI 10.1016/j.engfailanal.2018.05.010. Yannopoulos S, 2013, WATER RESOUR MANAG, V27, P1821, DOI 10.1007/s11269-012-0163-5. ZADEH LA, 1994, IEEE SOFTWARE, V11, P48, DOI 10.1109/52.329401. Zangenehmadar Z, 2016, J PERFORM CONSTR FAC, V30, DOI 10.1061/(ASCE)CF.1943-5509.0000886. Zhang QZ, 2016, J WATER RES PLAN MAN, V142, DOI 10.1061/(ASCE)WR.1943-5452.0000661.}, Number-of-Cited-References = {90}, Times-Cited = {20}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {37}, Journal-ISO = {Autom. Constr.}, Doc-Delivery-Number = {OY3KX}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000594149700003}, DA = {2023-04-22}, } @article{ WOS:000806912200001, Author = {Abid, Sheikh Kamran and Sulaiman, Noralfishah and Chan, Shiau Wei and Nazir, Umber and Abid, Muhammad and Han, Heesup and Ariza-Montes, Antonio and Vega-Munoz, Alejandro}, Title = {Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management}, Journal = {SUSTAINABILITY}, Year = {2021}, Volume = {13}, Number = {22}, Month = {NOV}, Abstract = {Technical and methodological enhancement of hazards and disaster research is identified as a critical question in disaster management. Artificial intelligence (AI) applications, such as tracking and mapping, geospatial analysis, remote sensing techniques, robotics, drone technology, machine learning, telecom and network services, accident and hot spot analysis, smart city urban planning, transportation planning, and environmental impact analysis, are the technological components of societal change, having significant implications for research on the societal response to hazards and disasters. Social science researchers have used various technologies and methods to examine hazards and disasters through disciplinary, multidisciplinary, and interdisciplinary lenses. They have employed both quantitative and qualitative data collection and data analysis strategies. This study provides an overview of the current applications of AI in disaster management during its four phases and how AI is vital to all disaster management phases, leading to a faster, more concise, equipped response. Integrating a geographic information system (GIS) and remote sensing (RS) into disaster management enables higher planning, analysis, situational awareness, and recovery operations. GIS and RS are commonly recognized as key support tools for disaster management. Visualization capabilities, satellite images, and artificial intelligence analysis can assist governments in making quick decisions after natural disasters.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Abid, SK (Corresponding Author), Univ Tun Hussein Onn Malaysia, Fac Technol Management \& Business FPTP, KANZU Res Resilient Built Environm RBE, Batu Pahat 86400, Malaysia. Abid, Sheikh Kamran; Sulaiman, Noralfishah; Chan, Shiau Wei; Nazir, Umber, Univ Tun Hussein Onn Malaysia, Fac Technol Management \& Business FPTP, KANZU Res Resilient Built Environm RBE, Batu Pahat 86400, Malaysia. Abid, Muhammad, Harbin Engn Univ, Coll Aerosp \& Civil Engn, Harbin 150001, Peoples R China. Han, Heesup, Sejong Univ, Coll Hospitality \& Tourism Management, Seoul 05006, South Korea. Ariza-Montes, Antonio, Univ Loyola Andalucia, Social Matters Res Grp, Cordoba 414004, Spain. Vega-Munoz, Alejandro, Univ Autonoma Chile, Publ Policy Observ, 425 Pedro de Valdivia Ave, Santiago 7500912, Chile.}, DOI = {10.3390/su132212560}, Article-Number = {12560}, EISSN = {2071-1050}, Keywords = {disaster management; artificial intelligence; geographic information system}, Keywords-Plus = {VULNERABILITY ASSESSMENT; FLOOD; HAZARD}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {shkamranabid@gmail.com nora@uthm.edu.my swchan@uthm.edu.my ambernazir4@gmail.com abidkhg@hrbeu.edu.cn heesup.han@gmail.com ariza@uloyola.es alejandro.vega@uautonoma.cl}, Affiliations = {University of Tun Hussein Onn Malaysia; Harbin Engineering University; Sejong University; Universidad Loyola Andalucia; Universidad Autonoma de Chile}, ResearcherID-Numbers = {Ariza-Montes, Antonio/G-8882-2017 Vega-Muñoz, Alejandro/AAX-7468-2021 SHIAU WEI, CHAN/H-7571-2014}, ORCID-Numbers = {Ariza-Montes, Antonio/0000-0002-5921-0753 Vega-Muñoz, Alejandro/0000-0002-9427-2044 Han, Heesup/0000-0001-6356-3001 SHIAU WEI, CHAN/0000-0002-9134-5025}, Cited-References = {Abid M, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11080349. Abid Sheikh Kamran, 2021, IOP Conference Series: Earth and Environmental Science, V795, DOI 10.1088/1755-1315/795/1/012026. Abid S.K., 2021, IOP C SER EARTH ENV, V802, DOI {[}10.1088/1755-1315/802/1/012059, DOI 10.1088/1755-1315/802/1/012059]. ABID S.K., 2020, J CRIT REV, V7, P491. Acquah P.C., 2017, REV INT GEOGR ED ONL, V7, P207. Ahmad K., 2017, CEUR WORKSHOP PROC, V1984, P13. Aisha TS, 2015, PROCD SOC BEHV, V211, P931, DOI 10.1016/j.sbspro.2015.11.123. Ajzen I, 2020, HUM BEHAV EMERG TECH, V2, P314, DOI 10.1002/hbe2.195. Albrecht CM, 2020, IBM J RES DEV, V64, DOI 10.1147/JRD.2020.2970903. Ali M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13179526. Amit SNKB, 2017, 2017 INTERNATIONAL ELECTRONICS SYMPOSIUM ON KNOWLEDGE CREATION AND INTELLIGENT COMPUTING (IES-KCIC), P239. {[}Anonymous], 2019, COLLABORATIVE MULTIA. Antoniou V, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12030544. Arinta Rania Rizki, 2019, 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), P249, DOI 10.1109/ICITISEE48480.2019.9003984. Aswin S, 2018, PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P657. Axel C, 2017, J APPL REMOTE SENS, V11, DOI 10.1117/1.JRS.11.046024. Baldazo D, 2019, EUR SIGNAL PR CONF. Binti Sulaiman Noralfishah, 2021, IOP Conference Series: Earth and Environmental Science, V775, DOI 10.1088/1755-1315/775/1/012017. Boulos MKN, 2020, INT J HEALTH GEOGR, V19, DOI 10.1186/s12942-020-00202-8. Canon MJP, 2018, INT SYMP COMP CONS, P237, DOI 10.1109/IS3C.2018.00067. Chakraborty M, 2020, SCI TOTAL ENVIRON, V748, DOI 10.1016/j.scitotenv.2020.141107. Chen JF, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17010049. Chen W, 2017, GEOMAT NAT HAZ RISK, V8, P1955, DOI 10.1080/19475705.2017.1401560. Ci TY, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11232858. Costache R, 2019, SCI TOTAL ENVIRON, V691, P1098, DOI 10.1016/j.scitotenv.2019.07.197. Curebal I, 2016, GEOCARTO INT, V31, P355, DOI 10.1080/10106049.2015.1047411. Darabi H, 2022, GEOCARTO INT, V37, P5716, DOI 10.1080/10106049.2021.1920629. Demir V, 2016, ADV METEOROL, V2016, DOI 10.1155/2016/4891015. Deshmukh K.H., 2021, ALGORITHMS INTELLIGE, P697, DOI {[}10.1007/978-981-33-6307-6\_72, DOI 10.1007/978-981-33-6307-6\_72]. Doshi J., 2018, NIPS. Dou J, 2020, SCI TOTAL ENVIRON, V720, DOI 10.1016/j.scitotenv.2020.137320. Duarte D., 2020, ISPRS ANN PHOTOGRAMM, VIV, P4. Erdelj M, 2017, IEEE PERVAS COMPUT, V16, P24, DOI 10.1109/MPRV.2017.11. Fariza A, 2017, 2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE), P406, DOI 10.1109/ICITISEE.2017.8285539. Fava P.R., 2010, USE GEOGRAPHIC INFOR, P1. Fernandez P, 2016, GEOMAT NAT HAZ RISK, V7, P1367, DOI 10.1080/19475705.2015.1052021. Fu QX, 2020, IEEE ACCESS, V8, P103491, DOI 10.1109/ACCESS.2020.2995511. Hoque MA, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19061302. Jena R, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.141582. Jung D, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10020666. Kabir MY, 2020, IEEE INT CONF MOB DA, P186, DOI 10.1109/MDM48529.2020.00041. Kankanamge N, 2020, INT J DISAST RISK RE, V48, DOI 10.1016/j.ijdrr.2020.101571. Khouj M, 2011, CAN CON EL COMP EN, P1507, DOI 10.1109/CCECE.2011.6030716. Lai JS, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19173717. Lee MFR, 2020, P 2020 INT C ADV ROB, P1, DOI DOI 10.1109/ARIS50834.2020.9205794. Madichetty S, 2019, INT CONF COMMUN SYST, P709, DOI 10.1109/COMSNETS.2019.8711095. Mosavi A, 2018, WATER-SUI, V10, DOI 10.3390/w10111536. Munawar HS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13147547. Nasim Yeganeh, 2014, Research Journal of Applied Sciences, Engineering and Technology, V8, P1794. Nex F, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11030287. Noymanee J, 2017, PROCEDIA COMPUT SCI, V119, P288, DOI 10.1016/j.procs.2017.11.187. Nunavath V., P 2019 INT C INF COM, P1, DOI {[}10.1109/ICT-DM47966.2019.9032935, DOI 10.1109/ICT-DM47966.2019.9032935]. Nunavath V, 2018, 2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR DISASTER MANAGEMENT (ICT-DM). Oakley M, 2020, WATER-SUI, V12, DOI 10.3390/w12071848. OGIE R. I., 2018 5 INT C INFORM, P1, DOI {[}10.1109/ICT-DM.2018.8636380, DOI 10.1109/ICT-DM.2018.8636380]. Ongdas N, 2020, WATER-SUI, V12, DOI 10.3390/w12102672. Park S, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8112239. Park S, 2017, INT J PRECIS ENG MAN, V18, P1475, DOI 10.1007/s12541-017-0175-4. Paul P., 2020, INT J MANAGE TECHNOL, V5, P11, DOI {[}10.2139/ssrn.3724127, DOI 10.2139/SSRN.3724127]. Pielke R, 2019, ENVIRON HAZARDS-UK, V18, P1, DOI 10.1080/17477891.2018.1540343. Polvara R, 2020, ROBOTICS, V9, DOI 10.3390/robotics9010008. Puttinaovarat S, 2020, GEOMAT NAT HAZ RISK, V11, P1886, DOI 10.1080/19475705.2020.1815869. Rahmati O, 2020, SCI TOTAL ENVIRON, V699, DOI 10.1016/j.scitotenv.2019.134230. Rehman S, 2019, NAT HAZARDS, V96, P975, DOI 10.1007/s11069-018-03567-z. Roslan AF, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131910631. Rumson AG, 2019, SCI TOTAL ENVIRON, V661, P598, DOI 10.1016/j.scitotenv.2019.01.114. Sakurai M, 2019, PROG DISASTER SCI, V2, DOI 10.1016/j.pdisas.2019.100012. Saravi S, 2019, WATER-SUI, V11, DOI 10.3390/w11050973. Sarkissian RD, 2019, APPL GEOGR, V111, DOI 10.1016/j.apgeog.2019.102075. Shaluf IM, 2002, DISASTER PREVENTION, V11, P380, DOI DOI 10.1108/09653560210453425. Sharma SK, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.10.015. Srivastava N., 2020, NANOBIOMEDICINE, P3, DOI DOI 10.1007/978-981-32-9898-9\_1. Sulaiman N., 2020, PROC INT C IND ENG O, V59, P2336. Sulistijono IA, 2016, 2016 INTERNATIONAL ELECTRONICS SYMPOSIUM (IES), P93, DOI 10.1109/ELECSYM.2016.7860982. Sun WJ, 2020, NAT HAZARDS, V103, P2631, DOI 10.1007/s11069-020-04124-3. Syifa M, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19030542. Termeh SVR, 2018, SCI TOTAL ENVIRON, V615, P438, DOI 10.1016/j.scitotenv.2017.09.262. Thomas C.F., 2020, LIBRARIES, P183, DOI {[}10.1201/b12440-10, DOI 10.1201/B12440-10]. Vetrivel A, 2018, ISPRS J PHOTOGRAMM, V140, P45, DOI 10.1016/j.isprsjprs.2017.03.001. Villodre J, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101521. Vojtek M, 2016, GEOMAT NAT HAZ RISK, V7, P1973, DOI 10.1080/19475705.2016.1166874. Wheeler BJ, 2020, ALGORITHMS, V13, DOI 10.3390/a13080195. Wu ZN, 2020, SCI TOTAL ENVIRON, V716, DOI 10.1016/j.scitotenv.2020.137077. Yang L, 2019, SOFT COMPUT, V23, P13393, DOI 10.1007/s00500-019-03878-8. Yang TH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072687. Yao JP, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134227.}, Number-of-Cited-References = {86}, Times-Cited = {4}, Usage-Count-Last-180-days = {26}, Usage-Count-Since-2013 = {36}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {1W6WD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000806912200001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000857642800001, Author = {Siregar, Riki Ruli A. and Seminar, Kudang Boro and Wahjuni, Sri and Santosa, Edi}, Title = {Vertical Farming Perspectives in Support of Precision Agriculture Using Artificial Intelligence: A Review}, Journal = {COMPUTERS}, Year = {2022}, Volume = {11}, Number = {9}, Month = {SEP}, Abstract = {Vertical farming is a new agricultural system which aims to utilize the limited access to land, especially in big cities. Vertical agriculture is the answer to meet the challenges posed by land and water shortages, including urban agriculture with limited access to land and water. This research study uses the Preferred Reporting for Systematic Review and Meta-analysis (PRISMA) item as one of the literary approaches. PRISMA is one way to check the validity of articles for a literature review or a systematic review resulting from this paper. One of the aims of this study is to review a survey of scientific literature related to vertical farming published in the last six years. Artificial intelligence with machine learning, deep learning, and the Internet of Things (IoT) in supporting precision agriculture has been optimally utilized, especially in its application to vertical farming. The results of this study provide information regarding all of the challenges and technological trends in the area of vertical agriculture, as well as exploring future opportunities.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Seminar, KB (Corresponding Author), IPB Univ Indonesia, Dept Agr Technol, Bogor 16680, Indonesia. Siregar, Riki Ruli A.; Wahjuni, Sri, IPB Univ Indonesia, Dept Comp Sci, Bogor 16680, Indonesia. Seminar, Kudang Boro, IPB Univ Indonesia, Dept Agr Technol, Bogor 16680, Indonesia. Santosa, Edi, IPB Univ Indonesia, Fac Agr, Dept Agron \& Hort, Bogor 16680, Indonesia.}, DOI = {10.3390/computers11090135}, Article-Number = {135}, ISSN = {2073-431X}, Keywords = {vertical farming; artificial intelligence; machine learning; deep learning; internet of things (IoT)}, Keywords-Plus = {SMART AGRICULTURE; INTERNET; THINGS; CHALLENGES; FRAMEWORK}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Interdisciplinary Applications}, Author-Email = {kseminar@apps.ipb.ac.id}, ResearcherID-Numbers = {Santosa, Edi/S-1975-2017 }, ORCID-Numbers = {Santosa, Edi/0000-0001-5560-4598 Siregar, Riki/0000-0002-9751-0415}, Cited-References = {Abbasi R., 2022, INF PROCESS AGR, DOI {[}10.1016/J.INPA.2021.12.001, DOI 10.1016/J.INPA.2021.12.001]. Abbasi R., 2022, SMART AGR TECHNOL, V2, P100042, DOI {[}DOI 10.1016/J.ATECH.2022.100042, 10.1016/j.atech.2022.100042]. Abukhader R., 2021, ARTIF INTELL. Agrawal Alka, 2021, Proceedings of International Conference on Big Data, Machine Learning and their Applications. ICBMA 2019. Lecture Notes in Networks and Systems (LNNS 150), P1, DOI 10.1007/978-981-15-8377-3\_1. Agriculture IoT Solutions, 2018, WHAT IS ITO AGR FRAM. Ahmad L., 2021, AGR 50 ARTIFICIAL IN, V1st. Al-Kodmany K, 2018, BUILDINGS-BASEL, V8, DOI 10.3390/buildings8020024. Alfred R, 2021, IEEE ACCESS, V9, P50358, DOI 10.1109/ACCESS.2021.3069449. Araujo SO, 2021, AGRONOMY-BASEL, V11, DOI 10.3390/agronomy11040667. Bhowmick Sutanni, 2019, Advances in Communication, Devices and Networking. ICCDN 2018. Proceedings: Lecture Notes in Electrical Engineering (LNEE 537), P521, DOI 10.1007/978-981-13-3450-4\_56. Bi SG, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22082991. Bianchi V, 2019, IEEE INTERNET THINGS, V6, P8553, DOI 10.1109/JIOT.2019.2920283. bin Ismail MIH, 2017, 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), P89. Bu FY, 2019, FUTURE GENER COMP SY, V99, P500, DOI 10.1016/j.future.2019.04.041. Buyukozkan G., 2021, NOVEL PYTHAGOREAN FU, V158. CEMA, 2021, CEMA EUR AGR MACH PR. Chen JY, 2019, IEEE ACCESS, V7, P77134, DOI 10.1109/ACCESS.2019.2921391. Chen QY, 2022, SOIL USE MANAGE, V38, P7, DOI 10.1111/sum.12771. De Oliveira FJB, 2021, INT J DECIS SUPPORT, V13, P34, DOI 10.4018/IJDSST.2021010103. Delorme M, 2022, OMEGA-INT J MANAGE S, V109, DOI 10.1016/j.omega.2022.102611. Despommier D, 2009, SCI AM, V301, P80, DOI 10.1038/scientificamerican1109-80. Fatemeh Kalantari, 2018, Journal of Landscape Ecology, V11, P35, DOI 10.1515/jlecol-2017-0016. Franchetti B, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19204378. Gnanasankaran N., 2020, INT J SCI TECHNOL RE, V9, P6452. Gnauer C, 2019, ELEKTROTECH INFORMAT, V136, P341, DOI 10.1007/s00502-019-00745-0. Gralla P., 2018, HEWLETT PACKARD ENTE. Halgamuge MN, 2021, URBAN FOR URBAN GREE, V61, DOI 10.1016/j.ufug.2021.127094. Haris I, 2019, 2019 IEEE 23RD INTERNATIONAL SYMPOSIUM ON CONSUMER TECHNOLOGIES (ISCT), P47, DOI 10.1109/ISCE.2019.8900974. Ismail M.A.F., 2019, INDONES J ELECT ENG, V14, P852, DOI {[}10.11591/ijeecs.v14.i2.pp852-858, DOI 10.11591/IJEECS.V14.I2.PP852-858]. Jaiswal H., 2019, INT CONF KNOWL SMART, P1. Jawad HM, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17081781. Jayaraman PP, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16111884. Jimenez AF, 2020, COMPUT ELECTRON AGR, V178, DOI 10.1016/j.compag.2020.105777. Kour VP, 2020, IEEE ACCESS, V8, P129924, DOI 10.1109/ACCESS.2020.3009298. Kozai T., 2018, SMART PLANT FACTORY, P3, DOI {[}10.1007/978-981-13-1065-2., DOI 10.1007/978-981-13-1065-2]. Krishnan J, 2020, P 2020 IEEE BANGALOR, DOI {[}10.1109/B-HTC50970.2020.9297856, DOI 10.1109/B-HTC50970.2020.9297856]. Labrador CG, 2018, I C HUMANOID NANOTEC, DOI 10.1109/HNICEM.2018.8666237. Li LY, 2020, J CLEAN PROD, V268, DOI 10.1016/j.jclepro.2020.121928. Liakos KG, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082674. Lu C., 2017, URBAN AGR VERTICAL F, V2. Mehra M, 2018, COMPUT ELECTRON AGR, V155, P473, DOI 10.1016/j.compag.2018.10.015. Monteiro Jose, 2018, 2018 Thirteenth International Conference on Digital Information Management (ICDIM), P234, DOI 10.1109/ICDIM.2018.8847169. Naranjani B, 2022, INT J HEAT MASS TRAN, V186, DOI 10.1016/j.ijheatmasstransfer.2021.122460. Nayak A, 2016, INT J PROD RES, V54, P6969, DOI 10.1080/00207543.2016.1146419. Ng A.K., 2021, J PHYS C SER, V2003, P012008, DOI {[}10.1088/1742-6596/2003/1/012008, DOI 10.1088/1742-6596/2003/1/012008]. Ogawa S, 2021, JARQ-JPN AGR RES Q, V55, P463. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI {[}10.1136/bmj.n71, 10.1371/journal.pmed.1003583, 10.1016/j.ijsu.2021.105906]. Popkova Elena G., 2022, Smart Innovation in Agriculture. Smart Innovation, Systems and Technologies (264), P257, DOI 10.1007/978-981-16-7633-8\_28. Popli S, 2021, COMPUT NETW, V199, DOI 10.1016/j.comnet.2021.108410. Pylianidis C, 2021, COMPUT ELECTRON AGR, V184, DOI 10.1016/j.compag.2020.105942. Rohit Ramena Venkata Satya, 2021, Proceedings of 6th International Conference on Recent Trends in Computing. ICRTC 2020. Lecture Notes in Networks and Systems (LNNS 177), P207, DOI 10.1007/978-981-33-4501-0\_20. Saad MHM, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121422. Sadik Tasrif Anubhove M., 2020, P 2020 INT C COMP PE, P250, DOI {[}10.1109/ComPE49325.2020.9200129, DOI 10.1109/COMPE49325.2020.9200129]. Saiz-Rubio V, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10020207. Santini A, 2021, EUR J OPER RES, V294, P377, DOI 10.1016/j.ejor.2021.01.034. Schimmelpfennig D., 2016, 217 US DEP AGR. Shamshiri RR, 2018, INT J AGR BIOL ENG, V11, P1, DOI 10.25165/j.ijabe.20181101.3210. SharathKumar M, 2020, TRENDS PLANT SCI, V25, P724, DOI 10.1016/j.tplants.2020.05.012. Sharma R, 2020, COMPUT OPER RES, V119, DOI 10.1016/j.cor.2020.104926. Shrivastava A., 2021, MATER TODAY-PROC, DOI {[}10.1016/j.matpr.2021.07.294, DOI 10.1016/J.MATPR.2021.07.294]. Sinha BB, 2022, FUTURE GENER COMP SY, V126, P169, DOI 10.1016/j.future.2021.08.006. Swain M., 2022, INTERNET THINGS AGR, P1. Talaviya T., 2020, ARTIF INTELL AGR, V4, P58, DOI DOI 10.1016/J.AIIA.2020.04.002. Tolga A.C., 2020, ADV INTELL SYST COMP, V1029, P745, DOI {[}10.1007/978-3-030-23756-1\_53, DOI 10.1007/978-3-030-23756-1\_89]. Tolga AC, 2022, J INTELL FUZZY SYST, V42, P1, DOI 10.3233/JIFS-219170. Tur J.A., 2015, FUNCTIONAL FOODS, V1st. Tzounis A, 2017, BIOSYST ENG, V164, P31, DOI 10.1016/j.biosystemseng.2017.09.007. United Nations News Service, 2015, UN NEWS. Vadivel R., 2019, P 2019 1 INT C INN I, DOI {[}10.1109/ICIICT1.2019.8741487, DOI 10.1109/ICIICT1.2019.8741487]. Villa-Henriksen A, 2020, BIOSYST ENG, V191, P60, DOI 10.1016/j.biosystemseng.2019.12.013. Wickramaarachchi P, 2020, INT CONF ADV ICT, P232, DOI 10.1109/ICTer51097.2020.9325472.}, Number-of-Cited-References = {71}, Times-Cited = {1}, Usage-Count-Last-180-days = {25}, Usage-Count-Since-2013 = {28}, Journal-ISO = {Computers}, Doc-Delivery-Number = {4S7VD}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000857642800001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000711438200006, Author = {Owolabi, Titilayo Abimbola and Mohandes, Saeed Reza and Zayed, Tarek}, Title = {Investigating the impact of sewer overflow on the environment: A comprehensive literature review paper}, Journal = {JOURNAL OF ENVIRONMENTAL MANAGEMENT}, Year = {2022}, Volume = {301}, Month = {JAN 1}, Abstract = {Sewer networks play a pivotal role in our everyday lives by transporting the stormwater and urban sewage away from the urban areas. In this regard, Sewer Overflow (SO) has been considered as a detrimental threat to our environment and health, which results from the wastewater discharge into the environment. In order to grapple with such deleterious phenomenon, numerous studies have been conducted; however, there has not been any review paper that provides the researchers undertaking research in this area with the following inclusive picture: (1) detailed-scientometric analysis of the research undertaken hitherto, (2) the types of methodologies used in the previous studies, (3) the aspects of environment impacted by the SO occurrence, and (4) the gaps existing in the relative literature together with the potential future works to be undertaken. Based on the comprehensive review undertaken, it is observed that simulation and artificial intelligence-based methods have been the most popular approaches. In addition, it has come to the attention that the detrimental impacts associated with the SO are fourfold as follows: air, quality of water, soil, and business and structure. Among these, the majority of the studies' focus have been tilted towards the impact of SO on the quality of ground water. The outcomes of this state-of-the-art review provides the researchers and environmental engineers with inclusive hindsight in dealing with such serious issue, which in turn, this culminates in a significant improvement in our environment as well as humans' well-beings.}, Publisher = {ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD}, Address = {24-28 OVAL RD, LONDON NW1 7DX, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Mohandes, SR (Corresponding Author), Hong Kong Univ Sci \& Technol, Fac Construct \& Environm, Dept Bldg \& Real Estate BRE, Hung Hom,Kowloon, Hong Kong, Peoples R China. Owolabi, Titilayo Abimbola, Hong Kong Univ Sci \& Technol, Dept Civil \& Environm Engn, Kowloon, Hong Kong, Peoples R China. Mohandes, Saeed Reza; Zayed, Tarek, Hong Kong Univ Sci \& Technol, Fac Construct \& Environm, Dept Bldg \& Real Estate BRE, Hung Hom,Kowloon, Hong Kong, Peoples R China.}, DOI = {10.1016/j.jenvman.2021.113810}, EarlyAccessDate = {OCT 2021}, Article-Number = {113810}, ISSN = {0301-4797}, EISSN = {1095-8630}, Keywords = {Sewer systems; Sewer overflows; Environmental concerns; Scientometric analysis; Artificial intelligence}, Keywords-Plus = {REAL-TIME CONTROL; ARTIFICIAL NEURAL-NETWORKS; DECISION-ANALYSIS; WATER-QUALITY; MANAGEMENT; MODEL; RIVER; CONTAMINATION; OPTIMIZATION; DESIGN}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {taowolabi@connect.ust.hk saeedreza.mohandes@polyu.edu.hk tarek.zayed@polyu.edu.hk}, Affiliations = {Hong Kong University of Science \& Technology; Hong Kong Polytechnic University; Hong Kong University of Science \& Technology}, ORCID-Numbers = {MOHANDES, SAEED REZA/0000-0001-9149-3928}, Cited-References = {Abdallah M, 2020, ENVIRON IMPACT ASSES, V82, DOI 10.1016/j.eiar.2020.106378. Ahmed W, 2020, SCI TOTAL ENVIRON, V705, DOI 10.1016/j.scitotenv.2019.135390. Al Aukidy M, 2017, SCI TOTAL ENVIRON, V607, P483, DOI 10.1016/j.scitotenv.2017.07.050. Andres-Domenech I, 2010, HYDROL EARTH SYST SC, V14, P2057, DOI 10.5194/hess-14-2057-2010. Baek H, 2015, EXPERT SYST APPL, V42, P6966, DOI 10.1016/j.eswa.2015.04.049. BALLA KM, 2020, CCTA 2020 4 IEEE C C, P611, DOI DOI 10.1109/CCTA41146.2020.9206362. Bastien N, 2010, DESALIN WATER TREAT, V19, P2, DOI 10.5004/dwt.2010.1881. Bonamente E, 2020, CIV ENG ENVIRON SYST, V37, P62, DOI 10.1080/10286608.2020.1771701. Botturi A, 2021, CRIT REV ENV SCI TEC, V51, P1585, DOI 10.1080/10643389.2020.1757957. Calderon O, 2017, GLOB J ENVIRON SCI M, V3, P437, DOI 10.22034/gjesm.2017.03.04.009. Casadio A., 2013, Environmental Engineering and Management Journal, V12, P121. Chen JC, 2003, CIV ENG ENVIRON SYST, V20, P213, DOI 10.1080/1028660031000094866. Chen KY, 2021, J CLEAN PROD, V287, DOI 10.1016/j.jclepro.2020.125071. Chen SD, 2019, J ENVIRON MANAGE, V233, P748, DOI 10.1016/j.jenvman.2018.09.082. Cheraghi M, 2019, SAFETY SCI, V114, P12, DOI 10.1016/j.ssci.2018.12.024. Chughtai F., 2007, INT C PIPELINE ENG C, P1, DOI {[}10.1061/40934(252)25, DOI 10.1061/40934(252)25]. Chughtai F, 2008, J PERFORM CONSTR FAC, V22, P333, DOI 10.1061/(ASCE)0887-3828(2008)22:5(333). Csicsaiova R., 2020, IOP Conference Series: Materials Science and Engineering, V867, DOI 10.1088/1757-899X/867/1/012005. Daigger G.T., 2019, LEAKAGE SEWER SYSTEM. De Feo G, 2017, ENVIRON TECHNOL, V38, P1943, DOI 10.1080/09593330.2016.1241306. De Schutter, 2009, P 12 IFAC S LARG SCA, V43, DOI {[}10.3182/20100712-3-FR-2020.00096, DOI 10.3182/20100712-3-FR-2020.00096]. Degrave R, 2013, IEEE INT C NETW SENS, P526, DOI 10.1109/ICNSC.2013.6548794. Dirckx G, 2018, URBAN WATER J, V15, P544, DOI 10.1080/1573062X.2017.1301499. Even S, 2004, ECOL MODEL, V173, P177, DOI 10.1016/j.ecolmodel.2003.08.019. Even S, 2007, SCI TOTAL ENVIRON, V375, P140, DOI 10.1016/j.scitotenv.2006.12.007. Fatone, 2021, ENVIRON RES, V196. Forsberg B.R., 2007, DOMESTIC SEWAGE OIL, DOI {[}10.1007/s11270-006-9267-y, DOI 10.1007/S11270-006-9267-Y]. Frehmann T, 2002, WATER SCI TECHNOL, V46, P19, DOI 10.2166/wst.2002.0658. Freni G, 2008, URBAN WATER J, V5, P87, DOI 10.1080/15730620701736878. Gamerith V, 2011, J ENVIRON ENG-ASCE, V137, P551, DOI 10.1061/(ASCE)EE.1943-7870.0000356. Gasperi J, 2010, WATER RES, V44, P5875, DOI 10.1016/j.watres.2010.07.008. Ghisi ND, 2020, SCI TOTAL ENVIRON, V733, DOI 10.1016/j.scitotenv.2020.139359. Govindan K, 2015, EXPERT SYST APPL, V42, P7207, DOI 10.1016/j.eswa.2015.04.030. GUL M, 2019, J SAFETY RES ELSEVIE. Habibi H, 2018, J HYDROL, V567, P637, DOI 10.1016/j.jhydrol.2018.10.037. Hajj-Mohamad M, 2014, ENVIRON SCI-PROC IMP, V16, P2442, DOI {[}10.1039/c4em00314d, 10.1039/C4EM00314D]. Hawari A, 2021, EVIDENTIAL REASONING, V35, P1, DOI {[}10.1061/(ASCE)CF.1943-5509.0001554, DOI 10.1061/(ASCE)CF.1943-5509.0001554]. Hawari A, 2018, AUTOMAT CONSTR, V89, P99, DOI 10.1016/j.autcon.2018.01.004. Itaquy B, 2017, J SUSTAIN WATER BUIL, V3, DOI 10.1061/JSWBAY.0000826. Itaquy B, 2016, Water, Wastewater, and Stormwater and Urban Watershed Symposium, P322. Jalliffier-Verne I, 2016, J ENVIRON MANAGE, V174, P62, DOI 10.1016/j.jenvman.2016.03.002. Javier J.C, 2015, REAL TIME URBAN FLOO, P20. Jean ME, 2018, J HYDROL, V565, P559, DOI 10.1016/j.jhydrol.2018.08.064. Kandler N, 2020, URBAN WATER J, V17, P577, DOI 10.1080/1573062X.2019.1611888. Kathirvel C., 2014, INT J ENG RES APPL, V4, P270. Lund NSV, 2020, WATER RESOUR RES, V56, DOI 10.1029/2019WR026272. Madoux-Humery AS, 2016, WATER RES, V92, P218, DOI 10.1016/j.watres.2015.12.033. Malakar A, 2021, SCI TOTAL ENVIRON, V759, DOI 10.1016/j.scitotenv.2020.143470. Masseroni D, 2018, J AGRIC ENG-ITALY, V49, P233, DOI 10.4081/jae.2018.873. Mohandes SR, 2020, J CIV ENG MANAG, V26, P175, DOI 10.3846/jcem.2020.11926. Mohandes SR, 2019, SAFETY SCI, V115, P294, DOI 10.1016/j.ssci.2019.02.018. Mohandes SR, 2019, NEUROCOMPUTING, V340, P55, DOI 10.1016/j.neucom.2019.02.040. Montserrat A, 2015, SCI TOTAL ENVIRON, V505, P1053, DOI 10.1016/j.scitotenv.2014.10.087. Morales VM, 2017, URBAN WATER J, V14, P97, DOI 10.1080/1573062X.2015.1057183. Mounce SR, 2014, WATER SCI TECHNOL, V69, P1326, DOI 10.2166/wst.2014.024. Noymanee J, 2019, PROCEDIA COMPUT SCI, V156, P377, DOI 10.1016/j.procs.2019.08.214. Ogidan O, 2016, WATER RESOUR MANAG, V30, P3707, DOI 10.1007/s11269-016-1373-z. Ogidan O, 2015, World Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems, P2218. Ogidan OS, 2017, J WATER RES PLAN MAN, V143, DOI {[}10.1061/(ASCE)WR.1943-5452.0000774, 10.1061/(asce)wr.1943-5452.0000774]. Ostfeld A, 2011, WORLD ENV WAT RES C, P2911. Pan NF, 2008, AUTOMAT CONSTR, V17, P958, DOI 10.1016/j.autcon.2008.03.005. Passerat J, 2011, WATER RES, V45, P893, DOI 10.1016/j.watres.2010.09.024. Phillips PJ, 2012, ENVIRON SCI TECHNOL, V46, P5336, DOI 10.1021/es3001294. Prigiobbe V., 2020, RELATIONSHIP INFILTR. Quijano JC, 2017, SCI TOTAL ENVIRON, V576, P362, DOI 10.1016/j.scitotenv.2016.08.191. Rahman A, 2021, SCI TOTAL ENVIRON, V757, DOI 10.1016/j.scitotenv.2020.143872. Rankin J, 2018, CSCE GEN C HELD PART, P244. Rathnayake U, 2019, J HYDROL, V579, DOI 10.1016/j.jhydrol.2019.124150. Riechel M, 2020, J ENVIRON MANAGE, V274, DOI 10.1016/j.jenvman.2020.111207. Riechel M, 2016, WATER RES, V105, P264, DOI 10.1016/j.watres.2016.08.017. Rieckermann J, 2006, WATER SCI TECHNOL, V54, P161, DOI 10.2166/wst.2006.615. Rueedi J, 2009, WATER ENVIRON J, V23, P134, DOI 10.1111/j.1747-6593.2008.00119.x. Ryu J, 2017, URBAN WATER J, V14, P202, DOI 10.1080/1573062X.2015.1086004. Schertzinger G, 2019, ENVIRON POLLUT, V248, P782, DOI 10.1016/j.envpol.2019.02.079. Sercu B, 2011, ENVIRON SCI TECHNOL, V45, P7151, DOI 10.1021/es200981k. Sharior S, 2019, J HYDROL, V573, P422, DOI 10.1016/j.jhydrol.2019.03.012. Shrivastava Pooja, 2020, IOP Conference Series: Materials Science and Engineering, V814, DOI 10.1088/1757-899X/814/1/012029. SIMON L, 1994, WATER SCI TECHNOL, V29, P209, DOI 10.2166/wst.1994.0667. Sojobi AO, 2022, ENVIRON RES, V203, DOI 10.1016/j.envres.2021.111609. Soriano L, 2019, J CLEAN PROD, V226, P1, DOI 10.1016/j.jclepro.2019.04.033. Sriwastava AK, 2018, J ENVIRON ENG, V144, DOI 10.1061/(ASCE)EE.1943-7870.0001392. Stevens, 2007, CHARACTERIZATION SAN, P1. Sun CC, 2017, IFAC PAPERSONLINE, V50, P3941, DOI 10.1016/j.ifacol.2017.08.142. Tabatabaee S, 2019, J CLEAN PROD, V238, DOI 10.1016/j.jclepro.2019.117956. Taghipour M, 2019, J ENVIRON MANAGE, V249, DOI 10.1016/j.jenvman.2019.109386. Tanyimboh, 2012, WIT T BUILT ENV, V122, P87, DOI DOI 10.2495/UW120081. Tanyimboh, 2018, INT C URB DRAIN MOD, P621. Tao DQ, 2020, INFORMS J APPL ANAL, V50, P7, DOI 10.1287/inte.2019.1022. Tavakol-Davani H, 2016, SUSTAIN CITIES SOC, V27, P430, DOI 10.1016/j.scs.2016.07.003. Todeschini S., 2014, International Journal of Sustainable Development and Planning, V9, P196, DOI 10.2495/SDP-V9-N2-196-210. Tscheikner-Gratl F, 2019, URBAN WATER J, V16, P662, DOI 10.1080/1573062X.2020.1713382. Villeneuve J.P., 2001, URBAN WATER, V3, P241, DOI {[}10.1016/S1462-0758(01)00037-1, DOI 10.1016/S1462-0758(01)00037-1]. Villeneuve J.-P., 2001, URBAN DRAINAGE MODEL, P10. Yang FL, 2021, ENVIRON SCI-WAT RES, V7, P172, DOI {[}10.1039/d0ew00735h, 10.1039/D0EW00735H]. Yang YF, 2020, J CLEAN PROD, V263, DOI 10.1016/j.jclepro.2020.121433. Yazdi J, 2015, J HYDROL ENG, V20, DOI 10.1061/(ASCE)HE.1943-5584.0001226. Zhang D, 2018, J HYDROL, V556, P409, DOI 10.1016/j.jhydrol.2017.11.018. ZHANG X, 2020, J CLEAN PROD. Zhao WQ, 2019, IEEE T SYST MAN CY-S, V49, P1254, DOI 10.1109/TSMC.2017.2724440. Zimmer A, 2018, J WATER RES PLAN MAN, V144, DOI {[}10.1061/(ASCE)WR.1943-5452.0000879, 10.1061/(asce)wr.1943-5452.0000879]. Zimmer A, 2015, ENVIRON MODELL SOFTW, V69, P330, DOI 10.1016/j.envsoft.2015.03.005.}, Number-of-Cited-References = {101}, Times-Cited = {12}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {46}, Journal-ISO = {J. Environ. Manage.}, Doc-Delivery-Number = {WM9ZZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000711438200006}, DA = {2023-04-22}, } @article{ WOS:000687457800002, Author = {Wang, Jindong and Jiang, Shengchuan and Qiu, Yue and Zhang, Yang and Ying, Jianguo and Du, Yuchuan}, Title = {Traffic Signal Optimization under Connected-Vehicle Environment: An Overview}, Journal = {JOURNAL OF ADVANCED TRANSPORTATION}, Year = {2021}, Volume = {2021}, Month = {AUG 11}, Abstract = {Traffic signal optimization is a significant means for smoothing urban traffic flow. However, the operation of traffic signals is currently seriously constrained by the data available from traditional point detectors. In recent years, an emerging technology, connected vehicle (CV), which can percept the overall traffic environment in real time, has drawn researchers' attention. With the new data source, traffic controllers should be able to make smarter decisions. A lot of work has been done to develop a new traffic signal control pattern under connected-vehicle environment. This paper provides a comprehensive review of these studies, aiming at sketching out the state of the arts in this research field. Several basic control problems, communication, control input, and objectives, are briefly introduced. The commonly used optimization models for this problem are summarized into three types: rule-based models, mathematical programming-based models, and artificial intelligence-based models. Then some major technical issues are discussed in detail. Finally, we raise the limitation of the existing studies and give our perspectives of the future research directions.}, Publisher = {WILEY-HINDAWI}, Address = {ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Jiang, SC (Corresponding Author), Tongji Univ, Key Lab Rd \& Traff Engn, Minist Educ, Shanghai, Peoples R China. Wang, Jindong; Jiang, Shengchuan; Qiu, Yue; Du, Yuchuan, Tongji Univ, Key Lab Rd \& Traff Engn, Minist Educ, Shanghai, Peoples R China. Wang, Jindong; Ying, Jianguo, Jinqiao Grp Co Ltd, Shanghai, Peoples R China. Zhang, Yang, Shanghai Urban Rural Construct \& Transportat Dev, Shanghai, Peoples R China.}, DOI = {10.1155/2021/3584569}, Article-Number = {3584569}, ISSN = {0197-6729}, EISSN = {2042-3195}, Keywords-Plus = {INTERSECTION CONTROL; TIMING OPTIMIZATION; CONTROL ALGORITHM; NETWORKS; TECHNOLOGY}, Research-Areas = {Engineering; Transportation}, Web-of-Science-Categories = {Engineering, Civil; Transportation Science \& Technology}, Author-Email = {shengchuanjiang@tongji.edu.cn}, Affiliations = {Tongji University}, Funding-Acknowledgement = {Shanghai Science and Technology Committee, China {[}YDZX20193100004845, 21DZ205100, 19DZ1208700]}, Funding-Text = {This study was jointly supported by Shanghai Science and Technology Committee, China (YDZX20193100004845, 21DZ205100, and 19DZ1208700).}, Cited-References = {Abbas MK, 2015, COMPUT ELECTR ENG, V41, P40, DOI 10.1016/j.compeleceng.2014.12.011. Ahmane M, 2013, TRANSPORT RES C-EMER, V28, P44, DOI 10.1016/j.trc.2012.11.004. Allsop R. E., 1976, Traffic Engineering \& Control, V17, P338. Allsop R.E., 1971, TRAFFIC ENG CONTROL, VVol. 13, P58. {[}Anonymous], 2009, J2735200911 SOC AUT. Bak J, 2015, INRIX, V81. Bhuvaneswari P. T. V., 2012, 2012 4th International Conference on Computational Intelligence and Communication Networks (CICN 2012), P85, DOI 10.1109/CICN.2012.38. Bin Al Islam SMA, 2020, TRANSPORT RES C-EMER, V121, DOI 10.1016/j.trc.2020.102830. Bin Al Islam SMA, 2017, TRANSPORT RES C-EMER, V80, P272, DOI 10.1016/j.trc.2017.04.017. BMW, 2009, BMW GREEN WAV PROJ. Cai C, 2013, IET INTELL TRANSP SY, V7, P351, DOI 10.1049/iet-its.2011.0150. Chen WJ, 2005, INT CONF PARA PROC, P258. Cheng JL, 2017, IEEE T IND INFORM, V13, P751, DOI 10.1109/TII.2016.2590302. Cheng SF, 2006, IEEE T INTELL TRANSP, V7, P551, DOI 10.1109/TITS.2006.884617. Cobbe B.M, 1966, TRAFFIC SIGNALS, V56. Collotta M, 2015, EXPERT SYST APPL, V42, P5403, DOI 10.1016/j.eswa.2015.02.011. Di Taranto, 1990, P IFORS S CONTR COMM. Elhenawy M, 2015, IEEE INT C INTELL TR, P343, DOI 10.1109/ITSC.2015.65. Feng YH, 2015, TRANSPORT RES C-EMER, V55, P460, DOI 10.1016/j.trc.2015.01.007. Gartner N. H., 1990, Control, Computers, Communications in Transportation. Selected Papers from the IFAC/IFIP/IFORS Symposium, P241. Gartner NH, 2013, TRANSPORT RES REC, P84, DOI 10.3141/2356-10. Goodall NJ, 2013, TRANSPORT RES REC, P65, DOI 10.3141/2381-08. Gradinescu V, 2007, IEEE VTS VEH TECHNOL, P21, DOI 10.1109/VETECS.2007.17. Guler SI, 2014, TRANSPORT RES C-EMER, V46, P121, DOI 10.1016/j.trc.2014.05.008. Hajbabaie A, 2013, TRANSPORT RES REC, P10, DOI 10.3141/2355-02. Harvey R.P, 2017, REGISTER, V82. He Q, 2014, TRANSPORT RES C-EMER, V46, P65, DOI 10.1016/j.trc.2014.05.001. He Q, 2011, PROCD SOC BEHV, V17, P462, DOI 10.1016/j.sbspro.2011.04.527. Hildebrandt R., 2009, STRASSENVERKEHRSTECH, V53, P365. Hu J, 2015, TRANSPORT RES C-EMER, V55, P393, DOI 10.1016/j.trc.2014.12.005. Hunt P., 1981, TECHNICAL REPORT. I.F.A.C. Conf and R. Isermann, 1983, PROC 4 IFAC S TRASPO, P307. Jiang D, 2008, IEEE VTS VEH TECHNOL, P2036, DOI 10.1109/VETECS.2008.458. Kari D, 2014, 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P1802, DOI 10.1109/ITSC.2014.6957954. Kari D, 2014, IEEE INT VEH SYM, P1187, DOI 10.1109/IVS.2014.6856511. Khamis MA, 2014, ENG APPL ARTIF INTEL, V29, P134, DOI 10.1016/j.engappai.2014.01.007. Koonce P., 2008, TRAFFIC SIGNAL TIMIN. Kwatirayo S., 2013, 2013 IEEE International Conference on Sensing, Communications and Networking (SECON), P260, DOI 10.1109/SAHCN.2013.6644993. Lee J, 2013, J TRANSP ENG, V139, P1020, DOI 10.1061/(ASCE)TE.1943-5436.0000587. Lee J, 2012, IEEE T INTELL TRANSP, V13, P81, DOI 10.1109/TITS.2011.2178836. Lee YJ, 2017, J TRANSP ENG A-SYST, V143, DOI 10.1061/JTEPBS.0000062. Li L, 2016, IEEE-CAA J AUTOMATIC, V3, P247, DOI 10.1109/JAS.2016.7508798. Li W, 2019, IEEE T INTELL TRANSP, V20, P4354, DOI 10.1109/TITS.2018.2883572. Li W, 2016, INT CONF CONNECT VEH, P13, DOI 10.1109/ICCVE.2016.3. Liang X, 2020, TRANSPORT RES C-EMER, V111, P156, DOI 10.1016/j.trc.2019.11.008. Liang X, 2018, TRANSPORT RES REC, V2672, P81, DOI 10.1177/0361198118786842. Lin XH, 2017, MATH PROBL ENG, V2017, DOI 10.1155/2017/8784067. Little J., 1981, TRANSP RES RECORD J, V795, P40. Liu WR, 2017, IEEE T VEH TECHNOL, V66, P8667, DOI 10.1109/TVT.2017.2702388. Maslekar N, 2013, J NETW COMPUT APPL, V36, P1308, DOI 10.1016/j.jnca.2012.05.011. Miller A.J, P INT S THEOR TRAFF. Mirchandani P, 2005, IEEE INTELL SYST, V20, P10, DOI 10.1109/MIS.2005.15. Nafi N. S., 2012, 2012 Australasian Telecommunication Networks and Applications Conference (ATNAC 2012), DOI 10.1109/ATNAC.2012.6398066. National Highway Traffic Safety Administration, 2017, TRAFF SAF FACTS. National Highway Traffic Safety Administration (NHTSA), 2013, 2013 NATL SURVEY USE. Pandit K, 2013, IEEE T VEH TECHNOL, V62, P1459, DOI 10.1109/TVT.2013.2241460. Peirce J.R, P PTRC TRAFFEX 93 C. Pizam A., 1999, International Journal of Hospitality Management, V18, P331, DOI 10.1016/S0278-4319(99)00041-9. Pol E.V.D., 2016, THESIS FACULTEIT NAT. Priemer C, 2009, 2009 12TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2009), P765. Rafter CB, 2020, IEEE T INTELL TRANSP, V21, P1728, DOI 10.1109/TITS.2020.2971540. Robertson D.I., 1969, TRAFFIC ENG CONTROL, V10, P181. Shaghaghi E, 2017, FRONT INFORM TECH EL, V18, P373, DOI 10.1631/FITEE.1500355. Sims A. G., 1979, P ENG FDN C RES DIR, P12. Tomescu Ovidiu, 2012, University ``Politehnica{''} of Bucharest, Scientific Bulletin Series D: Mechanical Engineering, V74, P67. Uzcategui RA, 2009, IEEE COMMUN MAG, V47, P126, DOI 10.1109/MCOM.2009.4939288. Wang PW, 2020, J INTELL TRANSPORT S, V24, P81, DOI 10.1080/15472450.2019.1579093. Wang YP, 2013, IET INTELL TRANSP SY, V7, P371, DOI 10.1049/iet-its.2011.0228. Wang ZX, 2021, IEEE WCNC, DOI 10.1109/WCNC49053.2021.9417262. Webster F.V., 1958, 39 DEP SCI IND RES. Williams H. P., 2013, MODEL BUILDING MATH. Xiang JP, 2016, CLUSTER COMPUT, V19, P1503, DOI 10.1007/s10586-016-0620-7. Xie YC, 2017, J INTELL TRANSPORT S, V21, P136, DOI 10.1080/15472450.2016.1248288. Yang K., 2017, 17 SWISS TRANSP RES. Yang KD, 2016, TRANSPORT RES C-EMER, V72, P109, DOI 10.1016/j.trc.2016.08.009. Yao ZH, 2020, J INTELL TRANSPORT S, V24, P184, DOI 10.1080/15472450.2019.1643723. Younes MB, 2016, IEEE T VEH TECHNOL, V65, P5887, DOI 10.1109/TVT.2015.2472367. Zanjireh MM, 2015, IEEE VTS VEH TECHNOL. Zheng JF, 2017, TRANSPORT RES C-EMER, V79, P347, DOI 10.1016/j.trc.2017.03.007. Zhu F, 2015, TRANSPORT RES C-EMER, V55, P363, DOI 10.1016/j.trc.2015.01.006.}, Number-of-Cited-References = {80}, Times-Cited = {2}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {29}, Journal-ISO = {J. Adv. Transp.}, Doc-Delivery-Number = {UD8MU}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000687457800002}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000947567500001, Author = {Pavaloaia, Vasile-Daniel and Necula, Sabina-Cristiana}, Title = {Artificial Intelligence as a Disruptive Technology-A Systematic Literature Review}, Journal = {ELECTRONICS}, Year = {2023}, Volume = {12}, Number = {5}, Month = {MAR}, Abstract = {The greatest technological changes in our lives are predicted to be brought about by Artificial Intelligence (AI). Together with the Internet of Things (IoT), blockchain, and several others, AI is considered to be the most disruptive technology, and has impacted numerous sectors, such as healthcare (medicine), business, agriculture, education, and urban development. The present research aims to achieve the following: identify how disruptive technologies have evolved over time and their current acceptation (1); extract the most prominent disruptive technologies, besides AI, that are in use today (2); and elaborate on the domains that were impacted by AI and how this occurred (3). Based on a sentiment analysis of the titles and abstracts, the results reveal that the majority of recent publications have a positive connotation with regard to the disruptive impact of edge technologies, and that the most prominent examples (the top five) are AI, the IoT, blockchain, 5G, and 3D printing. The disruptive effects of AI technology are still changing how people interact in the corporate, consumer, and professional sectors, while 5G and other mobile technologies will become highly disruptive and will genuinely revolutionize the landscape in all sectors in the upcoming years.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Pavaloaia, VD (Corresponding Author), Alexandru Ioan Cuza Univ, Fac Econ \& Business Adm, Dept Accounting Business Informat Syst \& Stat, Iasi 700506, Romania. Pavaloaia, Vasile-Daniel; Necula, Sabina-Cristiana, Alexandru Ioan Cuza Univ, Fac Econ \& Business Adm, Dept Accounting Business Informat Syst \& Stat, Iasi 700506, Romania.}, DOI = {10.3390/electronics12051102}, Article-Number = {1102}, EISSN = {2079-9292}, Keywords = {artificial intelligence; disruptive technology; disruptive innovation; blockchain; IoT}, Keywords-Plus = {FUTURE; SMART; INNOVATION; DIRECTIONS; IMPACT}, Research-Areas = {Computer Science; Engineering; Physics}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Physics, Applied}, Author-Email = {danpav@uaic.ro}, Affiliations = {Alexandru Ioan Cuza University}, Cited-References = {Abdullah N.S.D., 2017, P INT C BIG DATA INT. Ahmad P, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21103308. Ahmad T, 2019, HIGH EDUC SKILL WORK, V10, P217, DOI 10.1108/HESWBL-12-2018-0136. Anitha J, 2022, INT J COMPUT COMMUN, V17, DOI 10.15837/ijccc.2022.2.4356. Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007. Basmmi A.B.M.N., 2020, P IOP C SERIES MAT S. Bengoechea J., 2022, INT J SCI EDUC, V16, P493. Bird K., 4 TRENDS WILL IMPACT. Bongomin O, 2020, J ENG-NY, V2020, DOI 10.1155/2020/4280156. BOWER JL, 1995, HARVARD BUS REV, V73, P43. Bredava A., GUIDE SENTIMENT ANAL. Brito CR, 2019, INT CONF INFO TECH. Brougham D, 2018, J MANAGE ORGAN, V24, P239, DOI 10.1017/jmo.2016.55. Brunelle F, 2019, B ACAD NAT MED PARIS, V203, P683, DOI 10.1016/j.banm.2019.06.016. Bublitz FM, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16203847. Buhler MM, 2022, EDUC SCI, V12, DOI 10.3390/educsci12110782. Burden K, 2018, COMPUT LAW SECUR REV, V34, P886, DOI 10.1016/j.clsr.2018.05.022. Byrne M, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0259797. Cartaxo B., 2018, P 22 INT C EVALUATIO, P24, DOI {[}10.1145/3210459.3210462, DOI 10.1145/3210459.3210462]. Chaka C, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.824976. Chang N, 2020, IN C IND ENG ENG MAN, P893. Choi TM, 2022, PROD OPER MANAG, V31, P9, DOI 10.1111/poms.13622. Christensen, 1997, INNOVATORS DILEMMA N. Christensen CM, 2018, J MANAGE STUD, V55, P1043, DOI 10.1111/joms.12349. Christensen CM, 1996, STRATEGIC MANAGE J, V17, P197, DOI 10.1002/(SICI)1097-0266(199603)17:3<197::AID-SMJ804>3.0.CO;2-U. Ciolacu M, 2017, INT SYM DES TECH ELE, P438. Contreras D, 2022, NAT HAZARDS, V113, P403, DOI 10.1007/s11069-022-05307-w. Contreras D, 2022, EARTHQ SPECTRA, V38, P81, DOI 10.1177/87552930211036486. Corchado JM, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11081280. Cukier W, 2019, J GLOB RESPONSIB, V10, P211, DOI 10.1108/JGR-11-2018-0079. Dal Mas F., 2022, P EUROPEAN C IMPACT, P88. De Bernardi P, 2020, CONTRIB MANAG SCI, P189, DOI 10.1007/978-3-030-33502-1\_7. Dong CW, 2021, INT J LOGIST MANAG, V32, P386, DOI 10.1108/IJLM-01-2020-0043. Dorweiler B, 2022, GEFASSCHIRURGIE, V27, P561, DOI 10.1007/s00772-022-00943-9. Elangovan K., 2020, J GREEN ENG, V10, P2661. Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019. Fu GT, 2022, WATER RES, V223, DOI 10.1016/j.watres.2022.118973. Garbuio M, 2019, CALIF MANAGE REV, V61, P59, DOI 10.1177/0008125618811931. Ghani A., 2022, WORLD T ENG TECHNOL, V20, P112. Ghobakhloo M, 2020, J CLEAN PROD, V252, DOI 10.1016/j.jclepro.2019.119869. Hernandez R., WORLD STANDARDS DAY. Holmes W, 2022, EUR J EDUC, V57, P542, DOI 10.1111/ejed.12533. Hong ZF, 2022, INT J PROD RES, V60, P2625, DOI 10.1080/00207543.2021.1894368. International Organization for Standardization, 2022, ISO STAND FOR FRAM T. Ishengoma FR, 2022, DIGIT POLICY REGUL G, V24, P449, DOI 10.1108/DPRG-06-2022-0067. Jabarulla MY, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9081019. Jacobs E.C., 2022, J ANIM SCI, DOI {[}10.1093/jas/skac132, DOI 10.1093/JAS/SKAC132]. Jekov B., 2022, P 11 ANN INT C ED RE, P6784. Jia WF, 2022, SYST RES BEHAV SCI, V39, P557, DOI 10.1002/sres.2859. Joda T, 2021, J DENT RES, V100, P448, DOI 10.1177/0022034520978774. Kamble SS, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.05.023. Karimanzira D, 2021, AT-AUTOM, V69, P345, DOI 10.1515/auto-2020-0036. Kasinathan P, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142215258. Kelly JT, 2021, J HUM NUTR DIET, V34, P134, DOI 10.1111/jhn.12827. Khanna A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111840. Khatab Z, 2021, CRIT REV CL LAB SCI, V58, P546, DOI 10.1080/10408363.2021.1943302. Khatri S., 2019, DATA MANAGEMENT ANAL. Koizumi S, 2019, CREATIVE ECON, P63, DOI 10.1007/978-981-13-9053-1\_4. Laukyte M, 2020, PHILOSOPHIES, V5, DOI 10.3390/philosophies5040024. Ljepava N, 2022, TEM J, V11, P1308, DOI 10.18421/TEM113-40. Maliha G, 2021, MILBANK Q, V99, P629, DOI 10.1111/1468-0009.12504. Manickam P, 2022, BIOSENSORS-BASEL, V12, DOI 10.3390/bios12080562. McBee MP, 2020, J DIGIT IMAGING, V33, P726, DOI 10.1007/s10278-019-00310-3. McLean J, 2019, ALTERN LAW J, V44, P291, DOI 10.1177/1037969X19853685. Mesko B, 2017, EXPERT REV PRECIS ME, V2, P239, DOI 10.1080/23808993.2017.1380516. Mesko B, 2018, BMC HEALTH SERV RES, V18, DOI 10.1186/s12913-018-3359-4. Mesko B, 2018, HEALTH INFORM SER, P339, DOI 10.1007/978-3-319-61446-5\_22. Miao F., 2021, ED GUIDANCE POLICYMA. Miklosik A, 2020, IEEE ACCESS, V8, P101284, DOI 10.1109/ACCESS.2020.2998754. Mohanty K, 2021, INT CONF COMMUN SYST, P703, DOI 10.1109/COMSNETS51098.2021.9352917. Molenaar I, 2022, EUR J EDUC, V57, P632, DOI 10.1111/ejed.12527. Monkeylearn, COD TEXT AN. Moore WB, 2022, J EDUC BUS, V97, P105, DOI 10.1080/08832323.2021.1895045. Neethirajan S, 2021, ANIMALS-BASEL, V11, DOI 10.3390/ani11041008. Noor A, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142315543. O'Connor S, 2010, CHANDOS INF PROF SER, P33. Ojo A, 2019, IFIP ADV INF COMM TE, P285, DOI 10.1007/978-3-030-28464-0\_25. Oosthuizen R.M., 2022, FRONT ARTIF INTELL, V5, P913168, DOI {[}10.3389/frai.2022.913168, DOI 10.3389/FRAI.2022.913168]. Ortega-Fernandez A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12197860. Ortola A., 2019, PHILIPPINE DAILY INQ. Pahuriray A.V., 2022, INT J EMERG TECHNOL, V12, P1, DOI {[}10.46338/ijetae1222\_01, DOI 10.46338/IJETAE1222\_01]. Popescul D, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.588121. Pornpongtechavanich P., 2022, INT J EDUC MANAG, V11, P1696, DOI {[}10.11591/ijere.v11i4.22197, DOI 10.11591/IJERE.V11I4.22197]. Prakash S, 2022, J PERS MED, V12, DOI 10.3390/jpm12111914. Radu LD, 2020, SMART CITIES-BASEL, V3, P1022, DOI 10.3390/smartcities3030051. Saura JR, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093016. Rapanyane MB, 2020, CONTEMP SOC SCI, V15, P489, DOI 10.1080/21582041.2020.1806346. Rasouli JJ, 2021, GLOB SPINE J, V11, P556, DOI 10.1177/2192568220915718. Rosales M.A., 2020, P IEEE 12 INT C HUMA. Ryman-Tubb NF, 2018, ENG APPL ARTIF INTEL, V76, P130, DOI 10.1016/j.engappai.2018.07.008. Sadriu Shpetim, 2022, Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Proceedings. Communications in Computer and Information Science (1543), P228, DOI 10.1007/978-3-031-04112-9\_17. Saraswat D, 2022, IEEE ACCESS, V10, P84486, DOI 10.1109/ACCESS.2022.3197671. Schintler LA, 2022, J URBAN MANAG, V11, P256, DOI 10.1016/j.jum.2022.05.004. Sgantzos K, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11080170. Spanaki K, 2022, ANN OPER RES, V308, P491, DOI 10.1007/s10479-020-03922-z. Stoiber C, 2022, VIS INFORM, V6, P34, DOI 10.1016/j.visinf.2022.07.001. Ugochukwu NA, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10244670. Ullah F, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12101516. Ullah F, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093142. VOSViewer, VIS SCI LANDSC. Wamba SF, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.102064. Wiegandt D, 2022, J INT ARBITR, V39, P671. Xu Y, 2018, SOC MEDIA SOC, V4, DOI 10.1177/2056305118808780. Yang K, 2020, IEEE NETWORK, V34, P16, DOI 10.1109/MNET.011.2000045. Yu H, 2022, INT J ADV MANUF TECH, V123, P4231, DOI 10.1007/s00170-022-10387-w. Zeeshan K, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14074293. Zhuang Y., 2019, BIG DATA ANALYTICS C, P813, DOI {[}10.1007/978-981-15-2568-1, DOI 10.1007/978-981-15-2568-1\_111]. Zondervan NA, 2022, PROCESSES, V10, DOI 10.3390/pr10122667. Zweispace, 2020, ZWEISP WON BEST STAR.}, Number-of-Cited-References = {109}, Times-Cited = {0}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {5}, Journal-ISO = {Electronics}, Doc-Delivery-Number = {9U2SO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000947567500001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000522824300002, Author = {de Souza Groppo, Gustavo and Costa, Marcelo Azevedo and Libanio, Marcelo}, Title = {Predicting water demand: a review of the methods employed and future possibilities}, Journal = {WATER SUPPLY}, Year = {2019}, Volume = {19}, Number = {8}, Pages = {2179-2198}, Month = {DEC}, Abstract = {The balance between water supply and demand requires efficient water supply system management techniques. This balance is achieved through operational actions, many of which require the application of forecasting concepts and tools. In this article, recent research on urban water demand forecasting employing artificial intelligence is reviewed, aiming to present the `state of the art' on the subject and provide some guidance regarding methods and models to research and professional sanitation companies. The review covers the models developed using standard statistical techniques, such as linear regression or time-series analysis, or techniques based on Soft Computing. This review shows that the studies are, mostly, focused on the management of the operating systems. There is, therefore, room for long-term forecasts. It is worth noting that there is no global model that surpasses all the methods for all cases, it being necessary to study each region separately, evaluating the strengths of each model or the combination of methods. The use of statistical applications of Machine Learning and Artificial Intelligence methodologies has grown considerably in recent years. However, there is still room for improvement with regard to water demand forecasting.}, Publisher = {IWA PUBLISHING}, Address = {REPUBLIC-EXPORT BLDG, UNITS 1 04 \& 1 05, 1 CLOVE CRESCENT, LONDON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Libanio, M (Corresponding Author), Univ Fed Minas Gerais, Dept Sanit \& Environm Engn, Belo Horizonte, MG, Brazil. de Souza Groppo, Gustavo, Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil. de Souza Groppo, Gustavo, Companhia Saneamento Minas Gerais COPASA MG, Rua Mar Espanha 525, BR-30330900 Belo Horizonte, MG, Brazil. Costa, Marcelo Azevedo, Univ Fed Minas Gerais, Dept Prod Engn, Belo Horizonte, MG, Brazil. Libanio, Marcelo, Univ Fed Minas Gerais, Dept Sanit \& Environm Engn, Belo Horizonte, MG, Brazil.}, DOI = {10.2166/ws.2019.122}, ISSN = {1606-9749}, EISSN = {1607-0798}, Keywords = {Artificial Intelligence; Machine Learning; Soft Computing; water demand prediction}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; TIME-SERIES PREDICTION; FEATURE-SELECTION; CONSUMPTION; REGRESSION; ENSEMBLES; MODELS; FILTER; DETERMINANTS; OPTIMIZATION}, Research-Areas = {Engineering; Environmental Sciences \& Ecology; Water Resources}, Web-of-Science-Categories = {Engineering, Environmental; Environmental Sciences; Water Resources}, Author-Email = {marcelo@desa.ufmg.br}, Affiliations = {Universidade Federal de Minas Gerais; Universidade Federal de Minas Gerais; Universidade Federal de Minas Gerais}, ResearcherID-Numbers = {Libanio, Marcelo/GVS-9471-2022 }, ORCID-Numbers = {Costa, Marcelo/0000-0002-2330-5056}, Cited-References = {Adamowski J, 2012, WATER RESOUR RES, V48, DOI 10.1029/2010WR009945. Adamowski J, 2010, J HYDROL ENG, V15, P729, DOI 10.1061/(ASCE)HE.1943-5584.0000245. Al-Zahrani MA, 2015, WATER RESOUR MANAG, V29, P3651, DOI 10.1007/s11269-015-1021-z. Altunkaynak A, 2005, WATER RESOUR MANAG, V19, P641, DOI 10.1007/s11269-005-7371-1. Altunkaynak A, 2017, J WATER RES PLAN MAN, V143, DOI {[}10.1061/(ASCE)WR.1943-5452.0000761, 10.1061/(asce)wr.1943-5452.0000761]. Andre DD, 2014, WATER RESOUR MANAG, V28, P2401, DOI 10.1007/s11269-014-0551-0. Arandia E, 2016, J WATER RES PLAN MAN, V142, DOI 10.1061/(ASCE)WR.1943-5452.0000591. Araujo R, 2015, LECT NOTES COMPUT SC, V9094, P576, DOI 10.1007/978-3-319-19258-1\_47. Arbues F., 2003, J SOCIO EC, V32, P81, DOI {[}10.1016/S1053-5357(03)00005-2, DOI 10.1016/S1053-5357(03)00005-2]. Azadeh A, 2012, J WATER RES PL-ASCE, V138, P71, DOI 10.1061/(ASCE)WR.1943-5452.0000152. Bai Y, 2014, J HYDROL, V517, P236, DOI 10.1016/j.jhydrol.2014.05.033. Barbounis TG, 2007, NEUROCOMPUTING, V70, P1525, DOI 10.1016/j.neucom.2006.01.032. Bonissone P. P., 1997, Soft Computing, V1, P6, DOI 10.1007/s005000050002. Borovykh Anastasia, 2017, ARXIV170304691. Box G. E. P., 1970, Time series analysis, forecasting and control. Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Brentan BM, 2017, J COMPUT APPL MATH, V309, P532, DOI 10.1016/j.cam.2016.02.009. Broad DR, 2005, J WATER RES PL-ASCE, V131, P172, DOI 10.1061/(ASCE)0733-9496(2005)131:3(172). Broomhead D. S., 1988, Complex Systems, V2, P321. Caiado J, 2010, J HYDROL ENG, V15, P215, DOI 10.1061/(ASCE)HE.1943-5584.0000182. Chang H, 2010, URBAN GEOGR, V31, P953, DOI 10.2747/0272-3638.31.7.953. Chen KY, 2011, EXPERT SYST APPL, V38, P10368, DOI 10.1016/j.eswa.2011.02.049. COLORNI A, 1992, FROM ANIM ANIMAT, P134. Crone SF, 2010, NEUROCOMPUTING, V73, P1923, DOI 10.1016/j.neucom.2010.01.017. Dahl CM, 2004, INT J FORECASTING, V20, P201, DOI {[}10.1016/j.ijforecast.2003.09.002, 10.1016/j.ijforecast.2003.10.002]. de Freitas A. A. C., 2007, THESIS. Di CL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104663. Dietterich TG, 2000, LECT NOTES COMPUT SC, V1857, P1, DOI 10.1007/3-540-45014-9\_1. Donkor EA, 2014, J WATER RES PLAN MAN, V140, P146, DOI 10.1061/(ASCE)WR.1943-5452.0000314. Du KC, 2017, J HYDROL, V552, P44, DOI 10.1016/j.jhydrol.2017.06.019. ELMAN JL, 1990, COGNITIVE SCI, V14, P179, DOI 10.1207/s15516709cog1402\_1. FEO TA, 1989, OPER RES LETT, V8, P67, DOI 10.1016/0167-6377(89)90002-3. Firat M, 2010, J HYDROL, V384, P46, DOI 10.1016/j.jhydrol.2010.01.005. Firat M, 2009, J HYDROL, V374, P235, DOI 10.1016/j.jhydrol.2009.06.013. Firat M, 2009, WATER RESOUR MANAG, V23, P617, DOI 10.1007/s11269-008-9291-3. Freund Y, 1996, P 13 INT C MACH LEAR, DOI DOI 10.5555/3091696.3091715. Froelich W, 2015, COMM COM INF SC, V521, P333, DOI 10.1007/978-3-319-18422-7\_30. Fullerton TM, 2016, J AM WATER WORKS ASS, V108, pE27, DOI 10.5942/jawwa.2016.108.0003. Gagliardi F, 2017, WATER-SUI, V9, DOI 10.3390/w9070507. Gardiner V., 1990, WATER DEMAND FORECAS. Gashler M., 2008, 2008 7 INT C MACHINE, P900, DOI {[}DOI 10.1109/ICMLA.2008.154, 10.1109/ICMLA.2008.154]. Ghalehkhondabi I, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-017-6030-3. Ghiassi M, 2008, J WATER RES PL-ASCE, V134, P138, DOI 10.1061/(ASCE)0733-9496(2008)134:2(138). GRANGER CWJ, 1989, J FORECASTING, V8, P167, DOI 10.1002/for.3980080303. Granitto PM, 2005, ARTIF INTELL, V163, P139, DOI 10.1016/j.artint.2004.09.006. Gupta I, 1999, ENVIRON MODELL SOFTW, V14, P437, DOI 10.1016/S1364-8152(98)00089-9. Guyon I., 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616. HANSEN LK, 1990, IEEE T PATTERN ANAL, V12, P993, DOI 10.1109/34.58871. Hassani H., 2007, J DATA SCI, V5, P239, DOI DOI 10.6339/JDS.2007.05(2).396. Herrera M, 2010, J HYDROL, V387, P141, DOI 10.1016/j.jhydrol.2010.04.005. Holland JH., 1992, ADAPTATION NATURAL A. HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554. House-Peters L, 2010, J AM WATER RESOUR AS, V46, P461, DOI 10.1111/j.1752-1688.2009.00415.x. Hsu HH, 2011, EXPERT SYST APPL, V38, P8144, DOI 10.1016/j.eswa.2010.12.156. Htike K. K., 2010, P 2010 INT C COMP CO, DOI {[}10.1109/ICCCE.2010.5556806, DOI 10.1109/ICCCE.2010.5556806]. Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126. Huang NE, 1998, P ROY SOC A-MATH PHY, V454, P903, DOI 10.1098/rspa.1998.0193. Hutton CJ, 2014, J WATER RES PLAN MAN, V140, P169, DOI {[}10.1061/(ASCE)WR.1943-5452.00, 10.1061/(ASCE)WR.1943-5452.0000325]. Jaeger H., 2001, 148 GMD GERM NAT RES. JANG JSR, 1993, IEEE T SYST MAN CYB, V23, P665, DOI 10.1109/21.256541. JANG JSR, 1991, PROCEEDINGS : NINTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, P762. John GH, 1994, P 11 INT C MACH LEAR, P121, DOI {[}10.1016/B978-1-55860-335-6.50023-4, DOI 10.1016/B978-1-55860-335-6.50023-4]. Jordan Michael I, 1986, 8604 U CAL I COGN SC. Kapelan Z., 2002, THESIS. Karunasingha DSK, 2018, J HYDROL, V565, P737, DOI 10.1016/j.jhydrol.2018.08.044. KAY SM, 1981, P IEEE, V69, P1380, DOI 10.1109/PROC.1981.12184. Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X. Koza J, 1990, GENETIC PROGRAMMING. Krogh A., 1995, Advances in Neural Information Processing Systems 7, P231. Liu JQ, 2013, J WATER RES PLAN MAN, V139, P23, DOI 10.1061/(ASCE)WR.1943-5452.0000223. MAKRIDAKIS S, 1983, MANAGE SCI, V29, P987, DOI 10.1287/mnsc.29.9.987. Melin P, 2012, EXPERT SYST APPL, V39, P3494, DOI 10.1016/j.eswa.2011.09.040. Mendes-Moreira J, 2012, ACM COMPUT SURV, V45, DOI 10.1145/2379776.2379786. Mukesh Tiwari, 2016, Journal of Water and Land Development, P37. Nasseri M, 2011, EXPERT SYST APPL, V38, P7387, DOI 10.1016/j.eswa.2010.12.087. Nauges C, 2010, WORLD BANK RES OBSER, V25, P263, DOI 10.1093/wbro/lkp016. Oba S, 2003, BIOINFORMATICS, V19, P2088, DOI 10.1093/bioinformatics/btg287. Odan F. K., 2013, THESIS. Odan FK, 2012, J WATER RES PLAN MAN, V138, P245, DOI 10.1061/(ASCE)WR.1943-5452.0000177. Oshima N, 1998, WATER SCI TECHNOL, V37, P389, DOI 10.2166/wst.1998.0565. Pena-Guzman C, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/5712347. PERRONE MP, 1993, NEURAL NETWORKS SPEE, P126. Piramuthu S, 2004, EUR J OPER RES, V156, P483, DOI {[}10.1016/S0377-2217(02)00911-6, 10.1016/s0377-2217(02)00911-6]. POLI I, 1994, J AM STAT ASSOC, V89, P117, DOI 10.2307/2291206. Pulido-Calvo I, 2003, J IRRIG DRAIN ENG, V129, P422, DOI 10.1061/(ASCE)0733-9437(2003)129:6(422). Pulido-Calvo I, 2009, BIOSYST ENG, V102, P202, DOI 10.1016/j.biosystemseng.2008.09.032. Qiu X., 2014, 2014 IEEE S COMPUTAT, P1, DOI {[}10.1109/CIEL.2014.7015739, DOI 10.1109/CIEL.2014.7015739]. Ren Y, 2016, IEEE COMPUT INTELL M, V11, P41, DOI 10.1109/MCI.2015.2471235. Romano M, 2014, ENVIRON MODELL SOFTW, V60, P265, DOI 10.1016/j.envsoft.2014.06.016. Rooney N, 2004, LECT NOTES COMPUT SC, V3077, P164. Saeys Y, 2007, BIOINFORMATICS, V23, P2507, DOI 10.1093/bioinformatics/btm344. Schleich J, 2009, ECOL ECON, V68, P1756, DOI 10.1016/j.ecolecon.2008.11.012. Shabri A., 2015, INT J ADV SOFT COMPU, V7, P38. Sharkey A. J. C., 1996, Connection Science, V8, P299, DOI 10.1080/095400996116785. Shepherd A. J., 1997, 2 ORDER METHODS NEUR. Sollich P, 1996, ADV NEUR IN, V8, P190. Sorjamaa A, 2007, NEUROCOMPUTING, V70, P2861, DOI 10.1016/j.neucom.2006.06.015. SPECHT DF, 1990, NEURAL NETWORKS, V3, P109, DOI 10.1016/0893-6080(90)90049-Q. Stanczyk U, 2015, STUD COMPUT INTELL, V584, P29, DOI 10.1007/978-3-662-45620-0\_3. Tiwari MK, 2015, J WATER RES PLAN MAN, V141, DOI 10.1061/(ASCE)WR.1943-5452.0000454. TSOI AC, 1994, IEEE T NEURAL NETWOR, V5, P229, DOI 10.1109/72.279187. Tsonis A. A., 1992, CHAOS THEORY APPL. Tsutiya M. T., 2006, WATER SUPPLY. van den Oord A., 2016, APPL SOFT COMPUTING. Webb GI, 2004, IEEE T KNOWL DATA EN, V16, P980, DOI 10.1109/TKDE.2004.29. Wentz EA, 2007, WATER RESOUR MANAG, V21, P1849, DOI 10.1007/s11269-006-9133-0. Wichard J., 2003, BUILDING ENSEMBLES H. Wilamowski BM, 2010, IEEE T NEURAL NETWOR, V21, P1793, DOI 10.1109/TNN.2010.2073482. Williams RJ, 1989, NEURAL COMPUT, V1, P270, DOI 10.1162/neco.1989.1.2.270. Wu L, 2010, J HYDROINFORM, V12, P172, DOI 10.2166/hydro.2009.082. Xu YB, 2019, NEURAL PROCESS LETT, V50, P1173, DOI 10.1007/s11063-018-9914-5. Zanchettin C., 2008, THESIS. Zhang GP, 2005, EUR J OPER RES, V160, P501, DOI 10.1016/j.ejor.2003.08.037. Zhang GP, 2001, COMPUT OPER RES, V28, P1183, DOI 10.1016/S0305-0548(00)00033-2. Zhang GP, 2003, NEUROCOMPUTING, V50, P159, DOI 10.1016/S0925-2312(01)00702-0. Zhang GQ, 1998, INT J FORECASTING, V14, P35, DOI 10.1016/S0169-2070(97)00044-7. Zhao Pu, 2008, Zhongguo Shengwu Huaxue yu Fenzi Shengwu Xuebao, V24, P902.}, Number-of-Cited-References = {118}, Times-Cited = {31}, Usage-Count-Last-180-days = {16}, Usage-Count-Since-2013 = {86}, Journal-ISO = {Water Supply}, Doc-Delivery-Number = {KY8KC}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000522824300002}, DA = {2023-04-22}, } @article{ WOS:000543394800155, Author = {Shi, Wenzhong and Zhang, Min and Zhang, Rui and Chen, Shanxiong and Zhan, Zhao}, Title = {Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges}, Journal = {REMOTE SENSING}, Year = {2020}, Volume = {12}, Number = {10}, Month = {MAY}, Abstract = {Change detection based on remote sensing (RS) data is an important method of detecting changes on the Earth's surface and has a wide range of applications in urban planning, environmental monitoring, agriculture investigation, disaster assessment, and map revision. In recent years, integrated artificial intelligence (AI) technology has become a research focus in developing new change detection methods. Although some researchers claim that AI-based change detection approaches outperform traditional change detection approaches, it is not immediately obvious how and to what extent AI can improve the performance of change detection. This review focuses on the state-of-the-art methods, applications, and challenges of AI for change detection. Specifically, the implementation process of AI-based change detection is first introduced. Then, the data from different sensors used for change detection, including optical RS data, synthetic aperture radar (SAR) data, street view images, and combined heterogeneous data, are presented, and the available open datasets are also listed. The general frameworks of AI-based change detection methods are reviewed and analyzed systematically, and the unsupervised schemes used in AI-based change detection are further analyzed. Subsequently, the commonly used networks in AI for change detection are described. From a practical point of view, the application domains of AI-based change detection methods are classified based on their applicability. Finally, the major challenges and prospects of AI for change detection are discussed and delineated, including (a) heterogeneous big data processing, (b) unsupervised AI, and (c) the reliability of AI. This review will be beneficial for researchers in understanding this field.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Zhang, M (Corresponding Author), Hong Kong Polytech Univ, Dept Land Surveying \& Geoinformat, Hung Hom, Hong Kong, Peoples R China. Zhang, M (Corresponding Author), Wuhan Univ, Sch Remote Sensing \& Informat Engn, Wuhan 430079, Peoples R China. Shi, Wenzhong; Zhang, Min; Zhang, Rui; Chen, Shanxiong; Zhan, Zhao, Hong Kong Polytech Univ, Dept Land Surveying \& Geoinformat, Hung Hom, Hong Kong, Peoples R China. Zhang, Min; Chen, Shanxiong; Zhan, Zhao, Wuhan Univ, Sch Remote Sensing \& Informat Engn, Wuhan 430079, Peoples R China. Zhang, Rui, China Univ Min \& Technol, Sch Environm Sci \& Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China.}, DOI = {10.3390/rs12101688}, Article-Number = {1688}, EISSN = {2072-4292}, Keywords = {artificial intelligence; change detection; remote sensing; deep learning; neural network; unsupervised learning; SAR; hyperspectral; multispectral; street view}, Keywords-Plus = {IMAGE CHANGE DETECTION; UNSUPERVISED CHANGE DETECTION; REMOTE-SENSING IMAGES; CHANGE DETECTION FRAMEWORK; MULTIPLE-CHANGE DETECTION; NEURAL-NETWORK APPROACH; URBAN CHANGE DETECTION; LAND USE/COVER CHANGE; MARKOV RANDOM-FIELD; SAR IMAGES}, Research-Areas = {Environmental Sciences \& Ecology; Geology; Remote Sensing; Imaging Science \& Photographic Technology}, Web-of-Science-Categories = {Environmental Sciences; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science \& Photographic Technology}, Author-Email = {lswzshi@polyu.edu.hk 007zhangmin@whu.edu.cn rzhang@cumt.edu.cn shanxiongchen@whu.edu.cn zhanzhao@whu.edu.cn}, Affiliations = {Hong Kong Polytechnic University; Wuhan University; China University of Mining \& Technology}, ResearcherID-Numbers = {CHEN, Shanxiong/GQQ-0535-2022 SHI, wen/GPW-9531-2022 ZHANG, Min/AAV-9787-2020 }, ORCID-Numbers = {ZHANG, Min/0000-0003-1643-5271 Chen, Shanxiong/0000-0002-9235-6340 ZHAN, ZHAO/0000-0002-5092-715X}, Funding-Acknowledgement = {Ministry of Science and Technology of the People's Republic of China {[}2017YFB0503604]}, Funding-Text = {This research was funded by the Ministry of Science and Technology of the People's Republic of China, Grant No. 2017YFB0503604.}, Cited-References = {Abuelgasim AA, 1999, REMOTE SENS ENVIRON, V70, P208, DOI 10.1016/S0034-4257(99)00039-5. Aghababaee H, 2013, SCI IRAN, V20, P15, DOI 10.1016/j.scient.2012.11.006. Alcantarilla PF, 2018, AUTON ROBOT, V42, P1301, DOI 10.1007/s10514-018-9734-5. Anees A, 2016, ISPRS J PHOTOGRAMM, V122, P167, DOI 10.1016/j.isprsjprs.2016.10.011. {[}Anonymous], 2015, IEEE J SE LECTED TOP, DOI {[}10.1109/JSTARS.2014.2355832, DOI 10.1109/JSTARS.2014.2355832]. Arabi ME, 2018, INT GEOSCI REMOTE SE, P5041. Bai T, 2018, ACM/SIGIR PROCEEDINGS 2018, P1201, DOI 10.1145/3209978.3210129. Ball JE, 2017, J APPL REMOTE SENS, V11, DOI 10.1117/1.JRS.11.042609. Baumgardner M., 2015, PURDUE U RES REPOS, V3, P10, DOI {[}10.4231/R7RX991C, DOI 10.4231/R7RX991C]. Benedek C, 2009, IEEE T GEOSCI REMOTE, V47, P3416, DOI 10.1109/TGRS.2009.2022633. Benedek C, 2008, INT C PATT RECOG, P1686. Benedetti A, 2018, INT GEOSCI REMOTE SE, P1962. Bengio Y., 2012, UNSUPERVISED FEATURE, P2012. Bourdis N, 2011, INT GEOSCI REMOTE SE, P4176, DOI 10.1109/IGARSS.2011.6050150. Bruzzone L, 2004, PATTERN RECOGN LETT, V25, P1491, DOI 10.1016/j.patrec.2004.06.002. Bruzzone L, 2002, P SOC PHOTO-OPT INS, V4541, P223, DOI 10.1117/12.454156. Bu SH, 2020, NEUROCOMPUTING, V378, P166, DOI 10.1016/j.neucom.2019.10.022. Cao C, 2019, ENVIRONMENTS, V6, DOI 10.3390/environments6020025. Cao G, 2017, INT J REMOTE SENS, V38, P7161, DOI 10.1080/01431161.2017.1371861. Castellana L, 2007, PATTERN RECOGN LETT, V28, P405, DOI 10.1016/j.patrec.2006.08.010. Chan Y. K., 2008, Progress In Electromagnetics Research B, V2, P27, DOI 10.2528/PIERB07110101. Chang NB, 2010, J APPL REMOTE SENS, V4, DOI 10.1117/1.3518096. Chen G, 2012, INT J REMOTE SENS, V33, P4434, DOI 10.1080/01431161.2011.648285. Chen H., 2019, PROC 10 INT WORKSHOP, P1. Chen H, 2016, J APPL REMOTE SENS, V10, DOI 10.1117/1.JRS.10.016021. Chen HRX, 2020, IEEE T GEOSCI REMOTE, V58, P2848, DOI 10.1109/TGRS.2019.2956756. Chen H, 2019, NEUROCOMPUTING, V332, P56, DOI 10.1016/j.neucom.2018.11.077. Chen JY, 2014, NEUROCOMPUTING, V128, P199, DOI 10.1016/j.neucom.2013.02.051. Chen KM, 2008, ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, P281, DOI 10.1109/ICNC.2008.456. Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184. Chen X, 2004, INT GEOSCI REMOTE SE, P3428. Chen Z, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18030821. Chu Y, 2016, ADV INTEL SYS RES, V133, P262. Connors C, 2017, INT GEOSCI REMOTE SE, P1063, DOI 10.1109/IGARSS.2017.8127139. Coppin P, 2004, INT J REMOTE SENS, V25, P1565, DOI 10.1080/0143116031000101675. Cordts M, 2016, PROC CVPR IEEE, P3213, DOI 10.1109/CVPR.2016.350. Cui B, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111314. Dai XL, 1999, PHOTOGRAMM ENG REM S, V65, P1187. Dalmiya CP, 2020, EUR J REMOTE SENS, V53, P41, DOI 10.1080/22797254.2019.1692637. Daudt Rodrigo Caye, 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Proceedings, P1461, DOI 10.1109/CVPRW.2019.00187. Daudt RC, 2019, COMPUT VIS IMAGE UND, V187, DOI 10.1016/j.cviu.2019.07.003. Daudt RC, 2018, INT GEOSCI REMOTE SE, P2115. De S, 2017, INT GEOSCI REMOTE SE, P5193. Deilmai BR, 2014, IOP C SER EARTH ENV, V18, DOI 10.1088/1755-1315/18/1/012069. Del Frate F, 2008, IEEE J-STARS, V1, P87, DOI 10.1109/JSTARS.2008.2002221. Dewan N, 2019, IIOAB J, V10, P61. Dietterich TG, 2017, AI MAG, V38, P3, DOI 10.1609/aimag.v38i3.2756. Ding AZ, 2016, 2016 31ST YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), P444, DOI 10.1109/YAC.2016.7804935. Dong HH, 2019, IEEE ACCESS, V7, P15389, DOI 10.1109/ACCESS.2018.2889326. Du B, 2019, IEEE T GEOSCI REMOTE, V57, P9976, DOI 10.1109/TGRS.2019.2930682. Durmusoglu ZO, 2017, J ENVIRON BIOL, V38, P981, DOI {[}10.22438/jeb/38/5(SI)/GM-15, 10.22438/jeb/38/5(si)/gm-15]. El Amin AM, 2017, 2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), P812, DOI 10.1109/ICIVC.2017.7984667. El Amin AM, 2016, PROC SPIE, V0011, DOI 10.1117/12.2243798. Fan FL, 2008, ENVIRON MONIT ASSESS, V137, P127, DOI 10.1007/s10661-007-9734-y. Fan JC, 2019, IEEE J-STARS, V12, P685, DOI 10.1109/JSTARS.2019.2892951. Fang B, 2021, IEEE GEOSCI REMOTE S, V18, P391, DOI 10.1109/LGRS.2020.2979693. Fang B, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111292. Feldberg I, 2002, INT GEOSCI REMOTE SE, P1195, DOI 10.1109/IGARSS.2002.1025882. Fujita A, 2017, PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, P5, DOI 10.23919/MVA.2017.7986759. Gao F, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9050435. Gao F, 2016, IEEE GEOSCI REMOTE S, V13, P1792, DOI 10.1109/LGRS.2016.2611001. Gao YH, 2019, IEEE J-STARS, V12, P4517, DOI 10.1109/JSTARS.2019.2953128. Gao YH, 2019, IEEE GEOSCI REMOTE S, V16, P1655, DOI 10.1109/LGRS.2019.2906279. Ge C, 2019, IEEE CONF COMPUT, P50, DOI 10.1109/INFCOMW.2019.8845246. Geng J, 2017, 2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017). Ghaffarian S, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11202427. Ghosh A, 2013, IEEE T IMAGE PROCESS, V22, P3087, DOI 10.1109/TIP.2013.2259833. Ghosh S, 2007, IEEE T GEOSCI REMOTE, V45, P778, DOI 10.1109/TGRS.2006.888861. Ghosh S, 2014, APPL SOFT COMPUT, V15, P1, DOI 10.1016/j.asoc.2013.09.010. Ghosh S, 2009, INT J APPROX REASON, V50, P37, DOI 10.1016/j.ijar.2008.01.008. Ghouaiel N, 2016, GEO-SPAT INF SCI, V19, P222, DOI 10.1080/10095020.2016.1244998. Gong MG, 2019, INT J REMOTE SENS, V40, P3647, DOI 10.1080/01431161.2018.1547934. Gong MG, 2019, IEEE J-STARS, V12, P321, DOI 10.1109/JSTARS.2018.2887108. Gong MG, 2017, IEEE GEOSCI REMOTE S, V14, P2310, DOI 10.1109/LGRS.2017.2762694. Gong MG, 2016, IEEE T NEUR NET LEAR, V27, P125, DOI 10.1109/TNNLS.2015.2435783. Gong MG, 2017, ISPRS J PHOTOGRAMM, V129, P212, DOI 10.1016/j.isprsjprs.2017.05.001. Gong MG, 2017, IEEE T GEOSCI REMOTE, V55, P2658, DOI 10.1109/TGRS.2017.2650198. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Gopal S, 1996, IEEE T GEOSCI REMOTE, V34, P398, DOI 10.1109/36.485117. Goyette N., 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), DOI 10.1109/CVPRW.2012.6238919. Goyette N, 2014, IEEE T IMAGE PROCESS, V23, P4663, DOI 10.1109/TIP.2014.2346013. Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009. Guo E., 2018, LEARNING MEASURE CHA. Gupta R, 2019, 2019 CHINA-QATAR INTERNATIONAL WORKSHOP ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS TO INTELLIGENT MANUFACTURING (AIAIM), P11, DOI 10.1109/AIAIM.2019.8632775. Han M, 2018, GISCI REMOTE SENS, V55, P265, DOI 10.1080/15481603.2018.1430100. Han PC, 2019, NEUROCOMPUTING, V349, P190, DOI 10.1016/j.neucom.2019.04.029. He PF, 2015, REMOTE SENS LETT, V6, P667, DOI 10.1080/2150704X.2015.1054045. He Y., 2018, HIGH SPATIAL RESOLUT. Hedjam R, 2019, INT GEOSCI REMOTE SE, P1530, DOI 10.1109/IGARSS.2019.8898672. Hou B, 2020, IEEE T GEOSCI REMOTE, V58, P1790, DOI 10.1109/TGRS.2019.2948659. Hou B, 2017, IEEE GEOSCI REMOTE S, V14, P2418, DOI 10.1109/LGRS.2017.2766840. Huang DM, 2015, PROC SPIE, V9808, DOI 10.1117/12.2214637. Huang FH, 2019, J VIS COMMUN IMAGE R, V63, DOI 10.1016/j.jvcir.2019.102585. Huang FH, 2019, J VIS COMMUN IMAGE R, V58, P233, DOI 10.1016/j.jvcir.2018.11.004. Huelamo C.G., 2018, P WORKSH PHYS AG MAD, P115. Hussain M, 2013, ISPRS J PHOTOGRAMM, V80, P91, DOI 10.1016/j.isprsjprs.2013.03.006. Iino S, 2018, INT J IMAGE DATA FUS, V9, P302, DOI 10.1080/19479832.2018.1491897. Iino S, 2017, PROC SPIE, V10428, DOI 10.1117/12.2277901. Jaturapitpornchai R, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11121444. Ji M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11101202. Ji SP, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111343. Ji SP, 2019, IEEE T GEOSCI REMOTE, V57, P574, DOI 10.1109/TGRS.2018.2858817. Jiang HW, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12030484. Jie Geng, 2019, IEEE Transactions on Geoscience and Remote Sensing, V57, P7365, DOI 10.1109/TGRS.2019.2913095. Kang J, 2018, ISPRS J PHOTOGRAMM, V145, P44, DOI 10.1016/j.isprsjprs.2018.02.006. Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004. Karpatne A, 2016, IEEE GEOSC REM SEN M, V4, P8, DOI 10.1109/MGRS.2016.2528038. Kerner HR, 2019, IEEE J-STARS, V12, P3900, DOI 10.1109/JSTARS.2019.2936771. Keshk HM, 2020, INT J AERONAUT SPACE, V21, P549, DOI 10.1007/s42405-019-00222-0. Khan SH, 2017, IEEE T GEOSCI REMOTE, V55, P5407, DOI 10.1109/TGRS.2017.2707528. Larabi ME, 2019, J APPL REMOTE SENS, V13, DOI 10.1117/1.JRS.13.046512. Lebedev M., 2018, INT ARCH PHOTOGRAM R, V42, P565, DOI {[}DOI 10.5194/ISPRS-ARCHIVES-XLII-2-565-2018, 10.5194/isprs-archives-XLII-2-565-2018]. Lei T, 2019, IEEE GEOSCI REMOTE S, V16, P982, DOI 10.1109/LGRS.2018.2889307. Lei Y, 2019, IEEE ACCESS, V7, P36600, DOI 10.1109/ACCESS.2019.2902613. Li HC, 2020, ISPRS J PHOTOGRAMM, V160, P167, DOI 10.1016/j.isprsjprs.2019.12.002. Li MK, 2019, IEEE GEOSCI REMOTE S, V16, P402, DOI 10.1109/LGRS.2018.2876616. Li XD, 2014, ISPRS J PHOTOGRAMM, V93, P76, DOI 10.1016/j.isprsjprs.2014.03.013. Li XL, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11030258. Li YY, 2019, IEEE T GEOSCI REMOTE, V57, P5751, DOI 10.1109/TGRS.2019.2901945. Li YY, 2018, INT GEOSCI REMOTE SE, P4479. Liao Frank, 2017, 2017 International Conference on Computing, Networking and Communications (ICNC), P947, DOI 10.1109/ICCNC.2017.7876261. Lim K, 2018, ASIAPAC SIGN INFO PR, P509, DOI 10.23919/APSIPA.2018.8659603. Lindquist EJ, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8080678. Liu F, 2019, IEEE T NEUR NET LEAR, V30, P818, DOI 10.1109/TNNLS.2018.2847309. Liu GC, 2019, PATTERN RECOGN, V96, DOI 10.1016/j.patcog.2019.106971. Liu J, 2018, IEEE T NEUR NET LEAR, V29, P545, DOI 10.1109/TNNLS.2016.2636227. Liu J, 2016, SOFT COMPUT, V20, P4645, DOI 10.1007/s00500-014-1460-0. Liu JF, 2020, IEEE GEOSCI REMOTE S, V17, P127, DOI 10.1109/LGRS.2019.2916601. Liu R, 2016, J INDIAN SOC REMOTE, V44, P443, DOI 10.1007/s12524-015-0507-8. Liu RC, 2019, IEEE ACCESS, V7, P156349, DOI 10.1109/ACCESS.2019.2947286. Liu SC, 2019, IEEE GEOSC REM SEN M, V7, P140, DOI 10.1109/MGRS.2019.2898520. Liu T, 2017, J APPL REMOTE SENS, V11, DOI 10.1117/1.JRS.11.042615. Lu D, 2004, INT J REMOTE SENS, V25, P2365, DOI 10.1080/0143116031000139863. Luo B, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11232740. Lv N, 2018, IEEE T IND INFORM, V14, P5530, DOI 10.1109/TII.2018.2873492. Lyu HB, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10030471. Lyu HB, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8060506. Ma L, 2019, ISPRS J PHOTOGRAMM, V152, P166, DOI 10.1016/j.isprsjprs.2019.04.015. Ma WP, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11060626. Mehrotra A, 2015, NAT HAZARDS, V77, P367, DOI 10.1007/s11069-015-1595-z. Mirici ME, 2018, APPL ECOL ENV RES, V16, P467, DOI 10.15666/aeer/1601\_467486. Mou LC, 2019, IEEE T GEOSCI REMOTE, V57, P924, DOI 10.1109/TGRS.2018.2863224. Mou LC, 2018, INT GEOSCI REMOTE SE, P4363. Mueller S. T., 2019, ABS190201876 CORR. Neagoe VE, 2016, INT GEOSCI REMOTE SE, P3386, DOI 10.1109/IGARSS.2016.7729875. Neagoe VE, 2013, INT GEOSCI REMOTE SE, P3321, DOI 10.1109/IGARSS.2013.6723538. Nemmour H, 2006, INT J REMOTE SENS, V27, P705, DOI 10.1080/01431160500275648. Nemmour H, 2005, EURASIP J APPL SIG P, V2005, P2187, DOI 10.1155/ASP.2005.2187. Nemoto K, 2017, PROC SPIE, V10431, DOI 10.1117/12.2277912. Niu XD, 2019, IEEE GEOSCI REMOTE S, V16, P45, DOI 10.1109/LGRS.2018.2868704. Nourani V, 2018, J HYDROL, V562, P371, DOI 10.1016/j.jhydrol.2018.05.018. Okatani T., 2015, P PROCEDINGS BRIT MA, V61, P1, DOI 10.5244/c.29.61. Pacifici F, 2007, IEEE T GEOSCI REMOTE, V45, P2940, DOI 10.1109/TGRS.2007.902824. Pacifici F, 2010, IEEE GEOSCI REMOTE S, V7, P58, DOI 10.1109/LGRS.2009.2021780. Patra S, 2008, FUND INFORM, V84, P429. Patra S, 2007, ICCTA 2007: INTERNATIONAL CONFERENCE ON COMPUTING: THEORY AND APPLICATIONS, PROCEEDINGS, P716. Patra S, 2006, ICIT 2006: 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, PROCEEDINGS, P141. Peng B, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11212492. Peng DF, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111382. Peng DF, 2019, J APPL REMOTE SENS, V13, DOI 10.1117/1.JRS.13.024512. Planinsic P, 2018, IEEE GEOSCI REMOTE S, V15, P297, DOI 10.1109/LGRS.2017.2786344. Pomente A, 2018, INT GEOSCI REMOTE SE, P6859. Pratola C, 2013, IEEE T GEOSCI REMOTE, V51, P2055, DOI 10.1109/TGRS.2012.2236846. Qin R, 2016, ISPRS J PHOTOGRAMM, V122, P41, DOI 10.1016/j.isprsjprs.2016.09.013. Rahman F, 2018, IEEE GLOB CONF SIG, P958, DOI 10.1109/GlobalSIP.2018.8646512. Regmi K, 2019, IEEE I CONF COMP VIS, P470, DOI 10.1109/ICCV.2019.00056. Rokni K, 2015, INT J APPL EARTH OBS, V34, P226, DOI 10.1016/j.jag.2014.08.014. Roy M, 2014, INFORM SCIENCES, V269, P35, DOI 10.1016/j.ins.2014.01.037. Roy M, 2014, IEEE J-STARS, V7, P1200, DOI 10.1109/JSTARS.2013.2293175. Sadeghi V, 2018, MEASUREMENT, V127, P1, DOI 10.1016/j.measurement.2018.05.097. Saha S, 2019, IEEE T GEOSCI REMOTE, V57, P3677, DOI 10.1109/TGRS.2018.2886643. Saha S, 2018, PROC SPIE, V10789, DOI 10.1117/12.2325149. Saha S, 2018, INT GEOSCI REMOTE SE, P1902. Sakurada K, 2017, COMPUT VIS IMAGE UND, V157, P55, DOI 10.1016/j.cviu.2017.01.012. Sakurada K, 2013, PROC CVPR IEEE, P137, DOI 10.1109/CVPR.2013.25. Sakurada Ken, 2017, ARXIV171202941. Samadi F, 2019, IET IMAGE PROCESS, V13, P2255, DOI 10.1049/iet-ipr.2018.6248. Seto KC, 2003, PHOTOGRAMM ENG REM S, V69, P981, DOI 10.14358/PERS.69.9.981. Shi WZ, 2013, INT J REMOTE SENS, V34, P6883, DOI 10.1080/01431161.2013.810353. SINGH A, 1989, INT J REMOTE SENS, V10, P989, DOI 10.1080/01431168908903939. Song A, 2019, J COASTAL RES, P426, DOI 10.2112/SI91-086.1. Song A, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10111827. Song Y, 2006, PROC SPIE, V6419, DOI 10.1117/12.713024. Su LZ, 2018, J APPL REMOTE SENS, V12, DOI 10.1117/1.JRS.12.035014. Su LZ, 2017, PATTERN RECOGN, V66, P213, DOI 10.1016/j.patcog.2017.01.002. Su LZ, 2016, IEEE IJCNN, P1269, DOI 10.1109/IJCNN.2016.7727343. Sublime J, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11091123. Subudhi BN, 2013, IEEE IMAGE PROC, P3815, DOI 10.1109/ICIP.2013.6738786. Sun B, 2019, LECT NOTES COMPUT SC, V11555, P414, DOI 10.1007/978-3-030-22808-8\_40. Tang SH, 2016, PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES), P1033. Tarantino C, 2007, NAT HAZARDS, V41, P245, DOI 10.1007/s11069-006-9041-x. Tewkesbury AP, 2015, REMOTE SENS ENVIRON, V160, P1, DOI 10.1016/j.rse.2015.01.006. Nguyen TP, 2019, IEEE T CIRC SYST VID, V29, P433, DOI 10.1109/TCSVT.2018.2795657. Tomoya M., 2017, ARXIV170300552. Tong XH, 2010, INT J REMOTE SENS, V31, P1485, DOI 10.1080/01431160903475290. Touazi A, 2015, INT CONF INTELL SYST, P98, DOI 10.1109/ISDA.2015.7489208. Varamesh S, 2017, APPL ECOL ENV RES, V15, P1443, DOI 10.15666/aeer/1503\_14431454. Varghese A., 2018, P EUR C COMP VIS ECC. Venugopal N, 2020, NEURAL PROCESS LETT, V51, P2355, DOI 10.1007/s11063-019-10174-x. Venugopal N, 2019, SENS IMAGING, V20, DOI 10.1007/s11220-019-0252-0. Wang L., 2017, ACIS, V3, P8, DOI DOI 10.12691/ACIS-3-1-3. Wang MY, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12020205. Wang Q, 2019, IEEE T GEOSCI REMOTE, V57, P3, DOI 10.1109/TGRS.2018.2849692. Wang Q, 2018, REMOTE SENS LETT, V9, P923, DOI 10.1080/2150704X.2018.1492172. Wang X, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10020276. Wang Y, 2014, IEEE COMPUT SOC CONF, P393, DOI 10.1109/CVPRW.2014.126. Wang Y, 2019, INT GEOSCI REMOTE SE, P198, DOI 10.1109/IGARSS.2019.8898211. Wiratama W, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9071441. Wiratama W, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8101785. Woodcock CE, 2001, REMOTE SENS ENVIRON, V78, P194, DOI 10.1016/S0034-4257(01)00259-0. Wu C, 2017, IEEE T GEOSCI REMOTE, V55, P2367, DOI 10.1109/TGRS.2016.2642125. Wu C, 2016, SIGNAL PROCESS, V124, P184, DOI 10.1016/j.sigpro.2015.09.020. Wu K, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9030284. Xiao RL, 2018, IEEE ACCESS, V6, P35915, DOI 10.1109/ACCESS.2018.2849110. Xu JF, 2019, J APPL REMOTE SENS, V13, DOI 10.1117/1.JRS.13.024506. Yang G, 2019, IEEE T GEOSCI REMOTE, V57, P8890, DOI 10.1109/TGRS.2019.2923643. Yang MJ, 2019, IEEE T GEOSCI REMOTE, V57, P6960, DOI 10.1109/TGRS.2019.2909781. Ye QK, 2019, LECT NOTES ARTIF INT, V11441, P375, DOI 10.1007/978-3-030-16142-2\_29. Zagoruyko S, 2015, PROC CVPR IEEE, P4353, DOI 10.1109/CVPR.2015.7299064. Zhan T, 2018, ISPRS J PHOTOGRAMM, V146, P38, DOI 10.1016/j.isprsjprs.2018.09.002. Zhan T, 2018, IEEE GEOSCI REMOTE S, V15, P1352, DOI 10.1109/LGRS.2018.2843385. Zhan Y, 2017, IEEE GEOSCI REMOTE S, V14, P1845, DOI 10.1109/LGRS.2017.2738149. Zhang C, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8040189. Zhang L., 2019, ARXIV191208628. Zhang MY, 2019, IEEE GEOSCI REMOTE S, V16, P266, DOI 10.1109/LGRS.2018.2869608. Zhang M, 2020, IEEE T GEOSCI REMOTE, V58, P7232, DOI 10.1109/TGRS.2020.2981051. Zhang PL, 2013, REMOTE SENS-BASEL, V5, P1134, DOI 10.3390/rs5031134. Zhang PZ, 2019, IEEE T GEOSCI REMOTE, V57, P2277, DOI 10.1109/TGRS.2018.2872509. Zhang PZ, 2016, ISPRS J PHOTOGRAMM, V116, P24, DOI 10.1016/j.isprsjprs.2016.02.013. Zhang WX, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11030240. Zhang XK, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11232787. Zhang ZC, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11202417. Zhao JJ, 2014, IEEE IJCNN, P397. Zhao QN, 2015, COMM COM INF SC, V562, P696, DOI 10.1007/978-3-662-49014-3\_62. Zhao W, 2017, IEEE T GEOSCI REMOTE, V55, P7066, DOI 10.1109/TGRS.2017.2739800. Zhao WZ, 2020, IEEE T GEOSCI REMOTE, V58, P2720, DOI 10.1109/TGRS.2019.2953879. Zhong YF, 2018, APPL SOFT COMPUT, V64, P75, DOI 10.1016/j.asoc.2017.11.045. Zhong YF, 2015, IEEE GEOSCI REMOTE S, V12, P537, DOI 10.1109/LGRS.2014.2349937. Zhu B, 2018, 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), P55.}, Number-of-Cited-References = {240}, Times-Cited = {148}, Usage-Count-Last-180-days = {100}, Usage-Count-Since-2013 = {413}, Journal-ISO = {Remote Sens.}, Doc-Delivery-Number = {MC6LB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000543394800155}, OA = {Green Submitted, gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000831858600001, Author = {Yang, Liping and Driscol, Joshua and Sarigai, Sarigai and Wu, Qiusheng and Chen, Haifei and Lippitt, Christopher D.}, Title = {Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review}, Journal = {REMOTE SENSING}, Year = {2022}, Volume = {14}, Number = {14}, Month = {JUL}, Abstract = {Remote sensing (RS) plays an important role gathering data in many critical domains (e.g., global climate change, risk assessment and vulnerability reduction of natural hazards, resilience of ecosystems, and urban planning). Retrieving, managing, and analyzing large amounts of RS imagery poses substantial challenges. Google Earth Engine (GEE) provides a scalable, cloud-based, geospatial retrieval and processing platform. GEE also provides access to the vast majority of freely available, public, multi-temporal RS data and offers free cloud-based computational power for geospatial data analysis. Artificial intelligence (AI) methods are a critical enabling technology to automating the interpretation of RS imagery, particularly on object-based domains, so the integration of AI methods into GEE represents a promising path towards operationalizing automated RS-based monitoring programs. In this article, we provide a systematic review of relevant literature to identify recent research that incorporates AI methods in GEE. We then discuss some of the major challenges of integrating GEE and AI and identify several priorities for future research. We developed an interactive web application designed to allow readers to intuitively and dynamically review the publications included in this literature review.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Yang, LP (Corresponding Author), Univ New Mexico, Dept Geog \& Environm Studies, Albuquerque, NM 87131 USA. Yang, LP (Corresponding Author), Univ New Mexico, Ctr Adv Spatial Informat Res \& Educ ASPIRE, Albuquerque, NM 87131 USA. Yang, LP (Corresponding Author), Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87106 USA. Yang, Liping; Driscol, Joshua; Sarigai, Sarigai; Lippitt, Christopher D., Univ New Mexico, Dept Geog \& Environm Studies, Albuquerque, NM 87131 USA. Yang, Liping; Driscol, Joshua; Sarigai, Sarigai; Lippitt, Christopher D., Univ New Mexico, Ctr Adv Spatial Informat Res \& Educ ASPIRE, Albuquerque, NM 87131 USA. Yang, Liping, Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87106 USA. Wu, Qiusheng, Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA. Chen, Haifei, Univ New Mexico, Interdisciplinary Sci Cooperat, Albuquerque, NM 87131 USA.}, DOI = {10.3390/rs14143253}, Article-Number = {3253}, EISSN = {2072-4292}, Keywords = {Google Earth Engine (GEE); artificial intelligence (AI); machine learning; deep learning; computer vision; remote sensing; cloud computing; geospatial big data; review}, Keywords-Plus = {BIG DATA APPLICATIONS; SENTINEL-2 IMAGERY; SURFACE-WATER; RANDOM FOREST; LANDSAT; EXPANSION; CLASSIFICATION; EXTRACTION; SYSTEMS; TRENDS}, Research-Areas = {Environmental Sciences \& Ecology; Geology; Remote Sensing; Imaging Science \& Photographic Technology}, Web-of-Science-Categories = {Environmental Sciences; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science \& Photographic Technology}, Author-Email = {lipingyang@unm.edu joshuadr@unm.edu rsa@unm.edu qwu18@utk.edu hfchen@unm.edu clippitt@unm.edu}, Affiliations = {University of New Mexico; University of New Mexico; University of New Mexico; University of Tennessee System; University of Tennessee Knoxville; University of New Mexico}, ResearcherID-Numbers = {Wu, Qiusheng/C-7976-2016 }, ORCID-Numbers = {Wu, Qiusheng/0000-0001-5437-4073 Lippitt, Christopher/0000-0001-7979-7857 Yang, Liping/0000-0002-9240-5501 Chen, Haifei/0000-0003-3807-3734}, Funding-Acknowledgement = {US National Aeronautics and Space Administration {[}80NSSC22K0384]; College of Arts and Sciences at University of New Mexico}, Funding-Text = {This material is partly based upon work supported by the US National Aeronautics and Space Administration under Grant number 80NSSC22K0384, and supported by the funding support from the College of Arts and Sciences at University of New Mexico.}, Cited-References = {Adepoju KA, 2020, REMOTE SENS LETT, V11, P107, DOI 10.1080/2150704X.2019.1690792. Adrian J, 2021, ISPRS J PHOTOGRAMM, V175, P215, DOI 10.1016/j.isprsjprs.2021.02.018. Alencar A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060924. Amani M, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12213561. Amani M, 2020, IEEE J-STARS, V13, P5326, DOI 10.1109/JSTARS.2020.3021052. Amani M, 2019, BIG EARTH DATA, V3, P378, DOI 10.1080/20964471.2019.1690404. Amani M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11070842. {[}Anonymous], MICROSOFT MICROSOFT. {[}Anonymous], EARTH AWS. Arruda VLS, 2021, REMOTE SENS APPL, V22, DOI 10.1016/j.rsase.2021.100472. Ascensao F, 2019, J ENVIRON MANAGE, V248, DOI 10.1016/j.jenvman.2019.109320. Aybar C., 2020, J OPEN SOURCE SOFTW, V5, P2272. Azzari G, 2017, REMOTE SENS ENVIRON, V202, P64, DOI 10.1016/j.rse.2017.05.025. Balaniuk R, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20236936. Banko M, 2001, 39TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P26, DOI 10.3115/1073012.1073017. Bar S, 2020, REMOTE SENS APPL, V18, DOI 10.1016/j.rsase.2020.100324. Bar Y, 2015, I S BIOMED IMAGING, P294, DOI 10.1109/ISBI.2015.7163871. Becker WR, 2021, REMOTE SENS APPL, V21, DOI 10.1016/j.rsase.2020.100459. Besnard S, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0211510. Bhandari B., 2021, ISPRS OPEN J PHOTOGR, V2, DOI DOI 10.1016/J.OPHOTO.2021.100005. Boothroyd RJ, 2021, WIRES WATER, V8, DOI 10.1002/wat2.1496. Boulos MNK, 2019, INT J HEALTH GEOGR, V18, DOI 10.1186/s12942-019-0171-2. Brovelli MA, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9100580. Campos-Taberner M, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10081167. Cao BJ, 2019, SCI TOTAL ENVIRON, V654, P94, DOI 10.1016/j.scitotenv.2018.10.359. Cao J, 2021, EUR J AGRON, V123, DOI 10.1016/j.eja.2020.126204. Cao WT, 2020, REMOTE SENS ENVIRON, V239, DOI 10.1016/j.rse.2020.111665. Carneiro E, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13071338. Carrasco-Escobar G, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007105. Chandrashekar S., ANNOUNCING REAL TIME. Chastain R, 2019, REMOTE SENS ENVIRON, V221, P274, DOI 10.1016/j.rse.2018.11.012. Chen F, 2017, IEEE J-STARS, V10, P4002, DOI 10.1109/JSTARS.2017.2705718. Chen NC, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12182992. Cho E, 2019, WATER RESOUR RES, V55, P8028, DOI 10.1029/2019WR024892. Chrysoulakis N, 2019, THEOR APPL CLIMATOL, V137, P1171, DOI 10.1007/s00704-018-2663-6. Colak E, 2019, INT ARCH PHOTOGRAMM, V42-3, P491, DOI 10.5194/isprs-archives-XLII-3-W8-491-2019. Dalezios N. R., 2018, International Journal of Global Environmental Issues, V17, P262, DOI 10.1504/IJGENVI.2018.091429. Davenport Thomas, 2019, Future Healthc J, V6, P94, DOI 10.7861/futurehosp.6-2-94. Davies D. K., 2015, TIME SENSITIVE REMOT, P165, DOI 10.1007/978-1-4939-2602-2\_11. de Sousa C, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0227438. Decuyper M, 2022, REMOTE SENS ENVIRON, V269, DOI 10.1016/j.rse.2021.112829. Deines JM, 2017, GEOPHYS RES LETT, V44, P9350, DOI 10.1002/2017GL074071. DeLancey ER, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010002. Delancey ER, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218165. Demuzere M, 2019, URBAN CLIM, V27, P46, DOI 10.1016/j.uclim.2018.11.001. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Deng XD, 2019, IEEE J-STARS, V12, P3841, DOI 10.1109/JSTARS.2019.2944952. Duan QW, 2019, FORESTS, V10, DOI 10.3390/f10090729. Elnashar A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12233860. Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z. Fang Y, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11121467. Farda NM, 2017, IOP C SER EARTH ENV, V98, DOI 10.1088/1755-1315/98/1/012042. Feizizadeh B, 2023, J ENVIRON PLANN MAN, V66, P665, DOI 10.1080/09640568.2021.2001317. Floreano IX, 2021, ENVIRON MONIT ASSESS, V193, DOI 10.1007/s10661-021-09016-y. Fuentes I, 2019, WATER-SUI, V11, DOI 10.3390/w11040780. Fuentes M, 2020, GISCI REMOTE SENS, V57, P245, DOI 10.1080/15481603.2019.1695407. Ge Y, 2019, REMOTE SENS ENVIRON, V232, DOI 10.1016/j.rse.2019.111285. Ghaffarian S, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10134574. Ghazaryan G, 2018, EUR J REMOTE SENS, V51, P511, DOI 10.1080/22797254.2018.1455540. Ghorbanian A, 2020, ISPRS J PHOTOGRAMM, V167, P276, DOI 10.1016/j.isprsjprs.2020.07.013. Gil Press, ANDR NG LAUNCH CAMP. Gillies M., 2016, P 2016 CHI C EXTENDE. Goldblatt R, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8080634. Gomez-Chova L, 2017, J APPL REMOTE SENS, V11, DOI 10.1117/1.JRS.11.015005. Gong P, 2019, SCI BULL, V64, P370, DOI 10.1016/j.scib.2019.03.002. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Google Earth Engine, PLAN SCAL PLATF EART. Gorelick N, 2017, REMOTE SENS ENVIRON, V202, P18, DOI 10.1016/j.rse.2017.06.031. Greifeneder F, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13112099. Griffin CG, 2018, REMOTE SENS ENVIRON, V209, P395, DOI 10.1016/j.rse.2018.02.060. Gumma MK, 2020, GISCI REMOTE SENS, V57, P302, DOI 10.1080/15481603.2019.1690780. Guo HD, 2015, ADV CLIM CHANG RES, V6, P108, DOI 10.1016/j.accre.2015.09.007. Guo YQ, 2019, ISPRS J PHOTOGRAMM, V155, P187, DOI 10.1016/j.isprsjprs.2019.07.008. Hagenaars G, 2018, COAST ENG, V133, P113, DOI 10.1016/j.coastaleng.2017.12.011. Hakdaoui S, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010131. Han JC, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12020236. Han LJ, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14010225. Hao BF, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19092118. He TT, 2020, REMOTE SENS ENVIRON, V242, DOI 10.1016/j.rse.2020.111742. Hedayati A, 2022, EGYPT J REMOTE SENS, V25, P73, DOI 10.1016/j.ejrs.2021.12.008. Hird JN, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9121315. Hoeser T, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101667. Hoffmann J., 2022, ARXIV. Hsu A, 2020, FRONT BIG DATA, V3, DOI 10.3389/fdata.2020.00029. Hu YF, 2018, ISPRS J PHOTOGRAMM, V146, P347, DOI 10.1016/j.isprsjprs.2018.10.008. Huang CH, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10101569. Huang HB, 2020, ISPRS J PHOTOGRAMM, V161, P27, DOI 10.1016/j.isprsjprs.2020.01.010. Huntington JL, 2017, B AM METEOROL SOC, V98, P2397, DOI 10.1175/BAMS-D-15-00324.1. Isikdogan LF, 2020, IEEE GEOSCI REMOTE S, V17, P1662, DOI 10.1109/LGRS.2019.2953261. Ivushkin K, 2019, REMOTE SENS ENVIRON, V231, DOI 10.1016/j.rse.2019.111260. Jansen VS, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10071057. Jia MM, 2021, REMOTE SENS ENVIRON, V255, DOI 10.1016/j.rse.2021.112285. Jin Q, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14071676. Jin ZN, 2019, REMOTE SENS ENVIRON, V228, P115, DOI 10.1016/j.rse.2019.04.016. Johansen K., 2015, REMOTE SENS APPL, V1, P36, DOI 10.1016/j.rsase.2015.06.002. Jones MO, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2430. Kakooei M, 2020, EARTH SCI INFORM, V13, P459, DOI 10.1007/s12145-020-00449-6. Kamal M, 2020, IOP C SER EARTH ENV, V500, DOI 10.1088/1755-1315/500/1/012038. Karimi H. A, 2014, BIG DATA TECHNIQUES. Kashyap R., 2019, CLOUD COMPUTING GEOS, P191. Kelley LC, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10060952. Koskinen J, 2019, ISPRS J PHOTOGRAMM, V148, P63, DOI 10.1016/j.isprsjprs.2018.12.011. Kumar L, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10101509. Kumar M, 2022, COMPUT GEOSCI-UK, V158, DOI 10.1016/j.cageo.2021.104982. Lee Janice Ser Huay, 2016, Remote Sensing Applications: Society and Environment, V4, P219, DOI 10.1016/j.rsase.2016.11.003. Lee J, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10091455. Lee JG, 2015, BIG DATA RES, V2, P74, DOI 10.1016/j.bdr.2015.01.003. Li C, 2020, NEUROCOMPUTING, V407, P121, DOI 10.1016/j.neucom.2020.04.045. Li H, 2019, ENVIRON MODELL SOFTW, V112, P16, DOI 10.1016/j.envsoft.2018.11.004. Li JF, 2022, REMOTE SENS LETT, V13, P196, DOI 10.1080/2150704X.2021.1988753. Li JF, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253209. Li MY, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14020273. Li QY, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12040602. Li Y, 2022, INT J APPL EARTH OBS, V106, DOI 10.1016/j.jag.2021.102656. Li Z., 2020, HIGH PERFORMANCE COM, P53, DOI DOI 10.1007/978-3-030-47998-5\%5F4. Liang JY, 2020, COMPUT ENVIRON URBAN, V84, DOI 10.1016/j.compenvurbsys.2020.101542. Liang L, 2019, INT J REMOTE SENS, V40, P7252, DOI 10.1080/01431161.2019.1601286. Lin JH, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13071245. Lin SP, 2018, J APPL REMOTE SENS, V12, DOI 10.1117/1.JRS.12.026003. Lin YY, 2020, REMOTE SENS ENVIRON, V242, DOI 10.1016/j.rse.2020.111757. Lippitt CD, 2018, INT J REMOTE SENS, V39, P4852, DOI 10.1080/01431161.2018.1490504. Lippitt CD, 2016, INT J REMOTE SENS, V37, P3272, DOI 10.1080/01431161.2016.1196840. Lippitt CD, 2014, INT J REMOTE SENS, V35, P6815, DOI 10.1080/01431161.2014.965287. Liss B, 2017, J ARCHAEOL SCI-REP, V15, P299, DOI 10.1016/j.jasrep.2017.08.013. Liu DD, 2020, ISPRS J PHOTOGRAMM, V159, P337, DOI 10.1016/j.isprsjprs.2019.11.021. Liu P, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10050711. Liu Y, 2021, IEEE J-STARS, V14, P5918, DOI 10.1109/JSTARS.2021.3085893. Liu Z, 2016, IOP C SER EARTH ENV, V46, DOI 10.1088/1755-1315/46/1/012058. Lobell DB, 2015, REMOTE SENS ENVIRON, V164, P324, DOI 10.1016/j.rse.2015.04.021. Lobo FD, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10081178. Long TF, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11050489. Long XR, 2021, INT J APPL EARTH OBS, V102, DOI 10.1016/j.jag.2021.102453. Luo C, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13040561. Lyons MB, 2019, METHODS ECOL EVOL, V10, P1024, DOI 10.1111/2041-210X.13194. Ma L, 2019, ISPRS J PHOTOGRAMM, V152, P166, DOI 10.1016/j.isprsjprs.2019.04.015. Mahdianpari M, 2020, GISCI REMOTE SENS, V57, P1102, DOI 10.1080/15481603.2020.1846948. Mahdianpari M, 2020, CAN J REMOTE SENS, V46, P360, DOI 10.1080/07038992.2020.1802584. Mahdianpari M, 2020, CAN J REMOTE SENS, V46, P15, DOI 10.1080/07038992.2019.1711366. Mahdianpari M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11010043. Mandal D, 2018, IEEE GEOSCI REMOTE S, V15, P1947, DOI 10.1109/LGRS.2018.2865816. Mardani M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11161907. Markert KN, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12152469. Marr Bernard, 2015, BIG DATA USING SMART. Mateo-Garcia G, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10071079. Medina-Lopez E, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11192191. Meraner A, 2020, ISPRS J PHOTOGRAMM, V166, P333, DOI 10.1016/j.isprsjprs.2020.05.013. Midekisa A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184926. Miettinen J, 2019, GEOCARTO INT, V34, P443, DOI 10.1080/10106049.2017.1408700. Mittal S., 2020, DEEP LEARNING TECHNI, P57, DOI {[}10.1007/978-3-030-33966-1\_4, DOI 10.1007/978-3-030-33966-1\_4]. Mugiraneza T, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12182883. Murray NJ, 2018, METHODS ECOL EVOL, V9, P2019, DOI 10.1111/2041-210X.13043. Naboureh A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12213484. Naboureh A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12203301. National Aeronautics and Space Administration (NASA), WELC NASA EARTH EXCH. National Aeronautics and Space Administration (NASA), GEOST NASA EARTH EXC. Ni RG, 2021, ISPRS J PHOTOGRAMM, V178, P282, DOI 10.1016/j.isprsjprs.2021.06.018. Oliphant AJ, 2019, INT J APPL EARTH OBS, V81, P110, DOI 10.1016/j.jag.2018.11.014. Orengo HA, 2019, J ARCHAEOL SCI, V112, DOI 10.1016/j.jas.2019.105013. Orengo HA, 2020, P NATL ACAD SCI USA, V117, P18240, DOI 10.1073/pnas.2005583117. Sayad YO, 2019, FIRE SAFETY J, V104, P130, DOI 10.1016/j.firesaf.2019.01.006. Padarian J, 2015, COMPUT GEOSCI-UK, V83, P80, DOI 10.1016/j.cageo.2015.06.023. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Pan X, 2022, GEOCARTO INT, V37, P5415, DOI 10.1080/10106049.2021.1917005. Parente L, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11232881. Parente L, 2019, REMOTE SENS ENVIRON, V232, DOI 10.1016/j.rse.2019.111301. Parks SA, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11141735. Pekel JF, 2016, NATURE, V540, P418, DOI 10.1038/nature20584. Perez-Romero J, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11141736. Peterson KT, 2020, GISCI REMOTE SENS, V57, P510, DOI 10.1080/15481603.2020.1738061. Phalke AR, 2020, ISPRS J PHOTOGRAMM, V167, P104, DOI 10.1016/j.isprsjprs.2020.06.022. Pipia L, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13030403. Poortinga A., 2021, ISPRS OPEN J PHOTOGR, V1, P100003, DOI {[}10.1016/j.ophoto.2021.100003, DOI 10.1016/J.OPHOTO.2021.100003]. Poortinga A, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11070831. Poppiel RR, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11242905. Pratico S, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13040586. Pratt L. Y., 1993, ADV NEURAL INFORM PR. Qi MM, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12142217. Quintero N, 2019, FORESTS, V10, DOI 10.3390/f10060518. Ragettli S, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10111823. Ramdani F, 2019, INT J REMOTE SENS, V40, P7371, DOI 10.1080/01431161.2018.1508924. Ranagalage M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11195517. Ray S.S., 2019, INT ARCH PHOTOGRAM R, DOI {[}DOI 10.5194/ISPRS-ARCHIVES-XLII-3-W6-573-2019, 10.5194/isprs-archives-XLII-3-W6-573-2019]. Rudiyanto, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11141666. Sagawa T, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11101155. Sahour H, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14010159. Samasse K, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12091436. Samat A, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14010230. Sebestyen V, 2021, FRONT ENV SCI-SWITZ, V9, DOI 10.3389/fenvs.2021.619092. Seydi ST, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13020220. Shafizadeh-Moghadam H, 2021, GISCI REMOTE SENS, V58, P914, DOI 10.1080/15481603.2021.1947623. Shaharum NSN, 2020, REMOTE SENS APPL, V17, DOI 10.1016/j.rsase.2020.100287. Shelestov A, 2017, FRONT EARTH SC-SWITZ, V5, P1, DOI 10.3389/feart.2017.00017. Shetty S, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13081433. Shimizu K, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11161899. Srinet R, 2020, INT J REMOTE SENS, V41, P1, DOI 10.1080/01431161.2020.1766147. Sulova A, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13010010. Sun J, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19204363. Sun YH, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3052254. Tamiminia H, 2020, ISPRS J PHOTOGRAMM, V164, P152, DOI 10.1016/j.isprsjprs.2020.04.001. Tan CQ, 2018, LECT NOTES COMPUT SC, V11141, P270, DOI 10.1007/978-3-030-01424-7\_27. Tassi A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12223776. Tedesche ME, 2019, HYDROLOGY-BASEL, V6, DOI 10.3390/hydrology6020053. Teluguntla P, 2018, ISPRS J PHOTOGRAMM, V144, P325, DOI 10.1016/j.isprsjprs.2018.07.017. Tian FY, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11060629. Tian HF, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11070820. Tian JY, 2020, REMOTE SENS ENVIRON, V242, DOI 10.1016/j.rse.2020.111745. Traganos D, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10081227. Traganos D, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10060859. Tsai YH, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10060927. Uddin K, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11131581. van Deventer H, 2019, ISPRS J PHOTOGRAMM, V157, P171, DOI 10.1016/j.isprsjprs.2019.09.007. Vanama VSK, 2020, J APPL REMOTE SENS, V14, DOI 10.1117/1.JRS.14.034505. Voight C, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11070823. Vos K, 2019, COAST ENG, V150, P160, DOI 10.1016/j.coastaleng.2019.04.004. Waller EK, 2018, INT J APPL EARTH OBS, V73, P407, DOI 10.1016/j.jag.2018.07.008. Wang C, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10101635. Wang L, 2020, REMOTE SENS ENVIRON, V248, DOI 10.1016/j.rse.2020.112002. Wang L, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12203278. Wang M, 2019, LAND USE POLICY, V88, DOI 10.1016/j.landusepol.2019.104190. Wang S, 2019, REMOTE SENS ENVIRON, V222, P303, DOI 10.1016/j.rse.2018.12.026. Wang XX, 2020, REMOTE SENS ENVIRON, V238, DOI 10.1016/j.rse.2018.11.030. Wang YD, 2020, IEEE J-STARS, V13, P768, DOI 10.1109/JSTARS.2020.2971783. Wang YX, 2019, REMOTE SENS ENVIRON, V221, P474, DOI 10.1016/j.rse.2018.11.028. Weber SJ, 2020, SCI TOTAL ENVIRON, V703, DOI 10.1016/j.scitotenv.2019.134608. Wei CY, 2020, REMOTE SENS ENVIRON, V240, DOI 10.1016/j.rse.2020.111672. Weinberger K., 2013, P 30 INT C MACH LEAR, P410. Weiss Karl, 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0043-6. Wimberly MC, 2022, INT J DIGIT EARTH, V15, P30, DOI 10.1080/17538947.2021.2012533. Wu N, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13030443. Wu Q., 2020, J OPEN SOURCE SOFTW, V5, P2305, DOI {[}10.21105/joss.02305, DOI 10.21105/JOSS.02305]. Wu QS, 2019, REMOTE SENS ENVIRON, V228, P1, DOI 10.1016/j.rse.2019.04.015. Xiao W, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101612. Xie B, 2021, FORESTS, V12, DOI 10.3390/f12050565. Xie S, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11243023. Xie YH, 2019, ISPRS J PHOTOGRAMM, V155, P136, DOI 10.1016/j.isprsjprs.2019.07.005. Xin Y., 2019, P 3 ACM SIGSPATIAL I, P81, DOI {[}10.1145/3356471.3365242, DOI 10.1145/3356471.3365242]. Xiong J, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9101065. Xiong J, 2017, ISPRS J PHOTOGRAMM, V126, P225, DOI 10.1016/j.isprsjprs.2017.01.019. Xu HZY, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11161891. Yan DD, 2021, IEEE J-STARS, V14, P9781, DOI 10.1109/JSTARS.2021.3114116. Yang CW, 2017, COMPUT ENVIRON URBAN, V61, P120, DOI 10.1016/j.compenvurbsys.2016.10.010. Yang LP, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22062416. Yang L, 2019, SOFT COMPUT, V23, P13393, DOI 10.1007/s00500-019-03878-8. Yang LP, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7020065. Ye XC, 2019, SCI TOTAL ENVIRON, V659, P302, DOI 10.1016/j.scitotenv.2018.12.331. Yin ZX, 2020, REMOTE SENS LETT, V11, P1181, DOI 10.1080/2150704X.2020.1833096. You NS, 2020, ISPRS J PHOTOGRAMM, V161, P109, DOI 10.1016/j.isprsjprs.2020.01.001. Yu B, 2018, ENVIRON EARTH SCI, V77, DOI 10.1007/s12665-018-7516-1. Zeng HW, 2020, CHINESE GEOGR SCI, V30, P397, DOI 10.1007/s11769-020-1119-y. Zhang KY, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11080924. Zhang MN, 2019, INT J REMOTE SENS, V40, P9541, DOI 10.1080/01431161.2019.1633702. Zhang MW, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13152934. Zhang M, 2022, J HYDROL, V606, DOI 10.1016/j.jhydrol.2022.127462. Zhang XH, 2022, INT J REMOTE SENS, V43, P132, DOI 10.1080/01431161.2021.2012295. Zhang ZM, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13040748. Zhao F, 2022, REMOTE SENS ENVIRON, V269, DOI 10.1016/j.rse.2021.112822. Zhaoming Zhang, 2020, IOP Conference Series: Earth and Environmental Science, V428, DOI 10.1088/1755-1315/428/1/012078. Zhong QY, 2019, REMOTE SENS ENVIRON, V233, DOI 10.1016/j.rse.2019.111374. Zhou B, 2020, REMOTE SENS ENVIRON, V236, DOI 10.1016/j.rse.2019.111521. Zhou L, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13040787. Zhu XX, 2017, IEEE GEOSC REM SEN M, V5, P8, DOI 10.1109/MGRS.2017.2762307. Zhuang FZ, 2021, P IEEE, V109, P43, DOI 10.1109/JPROC.2020.3004555. Zou ZH, 2017, SCI TOTAL ENVIRON, V595, P451, DOI 10.1016/j.scitotenv.2017.03.259. Zurqani HA, 2018, INT J APPL EARTH OBS, V69, P175, DOI 10.1016/j.jag.2017.12.006.}, Number-of-Cited-References = {264}, Times-Cited = {9}, Usage-Count-Last-180-days = {52}, Usage-Count-Since-2013 = {83}, Journal-ISO = {Remote Sens.}, Doc-Delivery-Number = {3H2GM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000831858600001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000580815300001, Author = {Lee, Kwang-Sig and Ahn, Ki Hoon}, Title = {Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth}, Journal = {DIAGNOSTICS}, Year = {2020}, Volume = {10}, Number = {9}, Month = {SEP}, Abstract = {This study reviews the current status and future prospective of knowledge on the use of artificial intelligence for the prediction of spontaneous preterm labor and birth ({''}preterm birth{''} hereafter). The summary of review suggests that different machine learning approaches would be optimal for different types of data regarding the prediction of preterm birth: the artificial neural network, logistic regression and/or the random forest for numeric data; the support vector machine for electrohysterogram data; the recurrent neural network for text data; and the convolutional neural network for image data. The ranges of performance measures were 0.79-0.94 for accuracy, 0.22-0.97 for sensitivity, 0.86-1.00 for specificity, and 0.54-0.83 for the area under the receiver operating characteristic curve. The following maternal variables were reported to be major determinants of preterm birth: delivery and pregestational body mass index, age, parity, predelivery systolic and diastolic blood pressure, twins, below high school graduation, infant sex, prior preterm birth, progesterone medication history, upper gastrointestinal tract symptom, gastroesophageal reflux disease, Helicobacter pylori, urban region, calcium channel blocker medication history, gestational diabetes mellitus, prior cone biopsy, cervical length, myomas and adenomyosis, insurance, marriage, religion, systemic lupus erythematosus, hydroxychloroquine sulfate, and increased cerebrospinal fluid and reduced cortical folding due to impaired brain growth.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Ahn, KH (Corresponding Author), Korea Univ, Anam Hosp, Dept Obstet \& Gynecol, Seoul 02841, South Korea. Lee, Kwang-Sig, Korea Univ, Anam Hosp, AI Ctr, Seoul 02841, South Korea. Ahn, Ki Hoon, Korea Univ, Anam Hosp, Dept Obstet \& Gynecol, Seoul 02841, South Korea.}, DOI = {10.3390/diagnostics10090733}, Article-Number = {733}, EISSN = {2075-4418}, Keywords = {preterm birth; early diagnosis; artificial intelligence}, Keywords-Plus = {GASTROESOPHAGEAL-REFLUX DISEASE; DIABETES-MELLITUS; RISK; PERIODONTITIS; ASSOCIATION; PREDICTION; WOMEN}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {ecophy@hanmail.net akh1220@hanmail.net}, Affiliations = {Korea University; Korea University Medicine (KU Medicine); Korea University; Korea University Medicine (KU Medicine)}, ORCID-Numbers = {Lee, Kwang-Sig/0000-0002-0576-0098 AHN, KI HOON/0000-0002-6314-4621}, Funding-Acknowledgement = {Ministry of Science and ICT of South Korea under the Information Technology Research Center support program {[}IITP-2018-0-01405]}, Funding-Text = {This research was supported by the Ministry of Science and ICT of South Korea under the Information Technology Research Center support program supervised by the IITP (Institute for Information \& Communications Technology Planning \& Evaluation) (IITP-2018-0-01405).}, Cited-References = {Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938. Ali RAR, 2007, BEST PRACT RES CL GA, V21, P793, DOI 10.1016/j.bpg.2007.05.006. Berghella V, 2004, AM J OBSTET GYNECOL, V191, P1393, DOI 10.1016/j.ajog.2004.06.087. Bevis KS, 2011, AM J OBSTET GYNECOL, V205, P19, DOI 10.1016/j.ajog.2011.01.003. Boghossian NS, 2014, AM J OBSTET GYNECOL, V210, DOI 10.1016/j.ajog.2013.12.026. Cavoretto P, 2018, ULTRASOUND OBST GYN, V51, P43, DOI 10.1002/uog.18930. Cho SH, 2017, J KOREAN MED SCI, V32, P488, DOI 10.3346/jkms.2017.32.3.488. Conde-Agudelo A, 2011, BJOG-INT J OBSTET GY, V118, P1042, DOI 10.1111/j.1471-0528.2011.02923.x. Deppe H, 2015, BMC ORAL HEALTH, V15, DOI 10.1186/s12903-015-0069-8. Di Renzo GC, 2011, EUR J OBSTET GYN R B, V159, P342, DOI 10.1016/j.ejogrb.2011.09.024. Eke PI, 2015, J PERIODONTOL, V86, P611, DOI 10.1902/jop.2015.140520. FEINBERG RF, 1991, AM J PATHOL, V138, P537. Fergus P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077154. Gao C, 2019, J BIOMED INFORM, V100, DOI 10.1016/j.jbi.2019.103334. Goldenberg RL, 2008, LANCET, V371, P75, DOI 10.1016/S0140-6736(08)60074-4. Goodwin Linda K, 2002, Outcomes Manag, V6, P80. Goodwin LK, 2001, NURS RES, V50, P340, DOI 10.1097/00006199-200111000-00003. Goodwin LK, 2000, COMO, V1, P46, DOI DOI 10.1145/335603.335680. Grigorescu I., 2019, ARXIV191000071. Harrison MS, 2016, SEMIN FETAL NEONAT M, V21, P74, DOI 10.1016/j.siny.2015.12.007. Hedderson MM, 2003, OBSTET GYNECOL, V102, P850, DOI 10.1016/S0029-7844(03)00661-6. Heude B, 2012, MATERN CHILD HLTH J, V16, P355, DOI 10.1007/s10995-011-0741-9. Kim YJ, 2005, GYNECOL OBSTET INVES, V60, P206, DOI 10.1159/000087207. Koivu A, 2020, HEALTH INF SCI SYST, V8, DOI 10.1007/s13755-020-00105-9. Krizhevsky A, 2018, SIEM REAP, V2, P1097. Lee KS, 2020, J KOREAN MED SCI, V35, DOI 10.3346/jkms.2020.35.e105. Lee KS, 2019, GERIATR GERONTOL INT, V19, P711, DOI 10.1111/ggi.13716. Lee KS, 2019, J KOREAN MED SCI, V34, DOI 10.3346/jkms.2019.34.e128. Liu L, 2016, LANCET, V388, P3027, DOI 10.1016/S0140-6736(16)31593-8. Malosso ERM, 2018, J MATERN-FETAL NEO M, V31, P2463, DOI 10.1080/14767058.2017.1344963. McIntosh J, 2016, AM J OBSTET GYNECOL, V215, pB2, DOI 10.1016/j.ajog.2016.04.027. Moroz LA, 2014, AM J OBSTET GYNECOL, V210, DOI 10.1016/j.ajog.2013.12.037. O'Hara Sandra, 2013, Australas J Ultrasound Med, V16, P124, DOI 10.1002/j.2205-0140.2013.tb00100.x. Parker MG, 2014, BMC PREGNANCY CHILDB, V14, DOI 10.1186/1471-2393-14-153. Patrick Lyn, 2011, Altern Med Rev, V16, P116. Pinborg A, 2015, HUM REPROD, V30, P197, DOI 10.1093/humrep/deu260. Premkumar A, 2016, AM J OBSTET GYNECOL, V215, DOI 10.1016/j.ajog.2016.08.019. Puertas A, 2018, J MATERN-FETAL NEO M, V31, P597, DOI 10.1080/14767058.2017.1293023. Sadi-Ahmed N, 2017, J MED SYST, V41, DOI 10.1007/s10916-017-0847-8. Shin D, 2015, J MATERN-FETAL NEO M, V28, P1679, DOI 10.3109/14767058.2014.964675. Sibai BM, 2000, AM J OBSTET GYNECOL, V183, P1520, DOI 10.1067/mob.2000.107621. Song XW, 2004, STUD HEALTH TECHNOL, V107, P736. Vakil N, 2006, AM J GASTROENTEROL, V101, P1900, DOI 10.1111/j.1572-0241.2006.00630.x. Vinesh E, 2016, J Contemp Dent Pract, V17, P943. Vorobiev A, 2006, ASPEC 2006: 13TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, PROCEEDINGS, P3. World Health Organization, NEWS PRET BIRTH. Zhang J, 2007, AM J OBSTET GYNECOL, V197, DOI 10.1016/j.ajog.2007.03.053.}, Number-of-Cited-References = {47}, Times-Cited = {22}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {17}, Journal-ISO = {Diagnostics}, Doc-Delivery-Number = {OE9AW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000580815300001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000644682100001, Author = {Song, Yongze and Wu, Peng}, Title = {Earth Observation for Sustainable Infrastructure: A Review}, Journal = {REMOTE SENSING}, Year = {2021}, Volume = {13}, Number = {8}, Month = {APR}, Abstract = {Infrastructure is a fundamental sector for sustainable development and Earth observation has great potentials for sustainable infrastructure development (SID). However, implementations of the timely, large-scale and multi-source Earth observation are still limited in satisfying the huge global requirements of SID. This study presents a systematical literature review to identify trends of Earth observation for sustainable infrastructure (EOSI), investigate the relationship between EOSI and Sustainable Development Goals (SDGs), and explore challenges and future directions of EOSI. Results reveal the close associations of infrastructure, urban development, ecosystems, climate, Earth observation and GIS in EOSI, and indicate their relationships. In addition, from the perspective of EOSI-SDGs relationship, the huge potentials of EOSI are demonstrated from the 70\% of the infrastructure influenced targets that can be directly or indirectly derived from Earth observation data, but have not been included in current SDG indicators. Finally, typical EOSI cases are presented to indicate challenges and future research directions. This review emphasizes the contributions and potentials of Earth observation to SID and EOSI is a powerful pathway to deliver on SDGs.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Song, YZ (Corresponding Author), Curtin Univ, Sch Design \& Built Environm, Bentley, WA 6102, Australia. Song, Yongze; Wu, Peng, Curtin Univ, Sch Design \& Built Environm, Bentley, WA 6102, Australia.}, DOI = {10.3390/rs13081528}, Article-Number = {1528}, EISSN = {2072-4292}, Keywords = {sustainable infrastructure; earth observation; remote sensing; earth big data; Sustainable Development Goals (SDGs); SDG targets; bibliographic analysis}, Keywords-Plus = {URBAN GREEN AREAS; POWER-PLANT; DEVELOPMENT GOALS; SATELLITE IMAGERY; TRANSPORT INFRASTRUCTURE; ARTIFICIAL-INTELLIGENCE; REGIONAL INEQUALITY; CULTURAL-HERITAGE; WASTE MANAGEMENT; SPATIAL-ANALYSIS}, Research-Areas = {Environmental Sciences \& Ecology; Geology; Remote Sensing; Imaging Science \& Photographic Technology}, Web-of-Science-Categories = {Environmental Sciences; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science \& Photographic Technology}, Author-Email = {yongze.song@curtin.edu.au peng.wu@curtin.edu.au}, Affiliations = {Curtin University}, ResearcherID-Numbers = {Song, Yongze/F-1940-2018 }, ORCID-Numbers = {Song, Yongze/0000-0003-3420-9622 wu, peng/0000-0002-3793-0653}, Funding-Acknowledgement = {Australian Government through the Australian Research Council {[}DP180104026]}, Funding-Text = {This research was partially supported by the Australian Government through the Australian Research Council's Discovery Project grant number DP180104026.}, Cited-References = {Abdelwahab S, 2014, IEEE INTERNET THINGS, V1, P276, DOI 10.1109/JIOT.2014.2325071. Abdullahi HS, 2015, L N INST COMP SCI SO, V154, P388, DOI 10.1007/978-3-319-25479-1\_29. Achillopoulou DV, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.141001. Adimi F, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-125. Adshead D, 2019, GLOBAL ENVIRON CHANG, V59, DOI 10.1016/j.gloenvcha.2019.101975. Ahmad T, 2021, J CLEAN PROD, V289, DOI 10.1016/j.jclepro.2021.125834. Al-Hanbali A., 2011, Journal of Geographic Information System, V3, P267, DOI 10.4236/jgis.2011.34023. Alreshidi E, 2019, INT J ADV COMPUT SC, V10, P93. Alves A, 2019, J ENVIRON MANAGE, V239, P244, DOI 10.1016/j.jenvman.2019.03.036. Queiroz MVAB, 2020, SOCIO-ECON PLAN SCI, V70, DOI 10.1016/j.seps.2019.100738. {[}Anonymous], 2015, ARES701. {[}Anonymous], 1995, REP WORLD SUMM SOC D. {[}Anonymous], 2001, REMOTE SENSING SUSTA, DOI 10.1201/9781420032857. Perez JA, 2019, ADV ENG SOFTW, V132, P47, DOI 10.1016/j.advengsoft.2019.03.010. Aquilino M, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060950. Arastounia M, 2015, REMOTE SENS-BASEL, V7, P14916, DOI 10.3390/rs71114916. Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007. Asbury Z, 2019, GISCI REMOTE SENS, V56, P894, DOI 10.1080/15481603.2019.1582154. Asensio OI, 2020, NAT SUSTAIN, V3, P463, DOI 10.1038/s41893-020-0533-6. Awoyera P., 2020, RENEWABLE ENERGY SUS, P791. Bakht Z, 2000, POVERTY IMPACT RURAL. Balaguera A, 2018, RESOUR CONSERV RECY, V132, P37, DOI 10.1016/j.resconrec.2018.01.003. Bassi AM, 2017, SUSTAINABLE ASSET VA. Bebbington A, 2020, P NATL ACAD SCI USA, V117, P21829, DOI 10.1073/pnas.2015636117. Bebbington AJ, 2018, P NATL ACAD SCI USA, V115, P13164, DOI 10.1073/pnas.1812505115. Benami E, 2021, NAT REV EARTH ENV, V2, P140, DOI 10.1038/s43017-020-00122-y. Bonczak B, 2019, COMPUT ENVIRON URBAN, V73, P126, DOI 10.1016/j.compenvurbsys.2018.09.004. Bovensmann H, 2010, ATMOS MEAS TECH, V3, P781, DOI 10.5194/amt-3-781-2010. BRICENO C., 2004, INFRASTRUCTURE SERVI. Brown ME, 2014, POPUL ENVIRON, V36, P48, DOI 10.1007/s11111-013-0201-0. Bussemakers C, 2017, WORLD DEV, V99, P28, DOI 10.1016/j.worlddev.2017.07.002. Cai GY, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0244318. Calvert K, 2013, RENEW SUST ENERG REV, V18, P416, DOI 10.1016/j.rser.2012.10.024. Chaklader S, 2013, 2013 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE 2013), P277, DOI 10.1109/ICAEE.2013.6750347. Chamanehpour E, 2017, COMPUT ECOL SOFTW, V7, P49. Chatterjee S, 2012, EUR ECON REV, V56, P1730, DOI 10.1016/j.euroecorev.2012.08.003. Chen CQ, 2003, J ENVIRON SCI HEAL A, V38, P1659, DOI 10.1081/ESE-120021487. Chen YH, 2018, AUTOMAT CONSTR, V89, P307, DOI 10.1016/j.autcon.2018.02.008. Chester M., 2021, NPJ URBAN SUSTAIN, V1, P4, DOI DOI 10.1038/S42949-021-00016-Y. Chirici G, 2020, EUR J REMOTE SENS, V53, P1, DOI 10.1080/22797254.2020.1756119. Choguill CL, 1996, HABITAT INT, V20, P389, DOI 10.1016/0197-3975(96)00013-6. Chrysoulakis N, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-29873-x. CLARK CD, 1993, INT J REMOTE SENS, V14, P2985, DOI 10.1080/01431169308904414. Cochran F, 2020, REMOTE SENS ENVIRON, V244, DOI 10.1016/j.rse.2020.111796. Coetzee S., P ISPRS GEOSP WEEK 2, V42, P1551. Contreras C, P INT C SUST INFR 2, P671. Coskun HG, 2010, WATER RESOUR MANAG, V24, P3757, DOI 10.1007/s11269-010-9632-x. Cumming TL, 2017, ECOSYST SERV, V27, P253, DOI 10.1016/j.ecoser.2017.05.005. Cusworth DH, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/ab7b99. Davaasuren N, 2018, INT GEOSCI REMOTE SE, P938. Dean A., P 31 ANN ARCOM C LIN. Deichmann U, 2016, AGR ECON-BLACKWELL, V47, P21, DOI 10.1111/agec.12300. Delanka-Pedige HMK, 2021, INT J SUST DEV WORLD, V28, P203, DOI 10.1080/13504509.2020.1795006. Di Vaio A, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.09.010. Dimitrov S. S., 2018, ONE ECOSYSTEM, V3, DOI {[}10.3897/oneeco.3.e21610, DOI 10.3897/ONEECO.3.E21610]. Dogo E. M., 2019, ARTIF INTELL, DOI {[}10.1007/978-3-030-04110-6\_7, DOI 10.1007/978-3-030-04110-6\_7]. Du HB, 2019, EARTHS FUTURE, V7, P718, DOI 10.1029/2018EF001117. Duren RM, 2012, NAT CLIM CHANGE, V2, P560, DOI 10.1038/nclimate1629. Edwards RWJ, 2018, P NATL ACAD SCI USA, V115, pE8815, DOI 10.1073/pnas.1806504115. Elfadaly A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010240. Elliott RM, 2020, AMBIO, V49, P569, DOI 10.1007/s13280-019-01223-9. Elvidge CD, 2009, COMPUT GEOSCI-UK, V35, P1652, DOI 10.1016/j.cageo.2009.01.009. Erguzen A, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11031214. Estache Antonio, 2006, INFRASTRUCTURE SURVE. Estoque RC, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12111770. FIELD CB, 1995, REMOTE SENS ENVIRON, V51, P74, DOI 10.1016/0034-4257(94)00066-V. Foody GM, 2003, INT J REMOTE SENS, V24, P4035, DOI 10.1080/0143116031000103853. Friesen J, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17062022. Fuldauer LI, 2019, J CLEAN PROD, V223, P147, DOI 10.1016/j.jclepro.2019.02.269. Galatowitsch S.M., 2018, WETLAND BOOK 2 DISTR, P359, DOI DOI 10.1007/978-94-007-4001-3\_217. Garcia L., 2016, EARTH OBSERVATION WA. Garsous G., 2012, IMPACT INFRASTRUCTUR, V1. Gasparovic I, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11121481. Giuliani G, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13030422. Gorelick N, 2017, REMOTE SENS ENVIRON, V202, P18, DOI 10.1016/j.rse.2017.06.031. Gorman DM, 2001, J STUD ALCOHOL, V62, P628, DOI 10.15288/jsa.2001.62.628. Grabowski ZJ, 2017, J INFRASTRUCT SYST, V23, DOI 10.1061/(ASCE)IS.1943-555X.0000383. Guo HD, 2010, INT J DIGIT EARTH, V3, P355, DOI 10.1080/17538947.2010.532632. Guo Y, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-14805-z. Gurara D., 2018, INT DEV POLICY. Habib SM, 2020, REMOTE SENS APPL, V18, DOI 10.1016/j.rsase.2020.100313. Hafeez S., 2019, MONITORING MARINE PO, DOI {[}10.5772/intechopen.81657, DOI 10.5772/INTECHOPEN.81657]. Hakimdavar R, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101634. Hallegatte S, 2020, NAT SUSTAIN, V3, P577, DOI 10.1038/s41893-020-0524-7. Hay SI, 2006, PLOS MED, V3, P2204, DOI 10.1371/journal.pmed.0030473. Helbich M, 2019, ENVIRON INT, V126, P107, DOI 10.1016/j.envint.2019.02.013. Herweijer C, 2020, UNLOCKING TECHNOLOGY. Hosonuma N, 2012, ENVIRON RES LETT, V7, DOI 10.1088/1748-9326/7/4/044009. Hsu TTD, 2017, ECOL ENG, V108, P547, DOI 10.1016/j.ecoleng.2017.02.051. Huang T., 2021, J PHYS C SER, V1757, DOI {[}10.1088/1742-6596/1757/1/012180, DOI 10.1088/1742-6596/1757/1/012180]. Im J, 2020, GISCI REMOTE SENS, V57, P591, DOI 10.1080/15481603.2020.1763041. Ishtiaque A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12040691. Jangid J, 2016, RENEW SUST ENERG REV, V65, P1, DOI 10.1016/j.rser.2016.06.078. Jean N, 2016, SCIENCE, V353, P790, DOI 10.1126/science.aaf7894. Jensen JR, 1999, PHOTOGRAMM ENG REM S, V65, P611. Jia ZH, 2020, PEERJ, V8, DOI 10.7717/peerj.8953. Kadefors A, 2021, J ENVIRON PLANN MAN, V64, P611, DOI 10.1080/09640568.2020.1778453. Karthikeyan L, 2020, J HYDROL, V586, DOI 10.1016/j.jhydrol.2020.124905. Kaur R., 2019, SPATIAL INFORM TECHN, P157. Koks EE, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10442-3. Koppa A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12040599. Kuffer M, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060982. Kuffer M, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7110428. Kumar N, 2019, MILLENN ASIA, V10, P372, DOI 10.1177/0976399619879867. Lacasse Suzanne, 2020, CIGOS 2019, Innovation for Sustainable Infrastructure. Proceedings of the 5th International Conference on Geotechnics, Civil Engineering Works and Structures. Lecture Notes in Civil Engineering (LNCE 54), P45, DOI 10.1007/978-981-15-0802-8\_5. Levin N, 2020, REMOTE SENS ENVIRON, V237, DOI 10.1016/j.rse.2019.111443. Li CP, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10020064. Li G, 2007, INT J REMOTE SENS, V28, P249, DOI 10.1080/01431160600735624. Li QY, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12040602. Li SL, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON SMART INTERNET OF THINGS (SMARTIOT 2018), P276, DOI 10.1109/SmartloT.2018.00056. Liaghat S., 2010, American Journal of Agricultural and Biological Sciences, V5, P50. Lilford R, 2019, BMJ GLOB HEALTH, V4, DOI 10.1136/bmjgh-2018-001267. Linchant J, 2015, MAMMAL REV, V45, P239, DOI 10.1111/mam.12046. Liu Z.I., 1997, POVERTY TRANSPORT. Llanto G.M, 2012, IMPACT INFRASTRUCTUR. Lu Y, 2019, LANDSCAPE URBAN PLAN, V191, DOI 10.1016/j.landurbplan.2018.08.029. Lu Z, 2015, PROCEDIA ENGINEER, V123, P300, DOI 10.1016/j.proeng.2015.10.094. Mansell P, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12197998. Mansell P, 2020, P I CIVIL ENG-ENG SU, V173, P196, DOI 10.1680/jensu.19.00044. Diaz-Sarachaga JM, 2017, ENVIRON SCI POLICY, V69, P65, DOI 10.1016/j.envsci.2016.12.010. Masoud AA, 2020, ENVIRON SCI POLLUT R, V27, P32153, DOI 10.1007/s11356-020-08504-x. Mattinzioli T, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102447. McCarthy MJ, 2017, ENVIRON MANAGE, V60, P323, DOI 10.1007/s00267-017-0880-x. Medeiros V, 2021, WORLD DEV, V137, DOI 10.1016/j.worlddev.2020.105118. Melchiorri M, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8020096. Merry SE, 2019, GLOB POLICY, V10, P146, DOI 10.1111/1758-5899.12606. Mitchell AL, 2017, CARBON BAL MANAGE, V12, DOI 10.1186/s13021-017-0078-9. Mohammedshum AA, 2014, INT ARCH PHOTOGRAMM, V40-2, P115, DOI 10.5194/isprsarchives-XL-2-115-2014. Mulla DJ, 2013, BIOSYST ENG, V114, P358, DOI 10.1016/j.biosystemseng.2012.08.009. Mulligan M, 2020, REMOTE SENS ENVIRON, V239, DOI 10.1016/j.rse.2020.111671. Nelson M, 2001, ADV SPACE RES-SERIES, V27, P1547, DOI 10.1016/S0273-1177(01)00246-0. Neupane B, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13040808. Okwi PO, 2007, P NATL ACAD SCI USA, V104, P16769, DOI 10.1073/pnas.0611107104. Oshri B, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P616, DOI 10.1145/3219819.3219924. Peterson RD., 2010, DIVERGENT SOCIAL WOR. Petrova E, 2020, NAT HAZARD EARTH SYS, V20, P1969, DOI 10.5194/nhess-20-1969-2020. Pettorelli N, 2019, SATELLITE REMOTE SENSING AND THE MANAGEMENT OF NATURAL RESOURCES, P1, DOI 10.1093/oso/9780198717263.001.0001. Prince SD, 2019, REMOTE SENS ENVIRON, V234, DOI 10.1016/j.rse.2019.111428. Pu Q, 2020, APPL GEOGR, V121, DOI 10.1016/j.apgeog.2020.102262. Qi BX, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13050843. Qiang Y, 2020, SUSTAIN CITIES SOC, V57, DOI 10.1016/j.scs.2020.102115. Raei E, 2019, J HYDROL, V579, DOI 10.1016/j.jhydrol.2019.124091. Ramaswami A, 2012, J IND ECOL, V16, P801, DOI 10.1111/j.1530-9290.2012.00566.x. Randall M, 2019, WATER-SUI, V11, DOI 10.3390/w11061133. Rausch L, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10020216. Ravanelli R, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10091488. Salam A., 2020, INTERNET THINGS SUST. Scarlat N, 2015, RENEW SUST ENERG REV, V50, P1269, DOI 10.1016/j.rser.2015.05.067. Scheip C. M., 2020, NAT HAZARDS EARTH SY, DOI {[}10.5194/nhess-2020-108, DOI 10.5194/NHESS-2020-108]. Schiavina M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205674. Seelan SK, 2003, REMOTE SENS ENVIRON, V88, P157, DOI 10.1016/j.rse.2003.04.007. Sefrin O, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13010078. Sestras P, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13030385. Shao ZF, 2021, GEO-SPAT INF SCI, V24, P241, DOI 10.1080/10095020.2020.1787800. Shen G, 2019, ECOL INDIC, V104, P48, DOI 10.1016/j.ecolind.2019.04.063. Shojaei A, 2020, BUILT ENVIRON PROJ A, V10, P184, DOI 10.1108/BEPAM-11-2018-0142. Singh A, 2019, J ENVIRON MANAGE, V243, P22, DOI 10.1016/j.jenvman.2019.05.017. Singh SK, 2020, SUSTAIN CITIES SOC, V60, DOI 10.1016/j.scs.2020.102252. Sohn SY, 2003, SAFETY SCI, V41, P1, DOI 10.1016/S0925-7535(01)00032-7. Song YZ, 2021, IEEE T INTELL TRANSP, V22, P7073, DOI 10.1109/TITS.2020.3001193. Song YZ, 2021, INT J GEOGR INF SCI, V35, P1676, DOI 10.1080/13658816.2021.1882680. Song YZ, 2021, RENEW SUST ENERG REV, V138, DOI 10.1016/j.rser.2020.110538. Song YZ, 2020, GISCI REMOTE SENS, V57, P593, DOI 10.1080/15481603.2020.1760434. Song YZ, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10111696. Song YZ, 2018, GISCI REMOTE SENS, V55, P718, DOI 10.1080/15481603.2018.1446713. Song YZ, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7030100. Song YZ, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6120397. Song YZ, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1395-2. Sudmanns M, 2020, INT J DIGIT EARTH, V13, P832, DOI 10.1080/17538947.2019.1585976. Sun CW, 2018, J CLEAN PROD, V172, P488, DOI 10.1016/j.jclepro.2017.10.194. Sylvia I., P 2015 4 INT C SMART, P1. Tamiminia H, 2020, ISPRS J PHOTOGRAMM, V164, P152, DOI 10.1016/j.isprsjprs.2020.04.001. Tang DL, 2003, REMOTE SENS ENVIRON, V84, P506, DOI 10.1016/S0034-4257(02)00149-9. Tanguy A, 2016, WASTE MANAGE RES, V34, P1064, DOI 10.1177/0734242X16658544. Taubenbock H, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7080304. Thacker S, 2019, NAT SUSTAIN, V2, P324, DOI 10.1038/s41893-019-0256-8. Tiwari V, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0237324. Tonne C, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106236. Tralli DM, 2005, ISPRS J PHOTOGRAMM, V59, P185, DOI 10.1016/j.isprsjprs.2005.02.002. Trier OD, 2021, INT J APPL EARTH OBS, V95, DOI 10.1016/j.jag.2020.102241. Tsai YH, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10060927. Ulvi A, 2021, INT J REMOTE SENS, V42, P1994, DOI 10.1080/01431161.2020.1834164. Underwood BS, 2017, NAT CLIM CHANGE, V7, P704, DOI 10.1038/NCLIMATE3390. United Nations, 2021, GLOB SDG IND DAT. Valbuena R, 2019, EUR J REMOTE SENS, V52, P345, DOI 10.1080/22797254.2019.1605624. van Zalk J, 2018, ENERG POLICY, V123, P83, DOI 10.1016/j.enpol.2018.08.023. Velaga NR, 2012, J TRANSP GEOGR, V21, P102, DOI 10.1016/j.jtrangeo.2011.12.005. Verbyla D.L., 1995, SATELLITE REMOTE SEN. Vihervaara P, 2017, GLOB ECOL CONSERV, V10, P43, DOI 10.1016/j.gecco.2017.01.007. Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y. Vittuari M, 2020, J CLEAN PROD, V252, DOI 10.1016/j.jclepro.2019.119857. Waage J, 2015, LANCET GLOB HEALTH, V3, pE251, DOI 10.1016/S2214-109X(15)70112-9. Walter T.F, 2018, SPATIAL DISTRIBUTION. Wang GZ, 2020, J CLEAN PROD, V244, DOI 10.1016/j.jclepro.2019.118793. Wang L, 2020, REMOTE SENS ENVIRON, V248, DOI 10.1016/j.rse.2020.112002. Wang R, 2019, REMOTE SENS ENVIRON, V231, DOI 10.1016/j.rse.2019.111218. Wang YC, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12030357. Warth G, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12111730. Wasowski J, 2017, INNOV INFRASTRUCT SO, V2, DOI 10.1007/s41062-017-0077-4. Watmough GR, 2019, P NATL ACAD SCI USA, V116, P1213, DOI 10.1073/pnas.1812969116. Wei LH, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10122025. Wei T, 2020, APPL ENERG, V277, DOI 10.1016/j.apenergy.2020.115554. Weiss M, 2020, REMOTE SENS ENVIRON, V236, DOI 10.1016/j.rse.2019.111402. West J., 2009, ECOLOGICAL ENV ANTHR, V5, P1. Wicht M, 2019, EUR J REMOTE SENS, V52, P58, DOI 10.1080/22797254.2019.1617642. World Health Organisation, 2009, STAT WORLDS VACC IMM. Wu RW, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10020240. Wu S-S., 2005, GISCI REMOTE SENS, V42, P58, DOI {[}10.2747/1548-1603.42.1.80, DOI 10.2747/1548-1603.42.1.80]. Xiao HL, 2021, IEEE SYST J, V15, P1815, DOI 10.1109/JSYST.2020.3001938. Xie JQ, 2017, ENVIRON MODELL SOFTW, V95, P143, DOI 10.1016/j.envsoft.2017.06.027. Yang F, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.142384. Yang H, 2018, J EPIDEMIOL COMMUN H, V72, P237, DOI 10.1136/jech-2016-208597. Yang J, 2013, NAT CLIM CHANGE, V3, P875, DOI {[}10.1038/nclimate1908, 10.1038/NCLIMATE1908]. Yigitcanlar Tan, 2010, Sustainability, V2, P321, DOI 10.3390/su2010321. Yu BL, 2015, IEEE J-STARS, V8, P1217, DOI 10.1109/JSTARS.2015.2399416. Zhang HP, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11091117. Zhang K, 2019, SCI TOTAL ENVIRON, V646, P1219, DOI 10.1016/j.scitotenv.2018.07.355. Zhang Q, 2019, J CLEAN PROD, V232, P474, DOI 10.1016/j.jclepro.2019.05.333. Zhang Y, 2018, IEEE INT CONF BIG DA, P1544, DOI 10.1109/BigData.2018.8621996. Zhang Y, 2006, INT J APPL EARTH OBS, V8, P149, DOI 10.1016/j.jag.2005.08.005. Zhou W, 2017, ECOL INDIC, V83, P303, DOI 10.1016/j.ecolind.2017.08.019. Zolfaghari M, 2020, J POLICY MODEL, V42, P1146, DOI 10.1016/j.jpolmod.2020.02.004. zu Ermgassen SOSE, 2019, ONE EARTH, V1, P305, DOI 10.1016/j.oneear.2019.10.019.}, Number-of-Cited-References = {223}, Times-Cited = {17}, Usage-Count-Last-180-days = {16}, Usage-Count-Since-2013 = {63}, Journal-ISO = {Remote Sens.}, Doc-Delivery-Number = {RT8BV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000644682100001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000744086200002, Author = {Cohen, Abigail Rae and Chen, Gerry and Berger, Eli Matthew and Warrier, Sushmita and Lan, Guanghui and Grubert, Emily and Dellaert, Frank and Chen, Yongsheng}, Title = {Dynamically Controlled Environment Agriculture: Integrating Machine Learning and Mechanistic and Physiological Models for Sustainable Food Cultivation}, Journal = {ACS ES\&T ENGINEERING}, Year = {2022}, Volume = {2}, Number = {1}, Pages = {3-19}, Month = {JAN 14}, Abstract = {Inefficiencies and imprecise input control in agriculture have caused devastating consequences to ecosystems. Urban controlled environment agriculture (CEA) is a proposed approach to mitigate the impacts of cultivation, but precise control of inputs (i.e., nutrient, water, etc.) is limited by the ability to monitor dynamic conditions. Current mechanistic and physiological plant growth models (MPMs) have not yet been unified and have uncovered knowledge gaps of the complex interplay among control variables. Moreover, because of their specificity, MPMs are of limited utility when extended to additional plant species or learning (ML) can uncover latent interactions across conditions, phenotyping bottlenecks have hindered successful application. To bridge these gaps, we propose an integrative approach whereby MPMs are used to construct the foundations of ML algorithms, reducing data requirements and costs, and ML is used to elucidate parameters and causal inference in MPM. This review highlights research about control and automation in CEA, synthesizing literature into a framework whereby ML, MPM, and biofeedback inform what we call dynamically controlled environment agriculture (DCEA). We highlight synergistic characteristics of MPM and ML to illustrate that a DCEA framework could contribute to urban resilience, human health, and optimized productivity and nutritional content.}, Publisher = {AMER CHEMICAL SOC}, Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA}, Type = {Review}, Language = {English}, Affiliation = {Chen, YS (Corresponding Author), Georgia Inst Technol, Sch Civil \& Environm Engn, Atlanta, GA 30332 USA. Cohen, Abigail Rae; Berger, Eli Matthew; Grubert, Emily; Chen, Yongsheng, Georgia Inst Technol, Sch Civil \& Environm Engn, Atlanta, GA 30332 USA. Chen, Gerry; Dellaert, Frank, Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30308 USA. Warrier, Sushmita, Georgia Inst Technol, Sch Elect \& Comp Engn, Atlanta, GA 30313 USA. Lan, Guanghui, Georgia Inst Technol, H Milton Stewart Sch Ind \& Syst Engn, Atlanta, GA 30332 USA.}, DOI = {10.1021/acsestengg.1c00269}, EISSN = {2690-0645}, Keywords = {Artificial Intelligence; Phenotyping; Automation; Precision Agriculture; Plant Growth Modeling}, Keywords-Plus = {NITRATE UPTAKE KINETICS; NUTRIENT-UPTAKE; SOILLESS CULTURES; SECONDARY GROWTH; PHOSPHATE-UPTAKE; PLANT NUTRITION; NITROGEN UPTAKE; WATER; LETTUCE; SYSTEM}, Research-Areas = {Engineering}, Web-of-Science-Categories = {Engineering, Environmental}, Author-Email = {yongsheng.chen@ce.gatech.edu}, Affiliations = {University System of Georgia; Georgia Institute of Technology; University System of Georgia; Georgia Institute of Technology; University System of Georgia; Georgia Institute of Technology; University System of Georgia; Georgia Institute of Technology}, ResearcherID-Numbers = {Lan, Guanghui/HPF-8429-2023 }, ORCID-Numbers = {Chen, Gerry/0000-0002-1026-1760}, Funding-Acknowledgement = {U.S. Department of Agriculture {[}2018-68011-28371]; National Science Foundation {[}2112533]; National Science Foundation-U.S. Department of Agriculture {[}202067021-31526]}, Funding-Text = {This study was partially supported by the U.S. Department of Agriculture (Award No. 2018-68011-28371); National Science Foundation (Award No. 1936928); National Science Foundation-U.S. Department of Agriculture (Award No. 202067021-31526); and National Science Foundation (Award No. 2112533).}, Cited-References = {Abrami P. C., 2015, LIVING BLUE PLANET R, V9. Adamowicz S, 2013, PLANT SOIL, V373, P967, DOI 10.1007/s11104-013-1863-1. Adler PR, 2003, ECOL ENG, V20, P251, DOI 10.1016/S0925-8574(03)00044-2. Ainsworth EA, 2014, PHOTOSYNTH RES, V119, P65, DOI 10.1007/s11120-013-9837-y. Albers DJ, 2018, J AM MED INFORM ASSN, V25, P1392, DOI 10.1093/jamia/ocy106. Amatya S, 2016, BIOSYST ENG, V146, P3, DOI 10.1016/j.biosystemseng.2015.10.003. Anastasiou A, 2009, ACTA HORTIC, V807, P253. Anderson TS, 2019, AQUACULT ENG, V86, DOI 10.1016/j.aquaeng.2019.101997. Bacci L, 2005, ACTA HORTIC, P263, DOI 10.17660/ActaHortic.2005.674.30. Baker RE, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2017.0660. Bamsey M, 2012, SENSORS-BASEL, V12, P13349, DOI 10.3390/s121013349. Bar-Yosef B, 2006, ACTA HORTIC, P435, DOI 10.17660/ActaHortic.2006.718.50. Bar-Yosef B, 1999, ADV AGRON, V65, P1, DOI 10.1016/S0065-2113(08)60910-4. Bar-Yosef B, 2008, SOILLESS CULTURE: THEORY AND PRACTICE, P341, DOI 10.1016/B978-044452975-6.50011-3. Barber S. A., 1984, Soil nutrient bioavailability. A mechanistic approach.. Barbosa GL, 2015, INT J ENV RES PUB HE, V12, P6879, DOI 10.3390/ijerph120606879. Bassirirad H, 2000, NEW PHYTOL, V147, P155, DOI 10.1046/j.1469-8137.2000.00682.x. Bellert C, 1998, ACTA HORTIC, P293, DOI 10.17660/ActaHortic.1998.458.37. Biskup B, 2007, PLANT CELL ENVIRON, V30, P1299, DOI 10.1111/j.1365-3040.2007.01702.x. Buckner E, 2021, EMERG TOP LIFE SCI, V5, P239, DOI 10.1042/ETLS20200273. Buhmann AK, 2015, AGR WATER MANAGE, V149, P102, DOI 10.1016/j.agwat.2014.11.001. Buysse J, 1996, PLANT SOIL, V181, P19, DOI 10.1007/BF00011287. CALOIN M, 1984, ANN BOT-LONDON, V54, P69, DOI 10.1093/oxfordjournals.aob.a086775. Carmassi G, 2007, AGR WATER MANAGE, V88, P73, DOI 10.1016/j.agwat.2006.10.002. Carmassi G, 2005, J PLANT NUTR, V28, P431, DOI 10.1081/PLN-200049163. Casson SA, 2010, CURR OPIN PLANT BIOL, V13, P90, DOI 10.1016/j.pbi.2009.08.005. Cease AJ, 2015, OIKOS, V124, P931, DOI 10.1111/oik.02391. Cerozi BD, 2016, BIORESOURCE TECHNOL, V219, P778, DOI 10.1016/j.biortech.2016.08.079. Chebrolu N., 2020, 2020 IEEE INT C ROBO. Chen T, 2016, ENVIRON TOXICOL CHEM, V35, P695, DOI 10.1002/etc.3226. Cho WJ, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19245508. Choi HJ, 2015, BIOPROC BIOSYST ENG, V38, P761, DOI 10.1007/s00449-014-1317-z. Coates RW., 2005, INFORM TECHNOLOGY SU, P611. Cordell D, 2012, CURR OPIN BIOTECH, V23, P839, DOI 10.1016/j.copbio.2012.03.010. Cordell D, 2009, GLOBAL ENVIRON CHANG, V19, P292, DOI 10.1016/j.gloenvcha.2008.10.009. CRAMER GR, 1987, PLANT PHYSIOL, V83, P510, DOI 10.1104/pp.83.3.510. Cui BJ, 2020, SCI HORTIC-AMSTERDAM, V265, DOI 10.1016/j.scienta.2020.109220. Dawson CJ, 2011, FOOD POLICY, V36, pS14, DOI 10.1016/j.foodpol.2010.11.012. Delagrange S, 2011, ANN BOT-LONDON, V108, P991, DOI 10.1093/aob/mcr064. Dellaert F, 2012, FACTOR GRAPHS GTSAM. Dharmaraj V., 2018, INT J CURRENT MICROB, V7, P2122, DOI {[}10.20546/ijcmas.2018.712.241, DOI 10.20546/IJCMAS.2018.712.241]. Doyle OM, 2013, IEEE T BIO-MED ENG, V60, P735, DOI 10.1109/TBME.2013.2244598. Drury B, 2017, ENG APPL ARTIF INTEL, V65, P29, DOI 10.1016/j.engappai.2017.07.003. Eickhout B, 2006, AGR ECOSYST ENVIRON, V116, P4, DOI 10.1016/j.agee.2006.03.009. Elings A, 2004, ACTA HORTIC, P195, DOI 10.17660/ActaHortic.2004.654.21. Environmental Research Software, 2015, MINEQL CHEM EQUILIBR, V5. EPSTEIN E, 1952, PLANT PHYSIOL, V27, P457, DOI 10.1104/pp.27.3.457. EPSTEIN E, 1973, INT REV CYTOL, V34, P123, DOI 10.1016/S0074-7696(08)61936-1. Fang YL, 2019, PLANT SOIL, V441, P33, DOI 10.1007/s11104-019-04068-z. Fiorani F, 2013, ANNU REV PLANT BIOL, V64, P267, DOI 10.1146/annurev-arplant-050312-120137. Fisher RA, 2018, GLOBAL CHANGE BIOL, V24, P35, DOI 10.1111/gcb.13910. Forkes J, 2007, RESOUR CONSERV RECY, V52, P74, DOI 10.1016/j.resconrec.2007.02.003. Gaw N, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-46296-4. Gergely S, 2005, J NEAR INFRARED SPEC, V13, P9, DOI 10.1255/jnirs.452. Glasmachers T., 2017, P 9 ASIAN C MACHINE, V77, P17. Gong Xue-jiao, 2017, Yingyong Shengtai Xuebao, V28, P2597, DOI 10.13287/j.1001-9332.201708.016. Griffiths M, 2020, PLANT PHYSIOL, V182, P1854, DOI 10.1104/pp.19.01496. Grossman JD, 2012, EVOL APPL, V5, P850, DOI 10.1111/j.1752-4571.2012.00263.x. Gunders D, 2017, WASTED AM IS LOSING. Gustafsson J.P., 2013, VISUAL MINTEQ. Hernandez-Hernandez JL, 2016, COMPUT ELECTRON AGR, V122, P124, DOI 10.1016/j.compag.2016.01.020. Hu Y, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18030806. Incrocci L, 2019, AGR WATER MANAGE, V213, P49, DOI 10.1016/j.agwat.2018.09.054. INOUE Y, 1990, AGR FOREST METEOROL, V51, P21, DOI 10.1016/0168-1923(90)90039-9. JACKSON LE, 1990, PLANT SOIL, V128, P115, DOI 10.1007/BF00011100. Jackson RB, 1996, J ECOL, V84, P891, DOI 10.2307/2960560. Jing Dong, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P3878, DOI 10.1109/ICRA.2017.7989447. Kaess M, 2012, INT J ROBOT RES, V31, P216, DOI 10.1177/0278364911430419. Kalcsits LA, 2016, PLANT CELL ENVIRON, V39, P310, DOI 10.1111/pce.12614. Kamarudin MH, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11041403. Kaye JP, 2006, TRENDS ECOL EVOL, V21, P192, DOI 10.1016/j.tree.2005.12.006. Kim S, 2009, INT J LIFE CYCLE ASS, V14, P160, DOI 10.1007/s11367-008-0054-4. Ko JH, 2004, PLANT PHYSIOL, V135, P1069, DOI 10.1104/pp.104.038844. Kocian A, 2020, COMPUT ELECTRON AGR, V169, DOI 10.1016/j.compag.2019.105167. Krishnasamy K, 2012, WATER SCI TECHNOL, V65, P1164, DOI 10.2166/wst.2012.031. KUCERA J, 1977, BIOL PLANTARUM, V19, P413, DOI 10.1007/BF02922976. Le Bot J, 1998, SCI HORTIC-AMSTERDAM, V74, P47, DOI 10.1016/S0304-4238(98)00082-X. Le Deunff E, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9030116. Lee JY, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177041. Lee U, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196615. Li L, 2014, SENSORS-BASEL, V14, P20078, DOI 10.3390/s141120078. Li YY, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2508363.2508368. Loresco P. J., 2019, WORLD C ENG, P59. Loresco PJM, 2018, TENCON IEEE REGION, P2040, DOI 10.1109/TENCON.2018.8650209. Ma XD, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10030429. Magistri F, 2020, IEEE INT C INT ROBOT, P2433, DOI 10.1109/IROS45743.2020.9340918. Mankin KR, 1996, AGR SYST, V50, P101, DOI 10.1016/0308-521X(94)00054-U. Martinatti P, 2015, ACTA HORTIC, V1100, P127. MARTINEZ V, 1994, NEW PHYTOL, V126, P609, DOI 10.1111/j.1469-8137.1994.tb02955.x. Martinez-Ruiz A, 2019, CHIL J AGR RES, V79, P89, DOI 10.4067/S0718-58392019000100089. Massa D, 2011, ENVIRON MODELL SOFTW, V26, P711, DOI 10.1016/j.envsoft.2011.01.004. Massa D, 2010, AGR WATER MANAGE, V97, P971, DOI 10.1016/j.agwat.2010.01.029. McKeehen JD, 1996, ADV SPACE RES-SERIES, V18, P85, DOI 10.1016/0273-1177(95)00864-B. Miao C., 2019, SIMULATED PLANT IMAG. Milioto A, 2018, IEEE INT CONF ROBOT, P2229. Modu F., 2020, ADV SCI TECHNOL ENG, V5, P233, DOI {[}DOI 10.25046/AJ050130, 10.25046/aj050130]. Montes HA, 2020, IEEE INT C INT ROBOT, P10483, DOI 10.1109/IROS45743.2020.9341381. Mote CD, 2016, ENGINEERING-PRC, V2, P4, DOI 10.1016/J.ENG.2016.01.025. Mueller D, 2011, ANN BOT-LONDON, V107, P1203, DOI 10.1093/aob/mcr069. Namin ST, 2018, PLANT METHODS, V14, DOI 10.1186/s13007-018-0333-4. National Academy of Engineering, 2018, GRAND CHALLENGES ENG. dos Santos MJPL, 2016, URBAN FOR URBAN GREE, V20, P402, DOI 10.1016/j.ufug.2016.10.004. Pardossi A, 2006, ACTA HORTIC, P425, DOI 10.17660/ActaHortic.2006.718.49. Park YS, 2016, ECOL INDIC, V62, P117, DOI 10.1016/j.ecolind.2015.11.045. Pitts M, 1999, Life Support Biosph Sci, V6, P73. Pylianidis C, 2021, COMPUT ELECTRON AGR, V184, DOI 10.1016/j.compag.2020.105942. Qiu GY, 2020, J HYDROL, V587, DOI 10.1016/j.jhydrol.2020.125034. Nguyen QT, 2016, PLANT FACTORY: AN INDOOR VERTICAL FARMING SYSTEM FOR EFFICIENT QUALITY FOOD PRODUCTION, P271, DOI 10.1016/B978-0-12-801775-3.00020-2. Ragni L, 2018, SEMIN CELL DEV BIOL, V79, P58, DOI 10.1016/j.semcdb.2017.08.050. Rahaman MM, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00619. Raliya R, 2018, J AGR FOOD CHEM, V66, P6487, DOI 10.1021/acs.jafc.7b02178. Raviv M, 2008, SOILLESS CULTURE: THEORY AND PRACTICE, P1. Raviv M, 2008, SOILLESS CULTURE: THEORY AND PRACTICE, P545, DOI 10.1016/B978-044452975-6.50015-0. Reginato J. C., 180710931 ARXIV. Reginato JC, 2017, J PLANT NUTR, V40, P2511, DOI 10.1080/01904167.2017.1346664. RENGEL Z, 1993, PLANT SOIL, V152, P161, DOI 10.1007/BF00029086. Ribaudo M, 2011, 127 USDA EC RES SERV. Sambo P, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00923. Savvas D, 2008, BIOSYST ENG, V99, P282, DOI 10.1016/j.biosystemseng.2007.10.008. Savvas D, 2018, EUR J HORTIC SCI, V83, P280, DOI 10.17660/eJHS.2018/83.5.2. Schroder JJ, 2011, CHEMOSPHERE, V84, P822, DOI 10.1016/j.chemosphere.2011.01.065. SEELING B, 1990, Z PFLANZ BODENKUNDE, V153, P301, DOI 10.1002/jpln.19901530503. Senthilnath J, 2016, BIOSYST ENG, V146, P16, DOI 10.1016/j.biosystemseng.2015.12.003. Serbin SP, 2015, REMOTE SENS ENVIRON, V167, P78, DOI 10.1016/j.rse.2015.05.024. Serbin SP, 2014, ECOL APPL, V24, P1651, DOI 10.1890/13-2110.1. Shamshiri RR, 2018, INT J AGR BIOL ENG, V11, P1, DOI 10.25165/j.ijabe.20181104.4278. Sharma R, 2020, COMPUT OPER RES, V119, DOI 10.1016/j.cor.2020.104926. Shi WN, 2019, BIOSYST ENG, V187, P81, DOI 10.1016/j.biosystemseng.2019.08.014. Shimazaki K, 2007, ANNU REV PLANT BIOL, V58, P219, DOI 10.1146/annurev.arplant.57.032905.105434. Silber A, 2008, SOILLESS CULTURE: THEORY AND PRACTICE, P291, DOI 10.1016/B978-044452975-6.50010-1. Silberbush M, 2005, PLANT SOIL, V271, P309, DOI 10.1007/s11104-004-3093-z. SILBERBUSH M, 1989, SCI HORTIC-AMSTERDAM, V39, P279, DOI 10.1016/0304-4238(89)90121-0. SINGH BB, 1977, PLANT SOIL, V46, P31, DOI 10.1007/BF00693112. Singh D, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00394. Song Y, 2011, LECT NOTES COMPUT SC, V6688, P467, DOI 10.1007/978-3-642-21227-7\_44. Sreedevi T. R., P 2020 ADV COMP COMM, P120. Steinberg SL, 2005, SOIL SCI SOC AM J, V69, P301, DOI 10.2136/sssaj2005.0301. Stockle CO, 2003, EUR J AGRON, V18, P289, DOI 10.1016/S1161-0301(02)00109-0. Su YH, 2011, MOL PLANT, V4, P616, DOI 10.1093/mp/ssr007. Sun GX, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9100596. Tao F., 2019, DIGITAL TWIN DRIVEN, P1. Thrun S., 2006, PROBABILISTIC ROBOTI, DOI DOI 10.1108/03684920610675292. Tilman D, 2011, P NATL ACAD SCI USA, V108, P20260, DOI 10.1073/pnas.1116437108. Tognetti VB, 2017, PLANT CELL ENVIRON, V40, P2586, DOI 10.1111/pce.13021. Tomasi N, 2015, TRENDS FOOD SCI TECH, V46, P267, DOI 10.1016/j.tifs.2015.08.004. Touliatos D, 2016, FOOD ENERGY SECUR, V5, P184, DOI 10.1002/fes3.83. Tsolakis N, 2019, CLIMATE, V7, DOI 10.3390/cli7030044. Tzounis A, 2017, BIOSYST ENG, V164, P31, DOI 10.1016/j.biosystemseng.2017.09.007. van der Heijden G, 2012, FUNCT PLANT BIOL, V39, P870, DOI 10.1071/FP12019. Van Ginkel SW, 2017, RESOUR CONSERV RECY, V122, P319, DOI 10.1016/j.resconrec.2017.03.003. van Straten G, 2006, ACTA HORTIC, P147, DOI 10.17660/ActaHortic.2006.718.16. Verweii W., 2017, CHEAQS VERSION 20202. Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494. von Caemmerer S, 2013, PLANT CELL ENVIRON, V36, P1617, DOI 10.1111/pce.12098. Walch O, 2020, CURR OPIN SYST BIOL, V22, P16, DOI 10.1016/j.coisb.2020.07.012. Wang B, 2012, J PLANT NUTR, V35, P1497, DOI 10.1080/01904167.2012.689910. Wang J, 2019, THEOR APPL GENET, V132, P2309, DOI 10.1007/s00122-019-03356-7. Ward D., 180710931 ARXIV. Weidner T, 2019, J CLEAN PROD, V209, P1637, DOI 10.1016/j.jclepro.2018.11.004. Wheeler EF, 1998, T ASAE, V41, P859, DOI 10.13031/2013.17191. WHITE PJ, 1992, J EXP BOT, V43, P1061, DOI 10.1093/jxb/43.8.1061. Xia CL, 2015, 2015 54TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), P1207, DOI 10.1109/SICE.2015.7285522. Yamori W, 2016, PLANT FACTORY: AN INDOOR VERTICAL FARMING SYSTEM FOR EFFICIENT QUALITY FOOD PRODUCTION, P141, DOI 10.1016/B978-0-12-801775-3.00009-3. Yang LY, 2015, ECOL ENG, V81, P182, DOI 10.1016/j.ecoleng.2015.04.013. Yu HY, 2010, AGR SCI CHINA, V9, P871, DOI 10.1016/S1671-2927(09)60166-8. Zhang KF, 2008, J PLANT NUTR, V31, P1440, DOI 10.1080/01904160802208345.}, Number-of-Cited-References = {166}, Times-Cited = {3}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {20}, Journal-ISO = {ACS ES\&T Eng.}, Doc-Delivery-Number = {YI8IL}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000744086200002}, DA = {2023-04-22}, } @article{ WOS:000331019600030, Author = {Afram, Abdul and Janabi-Sharifi, Farrokh}, Title = {Theory and applications of HVAC control systems - A review of model predictive control (MPC)}, Journal = {BUILDING AND ENVIRONMENT}, Year = {2014}, Volume = {72}, Pages = {343-355}, Month = {FEB}, Abstract = {This work presents a literature review of control methods, with an emphasis on the theory and applications of model predictive control (MPC) for heating, ventilation, and air conditioning (HVAC) systems. Several control methods used for HVAC control are identified from the literature review, and a brief survey of each method is presented. Next, the performance of MPC is compared with that of other control approaches. Factors affecting MPC performance (including control configuration, process type, model, optimization technique, prediction horizon, control horizon, constraints, and cost function) are elaborated using specific examples from the literature. The gaps in MPC research are identified, and future directions are highlighted. (C) 2013 Elsevier Ltd. All rights reserved.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Afram, A (Corresponding Author), Ryerson Univ, Dept Mech \& Ind Engn, 350 Victoria St, Toronto, ON M5B 2K3, Canada. Afram, Abdul; Janabi-Sharifi, Farrokh, Ryerson Univ, Dept Mech \& Ind Engn, Toronto, ON M5B 2K3, Canada.}, DOI = {10.1016/j.buildenv.2013.11.016}, ISSN = {0360-1323}, EISSN = {1873-684X}, Keywords = {Model predictive control (MPC); HVAC control review; Theory; Applications; Performance; Comparison}, Keywords-Plus = {BUILDING THERMAL STORAGE; REINFORCEMENT LEARNING CONTROL; AIR-CONDITIONING SYSTEM; ARTIFICIAL-INTELLIGENCE; ADAPTIVE CONTROLLER; NEURAL-NETWORKS; PI-CONTROLLER; ENERGY; OPTIMIZATION; STRATEGIES}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Environmental; Engineering, Civil}, Author-Email = {abdul.afram@ryerson.ca fsharifi@ryerson.ca}, Affiliations = {Toronto Metropolitan University}, ResearcherID-Numbers = {Janabi-Sharifi, Farrokh/AAD-8442-2021}, Funding-Acknowledgement = {Ryerson Center for Urban Energy (CUE), Toronto Hydro and Mitacs-Accelerate Program}, Funding-Text = {This research was financially supported by Ryerson Center for Urban Energy (CUE), Toronto Hydro and Mitacs-Accelerate Program.}, Cited-References = {Aggelogiannaki E, 2007, IEEE T SYST MAN CY B, V37, P902, DOI 10.1109/TSMCB.2007.896015. Al-Assadi SAK, 2004, J FRANKLIN I, V341, P543, DOI 10.1016/j.jfranklin.2004.06.001. Al-Rabghi OM, 2004, ENERG CONVERS MANAGE, V45, P1643, DOI 10.1016/j.enconman.2003.10.004. Anderson M, 2008, IEEE T CONTR SYST T, V16, P475, DOI 10.1109/TCST.2007.903392. {[}Anonymous], 2009, ASHRAE HDB FUND. Arpaia Pasquale, 2010, Proceedings of the 2010 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS 2010), P70, DOI 10.1109/EESMS.2010.5634182. ASTROM KJ, 1983, AUTOMATICA, V19, P471, DOI 10.1016/0005-1098(83)90002-X. Aswani A, 2012, P IEEE, V100, P240, DOI 10.1109/JPROC.2011.2161242. Atthajariyakul S, 2004, ENERG BUILDINGS, V36, P720, DOI 10.1016/j.enbuild.2004.01.017. Bai JB, 2008, ENERG BUILDINGS, V40, P2244, DOI 10.1016/j.enbuild.2008.07.002. Bai JB, 2007, ENERG CONVERS MANAGE, V48, P1043, DOI 10.1016/j.enconman.2006.10.023. Balan R, 2011, ENERG BUILDINGS, V43, P748, DOI 10.1016/j.enbuild.2010.10.023. Bansal RC, 2005, INT J COMPUT APPL T, V22, P109, DOI 10.1504/IJCAT.2005.006942. Beghi A., 2011, 2011 9th IEEE International Conference on Control and Automation (ICCA 2011), P800, DOI 10.1109/ICCA.2011.6138039. Ben-Nakhi AE, 2002, APPL ENERG, V73, P5, DOI 10.1016/S0306-2619(02)00027-2. Bi Q, 2000, CONTROL ENG PRACT, V8, P633, DOI 10.1016/S0967-0661(99)00198-7. Canbay CS, 2003, THESIS IZMIR I TECHN. Candanedo JA, 2011, HVAC\&R RES, V17, P235, DOI 10.1080/10789669.2011.568319. Chen J., 2011, P INT C COMP DISTR C, P459. Cho SH, 1999, ENERGY, V24, P433, DOI 10.1016/S0360-5442(98)00101-7. Coelho LD, 2013, ENERG BUILDINGS, V59, P273, DOI 10.1016/j.enbuild.2012.11.030. Ding Lixing, 2010, 2010 International Symposium on Computer, Communication, Control and Automation (3CA), P537, DOI 10.1109/3CA.2010.5533861. Dong B, 2010, IEEE INTL CONF CONTR, P210, DOI 10.1109/CCA.2010.5611260. Dounis AI, 2009, RENEW SUST ENERG REV, V13, P1246, DOI 10.1016/j.rser.2008.09.015. Duy L, 2006, IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, P86. Elliott MS., 2008, THESIS TEXAS A M U C. Energy Information Administration (EIA), 2012, ANN EN OUTL 2012 EAR. Ferkl L, 2010, BUILD ENVIRON, V45, P205, DOI 10.1016/j.buildenv.2009.06.004. Florita AR, 2009, HVAC\&R RES, V15, P835, DOI 10.1080/10789669.2009.10390868. Fong KF, 2008, HVAC\&R RES, V14, P683, DOI 10.1080/10789669.2008.10391034. Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201. Gouda MM, 2006, BUILD ENVIRON, V41, P1881, DOI 10.1016/j.buildenv.2005.07.008. Gouda MM, 2001, BUILD SERV ENG RES T, V22, P237, DOI {[}DOI 10.1177/014362440102200403, 10.1177/014362440102200403]. Greensfelder EM, 2011, J BUILD PERFORM SIMU, V4, P91, DOI 10.1080/19401493.2010.494735. HARROLD MV, 1988, IEE PROC-B, V135, P105, DOI 10.1049/ip-b.1988.0015. Hart R, 2012, ASHRAE TRAN, V118, P628. Hart R, 2011, ASHRAE TRAN, V117, P517. Henze G. P., 1997, HVAC R RES, V3, P233, DOI DOI 10.1080/10789669.1997.10391376. Henze G.P., 2004, INT J THERM SCI, P173, DOI DOI 10.1016/J.IJTHERMALSCI.2003.06.001. Henze GP, 2005, HVAC\&R RES, V11, P189, DOI 10.1080/10789669.2005.10391134. Henze GP, 2004, HVAC\&R RES, V10, P153, DOI 10.1080/10789669.2004.10391097. Henze GP, 2003, HVAC\&R RES, V9, P259, DOI 10.1080/10789669.2003.10391069. Henze GP, 2002, ASHRAE T, V108, P232. Henze GP, 2009, HVAC\&R RES, V15, P3, DOI 10.1080/10789669.2009.10390823. Hodgson DA., 2010, THESIS COLORADO STAT. Homod RZ, 2012, ENERG BUILDINGS, V49, P254, DOI 10.1016/j.enbuild.2012.02.013. Hongli Lu, 2007, Journal of Control Theory and Applications, V5, P94, DOI 10.1007/s11768-005-5301-7. Hornod RZ, 2012, BUILD ENVIRON, V49, P141, DOI 10.1016/j.buildenv.2011.09.012. Hu MQ, 2012, EUR J OPER RES, V217, P185, DOI 10.1016/j.ejor.2011.09.008. Huang GS, 2011, CONTROL ENG PRACT, V19, P700, DOI 10.1016/j.conengprac.2011.03.005. Huang GS, 2009, ENERG CONVERS MANAGE, V50, P2650, DOI 10.1016/j.enconman.2009.06.014. Jette I, 1998, ENERG CONVERS MANAGE, V39, P1471, DOI 10.1016/S0196-8904(98)00020-X. Jin GY, 2011, C IND ELECT APPL, P2298, DOI 10.1109/ICIEA.2011.5975975. Jin GY, 2011, C IND ELECT APPL, P942, DOI 10.1109/ICIEA.2011.5975722. Kalogirou SA, 2009, ADV BUILD ENERGY RES, V3, P83, DOI 10.3763/aber.2009.0304. Karlsson H, 2011, BUILD ENVIRON, V46, P556, DOI 10.1016/j.buildenv.2010.08.014. Katipamula S, 2006, ASHRAE TRAN, V112, P535. Kulkarni MR, 2004, BUILD ENVIRON, V39, P31, DOI 10.1016/j.buildenv.2003.07.003. Kumar M, 2009, ENERG CONVERS MANAGE, V50, P1411, DOI 10.1016/j.enconman.2009.03.009. Kusiak A, 2012, ENERGY, V42, P241, DOI 10.1016/j.energy.2012.03.063. Kusiak A, 2010, APPL ENERG, V87, P925, DOI 10.1016/j.apenergy.2009.09.004. Lefort A, 2013, ENERG BUILDINGS, V64, P53, DOI 10.1016/j.enbuild.2013.04.010. Li KJ, 2011, ENERG BUILDINGS, V43, P2893, DOI 10.1016/j.enbuild.2011.07.010. Li X, 2010, INT C COMP ENG TECHN. Li Xuemei, 2010, 2010 International Symposium on Computer, Communication, Control and Automation (3CA), P533, DOI 10.1109/3CA.2010.5533864. Liang H, 2005, IEEE INTL CONF CONTR, P819. Lim D, 2009, HVAC\&R RES, V15, P991, DOI 10.1080/10789669.2009.10390876. Liu SM, 2006, ENERG BUILDINGS, V38, P148, DOI 10.1016/j.enbuild.2005.06.001. Ma JR, 2012, CHEM ENG SCI, V67, P92, DOI 10.1016/j.ces.2011.07.052. Ma YD, 2012, IEEE T CONTR SYST T, V20, P796, DOI 10.1109/TCST.2011.2124461. Maasoumy MH., 2011, THESIS U CALIFORNIA. Matlab, 2013, SIGN SMOOTH SIGN PRO. Metaxiotis K, 2003, ENERG CONVERS MANAGE, V44, P1525, DOI 10.1016/S0196-8904(02)00148-6. Mirinejad H., 2012, P 2012 IEEE ENERGYTE, P1. Molina D., 2011, IND APPL SOC ANN M I, P1. Moradi H, 2011, ENERG BUILDINGS, V43, P805, DOI 10.1016/j.enbuild.2010.11.022. Morosan PD, 2010, ENERG BUILDINGS, V42, P1445, DOI 10.1016/j.enbuild.2010.03.014. Mossolly M, 2009, ENERGY, V34, P58, DOI 10.1016/j.energy.2008.10.001. Mustafaraj G, 2010, APPL MATH MODEL, V34, P3216, DOI 10.1016/j.apm.2010.02.014. Naidu DS, 2011, HVAC\&R RES, V17, P144, DOI 10.1080/10789669.2011.555650. Naidu DS, 2011, HVAC\&R RES, V17, P2, DOI 10.1080/10789669.2011.540942. Nishiguchi Junya, 2010, Proceedings of the SICE 2010 - 49th Annual Conference of the Society of Instrument and Control Engineers of Japan, P116. Oldewurtel F, 2012, ENERG BUILDINGS, V45, P15, DOI 10.1016/j.enbuild.2011.09.022. Pal A., 2008, INT J COMPUT COGN, V6, P25. Pasgianos GD, 2003, COMPUT ELECTRON AGR, V40, P153, DOI 10.1016/S1068-1699(03)00018-8. Passino KM, 2002, IEEE CONTR SYST MAG, V22, P52, DOI 10.1109/MCS.2002.1004010. Perez-Lombard L, 2008, ENERG BUILDINGS, V40, P394, DOI 10.1016/j.enbuild.2007.03.007. Platt G, 2011, HVAC\&R RES, V17, P297, DOI 10.1080/10789669.2011.568318. Privara S, 2011, ENERG BUILDINGS, V43, P564, DOI 10.1016/j.enbuild.2010.10.022. Qiuying Zou, 2010, 2010 World Automation Congress (WAC 2010), P123. Rehrl J, 2011, IEEE INTL CONF CONTR, P1119, DOI 10.1109/CCA.2011.6044437. Rieger CG, 2008, THESIS IDAHO STATE U. Rubinstein R.Y., 2013, CROSS ENTROPY METHOD. Salsbury TI, 2002, CONTROL ENG PRACT, V10, P1357, DOI 10.1016/S0967-0661(02)00099-0. Salsbury TI., 2005, 16 IFAC WORLD C, P1396. Seem JE, 1998, AUTOMATICA, V34, P969, DOI 10.1016/S0005-1098(98)00033-8. Wang SW, 2008, HVAC\&R RES, V14, P3, DOI 10.1080/10789669.2008.10390991. Shepherd A. B., 2003, Building Services Engineering Research \& Technology, V24, P35, DOI 10.1191/0143624403bt059oa. Singh J, 2006, J SCI IND RES INDIA, V65, P470. Siroky J, 2011, APPL ENERG, V88, P3079, DOI 10.1016/j.apenergy.2011.03.009. Soyguder S, 2009, ENERG BUILDINGS, V41, P814, DOI 10.1016/j.enbuild.2009.03.003. Soyguder S, 2009, EXPERT SYST APPL, V36, P4566, DOI 10.1016/j.eswa.2008.05.031. Soyguder S, 2009, EXPERT SYST APPL, V36, P8631, DOI 10.1016/j.eswa.2008.10.033. Sun J, 2005, BUILD ENVIRON, V40, P657, DOI 10.1016/j.buildenv.2004.08.011. Tahersima F., 2010, 2010 IEEE International Conference on Automation Science and Engineering (CASE 2010), P756, DOI 10.1109/COASE.2010.5584535. Tang F., 2010, THESIS U IOWA IOWA C. Tashtoush B, 2005, ENERGY, V30, P1729, DOI 10.1016/j.energy.2004.10.004. Thosar A, 2008, ISA T, V47, P339, DOI 10.1016/j.isatra.2008.03.001. Trcka M, 2010, AUTOMAT CONSTR, V19, P93, DOI 10.1016/j.autcon.2009.11.019. Vasak M., 2011, 2011 Proceedings of 34th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 20111), P739. Wallace M, 2012, CHEM ENG SCI, V69, P45, DOI 10.1016/j.ces.2011.07.023. Wang JJ, 2008, 2008 INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION: (ICMA), VOLS 1 AND 2, P677. Wang SW, 2000, BUILD ENVIRON, V35, P471, DOI 10.1016/S0360-1323(99)00032-3. Wang YG, 2001, P AMER CONTR CONF, P2192, DOI 10.1109/ACC.2001.946075. Weiss M. V. Gomez, 2006, ADAPTIVE NEURO ENERG. Wemhoff AP, 2010, ENERG BUILDINGS, V42, P1807, DOI 10.1016/j.enbuild.2010.05.017. Wu S, 2012, BUILD ENVIRON, V50, P1, DOI 10.1016/j.buildenv.2011.10.005. Xi XC, 2007, CONTROL ENG PRACT, V15, P897, DOI 10.1016/j.conengprac.2006.10.010. Xu M, 2005, IND ENG CHEM RES, V44, P2848, DOI 10.1021/ie0499411. Xu M, 2007, ENERG CONVERS MANAGE, V48, P292, DOI 10.1016/j.enconman.2006.04.012. Xu P, 2012, APPL THERM ENG, V40, P8, DOI 10.1016/j.applthermaleng.2012.01.045. Xu XH, 2010, BUILD SERV ENG RES T, V31, P39, DOI 10.1177/0143624409352420. Yan YM, 2008, ENERG BUILDINGS, V40, P1394, DOI 10.1016/j.enbuild.2008.01.003. Yang XS, 2009, WOR CONG NAT BIOL, P210, DOI 10.1109/nabic.2009.5393690. Yiu CMJ, 2008, THESIS HONG KONG POL. Yu Z, 2010, SOL ENERGY, V84, P538, DOI 10.1016/j.solener.2009.03.014. Yuan S, 2006, ENERG BUILDINGS, V38, P1248, DOI 10.1016/j.enbuild.2006.03.007. Zaheer-uddin M, 2004, ENERG CONVERS MANAGE, V45, P2405, DOI 10.1016/j.enconman.2003.11.016. ZAHEERUDDIN M, 1994, CONTROL ENG PRACT, V2, P989, DOI 10.1016/0967-0661(94)91621-7. Zhang Jun, 2011, 2011 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), P230, DOI 10.1109/ICMTMA.2011.63. Zhang X, 2013, HVAC\&R RES, V19, P715, DOI 10.1080/10789669.2013.803915. Zhou G, 2005, J SOL ENERG-T ASME, V127, P37, DOI 10.1115/1.1824110.}, Number-of-Cited-References = {132}, Times-Cited = {664}, Usage-Count-Last-180-days = {67}, Usage-Count-Since-2013 = {481}, Journal-ISO = {Build. Environ.}, Doc-Delivery-Number = {AA3UK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000331019600030}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000858287300001, Author = {Lagos, Ana and Caicedo, Joaquin E. and Coria, Gustavo and Romero Quete, Andres and Martinez, Maximiliano and Suvire, Gaston and Riquelme, Jesus}, Title = {State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems}, Journal = {ENERGIES}, Year = {2022}, Volume = {15}, Number = {18}, Month = {SEP}, Abstract = {The integration of wind energy into power systems has intensified as a result of the urgency for global energy transition. This requires more accurate forecasting techniques that can capture the variability of the wind resource to achieve better operative performance of power systems. This paper presents an exhaustive review of the state-of-the-art of wind-speed and -power forecasting models for wind turbines located in different segments of power systems, i.e., in large wind farms, distributed generation, microgrids, and micro-wind turbines installed in residences and buildings. This review covers forecasting models based on statistical and physical, artificial intelligence, and hybrid methods, with deterministic or probabilistic approaches. The literature review is carried out through a bibliometric analysis using VOSviewer and Pajek software. A discussion of the results is carried out, taking as the main approach the forecast time horizon of the models to identify their applications. The trends indicate a predominance of hybrid forecast models for the analysis of power systems, especially for those with high penetration of wind power. Finally, it is determined that most of the papers analyzed belong to the very short-term horizon, which indicates that the interest of researchers is in this time horizon.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Riquelme, J (Corresponding Author), Univ Seville, Dept Ingn Elect, Seville 41092, Spain. Lagos, Ana; Coria, Gustavo; Romero Quete, Andres; Martinez, Maximiliano; Suvire, Gaston, Univ Nacl San Juan, Inst Energia Elect, RA-5400 San Juan, Argentina. Caicedo, Joaquin E., Univ Dist Francisco Jose de Caldas, Fac Ingn, Bogota 110311, Colombia. Riquelme, Jesus, Univ Seville, Dept Ingn Elect, Seville 41092, Spain.}, DOI = {10.3390/en15186545}, Article-Number = {6545}, EISSN = {1996-1073}, Keywords = {wind speed forecasting; wind power forecasting; distributed generation; microgrid; urban; residential}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; TIME-SERIES PREDICTION; ENERGY MANAGEMENT; OPTIMIZATION ALGORITHM; UNCERTAINTY ANALYSIS; MODEL; GENERATION; FRAMEWORK; SELECTION; STRATEGY}, Research-Areas = {Energy \& Fuels}, Web-of-Science-Categories = {Energy \& Fuels}, Author-Email = {jsantos@us.es}, Affiliations = {Universidad Nacional de San Juan; Universidad Distrital Francisco Jose de Caldas; University of Sevilla}, ResearcherID-Numbers = {Riquelme, Jesus/L-6720-2014 }, ORCID-Numbers = {Romero Quete, Andres Arturo/0000-0002-6530-852X Riquelme, Jesus/0000-0001-6280-6796 Coria, Gustavo/0000-0001-8975-9547 Caicedo Navarro, Joaquin Eduardo/0000-0003-2168-829X}, Funding-Acknowledgement = {DAAD; CONICET; CYTED {[}718RT0564]; CERVERA program for Outstanding Research Centers {[}CER20191019]; PDTS 2020-2022 of UNSJ; USE of Junta de Andalucia {[}PYC20 RE 078]; SECITI}, Funding-Text = {This work was supported, in part, by DAAD, CONICET, and CYTED (through the network 718RT0564) and by the CERVERA program for Outstanding Research Centers (CER20191019). In addition, the research was funded under grant PDTS 2020-2022 of UNSJ and SECITI, and under project PYC20 RE 078 USE of Junta de Andalucia.}, Cited-References = {Acikgoz H, 2021, ENERGY, V233, DOI 10.1016/j.energy.2021.121121. Adedeji PA, 2021, INT J ENERG RES, V45, P413, DOI 10.1002/er.5620. Agbulut U, 2022, SUSTAIN ENERGY TECHN, V51, DOI 10.1016/j.seta.2021.101853. Aghajani GR, 2017, ENERGY, V126, P622, DOI 10.1016/j.energy.2017.03.051. Ahmad T, 2021, ENERGY, V231, DOI 10.1016/j.energy.2021.120911. Ahmad T, 2020, SUSTAIN CITIES SOC, V55, DOI 10.1016/j.scs.2020.102052. Ahmadi M, 2021, ENG APPL ARTIF INTEL, V99, DOI 10.1016/j.engappai.2020.104133. Akbarpour M, 2012, LIFE SCI J, V9, P160. Alilou M, 2021, ELECTR ENG, V103, P1367, DOI 10.1007/s00202-020-01165-6. Alkhayat G., 2021, ENERGY, V4, P100060, DOI DOI 10.1016/J.EGYAI.2021.100060. {[}Anonymous], 6140022013 IEC. {[}Anonymous], LEY 21118 17 NOV 201. {[}Anonymous], RESOLUCION NO 174 20. Azeem A, 2018, J INTELL FUZZY SYST, V35, P5021, DOI 10.3233/JIFS-169786. Bidgoli MA, 2022, ENERGY, V239, DOI 10.1016/j.energy.2021.122036. Brabec M, 2021, J ATMOS SOL-TERR PHY, V220, DOI 10.1016/j.jastp.2021.105669. Caicedo JE, 2017, ING INVEST, V37, P72, DOI 10.15446/ing.investig.v37n3.64913. Carrillo M., 2017, INTELLIGENT DISTRIBU, V737. Chandana S, 2005, PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, P13. Chen MR, 2019, IEEE INTERNET THINGS, V6, P6997, DOI 10.1109/JIOT.2019.2913176. Chen SX, 2012, IEEE T SMART GRID, V3, P142, DOI 10.1109/TSG.2011.2160745. Colson CM, 2009, IEEE POW ENER SOC GE, P3146. da Silva RG, 2021, ENERGY, V216, DOI 10.1016/j.energy.2020.119174. di Piazza A., 2014, RENEW ENERGY POWER Q, V1, P995, DOI {[}10.24084/repqj12.560, DOI 10.24084/REPQJ12.560]. Ding Y, 2020, DATA SCI WIND ENERGY. Doucoure B, 2016, RENEW ENERG, V92, P202, DOI 10.1016/j.renene.2016.02.003. Duan JK, 2021, ENERGY, V217, DOI 10.1016/j.energy.2020.119397. Eskandar H, 2012, COMPUT STRUCT, V110, P151, DOI 10.1016/j.compstruc.2012.07.010. Etemadi M, 2021, IJST-T ELECTR ENG, V45, P131, DOI 10.1007/s40998-020-00359-9. Fang TT, 2016, APPL ENERG, V179, P544, DOI 10.1016/j.apenergy.2016.06.133. Gao YY, 2016, ENERGIES, V9, DOI 10.3390/en9100757. Genikomsakis KN, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7111142. Giebel G., 2011, STATE OF THE ART SHO. Giebel G., 2003, STATE OF THE ART SHO. Global Wind Energy Council, 2021, GWEC GLOB WIND REP 2. Guo L, 2016, IEEE T SMART GRID, V7, P1079, DOI 10.1109/TSG.2014.2377374. Heydari A, 2019, APPL ENERG, V251, DOI 10.1016/j.apenergy.2019.113353. Hong YY, 2013, ENERGIES, V6, P6137, DOI 10.3390/en6126137. Ioakimidis CS, 2014, IEEE T IND INFORM, V10, P2103, DOI 10.1109/TII.2014.2334056. Jin YQ, 2018, APPL ENERG, V222, P485, DOI 10.1016/j.apenergy.2018.03.180. Jordehi AR, 2016, RENEW SUST ENERG REV, V56, P893, DOI 10.1016/j.rser.2015.11.086. Khalid M, 2019, IEEE ACCESS, V7, P36819, DOI 10.1109/ACCESS.2019.2905620. Khamparia A, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12400. Khorramdel H, 2016, IEEE T IND INFORM, V12, P834, DOI 10.1109/TII.2015.2509424. Khosravi A, 2018, APPL ENERG, V224, P550, DOI 10.1016/j.apenergy.2018.05.043. Kosana V, 2022, ELECTR POW SYST RES, V206, DOI 10.1016/j.epsr.2022.107821. Kosana V, 2021, INT T ELECTR ENERGY, V31, DOI 10.1002/2050-7038.13072. Kou P, 2016, IEEE T SMART GRID, V7, P1537, DOI 10.1109/TSG.2015.2475316. Kumar D, 2021, INT J MODEL SIMUL, V41, P311, DOI 10.1080/02286203.2020.1767840. Li HM, 2018, RENEW ENERG, V116, P669, DOI 10.1016/j.renene.2017.09.089. Liu JQ, 2017, RENEW ENERG, V103, P620, DOI 10.1016/j.renene.2016.10.074. Liu XL, 2021, ENERGY, V227, DOI 10.1016/j.energy.2021.120492. Liu YQ, 2020, APPL ENERG, V260, DOI 10.1016/j.apenergy.2019.114259. Liu Z, 2021, EXPERT SYST APPL, V177, DOI 10.1016/j.eswa.2021.114974. Ma XJ, 2017, APPL SOFT COMPUT, V54, P296, DOI 10.1016/j.asoc.2017.01.033. Majumder S, 2016, IET GENER TRANSM DIS, V10, P789, DOI 10.1049/iet-gtd.2015.0480. Malik H, 2022, J INTELL FUZZY SYST, V42, P633, DOI 10.3233/JIFS-189736. Methaprayoon K, 2007, IEEE T IND APPL, V43, P1441, DOI 10.1109/TIA.2007.908203. Mohandes MA, 2004, RENEW ENERG, V29, P939, DOI 10.1016/j.renene.2003.11.009. Mohsin S., 2021, INT J SYST INNOV, V6, P11, DOI {[}10.6977/IJoSI.202109\_6(5).0002, DOI 10.6977/IJOSI.202109\_6(5).0002]. Mostafaeipour A, 2021, WIND ENG, V45, P245, DOI 10.1177/0309524X19882431. Motevasel M, 2014, ENERG CONVERS MANAGE, V83, P58, DOI 10.1016/j.enconman.2014.03.022. Nie Y, 2021, APPL ENERG, V301, DOI 10.1016/j.apenergy.2021.117452. Niu T, 2018, RENEW ENERG, V118, P213, DOI 10.1016/j.renene.2017.10.075. Ozcanli AK, 2020, INT J ENERG RES, V44, P7136, DOI 10.1002/er.5331. Palma-Behnke R, 2013, IEEE T SMART GRID, V4, P996, DOI 10.1109/TSG.2012.2231440. Qolipour M, 2019, ENERG ENVIRON-UK, V30, P44, DOI 10.1177/0958305X18787258. Quan H, 2020, IEEE T NEUR NET LEAR, V31, P4582, DOI 10.1109/TNNLS.2019.2956195. Ramasamy P, 2015, RENEW ENERG, V80, P338, DOI 10.1016/j.renene.2015.02.034. Sarshar J, 2017, ENERGY, V139, P680, DOI 10.1016/j.energy.2017.07.138. Scarabaggio P, 2022, IEEE T CONTR SYST T, V30, P97, DOI 10.1109/TCST.2021.3056751. Severiano CA, 2021, RENEW ENERG, V171, P764, DOI 10.1016/j.renene.2021.02.117. Shahid F, 2020, APPL ENERG, V269, DOI 10.1016/j.apenergy.2020.115098. Sharma R, 2020, J WIND ENG IND AEROD, V206, DOI 10.1016/j.jweia.2020.104361. Shboul B, 2021, SUSTAIN ENERGY TECHN, V46, DOI 10.1016/j.seta.2021.101248. Shi YX, 2022, ENERGIES, V15, DOI 10.3390/en15030751. Shirzadi N, 2022, INT J ENERG RES, V46, P3173, DOI 10.1002/er.7374. Soleimani P, 2021, INT J ENERGY SECT MA, V15, P385, DOI 10.1108/IJESM-04-2019-0002. Song JJ, 2018, APPL ENERG, V215, P643, DOI 10.1016/j.apenergy.2018.02.070. Sun F, 2022, RENEW ENERG, V186, P742, DOI 10.1016/j.renene.2022.01.041. Sun SZ, 2022, ENERGY REP, V8, P2859, DOI 10.1016/j.egyr.2022.01.175. Sun SZ, 2020, IEEE ACCESS, V8, P46981, DOI 10.1109/ACCESS.2020.2977921. Sun W, 2016, ENERG CONVERS MANAGE, V114, P197, DOI 10.1016/j.enconman.2016.02.022. Konchou FAT, 2021, INT J ENERGY SECT MA, V15, P566, DOI 10.1108/IJESM-04-2020-0008. techno, US. Theo WL, 2017, RENEW SUST ENERG REV, V67, P531, DOI 10.1016/j.rser.2016.09.063. Tian YF, 2021, ENERGY REP, V7, P4792, DOI 10.1016/j.egyr.2021.07.019. Urrutia G, 2010, MED CLIN-BARCELONA, V135, P507, DOI 10.1016/j.medcli.2010.01.015. Vidya S, 2020, AUTOMATIKA, V61, P657, DOI 10.1080/00051144.2020.1811571. Waltman L, 2013, EUR PHYS J B, V86, DOI 10.1140/epjb/e2013-40829-0. Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002. Wang JZ, 2022, APPL ENERG, V313, DOI 10.1016/j.apenergy.2022.118796. Wang Y, 2021, APPL ENERG, V304, DOI 10.1016/j.apenergy.2021.117766. Wu CY, 2020, RENEW ENERG, V146, P149, DOI 10.1016/j.renene.2019.04.157. Xu XN, 2022, MULTIMED TOOLS APPL, V81, P10819, DOI 10.1007/s11042-022-12215-5. Xu Y, 2012, IEEE T IND INFORM, V8, P995, DOI 10.1109/TII.2012.2206396. Xu YN, 2020, SUSTAIN ENERGY TECHN, V37, DOI 10.1016/j.seta.2019.100582. Yan J, 2015, RENEW SUST ENERG REV, V52, P1322, DOI 10.1016/j.rser.2015.07.197. Yang R, 2022, ENERGY, V239, DOI 10.1016/j.energy.2021.122128. Yao ZG, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051443. Yu RG, 2019, APPL ENERG, V238, P249, DOI 10.1016/j.apenergy.2019.01.010. Zarkovic M, 2014, J RENEW SUSTAIN ENER, V6, DOI 10.1063/1.4862988. Zavala VM, 2010, INNOV SMART GRID TEC. Zhang HP, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/7854286. Zhang JH, 2019, APPL ENERG, V241, P229, DOI 10.1016/j.apenergy.2019.03.044. Zhang KQ, 2019, RENEW ENERG, V130, P814, DOI 10.1016/j.renene.2018.05.093. Zhang YG, 2019, IEEE ACCESS, V7, P131873, DOI 10.1109/ACCESS.2019.2940897. Zhou QG, 2019, APPL ENERG, V250, P1559, DOI 10.1016/j.apenergy.2019.05.016. Zhou ZY, 2017, IEEE ACCESS, V5, P5731, DOI 10.1109/ACCESS.2017.2658952.}, Number-of-Cited-References = {109}, Times-Cited = {2}, Usage-Count-Last-180-days = {18}, Usage-Count-Since-2013 = {21}, Journal-ISO = {Energies}, Doc-Delivery-Number = {4T7JA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000858287300001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000907048500004, Author = {Lehtola, Ville V. and Koeva, Mila and Elberink, Sander Oude and Raposo, Paulo and Virtanen, Juho-Pekka and Vahdatikhaki, Faridaddin and Borsci, Simone}, Title = {Digital twin of a city: Review of technology serving city needs}, Journal = {INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION}, Year = {2022}, Volume = {114}, Month = {NOV}, Abstract = {Digital twins (DTs) have been found useful in manufacturing, construction, and maintenance. Adapting DTs to serve cities, the question arises of what an urban digital twin should contain and how it should be orchestrated to serve a city's dynamical ecosystem, along with how to enhance the efficiency of the city. We are aligning with the commonplace idea that the main advantage of using DTs is economical as, for example, DTs can improve the planning of activities thus saving money and time. But how can they be useful for a city? Instead of looking at the DTs as solutions in search of problems to be solved, we start from city needs. Our approach is two-fold. We start by briefly reviewing existing possibilities for meeting some specific needs, but keep the focus on identifying and attempting to close the gap between the needs arising from everyday city functions and the latest DT techniques useful for meeting those needs. DTs are technically different and serve different applications, yet they share a common identity and name, as well as several technical similarities. Adopting computer science terminology, we see a back-end city DT as the container of all information, while any single front-end, visualized or used either by humans or robots, offers a limited but meaningful representation of the DT for a specific application. Alas, there are multiple open questions regarding the realization and benefits of such back-end DT. Nevertheless, we discuss how the back-end DT (or any specific DT) could be updated autonomously from sensor data using artificial intelligence techniques, and how the front-ends could be used for large benefits to the entire city ecosystem.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Lehtola, VV (Corresponding Author), Univ Twente, ITC Fac, Dept Earth Observat Sci, Postbus 217, NL-7500 AE Enschede, Netherlands. Lehtola, Ville V.; Elberink, Sander Oude, Univ Twente, ITC Fac, Dept Earth Observat Sci, Postbus 217, NL-7500 AE Enschede, Netherlands. Koeva, Mila, Univ Twente, ITC Fac, Dept Urban \& Reg Planning \& Geoinformat Managemen, Postbus 217, NL-7500AE Enschede, Netherlands. Raposo, Paulo, Univ Twente, ITC Fac, Dept Geoinformat Proc, Postbus 217, NL-7500 AE Enschede, Netherlands. Virtanen, Juho-Pekka, Forum Virium Helsinki, Unioninkatu 24, Helsinki 00130, Finland. Vahdatikhaki, Faridaddin, Univ Twente, Fac Engn Technol, Postbus 217, NL-7500 AE Enschede, Netherlands. Borsci, Simone, Univ Twente, Fac Behav Management \& Social Sci, Postbus 217, NL-7500 AE Enschede, Netherlands.}, DOI = {10.1016/j.jag.2022.102915}, EarlyAccessDate = {NOV 2022}, Article-Number = {102915}, ISSN = {1569-8432}, EISSN = {1872-826X}, Keywords = {Digital twins; City; Artificial intelligence; Human factors; Sensor systems; Point clouds}, Keywords-Plus = {SOCIAL INNOVATION; 3D; CHALLENGES; MODELS; CITIES; STATE; BIM; VISUALIZATION; MANAGEMENT; INTERFACE}, Research-Areas = {Remote Sensing}, Web-of-Science-Categories = {Remote Sensing}, Author-Email = {v.v.lehtola@utwente.nl}, Affiliations = {University of Twente; University of Twente; University of Twente; University of Twente}, ResearcherID-Numbers = {Elberink, Sander Oude/D-3829-2009}, ORCID-Numbers = {Elberink, Sander Oude/0000-0002-4511-2095}, Funding-Acknowledgement = {European Union?s Horizon 2020 research and innovation program; {[}101004590]; {[}731297]}, Funding-Text = {Acknowledgments JPV acknowledges funding from the European Union?s Horizon 2020 research and innovation program under grant agreements No. 101004590 and 731297.}, Cited-References = {Agostinelli S, 2021, ENERGIES, V14, DOI 10.3390/en14082338. Agugiaro G., 2018, OPEN GEOSPATIAL DATA, V3, P1, DOI DOI 10.1186/S40965-018-0042-Y. Ahmadi-Assalemi G., 2020, CYBER DEFENCE AGE AI, DOI DOI 10.1007/978-3-030-35746-7\_8. Al-Kodmany K, 2000, J ARCHIT EDUC, V53, P220, DOI 10.1162/104648800564635. Aleksandrov M., 2019, ISPRS ANN PHOTOGRAMM, VVolume 4, DOI 10.5194/isprs-annals-IV-4-W8-11-2019. Amirebrahimi S, 2016, INT J DIGIT EARTH, V9, P363, DOI 10.1080/17538947.2015.1034201. {[}Anonymous], 2021, ISO232471. {[}Anonymous], 2018, ISO924111. {[}Anonymous], 2021, JTC1SC41261C ISOIEC. Asghari A, 2020, LAND USE POLICY, V98, DOI 10.1016/j.landusepol.2019.104359. Austin CR, 2020, CARTOGR GEOGR INF SC, V47, P214, DOI 10.1080/15230406.2019.1696232. Batty M, 1997, FUTURES, V29, P337, DOI 10.1016/S0016-3287(97)00018-9. Beall J, 2009, ROUTL PERSPECT DEV, P1. Beetz M, 2018, IEEE INT CONF ROBOT, P512. Berger M, 2017, COMPUT GRAPH FORUM, V36, P301, DOI 10.1111/cgf.12802. Bertin J, 1983, SEMIOLOGY GRAPHICS. Bilberg A, 2019, CIRP ANN-MANUF TECHN, V68, P499, DOI 10.1016/j.cirp.2019.04.011. Biljecki F, 2017, COMPUT ENVIRON URBAN, V64, P1, DOI 10.1016/j.compenvurbsys.2017.01.001. Biljecki F, 2015, ISPRS INT GEO-INF, V4, P2842, DOI 10.3390/ijgi4042842. Boje C, 2020, AUTOMAT CONSTR, V114, DOI 10.1016/j.autcon.2020.103179. Bonczak B, 2019, COMPUT ENVIRON URBAN, V73, P126, DOI 10.1016/j.compenvurbsys.2018.09.004. Borsci S, 2022, AI SOC, DOI 10.1007/s00146-021-01383-x. Borsci S, 2015, COMPUT IND, V67, P17, DOI 10.1016/j.compind.2014.12.002. Brasebin M, 2018, COMPUT ENVIRON URBAN, V68, P37, DOI 10.1016/j.compenvurbsys.2017.10.002. Bredif M., 2020, ISPRS ANN PHOTOGRAMM, V5. Breunig M., 2010, GEOGRAPHIC INFORM CA, P83. Bruno S, 2018, AUTOMAT CONSTR, V86, P256, DOI 10.1016/j.autcon.2017.11.009. Bshouty E, 2020, COMPUT ENVIRON URBAN, V79, DOI 10.1016/j.compenvurbsys.2019.101421. Callcut M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132011549. Calzada I, 2020, SMART CITIES-BASEL, V3, P1145, DOI 10.3390/smartcities3040057. Caragliu A, 2009, CERS 2009 - 3RD CENTRAL EUROPEAN CONFERENCE IN REGIONAL SCIENCE, INTERNATIONAL CONFERENCE PROCEEDINGS - YOUNG SCIENTISTS ARTICLES, P45. Catulo R, 2018, J CULT HERIT, V32, P108, DOI 10.1016/j.culher.2017.11.014. Chandler T, 2018, LECT NOTES COMPUT SC, V11190, P331, DOI 10.1007/978-3-030-01388-2\_11. Chen HY, 2008, HABITAT INT, V32, P28, DOI 10.1016/j.habitatint.2007.06.005. Chen K, 2018, AUTOMAT CONSTR, V93, P22, DOI 10.1016/j.autcon.2018.05.009. Chen SS, 2020, BUILD ENVIRON, V185, DOI 10.1016/j.buildenv.2020.107314. Coltekin A, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9070439. Danyluk K, 2021, CHI `21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445098. Darling D., 2021, THESIS U ARKANSAS. de Haag MU, 2021, IEEEAAIA DIGIT AVION, DOI 10.1109/DASC52595.2021.9594465. Delmastro C, 2016, TUNN UNDERGR SP TECH, V55, P103, DOI 10.1016/j.tust.2016.01.001. Dembski F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062307. Deng M, 2021, J INF TECHNOL CONSTR, V26, P58, DOI 10.36680/j.itcon.2021.005. Deng YC, 2016, STRUCT INFRASTRUCT E, V12, P1267, DOI 10.1080/15732479.2015.1110603. Deren L., 2021, COMPUTURBAN SCI, V1, P1, DOI {[}10.1007/s43762-021-00005-y, DOI 10.1007/S43762-021-00005-Y]. DHauwers R., 2021, ISPRS ANN PHOTOGRAMM, P25, DOI {[}10.5194/isprs-annals-VIII-4-W1-2021-25-2021, DOI 10.5194/ISPRS-ANNALS-VIII-4-W1-2021-25-2021]. Dimitrakopoulos G, 2010, IEEE VEH TECHNOL MAG, V5, P77, DOI 10.1109/MVT.2009.935537. Donkers S, 2016, T GIS, V20, P547, DOI 10.1111/tgis.12162. Du J, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000740. Errandonea I, 2020, COMPUT IND, V123, DOI 10.1016/j.compind.2020.103316. Fadli F, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11092501. Farsi M., 2020, DIGITAL TWIN TECHNOL. Fernandez-Rodriguez S, 2018, AUTOMAT CONSTR, V96, P494, DOI 10.1016/j.autcon.2018.10.011. Florida R, 2017, REG STUD, V51, P86, DOI 10.1080/00343404.2016.1255324. Ghaemi Z, 2022, CARTOGR GEOGR INF SC, V49, P205, DOI 10.1080/15230406.2021.2013946. Golub D, 2018, SURV REV, V50, P134, DOI 10.1080/00396265.2016.1253523. Greif T, 2020, COMPUT IND, V121, DOI 10.1016/j.compind.2020.103264. Guo YL, 2021, IEEE T PATTERN ANAL, V43, P4338, DOI 10.1109/TPAMI.2020.3005434. Halik L, 2021, INT J DIGIT EARTH, DOI 10.1080/17538947.2021.1984595. Ham Y, 2020, J MANAGE ENG, V36, DOI {[}10.1061/(ASCE)ME.1943-5479.0000748, 10.17232/KSET.36.1.001]. Hamalainen M., 2021, IET SMART CITIES. Hamieh A, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103120. He Y, 2018, IEEE SIGNAL PROC MAG, V35, P120, DOI 10.1109/MSP.2018.2842228. Helsinki, 2021, EN DEC MAK EN DEC MA. Huang ZQ, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21196340. Hughes N., 2022, ROBOT SCI SYS, DOI 10.15607/RSS.2022.XVIII.050. Indraprastha A, 2009, J ICT RES APPL, V3, P1. Ivanov S, 2020, 2020 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), P178, DOI 10.1109/GloSIC50886.2020.9267879. Jaalama K, 2021, LANDSCAPE URBAN PLAN, V207, DOI 10.1016/j.landurbplan.2020.103996. Jacoby M, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10186519. Jones D, 2020, CIRP J MANUF SCI TEC, V29, P36, DOI 10.1016/j.cirpj.2020.02.002. Kalantari S, 2022, AUTOMAT CONSTR, V135, DOI 10.1016/j.autcon.2022.104140. Kar AK, 2019, INFORM SYST FRONT, V21, P495, DOI 10.1007/s10796-019-09930-0. Karam S, 2021, ISPRS J PHOTOGRAMM, V181, P413, DOI 10.1016/j.isprsjprs.2021.09.020. Karki S., 2010, DEV 3D GEO INFORM SC, P92. Ke GL, 2017, ADV NEUR IN, V30. Ketzler B., 2020, BUILD ENVIRON, V46, P547, DOI {[}10.2148/benv.46.4.547, DOI 10.2148/BENV.46.4.547]. Khajavi SH, 2019, IEEE ACCESS, V7, P147406, DOI 10.1109/ACCESS.2019.2946515. Klyukin Aleksei A., 2018, Key Engineering Materials, V771, P49, DOI 10.4028/www.scientific.net/KEM.771.49. Krigsholm P, 2020, LAND USE POLICY, V94, DOI 10.1016/j.landusepol.2020.104504. Kumar A, 2019, ARTIF INTELL REV, V52, P927, DOI 10.1007/s10462-018-9650-2. Kutzner T, 2020, PFG-J PHOTOGRAMM REM, V88, P43, DOI 10.1007/s41064-020-00095-z. Labetski A., 2018, INT ARCH PHOTOGRAMM, P89, DOI {[}10.5194/isprs-archives-XLII-4-W10-89-2018, DOI 10.5194/ISPRS-ARCHIVES-XLII-4-W10-89-2018]. Lang AH, 2019, PROC CVPR IEEE, P12689, DOI 10.1109/CVPR.2019.01298. Larsson K, 2020, LAND USE POLICY, V98, DOI 10.1016/j.landusepol.2019.104178. Ledoux H, 2020, ISPRS ANN PHOTO REM, V6-4, P109, DOI 10.5194/isprs-annals-VI-4-W1-2020-109-2020. Lee B, 2021, IEEE T VIS COMPUT GR, V27, P1171, DOI 10.1109/TVCG.2020.3030450. Lee LH, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3467963. Lehner H, 2020, PFG-J PHOTOGRAMM REM, V88, P63, DOI 10.1007/s41064-020-00101-4. Lehtola V.V., 2021, HDB BIG GEOSPATIAL D, P55, DOI {[}10.1007/978-3-030-55462-0\_3, DOI 10.1007/978-3-030-55462-0\_3]. Lehtola VV, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9080796. Lehtola VV, 2014, INNOVATION-ABINGDON, V27, P152, DOI 10.1080/13511610.2014.863995. Lehtomaki M, 2010, REMOTE SENS-BASEL, V2, P641, DOI 10.3390/rs2030641. Li ZY, 2019, IEEE I CONF COMP VIS, P1715, DOI 10.1109/ICCV.2019.00180. Liang JM, 2017, ISPRS INT GEO-INF, V6, DOI 10.3390/ijgi6040106. Linde L, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120614. Liu B., 2020 IEEE INT C ENER, P74. Liu J., 2021, IEEE J-STARS. Liu YK, 2022, ADV MANUF, V10, P1, DOI 10.1007/s40436-021-00375-w. Liu Z, 2018, AIP CONF PROC, V1949, DOI 10.1063/1.5031520. Lock O, 2019, 17TH ACM SIGGRAPH INTERNATIONAL CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY (VRCAI 2019), DOI 10.1145/3359997.3365734. Lu XZ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125059. Luo YW, 2017, COMPUT ENVIRON URBAN, V66, P13, DOI 10.1016/j.compenvurbsys.2017.07.005. Lv Z., 2021, DIGIT TWIN, V1, DOI DOI 10.12688/DIGITALTWIN.17524.1. MacEachren Alan M., 2004, MAPS WORK REPRESENTA. Machete R, 2018, ENERG BUILDINGS, V177, P290, DOI 10.1016/j.enbuild.2018.07.064. Mao RDQ, 2021, J SURG RES, V268, P40, DOI 10.1016/j.jss.2021.06.045. Matarneh ST, 2019, J BUILD ENG, V24, DOI 10.1016/j.jobe.2019.100755. Muhammad K, 2021, IEEE T INTELL TRANSP, V22, P4316, DOI 10.1109/TITS.2020.3032227. Munkberg J., 2022, CVPR, P8280. Munoz D, 2019, BUILD SIMUL-CHINA, V12, P1013, DOI 10.1007/s12273-019-0549-x. Murray CC, 2020, TRANSPORT RES C-EMER, V110, P368, DOI 10.1016/j.trc.2019.11.003. Negri E, 2017, PROCEDIA MANUF, V11, P939, DOI 10.1016/j.promfg.2017.07.198. Newbury R, 2021, CARTOGR GEOGR INF SC, V48, P417, DOI 10.1080/15230406.2021.1929492. Nex F, 2022, ISPRS J PHOTOGRAMM, V184, P215, DOI 10.1016/j.isprsjprs.2021.12.006. Nguyen S.H., 2021, ISPRS ANN PHOTOGRAMM, P137, DOI {[}10.5194/isprs-annals-VIII-4-W2-2021-137-2021, DOI 10.5194/ISPRS-ANNALSVIII-4-W2-2021-137-2021]. Nikoohemat S, 2021, T GIS, V25, P189, DOI 10.1111/tgis.12686. Noardo F., 2020, ARXIV. Noghabaei M, 2020, DATA, V5, DOI 10.3390/data5010026. Nordic BIM, 2020, NORDIC BIM MAT MOD. Nouvel R, 2017, COMPUT ENVIRON URBAN, V64, P68, DOI 10.1016/j.compenvurbsys.2016.12.005. Nys GA, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9090521. OECD, 2020, SMART CIT INCL GROWT. Olba XB, 2018, J TRAFFIC TRANSP ENG, V5, P335, DOI 10.1016/j.jtte.2018.03.003. Olfat H, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8110499. Pan Y, 2021, AUTOMAT CONSTR, V124, DOI 10.1016/j.autcon.2021.103564. Peters R., 2021, ARXIV, DOI 10.48550/arXiv.2201.01191. Plachetka C, 2021, IEEE INT C INTELL TR, P2889, DOI 10.1109/ITSC48978.2021.9564759. Pronobis A, 2017, IEEE INT C INT ROBOT, P755. Qi CR, 2017, PROC CVPR IEEE, P77, DOI 10.1109/CVPR.2017.16. Qian C, 2022, FUTURE INTERNET, V14, DOI 10.3390/fi14020064. Rajabifard A, 2018, INT J GEOGR INF SCI, V32, P2098, DOI 10.1080/13658816.2018.1484125. Rani S, 2022, SPAT INF RES, V30, P417. Rathore MM, 2021, IEEE ACCESS, V9, P32030, DOI 10.1109/ACCESS.2021.3060863. Rausch C, 2021, AUTOMAT CONSTR, V124, DOI 10.1016/j.autcon.2021.103561. Renzulli LA, 2005, SOC PROBL, V52, P398, DOI 10.1525/sp.2005.52.3.398. Rossknecht M, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9100602. Roth R. E., 2008, CARTOGRAPHIC PERSPEC, V60, P46, DOI {[}10.14714/CP60.231, DOI 10.14714/CP60.231]. Roth RE, 2016, CARTOGR GEOGR INF SC, V43, P30, DOI 10.1080/15230406.2015.1021714. Roth RE, 2015, CARTOGRAPHICA, V50, P94, DOI 10.3138/cart.50.2.2427. Rudskoy A., 2021, TRANSP RES PROCEDIA, V54, P927, DOI DOI 10.1016/J.TRPRO.2021.02.152. Ruohomaki T, 2018, 2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), P155, DOI 10.1109/IS.2018.8710517. Sacks R, 2017, J COMPUT CIVIL ENG, V31, DOI 10.1061/(ASCE)CP.1943-5487.0000705. Saran S, 2018, J INDIAN SOC REMOTE, V46, P957, DOI 10.1007/s12524-018-0755-5. Schrotter G, 2020, PFG-J PHOTOGRAMM REM, V88, P99, DOI 10.1007/s41064-020-00092-2. Schutz M., 2016, POTREE RENDERING LAR. Sefrin Y.F.T., 2021, ANAIS 23 S REALIDADE, P156. Shahzad M, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12020120. Shnaidman A., 2019, P FIG WW. Siebelink S, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001527. Smeets R., 2016, SUSTAINABLE EU CITIE. Sofia H., 2020, P 2020 IEEE INT C MO, DOI {[}10.1109/MORGEO49228.2020.9121882, DOI 10.1109/MORGEO49228.2020.9121882]. Steinmetz C., 2021, IEEE T EMERG TOP COM. Stoter J, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6060158. Sun J, 2019, ISPRS INT GEO-INF, V8, DOI 10.3390/ijgi8110503. Thomas H, 2019, IEEE I CONF COMP VIS, P6420, DOI 10.1109/ICCV.2019.00651. Thombre S, 2022, IEEE T INTELL TRANSP, V23, P64, DOI 10.1109/TITS.2020.3023957. Thompson R., 2019, FIG WORKING WEEK. Tian YL, 2022, IEEE T ROBOT, V38, P2022, DOI 10.1109/TRO.2021.3137751. Tominski C, 2021, VIS INFORM, V5, P28, DOI 10.1016/j.visinf.2021.06.004. Tomljenovic I, 2015, REMOTE SENS-BASEL, V7, P3826, DOI 10.3390/rs70403826. Tran H, 2019, ISPRS J PHOTOGRAMM, V149, P29, DOI 10.1016/j.isprsjprs.2019.01.012. Tzanis Nikolaos, 2020, 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), P393, DOI 10.1109/ICPS48405.2020.9274723. Vaananen P., 2019, INT ARCH PHOTOGRAMM. Van der Valk H., 2020, AMCIS 2020 P, V4. van Oosterom P., 2018, BEST PRACTICES 3D CA. van Oosterom P., 2020, LAND USE POLICY, V98. Vosselman G., 2010, AIRBORNE TERRESTRIAL. Wang MZ, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102931. Wang Q, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11030365. White G, 2021, CITIES, V110, DOI 10.1016/j.cities.2020.103064. Wichmann A., 2018, ISPRS INT ARCH PHOTO, VXLII-2, P1191, DOI {[}DOI 10.5194/ISPRS-ARCHIVES-XLII-2-1191-2018, 10.5194/isprs-archives-XLII-2-1191-2018]. Winiwarter L, 2019, PFG-J PHOTOGRAMM REM, V87, P75, DOI 10.1007/s41064-019-00073-0. Wong JKW, 2018, AUTOMAT CONSTR, V92, P312, DOI 10.1016/j.autcon.2018.04.006. WorldBank, 2022, WORLD BANK. Yan JY, 2021, LAND USE POLICY, V102, DOI 10.1016/j.landusepol.2020.105267. Yang ZS, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12050877. Yeom I, 2021, 2021 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS (VRW 2021), P424, DOI 10.1109/VRW52623.2021.00094. Ying S, 2015, T GIS, V19, P758, DOI 10.1111/tgis.12129. Yu A, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P5732, DOI 10.1109/ICCV48922.2021.00570. Zhang X., 2019, DATA DRIVEN APPROACH. Zhao WF, 2021, ISPRS J PHOTOGRAMM, V175, P119, DOI 10.1016/j.isprsjprs.2021.02.014. Zoeteman K., 2017, BENCHMARKING SUSTAIN. Zou Y, 2017, SAFETY SCI, V97, P88, DOI 10.1016/j.ssci.2015.12.027.}, Number-of-Cited-References = {184}, Times-Cited = {5}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {12}, Journal-ISO = {Int. J. Appl. Earth Obs. Geoinf.}, Doc-Delivery-Number = {7N0PD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000907048500004}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000375722300007, Author = {Zhao, Wanqing and Beach, Thomas H. and Rezgui, Yacine}, Title = {Optimization of Potable Water Distribution and Wastewater Collection Networks: A Systematic Review and Future Research Directions}, Journal = {IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS}, Year = {2016}, Volume = {46}, Number = {5}, Pages = {659-681}, Month = {MAY}, Abstract = {Potable water distribution networks (WDNs) and wastewater collection networks (WWCNs) are the two fundamental constituents of the complex urban water infrastructure. Such water networks require adapted design interventions as part of retrofitting, extension, and maintenance activities. Consequently, proper optimization methodologies are required to reduce the associated capital cost while also meeting the demands of acquiring clean water and releasing wastewater by consumers. In this paper, a systematic review of the optimization of both WDNs and WWCNs, from the preliminary stages of development through to the state-of-the-art, is jointly presented. First, both WDNs and WWCNs are conceptually and functionally described along with illustrative benchmarks. The optimization of water networks across both clean and waste domains is then systematically reviewed and organized, covering all levels of complexity from the formulation of cost functions and constraints, through to traditional and advanced optimization methodologies. The rationales behind employing these methodologies as well as their advantages and disadvantages are investigated. This paper then critically discusses current trends and identifies directions for future research by comparing the existing optimization paradigms within WDNs and WWCNs and proposing common research directions for optimizing water networks. Optimization of urban water networks is a multidisciplinary domain, within which this paper is anticipated to be of great benefit to researchers and practitioners.}, Publisher = {IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC}, Address = {445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA}, Type = {Review}, Language = {English}, Affiliation = {Zhao, WQ; Beach, TH; Rezgui, Y (Corresponding Author), Cardiff Univ, Cardiff Sch Engn, Cardiff CF24 3AA, S Glam, Wales. Zhao, Wanqing; Beach, Thomas H.; Rezgui, Yacine, Cardiff Univ, Cardiff Sch Engn, Cardiff CF24 3AA, S Glam, Wales.}, DOI = {10.1109/TSMC.2015.2461188}, ISSN = {2168-2216}, EISSN = {2168-2232}, Keywords = {Artificial intelligence; hydraulics; network optimization; wastewater collection networks (WWCNs); water distribution networks (WDNs)}, Keywords-Plus = {EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION; HARMONY SEARCH ALGORITHM; RELIABILITY-BASED DESIGN; GENETIC ALGORITHM; CELLULAR-AUTOMATA; DIFFERENTIAL EVOLUTION; COST DESIGN; TABU SEARCH; DECOMPOSITION; MODEL}, Research-Areas = {Automation \& Control Systems; Computer Science}, Web-of-Science-Categories = {Automation \& Control Systems; Computer Science, Cybernetics}, Author-Email = {zhaow9@cardiff.ac.uk beachth@cardiff.ac.uk rezguiY@cardiff.ac.uk}, Affiliations = {Cardiff University}, ResearcherID-Numbers = {Zhao, Wanqing/AGZ-4360-2022 Rezgui, Yacine/ABE-6712-2020 }, ORCID-Numbers = {Rezgui, Yacine/0000-0002-5711-8400 Beach, Thomas/0000-0001-5610-8027 Zhao, Wanqing/0000-0001-6160-9547}, Funding-Acknowledgement = {EU Seventh Framework Programme (FP7) {[}619795]}, Funding-Text = {This work was supported by the EU Seventh Framework Programme (FP7) under Grant 619795 with partners from Universities, Institutes, local authorities, water utilities, and Information Communication Technology companies. This paper was recommended by Associate Editor K. W. Hipel.}, Cited-References = {Afshar MH, 2007, ADV WATER RESOUR, V30, P954, DOI 10.1016/j.advwatres.2006.08.004. Afshar MH, 2006, ADV WATER RESOUR, V29, P1371, DOI 10.1016/j.advwatres.2005.10.013. Afshar MH, 2006, CAN J CIVIL ENG, V33, P319, DOI 10.1139/L05-121. Afshar MH, 2012, ENG OPTIMIZ, V44, P1, DOI 10.1080/0305215X.2011.557071. Afshar MH, 2011, SCI IRAN, V18, P304, DOI 10.1016/j.scient.2011.05.037. ALPEROVITS E, 1977, WATER RESOUR RES, V13, P885, DOI 10.1029/WR013i006p00885. Alvisi S, 2014, PROCEDIA ENGINEER, V70, P41, DOI 10.1016/j.proeng.2014.02.006. Andersson J., 2000, LITHIKPR1097 LINK U. Angus Daniel, 2009, Swarm Intelligence, V3, P69, DOI 10.1007/s11721-008-0022-4. {[}Anonymous], 1999, EVOLUTIONARY ALGORIT. {[}Anonymous], IPROMS, DOI DOI 10.1016/B978-008045157-2/50081-X. {[}Anonymous], 2007, NEW MEX WAST SYST OP. Atiquzzaman M, 2006, J WATER RES PLAN MAN, V132, P122, DOI 10.1061/(ASCE)0733-9496(2006)132:2(122). Atkinson S, 2014, J WATER RES PLAN MAN, V140, P160, DOI 10.1061/(ASCE)WR.1943-5452.0000304. Bache K., UCI MACHINE LEARNING. Banos R, 2010, APPL SOFT COMPUT, V10, P261, DOI 10.1016/j.asoc.2009.07.010. Bansal JC, 2009, 2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, P1314, DOI 10.1109/IADCC.2009.4809206. Beigy H, 2010, IEEE T SYST MAN CY B, V40, P54, DOI 10.1109/TSMCB.2009.2030786. Bi W, 2015, ENVIRON MODELL SOFTW, V69, P370, DOI 10.1016/j.envsoft.2014.09.010. Bi WW, 2014, J WATER RES PLAN MAN, V140, DOI 10.1061/(ASCE)WR.1943-5452.0000419. Blum C, 2003, ACM COMPUT SURV, V35, P268, DOI 10.1145/937503.937505. Brizuela C., 2006, IEEE COMPUTATIONAL I, V1, P43. Cavazzuti M., 2013, OPTIMIZATION METHODS, P77. CHARALAMBOUS C, 1990, J ENVIRON ENG-ASCE, V116, P1181, DOI 10.1061/(ASCE)0733-9372(1990)116:6(1181). Chen TS, 2010, IEEE T EVOLUT COMPUT, V14, P1, DOI 10.1109/TEVC.2009.2040019. Cheung PB, 2003, LECT NOTES COMPUT SC, V2632, P662. Chu CW, 2008, MATH COMPUT MODEL, V48, P1888, DOI 10.1016/j.mcm.2008.02.008. City of Henderson NV, UT SERV WAT SEW LAT. Coelho B, 2014, RENEW SUST ENERG REV, V30, P59, DOI 10.1016/j.rser.2013.09.010. Coello CAC, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.1597059. Corne D. W., 2000, Parallel Problem Solving from Nature PPSN VI. 6th International Conference. Proceedings (Lecture Notes in Computer Science Vol.1917), P839. Creaco E, 2014, J WATER RES PLAN MAN, V140, P598, DOI 10.1061/(ASCE)WR.1943-5452.0000358. Cunha MD, 1999, J WATER RES PL-ASCE, V125, P215, DOI 10.1061/(ASCE)0733-9496(1999)125:4(215). Cunha MD, 2004, EUR J OPER RES, V157, P746, DOI 10.1016/S0377-2217(03)00242-X. De Corte A., 2014, ITERATED LOCAL SEARC. De Corte A, 2014, WATER RESOUR MANAG, V28, P333, DOI 10.1007/s11269-013-0485-y. De Corte A, 2013, EUR J OPER RES, V228, P1, DOI 10.1016/j.ejor.2012.11.046. Deb K, 2002, IEEE T EVOLUT COMPUT, V6, P182, DOI 10.1109/4235.996017. Deb K, 2010, IEEE T EVOLUT COMPUT, V14, P723, DOI 10.1109/TEVC.2010.2064323. del Valle Y, 2008, IEEE T EVOLUT COMPUT, V12, P171, DOI 10.1109/TEVC.2007.896686. DESHER DP, 1986, J ENVIRON ENG-ASCE, V112, P993, DOI 10.1061/(ASCE)0733-9372(1986)112:6(993). Deuerlein JW, 2008, J HYDRAUL ENG-ASCE, V134, P822, DOI 10.1061/(ASCE)0733-9429(2008)134:6(822). Dorigo M, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.329691. DUAN N, 1990, J HYDRAUL ENG-ASCE, V116, P249, DOI 10.1061/(ASCE)0733-9429(1990)116:2(249). Dwr Cymru Welsh Water, WHAT IS COMB SEW OV. ELIMAM AA, 1989, J ENVIRON ENG-ASCE, V115, P1171, DOI 10.1061/(ASCE)0733-9372(1989)115:6(1171). Erickson M, 2001, LECT NOTES COMPUT SC, V1993, P681. Eusuff M, 2006, ENG OPTIMIZ, V38, P129, DOI 10.1080/03052150500384759. Eusuff MM, 2003, J WATER RES PL-ASCE, V129, P210, DOI 10.1061/(ASCE)0733-9496(2003)129:3(210). Farmani R, 2005, J WATER RES PLAN MAN, V131, P161, DOI 10.1061/(ASCE)0733-9496(2005)131:3(161). Farmani R, 2005, ENG OPTIMIZ, V37, P167, DOI 10.1080/03052150512331303436. Farmani R., 2003, PUMPS ELECTROMECHANI, P247. Farmani R, 2006, J HYDROINFORM, V8, P165, DOI 10.2166/hydro.2006.019b. FEO TA, 1995, J GLOBAL OPTIM, V6, P109, DOI 10.1007/BF01096763. Field R., 2010, WET WEATHER FLOW URB. Fonseca CM, 1998, IEEE T SYST MAN CY A, V28, P26, DOI 10.1109/3468.650319. FONSECA CM, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P416. Fu GT, 2013, J WATER RES PLAN MAN, V139, P624, DOI 10.1061/(ASCE)WR.1943-5452.0000311. FUJIWARA O, 1990, WATER RESOUR RES, V26, P539, DOI 10.1029/WR026i004p00539. Gandomi AH, 2013, NEURAL COMPUT APPL, V22, P1239, DOI 10.1007/s00521-012-1028-9. Geem ZW, 2010, INT J APPL METAHEUR, V1, P75, DOI 10.4018/jamc.2010100105. Geem ZW, 2011, J WATER RES PLAN MAN, V137, P377, DOI 10.1061/(ASCE)WR.1943-5452.0000130. Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201. Gessler J., 1985, P COMP APPL WAT RES, P572. Giagkiozis I, 2015, INFORM SCIENCES, V293, P338, DOI 10.1016/j.ins.2014.08.071. Glover F., 1998, HDB COMBINATORIAL OP, P2093, DOI {[}DOI 10.1007/978-1-4613-0303-9\_33, 10.1007/978-1-4613-0303-9\_33]. Goldberg D.E., 1989, GENETIC ALGORITHMS S, DOI DOI 10.1111/J.1365-2486.2009.02080.X. Guercio R, 1997, J HYDRAUL ENG-ASCE, V123, P1020, DOI 10.1061/(ASCE)0733-9429(1997)123:11(1020). Guo Y, 2007, ENG OPTIMIZ, V39, P345, DOI 10.1080/03052150601128261. Guo Y., 2006, P 2006 CES IEEE 5 IN, P1. Guo YF, 2008, J WATER RES PLAN MAN, V134, P511, DOI 10.1061/(ASCE)0733-9496(2008)134:6(511). Guo YF, 2007, LECT NOTES COMPUT SC, V4403, P546. GUPTA A, 1983, J ENVIRON ENG-ASCE, V109, P1195, DOI 10.1061/(ASCE)0733-9372(1983)109:5(1195). GUPTA JM, 1976, J ENV ENG DIV-ASCE, V102, P1029. Haghighi A, 2015, J WATER RES PLAN MAN, V141, DOI 10.1061/(ASCE)WR.1943-5452.0000435. Haghighi A, 2012, WATER RESOUR MANAG, V26, P3441, DOI 10.1007/s11269-012-0084-3. Haghighi A, 2011, WATER RESOUR MANAG, V25, P1791, DOI 10.1007/s11269-011-9775-4. Haktanir T, 2004, ADV ENG SOFTW, V35, P773, DOI 10.1016/j.advengsoft.2001.07.005. Horn J, 1994, EVOL COMPUT, V2, P37, DOI 10.1162/evco.1994.2.1.37. Huang GB, 2012, IEEE T SYST MAN CY B, V42, P513, DOI 10.1109/TSMCB.2011.2168604. Innovyze, WAT DISTR MOD MAN IN. Ishibuchi H, 2008, IEEE C EVOL COMPUTAT, P2419, DOI 10.1109/CEC.2008.4631121. Izquierdo J, 2008, COMPUT MATH APPL, V56, P777, DOI 10.1016/j.camwa.2008.02.007. Jadaliha M, 2013, IEEE T SIGNAL PROCES, V61, P223, DOI 10.1109/TSP.2012.2223695. Jung D, 2014, J WATER RES PLAN MAN, V140, DOI 10.1061/(ASCE)WR.1943-5452.0000421. Kadu MS, 2008, J WATER RES PL-ASCE, V134, P147, DOI 10.1061/(ASCE)0733-9496(2008)134:2(147). Kapelan ZS, 2005, WATER RESOUR RES, V41, DOI 10.1029/2004WR003787. Karaboga D, 2014, ARTIF INTELL REV, V42, P21, DOI 10.1007/s10462-012-9328-0. Karovic O, 2014, WATER RESOUR MANAG, V28, P4551, DOI {[}10.1007/s11269-014-, 10.1007/s11269-014-0750-8]. Keedwell E, 2006, J COMPUT CIVIL ENG, V20, P49, DOI 10.1061/(ASCE)0887-3801(2006)20:1(49). Keedwell E, 2005, ENG APPL ARTIF INTEL, V18, P461, DOI 10.1016/j.engappai.2004.10.001. Knowles JD, 2000, EVOL COMPUT, V8, P149, DOI 10.1162/106365600568167. Kurek W, 2013, J ENVIRON MANAGE, V115, P189, DOI 10.1016/j.jenvman.2012.11.030. KYPipe LLC, PIPE2012 KYP OV. LANSEY KE, 1989, J HYDRAUL ENG-ASCE, V115, P1401, DOI 10.1061/(ASCE)0733-9429(1989)115:10(1401). LI GY, 1990, J ENVIRON ENG-ASCE, V116, P927, DOI 10.1061/(ASCE)0733-9372(1990)116:5(927). Liang L. Y., 2000, PRICAI 2000. Topics in Artificial Intelligence. 6th Pacific Rim International Conference on Artificial Intelligence. Proceedings (Lecture Notes in Artificial Intelligence Vol.1886), P415. Liang T., 1974, 83 WRRCTR U HAW MAN. Liang T., 1971, J HYDRAUL DIV, V97, P383. Lin MD, 2007, ENG OPTIMIZ, V39, P857, DOI 10.1080/03052150701503611. Lin MD, 2009, IN C IND ENG ENG MAN, P375, DOI 10.1109/IEEM.2009.5373334. Maier HR, 2014, ENVIRON MODELL SOFTW, V62, P271, DOI 10.1016/j.envsoft.2014.09.013. Maier HR, 2003, J WATER RES PL-ASCE, V129, P200, DOI 10.1061/(ASCE)0733-9496(2003)129:3(200). Manjarres D, 2013, ENG APPL ARTIF INTEL, V26, P1818, DOI 10.1016/j.engappai.2013.05.008. Marchi A, 2014, J WATER RES PLAN MAN, V140, DOI 10.1061/(ASCE)WR.1943-5452.0000378. Marchi A, 2014, J WATER RES PLAN MAN, V140, P22, DOI 10.1061/(ASCE)WR.1943-5452.0000321. Marchionni V, 2014, WATER RESOUR MANAG, V28, P4415, DOI 10.1007/s11269-014-0759-z. Marler RT, 2004, STRUCT MULTIDISCIP O, V26, P369, DOI 10.1007/s00158-003-0368-6. Martinez JB, 2008, J HYDRAUL ENG, V134, P1023, DOI 10.1061/(ASCE)0733-9429(2008)134:7(1023). Mavrotas G, 2009, APPL MATH COMPUT, V213, P455, DOI 10.1016/j.amc.2009.03.037. Mays L.W., 2001, STORMWATER COLLECTIO. MAYS LW, 1976, WATER RESOUR RES, V12, P913, DOI 10.1029/WR012i005p00913. MAYS LW, 1975, WATER RESOUR RES, V11, P37, DOI 10.1029/WR011i001p00037. Miettinen K., 1999, NONLINEAR MULTIOBJEC. MILES SW, 1988, J WATER RES PL-ASCE, V114, P477, DOI 10.1061/(ASCE)0733-9496(1988)114:5(477). Moderl M, 2011, WATER RESOUR RES, V47, DOI 10.1029/2009WR008951. Moeini R, 2012, ADV ENG SOFTW, V51, P49, DOI 10.1016/j.advengsoft.2012.05.003. Mohan S, 2010, J COMPUT CIVIL ENG, V24, P117, DOI 10.1061/(ASCE)CP.1943-5487.0000018. Montalvo I, 2010, MATH COMPUT MODEL, V52, P1219, DOI 10.1016/j.mcm.2010.02.017. Nguyen Q., 2014, THESIS VIETNAM NAT U. Nicklow J, 2010, J WATER RES PLAN MAN, V136, P412, DOI 10.1061/(ASCE)WR.1943-5452.0000053. Oates M. J., 2001, P 3 ANN C GENETIC EV, V1, P283, DOI DOI 10.5555/2955239.2955289. Pan TC, 2009, J ENVIRON ENG, V135, P17, DOI 10.1061/(ASCE)0733-9372(2009)135:1(17). Peng WX, 2004, I C CONT AUTOMAT ROB, P227. Perelman L, 2011, ENVIRON MODELL SOFTW, V26, P969, DOI 10.1016/j.envsoft.2011.01.006. Perelman L, 2008, WATER RESOUR RES, V44, DOI 10.1029/2007WR006248. Prasad TD, 2004, J WATER RES PLAN MAN, V130, P73, DOI 10.1061/(ASCE)0733-9496(2004)130:1(73). Rao RS, 2011, IEEE T POWER SYST, V26, P1080, DOI 10.1109/TPWRS.2010.2076839. Rossman L. A., 2000, EPANET 2 USERS MANUA. Rossman L. A., 2010, STORM WATER MANAGEME. Rubinstein R., 1999, METHODOL COMPUT APPL, V1, DOI DOI 10.1023/A:1010091220143. Samani HMV, 2006, J HYDRAUL ENG-ASCE, V132, P501, DOI 10.1061/(ASCE)0733-9429(2006)132:5(501). Savic D, 2008, J HYDRAUL ENG, V134, P1024, DOI 10.1061/(ASCE)0733-9429(2008)134:7(1024). Schaake JC, 1969, 116 MIT DEP CIV ENG. Schaffer J.D., 1985, P 1 INT C GEN ALG, P93. Shibu A., 2011, Proceedings of the 2011 World Congress on Information and Communication Technologies (WICT), P302, DOI 10.1109/WICT.2011.6141262. Shibu A., 2012, ISH J HYDRAUL ENG, V18, P258. SIMPSON AR, 1994, J WATER RES PL-ASCE, V120, P423, DOI 10.1061/(ASCE)0733-9496(1994)120:4(423). Sorensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001. SONAK VV, 1993, WATER RESOUR RES, V29, P2437, DOI 10.1029/93WR00289. Srinivas N., 1994, Evolutionary Computation, V2, P221, DOI 10.1162/evco.1994.2.3.221. Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328. Strifling D., 2003, MARQUETTE LAW REV, V87, P225. Suribabu CR, 2012, J PIPELINE SYST ENG, V3, P115, DOI 10.1061/(ASCE)PS.1949-1204.0000104. Suribabu CR, 2010, J HYDROINFORM, V12, P66, DOI 10.2166/hydro.2010.014. Suribabu C.R., 2006, URBAN WATER J, V3, P111, DOI {[}10.1080/15730620600855928, DOI 10.1080/15730620600855928]. Swamee PK, 2001, J ENVIRON ENG-ASCE, V127, P776, DOI 10.1061/(ASCE)0733-9372(2001)127:9(776). Swamee PK, 2013, APPL MATH MODEL, V37, P4430, DOI 10.1016/j.apm.2012.09.041. Tahoe Design Software, HYDROFLO 2 1 PIP SYS. Thames Tideway Tunnels Ltd, THAM TID TUNN CREAT. Thiele L, 2002, EVOLUTIONARY METHODS, P95, DOI DOI 10.1007/978-3-540-30217-9\_84. Todini E., 2000, URBAN WATER, V2, P115, DOI DOI 10.1016/S1462-0758(00)00049-2. Valian E, 2014, APPL MATH COMPUT, V232, P670, DOI 10.1016/j.amc.2014.01.086. Voudouris C, 2003, INT SER OPER RES MAN, V57, P185, DOI 10.1007/0-306-48056-5\_7. WALSKI TM, 1987, J WATER RES PL-ASCE, V113, P191, DOI 10.1061/(ASCE)0733-9496(1987)113:2(191). Water Environment Research Foundation (WERF), FACT SHEET C1 GRAV S. Weyland D, 2010, INT J APPL METAHEUR, V1, P50, DOI 10.4018/jamc.2010040104. Xiang WL, 2014, EXPERT SYST APPL, V41, P5788, DOI 10.1016/j.eswa.2014.03.016. YATES DF, 1984, ENG OPTIMIZ, V7, P143, DOI 10.1080/03052158408960635. Yeh S.-F, 2010, 2010 IEEE International Conference on Industrial Engineering \& Engineering Management (IE\&EM 2010), P390, DOI 10.1109/IEEM.2010.5674610. Yeh SF, 2011, ENG OPTIMIZ, V43, P159, DOI 10.1080/0305215X.2010.482989. Zecchin AC, 2007, J WATER RES PLAN MAN, V133, P87, DOI 10.1061/(ASCE)0733-9496(2007)133:1(87). Zhao WQ, 2013, IEEE T CYBERNETICS, V43, P1807, DOI 10.1109/TSMCB.2012.2231068. Zheng FF, 2014, J WATER RES PLAN MAN, V140, P585, DOI 10.1061/(ASCE)WR.1943-5452.0000367. Zheng FF, 2014, ENVIRON MODELL SOFTW, V55, P143, DOI 10.1016/j.envsoft.2014.01.028. Zheng FF, 2014, J WATER RES PLAN MAN, V140, P553, DOI 10.1061/(ASCE)WR.1943-5452.0000351. Zheng FF, 2013, WATER RESOUR RES, V49, P2093, DOI 10.1002/wrcr.20175. Zheng FF, 2013, WATER RESOUR RES, V49, P380, DOI 10.1029/2012WR013160. Zheng FF, 2013, J COMPUT CIVIL ENG, V27, P148, DOI 10.1061/(ASCE)CP.1943-5487.0000208. Zheng FF, 2011, WATER RESOUR RES, V47, DOI 10.1029/2011WR010394. Zhou Q, 2003, IEEE T EVOLUT COMPUT, V7, P356, DOI 10.1109/TEVC.2003.812215. Zitzler E, 1999, IEEE T EVOLUT COMPUT, V3, P257, DOI 10.1109/4235.797969.}, Number-of-Cited-References = {172}, Times-Cited = {35}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {74}, Journal-ISO = {IEEE Trans. Syst. Man Cybern. -Syst.}, Doc-Delivery-Number = {DL6BK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000375722300007}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000492779400008, Author = {Falamarzi, Amir and Moridpour, Sara and Nazem, Majidreza}, Title = {A review of rail track degradation prediction models}, Journal = {AUSTRALIAN JOURNAL OF CIVIL ENGINEERING}, Year = {2019}, Volume = {17}, Number = {2}, Pages = {152-166}, Month = {JUL 3}, Abstract = {The increase in traffic congestion in urban areas as a result of more private transport intensifies the importance of promoting public transport and rail transport in particular. The increasing demand for rail transport will lead to more pressure and stress on rail components and consequently higher rates of degradation. If degradation of railway components is not treated by means of effective maintenance strategies, catastrophic human casualties and massive financial losses are inevitable. Degradation prediction modelling is the key element in the establishment of cost-effective and efficient maintenance strategies in railway systems. This paper reviews different models proposed in the literature for rail track degradation prediction, including mechanistic models, statistical models and Artificial Intelligence (AI) models. In addition, the advantages and disadvantages of each model are explained, and factors influencing rail track degradation are investigated.}, Publisher = {TAYLOR \& FRANCIS LTD}, Address = {2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Falamarzi, A (Corresponding Author), RMIT Univ, Sch Engn, Civil \& Infrastruct Engn Discipline, Melbourne, Vic, Australia. Falamarzi, Amir; Moridpour, Sara; Nazem, Majidreza, RMIT Univ, Sch Engn, Civil \& Infrastruct Engn Discipline, Melbourne, Vic, Australia.}, DOI = {10.1080/14488353.2019.1667710}, ISSN = {1448-8353}, EISSN = {2204-2245}, Keywords = {Railway; degradation; prediction models; rail infrastructure; rail maintenance}, Keywords-Plus = {DECISION-SUPPORT-SYSTEM; INFRASTRUCTURE MAINTENANCE; STOCHASTIC-MODEL; MANAGEMENT; WEAR}, Research-Areas = {Engineering}, Web-of-Science-Categories = {Engineering, Civil}, Author-Email = {S3349323@student.rmit.edu.au}, Affiliations = {Royal Melbourne Institute of Technology (RMIT)}, ResearcherID-Numbers = {falamarzi, amir/I-1266-2013 Nazem, Majid/A-4267-2013}, ORCID-Numbers = {Nazem, Majid/0000-0002-6433-3416}, Cited-References = {Ahac M, 2015, TRANSPORT-VILNIUS, V30, P430, DOI 10.3846/16484142.2015.1116464. Alemazkoor N., 2015, TRACK GEOMETRY ANAL. Andrade AR, 2015, RELIAB ENG SYST SAFE, V142, P169, DOI 10.1016/j.ress.2015.05.009. Andrade A. R., 2012, RES TRANSP ECON, V36, P1, DOI DOI 10.1016/J.RETREC.2012.03.011. Andrade AR, 2014, P I CIVIL ENG-TRANSP, V167, P400, DOI 10.1680/tran.11.00060. Andrews J, 2014, RELIAB ENG SYST SAFE, V130, P76, DOI 10.1016/j.ress.2014.04.021. Asada T, 2013, TRANSPORT RES C-EMER, V30, P81, DOI 10.1016/j.trc.2013.01.008. Audley M, 2013, P I MECH ENG F-J RAI, V227, P376, DOI 10.1177/0954409713480439. Bai L, 2015, P I MECH ENG F-J RAI, V229, P150, DOI 10.1177/0954409713503460. Baldi MM, 2016, OMEGA-INT J MANAGE S, V63, P94, DOI 10.1016/j.omega.2015.10.005. Caetano LF, 2015, STRUCT INFRASTRUCT E, V11, P1524, DOI 10.1080/15732479.2014.982133. Dell'Orco M, 2008, TRANSPORT RES REC, P49, DOI 10.3141/2043-06. DEMHARTER K, 1982, SETZUNGSVERHALTEN GL. Fagerland MW, 2017, STATA J, V17, P668, DOI 10.1177/1536867X1701700308. Falamarzi A, 2018, AUSTR TRANSPORT RES, P12. Falamarzi A, 2019, STRUCT INFRASTRUCT E, V15, P1308, DOI 10.1080/15732479.2019.1615963. Falamarzi A, 2018, J ADV TRANSPORT, DOI 10.1155/2018/6340504. Gorjian N., 2010, REV DEGRADATION MODE, P369. Guler H, 2013, J COMPUT CIVIL ENG, V27, P292, DOI 10.1061/(ASCE)CP.1943-5487.0000221. Guler H, 2011, P I CIVIL ENG-TRANSP, V164, P65, DOI 10.1680/tran.2011.164.2.65. Hajibabai L., 2012, P AM RAILW ENG MAINT, DOI {[}10.1094/PDIS-11-11-0999-PDN, DOI 10.1094/PDIS-11-11-0999-PDN]. He Q., 2013, P TRANSPORTATION RES. Jamshidi A, 2016, IFAC PAPERSONLINE, V49, P73, DOI 10.1016/j.ifacol.2016.07.013. Jeong MC, 2019, ENG FAIL ANAL, V96, P202, DOI 10.1016/j.engfailanal.2018.10.001. Jia CL, 2012, DISCRETE DYN NAT SOC, V2012, DOI 10.1155/2012/387857. Jovanovic S, 2015, GRADEVINAR, V67, P247. Karimpour M, 2018, J ADV TRANSPORT, DOI 10.1155/2018/3096190. Lasisi A, 2018, TRANSPORT RES C-EMER, V91, P230, DOI 10.1016/j.trc.2018.04.001. Lemeshow S., 2013, APPL LOGISTIC REGRES. Li HF, 2014, TRANSPORT RES C-EMER, V45, P17, DOI 10.1016/j.trc.2014.04.013. Liden T, 2015, TRANSP RES PROC, V10, P574, DOI 10.1016/j.trpro.2015.09.011. Mercier S, 2012, STRUCT INFRASTRUCT E, V8, P357, DOI 10.1080/15732479.2011.563090. Michalski R.S., 2013, MACHINE LEARNING ART. Montgomery D. C., 2012, WILEY SERIES PROBABI. Morant A, 2016, P I MECH ENG F-J RAI, V230, P220, DOI 10.1177/0954409714533680. Moridpour S., 2017, APPL BIG DATA ANAL O, P30. Moridpour S, 2015, 3RD INTERNATIONAL CONFERENCE ON TRANSPORTATION INFORMATION AND SAFETY (ICTIS 2015), P270, DOI 10.1109/ICTIS.2015.7232120. Nicodeme C, 2017, 2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS), P347. Nunez A, 2014, IEEE INT CONF BIG DA. Prescott D, 2013, P I MECH ENG O-J RIS, V227, P251, DOI {[}10.1177/1748006x13482848, 10.1177/1748006X13482848]. Quiroga L., 2010, STOCH MOD TECHN DAT. Rana A., 2016, LECT NOTES MECH ENG, P599. Rashidi M, 2016, AUST J CIV ENG, V14, P46, DOI 10.1080/14488353.2015.1092642. Sadeghi J, 2010, J TRANSP ENG-ASCE, V136, P693, DOI 10.1061/(ASCE)0733-947X(2010)136:8(693). Sadeghi J, 2012, J MECH SCI TECHNOL, V26, P113, DOI 10.1007/s12206-011-1016-5. Sadeghi J, 2010, STRUCT INFRASTRUCT E, V6, P675, DOI 10.1080/15732470801902436. Salvador P, 2016, MEASUREMENT, V82, P301, DOI 10.1016/j.measurement.2016.01.012. Sarstedt M., 2019, CONCISE GUIDE MARKET, V3rd. SATO Y, 1995, VEHICLE SYST DYN, V24, P197, DOI 10.1080/00423119508969625. Shafahi Y., 2008, 8 WORLD C RAILWAY RE, P1. Shenton M.J, 1985, BALLAST DEFORMATION, P253. Soleimanmeigouni I, 2018, P I MECH ENG F-J RAI, V232, P73, DOI 10.1177/0954409716657849. Stenstrom C, 2016, STRUCT INFRASTRUCT E, V12, P603, DOI 10.1080/15732479.2015.1032983. Vale C, 2013, RELIAB ENG SYST SAFE, V116, P91, DOI 10.1016/j.ress.2013.02.010. Westgeest FP, 2012, ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, P926. Yadav Neha, 2015, INTRO NEURAL NETWORK, P13. Yousefikia M., 2014, J TRAFFIC LOGISTICS, V2, P86, DOI {[}10.12720/jtle.2.2.86-91, DOI 10.12720/JTLE.2.2.86-91]. Zakeri JA, 2012, INT J TRAFF TRANSP E, V1, P13, DOI DOI 10.5923/J.IJTTE.20120102.02. Zhang Y, 2017, STRUCT INFRASTRUCT E, V13, P1068, DOI 10.1080/15732479.2016.1236393. Zhu MY, 2013, ADV MECH ENG, DOI 10.1155/2013/401637. Zhu Q, 2015, STUDIES FUZZINESS SO, V319. Zimmermann HJ, 2010, WIRES COMPUT STAT, V2, P317, DOI 10.1002/wics.82.}, Number-of-Cited-References = {62}, Times-Cited = {16}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {15}, Journal-ISO = {Aust. J. Civ. Eng.}, Doc-Delivery-Number = {JH4ZR}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000492779400008}, DA = {2023-04-22}, } @article{ WOS:000379861800013, Author = {Niu, Jiqiang and Tang, Wenwu and Xu, Feng and Zhou, Xiaoyan and Song, Yanan}, Title = {Global Research on Artificial Intelligence from 1990-2014: Spatially-Explicit Bibliometric Analysis}, Journal = {ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION}, Year = {2016}, Volume = {5}, Number = {5}, Month = {MAY}, Abstract = {In this article, we conducted the evaluation of artificial intelligence research from 1990-2014 by using bibliometric analysis. We introduced spatial analysis and social network analysis as geographic information retrieval methods for spatially-explicit bibliometric analysis. This study is based on the analysis of data obtained from database of the Science Citation Index Expanded (SCI-Expanded) and Conference Proceedings Citation Index-Science (CPCI-S). Our results revealed scientific outputs, subject categories and main journals, author productivity and geographic distribution, international productivity and collaboration, and hot issues and research trends. The growth of article outputs in artificial intelligence research has exploded since the 1990s, along with increasing collaboration, reference, and citations. Computer science and engineering were the most frequently-used subject categories in artificial intelligence studies. The top twenty productive authors are distributed in countries with a high investment of research and development. The United States has the highest number of top research institutions in artificial intelligence, producing most single-country and collaborative articles. Although there is more and more collaboration among institutions, cooperation, especially international ones, are not highly prevalent in artificial intelligence research as expected. The keyword analysis revealed interesting research preferences, confirmed that methods, models, and application are in the central position of artificial intelligence. Further, we found interesting related keywords with high co-occurrence frequencies, which have helped identify new models and application areas in recent years. Bibliometric analysis results from our study will greatly facilitate the understanding of the progress and trends in artificial intelligence, in particular, for those researchers interested in domain-specific AI-driven problem-solving. This will be of great assistance for the applications of AI in alternative fields in general and geographic information science, in particular.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Niu, JQ (Corresponding Author), Xinyang Normal Univ, Sch Urban \& Environm Sci, Xinyang 464000, Peoples R China. Niu, Jiqiang; Xu, Feng, Xinyang Normal Univ, Sch Urban \& Environm Sci, Xinyang 464000, Peoples R China. Tang, Wenwu, Univ N Carolina, Dept Geog \& Earth Sci, Charlotte, NC 28262 USA. Tang, Wenwu, Univ N Carolina, Ctr Appl Geog Informat Sci, Charlotte, NC 28262 USA. Zhou, Xiaoyan; Song, Yanan, Wuhan Univ, Sch Resource \& Environm Sci, Wuhan 430079, Peoples R China.}, DOI = {10.3390/ijgi5050066}, Article-Number = {66}, ISSN = {2220-9964}, Keywords = {Artificial Intelligence; bibliometric analysis; scientific outputs; research trends; SCI-expanded; Conference Proceedings Citation Index-Science}, Keywords-Plus = {KNOWLEDGE MANAGEMENT RESEARCH; PARTICLE SWARM OPTIMIZATION; NEURAL-NETWORKS; GENETIC ALGORITHMS; IMMUNE-SYSTEM; FUZZY-LOGIC; BEE COLONY; PERFORMANCE; TRENDS; MODEL}, Research-Areas = {Computer Science; Physical Geography; Remote Sensing}, Web-of-Science-Categories = {Computer Science, Information Systems; Geography, Physical; Remote Sensing}, Author-Email = {njq8196@163.com WenwuTang@uncc.edu xu-f88@163.com zhouxiaoyan@whu.edu.cn yanansong@whu.edu.cn}, Affiliations = {Xinyang Normal University; University of North Carolina; University of North Carolina Charlotte; University of North Carolina; University of North Carolina Charlotte; Wuhan University}, ResearcherID-Numbers = {Niu, Jiqiang/F-8497-2019 }, ORCID-Numbers = {Tang, Wenwu/0000-0001-7870-177X niu, Jiqiang/0000-0002-3315-2970}, Funding-Acknowledgement = {National Sciences Foundation of China {[}41201387, 41001219]; Key Natural Science Research of Department of Education, Henan, China {[}15A170012]}, Funding-Text = {This study is funded by National Sciences Foundation of China (No. 41201387, 41001219) and the Key Natural Science Research of Department of Education, Henan, China (No. 15A170012).}, Cited-References = {Ali JM, 2015, EXPERT SYST APPL, V42, P5915, DOI 10.1016/j.eswa.2015.03.023. Anifowose F, 2014, J EXP THEOR ARTIF IN, V26, P551, DOI 10.1080/0952813X.2014.924577. {[}Anonymous], 2011, BIG DATA NEXT FRONTI. Armstrong MP, 2000, ANN ASSOC AM GEOGR, V90, P146, DOI 10.1111/0004-5608.00190. Bansal JC, 2013, SOFT COMPUT, V17, P1911, DOI 10.1007/s00500-013-1032-8. Bi CP, 2012, ARTIF INTELL MED, V56, P1, DOI 10.1016/j.artmed.2012.04.002. BISHOP CM, 1994, REV SCI INSTRUM, V65, P1803, DOI 10.1063/1.1144830. Browne M, 2007, COAST ENG, V54, P445, DOI 10.1016/j.coastaleng.2006.11.007. CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280. CAMPANARIO JM, 1993, SOC STUD SCI, V23, P342, DOI 10.1177/030631293023002005. Chau KW, 2010, J HYDROINFORM, V12, P458, DOI 10.2166/hydro.2010.032. Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100. Chiu WT, 2007, SCIENTOMETRICS, V73, P3, DOI 10.1007/s11192-005-1523-1. Cho SB, 2002, INTEGR COMPUT-AID E, V9, P363. Chong SK, 2014, COMPUT BIOL MED, V49, P74, DOI 10.1016/j.compbiomed.2014.03.011. Chuang KY, 2007, SCIENTOMETRICS, V72, P201, DOI 10.1007/s11192-007-1693-0. Corchado E, 2012, NEUROCOMPUTING, V75, P61, DOI 10.1016/j.neucom.2011.06.021. Cortez P, 2004, J HEURISTICS, V10, P415, DOI 10.1023/B:HEUR.0000034714.09838.1e. Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0. Farfani HA, 2015, EXPERT SYST APPL, V42, P8971, DOI 10.1016/j.eswa.2015.07.053. Glanzel W, 1999, SCIENTOMETRICS, V45, P185, DOI 10.1007/BF02458432. Gonzalez B, 2015, EXPERT SYST APPL, V42, P5839, DOI 10.1016/j.eswa.2015.03.034. Goodchild MF, 2009, PROCED EARTH PLAN SC, V1, P1037, DOI 10.1016/j.proeps.2009.09.160. Gossard D, 2013, ENERG BUILDINGS, V67, P253, DOI 10.1016/j.enbuild.2013.08.026. Gu YN, 2004, SCIENTOMETRICS, V61, P171, DOI 10.1023/B:SCIE.0000041647.01086.f4. Guo K, 2014, ACTA AGR SCAND B-S P, V64, P377, DOI 10.1080/09064710.2014.913679. Ho YS., 2007, J ENV PROTECT SCI, V1, P1. Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342. Hsieh WH, 2004, SCIENTOMETRICS, V60, P205. Hwang GH, 2006, EXPERT SYST APPL, V31, P299, DOI 10.1016/j.eswa.2005.09.050. Jalal M, 2012, COMPOS PART B-ENG, V43, P2990, DOI 10.1016/j.compositesb.2012.05.044. Judge TA, 2007, ACAD MANAGE J, V50, P491. Kahramanli H, 2009, EXPERT SYST APPL, V36, P1513, DOI 10.1016/j.eswa.2007.11.024. Kalogirou SA, 2003, PROG ENERG COMBUST, V29, P515, DOI 10.1016/S0360-1285(03)00058-3. Khokhar S, 2015, RENEW SUST ENERG REV, V51, P1650, DOI 10.1016/j.rser.2015.07.068. KLOPMAN G, 1992, MUTAT RES, V272, P59, DOI 10.1016/0165-1161(92)90008-A. KLOPMAN G, 1984, J AM CHEM SOC, V106, P7315, DOI 10.1021/ja00336a004. Kostoff RN, 2000, SCIENTIST, V14, P6. Kryszkiewicz M, 1998, INFORM SCIENCES, V112, P39, DOI 10.1016/S0020-0255(98)10019-1. Kuo RJ, 2014, APPL ARTIF INTELL, V28, P577, DOI 10.1080/08839514.2014.923167. Laurentys CA, 2011, EXPERT SYST APPL, V38, P6957, DOI 10.1016/j.eswa.2010.12.019. Li ZY, 2015, EXPERT SYST APPL, V42, P8881, DOI 10.1016/j.eswa.2015.07.043. Liu GL, 2008, INFORM SCIENCES, V178, P4105, DOI 10.1016/j.ins.2008.06.021. Liu XJ, 2011, BIODIVERS CONSERV, V20, P807, DOI 10.1007/s10531-010-9981-z. Martinez-Martinez V, 2015, EXPERT SYST APPL, V42, P6433, DOI 10.1016/j.eswa.2015.04.018. Martinez-Zarzuela M, 2007, LECT NOTES COMPUT SC, V4507, P463. Mas JF, 2008, INT J REMOTE SENS, V29, P617, DOI 10.1080/01431160701352154. Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001. Momeni E, 2015, EARTH SCI RES J, V19, P85. Nahato KB, 2015, COMPUT MATH METHOD M, V2015, DOI 10.1155/2015/460189. Nazari A, 2015, CERAM INT, V41, P12164, DOI 10.1016/j.ceramint.2015.06.037. Cao NT, 2014, INT J PATTERN RECOGN, V28, DOI 10.1142/S0218001414560126. NIU B, 2011, SCIENTOMETRICS, V98, P511. Oh KS, 2004, PATTERN RECOGN, V37, P1311, DOI 10.1016/j.patcog.2004.01.013. Openshaw C., 1997, ARTIF INTELL. Openshaw S., 2000, GEOCOMPTUATION. Pham DT, 1999, INT J MACH TOOL MANU, V39, P937, DOI 10.1016/S0890-6955(98)00076-5. PRITCHARD A, 1969, J DOC, V25, P348. Qiu JP, 2014, ASLIB J INFORM MANAG, V66, P424, DOI 10.1108/AJIM-12-2013-0133. Rahmani R, 2013, J WIND ENG IND AEROD, V123, P163, DOI 10.1016/j.jweia.2013.10.004. Reuters T., J 2014 REL JCR. Russell S. J., 2016, ARTIFICIAL INTELLIGE. Sauze C, 2013, IEEE T NEUR NET LEAR, V24, P1973, DOI 10.1109/TNNLS.2013.2271094. Shi ZZ, 2006, J COMPUT SCI TECH-CH, V21, P810, DOI 10.1007/s11390-006-0810-5. Silverman B.W., 1986, DENSITY ESTIMATION S, V25. Song XH, 2015, COMPUT GEOSCI-UK, V83, P219, DOI 10.1016/j.cageo.2015.07.010. Taormina R, 2015, J HYDROL, V529, P1617, DOI 10.1016/j.jhydrol.2015.08.022. Tsai CF, 2008, EXPERT SYST, V25, P380, DOI 10.1111/j.1468-0394.2008.00449.x. Wang MZ, 2015, ACTA AGR SCAND B-S P, V65, P483, DOI 10.1080/09064710.2015.1030443. Wang WC, 2015, WATER RESOUR MANAG, V29, P2655, DOI 10.1007/s11269-015-0962-6. Wei C., 2006, P 2006 CHIN CONTR C. Wu CL, 2009, J HYDROL, V372, P80, DOI 10.1016/j.jhydrol.2009.03.038. Zhang J, 2009, J UNIVERS COMPUT SCI, V15, P840. Zhang SW, 2009, LECT NOTES COMPUT SC, V5754, P948, DOI 10.1007/978-3-642-04070-2\_100. Zhang SZ, 2015, ENG APPL ARTIF INTEL, V37, P154, DOI 10.1016/j.engappai.2014.09.007. Zhuang YH, 2013, SCIENTOMETRICS, V96, P203, DOI 10.1007/s11192-012-0918-z.}, Number-of-Cited-References = {76}, Times-Cited = {49}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {177}, Journal-ISO = {ISPRS Int. Geo-Inf.}, Doc-Delivery-Number = {DR4HI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000379861800013}, OA = {Green Published, Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000519323900001, Author = {Yu, Manzhu and Bambacus, Myra and Cervone, Guido and Clarke, Keith and Duffy, Daniel and Huang, Qunying and Li, Jing and Li, Wenwen and Li, Zhenlong and Liu, Qian and Resch, Bernd and Yang, Jingchao and Yang, Chaowei}, Title = {Spatiotemporal event detection: a review}, Journal = {INTERNATIONAL JOURNAL OF DIGITAL EARTH}, Year = {2020}, Volume = {13}, Number = {12}, Pages = {1339-1365}, Month = {DEC 1}, Abstract = {The advancements of sensing technologies, including remote sensing, in situ sensing, social sensing, and health sensing, have tremendously improved our capability to observe and record natural and social phenomena, such as natural disasters, presidential elections, and infectious diseases. The observations have provided an unprecedented opportunity to better understand and respond to the spatiotemporal dynamics of the environment, urban settings, health and disease propagation, business decisions, and crisis and crime. Spatiotemporal event detection serves as a gateway to enable a better understanding by detecting events that represent the abnormal status of relevant phenomena. This paper reviews the literature for different sensing capabilities, spatiotemporal event extraction methods, and categories of applications for the detected events. The novelty of this review is to revisit the definition and requirements of event detection and to layout the overall workflow (from sensing and event extraction methods to the operations and decision-supporting processes based on the extracted events) as an agenda for future event detection research. Guidance is presented on the current challenges to this research agenda, and future directions are discussed for conducting spatiotemporal event detection in the era of big data, advanced sensing, and artificial intelligence.}, Publisher = {TAYLOR \& FRANCIS LTD}, Address = {2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Yang, CW (Corresponding Author), 4400 Univ Dr, Fairfax, VA 22030 USA. Yu, Manzhu; Cervone, Guido, Penn State Univ, Dept Geog, University Pk, PA 16802 USA. Bambacus, Myra; Duffy, Daniel, NASA Goddard Space Flight Ctr, Greenbelt, MD USA. Clarke, Keith, Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. Huang, Qunying, Univ Wisconsin, Dept Geog, Madison, WI 53706 USA. Li, Jing, Univ Denver, Dept Geog \& Environm, Denver, CO USA. Li, Wenwen, Arizona State Univ, Sch Geog Sci \& Urban Planning, Tempe, AZ USA. Li, Zhenlong, Univ South Carolina, Dept Geog, Columbia, SC 29208 USA. Liu, Qian; Yang, Jingchao; Yang, Chaowei, George Mason Univ, NSF Spatiotemporal Innovat Ctr, Fairfax, VA 22030 USA. Liu, Qian; Yang, Jingchao; Yang, Chaowei, George Mason Univ, Dept Geog \& GeoInformat Sci, Fairfax, VA 22030 USA. Resch, Bernd, Univ Salzburg, Dept Geoinformat, Salzburg, Austria. Resch, Bernd, Harvard Univ, Ctr Geog Anal, Boston, MA 02115 USA.}, DOI = {10.1080/17538947.2020.1738569}, EarlyAccessDate = {MAR 2020}, ISSN = {1753-8947}, EISSN = {1753-8955}, Keywords = {GeoAI; geography and geoscience; human dynamics; digital earth; computational challenges; cloud computing; internet of things}, Keywords-Plus = {SYNTHETIC-APERTURE RADAR; WIRELESS SENSOR; DATA FUSION; BIG DATA; SYSTEM; SIMULATION; FRAMEWORK; TWITTER; EARTH; CLASSIFICATION}, Research-Areas = {Physical Geography; Remote Sensing}, Web-of-Science-Categories = {Geography, Physical; Remote Sensing}, Author-Email = {cyang3@gmu.edu}, Affiliations = {Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; National Aeronautics \& Space Administration (NASA); NASA Goddard Space Flight Center; University of California System; University of California Santa Barbara; University of Wisconsin System; University of Wisconsin Madison; University of Denver; Arizona State University; Arizona State University-Tempe; University of South Carolina System; University of South Carolina Columbia; George Mason University; George Mason University; Salzburg University; Harvard University}, ResearcherID-Numbers = {Li, Zhenlong/M-1065-2017 Resch, Bernd/ABE-4625-2021 Yang, Chaowei/A-9881-2017 Yu, Manzhu/J-6953-2019 Clarke, Keith/E-1863-2011}, ORCID-Numbers = {Li, Zhenlong/0000-0002-8938-5466 Resch, Bernd/0000-0002-2233-6926 Yang, Chaowei/0000-0001-7768-4066 Yu, Manzhu/0000-0001-6769-7517 Clarke, Keith/0000-0001-5805-6056}, Cited-References = {Adam E, 2010, WETL ECOL MANAG, V18, P281, DOI 10.1007/s11273-009-9169-z. AGGARWAL CC, 2012, MANAGING MINING SENS, P237. Ahmad K, 2016, PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON MULTIMEDIA SYSTEMS (MMSYS'16), P380, DOI 10.1145/2910017.2910624. Ajo-Franklin JB, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36675-8. AKILA V, 2016, 2016 INT C COMP POW. Alam F, 2017, IEEE ACCESS, V5, P9533, DOI 10.1109/ACCESS.2017.2697839. Alfieri L, 2012, J HYDROL, V424, P143, DOI 10.1016/j.jhydrol.2011.12.038. {[}Anonymous], 2012, P 2012 C N AM ASS CO. {[}Anonymous], 1998, P DARPA BROADCAST NE. {[}Anonymous], 1996, KDD, DOI DOI 10.5555/3001460.3001507. ARTIKIS A, 2012, P 6 ACM INT C DISTR. Atefeh F, 2015, COMPUT INTELL-US, V31, P132, DOI 10.1111/coin.12017. Baraldi A, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7120457. Basart S, 2012, TELLUS B, V64, DOI 10.3402/tellusb.v64i0.18539. Bauer P, 2015, NATURE, V525, P47, DOI 10.1038/nature14956. Beer M, 2018, PROC SPIE, V10540, DOI 10.1117/12.2286879. Benjamin SG, 2016, MON WEATHER REV, V144, P1669, DOI 10.1175/MWR-D-15-0242.1. Birenboim A, 2019, PROF GEOGR, V71, P449, DOI 10.1080/00330124.2018.1547978. Bok K, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18093084. Bonander J, 2010, J MED INTERNET RES, V12, DOI 10.2196/jmir.1346. Bontemps S, 2015, REMOTE SENS-BASEL, V7, P16062, DOI 10.3390/rs71215815. Botts M, 2008, LECT NOTES COMPUT SC, V4540, P175. Boubrima A, 2017, IEEE T WIREL COMMUN, V16, P2723, DOI 10.1109/TWC.2017.2658601. Briassouli A, 2018, 2018 15TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), P217. Caudal Patrick., 2005, EVENT ARGUMENTS FDN, P277. Chang XJ, 2017, IEEE T PATTERN ANAL, V39, P1617, DOI 10.1109/TPAMI.2016.2608901. Chen F, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1166, DOI 10.1145/2623330.2623619. Chen M, 2016, MOBILE NETW APPL, V21, P825, DOI 10.1007/s11036-016-0745-1. Chen NC, 2014, INT J DIGIT EARTH, V7, P935, DOI 10.1080/17538947.2013.834385. Chen YN, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P483. CHEN Z, 2009, P WORKSH EV EM TEXT. Chen Z, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18030821. Chierichetti F, 2014, 8 INT AAAI C WEBL SO. Christian KA, 2017, HEALTH SECUR, V15, P453, DOI 10.1089/hs.2017.0004. Cong Y, 2019, PATTERN RECOGN, V96, DOI 10.1016/j.patcog.2019.106967. Costa DG, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18041080. Crooks A, 2013, T GIS, V17, P124, DOI 10.1111/j.1467-9671.2012.01359.x. Cruz-Albarran IA, 2017, INFRARED PHYS TECHN, V81, P250, DOI 10.1016/j.infrared.2017.01.002. Dang Y, 2014, DECIS SUPPORT SYST, V61, P126, DOI 10.1016/j.dss.2014.02.004. Daniel K, 2009, 2009 IEEE INTERNATIONAL SYSTEMS CONFERENCE, PROCEEDINGS, P196, DOI 10.1109/SYSTEMS.2009.4815797. Dautov R, 2018, SOFTWARE PRACT EXPER, V48, P1475, DOI 10.1002/spe.2586. Debba P, 2005, REMOTE SENS ENVIRON, V99, P373, DOI 10.1016/j.rse.2005.05.005. DeLongueville B., 2010, GEOMATICA, V64, P41, DOI DOI 10.5623/GEOMAT-2010-0005. Duan W, 2013, IEEE INTELL SYST, V28, P18, DOI 10.1109/MIS.2013.29. Durry G, 2001, J ATMOS OCEAN TECH, V18, P1485, DOI 10.1175/1520-0426(2001)018<1485:ANIDLS>2.0.CO;2. Dutta J, 2017, 18TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING (ICDCN 2017), DOI 10.1145/3007748.3018286. ECDC, 2019, COMM DIS THREATS REP. ELKHLIFI A, 2010, 23 INT FLOR ART INT. Estruch A, 2012, LECT NOTES COMPUT SC, V7481, P120, DOI 10.1007/978-3-642-32885-5\_9. FELLER C, 2019, ATZELECTRONICS WORLD, V14, P34. {*}FEMA, 2019, AN DIS MOD AW PREP. FILIPPONI L, 2010, 2010 4 INT C SENS TE. Fuhrer O, 2018, GEOSCI MODEL DEV, V11, P1665, DOI 10.5194/gmd-11-1665-2018. Gao S, 2018, P IEEE, V106, P339, DOI 10.1109/JPROC.2018.2805267. Gao W, 2016, NATURE, V529, P509, DOI 10.1038/nature16521. Garello R, 2017, 2017 IEEE WORKSHOP ON ENVIRONMENTAL, ENERGY, AND STRUCTURAL MONITORING SYSTEMS (EESMS), P64, DOI 10.1109/EESMS.2017.8052689. Gashnikov MV, 2016, COMPUT OPT, V40, P543, DOI 10.18287/2412-6179-2016-40-4-543-551. Ge YY, 2015, IEEE T SMART GRID, V6, P2088, DOI 10.1109/TSG.2014.2383693. George AD, 2018, P IEEE, V106, P458, DOI 10.1109/JPROC.2018.2802438. Giglio L, 2016, REMOTE SENS ENVIRON, V178, P31, DOI 10.1016/j.rse.2016.02.054. Goodchild MF, 2007, GEOJOURNAL, V69, P211, DOI 10.1007/s10708-007-9111-y. Gorelick N, 2017, REMOTE SENS ENVIRON, V202, P18, DOI 10.1016/j.rse.2017.06.031. Goyette N., 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), DOI 10.1109/CVPRW.2012.6238919. Groh BH, 2015, 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN). Guille A, 2015, SOC NETW ANAL MIN, V5, DOI 10.1007/s13278-015-0258-0. Guillem F, 2005, BRAIN COGNITION, V57, P84, DOI 10.1016/j.bandc.2004.08.026. Hassan Zadeh A, 2019, INFORM SYST FRONT, V21, P743, DOI 10.1007/s10796-018-9893-0. Heittola T, 2011, WORKSH MACH LIST MUL, P36. Hill D. J., 2007, P C INT ASS HYDR RES, V32, P503. Ho S. S., 2012, P 1 ACM SIGSPATIAL I, P25. HUANG L, 2017, ARXIV170701066. Huang X, 2019, INT J DIGIT EARTH, V12, P1248, DOI 10.1080/17538947.2018.1523956. Huang X, 2020, INT J DIGIT EARTH, V13, P1017, DOI 10.1080/17538947.2019.1633425. Huhn P, 2009, NARRATOLOGIA, V19, P80. Hussain M, 2013, ISPRS J PHOTOGRAMM, V80, P91, DOI 10.1016/j.isprsjprs.2013.03.006. Ibarrola-Ulzurrun E, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17020228. Jiang WX, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134142. Jin J, 2014, IEEE INTERNET THINGS, V1, P112, DOI 10.1109/JIOT.2013.2296516. Johansen K, 2010, PHOTOGRAMM ENG REM S, V76, P123, DOI 10.14358/PERS.76.2.123. Kao CC, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17071477. Karpatne A, 2019, IEEE T KNOWL DATA EN, V31, P1544, DOI 10.1109/TKDE.2018.2861006. KAUTZ T, 2015, WORKSH LARG SCAL SPO. Kaya GT, 2009, INT GEOSCI REMOTE SE, P1102, DOI 10.1109/IGARSS.2009.5418229. Khaleghi B, 2013, INFORM FUSION, V14, P28, DOI 10.1016/j.inffus.2011.08.001. KHANNA V, 2013, INT J COMPUTER APPL, V65, P12. Kilicoglu H, 2009, P BIONLP 2009 WORKSH, P119, DOI DOI 10.3115/1572340.1572361. Kinne J, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7010001. Kittler J, 2014, IEEE T PATTERN ANAL, V36, P845, DOI 10.1109/TPAMI.2013.209. KOCH GG, 2008, 2008 28 INT C DISTR. KOPETZ H, 1991, LECT NOTES COMPUT SC, V563, P87. Landrigan PJ, 2018, LANCET, V391, P430. Lanza-Cruz I, 2018, INFORMATICS-BASEL, V5, DOI 10.3390/informatics5030033. Lawrence DA, 2013, J ATMOS OCEAN TECH, V30, P2352, DOI 10.1175/JTECH-D-12-00089.1. Lee J, 2015, IEEE IC COMP COM NET. Lee K, 2015, INT CONF NETW FUT. Lee SC, 2004, PROC CVPR IEEE, P113. Leichtle T, 2017, INT J APPL EARTH OBS, V54, P15, DOI 10.1016/j.jag.2016.08.010. Lejeune G, 2015, ARTIF INTELL MED, V65, P131, DOI 10.1016/j.artmed.2015.06.005. Li WW, 2020, INT J GEOGR INF SCI, V34, P637, DOI 10.1080/13658816.2018.1542697. LI Y, 2018, IGARSS 2018. Li YP, 2013, IEEE T KNOWL DATA EN, V25, P2463, DOI 10.1109/TKDE.2012.179. Li ZH, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON). Li ZL, 2019, INT J DIGIT EARTH, V12, P1198, DOI 10.1080/17538947.2019.1670951. Li ZL, 2017, COMPUT ENVIRON URBAN, V62, P210, DOI 10.1016/j.compenvurbsys.2016.12.003. Li ZL, 2017, INT J GEOGR INF SCI, V31, P17, DOI 10.1080/13658816.2015.1131830. LI ZL, 2019, INT J GEOGR INF 0421. Linguistic Data Consortium, 2005, ACE AUT CONT EXTR EN. Liu FG, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17030491. Liu T, 2018, IEEE INT CON AUTO SC, P1, DOI 10.1109/COASE.2018.8560378. Liu Y, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P1617. Liu Y, 2015, ANN ASSOC AM GEOGR, V105, P512, DOI 10.1080/00045608.2015.1018773. Lo SL, 2017, EXPERT SYST APPL, V81, P282, DOI 10.1016/j.eswa.2017.03.029. Lopez-Cuevas A, 2018, IEEE T AFFECT COMPUT, V9, P372, DOI 10.1109/TAFFC.2017.2741478. Luna E, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18124290. Madan A, 2010, UBICOMP 2010: PROCEEDINGS OF THE 2010 ACM CONFERENCE ON UBIQUITOUS COMPUTING, P291. MADRY S, 2018, INNOVATIVE DESIGN MA, P1. Majumder S, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17010130. Malbasa V, 2013, 2013 IEEE GRENOBLE POWERTECH (POWERTECH). Manolakis D, 2014, IEEE SIGNAL PROC MAG, V31, P24, DOI 10.1109/MSP.2013.2278915. MAO Y, 2016, INT C DAT SYST ADV A. Martineau P, 2010, GEOPHYS RES LETT, V37, DOI 10.1029/2010GL045237. McMinn AJ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION \& KNOWLEDGE MANAGEMENT (CIKM'13), P409, DOI 10.1145/2505515.2505695. Meira-Machado L, 2009, STAT METHODS MED RES, V18, P195, DOI 10.1177/0962280208092301. MERTENS R, 2011, P 2011 JOINT ACM WOR. MIDDLETON SE, 2013, DECISION SUPPORT SYS. Middleton SE, 2014, IEEE INTELL SYST, V29, P9, DOI 10.1109/MIS.2013.126. Missier P, 2016, LECT NOTES COMPUT SC, V9881, P80, DOI 10.1007/978-3-319-46963-8\_7. Mondal A, 2016, SOFT COMPUT, V20, P785, DOI 10.1007/s00500-014-1543-y. Mousavi A, 2013, 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), P81, DOI 10.1109/CIDM.2013.6597221. Mubashir M, 2013, NEUROCOMPUTING, V100, P144, DOI 10.1016/j.neucom.2011.09.037. {*}NCEI, 2019, US BILL DOLL WEATH C. Neill DB, 2013, STAT MED, V32, P2185, DOI 10.1002/sim.5675. Neill DB, 2012, IEEE INTELL SYST, V27, P56, DOI 10.1109/MIS.2012.18. NERVOLD AK, 2016, ADV AEROSP SCI TECHN, V1, P14, DOI DOI 10.4236/AAST.2016.11002. Nguyen T. H., 2016, P 2016 C EMP METH NA, P886, DOI DOI 10.18653/V1/D16-1085. Nguyen VN, 2016, PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS FOR SCIENCE AND ENGINEERING (IEEE-ICAMSE 2016), P151, DOI 10.1109/ICAMSE.2016.7840262. Nie LQ, 2017, PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), P1192, DOI 10.1145/3123266.3123313. {*}NIST, 2013, NIST TRECVID MULT EV. Oh S., 2011, P IEEE C COMP VIS PA, P3153, DOI DOI 10.1109/CVPR.2011.5995586. Olsson RH, 2016, IEEE SENSOR. Osborne T, 2017, APPL GEOGR, V87, P160, DOI 10.1016/j.apgeog.2017.08.006. Oyana TJ, 2017, J ASTHMA, V54, P842, DOI 10.1080/02770903.2016.1277537. PANAGIOTOU N, 2016, JOINT EUR C MACH LEA. Parekh H., 2014, INT J INNOVAT RES CO, V2, P2970. PASCHKE A, 2010, ARXIV10080823. Patroumpas K, 2017, GEOINFORMATICA, V21, P389, DOI 10.1007/s10707-016-0266-x. Perez-Neira AI, 2019, IEEE SIGNAL PROC MAG, V36, P112, DOI 10.1109/MSP.2019.2894391. PETERS R, 2015, 12 INT C INF SYST CR. Poslad S, 2015, IEEE T EMERG TOP COM, V3, P246, DOI 10.1109/TETC.2015.2432742. QIN Y, 2013, P 6 INT JOINT C NAT. Qiu JX, 2019, INT J APPL EARTH OBS, V80, P47, DOI 10.1016/j.jag.2019.03.015. Qu Q., 2015, IEEE DATA ENG B, V38, P58. RAVANBAKHSH M, 2017, 2018 IEEE WINT C APP. Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1. Ren CX, 2016, PROCEEDINGS OF THE 6TH INTERNATIONAL ASIA CONFERENCE ON INDUSTRIAL ENGINEERING AND MANAGEMENT INNOVATION: CORE THEORY AND APPLICATIONS OF INDUSTRIAL ENGINEERING, VOL 1, P635, DOI 10.2991/978-94-6239-148-2\_62. REN X, 2019, PAC AS C KNOWL DISC. RESCH B, 2010, INT J ADV NET SERV, V3, P323. Resch B., 2015, GI FORUM, V1, P514, DOI DOI 10.1553/GISCIENCE2015S514. Resch B, 2018, CARTOGR GEOGR INF SC, V45, P362, DOI 10.1080/15230406.2017.1356242. Resch B, 2016, URBAN PLAN, V1, P114, DOI 10.17645/up.v1i2.617. Resch B, 2015, LECT NOTES GEOINF CA, P199, DOI 10.1007/978-3-319-11879-6\_14. Reynen A, 2017, GEOPHYS J INT, V210, P1394, DOI 10.1093/gji/ggx238. RISTEA A, 2018, ISPRS INT J GEO INF, V7. Rivera ER, 2014, J HYDROMETEOROL, V15, P813, DOI 10.1175/JHM-D-12-0189.1. Rodrigues JGP, 2015, IEEE T INTELL TRANSP, V16, DOI 10.1109/TITS.2015.2445314. Ross M K, 2014, Yearb Med Inform, V9, P97, DOI 10.15265/IY-2014-0003. Ruiz N, 2011, INT J PROD RES, V49, P1469, DOI 10.1080/00207543.2010.522304. Sagl G, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19204448. Sagl G, 2012, SENSORS-BASEL, V12, P9800, DOI 10.3390/s120709800. Sakai T, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-015-0817-x. Sakaki T., 2010, P 19 INT C WORLD WID, P851. Sang Y, 2018, IEEE ACCESS, V6, P49339, DOI 10.1109/ACCESS.2018.2868268. Schinasi LH, 2018, ANN EPIDEMIOL, V28, P493, DOI 10.1016/j.annepidem.2018.03.008. Schuh P, 2013, IEEE MTT S INT MICR. Semmens KA, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/1/014020. Shi LL, 2018, BIG DATA MIN ANAL, V1, P34, DOI 10.26599/BDMA.2018.9020004. Shimabukuro TT, 2015, VACCINE, V33, P4398, DOI 10.1016/j.vaccine.2015.07.035. Shmueli G, 2010, TECHNOMETRICS, V52, P39, DOI 10.1198/TECH.2010.06134. SHROFF G, 2011, 14 INT C INF FUS CHI. Singh JP, 2019, ANN OPER RES, V283, P737, DOI 10.1007/s10479-017-2522-3. Soares N, 2017, J AM MED INFORM ASSN, V24, P891, DOI 10.1093/jamia/ocx011. Solberg AHS, 2012, P IEEE, V100, P2931, DOI 10.1109/JPROC.2012.2196250. Soulard CE, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8050371. SOUTO G, 2016, SOLVING LARGE SCALE, P221, DOI DOI 10.1007/978-3-319-41706-6. Steele F, 2004, STAT MODEL, V4, P145, DOI 10.1191/1471082X04st069oa. Tan R, 2010, IEEE INFOCOM SER. Tang B, 2017, IEEE T IND INFORM, V13, P2140, DOI 10.1109/TII.2017.2679740. Tapete D, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10040561. TEMKO A, 2006, INT EV WORKSH CLASS. Tian FY, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11060629. Traag V. A., 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P625, DOI 10.1109/PASSAT/SocialCom.2011.133. TRANTHE H, 2014, 2017 IEEE INT C BIG. Trick WE, 2013, CLIN INFECT DIS, V57, P434, DOI 10.1093/cid/cit249. Tsinganos P, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020592. TURCHIN Y, 2009, P 3 ACM INT C DISTR. Urbain J, 2015, J BIOMED INFORM, V58, pS143, DOI 10.1016/j.jbi.2015.08.009. Valenti S, 2011, IEEE ICC. Varatharajan R., 2018, Cluster Computing, V21, P681, DOI 10.1007/s10586-017-0977-2. VERMA I, 2015, INT C PATT REC MACH. Villano M, 2016, IEEE GEOSCI REMOTE S, V13, P1173, DOI 10.1109/LGRS.2016.2574886. Wang T, 2014, IEEE T INF FOREN SEC, V9, P988, DOI 10.1109/TIFS.2014.2315971. Wang ZH, 2015, IEEE COMMUN MAG, V53, P216, DOI 10.1109/MCOM.2015.7105668. Werner C, 2019, ISPRS INT GEO-INF, V8, DOI 10.3390/ijgi8060265. Werner-Allen G, 2006, IEEE INTERNET COMPUT, V10, P18, DOI 10.1109/MIC.2006.26. Wilks DS., 2011, STAT METHODS ATMOSPH. Witmer FDW, 2015, INT J REMOTE SENS, V36, P2326, DOI 10.1080/01431161.2015.1035412. World Health Organization, 2020, COR DIS COVID 19 PAN. Xiao Y, 2015, NAT HAZARDS, V79, P1663, DOI 10.1007/s11069-015-1918-0. Xu TT, 2016, IMAGE VISION COMPUT, V55, P127, DOI 10.1016/j.imavis.2016.01.001. Yan R, 2016, I C CONT AUTOMAT ROB. Yang AM, 2018, IEEE ACCESS, V6, DOI 10.1109/ACCESS.2018.2816565. Yang CW, 2019, BIG EARTH DATA, V3, P83, DOI 10.1080/20964471.2019.1611175. Yang CW, 2020, INT J GEOGR INF SCI, V34, P1075, DOI 10.1080/13658816.2019.1698743. Yang CW, 2017, COMPUT ENVIRON URBAN, V61, P120, DOI 10.1016/j.compenvurbsys.2016.10.010. Yang JC, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8030111. Younis J, 2008, HYDROL EARTH SYST SC, V12, P1039, DOI 10.5194/hess-12-1039-2008. Yu MZ, 2019, INT J DIGIT EARTH, V12, P1230, DOI 10.1080/17538947.2019.1574316. Yu MZ, 2018, COMPUT GEOSCI-UK, V121, P53, DOI 10.1016/j.cageo.2018.10.003. Yu MZ, 2017, INT J GEOGR INF SCI, V31, P939, DOI 10.1080/13658816.2016.1250900. Yu X, 2012, INT C WIREL COMM NET. Zaheer S, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES. Zaman HU, 2016, 2016 INTERNATIONAL CONFERENCE ON MICROELECTRONICS, COMPUTING AND COMMUNICATIONS (MICROCOM). Zechman EM, 2011, RISK ANAL, V31, P758, DOI 10.1111/j.1539-6924.2010.01564.x. Zhang C, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P513, DOI 10.1145/2911451.2911519. Zhang JX, 2010, INT J IMAGE DATA FUS, V1, P5, DOI 10.1080/19479830903561035. Zhang S, 2015, TRANSPORT RES REC, P69, DOI 10.3141/2528-08. Zhong YF, 2018, IEEE GEOSC REM SEN M, V6, P46, DOI 10.1109/MGRS.2018.2867592. Zhou XM, 2014, VLDB J, V23, P381, DOI 10.1007/s00778-013-0320-3. Zhuang XD, 2010, PATTERN RECOGN LETT, V31, P1543, DOI 10.1016/j.patrec.2010.02.005.}, Number-of-Cited-References = {229}, Times-Cited = {37}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {72}, Journal-ISO = {Int. J. Digit. Earth}, Doc-Delivery-Number = {PA4YF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000519323900001}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000832308400001, Author = {Seng, Jasmine Kah Phooi and Ang, Kenneth Li-minn and Peter, Eno and Mmonyi, Anthony}, Title = {Artificial Intelligence (AI) and Machine Learning for Multimedia and Edge Information Processing}, Journal = {ELECTRONICS}, Year = {2022}, Volume = {11}, Number = {14}, Month = {JUL}, Abstract = {The advancements and progress in artificial intelligence (AI) and machine learning, and the numerous availabilities of mobile devices and Internet technologies together with the growing focus on multimedia data sources and information processing have led to the emergence of new paradigms for multimedia and edge AI information processing, particularly for urban and smart city environments. Compared to cloud information processing approaches where the data are collected and sent to a centralized server for information processing, the edge information processing paradigm distributes the tasks to multiple devices which are close to the data source. Edge information processing techniques and approaches are well suited to match current technologies for Internet of Things (IoT) and autonomous systems, although there are many challenges which remain to be addressed. The motivation of this paper was to survey these new paradigms for multimedia and edge information processing from several technological perspectives including: (1) multimedia analytics on the edge empowered by AI; (2) multimedia streaming on the intelligent edge; (3) multimedia edge caching and AI; (4) multimedia services for edge AI; and (5) hardware and devices for multimedia on edge intelligence. The review covers a wide spectrum of enabling technologies for AI and machine learning for multimedia and edge information processing.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Seng, JKP (Corresponding Author), Xian Jiaotong Liverpool Univ, Sch AI \& Adv Comp, Suzhou 215123, Peoples R China. Seng, JKP (Corresponding Author), Queensland Univ Technol, Sch Comp Sci, Brisbane, Qld 4000, Australia. Seng, Jasmine Kah Phooi, Xian Jiaotong Liverpool Univ, Sch AI \& Adv Comp, Suzhou 215123, Peoples R China. Seng, Jasmine Kah Phooi, Queensland Univ Technol, Sch Comp Sci, Brisbane, Qld 4000, Australia. Ang, Kenneth Li-minn, Univ Sunshine Coast, Sch Sci \& Engn, Petrie, Qld 4502, Australia. Peter, Eno, Fed Univ, Dept Comp Sci, Oye Ekiti 370112, Nigeria. Mmonyi, Anthony, Afe Babalola Univ, Dept Elect \& Comp Engn, Ado Ekiti 360102, Nigeria.}, DOI = {10.3390/electronics11142239}, Article-Number = {2239}, EISSN = {2079-9292}, Keywords = {multimedia processing; edge multimedia; intelligence edge; edge AI; edge computing; edge multimedia analytics}, Keywords-Plus = {CONVOLUTIONAL NETWORKS; SMART CITIES; DEEP; INTERNET; CLASSIFICATION; SURVEILLANCE; CHALLENGES; TRENDS; QOE}, Research-Areas = {Computer Science; Engineering; Physics}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Physics, Applied}, Author-Email = {kahphooi.seng@qut.edu.au lang@usc.edu.au eno.peter@fuoye.edu.ng mmonyica@abuad.edu.ng}, Affiliations = {Xi'an Jiaotong-Liverpool University; Queensland University of Technology (QUT); University of the Sunshine Coast}, ORCID-Numbers = {Mmonyi, Anthony Chukwunonso/0000-0002-1542-7520}, Cited-References = {Ahmed I, 2021, APPL SOFT COMPUT, V107, DOI 10.1016/j.asoc.2021.107489. Albawi S, 2017, I C ENG TECHNOL. Ali H. A., 2021, 2021 13 INT C ELECT, P1. Ali J, 2021, COMPUTER MEDIATED CO. Ali M., 2018, 2018 IEEE 2 INT C FO, P1, DOI DOI 10.1109/CFEC.2018.8358733. Ang L, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10080952. Ang LM, 2017, IEEE INTERNET THINGS, V4, P1259, DOI 10.1109/JIOT.2017.2695535. Ang LM, 2016, BIG DATA RES, V4, P1, DOI 10.1016/j.bdr.2015.12.003. {[}Anonymous], EDGE DATASET. Arulkumaran K, 2017, IEEE SIGNAL PROC MAG, V34, P26, DOI 10.1109/MSP.2017.2743240. Aslam A, 2021, IMAGE VISION COMPUT, V106, DOI 10.1016/j.imavis.2020.104095. Asyraaf Jainuddin Ahmad Ammar, 2020, 2020 8th International Conference on Information Technology and Multimedia (ICIMU), P323, DOI 10.1109/ICIMU49871.2020.9243367. Ban YX, 2020, IEEE INT CON MULTI. Bengio Y, 2021, COMMUN ACM, V64, P58, DOI 10.1145/3448250. Bigioi D., 2021, P 2021 IEEE INT C CO, P1. Bonomi F., 2012, P 1 ED MCC WORKSH MO, P13, DOI {[}DOI 10.1145/2342509.2342513, 10.1145/2342509.2342513]. Breland DS, 2021, IEEE SENS J, V21, P10445, DOI 10.1109/JSEN.2021.3061608. Centenaro M, 2020, IEEE VEH TECHNOL MAG, V15, P72, DOI 10.1109/MVT.2020.2979082. Chaitra S., 2021, P 2021 6 INT C CONVE, P1. Chen Q, 2019, INT CON DISTR COMP S, P1040, DOI 10.1109/ICDCS.2019.00107. Chen Y, 2020, INT C PAR DISTRIB SY, P266, DOI 10.1109/ICPADS51040.2020.00044. Cheng DC, 2017, IEEE J-STARS, V10, P5769, DOI 10.1109/JSTARS.2017.2747599. Chew LW, 2012, INT J SENS NETW, V11, P33, DOI 10.1504/IJSNET.2012.045033. Civerchia F, 2020, 2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC). Collins A.G., 2018, GOALDIRECTED DECISIO, P105. Creswell A, 2018, IEEE SIGNAL PROC MAG, V35, P53, DOI 10.1109/MSP.2017.2765202. Dai PL, 2023, IEEE T MOBILE COMPUT, V22, P1464, DOI 10.1109/TMC.2021.3106147. Dai YY, 2020, IEEE T VEH TECHNOL, V69, P4312, DOI 10.1109/TVT.2020.2973705. Dassanayake PM, 2022, IEEE T NETW SCI ENG, V9, P7, DOI 10.1109/TNSE.2021.3083990. Davies M, 2018, IEEE MICRO, V38, P82, DOI 10.1109/MM.2018.112130359. Ding P, 2021, INT WIREL COMMUN, P1286, DOI 10.1109/IWCMC51323.2021.9498953. Du ZD, 2015, 2015 ACM/IEEE 42ND ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), P92, DOI 10.1145/2749469.2750389. Foukalas F, 2021, IEEE IND ELECTRON M, V15, P28, DOI 10.1109/MIE.2020.3026837. Fuketa H, 2021, COMPUTER, V54, P84. Grosky W. I., 1994, IEEE Multimedia, V1, P12, DOI 10.1109/93.295262. Guo BR, 2019, IEEE ACCESS, V7, P160961, DOI 10.1109/ACCESS.2019.2951219. Hossain MS, 2019, INFORM FUSION, V49, P69, DOI 10.1016/j.inffus.2018.09.008. Hu F, 2013, INTELLIGENT SENSOR NETWORKS: THE INTEGRATION OF SENSOR NETWORKS, SIGNAL PROCESSING AND MACHINE LEARNING, P1. Hu HJ, 2020, IEEE INTERNET THINGS, V7, P4746, DOI 10.1109/JIOT.2020.2968941. Huo YJ, 2020, 2020 IEEE INTERNATIONAL SYMPOSIUM ON POWER LINE COMMUNICATIONS AND ITS APPLICATIONS (IEEE ISPLC). Ilhan HE, 2021, 2021 44TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), P296, DOI 10.1109/TSP52935.2021.9522611. Jiang XT, 2022, IEEE INTERNET THINGS, V9, P14260, DOI 10.1109/JIOT.2020.3026354. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Kaijie Wei, 2020, 2020 Eighth International Symposium on Computing and Networking (CANDAR), P228, DOI 10.1109/CANDAR51075.2020.00039. Karim F, 2018, IEEE ACCESS, V6, P1662, DOI 10.1109/ACCESS.2017.2779939. Kelleher JD, 2019, MIT PRESS ESSENT, P1. Doan KN, 2018, IEEE T WIREL COMMUN, V17, P3128, DOI 10.1109/TWC.2018.2806971. Kim JH, 2021, IEEE ACCESS, V9, P123348, DOI 10.1109/ACCESS.2021.3109904. Kljucaric L, 2020, IEEE HIGH PERF EXTR. Kristiani E, 2020, IEEE ACCESS, V8, P27267, DOI 10.1109/ACCESS.2020.2971566. Larochelle H, 2012, J MACH LEARN RES, V13, P643. Li DX, 2020, PLANT SOIL, V457, P83, DOI 10.1007/s11104-019-04274-9. Li JW, 2020, IEEE INTL CONF IND I, P579, DOI 10.1109/INDIN45582.2020.9442166. Li T, 2020, IEEE SIGNAL PROC MAG, V37, P50, DOI 10.1109/MSP.2020.2975749. Liu D, 2019, IEEE ACCESS, V7, P83120, DOI 10.1109/ACCESS.2019.2925019. Liu Y, 2020, INFORM SCIENCES, V521, P14, DOI 10.1016/j.ins.2020.02.042. Liu YT, 2021, J SYST ARCHITECT, V114, DOI 10.1016/j.sysarc.2020.101934. Luo J, 2020, IEEE T WIREL COMMUN, V19, P1577, DOI 10.1109/TWC.2019.2955129. Maleki A., 2018, MAJL J ELECT ENG, V12, P23. Mao YY, 2017, IEEE COMMUN SURV TUT, V19, P2322, DOI 10.1109/COMST.2017.2745201. Masood A, 2021, 35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), P291, DOI 10.1109/ICOIN50884.2021.9333920. Mehmood Y, 2017, IEEE COMMUN MAG, V55, P16, DOI 10.1109/MCOM.2017.1600514. Monburinon N, 2019, PROCEEDINGS OF THE 2019 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (INCIT), P294, DOI 10.1109/INCIT.2019.8912138. Muller S, 2017, IEEE T WIREL COMMUN, V16, P1024, DOI 10.1109/TWC.2016.2636139. Muhammed T, 2018, IEEE ACCESS, V6, P32258, DOI 10.1109/ACCESS.2018.2846609. Munir A, 2021, IEEE AERO EL SYS MAG, V36, P62, DOI 10.1109/MAES.2020.3043072. Nvidia Corporation, JETS TX2 MOD. Park S, 2020, 2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), P10, DOI 10.1109/ICOIN48656.2020.9016591. Pascanu R., 2013, P ICML. Philip, 2019, IEEE T IND INFORMAT, V99, P1, DOI {[}DOI 10.1109/TII.2019.2909473, 10.1109/TII.2019.2909473]. Piyasena D, 2021, ANN IEEE SYM FIELD P, P259, DOI 10.1109/FCCM51124.2021.00046. Qu CY, 2021, FUTURE GENER COMP SY, V125, P247, DOI 10.1016/j.future.2021.06.040. Ran XK, 2018, IEEE INFOCOM SER, P1421. Roy P, 2020, COMPUT NETW, V182, DOI 10.1016/j.comnet.2020.107573. Russell SJ, 1995, ARTIF INTELL. Said A, 2018, FUTURE INTERNET, V10, DOI 10.3390/fi10100093. Samek W., 2019, EXPLAINABLE AI INTER, V11700. Sarabia-Jacome D, 2020, INTERNET THINGS-NETH, V11, DOI 10.1016/j.iot.2020.100185. Seng KP, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10080895. Sharma R, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE), P42, DOI 10.1109/EDGE.2018.00013. Shuja J, 2021, J NETW COMPUT APPL, V181, DOI 10.1016/j.jnca.2021.103005. Silva BN, 2018, SUSTAIN CITIES SOC, V38, P697, DOI 10.1016/j.scs.2018.01.053. Spinner T, 2020, IEEE T VIS COMPUT GR, V26, P1064, DOI 10.1109/TVCG.2019.2934629. Steiglitz K., 1996, DIGITAL SIGNAL PROCE. Subramaniam RR, 2021, J VIS COMMUN IMAGE R, V77, DOI 10.1016/j.jvcir.2021.103132. Sun CH, 2018, PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS 2018), P280, DOI 10.1109/ICCS.2018.8689227. Sutton A., 2017, IET 5G C LOND UK. Tan TX, 2023, IEEE T MOBILE COMPUT, V22, P1433, DOI 10.1109/TMC.2021.3105953. Tan TX, 2021, ANN IEEE INT CONF SE, DOI 10.1109/SECON52354.2021.9491614. Thar K, 2018, IEEE ACCESS, V6, P78260, DOI 10.1109/ACCESS.2018.2884913. Tsaknaki Vasiliki, 2021, P ICC 2021 IEEE INT, P1. Varghese B, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD), P20, DOI 10.1109/SmartCloud.2016.18. Verbelen Tim, 2012, P 3 ACM WORKSH MOB C. Wang FX, 2020, IEEE ACM T NETWORK, V28, P1255, DOI 10.1109/TNET.2020.2979966. Wang R, 2019, IEEE T VEH TECHNOL, V68, P8279, DOI 10.1109/TVT.2019.2921615. Wang SB, 2020, IEEE INFOCOM SER, P2519, DOI 10.1109/INFOCOM41043.2020.9155284. Wang W, 2017, IEEE ACCESS, V5, P6399, DOI 10.1109/ACCESS.2017.2679198. Wu DP, 2021, IEEE T MULTIMEDIA, V23, P2208, DOI 10.1109/TMM.2021.3066050. Wu Q, 2019, INT C PAR DISTRIB SY, P525, DOI 10.1109/ICPADS47876.2019.00080. Wu WJ, 2019, IEEE ACCESS, V7, P181740, DOI 10.1109/ACCESS.2019.2960191. Xiang H., 2019, PROC IEEE C VEH TECH, P1. Yang Q., 2020, TRANSFER LEARNING. Yao JJ, 2019, IEEE COMMUN SURV TUT, V21, P2525, DOI 10.1109/COMST.2019.2908280. Yu HM, 1998, IEEE T NUCL SCI, V45, P772, DOI 10.1109/23.682634. Zhai CT, 2019, INT CONF MANIP MANU, P1, DOI 10.1109/3M-NANO46308.2019.8947388. Zhang C, 2019, PROC CVPR IEEE, P9444, DOI 10.1109/CVPR.2019.00968. Zhang C, 2019, IEEE ACCESS, V7, P152832, DOI 10.1109/ACCESS.2019.2947067. Zhao H, 2022, TSINGHUA SCI TECHNOL, V27, P455, DOI 10.26599/TST.2021.9010043. Zhou P, 2021, IEEE T NETW SCI ENG, V8, P419, DOI 10.1109/TNSE.2020.3038998. Zhou YF, 2022, IEEE T CIRC SYST VID, V32, P8116, DOI 10.1109/TCSVT.2021.3057872. Zhou Z, 2019, P IEEE, V107, P1738, DOI 10.1109/JPROC.2019.2918951.}, Number-of-Cited-References = {111}, Times-Cited = {0}, Usage-Count-Last-180-days = {31}, Usage-Count-Since-2013 = {38}, Journal-ISO = {Electronics}, Doc-Delivery-Number = {3H8VN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000832308400001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000823890600001, Author = {Badidi, Elarbi}, Title = {Edge AI and Blockchain for Smart Sustainable Cities: Promise and Potential}, Journal = {SUSTAINABILITY}, Year = {2022}, Volume = {14}, Number = {13}, Month = {JUL}, Abstract = {Modern cities worldwide are undergoing radical changes to foster a clean, sustainable and secure environment, install smart infrastructures, deliver intelligent services to residents, and facilitate access for vulnerable groups. The adoption of new technologies is at the heart of implementing many initiatives to address critical concerns in urban mobility, healthcare, water management, clean energy production and consumption, energy saving, housing, safety, and accessibility. Given the advancements in sensing and communication technologies over the past few decades, exploring the adoption of recent and innovative technologies is critical to addressing these concerns and making cities more innovative, sustainable, and safer. This article provides a broad understanding of the current urban challenges faced by smart cities. It highlights two new technological advances, edge artificial intelligence (edge AI) and Blockchain, and analyzes their transformative potential to make our cities smarter. In addition, it explores the multiple uses of edge AI and Blockchain technologies in the fields of smart mobility and smart energy and reviews relevant research efforts in these two critical areas of modern smart cities. It highlights the various algorithms to handle vehicle detection, counting, speed identification to address the problem of traffic congestion and the different use-cases of Blockchain in terms of trustworthy communications and trading between vehicles and smart energy trading. This review paper is expected to serve as a guideline for future research on adopting edge AI and Blockchain in other smart city domains.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Badidi, E (Corresponding Author), UAE Univ, Dept Comp Sci \& Software Engn, Coll Informat Technol, POB 15551, Al Ain, U Arab Emirates. Badidi, Elarbi, UAE Univ, Dept Comp Sci \& Software Engn, Coll Informat Technol, POB 15551, Al Ain, U Arab Emirates.}, DOI = {10.3390/su14137609}, Article-Number = {7609}, EISSN = {2071-1050}, Keywords = {edge computing; edge intelligence; Blockchain; smart grids; smart mobility; smart energy}, Keywords-Plus = {ENERGY MANAGEMENT; INTERNET; INTELLIGENCE; VEHICLES; TECHNOLOGY; CHALLENGES; ARCHITECTURE; CONVERGENCE; INFORMATION; PERFORMANCE}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {ebadidi@uaeu.ac.ae}, Affiliations = {United Arab Emirates University}, ORCID-Numbers = {Badidi, Elarbi/0000-0001-9121-8766}, Funding-Acknowledgement = {UAEU Program for Advanced Research Grant {[}G00003443]}, Funding-Text = {This work is supported by the UAEU Program for Advanced Research Grant N. G00003443.}, Cited-References = {Abbas N, 2018, IEEE INTERNET THINGS, V5, P450, DOI 10.1109/JIOT.2017.2750180. Abdel-Basset M, 2021, IEEE INTERNET THINGS, V8, P12422, DOI 10.1109/JIOT.2021.3063677. Aggarwal S, 2019, J NETW COMPUT APPL, V144, P13, DOI 10.1016/j.jnca.2019.06.018. Ai Y, 2018, DIGIT COMMUN NETW, V4, P77, DOI 10.1016/j.dcan.2017.07.001. Al Dakheel J, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102328. Albert S., 2019, INNOVATIVE SOLUTIONS. Ali FS, 2021, IEEE T IND INFORM, V17, P5769, DOI 10.1109/TII.2020.3046744. Alnoman A, 2019, IEEE NETWORK, V33, P140, DOI 10.1109/MNET.2019.1800543. Andoni M, 2019, RENEW SUST ENERG REV, V100, P143, DOI 10.1016/j.rser.2018.10.014. Annas GJ, 2003, NEW ENGL J MED, V348, P1486, DOI 10.1056/NEJMlim035027. {[}Anonymous], NVIDIA JETSON NANOED. {[}Anonymous], EDGE TPU RUN INFEREN. {[}Anonymous], NVIDIA JETSON TX2 HI. Arora SK, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11051998. Ayaz F, 2022, IEEE T VEH TECHNOL, V71, P1927, DOI 10.1109/TVT.2021.3132226. Bagloee SA, 2021, CITIES, V112, DOI 10.1016/j.cities.2021.103104. Barthelemy J, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19092048. Bashir I., 2018, MASTERING BLOCKCHAIN. Batty M, 2012, EUR PHYS J-SPEC TOP, V214, P481, DOI 10.1140/epjst/e2012-01703-3. Benevolo C, 2016, L N INF SYST ORGAN, V11, P13, DOI 10.1007/978-3-319-23784-8\_2. Benisi NZ, 2020, J NETW COMPUT APPL, V162, DOI 10.1016/j.jnca.2020.102656. Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003. Bodhani Aasha, 2012, Engineering \& Technology, V7, P70, DOI 10.1049/et.2012.0611. Boltz T., 2019, ACM T INTEL SYST TEC, P1, DOI DOI 10.1145/3298981. Bouachir O, 2022, IEEE T GREEN COMMUN, V6, P424, DOI 10.1109/TGCN.2022.3140978. Casado-Vara R, 2018, BLOCKSYS'18: PROCEEDINGS OF THE 1ST BLOCKCHAIN-ENABLED NETWORKED SENSOR SYSTEMS, P19, DOI 10.1145/3282278.3282282. Casino F, 2019, TELEMAT INFORM, V36, P55, DOI 10.1016/j.tele.2018.11.006. Chai HY, 2021, IEEE T INTELL TRANSP, V22, P3975, DOI 10.1109/TITS.2020.3002712. de Souza AM, 2017, INT J DISTRIB SENS N, V13, DOI 10.1177/1550147716683612. Deng SG, 2020, IEEE INTERNET THINGS, V7, P7457, DOI 10.1109/JIOT.2020.2984887. Doku R, 2020, 2020 IEEE 6TH INT CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / 6TH IEEE INT CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, (HPSC) / 5TH IEEE INT CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), P221, DOI 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00047. Du Y, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13020048. Dinh DL, 2021, J ADV TRANSPORT, V2021, DOI 10.1155/2021/5551976. Mohamed SAE, 2021, J ADV TRANSPORT, V2021, DOI 10.1155/2021/4037533. Farooq MS, 2019, IEEE ACCESS, V7, P156237, DOI 10.1109/ACCESS.2019.2949703. Ferreira JC, 2021, ENERGIES, V14, DOI 10.3390/en14061686. Gaggioli A, 2019, FRONT BLOCKCHAIN, V2, DOI 10.3389/fbloc.2019.00020. Garcia CG, 2017, FUTURE GENER COMP SY, V76, P301, DOI 10.1016/j.future.2016.12.033. Gorenflo C, 2019, E-ENERGY'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, P160, DOI 10.1145/3307772.3328283. Grimmond CSB, 2010, PROCEDIA ENVIRON SCI, V1, P247, DOI 10.1016/j.proenv.2010.09.016. Guo SY, 2020, IEEE T IND INFORM, V16, P1972, DOI 10.1109/TII.2019.2938001. Han X., 2021, OPEN, V2, P225, DOI {[}10.1016/j.aiopen.2021.08.002, DOI 10.1016/J.AIOPEN.2021.08.002]. Hasankhani A, 2021, INT J ELEC POWER, V129, DOI 10.1016/j.ijepes.2021.106811. Ho GTS, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19081796. Hsu KC, 2021, INT CONF HIGH PERFOR, DOI 10.1145/3458817.3476177. Hua WQ, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST 2019). Huang ZX, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10030307. Huang ZQ, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21196340. Hugo Priemus S.D, 2016, CLIMATE CHANGE SUSTA. Intel Movidius\&TRADE, VISION PROCESSING UN. Jiang XT, 2021, IEEE WIREL COMMUN, V28, P49, DOI 10.1109/MWC.201.2000462. Jimenez J.A., 2017, SMART CITIES APPL TE, P123, DOI {[}10.1007/978-3-319-59381-4\_8, DOI 10.1007/978-3-319-59381-4\_8]. Jung S, 2018, EURASIP J IMAGE VIDE, DOI 10.1186/s13640-018-0374-7. Kang ES, 2018, PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS), P472. Konstantinidis I, 2018, LECT NOTES BUS INF P, V320, P384, DOI 10.1007/978-3-319-93931-5\_28. Kowalski M, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120641. Kumar N.M., 2018, BENI SUEF U J BASIC, V7, P701, DOI DOI 10.1016/J.BJBAS.2018.08.003. Kumar T, 2016, PROCEDIA COMPUT SCI, V89, P726, DOI 10.1016/j.procs.2016.06.045. Law KH, 2019, IT PROF, V21, P46, DOI 10.1109/MITP.2019.2935405. Lei A, 2017, IEEE INTERNET THINGS, V4, P1832, DOI 10.1109/JIOT.2017.2740569. Letnik T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187500. Li T, 2020, IEEE SIGNAL PROC MAG, V37, P50, DOI 10.1109/MSP.2020.2975749. Liao R., 2020, SUSTAINABLE EC SMART, P1. Lim WYB, 2021, IEEE T INTELL TRANSP, V22, P5140, DOI 10.1109/TITS.2021.3056341. Lin J, 2019, APPL ENERG, V255, DOI 10.1016/j.apenergy.2019.113687. Lin X, 2019, IEEE T IND INFORM, V15, P6367, DOI 10.1109/TII.2019.2917307. Liu Y, 2019, IEEE NETWORK, V33, P111, DOI 10.1109/MNET.2019.1800254. Loffler M., 2016, DIGITAL MCKINSEY, P1. Lund H, 2017, ENERGY, V137, P556, DOI 10.1016/j.energy.2017.05.123. Luo B, 2020, IEEE T VEH TECHNOL, V69, P2034, DOI 10.1109/TVT.2019.2957744. Ma ZF, 2020, IEEE T IND INFORM, V16, P2013, DOI 10.1109/TII.2019.2933482. Ma Z, 2020, IEEE T VEH TECHNOL, V69, P5836, DOI 10.1109/TVT.2020.2972923. Manias DM, 2021, IEEE NETWORK, V35, P88, DOI 10.1109/MNET.011.2000560. Mendki P, 2020, 2020 2ND INTERNATIONAL CONFERENCE ON BLOCKCHAIN TECHNOLOGY (ICBCT 2020), P63, DOI 10.1145/3390566.3391689. Mengelkamp E, 2018, APPL ENERG, V210, P870, DOI 10.1016/j.apenergy.2017.06.054. Mihaylov M, 2018, TRANSFORMING CLIMATE, P111, DOI {[}10.1016/B978-0-12-814447-3.00009-4, DOI 10.1016/B978-0-12-814447-3.00009-4]. Mittal V, 2020, INT CONF COMM SYST, P55, DOI {[}10.1109/CSNT48778.2020.9115770, 10.1109/CSNT.2020.10]. Mondejar ME, 2021, SCI TOTAL ENVIRON, V794, DOI 10.1016/j.scitotenv.2021.148539. Moran A, 2021, COGN COMPUT, DOI 10.1007/s12559-020-09798-2. Morstyn T, 2018, NAT ENERGY, V3, P94, DOI 10.1038/s41560-017-0075-y. Mylrea M, 2017, 2017 RESILIENCE WEEK (RWS), P18, DOI 10.1109/RWEEK.2017.8088642. Nakamoto S., 2008, DECENTRALIZED BUSINE, DOI DOI 10.1371/JOURNAL.PONE.0206952. Nilsson A, 2018, DIDL'18: PROCEEDINGS OF THE SECOND WORKSHOP ON DISTRIBUTED INFRASTRUCTURES FOR DEEP LEARNING, P1, DOI 10.1145/3286490.3286559. Olnes S, 2017, GOV INFORM Q, V34, P355, DOI 10.1016/j.giq.2017.09.007. Panori A, 2021, LAND USE POLICY, V111, DOI 10.1016/j.landusepol.2020.104631. Park LW, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030658. Pee SJ, 2019, 2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), P322, DOI 10.1109/ICAIIC.2019.8668978. Peng YQ, 2021, MOB INF SYST, V2021, DOI 10.1155/2021/6633332. Peratalo S., 2018, J BUS MODEL, V6, P65, DOI {[}10.5278/ojs.jbm.v6i2.2466, DOI 10.5278/OJS.JBM.V6I2.2466]. Pokhrel SR, 2020, IEEE T COMMUN, V68, P4734, DOI 10.1109/TCOMM.2020.2990686. Pokhrel SR, 2020, IEEE T VEH TECHNOL, V69, P6798, DOI 10.1109/TVT.2020.2984369. Pop C, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18010162. Qiu C, 2020, IEEE NETWORK, V34, P62, DOI 10.1109/MNET.021.1900617. Rahman MA, 2019, IEEE ACCESS, V7, P18611, DOI 10.1109/ACCESS.2019.2896065. Rauchs M., 2018, DISTRIBUTED LEDGER T, DOI {[}10.2139/ssrn.3230013, DOI 10.2139/SSRN.3230013]. Redmon J, 2018, Arxiv, DOI DOI 10.48550/ARXIV.1804.02767. Rublee E, 2011, IEEE I CONF COMP VIS, P2564, DOI 10.1109/ICCV.2011.6126544. Sanders A, 2008, J HOUS ECON, V17, P254, DOI 10.1016/j.jhe.2008.10.001. Sarma KV, 2021, J AM MED INFORM ASSN, V28, P1259, DOI 10.1093/jamia/ocaa341. Satyanarayanan M, 2017, COMPUTER, V50, P30, DOI 10.1109/MC.2017.9. SHAFAGH H., 2017, PROC CLOUD COMPUT SE, P45, DOI 10.1145/3140649.3140656. Shah AS, 2019, INFORMATION, V10, DOI 10.3390/info10030108. Shala B, 2020, IEEE ACCESS, V8, P119961, DOI 10.1109/ACCESS.2020.3005541. Sharma PK, 2017, J INF PROCESS SYST, V13, P184. Shen C, 2018, IEEE ACCESS, V6, P76787, DOI 10.1109/ACCESS.2018.2880744. Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198. Shi WS, 2016, COMPUTER, V49, P78, DOI 10.1109/MC.2016.145. Shi YM, 2020, IEEE COMMUN SURV TUT, V22, P2167, DOI 10.1109/COMST.2020.3007787. Silva BN, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18092994. Smart, 2020, CIT IN WORLD AR IMPR. Song HS, 2019, EUR TRANSP RES REV, V11, DOI 10.1186/s12544-019-0390-4. Stanciu A, 2017, 2017 21ST INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), P667, DOI 10.1109/CSCS.2017.102. Sun W, 2019, IEEE NETWORK, V33, P68, DOI 10.1109/MNET.001.1800510. Sun X, 2016, IEEE COMMUN MAG, V54, P22, DOI 10.1109/MCOM.2016.1600492CM. Tao F, 2018, J MANUF SYST, V48, P157, DOI 10.1016/j.jmsy.2018.01.006. Teisserenc B, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11120670. Tian S., 2019, GHJ, V3, P62, DOI {[}10.1016/j.glohj.2019.07.001, DOI 10.1016/J.GLOHJ.2019.07.001]. Tuli S, 2019, J SYST SOFTWARE, V154, P22, DOI 10.1016/j.jss.2019.04.050. Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069. Upadhyay A, 2021, J CLEAN PROD, V293, DOI 10.1016/j.jclepro.2021.126130. van der Heijden RW, 2017, SERIAL 2017: THE 1ST WORKSHOP ON SCALABLE AND RESILIENT INFRASTRUCTURES FOR DISTRIBUTED LEDGERS, DOI 10.1145/3152824.3152828. Voigt P., 2017, EU GEN DATA PROTECTI, DOI {[}10.1007/978-3-319-57959-7, DOI 10.1007/978-3-319-57959-7]. Wang JJ, 2018, J MANUF SYST, V48, P144, DOI 10.1016/j.jmsy.2018.01.003. Wang LZ, 2020, APPL ENERG, V279, DOI 10.1016/j.apenergy.2020.115866. Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550. Werbach K, 2018, INFORM POL, P1. Xie JF, 2019, IEEE COMMUN SURV TUT, V21, P2794, DOI 10.1109/COMST.2019.2899617. Xie PP, 2018, 2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2). Xiong ZH, 2018, IEEE COMMUN MAG, V56, P33, DOI 10.1109/MCOM.2018.1701095. Xu D., 2020, ARXIV. Yang XD, 2020, IEEE T SYST MAN CY-S, V50, P58, DOI 10.1109/TSMC.2019.2903485. Yang Z, 2019, IEEE INTERNET THINGS, V6, P1495, DOI 10.1109/JIOT.2018.2836144. Yang Z, 2017, 2017 IEEE 28TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), DOI {[}10.1109/PIMRC.2017.8292724, 10.1145/3218603.3218634]. Yuan Y, 2016, 2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P2663, DOI 10.1109/ITSC.2016.7795984. Zamora-Izquierdo MA, 2019, BIOSYST ENG, V177, P4, DOI 10.1016/j.biosystemseng.2018.10.014. Zhang XD, 2021, SUSTAIN ENERGY TECHN, V46, DOI 10.1016/j.seta.2021.101208. Zhang XD, 2018, PROCEEDINGS OF 2018 1ST IEEE INTERNATIONAL CONFERENCE ON HOT INFORMATION-CENTRIC NETWORKING (HOTICN 2018), P258, DOI 10.1109/HOTICN.2018.8605952. Zhou Z, 2019, P IEEE, V107, P1738, DOI 10.1109/JPROC.2019.2918951. Zhu HX, 2019, IEEE CONSUM ELECTR M, V8, P26, DOI 10.1109/MCE.2019.2923929. Zhu S, 2020, RESOUR POLICY, V66, DOI 10.1016/j.resourpol.2020.101595.}, Number-of-Cited-References = {140}, Times-Cited = {5}, Usage-Count-Last-180-days = {10}, Usage-Count-Since-2013 = {16}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {2V5MR}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000823890600001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000934877500008, Author = {Urban, Barbara}, Title = {THiNkiNG AND pRocEssiNG. A REviEw oF DEMocRATic sysTEMs BAsED oN ARTiFiciAl iNTElliGENcE FRoM REcoGNiTioN, coMMiTMENT AND jusTicE}, Journal = {REVISTA DE FILOSOFIA}, Year = {2022}, Volume = {79}, Pages = {190-200}, Abstract = {This paper proposes a double reflection on the cognitive differences between humans and machines from ethics. In the first place, I will try to differentiate between human thought and machine processing through etymological, semantic and comparative methods that will reveal why it is not possible to attribute thinking capacities to artificial intelligences. On the other hand, these terms will be related to the praxis of representative democracy through various examples. This analysis is based on three aims: the need for mutual recognition through language; the commitment acquired through the word; and democracy as an expression of justice.}, Publisher = {UNIV CHILE, FAC FILOSOFIA \& HUMANIDADES}, Address = {DEPT LINGUISTICA, AV CAPITAN IGNACIO CARRERA PINTO 1025, CUARTO PISO, NUNOA, SANTIAGO, 00000, CHILE}, Type = {Review}, Language = {English}, Affiliation = {Urban, B (Corresponding Author), Univ Jaume 1, Dept Filosofia \& Sociol, Avda Vicente Sos Baynat S-N, Castellon de La Plana 12071, Spain. Urban, Barbara, Univ Jaume 1, Dept Filosofia \& Sociol, Avda Vicente Sos Baynat S-N, Castellon de La Plana 12071, Spain.}, ISSN = {0034-8236}, EISSN = {0718-4360}, Keywords = {KEywoRDs; Thought; processing; democracy; reciprocity; Arendt; Habermas; language; commitment; representative democracy}, Research-Areas = {Philosophy}, Web-of-Science-Categories = {Philosophy}, Author-Email = {barbara.urban@uji.es}, Affiliations = {Universitat Jaume I}, Cited-References = {Arendt H., 2005, LA CONDICION HUMANA. Arendt Hannah, 2013, SOBRE LA REVOLUCION. Boden Margaret, 2016, INTELIGENCIA ARTIFIC. Calvo Patrici, 2019, REV CLAD REFORMA DEM, V74, P5. Cisneros MC, 2009, DESAFIOS, V20, P11. Garcia-Marza Domingo, 2015, THEMATA, V52, P93. Habermas Jurgen, 2010, TEORIA ACCION COMUNI, VII. Kohn Carlos, 2000, RES PUBLICA-NETH, V5, P73. Mejia Caballero Cristian Andres, 2013, DESARROLLO ROBOTS HU. Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811. ONeil Cathy, 2017, ARMAS DESTRUCCION MA. RAE Real Academia Espanola, DICCIONARIO LENGUA E. RESHAUR K, 1992, CAN J POLIT SCI, V25, P723, DOI 10.1017/S0008423900004479. Segura Munguia Santiago, 1985, DICCIONARIO ETIMOLOG. Segura Munguia Santiago, 2001, NUEVO DICCIONARIO ET. Turing AM., 1950, MIND, VLIX, P433, DOI {[}10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433].}, Number-of-Cited-References = {16}, Times-Cited = {0}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {0}, Journal-ISO = {Rev. Filos.}, Doc-Delivery-Number = {9B6XC}, Web-of-Science-Index = {Arts & Humanities Citation Index (A&HCI)}, Unique-ID = {WOS:000934877500008}, DA = {2023-04-22}, } @article{ WOS:000625391400003, Author = {Liu, Zhen and Wu, Kefeng and Wu, Binhua and Tang, Xiaoning and Yuan, Huiqing and Pang, Hao and Huang, Yongmei and Zhu, Xiao and Luo, Hui and Qi, Yi}, Title = {Imaging genomics for accurate diagnosis and treatment of tumors: A cutting edge overview}, Journal = {BIOMEDICINE \& PHARMACOTHERAPY}, Year = {2021}, Volume = {135}, Month = {MAR}, Abstract = {Imaging genomics refers to the establishment of the connection between invasive gene expression features and non-invasive imaging features. Tumor imaging genomics can not only understand the macroscopic phenotype of tumor, but also can deeply analyze the cellular and molecular characteristics of tumor tissue. In recent years, tumor imaging genomics has been a key in the field of medicine. The incidence of cancer in China has increased significantly, which is the main reason of disease death of urban residents. With the rapid development of imaging medicine, depending on imaging genomics, many experts have made remarkable achievements in tumor screening and diagnosis, prognosis evaluation, new treatment targets and understanding of tumor biological mechanism. This review analyzes the relationship between tumor radiology and gene expression, which provides a favorable direction for clinical staging, prognosis evaluation and accurate treatment of tumors.}, Publisher = {ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER}, Address = {65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE}, Type = {Review}, Language = {English}, Affiliation = {Zhu, X; Luo, H; Qi, Y (Corresponding Author), Guangdong Med Univ, Marine Biomed Res Inst, Guangdong Key Lab Res \& Dev Nat Drugs, Zhanjiang, Peoples R China. Liu, Zhen; Wu, Kefeng; Wu, Binhua; Tang, Xiaoning; Yuan, Huiqing; Pang, Hao; Huang, Yongmei; Zhu, Xiao; Luo, Hui; Qi, Yi, Southern Marine Sci \& Engn Guangdong Lab Zhanjian, Zhanjiang, Peoples R China. Liu, Zhen; Tang, Xiaoning; Yuan, Huiqing; Huang, Yongmei; Zhu, Xiao; Luo, Hui; Qi, Yi, Guangdong Med Univ, Marine Biomed Res Inst, Guangdong Key Lab Res \& Dev Nat Drugs, Zhanjiang, Peoples R China. Liu, Zhen; Wu, Binhua; Yuan, Huiqing; Huang, Yongmei; Zhu, Xiao; Luo, Hui; Qi, Yi, Guangdong Med Univ, Key Lab Zhanjiang R\&D Marine Microbial Resources, Zhanjiang, Peoples R China. Liu, Zhen; Wu, Binhua; Yuan, Huiqing; Huang, Yongmei; Zhu, Xiao; Luo, Hui; Qi, Yi, Marine Biomed Res Inst Guangdong Zhanjiang, Zhanjiang, Peoples R China.}, DOI = {10.1016/j.biopha.2020.111173}, Article-Number = {111173}, ISSN = {0753-3322}, EISSN = {1950-6007}, Keywords = {Cancer; Imaging genomics; Radiogenomics; Magnetic resonance; Computed tomography; Artificial intelligence}, Keywords-Plus = {CT TEXTURE ANALYSIS; LOWER-GRADE GLIOMAS; BREAST-CANCER; MRI FEATURES; GLIOBLASTOMA-MULTIFORME; COMPUTED-TOMOGRAPHY; LUNG ADENOCARCINOMA; MOLECULAR SUBTYPE; MUTATION STATUS; EGFR MUTATIONS}, Research-Areas = {Research \& Experimental Medicine; Pharmacology \& Pharmacy}, Web-of-Science-Categories = {Medicine, Research \& Experimental; Pharmacology \& Pharmacy}, Author-Email = {xzhu@gdmu.edu.cn luohui@gdmu.edu.cn qiyi7272@gdmu.edu.cn}, Affiliations = {Southern Marine Science \& Engineering Guangdong Laboratory; Southern Marine Science \& Engineering Guangdong Laboratory (Zhanjiang); Guangdong Medical University; Guangdong Medical University}, ResearcherID-Numbers = {Wu, Ke/HCQ-3503-2022 }, ORCID-Numbers = {Zhu, Xiao/0000-0002-1737-3386}, Funding-Acknowledgement = {Guangdong Science and Technology Department {[}2016B030309002, 2019B090905011]; Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) {[}ZJW-2019-007]; Science and Technology Program of Zhanjiang {[}2017A06012]; Public Service Platform of South China Sea for R\&D Marine Biomedicine Resources {[}GDMUK201808]}, Funding-Text = {This work was supported partly by Guangdong Science and Technology Department (2016B030309002 and 2019B090905011); The Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) (ZJW-2019-007); The Science and Technology Program of Zhanjiang (2017A06012); The Public Service Platform of South China Sea for R\&D Marine Biomedicine Resources (GDMUK201808).}, Cited-References = {Bae S, 2018, RADIOLOGY, V289, P797, DOI 10.1148/radiol.2018180200. Berenguer R, 2018, RADIOLOGY, V288, P407, DOI 10.1148/radiol.2018172361. Bismeijer T, 2020, RADIOLOGY, V296, P277, DOI 10.1148/radiol.2020191453. Bodalal Z, 2019, ABDOM RADIOL, V44, P1960, DOI 10.1007/s00261-019-02028-w. Chang RF, 2016, MAGN RESON IMAGING, V34, P809, DOI 10.1016/j.mri.2016.03.001. Cho HR, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34242-9. Coudray N, 2018, NAT MED, V24, P1559, DOI 10.1038/s41591-018-0177-5. Dasgupta A, 2019, NEURO-ONCOLOGY, V21, P115, DOI 10.1093/neuonc/noy093. Feraco P, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10040247. Gevaert O, 2017, SCI REP-UK, V7, DOI 10.1038/srep41674. Grimm LJ, 2020, ACAD RADIOL, V27, P39, DOI 10.1016/j.acra.2019.09.012. Grimm LJ, 2015, J MAGN RESON IMAGING, V42, P902, DOI 10.1002/jmri.24879. Guo BH, 2020, CANCER METAST REV, V39, P567, DOI 10.1007/s10555-020-09863-0. Hong EK, 2018, EUR RADIOL, V28, P4350, DOI 10.1007/s00330-018-5400-8. Horvat N, 2019, EUR J RADIOL, V113, P174, DOI 10.1016/j.ejrad.2019.02.022. Hoshino I, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-59500-7. Hu LS, 2017, NEURO-ONCOLOGY, V19, P128, DOI 10.1093/neuonc/now135. Iv M, 2019, AM J NEURORADIOL, V40, P154, DOI 10.3174/ajnr.A5899. Jamshidi N, 2017, RADIOLOGY, V284, P109, DOI 10.1148/radiol.2017162827. Jamshidi N, 2014, RADIOLOGY, V270, P212, DOI 10.1148/radiol.13130078. Jansen RW, 2018, RADIOLOGY, V288, P506, DOI 10.1148/radiol.2018172000. Karlo CA, 2014, RADIOLOGY, V270, P464, DOI 10.1148/radiol.13130663. Kickingereder P, 2016, RADIOLOGY, V281, P907, DOI 10.1148/radiol.2016161382. Kocak B, 2020, EUR RADIOL, V30, P877, DOI 10.1007/s00330-019-06492-2. Kocak B, 2019, AM J ROENTGENOL, V212, pW55, DOI 10.2214/AJR.18.20443. Kocak B, 2020, ACTA RADIOL, V61, P856, DOI 10.1177/0284185119881742. Lan BW, 2019, ACAD RADIOL, V26, pE32, DOI 10.1016/j.acra.2018.05.002. Li HJ, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.01051. Li M, 2019, TRANSL LUNG CANCER R, V8, P401, DOI 10.21037/tlcr.2019.08.13. Li M, 2019, EUR RADIOL, V29, P2989, DOI 10.1007/s00330-018-5756-9. Li XY, 2018, J THORAC DIS, V10, P6624, DOI 10.21037/jtd.2018.11.03. Li YM, 2020, EUR RESPIR J, V55, DOI 10.1183/13993003.01409-2019. Li YM, 2018, NEUROIMAGE-CLIN, V17, P306, DOI 10.1016/j.nicl.2017.10.030. Li YM, 2018, EUR RADIOL, V28, P356, DOI 10.1007/s00330-017-4964-z. Li YQ, 2020, J HUM GENET, V65, P497, DOI 10.1038/s10038-020-0737-7. Liang BQ, 2020, MOL GENET GENOMICS, V295, P537, DOI 10.1007/s00438-020-01647-z. Liang GS, 2020, BIOMED PHARMACOTHER, V128, DOI 10.1016/j.biopha.2020.110255. Liao X, 2019, J CELL MOL MED, V23, P4375, DOI 10.1111/jcmm.14328. Liu J, 2018, IEEE T BIO-MED ENG, V65, P1943, DOI 10.1109/TBME.2018.2845706. Liu JH, 2019, MOL ASPECTS MED, V70, P141, DOI 10.1016/j.mam.2019.10.006. Marigliano C, 2019, TECHNOL CANCER RES T, V18, DOI 10.1177/1533033819878458. Mazurowski MA, 2014, RADIOLOGY, V273, P365, DOI 10.1148/radiol.14132641. Meng XC, 2019, EUR RADIOL, V29, P3200, DOI 10.1007/s00330-018-5763-x. Nair J.K.R., 2020, CAN ASSOC RADIOL J. Nougaret S, 2017, RADIOLOGY, V285, P472, DOI 10.1148/radiol.2017161697. Pan CC, 2019, RADIOTHER ONCOL, V130, P172, DOI 10.1016/j.radonc.2018.07.011. Panayides AS, 2019, IEEE J BIOMED HEALTH, V23, P2063, DOI 10.1109/JBHI.2018.2879381. Park EK, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54371-z. Saha A, 2018, BRIT J CANCER, V119, P508, DOI 10.1038/s41416-018-0185-8. Song C, 2020, BIOMED PHARMACOTHER, V129, DOI 10.1016/j.biopha.2020.110445. Tang ZY, 2020, INT J CANCER, V146, P2946, DOI 10.1002/ijc.32762. Trivizakis E, 2020, INT J ONCOL, V57, P43, DOI 10.3892/ijo.2020.5063. Vargas HA, 2017, RADIOLOGY, V285, P482, DOI 10.1148/radiol.2017161870. Wang T, 2019, J X-RAY SCI TECHNOL, V27, P773, DOI 10.3233/XST-190526. Wang X, 2019, EUR RADIOL, V29, P6049, DOI 10.1007/s00330-019-06084-0. Woodard GA, 2018, RADIOLOGY, V286, P60, DOI 10.1148/radiol.2017162333. Xia W, 2018, PHYS MED BIOL, V63, DOI 10.1088/1361-6560/aaa609. Xiao Q, 2020, INFECT GENET EVOL, V85, DOI 10.1016/j.meegid.2020.104423. Xiao Q, 2014, J THORAC ONCOL, V9, P1041, DOI 10.1097/JTO.0000000000000195. Xu F, 2018, EUR J RADIOL, V107, P90, DOI 10.1016/j.ejrad.2018.07.025. Yamamoto S, 2014, RADIOLOGY, V272, P568, DOI 10.1148/radiol.14140789. Yeh AC, 2019, CANCER IMAGING, V19, DOI 10.1186/s40644-019-0233-5. Zhao W, 2019, CANCER MED-US, V8, P3532, DOI 10.1002/cam4.2233. Zhou M, 2018, RADIOLOGY, V286, P307, DOI 10.1148/radiol.2017161845. Zhu X, 2019, CELL BIOSCI, V9, DOI 10.1186/s13578-019-0356-1. Zhu X, 2012, CHEST, V141, P1466, DOI 10.1378/chest.11-0469. Zhu X, 2010, WORLD J GASTROENTERO, V16, P2633, DOI 10.3748/wjg.v16.i21.2633. Zhu X, 2009, INT J CANCER, V125, P1352, DOI 10.1002/ijc.24487. Zou ZL, 2020, CELL BIOSCI, V10, DOI 10.1186/s13578-020-00396-1. Zwirner K, 2019, STRAHLENTHER ONKOL, V195, P771, DOI 10.1007/s00066-019-01478-x.}, Number-of-Cited-References = {70}, Times-Cited = {3}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {15}, Journal-ISO = {Biomed. Pharmacother.}, Doc-Delivery-Number = {QR7JO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000625391400003}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000855074900001, Author = {Verma, Deepak and Okhawilai, Manunya and Dalapati, Goutam Kumar and Ramakrishna, Seeram and Sharma, Abhishek and Sonar, Prashant and Krishnamurthy, Satheesh and Biring, Sajal and Sharma, Mohit}, Title = {Blockchain technology and AI-facilitated polymers recycling: Utilization, realities, and sustainability}, Journal = {POLYMER COMPOSITES}, Year = {2022}, Volume = {43}, Number = {12}, Pages = {8587-8601}, Month = {DEC}, Abstract = {From the environmental perspective, efficient plastic utilization and its recyclability become significant issues that need to be resolved for deploying urban and sustainable technologies. It is estimated that approximately 400 million tons of plastic are produced each year for different applications. This number will be doubled by 2050, which is a serious problem. The primary issue that arises in a recycling process is associated with optimum supply chain management. The comprehensive and transparent supply chain methodologies will help stockholders to make conclusive policies and precise strategies. Transparency in supply chain management assists in captivating planning, pricing, purchasing, and inventory management decisions. Environmental sustainability requires recycling, which should have innovative concepts like Artificial Intelligence (AI) and Block-chain Technology. Manual methods of sorting and segregating the waste have outdated and not much efficient. The inclusion of AI and Blockchain Technology brought a revolution by increasing the efficiency and accuracy of the recycling process. This critical review focused on recycling plastics and plastic waste using AI and Blockchain Technology. Various plastic regulation policies and AI utilization for plastic recycling are discussed. An overview of the blockchain and its classification for waste management or plastic recycling has been discussed. The utilization of Blockchain Technology for a plastic circular economy, its types, and critical benefits has also been systematically demonstrated.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Verma, D (Corresponding Author), Chulalongkorn Univ, Int Grad Program Nanosci \& Technol, Bangkok 10330, Thailand. Verma, Deepak, Chulalongkorn Univ, Int Grad Program Nanosci \& Technol, Bangkok 10330, Thailand. Okhawilai, Manunya, Chulalongkorn Univ, Met \& Mat Sci Res Inst, Bangkok, Thailand. Okhawilai, Manunya; Biring, Sajal, Chulalongkorn Univ, Res Unit Polymer Mat Med Practice Devices, Bangkok, Thailand. Dalapati, Goutam Kumar, Mingchi Univ Technol, Organ Elect Res Ctr, New Taipei, Taiwan. Dalapati, Goutam Kumar; Ramakrishna, Seeram, Natl Univ Singapore, Ctr Nanofibers \& Nanotechnol, Mech Engn Dept, Singapore, Singapore. Dalapati, Goutam Kumar, Sunkonnect, Singapore, Singapore. Sharma, Abhishek, Manipal Univ Jaipur, Dept Chem Engn, Jaipur, Rajasthan, India. Sharma, Abhishek, RMIT Univ, Sch Engn, Chem \& Environm Engn, Melbourne, Vic, Australia. Sonar, Prashant, Queensland Univ Technol QUT Brisbane, Ctr Mat Sci, Sch Chem \& Phys, Brisbane, Qld, Australia. Sonar, Prashant, Queensland Univ Technol QUT, Ctr Waste Free World, Brisbane, Qld, Australia. Krishnamurthy, Satheesh, Open Univ, Sch Engn \& Innovat, Milton Keynes, Bucks, England. Biring, Sajal, Mingchi Univ Technol, Dept Elect Engn, New Taipei, Taiwan. Sharma, Mohit, ASTAR, Inst Mat Res \& Engn, Singapore, Singapore.}, DOI = {10.1002/pc.27054}, EarlyAccessDate = {SEP 2022}, ISSN = {0272-8397}, EISSN = {1548-0569}, Keywords = {artificial intelligence; Blockchain technology; plastic circular economy; plastic recycling}, Keywords-Plus = {WASTE; CHALLENGES; PLASTICS}, Research-Areas = {Materials Science; Polymer Science}, Web-of-Science-Categories = {Materials Science, Composites; Polymer Science}, Author-Email = {dverma.mech@gmail.com}, Affiliations = {Chulalongkorn University; Chulalongkorn University; Chulalongkorn University; Ming Chi University of Technology; National University of Singapore; Manipal University Jaipur; Royal Melbourne Institute of Technology (RMIT); Queensland University of Technology (QUT); Queensland University of Technology (QUT); Open University - UK; Ming Chi University of Technology; Agency for Science Technology \& Research (A{*}STAR); A{*}STAR - Institute of Materials Research \& Engineering (IMRE)}, ResearcherID-Numbers = {sharma, mohit/B-4205-2011 Krishnamurthy, Satheesh/AAE-7577-2019 Verma, Deepak/H-4643-2019}, ORCID-Numbers = {sharma, mohit/0000-0002-6045-9716 Krishnamurthy, Satheesh/0000-0001-7237-9206 Verma, Deepak/0000-0002-6432-320X}, Funding-Acknowledgement = {Chulalongkorn University}, Funding-Text = {Chulalongkorn University}, Cited-References = {Agenda I, 2016, WORLD EC FORUM GENEV. Agrawal S, 2019, RESOUR CONSERV RECY, V150, DOI 10.1016/j.resconrec.2019.104448. Andoni M, 2019, RENEW SUST ENERG REV, V100, P143, DOI 10.1016/j.rser.2018.10.014. {[}Anonymous], 2019, CLIM BLOCKCH INN CTR. Bai CG, 2020, INT J PROD RES, V58, P2142, DOI 10.1080/00207543.2019.1708989. Barnes DKA, 2009, PHILOS T R SOC B, V364, P1985, DOI 10.1098/rstb.2008.0205. Blockchain for Plastics Recycling, 2020, BLOCKCH PLAST REC, P1. Bucknall DG, 2020, PHILOS T R SOC A, V378, DOI 10.1098/rsta.2019.0268. Cabrera FC, 2021, POLYM COMPOSITE, V42, P2653, DOI 10.1002/pc.26033. Cabuzel T, 2019, CIRCULAR EC PLASTICS, DOI {[}DOI 10.2777/269031, 10.2777/269031.]. Chen J, 2017, POLYM COMPOSITE, V38, P2140, DOI 10.1002/pc.23789. Chidepatil A, 2020, ADM SCI, V10, DOI 10.3390/admsci10020023. Dattani J., 2019, ASIAN J CONVERG TECH, V5, P1, DOI {[}10.19678/j.issn.1000-3428.0053554, DOI 10.33130/AJCT.2019V05I01.013]. Esmaeilian B, 2020, RESOUR CONSERV RECY, V163, DOI 10.1016/j.resconrec.2020.105064. European Commission, 2018, EUR STRAT PLAST, DOI {[}10.1021/acs.est.7b02368, DOI 10.1021/ACS.EST.7B02368]. Fellner J, 2017, J IND ECOL, V21, P494, DOI 10.1111/jiec.12582. Forrest A., 2019, J FRONT MAR SCI, V6, P1. Fox S., 2021, RECYCL SERV, P1. Franca ASL, 2020, J CLEAN PROD, V244, DOI 10.1016/j.jclepro.2019.118529. Geyer R, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1700782. Ghoreishi M, 2020, E3S WEB CONF, V158, DOI 10.1051/e3sconf/202015806002. Golosova J, 2018, 2018 IEEE 6TH WORKSHOP ON ADVANCES IN INFORMATION, ELECTRONIC AND ELECTRICAL ENGINEERING (AIEEE). Gong Y., 2022, BUS STRATEG ENVIRON, V1, P1. Gopalakrishnan PK, 2021, WASTE MANAGE, V120, P594, DOI 10.1016/j.wasman.2020.10.027. Hailu D.M., 2017, APPL TERAHERTZ TECHN. Hopewell J, 2009, PHILOS T R SOC B, V364, P2115, DOI 10.1098/rstb.2008.0311. Howson P, 2020, MAR POLICY, V115, DOI 10.1016/j.marpol.2020.103873. Huang S., 2022, REV INT J ENV RES PU, V19, P1, DOI {[}10.3390/ijerph19084556, DOI 10.3390/IJERPH19084556]. Industries K., 2019, KLEANLOOP DEC BLOCKC. Jong-Hyouk Lee M.P., 2017, IEEE CONS ELECT MAG, V26, P19. Kazemi M, 2021, RESOUR CONSERV RECY, V174, DOI 10.1016/j.resconrec.2021.105776. Kellersztein I, 2019, POLYM COMPOSITE, V40, pE53, DOI 10.1002/pc.24472. Khadke S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13169142. Kouhizadeh M, 2020, PROD PLAN CONTROL, V31, P950, DOI 10.1080/09537287.2019.1695925. Kouhizadeh M, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9081712. Kukreja A., 2021, USING BLOCKCHAIN TEC. Kumar P, 2021, RESOUR CONSERV RECY, V164, DOI 10.1016/j.resconrec.2020.105215. Lange JP, 2021, ACS SUSTAIN CHEM ENG, V9, P15722, DOI 10.1021/acssuschemeng.1c05013. Mark Lancelott P.A., 2021, BLOCKCHAIN CAN DRIVE, P1. Massaro M, 2021, BUS STRATEG ENVIRON, V30, P1213, DOI 10.1002/bse.2680. Mondragon AEC, 2019, 2019 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), P728, DOI 10.1109/IEA.2019.8715005. Mondragon AEC, 2018, PROCEEDINGS OF 4TH IEEE INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION 2018 ( IEEE ICASI 2018 ), P1300. Mrowiec Bozena, 2018, Environmental Protection and Natural Resources, V29, P16, DOI 10.2478/oszn-2018-0017. Nam G, 2019, POLYM COMPOSITE, V40, pE1504, DOI 10.1002/pc.25063. Peshkam M., BLOCKCHAIN CAN WIN W. Principles for Responsible Investment, 2019, PLAST LANDSC REG POL. Robaina M, 2020, SCI TOTAL ENVIRON, V730, DOI 10.1016/j.scitotenv.2020.139038. Saberi S, 2019, INT J PROD RES, V57, P2117, DOI 10.1080/00207543.2018.1533261. Sandhiya R., 2020, MAT CIRCUL EC, V2, P2. Sankaran, 2019, J INNOVATION MANAGEM, V7, P7, DOI DOI 10.24840/2183-0606\_007.004\_0002. SCOTT DM, 1995, POLYM ENG SCI, V35, P1011, DOI 10.1002/pen.760351208. Sharma T.K., 2021, WINNING PLASTIC WAR. Tapscott D., 2016, BLOCKCHAIN REVOLUTIO. Taylor P., 2020, FRONT POLITICAL SCI, V2, DOI {[}10.3389/fpos.2020.590923, DOI 10.3389/FPOS.2020.590923]. The Ellen MacArthur Foundation, 2019, VIS CIRC EC PLAST. Thompson RC, 2009, PHILOS T R SOC B, V364, P2153, DOI 10.1098/rstb.2009.0053. Thushari GGN, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04709. Tong X, 2018, RESOUR CONSERV RECY, V135, P163, DOI 10.1016/j.resconrec.2017.10.039. Wen ZG, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-020-20741-9. Zhao JL, 2016, FINANC INNOV, V2, DOI {[}10.1186/s40854-016-0049-2, 10.1186/s40854-017-0059-8].}, Number-of-Cited-References = {60}, Times-Cited = {0}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {18}, Journal-ISO = {Polym. Compos.}, Doc-Delivery-Number = {6U8QD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000855074900001}, DA = {2023-04-22}, } @article{ WOS:000906806200013, Author = {Urban, Barbara}, Title = {THiNkiNG AND pRocEssiNG. A REviEw oF DEMocRATic sysTEMs BAsED oN ARTiFiciAl iNTElliGENcE FRoM REcoGNiTioN, coMMiTMENT AND jusTicE}, Journal = {REVISTA DE FILOSOFIA}, Year = {2022}, Volume = {79}, Pages = {211-221}, Abstract = {This paper proposes a double reflection on the cognitive differences between humans and machines from ethics. In the first place, I will try to differentiate between human thought and machine processing through etymological, semantic and comparative methods that will reveal why it is not possible to attribute thinking capacities to artificial intelligences. On the other hand, these terms will be related to the praxis of representative democracy through various examples. This analysis is based on three aims: the need for mutual recognition through language; the commitment acquired through the word; and democracy as an expression of justice.}, Publisher = {UNIV CHILE, FAC FILOSOFIA \& HUMANIDADES}, Address = {DEPT LINGUISTICA, AV CAPITAN IGNACIO CARRERA PINTO 1025, CUARTO PISO, NUNOA, SANTIAGO, 00000, CHILE}, Type = {Review}, Language = {English}, Affiliation = {Urban, B (Corresponding Author), Univ Jaume 1, Castellon De La Plana, Spain. Urban, Barbara, Univ Jaume 1, Castellon De La Plana, Spain.}, ISSN = {0034-8236}, EISSN = {0718-4360}, Keywords = {KEywoRDs; Thought; processing; democracy; reciprocity; Arendt; Habermas; language; commitment; representative democracy}, Research-Areas = {Philosophy}, Web-of-Science-Categories = {Philosophy}, Author-Email = {barbara.urban@uji.es}, Affiliations = {Universitat Jaume I}, Cited-References = {Arendt H., 2005, LA CONDICION HUMANA. Arendt Hannah, 2013, SOBRE LA REVOLUCION. Boden Margaret, 2016, INTELIGENCIA ARTIFIC. Calvo Patrici, 2019, REV CLAD REFORMA DEM, V74, P5. Cisneros MC, 2009, DESAFIOS, V20, P11. Garcia-Marza Domingo, 2015, THEMATA, V52, P93. Habermas Jurgen, 2010, TEORIA ACCION COMUNI, VII. Kohn Carlos, 2000, RES PUBLICA-NETH, V5, P73. Mejia Caballero Cristian Andres, 2013, DESARROLLO ROBOTS HU. Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811. ONeil Cathy, 2017, ARMAS DESTRUCCION MA. RAE Real Academia Espanola, DICCIONARIO LENGUA E. RESHAUR K, 1992, CAN J POLIT SCI, V25, P723, DOI 10.1017/S0008423900004479. Segura Munguia Santiago, 1985, DICCIONARIO ETIMOLOG. Segura Munguia Santiago, 2001, NUEVO DICCIONARIO ET. Turing AM., 1950, MIND, VLIX, P433, DOI {[}10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433].}, Number-of-Cited-References = {16}, Times-Cited = {0}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {0}, Journal-ISO = {Rev. Filos.}, Doc-Delivery-Number = {7M7AQ}, Web-of-Science-Index = {Arts & Humanities Citation Index (A&HCI)}, Unique-ID = {WOS:000906806200013}, DA = {2023-04-22}, } @article{ WOS:000702934400001, Author = {Hameed, B. M. Zeeshan and Prerepa, Gayathri and Patil, Vathsala and Shekhar, Pranav and Zahid Raza, Syed and Karimi, Hadis and Paul, Rahul and Naik, Nithesh and Modi, Sachin and Vigneswaran, Ganesh and Prasad Rai, Bhavan and Chlosta, Piotr and Somani, Bhaskar K.}, Title = {Engineering and clinical use of artificial intelligence (AI) with machine learning and data science advancements: radiology leading the way for future}, Journal = {THERAPEUTIC ADVANCES IN UROLOGY}, Year = {2021}, Volume = {13}, Month = {SEP}, Abstract = {Over the years, many clinical and engineering methods have been adapted for testing and screening for the presence of diseases. The most commonly used methods for diagnosis and analysis are computed tomography (CT) and X-ray imaging. Manual interpretation of these images is the current gold standard but can be subject to human error, is tedious, and is time-consuming. To improve efficiency and productivity, incorporating machine learning (ML) and deep learning (DL) algorithms could expedite the process. This article aims to review the role of artificial intelligence (AI) and its contribution to data science as well as various learning algorithms in radiology. We will analyze and explore the potential applications in image interpretation and radiological advances for AI. Furthermore, we will discuss the usage, methodology implemented, future of these concepts in radiology, and their limitations and challenges.}, Publisher = {SAGE PUBLICATIONS LTD}, Address = {1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Patil, V (Corresponding Author), Manipal Coll Dent Sci, Dept Oral Med \& Radiol, Manipal, India. Patil, V (Corresponding Author), Manipal Acad Higher Educ, Manipal 576104, Karnataka, India. Hameed, B. M. Zeeshan, Father Muller Med Coll, Dept Urol, Mangalore, Karnataka, India. Hameed, B. M. Zeeshan, Manipal Acad Higher Educ, Kasturba Med Coll, Dept Urol, Manipal, India. Hameed, B. M. Zeeshan, Manipal Acad Higher Educ, KMC Innovat Ctr, Manipal, Karnataka, India. Hameed, B. M. Zeeshan; Naik, Nithesh; Prasad Rai, Bhavan; Somani, Bhaskar K., Int Training \& Res Urooncol \& Endourol iTRUE Grp, Manipal, India. Hameed, B. M. Zeeshan; Naik, Nithesh, Curiouz Techlab Private Ltd, Govt Karnataka Bioincubator, Manipal, Karnataka, India. Prerepa, Gayathri, Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect \& Commun, Manipal, Karnataka, India. Shekhar, Pranav, Manipal Acad Higher Educ, Manipal Inst Technol, Dept Comp Sci \& Engn, Manipal, Karnataka, India. Zahid Raza, Syed, Dr BR Ambedkar Med Coll, Dept Urol, Bengaluru, Karnataka, India. Karimi, Hadis, Manipal Acad Higher Educ, Manipal Coll Pharmaceut Sci, Manipal, Karnataka, India. Paul, Rahul, Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02115 USA. Naik, Nithesh, Manipal Acad Higher Educ, Manipal Inst Technol, Fac Engn, Manipal, Karnataka, India. Modi, Sachin; Vigneswaran, Ganesh, Univ Hosp Southampton NHS Fdn Trust, Dept Intervent Radiol, Southampton, England. Prasad Rai, Bhavan, Freeman Rd Hosp, wDept Urol, Newcastle Upon Tyne, England. Chlosta, Piotr, Jagiellonian Univ Krakow, Dept Urol, Krakow, Poland. Somani, Bhaskar K., Univ Hosp Southampton NHS Fdn Trust, Dept Urol, Southampton, England. Patil, Vathsala, Manipal Coll Dent Sci, Dept Oral Med \& Radiol, Manipal, India. Patil, Vathsala, Manipal Acad Higher Educ, Manipal 576104, Karnataka, India.}, DOI = {10.1177/17562872211044880}, Article-Number = {17562872211044880}, ISSN = {1756-2872}, EISSN = {1756-2880}, Keywords = {artificial intelligence; data science; data science in radiology; deep learning; machine learning; machine learning in radiology; radiology}, Keywords-Plus = {OF-THE-ART; NEURAL-NETWORKS; AUTOMATED DETECTION; CT; SEGMENTATION; DIAGNOSIS; SOCIETY}, Research-Areas = {Urology \& Nephrology}, Web-of-Science-Categories = {Urology \& Nephrology}, Author-Email = {vathsala.mcods@manipal.edu}, Affiliations = {Father Muller Medical College; Manipal Academy of Higher Education (MAHE); Kasturba Medical College, Manipal; Manipal Academy of Higher Education (MAHE); Manipal Academy of Higher Education (MAHE); Manipal Academy of Higher Education (MAHE); Manipal Academy of Higher Education (MAHE); Harvard University; Harvard Medical School; Massachusetts General Hospital; Manipal Academy of Higher Education (MAHE); University of Southampton; University Hospital Southampton NHS Foundation Trust; Newcastle Freeman Hospital; Newcastle University - UK; Jagiellonian University; University of Southampton; University Hospital Southampton NHS Foundation Trust; Manipal Academy of Higher Education (MAHE); Manipal Academy of Higher Education (MAHE)}, ResearcherID-Numbers = {Naik, Nithesh/W-5086-2019 }, ORCID-Numbers = {Naik, Nithesh/0000-0003-0356-7697 Vigneswaran, Ganesh/0000-0002-4115-428X}, Cited-References = {Aerts HJWL, 2016, JAMA ONCOL, V2, P1636, DOI 10.1001/jamaoncol.2016.2631. Akkus Z, 2017, J DIGIT IMAGING, V30, P449, DOI 10.1007/s10278-017-9983-4. Al-antari MA, 2018, J MED BIOL ENG, V38, P443, DOI 10.1007/s40846-017-0321-6. {[}Anonymous], 2013, J AM COLL RADIOL, V10, P220, DOI 10.1016/j.jacr.2012.11.004. {[}Anonymous], 2018, RADIOLOGY BUSINESS. Burns JE, 2016, RADIOLOGY, V278, P64, DOI 10.1148/radiol.2015142346. Chen H, 2017, IEEE T MED IMAGING, V36, P2524, DOI 10.1109/TMI.2017.2715284. Chen H, 2017, BIOMED OPT EXPRESS, V8, P679, DOI 10.1364/BOE.8.000679. Cho Junghwan Kyewook, 2015, MUCH DATA IS NEEDED. Choy G, 2018, RADIOLOGY, V288, P318, DOI 10.1148/radiol.2018171820. Dikaios N., 2018, JOINT ANN M ISMRM ES, V3. Do S, 2012, COMPUT MATH METHOD M, V2012, DOI 10.1155/2012/736320. Dodge S, 2017, 2017 26TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN 2017). Erickson BJ, 2017, RADIOGRAPHICS, V37, P505, DOI 10.1148/rg.2017160130. Esses SJ, 2018, J MAGN RESON IMAGING, V47, P723, DOI 10.1002/jmri.25779. Figueroa RL, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-8. Fong A, 2017, APPL CLIN INFORM, V8, P35, DOI 10.4338/ACI-2016-09-CR-0148. Glorot X, 2011, PROC 14 INT C ARTIF, P315, DOI DOI 10.1002/ECS2.1832. Gong K, 2019, IEEE T MED IMAGING, V38, P1655, DOI 10.1109/TMI.2018.2888491. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Hannaford N, 2013, BRIT J RADIOL, V86, DOI 10.1259/bjr.20120336. Hannun Awni Y., 2014, CORR. He KM, 2015, IEEE I CONF COMP VIS, P1026, DOI 10.1109/ICCV.2015.123. Herweh C, 2016, INT J STROKE, V11, P438, DOI 10.1177/1747493016632244. Hussain L, 2018, CANCER BIOMARK, V21, P393, DOI 10.3233/CBM-170643. Jnawali K., P 2019 IEEE 13 INT C, P187. Kohli M, 2017, AM J ROENTGENOL, V208, P754, DOI 10.2214/AJR.16.17224. Kononenko I, 2001, ARTIF INTELL MED, V23, P89, DOI 10.1016/S0933-3657(01)00077-X. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Lacson R, 2012, J AM COLL RADIOL, V9, P468, DOI 10.1016/j.jacr.2012.03.009. Lakhani P, 2018, J AM COLL RADIOL, V15, P350, DOI 10.1016/j.jacr.2017.09.044. Lakhani P, 2012, J DIGIT IMAGING, V25, P30, DOI 10.1007/s10278-011-9426-6. Larson DB, 2013, RADIOLOGY, V267, P240, DOI 10.1148/radiol.12121502. Liu S, 2016, INT J COMPUT ASS RAD, V11, P789, DOI 10.1007/s11548-015-1320-0. Maier O, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145118. Marella WM, 2017, J PATIENT SAF, V13, P31, DOI 10.1097/PTS.0000000000000104. Mazurowski MA, 2019, J MAGN RESON IMAGING, V49, P939, DOI 10.1002/jmri.26534. McBee MP, 2018, ACAD RADIOL, V25, P1472, DOI 10.1016/j.acra.2018.02.018. Morey J., 2019, ARTIF INTELL, P129. Morgan TA, 2014, RADIOLOGY, V273, P642, DOI 10.1148/radiol.14141227. Morid MA, 2021, COMPUT BIOL MED, V128, DOI 10.1016/j.compbiomed.2020.104115. Oliveira L, 2015, STUD HEALTH TECHNOL, V216, P1028, DOI 10.3233/978-1-61499-564-7-1028. Pavithra R., 2015, INT J SCI RES PUBL, V5, P128. Pons E, 2016, RADIOLOGY, V279, P329, DOI 10.1148/radiol.16142770. Pustina D, 2016, HUM BRAIN MAPP, V37, P1405, DOI 10.1002/hbm.23110. Radford A., 2016, UNSUPERVISED REPRESE. Rajpurkar P, 2017, Arxiv, DOI DOI 10.48550/ARXIV.1711.05225. Ravi D, 2017, IEEE J BIOMED HEALTH, V21, P4, DOI 10.1109/JBHI.2016.2636665. Rivenson Y, 2018, LIGHT-SCI APPL, V7, DOI 10.1038/lsa.2017.141. Saba L, 2019, EUR J RADIOL, V114, P14, DOI 10.1016/j.ejrad.2019.02.038. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Shang WL, 2016, PR MACH LEARN RES, V48. Singh R., 2019, VALUE BASED RADIOLOG, P35. Sippo DA, 2013, J DIGIT IMAGING, V26, P989, DOI 10.1007/s10278-013-9616-5. Soroushmehr SMR, 2015, J MED SYST, V39, DOI 10.1007/s10916-015-0271-x. Srivastava N, 2014, J MACH LEARN RES, V15, P1929. Thrall JH, 2018, J AM COLL RADIOL, V15, P504, DOI 10.1016/j.jacr.2017.12.026. Ulyanov D, 2018, PROC CVPR IEEE, P9446, DOI 10.1109/CVPR.2018.00984. Wang SJ, 2012, MED IMAGE ANAL, V16, P933, DOI 10.1016/j.media.2012.02.005. Wang YZ, 2017, COMPUT METH PROG BIO, V144, P97, DOI 10.1016/j.cmpb.2017.03.017. WU YZ, 1993, RADIOLOGY, V187, P81, DOI 10.1148/radiology.187.1.8451441. Yasaka K, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-209. Yue W, 2018, DESIGNS, V2, P13, DOI {[}10.3390/designs2020013, DOI 10.3390/DESIGNS2020013].}, Number-of-Cited-References = {64}, Times-Cited = {4}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {2}, Journal-ISO = {Ther. Adv. Urol.}, Doc-Delivery-Number = {WA5ON}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000702934400001}, OA = {Green Accepted, Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000668529800001, Author = {Russell, Frances M. and Ehrman, Robert R. and Barton, Allen and Sarmiento, Elisa and Ottenhoff, Jakob E. and Nti, Benjamin K.}, Title = {B-line quantification: comparing learners novice to lung ultrasound assisted by machine artificial intelligence technology to expert review}, Journal = {ULTRASOUND JOURNAL}, Year = {2021}, Volume = {13}, Number = {1}, Month = {JUN 30}, Abstract = {Background: The goal of this study was to assess the ability of machine artificial intelligence (AI) to quantitatively assess lung ultrasound (LUS) B-line presence using images obtained by learners novice to LUS in patients with acute heart failure (AHF), compared to expert interpretation. Methods: This was a prospective, multicenter observational study conducted at two urban academic institutions. Learners novice to LUS completed a 30-min training session on lung image acquisition which included lecture and hands-on patient scanning. Learners independently acquired images on patients with suspected AHF. Automatic B-line quantification was obtained offline after completion of the study. Machine AI counted the maximum number of B-lines visualized during a clip. The criterion standard for B-line counts was semi-quantitative analysis by a blinded point-of-care LUS expert reviewer. Image quality was blindly determined by an expert reviewer. A second expert reviewer blindly determined B-line counts and image quality. Intraclass correlation was used to determine agreement between machine AI and expert, and expert to expert. Results: Fifty-one novice learners completed 87 scans on 29 patients. We analyzed data from 611 lung zones. The overall intraclass correlation for agreement between novice learner images post-processed with AI technology and expert review was 0.56 (confidence interval {[}CI] 0.51-0.62), and 0.82 (CI 0.73-0.91) between experts. Median image quality was 4 (on a 5-point scale), and correlation between experts for quality assessment was 0.65 (CI 0.48-0.82). Conclusion: After a short training session, novice learners were able to obtain high-quality images. When the AI deep learning algorithm was applied to those images, it quantified B-lines with moderate-to-fair correlation as compared to semi-quantitative analysis by expert review. This data shows promise, but further development is needed before widespread clinical use.}, Publisher = {SPRINGER}, Address = {ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES}, Type = {Review}, Language = {English}, Affiliation = {Russell, FM (Corresponding Author), Indiana Univ Sch Med, Dept Emergency Med, 720 Eskenazi Ave,FOB 3rd Floor, Indianapolis, IN 46202 USA. Russell, Frances M.; Sarmiento, Elisa; Nti, Benjamin K., Indiana Univ Sch Med, Dept Emergency Med, 720 Eskenazi Ave,FOB 3rd Floor, Indianapolis, IN 46202 USA. Ehrman, Robert R.; Ottenhoff, Jakob E., Wayne State Univ, Dept Emergency Med, Sch Med, 4021 St Antoine Ave,Suite 6G, Detroit, MI 48201 USA. Barton, Allen, Boone Cty Emergency Physicians, Zionsville, IN 46077 USA.}, DOI = {10.1186/s13089-021-00234-6}, Article-Number = {33}, ISSN = {2036-3176}, EISSN = {2524-8987}, Keywords = {Artificial intelligence; Point-of-care ultrasound; Lung ultrasound; Acute heart failure; Novice learner}, Keywords-Plus = {HEART-FAILURE}, Research-Areas = {Radiology, Nuclear Medicine \& Medical Imaging}, Web-of-Science-Categories = {Radiology, Nuclear Medicine \& Medical Imaging}, Author-Email = {framruss@iu.edu}, Affiliations = {Indiana University System; Indiana University Bloomington; Wayne State University}, ORCID-Numbers = {Sarmiento, Elisa/0000-0001-7283-9938}, Cited-References = {Agrawal N, 2016, INDIAN J CRIT CARE M, V20, P719, DOI 10.4103/0972-5229.195710. Brusasco C, 2019, CRIT CARE, V23, DOI 10.1186/s13054-019-2569-4. Coiro S, 2015, EUR J HEART FAIL, V17, P1172, DOI 10.1002/ejhf.344. Corradi F, 2016, CHEST, V150, P640, DOI 10.1016/j.chest.2016.04.013. Corradi F, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/868707. Correa M, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0206410. Gargani L, 2015, CARDIOVASC ULTRASOUN, V13, DOI 10.1186/s12947-015-0033-4. Hollenberg SM, 2019, J AM COLL CARDIOL, V74, P1966, DOI 10.1016/j.jacc.2019.08.001. Lee FCY, 2016, J INTENSIVE CARE, V4, DOI 10.1186/s40560-016-0180-1. Lichtenstein D, 2004, ANESTHESIOLOGY, V100, P9, DOI 10.1097/00000542-200401000-00006. Maw AM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.0703. Pivetta E, 2015, CHEST, V148, P202, DOI 10.1378/chest.14-2608. Price S, 2017, NAT REV CARDIOL, V14, P426, DOI 10.1038/nrcardio.2017.56. Russell FM, 2020, ESC HEART FAIL, V7, P2941, DOI 10.1002/ehf2.12907. Russell FM, 2019, HEART LUNG, V48, P186, DOI 10.1016/j.hrtlng.2018.10.027. Russell FM, 2015, ACAD EMERG MED, V22, P182, DOI 10.1111/acem.12570. Volpicelli G, 2006, AM J EMERG MED, V24, P689, DOI 10.1016/j.ajem.2006.02.013. Volpicelli G, 2012, INTENS CARE MED, V38, P577, DOI 10.1007/s00134-012-2513-4.}, Number-of-Cited-References = {18}, Times-Cited = {6}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {1}, Journal-ISO = {Ultrasound J.}, Doc-Delivery-Number = {TC3HC}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000668529800001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000817670100001, Author = {Syed, Abbas Shah and Sierra-Sosa, Daniel and Kumar, Anup and Elmaghraby, Adel}, Title = {Making Cities Smarter-Optimization Problems for the IoT Enabled Smart City Development: A Mapping of Applications, Objectives, Constraints}, Journal = {SENSORS}, Year = {2022}, Volume = {22}, Number = {12}, Month = {JUN}, Abstract = {One of the prime aims of smart cities has been to optimally manage the available resources and systems that are used in the city. With an increase in urban population that is set to grow even faster in the future, smart city development has been the main goal for governments worldwide. In this regard, while the useage of Artificial Intelligence (AI) techniques covering the areas of Machine and Deep Learning have garnered much attention for Smart Cities, less attention has focused towards the use of combinatorial optimization schemes. To help with this, the current review presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things (IoT). A mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. This review will help researchers by providing them a consolidated starting point for research in the domain of smart city application optimization.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Syed, AS (Corresponding Author), Univ Louisville, Dept Comp Sci \& Engn, Louisville, KY 40208 USA. Syed, Abbas Shah; Kumar, Anup; Elmaghraby, Adel, Univ Louisville, Dept Comp Sci \& Engn, Louisville, KY 40208 USA. Sierra-Sosa, Daniel, Hood Coll, Dept Comp Sci \& Informat Technol, Frederick, MD 21701 USA.}, DOI = {10.3390/s22124380}, Article-Number = {4380}, EISSN = {1424-8220}, Keywords = {smart cities; Internet of Things (IoT); Artificial Intelligence; optimization; genetic agorithm; particle swarm optimization; heuristics}, Keywords-Plus = {ARTIFICIAL BEE COLONY; VEHICLE-ROUTING PROBLEM; ADAPTIVE DIFFERENTIAL EVOLUTION; PARTICLE SWARM OPTIMIZATION; ANT COLONY; GENETIC ALGORITHM; TIMING OPTIMIZATION; ENERGY MANAGEMENT; TRAFFIC CONTROL; SYSTEM}, Research-Areas = {Chemistry; Engineering; Instruments \& Instrumentation}, Web-of-Science-Categories = {Chemistry, Analytical; Engineering, Electrical \& Electronic; Instruments \& Instrumentation}, Author-Email = {m0syed03@louisville.edu sierra-sosa@hood.edu anup.kumar@louisville.edu adel.elmaghraby@louisville.edu}, Affiliations = {University of Louisville}, ResearcherID-Numbers = {Elmaghraby, Adel S/B-3353-2014 Sierra-Sosa, Daniel/AAP-4610-2020}, ORCID-Numbers = {Elmaghraby, Adel S/0000-0001-5274-8596 Syed, Muhammad Zaigham Abbas Shah/0000-0002-3953-7134 Sierra-Sosa, Daniel/0000-0003-1326-0867}, Cited-References = {Adebiyi Risikat Folashade, 2018, International Journal of Intelligent Systems and Applications, V10, P68, DOI 10.5815/ijisa.2018.08.06. Ageev AA, 1999, LECT NOTES COMPUT SC, V1610, P17. Alinaghian M, 2017, NETW SPAT ECON, V17, P1185, DOI 10.1007/s11067-017-9364-z. Amer H, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16071013. Amer HM, 2018, PR IEEE SEN ARRAY, P306. {[}Anonymous], WORLDOMETERS WORLD P. {[}Anonymous], CAPACITATED VRP INST. {[}Anonymous], BRANCH CUT VEHICLE R. {[}Anonymous], RAPIDSOS OUTCOMES QU. Arif C., 2019, IOP C SERIES EARTH E, V335. Askarzadeh A, 2018, IEEE T SUSTAIN ENERG, V9, P1081, DOI 10.1109/TSTE.2017.2765483. Assaf R, 2017, CIV ENVIRON ENG REP, V26, P43, DOI 10.1515/ceer-2017-0034. Atteya II, 2016, INT CONF RENEW ENERG, P305, DOI 10.1109/ICRERA.2016.7884556. Aydin I, 2017, 2017 5TH INTERNATIONAL ISTANBUL SMART GRID AND CITIES CONGRESS AND FAIR (ICSG), P120, DOI 10.1109/SGCF.2017.7947615. Azaza M, 2017, ENERGY, V123, P108, DOI 10.1016/j.energy.2017.01.149. Benabdouallah M, 2017, 2017 INTERNATIONAL CONFERENCE ON SMART DIGITAL ENVIRONMENT (ICSDE'17), P48, DOI 10.1145/3128128.3128136. Benabdouallah M, 2016, PROCEEDINGS OF 2016 THIRD INTERNATIONAL CONFERENCE ON SYSTEMS OF COLLABORATION (SYSCO), pP32. Bharathi C, 2017, WIRELESS PERS COMMUN, V93, P481, DOI 10.1007/s11277-017-3959-z. Bhayo BA, 2020, ENERG CONVERS MANAGE, V215, DOI 10.1016/j.enconman.2020.112942. Bijandi M, 2021, T GIS, V25, P551, DOI 10.1111/tgis.12702. Brotcorne L, 2003, EUR J OPER RES, V147, P451, DOI 10.1016/S0377-2217(02)00364-8. Buba AT, 2018, NUMER ALGEBR CONTROL, V8, P351, DOI 10.3934/naco.2018023. Bui KHN, 2020, EXPERT SYST, V37, DOI 10.1111/exsy.12521. Cabrejas-Egea A., 2021, TRANSP RES PROCEDIA, VVol. 58, P638, DOI {[}10.1016/j.trpro.2021.11.084, DOI 10.1016/J.TRPRO.2021.11.084]. Cao B, 2018, IEEE INTERNET THINGS, V5, P3594, DOI 10.1109/JIOT.2018.2801623. Chandra P, 2020, PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2020), P50, DOI 10.1109/VLSIDCS47293.2020.9179893. Chen X, 2020, J CLEAN PROD, V249, DOI 10.1016/j.jclepro.2019.119397. Chen Z, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103530. Csalodi R, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/6621235. Darmian SM, 2021, COMPUT OPER RES, V135, DOI 10.1016/j.cor.2021.105425. Das BK, 2021, ENERG CONVERS MANAGE, V230, DOI 10.1016/j.enconman.2020.113823. Das CK, 2018, APPL ENERG, V232, P212, DOI 10.1016/j.apenergy.2018.07.100. de Ocampo ALP, 2017, I C HUMANOID NANOTEC. Ding ZH, 2020, APPL MATH MODEL, V88, P122, DOI 10.1016/j.apm.2020.06.039. Dorigo M., 2007, SCHOLARPEDIA, V2, P1461, DOI {[}DOI 10.1201/9781420010749, 10.4249/scholarpedia.1461, DOI 10.4249/SCHOLARPEDIA.1461]. Downey A, 2018, STRUCT HEALTH MONIT, V17, P450, DOI 10.1177/1475921717702537. Du J, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-10958-7. Essiet IO, 2019, ENERGY, V172, P354, DOI 10.1016/j.energy.2019.01.137. Ettappan M, 2020, MICROPROCESS MICROSY, V76, DOI 10.1016/j.micpro.2020.103085. Faia R, 2019, ENERGIES, V12, DOI 10.3390/en12091645. Faizal UM, 2021, MATER TODAY-PROC, V45, P692, DOI 10.1016/j.matpr.2020.02.741. Fatima I, 2018, LECT NOTE DATA ENG, V12, P267, DOI 10.1007/978-3-319-69811-3\_24. Feoktistov V, 2006, SPRINGER SER OPTIM A, V5, pXI. Ferdous F, 2016, 2016 5TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS AND VISION (ICIEV), P356, DOI 10.1109/ICIEV.2016.7760025. Fujdiak R, 2016, 2016 10TH INTERNATIONAL SYMPOSIUM ON COMMUNICATION SYSTEMS, NETWORKS AND DIGITAL SIGNAL PROCESSING (CSNDSP). Gabbar HA, 2020, IEEE ACCESS, V8, P181049, DOI 10.1109/ACCESS.2020.3027524. Gao KZ, 2017, IEEE C EVOL COMPUTAT, P395, DOI 10.1109/CEC.2017.7969339. Geleta DK, 2021, RES ANTHOLOGY CLEAN, P819. Grisales-Norena LF, 2020, J ENERGY STORAGE, V29, DOI 10.1016/j.est.2020.101488. Gu ZQ, 2022, SOFTWARE PRACT EXPER, V52, P756, DOI 10.1002/spe.2838. Guo DX, 2021, AGR WATER MANAGE, V245, DOI 10.1016/j.agwat.2020.106575. Guo K, 2020, NEURAL COMPUT APPL, V32, P1679, DOI 10.1007/s00521-019-04257-y. Guo SS, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010024. Gupta I., 2016, NATL POWER SYST C NP, P1, DOI DOI 10.1109/NPSC.2016.7858965. Habib HUR, 2020, IEEE ACCESS, V8, P218289, DOI 10.1109/ACCESS.2020.3042173. Hannan MA, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.123557. Hassoune K, 2020, J ADV INFORM TECHNOL, V11, P58, DOI 10.12720/jait.11.2.58-63. Huang BB, 2019, INT J COMPUT INTEG M, V32, P278, DOI 10.1080/0951192X.2019.1571241. Huang Y, 2016, J CIV STRUCT HEALTH, V6, P509, DOI 10.1007/s13349-016-0170-y. Ibrahim M. F., 2021, IOP Conference Series: Materials Science and Engineering, V1071, DOI 10.1088/1757-899X/1071/1/012025. Idwan S, 2020, WIRELESS PERS COMMUN, V110, P485, DOI 10.1007/s11277-019-06738-8. Ikudayisi A, 2018, COGENT ENG, V5, DOI 10.1080/23311916.2018.1535749. Javaid N., 2017, MANAGING ENERGY SMAR, P189. Jordehi AR, 2019, APPL SOFT COMPUT, V78, P465, DOI 10.1016/j.asoc.2019.03.002. Jovanovic A, 2022, TRANSPORT RES REC, V2676, P228, DOI 10.1177/03611981211058104. Jovanovic A, 2017, TRANSPORT RES C-EMER, V77, P329, DOI 10.1016/j.trc.2017.02.006. Jui-Chuan Chang, 2020, Proceedings of the 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII 2020), P317, DOI 10.1109/ICKII50300.2020.9318854. Kanwar N, 2017, APPL ENERG, V185, P1684, DOI 10.1016/j.apenergy.2016.01.093. Karaboga D., 2010, SCHOLARPEDIA, V5, P6915, DOI {[}10.4249/scholarpedia.6915, DOI 10.4249/SCH0LARPEDIA.6915]. Kennedy J., 1995, P IEEE INT C NEURAL, P1942. Khan A., 2017, GENETIC ALGORITHM EA, P447. {[}Кочетов Юрий Андреевич Kochetov Yury A.], 2021, {[}Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii, Diskretnyi analiz i issledovanie operatsii], V28, P5, DOI 10.33048/daio.2021.28.702. Korkmaz E, 2017, J ENG RES-KUWAIT, V5, P16. Lezama F, 2017, PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), P1279, DOI 10.1145/3067695.3082478. Lezama F, 2018, IEEE C EVOL COMPUTAT, P1276, DOI 10.1109/CEC.2018.8477808. Li J, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8091415. Li RH, 2021, WATER SUPPLY, V21, P2989, DOI 10.2166/ws.2020.302. Li SJ, 2020, DISCRETE DYN NAT SOC, V2020, DOI 10.1155/2020/8647820. Li ZY, 2017, IEEE T SMART GRID, V8, P2382, DOI 10.1109/TSG.2016.2526032. Lin N, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.124119. Liu HB, 2018, ALGORITHMS, V11, DOI 10.3390/a11120198. Liu K, 2020, CELL DISCOV, V6, DOI 10.1038/s41421-019-0132-8. Lu Q, 2017, J ADV TRANSPORT, DOI 10.1155/2017/7318917. Madathil D., 2017, 2017 INT C TECHN ADV, P1, DOI {[}10.1109/TAPENERGY.2017.8397310, DOI 10.1109/TAPENERGY.2017.8397310]. Mahdavi M, 2021, IEEE ACCESS, V9, P135983, DOI 10.1109/ACCESS.2021.3116802. Maji TK, 2017, IEEE T IND APPL, V53, P2550, DOI 10.1109/TIA.2017.2666091. Makhadmeh SN, 2019, 2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), P672, DOI 10.1109/JEEIT.2019.8717468. Mandal S, 2020, RENEW ENERG FOCUS, V34, P129, DOI 10.1016/j.ref.2020.05.002. Mao T., 2019, ARXIV. Mao XM, 2019, CLUSTER COMPUT, V22, pS3673, DOI 10.1007/s10586-018-2217-9. Marks R, 2017, INT J DISTRIB SENS N, V13, DOI 10.1177/1550147717743702. Mazyavkina N, 2021, COMPUT OPER RES, V134, DOI 10.1016/j.cor.2021.105400. Moghaddam MM, 2017, IRAN CONF ELECTR ENG, P1446, DOI 10.1109/IranianCEE.2017.7985270. Mohammed OH, 2018, ELECTRONICS-SWITZ, V7, DOI 10.3390/electronics7100233. Mouhcine E., 2018, P 2018 4 INT C OPT A, P1. Mounia DA, 2020, INFORM-INT J COMPUT, V44, P507, DOI 10.31449/inf.v44i4.3000. Nasab MA, 2021, SMART CITIES-BASEL, V4, P1173, DOI 10.3390/smartcities4030063. Nations U, SUSTAINABLE DEV GOAL. Ng KKH, 2017, COMPUT IND ENG, V109, P151, DOI 10.1016/j.cie.2017.05.004. Nguyen DCH, 2017, ENVIRON MODELL SOFTW, V97, P32, DOI 10.1016/j.envsoft.2017.07.002. Nguyen TH, 2021, APPL SOFT COMPUT, V112, DOI 10.1016/j.asoc.2021.107828. Norouzi N, 2017, OPTIM LETT, V11, P121, DOI 10.1007/s11590-015-0996-y. Palakonda V, 2018, IEEE C EVOL COMPUTAT, P400, DOI 10.1109/CEC.2018.8477809. Pamulapati T, 2020, APPL ENERG, V267, DOI 10.1016/j.apenergy.2020.114690. Pell JP, 2001, BRIT MED J, V322, P1385, DOI 10.1136/bmj.322.7299.1385. Peres F, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11146449. Pitakaso R, 2020, ENG OPTIMIZ, V52, P1225, DOI 10.1080/0305215X.2019.1640691. Pompei F, 2017, P INT COMP SOFTW APP, P749, DOI 10.1109/COMPSAC.2017.62. Qayyum N, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND ENGINEERING TECHNOLOGIES (ICOMET). Raflesia Sarifah Putri, 2019, 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), P413, DOI 10.1109/ICITISEE48480.2019.9003896. Rasheed MBD, 2022, APPL ENERG, V310, DOI 10.1016/j.apenergy.2021.118492. Reghukumar Reshma, 2018, 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information \& Communication Technology (RTEICT), P1157, DOI 10.1109/RTEICT42901.2018.9012604. Rehman A, 2018, IET INTELL TRANSP SY, V12, P594, DOI 10.1049/iet-its.2017.0308. Rehman NU, 2017, 2017 31ST IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (IEEE WAINA 2017), P132, DOI 10.1109/WAINA.2017.121. Roy SK, 2022, INTERNET THINGS-NETH, V18, DOI 10.1016/j.iot.2020.100201. Sadeghi M, 2018, INT J IND ENG-THEORY, V25, P40. Saeidian B, 2019, WATER-SUI, V11, DOI 10.3390/w11122611. Sakr WS, 2017, APPL SOFT COMPUT, V53, P336, DOI 10.1016/j.asoc.2017.01.004. Sharmin S., 2016, P 7 ANN S COMP DEV N, P1. Silva BN, 2019, FUTURE GENER COMP SY, V100, P557, DOI 10.1016/j.future.2019.05.052. SOLOMON MM, 1987, OPER RES, V35, P254, DOI 10.1287/opre.35.2.254. Su YS, 2021, COMPLEX INTELL SYST, V7, P2543, DOI 10.1007/s40747-021-00433-7. Swalehe H, 2018, INT ELECT ENG CONGR. Syed AS, 2021, SMART CITIES-BASEL, V4, P429, DOI 10.3390/smartcities4020024. Tang CG, 2019, IEEE ACCESS, V7, P84217, DOI 10.1109/ACCESS.2019.2925134. Tao WJ, 2020, ENG APPL ARTIF INTEL, V95, DOI 10.1016/j.engappai.2020.103868. Tao WJ, 2018, PROCEDIA MANUF, V26, P1159, DOI 10.1016/j.promfg.2018.07.152. Nguyen TT, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072813. Tirkolaee EB, 2019, COMPUT ELECTR ENG, V77, P457, DOI 10.1016/j.compeleceng.2018.01.040. Toth P, 2002, DISCRET MATH APPL. Tran-Ngoc H, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18124131. Ullah I, 2017, ENERGIES, V10, DOI 10.3390/en10111818. Utama Dana Marsetiya, 2021, Journal of Physics: Conference Series, V1933, DOI 10.1088/1742-6596/1933/1/012043. Utkarsh K, 2017, IEEE TETCI, V1, P51, DOI 10.1109/TETCI.2016.2635130. Venter G, 2005, P 1 AIAA MULT DES OP, P1, DOI {[}10.2514/6.2005- 1897, DOI 10.2514/6.2005-1897]. Vukobratovic M, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10111247. Wang CL, 2020, SWARM EVOL COMPUT, V54, DOI 10.1016/j.swevo.2020.100667. Wang M, 2017, CHIN AUTOM CONGR, P3429. Wang W, 2021, TRANSPORT RES E-LOG, V154, DOI 10.1016/j.tre.2021.102465. Wei Q, 2019, APPL SOFT COMPUT, V76, P629, DOI 10.1016/j.asoc.2018.12.033. WHITLEY D, 1994, STAT COMPUT, V4, P65, DOI 10.1007/BF00175354. WorldBank, SOLID WASTE MANAGEME. Wu JJ, 2019, IOP C SER EARTH ENV, V344, DOI 10.1088/1755-1315/344/1/012087. Yan Y., 2019, J INF HIDING 1 PROT, V1, P143. Yang C, 2019, MECH SYST SIGNAL PR, V124, P369, DOI 10.1016/j.ymssp.2019.01.057. Yazdani M, 2021, J CLEAN PROD, V280, DOI 10.1016/j.jclepro.2020.124138. Yi Y, 2016, J PUBLIC TRANSPORT, V19, P178, DOI 10.5038/2375-0901.19.4.11. Zhang D, 2007, ELECTR POW SYST RES, V77, P685, DOI 10.1016/j.epsr.2006.06.005. Zhang FQ, 2022, AGR WATER MANAGE, V260, DOI 10.1016/j.agwat.2021.107245. Zhang XH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031506. Zhang YL, 2022, SECUR COMMUN NETW, V2022, DOI 10.1155/2022/8337653. Zhao FF, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19061306. Zhao R, 2019, MECH SYST SIGNAL PR, V115, P213, DOI 10.1016/j.ymssp.2018.05.050. Zhuo L, 2022, WATER SUPPLY, V22, P849, DOI 10.2166/ws.2021.236.}, Number-of-Cited-References = {154}, Times-Cited = {3}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {16}, Journal-ISO = {Sensors}, Doc-Delivery-Number = {2M4KK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000817670100001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000624032700001, Author = {Majumdar, Sreyashi and Verma, Rohit and Saha, Avishek and Bhattacharyya, Parthasarathi and Maji, Pradipta and Surjit, Milan and Kundu, Manikuntala and Basu, Joyoti and Saha, Sudipto}, Title = {Perspectives About Modulating Host Immune System in Targeting SARS-CoV-2 in India}, Journal = {FRONTIERS IN GENETICS}, Year = {2021}, Volume = {12}, Month = {FEB 16}, Abstract = {Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus induced disease-2019 (COVID-19), is a type of common cold virus responsible for a global pandemic which requires immediate measures for its containment. India has the world's largest population aged between 10 and 40 years. At the same time, India has a large number of individuals with diabetes, hypertension and kidney diseases, who are at a high risk of developing COVID-19. A vaccine against the SARS-CoV-2, may offer immediate protection from the causative agent of COVID-19, however, the protective memory may be short-lived. Even if vaccination is broadly successful in the world, India has a large and diverse population with over one-third being below the poverty line. Therefore, the success of a vaccine, even when one becomes available, is uncertain, making it necessary to focus on alternate approaches of tackling the disease. In this review, we discuss the differences in COVID-19 death/infection ratio between urban and rural India; and the probable role of the immune system, co-morbidities and associated nutritional status in dictating the death rate of COVID-19 patients in rural and urban India. Also, we focus on strategies for developing masks, vaccines, diagnostics and the role of drugs targeting host-virus protein-protein interactions in enhancing host immunity. We also discuss India's strengths including the resources of medicinal plants, good food habits and the role of information technology in combating COVID-19. We focus on the Government of India's measures and strategies for creating awareness in the containment of COVID-19 infection across the country.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Saha, S (Corresponding Author), Bose Inst, Div Bioinformat, Kolkata, India. Majumdar, Sreyashi; Saha, Sudipto, Bose Inst, Div Bioinformat, Kolkata, India. Verma, Rohit; Surjit, Milan, Translat Hlth Sci \& Technol Inst, NCR Biotech Sci Cluster, Vaccine \& Infect Dis Res Ctr, Virol Lab, Faridabad, India. Saha, Avishek, CSIR Cent Sci Instruments Org, Ubiquitous Analyt Techn, Chandigarh, India. Bhattacharyya, Parthasarathi, Inst Pulmocare \& Res, Dept Resp Med, Kolkata, India. Maji, Pradipta, Indian Stat Inst, Biomed Imaging \& Bioinformat Lab, Machine Intelligence Unit, Kolkata, India. Kundu, Manikuntala; Basu, Joyoti, Bose Inst, Dept Chem, Kolkata, India.}, DOI = {10.3389/fgene.2021.637362}, Article-Number = {637362}, EISSN = {1664-8021}, Keywords = {SARS-CoV-2; genetic variations; host immuno-modulation; repurposed drugs; vaccines; medicinal plants; CT scans; artificial intelligence}, Keywords-Plus = {COVID-19; INFECTION}, Research-Areas = {Genetics \& Heredity}, Web-of-Science-Categories = {Genetics \& Heredity}, Author-Email = {ssaha4@jcbose.ac.in}, Affiliations = {Department of Science \& Technology (India); Bose Institute; Department of Biotechnology (DBT) India; Translational Health Science \& Technology Institute (THSTI); Council of Scientific \& Industrial Research (CSIR) - India; CSIR - Central Scientific Instruments Organisation (CSIO); Indian Statistical Institute; Indian Statistical Institute Kolkata; Department of Science \& Technology (India); Bose Institute}, ResearcherID-Numbers = {Maji, Pradipta/HHR-9037-2022 }, ORCID-Numbers = {Saha, Sudipto/0000-0001-9433-8894 Majumdar, Sreyashi/0000-0002-1555-3105}, Funding-Acknowledgement = {Bose Institute Intramural Fund}, Funding-Text = {Research support and publication charges are funded by Bose Institute Intramural Fund.}, Cited-References = {Agnihotri S, 2010, INDIAN J PHARM SCI, V72, P657, DOI 10.4103/0250-474X.78542. Agrawal D, 2020, INDIAN J NEUROTRAUM, V17, P1, DOI 10.1055/s-0040-1712834. Agrawal Umang, 2020, Med J Armed Forces India, V76, P370, DOI 10.1016/j.mjafi.2020.08.004. Ahuja AS, 2020, INTEGR MED RES, V9, DOI 10.1016/j.imr.2020.100434. Akram M, 2018, PHYTOTHER RES, V32, P811, DOI 10.1002/ptr.6024. Alagarasu K, 2020, INDIAN J MED RES, V151, P483, DOI 10.4103/ijmr.IJMR\_1256\_20. Alimadadi A, 2020, PHYSIOL GENOMICS, V52, P200, DOI 10.1152/physiolgenomics.00029.2020. Andersen KG, 2020, NAT MED, V26, P450, DOI 10.1038/s41591-020-0820-9. Azkur AK, 2020, ALLERGY, V75, P1564, DOI 10.1111/all.14364. Baden LR, 2021, NEW ENGL J MED, V384, P403, DOI 10.1056/NEJMoa2035389. Bairwa Ranjan, 2012, Pharmacogn Rev, V6, P56, DOI 10.4103/0973-7847.95871. Balachandar UV, 2020, SCI TOTAL ENVIRON, V729, DOI 10.1016/j.scitotenv.2020.139021. Biswas NK, 2020, INDIAN J MED RES, V151, P450, DOI 10.4103/ijmr.IJMR\_1125\_20. Bolhassani A, 2014, BBA-REV CANCER, V1845, P20, DOI 10.1016/j.bbcan.2013.11.001. Boskabady MH, 2005, J ETHNOPHARMACOL, V97, P79, DOI 10.1016/j.jep.2004.10.016. Boskabady MH, 2007, THERAPIE, V62, P23, DOI 10.2515/therapie:2007007. Bragazzi NL, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17093176. Burkard C, 2015, J VIROL, V89, P4434, DOI 10.1128/JVI.03274-14. BURLEY SK, 1985, SCIENCE, V229, P23, DOI 10.1126/science.3892686. Chan JFW, 2013, J INFECTION, V67, P606, DOI 10.1016/j.jinf.2013.09.029. Chan JFW, 2015, J INFECT DIS, V212, P1904, DOI 10.1093/infdis/jiv392. Chen G, 2020, J CLIN INVEST, V130, P2620, DOI 10.1172/JCI137244. Chen IY, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00050. Choudhary ML, 2020, INDIAN J MED RES, V151, P251, DOI 10.4103/ijmr.IJMR\_671\_20. Choudhary R, 2020, NEW MICROB NEW INFEC, V35, DOI 10.1016/j.nmni.2020.100684. Chu CM, 2004, THORAX, V59, P252, DOI 10.1136/thorax.2003.012658. Cinatl J, 2003, LANCET, V362, P293, DOI 10.1016/S0140-6736(03)13973-6. Cinatl J, 2003, LANCET, V361, P2045, DOI 10.1016/S0140-6736(03)13615-X. Coriolano MC, 2018, PROTEIN PEPTIDE LETT, V25, P295, DOI 10.2174/0929866525666180130141736. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045. Cortegiani A, 2020, J CRIT CARE, V57, P279, DOI 10.1016/j.jcrc.2020.03.005. Cui J, 2019, NAT REV MICROBIOL, V17, P181, DOI 10.1038/s41579-018-0118-9. Damle B, 2020, CLIN PHARMACOL THER, V108, P201, DOI 10.1002/cpt.1857. Darzi SE, 2018, RES PHARM SCI, V13, P103, DOI 10.4103/1735-5362.223792. de Wilde AH, 2014, ANTIMICROB AGENTS CH, V58, P4875, DOI 10.1128/AAC.03011-14. Dhama K, 2018, CURR DRUG METAB, V19, P236, DOI 10.2174/1389200219666180129145252. Dhama K, 2016, RECENT PATENTS ENDOC, V10, P96, DOI 10.2174/1872214811666170301105101. Dong D, 2021, IEEE REV BIOMED ENG, V14, P16, DOI 10.1109/RBME.2020.2990959. Duan Kai, 2020, Proc Natl Acad Sci U S A, V117, P9490, DOI 10.1073/pnas.2004168117. Duncan JS, 2000, IEEE T PATTERN ANAL, V22, P85, DOI 10.1109/34.824822. Feinmann J, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1910. Feng L, 2019, J ETHNOPHARMACOL, V245, DOI 10.1016/j.jep.2019.112109. Feng ZC, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18786-x. Ferner RE, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1610. Fouladi S, 2019, IRAN J ALLERGY ASTHM, V18, P1. Furuta Y, 2013, ANTIVIR RES, V100, P446, DOI 10.1016/j.antiviral.2013.09.015. Gautret P, 2020, INT J ANTIMICROB AG, V56, DOI 10.1016/j.ijantimicag.2020.105949. Gholamnezhad Z, 2019, AVICENNA J PHYTOMEDI, V9, P195, DOI 10.22038/AJP.2019.12196. Gholamnezhad Z, 2016, J ETHNOPHARMACOL, V190, P372, DOI 10.1016/j.jep.2016.06.061. Gordon DE, 2020, NATURE, V583, P459, DOI 10.1038/s41586-020-2286-9. Gupta N, 2020, INDIAN J MED RES, V151, P216, DOI 10.4103/ijmr.IJMR\_594\_20. Hao F, 2014, BBA-REV CANCER, V1846, P247, DOI 10.1016/j.bbcan.2014.07.002. Haque MA, 2017, J ETHNOPHARMACOL, V207, P67, DOI 10.1016/j.jep.2017.06.013. Heneka MT, 2020, ALZHEIMERS RES THER, V12, DOI 10.1186/s13195-020-00640-3. Hoffmann M, 2020, CELL, V181, P271, DOI 10.1016/j.cell.2020.02.052. Hou HY, 2020, CLIN TRANSL IMMUNOL, V9, DOI 10.1002/cti2.1136. Huang C, 2020, NEW ENGL J MED, V395, P497, DOI DOI 10.1056/NEJMOA2002032. Huang XJ, 2015, SCI REP-UK, V5, DOI 10.1038/srep08528. Islam MT, 2018, CANCER LETT, V420, P129, DOI 10.1016/j.canlet.2018.01.074. Iyengar K, 2020, DIABETES METAB SYND, V14, P499, DOI 10.1016/j.dsx.2020.04.048. Iyer M, 2020, BMB REP, V53, P191, DOI 10.5483/BMBRep.2020.53.4.080. Jabbari P, 2019, EXPERT REV CLIN IMMU, V15, P689, DOI 10.1080/1744666X.2019.1623670. Jin ZN, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068347. Kahkhaie KR, 2019, INFLAMMOPHARMACOLOGY, V27, P885, DOI 10.1007/s10787-019-00607-3. Kampf G, 2020, J HOSP INFECT, V104, P246, DOI 10.1016/j.jhin.2020.01.022. Kampf Gunter, 2020, Infect Prev Pract, V2, P100044, DOI 10.1016/j.infpip.2020.100044. Kamyab Amir A'lam, 2013, Inflammation \& Allergy Drug Targets, V12, P378. Kandikattu HK, 2017, BIOMED PHARMACOTHER, V91, P191, DOI 10.1016/j.biopha.2017.04.049. Kaur N, 2021, INFECT GENET EVOL, V89, DOI 10.1016/j.meegid.2020.104490. Kaushik Samander, 2020, VirusDisease, V31, DOI 10.1007/s13337-020-00587-x. Khalil A, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01248. Khan S, 2009, VACCINE, V27, P6080, DOI 10.1016/j.vaccine.2009.07.011. Khorsand Babak, 2020, Inform Med Unlocked, V20, P100413, DOI 10.1016/j.imu.2020.100413. Kim KM, 2020, J KOREAN MED SCI, V35, DOI 10.3346/jkms.2020.35.e156. Kodali PB, 2020, INDIAN J PUBLIC HLTH, V64, P228, DOI 10.4103/ijph.IJPH\_499\_20. Kuang Y, 2018, BIOORGAN MED CHEM, V26, P278, DOI 10.1016/j.bmc.2017.11.046. Lamba I, 2020, AM J EMERG MED, V38, P1528, DOI 10.1016/j.ajem.2020.04.026. Lee JW, 2017, INT J MOL MED, V40, P1932, DOI 10.3892/ijmm.2017.3178. Lelli D, 2017, PHARMACOL RES, V115, P133, DOI 10.1016/j.phrs.2016.11.017. Lentini G, 2020, MOLECULES, V25, DOI 10.3390/molecules25081834. Li L, 2020, RADIOLOGY, V296, pE65, DOI 10.1148/radiol.2020200905. Li Y, 2016, NUTRIENTS, V8, DOI 10.3390/nu8030167. Liao MF, 2020, NAT MED, V26, P842, DOI 10.1038/s41591-020-0901-9. Lipsitch M, 2020, SCIENCE, V370, P763, DOI 10.1126/science.abe5938. Liu L, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.123158. Lotfi M, 2020, BIOMED PHARMACOTHER, V131, DOI 10.1016/j.biopha.2020.110738. Luo P, 2020, J MED VIROL, V92, P814, DOI 10.1002/jmv.25801. Lyons SM, 2011, J PHYS CONF SER, V301, DOI 10.1088/1742-6596/301/1/012014. Magro C, 2020, TRANSL RES, V220, P1, DOI 10.1016/j.trsl.2020.04.007. Majdalawieh AF, 2015, INT IMMUNOPHARMACOL, V28, P295, DOI 10.1016/j.intimp.2015.06.023. Majdalawieh AF, 2010, J MED FOOD, V13, P371, DOI 10.1089/jmf.2009.1131. Maji AK, 2014, NAT PROD RES, V28, P2111, DOI 10.1080/14786419.2014.928291. Manu KA, 2009, IMMUNOPHARM IMMUNOT, V31, P377, DOI 10.1080/08923970802702036. McBride R, 2012, VIRUSES-BASEL, V4, P2902, DOI 10.3390/v4112902. Mehta P, 2020, LANCET, V395, P1033, DOI 10.1016/S0140-6736(20)30628-0. Michot JM, 2020, ANN ONCOL, V31, P961, DOI 10.1016/j.annonc.2020.03.300. Mishra S, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/808302. Mishra S, 2020, J FAM MED PRIM CARE, V9, P1792, DOI 10.4103/jfmpc.jfmpc\_451\_20. Mishra SV, 2020, INT J HEALTH PLAN M, V35, P1623, DOI 10.1002/hpm.3047. Mittal A, 2020, INDIAN J MED RES, V152, P77, DOI 10.4103/ijmr.IJMR\_2987\_20. Mohanraj K, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22631-z. Mondal S, 2011, J ETHNOPHARMACOL, V136, P452, DOI 10.1016/j.jep.2011.05.012. Moshiri M, 2015, DRUG RES, V65, P287, DOI 10.1055/s-0034-1375681. Mourya DT, 2020, INDIAN J MED RES, V151, P172, DOI 10.4103/ijmr.IJMR\_763\_20. Mousa HAL, 2017, J EVID-BASED INTEGR, V22, P166, DOI 10.1177/2156587216641831. Musthafa MS, 2018, FISH SHELLFISH IMMUN, V75, P374, DOI 10.1016/j.fsi.2018.02.031. Narayanan K, 2008, VIRUS RES, V133, P113, DOI 10.1016/j.virusres.2007.10.009. Nemetchek MD, 2017, J ETHNOPHARMACOL, V197, P92, DOI 10.1016/j.jep.2016.07.073. Netea MG, 2020, NAT REV IMMUNOL, V20, P375, DOI 10.1038/s41577-020-0285-6. Nguyen KNT, 2016, FEBS J, V283, P2067, DOI 10.1111/febs.13720. Oh Y, 2020, IEEE T MED IMAGING, V39, P2688, DOI 10.1109/TMI.2020.2993291. Omolo CA, 2020, EUR J PHARMACOL, V883, DOI 10.1016/j.ejphar.2020.173348. Ong E, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01581. Ose R, 2020, CLIN EXP ALLERGY, V50, P41, DOI 10.1111/cea.13507. Othman H, 2020, BIOCHEM BIOPH RES CO, V527, P702, DOI 10.1016/j.bbrc.2020.05.028. Paital B, 2020, SCI TOTAL ENVIRON, V728, DOI 10.1016/j.scitotenv.2020.138914. Pandey MM, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/142517. Parray HA, 2020, J BIOL CHEM, V295, P12814, DOI 10.1074/jbc.AC120.014918. Peterson CT, 2017, J ALTERN COMPLEM MED, V23, P607, DOI 10.1089/acm.2017.0083. Pise Mashitha Vinod, 2015, J Nat Sci Biol Med, V6, P415, DOI 10.4103/0976-9668.160025. Polack FP, 2020, NEW ENGL J MED, V383, P2603, DOI 10.1056/NEJMoa2034577. Qiu M, 2019, PHARM BIOL, V57, P694, DOI 10.1080/13880209.2019.1672754. Rai SN, 2017, J CHEM NEUROANAT, V85, P27, DOI 10.1016/j.jchemneu.2017.06.005. Randhawa GS, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232391. Ratha Kshirod Kumar, 2013, Ayu, V34, P331, DOI 10.4103/0974-8520.123139. Renu K, 2020, LIFE SCI, V255, DOI 10.1016/j.lfs.2020.117839. Richardson P, 2020, LANCET, V395, pE30, DOI 10.1016/S0140-6736(20)30304-4. Roy S, 2020, IEEE T MED IMAGING, V39, P2676, DOI 10.1109/TMI.2020.2994459. Saha I, 2020, INFECT GENET EVOL, V85, DOI {[}10.1016/j.meegid.2020.104522, 10.1016/J.meegid.2020.104522]. Samaddar A, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.00854. Senior AW, 2020, NATURE, V577, P706, DOI 10.1038/s41586-019-1923-7. Shaffer Leah, 2020, Nat Med, DOI 10.1038/d41591-020-00019-9. Shahid Z, 2020, J AM GERIATR SOC, V68, P926, DOI 10.1111/jgs.16472. Sharma UK, 2016, BMC COMPLEM ALTERN M, V16, DOI 10.1186/s12906-016-1147-4. Sheahan TP, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-13940-6. Shen CH, 2018, J CHROMATOGR B, V1090, P73, DOI 10.1016/j.jchromb.2018.05.021. Shi F, 2021, IEEE REV BIOMED ENG, V14, P4, DOI 10.1109/RBME.2020.2987975. Shin K, 2013, LIFE SCI, V92, P1093, DOI 10.1016/j.lfs.2013.04.010. Shirole RL, 2015, J ETHNOPHARMACOL, V168, P356, DOI 10.1016/j.jep.2015.03.009. Singh AK, 2020, DIABETES METAB SYND, V14, P1625, DOI 10.1016/j.dsx.2020.08.032. Sivasankarapillai VS, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10050852. Sluimer I, 2006, IEEE T MED IMAGING, V25, P385, DOI 10.1109/TMI.2005.862753. Spinelli FR, 2020, SCI IMMUNOL, V5, DOI 10.1126/sciimmunol.abc5367. Sra HK, 2020, INDIAN J PEDIATR, V87, P553, DOI 10.1007/s12098-020-03316-w. Rao ASRS, 2020, INFECT CONT HOSP EP, V41, P826, DOI 10.1017/ice.2020.61. Stebbing J, 2020, LANCET INFECT DIS, V20, P400, DOI 10.1016/S1473-3099(20)30132-8. Tay MZ, 2020, NAT REV IMMUNOL, V20, P363, DOI 10.1038/s41577-020-0311-8. Le TT, 2020, NAT REV DRUG DISCOV, V19, P305, DOI 10.1038/d41573-020-00073-5. Ting DSW, 2020, NAT MED, V26, P459, DOI 10.1038/s41591-020-0824-5. Tiwari M, 2020, J CLIN VIROL, V128, DOI 10.1016/j.jcv.2020.104441. Tu YF, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21072657. Urashima M, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17155589. van Ginneken B, 2001, IEEE T MED IMAGING, V20, P1228, DOI 10.1109/42.974918. Viscusi DJ, 2009, ANN OCCUP HYG, V53, P815, DOI 10.1093/annhyg/mep070. Wang CT, 2020, J MED VIROL, V92, P667, DOI 10.1002/jmv.25762. Wang J, 2020, IEEE T MED IMAGING, V39, P2572, DOI 10.1109/TMI.2020.2994908. Wang ML, 2020, CELL RES, V30, P269, DOI 10.1038/s41422-020-0282-0. Wang XG, 2020, IEEE T MED IMAGING, V39, P2615, DOI 10.1109/TMI.2020.2995965. Wax RS, 2020, CAN J ANESTH, V67, P568, DOI 10.1007/s12630-020-01591-x. Weiss SR, 2011, ADV VIRUS RES, V81, P85, DOI 10.1016/B978-0-12-385885-6.00009-2. Won JH, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21249775. Wong HH, 2018, VIROLOGY, V515, P165, DOI 10.1016/j.virol.2017.12.028. Wong SK, 2004, J BIOL CHEM, V279, P3197, DOI 10.1074/jbc.C300520200. Wu XH, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18113780. Xia SL, 2021, LANCET INFECT DIS, V21, P39, DOI 10.1016/S1473-3099(20)30831-8. Xu F, 2019, DRUG CHEM TOXICOL, V42, P309, DOI 10.1080/01480545.2018.1509987. Yadav PD, 2020, INDIAN J MED RES, V151, P200, DOI 10.4103/ijmr.IJMR\_663\_20. Yamamoto M, 2016, ANTIMICROB AGENTS CH, V60, P6532, DOI 10.1128/AAC.01043-16. Yang BR, 2014, J AGR FOOD CHEM, V62, P529, DOI 10.1021/jf404703k. Yao XT, 2020, CLIN INFECT DIS, V71, P732, DOI 10.1093/cid/ciaa237. Ye Q, 2020, J INFECTION, V80, P607, DOI 10.1016/j.jinf.2020.03.037. Yin CC, 2020, GENOMICS, V112, P3588, DOI 10.1016/j.ygeno.2020.04.016. Zeng QL, 2020, J INFECT DIS, V222, P38, DOI 10.1093/infdis/jiaa228. Zhang BC, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235458. Zhang HB, 2020, INTENS CARE MED, V46, P586, DOI 10.1007/s00134-020-05985-9. Zhang SC, 2018, MOL MED REP, V18, P1369, DOI 10.3892/mmr.2018.9149. Zhou YG, 2020, NATL SCI REV, V7, P998, DOI 10.1093/nsr/nwaa041.}, Number-of-Cited-References = {177}, Times-Cited = {3}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Front. Genet.}, Doc-Delivery-Number = {QP7SM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000624032700001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000942039100001, Author = {Zeng, Xuming and Wang, Zinan and Wang, Hao and Zhu, Shengyan and Chen, Shaofeng}, Title = {Progress in Drainage Pipeline Condition Assessment and Deterioration Prediction Models}, Journal = {SUSTAINABILITY}, Year = {2023}, Volume = {15}, Number = {4}, Month = {FEB}, Abstract = {The condition of drainage pipes greatly affects the urban environment and human health. However, it is difficult to carry out economical and efficient pipeline investigation and evaluation due to the location and structure of drainage pipes. Herein, the four most-commonly used drainage pipeline evaluation standards have been synthesized and analyzed to summarize the deterioration and breakage patterns of drainage pipes. The common pipe breakage patterns are also summarized by integrating the literature and engineering experience. To systematically describe the condition of drainage pipes, a system of influencing factors for the condition of pipes, including physical, environmental, and operational factors, has been established, and the mechanism of action of each influencing factor has been summarized. Physical, statistical, and AI models and their corresponding representative models have been categorized, and the research progress of current mainstream drainage-pipe deterioration and breakage prediction models are reviewed in terms of their principles and progress in their application.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Wang, H (Corresponding Author), Fuzhou Univ, Zijin Sch Geol \& Min, 2,Wulongjiang North Ave, Fuzhou 350108, Peoples R China. Zeng, Xuming; Zhu, Shengyan; Chen, Shaofeng, Powerchina Huadong Engn Corp Ltd, Bldg 35,Fuzhou Software Pk,Tongpan Rd, Fuzhou 350108, Peoples R China. Wang, Zinan; Wang, Hao, Fuzhou Univ, Zijin Sch Geol \& Min, 2,Wulongjiang North Ave, Fuzhou 350108, Peoples R China.}, DOI = {10.3390/su15043849}, Article-Number = {3849}, EISSN = {2071-1050}, Keywords = {pipeline condition assessment; pipeline deterioration and breakage; influencing factors; artificial intelligence model; machine learning}, Keywords-Plus = {OF-THE-ART; STRUCTURAL DETERIORATION; CONCRETE CORROSION; SEWER PIPES; INSPECTION; MANAGEMENT; FAILURE; SYSTEM; CLASSIFICATION; PERFORMANCE}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {h\_wang@126.com}, Affiliations = {Fuzhou University}, Funding-Acknowledgement = {Fujian Province University-Industry-Research Cooperation Innovation Project {[}2022Y4002]; Fujian Province Transportation Technology Project {[}202202]; China Electric Power Construction Group East China Institute of Technology Project {[}2021032304]}, Funding-Text = {This research was funded by Fujian Province University-Industry-Research Cooperation Innovation Project: Key technologies for disaster mechanism and risk prevention of abandoned soil field in complex environments (2022Y4002), March 2022-February 2025; Fujian Province Transportation Technology Project: Research and application of intelligent construction technology for a new type of low-carbon assembled anchoring structure (202202), July 2022-December 2024; China Electric Power Construction Group East China Institute of Technology Project: Key technology research on investigation of hidden culverts under complex conditions (2021032304), January 2021-December 2022.}, Cited-References = {Al-Barqawi H, 2006, J PERFORM CONSTR FAC, V20, P126, DOI 10.1061/(ASCE)0887-3828(2006)20:2(126). Al-Barqawi H, 2008, J INFRASTRUCT SYST, V14, P305, DOI 10.1061/(ASCE)1076-0342(2008)14:4(305). Alsaqqar A., 2017, J ENG-NY, V8, P70. Ana E, 2009, URBAN WATER J, V6, P303, DOI 10.1080/15730620902810902. Ana E., 2008, P 11 INT C URBAN DRA. Ana EV, 2010, URBAN WATER J, V7, P47, DOI 10.1080/15730620903447597. Ana E.V., 2009, THESIS VRIJE U BRUSS. Anbari MJ, 2017, J ENVIRON MANAGE, V190, P91, DOI 10.1016/j.jenvman.2016.12.052. Anderson TW, 2011, INT ENCYCL STAT SCI, P52, DOI DOI 10.1007/978-3-642-04898-2\_118. {[}Anonymous], 2002, DET INSP WAT DISTR S, P34. {[}Anonymous], 2011, J MACH LEARN TECHNOL. {[}Anonymous], 2013, APPL LOGISTIC REGRES. Ariaratnam S.T., 2001, J INFRASTRUCT SYST, V7, P160, DOI {[}10.1061/(ASCE)1076-0342(2001)7:4(160), DOI 10.1061/(ASCE)1076-0342(2001)7:4(160)]. Arsenio AM, 2013, J WATER SUPPLY RES T, V62, P78, DOI 10.2166/aqua.2013.026. Atambo DO, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14095549. Atique F, 2016, CONSTR BUILD MATER, V106, P140, DOI 10.1016/j.conbuildmat.2015.12.027. Ayoub G., 2004, URBAN WATER J, V1, P39, DOI DOI 10.1080/15730620410001732062. Baik HS, 2006, J WATER RES PLAN MAN, V132, P15, DOI 10.1061/(ASCE)0733-9496(2006)132:1(15). Balekelayi N, 2019, J INFRASTRUCT SYST, V25, DOI 10.1061/(ASCE)IS.1943-555X.0000500. BAO YX, 1990, J HYDRAUL ENG-ASCE, V116, P1119, DOI 10.1061/(ASCE)0733-9429(1990)116:9(1119). Barton NA, 2019, WATER RES, V164, DOI 10.1016/j.watres.2019.114926. Baur R, 2002, WATER SCI TECHNOL, V46, P389, DOI 10.2166/wst.2002.0704. Baur R., 2004, P 19 EJSW PROCESS DA. Berger VW, 2014, WILEY STATSREF STAT, DOI {[}DOI 10.1002/9781118445112.STAT06558, 10.1002/9781118445112.stat06558]. Bergue J.-M., 2004, REV FR G NIE CIV, V8, P51, DOI {[}10.1080/12795119.2004.9692557, DOI 10.1080/12795119.2004.9692557]. Bishop, 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119.ARNING. Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324. Bruaset S, 2018, WATER-SUI, V10, DOI 10.3390/w10040411. Caradot N, 2018, J HYDROINFORM, V20, P1131, DOI 10.2166/hydro.2018.217. Chae MJ, 2001, J COMPUT CIVIL ENG, V15, P4, DOI 10.1061/(ASCE)0887-3801(2001)15:1(4). Chang Hai-dong, 2016, Huanjing Kexue, V37, P3821, DOI 10.13227/j.hjkx.2016.10.020. Chang T., 2016, THESIS TSINGHUA U BE. {[}陈求稳 CHEN Qiuwen], 2008, {[}中国给水排水, China Water \& Wastewater], V24, P52. Chughtai F, 2008, J PERFORM CONSTR FAC, V22, P333, DOI 10.1061/(ASCE)0887-3828(2008)22:5(333). Clark R. M., 1982, J WATER RESOUR PLANN, V108, P243. Dakers J.L., 1980, REPORT P IPHE TRAINI. Dasu T., 2003, EXPLORATORY DATA MIN. Davies J. P., 2001, URBAN WATER, V3, P73, DOI {[}10.1016/S1462-0758(01)0 0 017-6., DOI 10.1016/S1462-0758(01)00017-6, 10.1016/S1462-0758(01)00017-6, DOI 10.1016/S1462-0758(01)00017-6.{[}4]C]. De Feo G, 2014, SUSTAINABILITY-BASEL, V6, P3936, DOI 10.3390/su6063936. De Reus N., 1994, ASSESSMENT BENEFITS, P39. .Ep.gov/, 2015, COND ASS UND PIP. Farewell T.S., 2012, SOIL IMPACTS NATL IN. Fenner R., 2000, URBAN WATER, V2, P343, DOI {[}10.1016/S1462-0758(00)00065-0, DOI 10.1016/S1462-0758(00)00065-0]. Gao Y., 2017, THESIS U ARKANSAS FA, P64. GOULTER IC, 1988, CAN J CIVIL ENG, V15, P91, DOI 10.1139/l88-010. Great Learning Team, 2020, UND GOODN FIT TEST D. Grengg C, 2018, WATER RES, V134, P341, DOI 10.1016/j.watres.2018.01.043. Hahn MA, 2002, J WATER RES PL-ASCE, V128, P121, DOI 10.1061/(ASCE)0733-9496(2002)128:2(121). Hajmeer M, 2002, J MICROBIOL METH, V51, P217, DOI 10.1016/S0167-7012(02)00080-5. Hao Y., 2020, ADV MATER SCI ENG, V2020, P1, DOI {[}10.1155/2020/9527836, DOI 10.1155/2020/9527836]. Harvey RR, 2014, J HYDROINFORM, V16, P1265, DOI 10.2166/hydro.2014.007. Harvey RR, 2014, CAN J CIVIL ENG, V41, P294, DOI 10.1139/cjce-2013-0431. Hawari A, 2020, ENG APPL ARTIF INTEL, V93, DOI 10.1016/j.engappai.2020.103721. Hawari A, 2017, J PERFORM CONSTR FAC, V31, DOI 10.1061/(ASCE)CF.1943-5509.0000914. Herz R., 1994, JB REG, V14, P5. Herz RK, 1996, J WATER SUPPLY RES T, V45, P221. Horold S., 1998, FORECASTING REHABILI. Horold S., 1999, P 13 EUROPEAN JUNIOR, P8. {[}侯本伟 Hou Benwei], 2022, {[}哈尔滨工业大学学报, Journal of Harbin Institute of Technology], V54, P8. Hu Y, 2007, CAN J CIVIL ENG, V34, P608, DOI 10.1139/L06-162. Huang D, 2018, FRONT ENV SCI ENG, V12, DOI 10.1007/s11783-018-1023-1. INOMATA T, 1988, J CHEM ENG JPN, V21, P482, DOI 10.1252/jcej.21.482. Ishizaka Alessio, 2014, International Journal of Integrated Supply Management, V9, P1, DOI 10.1504/IJISM.2014.064353. Jeong H.S., 2005, PIPELINES 2005 OPTIM, P649, DOI {[}10.1061/40800(180)52, DOI 10.1061/40800(180)52]. Jesson D., 2017, ACHIEVING ZERO LEAKA. Jiang GM, 2016, WATER RES, V92, P52, DOI 10.1016/j.watres.2016.01.029. Jun HJ, 2020, J ENVIRON ENG, V146, DOI 10.1061/(ASCE)EE.1943-7870.0001692. Kabir G, 2018, J PERFORM CONSTR FAC, V32, DOI 10.1061/(ASCE)CF.1943-5509.0001162. Khan Z, 2010, J PERFORM CONSTR FAC, V24, P170, DOI 10.1061/(ASCE)CF.1943-5509.0000081. Kleiner Y., 2002, J INFRASTRUCT SYST, V8, P122, DOI {[}DOI 10.1061/(ASCE)1076-0342(2002)8:4(122), 10.1061/(ASCE)1076-0342(2002)8:4(122)]. Kleiner Y., 2001, URBAN WATER, V3, P131, DOI DOI 10.1016/S1462-0758(01)00033-4. Kleiner Y., 2007, P INT EXHIBITION C W, P1. Kleiner Y., 2004, PIPELINE ENG CONSTRU, DOI {[}10.1061/40745(146)7, DOI 10.1061/40745(146)7]. Kley G., 2013, D1 2 REV SEWER DETER. Konig A., 2005, 66138102 SINTEF TECH. Koo DH, 2006, AUTOMAT CONSTR, V15, P479, DOI 10.1016/j.autcon.2005.06.007. Laakso T, 2019, WATER-SUI, V11, DOI 10.3390/w11122657. Laakso T, 2018, WATER-SUI, V10, DOI 10.3390/w10091239. Le Gat Y, 2008, URBAN WATER J, V5, P97, DOI 10.1080/15730620801939398. Li S., 2020, THESIS HARBIN I TECH, DOI {[}10.27061/d.cnki.ghgdu.2020.001469, DOI 10.27061/D.CNKI.GHGDU.2020.001469]. Li XL, 2019, APPL ENERG, V237, P431, DOI 10.1016/j.apenergy.2019.01.014. Li Yong-xin, 2020, Huanjing Kexue, V41, P2257, DOI 10.13227/j.hjkx.201909259. Lubini AT, 2011, CAN J CIVIL ENG, V38, P1381, DOI 10.1139/L11-103. Mohammadi MM, 2020, J PIPELINE SYST ENG, V11, DOI 10.1061/(ASCE)PS.1949-1204.0000483. Mani M., 2022, VAPAR 0512. Marlow D. P., 2009, REMAINING ASSET LIFE. Maroto A, 1999, ANAL CHIM ACTA, V391, P173, DOI 10.1016/S0003-2670(99)00111-7. Martinez-Codina A, 2016, URBAN WATER J, V13, P676, DOI 10.1080/1573062X.2015.1024687. Mashford J, 2011, J COMPUT CIVIL ENG, V25, P283, DOI 10.1061/(ASCE)CP.1943-5487.0000089. MASSEY FJ, 1951, J AM STAT ASSOC, V46, P68, DOI 10.2307/2280095. Meydani R, 2022, J PIPELINE SYST ENG, V13, DOI 10.1061/(ASCE)PS.1949-1204.0000644. Mishalani R.G., 2002, J INFRASTRUCT SYST, VVol. 8, P139, DOI DOI 10.1061/(ASCE)1076-0342(2002)8:4(139). Mitchell B., 1971, AREA, V3, P237. Mohammadi M.M., 2019, THESIS U TEXAS ARLIN. Mohammadi MM, 2019, INFRASTRUCTURES-BASE, V4, DOI 10.3390/infrastructures4040064. Mohammadi MM, 2019, PIPELINES 2019: CONDITION ASSESSMENT, CONSTRUCTION, AND REHABILITATION, P117. Morcous G, 2005, AUTOMAT CONSTR, V14, P129, DOI 10.1016/j.autcon.2004.08.014. Mordak J., 1988, DETERIORATION ASBEST. Najafi M., 2016, PIPELINE INFRASTRUCT. Najafi M., 2005, PIPELINES 2005 OPTIM, P767, DOI {[}10.1061/40800(180)61, DOI 10.1061/40800(180)61]. oldnewark.com, HIST NEWARK SEWER SY. Opila M.C., 2011, THESIS U DELAWARE NE. Oreilly M.P., 1989, 172 TRRL. PIERREVAL H, 1992, EUR J OPER RES, V61, P6, DOI 10.1016/0377-2217(92)90263-9. Pritchard OG, 2014, P I CIVIL ENG-ENG SU, V167, P170, DOI 10.1680/ensu.13.00035. Rajani B., 2001, URBAN WATER, V3, P151, DOI {[}10.1016/S1462-0758(01)00032-2, DOI 10.1016/S1462-0758(01)00032-2, 10.1016/ S1462-0758(01)00 032-2.]. Rezaei H, 2015, PROCEDIA ENGINEER, V119, P253, DOI 10.1016/j.proeng.2015.08.883. Ruwanpura J, 2004, CIV ENG ENVIRON SYST, V21, P169, DOI 10.1080/10286600410001694192. Sagdatullin Artur, 2019, 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), P256, DOI 10.1109/SUMMA48161.2019.8947538. Sakai H, 2020, J WATER SUPPLY RES T, V69, P355, DOI 10.2166/aqua.2020.112. Salihu C, 2022, J CLEAN PROD, V351, DOI 10.1016/j.jclepro.2022.131460. Salman B., 2010, THESIS U CINCINNATI. Salman B, 2012, J INFRASTRUCT SYST, V18, P146, DOI 10.1061/(ASCE)IS.1943-555X.0000075. SCHLESINGER S, 1979, SIMULATION, V32, P103. Schmidt T., 2009, THESIS I STADTBAUWES. Sousa V, 2014, AUTOMAT CONSTR, V44, P84, DOI 10.1016/j.autcon.2014.04.004. SPECHT DF, 1990, NEURAL NETWORKS, V3, P109, DOI 10.1016/0893-6080(90)90049-Q. Stehman SV, 1997, REMOTE SENS ENVIRON, V62, P77, DOI 10.1016/S0034-4257(97)00083-7. Syachrani S, 2013, J PERFORM CONSTR FAC, V27, P633, DOI 10.1061/(ASCE)CF.1943-5509.0000349. Tade O.S., 2018, THESIS LONDON S BANK, DOI {[}10.18744/LSBU.003292, DOI 10.18744/LSBU.003292]. Tang J., 2003, WATER WASTEWATER ENG, V5, P4, DOI {[}10.13789/j.cnki.wwe1964.2003.05.002, DOI 10.13789/J.CNKI.WWE1964.2003.05.002]. Tran DH, 2009, COMPUT-AIDED CIV INF, V24, P145, DOI 10.1111/j.1467-8667.2008.00577.x. Tran D.H., 2006, URBAN WATER J, V3, P175, DOI {[}10.1080/15730620600961684, DOI 10.1080/15730620600961684]. Tran H.D., 2007, THESIS VICTORIA U ME. Tran H, 2021, J WATER RES PLAN MAN, V147, DOI 10.1061/(ASCE)WR.1943-5452.0001469. Tran HD, 2016, J HYDRAUL ENG, V142, DOI 10.1061/(ASCE)HY.1943-7900.0001130. Tscheikner-Gratl F, 2019, URBAN WATER J, V16, P662, DOI 10.1080/1573062X.2020.1713382. U.S. Environmental Protection Agency, 2009, EPA600X09003. Vollersten J., 2005, D6 WP2 SINTEF TECHN. Wang Hai-yan, 2014, Application Research of Computers, V31, P1281, DOI 10.3969/j.issn.1001-3695.2014.05.001. Wang J, 2021, ENVIRON SCI POLLUT R, V28, P43035, DOI 10.1007/s11356-021-14802-9. Wang X., 2018, J WATER RES PLAN MAN, V38, P20, DOI {[}10.1016/j.amc.2018.02.034, DOI 10.1016/J.AMC.2018.02.034]. Water Research Centre, MAN SEW COND CLASS. Water Research Centre Water Authorities Association, 2001, SEW REH MAN. Water Services Association of Australia, 2020, COND INSP REP COD AU, V4th ed.. Wirahadikusumah R., 2001, J INFRASTRUCT SYST, V7, P77, DOI {[}DOI 10.1061/(ASCE)1076-0342(2001)7:2(77), 10.1061/(asce)1076-0342(2001)7, 10.1061/(ASCE)1076-0342(2001)7:2(77)]. Yahaya N.Y.N., 2011, MALAYS J CIV ENG, V23, P24, DOI {[}10.11113/mjce.v23.15809, DOI 10.11113/MJCE.V23.15809]. Yang J., 2004, THESIS U S FLORIDA T. {[}袁辉洲 Yuan Huizhou], 2021, {[}给水排水, Water \& Wastewater Engineering], V47, P112. ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X. {[}周念清 Zhou Nianqing], 2021, {[}给水排水, Water \& Wastewater Engineering], V47, P144. {[}周倩倩 Zhou Qianqian], 2021, {[}中国给水排水, China Water \& Wastewater], V37, P114.}, Number-of-Cited-References = {142}, Times-Cited = {0}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {4}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {9M2AL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000942039100001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000878591800002, Author = {Valle-Cruz, David and Gil-Garcia, Jose Ramon}, Title = {Emerging Technologies in Local Government: A Systematic Literature Review Using the PRISMA Methodology}, Journal = {REVISTA MEXICANA DE ANALISIS POLITICO Y ADMINISTRACION PUBLICA}, Year = {2022}, Volume = {11}, Number = {21}, Pages = {9-28}, Month = {JAN-JUN}, Abstract = {Emerging technologies have the potential to transform public administration in unimaginable ways. In this regard, this paper aims to analyze emerging technologies in local governments using the PRISMA methodology. The questions guiding the research are: what are the emerging technologies used by local governments? And what are the challenges and consequences of using emerging technologies in local governments? The findings show three types of emerging technologies: 1) Basic (such as mobile technology, Web 2.0, websites and ICT), 2) Cutting edge (such as Blockchain, artificial intelligence, Big Data, and Internet of things) and 3) Specific and applied to smart cities, urban agriculture, environmental awareness, and telehealth. Although the implementation of emerging technologies can result in benefits for the public sector, one of the challenges lies in bridging the gap between technology developers and decision makers. Also, the inscrutable status of some algorithms and the mass surveillance capabilities of some emerging technologies threaten the freedom of societies and may dehumanize some processes in the public sector.}, Publisher = {UNIV GUANAJUATO}, Address = {LASCURAIN RETANA 5, CENTRO, GUANAJUATO, 36000, MEXICO}, Type = {Review}, Language = {Spanish}, Affiliation = {Valle-Cruz, D (Corresponding Author), Univ Autonoma Estado Mex, Ciencias Econ Adm, Toluca, Spain. Valle-Cruz, David, Univ Autonoma Estado Mex, Ciencias Econ Adm, Toluca, Spain. Gil-Garcia, Jose Ramon, Univ Estatal Nueva York Albany, Adm \& Politicas Publicas, Albany, NY USA. Gil-Garcia, Jose Ramon, Univ Estatal Nueva York Albany, Rockefeller Coll Publ Affairs \& Policy, Albany, NY USA. Gil-Garcia, Jose Ramon, Univ Las Americas Puebla, Puebla, Mexico.}, DOI = {10.1080/14719037.2020.1838787}, ISSN = {2007-4425}, EISSN = {2007-4638}, Keywords = {Emerging Technologies; Public Administration and Technology; Local Governments and Technologies}, Keywords-Plus = {COMMUNICATION TECHNOLOGY; INFORMATION}, Research-Areas = {Government \& Law}, Web-of-Science-Categories = {Political Science}, Author-Email = {davacr@uaemex.mx jgil-garcia@albany.edu}, Affiliations = {Universidad Americas Puebla (UDLAP)}, Cited-References = {Akcura MT, 2014, TECHNOL FORECAST SOC, V89, P68, DOI 10.1016/j.techfore.2013.08.040. Anshari M, 2017, INT J PUBLIC ADMIN, V40, P1143, DOI 10.1080/01900692.2016.1242619. Arias D., 2017, EVOLUCION E GOBIERNO. Arshad M, 2021, INT J COMPUT SCI NET, V21, P93, DOI 10.22937/IJCSNS.2021.21.4.14. Calzada I., 2021, POSTCOVID EUROPE. Capetillo A, 2021, INT J INTERACT DES M, V15, P597, DOI 10.1007/s12008-021-00785-x. Carroll J., 2005, RISKY BUSINESS WILL, P77. Conley John M, 2014, N C J Law Technol, V15, P597. Criado J. I., 2019, INT J PUBLIC SECT MA, V32, P438. Delima PC, 2021, INT TRANS J ENG MANA, V12, DOI 10.14456/ITJEMAST.2021.28. Fan L., 2020, PUBLIC ADM INFORM TE, P85, DOI {[}10.1007/978-3-030-37464-8\_5, DOI 10.1007/978-3-030-37464-8\_5]. Farhangi MH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12103955. Fernandez S, 2006, PUBLIC ADMIN REV, V66, P168, DOI 10.1111/j.1540-6210.2006.00570.x. Gil-Garcia JR, 2005, GOV INFORM Q, V22, P187, DOI 10.1016/j.giq.2005.02.001. Helbig N., 2014, GOV INFORM Q, V31, P11, DOI {[}10.1016/j.giq.2014.09.001, DOI 10.1016/J.GIQ.2014.09.001]. Helbig N, 2009, GOV INFORM Q, V26, P89, DOI 10.1016/j.giq.2008.05.004. Criado JI, 2013, GOV INFORM Q, V30, P319, DOI 10.1016/j.giq.2013.10.003. Jin J, 2020, FRONT ENG MANAG, V7, P447, DOI 10.1007/s42524-020-0104-6. Karetsos S., 2014, Journal of Agricultural Informatics, V5, P1. Kavanaugh A, 2007, COMMUNITIES AND TECHNOLOGIES 2007, P419, DOI 10.1007/978-1-84628-905-7\_21. Kim K, 2015, TRANSPORT RES REC, P83, DOI 10.3141/2532-10. Kretser HE, 2015, BIOL CONSERV, V189, P33, DOI 10.1016/j.biocon.2014.08.018. Kutgun H., 2018, PICMET 2018 PORTLAND, P600, DOI {[}10.23919/PICMET.2018.8481991, DOI 10.23919/PICMET.2018.8481991]. Lafia S., 2019, LEIBNIZ INT P INFORM, DOI {[}10.4230/LIPIcs.COSIT.2019.10, DOI 10.4230/LIPICS.COSIT.2019.10]. Lin L, 2020, J TRAVEL MED, V27, DOI 10.1093/jtm/taaa080. Liu M, 2013, INT J DISTRIB SENS N, DOI 10.1155/2013/272916. Liu SM, 2015, PUBLIC ADMIN DEVELOP, V35, P140, DOI 10.1002/pad.1717. Lofgren K, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720912775. Loia F., 2021, SPRINGER P COMPLEXIT, P305, DOI {[}10.1007/978-3-030-84311-3\_27, DOI 10.1007/978-3-030-84311-3\_27]. Malanga DF, 2019, INFORM DEV, V35, P482, DOI 10.1177/0266666918766971. Marusic S, 2014, IEEE TECHNOL SOC MAG, V33, P62, DOI 10.1109/MTS.2014.2345203. McKenna H. P., 2016, PUBLIC ADM INFORM TE, P87, DOI {[}10.1007/978-3-319-17620-8\_5, DOI 10.1007/978-3-319-17620-8\_5]. Mergel I. A., 2009, TRANSFORMATIONAL EFF. Mukherjee A, 2014, 2014 INTERNATIONAL CONFERENCE ON CIRCUITS, COMMUNICATION, CONTROL AND COMPUTING (I4C), P247, DOI 10.1109/CIMCA.2014.7057799. Ndou V., 2004, Electronic Journal on Information Systems in Developing Countries, V18. Nograsek J, 2012, BUSINESS SYSTEMS RES, V2, P13, DOI 10.2478/v10305-012-0016-y. Olin JJ, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031437. ONU, 2019, FUERT CREC POBL SUP. ORLIKOWSKI WJ, 1992, ORGAN SCI, V3, P398, DOI 10.1287/orsc.3.3.398. Riggs W, 2018, PROCEEDINGS OF THE 19TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH (DGO 2018): GOVERNANCE IN THE DATA AGE, P29, DOI 10.1145/3209281.3209383. Schnoll H. J., 2015, E GOVT INFORM TECHNO. SCHROEDER NW, 1979, IEEE T VEH TECHNOL, V28, P262, DOI 10.1109/T-VT.1979.23798. Schumpeter J, 2003, CAPITALISM SOCIALISM. Sebastian A, 2018, COMPUT COMMUN NETW S, P127, DOI 10.1007/978-3-319-76669-0\_6. Seneviratne SJ, 1999, INFORMATION TECHNOLOGY AND COMPUTER APPLICATIONS IN PUBLIC ADMINISTRATION: ISSUES AND TRENDS, P41. United Nations, 2003, WORLD PUBL SECT REP. Valle -Cruz D., 2020, DIGITAL GOVT ACHIEVI, P39. Valle-Cruz D., 2022, RES ANTHOLOGY CITIZE, P1520. Valle-Cruz D, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2021.101644. Valle-Cruz D, 2017, DG.O 2017: THE PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH: INNOVATIONS AND TRANSFORMATIONS IN GOVERNMENT, P511, DOI 10.1145/3085228.3085231. Valle-Cruz D, 2019, INT J PUBLIC SECT MA, V32, P473, DOI 10.1108/IJPSM-03-2018-0072. Van Ieperen J., 2006, PUBLIC TRANSPORT INT, V55, P6. Vu K, 2018, TELECOMMUN POLICY, V42, P845, DOI 10.1016/j.telpol.2017.10.005. Xu M., 2018, INT J FINANCIAL RES, V9, P90, DOI DOI 10.5430/IJFR.V9N2P90. Xu XF, 2015, COMPUTER, V48, P80, DOI 10.1109/MC.2015.182. Yildiz M, 2007, GOV INFORM Q, V24, P646, DOI 10.1016/j.giq.2007.01.002.}, Number-of-Cited-References = {56}, Times-Cited = {0}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Rev. Mex. Anal. Politico Publica}, Doc-Delivery-Number = {5X4SW}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000878591800002}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000451219000003, Author = {Loetsch, Joern and Ultsch, Alfred}, Title = {Machine learning in pain research}, Journal = {PAIN}, Year = {2018}, Volume = {159}, Number = {4}, Pages = {623-630}, Month = {APR}, Publisher = {LIPPINCOTT WILLIAMS \& WILKINS}, Address = {TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA}, Type = {Review}, Language = {English}, Affiliation = {Lotsch, J (Corresponding Author), Goethe Univ, Inst Clin Pharmacol, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. Loetsch, Joern, Goethe Univ, Inst Clin Pharmacol, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. Loetsch, Joern, Fraunhofer Inst Mol Biol \& Appl Ecol IME, Project Grp Translat Med \& Pharmacol TMP, Frankfurt, Germany. Ultsch, Alfred, Univ Marburg, DataBion Res Grp, Marburg, Germany.}, DOI = {10.1097/j.pain.0000000000001118}, ISSN = {0304-3959}, EISSN = {1872-6623}, Keywords-Plus = {NEUROPATHIC PAIN; MOLECULAR-MECHANISMS; POSTOPERATIVE PAIN; FEATURE-SELECTION; DATA SCIENCE; CLASSIFICATION; PREDICTION; IDENTIFICATION; RECOGNITION; ALGORITHMS}, Research-Areas = {Anesthesiology; Neurosciences \& Neurology}, Web-of-Science-Categories = {Anesthesiology; Clinical Neurology; Neurosciences}, Author-Email = {j.loetsch@em.uni-frankfurt.de}, Affiliations = {Goethe University Frankfurt; Fraunhofer Gesellschaft; Philipps University Marburg}, ORCID-Numbers = {Lotsch, Jorn/0000-0002-5818-6958}, Funding-Acknowledgement = {European Union {[}602919]; Landesoffensive zur Entwicklung wissenschaftlich-okonomischer Exzellenz (LOEWE), LOEWE-Zentrum fur Translationale Medizin und Pharmakologie}, Funding-Text = {This work has been funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 602919 ({''}GLORIA{''}, J.L.) and by the Landesoffensive zur Entwicklung wissenschaftlich-okonomischer Exzellenz (LOEWE), LOEWE-Zentrum fur Translationale Medizin und Pharmakologie (J.L.).}, Cited-References = {Atzori M, 2016, J REHABIL RES DEV, V53, P345, DOI 10.1682/JRRD.2014.09.0218. Basbaum AI, 2009, CELL, V139, P267, DOI 10.1016/j.cell.2009.09.028. Ben-Ari A, 2017, J BONE JOINT SURG AM, V99, P1, DOI 10.2106/JBJS.16.00167. Benioff Marc R., 2005, REPORT PRESIDENT COM. Berikol GB, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0432-6. Braundmeier-Fleming A, 2016, SCI REP-UK, V6, DOI 10.1038/srep26083. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Cannistraci CV, 2010, BIOINFORMATICS, V26, pi531, DOI 10.1093/bioinformatics/btq376. Chesler EJ, 2002, NEUROSCI BIOBEHAV R, V26, P907, DOI 10.1016/S0149-7634(02)00103-3. DeLisle S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070944. Dhar V, 2013, COMMUN ACM, V56, P64, DOI 10.1145/2500499. Dimova V, 2015, J PAIN, V16, P791, DOI 10.1016/j.jpain.2015.05.004. Dreyfus H. L., 1992, AI \& Society, V6, P18, DOI 10.1007/BF02472766. Bui DDA, 2014, J AM MED INFORM ASSN, V21, P850, DOI 10.1136/amiajnl-2013-002411. Elzahaf RA, 2012, CURR MED RES OPIN, V28, P1221, DOI 10.1185/03007995.2012.703132. Emir B, 2016, J PAIN, V17, pS78, DOI 10.1016/j.jpain.2016.01.391. Garcia-Chimeno Y, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0434-4. Gholami B, 2010, IEEE T BIO-MED ENG, V57, P1457, DOI 10.1109/TBME.2009.2039214. Goertzel BN, 2006, PHARMACOGENOMICS, V7, P485, DOI 10.2217/14622416.7.3.485. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Gram M, 2017, EUR J PAIN, V21, P264, DOI 10.1002/ejp.921. Gram M, 2015, EUR J PAIN, V19, P1552, DOI 10.1002/ejp.734. Gruss S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140330. Guyon I., 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616. Hermens H, 2014, J ELECTROMYOGR KINES, V24, P815, DOI 10.1016/j.jelekin.2014.10.003. Hu L, 2016, TRENDS NEUROSCI, V39, P212, DOI 10.1016/j.tins.2016.01.004. Hu YJ, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-131. Huang Y, 2011, IEEE T INF TECHNOL B, V15, P54, DOI 10.1109/TITB.2010.2091510. Jang EH, 2015, J PHYSIOL ANTHROPOL, V34, DOI 10.1186/s40101-015-0063-5. Jiang NF, 2017, SPINE, V42, P1635, DOI 10.1097/BRS.0000000000002159. Juckett D, 2012, J BIOMED INFORM, V45, P460, DOI 10.1016/j.jbi.2011.12.010. Julius D, 2001, NATURE, V413, P203, DOI 10.1038/35093019. Kringel D, 2017, PHARMACOGENOMICS J, V17, P419, DOI 10.1038/tpj.2016.28. Kringel D, 2015, EUR J PAIN, V19, P595, DOI 10.1002/ejp.690. Loetsch J, 2018, PAIN, V159, P11, DOI 10.1097/j.pain.0000000000001008. Lotsch J, 2017, FRONT MOL NEUROSCI, V10, DOI 10.3389/fnmol.2017.00252. Lotsch J, 2015, PAIN, V156, P405, DOI 10.1097/01.j.pain.0000460328.10515.c9. Lotsch J, 2013, J BIOMED INFORM, V46, P921, DOI 10.1016/j.jbi.2013.07.010. Mayer EA, 2015, PAIN, V156, pS50, DOI 10.1097/j.pain.0000000000000106. Meng HY, 2014, IEEE T CYBERNETICS, V44, P315, DOI 10.1109/TCYB.2013.2253768. Misra G, 2017, J NEUROPHYSIOL, V117, P786, DOI 10.1152/jn.00650.2016. Mohan A, 2017, BRAIN CONNECT, V7, P197, DOI 10.1089/brain.2016.0459. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Nanni L, 2010, ARTIF INTELL MED, V49, P117, DOI 10.1016/j.artmed.2010.02.006. NEWELL A, 1976, COMMUN ACM, V19, P113, DOI 10.1145/360018.360022. Nickerson P, 2016, IEEE ENG MED BIO, P2966, DOI 10.1109/EMBC.2016.7591352. Olesen SS, 2016, PANCREAS, V45, P381, DOI 10.1097/MPA.0000000000000475. Patterson OV, 2015, STUD HEALTH TECHNOL, V216, P1035, DOI 10.3233/978-1-61499-564-7-1035. Pesteie M, 2015, INT J COMPUT ASS RAD, V10, P901, DOI 10.1007/s11548-015-1202-5. Peters J, 2017, ADAPT COMPUT MACH LE. Pourshoghi A, 2016, J BIOMED OPT, V21, DOI 10.1117/1.JBO.21.10.101411. Robinson ME, 2015, J PAIN, V16, P472, DOI 10.1016/j.jpain.2015.02.002. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. Sammut C, 2010, ENCY MACHINE LEARNIN, P455. SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206. Saulnier DM, 2011, GASTROENTEROLOGY, V141, P1782, DOI 10.1053/j.gastro.2011.06.072. Sevel L., 2016, J PAIN, V17, pS60, DOI DOI 10.1016/j.jpain.2016.01.244. Shalev-Shwartz S., 2014, UNDERSTANDING MACHIN. Sikka K, 2015, PEDIATRICS, V136, pE124, DOI 10.1542/peds.2015-0029. Sing DC, 2017, SPINE, V42, P863, DOI 10.1097/BRS.0000000000002079. Sipila R, 2012, BRIT J CANCER, V107, P1459, DOI 10.1038/bjc.2012.445. SMOLENSKY P, 1988, BEHAV BRAIN SCI, V11, P1, DOI 10.1017/S0140525X00052432. Smolensky P., 1986, INFORM PROCESSING DY, V1, P18. Tighe P, 2011, PAIN MED, V12, P1566, DOI 10.1111/j.1526-4637.2011.01228.x. Tighe PJ, 2015, PAIN MED, V16, P1386, DOI 10.1111/pme.12713. Tighe PJ, 2012, PAIN MED, V13, P1347, DOI 10.1111/j.1526-4637.2012.01477.x. Tu YH, 2016, FRONT COMPUT NEUROSC, V10, DOI 10.3389/fncom.2016.00032. Turing AM., 1950, MIND, VLIX, P433, DOI {[}10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]. Ultsch A, 2017, C INT FED CLASS SOC, P266. Ultsch A, 2017, J BIOMED INFORM, V66, P95, DOI 10.1016/j.jbi.2016.12.011. Ultsch A, 2016, PAIN, V157, P2747, DOI 10.1097/j.pain.0000000000000694. von Hehn CA, 2012, NEURON, V73, P638, DOI 10.1016/j.neuron.2012.02.008. WINOGRAD T, 1972, COGNITIVE PSYCHOL, V3, P1, DOI 10.1016/0010-0285(72)90002-3. Wu HY, 2016, SCI REP-UK, V6, DOI 10.1038/srep27041. Wu Y., 2016, BIOMED RES INT, V2016, DOI DOI 10.1155/2016/3981478. Yang L, 2016, BMC MED INFORM DECIS, V16, DOI 10.1186/s12911-016-0317-0. Yang MJ, 2012, MED ENG PHYS, V34, P740, DOI 10.1016/j.medengphy.2011.09.018. Yoo TK, 2013, IEEE ENG MED BIO, P192, DOI 10.1109/EMBC.2013.6609470. Zhang G, 2013, INT J DATA MIN BIOIN, V8, P381, DOI 10.1504/IJDMB.2013.056643. Zifan A, 2017, NEUROGASTROENT MOTIL, V29, DOI 10.1111/nmo.12917.}, Number-of-Cited-References = {80}, Times-Cited = {78}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {21}, Journal-ISO = {Pain}, Doc-Delivery-Number = {HB6YD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000451219000003}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000586208600001, Author = {Nosratabadi, Saeed and Mosavi, Amirhosein and Puhong Duan and Ghamisi, Pedram and Filip, Ferdinand and Band, Shahab S. and Reuter, Uwe and Gama, Joao and Gandomi, Amir H.}, Title = {Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods}, Journal = {MATHEMATICS}, Year = {2020}, Volume = {8}, Number = {10}, Month = {OCT}, Abstract = {This paper provides a comprehensive state-of-the-art investigation of the recent advances in data science in emerging economic applications. The analysis is performed on the novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a broad and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, is used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which outperform other learning algorithms. It is further expected that the trends will converge toward the evolution of sophisticated hybrid deep learning models.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Mosavi, A (Corresponding Author), Ton Duc Thang Univ, Environm Qual Atmospher Sci \& Climate Change Res, Ho Chi Minh City, Vietnam. Mosavi, A (Corresponding Author), Ton Duc Thang Univ, Fac Environm \& Labour Safety, Ho Chi Minh, Vietnam. Band, SS (Corresponding Author), Duy Tan Univ, Inst Res \& Dev, Da Nang 550000, Vietnam. Band, SS (Corresponding Author), Natl Yunlin Univ Sci \& Technol, Coll Future, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan. Nosratabadi, Saeed, Szent Istvan Univ, Doctoral Sch Management \& Business Adm, H-2100 Godollo, Hungary. Mosavi, Amirhosein, Ton Duc Thang Univ, Environm Qual Atmospher Sci \& Climate Change Res, Ho Chi Minh City, Vietnam. Mosavi, Amirhosein, Ton Duc Thang Univ, Fac Environm \& Labour Safety, Ho Chi Minh, Vietnam. Puhong Duan, Hunan Univ, Coll Elect \& Informat Engn, Changsha 410082, Peoples R China. Ghamisi, Pedram, Helmholtz Inst Freiberg Resource Technol, Helmholtz Zentrum Dresden Rossendorf, D-09599 Freiberg, Germany. Filip, Ferdinand, J Selye Univ, Dept Math, Komarno 94501, Slovakia. Band, Shahab S., Duy Tan Univ, Inst Res \& Dev, Da Nang 550000, Vietnam. Band, Shahab S., Natl Yunlin Univ Sci \& Technol, Coll Future, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan. Reuter, Uwe, Tech Univ Dresden, Fac Civil Engn, D-01069 Dresden, Germany. Gama, Joao, INESC TEC, Fac Lab Artificial Intelligence \& Decis Support L, Campus FEUP,Rua Roberto Frias, P-4200465 Porto, Portugal. Gandomi, Amir H., Univ Technol Sydney, Fac Engn \& Informat Technol, Sydney, NSW 2007, Australia.}, DOI = {10.3390/math8101799}, Article-Number = {1799}, EISSN = {2227-7390}, Keywords = {data science; deep learning; economic model; ensemble; economics; cryptocurrency; machine learning; deep reinforcement learning; big data; bitcoin; time series; network science; prediction; survey; artificial intelligence; literature review}, Keywords-Plus = {PREDICTION; HYBRID; MODEL; CLASSIFICATION; PERFORMANCE}, Research-Areas = {Mathematics}, Web-of-Science-Categories = {Mathematics}, Author-Email = {saeed.nosratabadi@phd.uni-szie.hu amirhosein.mosavi@tdtu.edu.vn puhong\_duan@hnu.edu.cn p.ghamisi@hzdr.de filipf@ujs.sk shamshirbandshahaboddin@duytan.edu.vn uwe.reuter@tu-dresden.de jgama@fep.up.pt gandomi@uts.edu.au}, Affiliations = {Hungarian University of Agriculture \& Life Sciences; Ton Duc Thang University; Ton Duc Thang University; Hunan University; Helmholtz Association; Helmholtz-Zentrum Dresden-Rossendorf (HZDR); J. Selye University; Duy Tan University; National Yunlin University Science \& Technology; Technische Universitat Dresden; INESC TEC; University of Technology Sydney}, ResearcherID-Numbers = {Nosratabadi, Saeed/P-7552-2016 Filip, Ferdinánd/AAA-1439-2019 Reuter, Uwe/HLG-6096-2023 S.Band, Shahab/ABI-7388-2020 Ghamisi, Pedram/ABD-5419-2021 Gandomi, Amir H/J-7595-2013 S. Band, Shahab/ABB-2469-2020 S.Band, Shahab/AAD-3311-2021 Mosavi, Amir/I-7440-2018 Gama, Joao/A-2070-2008}, ORCID-Numbers = {Nosratabadi, Saeed/0000-0002-0440-6564 Filip, Ferdinánd/0000-0003-1439-4330 Reuter, Uwe/0000-0002-8527-0725 S.Band, Shahab/0000-0002-8963-731X Gandomi, Amir H/0000-0002-2798-0104 S. Band, Shahab/0000-0001-6109-1311 Mosavi, Amir/0000-0003-4842-0613 Ghamisi, Pedram/0000-0003-1203-741X Gama, Joao/0000-0003-3357-1195}, Funding-Acknowledgement = {Hungarian-Mexican bilateral Scientific and Technological {[}2019-2.1.11TET-2019-00007]; project in the framework of the New Szechenyi Plan {[}EFOP-3.6.2-16-2017-00016]; European Union; European social fund}, Funding-Text = {This research in part by the Hungarian-Mexican bilateral Scientific and Technological (2019-2.1.11TET-2019-00007) project, and also EFOP-3.6.2-16-2017-00016 project in the framework of the New Szechenyi Plan. Completing this project is supported by the European Union and co-financed by the European social fund.}, Cited-References = {Abdillah Y., 2019, INT J ELECT COMPUT E, V9, P667, DOI {[}10.11591/ijece.v9i1.pp667-675, DOI 10.11591/IJECE.V9I1.PP667-675]. Agarwal S, 2022, GLOB BUS REV, V23, P119, DOI 10.1177/0972150919845160. Agrawal M., 2019, INT J EMERG TECHNOL, V10, P186. Agrawal M., 2019, INT J RECENT TECHNOL, V6, P2297, DOI {[}10.35940/ijrte.b3048.078219, DOI 10.35940/IJRTEB3048.078219]. Ahmadi E, 2018, EXPERT SYST APPL, V94, P21, DOI 10.1016/j.eswa.2017.10.023. AlKandari M., 2020, APPL COMPUT INFORM, DOI {[}10.1016/j.aci.2019.11.002, DOI 10.1016/J.ACI.2019.11.002]. Altan A, 2019, CHAOS SOLITON FRACT, V126, P325, DOI 10.1016/j.chaos.2019.07.011. Ardabili S, 2020, LECT NOTE NETW SYST, V101, P215, DOI 10.1007/978-3-030-36841-8\_21. Bao W, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180944. Benlahbib A, 2020, J ORG COMP ELECT COM, V30, P9, DOI 10.1080/10919392.2019.1654350. Cai QP, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P1339, DOI 10.1145/3178876.3186039. Casalino G., 2017, P INT C MOD DEC ART, P177. Chen YS, 2016, IEEE T GEOSCI REMOTE, V54, P6232, DOI 10.1109/TGRS.2016.2584107. Chen ZS, 2020, EXPERT SYST APPL, V146, DOI 10.1016/j.eswa.2019.113155. Chong E, 2017, EXPERT SYST APPL, V83, P187, DOI 10.1016/j.eswa.2017.04.030. Chung YW, 2019, APPL ENERG, V254, DOI 10.1016/j.apenergy.2019.113732. Das SR, 2018, ALGORITHMS, V11, DOI 10.3390/a11090138. Dingli Alexiei, 2017, International Journal of Machine Learning and Computing, V7, P128, DOI 10.18178/ijmlc.2017.7.5.634. Dingli Alexiei, 2017, International Journal of Machine Learning and Computing, V7, P118, DOI 10.18178/ijmlc.2017.7.5.632. Duan PH, 2020, IEEE T GEOSCI REMOTE, V58, P2444, DOI 10.1109/TGRS.2019.2949427. Durairaj M., 2019, INT J EMERG TECHNOL, V10, P324. Ebadati EOM, 2018, NEURAL NETW WORLD, V28, P41, DOI 10.14311/NNW.2018.28.003. Faghihi-Nezhad MT, 2018, IND ENG MANAG SYST, V17, P479, DOI 10.7232/iems.2018.17.3.479. Fang YJ, 2019, ALGORITHMS, V12, DOI 10.3390/a12020035. Faris H, 2020, PROG ARTIF INTELL, V9, P31, DOI 10.1007/s13748-019-00197-9. Fischer T, 2018, EUR J OPER RES, V270, P654, DOI 10.1016/j.ejor.2017.11.054. Fister D, 2019, NEURAL NETW WORLD, V29, P151, DOI 10.14311/NNW.2019.29.011. Fujiyoshi H, 2019, IATSS RES, V43, P244, DOI 10.1016/j.iatssr.2019.11.008. Ghamisi P, 2017, IEEE J-STARS, V10, P3011, DOI 10.1109/JSTARS.2016.2634863. Go Y.H., 2019, INT J RECENT TECHNOL, V8, P31, DOI {[}10.35940/ijrte.B1007.0782S619, DOI 10.35940/IJRTE.B1007.0782S619]. Goncalves R, 2019, INF ECON POLICY, V47, P38, DOI 10.1016/j.infoecopol.2019.05.002. Guermoui M, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120357. Ha JW, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P107, DOI 10.1145/2939672.2939678. Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Hosni M, 2019, COMPUT METH PROG BIO, V177, P89, DOI 10.1016/j.cmpb.2019.05.019. Husejinovic A., 2020, CREDIT CARD FRAUD DE, V4, P1. Jasmine Sabeena P.V., 2019, INT J ENG ADV TECHNO, V8, P2996. Jiang ZY, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P905. Johari SNM., 2018, INT J ENG TECHNOL UA, V7, P36, DOI {[}10.14419/ijet.v7i3.15.17403, DOI 10.14419/IJET.V7I3.15.17403]. Kim JJ, 2018, INT J GRID DISTRIB, V11, P11, DOI 10.14257/ijgdc.2018.11.2.02. Ladyzynski P, 2019, EXPERT SYST APPL, V134, P28, DOI 10.1016/j.eswa.2019.05.020. Lahmiri S, 2020, INTELL SYST ACCOUNT, V27, P3, DOI 10.1002/isaf.1460. Lahmiri S, 2019, CHAOS SOLITON FRACT, V118, P35, DOI 10.1016/j.chaos.2018.11.014. Lee H, 2020, ADV ENG INFORM, V44, DOI 10.1016/j.aei.2020.101071. Lei K, 2020, EXPERT SYST APPL, V140, DOI 10.1016/j.eswa.2019.112872. Lei ZZ, 2020, ELECTRON COMMER RES, V20, P275, DOI 10.1007/s10660-019-09389-w. Leung KH, 2019, EXPERT SYST APPL, V134, P304, DOI 10.1016/j.eswa.2019.05.027. Li ST, 2019, IEEE T GEOSCI REMOTE, V57, P6690, DOI 10.1109/TGRS.2019.2907932. Lin WC, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12335. Long W, 2019, KNOWL-BASED SYST, V164, P163, DOI 10.1016/j.knosys.2018.10.034. Mathis MW, 2020, CURR OPIN NEUROBIOL, V60, P1, DOI 10.1016/j.conb.2019.10.008. Minh DL, 2018, IEEE ACCESS, V6, P55392, DOI 10.1109/ACCESS.2018.2868970. Mishra S., 2019, INT J INNOV TECHNOL, V8, P2358, DOI {[}10.35940/ijitee.B2453.0881019, DOI 10.35940/IJITEE.B2453.0881019]. Mittal S, 2019, FRONT BIOENG BIOTECH, V7, DOI 10.3389/fbioe.2019.00246. Moews B, 2019, EXPERT SYST APPL, V120, P197, DOI 10.1016/j.eswa.2018.11.027. Moher D, 2009, PLOS MED, V6, DOI {[}10.1371/journal.pmed.1000097, 10.1136/bmj.b2700, 10.7326/0003-4819-151-4-200908180-00136, 10.1136/bmj.b4037]. Moon KS, 2019, ECON COMPUT ECON CYB, V53, P77, DOI 10.24818/18423264/53.2.19.05. Mosavi A., 2018, INT C GLOB RES ED, P235. Mosavi A, 2019, ENG APPL COMP FLUID, V13, P482, DOI 10.1080/19942060.2019.1613448. Nosratabadi S, 2020, IEEE RIVF INT CONF, P137. Nosratabadi S, 2020, LECT NOTE NETW SYST, V101, P228, DOI 10.1007/978-3-030-36841-8\_22. Olah J, 2020, ENERGIES, V13, DOI 10.3390/en13092323. Paolanti M, 2019, ROBOT AUTON SYST, V118, P179, DOI 10.1016/j.robot.2019.01.021. Pradeepkumar D, 2018, COMPUT OPER RES, V99, P262, DOI 10.1016/j.cor.2018.05.020. Preeti, 2018, COMM COM INF SC, V899, P23, DOI 10.1007/978-981-13-2035-4\_3. Sabaityte J, 2019, E M EKON MANAG, V22, P206, DOI 10.15240/tul/001/2019-1-014. Saravanan V., 2019, INT J INNOV TECHNOL, V9, P1885, DOI {[}10.35940/ijitee.L3608.119119, DOI 10.35940/IJITEE.L3608.119119]. Satyanarayana K., 2019, INT, V8, P1061. Shamshoddin S, 2020, ELECTRON COMMER RES, V20, P241, DOI 10.1007/s10660-019-09377-0. Shekhar S., 2020, TEST ENG MANAG, V82, P64. Sim HS, 2019, COMPLEXITY, DOI 10.1155/2019/4324878. Singh R, 2017, MULTIMED TOOLS APPL, V76, P18569, DOI 10.1007/s11042-016-4159-7. Sirignano J, 2019, QUANT FINANC, V19, P1449, DOI 10.1080/14697688.2019.1622295. Sohangir S, 2018, J BIG DATA-GER, V5, DOI 10.1186/s40537-017-0111-6. Song XF, 2013, SIGNAL PROCESS, V93, P1, DOI 10.1016/j.sigpro.2012.07.029. Song Y, 2019, APPL INTELL, V49, P897, DOI 10.1007/s10489-018-1308-x. Stoean C, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223593. Stoean R., 2019, ARXIV190911903. Stoean R, 2019, LECT NOTES COMPUT SC, V11506, P871, DOI 10.1007/978-3-030-20521-8\_71. Tamura K., 2018, T JPN SOC ARTIF INTE, P33, DOI {[}10.1527/tjsai.A-H51, DOI 10.1527/TJSAI.A-H51]. Tashiro D, 2019, QUANT FINANC, V19, P1499, DOI 10.1080/14697688.2019.1622314. Torabi M., 2018, INT C GLOB RES ED, P266. Torabi M, 2019, ENVIRON PROG SUSTAIN, V38, P66, DOI 10.1002/ep.12934. Ullah I, 2019, IEEE ACCESS, V7, P60134, DOI 10.1109/ACCESS.2019.2914999. Vamshikrishna Reddy, 2019, INT J INNOV TECHNOL, V8, P150. Vo NNY, 2019, DECIS SUPPORT SYST, V124, DOI 10.1016/j.dss.2019.113097. Wang HZ, 2019, ENERG CONVERS MANAGE, V198, DOI 10.1016/j.enconman.2019.111799. Wang WY, 2020, EXPERT SYST APPL, V143, DOI 10.1016/j.eswa.2019.113042. Wang Y, 2018, CIRP ANN-MANUF TECHN, V67, P145, DOI 10.1016/j.cirp.2018.04.018. Weng B, 2018, EXPERT SYST APPL, V112, P258, DOI 10.1016/j.eswa.2018.06.016. Wu C, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2379, DOI 10.1145/3132847.3133163. Xu YZ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11195521. Yan HJ, 2018, WIRELESS PERS COMMUN, V102, P683, DOI 10.1007/s11277-017-5086-2. Zatevakhina A, 2019, 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: APPLICATIONS AND INNOVATIONS (IC-AIAI 2019), P104, DOI 10.1109/IC-AIAI48757.2019.00029. Zhang QC, 2018, INFORM FUSION, V42, P146, DOI 10.1016/j.inffus.2017.10.006. Zhang YZ, 2019, COGN SYST RES, V57, P228, DOI 10.1016/j.cogsys.2018.10.025.}, Number-of-Cited-References = {97}, Times-Cited = {47}, Usage-Count-Last-180-days = {51}, Usage-Count-Since-2013 = {150}, Journal-ISO = {Mathematics}, Doc-Delivery-Number = {OM7OH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000586208600001}, OA = {Green Published, Green Submitted, gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000490665800001, Author = {Kwon, Heeseo Rain and Silva, Elisabete A.}, Title = {Mapping the Landscape of Behavioral Theories: Systematic Literature Review}, Journal = {JOURNAL OF PLANNING LITERATURE}, Year = {2020}, Volume = {35}, Number = {2}, Pages = {161-179}, Month = {MAY}, Abstract = {The term ``behavioral{''} has become a hot topic in recent years in various disciplines; however, there is yet limited understanding of what theories can be considered behavioral theories and what fields of research they can be applied to. Through a cross-disciplinary literature review, this article identifies sixty-two behavioral theories from 963 search results, mapping them in a diagram of four groups (factors, strategies, learning and conditioning, and modeling), and points to five discussion points: understanding of terms, classification, guidance on the use of appropriate theories, inclusion in data-driven research and agent-based modeling, and dialogue between theory-driven and data-driven approaches.}, Publisher = {SAGE PUBLICATIONS INC}, Address = {2455 TELLER RD, THOUSAND OAKS, CA 91320 USA}, Type = {Review}, Language = {English}, Affiliation = {Kwon, HR (Corresponding Author), Univ Cambridge, Dept Land Econ, LISA, 19 Silver St, Cambridge CB3 9EP, England. Kwon, Heeseo Rain; Silva, Elisabete A., Univ Cambridge, Dept Land Econ, LISA, 19 Silver St, Cambridge CB3 9EP, England.}, DOI = {10.1177/0885412219881135}, EarlyAccessDate = {OCT 2019}, Article-Number = {0885412219881135}, ISSN = {0885-4122}, EISSN = {1552-6593}, Keywords = {behavioral theories; behavioral science; data-driven research; theory-driven research; agent-based modeling; urban and environmental planning; data science; complexity theory}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; DECISION-MAKING; BOUNDED RATIONALITY; SELF-DETERMINATION; PROSPECT-THEORY; MODEL; COST; RISK; ANTECEDENTS; INTEGRATION}, Research-Areas = {Public Administration; Urban Studies}, Web-of-Science-Categories = {Regional \& Urban Planning; Urban Studies}, Author-Email = {hk394@cam.ac.uk}, Affiliations = {University of Cambridge}, ResearcherID-Numbers = {Kwon, Heeseo/AAD-9889-2019}, ORCID-Numbers = {Kwon, Heeseo/0000-0003-1780-2328}, Funding-Acknowledgement = {Economic and Social Research Council {[}RG76702/JPAG254]; Cambridge Humanities Research Grant {[}GASR009831/JPES.AHAS]}, Funding-Text = {The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Economic and Social Research Council (Grant No. RG76702/JPAG254) and the Cambridge Humanities Research Grant (Grant No. GASR009831/JPES.AHAS).}, Cited-References = {Abdulkadirov Sherzod, 2016, NUDGE THEORY ACTION, DOI {[}10.1007/978-3-319-31319-1\_9, DOI 10.1007/978-3-319-31319-1\_9]. Adhikari D., 2016, BEHAV DEV B, V21, P128, DOI {[}10.1037/bdb0000029, DOI 10.1037/BDB0000029]. Adjei Eric, 2012, 31 SO AFR TRANSP C S. Ajmone Marsan G, 2016, MATH MOD METH APPL S, V26, P1051, DOI 10.1142/S0218202516500251. AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T. Ajzen I, 1980, UNDERSTANDING ATTITU, DOI DOI 10.1007/978-3-642-69746-3\_2. Allais M, 1953, ECONOMETRICA, V21, P503, DOI 10.2307/1907921. Allmendinger P, 2009, PLANNING THEORY. {[}Anonymous], TECHNOLOGIES URBAN S. {[}Anonymous], 2005, ORG BEHAV. {[}Anonymous], 1960, COLLECTION MATH PROB. Arrow, 1951, J CHEM INF MODEL, V53, P1, DOI {[}10.1017/CBO9781107415324.004, DOI 10.1017/CB09781107415324.004]. Babbie E., 2010, PRACTICE SOCIAL RES, V12th. Bandura A., 1986, SOCIAL FDN THOUGHT A. Bandura A., 1971, SOCIAL LEARNING THEO. BAUMOL WJ, 1970, AM ECON REV, V60, P265. BELL DE, 1982, OPER RES, V30, P961, DOI 10.1287/opre.30.5.961. Bellomo N, 2015, MATH MOD METH APPL S, V25, P2417, DOI 10.1142/S0218202515400138. Berg C, 2015, NUDGE RIGHT DIRECTIO. Bergner RM, 2011, NEW IDEAS PSYCHOL, V29, P147, DOI 10.1016/j.newideapsych.2010.08.001. Bernoulli D, 1954, ECONOMETRICA, V22, P23, DOI 10.2307/1909829. Bradshaw Della, 2015, FINANCIAL TIMES. Camerer CF, 2004, Q J ECON, V119, P861, DOI 10.1162/0033553041502225. CARPENTER GA, 1987, COMPUT VISION GRAPH, V37, P54, DOI 10.1016/S0734-189X(87)80014-2. Castanier C, 2013, TRANSPORT RES F-TRAF, V18, P148, DOI 10.1016/j.trf.2012.12.014. Chakrabortty A, 2008, GUARDIAN. Claudy MC, 2013, J MACROMARKETING, V33, P273, DOI 10.1177/0276146713481605. Coase RH, 1937, ECONOMICA-NEW SER, V4, P386, DOI 10.1111/j.1468-0335.1937.tb00002.x. Collins English Dictionary, 2018, THEOR DEF MEAN. Collins English Dictionary, 2018, BEH DEF MEAN. Collins English Dictionary, 2018, BEH SCI DEF MEAN. Damant-Sirois G, 2015, TRANSPORT RES A-POL, V77, P113, DOI 10.1016/j.tra.2015.03.028. Darnton A, 2008, GSR BEHAV CHANGE KNO. Dasgupta R, 2017, AUSTRALAS ACCOUNT BU, V11, P103, DOI 10.14453/aabfj.v11i3.8. Davis R, 2015, HEALTH PSYCHOL REV, V9, P323, DOI 10.1080/17437199.2014.941722. De Roo Gert., 2010, PLANNERS ENCOUNTER C. DECI EL, 1985, J RES PERS, V19, P109, DOI 10.1016/0092-6566(85)90023-6. Denehy M, 2017, BMJ OPEN, V7, DOI 10.1136/bmjopen-2017-017005. Dickinson DL, 2011, J ECON PSYCHOL, V32, P295, DOI 10.1016/j.joep.2010.12.004. Dunning RJ, 2017, HOUS THEORY SOC, V34, P21, DOI 10.1080/14036096.2016.1190784. Dynarski SM, 2006, NATL TAX J, V59, P319, DOI 10.17310/ntj.2006.2.07. Easton M., 2015, BBC NEWS. Eddington Arthur, 1928, NATURE PHYS WORLD. EDWARDS W, 1961, ANNU REV PSYCHOL, V12, P473, DOI 10.1146/annurev.ps.12.020161.002353. Elragal Ahmed, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0079-2. Ertugrul OF, 2017, NEURAL COMPUT APPL, V28, P3921, DOI 10.1007/s00521-016-2314-8. Evans TP, 2004, J ENVIRON MANAGE, V72, P57, DOI 10.1016/j.jenvman.2004.02.008. Faludi A., 1987, DECISION CTRD VIEW E. Festinger L., 1957, CONFLICT DECIS DISSO. Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231. Fiedler K, 2007, J CONSUM PSYCHOL, V17, P101, DOI 10.1016/S1057-7408(07)70015-3. Flood M.M, 1952, GAME LEARNING THEORY. FORESTER J, 1984, PUBLIC ADMIN REV, V44, P23, DOI 10.2307/975658. Freeman RE., 1984, STRATEG MANAG. GARDNER M, 1970, SCI AM, V223, P120, DOI 10.1038/scientificamerican1070-120. Gintis Herbert, 2014, BOUNDS REASON GAME T, P288. Gonzalez C, 2003, COGNITIVE SCI, V27, P591, DOI 10.1016/S0364-0213(03)00031-4. Google Trends, 2017, SEARCH TERM BEH WORL. Gottfredson Michael R., 1990, GEN THEORY CRIME GEN, DOI {[}10.1177/0022427803256071, DOI 10.1177/0022427803256071]. Guo PJ, 2011, IEEE T SYST MAN CY A, V41, P917, DOI 10.1109/TSMCA.2010.2093891. HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90039-6. Hensher DA, 2013, TRANSPORT REV, V33, P92, DOI 10.1080/01441647.2012.760671. Holland JH., 1975, ADAPTATION NATURAL A, DOI DOI 10.1137/1018105. JENSEN MC, 1976, J FINANC ECON, V3, P305, DOI 10.1016/0304-405X(76)90026-X. Justo DS, 2017, SUSTAIN CITIES SOC, V35, P483, DOI 10.1016/j.scs.2017.08.029. Kahneman D, 2003, AM ECON REV, V93, P1449, DOI 10.1257/000282803322655392. KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185. Kaufmann S., 1993, ORIGINS ORDER SELF O, DOI {[}10.1002/bies.950170412, DOI 10.1002/BIES.950170412]. Khashanah K, 2016, COMPLEXITY, V21, P530, DOI 10.1002/cplx.21834. Knight, 1965, RISK UNCERTAINTY PRO. Kolanowski A, 2011, J AM GERIATR SOC, V59, P1032, DOI 10.1111/j.1532-5415.2011.03449.x. Laajaj R, 2017, J DEV ECON, V127, P187, DOI 10.1016/j.jdeveco.2017.01.006. Lapinski MK, 2017, HUM COMMUN RES, V43, P148, DOI 10.1111/hcre.12099. Lashley KS, 1951, CEREBRAL MECH BEHAV, P112, DOI {[}DOI 10.1007/7854\_2015\_388, DOI 10.1016/J.HUMOV.2007.04.001]. Latour Bruno, 2005, REASSEMBLING SOCIAL, DOI {[}10.1016/S0969-4765(04)00066-9, DOI 10.1016/S0969-4765(04)00066-9]. Liberman N, 1998, J PERS SOC PSYCHOL, V75, P5, DOI 10.1037/0022-3514.75.1.5. London School of Economics, 2018, LSE BEH SCI WHAT IS. Lu Hsipeng, 2017, KNOWLEDGE MANAGEMENT, V15, P130, DOI {[}10.1057/s41275-016-0001-2, DOI 10.1057/S41275-016-0001-2]. Malewski A, 2017, POL SOCIOL REV, P411. Markowitz H, 1952, J FINANC, V7, P77, DOI 10.1111/j.1540-6261.1952.tb01525.x. Marshall A., 1920, PRINCIPLES EC. Martinez-Moyano IJ, 2008, ACM T MODEL COMPUT S, V18, DOI 10.1145/1346325.1346328. Maskin E., 2002, HDB SOCIAL CHOICE WE, P237, DOI {[}DOI 10.1016/S1574-0110(02)80009-1, 10.1016/S1574-0110(02)80009-1]. Maslow A.H., 1987, MOTIVATION PERSONALI, V3rd. Mazur J.E., 1987, QUANTITATIVE ANAL BE, V5, P55, DOI DOI 10.1039/c4qo00187g. Michie S, 2005, QUAL SAF HEALTH CARE, V14, P26, DOI 10.1136/qshc.2004.011155. Minton EA, 2017, J CONSUM BEHAV, V16, P309, DOI 10.1002/cb.1624. Mittal S, 2017, SIMUL FOUND METH APP, P363. Mongin P., 1997, HDB EC METHODOLOGY, P342. Morris J, 2012, THEORIES MODELS BEHA. Morton A, 2009, J OPER RES SOC, V60, P268, DOI 10.1057/palgrave.jors.2602550. Munro S, 2007, BMC PUBLIC HEALTH, V7, DOI 10.1186/1471-2458-7-104. NASH JF, 1950, P NATL ACAD SCI USA, V36, P48, DOI 10.1073/pnas.36.1.48. Nash N, 2017, WIRES CLIM CHANGE, V8, DOI 10.1002/wcc.481. Neumann J.V., 1944, THEORY GAMES EC BEHA. OLIVER RL, 1980, J MARKETING RES, V17, P460, DOI 10.2307/3150499. Olson Mancur, 1965, LOGIC COLLECTIVE ACT, DOI DOI 10.1007/978-3-319-20451-2\_32. Ostrom E, 1998, AM POLIT SCI REV, V92, P1, DOI 10.2307/2585925. Ostrom E., 1990, GOVERNING COMMONS EV, DOI DOI 10.1017/CB09780511807763. Oxford Dictionaries, 2018, BEH DICT. Oxford English Dictionary, 2018, BEH. Painter JE, 2008, ANN BEHAV MED, V35, P358, DOI 10.1007/s12160-008-9042-y. Parunak HV, 1998, LECT NOTES ARTIF INT, V1534, P10. Pavlov I. P., 1927, CONDITIONAL REFLEXES. Pfeffer J., 1978, EXTERNAL CONTROL ORG. Prosman EJ, 2016, SUPPLY CHAIN MANAG, V21, P499, DOI 10.1108/SCM-08-2015-0299. Putnam R., 1993, MAKING DEMOCRACY WOR. Robinson DT, 2012, COMPUT ENVIRON URBAN, V36, P164, DOI 10.1016/j.compenvurbsys.2011.10.002. Robinson DT, 2009, INT J GEOGR INF SCI, V23, P1211, DOI 10.1080/13658810802344101. Rogers EM., 1983, INTEGRATED APPROACH, VThird. ROGERS RW, 1975, J PSYCHOL, V91, P93, DOI 10.1080/00223980.1975.9915803. ROSENSTOCK IM, 1966, MILBANK FUND Q, V44, P94, DOI 10.2307/3348967. Rounsevell MDA, 2012, PHILOS T R SOC B, V367, P259, DOI 10.1098/rstb.2011.0187. Savage Ben, 2011, BEHAV INSIGHTS TOOLK, P1. Schluter M, 2017, ECOL ECON, V131, P21, DOI 10.1016/j.ecolecon.2016.08.008. Shefrin H, 2000, J FINANC QUANT ANAL, V35, P127, DOI 10.2307/2676187. Shove E., 2012, DYNAMICS SOCIAL PRAC, DOI {[}10.4135/9781446250655, DOI 10.4135/9781446250655.N1]. Silva E.A., 2011, URBAN REMOTE SENSING, P323. Silva EA, 2004, FUTURES, V36, P1077, DOI 10.1016/j.futures.2004.03.014. Silva Elisabete A., 2020, HDB PLANNING SUPPORT. Simon H. A., 1982, MODELS BOUNDED RATIO. Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852. Skinner B.F, 1990, BEHAV ORGANISMS EXPT. Smith Adam, 2000, THEORY MORAL SENTIME, DOI DOI 10.1093/OSEO/INSTANCE.00042831. SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0. Sparks R, 2016, STUD BIG DATA, V16, P33, DOI 10.1007/978-3-319-26989-4\_2. Spencer JP, 2012, J INTEGR NEUROSCI, V11, P339, DOI 10.1142/S0219635212500227. Spencer J. P., 2007, EMERGING SPATIAL MIN, P320. Stern P.C., 1999, HUM ECOL REV, V6, P81, DOI DOI 10.1016/J.JENVP.2014.01.002. Sukumar Sreenivas R., 2015, AGENT BASED VS EQUAT, DOI {[}10.1109/BioMedCom.2012.19, DOI 10.1109/BIOMEDCOM.2012.19]. Sun Yi, 2006, SURVEY AGENTBASED MO. TANNER WP, 1954, PSYCHOL REV, V61, P401, DOI 10.1037/h0058700. Thaler R., 2008, NUDGE. The R Foundation, 2019, PHOTOGRAPH PROJECT S. Thibaut J.W., 1959, SOCIAL PSYCHOL GROUP. THORNDIKE EL, 1898, ANIMAL INTELLIGENCE. Tsang EWK, 2006, STRATEGIC MANAGE J, V27, P999, DOI 10.1002/smj.553. University of Cambridge, 2018, PSYCH BEH SCI UND ST. van Riper CJ, 2014, J ENVIRON PSYCHOL, V38, P288, DOI 10.1016/j.jenvp.2014.03.002. Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926. VONHIPPEL E, 1986, MANAGE SCI, V32, P791, DOI 10.1287/mnsc.32.7.791. Wallace WL., 1971, LOGIC SCI SOCIOLOGY. Watson JB, 1913, PSYCHOL REV, V20, P158, DOI 10.1037/0033-295X.101.2.248. Webb D, 2013, J ENVIRON PSYCHOL, V35, P59, DOI 10.1016/j.jenvp.2013.04.003. Westaby JD, 2005, ORGAN BEHAV HUM DEC, V98, P97, DOI 10.1016/j.obhdp.2005.07.003. Wilson J. Q., 1982, ATLANTIC, V3. Wise AF., 2015, J LEARN ANAL, V2, P5, DOI {[}10.18608/jla.2015.22.2, DOI 10.18608/JLA.2015.22.2]. Wiseman RM, 1998, ACAD MANAGE REV, V23, P133, DOI 10.2307/259103. Wolske KS, 2017, ENERGY RES SOC SCI, V25, P134, DOI 10.1016/j.erss.2016.12.023. WoS (Web of Science), 2018, WEB SCI SEARCH RES B. WoS (Web of Science), 2018, WEB SCI RES BEH THEO. Wu N, 2013, PROC INST CIV ENG-U, V166, P76, DOI 10.1680/udap.12.00014. Wu N, 2010, J PLAN LIT, V24, P246, DOI 10.1177/0885412210361571. Yuen KF, 2017, TRANSPORT RES E-LOG, V108, P18, DOI 10.1016/j.tre.2017.10.002. ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X.}, Number-of-Cited-References = {155}, Times-Cited = {34}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {51}, Journal-ISO = {J. Plan. Lit.}, Doc-Delivery-Number = {LM7FV}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000490665800001}, OA = {hybrid, Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000595021100001, Author = {Rasheed, Faizan and Yau, Kok-Lim Alvin and Noor, Rafidah Md. and Wu, Celimuge and Low, Yeh-Ching}, Title = {Deep Reinforcement Learning for Traffic Signal Control: A Review}, Journal = {IEEE ACCESS}, Year = {2020}, Volume = {8}, Pages = {208016-208044}, Abstract = {Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.}, Publisher = {IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC}, Address = {445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA}, Type = {Review}, Language = {English}, Affiliation = {Yau, KLA (Corresponding Author), Sunway Univ, Dept Comp \& Informat Syst, Subang Jaya 47500, Malaysia. Rasheed, Faizan; Yau, Kok-Lim Alvin; Low, Yeh-Ching, Sunway Univ, Dept Comp \& Informat Syst, Subang Jaya 47500, Malaysia. Noor, Rafidah Md., Univ Malaya, Fac Comp Sci \& Informat Technol, Kuala Lumpur 50603, Malaysia. Wu, Celimuge, Univ Electrocommun, Grad Sch Informat \& Engn, Tokyo 1828585, Japan.}, DOI = {10.1109/ACCESS.2020.3034141}, ISSN = {2169-3536}, Keywords = {Reinforcement learning; Deep learning; Neurons; Computational modeling; Analytical models; Complexity theory; Licenses; Artificial intelligence; deep learning; deep reinforcement learning; traffic signal control}, Keywords-Plus = {REAL-TIME; CONTROL-SYSTEM; SIMULATION; INTELLIGENCE; ALGORITHMS; NETWORKS; MODEL}, Research-Areas = {Computer Science; Engineering; Telecommunications}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Telecommunications}, Author-Email = {koklimy@sunway.edu.my}, Affiliations = {Sunway University; Universiti Malaya; University of Electro-Communications - Japan}, ResearcherID-Numbers = {Noor, Rafidah Md/B-5445-2010 Rasheed, Faizan/ABC-9488-2020 Yau, Kok Lim Alvin/AFO-7004-2022 Wu, Celimuge/P-1232-2019 Wu, Celimuge/I-4703-2013 Rasheed, Faizan/HNQ-9857-2023 }, ORCID-Numbers = {Noor, Rafidah Md/0000-0001-6266-2390 Yau, Kok Lim Alvin/0000-0003-3110-2782 Wu, Celimuge/0000-0001-6853-5878 Rasheed, Faizan/0000-0002-8908-8883 Low, Yeh Ching/0000-0003-3450-2538}, Funding-Acknowledgement = {Novel Clustering algorithm based on Reinforcement Learning for the Optimization of Global and Local Network Performances in Mobile Networks - Malaysian Ministry of Education through Fundamental Research Grant Scheme {[}FRGS/1/2019/ICT03/SYUC/01/1]; Sunway University {[}CR-UM-SST-DCIS-2018-01, RK004-2017]; University of Malaya {[}CR-UM-SST-DCIS-2018-01, RK004-2017]}, Funding-Text = {This work was supported in part by A Novel Clustering algorithm based on Reinforcement Learning for the Optimization of Global and Local Network Performances in Mobile Networks funded by the Malaysian Ministry of Education through Fundamental Research Grant Scheme under Grant FRGS/1/2019/ICT03/SYUC/01/1, and in part by the Partnership between Sunway University and the University of Malaya under Grant CR-UM-SST-DCIS-2018-01 and Grant RK004-2017.}, Cited-References = {Abdulhai B, 2003, J TRANSP ENG, V129, P278, DOI 10.1061/(ASCE)0733-947X(2003)129:3(278). Alshiekh M, 2018, AAAI CONF ARTIF INTE, P2669. {[}Anonymous], 1998, INTRO REINFORCEMENT. {[}Anonymous], 2015, FINANCIAL REPORTING. {[}Anonymous], 2017, ARXIV. Anschel Oron, 2016, ARXIV161101929. Barcelo J, 2005, OPER RES COMPUT SCI, V31, P57. Bazzan ALC, 2009, AUTON AGENT MULTI-AG, V18, P342, DOI 10.1007/s10458-008-9062-9. Behzadan V., 2019, ARXIV190601119. Bengio Y, 2017, DEEP LEARNING, V1. Bettstetter C., 2002, P 4 EUR WIR, P128. Botvinick M, 2019, TRENDS COGN SCI, V23, P408, DOI 10.1016/j.tics.2019.02.006. Busoniu L, 2008, IEEE T SYST MAN CY C, V38, P156, DOI 10.1109/TSMCC.2007.913919. Cameron GDB, 1996, J SUPERCOMPUT, V10, P25, DOI 10.1007/BF00128098. Casas J, 2010, INT SER OPER RES MAN, V145, P173, DOI 10.1007/978-1-4419-6142-6\_5. Chen XL, 2018, MATH PROBL ENG, V2018, DOI 10.1155/2018/2129393. Chu TS, 2020, IEEE T INTELL TRANSP, V21, P1086, DOI 10.1109/TITS.2019.2901791. Chu X., 2017, ARXIV171000336. Cools SB, 2008, ADV INFORM KNOWL PRO, P41, DOI 10.1007/978-1-84628-982-8\_3. Daniel Krajzewicz, 2002, P 4 MIDDLE E S SIMUL, V4, P183. Dion F, 2002, TRANSPORT RES B-METH, V36, P325, DOI 10.1016/S0191-2615(01)00006-6. Du X., 2018, ARXIV180311115. El-Tantawy S, 2013, IEEE T INTELL TRANSP, V14, P1140, DOI 10.1109/TITS.2013.2255286. Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z. Fellendorf M., 1994, TECHNICAL PAPER, V32, P1. Fellendorf M, 2010, INT SER OPER RES MAN, V145, P63, DOI 10.1007/978-1-4419-6142-6\_2. Foerster J., 2016, P ADV NEUR INF PROC, P2137. Gao J., 2017, ADAPTIVE TRAFFIC SIG. Gao Y., 2018, ARXIV180205313. Genders W., 2016, ARXIV161101142. Gong Y., 2019, TRANSP RES INTERDISC, V1, DOI DOI 10.1016/J.TRIP.2019.100020. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Gou S. Zhen, 2019, ARXIV190309295. Haykin S., 2004, NEURAL NETWORKS COMP. Heinen MR, 2011, IEEE INT C INTELL TR, P890, DOI 10.1109/ITSC.2011.6083107. Henderson P, 2018, AAAI CONF ARTIF INTE, P3207. Hidas P, 2002, TRANSPORT RES C-EMER, V10, P351, DOI 10.1016/S0968-090X(02)00026-8. Hochreiter Sepp, 1997, NEURAL COMPUT, V9, P1735, DOI 10.1162/neco.1997.9.8.1735. Jaderberg M, 2019, SCIENCE, V364, P859, DOI 10.1126/science.aau6249. Jiang Z., 2017, DEEP REINFORCEMENT L. Junling Hu, 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P242. Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301. Kaushik P, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), P350. KEONG CK, 1993, TRANSPORT REV, V13, P295, DOI 10.1080/01441649308716854. Kok JR, 2006, LECT NOTES ARTIF INT, V4020, P1. Konda VR, 2003, SIAM J CONTROL OPTIM, V42, P1143, DOI 10.1137/S0363012901385691. Krauy S., 1998, THESIS. Li CT, 2009, PROCEEDINGS OF THE FIRST INTERNATIONAL POSTGRADUATE CONFERENCE ON INFRASTRUCTURE AND ENVIRONMENT, P368, DOI 10.1109/ICNC.2009.374. Li L, 2016, IEEE-CAA J AUTOMATIC, V3, P247, DOI 10.1109/JAS.2016.7508798. Li T, 2008, PROCEEDINGS OF THE 11TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, P286, DOI 10.1109/ITSC.2008.4732718. Liu G., 2020, ARXIV200205229. Liu YT, 2019, PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), P442, DOI 10.1109/ICCSNT47585.2019.8962496. Liu ZY, 2007, INT J COMPUT SCI NET, V7, P105. Luttinen R., 1996, STAT ANAL VEHICLE TI. Mannion P, 2016, AUTON SYST, P47, DOI 10.1007/978-3-319-25808-9\_4. Medina JC, 2012, IEEE INT C INTELL TR, P596, DOI 10.1109/ITSC.2012.6338911. Michael J, 2011, MODEL-DRIVEN ARCHITECTURE AND MODEL-DRIVEN SOFTWARE DEVELOPMENT, P3. Mirchandani P, 2001, TRANSPORT RES C-EMER, V9, P415, DOI 10.1016/S0968-090X(00)00047-4. Mnih V., 2013, P INT C NEUR INF PRO, V1312, P5602, DOI DOI 10.1038/NATURE14236. Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236. Molloy K., 1973, U.S. Patent, Patent No. {[}3,754,209, 3754209]. Montague PR, 1999, TRENDS COGN SCI, V3, P360, DOI 10.1016/S1364-6613(99)01331-5. Mousavi SS, 2017, IET INTELL TRANSP SY, V11, P417, DOI 10.1049/iet-its.2017.0153. Nachum O, 2018, ADV NEUR IN, V31. Nagabandi A, 2018, IEEE INT CONF ROBOT, P7579. NAGEL K, 1992, J PHYS I, V2, P2221, DOI 10.1051/jp1:1992277. Nair A, 2018, IEEE INT CONF ROBOT, P6292. Nguyen T. T., 2019, ARXIV190605799. Oliehoek F. A., 2013, P 2013 INT C AUT AG, P563. Papageorgiou M, 1998, TRANSPORT RES A-POL, V32, P323, DOI 10.1016/S0965-8564(97)00048-7. Prabuchandran KJ, 2015, INT CONF COMMUN SYST. Prashanth LA, 2012, IEEE T VEH TECHNOL, V61, P3865, DOI 10.1109/TVT.2012.2209904. Rasheed F, 2020, FUTURE GENER COMP SY, V109, P431, DOI 10.1016/j.future.2020.03.065. Ren Z, 2017, PROC CVPR IEEE, P1151, DOI 10.1109/CVPR.2017.128. ROBERTSON DI, 1991, IEEE T VEH TECHNOL, V40, P11, DOI 10.1109/25.69966. Rolnick D., 2019, ADV NEURAL INFORM PR, P348. Ruder S., 2016, OVERVIEW GRADIENT DE. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Sallab A., 2017, ELECT IMAGING, V2017, P70, DOI DOI 10.2352/ISSN.2470-1173.2017.19.AVM-023. Schaul T., 2015, P 4 INT C LEARN REPR. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Schulman J., 2017, P C WORKSH NEUR INF. Shixiang Gu, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P3389, DOI 10.1109/ICRA.2017.7989385. Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270. SIMS AG, 1980, IEEE T VEH TECHNOL, V29, P130, DOI 10.1109/T-VT.1980.23833. Singh Leena, 2009, International Journal of Recent Trends in Engineering, V2, P4. Smith Mark, 1995, P IEE C DYN CONTR ST, P8. Spielberg SPK, 2017, 2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), P201, DOI 10.1109/ADCONIP.2017.7983780. Stathakis D, 2009, INT J REMOTE SENS, V30, P2133, DOI 10.1080/01431160802549278. Sutton R. S., 1998, INTRO REINFORCEMENT, V135. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. SZEPESVARI C., 2010, SYNTHESIS LECT ARTIF, V4, P1, DOI DOI 10.2200/S00268ED1V01Y201005AIM009. Takano Y, 2019, 2019 NICOGRAPH INTERNATIONAL (NICOINT), P120, DOI 10.1109/NICOInt.2019.00034. Tan K. L., 2019, P ASME DYN SYST CONT. van der Pol E., 2016, THESIS. Van der Pol E., 2016, P LEARNING INFERENCE. van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094. Veres M, 2020, IEEE T INTELL TRANSP, V21, P3152, DOI 10.1109/TITS.2019.2929020. Vidali A., 2019, WOA, V2404, P42. Wan CH, 2018, IET INTELL TRANSP SY, V12, P1005, DOI 10.1049/iet-its.2018.5170. Wang S, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21080744. Wei H., 2019, ARXIV190408117. Wei H, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P2496, DOI 10.1145/3219819.3220096. Wu Wei, 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), P1335, DOI 10.1109/ICSMC.2001.973106. Wu XK, 2014, TRANSPORT RES C-EMER, V42, P28, DOI 10.1016/j.trc.2014.02.001. Yang J., 2018, ARXIV180905188. Yang Y., 2018, ARXIV180205438. Yau KLA, 2017, ACM COMPUT SURV, V50, DOI 10.1145/3068287. Ye H, 2019, IEEE T VEH TECHNOL, V68, P3163, DOI 10.1109/TVT.2019.2897134. Yin B, 2016, IET INTELL TRANSP SY, V10, P186, DOI 10.1049/iet-its.2015.0108. Zhang DX, 2018, CSEE J POWER ENERGY, V4, P362, DOI 10.17775/CSEEJPES.2018.00520. Zhang K, 2018, INT C MACHINE LEARNI, V80, P5872. Zhao DB, 2012, IEEE T SYST MAN CY C, V42, P485, DOI 10.1109/TSMCC.2011.2161577. Zhao L, 2005, PHYS REV E, V71, DOI 10.1103/PhysRevE.71.026125. Zhu L, 2019, IEEE T INTELL TRANSP, V20, P383, DOI 10.1109/TITS.2018.2815678. Zurada J. M., 1992, INTRO ARTIFICIAL NEU, V8.}, Number-of-Cited-References = {116}, Times-Cited = {21}, Usage-Count-Last-180-days = {27}, Usage-Count-Since-2013 = {110}, Journal-ISO = {IEEE Access}, Doc-Delivery-Number = {OZ6GB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000595021100001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000744157100004, Author = {Munawar, Hafiz Suliman and Mojtahedi, Mohammad and Hammad, Ahmed W. A. and Kouzani, Abbas and Mahmud, M. A. Parvez}, Title = {Disruptive technologies as a solution for disaster risk management: A review}, Journal = {SCIENCE OF THE TOTAL ENVIRONMENT}, Year = {2022}, Volume = {806}, Number = {3}, Month = {FEB 1}, Abstract = {Integrating disruptive technologies within smart cities improves the infrastructure needed to potentially deal with disasters. This paper provides a perspective review of disruptive technologies such as the Internet of Things (IoT), image processing, artificial intelligence (AI), big data and smartphone applications which are in use and have been proposed for future improvements in disaster management of urban regions. The key focus of this paper is exploring ways in which smart cities could be established to harness the potential of disruptive technologies and improve post-disaster management. The key questions explored are a) what are the gaps or barriers to the utilization of disruptive technologies in the area of disaster management and b) How can the existing methods of disaster management be improved through the application of disruptive technologies. To respond to these questions, a novel framework based on integrated approaches based on big data analytics and AI is proposed for developing disaster management solutions using disruptive technologies. (c) 2021 Elsevier B.V. All rights reserved.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Munawar, HS (Corresponding Author), Univ New South Wales, Sch Built Environm, Sydney, NSW 2052, Australia. Munawar, Hafiz Suliman; Mojtahedi, Mohammad; Hammad, Ahmed W. A., Univ New South Wales, Sch Built Environm, Sydney, NSW 2052, Australia. Kouzani, Abbas; Mahmud, M. A. Parvez, Deakin Univ, Sch Engn, Geelong, Vic, Australia.}, DOI = {10.1016/j.scitotenv.2021.151351}, EarlyAccessDate = {NOV 2021}, Article-Number = {151351}, ISSN = {0048-9697}, EISSN = {1879-1026}, Keywords = {Disaster management; Smart cities; Wireless communication; Cloud computing; Internet of Things; Big data}, Keywords-Plus = {BIG DATA ANALYTICS; SMART CITIES; SYSTEM; SECURITY; INFRASTRUCTURE; CHALLENGES; INSPECTION; INTERNET; NETWORK; MODELS}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {h.munawar@unsw.edu.au}, Affiliations = {University of New South Wales Sydney; Deakin University}, ORCID-Numbers = {Hammad, Ahmed WA/0000-0001-6190-0078}, Cited-References = {Alahakoon D, 2023, INFORM SYST FRONT, V25, P221, DOI 10.1007/s10796-020-10056-x. Anisetti M, 2018, SUSTAIN CITIES SOC, V39, P68, DOI 10.1016/j.scs.2017.12.019. Aqib M., 2018, LECT NOTES I COMPUTE, P139, DOI {[}10.1007/978-3-319-94180- 6\_15, DOI 10.1007/978-3-319-94180-6\_15]. Arepalli Abhishek, 2019, Proceedings of International Conference on Remote Sensing for Disaster Management. Issues and Challenges in Disaster Management. Springer Series in Geomechanics and Geoengineering (SSGG), P465, DOI 10.1007/978-3-319-77276-9\_41. Bellaire S, 2017, COLD REG SCI TECHNOL, V144, P28, DOI 10.1016/j.coldregions.2017.09.013. Bhattacharya S, 2016, ENVIRON URBAN ASIA, V7, P214, DOI 10.1177/0975425316654799. Billa L., 2014, DISASTER PREV MANAG, V13, P356, DOI 10.1108/09653560410568471. Pham BT, 2021, J HYDROL, V592, DOI 10.1016/j.jhydrol.2020.125815. Bossu R, 2015, SEISMOL RES LETT, V86, P1587, DOI 10.1785/0220150147. Braun T, 2018, SUSTAIN CITIES SOC, V39, P499, DOI 10.1016/j.scs.2018.02.039. Buribayeva G, 2015, PROCEDIA COMPUT SCI, V60, P722, DOI 10.1016/j.procs.2015.08.225. 오택흠, 2013, {[}Journal of Korea Safety Management \& Science, 대한안전경영과학회지], V15, P61, DOI 10.12812/ksms.2013.15.1.61. Cheng B, 2016, IEEE T NETW SERV MAN, V13, P349, DOI 10.1109/TNSM.2016.2541171. Choi S, 2015, COMPUTER SCI ITS APP, P809, DOI {[}10.1007/978-3-662-45402-2\_115, DOI 10.1007/978-3-662-45402-2\_115]. Choubin B, 2019, J HYDROL, V577, DOI 10.1016/j.jhydrol.2019.123929. Corcoran J, 2011, APPL GEOGR, V31, P65, DOI 10.1016/j.apgeog.2010.02.003. Corcoran J, 2011, J GEOGR SYST, V13, P193, DOI 10.1007/s10109-009-0102-z. Edwards Lilian, 2016, EUROPEAN DATA PROTEC, V2, P28, DOI {[}10.21552/EDPL/2016/1/6, DOI 10.21552/EDPL/2016/1/6]. Elmaghraby AS, 2014, J ADV RES, V5, P491, DOI 10.1016/j.jare.2014.02.006. Fang H, 2015, IEEE ANN INT CONF CY, P820, DOI 10.1109/CYBER.2015.7288049. Fang SF, 2015, INFORM SYST FRONT, V17, P321, DOI 10.1007/s10796-013-9466-1. Fekete A, 2020, J FLOOD RISK MANAG, V13, DOI 10.1111/jfr3.12600. Gagne DJ, 2017, WEATHER FORECAST, V32, P1819, DOI 10.1175/WAF-D-17-0010.1. Gauthier F, 2017, NAT HAZARDS, V89, P201, DOI 10.1007/s11069-017-2959-3. Goncalves A, 2014, 2014 28TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA), P121, DOI 10.1109/WAINA.2014.26. Grolinger K., 2016, MANAGING BIG DATA CL, P183, DOI {[}10.4018/978-1-4666-9834-5.ch008, DOI 10.4018/978-1-4666-9834-5.CH008]. Haque I, 2018, URBAN RES PRACT, V11, P338, DOI 10.1080/17535069.2017.1344727. Henstra D, 2019, NAT HAZARD EARTH SYS, V19, P313, DOI 10.5194/nhess-19-313-2019. Hickmann T, 2021, INT REV ADM SCI, V87, P21, DOI 10.1177/0020852319840425. Huang Qianyi, 2015, P IEEE INT C COMPUTE, P1, DOI {[}10.1145/2835185.2835189, DOI 10.1145/2835185.2835189]. Iancu V, 2019, IOP CONF SER-MAT SCI, V477, DOI 10.1088/1757-899X/477/1/012022. Ichimura Tsuyoshi, 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. Proceedings, P627, DOI 10.1109/SC.2018.00052. Islam SMT, 2011, DISASTER PREV MANAG, V20, P521, DOI 10.1108/09653561111178952. Khan SI, 2021, PHYS COMMUN-AMST, V47, DOI 10.1016/j.phycom.2021.101337. Khorov E, 2015, COMPUT COMMUN, V58, P53, DOI 10.1016/j.comcom.2014.08.008. Kundu D., 2014, SOCIAL CHANGE, V44, P615, DOI 10.1177/0049085714548546. La H.M., 2015, VISUAL ENG, V3, P6, DOI {[}10.1186/s40327-015-0017-3, DOI 10.1186/S40327-015-0017-3]. La HM, 2013, IEEE-ASME T MECH, V18, P1655, DOI 10.1109/TMECH.2013.2279751. Lamanna Z., 2012, Journal of Human Resources in Hospitality \& Tourism, V11, P210, DOI 10.1080/15332845.2012.668653. Lavalle A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12145595. Lawford R, 2013, CURR OPIN ENV SUST, V5, P607, DOI 10.1016/j.cosust.2013.11.005. Lewis A, 2017, REMOTE SENS ENVIRON, V202, P276, DOI 10.1016/j.rse.2017.03.015. Li MN, 2018, TECHNOL FORECAST SOC, V129, P285, DOI 10.1016/j.techfore.2017.09.032. Lim RS, 2014, IEEE T AUTOM SCI ENG, V11, P367, DOI 10.1109/TASE.2013.2294687. Liu QC, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), P2581, DOI 10.1109/ROBIO.2013.6739861. Michel-Kerjan E, 2013, RISK ANAL, V33, P984, DOI 10.1111/j.1539-6924.2012.01928.x. Mokryn O., 2012, 2012 The 11th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), P98, DOI 10.1109/MedHocNet.2012.6257129. Munawar H.S., 2020, MACH VIS INSP SYST I, V1, P159. Munawar HS, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11114823. Munawar HS, 2020, BIG DATA COGN COMPUT, V4, DOI 10.3390/bdcc4020004. Munawar HS, 2019, LECT NOTES ARTIF INT, V11607, P189, DOI 10.1007/978-3-030-26142-9\_17. Nabian MA, 2018, COMPUT-AIDED CIV INF, V33, P443, DOI 10.1111/mice.12359. Nasir M, 2019, J PARALLEL DISTR COM, V126, P161, DOI 10.1016/j.jpdc.2018.11.004. Nimlyat PS, 2017, SUSTAIN CITIES SOC, V35, P774, DOI 10.1016/j.scs.2017.08.035. Nishiyama H, 2014, IEEE COMMUN MAG, V52, P56, DOI 10.1109/MCOM.2014.6807947. Oskarsdottir M, 2019, APPL SOFT COMPUT, V74, P26, DOI 10.1016/j.asoc.2018.10.004. Ovesny M, 2014, BIOINFORMATICS, V30, P2389, DOI 10.1093/bioinformatics/btu202. Pancholi VS, 2014, CURR URBAN STUD, V2, P116, DOI {[}10.4236/cus.2014.22012, DOI 10.4236/CUS.2014.22012]. Parada R, 2018, J ORGAN END USER COM, V30, P1, DOI 10.4018/JOEUC.2018070101. Park E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051388. Park S, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8112239. Parker DJ, 2020, ENVIRON HAZARDS-UK, V19, P1, DOI 10.1080/17477891.2019.1694857. Pawlowicz B, 2019, ADV INTELL SYST, V830, P151, DOI 10.1007/978-3-319-99617-2\_10. Perumal T, 2015, 2015 IEEE 4TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), P86, DOI 10.1109/GCCE.2015.7398710. Pham N.H., 2016, P ISARC 2016 33 INT, P141, DOI {[}10.22260/ISARC2016/0018, DOI 10.22260/ISARC2016/0018]. Phongsapan K, 2019, FRONT ENV SCI-SWITZ, V7, DOI 10.3389/fenvs.2019.00191. Praharaj S., 2018, CITY CULT SOC, V12, P35, DOI {[}10.1016/j.ccs.2017.06.004, DOI 10.1016/J.CCS.2017.06.004]. Procopio CH, 2007, J APPL COMMUN RES, V35, P67, DOI 10.1080/00909880601065722. Qadir Z, 2021, COMPUT COMMUN, V168, P114, DOI 10.1016/j.comcom.2021.01.003. Reilly J, 2013, IEEE T AUTOM SCI ENG, V10, P242, DOI 10.1109/TASE.2013.2245121. Robles T, 2014, 2014 28TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA), P821, DOI 10.1109/WAINA.2014.129. Rottondi C, 2021, COMPUT NETW, V184, DOI 10.1016/j.comnet.2020.107644. Saha HN, 2017, 2017 8TH ANNUAL INDUSTRIAL AUTOMATION AND ELECTROMECHANICAL ENGINEERING CONFERENCE (IEMECON), P74, DOI 10.1109/IEMECON.2017.8079565. Sakhardande P, 2016, 2016 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND APPLICATIONS (IOTA), P185, DOI 10.1109/IOTA.2016.7562719. Schmidthuber L, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2018.06.017. Selim AM, 2018, INT J CRIT INFRASTRU, V14, P182, DOI 10.1504/IJCIS.2018.091943. Sepasgozar SME, 2019, TECHNOL FORECAST SOC, V142, P105, DOI 10.1016/j.techfore.2018.09.012. Shah SA, 2019, IEEE ACCESS, V7, P91885, DOI 10.1109/ACCESS.2019.2928233. Shah SA, 2019, IEEE ACCESS, V7, P54595, DOI 10.1109/ACCESS.2019.2913340. Shu SB, 2012, BUILD SIMUL-CHINA, V5, P169, DOI 10.1007/s12273-012-0062-y. Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364. Skouby KE, 2014, 2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), P874, DOI 10.1109/IC3I.2014.7019822. Sokolov A, 2019, TECHNOL FORECAST SOC, V148, DOI 10.1016/j.techfore.2019.119729. Soltvedt TK, 2020, IEEE INT CONF MOB DA, P348, DOI 10.1109/MDM48529.2020.00076. Syifa M, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19030542. Szczytowski P., 2015, COMMUN COMPUT PHYS, P11, DOI {[}10.1007/ 978-3-662-46241-6\_2, DOI 10.1007/978-3-662-46241-6\_2]. Tan L, 2021, NAT HAZARDS, V107, P2389, DOI 10.1007/s11069-020-04429-3. Tian Y, 2016, COMPUT GEOSCI-UK, V86, P1, DOI 10.1016/j.cageo.2015.09.019. Ullah F, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120743. Ullah F, 2023, NEURAL COMPUT APPL, V35, P5033, DOI 10.1007/s00521-021-05800-6. Viitanen J, 2014, ENVIRON PLANN A, V46, P803, DOI 10.1068/a46242. Vorbach S., 2017, BERGUND HUTTENMANNIS, V162, P382, DOI {[}10.1007/s00501-017-0671-y, DOI 10.1007/S00501-017-0671-Y]. Wagner N, 2014, EXPERT SYST APPL, V41, P2807, DOI 10.1016/j.eswa.2013.10.013. Xie JF, 2019, IEEE COMMUN SURV TUT, V21, P2794, DOI 10.1109/COMST.2019.2899617. Xie XC, 2019, PROCESS SAF ENVIRON, V122, P169, DOI 10.1016/j.psep.2018.11.019. Ybanez RL, 2021, GEOSCI LETT, V8, DOI 10.1186/s40562-021-00194-8. Yu Z., 2021, CHINESE J AERONAUT, DOI {[}10.1016/j.cja.2021.04.022, DOI 10.1016/J.CJA.2021.04.022]. Yusoff A, 2015, IEEE ST CONF RES DEV, P311, DOI 10.1109/SCORED.2015.7449346. Zhang YC, 2021, SUSTAIN ENERGY TECHN, V45, DOI 10.1016/j.seta.2020.100986.}, Number-of-Cited-References = {99}, Times-Cited = {14}, Usage-Count-Last-180-days = {24}, Usage-Count-Since-2013 = {62}, Journal-ISO = {Sci. Total Environ.}, Doc-Delivery-Number = {YI9JK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000744157100004}, DA = {2023-04-22}, } @article{ WOS:000671050900001, Author = {Sharifi, Ayyoob and Allam, Zaheer and Feizizadeh, Bakhtiar and Ghamari, Hessam}, Title = {Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends}, Journal = {SUSTAINABILITY}, Year = {2021}, Volume = {13}, Number = {13}, Month = {JUL}, Abstract = {The concept of smart cities has gained significant momentum in science and policy circles over the past decade. This study aims to provide an overview of the structure and trends in the literature on smart cities. Bibliometric analysis and science mapping techniques using VOSviewer and CiteSpace are used to identify the thematic focus of over 5000 articles indexed in the Web of Science since 1991. In addition to providing insights into the thematic evolution of the field, the three-decade study period is divided into two sub-periods (1991-2015 and 2016-2021). While splitting the dataset into more sub-periods would have been desirable, we decided to only examine two sub-periods as only very few papers have been published until 2010. The annual number of publications has progressively increased since then, with a surge in the annual number of publications observable from 2015 onwards. The thematic analysis showed that the intellectual base of the field has been very limited during the first period, but has expanded significantly since 2015. Over time, some thematic evolutions, such as further attention to linkages to climate change and resilience, and more emphasis on security and privacy issues, have been made. The thematic analysis shows that existing research on smart cities is dominated by either conceptual issues or underlying technical aspects. It is, therefore, essential to do more research on the implementation of smart cities and actual and/or potential contributions of smart cities to solving societal issues. In addition to elaborating on thematic focus, the study also highlights major authors, journals, references, countries, and institutions that have contributed to the development of the smart cities literature.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Sharifi, A (Corresponding Author), Hiroshima Univ, Grad Sch Humanities \& Social Sci, Hiroshima 7398511, Japan. Sharifi, A (Corresponding Author), Hiroshima Univ, Network Educ \& Res Peace \& Sustainabil NERPS, Hiroshima 7398511, Japan. Ghamari, H (Corresponding Author), Calif State Univ Northridge, Coll Hlth \& Human Dev, Dept Family \& Consumer Sci, Interior Design Program, Northridge, CA 91330 USA. Sharifi, Ayyoob, Hiroshima Univ, Grad Sch Humanities \& Social Sci, Hiroshima 7398511, Japan. Sharifi, Ayyoob, Hiroshima Univ, Network Educ \& Res Peace \& Sustainabil NERPS, Hiroshima 7398511, Japan. Allam, Zaheer, Univ Paris 1 Pantheon Sorbonne, IAE Paris Sorbonne Business Sch, Grp Rech Gest Org GREGOR, Chaire Entrepreneuriat Terr Innovat ETI, F-75013 Paris, France. Feizizadeh, Bakhtiar, Univ Tabriz, Dept Remote Sensing \& GIS, Tabriz 51368, Iran. Ghamari, Hessam, Calif State Univ Northridge, Coll Hlth \& Human Dev, Dept Family \& Consumer Sci, Interior Design Program, Northridge, CA 91330 USA.}, DOI = {10.3390/su13137140}, Article-Number = {7140}, EISSN = {2071-1050}, Keywords = {smart city; internet of things; big data analytics; urban planning; science mapping; bibliometric analysis}, Keywords-Plus = {BIG DATA; SUSTAINABLE CITIES; ARTIFICIAL-INTELLIGENCE; CITY; INTERNET; FUTURE; IOT; TECHNOLOGY; PRIVACY; SYSTEM}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {sharifi@hiroshima-u.ac.jp zaheerallam@gmail.com bakhtiar.feizizadeh@gmail.com hessam.ghamari@csun.edu}, Affiliations = {Hiroshima University; Hiroshima University; University of Tabriz; California State University System; California State University Northridge}, ResearcherID-Numbers = {Feizizadeh, Bakhtiar/ABC-9664-2021 Sharifi, Ayyoob/M-7584-2013 }, ORCID-Numbers = {Feizizadeh, Bakhtiar/0000-0002-3367-2925 Sharifi, Ayyoob/0000-0002-8983-8613 Allam, Zaheer/0000-0001-7682-5912 Ghamari, Hessam/0000-0001-8848-1969}, Cited-References = {Ahvenniemi H, 2017, CITIES, V60, P234, DOI 10.1016/j.cities.2016.09.009. Al Nuaimi E, 2015, J INTERNET SERV APPL, V6, DOI 10.1186/s13174-015-0041-5. Alberts G., 2017, INTERNET HIST DIGITA, V1, P146, DOI 10.1080/24701475.2017.1309852. Albino V, 2015, J URBAN TECHNOL, V22, P3, DOI 10.1080/10630732.2014.942092. Allam M. Z, 2018, REDEFINING SMART CIT. Allam Z., 2020, CITIES DIGITAL REVOL. Allam Z., 2020, BIOTECHNOLOGY FUTURE, P1, DOI {[}10.1007/978-3-030-43815-9\_1, DOI 10.1007/978-3-030-43815-9\_1]. Allam Z, 2021, LAND USE POLICY, V101, DOI 10.1016/j.landusepol.2020.105201. Allam Z, 2020, CITIES AND THE DIGITAL REVOLUTION: ALIGNING TECHNOLOGY AND HUMANITY, P1, DOI 10.1007/978-3-030-29800-5\_1. Allam Z, 2019, SMART CITIES-BASEL, V2, P96, DOI 10.3390/smartcities2010007. Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032. Allam Z, 2018, SMART CITIES-BASEL, V1, P4, DOI 10.3390/smartcities1010002. Alvalez R., RELEVANCE INFORM INF. Argyriou I, 2019, SMART CITY EMERGENCE: CASES FROM AROUND THE WORLD, P195, DOI 10.1016/B978-0-12-816169-2.00009-2. Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010. Awasthi A, 2017, ENERGY, V133, P70, DOI 10.1016/j.energy.2017.05.094. Barns S, 2017, URBAN POLICY RES, V35, P20, DOI 10.1080/08111146.2016.1235032. Batty M, 2012, EUR PHYS J-SPEC TOP, V214, P481, DOI 10.1140/epjst/e2012-01703-3. Bauer P, 2015, NATURE, V525, P47, DOI 10.1038/nature14956. Bernardes M.B., 2017, INDICATORS SMART CIT, P98. Berntzen L., 2016, INT J ADV INTELL SYS, V9, P579. Bertolini M, 2020, ENERG POLICY, V145, DOI 10.1016/j.enpol.2020.111729. Bibri SE, 2017, SUSTAIN CITIES SOC, V31, P183, DOI 10.1016/j.scs.2017.02.016. Blanco J. L., 2018, BUILDING EC, V1, P7, DOI DOI 10.3316/INFORMIT.048712291685521. Bonnefon JF, 2016, SCIENCE, V352, P1573, DOI 10.1126/science.aaf2654. Butt OM, 2021, AIN SHAMS ENG J, V12, P687, DOI 10.1016/j.asej.2020.05.004. Calzada I, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093252. Camero A, 2019, CITIES, V93, P84, DOI 10.1016/j.cities.2019.04.014. Caragliu A, 2011, J URBAN TECHNOL, V18, P65, DOI 10.1080/10630732.2011.601117. Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100. Chourabi H., 2012, 2012 45th Hawaii International Conference on System Sciences (HICSS), P2289, DOI 10.1109/HICSS.2012.615. Christidis K, 2016, IEEE ACCESS, V4, P2292, DOI 10.1109/ACCESS.2016.2566339. Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525. Cocchia A, 2014, PROGR IS, P13, DOI 10.1007/978-3-319-06160-3\_2. de Jong M, 2015, J CLEAN PROD, V109, P25, DOI 10.1016/j.jclepro.2015.02.004. Eden Strategy Institute ONGONG Pte, 2018, SMART CIT GOV, P106. Edwards L, 2016, EUR DATA PROT L REV, V2, P28, DOI DOI 10.21552/EDPL/2016/1/6. Ersoy A, 2019, REG STUD REG SCI, V6, P374, DOI 10.1080/21681376.2019.1623068. Feizizadeh B, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102584. Gambella C, 2020, TRANSP LETT, V12, P706, DOI 10.1080/19427867.2019.1694206. Gasco-Hernandez M, 2018, COMMUN ACM, V61, P50, DOI 10.1145/3117800. Giffinger R., 2007, RANKING EUROPEAN MED. Giffinger R, 2010, ACE-ARCHIT CITY ENVI, V4, P7. Gohar M, 2018, SUSTAIN CITIES SOC, V41, P114, DOI 10.1016/j.scs.2018.05.008. Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010. Guerrini F., CITIES CANNOT BE RED. Guo K, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18051341. Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606. Hales Simon, 2007, Reviews on Environmental Health, V22, P295. Hammi MT, 2018, COMPUT SECUR, V78, P126, DOI 10.1016/j.cose.2018.06.004. Han S, 2018, SCI TECHNOL SOC, V23, P137, DOI 10.1177/0971721817744458. Harrison C, 2010, IBM J RES DEV, V54, DOI 10.1147/JRD.2010.2048257. Hollands R.G., 2008, CITY, V12, P303, DOI {[}10.1080/13604810802479126, DOI 10.1080/13604810802479126]. Hughes S, 2015, URBAN CLIM, V14, P1, DOI 10.1016/j.uclim.2015.07.002. Janik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030779. Jin J, 2014, IEEE INTERNET THINGS, V1, P112, DOI 10.1109/JIOT.2013.2296516. Joss S, 2019, J URBAN TECHNOL, V26, P3, DOI 10.1080/10630732.2018.1558387. Khanboubi F, 2019, PROCEDIA COMPUT SCI, V151, P77, DOI 10.1016/j.procs.2019.04.014. Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8. Koc AK, 2018, 2018 6TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSIC AND SECURITY (ISDFS), P143. Kolotouchkina O, 2018, PLACE BRANDING PUBLI, V14, P115, DOI 10.1057/s41254-017-0078-2. Kramers A, 2014, ENVIRON MODELL SOFTW, V56, P52, DOI 10.1016/j.envsoft.2013.12.019. Lacinak M, 2017, PROCEDIA ENGINEER, V192, P522, DOI 10.1016/j.proeng.2017.06.090. Lee JH, 2014, TECHNOL FORECAST SOC, V89, P80, DOI 10.1016/j.techfore.2013.08.033. Li WW, 2020, INT J GEOGR INF SCI, V34, P311, DOI 10.1080/13658816.2019.1673397. Lim C, 2018, CITIES, V82, P86, DOI 10.1016/j.cities.2018.04.011. Liu S., GLOBAL IOT MARKET SI. Los Angeles Community Analysis Bureau, 1974, STAT CIT CLUST AN AN. Lueth K.L., IOT SOL WORLD C 2019. Mancebo F., 2020, J URBANISM INT RES P, V13, P133, DOI {[}10.1080/17549175.2019.1649711, DOI 10.1080/17549175.2019.1649711]. Maple C., 2017, J CYBER POLICY, V2, P155, DOI {[}DOI 10.1080/23738871.2017.1366536, 10.1080/23738871.2017.1366536]. Marrone M, 2018, BUS INFORM SYST ENG+, V60, P197, DOI 10.1007/s12599-018-0535-3. Marsal-Llacuna ML, 2018, TECHNOL FORECAST SOC, V128, P226, DOI 10.1016/j.techfore.2017.12.005. Martinez-Balleste A, 2013, IEEE COMMUN MAG, V51, P136, DOI 10.1109/MCOM.2013.6525606. McGovern A, 2017, B AM METEOROL SOC, V98, P2073, DOI 10.1175/BAMS-D-16-0123.1. Meijer A, 2016, INT REV ADM SCI, V82, P392, DOI 10.1177/0020852314564308. Perez LM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166357. Minoli D, 2017, IEEE INTERNET THINGS, V4, P269, DOI 10.1109/JIOT.2017.2647881. Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123. Moradi S, 2020, LIBR HI TECH, V38, P385, DOI 10.1108/LHT-12-2018-0203. Moreno C, 2021, SMART CITIES-BASEL, V4, P93, DOI 10.3390/smartcities4010006. Mosenia A, 2017, IEEE T EMERG TOP COM, V5, P586, DOI 10.1109/TETC.2016.2606384. Mouazen AM, 2021, DIGIT POLICY REGUL G, V23, P77, DOI 10.1108/DPRG-04-2020-0051. Nam T., 2011, P 12 ANN INT DIG GOV, V11, P282, DOI {[}https://doi.org/10.1145/2037556.2037602, DOI 10.1145/2037556.2037602, 10.1145/2037556.2037602]. Naz M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11247054. Neirotti P, 2014, CITIES, V38, P25, DOI 10.1016/j.cities.2013.12.010. Ning ZL, 2017, IEEE COMMUN MAG, V55, P49, DOI 10.1109/MCOM.2017.1600263. Noe E., 2018, WIRELESS NETW, DOI {[}10.1007/s11276-018-1883-0, DOI 10.1007/S11276-018-1883-0]. Orlowski A, 2019, CYBERNET SYST, V50, P118, DOI 10.1080/01969722.2019.1565120. Pereira GV, 2018, INFORM POLITY, V23, P143, DOI 10.3233/IP-170067. Pojani D, 2015, SUSTAINABILITY-BASEL, V7, P7784, DOI 10.3390/su7067784. Rafael S, 2020, SCI TOTAL ENVIRON, V712, DOI 10.1016/j.scitotenv.2020.136546. Rishi R., 2019, FUTURE IOT, P1. Rocha NP, 2019, PROCEDIA COMPUT SCI, V164, P516, DOI 10.1016/j.procs.2019.12.214. Ruhlandt RWS, 2018, CITIES, V81, P1, DOI 10.1016/j.cities.2018.02.014. Sanchez L, 2014, COMPUT NETW, V61, P217, DOI 10.1016/j.bjp.2013.12.020. Sanchez-Corcuera R, 2019, INT J DISTRIB SENS N, V15, DOI 10.1177/1550147719853984. Sepasgozar SME, 2019, TECHNOL FORECAST SOC, V142, P105, DOI 10.1016/j.techfore.2018.09.012. Shapiro JM, 2006, REV ECON STAT, V88, P324, DOI 10.1162/rest.88.2.324. Sharifi A, 2021, ECOL INDIC, V121, DOI 10.1016/j.ecolind.2020.107102. Sharifi A, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.142391. Sharifi A, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101936. Sharifi A, 2019, J CLEAN PROD, V233, P1269, DOI 10.1016/j.jclepro.2019.06.172. Sinha A, 2020, J CLEAN PROD, V242, DOI 10.1016/j.jclepro.2019.118549. Slavova M., 2016, AFR J MANAGE, V2, P210. Soderstrom O., 2014, CITY, V18, P307, DOI {[}DOI 10.1080/13604813.2014.906716, https://doi.org/10.1080/13604813.2014.906716]. Soomro K, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1319. Su LX, 2015, SCIENTOMETRICS, V105, P449, DOI 10.1007/s11192-015-1697-0. Swabey P., IBM CISC BUS SMART C. Talari S, 2017, ENERGIES, V10, DOI 10.3390/en10040421. Tan SY, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030899. Toh CK, 2020, IET SMART CITIES, V2, P95, DOI 10.1049/iet-smc.2020.0001. Tompson T., 2017, SHE JI J EC INNOVATI, V3, P210, DOI {[}10.1016/j.sheji.2017.11.004, DOI 10.1016/J.SHEJI.2017.11.004]. Townsend Anthony M., 2013, SMART CITIES BIG DAT. Trindade E., 2017, J OPEN INNOV, V3, P11, DOI DOI 10.1186/S40852-017-0063-2. UNited Nations Human Settlements Programme, 2021, PEOPL CTR SMART CIT. Valcarcel-Aguiar B, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010086. Van den Abeele F, 2015, INT J DISTRIB SENS N, DOI 10.1155/2015/683425. van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3. van Zoonen L, 2016, GOV INFORM Q, V33, P472, DOI 10.1016/j.giq.2016.06.004. Vanolo A, 2014, URBAN STUD, V51, P883, DOI 10.1177/0042098013494427. Vishwakarma S.K., 2019, P 2019 4 INT C INTER, DOI {[}DOI 10.1109/IOT-SIU.2019.8777607, 10.1109/iot-siu.2019.8777607]. Von der Tann V., 2018, SMART CITIES DIGITAL, P1. Wamba S.F., 2019, BIBLIOMETRIC ANAL RE, P325. World Economic Forum,, 2018, FUT JOBS REP 2018. Yigitcanlar T, 2016, J URBAN TECHNOL, V23, P1, DOI 10.1080/10630732.2016.1164443. Zanella A, 2014, IEEE INTERNET THINGS, V1, P22, DOI 10.1109/JIOT.2014.2306328. Zhao L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236648. Zhao ZH, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/8879132. Zheng CJ, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120689. Zhou KL, 2016, RENEW SUST ENERG REV, V56, P215, DOI 10.1016/j.rser.2015.11.050. Zhou SL, 2020, J SCI TECHNOL POLICY, V11, P431, DOI 10.1108/JSTPM-05-2019-0051. Zvolska L, 2019, LOCAL ENVIRON, V24, P628, DOI 10.1080/13549839.2018.1463978. Zyskind G, 2015, 2015 IEEE SECURITY AND PRIVACY WORKSHOPS (SPW), P180, DOI 10.1109/SPW.2015.27.}, Number-of-Cited-References = {134}, Times-Cited = {21}, Usage-Count-Last-180-days = {19}, Usage-Count-Since-2013 = {98}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {TF9RB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000671050900001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @incollection{ WOS:000661534400003, Author = {Ashraf, Chowdhury and Joshi, Nisarg and Beck, David A. C. and Pfaendtner, Jim}, Editor = {Doherty, MF and Segalman, RA}, Title = {Data Science in Chemical Engineering: Applications to Molecular Science}, Booktitle = {ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 12, 2021}, Series = {Annual Review of Chemical and Biomolecular Engineering}, Year = {2021}, Volume = {12}, Pages = {15-37}, Abstract = {Chemical engineering is being rapidly transformed by the tools of data science. On the horizon, artificial intelligence (AI) applications will impact a huge swath of our work, ranging from the discovery and design of new molecules to operations and manufacturing and many areas in between. Early adoption of data science, machine learning, and early examples of AI in chemical engineering has been rich with examples of molecular data science-the application tools for molecular discovery and property optimization at the atomic scale. We summarize key advances in this nascent subfield while introducing molecular data science for a broad chemical engineering readership. We introduce the field through the concept of a molecular data science life cycle and discuss relevant aspects of five distinct phases of this process: creation of curated data sets, molecular representations, data-driven property prediction, generation of new molecules, and feasibility and synthesizability considerations.}, Publisher = {ANNUAL REVIEWS}, Address = {4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA}, Type = {Review; Book Chapter}, Language = {English}, Affiliation = {Beck, DAC (Corresponding Author), Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. Beck, DAC (Corresponding Author), Univ Washington, eSci Inst, Seattle, WA 98195 USA. Ashraf, Chowdhury; Joshi, Nisarg; Beck, David A. C.; Pfaendtner, Jim, Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. Beck, David A. C., Univ Washington, eSci Inst, Seattle, WA 98195 USA.}, DOI = {10.1146/annurev-chembioeng-101220-102232}, ISSN = {1947-5438}, EISSN = {1947-5446}, Keywords = {molecular data science; chemoinformatics; machine learning; artificial intelligence; continuous representation of molecules; molecular design}, Keywords-Plus = {GENETIC ALGORITHM; NEURAL-NETWORKS; MULTIOBJECTIVE OPTIMIZATION; SOFTWARE NEWS; DESIGN; EXPLORATION; GENERATION; PREDICTION; GRAPHS; EXPERIMENTATION}, Research-Areas = {Chemistry; Engineering}, Web-of-Science-Categories = {Chemistry, Applied; Engineering, Chemical}, Author-Email = {dacb@uw.edu jpfaendt@uw.edu}, Affiliations = {University of Washington; University of Washington Seattle; University of Washington; University of Washington Seattle}, Funding-Acknowledgement = {NRT-DESE: Data Intensive Research Enabling Clean Technologies (DIRECT) {[}1633216]; HDR: I-DIRSE-FW: Accelerating the Engineering Design and Manufacturing Life-Cycle with Data Science {[}1934292]}, Funding-Text = {The authors would like to thank Dr. Wesley Beckner and Orion Dollar for thoughtful comments on language. J.P. would like to acknowledge the funding from NRT-DESE: Data Intensive Research Enabling Clean Technologies (DIRECT) under grant no. NSF \#1633216. C.A., D.A.C.B., and J.P. would like to acknowledge support from HDR: I-DIRSE-FW: Accelerating the Engineering Design and Manufacturing Life-Cycle with Data Science under grant no. NSF \#1934292.}, Cited-References = {Adorf CS, 2018, COMP MATER SCI, V146, P220, DOI 10.1016/j.commatsci.2018.01.035. Adorf CS, 2019, {*}{*}DATA OBJECT{*}{*}, DOI 10.5281/ZENODO.3603501. Anijdan SHM, 2006, MATER DESIGN, V27, P605, DOI 10.1016/j.matdes.2004.11.027. {[}Anonymous], 2013, INT C LEARNING REPRE. {[}Anonymous], 2014, ARXIV13126114CSSTAT. Arjovsky M, 2017, ARXIV170107875STATML. Artese A, 2013, WIRES COMPUT MOL SCI, V3, P594, DOI 10.1002/wcms.1150. Axen SD, 2017, J MED CHEM, V60, P7393, DOI 10.1021/acs.jmedchem.7b00696. Bai Y, 2019, J AM CHEM SOC, V141, P9063, DOI 10.1021/jacs.9b03591. Bakkar N, 2018, ACTA NEUROPATHOL, V135, P227, DOI 10.1007/s00401-017-1785-8. Balkenhohl F, 1996, ANGEW CHEM INT EDIT, V35, P2289. Beck D, 2020, UWDIRECT UWDIRECTGIT. Beck DAC, 2016, AICHE J, V62, P1402, DOI 10.1002/aic.15192. Beckner W, 2020, J PHYS CHEM B, V124, P8347, DOI 10.1021/acs.jpcb.0c05938. Beckner W, 2018, MOL SYST DES ENG, V3, P253, DOI 10.1039/c7me00094d. Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401. BLOMMERS MJJ, 1992, BIOPOLYMERS, V32, P45, DOI 10.1002/bip.360320107. Bradshaw J, 2019, ARXIV190605221PHYSST. Brown Eryn, 2016, Nature, V532, P137. Cadeddu A, 2014, ANGEW CHEM INT EDIT, V53, P8108, DOI 10.1002/anie.201403708. Cao DS, 2013, BIOINFORMATICS, V29, P1092, DOI 10.1093/bioinformatics/btt105. CARHART RE, 1985, J CHEM INF COMP SCI, V25, P64, DOI 10.1021/ci00046a002. Cherkasov A, 2014, J MED CHEM, V57, P4977, DOI 10.1021/jm4004285. Coley CW, 2018, J CHEM INF MODEL, V58, P252, DOI 10.1021/acs.jcim.7b00622. Coley CW, 2017, J CHEM INF MODEL, V57, P1757, DOI 10.1021/acs.jcim.6b00601. Curtarolo S, 2012, COMP MATER SCI, V58, P227, DOI 10.1016/j.commatsci.2012.02.002. d'Avezac M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.027401. Dan YB, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00352-0. Danielson ML, 2017, AAPS ADV PHARM SCI, V25, P81, DOI 10.1007/978-3-319-50042-3\_4. Douguet D, 2000, J COMPUT AID MOL DES, V14, P449, DOI 10.1023/A:1008108423895. Draxl C, 2019, J PHYS-MATER, V2, DOI 10.1088/2515-7639/ab13bb. Durant JL, 2002, J CHEM INF COMP SCI, V42, P1273, DOI 10.1021/ci010132r. Duvenaud D. K., 2015, ADV NEURAL INFORM PR, P2224, DOI DOI 10.1021/ACS.JCIM.5B00572. Elton DC, 2019, MOL SYST DES ENG, V4, P828, DOI 10.1039/c9me00039a. Ertl P, 2009, J CHEMINFORMATICS, V1, DOI 10.1186/1758-2946-1-8. Estrada E, 1998, SAR QSAR ENVIRON RES, V9, P229, DOI 10.1080/10629369808039158. Estrada E, 1996, J CHEM INF COMP SCI, V36, P844, DOI 10.1021/ci950187r. Feher M, 2003, J CHEM INF COMP SCI, V43, P218, DOI 10.1021/ci0200467. Feng F, 2018, FRONT CHEM, V6, DOI 10.3389/fchem.2018.00199. Ferguson AL, 2018, J PHYS-CONDENS MAT, V30, DOI 10.1088/1361-648X/aa98bd. Froemming NS, 2009, J CHEM PHYS, V131, DOI 10.1063/1.3272274. Furka A, 2002, DRUG DISCOV TODAY, V7, P1. Gao WH, 2020, J CHEM INF MODEL, V60, P5714, DOI 10.1021/acs.jcim.0c00174. Gao X, 2020, J CHEM INF MODEL, V60, P3408, DOI 10.1021/acs.jcim.0c00451. Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074. Gedeck P, 2006, J CHEM INF MODEL, V46, P1924, DOI 10.1021/ci050413p. Gillet VJ, 1995, PERSPECT DRUG DISCOV, V3, P34, DOI 10.1007/BF02174466. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Graves A, 2005, NEURAL NETWORKS, V18, P602, DOI 10.1016/j.neunet.2005.06.042. Greener JG, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34533-1. Gromski PS, 2020, TRENDS CHEM, V2, P4, DOI 10.1016/j.trechm.2019.07.004. Gupta A, 2018, MOL INFORM, V37, DOI 10.1002/minf.201700111. Hachmann J, 2018, MOL SIMULAT, V44, P921, DOI 10.1080/08927022.2018.1471692. HALL LH, 1995, J CHEM INF COMP SCI, V35, P1039, DOI 10.1021/ci00028a014. Han Liu, 2019, Journal of Non-Crystalline Solids: X, V4, P43, DOI 10.1016/j.nocx.2019.100036. HANSCH C, 1964, J AM CHEM SOC, V86, P1616, DOI 10.1021/ja01062a035. Hase F, 2019, TRENDS CHEM, V1, P282, DOI 10.1016/j.trechm.2019.02.007. Hase F, 2018, CHEM SCI, V9, P7642, DOI 10.1039/c8sc02239a. Hase F, 2016, CHEM SCI, V7, P5139, DOI 10.1039/c5sc04786b. Holland J. H., 1992, ADAPTATION NATURAL A, DOI {[}10.7551/mitpress/1090.001.0001 10.7551/mitpress/1090.001.0001, DOI 10.7551/MITPRESS/1090.001.0001]. HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8. Huang Q, 2011, J CHEM INF MODEL, V51, P2768, DOI 10.1021/ci100216g. Humbert MT, 2019, J CHEM INF MODEL, V59, P1301, DOI 10.1021/acs.jcim.9b00066. Jaakkola, 2018, ARXIV180204364CSLG. Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323. Jensen JH, 2019, CHEM SCI, V10, P3567, DOI 10.1039/c8sc05372c. Jensen Z, 2019, ACS CENTRAL SCI, V5, P892, DOI 10.1021/acscentsci.9b00193. Jo S, 2008, J COMPUT CHEM, V29, P1859, DOI 10.1002/jcc.20945. Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301. Kanal I. Y., 2017, ARXIV170702949PHYSIC. Kearnes S, 2016, J COMPUT AID MOL DES, V30, P595, DOI 10.1007/s10822-016-9938-8. Kim E, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0055-6. Kim E, 2017, CHEM MATER, V29, P9436, DOI 10.1021/acs.chemmater.7b03500. Kim E, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.127. Kim Y, 2014, ARXIV14085882CSCL. Klein C, 2019, COMP MATER SCI, V167, P215, DOI 10.1016/j.commatsci.2019.05.026. Klein C, 2016, MOLEC MODEL SIMUL, P79, DOI 10.1007/978-981-10-1128-3\_5. Koichi S, 2007, J CHEM INF MODEL, V47, P1734, DOI 10.1021/ci600238j. Krenn M, 2020, ARXIV190513741CSLG. Kuhn C, 1996, J PHYS CHEM-US, V100, P10595, DOI 10.1021/jp960518i. Lake BM, 2015, SCIENCE, V350, P1332, DOI 10.1126/science.aab3050. Landrum G., 2020, RDKIT RDKIT 2020 03. Lawson AJ, 2014, ACS SYM SER, V1164, P127. LEO A, 1969, J MED CHEM, V12, P766, DOI 10.1021/jm00305a010. Li Z, 2019, ROBOT ACCELERATED PE, DOI {[}10.26434/CHEMRXIV.10013090.V1, DOI 10.26434/CHEMRXIV.10013090.V1]. Liu SS, 1998, J CHEM INF COMP SCI, V38, P387, DOI 10.1021/ci970109z. Martinez L, 2009, J COMPUT CHEM, V30, P2157, DOI 10.1002/jcc.21224. McGregor MJ, 1999, J CHEM INF COMP SCI, V39, P569, DOI 10.1021/ci980159j. Metz L, 2017, ARXIV161102163CSSTA. Michaud-Agrawal N, 2011, J COMPUT CHEM, V32, P2319, DOI 10.1002/jcc.21787. Mikolov T, 2013, ADV NEURAL INFORM PR, P3111. Mills EJ., 1884, PHILOS MAG, V17, P173, DOI DOI 10.1080/14786448408627502. Mnih V, 2013, ARXIV13125602CSLG. Mobley DL, 2018, J CHEM THEORY COMPUT, V14, P6076, DOI 10.1021/acs.jctc.8b00640. Mol. Sci. Softw. Inst, 2020, WHAT IS SEAMM. Montavon G, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/9/095003. Moon S, 2020, ARXIV200812249CSQBIO. Mysore S, 2019, ARXIV190506939CSCL. NILAKANTAN R, 1987, J CHEM INF COMP SCI, V27, P82, DOI 10.1021/ci00054a008. Noh J, 2019, MATTER-US, V1, P1370, DOI 10.1016/j.matt.2019.08.017. O'Boyle NM, 2012, J CHEMINFORMATICS, V4, DOI 10.1186/1758-2946-4-22. O'Leary JT, 2019, ADJUNCT PUBLICATION OF THE 32ND ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY (UIST'19 ADJUNCT), P134, DOI 10.1145/3332167.3356897. Peek N., 2018, P ACADIA C REC IMPR, P66. Pendleton IM, 2019, MRS COMMUN, V9, P846, DOI 10.1557/mrc.2019.72. Popova M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aap7885. Pun GPP, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10343-5. Putin E, 2018, MOL PHARMACEUT, V15, P4386, DOI 10.1021/acs.molpharmaceut.7b01137. Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045. Ramakrishnan R, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.22. Rasulev B., 2016, HDB COMPUTATIONAL CH, P2133. Reymond JL, 2015, ACCOUNTS CHEM RES, V48, P722, DOI 10.1021/ar500432k. Roch LM, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229862. Rogers D, 2010, J CHEM INF MODEL, V50, P742, DOI 10.1021/ci100050t. Roy K, 2014, CURR DRUG METAB, V15, P346, DOI 10.2174/1389200215666140908102230. Ruddigkeit L, 2012, J CHEM INF MODEL, V52, P2864, DOI 10.1021/ci300415d. Saal JE, 2013, JOM-US, V65, P1501, DOI 10.1007/s11837-013-0755-4. Sanchez-Lengeling B, 2017, CHEMRXIV, V2017, DOI 10.26434/chemrxiv.5309668.v2. Schwaller P, 2020, CHEM SCI, V11, P3316, DOI 10.1039/c9sc05704h. Schwaller P, 2019, ACS CENTRAL SCI, V5, P1572, DOI 10.1021/acscentsci.9b00576. Segler MHS, 2018, ACS CENTRAL SCI, V4, P120, DOI 10.1021/acscentsci.7b00512. Sharma AK, 2017, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00880. Sherstinsky A, 2020, PHYSICA D, V404, DOI 10.1016/j.physd.2019.132306. Sidhu SS, 2000, CURR OPIN BIOTECH, V11, P610, DOI 10.1016/S0958-1669(00)00152-X. Silva CM, 2003, COMPUT CHEM ENG, V27, P1329, DOI 10.1016/S0098-1354(03)00056-5. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. Simonovsky M, 2018, LECT NOTES COMPUT SC, V11139, P412, DOI 10.1007/978-3-030-01418-6\_41. SMITH GP, 1985, SCIENCE, V228, P1315, DOI 10.1126/science.4001944. Soong R, 2019, J CHEM EDUC, V96, P1497, DOI 10.1021/acs.jchemed.9b00025. Soong R, 2018, J CHEM EDUC, V95, P2268, DOI 10.1021/acs.jchemed.8b00638. Spangler S, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1877, DOI 10.1145/2623330.2623667. Stiefl N, 2006, J CHEM INF MODEL, V46, P208, DOI 10.1021/ci050457y. Swain MC, 2016, J CHEM INF MODEL, V56, P1894, DOI 10.1021/acs.jcim.6b00207. Tshitoyan V, 2019, NATURE, V571, P95, DOI 10.1038/s41586-019-1335-8. Ulissi ZW, 2017, ACS CATAL, V7, P6600, DOI 10.1021/acscatal.7b01648. Virshup AM, 2013, J AM CHEM SOC, V135, P7296, DOI 10.1021/ja401184g. Vorsilak M, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00439-2. WEININGER D, 1988, J CHEM INF COMP SCI, V28, P31, DOI 10.1021/ci00057a005. WELLS PR, 1963, CHEM REV, V63, P171, DOI 10.1021/cr60222a005. Wu HC, 2008, ACM T INFORM SYST, V26, DOI 10.1145/1361684.1361686. Xue L, 1999, J CHEM INF COMP SCI, V39, P699, DOI 10.1021/ci980231d. Yamada H, 2019, ACS CENTRAL SCI, V5, P1717, DOI 10.1021/acscentsci.9b00804. Yao Z, 2020, INVERSE DESIGN NANOP, DOI {[}10.26434/CHEMRXIV.12186681.V1, DOI 10.26434/CHEMRXIV.12186681.V1, 10.26434/chemrxiv.12186681.v1]. Zubatyuk R, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aav6490.}, Number-of-Cited-References = {144}, Times-Cited = {1}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {66}, Journal-ISO = {Annu. Rev. Chem. Biomol. Eng.}, Doc-Delivery-Number = {BR6JU}, Web-of-Science-Index = {Book Citation Index – Science (BKCI-S); Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000661534400003}, DA = {2023-04-22}, } @article{ WOS:000946929300001, Author = {Strunga, Martin and Urban, Renata and Surovkova, Jana and Thurzo, Andrej}, Title = {Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment}, Journal = {HEALTHCARE}, Year = {2023}, Volume = {11}, Number = {5}, Month = {MAR}, Abstract = {This scoping review examines the contemporary applications of advanced artificial intelligence (AI) software in orthodontics, focusing on its potential to improve daily working protocols, but also highlighting its limitations. The aim of the review was to evaluate the accuracy and efficiency of current AI-based systems compared to conventional methods in diagnosing, assessing the progress of patients' treatment and follow-up stability. The researchers used various online databases and identified diagnostic software and dental monitoring software as the most studied software in contemporary orthodontics. The former can accurately identify anatomical landmarks used for cephalometric analysis, while the latter enables orthodontists to thoroughly monitor each patient, determine specific desired outcomes, track progress, and warn of potential changes in pre-existing pathology. However, there is limited evidence to assess the stability of treatment outcomes and relapse detection. The study concludes that AI is an effective tool for managing orthodontic treatment from diagnosis to retention, benefiting both patients and clinicians. Patients find the software easy to use and feel better cared for, while clinicians can make diagnoses more easily and assess compliance and damage to braces or aligners more quickly and frequently.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Strunga, M; Thurzo, A (Corresponding Author), Comenius Univ, Fac Med, Dept Orthodont Regenerat \& Forens Dent, Bratislava 81250, Slovakia. Strunga, Martin; Urban, Renata; Surovkova, Jana; Thurzo, Andrej, Comenius Univ, Fac Med, Dept Orthodont Regenerat \& Forens Dent, Bratislava 81250, Slovakia.}, DOI = {10.3390/healthcare11050683}, Article-Number = {683}, EISSN = {2227-9032}, Keywords = {orthodontics; AI; ChatGPT; AI Treatment Assessment; Teledentistry Cephalometrics}, Keywords-Plus = {TELEDENTISTRY; ACCURACY; HEALTH}, Research-Areas = {Health Care Sciences \& Services}, Web-of-Science-Categories = {Health Care Sciences \& Services; Health Policy \& Services}, Author-Email = {strunga2@uniba.sk thurzo3@uniba.sk}, Affiliations = {Comenius University Bratislava}, ResearcherID-Numbers = {Thurzo, Andrej/AAX-7034-2021}, ORCID-Numbers = {Thurzo, Andrej/0000-0002-7810-5721}, Cited-References = {Achmad H., 2020, INT J PHARM RES, V12, P272. Ahmed N, 2021, BIOMED RES INT, V2021, DOI 10.1155/2021/9751564. Al Turkestani N, 2021, ORTHOD CRANIOFAC RES, V24, P26, DOI 10.1111/ocr.12492. Albalawi F, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122211864. {[}Anonymous], ARTIF INTELL. {[}Anonymous], EUS ARTIFICIAL INTEL. Baksi S, 2021, EUR J ORTHODONT, V43, P622, DOI 10.1093/ejo/cjaa069. Ben-Omran MO, 2021, J AM DENT ASSOC, V152, P998, DOI 10.1016/j.adaj.2021.06.005. Bichu YM, 2021, PROG ORTHOD, V22, DOI 10.1186/s40510-021-00361-9. Bulatova G, 2021, ORTHOD CRANIOFAC RES, V24, P37, DOI 10.1111/ocr.12542. Caruso S, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21051856. Dalessandri D, 2021, DENT J-BASEL, V9, DOI 10.3390/dj9050047. Davidovitch M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122412784. De Angelis F, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031728. Deshpande S, 2021, INT J TELEMED APPL, V2021, DOI 10.1155/2021/8859746. Dot G, 2020, INT J ORAL MAX SURG, V49, P1367, DOI 10.1016/j.ijom.2020.02.015. Ducret M, 2022, J DENT, V127, DOI 10.1016/j.jdent.2022.104344. Duman SB, 2022, DIAGNOSTICS, V12, DOI 10.3390/diagnostics12092244. Faber J, 2019, APOS TRENDS ORTHOD, V9, P201, DOI 10.25259/APOS\_123\_2019. Focardi M, 2014, INT J LEGAL MED, V128, P515, DOI 10.1007/s00414-014-0986-0. Fountoulaki G, 2022, DIAGNOSTICS, V12, DOI 10.3390/diagnostics12092201. Giansanti D, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10101824. Giansanti D, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph191911907. Giansanti D, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10061080. Giudice A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17103399. Hanna JJ, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10071195. Hansa I, 2021, AM J ORTHOD DENTOFAC, V159, P453, DOI 10.1016/j.ajodo.2020.02.010. Hansa I, 2020, PROG ORTHOD, V21, DOI 10.1186/s40510-020-00316-6. Helbostad JL, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17030622. Impellizzeri A, 2020, CLIN TER, V171, pE260, DOI 10.7417/CT.2020.2224. Islam NM, 2022, J DENT EDUC, V86, P1545, DOI 10.1002/jdd.13010. Jin M, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10101925. Juerchott A, 2020, EUR RADIOL, V30, P1488, DOI 10.1007/s00330-019-06540-x. Kalafati M, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10101948. Kang SH, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-97116-7. Kasirzadeh A, 2022, Arxiv. Kavalieros D, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10102054. Khader D., 2020, SRM J RES DENT SCI, V11, P35, DOI {[}10.4103/srmjrds.srmjrds\_69\_19, DOI 10.4103/SRMJRDS.SRMJRDS\_69\_19]. Kim C, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10165624. Kunz F, 2020, J OROFAC ORTHOP, V81, P52, DOI 10.1007/s00056-019-00203-8. Lachinov D, 2020, PATTERN RECOGN IMAGE, V30, P512, DOI 10.1134/S1054661820030165. Lee JH, 2020, BMC ORAL HEALTH, V20, DOI 10.1186/s12903-020-01256-7. Leite AF, 2020, PROTEOM CLIN APPL, V14, DOI 10.1002/prca.201900040. Leung AYM, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11010039. Livingston M., 2020, J SCI POLICY GOV, V16, DOI DOI 10.38126/JSPG160205. Machoy ME, 2020, ADV CLIN EXP MED, V29, P375, DOI 10.17219/acem/115083. Maspero C, 2020, J CLIN MED, V9, DOI 10.3390/jcm9061891. Matsuda S, 2020, J FORENSIC LEG MED, V74, DOI 10.1016/j.jflm.2020.102004. Meghil M.M., 2022, DENT REV, V2, P100009, DOI {[}10.1016/j.dentre.2021.100009, DOI 10.1016/J.DENTRE.2021.100009]. Mohammad-Rahimi H, 2021, AM J ORTHOD DENTOFAC, V160, P170, DOI 10.1016/j.ajodo.2021.02.013. Monill-Gonzalez A, 2021, ORTHOD CRANIOFAC RES, V24, P6, DOI 10.1111/ocr.12517. Morris RS, 2019, AM J ORTHOD DENTOFAC, V156, P420, DOI 10.1016/j.ajodo.2019.02.014. Moylan HB, 2019, ANGLE ORTHOD, V89, P727, DOI 10.2319/100218-710.1. Obermeyer Z, 2019, SCIENCE, V366, P447, DOI 10.1126/science.aax2342. Ossowska A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19063449. Park JH, 2021, J CLIN PEDIATR DENT, V45, P48, DOI 10.17796/1053-4625-45.1.9. Carrasco MP, 2008, IEEE T INF TECHNOL B, V12, P780, DOI 10.1109/TITB.2008.926429. Payne KFB, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-121. Pfeil JN, 2023, J TELEMED TELECARE, V29, P10, DOI 10.1177/1357633X20963935. Pirrera A, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11010101. Quinn CC, 2011, DIABETES CARE, V34, P1934, DOI 10.2337/dc11-0366. Ramya Y., 2022, INT J ENV RES PUB HE, V6, P9378, DOI {[}10.53730/ijhs.v6nS2.7445, DOI 10.53730/IJHS.V6NS2.7445]. Ren RY, 2021, PEERJ, V9, DOI 10.7717/peerj.11451. Roisin L.-C., 2016, J DENTOFAC ANOM ORTH, V19, P408, DOI {[}10.1051/odfen/2016021, DOI 10.1051/ODFEN/2016021]. Saghiri MA, 2022, J DENT EDUC, V86, P736, DOI 10.1002/jdd.12856. Samee NA, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10122340. Sangalli L, 2021, BMC ORAL HEALTH, V21, DOI 10.1186/s12903-021-01793-9. Schwendicke F, 2021, CLIN ORAL INVEST, V25, P4299, DOI 10.1007/s00784-021-03990-w. Sfikas PM, 1997, J AM DENT ASSOC, V128, P1716, DOI 10.14219/jada.archive.1997.0137. Shan T, 2021, J DENT RES, V100, P232, DOI 10.1177/0022034520969115. Shen KL, 2022, J CLIN PERIODONTOL, V49, P988, DOI 10.1111/jcpe.13675. Siddiqui NR, 2019, J ORTHOD, V46, P235, DOI 10.1177/1465312519851183. Singh P, 2013, J ORTHOD, V40, P249, DOI 10.1179/1465313313Y.0000000052. Sycinska-Dziarnowska M, 2021, J CLIN MED, V10, DOI 10.3390/jcm10163532. Thurzo A, 2010, BRATISL MED J, V111, P168. Thurzo A, 2010, BRATISL MED J, V111, P97. Thurzo A, 2022, SEMIN ORTHOD, V28, P92, DOI 10.1053/j.sodo.2022.10.005. Thurzo A, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22207752. Thurzo A, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14183858. Thurzo A, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10071269. Thurzo A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19137693. Thurzo A, 2022, MOLECULES, V27, DOI 10.3390/molecules27134035. Thurzo A, 2022, MATERIALS, V15, DOI 10.3390/ma15051740. Thurzo A, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9121695. Thurzo A, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9111545. Tokgoz P, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10061124. Tsolakis IA, 2022, J CLIN MED, V11, DOI 10.3390/jcm11226854. Tsolakis IA, 2022, LIFE-BASEL, V12, DOI 10.3390/life12111894. Vaid NR, 2020, J WORLD FED ORTHOD, V9, pS67, DOI 10.1016/j.ejwf.2020.08.007. Le VNT, 2022, J PERS MED, V12, DOI 10.3390/jpm12030387. Wang H, 2021, J DENT RES, V100, P943, DOI 10.1177/00220345211005338. Yu HJ, 2020, J DENT RES, V99, P249, DOI 10.1177/0022034520901715. Zhou J, 2021, DIAGNOSTICS, V11, DOI 10.3390/diagnostics11122200.}, Number-of-Cited-References = {93}, Times-Cited = {0}, Usage-Count-Last-180-days = {21}, Usage-Count-Since-2013 = {21}, Journal-ISO = {Healthcare}, Doc-Delivery-Number = {9T3KO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000946929300001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000945979200001, Author = {Goswami, Rupak and Dutta, Sudarshan and Misra, Sanchayeeta and Dasgupta, Shubhadip and Chakraborty, Somsubhra and Mallick, Kousik and Sinha, Aditya and Singh, Vinod K. K. and Oberthur, Thomas and Cook, Simon and Majumdar, Kaushik}, Title = {Whither digital agriculture in India?}, Journal = {CROP \& PASTURE SCIENCE}, Number = {SI}, Abstract = {Agriculture is central to the Indian economy and suffers from widespread operational inefficiencies that could be corrected by the use of digital agriculture technologies (DA). We review and synthesise available literature concerning digital agriculture in India and anticipate its transformative potential in the coming decade. Although the initial growth of DA was more conspicuous in the downstream sectors and high-value crops, reaching smallholder farmers upstream is slowly emerging despite significant obstacles such as small fragmented holdings, inadequate data infrastructure and public policy, and unequal access to digital infrastructure. Agri-tech enables innovation at many locations within value chains, and a steady shift is occurring in change from individual farms to the whole value chain. Technology in the sector is progressing from information and communication technology-based solutions to Internet of Things and artificial intelligence-machine learning-enabled services. India's public policy shows signs of a longstanding investment and collaboration in the sector, with an explicit focus on data infrastructure development. We find smallholder predominance, diversity in production systems, the predominance of commodity crops, proximity to urban markets, and public policy as the major factors of DA's success in India. A stocktake of the available technologies and their applications by the public sector, tech giants, information technology leaders and agri-food tech startups in India strongly indicates a digital transformation of Indian agriculture. However, given the federal structure of governance and agriculture being a state (province) subject, we need to wait to see how DA policies are rolled out and taken up across the country.}, Publisher = {CSIRO PUBLISHING}, Address = {UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA}, Type = {Review; Early Access}, Language = {English}, Affiliation = {Dutta, S (Corresponding Author), African Plant Nutr Inst, Benguerir 43150, Morocco. Dutta, S (Corresponding Author), African Plant Nutr Inst, Benguerir 43150, Morocco. Goswami, Rupak; Misra, Sanchayeeta; Mallick, Kousik, Ramakrishna Miss Vivekananda Educ \& Res Inst, Fac Ctr Integrated Rural Dev \& Management IRDM, Narendrapur 700103, West Bengal, India. Dutta, Sudarshan; Oberthur, Thomas; Majumdar, Kaushik, African Plant Nutr Inst, Benguerir 43150, Morocco. Dutta, Sudarshan; Oberthur, Thomas; Majumdar, Kaushik, Mohammed VI Polytech Univ, Benguerir 43150, Morocco. Dasgupta, Shubhadip; Chakraborty, Somsubhra, Indian Inst Technol Kharagpur, Agr \& Food Engn Dept, Kharagpur 721302, West Bengal, India. Dasgupta, Shubhadip, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, West Bengal, India. Sinha, Aditya, Bihar Agr Univ, Dept Extens Educ, Sabour 813210, Bihar, India. Singh, Vinod K. K., ICAR Cent Res Inst Dryland Agr CRIDA, Hyderabad 500059, India. Cook, Simon, Murdoch Univ, Coll Sci Hlth Engn \& Educ, Murdoch, WA, Australia. Dutta, Sudarshan, Kosher Climate, Nat Based Solut Agr, Bengaluru, Karnataka, India.}, DOI = {10.1071/CP21624}, EarlyAccessDate = {MAR 2023}, ISSN = {1836-0947}, EISSN = {1836-5795}, Keywords = {agri-startup; artificial intelligence-machine learning; data infrastructure; data policy; digital technologies; factors of adoption; proximal sensing; smallholder systems}, Keywords-Plus = {FARMERS}, Research-Areas = {Agriculture}, Web-of-Science-Categories = {Agriculture, Multidisciplinary}, Author-Email = {sudarshandutta@gmail.com}, Affiliations = {Mohammed VI Polytechnic University; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Kharagpur; Bidhan Chandra Agricultural University; Indian Council of Agricultural Research (ICAR); ICAR - Central Research Institute of Dryland Agriculture; Murdoch University}, ResearcherID-Numbers = {Goswami, Rupak/E-1030-2013}, ORCID-Numbers = {Goswami, Rupak/0000-0002-5998-4396}, Cited-References = {Adhikari J, 2021, AGR SYST, V186, DOI 10.1016/j.agsy.2020.102990. Agarwal B, 2017, OXF DEV STUD, V45, P460, DOI 10.1080/13600818.2017.1283010. AgFunder, 2018, IND AGR START INV RE. Aker JC, 2016, AGR ECON-BLACKWELL, V47, P35, DOI 10.1111/agec.12301. Ayog Niti, 2018, NATL STRATEGY ARTIFI. Birner R, 2021, APPL ECON PERSPECT P, V43, P1260, DOI 10.1002/aepp.13145. Chakraborty S, 2019, GEODERMA, V338, P5, DOI 10.1016/j.geoderma.2018.11.043. Chander M., 2020, INDIAN J EXTEN EDU, V56, P1. Cook S, 2022, INT J AGR SUSTAIN, V20, P346, DOI 10.1080/14735903.2021.1937881. CSC, 2020, ANN REP 2019 20. Deloitte, 2018, IND 4 0 FOOD IND IND. Dixon JM, 2021, AGR SYST, V193, DOI 10.1016/j.agsy.2021.103168. Dutta S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229100. Fabregas R, 2019, SMS EXTENSION FARMER. Fabregas R, 2019, SCIENCE, V366, P1328, DOI 10.1126/science.aay3038. FICCI, 2020, DEC AGR IND COVID 19. Fishman R., 2016, IFPRI DISCUSSION PAP. Florey C., 2020, Enterprise Development \& Microfinance, V31, P126, DOI 10.3362/1755-1986.20-00007. Gupta A, 2020, 27192 NBER. Gurumurthy A, 2019, ARTIF INTELL, V3. Kaka N., 2019, DIGITAL INDIA TECHNO. King B, 2017, 2017 CGIAR INSPIRE C. Kishore A, 2019, PUBL FD POL GLOB DEV, P235, DOI 10.1016/B978-0-12-818752-4.00012-6. Klerkx L, 2019, NJAS-WAGEN J LIFE SC, V90-91, DOI 10.1016/j.njas.2019.100315. Lajoie-O'Malley A, 2020, ECOSYST SERV, V45, DOI 10.1016/j.ecoser.2020.101183. Magnan N, 2015, J DEV ECON, V116, P223, DOI 10.1016/j.jdeveco.2015.05.003. Mathys C, 2018, NEW SOIL INTELLIGENC. Meola A, 2021, BUSINESS INSIDER. Microsoft, 2017, DIG AGR FARM IND US. Ministry of Finance Government of India, 2019, EC SURV 2018 19. Mittal S, 2012, MODERN ICT AGR DEV R. MoA\&FW, 2021, TRANSF AGR CONS PAP. Moro-Visconti R, 2021, STARTUP VALUATION, P363. Motilal Oswal, 2021, EC. Nitturkar H, 2021, J CROP IMPROV, V35, P890, DOI 10.1080/15427528.2021.1879335. Pampolino MF, 2012, COMPUT ELECTRON AGR, V88, P103, DOI 10.1016/j.compag.2012.07.007. PIB Delhi, 2021, UN MIN AGR SIGNS MOU. Project Breakthrough, 2017, DIG AGR FEED FUT. RBI, 2019, APP TABL V 6 IND PRI. Rotz S, 2019, SOCIOL RURALIS, V59, P203, DOI 10.1111/soru.12233. Sarangi Sanat, 2019, 2019 11th International Conference on Communication Systems \& Networks (COMSNETS), P556, DOI 10.1109/COMSNETS.2019.8711388. Schroeder K, 2021, WHATS COOKING DIGITA. Sharma S, 2019, FIELD CROP RES, V241, DOI 10.1016/j.fcr.2019.107578. Sharma SK, 2021, GOV INFORM Q, V38, DOI 10.1016/j.giq.2021.101573. Sharma U, 2021, ARTIF INTELL, P25. Shepherd M, 2020, J SCI FOOD AGR, V100, P5083, DOI 10.1002/jsfa.9346. Singh P, 2020, DIGITAL INDIA PROJEC. Singh RK., 2020, J FAM MED PRIM CARE, V12, P9936. Singh SK, 2018, NBSS PUBL, V176, P90. Swetha RK, 2020, GEODERMA, V376, DOI 10.1016/j.geoderma.2020.114562. UN, 2019, WORLD POPULATION PRO, DOI DOI 10.1111/1467-8268.00054. World Bank, 2021, AGR FOR FISH VAL ADD. World Bank Group, 2019, FUT FOOD HARN DIG TE. Zeng, 2019, DIGITAL TECHNOLOGIES.}, Number-of-Cited-References = {54}, Times-Cited = {0}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {4}, Journal-ISO = {Crop Pasture Sci.}, Doc-Delivery-Number = {9R9PD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000945979200001}, DA = {2023-04-22}, } @article{ WOS:000832059900001, Author = {Li, Wenwen and Hsu, Chia-Yu}, Title = {GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography}, Journal = {ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION}, Year = {2022}, Volume = {11}, Number = {7}, Month = {JUL}, Abstract = {GeoAI, or geospatial artificial intelligence, has become a trending topic and the frontier for spatial analytics in Geography. Although much progress has been made in exploring the integration of AI and Geography, there is yet no clear definition of GeoAI, its scope of research, or a broad discussion of how it enables new ways of problem solving across social and environmental sciences. This paper provides a comprehensive overview of GeoAI research used in large-scale image analysis, and its methodological foundation, most recent progress in geospatial applications, and comparative advantages over traditional methods. We organize this review of GeoAI research according to different kinds of image or structured data, including satellite and drone images, street views, and geo-scientific data, as well as their applications in a variety of image analysis and machine vision tasks. While different applications tend to use diverse types of data and models, we summarized six major strengths of GeoAI research, including (1) enablement of large-scale analytics; (2) automation; (3) high accuracy; (4) sensitivity in detecting subtle changes; (5) tolerance of noise in data; and (6) rapid technological advancement. As GeoAI remains a rapidly evolving field, we also describe current knowledge gaps and discuss future research directions.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Li, WW (Corresponding Author), Arizona State Univ, Sch Geog Sci \& Urban Planning, Tempe, AZ 85287 USA. Li, Wenwen; Hsu, Chia-Yu, Arizona State Univ, Sch Geog Sci \& Urban Planning, Tempe, AZ 85287 USA.}, DOI = {10.3390/ijgi11070385}, Article-Number = {385}, EISSN = {2220-9964}, Keywords = {artificial intelligence; deep learning; CNN; transformer; LSTM}, Keywords-Plus = {GOOGLE STREET VIEW; HIGH-RESOLUTION IMAGE; REMOTE-SENSING IMAGES; SYSTEMATIC SOCIAL OBSERVATION; TEMPERATURE CONDITION INDEX; SATELLITE VIDEOS; MESOSCALE EDDIES; BIG DATA; SEMANTIC SEGMENTATION; CONVOLUTIONAL NETWORK}, Research-Areas = {Computer Science; Physical Geography; Remote Sensing}, Web-of-Science-Categories = {Computer Science, Information Systems; Geography, Physical; Remote Sensing}, Author-Email = {wenwen@asu.edu chsu53@asu.edu}, Affiliations = {Arizona State University; Arizona State University-Tempe}, ResearcherID-Numbers = {Hsu, Chia-Yu/GPF-4406-2022}, ORCID-Numbers = {Hsu, Chia-Yu/0000-0002-8923-1213}, Funding-Acknowledgement = {US National Science Foundation {[}BCS-1853864, BCS-1455349, GCR-2021147, PLR-2120943, OIA-2033521]}, Funding-Text = {This research was funded in part by the US National Science Foundation, grant numbers BCS-1853864, BCS-1455349, GCR-2021147, PLR-2120943, and OIA-2033521.}, Cited-References = {Agana NA, 2018, HYDROLOGY-BASEL, V5, DOI 10.3390/hydrology5010018. Aguena MLS, 2006, COMPUT VIS IMAGE UND, V102, P178, DOI 10.1016/j.cviu.2006.01.001. Ajadi OA, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8060482. Al-amri Salem Saleh, 2010, INT J COMPUTER SCI E, V02, P804. Alessandri A, 2021, APPL MATH MODEL, V92, P731, DOI 10.1016/j.apm.2020.11.030. Ali M, 2001, INT GEOSCI REMOTE SE, P2298, DOI 10.1109/IGARSS.2001.977981. Allaire F, 2021, NEURAL NETWORKS, V141, P184, DOI 10.1016/j.neunet.2021.04.006. ALLEN RV, 1978, B SEISMOL SOC AM, V68, P1521. Amirkolaee HA, 2019, REMOTE SENS LETT, V10, P679, DOI 10.1080/2150704X.2019.1601277. Amirkolaee HA, 2019, ISPRS J PHOTOGRAMM, V149, P50, DOI 10.1016/j.isprsjprs.2019.01.013. Amiruzzaman M, 2021, J COMPUT SOC SCI, V4, P813, DOI 10.1007/s42001-021-00107-x. ANDERSON MC, 1964, J ECOL, V52, P27, DOI 10.2307/2257780. Anguelov D, 2010, COMPUTER, V43, P32, DOI 10.1109/MC.2010.170. {[}Anonymous], 2014, ARXIV 14127062. Appenzeller T, 2017, SCIENCE, V357, P16, DOI 10.1126/science.357.6346.16. APPLEYARD D, 1970, ENVIRON BEHAV, V2, P100, DOI 10.1177/001391657000200106. Arase Y., 2010, PROC 18 ACM INT C MU, P133, DOI DOI 10.1145/1873951.1873971. Armstrong J.S., 2006, FORESIGHT INT J APPL, P10. Arora NS, 2013, B SEISMOL SOC AM, V103, P709, DOI 10.1785/0120120107. Arundel ST, 2018, CARTOGR GEOGR INF SC, V45, P31, DOI 10.1080/15230406.2016.1230027. Asokan A, 2019, EARTH SCI INFORM, V12, P143, DOI 10.1007/s12145-019-00380-5. Badland HM, 2010, J URBAN HEALTH, V87, P1007, DOI 10.1007/s11524-010-9505-x. Badrinarayanan V, 2017, IEEE T PATTERN ANAL, V39, P2481, DOI 10.1109/TPAMI.2016.2644615. Bai CY, 2000, B SEISMOL SOC AM, V90, P187, DOI 10.1785/0119990070. Bai Y, 2016, J HYDROL, V532, P193, DOI 10.1016/j.jhydrol.2015.11.011. Bakurov I, 2022, EXPERT SYST APPL, V189, DOI 10.1016/j.eswa.2021.116087. Barrett E. C., 2013, INTRO ENV REMOTE SEN. Bauer P, 2015, NATURE, V525, P47, DOI 10.1038/nature14956. Bejiga MB, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9020100. Bell JE, 2018, J AIR WASTE MANAGE, V68, P265, DOI 10.1080/10962247.2017.1401017. Beniston M, 2007, ENERG POLICY, V35, P5384, DOI 10.1016/j.enpol.2006.01.032. Bhandari AK, 2015, EXPERT SYST APPL, V42, P1573, DOI 10.1016/j.eswa.2014.09.049. Bi FK, 2019, IEEE ACCESS, V7, P76731, DOI 10.1109/ACCESS.2019.2921315. Bochkovskiy A., 2020, ARXIV, DOI DOI 10.48550/ARXIV.2004.10934. Bonfanti C, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P753. Bose S, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), P264. Bowen Cheng, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P12472, DOI 10.1109/CVPR42600.2020.01249. Bowler NEH, 2004, J HYDROL, V288, P74, DOI 10.1016/j.jhydrol.2003.11.011. Bruzzone L, 2013, P IEEE, V101, P609, DOI 10.1109/JPROC.2012.2197169. BYRNE GF, 1980, REMOTE SENS ENVIRON, V10, P175, DOI 10.1016/0034-4257(80)90021-8. Calabrese F, 2013, TRANSPORT RES C-EMER, V26, P301, DOI 10.1016/j.trc.2012.09.009. Cao G, 2016, INT J REMOTE SENS, V37, P1173, DOI 10.1080/01431161.2016.1148284. Cao YX, 2017, INT J DISAST RISK SC, V8, P164, DOI 10.1007/s13753-017-0129-6. Carrasco-Hernandez R, 2015, ENERG BUILDINGS, V86, P340, DOI 10.1016/j.enbuild.2014.10.001. Castelli M, 2015, FIRE ECOL, V11, P106, DOI 10.4996/fireecology.1101106. Cerin E, 2006, MED SCI SPORT EXER, V38, P1682, DOI 10.1249/01.mss.0000227639.83607.4d. Chaigneau A, 2008, PROG OCEANOGR, V79, P106, DOI 10.1016/j.pocean.2008.10.013. Chan RH, 2003, SIAM J SCI COMPUT, V24, P1408, DOI 10.1137/S1064827500383123. Chelton DB, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2007GL030812. Chelton DB, 2011, SCIENCE, V334, P328, DOI 10.1126/science.1208897. Chelton DB, 2011, PROG OCEANOGR, V91, P167, DOI 10.1016/j.pocean.2011.01.002. Chen H, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3095166. Chen H, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101662. Chen HG, 2022, INFORM FUSION, V79, P124, DOI 10.1016/j.inffus.2021.09.005. Chen JF, 2012, MATH PROBL ENG, V2012, DOI 10.1155/2012/235929. Chen KQ, 2018, IEEE GEOSCI REMOTE S, V15, P173, DOI 10.1109/LGRS.2017.2778181. Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184. Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709. Chen T, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9040333. Chen YH, 2018, LECT NOTES COMPUT SC, V11070, P91, DOI 10.1007/978-3-030-00928-1\_11. Cheng A.-J., 2011, P 19 ACM INT C MULTI, P83. Cheng G, 2020, IEEE T IMAGE PROCESS, V29, P5794, DOI 10.1109/TIP.2020.2987161. Clarke P, 2010, HEALTH PLACE, V16, P1224, DOI 10.1016/j.healthplace.2010.08.007. Comaniciu D, 2003, IEEE T PATTERN ANAL, V25, P564, DOI 10.1109/TPAMI.2003.1195991. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Couclelis H, 1998, ENVIRON PLANN B, V25, P321, DOI 10.1177/239980839802500708. Courtney JD, 1997, PATTERN RECOGN, V30, P607, DOI 10.1016/S0031-3203(96)00107-0. Cui BG, 2017, INFRARED PHYS TECHN, V81, P79, DOI 10.1016/j.infrared.2016.12.010. d'Andrimont R, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10081300. Dai D., 2016, WINT C APPL COMP VIS. Dai JF, 2016, ADV NEUR IN, V29. Dai Z., 2021, ADV NEURAL INF PROCE, V34, P3965, DOI DOI 10.48550/ARXIV.2106.04803. Dalal N, 2005, PROC CVPR IEEE, P886, DOI 10.1109/cvpr.2005.177. de Sa TH, 2017, ENVIRON INT, V108, P22, DOI 10.1016/j.envint.2017.07.009. Demiray B.Z., 2021, ARXIV. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Dietz L, NOTES CONFIGURING BI. Ding J, 2018, Arxiv. Doglioli AM, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003952. Dong C, 2016, LECT NOTES COMPUT SC, V9906, P391, DOI 10.1007/978-3-319-46475-6\_25. Dong C, 2014, LECT NOTES COMPUT SC, V8692, P184, DOI 10.1007/978-3-319-10593-2\_13. Dong RS, 2019, IEEE ACCESS, V7, P65347, DOI 10.1109/ACCESS.2019.2917952. Dong WS, 2021, IEEE T IMAGE PROCESS, V30, P5754, DOI 10.1109/TIP.2021.3078058. Doshi J, 2019, Arxiv. Dosovitskiy A., 2020, IMAGE IS WORTH 16X16. Du B, 2019, IEEE J-STARS, V12, P3043, DOI 10.1109/JSTARS.2019.2917703. Du YL, 2019, INFORM FUSION, V49, P89, DOI 10.1016/j.inffus.2018.09.006. Dubey A, 2016, LECT NOTES COMPUT SC, V9905, P196, DOI 10.1007/978-3-319-46448-0\_12. Duo ZJ, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11161921. Eigen D, 2014, ADV NEUR IN, V27. Eigen D, 2015, IEEE I CONF COMP VIS, P2650, DOI 10.1109/ICCV.2015.304. Elad M, 1999, IEEE T IMAGE PROCESS, V8, P387, DOI 10.1109/83.748893. Elsherbiny O, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13091785. Ester M., 1996, KDD 96, V96, P226, DOI DOI 10.5555/3001460.3001507. Ewing R, 2009, J URBAN DES, V14, P65, DOI 10.1080/13574800802451155. Fan HC, 2021, BIG EARTH DATA, V5, P49, DOI 10.1080/20964471.2021.1886391. Fang ZC, 2020, IEEE WINT CONF APPL, P1080, DOI 10.1109/WACV45572.2020.9093334. Fei-Fei L, 2005, PROC CVPR IEEE, P524. Felzenszwalb PF, 2010, IEEE T PATTERN ANAL, V32, P1627, DOI 10.1109/TPAMI.2009.167. Ferraris V, 2018, IEEE T GEOSCI REMOTE, V56, P1566, DOI 10.1109/TGRS.2017.2765348. Finney M. A., 1998, Research Paper - Rocky Mountain Research Station, USDA Forest Service. Firth R. J., 2016, THESIS. Fitoka E, 2020, REMOTE SENS ENVIRON, V245, DOI 10.1016/j.rse.2020.111795. Fotheringham AS, 2022, SPAT STAT-NETH, V50, DOI 10.1016/j.spasta.2022.100601. Frenger I, 2013, NAT GEOSCI, V6, P608, DOI {[}10.1038/NGEO1863, 10.1038/ngeo1863]. Fu K, 2020, ISPRS J PHOTOGRAMM, V161, P294, DOI 10.1016/j.isprsjprs.2020.01.025. Fu Y, 2019, PROC CVPR IEEE, P11653, DOI 10.1109/CVPR.2019.01193. Fytsilis AL, 2016, ISPRS J PHOTOGRAMM, V119, P165, DOI 10.1016/j.isprsjprs.2016.06.001. Gal T, 2009, THEOR APPL CLIMATOL, V95, P111, DOI 10.1007/s00704-007-0362-9. Ganapathi Subramanian S., P CAN C ART INT TOR, P285. Gaube P, 2017, DEEP-SEA RES PT I, V122, P1, DOI 10.1016/j.dsr.2017.02.006. Gebru T, 2017, P NATL ACAD SCI USA, V114, P13108, DOI 10.1073/pnas.1700035114. George TM, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-020-20779-9. Ghisu T, 2015, PROCEDIA COMPUT SCI, V51, P2287, DOI 10.1016/j.procs.2015.05.388. Gibbons SJ, 2006, GEOPHYS J INT, V165, P149, DOI 10.1111/j.1365-246X.2006.02865.x. Glaeser EL, 2018, ECON INQ, V56, P114, DOI 10.1111/ecin.12364. Goel R, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196521. Gong FY, 2018, BUILD ENVIRON, V134, P155, DOI 10.1016/j.buildenv.2018.02.042. Gonzalez MC, 2008, NATURE, V453, P779, DOI 10.1038/nature06958. Goodchild MF, 2004, ANN ASSOC AM GEOGR, V94, P300, DOI 10.1111/j.1467-8306.2004.09402008.x. Goodchild MF, 2010, GEOJOURNAL, V75, P3, DOI 10.1007/s10708-010-9340-3. Goodchild MF, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2015759118. GREENSPAN H, 1994, 1994 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, P222, DOI 10.1109/CVPR.1994.323833. Greenspan H, 2009, COMPUT J, V52, P43, DOI 10.1093/comjnl/bxm075. Grillo Andrea, 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, P2413, DOI 10.1109/IGARSS47720.2021.9554540. Hagenauer J, 2022, INT J GEOGR INF SCI, V36, P215, DOI 10.1080/13658816.2021.1871618. Hamaguchi R, 2018, IEEE WINT CONF APPL, P1442, DOI 10.1109/WACV.2018.00162. Han JM, 2021, PROC CVPR IEEE, P2785, DOI 10.1109/CVPR46437.2021.00281. Han J, 2018, P NATL ACAD SCI USA, V115, P8505, DOI 10.1073/pnas.1718942115. Han P, 2010, MATH COMPUT MODEL, V51, P1398, DOI 10.1016/j.mcm.2009.10.031. Han XH, 2018, IEEE IMAGE PROC, P2506, DOI 10.1109/ICIP.2018.8451142. Hanson H.P., 2000, ENVIRON SCI POLICY, V3, P161, DOI DOI 10.1016/S1462-9011(00)00083-6. Haris M., 2018, INT C NEURAL INFORM. He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI {[}10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]. He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90. He KM, 2015, IEEE T PATTERN ANAL, V37, P1904, DOI 10.1109/TPAMI.2015.2389824. Helbig N, 2009, J ATMOS SCI, V66, P2900, DOI 10.1175/2009JAS2940.1. Hersbach H, 2020, Q J ROY METEOR SOC, V146, P1999, DOI 10.1002/qj.3803. Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527. Hinz S, 2006, ISPRS J PHOTOGRAMM, V61, P135, DOI 10.1016/j.isprsjprs.2006.09.011. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Hodges JL, 2019, FIRE TECHNOL, V55, P2115, DOI 10.1007/s10694-019-00846-4. Hoiem D, 2008, INT J COMPUT VISION, V80, P3, DOI 10.1007/s11263-008-0137-5. Hou B, 2020, IEEE T GEOSCI REMOTE, V58, P1790, DOI 10.1109/TGRS.2019.2948659. Hsu C.-Y., 2020, P 31 BRIT MACHINE VI. Hsu CY, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13112116. Hu WM, 2004, IEEE T SYST MAN CY C, V34, P334, DOI 10.1109/TSMCC.2004.829274. Hu Y., 2019, SIGSPATIAL SPECIAL, V11, P5, DOI {[}10.1145/3377000.3377002, DOI 10.1145/3377000.3377002]. Huang G, 2017, PROC CVPR IEEE, P2261, DOI 10.1109/CVPR.2017.243. Huang R, 2018, IEEE INT CONF BIG DA, P2503, DOI 10.1109/BigData.2018.8621865. Huang Z., 2020, ADV NEURAL INF PROC, V33, P16797. Huina Mao, 2017, SIGSPATIAL Special, V9, DOI 10.1145/3178392.3178408. Ilic L, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212814. Ingram K., 1981, CSCTM816087 NASA. IRANI M, 1991, CVGIP-GRAPH MODEL IM, V53, P231, DOI 10.1016/1049-9652(91)90045-L. Isern-Fontanet J, 2003, J ATMOS OCEAN TECH, V20, P772, DOI 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2. Jacob RJK, 2003, MIND'S EYE: COGNITIVE AND APPLIED ASPECTS OF EYE MOVEMENT RESEARCH, P573, DOI 10.1016/B978-044451020-4/50031-1. Jain P, 2020, ENVIRON REV, V28, P478, DOI 10.1139/er-2020-0019. Janakiramaiah B, 2023, SOFT COMPUT, V27, P1045, DOI 10.1007/s00500-021-05912-0. Janowicz K, 2020, INT J GEOGR INF SCI, V34, P625, DOI 10.1080/13658816.2019.1684500. Javed O, 2002, LECT NOTES COMPUT SC, V2353, P343. Jiang JJ, 2020, IEEE T COMPUT IMAG, V6, P1082, DOI 10.1109/TCI.2020.2996075. Jiang Z., 2020, ARXIV. Jiao ZH, 2019, EARTH SPACE SCI, V6, P222, DOI 10.1029/2018EA000475. Joachims T., 1998, P 10 EUR C MACH LEAR, V1398, P137, DOI DOI 10.1007/BFB0026683. Johnson C. E., 1997, 94621 US GEOL SURV. JOHNSON GT, 1984, J CLIM APPL METEOROL, V23, P329, DOI 10.1175/1520-0450(1984)023<0329:TDOVFI>2.0.CO;2. Johnston P, 2008, INT J WILDLAND FIRE, V17, P614, DOI 10.1071/WF06147. Jung H., 2021, P IEEECVF INT C COMP, P12642. Kampffmeyer M, 2016, IEEE COMPUT SOC CONF, P680, DOI 10.1109/CVPRW.2016.90. Kamusoko C, 2017, URBAN BOOK SERIES, P3, DOI 10.1007/978-981-10-3241-7\_1. Kang YH, 2020, ANN GIS, V26, P261, DOI 10.1080/19475683.2020.1791954. Kang YH, 2019, T GIS, V23, P450, DOI 10.1111/tgis.12552. Kao H, 2004, GEOPHYS J INT, V157, P589, DOI 10.1111/j.1365-246X.2004.02276.x. Kapoor S, 2017, PROCEDIA COMPUT SCI, V115, P415, DOI 10.1016/j.procs.2017.09.100. Karnieli A, 2010, J CLIMATE, V23, P618, DOI 10.1175/2009JCLI2900.1. KASS M, 1987, INT J COMPUT VISION, V1, P321, DOI 10.1007/BF00133570. Ke L, 2018, IEEE ACCESS, V6, P27442, DOI 10.1109/ACCESS.2018.2807380. Khan N, 2019, NEUROCOMPUTING, V357, P36, DOI 10.1016/j.neucom.2019.05.024. Khoshboresh-Masouleh M, 2020, COMPUT INTEL NEUROSC, V2020, DOI 10.1155/2020/8811630. Kim J., 2022, SUSTAIN CITIES SOC, V80, DOI {[}10.1016/j.scs.2022.103799, DOI 10.1016/J.SCS.2022.103799]. Kim J, 2016, PROC CVPR IEEE, P1637, DOI {[}10.1109/CVPR.2016.181, 10.1109/CVPR.2016.182]. Kim KI, 2010, IEEE T PATTERN ANAL, V32, P1127, DOI 10.1109/TPAMI.2010.25. Kita K., 2019, ARXIV. Klingner Marvin, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12365), P582, DOI 10.1007/978-3-030-58565-5\_35. Konda K, 2013, Arxiv. Koo BW, 2022, ENVIRON BEHAV, V54, P211, DOI 10.1177/00139165211014609. Krizhevsky Alex, 2017, Communications of the ACM, V60, P84, DOI 10.1145/3065386. Kumakoshi Y, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187434. Kumar A, 2021, T EMERG TELECOMMUN T, V32, DOI 10.1002/ett.3988. Kung KS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096180. Kurth Thorsten, 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. Proceedings, P649, DOI 10.1109/SC.2018.00054. Kurth T, 2017, SC'17: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, DOI 10.1145/3126908.3126916. Kux H., 2006, INT ARCH PHOTOGRAMM, V36, P121. Ladicky L, 2014, PROC CVPR IEEE, P89, DOI 10.1109/CVPR.2014.19. Lafontaine SJV, 2017, INT J HEALTH GEOGR, V16, DOI 10.1186/s12942-017-0079-7. Lai WS, 2017, PROC CVPR IEEE, P5835, DOI 10.1109/CVPR.2017.618. Lanusse F, 2018, MON NOT R ASTRON SOC, V473, P3895, DOI 10.1093/mnras/stx1665. Lara-Benitez P, 2021, INT J NEURAL SYST, V31, DOI 10.1142/S0129065721300011. Laungrungthip N., 2008, P 2008 23 INT C IM V, P1. Law S, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3342240. Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791. Ledig C, 2017, PROC CVPR IEEE, P105, DOI 10.1109/CVPR.2017.19. LEE SY, 1993, P SOC PHOTO-OPT INS, V1908, P25, DOI 10.1117/12.143653. Leng ZQ, 2022, Arxiv. Leu LG, 2005, OCEAN ENG, V32, P1174, DOI 10.1016/j.oceaneng.2004.12.005. Lguensat R, 2018, INT GEOSCI REMOTE SE, P1764, DOI 10.1109/IGARSS.2018.8518411. Li C, 2016, WATER RESOUR MANAG, V30, P5145, DOI 10.1007/s11269-016-1474-8. Li F., 2006, GEORG INF SCI, V12, P106, DOI {[}10.1080/10824000609480624, DOI 10.1080/10824000609480624]. Li HF, 2021, IEEE GEOSCI REMOTE S, V18, P905, DOI 10.1109/LGRS.2020.2988294. Li K, 2020, ISPRS J PHOTOGRAMM, V159, P296, DOI 10.1016/j.isprsjprs.2019.11.023. Li R, 2021, Arxiv. Li W., 2022, NEW THINKING GISCIEN. Li W., 2021, INT ENCY GEOGRAPHY P. Li WW, 2021, ANN AM ASSOC GEOGR, V111, P1887, DOI 10.1080/24694452.2021.1877527. Li WW, 2020, J SPAT INT SCI, P71, DOI 10.5311/JOSIS.2020.20.658. Li WW, 2020, INT J GEOGR INF SCI, V34, P637, DOI 10.1080/13658816.2018.1542697. Li WW, 2020, INT J GEOGR INF SCI, V34, P311, DOI 10.1080/13658816.2019.1673397. Li WW, 2012, INT J GEOGR INF SCI, V26, P1415, DOI 10.1080/13658816.2011.635595. Li XJ, 2018, LANDSCAPE URBAN PLAN, V169, P81, DOI 10.1016/j.landurbplan.2017.08.011. Li YS, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12234003. Li ZF, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19728-w. Liang JM, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9050411. Lim B, 2017, IEEE COMPUT SOC CONF, P1132, DOI 10.1109/CVPRW.2017.151. Lin Tsung-Yi, 2020, IEEE Trans Pattern Anal Mach Intell, V42, P318, DOI 10.1109/TPAMI.2018.2858826. Lin TY, 2017, PROC CVPR IEEE, P936, DOI 10.1109/CVPR.2017.106. Lin ZH, 2020, AAAI CONF ARTIF INTE, V34, P11531. Liu BY, 2010, PROC CVPR IEEE, P1253, DOI 10.1109/CVPR.2010.5539823. Liu FY, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010126. Liu J, 2018, IEEE T NEUR NET LEAR, V29, P545, DOI 10.1109/TNNLS.2016.2636227. Liu SC, 2015, IEEE T GEOSCI REMOTE, V53, P4363, DOI 10.1109/TGRS.2015.2396686. Liu WT, 2001, INT J REMOTE SENS, V22, P3483, DOI 10.1080/01431160010006430. Liu Y., 2016, ARXIV. Liu Y, 2015, ANN ASSOC AM GEOGR, V105, P512, DOI 10.1080/00045608.2015.1018773. Liu Z, 2020, SCI DATA, V7, DOI 10.1038/s41597-020-00708-7. Lomax A, 2000, ADVANCES IN SEISMIC EVENT LOCATION, P101. Lomax A, 2012, SEISMOL RES LETT, V83, P531, DOI 10.1785/gssrl.83.3.531. Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965. Long Y, 2017, IEEE T GEOSCI REMOTE, V55, P2486, DOI 10.1109/TGRS.2016.2645610. Lowe G., 2004, INT J-TORONTO, V2, P2, DOI DOI 10.1023/B:VISI.0000029664.99615.94. Lucas B.D., 1981, IJCAI, P674. Lynch K., 1960, IMAGE CITY, V11, P1. Malik J, 2001, INT J COMPUT VISION, V43, P7, DOI 10.1023/A:1011174803800. Malila W. A., 1980, Sixth Annual Symposium on Machine Processing of Remotely Sensed Data and Soil Information Systems and Remote Sensing and Soil Survey, P326. Mallet V, 2009, COMPUT MATH APPL, V57, P1089, DOI 10.1016/j.camwa.2008.10.089. Mao XJ, 2016, ADV NEUR IN, V29. Mao XD, 2017, IEEE I CONF COMP VIS, P2813, DOI 10.1109/ICCV.2017.304. Marblestone AH, 2016, FRONT COMPUT NEUROSC, V10, DOI 10.3389/fncom.2016.00094. Mathieu M., 2015, ARXIV. McBrearty IW, 2019, SEISMOL RES LETT, V90, P503, DOI 10.1785/0220180326. MCKEE TB, 1993, P 8 C APPL CLIM AN C. Memisevic R., 2011, P NIPS WORKSHOP DEEP, V1, P2. Meng LF, 2012, IEEE J-STARS, V5, P146, DOI 10.1109/JSTARS.2011.2179639. Merali HS, 2020, INJURY PREV, V26, P103, DOI 10.1136/injuryprev-2018-043061. Michael R., 2005, TRENDS ONLINE LANDSC, P121. Middel A, 2018, URBAN CLIM, V25, P120, DOI 10.1016/j.uclim.2018.05.004. Middel A, 2017, URBAN PLAN, V2, P19, DOI 10.17645/up.v2i1.855. Milanfar P, 2017, SUPER RESOLUTION IMA, DOI {[}10.1201/9781439819319, DOI 10.1201/9781439819319]. Milton-Barker A, 2019, INCEPTION V3 DEEP CO. Mittal H, 2018, ENG APPL ARTIF INTEL, V71, P226, DOI 10.1016/j.engappai.2018.03.001. Mohajerani S, 2021, IEEE J-STARS, V14, P4254, DOI 10.1109/JSTARS.2021.3070786. Morrow R, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL020974. Mou L., 2018, ARXIV. Mousavi SM, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17591-w. Muhammad G, 2021, IEEE INTERNET THINGS, V8, P16894, DOI 10.1109/JIOT.2021.3058587. Muthukrishnan R., 2011, International Journal of Computer Science \& Information Technology, V3, P259, DOI 10.5121/ijcsit.2011.3620. Naik N, 2017, P NATL ACAD SCI USA, V114, P7571, DOI 10.1073/pnas.1619003114. Naik N, 2014, IEEE COMPUT SOC CONF, P793, DOI 10.1109/CVPRW.2014.121. NASAR JL, 1990, J AM PLANN ASSOC, V56, P41, DOI 10.1080/01944369008975742. Neelamani R, 2004, IEEE T SIGNAL PROCES, V52, P418, DOI 10.1109/TSP.2003.821103. O'Connor CD, 2016, GEOSCIENCES, V6, DOI 10.3390/geosciences6030035. Odgers CL, 2012, J CHILD PSYCHOL PSYC, V53, P1009, DOI 10.1111/j.1469-7610.2012.02565.x. OKE TR, 1982, Q J ROY METEOR SOC, V108, P1, DOI 10.1002/qj.49710845502. OKUBO A, 1970, DEEP-SEA RES, V17, P445, DOI 10.1016/0011-7471(70)90059-8. Oliva A, 2001, INT J COMPUT VISION, V42, P145, DOI 10.1023/A:1011139631724. Oliver M, 2013, INT J HEALTH GEOGR, V12, DOI 10.1186/1476-072X-12-20. Openshaw C., 1997, ARTIF INTELL. Osco LP, 2021, PRECIS AGRIC, V22, P1171, DOI 10.1007/s11119-020-09777-5. Pais C, 2019, Arxiv, DOI DOI 10.48550/ARXIV.1905.09317. Pan B, 2019, IEEE GEOSCI REMOTE S, V16, P816, DOI 10.1109/LGRS.2018.2880756. Papageorgiou CP, 1998, SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, P555, DOI 10.1109/ICCV.1998.710772. PAPOULIS A, 1977, IEEE T CIRCUITS SYST, V24, P652, DOI 10.1109/TCS.1977.1084284. Pascanu R., 2013, ARXIV. Paschos G, 2001, IEEE T IMAGE PROCESS, V10, P932, DOI 10.1109/83.923289. Patel NR, 2012, ENVIRON MONIT ASSESS, V184, P7153, DOI 10.1007/s10661-011-2487-7. Patil SD, 2017, INT J REMOTE SENS, V38, P5592, DOI 10.1080/01431161.2017.1343512. Patton J.M., 2016, HYDRA NATL EARTHQUAK. Peng DF, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111382. Perol T, 2018, SCI ADV, V4, DOI 10.1126/sciadv.1700578. Peters AJ, 2002, PHOTOGRAMM ENG REM S, V68, P71. Pham H, 2020, ARXIV PREPRINT ARXIV. Poornima S, 2019, SOFT COMPUT, V23, P8399, DOI 10.1007/s00500-019-04120-1. Poudel R.P.K., 2019, ARXIV. Prabhat, 2015, LECT NOTES COMPUT SC, V9257, P426, DOI 10.1007/978-3-319-23117-4\_37. Qian W., 2019, ARXIV. Qiangqiang Yuan, 2014, 2014 IEEE Geoscience and Remote Sensing Symposium. (IGARSS). Proceedings, P3073, DOI 10.1109/IGARSS.2014.6947126. Qin MJ, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12121937. Qu Y, 2018, PROC CVPR IEEE, P2511, DOI 10.1109/CVPR.2018.00266. Quercia D., 2014, P 17 ACM C COMP SUPP, P945. Racah E, 2017, ADV NEUR IN, V30. Radke D, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4575. Ranzato M., 2014, ARXIV. Rasmus S, 2013, HYDROL PROCESS, V27, P2876, DOI 10.1002/hyp.9432. Rasp S, 2020, J ADV MODEL EARTH SY, V12, DOI 10.1029/2020MS002203. Ratti C, 2004, ENVIRON PLANN B, V31, P297, DOI 10.1068/b2665. Redmon J, 2018, Arxiv, DOI DOI 10.48550/ARXIV.1804.02767. Redmon J, 2017, PROC CVPR IEEE, P6517, DOI 10.1109/CVPR.2017.690. Redmon J, 2016, PROC CVPR IEEE, P779, DOI 10.1109/CVPR.2016.91. Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1. Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031. Rhee S, 1999, OPT ENG, V38, P1348, DOI 10.1117/1.602177. Rochoux MC, 2014, NAT HAZARD EARTH SYS, V14, P2951, DOI 10.5194/nhess-14-2951-2014. Roemmich D, 2001, J PHYS OCEANOGR, V31, P675, DOI 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2. Ronneberger O., 2015, P MED IM COMP COMP A, P234, DOI 10.1007/978-3-319-24574-4\_28. Ross ZE, 2019, J GEOPHYS RES-SOL EA, V124, P856, DOI 10.1029/2018JB016674. Ross ZE, 2018, B SEISMOL SOC AM, V108, P2894, DOI 10.1785/0120180080. Ross ZE, 2018, J GEOPHYS RES-SOL EA, V123, P5120, DOI 10.1029/2017JB015251. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Russell SJ, 1995, ARTIF INTELL. Ryu JY, 2018, P NATL ACAD SCI USA, V115, pE4304, DOI 10.1073/pnas.1803294115. Sadarjoen IA, 1998, VISUALIZATION `98, PROCEEDINGS, P419, DOI 10.1109/VISUAL.1998.745333. Sadeghi V, 2016, ARAB J GEOSCI, V9, DOI 10.1007/s12517-015-2301-x. Safi Y., 2013, APPL MATH SCI, V7, P271, DOI {[}DOI 10.12988/AMS.2013.13025, 10.12988/ams.2013.13025]. Sakaino H, 2013, IEEE T GEOSCI REMOTE, V51, P3023, DOI 10.1109/TGRS.2012.2212201. Salesses P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068400. Sampson RJ, 1999, AM J SOCIOL, V105, P603, DOI 10.1086/210356. Saralioglu E, 2022, GEOCARTO INT, V37, P657, DOI 10.1080/10106049.2020.1734871. Sato K, 2004, COMPUT VIS IMAGE UND, V96, P100, DOI 10.1016/j.cviu.2004.02.003. Saxena A., 2005, ADV NEURAL INF PROCE, V18. Scharstein D, 2002, INT J COMPUT VISION, V47, P7, DOI 10.1023/A:1014573219977. Schmid F., 2019, BULL, V68, P2. Scholkopf B, 2000, NEURAL COMPUT, V12, P1207, DOI 10.1162/089976600300015565. Schultz RR, 1996, IEEE T IMAGE PROCESS, V5, P996, DOI 10.1109/83.503915. Sefrin O, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13010078. Sermanet P., 2013, ARXIV. Shao J, 2019, IEEE T GEOSCI REMOTE, V57, P7860, DOI 10.1109/TGRS.2019.2916953. Shata RO, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020468. Sherley E.F., 2021, COMMUNICATION SOFTWA, P359. Sherstinsky A, 2020, PHYSICA D, V404, DOI 10.1016/j.physd.2019.132306. Shi Q., 2021, IEEE T GEOSCI REMOTE, DOI DOI 10.1109/TGRS.2021.3085870. Shi XJ, 2015, ADV NEUR IN, V28. Shi XJ, 2017, ADV NEUR IN, V30. Simonyan K, 2015, Arxiv, DOI DOI 10.48550/ARXIV.1409.1556. SINGH A, 1989, INT J REMOTE SENS, V10, P989, DOI 10.1080/01431168908903939. Singh A, 1986, REMOTE SENSING TROPI, V44, P254, DOI DOI 10.1080/10106048809354188. Sinz FH, 2004, LECT NOTES COMPUT SC, V3175, P245. Sobel Irwin, 1968, 3X3 ISOTROPIC GRADIE. Soltani K, 2021, THEOR APPL CLIMATOL, V143, P713, DOI 10.1007/s00704-020-03419-6. Spedicato G. A., 2018, VARIANCE, V12, P69. Srivastava N, 2015, PR MACH LEARN RES, V37, P843. Srivastava S, 2017, INT GEOSCI REMOTE SE, P5173. STARK H, 1989, J OPT SOC AM A, V6, P1715, DOI 10.1364/JOSAA.6.001715. STEWART SW, 1977, B SEISMOL SOC AM, V67, P433. Steyn D. G, 1980, ATMOS OCEAN, V18, P254, DOI {[}10.1080/07055900.1980.9649091, DOI 10.1080/07055900.1980.9649091]. Sui D, 2014, T GIS, V18, P1, DOI 10.1111/tgis.12075. Sun H, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10081248. Sun JZ, 2014, B AM METEOROL SOC, V95, P409, DOI 10.1175/BAMS-D-11-00263.1. Sungha Choi, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P9370, DOI 10.1109/CVPR42600.2020.00939. Tai K.S., 2021, END TO END EARTHQUAK. Takikawa T, 2019, IEEE I CONF COMP VIS, P5228, DOI 10.1109/ICCV.2019.00533. Tansley CE, 2001, J PHYS OCEANOGR, V31, P3274, DOI 10.1175/1520-0485(2001)031<3274:FPACOA>2.0.CO;2. Thompson JL, 2021, IEEE ACCESS, V9, P134543, DOI 10.1109/ACCESS.2021.3116380. THURBER CH, 1985, B SEISMOL SOC AM, V75, P779. TOBLER WR, 1970, ECON GEOGR, V46, P234, DOI 10.2307/143141. Tolhurst K, 2008, AUST J EMERG MANAG, V23, P47. TOM BC, 1994, P SOC PHOTO-OPT INS, V2308, P971, DOI 10.1117/12.186041. Tomaszewski B, 2015, PROCEDIA ENGINEER, V107, P41, DOI 10.1016/j.proeng.2015.06.057. TOUZI R, 1988, IEEE T GEOSCI REMOTE, V26, P764, DOI 10.1109/36.7708. Tsai YH, 2018, PROC CVPR IEEE, P7472, DOI 10.1109/CVPR.2018.00780. Turiel A, 2007, J ATMOS OCEAN TECH, V24, P2103, DOI 10.1175/2007JTECHO434.1. Tymstra C., 2010, NORX417 CAN FOR SERV. UR H, 1992, CVGIP-GRAPH MODEL IM, V54, P181, DOI 10.1016/1049-9652(92)90065-6. Usery EL, 2022, T GIS, V26, P25, DOI 10.1111/tgis.12830. USGCRP, 2018, IMPACTS RISKS ADAPTA, VII, DOI {[}10.7930/NCA4.2018, DOI 10.7930/NCA4.2018]. Uzkent B, 2017, IEEE COMPUT SOC CONF, P233, DOI 10.1109/CVPRW.2017.35. Van Gool, 2016, ADV NEURAL INFORM PR, V29, P667. Vaswani A, 2017, ADV NEUR IN, V30. Veenman CJ, 2001, IEEE T PATTERN ANAL, V23, P54, DOI 10.1109/34.899946. Viikmae B, 2013, J COASTAL RES, P2077, DOI 10.2112/SI65-351.1. Villegas R., 2017, ARXIV. Vondrick C., 2016, ADV NEURAL INF PROCE, V29. Walsh K, 1997, J CLIMATE, V10, P2240, DOI 10.1175/1520-0442(1997)010<2240:TCLVIA>2.0.CO;2. Wan J, 2016, INT J PATTERN RECOGN, V30, DOI 10.1142/S0218001416500117. Wan Z, 2004, INT J REMOTE SENS, V25, P61, DOI 10.1080/0143116031000115328. Wang DP, 2021, NAT SUSTAIN, V4, P252, DOI 10.1038/s41893-020-00646-7. Wang PX, 2001, INT GEOSCI REMOTE SE, P141, DOI 10.1109/IGARSS.2001.976083. Wang Q, 2018, REMOTE SENS LETT, V9, P923, DOI 10.1080/2150704X.2018.1492172. Wang RJ, 2018, ADV NEUR IN, V31. Wang RY, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102664. Wang SZ, 2021, COMPUT ENVIRON URBAN, V90, DOI 10.1016/j.compenvurbsys.2021.101715. Wang Y., 2019, INT C LEARN REPR ICL. Wang Y., 2017, P ADV NEURAL INFORM, P880. Wang YB, 2019, PROC CVPR IEEE, P9146, DOI 10.1109/CVPR.2019.00937. Weber GW, 2012, OPTIMIZATION, V61, P443, DOI 10.1080/02331934.2011.654343. Wei Liu, 2016, Computer Vision - ECCV 2016. 14th European Conference. Proceedings: LNCS 9905, P21, DOI 10.1007/978-3-319-46448-0\_2. WEISS J, 1991, PHYSICA D, V48, P273, DOI 10.1016/0167-2789(91)90088-Q. Weyand T, 2016, LECT NOTES COMPUT SC, V9912, P37, DOI 10.1007/978-3-319-46484-8\_3. Woo W., 2014, P 27 C SEVERE LOCAL. Woodwell G., 1983, DEFORESTATION MEASUR. Wu YT, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-1094. Xie E., 2021, PROC NEURAL INF PROC, V34, P12077, DOI DOI 10.48550/ARXIV.2105.15203. Xing XY, 2020, IEEE J-STARS, V13, P5652, DOI 10.1109/JSTARS.2020.3023730. Xu GK, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.672334. Xu GJ, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111349. Xuan SY, 2021, NEUROCOMPUTING, V438, P94, DOI 10.1016/j.neucom.2021.01.058. Xue Yang, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12353), P677, DOI 10.1007/978-3-030-58598-3\_40. Yan B. Y., 2021, ARXIV. Yan H., 2022, ARXIV. Yang JC, 2010, IEEE T IMAGE PROCESS, V19, P2861, DOI 10.1109/TIP.2010.2050625. Yang WH, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12050870. Yang Y., 2010, PROC 18 SIGSPATIAL I, P270, DOI 10.1145/1869790.1869829. Yarkoni T, 2017, PERSPECT PSYCHOL SCI, V12, P1100, DOI 10.1177/1745691617693393. Yi J, 2014, OCEAN SCI, V10, P39, DOI 10.5194/os-10-39-2014. Yilmaz A, 2006, ACM COMPUT SURV, V38, DOI 10.1145/1177352.1177355. Yin L, 2015, APPL GEOGR, V63, P337, DOI 10.1016/j.apgeog.2015.07.010. Yu B., 2017, ARXIV. Zannat KE, 2019, J INDIAN I SCI, V99, P601, DOI 10.1007/s41745-019-00125-9. Zarco-Tejada PJ, 2016, REMOTE SENS ENVIRON, V179, P89, DOI 10.1016/j.rse.2016.03.024. Zeng Y, 2019, PROC CVPR IEEE, P6067, DOI 10.1109/CVPR.2019.00623. Zeng ZY, 2019, IEEE I CONF COMP VIS, P8291, DOI 10.1109/ICCV.2019.00838. Zhang F, 2020, COMPUT ENVIRON URBAN, V81, DOI 10.1016/j.compenvurbsys.2020.101478. Zhang F, 2019, ISPRS J PHOTOGRAMM, V153, P48, DOI 10.1016/j.isprsjprs.2019.04.017. Zhang F, 2018, LANDSCAPE URBAN PLAN, V180, P148, DOI 10.1016/j.landurbplan.2018.08.020. Zhang F, 2018, COMPUT ENVIRON URBAN, V71, P153, DOI 10.1016/j.compenvurbsys.2018.05.005. Zhang LP, 2016, IEEE GEOSC REM SEN M, V4, P22, DOI 10.1109/MGRS.2016.2540798. Zhang M, 2015, GEOPHYS J INT, V200, P1523, DOI 10.1093/gji/ggu466. Zhang S, 2018, PROC CVPR IEEE, P4203, DOI 10.1109/CVPR.2018.00442. Zhang W, 2019, IEEE INT CONF BIG DA, P1705, DOI 10.1109/BigData47090.2019.9005568. Zhang XB, 2017, COMPUT INTEL NEUROSC, V2017, DOI 10.1155/2017/5739301. Zhang Z., 2019, ARXIV. Zhao HS, 2017, PROC CVPR IEEE, P6230, DOI 10.1109/CVPR.2017.660. Zhao K, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3064316. Zhao QJ, 2019, AAAI CONF ARTIF INTE, P9259. Zhong QY, 2020, NEUROCOMPUTING, V395, P170, DOI 10.1016/j.neucom.2017.12.070. Zhong YF, 2018, ISPRS J PHOTOGRAMM, V138, P281, DOI 10.1016/j.isprsjprs.2018.02.014. Zhongzheng Ren, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P10595, DOI 10.1109/CVPR42600.2020.01061. Zhou LM, 2021, J ELECTR COMPUT ENG, V2021, DOI 10.1155/2021/4685644. Zhou PC, 2016, MULTIDIM SYST SIGN P, V27, P925, DOI 10.1007/s11045-015-0370-3. Zhou YJ, 2019, SEISMOL RES LETT, V90, P1079, DOI 10.1785/0220180319. Zhou ZP, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47148-x. Zhu L., 2021, EARTHQ RES ADV, V1, P100008, DOI {[}10.1016/j.eqrea.2021.100008, DOI 10.1016/J.EQREA.2021.100008]. Zhu LJ, 2019, PHYS EARTH PLANET IN, V293, DOI 10.1016/j.pepi.2019.05.004. Zhu WQ, 2019, GEOPHYS J INT, V216, P261, DOI 10.1093/gji/ggy423.}, Number-of-Cited-References = {443}, Times-Cited = {0}, Usage-Count-Last-180-days = {25}, Usage-Count-Since-2013 = {33}, Journal-ISO = {ISPRS Int. J. Geo-Inf.}, Doc-Delivery-Number = {3H5ET}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000832059900001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000500371200009, Author = {Zhang, Kun and Chui, Ting Fong May}, Title = {A review on implementing infiltration-based green infrastructure in shallow groundwater environments: Challenges, approaches, and progress}, Journal = {JOURNAL OF HYDROLOGY}, Year = {2019}, Volume = {579}, Month = {DEC}, Abstract = {Urban water problems (e.g., increased runoff, inhibited infiltration, and groundwater recharge) are becoming increasingly serious, and green infrastructure (GI) has been demonstrated to be effective in tackling these problems and restoring the pre-development hydrologic cycle. However, shallow groundwater limits the implementation of infiltration-based GI. Although projects and studies have been conducted, knowledge of the hydrologic performance of infiltration-based GI, and the impact on shallow groundwater environments, has not been comprehensively summarized. In this review, we first identify the challenges of implementing infiltration-based GI in shallow groundwater environments, and then evaluate and compare the potential approaches to evaluating GI in such environments. We also summarize progress in the understanding of the performance and impact of GI in shallow groundwater environments from previous and ongoing engineering projects and academic studies. The main topics include the evaluation of the potential reduction in runoff control performance of GI, the formation of groundwater mounds, and groundwater contamination. We also assess the exploration of strategies for optimally allocating and designing GI in shallow groundwater environments. The distance between the bottom of the GI and the groundwater table, the selection of the media soil, and the design of underdrain pipes are the main considerations when implementing GI in shallow groundwater environments. The review is concluded with recommendations for future studies, which include conducting tracer monitoring and variably saturated modeling to track subsurface flows of GI, improving existing hydrological models, developing new multi-scale models, and utilizing more advanced data-driven artificial intelligence models to predict the performance and impact of GI and to process the monitoring data for model calibration.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Chui, TFM (Corresponding Author), Univ Hong Kong, Dept Civil Engn, Pok Fu Lam, Hong Kong, Peoples R China. Zhang, Kun; Chui, Ting Fong May, Univ Hong Kong, Dept Civil Engn, Pok Fu Lam, Hong Kong, Peoples R China.}, DOI = {10.1016/j.jhydrol.2019.124089}, Article-Number = {124089}, ISSN = {0022-1694}, EISSN = {1879-2707}, Keywords = {Green infrastructure; Low impact development; Best management practices; Stormwater; Groundwater recharge}, Keywords-Plus = {LOW-IMPACT DEVELOPMENT; VEGETATIVE FILTER STRIPS; SENSITIVE URBAN DESIGN; STORMWATER INFILTRATION; PESTICIDE TRANSPORT; WATER MANAGEMENT; AQUIFER RECHARGE; MODEL; PERFORMANCE; SURFACE}, Research-Areas = {Engineering; Geology; Water Resources}, Web-of-Science-Categories = {Engineering, Civil; Geosciences, Multidisciplinary; Water Resources}, Author-Email = {maychui@hku.hk}, Affiliations = {University of Hong Kong}, ResearcherID-Numbers = {Zhang, Kun/AAA-1493-2021 /A-7652-2013}, ORCID-Numbers = {Zhang, Kun/0000-0002-1062-8323 /0000-0003-3322-8848}, Funding-Acknowledgement = {Seed Funding Programme for Basic Research of The University of Hong Kong {[}201611159011]}, Funding-Text = {This work was funded by the Seed Funding Programme for Basic Research of The University of Hong Kong (Project code: 201611159011).}, Cited-References = {Ahiablame LM, 2012, WATER AIR SOIL POLL, V223, P4253, DOI 10.1007/s11270-012-1189-2. Andoh R.Y.G., 2002, GLOB SOLUT URBAN DRA, V5, P1, DOI {[}10.1061/40644(2002)19, DOI 10.1061/40644(2002)19]. {[}Anonymous], 2017, COMSOL MULT US GUID. APPLEYARD SJ, 1993, ENVIRON GEOL, V21, P227, DOI 10.1007/BF00775912. Askarizadeh A, 2015, ENVIRON SCI TECHNOL, V49, P11264, DOI 10.1021/acs.est.5b01635. Bach PM, 2015, LANDSCAPE URBAN PLAN, V143, P43, DOI 10.1016/j.landurbplan.2015.05.012. Beganskas S, 2017, J ENVIRON MANAGE, V200, P366, DOI 10.1016/j.jenvman.2017.05.058. Bhaskar AS, 2018, HYDROL PROCESS, V32, P2058, DOI 10.1002/hyp.13137. Bhaskar AS, 2016, HYDROL PROCESS, V30, P3156, DOI 10.1002/hyp.10808. Bonneau J, 2017, J HYDROL, V552, P141, DOI 10.1016/j.jhydrol.2017.06.043. Bouwer H, 2002, HYDROGEOL J, V10, P121, DOI 10.1007/s10040-001-0182-4. Brown RA, 2012, J ENVIRON ENG, V138, P689, DOI 10.1061/(ASCE)EE.1943-7870.0000506. Brown R.A, 2014, J HYDROL ENG, V20. Brown RR, 2009, WATER SCI TECHNOL, V59, P847, DOI 10.2166/wst.2009.029. Butler D, 1997, WATER SCI TECHNOL, V35, P53, DOI 10.2166/wst.1997.0330. Chang NB, 2018, LAND USE POLICY, V70, P368, DOI 10.1016/j.landusepol.2017.11.024. Chui TFM, 2016, HYDROL PROCESS, V30, P4405, DOI 10.1002/hyp.10926. Chui TFM, 2016, J HYDROL, V533, P353, DOI 10.1016/j.jhydrol.2015.12.011. City of Boston Charles River Watershed Association, 2016, BOSTONS POROUS ALLEY. Credit Valley Conservation (CVC), 2016, TECHNICAL REPORT. D'Aniello A, 2019, WATER RESOUR MANAG, V33, P1147, DOI 10.1007/s11269-018-2172-5. Datry I, 2004, SCI TOTAL ENVIRON, V329, P215, DOI 10.1016/j.scitotenv.2004.02.022. Detroit Water and Sewerage Department (DWSD), 2017, GREEN INFR PROGR UPP. DHI, 2007, MIKE SHE US MAN. DHI, 2017, MIKE SHE US MAN, V2. Diersch H., 2005, REFERENCE MANUAL. Eisenberg B., 2013, PERMEABLE PAVEMENTS. Elliott AH, 2007, ENVIRON MODELL SOFTW, V22, P394, DOI 10.1016/j.envsoft.2005.12.005. Endreny T, 2009, ECOL ENG, V35, P670, DOI 10.1016/j.ecoleng.2008.10.017. EU, 2013, GREEN INFRASTRUCTURE. Ewen J, 2000, J HYDROL ENG, V5, P250, DOI 10.1061/(ASCE)1084-0699(2000)5:3(250). Fanelli R, 2017, HYDROL PROCESS, V31, P3306, DOI 10.1002/hyp.11266. Fischer D, 2003, J ENVIRON ENG-ASCE, V129, P464, DOI 10.1061/(ASCE)0733-9372(2003)129:5(464). Fletcher TD, 2015, URBAN WATER J, V12, P525, DOI 10.1080/1573062X.2014.916314. Fox GA, 2018, J HYDROL, V556, P1, DOI 10.1016/j.jhydrol.2017.10.069. Fry TJ, 2017, HYDROL PROCESS, V31, P2700, DOI 10.1002/hyp.11177. GLRI, 2014, GREAT LAK REST IN AC. Gobel P, 2004, J HYDROL, V299, P267, DOI {[}10.1016/S0022-1694(04)00370-1, 10.1016/j.jhydrol.2004.08.013]. Guo CY, 1998, J WATER RES PL-ASCE, V124, P280, DOI 10.1061/(ASCE)0733-9496(1998)124:5(280). Hamel P, 2013, J HYDROL, V485, P201, DOI 10.1016/j.jhydrol.2013.01.001. Hathhorn W.E, 1996, ASSESSMENT GROUNDWAT. He ZX, 2011, J IRRIG DRAIN ENG, V137, P121, DOI 10.1061/(ASCE)IR.1943-4774.0000166. Herrera, 2013, CENTR KITS COMM CAMP. Houle JJ, 2013, J ENVIRON ENG, V139, P932, DOI 10.1061/(ASCE)EE.1943-7870.0000698. Hsieh P.A, 2000, VS2DI GRAPHICAL SOFT. Jackisch N, 2017, URBAN WATER J, V14, P143, DOI 10.1080/1573062X.2015.1080735. Jayasooriya VM, 2014, WATER AIR SOIL POLL, V225, DOI 10.1007/s11270-014-2055-1. Jefferson AJ, 2017, HYDROL PROCESS, V31, P4056, DOI 10.1002/hyp.11347. Jeong J, 2010, WATER RESOUR MANAG, V24, P4505, DOI 10.1007/s11269-010-9670-4. Jia HF, 2017, FRONT ENV SCI ENG, V11, DOI 10.1007/s11783-017-0984-9. Johnson RD, 2017, ENVIRON MODELL SOFTW, V91, P70, DOI 10.1016/j.envsoft.2017.01.015. Joyce J, 2017, ENVIRON MODELL SOFTW, V90, P1, DOI 10.1016/j.envsoft.2016.11.026. Kidmose J, 2015, J HYDROL, V525, P506, DOI 10.1016/j.jhydrol.2015.04.007. Kim NW, 2008, J HYDROL, V356, P1, DOI 10.1016/j.jhydrol.2008.02.024. Kleidorfer M, 2009, WATER SCI TECHNOL, V60, P1545, DOI 10.2166/wst.2009.493. Kohne JM, 2011, J HYDROL, V403, P141, DOI 10.1016/j.jhydrol.2011.04.001. Kuller M, 2017, ENVIRON MODELL SOFTW, V96, P265, DOI 10.1016/j.envsoft.2017.07.003. Kwiatkowski M, 2007, J AM WATER RESOUR AS, V43, P1208, DOI 10.1111/j.1752-1688.2007.00104.x. Lauvernet C, 2018, HYDROL EARTH SYST SC, V22, P71, DOI 10.5194/hess-22-71-2018. Lerer SM, 2015, WATER-SUI, V7, P993, DOI 10.3390/w7030993. Li CY, 2017, J HYDROL, V549, P631, DOI 10.1016/j.jhydrol.2017.03.037. Li H, 2009, J HYDROL ENG, V14, P407, DOI 10.1061/(ASCE)1084-0699(2009)14:4(407). Li H, 2017, WATER-SUI, V9, DOI 10.3390/w9090594. Locatelli L, 2017, J HYDROL, V544, P524, DOI 10.1016/j.jhydrol.2016.11.030. Locatelli L, 2015, J HYDROL, V529, P1360, DOI 10.1016/j.jhydrol.2015.08.047. Machusick M, 2011, J IRRIG DRAIN ENG, V137, P154, DOI 10.1061/(ASCE)IR.1943-4774.0000184. Maimone M., 2011, ENV ENG, V14, P29. Markstrom S. L., 2008, US GEOLOGICAL SURVEY, V6-D1. Marlow DR, 2013, WATER RES, V47, P7150, DOI 10.1016/j.watres.2013.07.046. Martin-Mikle CJ, 2015, LANDSCAPE URBAN PLAN, V140, P29, DOI 10.1016/j.landurbplan.2015.04.002. Massoudieh A, 2017, ENVIRON MODELL SOFTW, V92, P57, DOI 10.1016/j.envsoft.2017.02.013. McKane R., 2014, VELMA USER MANUAL TE, V2nd. Mikkelsen PS, 1997, WATER SCI TECHNOL, V36, P325, DOI 10.1016/S0273-1223(97)00578-7. Mooers EW, 2018, J HYDROL ENG, V23, DOI 10.1061/(ASCE)HE.1943-5584.0001682. Moore M, 2003, INT J HYG ENVIR HEAL, V206, P269, DOI 10.1078/1438-4639-00223. Munoz-Carpena R, 2018, HYDROL EARTH SYST SC, V22, P53, DOI 10.5194/hess-22-53-2018. Myer PE, 2015, LID: IT WORKS IN ALL CLIMATES AND SOILS, P115. Nemirovsky EM, 2015, J IRRIG DRAIN ENG, V141, DOI 10.1061/(ASCE)IR.1943-4774.0000799. Newcomer ME, 2014, WATER RESOUR RES, V50, P1716, DOI 10.1002/2013WR014282. Nickel D, 2014, J ENVIRON PLANN MAN, V57, P403, DOI 10.1080/09640568.2012.748652. Nieber J.L, 2014, 574 ST ANTH FALLS LA. Palanisamy B, 2013, ECOHYDROLOGY, V6, P287, DOI 10.1002/eco.1268. Qin HP, 2013, J ENVIRON MANAGE, V129, P577, DOI 10.1016/j.jenvman.2013.08.026. Roldin M, 2013, J HYDROL, V497, P165, DOI 10.1016/j.jhydrol.2013.06.005. Sansalone J, 2013, ENVIRON POLLUT, V183, P204, DOI 10.1016/j.envpol.2013.01.051. Scipal K, 2005, HYDROL EARTH SYST SC, V9, P173, DOI 10.5194/hess-9-173-2005. Seo M, 2017, WATER-SUI, V9, DOI 10.3390/w9030193. Shigidi A, 2003, J COMPUT CIVIL ENG, V17, P281, DOI 10.1061/(ASCE)0887-3801(2003)17:4(281). Shuster W.D., 2005, URBAN WATER J, V2, P263, DOI DOI 10.1080/15730620500386529. Simunek J., 2005, U CALIFORNIA RIVERSI, P1. Small C, 2003, J COASTAL RES, V19, P584. Stewart RD, 2017, HYDROL PROCESS, V31, P4626, DOI 10.1002/hyp.11386. Thomas BF, 2012, J HYDROL ENG, V17, P923, DOI 10.1061/(ASCE)HE.1943-5584.0000534. Thompson A, 2010, HYDROGEOL J, V18, P501, DOI 10.1007/s10040-009-0532-1. Trinh DH, 2013, HYDROL EARTH SYST SC, V17, P4789, DOI 10.5194/hess-17-4789-2013. Tu M.C, 2018, J IRRIG DRAIN ENG, V145. Tzoulas K, 2007, LANDSCAPE URBAN PLAN, V81, P167, DOI 10.1016/j.landurbplan.2007.02.001. United States Environmental Protection Agency (USEPA), 2016, 230R16001 USEPA. United States Environmental Protection Agency (USEPA), 2000, EPA841B00005. Voisin J, 2018, SCI TOTAL ENVIRON, V637, P1496, DOI 10.1016/j.scitotenv.2018.05.094. Wright OM, 2018, HYDROL PROCESS, V32, P2318, DOI 10.1002/hyp.13142. Yang Y, 2018, INT C URB DRAIN MOD, P480. Young R, 2014, J HYDROL, V519, P2571, DOI 10.1016/j.jhydrol.2014.05.048. Zhang K, 2018, HYDROL PROCESS, V32, P3495, DOI 10.1002/hyp.13272. Zhang K, 2018, J HYDROL, V566, P313, DOI 10.1016/j.jhydrol.2018.09.006. Zhang K, 2019, SCI TOTAL ENVIRON, V646, P1219, DOI 10.1016/j.scitotenv.2018.07.355. Zhang K, 2018, SCI TOTAL ENVIRON, V621, P915, DOI 10.1016/j.scitotenv.2017.11.281. Zhang K, 2017, HYDROL PROCESS, V31, P4122, DOI 10.1002/hyp.11308. Zheng Y, 2018, WATER-SUI, V10, DOI 10.3390/w10060803.}, Number-of-Cited-References = {109}, Times-Cited = {23}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {75}, Journal-ISO = {J. Hydrol.}, Doc-Delivery-Number = {JS5UK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000500371200009}, DA = {2023-04-22}, } @article{ WOS:000958616900001, Author = {Fernandes, Elizabeth and Moro, Sergio and Cortez, Paulo}, Title = {Data Science, Machine learning and big data in Digital Journalism: A survey of state-of-the-art, challenges and opportunities}, Journal = {EXPERT SYSTEMS WITH APPLICATIONS}, Year = {2023}, Volume = {221}, Month = {JUL 1}, Abstract = {Digital journalism has faced a dramatic change and media companies are challenged to use data science algo-rithms to be more competitive in a Big Data era. While this is a relatively new area of study in the media landscape, the use of machine learning and artificial intelligence has increased substantially over the last few years. In particular, the adoption of data science models for personalization and recommendation has attracted the attention of several media publishers. Following this trend, this paper presents a research literature analysis on the role of Data Science (DS) in Digital Journalism (DJ). Specifically, the aim is to present a critical literature review, synthetizing the main application areas of DS in DJ, highlighting research gaps, challenges, and op-portunities for future studies. Through a systematic literature review integrating bibliometric search, text min-ing, and qualitative discussion, the relevant literature was identified and extensively analyzed. The review reveals an increasing use of DS methods in DJ, with almost 47\% of the research being published in the last three years. An hierarchical clustering highlighted six main research domains focused on text mining, event extraction, online comment analysis, recommendation systems, automated journalism, and exploratory data analysis along with some machine learning approaches. Future research directions comprise developing models to improve personalization and engagement features, exploring recommendation algorithms, testing new automated jour-nalism solutions, and improving paywall mechanisms.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Fernandes, E (Corresponding Author), ISTAR, ISCTE Inst Univ Lisboa ISCTE IUL, Ave Forcas Armadas,Edificio II,D615, P-1649026 Lisbon, Portugal. Fernandes, Elizabeth, ISTAR, ISCTE Inst Univ Lisboa ISCTE IUL, Ave Forcas Armadas,Edificio II,D615, P-1649026 Lisbon, Portugal. Moro, Sergio, ISTAR, Inst Univ Lisboa ISCTE IUL, Lisbon, Portugal. Cortez, Paulo, Univ Minho, ALGORITMI Res Ctr, Guimaraes, Portugal.}, DOI = {10.1016/j.eswa.2023.119795}, EarlyAccessDate = {MAR 2023}, Article-Number = {119795}, ISSN = {0957-4174}, EISSN = {1873-6793}, Keywords = {Data science; Digital journalism; Text mining; Systematic literature review; Media analytics; Machine Learning}, Keywords-Plus = {NEWS ARTICLE RECOMMENDATION; AUTOMATED JOURNALISM; SENTIMENT ANALYSIS; ONLINE; SYSTEM; INTELLIGENCE; POPULARITY; PERCEPTION; 3RD-PERSON; ALGORITHM}, Research-Areas = {Computer Science; Engineering; Operations Research \& Management Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Engineering, Electrical \& Electronic; Operations Research \& Management Science}, Author-Email = {elizabeth.fernandes.data@gmail.com}, Affiliations = {Instituto Universitario de Lisboa; Instituto Universitario de Lisboa; Universidade do Minho}, Funding-Acknowledgement = { {[}UIDB/04466/2020]; {[}UIDP/04466/2020]; {[}UIDB/00319/2020]}, Funding-Text = {Acknowledgements This work was supported by the FCT-Funda?a ? o para a Cie ? ncia e Tecnologia, under the Projects: UIDB/04466/2020, UIDP/04466/2020, and UIDB/00319/2020.}, Cited-References = {Abdelmageed S, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.124044. Alashri S, 2018, 2018 1ST INTERNATIONAL CONFERENCE ON DATA INTELLIGENCE AND SECURITY (ICDIS 2018), P234, DOI 10.1109/ICDIS.2018.00045. Garcia-Aviles JA, 2014, J MASS MEDIA ETHICS, V29, P258, DOI 10.1080/08900523.2014.946600. Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002. {[}Anonymous], 2010, INSIGHTS, DOI {[}10.1629/23215 10.1629/23215, DOI 10.1629/23215]. Antonio N., 2018, TOURISM MANAGEMENT S. Antoun Wissam, 2020, 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), P519, DOI 10.1109/ICIoT48696.2020.9089487. Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007. Arrese A, 2016, JOURNALISM STUD, V17, P1051, DOI 10.1080/1461670X.2015.1027788. Attfield S., 2011, WSDM WORKSHOP USER M. Azevedo L, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P807, DOI 10.1145/3184558.3186567. Babanejad N., 2020, INRA RECSYS, V2554, P70. Bai X, 2011, DECIS SUPPORT SYST, V50, P732, DOI 10.1016/j.dss.2010.08.024. Balali A, 2013, COMPUT SIST, V17, P207. Ballew Barbara S., 2009, Journal of Electronic Resources in Medical Libraries, V6, P245, DOI 10.1080/15424060903167252. Barriuso AL, 2016, COMM COM INF SC, V616, P322, DOI 10.1007/978-3-319-39387-2\_27. Borges AFS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102225. Brous P, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.05.008. Burggraaff C, 2020, JOURNALISM, V21, P112, DOI 10.1177/1464884917716699. Burrows S, 2013, ACM T INTEL SYST TEC, V4, DOI 10.1145/2483669.2483676. Campos J., 2020, AN 17 ENC NAC INT AR, P543, DOI {[}10.5753/eniac.2020.12158, DOI 10.5753/ENIAC.2020.12158]. Canito J, 2018, COMPUT IND, V99, P1, DOI 10.1016/j.compind.2018.03.018. Carlson M, 2015, DIGIT JOURNAL, V3, P416, DOI 10.1080/21670811.2014.976412. Chakraborty A, 2019, INFORM RETRIEVAL J, V22, P447, DOI 10.1007/s10791-019-09351-2. Chen GM, 2017, COMPUT HUM BEHAV, V71, P181, DOI 10.1016/j.chb.2017.02.010. Chen GM, 2016, COMPUT HUM BEHAV, V55, P736, DOI 10.1016/j.chb.2015.10.014. Christin A, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717718855. Chung MJ, 2015, COMPUT HUM BEHAV, V53, P452, DOI 10.1016/j.chb.2015.06.037. Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525. Cole MJ, 2015, ACM T INFORM SYST, V33, DOI 10.1145/2699656. Cole MJ, 2011, INTERACT COMPUT, V23, P346, DOI 10.1016/j.intcom.2011.04.007. COOPER H, 1998, SYNTHESIZING RES. Cortez P, 2014, USE R, P1, DOI 10.1007/978-3-319-08263-9. Danzon-Chambaud S., 2021, OPEN RES EUROPE, V1, P4, DOI {[}10.12688/openreseurope.13096.1, DOI 10.12688/OPENRESEUROPE.13096.1]. Davoudi H., 2018, USER ACQUISITION ENG. Davoudi H., 2018, ADAPTIVE PAYWALL MEC, P205. Davoudi H, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES(NAACL HLT 2019), VOL. 2 (INDUSTRY PAPERS), P226. Davoudi H, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P205, DOI 10.1145/3219819.3219892. Donthu N, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102307. Du N, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P219, DOI 10.1145/2783258.2783411. Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7. Engelke KM, 2019, MEDIA COMMUN-LISBON, V7, P31, DOI 10.17645/mac.v7i4.2250. Fernandes K, 2015, LECT NOTES ARTIF INT, V9273, P535, DOI 10.1007/978-3-319-23485-4\_53. Ficel H, 2021, EXPERT SYST APPL, V185, DOI 10.1016/j.eswa.2021.115555. Flaounas I, 2013, DIGIT JOURNAL, V1, P102, DOI 10.1080/21670811.2012.714928. Flaounas I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014243. Freire PMS, 2021, EXPERT SYST APPL, V183, DOI 10.1016/j.eswa.2021.115414. Fu XL, 2019, INT J INF TECH DECIS, V18, P717, DOI 10.1142/S021962201950010X. Galily Y, 2018, TECHNOL SOC, V54, P47, DOI 10.1016/j.techsoc.2018.03.001. Garcin F., 2013, P 7 ACM C REC SYST, P105, DOI DOI 10.1145/2507157.2507166. Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90. Gil M, 2020, SAFETY SCI, V128, DOI 10.1016/j.ssci.2020.104717. Goldani MH, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102418. Camacho LAG, 2018, INFORM PROCESS MANAG, V54, P529, DOI 10.1016/j.ipm.2018.03.004. Gordon A. D., 1999, CASSIFICATION, V2nd. Gravengaard G, 2012, JOURNAL PRACT, V6, P465, DOI 10.1080/17512786.2011.642243. Greco F, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.04.007. Haim M, 2018, DIGIT JOURNAL, V6, P330, DOI 10.1080/21670811.2017.1338145. Haring Marlo, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274336. Hazrati N, 2021, EXPERT SYST, V38, DOI 10.1111/exsy.12645. Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102. Ho S. S., 2012, P 1 ACM SIGSPATIAL I, P25. Hogenboom F., 2011, DERIVE ISWC, V779, P48. Indurthi V, 2018, PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), P257, DOI 10.1145/3152494.3152524. International News Media Association I., 2022, BEN RISKS MED DAT DE. Jaaskelainen Atte, 2020, AcademicMindtrek `20: Proceedings of the 23rd International Conference on Academic Mindtrek, P27, DOI 10.1145/3377290.3377299. Kam Fung Yeung, 2010, Proceedings of the Third International Conference on Developments in eSystems Engineering (DESE 2010), P207, DOI 10.1109/DeSE.2010.40. Ksiazek TB, 2016, NEW MEDIA SOC, V18, P502, DOI 10.1177/1461444814545073. Kulkarni H., 2019, P 2019 5 INT C COMP, DOI {[}10.1109/ICCUBEA47591.2019.9128691, DOI 10.1109/ICCUBEA47591.2019.9128691]. Lagun D, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P113, DOI 10.1145/2835776.2835833. Lee SY, 2019, TELEMAT INFORM, V43, DOI 10.1016/j.tele.2019.101249. Leetaru K., 2011, 1 MONDAY, V16, P9. Lehmann J., 2012, LECT NOTES COMPUTER, P164, DOI {[}10.1007/978-3-642-31454-4\_14, DOI 10.1007/978-3-642-31454-4\_14]. Lehmkuhl M, 2016, PUBLIC UNDERST SCI, V25, P909, DOI 10.1177/0963662516646047. Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147. Lewis SC, 2019, J MASS COMMUN Q, V96, P60, DOI 10.1177/1077699018755983. Lewis SC, 2015, DIGIT JOURNAL, V3, P321, DOI 10.1080/21670811.2014.976399. Li JY, 2016, SOFT COMPUT, V20, P3411, DOI 10.1007/s00500-015-1812-4. Lim JS, 2022, TECHNOL SOC, V69, DOI 10.1016/j.techsoc.2022.101965. Liu, 2010, P 10 ANN JOINT C DIG, P69. Liu DR, 2018, KNOWL-BASED SYST, V161, P375, DOI 10.1016/j.knosys.2018.07.038. Liu J, 2010, IUI 2010, P31. Lu HY, 2018, ACM/SIGIR PROCEEDINGS 2018, P435, DOI 10.1145/3209978.3210007. Ma L, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/7094653. Makridakis S, 2020, INT J FORECASTING, V36, P15, DOI 10.1016/j.ijforecast.2019.05.011. Manjesh S., 2017, 2 INT C COMP SYST IN. Meel P, 2020, EXPERT SYST APPL, V153, DOI 10.1016/j.eswa.2019.112986. Meguebli Y, 2017, WORLD WIDE WEB, V20, P1293, DOI 10.1007/s11280-017-0436-2. Melki JP, 2016, JOURNALISM STUD, V17, P57, DOI 10.1080/1461670X.2014.962919. Mersey RD, 2010, J MEDIA RES STUD, V7, P39, DOI 10.1080/16522354.2010.11073506. Misztal-Radecka J, 2021, USER MODEL USER-ADAP, V31, P261, DOI 10.1007/s11257-020-09282-4. Mizgajski J, 2019, USER MODEL USER-ADAP, V29, P345, DOI 10.1007/s11257-018-9213-x. Montes-Garcia A, 2013, EXPERT SYST APPL, V40, P6735, DOI 10.1016/j.eswa.2013.06.032. Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024. Muralidhar N, 2015, PROC INT C TOOLS ART, P689, DOI 10.1109/ICTAI.2015.104. Myllylahti M., 2017, THEMES DEBATES CONT, P87. Napoles C., 2017, P INT AAAI C WEB SOC, V11. Newman N., 2019, REUTERS I DIGITAL NE. O'Brien D, 2020, DIGIT JOURNAL, V8, P643, DOI 10.1080/21670811.2020.1770112. O'Brien HL, 2013, J AM SOC INF SCI TEC, V64, P1543, DOI 10.1002/asi.22871. Obiedat R., 2020, J THEORETICAL APPL I, V98, p1163?1172. Olsen RK, 2020, JOURNALISM STUD, V21, P197, DOI 10.1080/1461670X.2019.1633946. Omar N., 2020, MACH LEARN, V11, DOI {[}10.14569/IJACSA.2020.0110484, DOI 10.14569/IJACSA.2020.0110484]. Pattabhiramaiah A, 2019, J MARKETING, V83, P19, DOI 10.1177/0022242918815163. Peterson E. T., 2008, WEB ANALYTICS DEMYST, V14. Rao YH, 2014, WORLD WIDE WEB, V17, P723, DOI 10.1007/s11280-013-0221-9. Reis J., 2015, P INT AAAI C WEB SOC, V9, P357. Ren?o D., 2015, ESTUD MENSAJE PERIOD, p131?142, DOI {[}10.5209/rev\_ESMP.2015.v21.51135, DOI 10.5209/REV\_ESMP.2015.V21.51135]. Rendon Erendira, 2011, Applications of Mathematics and Computer Engineering. American Conference on Applied Mathematics (AMERICAN-MATH'11). 5th WSEAS International Conference on Computer Engineering and Applications (CEA'11), P158. Riedl MJ, 2020, COMPUT HUM BEHAV, V107, DOI 10.1016/j.chb.2020.106262. Rivera SJ, 2014, ENVIRON MODELL SOFTW, V62, P128, DOI 10.1016/j.envsoft.2014.08.016. Romero L, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.00564. Russell R, 2020, BUS INFORM SYST ENG+, V62, P253, DOI 10.1007/s12599-020-00632-5. Sanz-Narrillos M., 2020, INT C AGENTS ARTIFIC, V151, P161. Sanz-Narrillos M, 2020, ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, P151, DOI 10.5220/0008963101510161. Sapian A., 2019, ART SCI MIND, V4, P16. Saranya KG, 2017, MOBILE NETW APPL, V22, P719, DOI 10.1007/s11036-017-0842-9. Schonlau M, 2020, STATA J, V20, P3, DOI 10.1177/1536867X20909688. Seale S., 2021, WALL STREET J USES M. Shim JS, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115491. Silge Julia, 2017, TEXT MINING R TIDY A. Simon A. F. M., 2019, PAY MODELS ONLINE NE. Steensen S, 2020, JOURNALISM STUD, V21, P1662, DOI 10.1080/1461670X.2020.1788414. Steinberger R, 2012, LANG RESOUR EVAL, V46, P155, DOI 10.1007/s10579-011-9165-9. Suarez E., 2020, LESSONS BRITAIN SPAI. Tandoc EC, 2014, NEW MEDIA SOC, V16, P559, DOI 10.1177/1461444814530541. Tang L, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P283, DOI 10.1145/2939672.2939690. Tatar A, 2014, SOC NETW ANAL MIN, V4, DOI 10.1007/s13278-014-0174-8. Tessem B., 2019, P INT C RES CHALLENG, P1, DOI {[}10.1109/RCIS.2019.8877058, DOI 10.1109/RCIS.2019.8877058]. Tewari AS, 2016, PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), P95, DOI 10.1109/IC3I.2016.7917941. Tsagkias M, 2010, LECT NOTES COMPUT SC, V5993, P191, DOI 10.1007/978-3-642-12275-0\_19. Van Eck N. J., 2013, VOSVIEWER MANUAL MAN, V1, P1. van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3. Viana P., 2016, 6 INT C WEB INTELLIG, P1. Villi M, 2019, MAKING MEDIA: PRODUCTION, PRACTICES, AND PROFESSIONS, P121. von Bloh J, 2020, SMALL BUS ECON, V55, P673, DOI 10.1007/s11187-019-00209-x. Wang HM, 2017, INT C COMP SUPP COOP, P337, DOI 10.1109/CSCWD.2017.8066717. Wang W., 2012, P 21 INT C WORLD WID, P197. Wang W, 2015, COMPUT ENVIRON URBAN, V50, P30, DOI 10.1016/j.compenvurbsys.2014.11.001. Wang W, 2010, LECT NOTES COMPUT SC, V6184, P644, DOI 10.1007/978-3-642-14246-8\_62. Wang Wei, 2012, 2010 3 INT S INFORM, P484, DOI {[}10.1145/2187980.2188008, DOI 10.1145/2187980.2188008]. Webster J, 2002, MIS QUART, V26, pXIII. Welbers K, 2017, COMMUN METHODS MEAS, V11, P245, DOI 10.1080/19312458.2017.1387238. Wu CH, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3863. Wu SY, 2019, JOURNAL PRACT, V13, P1238, DOI 10.1080/17512786.2019.1585198. Yang J, 2016, MEDIA PSYCHOL, V19, P243, DOI 10.1080/15213269.2015.1006333. Yang Wenjin, 2020, IOP Conference Series: Materials Science and Engineering, V740, DOI 10.1088/1757-899X/740/1/012135. Yang Y., 2017, P 2017 CHI C EXTENDE, P2255. Yang Y, 2020, KNOWL-BASED SYST, V208, DOI 10.1016/j.knosys.2020.106430. Zhang C, 2015, IEEE SYS MAN CYBERN, P139, DOI 10.1109/SMC.2015.37. Zhang Yang, 2020, Journal of Physics: Conference Series, V1682, DOI 10.1088/1742-6596/1682/1/012084. Zheng Y, 2018, COMPUT HUM BEHAV, V86, P266, DOI 10.1016/j.chb.2018.04.046. Zhou Y., 2020, 6 INT C HUMANITIES S, V435, P456, DOI {[}10.2991/assehr.k.200428.097, DOI 10.2991/ASSEHR.K.200428.097]. Zhou Y., 2020, INT C INT HUM COMP I, P488. Zhu C, 2014, IEEE DATA MINING, P697, DOI 10.1109/ICDM.2014.121. Zihayat M, 2019, DECIS SUPPORT SYST, V117, P14, DOI 10.1016/j.dss.2018.12.001. Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629.}, Number-of-Cited-References = {157}, Times-Cited = {0}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {0}, Journal-ISO = {Expert Syst. Appl.}, Doc-Delivery-Number = {A9ZD9}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000958616900001}, DA = {2023-04-22}, } @article{ WOS:000748636800001, Author = {Khan, Syed Abdul Rehman and Shah, Adeel Syed Ali and Yu, Zhang and Tanveer, Muhammad}, Title = {A systematic literature review on circular economy practices: challenges, opportunities and future trends}, Journal = {JOURNAL OF ENTREPRENEURSHIP IN EMERGING ECONOMIES}, Year = {2022}, Volume = {14}, Number = {5, SI}, Pages = {754-795}, Month = {NOV 30}, Abstract = {Purpose The circular economy (CE) is an evolving subject transitioning from conceptualization to empirical testing. Over the past decade, researchers have done an exhaustive study to understand the concept of CE and its realized values both financially and environmentally on organizations that have traditional business models based on linear consumption. For understanding the transitional phenomena completely, the paper aims to review the current and emerging research trends in CE to ascertain future direction. Design/methodology/approach The research was conducted on 91 articles published in the study area during the past decade (2016-2021) in renowned peer-reviewed journals. The criteria set to review literature are based on the following assortment: CE drivers, CE barriers, definitions by different authors, yearly distribution of the publication, research publisher and journals, google citation and methodology used in the selected research articles. Findings The study suggests that researchers from the selected years are keen to understand the transition and its critical factors by bringing forward frameworks and incorporating CE with digital technologies. The digital technology implied are Industrial Technology (IR) 4.0, Big Data, Internet of Things (IoT), Artificial Intelligence, Blockchain and Data Analytics to increase organizational and environmental performance. CE researchers need to use empirical testing in different sectors to understand and bring forward more improvised business models and practices according to the dynamics of the industry. Originality/value The literature review suggests gaps exist to integrate the micro, meso and macro levels to get CE implementation's system-wide benefits. The study has also identified that many CE frameworks available in the literature for implementation must be empirically tested to yield performance results.}, Publisher = {EMERALD GROUP PUBLISHING LTD}, Address = {HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Khan, SAR (Corresponding Author), Xuzhou Univ Technol, Sch Engn \& Management, Xuzhou, Jiangsu, Peoples R China. Khan, Syed Abdul Rehman, Xuzhou Univ Technol, Sch Engn \& Management, Xuzhou, Jiangsu, Peoples R China. Shah, Adeel Syed Ali, Coll Business Management, Dept Supply Chain \& Logist Management, Karachi, Pakistan. Yu, Zhang, Changan Univ, Sch Econ \& Management, Changan, Peoples R China. Yu, Zhang, ILMA Univ, Dept Business Adm, Karachi, Pakistan. Tanveer, Muhammad, Prince Sultan Univ, Riyadh, Saudi Arabia.}, DOI = {10.1108/JEEE-09-2021-0349}, EarlyAccessDate = {JAN 2022}, ISSN = {2053-4604}, EISSN = {2053-4612}, Keywords = {Sustainability; Systematic literature review; Meta-analysis; Circular economy; Green technology; Systematic review}, Keywords-Plus = {SUPPLY CHAIN MANAGEMENT; SUSTAINABLE DEVELOPMENT; BIG-DATA; DIGITAL TECHNOLOGIES; WASTE MANAGEMENT; BUSINESS MODELS; PRODUCT DESIGN; INDUSTRY 4.0; TRANSITION; FRAMEWORK}, Research-Areas = {Business \& Economics}, Web-of-Science-Categories = {Business}, Author-Email = {sarehman\_cscp@yahoo.com adeelshah@mail.com Zhangy19@foxmail.com mtanveer@psu.edu.sa}, Affiliations = {Xuzhou University of Technology; Chang'an University; Prince Sultan University}, ResearcherID-Numbers = {Yu, Zhang/AFV-9605-2022 }, ORCID-Numbers = {Yu, Zhang/0000-0002-9892-7642 khan, syed abdul rehman/0000-0001-5197-2318}, Funding-Acknowledgement = {Beijing Key Laboratory of Urban Spatial Information Engineering {[}20210218]; Research Center of ILMA University}, Funding-Text = {This research is supported by the Beijing Key Laboratory of Urban Spatial Information Engineering (No. 20210218) and Research Center of ILMA University.}, Cited-References = {Alamerew Yohannes A., 2019, Journal of Remanufacturing, V9, P169, DOI 10.1007/s13243-018-0064-8. Alcayaga A, 2019, J CLEAN PROD, V221, P622, DOI 10.1016/j.jclepro.2019.02.085. Angioletti CM, 2017, IFIP ADV INF COMM TE, V514, P411, DOI 10.1007/978-3-319-66926-7\_47. Antikainen M, 2018, PROC CIRP, V73, P45, DOI 10.1016/j.procir.2018.04.027. Ardito L, 2019, BUS PROCESS MANAG J, V25, P323, DOI 10.1108/BPMJ-04-2017-0088. Awan U., 2020, LOGISTICS OPERATIONS, P19, DOI DOI 10.1007/978-3-642-33857-1\_2. Bag S, 2020, RESOUR POLICY, V68, DOI 10.1016/j.resourpol.2020.101776. Bag S, 2020, RESOUR CONSERV RECY, V152, DOI 10.1016/j.resconrec.2019.104502. Beltran M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073896. Benn S, 2016, S AFR J BUS MANAG, V47, P1. Bimpizas-Pinis M, 2021, RESOUR CONSERV RECY, V167, DOI 10.1016/j.resconrec.2021.105399. Bjornbet MM, 2021, J CLEAN PROD, V294, DOI 10.1016/j.jclepro.2021.126268. Blomsma F, 2017, J IND ECOL, V21, P603, DOI 10.1111/jiec.12603. Bocken NMP, 2016, J IND PROD ENG, V33, P308, DOI 10.1080/21681015.2016.1172124. Borrello M, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9010141. Boyer RHW, 2021, SUSTAIN PROD CONSUMP, V27, P61, DOI 10.1016/j.spc.2020.10.010. Bressanelli G, 2018, PROC CIRP, V73, P216, DOI 10.1016/j.procir.2018.03.322. Bressanelli G, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030639. Brouwer MT, 2018, WASTE MANAGE, V71, P62, DOI 10.1016/j.wasman.2017.10.034. Buchi G, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119790. Buyukozkan G., 2021, INT C INTELLIGENT FU, P113. Cagno E, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11083328. Cai YJ, 2020, TRANSPORT RES E-LOG, V141, DOI 10.1016/j.tre.2020.102010. Cezarino LO, 2021, MANAGE DECIS, V59, P1841, DOI 10.1108/MD-10-2018-1084. DAMANPOUR F, 1992, ORGAN STUD, V13, P375, DOI 10.1177/017084069201300304. Dantas TET, 2021, SUSTAIN PROD CONSUMP, V26, P213, DOI 10.1016/j.spc.2020.10.005. De Angelis R, 2018, PROD PLAN CONTROL, V29, P425, DOI 10.1080/09537287.2018.1449244. de Ferreira AC, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11061813. de Jesus A, 2018, ECOL ECON, V145, P75, DOI 10.1016/j.ecolecon.2017.08.001. den Hollander MC, 2017, J IND ECOL, V21, P517, DOI 10.1111/jiec.12610. Despeisse M, 2017, TECHNOL FORECAST SOC, V115, P75, DOI 10.1016/j.techfore.2016.09.021. Dey PK, 2020, BUS STRATEG ENVIRON, V29, P2145, DOI 10.1002/bse.2492. Dijkstra H, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120967. EMF. Ellen MacArthur Foundation, 2014, CIRC EC ACC SCAL UP. Filip M., 2021, DISCOVER SUSTAINABIL, V2, P1. Fonseca LM, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072521. Ford S, 2016, J CLEAN PROD, V137, P1573, DOI 10.1016/j.jclepro.2016.04.150. Friant MC, 2021, SUSTAIN PROD CONSUMP, V27, P337, DOI 10.1016/j.spc.2020.11.001. Girard LF, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226253. Geissdoerfer M, 2017, J CLEAN PROD, V143, P757, DOI 10.1016/j.jclepro.2016.12.048. Genovese A, 2017, OMEGA-INT J MANAGE S, V66, P344, DOI 10.1016/j.omega.2015.05.015. Ghisellini P, 2016, J CLEAN PROD, V114, P11, DOI 10.1016/j.jclepro.2015.09.007. Ghoreishi M, 2020, E3S WEB CONF, V158, DOI 10.1051/e3sconf/202015806002. Grafstrom J, 2021, J CLEAN PROD, V292, DOI 10.1016/j.jclepro.2021.126002. Gupta S, 2019, TECHNOL FORECAST SOC, V144, P466, DOI 10.1016/j.techfore.2018.06.030. Guzzo D, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123248. Haas W, 2015, J IND ECOL, V19, P765, DOI 10.1111/jiec.12244. Harris S, 2021, SUSTAIN PROD CONSUMP, V26, P172, DOI 10.1016/j.spc.2020.09.018. Hashmi SD, 2020, FUTUR BUS J, V6, DOI 10.1186/s43093-020-00015-y. Haupt M, 2017, J IND ECOL, V21, P615, DOI 10.1111/jiec.12506. Helander H, 2019, J IND ECOL, V23, P1278, DOI 10.1111/jiec.12924. Honic M, 2021, J CLEAN PROD, V319, DOI 10.1016/j.jclepro.2021.128702. Ingemarsdotter E, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205689. Jabbour CJC, 2019, TECHNOL FORECAST SOC, V144, P546, DOI 10.1016/j.techfore.2017.09.010. Kalar B., 2021, RESOURCE EFFICIENCY. Kalmykova Y, 2018, RESOUR CONSERV RECY, V135, P190, DOI 10.1016/j.resconrec.2017.10.034. Kawamoto M., 2020, INT DEV ENV, P47, DOI 10.1007/978-981-13-3594-5\_4. Kerdlap P, 2019, RESOUR CONSERV RECY, V151, DOI 10.1016/j.resconrec.2019.104438. Kerin M, 2019, J CLEAN PROD, V237, DOI 10.1016/j.jclepro.2019.117805. Khan S, 2021, INT J SUSTAIN ENG, V14, P357, DOI 10.1080/19397038.2020.1871442. Khan SAR, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13158479. Khan SAR, 2021, BUS STRATEG ENVIRON, V30, P4001, DOI 10.1002/bse.2853. Khan SAR, 2017, ENVIRON SCI POLLUT R, V24, P16829, DOI 10.1007/s11356-017-9172-5. Kirchherr J.W., 2017, BREAKING BARRIERS CI. Kirchherr J, 2017, RESOUR CONSERV RECY, V127, P221, DOI 10.1016/j.resconrec.2017.09.005. Koksharov Vladimir, 2019, WSEAS Transactions on Business and Economics, V16, P559. Konietzko J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010417. Korhonen J, 2018, ECOL ECON, V143, P37, DOI 10.1016/j.ecolecon.2017.06.041. Kouhizadeh M, 2020, PROD PLAN CONTROL, V31, P950, DOI 10.1080/09537287.2019.1695925. Kristoffersen E, 2020, J BUS RES, V120, P241, DOI 10.1016/j.jbusres.2020.07.044. Lazarevic D, 2017, ENERGY RES SOC SCI, V31, P60, DOI 10.1016/j.erss.2017.05.006. Lewandowski M, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8010043. Lieder M, 2016, J CLEAN PROD, V115, P36, DOI 10.1016/j.jclepro.2015.12.042. Jabbour ABLD, 2018, ANN OPER RES, V270, P273, DOI 10.1007/s10479-018-2772-8. Luthra S, 2018, RESOUR CONSERV RECY, V138, P194, DOI 10.1016/j.resconrec.2018.07.005. Ma SH, 2014, J CLEAN PROD, V64, P505, DOI 10.1016/j.jclepro.2013.10.008. Malinauskaite J, 2017, ENERGY, V141, P2013, DOI 10.1016/j.energy.2017.11.128. Mangla SK, 2017, J CLEAN PROD, V151, P509, DOI 10.1016/j.jclepro.2017.02.099. Manninen K, 2018, J CLEAN PROD, V171, P413, DOI 10.1016/j.jclepro.2017.10.003. Massaro M, 2021, BUS STRATEG ENVIRON, V30, P1213, DOI 10.1002/bse.2680. Mboli JS, 2022, SOFTWARE PRACT EXPER, V52, P772, DOI 10.1002/spe.2825. Merli R, 2018, J CLEAN PROD, V178, P703, DOI 10.1016/j.jclepro.2017.12.112. Moller DPF, 2020, INT CONF ELECTRO INF, P87, DOI 10.1109/EIT48999.2020.9208321. Moreno M, 2019, INT J SUSTAIN ENG, V12, P77, DOI 10.1080/19397038.2018.1508316. Moreno M, 2016, SMART INNOV SYST TEC, V52, P563, DOI 10.1007/978-3-319-32098-4\_48. Murray A, 2017, J BUS ETHICS, V140, P369, DOI 10.1007/s10551-015-2693-2. Naude M., 2011, CORPORATE OWNERSHIP, V8, P352, DOI {[}DOI 10.22495/COCV8I4C3ART4, 10.22495/cocv8i4c3art4]. Niero M, 2017, J IND ECOL, V21, P742, DOI 10.1111/jiec.12554. Nobre GC, 2020, JOHNSON MATTHEY TECH, V64, P32, DOI 10.1595/205651319X15650189172931. Nobre GC, 2017, SCIENTOMETRICS, V111, P463, DOI 10.1007/s11192-017-2281-6. OECD, 2016, EN AIR POLL WORLD EN. Okorie O, 2018, ENERGIES, V11, DOI 10.3390/en11113009. Pagoropoulos A, 2017, PROC CIRP, V64, P19, DOI 10.1016/j.procir.2017.02.047. Parchomenko A, 2019, J CLEAN PROD, V210, P200, DOI 10.1016/j.jclepro.2018.10.357. Pedersen CS, 2018, PROC CIRP, V69, P21, DOI 10.1016/j.procir.2018.01.003. Pieroni MPP, 2019, J CLEAN PROD, V215, P198, DOI 10.1016/j.jclepro.2019.01.036. Pinelli M, 2017, SUSTAIN DEV, V25, P288, DOI 10.1002/sd.1653. Piscitelli G, 2020, PROCEDIA MANUF, V42, P227, DOI 10.1016/j.promfg.2020.02.074. Planing P, 2017, INT J MANAGEMENT CAS, V19, P22. Prieto-Sandoval V, 2018, BUS STRATEG ENVIRON, V27, P1525, DOI 10.1002/bse.2210. Rajput S., 2019, BENCHMARKING INT J, V28. Rajput S, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.123853. Ranta V, 2021, RESOUR CONSERV RECY, V164, DOI 10.1016/j.resconrec.2020.105155. Ranta V, 2018, J CLEAN PROD, V201, P988, DOI 10.1016/j.jclepro.2018.08.072. Reuter MA, 2016, METALL MATER TRANS B, V47, P3194, DOI 10.1007/s11663-016-0735-5. Rincon-Moreno J, 2021, J CLEAN PROD, V279, DOI 10.1016/j.jclepro.2020.123605. Lindgreen ER, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124973. Rosa P, 2020, INT J PROD RES, V58, P1662, DOI 10.1080/00207543.2019.1680896. Rosati F, 2019, CORP SOC RESP ENV MA, V26, P588, DOI 10.1002/csr.1705. Russmann M, 2015, BOSTON CONSULTING GR, V9, P54. Saidani M, 2019, J CLEAN PROD, V207, P542, DOI 10.1016/j.jclepro.2018.10.014. Salmenpera H, 2021, J CLEAN PROD, V280, DOI 10.1016/j.jclepro.2020.124339. Sarc R, 2019, WASTE MANAGE, V95, P476, DOI 10.1016/j.wasman.2019.06.035. Sauve S, 2016, ENVIRON DEV, V17, P48, DOI 10.1016/j.envdev.2015.09.002. Sharma P., 2020, J COMMUN, V15, P652, DOI {[}10.12720/jcm.15.9.652-660, DOI 10.12720/JCM.15.9.652-660]. Siegel KM, 2020, WORLD DEV, V135, DOI 10.1016/j.worlddev.2020.105053. Singh J, 2016, J CLEAN PROD, V134, P342, DOI 10.1016/j.jclepro.2015.12.020. Stahel WR, 2016, NATURE, V531, P435, DOI 10.1038/531435a. Su B, 2013, J CLEAN PROD, V42, P215, DOI 10.1016/j.jclepro.2012.11.020. Suarez-Eiroa B, 2019, J CLEAN PROD, V214, P952, DOI 10.1016/j.jclepro.2018.12.271. Taibjee H, 2020, NUTR BULL, V45, P495, DOI 10.1111/nbu.12466. Romero CAT, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084331. Temesgen A.K., 2019, CIRCULAR EC REDUCING. The European Society of Surgical Oncology, 2016, CIRC EC EUR DEV KNOW, P1, DOI DOI 10.2800/51444. Pham TT, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236661. Upadhyay A, 2021, RESOUR POLICY, V72, DOI 10.1016/j.resourpol.2021.102037. Upadhyay A, 2021, J CLEAN PROD, V293, DOI 10.1016/j.jclepro.2021.126130. Van Eygen E, 2018, WASTE MANAGE, V72, P55, DOI 10.1016/j.wasman.2017.11.040. Velenturf APM, 2021, SUSTAIN PROD CONSUMP, V27, P1437, DOI 10.1016/j.spc.2021.02.018. World Bank, 2021, WORLD BANK SME FIN D. Zhang A, 2019, J CLEAN PROD, V240, DOI 10.1016/j.jclepro.2019.118198. Zink T, 2017, J IND ECOL, V21, P593, DOI 10.1111/jiec.12545.}, Number-of-Cited-References = {132}, Times-Cited = {7}, Usage-Count-Last-180-days = {24}, Usage-Count-Since-2013 = {82}, Journal-ISO = {J. Entrep. Emerg. Econ.}, Doc-Delivery-Number = {6R9HY}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000748636800001}, DA = {2023-04-22}, } @article{ WOS:000594559300001, Author = {Barmpoutis, Panagiotis and Papaioannou, Periklis and Dimitropoulos, Kosmas and Grammalidis, Nikos}, Title = {A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing}, Journal = {SENSORS}, Year = {2020}, Volume = {20}, Number = {22}, Month = {NOV}, Abstract = {The environmental challenges the world faces nowadays have never been greater or more complex. Global areas covered by forests and urban woodlands are threatened by natural disasters that have increased dramatically during the last decades, in terms of both frequency and magnitude. Large-scale forest fires are one of the most harmful natural hazards affecting climate change and life around the world. Thus, to minimize their impacts on people and nature, the adoption of well-planned and closely coordinated effective prevention, early warning, and response approaches are necessary. This paper presents an overview of the optical remote sensing technologies used in early fire warning systems and provides an extensive survey on both flame and smoke detection algorithms employed by each technology. Three types of systems are identified, namely terrestrial, airborne, and spaceborne-based systems, while various models aiming to detect fire occurrences with high accuracy in challenging environments are studied. Finally, the strengths and weaknesses of fire detection systems based on optical remote sensing are discussed aiming to contribute to future research projects for the development of early warning fire systems.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Grammalidis, N (Corresponding Author), Ctr Res \& Technol Hellas, Inst Informat Technol, Thessaloniki 57001, Greece. Barmpoutis, Panagiotis; Papaioannou, Periklis; Dimitropoulos, Kosmas; Grammalidis, Nikos, Ctr Res \& Technol Hellas, Inst Informat Technol, Thessaloniki 57001, Greece.}, DOI = {10.3390/s20226442}, Article-Number = {6442}, EISSN = {1424-8220}, Keywords = {early fire detection; multispectral imaging systems; terrestrial; aerial; satellite; artificial intelligence}, Keywords-Plus = {CONVOLUTIONAL NEURAL-NETWORKS; UNMANNED AERIAL VEHICLES; DYNAMIC TEXTURE ANALYSIS; REAL-TIME FIRE; SMOKE DETECTION; DETECTION ALGORITHM; WILDFIRE DETECTION; COMPUTER VISION; FLAME DETECTION; SURVEILLANCE}, Research-Areas = {Chemistry; Engineering; Instruments \& Instrumentation}, Web-of-Science-Categories = {Chemistry, Analytical; Engineering, Electrical \& Electronic; Instruments \& Instrumentation}, Author-Email = {panbar@iti.gr ppapaioa@iti.gr dimitrop@iti.gr ngramm@iti.gr}, Affiliations = {Centre for Research \& Technology Hellas}, ORCID-Numbers = {Dimitropoulos, Kosmas/0000-0003-1584-7047}, Funding-Acknowledgement = {European Union, project i-FORESTER ({''}Reinforcement of Postdoctoral Researchers-2nd Cycle{''}); European Union, project eOUTLAND ({''}INTERREG V-A COOPERATION PROGRAMME Greece-Bulgaria 2014-2020{''}) {[}1672]}, Funding-Text = {This research was funded by Greece and the European Union, projects i-FORESTER ({''}Reinforcement of Postdoctoral Researchers-2nd Cycle{''}) and eOUTLAND ({''}INTERREG V-A COOPERATION PROGRAMME Greece-Bulgaria 2014-2020{''}, grant number 1672).}, Cited-References = {Allison RS, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16081310. Arrue BC, 2000, IEEE INTELL SYST APP, V15, P64, DOI 10.1109/5254.846287. Aslan S, 2019, INT CONF ACOUST SPEE, P8315, DOI 10.1109/ICASSP.2019.8683629. Avgerinakis K., 2012, P INT WORKSH MULT SY. Ba R, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11141702. Barmpoutis Panagiotis, 2020, Advanced Concepts for Intelligent Vision Systems. 20th International Conference, ACIVS 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12002), P63, DOI 10.1007/978-3-030-40605-9\_6. Barmpoutis P, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12193177. Barmpoutis P, 2019, INT CONF ACOUST SPEE, P8301, DOI 10.1109/ICASSP.2019.8682647. Barmpoutis P, 2014, EUR SIGNAL PR CONF, P1078. Barmpoutis P, 2013, 2013 10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2013), P365, DOI 10.1109/AVSS.2013.6636667. Barschke MF, 2017, CEAS SPACE J, V9, P183, DOI 10.1007/s12567-016-0140-6. Bielski C, 2017, IEEE INT CONF BIG DA, P3705. Bosch I, 2013, SCI WORLD J, DOI 10.1155/2013/402196. Bouabdellah K, 2013, PROCEDIA COMPUT SCI, V19, P794, DOI 10.1016/j.procs.2013.06.104. Bu FJ, 2019, IMAGE VISION COMPUT, V91, DOI 10.1016/j.imavis.2019.08.007. Cal Poly SLO The CubeSat Program, 2014, CUBESAT DES SPEC. Cappellini V., 1989, Third International Conference on Image Processing and its Applications (Conf. Publ. No.307), P563. Celik T, 2010, ETRI J, V32, P881, DOI 10.4218/etrij.10.0109.0695. Celik T, 2009, FIRE SAFETY J, V44, P147, DOI 10.1016/j.firesaf.2008.05.005. Cetin AE, 2013, DIGIT SIGNAL PROCESS, V23, P1827, DOI 10.1016/j.dsp.2013.07.003. Chamberlin D.S., 1965, COMBUST I PITTSBURGH, V1965, P27. Chen J, 2010, BUILD ENVIRON, V45, P1113, DOI 10.1016/j.buildenv.2009.10.017. Chen TH, 2004, IEEE IMAGE PROC, P1707. Chen YH, 2018, CHIN CONTR CONF, P10305. Cheng SH, 2019, J ELECTRON IMAGING, V28, DOI 10.1117/1.JEI.28.3.033006. Csiszar I, 2014, J GEOPHYS RES-ATMOS, V119, P803, DOI 10.1002/2013JD020453. De Sousa J.V.R., 2020, KNE ENG, V5, P242, DOI DOI 10.18502/KEG.V5I6.7038. Den Breejen E., 1998, AUTONOMOUS FOREST FI, P2003. Di Biase V, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10050741. Dimitropoulos K, 2012, P 13 IASTED INT C CO. Dimitropoulos K., 2016, IEEE T CIRCUITS SYST, P1, DOI {[}10.1109/TCSVT.2016.2631719, DOI 10.1109/TCSVT.2016.2631719]. Dimitropoulos K., 2012, LECT NOTES COMPUTER, VVolume 7616, P378. Dimitropoulos K, 2017, IEEE T CIRC SYST VID, V27, P1143, DOI 10.1109/TCSVT.2016.2527340. Dimitropoulos K, 2015, IEEE T CIRC SYST VID, V25, P339, DOI 10.1109/TCSVT.2014.2339592. DongKeun Kim, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, P759, DOI 10.1109/CSIE.2009.494. Dunnings AJ, 2018, IEEE IMAGE PROC, P1358. Escrig A., 2015, P 14 WORLD FOR C 201. Esfahlani SS, 2019, J IND INF INTEGR, V15, P42, DOI 10.1016/j.jii.2019.04.006. Fatkhuroyan T.W., 2017, IOP C SERIES EARTH E, V54, P1315. Filizzola C, 2016, REMOTE SENS ENVIRON, V186, P196, DOI 10.1016/j.rse.2016.08.008. Frizzi S, 2016, IEEE IND ELEC, P877, DOI 10.1109/IECON.2016.7793196. Garg S., 2016, IMP J INTERDISCIP RE, V2, P935. Gaur A, 2020, FIRE TECHNOL, V56, P1943, DOI 10.1007/s10694-020-00986-y. Gaur A, 2019, IEEE SENS J, V19, P3191, DOI 10.1109/JSEN.2019.2894665. Giglio L, 2016, REMOTE SENS ENVIRON, V178, P31, DOI 10.1016/j.rse.2016.02.054. Govil K, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010166. Grammalidis N, 2011, P 19 EUR SIGN PROC C. Gunay O, 2010, FIRE TECHNOL, V46, P551, DOI 10.1007/s10694-009-0106-8. Hall JV, 2019, INT J APPL EARTH OBS, V83, DOI 10.1016/j.jag.2019.101928. Hally B, 2019, INT J DIGIT EARTH, V12, P1030, DOI 10.1080/17538947.2018.1497099. Hally B, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9020167. Dang-Ngoc H, 2019, PROC INT CONF ADV, P142, DOI 10.1109/ATC.2019.8924547. He LM, 2012, INT J REMOTE SENS, V33, P7047, DOI 10.1080/2150704X.2012.699202. He LM, 2011, INT J REMOTE SENS, V32, P6273, DOI 10.1080/01431161.2010.508057. Jadon A., 2019, ARXIV190511922. Jiao ZT, 2020, CHIN CONT DECIS CONF, P4963, DOI 10.1109/CCDC49329.2020.9163816. Jiao ZT, 2019, 2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019). Kaabi R, 2017, 2017 INTERNATIONAL CONFERENCE ON SMART, MONITORED AND CONTROLLED CITIES (SM2C), P81, DOI 10.1109/SM2C.2017.8071823. Kameche M, 2014, J AEROSP TECHNOL MAN, V6, P93, DOI 10.5028/jatm.v6i1.281. Kim B, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9142862. Kinaneva D, 2019, 2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P1060, DOI 10.23919/MIPRO.2019.8756696. Kresek R., 2007, HIST OSBORNE FIREFIN. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Laneve G, 2006, IEEE T GEOSCI REMOTE, V44, P2761, DOI 10.1109/TGRS.2006.881716. Larsen A, 2021, J EXPO SCI ENV EPID, V31, P170, DOI 10.1038/s41370-020-0246-y. Li XL, 2015, REMOTE SENS-BASEL, V7, P4473, DOI 10.3390/rs70404473. Li ZQ, 2001, IEEE T GEOSCI REMOTE, V39, P1859, DOI 10.1109/36.951076. Lin GH, 2019, FIRE TECHNOL, V55, P1827, DOI 10.1007/s10694-019-00832-w. Lin L, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8050403. Luo YM, 2018, MULTIMED TOOLS APPL, V77, P15075, DOI 10.1007/s11042-017-5090-2. Marbach G, 2006, FIRE SAFETY J, V41, P285, DOI 10.1016/j.firesaf.2006.02.001. Mather P., 2016, CLASSIFICATION METHO, DOI {[}10.1201/9781420090741, DOI 10.1201/9781420090741]. Memane S.E., 2015, INT J ADV RES ELECT, V4, P885. Merino L, 2012, J INTELL ROBOT SYST, V65, P533, DOI 10.1007/s10846-011-9560-x. Mueller M, 2013, IEEE T IMAGE PROCESS, V22, P2786, DOI 10.1109/TIP.2013.2258353. Muhammad K, 2019, IEEE T SYST MAN CY-S, V49, P1419, DOI 10.1109/TSMC.2018.2830099. Muhammad K, 2018, IEEE ACCESS, V6, P18174, DOI 10.1109/ACCESS.2018.2812835. Muhammad K, 2018, NEUROCOMPUTING, V288, P30, DOI 10.1016/j.neucom.2017.04.083. Nixon M., 2019, FEATURE EXTRACTION I, DOI {[}10.1016/C2011-0-06935-1, DOI 10.1016/C2011-0-06935-1]. Sayad YO, 2019, FIRE SAFETY J, V104, P130, DOI 10.1016/j.firesaf.2019.01.006. Perez-Lissi F., 2018, P 69 INT ASTR C BREM. Phan T.C., 2019, REMOTE SENSING MEETS. Popivanov N, 2017, BOUND VALUE PROBL, DOI 10.1186/s13661-017-0757-1. Pradhan B., 2007, Disaster Prevention \& Management, V16, P344, DOI 10.1108/09653560710758297. Prema CE, 2018, FIRE TECHNOL, V54, P255, DOI 10.1007/s10694-017-0683-x. Priya RS, 2019, INT CONF ADV COMPU, P61, DOI 10.1109/ICoAC48765.2019.246817. Savci MM, 2019, INT CONF ACOUST SPEE, P8310, DOI 10.1109/ICASSP.2019.8683666. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Schroeder W, 2016, REMOTE SENS ENVIRON, V185, P210, DOI 10.1016/j.rse.2015.08.032. Schroeder W, 2014, REMOTE SENS ENVIRON, V143, P85, DOI 10.1016/j.rse.2013.12.008. Shah S.B., 2019, INT ARCH PHOTOGRAMM, V42, P209, DOI {[}10.5194/isprs-archives-XLII-2-W16-209-2019, DOI 10.5194/ISPRS-ARCHIVES-XLII-2-W16-209-2019]. Sharma J, 2017, COMM COM INF SC, V744, P183, DOI 10.1007/978-3-319-65172-9\_16. Shen DQ, 2018, CONFERENCE PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), P416, DOI 10.1109/ICCAR.2018.8384711. Shi LF, 2017, LECT NOTES COMPUT SC, V10262, P299, DOI 10.1007/978-3-319-59081-3\_36. Shukla BP, 2009, INT J REMOTE SENS, V30, P9, DOI 10.1080/01431160802226059. Sousa MJ, 2020, EXPERT SYST APPL, V142, DOI 10.1016/j.eswa.2019.112975. Srinivas Kethavath, 2020, Inventive Computation Technologies. Lecture Notes in Networks and Systems (LNNS 98), P646, DOI 10.1007/978-3-030-33846-6\_69. STEARNS JR, 1986, APPL OPTICS, V25, P2554, DOI 10.1364/AO.25.002554. Sudhakar S, 2020, COMPUT COMMUN, V149, P1, DOI 10.1016/j.comcom.2019.10.007. Tanase MA, 2018, REMOTE SENS ENVIRON, V209, P700, DOI 10.1016/j.rse.2018.03.009. Tang Ziyang, 2020, AI, V1, P166, DOI {[}DOI 10.3390/AI1020010, 10.3390/ai1020010]. Teng Z, 2010, INT J CONTROL AUTOM, V8, P822, DOI 10.1007/s12555-010-0414-2. Toreyin BU, 2007, OPT ENG, V46, DOI 10.1117/1.2748752. Toreyin BU, 2018, PROC SPIE, V10752, DOI 10.1117/12.2322508. Toreyin BU, 2006, PATTERN RECOGN LETT, V27, P49, DOI 10.1016/j.patrec.2005.06.015. Toulouse T, 2017, FIRE SAFETY J, V92, P188, DOI 10.1016/j.firesaf.2017.06.012. Wang KZ, 2015, IEEE T IMAGE PROCESS, V24, P3019, DOI 10.1109/TIP.2015.2432712. Wickramasinghe C, 2020, INT J DIGIT EARTH, V13, P457, DOI 10.1080/17538947.2018.1527402. Wu XH, 2017, IEEE SYS MAN CYBERN, P1954. Xie ZX, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10121992. Xu G, 2017, REMOTE SENS LETT, V8, P1052, DOI {[}10.1080/2150704X.2017.1350303, 10.1080/2150704x.2017.1350303]. Yamagishi H., 1999, MHS'99. Proceedings of 1999 International Symposium on Micromechatronics and Human Science (Cat. No.99TH8478), P255, DOI 10.1109/MHS.1999.820014. Yuan C, 2019, J INTELL ROBOT SYST, V93, P337, DOI 10.1007/s10846-018-0803-y. Yuan C, 2017, J INTELL ROBOT SYST, V88, P635, DOI 10.1007/s10846-016-0464-7. Yuan C, 2015, INT CONF UNMAN AIRCR, P639, DOI 10.1109/ICUAS.2015.7152345. Yuan C, 2015, CAN J FOREST RES, V45, P783, DOI 10.1139/cjfr-2014-0347. Yuan FN, 2019, NEUROCOMPUTING, V357, P248, DOI 10.1016/j.neucom.2019.05.011. Zhang Q., 2016, 2016 INT FOR MAN ED. Zhang Q., 2018, PROCEDIA ENG, V211, P441, DOI DOI 10.1016/J.PROENG.2017.12.034. Zhang ZJ, 2014, FIRE TECHNOL, V50, P745, DOI 10.1007/s10694-012-0253-1. {[}赵亮 Zhao Liang], 2017, {[}计算机应用研究, Application Research of Computers], V34, P957. Zhao Y, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18030712.}, Number-of-Cited-References = {122}, Times-Cited = {87}, Usage-Count-Last-180-days = {40}, Usage-Count-Since-2013 = {131}, Journal-ISO = {Sensors}, Doc-Delivery-Number = {OY9LD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000594559300001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000760587900001, Author = {Parsons, Miles J. G. and Lin, Tzu-Hao and Mooney, T. Aran and Erbe, Christine and Juanes, Francis and Lammers, Marc and Li, Songhai and Linke, Simon and Looby, Audrey and Nedelec, Sophie L. and Van Opzeeland, Ilse and Radford, Craig and Rice, Aaron N. and Sayigh, Laela and Stanley, Jenni and Urban, Edward and Di Iorio, Lucia}, Title = {Sounding the Call for a Global Library of Underwater Biological Sounds}, Journal = {FRONTIERS IN ECOLOGY AND EVOLUTION}, Year = {2022}, Volume = {10}, Month = {FEB 8}, Abstract = {Aquatic environments encompass the world's most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources-potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Parsons, MJG (Corresponding Author), Australian Inst Marine Sci, Perth, WA, Australia. Parsons, Miles J. G., Australian Inst Marine Sci, Perth, WA, Australia. Lin, Tzu-Hao, Acad Sinica, Biodivers Res Ctr, Taipei, Taiwan. Mooney, T. Aran; Sayigh, Laela, Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. Erbe, Christine, Curtin Univ, Ctr Marine Sci \& Technol, Perth, WA, Australia. Juanes, Francis, Univ Victoria, Dept Biol, Victoria, BC, Canada. Lammers, Marc, Hawaiian Isl Humpback Whale Natl Marine Sanctuary, Kihei, HI USA. Li, Songhai, Chinese Acad Sci, Marine Mammal \& Marine Bioacoust Lab, Inst Deep Sea Sci \& Engn, Sanya, Peoples R China. Linke, Simon, CSIRO, Dutton Pk, Qld, Australia. Looby, Audrey, Univ Florida, Fisheries \& Aquat Sci, Gainesville, FL USA. Looby, Audrey, Univ Florida, Inst Food \& Agr Sci UF IFAS Nat Coast Biol Stn, Cedar Key, FL USA. Nedelec, Sophie L., Univ Exeter, Coll Life \& Environm Sci, Biosci, Hatherly Labs, Exeter, Devon, England. Van Opzeeland, Ilse, Helmholtz Zentrum Polar \& Marine Res, Ocean Acoust Lab, Alfred Wegener Inst, Bremerhaven, Germany. Van Opzeeland, Ilse, Carl von Ossietzky Univ Oldenburg, Helmholtz Inst Funct Marine Biodivers HIFMB, Oldenburg, Germany. Radford, Craig, Univ Auckland, Inst Marine Sci, Leigh Marine Lab, Warkworth, New Zealand. Rice, Aaron N., Cornell Univ, Cornell Lab Ornithol, K Lisa Yang Ctr Conservat Bioacoust, Ithaca, NY USA. Sayigh, Laela, Hampshire Coll, Amherst, MA 01002 USA. Stanley, Jenni, Univ Waikato, Sch Sci, Coastal Marine Field Stn, Tauranga, New Zealand. Urban, Edward, Univ Delaware, Sci Comm Ocean Res, Newark, DE USA. Di Iorio, Lucia, Univ Perpignan Via Domitia, CNRS, Ctr Format \& Rech Sur Environm Mediterraneens, Perpignan, France. Di Iorio, Lucia, CHORUS Inst, Grenoble, France.}, DOI = {10.3389/fevo.2022.810156}, Article-Number = {810156}, ISSN = {2296-701X}, Keywords = {soundscape; bioacoustics database; artificial intelligence; biodiversity; passive acoustic monitoring; ecological informatics}, Keywords-Plus = {MULLOWAY ARGYROSOMUS-JAPONICUS; BOTTLE-NOSED DOLPHINS; OPHIDION-MARGINATUM OPHIDIIDAE; FISH SOUNDS; SPAWNING AGGREGATION; AUTOMATIC DETECTION; PASSIVE ACOUSTICS; WHALE SONG; BALAENOPTERA-PHYSALUS; MARINE MAMMALS}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Ecology}, Author-Email = {m.parsons@aims.gov.au}, Affiliations = {Australian Institute of Marine Science; Academia Sinica - Taiwan; Woods Hole Oceanographic Institution; Curtin University; University of Victoria; National Oceanic Atmospheric Admin (NOAA) - USA; Chinese Academy of Sciences; Institute of Deep-Sea Science \& Engineering, CAS; Commonwealth Scientific \& Industrial Research Organisation (CSIRO); State University System of Florida; University of Florida; State University System of Florida; University of Florida; University of Exeter; Helmholtz Association; Alfred Wegener Institute, Helmholtz Centre for Polar \& Marine Research; Carl von Ossietzky Universitat Oldenburg; University of Auckland; Cornell University; University of Waikato; University of Delaware; Centre National de la Recherche Scientifique (CNRS)}, ResearcherID-Numbers = {Barrela, Cristina/HJY-8958-2023 Lin, Tzu-Hao/GLT-9168-2022 }, ORCID-Numbers = {Lin, Tzu-Hao/0000-0002-6973-3953 Looby, Audrey/0000-0003-1833-8643 Di Iorio, Lucia/0000-0002-3354-830X}, Funding-Acknowledgement = {U.S. National Science Foundation {[}OCE-1840868]}, Funding-Text = {Support for the initial author group to meet, discuss, and build consensus on the issues within this manuscript was provided by the Scientific Committee on Oceanic Research, Monmouth University Urban Coast Institute, and Rockefeller Program for the Human Environment. The U.S. National Science Foundation supported the publication of this article through Grant OCE-1840868 to the Scientific Committee on Oceanic Research.}, Cited-References = {Acoustical Society of America {[}ASA], 2018, J ACOUST SOC AM, V144, pA1, DOI {[}10.1121/2.0000948, DOI 10.1121/2.0000948]. Ainslie M., 2017, M16PC00003 TNO ADEON. Ajemian MJ, 2021, J EXP MAR BIOL ECOL, V535, DOI 10.1016/j.jembe.2020.151497. Akamatsu T, 2002, J ACOUST SOC AM, V112, P3073, DOI 10.1121/1.1515799. Alias F, 2016, APPL SCI-BASEL, V6, DOI 10.3390/app6050143. Allen AN, 2021, FRONT MAR SCI, V08, DOI 10.3389/fmars.2021.607321. Allen JA, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.2088. Allen S, 2003, FISH RES, V63, P393, DOI 10.1016/S0165-7836(03)00096-1. Alonso MS, 2015, BIOACOUSTICS, V24, P101, DOI 10.1080/09524622.2014.980319. Alves D, 2016, J EXP BIOL, V219, P1122, DOI 10.1242/jeb.134981. Anderson KA, 2008, T AM FISH SOC, V137, P616, DOI 10.1577/T05-220.1. Apuzzo M., 2020, COVID 19 CHANGED WOR. Ashokan M, 2015, INDIAN J GEO-MAR SCI, V44, P795. Aulich MG, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45321-w. Bahoura M, 2010, DIGIT SIGNAL PROCESS, V20, P1256, DOI 10.1016/j.dsp.2009.10.024. Bailey H, 2021, ECOSPHERE, V12, DOI 10.1002/ecs2.3685. Bailey H, 2019, ECOLOGY, V100, DOI 10.1002/ecy.2743. BANNER A, 1972, B MAR SCI, V22, P251. Barclay L, 2018, LEONARDO, V51, P298, DOI 10.1162/LEON\_a\_01516. Barrios A.T., 2004, USE PASSIVE ACOUSTIC. Bates AE, 2021, BIOL CONSERV, V263, DOI 10.1016/j.biocon.2021.109175. Bergler C, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47335-w. Bermant PC, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48909-4. Bertucci F, 2015, J FISH BIOL, V87, P400, DOI 10.1111/jfb.12733. Bertucci F, 2020, OECOLOGIA, V193, P125, DOI 10.1007/s00442-020-04647-3. Bohnenstiehl DR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0143691. Bolgan M, 2020, AQUACULTURE, V524, DOI 10.1016/j.aquaculture.2020.735243. Bolgan M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0241792. Bolgan M, 2020, J ACOUST SOC AM, V147, P2466, DOI 10.1121/10.0001101. Bonebrake TC, 2018, BIOL REV, V93, P284, DOI 10.1111/brv.12344. Boyd AD, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254614. Boyd IL, 2011, OCEANOGRAPHY, V24, P174, DOI 10.5670/oceanog.2011.37. Bradbury J, 1999, ANIM BEHAV, V57, P1343, DOI 10.1006/anbe.1999.1113. Bravo Sanchez FJ, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-95076-6. Burnham RE, 2019, AQUAT MAMM, V45, P340, DOI 10.1578/AM.45.3.2019.340. Castellote M, 2012, BIOL CONSERV, V147, P115, DOI 10.1016/j.biocon.2011.12.021. Cerchio S, 2020, ENDANGER SPECIES RES, V43, P495, DOI 10.3354/esr01096. Cerchio S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086464. Chapuis L, 2021, ECOL INDIC, V129, DOI 10.1016/j.ecolind.2021.107957. Cheal AJ, 2017, GLOBAL CHANGE BIOL, V23, P1511, DOI 10.1111/gcb.13593. Chion C, 2019, FRONT MAR SCI, V6, DOI 10.3389/fmars.2019.00714. Connor RC, 2000, MAR MAMMAL SCI, V16, P646, DOI 10.1111/j.1748-7692.2000.tb00959.x. Coquereau L, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.160606. Coquereau L, 2016, MAR BIOL, V163, DOI 10.1007/s00227-016-2902-2. Courts R, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-74111-y. Davis GE, 2020, GLOBAL CHANGE BIOL, V26, P4812, DOI 10.1111/gcb.15191. De Clippele LH, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.674702. Delarue J, 2009, J ACOUST SOC AM, V125, P1774, DOI 10.1121/1.3068454. Department of Conservation, 2021, NZ MAR MAMM DAT. Desidera E, 2019, MAR ECOL PROG SER, V608, P183, DOI 10.3354/meps12812. Desjonqueres C, 2020, FRESHWATER BIOL, V65, P107, DOI 10.1111/fwb.13171. Desjonqueres C, 2015, PEERJ, V3, DOI 10.7717/peerj.1393. Di Iorio L, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-96378-5. Du X., 2018, AUSTR ACOUST SOC C P, V2018, P451. Duarte CM, 2021, SCIENCE, V371, P583, DOI 10.1126/science.aba4658. Dunn C, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.673565. Erbe C, 2008, J ACOUST SOC AM, V124, P2833, DOI 10.1121/1.2982368. Erbe C, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9050472. Erbe C, 2019, FRONT MAR SCI, V6, DOI 10.3389/fmars.2019.00606. Erbe C, 2018, MAR POLLUT BULL, V137, P656, DOI 10.1016/j.marpolbul.2018.10.064. Erbe C, 2017, ACOUST AUST, V45, P179, DOI 10.1007/s40857-017-0101-z. Erbe C, 2015, PROG OCEANOGR, V137, P38, DOI 10.1016/j.pocean.2015.05.015. European Commission, 2018, DECL SUST BLUE EC FI. Fandel AD, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-76077-3. Farcas A, 2020, SCI TOTAL ENVIRON, V735, DOI 10.1016/j.scitotenv.2020.139509. Farina A, 2018, ECOL INDIC, V85, P698, DOI 10.1016/j.ecolind.2017.10.073. Farina A, 2016, BIOSYSTEMS, V147, P11, DOI 10.1016/j.biosystems.2016.05.011. Fish M.P., 1970, COPEIA, DOI {[}DOI 10.2307/1441636, 10.2307/1441636]. Fish M.P., 1948, SONIC FISHES PACIFIC, DOI {[}10.1575/1912/2767, DOI 10.1575/1912/2767]. FonoZoo, 2021, FON ZOOL. Francis CD, 2009, CURR BIOL, V19, P1415, DOI 10.1016/j.cub.2009.06.052. Frasier KE, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005823. Frazao F., 2019, WORKSHOP REPORT DETE. Froese R, 2019, FISHBASE. Gabriele CM, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.674787. Garland EC, 2011, CURR BIOL, V21, P687, DOI 10.1016/j.cub.2011.03.019. Gaunt SLL, 2005, AUK, V122, P984, DOI 10.1642/0004-8038(2005)122{[}0984:NDFBC]2.0.CO;2. Gavrilov AN, 2012, J ACOUST SOC AM, V131, P4476, DOI 10.1121/1.4707425. Gedamke J, 2010, DEEP-SEA RES PT II, V57, P968, DOI 10.1016/j.dsr2.2008.10.042. GERALD JW, 1971, EVOLUTION, V25, P75, DOI 10.1111/j.1558-5646.1971.tb01859.x. Gordon TAC, 2018, P NATL ACAD SCI USA, V115, P5193, DOI 10.1073/pnas.1719291115. Grabowski T, 2020, FRESHWATER BIOL, V65, P37, DOI 10.1111/fwb.13314. Greenhalgh JA, 2020, WIRES WATER, V7, DOI 10.1002/wat2.1416. Harvey E, 2004, MAR FRESHWATER RES, V55, P573, DOI 10.1071/MF03130. Heimlich S., 2021, MOBYSOUND. Higgs DM, 2021, J APPL ICHTHYOL, V37, P816, DOI 10.1111/jai.14269. Hildebrand JA, 2009, MAR ECOL PROG SER, V395, P5, DOI 10.3354/meps08353. Holt DE, 2014, ENVIRON BIOL FISH, V97, P1207, DOI 10.1007/s10641-013-0208-5. Hughes AR, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0715. Hussey NE, 2015, SCIENCE, V348, DOI 10.1126/science.1255642. Ibrahim AK, 2018, J ACOUST SOC AM, V144, pEL196, DOI 10.1121/1.5054911. Janik VM, 2013, J COMP PHYSIOL A, V199, P479, DOI 10.1007/s00359-013-0817-7. Jones RE, 2019, LIMNOL OCEANOGR-METH, V17, P544, DOI 10.1002/lom3.10331. Kaatz Ingrid M., 2002, Bioacoustics, V12, P230. Kahl S, 2021, ECOL INFORM, V61, DOI 10.1016/j.ecoinf.2021.101236. Karaconstantis C, 2020, FRESHWATER BIOL, V65, P96, DOI 10.1111/fwb.13439. Kaschner K, 2012, SOUNDS TABLE FISHBAS. Krause B, 2008, J AUDIO ENG SOC, V56, P73. Lagardere JP, 2006, J FISH BIOL, V69, P1697, DOI 10.1111/j.1095-8649.2006.01237.x. Lammers MO, 2016, MOD ACOUST SIGN PROC, P61, DOI 10.1007/978-1-4939-3176-7\_4. Lammers MO, 2003, MAR MAMMAL SCI, V19, P249, DOI 10.1111/j.1748-7692.2003.tb01107.x. Lamont T.A., 2022, REMOTE SENS ECOL CON, DOI {[}10.1002/rse2.249, DOI 10.1002/RSE2.249]. Langlois T, 2020, METHODS ECOL EVOL, V11, P1401, DOI 10.1111/2041-210X.13470. Le Bien J., 2017, AUTOMATED SPECIES CL. Le Bot O, 2015, APPL ACOUST, V95, P37, DOI 10.1016/j.apacoust.2015.02.005. Ledee EJI, 2021, FISH FISH, V22, P987, DOI 10.1111/faf.12565. Leon-Lopez B, 2021, J ACOUST SOC AM, V149, P652, DOI 10.1121/10.0003354. Lin TH, 2021, PLOS COMPUT BIOL, V17, DOI 10.1371/journal.pcbi.1008698. Lin TH, 2020, REMOTE SENS ECOL CON, V6, P236, DOI 10.1002/rse2.141. Lin TH, 2019, TRENDS ECOL EVOL, V34, P1066, DOI 10.1016/j.tree.2019.09.006. Lin TH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04790-7. Lindseth AV, 2018, FISHES-BASEL, V3, DOI 10.3390/fishes3030036. Linke S, 2020, FRESHWATER BIOL, V65, P86, DOI 10.1111/fwb.13227. Lobel PS, 2010, REPRODUCTION AND SEXUALITY IN MARINE FISHES: PATTERNS AND PROCESSES, P307. LOBEL PS, 1992, ENVIRON BIOL FISH, V33, P351, DOI 10.1007/BF00010947. Lobel PS, 1998, ENVIRON BIOL FISH, V52, P443, DOI 10.1023/A:1007467818465. Lobel PS, 1996, BIOL BULL, V191, P308, DOI 10.1086/BBLv191n2p308. Lobel PS, 2001, MAR TECHNOL SOC J, V35, P19, DOI 10.4031/002533201788001884. Locascio JV, 2005, BIOL LETTERS, V1, P362, DOI 10.1098/rsbl.2005.0309. Looby A., 2021, FISHSOUNDS VERSION 1. Lu XG, 2013, INTERSPEECH, P436. Luczkovich J., 2007, P AM ACAD UNDERWATER, P127. Luczkovich JJ, 2008, T AM FISH SOC, V137, P533, DOI 10.1577/T06-258.1. Luczkovich Joseph J., 1999, Bioacoustics, V10, P143. Luo WY, 2019, J ACOUST SOC AM, V145, pEL7, DOI 10.1121/1.5085647. Mac Aodha O, 2018, PLOS COMPUT BIOL, V14, DOI 10.1371/journal.pcbi.1005995. Madhusudhana S, 2020, J ACOUST SOC AM, V147, P3078, DOI 10.1121/10.0001108. Madhusudhana S, 2015, J ACOUST SOC AM, V137, P3077, DOI 10.1121/1.4921609. Malfante M, 2018, J ACOUST SOC AM, V143, P2834, DOI 10.1121/1.5036628. Mallekh R, 2003, AQUACULTURE, V221, P481, DOI 10.1016/S0044-8486(03)00074-7. Mann DA, 2009, MAR ECOL PROG SER, V375, P65, DOI 10.3354/meps07720. Mann DA, 1997, COPEIA, P610, DOI 10.2307/1447568. Mann DA, 2004, J ACOUST SOC AM, V115, P2331, DOI 10.1121/1.1694992. Mann David A., 2009, Endangered Species Research, V7, P229, DOI 10.3354/esr00109. Marques L., 2020, COLLAPSE BIODIVERSIT, P275, DOI {[}10.1007/978-3-030-47527-7\_11, DOI 10.1007/978-3-030-47527-7\_11]. Matley JK, 2022, TRENDS ECOL EVOL, V37, P79, DOI 10.1016/j.tree.2021.09.001. McCauley RD, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9060571. McCordic JA, 2016, ENDANGER SPECIES RES, V30, P157, DOI 10.3354/esr00735. McDonald Mark A., 2009, Endangered Species Research, V9, P13, DOI 10.3354/esr00217. McIver EL, 2014, J EXP BIOL, V217, P2377, DOI 10.1242/jeb.102772. McKenna MF, 2021, FRONT MAR SCI, V08, DOI 10.3389/fmars.2021.719258. McWilliam JN, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15838-z. Meekan MG, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2100869118. Mellinger DK, 2006, APPL ACOUST, V67, P1226, DOI 10.1016/j.apacoust.2006.06.002. Mellinger DK, 1997, MAR FRESHW BEHAV PHY, V29, P163, DOI 10.1080/10236249709379005. Menze S, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.160370. Miller BS, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-78995-8. Montie EW, 2017, PEERJ, V5, DOI 10.7717/peerj.2944. Mooney TA, 2020, ROY SOC OPEN SCI, V7, DOI 10.1098/rsos.201287. Morano JL, 2012, J ACOUST SOC AM, V132, P1207, DOI 10.1121/1.4730890. Morano JL, 2012, CONSERV BIOL, V26, P698, DOI 10.1111/j.1523-1739.2012.01866.x. Mosharo KK, 2012, ENVIRON BIOL FISH, V94, P623, DOI 10.1007/s10641-011-9969-x. Moulton J. M., 1964, Oceanography and Marine Biology, V2, P425. Moulton J. M., 1963, ACOUSTIC BEHAV ANIMA, P655. MOULTON JM, 1960, BIOL BULL, V119, P210, DOI 10.2307/1538923. MOULTON JM, 1958, BIOL BULL, V114, P357, DOI 10.2307/1538991. Mouy X, 2018, J ACOUST SOC AM, V143, pEL333, DOI 10.1121/1.5037359. Newhall A.E., 2016, J ACOUST SOC AM, V139, P2181, DOI DOI 10.1121/1.4950483. Nikolich K, 2021, MAR POLLUT BULL, V164, DOI 10.1016/j.marpolbul.2021.112017. Noda JJ, 2016, APPL SCI-BASEL, V6, DOI 10.3390/app6120443. Ocean Networks Canada, 2021, OC NETW CAN SOUNDCLO. Ogundile OO, 2020, IEEE ACCESS, V8, P14377, DOI 10.1109/ACCESS.2020.2966254. Ozanich E, 2021, J ACOUST SOC AM, V149, P2587, DOI 10.1121/10.0004221. Pangerc T., 2016, J ACOUST SOC AM, V140, P2913, DOI {[}10.1121/1.4964824, DOI 10.1121/1.4964824]. Parmentier E, 2006, J MORPHOL, V267, P1461, DOI 10.1002/jmor.10496. Parmentier E, 2005, P ROY SOC B-BIOL SCI, V272, P1697, DOI 10.1098/rspb.2005.3146. Parmentier E, 2021, BELG J ZOOL, V151, P1, DOI 10.26496/bjz.2021.82. Parmentier E, 2017, FISH FISH, V18, P958, DOI 10.1111/faf.12217. Parmentier E, 2016, J MORPHOL, V277, P717, DOI 10.1002/jmor.20529. Parmentier E, 2010, J EXP BIOL, V213, P3230, DOI 10.1242/jeb.044701. Parsons M.J.G., 2010, INVESTIGATION ACTIVE. Parsons MJ, 2009, ICES J MAR SCI, V66, P1007, DOI 10.1093/icesjms/fsp016. Parsons MJG, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9080827. Parsons MJG, 2017, ACOUST AUST, V45, P261, DOI 10.1007/s40857-017-0112-9. Parsons MJG, 2016, ICES J MAR SCI, V73, P2058, DOI 10.1093/icesjms/fsw037. Parsons MJG, 2013, ACOUST AUST, V41, P196. Parsons MJG, 2013, J ACOUST SOC AM, V134, P2701, DOI 10.1121/1.4818775. Parsons MJG, 2012, J ACOUST SOC AM, V132, P3559, DOI 10.1121/1.4756927. Phillips YF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193345. Pine MK, 2021, GLOBAL CHANGE BIOL, V27, P4839, DOI 10.1111/gcb.15798. Poloczanska ES, 2013, NAT CLIM CHANGE, V3, P919, DOI {[}10.1038/NCLIMATE1958, 10.1038/nclimate1958]. Popper AN, 2001, J COMP PHYSIOL A, V187, P83, DOI 10.1007/s003590100184. Popper AN, 2019, J FISH BIOL, V94, P692, DOI 10.1111/jfb.13948. Potamitis I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096936. Pyc CD, 2021, CONSERV SCI PRACT, V3, DOI 10.1111/csp2.352. Radford C, 2008, MAR ECOL PROG SER, V362, P37, DOI 10.3354/meps07444. Rako N, 2013, MAR POLLUT BULL, V68, P77, DOI 10.1016/j.marpolbul.2012.12.019. Ramirez F, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1601198. Recalde-Salas A, 2020, FRONT MAR SCI, V7, DOI 10.3389/fmars.2020.00141. Reine KJ, 2014, J ACOUST SOC AM, V135, P3280, DOI 10.1121/1.4875712. Ricci SW, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182757. Rice AN, 2022, ICHTHYOL HERPETOL, V110, P1, DOI 10.1643/i2020172. Rice AN, 2016, ENVIRON BIOL FISH, V99, P705, DOI 10.1007/s10641-016-0511-z. Rice AN, 2014, J ACOUST SOC AM, V135, P3066, DOI 10.1121/1.4870057. Rice AN, 2009, J EXP BIOL, V212, P1377, DOI 10.1242/jeb.028506. Richardson WJ., 2013, MARINE MAMMALS NOISE. Riera A., 2017, J ACOUST SOC AM, V141, DOI {[}10.1121/1.4988628, DOI 10.1121/1.4988628]. Riera A, 2018, J ACOUST SOC AM, V143, pEL317, DOI 10.1121/1.5035162. Risch D, 2014, MOV ECOL, V2, DOI 10.1186/s40462-014-0024-3. Roca IT, 2020, FRESHWATER BIOL, V65, P45, DOI 10.1111/fwb.13077. Roch MA, 2021, J ACOUST SOC AM, V149, P3301, DOI 10.1121/10.0004992. Rogers TL, 1996, MAR MAMMAL SCI, V12, P414, DOI 10.1111/j.1748-7692.1996.tb00593.x. Rosel PE, 2021, MAR MAMMAL SCI, V37, P577, DOI 10.1111/mms.12776. Rountree Rodney A., 2002, Bioacoustics, V12, P242. Rountree RA, 2006, FISHERIES, V31, P433, DOI 10.1577/1548-8446(2006)31{[}433:LTF]2.0.CO;2. Rountree RA, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0221842. Rountree RA, 2020, FRESHWATER BIOL, V65, P55, DOI 10.1111/fwb.13185. Rountree RA, 2019, FISHERIES, V44, P137, DOI 10.1002/fsh.10190. Rountree RA, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204247. Rountree RA, 2012, ADV EXP MED BIOL, V730, P181, DOI 10.1007/978-1-4419-7311-5\_41. Rowley JJL, 2019, HERPETOL CONSERV BIO, V14, P155. Ruppe L, 2015, P NATL ACAD SCI USA, V112, P6092, DOI 10.1073/pnas.1424667112. Ryan JP, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.656566. Rycyk AM, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-74647-z. Sainburg T, 2020, PLOS COMPUT BIOL, V16, DOI 10.1371/journal.pcbi.1008228. Sala E, 2006, ANNU REV ENV RESOUR, V31, P93, DOI 10.1146/annurev.energy.31.020105.100235. Sayigh Laela, 2016, POMA, V27, DOI 10.1121/2.0000358. Scharer MT, 2014, MAR BIOL, V161, P141, DOI 10.1007/s00227-013-2324-3. Schafer R.M, 1977, SOUNDS OUR SONIC ENV. Schafer R.M., 1969, NEW SOUNDSCAPE HDB M. Schall E, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-021-02332-6. Scheinin Aviad P., 2011, Marine Biodiversity Records, V4. Sequeira AMM, 2019, ECOL APPL, V29, DOI 10.1002/eap.1947. Sertlek HO, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9070702. Shamir L, 2014, J ACOUST SOC AM, V135, P953, DOI 10.1121/1.4861348. Shiu Y, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-57549-y. Sirovic A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09979-4. Sirovic A, 2013, MAR BIOL, V160, P47, DOI 10.1007/s00227-012-2061-z. Sonotheque, 2018, SON MUS NAT HIST NAT. SOUTHWORTH M, 1969, ENVIRON BEHAV, V1, P49. Spence HR, 2017, B MAR SCI, V93, P641, DOI 10.5343/bms.2016.1041. Sprague MW, 2001, COPEIA, P854, DOI 10.1643/0045-8511(2001)001{[}0854:DSCEOM]2.0.CO;2. Staaterman E, 2018, ENVIRON BIOL FISH, V101, P979, DOI 10.1007/s10641-018-0752-0. Stanley JA, 2021, ECOL APPL, V31, DOI 10.1002/eap.2439. Stowell D, 2019, METHODS ECOL EVOL, V10, P368, DOI 10.1111/2041-210X.13103. Straight CA, 2015, T AM FISH SOC, V144, P563, DOI 10.1080/00028487.2014.1001040. Sueur J, 2015, BIOSEMIOTICS-NETH, V8, P493, DOI 10.1007/s12304-015-9248-x. Sydeman WJ, 2015, SCIENCE, V350, P772, DOI 10.1126/science.aac9874. Tavolga W.N., 1971, FISH PHYSIOL. Teixeira D, 2019, CONSERV SCI PRACT, V1, DOI 10.1111/csp2.72. Tellechea JS, 2011, J EXP ZOOL PART A, V315A, P48, DOI 10.1002/jez.651. The British Library, 2021, ENV NAT SOUNDS. Thiebault A, 2019, PEERJ, V7, DOI 10.7717/peerj.8240. Thompson PM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2001. Thorson RF, 2002, ENVIRON BIOL FISH, V63, P321, DOI 10.1023/A:1014334425821. Tierstimmenarchiv, 2021, AN SOUND ARCH TIERST. Tricas TC, 2021, MAR ECOL PROG SER, V666, P149, DOI 10.3354/meps13679. Tricas TC, 2014, MAR ECOL PROG SER, V511, P1, DOI 10.3354/meps10930. Tsujii K, 2016, ICES J MAR SCI, V73, P2085, DOI 10.1093/icesjms/fsv271. Tyack PL, 2008, J MAMMAL, V89, P549, DOI 10.1644/07-MAMM-S-307R.1. Uno M., 1960, NIPPON SUISAN GAKK, V26, P1069, DOI {[}10.2331/suisan.26.1069, DOI 10.2331/SUISAN.26.1069]. van Opzeeland Ilse, 2013, Polarforschung, V83, P47. Vigness-Raposa KJ, 2012, ADV EXP MED BIOL, V730, P135, DOI 10.1007/978-1-4419-7311-5\_30. Waddell EE, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9101128. Wall CC, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.703682. Warren J.D, 2018, M16PC00003 STON BROO. Warren VE, 2021, FRONT MAR SCI, V7, DOI 10.3389/fmars.2020.575257. World Register of Marine Species, 2021, SPECIES DATABASES. World Wildlife Fund {[}WWF], 2017, ROADM DEV SUST BLUE. Worm B, 2006, SCIENCE, V314, P787, DOI 10.1126/science.1132294. Xie J, 2020, EXPERT SYST APPL, V152, DOI 10.1016/j.eswa.2020.113390. Xie LX, 2008, P IEEE, V96, P623, DOI 10.1109/JPROC.2008.916362. Xu Y, 2015, IEEE-ACM T AUDIO SPE, V23, P7, DOI 10.1109/TASLP.2014.2364452. Yack TM, 2010, APPL ACOUST, V71, P1043, DOI 10.1016/j.apacoust.2010.04.010. Yosinski J, 2014, ADV NEUR IN, V27. Zarada K, 2019, MAR ECOL PROG SER, V624, P117, DOI 10.3354/meps13016. Zhang JL, 2013, IEEE INT C COMPUT, P997, DOI 10.1109/CSE.2013.146. Zhang S., 2018, 2018 OCEANS MTS IEEE, P1, DOI {[}10.1109/OCEANSKOBE.2018.8558879, DOI 10.1109/OCEANSKOBE.2018.8558879]. Zhao ZX, 2014, J PHYS OCEANOGR, V44, P2763, DOI 10.1175/JPO-D-14-0040.1. Zhong M, 2020, APPL ACOUST, V166, DOI 10.1016/j.apacoust.2020.107375.}, Number-of-Cited-References = {270}, Times-Cited = {9}, Usage-Count-Last-180-days = {17}, Usage-Count-Since-2013 = {35}, Journal-ISO = {Front. Ecol. Evol.}, Doc-Delivery-Number = {ZG9RI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000760587900001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000797382100001, Author = {Jukic, Marko and Bren, Urban}, Title = {Machine Learning in Antibacterial Drug Design}, Journal = {FRONTIERS IN PHARMACOLOGY}, Year = {2022}, Volume = {13}, Month = {MAY 3}, Abstract = {Advances in computer hardware and the availability of high-performance supercomputing platforms and parallel computing, along with artificial intelligence methods are successfully complementing traditional approaches in medicinal chemistry. In particular, machine learning is gaining importance with the growth of the available data collections. One of the critical areas where this methodology can be successfully applied is in the development of new antibacterial agents. The latter is essential because of the high attrition rates in new drug discovery, both in industry and in academic research programs. Scientific involvement in this area is even more urgent as antibacterial drug resistance becomes a public health concern worldwide and pushes us increasingly into the post-antibiotic era. In this review, we focus on the latest machine learning approaches used in the discovery of new antibacterial agents and targets, covering both small molecules and antibacterial peptides. For the benefit of the reader, we summarize all applied machine learning approaches and available databases useful for the design of new antibacterial agents and address the current shortcomings.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Jukic, M; Bren, U (Corresponding Author), Univ Maribor, Fac Chem \& Chem Engn, Lab Phys Chem \& Chem Thermodynam, Maribor, Slovenia. Jukic, M; Bren, U (Corresponding Author), Univ Primorska, Fac Math, Nat Sci \& Informat Technol, Koper, Slovenia. Jukic, Marko; Bren, Urban, Univ Maribor, Fac Chem \& Chem Engn, Lab Phys Chem \& Chem Thermodynam, Maribor, Slovenia. Jukic, Marko; Bren, Urban, Univ Primorska, Fac Math, Nat Sci \& Informat Technol, Koper, Slovenia.}, DOI = {10.3389/fphar.2022.864412}, Article-Number = {864412}, EISSN = {1663-9812}, Keywords = {artificial intelligence; machine learning; computer-aided drug design (CADD); infectious diseases; antibacterial drug design; antibacterial; antibacterial target discovery; antibacterial drug resistance}, Keywords-Plus = {ANTIMICROBIAL PEPTIDES; BIG DATA; DATABASE; DISCOVERY; PREDICTION; RESOURCE; NETWORK}, Research-Areas = {Pharmacology \& Pharmacy}, Web-of-Science-Categories = {Pharmacology \& Pharmacy}, Author-Email = {marko.jukic@um.si urban.bren@um.si}, Affiliations = {University of Maribor; University of Primorska}, Funding-Acknowledgement = {Slovenian Ministry of Science and Education; Slovenian Research Agency (ARRS) program {[}P2-0046, J1-2471, J1-1715, N1-0209, P1-0403, L2-3175, J1-9186]}, Funding-Text = {This work was supported by the Slovenian Ministry of Science and Education infrastructure project grants HPC-RIVR and RI-SI-ELIXIR and by the Slovenian Research Agency (ARRS) program and project grants P2-0046, J1-2471, J1-1715, N1-0209, P1-0403, L2-3175 and J1-9186.}, Cited-References = {Alcock BP, 2020, NUCLEIC ACIDS RES, V48, pD517, DOI 10.1093/nar/gkz935. Aleksandrov A, 2019, EXPERT OPIN DRUG DIS, V14, P35, DOI 10.1080/17460441.2019.1550482. Amirkia VD, 2011, BIOINFORMATION, V5, P365, DOI 10.6026/97320630005365. Anahtar MN, 2021, J CLIN MICROBIOL, V59, DOI 10.1128/JCM.01260-20. Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI 10.1093/nar/gkh131. Bhadra P, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19752-w. Bhattarai S., 2022, MACHINE LEARNING SYS, P17, DOI {[}10.1007/978-981-16-5993-5\_2, DOI 10.1007/978-981-16-5993-5\_2]. Boone K, 2021, BMC BIOINFORMATICS, V22, DOI 10.1186/s12859-021-04156-x. Brown ED, 2016, NATURE, V529, P336, DOI 10.1038/nature17042. Burki T, 2020, LANCET DIGIT HEALTH, V2, pE226, DOI 10.1016/S2589-7500(20)30088-1. Bzdok D, 2017, NAT METHODS, V14, P1119, DOI 10.1038/nmeth.4526. Cardoso MH, 2020, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.03097. Chang CH, 2019, IEEE INT C BIOINFORM, P1856, DOI 10.1109/BIBM47256.2019.8982968. Chen LH, 2005, NUCLEIC ACIDS RES, V33, pD325, DOI 10.1093/nar/gki008. Cooper MA, 2015, NAT REV DRUG DISCOV, V14, P587, DOI 10.1038/nrd4706. Corsello SM, 2017, NAT MED, V23, P405, DOI 10.1038/nm.4306. da Silva TH, 2022, DRUG DISCOV TODAY, V27, P456, DOI 10.1016/j.drudis.2021.10.005. David L, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10111376. de Avila MB, 2018, CHEM BIOL DRUG DES, V92, P1468, DOI 10.1111/cbdd.13312. de Kraker MEA, 2016, PLOS MED, V13, DOI 10.1371/journal.pmed.1002184. Di Luca M, 2015, BIOFOULING, V31, P193, DOI 10.1080/08927014.2015.1021340. Dias T, 2019, MAR DRUGS, V17, DOI 10.3390/md17010016. Doster E, 2020, NUCLEIC ACIDS RES, V48, pD561, DOI 10.1093/nar/gkz1010. Durrant JD, 2015, CHEM BIOL DRUG DES, V85, P14, DOI 10.1111/cbdd.12423. Ejalonibu MA, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222413259. Ekins S, 2019, NAT MATER, V18, P435, DOI 10.1038/s41563-019-0338-z. Farrell LJ, 2018, J ANTIMICROB CHEMOTH, V73, P2284, DOI 10.1093/jac/dky208. Fjell CD, 2009, J MED CHEM, V52, P2006, DOI 10.1021/jm8015365. Frecer V, 2006, BIOORGAN MED CHEM, V14, P6065, DOI 10.1016/j.bmc.2006.05.005. Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074. Gogoladze G, 2014, FEMS MICROBIOL LETT, V357, P63, DOI 10.1111/1574-6968.12489. Gupta R, 2021, MOL DIVERS, V25, P1315, DOI 10.1007/s11030-021-10217-3. He S, 2021, ADV DRUG DELIVER REV, V178, DOI 10.1016/j.addr.2021.113922. Ivanenkov YA, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.00913. Jaeger S, 2018, J CHEM INF MODEL, V58, P27, DOI 10.1021/acs.jcim.7b00616. Jeon W, 2019, BIOINFORMATICS, V35, P4979, DOI 10.1093/bioinformatics/btz307. Jeong H, 2000, NATURE, V407, P651, DOI 10.1038/35036627. Jesus TF, 2019, NUCLEIC ACIDS RES, V47, pD188, DOI 10.1093/nar/gky1073. Jhong JH, 2022, NUCLEIC ACIDS RES, V50, pD460, DOI 10.1093/nar/gkab1080. Jorge P, 2019, INT J ANTIMICROB AG, V53, P598, DOI 10.1016/j.ijantimicag.2019.01.001. Jorge P, 2016, CURR BIOINFORM, V11, P523, DOI 10.2174/1574893611666160617093955. Kang XY, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0154-y. Karakoc E., 2007, SIGKDD EXPLOR NEWSL, V9, P14, DOI {[}10.1145/1294301.1294307, DOI 10.1145/1294301.1294307]. Khosravian M, 2013, PROTEIN PEPTIDE LETT, V20, P180, DOI 10.2174/092986613804725307. Korbee CJ, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02777-6. Laxminarayan R, 2020, LANCET INFECT DIS, V20, pE51, DOI 10.1016/S1473-3099(20)30003-7. Lee EY, 2018, BIOORGAN MED CHEM, V26, P2708, DOI 10.1016/j.bmc.2017.07.012. Lee EY, 2017, INTERFACE FOCUS, V7, DOI 10.1098/rsfs.2016.0153. Lee JW, 2022, BIOCHEM SOC T, V50, P241, DOI 10.1042/BST20211240. Li W.X., 2021, SCREENING ANTIBACTER. Liu B, 2009, NUCLEIC ACIDS RES, V37, pD443, DOI 10.1093/nar/gkn656. Macesic N, 2017, CURR OPIN INFECT DIS, V30, P511, DOI {[}10.1097/QCO.0000000000000406, 10.1097/qco.0000000000000406]. Maltarollo V. G., 2019, INT J QUANTITATIVE S, V4, P1, DOI DOI 10.4018/IJQSPR.2019100101. Maltarollo VG, 2019, EXPERT OPIN DRUG DIS, V14, P23, DOI 10.1080/17460441.2019.1549033. Mansbach RA, 2020, J CHEM INF MODEL, V60, P2838, DOI 10.1021/acs.jcim.0c00352. Masalha M, 2018, MOL MED REP, V18, P763, DOI 10.3892/mmr.2018.9027. Matamoros-Recio A, 2021, ACS OMEGA, V6, P6041, DOI 10.1021/acsomega.0c05590. McArthur AG, 2013, ANTIMICROB AGENTS CH, V57, P3348, DOI 10.1128/AAC.00419-13. Mendez D, 2019, NUCLEIC ACIDS RES, V47, pD930, DOI 10.1093/nar/gky1075. Motamedi F, 2022, BIOINFORMATICS, V38, P469, DOI 10.1093/bioinformatics/btab659. Muller AT, 2018, J CHEM INF MODEL, V58, P472, DOI 10.1021/acs.jcim.7b00414. Naas T, 2017, J ENZYM INHIB MED CH, V32, P917, DOI 10.1080/14756366.2017.1344235. Lara RAN, 2019, MOLECULES, V24, DOI 10.3390/molecules24071258. Ndagi U, 2020, RSC ADV, V10, P18451, DOI 10.1039/d0ra01484b. Nocedo-Mena D, 2019, J CHEM INF MODEL, V59, P1109, DOI 10.1021/acs.jcim.9b00034. Ozturk H, 2018, BIOINFORMATICS, V34, P295, DOI 10.1093/bioinformatics/bty287. Pal C, 2014, NUCLEIC ACIDS RES, V42, pD737, DOI 10.1093/nar/gkt1252. Patel L, 2020, MOLECULES, V25, DOI 10.3390/molecules25225277. Pires DEV, 2020, J CHEM INF MODEL, V60, P3450, DOI 10.1021/acs.jcim.0c00362. Pirtskhalava M, 2016, NUCLEIC ACIDS RES, V44, P6503, DOI 10.1093/nar/gkw243. Pushkaran AC, 2019, CHALL ADV COMPUT CHE, V27, P307, DOI 10.1007/978-3-030-05282-9\_10. Qureshi A, 2014, NUCLEIC ACIDS RES, V42, pD1147, DOI 10.1093/nar/gkt1191. Rajasekhar S, 2021, J COMPUT CHEM, V42, P1736, DOI 10.1002/jcc.26712. Rayan A, 2010, J CHEM INF MODEL, V50, P437, DOI 10.1021/ci9004354. Reimer LC, 2019, NUCLEIC ACIDS RES, V47, pD631, DOI 10.1093/nar/gky879. Rodrigues T, 2016, NAT CHEM, V8, P531, DOI {[}10.1038/NCHEM.2479, 10.1038/nchem.2479]. Romero-Molina S, 2019, J COMPUT CHEM, V40, P1233, DOI 10.1002/jcc.25780. Schroedl Stefan, 2019, Drug Discov Today Technol, V32-33, P9, DOI 10.1016/j.ddtec.2020.07.003. Seebah S, 2007, NUCLEIC ACIDS RES, V35, pD265, DOI 10.1093/nar/gkl866. Serafim MSM, 2020, EXPERT OPIN DRUG DIS, V15, P1165, DOI 10.1080/17460441.2020.1776696. Shi C, 2020, CHEM BIOL DRUG DES, V96, P1232, DOI 10.1111/cbdd.13708. Akondi VS, 2022, MOLECULES, V27, DOI 10.3390/molecules27030594. Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021. Suay-Garcia B, 2020, PHARMACEUTICALS-BASE, V13, DOI 10.3390/ph13120431. Szaboova A., 2012, Proceedings of the 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), P575, DOI 10.1109/BIBMW.2012.6470203. Thomas J, 2018, ACS INFECT DIS, V4, P1536, DOI 10.1021/acsinfecdis.8b00193. Tian S, 2012, MOL PHARMACEUT, V9, P2875, DOI 10.1021/mp300198d. van Heel AJ, 2018, NUCLEIC ACIDS RES, V46, pW278, DOI 10.1093/nar/gky383. Van Oort CM, 2021, J CHEM INF MODEL, V61, P2198, DOI 10.1021/acs.jcim.0c01441. Veltri D, 2018, BIOINFORMATICS, V34, P2740, DOI 10.1093/bioinformatics/bty179. Veltri D, 2017, IEEE ACM T COMPUT BI, V14, P300, DOI 10.1109/TCBB.2015.2462364. Vila J, 2020, CLIN MICROBIOL INFEC, V26, P596, DOI 10.1016/j.cmi.2019.09.015. Waghu FH, 2016, NUCLEIC ACIDS RES, V44, pD1094, DOI 10.1093/nar/gkv1051. Waghu FH, 2014, NUCLEIC ACIDS RES, V42, pD1154, DOI 10.1093/nar/gkt1157. Wang C, 2021, BIOMOLECULES, V11, DOI 10.3390/biom11030471. Wang GS, 2016, NUCLEIC ACIDS RES, V44, pD1087, DOI 10.1093/nar/gkv1278. Wani MA, 2021, MED BIOL ENG COMPUT, V59, P2397, DOI 10.1007/s11517-021-02443-6. Wishart DS, 2018, NUCLEIC ACIDS RES, V46, pD1074, DOI 10.1093/nar/gkx1037. Wu XZ, 2014, ANTIMICROB AGENTS CH, V58, P5342, DOI 10.1128/AAC.02823-14. Yang XG, 2009, J COMPUT CHEM, V30, P1202, DOI 10.1002/jcc.21148. Yates AD, 2022, NUCLEIC ACIDS RES, V50, pD996, DOI 10.1093/nar/gkab1007. Yoshida M, 2018, CHEM-US, V4, P533, DOI 10.1016/j.chempr.2018.01.005. Zhang R, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.01175. Zhang RH, 2021, NAT PROD REP, V38, P346, DOI 10.1039/d0np00043d. Zhao LL, 2020, DRUG DISCOV TODAY, V25, P1624, DOI 10.1016/j.drudis.2020.07.005. Zhu H, 2020, ANNU REV PHARMACOL, V60, P573, DOI 10.1146/annurev-pharmtox-010919-023324.}, Number-of-Cited-References = {106}, Times-Cited = {6}, Usage-Count-Last-180-days = {26}, Usage-Count-Since-2013 = {47}, Journal-ISO = {Front. Pharmacol.}, Doc-Delivery-Number = {1I7BJ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000797382100001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000603487500015, Author = {Kumar, Prashant and Kalaiarasan, Gopinath and Porter, Alexandra E. and Pinna, Alessandra and Klosowski, Michal M. and Demokritou, Philip and Chung, Kian Fan and Pain, Christopher and Arvind, D. K. and Arcucci, Rossella and Adcock, Ian M. and Dilliway, Claire}, Title = {An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments}, Journal = {SCIENCE OF THE TOTAL ENVIRONMENT}, Year = {2021}, Volume = {756}, Month = {FEB 20}, Abstract = {Particulate matter (PM) is a crucial health risk factor for respiratory and cardiovascular diseases. The smaller size fractions, <= 2.5 mu m (PM2.5; fine particles) and <= 0.1 mu m (PM0.1: ultrafine particles), show the highest bioactivity but acquiring sufficient mass for in vitro and in vivo toxicological studies is challenging. We review the suitability of available instrumentation to collect the PM mass required for these assessments. Five different microenvironments representing the diverse exposure conditions in urban environments are considered in order to establish the typical PM concentrations present. The highest concentrations of PM2.5 and PM0.1 were found near traffic (i.e. roadsides and traffic intersections), followed by indoor environments, parks and behind roadside vegetation. We identify key factors to consider when selecting sampling instrumentation. These include PM concentration on-site (low concentrations increase sampling time), nature of sampling sites (e.g. indoors; noise and space will be an issue), equipment handling and power supply. Physicochemical characterisation requires micro- to milli-gram quantities of PM and it may increase according to the processing methods (e.g. digestion or sonication). Toxicological assessments of PM involve numerous mechanisms (e.g. inflammatory processes and oxidative stress) requiring significant amounts of PM to obtain accurate results. Optimising air sampling techniques are therefore important for the appropriate collection medium/filter which have innate physical properties and the potential to interact with samples. An evaluation of methods and instrumentation used for airborne virus collection condudes that samplers operating cyclone sampling techniques (using centrifugal forces) are effective in collecting airborne viruses. We highlight that predictive modelling can help to identify pollution hotspots in an urban environment for the efficient collection of PM mass. This review provides guidance to prepare and plan efficient sampling campaigns to collect sufficient PM mass for various purposes in a reasonable timeframe. (C) 2020 The Authors. Published by Elsevier B.V.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Kumar, P (Corresponding Author), Univ Surrey, Global Ctr Clean Air Res GCARE, Dept Civil \& Environm Engn, Fac Engn \& Phys Sci, Guildford GU2 7XH, Surrey, England. Kumar, Prashant; Kalaiarasan, Gopinath, Univ Surrey, Global Ctr Clean Air Res GCARE, Dept Civil \& Environm Engn, Fac Engn \& Phys Sci, Guildford GU2 7XH, Surrey, England. Kumar, Prashant, Trinity Coll Dublin, Dept Civil Struct \& Environm Engn, Dublin, Ireland. Porter, Alexandra E.; Pinna, Alessandra; Klosowski, Michal M., Imperial Coll London, Dept Mat, London SW7 2AZ, England. Demokritou, Philip, Harvard Univ, Ctr Nanotechnol \& Nanotoxicol, Dept Environm Hlth, TH Chan Sch Publ Hlth, 665 Huntington Ave,Room 1310, Boston, MA 02115 USA. Chung, Kian Fan; Adcock, Ian M., Imperial Coll London, Natl Heart \& Lung Inst, London SW3 6LY, England. Pain, Christopher; Dilliway, Claire, Imperial Coll London, Dept Earth Sci \& Engn, London SW7 2AZ, England. Arvind, D. K., Univ Edinburgh, Sch Informat, Ctr Speckled Comp, Edinburgh EH8 9AB, Midlothian, Scotland. Arcucci, Rossella, Imperial Coll London, Dept Comp, Data Sci Inst, London SW7 2BU, England.}, DOI = {10.1016/j.scitotenv.2020.143553}, Article-Number = {143553}, ISSN = {0048-9697}, EISSN = {1879-1026}, Keywords = {Particulate matter; Ultrafine particles; Mass collection; Physicochemical characteristics; Toxicological assessments; Artificial intelligence}, Keywords-Plus = {PARTICULATE MATTER PM2.5; X-RAY-FLUORESCENCE; AIR-QUALITY; CHEMICAL-COMPOSITION; OXIDATIVE STRESS; COMPOSITION DISTRIBUTIONS; GREEN INFRASTRUCTURE; SOURCE APPORTIONMENT; HOSPITAL ADMISSIONS; PERSONAL EXPOSURES}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {P.Kumar@surrey.ac.uk}, Affiliations = {University of Surrey; Trinity College Dublin; Imperial College London; Harvard University; Harvard T.H. Chan School of Public Health; Imperial College London; Imperial College London; University of Edinburgh; Imperial College London}, ResearcherID-Numbers = {Kumar, Prashant/C-6357-2011 }, ORCID-Numbers = {Pain, Christopher/0000-0003-4194-2590 Pinna, Alessandra/0000-0002-4789-5898 Kumar, Prashant/0000-0002-2462-4411 Adcock, Ian/0000-0003-2101-8843}, Funding-Acknowledgement = {EPSRC {[}EP/T003189/1]; EPSRC {[}EP/T003189/1] Funding Source: UKRI}, Funding-Text = {This work has been supported by the EPSRC funded project, Health assessment across biological length scales for personal pollution exposure and its mitigation (INHALE; Grant No. EP/T003189/1).}, Cited-References = {Abhijith KV, 2019, ATMOS ENVIRON, V201, P132, DOI 10.1016/j.atmosenv.2018.12.036. Abhijith KV, 2017, ATMOS ENVIRON, V162, P71, DOI 10.1016/j.atmosenv.2017.05.014. Ahmed C.M., 2020, SCI TOT ENV, V706, P1. Al-Dabbous AN, 2014, ATMOS ENVIRON, V90, P113, DOI 10.1016/j.atmosenv.2014.03.040. {[}Anonymous], 1994, Ann ICRP, V24, P1. {[}Anonymous], 2009, J R SOC INTERFACE. {[}Anonymous], 2015, PLOS ONE. {[}Anonymous], 2021, REV EV HLTH ASP AIR. Arcucci R, 2019, LECT NOTES COMPUT SC, V11539, P111, DOI 10.1007/978-3-030-22747-0\_9. Arcucci R, 2019, J COMPUT PHYS, V379, P51, DOI 10.1016/j.jcp.2018.10.042. Arcucci R, 2017, J COMPUT PHYS, V335, P311, DOI 10.1016/j.jcp.2017.01.034. Asadi S, 2020, AEROSOL SCI TECH, V54, P635, DOI 10.1080/02786826.2020.1749229. Asadi S, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-38808-z. Badran G, 2020, CHEMOSPHERE, V243, DOI 10.1016/j.chemosphere.2019.125440. Barwise Y, 2020, NPJ CLIM ATMOS SCI, V3, DOI 10.1038/s41612-020-0115-3. Bedimo-Rung AL, 2005, AM J PREV MED, V28, P159, DOI 10.1016/j.amepre.2004.10.024. Bell ML, 2014, ENVIRON HEALTH PERSP, V122, P138, DOI 10.1289/ehp.1306656. Bello D, 2009, J NANOPART RES, V11, P231, DOI 10.1007/s11051-008-9499-4. Bennett WD, 2005, AIR POLLUTANTS RESP. Billet S, 2007, ENVIRON RES, V105, P212, DOI 10.1016/j.envres.2007.03.001. Booth TF, 2005, J INFECT DIS, V191, P1472, DOI 10.1086/429634. Borgie M, 2016, ATMOS RES, V180, P274, DOI 10.1016/j.atmosres.2016.06.001. Borgie M, 2015, ENVIRON RES, V136, P352, DOI 10.1016/j.envres.2014.10.010. Brack CL, 2002, ENVIRON POLLUT, V116, pS195, DOI 10.1016/S0269-7491(01)00251-2. Buonanno G, 2011, ATMOS ENVIRON, V45, P6216, DOI 10.1016/j.atmosenv.2011.07.066. Camatini MC, 2011, TOXICOL LETT, V205, pS160, DOI 10.1016/j.toxlet.2011.05.562. Campbell A, 2014, TOXICOL IN VITRO, V28, P1290, DOI 10.1016/j.tiv.2014.06.015. Canha N, 2014, ATMOS ENVIRON, V83, P21, DOI 10.1016/j.atmosenv.2013.10.061. Casanova LM, 2010, APPL ENVIRON MICROB, V76, P2712, DOI 10.1128/AEM.02291-09. Chang CL, 2013, ENVIRON SCI-PROC IMP, V15, P214, DOI 10.1039/c2em30505d. Charrier JG, 2015, ENVIRON SCI TECHNOL, V49, P9317, DOI 10.1021/acs.est.5b01606. Chatzidiakou E, 2015, INTELL BUILD INT, V7, P101, DOI 10.1080/17508975.2014.918870. Chen S, 2020, ENVIRON INT, V139, DOI 10.1016/j.envint.2020.105703. Chen S, 2019, ENVIRON INT, V131, DOI 10.1016/j.envint.2019.104943. Chen S, 2013, ENVIRON SCI TECHNOL, V47, P13813, DOI 10.1021/es403264d. Chia PY, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16670-2. Chow EJ, 2017, OPEN FORUM INFECT DI, V4, DOI 10.1093/ofid/ofx006. CHOW JC, 1993, ATMOS ENVIRON A-GEN, V27, P1185, DOI 10.1016/0960-1686(93)90245-T. Chow JC, 2007, J ENVIRON SCI HEAL A, V42, P1521, DOI 10.1080/10934520701513365. Cohen DA, 2007, AM J PUBLIC HEALTH, V97, P509, DOI 10.2105/AJPH.2005.072447. Cooper C. D., 2010, AIR POLLUT CONTROL. Corsini E, 2017, SCI TOTAL ENVIRON, V587, P223, DOI 10.1016/j.scitotenv.2017.02.125. Costabile F, 2019, ATMOS ENVIRON, V213, P444, DOI 10.1016/j.atmosenv.2019.06.023. Cui M, 2016, SCI TOTAL ENVIRON, V550, P123, DOI 10.1016/j.scitotenv.2016.01.077. Dagher Z, 2005, J APPL TOXICOL, V25, P166, DOI 10.1002/jat.1050. Das A, 2021, ENVIRON POLLUT, V268, DOI 10.1016/j.envpol.2020.115638. de Kok TMCM, 2006, MUTAT RES-REV MUTAT, V613, P103, DOI 10.1016/j.mrrev.2006.07.001. de Sousa Nuno Rufino, 2020, BIORXIV, P1. Dekati Ltd, 2011, ELPI USER MANUAL VER. Delgado-Saborit JM, 2011, ENVIRON INT, V37, P383, DOI 10.1016/j.envint.2010.10.011. Demokritou P, 2004, J AEROSOL SCI, V35, P281, DOI 10.1016/j.jaerosci.2003.09.003. Demokritou P, 2002, AEROSOL SCI TECH, V36, P1061, DOI 10.1080/02786820290092230. Deng WJ, 2006, ATMOS ENVIRON, V40, P6945, DOI 10.1016/j.atmosenv.2006.06.032. Deng XB, 2013, TOXICOL IN VITRO, V27, P1762, DOI 10.1016/j.tiv.2013.05.004. Dhand R, 2020, AM J RESP CRIT CARE, V202, P651, DOI 10.1164/rccm.202004-1263PP. Ding LC, 2009, ATMOS ENVIRON, V43, P4894, DOI 10.1016/j.atmosenv.2009.07.016. DOCKERY DW, 1994, ANNU REV PUBL HEALTH, V15, P107, DOI 10.1146/annurev.pu.15.050194.000543. Drosten C, 2003, NEW ENGL J MED, V348, P1967, DOI 10.1056/NEJMoa030747. Dur TH, 2020, J COMPUT SCI-NETH, V42, DOI 10.1016/j.jocs.2020.101110. Fabian P, 2009, INDOOR AIR, V19, P433, DOI 10.1111/j.1600-0668.2009.00609.x. Fonseca A.S., 2016, ATMOS CHEM PHYS DISC, DOI {[}10.5194/acp-2015-1016, DOI 10.5194/ACP-2015-1016]. Fotakis G, 2006, TOXICOL LETT, V160, P171, DOI 10.1016/j.toxlet.2005.07.001. Franck U, 2011, SCI TOTAL ENVIRON, V409, P4217, DOI 10.1016/j.scitotenv.2011.05.049. Fuentes-Mattei E, 2010, TOXICOL APPL PHARM, V243, P381, DOI 10.1016/j.taap.2009.12.009. Fujita EM, 2007, J AIR WASTE MANAGE, V57, P721, DOI 10.3155/1047-3289.57.6.721. Fujita EM, 2014, J AIR WASTE MANAGE, V64, P743, DOI 10.1080/10962247.2013.872708. Fujitani Y, 2012, SCI TOTAL ENVIRON, V437, P339, DOI 10.1016/j.scitotenv.2012.07.085. Gavett SH, 2003, ENVIRON HEALTH PERSP, V111, P1471, DOI 10.1289/ehp.6300. Ghio AJ, 2001, AM J RESP CRIT CARE, V164, P704, DOI 10.1164/ajrccm.164.4.2011089. Giechaskiel B, 2009, J AEROSOL SCI, V40, P639, DOI 10.1016/j.jaerosci.2009.04.008. Gregson F. K. A., 2020, CHEMRXIV, V2, P1. Gualtieri M, 2011, MUTAT RES-FUND MOL M, V713, P18, DOI 10.1016/j.mrfmmm.2011.05.011. Gurung G, 2016, SCI TOTAL ENVIRON, V548, P340, DOI 10.1016/j.scitotenv.2015.12.093. Habil M, 2015, ATMOS POLLUT RES, V6, P719, DOI 10.5094/APR.2015.080. Haig CW, 2016, J HOSP INFECT, V93, P242, DOI 10.1016/j.jhin.2016.03.017. Hamdan NM, 2018, X-RAY SPECTROM, V47, P72, DOI 10.1002/xrs.2813. Hamner L, 2020, MMWR-MORBID MORTAL W, V69, P606, DOI 10.15585/mmwr.mm6919e6. Harrison RM, 2001, ATMOS ENVIRON, V35, P3667, DOI 10.1016/S1352-2310(00)00526-4. He MY, 2018, CLIN PROTEOM, V15, DOI 10.1186/s12014-018-9185-1. Heal MR, 2012, CHEM SOC REV, V41, P6606, DOI 10.1039/c2cs35076a. HEI Review Panel on Ultrafine Particles, 2013, HEI PERSPECTIVES. Hermann JR, 2006, APPL ENVIRON MICROB, V72, P4811, DOI 10.1128/AEM.00472-06. Hinderliter PM, 2010, PART FIBRE TOXICOL, V7, DOI 10.1186/1743-8977-7-36. Hong ZY, 2017, AEROSOL AIR QUAL RES, V17, P1985, DOI 10.4209/aaqr.2016.12.0566. Hsiao WLW, 2000, MUTAT RES-GEN TOX EN, V471, P45. Huang YCT, 2003, INHAL TOXICOL, V15, P327, DOI 10.1080/08958370304460. Iijima A, 2007, ATMOS ENVIRON, V41, P4908, DOI 10.1016/j.atmosenv.2007.02.005. Islam MN, 2019, J HAZARD MATER, V379, DOI 10.1016/j.jhazmat.2019.120792. Jain S, 2020, ENVIRON POLLUT, V262, DOI 10.1016/j.envpol.2020.114337. Jan R., 2020, ENV POLLUT, V261, P1. Jarvinen A, 2014, J AEROSOL SCI, V69, P150, DOI 10.1016/j.jaerosci.2013.12.006. Jing WW, 2019, ECOTOX ENVIRON SAFE, V170, P796, DOI 10.1016/j.ecoenv.2018.12.030. Jones NR, 2020, BMJ-BRIT MED J, V370, DOI 10.1136/bmj.m3223. Kam W, 2012, ATMOS ENVIRON, V55, P90, DOI 10.1016/j.atmosenv.2012.03.028. Kappos AD, 2004, INT J HYG ENVIR HEAL, V207, P399, DOI 10.1078/1438-4639-00306. Kelly FJ, 2019, ATMOS ENVIRON, V200, P90, DOI 10.1016/j.atmosenv.2018.11.058. Kelly FJ, 2012, ATMOS ENVIRON, V60, P504, DOI 10.1016/j.atmosenv.2012.06.039. Kenny LC, 2017, AEROSOL SCI TECH, V51, P1190, DOI 10.1080/02786826.2017.1341620. Kerminen VM, 2007, ATMOS ENVIRON, V41, P1759, DOI 10.1016/j.atmosenv.2006.10.026. Kim J, 2020, J HOSP TOUR MANAG, V45, P67, DOI 10.1016/j.jhtm.2020.07.008. Kim SH, 2016, CLIN INFECT DIS, V63, P363, DOI 10.1093/cid/ciw239. Klepeis N.E., 2006, EXPOSURE ANAL, P445. Klingshirn CD, 2019, J AIR WASTE MANAGE, V69, P1003, DOI 10.1080/10962247.2019.1630025. Klockenkamper R, 1996, X-RAY SPECTROM, V25, P156, DOI 10.1002/(SICI)1097-4539(199607)25:4<156::AID-XRS154>3.0.CO;2-3. Knibbs LD, 2011, ATMOS ENVIRON, V45, P2611, DOI 10.1016/j.atmosenv.2011.02.065. Kodavanti UP, 2005, AIR POLLUTANTS RESP, P75. Krause A, 2008, J MACH LEARN RES, V9, P235. Kreyling WG, 2006, J AEROSOL MED, V19, P74, DOI 10.1089/jam.2006.19.74. Kumar P, 2019, CITY ENVIRON INTERAC, V4, DOI 10.1016/j.cacint.2020.100033. Kumar P, 2019, ENVIRON INT, V133, DOI 10.1016/j.envint.2019.105181. Kumar P, 2018, ATMOS ENVIRON, V187, P301, DOI 10.1016/j.atmosenv.2018.05.046. Kumar P, 2014, ENVIRON INT, V66, P1, DOI 10.1016/j.envint.2014.01.013. Kumar P, 2013, ATMOS ENVIRON, V67, P252, DOI 10.1016/j.atmosenv.2012.11.011. Kumar P, 2010, ATMOS ENVIRON, V44, P5035, DOI 10.1016/j.atmosenv.2010.08.016. Kurt A, 2010, EXPERT SYST APPL, V37, P7986, DOI 10.1016/j.eswa.2010.05.093. Kuuluvainen H, 2016, ATMOS ENVIRON, V136, P105, DOI 10.1016/j.atmosenv.2016.04.019. Lagler F., 2011, EUROPEAN AIR QUALITY, DOI {[}10.2788/J.325498, DOI 10.2788/J.325498]. Lai HK, 2004, ATMOS ENVIRON, V38, P6399, DOI 10.1016/j.atmosenv.2004.07.013. Lapuerta M, 2007, MEAS SCI TECHNOL, V18, P650, DOI 10.1088/0957-0233/18/3/015. Laura M, 2017, MUTAT RES-GEN TOX EN, V820, P39, DOI 10.1016/j.mrgentox.2017.06.001. Lawrence S, 2013, ATMOS ENVIRON, V77, P548, DOI 10.1016/j.atmosenv.2013.03.040. Lee SJ, 2005, J AEROSOL SCI, V36, P881, DOI 10.1016/j.jaerosci.2004.11.006. Leech JA, 2002, J EXPO ANAL ENV EPID, V12, P427, DOI 10.1038/sj.jea.7500244. Lei MT, 2019, AIR QUAL ATMOS HLTH, V12, P1049, DOI 10.1007/s11869-019-00721-9. Leni Z, 2020, CURR OPIN TOXICOL, V20-21, P1, DOI 10.1016/j.cotox.2020.02.006. Li D, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113261. Li N, 2008, FREE RADICAL BIO MED, V44, P1689, DOI 10.1016/j.freeradbiomed.2008.01.028. Li N, 2016, J ALLERGY CLIN IMMUN, V138, P386, DOI 10.1016/j.jaci.2016.02.023. Li Y, 2020, ENERG SOURCE PART A, DOI 10.1080/15567036.2020.1748766. Li ZS, 2017, SCI TOTAL ENVIRON, V586, P610, DOI 10.1016/j.scitotenv.2017.02.029. Liang CS, 2016, ENVIRON INT, V86, P150, DOI 10.1016/j.envint.2015.10.016. Liati A, 2016, COMBUST FLAME, V166, P307, DOI 10.1016/j.combustflame.2016.01.031. Lim S, 2012, ATMOS ENVIRON, V47, P407, DOI 10.1016/j.atmosenv.2011.10.043. Lin BB, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087422. Lindsley WG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015100. Ling Sean H, 2009, Int J Chron Obstruct Pulmon Dis, V4, P233. Lippmann M, 2009, CRIT REV TOXICOL, V39, P865, DOI 10.3109/10408440903300080. Liu JY, 2018, SCI TOTAL ENVIRON, V627, P211, DOI 10.1016/j.scitotenv.2018.01.218. Lotfi M, 2020, CLIN CHIM ACTA, V508, P254, DOI 10.1016/j.cca.2020.05.044. Loxham M, 2019, PART FIBRE TOXICOL, V16, DOI 10.1186/s12989-019-0296-2. Maleki H, 2019, CLEAN TECHNOL ENVIR, V21, P1341, DOI 10.1007/s10098-019-01709-w. Massey DD, 2016, BUILD ENVIRON, V106, P237, DOI 10.1016/j.buildenv.2016.06.036. Matic B, 2017, ZDRAV VARST, V56, P227, DOI 10.1515/sjph-2017-0031. Mirowsky J, 2013, INHAL TOXICOL, V25, P747, DOI 10.3109/08958378.2013.846443. Mohammed MOA, 2016, BIOMED ENVIRON SCI, V29, P66, DOI 10.3967/bes2016.007. Moller P, 2014, MUTAT RES-REV MUTAT, V762, P133, DOI 10.1016/j.mrrev.2014.09.001. Morawska L, 2013, INDOOR AIR, V23, P462, DOI 10.1111/ina.12044. Morawska L, 2020, ENVIRON INT, V142, DOI 10.1016/j.envint.2020.105832. Mukhopadhyay P, 2007, NAT PROTOC, V2, P2295, DOI 10.1038/nprot.2007.327. Nagendra S. M. S., 2005, Clean Technologies and Environmental Policy, V7, P116, DOI 10.1007/s10098-004-0267-6. Nazaroff WW, 2004, INDOOR AIR, V14, P175, DOI 10.1111/j.1600-0668.2004.00286.x. Nemmar A, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/279371. Ning Z, 2008, PART FIBRE TOXICOL, V5, DOI 10.1186/1743-8977-5-15. Niu XY, 2017, ENVIRON POLLUT, V231, P1075, DOI 10.1016/j.envpol.2017.08.099. Ozkaynak H, 2008, J EXPO SCI ENV EPID, V18, P45, DOI 10.1038/sj.jes.7500612. Oh SM, 2011, MUTAT RES-GEN TOX EN, V723, P142, DOI 10.1016/j.mrgentox.2011.04.003. Ottosen TB, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101919. Pacitto A, 2018, ENVIRON POLLUT, V232, P113, DOI 10.1016/j.envpol.2017.09.023. Pal AK, 2015, TOXICOL SCI, V146, P321, DOI 10.1093/toxsci/kfv095. Pan M, 2019, J APPL MICROBIOL, V127, P1596, DOI 10.1111/jam.14278. Pant P, 2013, ATMOS ENVIRON, V77, P78, DOI 10.1016/j.atmosenv.2013.04.028. Paoletti E, 2011, PROCEDIA ENVIRON SCI, V4, P10, DOI 10.1016/j.proenv.2011.03.002. Park M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35398-0. Patterson Benjamin, 2017, Gates Open Res, V1, P11, DOI 10.12688/gatesopenres.12758.2. Peixoto MS, 2017, CHEMOSPHERE, V188, P32, DOI 10.1016/j.chemosphere.2017.08.076. Pennanen AS, 2007, SCI TOTAL ENVIRON, V374, P297, DOI 10.1016/j.scitotenv.2007.01.002. Piotrowicz A, 2019, J ECOL ENG, V20, P27, DOI 10.12911/22998993/105329. Prasad K, 2016, ATMOS ENVIRON, V128, P246, DOI 10.1016/j.atmosenv.2016.01.007. Prudnikov ED, 1998, FRESEN J ANAL CHEM, V362, P465, DOI 10.1007/s002160051107. Rahmani AR, 2020, SCI TOTAL ENVIRON, V740, DOI 10.1016/j.scitotenv.2020.140207. Ramdhan D.H., 2020, SAF HLTH WORK. Ren F, 2020, SCI TOTAL ENVIRON, V719, DOI 10.1016/j.scitotenv.2019.135097. Reponen T, 2011, AEROSOL MEASUREMENT, P549, DOI DOI 10.1002/9781118001684.CH24. Rieger AM, 2011, JOVE-J VIS EXP, DOI 10.3791/2597. Rim D., 2013, P ASHRAE IAQ 2013, P1. Rivas B, 2017, ENVIRON INT, V101, P143, DOI {[}10.1016/j.envint2017.01.019, 10.1016/j.envint.2017.01.019]. Rivas I, 2014, ENVIRON INT, V69, P200, DOI 10.1016/j.envint.2014.04.009. Robert MA, 2007, J AIR WASTE MANAGE, V57, P1429, DOI 10.3155/1047-3289.57.12.1429. Robert MA, 2007, J AIR WASTE MANAGE, V57, P1414, DOI 10.3155/1047-3289.57.12.1414. Roper C, 2015, INHAL TOXICOL, V27, P673, DOI 10.3109/08958378.2015.1092185. Rundell KW, 2007, INHAL TOXICOL, V19, P133, DOI 10.1080/08958370601051727. Sarnat Jeremy A, 2003, Ann Ist Super Sanita, V39, P351. Satsangi PG, 2014, INT J ENVIRON SCI TE, V11, P217, DOI 10.1007/s13762-012-0173-0. Schlesinger RB, 2006, INHAL TOXICOL, V18, P95, DOI 10.1080/08958370500306016. Schunemann HJ, 2020, ANN INTERN MED, V173, P204, DOI 10.7326/M20-2306. Settimo G, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11090894. Setyawati MI, 2020, ENVIRON SCI TECHNOL, V54, P2389, DOI 10.1021/acs.est.9b06984. Shakya KM, 2017, ATMOS CHEM PHYS, V17, P6503, DOI 10.5194/acp-17-6503-2017. Shirmohammadi F, 2016, FARADAY DISCUSS, V189, P361, DOI 10.1039/c5fd00166h. Sillanpaa M, 2008, J AEROSOL SCI, V39, P335, DOI 10.1016/j.jaerosci.2007.12.001. Sinharay R, 2018, LANCET, V391, P339, DOI 10.1016/S0140-6736(17)32643-0. Slezakova K, 2019, J TOXICOL ENV HEAL A, V82, P591, DOI 10.1080/15287394.2019.1636494. Song JY, 2018, BUILD RES INF, V46, P809, DOI 10.1080/09613218.2018.1468158. Song YY, 2020, ECOTOX ENVIRON SAFE, V191, DOI 10.1016/j.ecoenv.2020.110225. Sopeyin A, 2020, BMJ GLOB HEALTH, V5, DOI 10.1136/bmjgh-2020-003522. Sotty J, 2019, ENVIRON RES, V176, DOI 10.1016/j.envres.2019.108538. Stanek LW, 2011, ATMOS ENVIRON, V45, P5655, DOI 10.1016/j.atmosenv.2011.07.023. Stone V, 2017, ENVIRON HEALTH PERSP, V125, DOI 10.1289/EHP424. Strober Warren, 2015, Curr Protoc Immunol, V111, DOI 10.1002/0471142735.ima03bs111. STURGES WT, 1989, ATMOS ENVIRON, V23, P1083, DOI 10.1016/0004-6981(89)90309-0. Sun BY, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121566. Tajnafoi G., 2020, J APPL MATH. Tan CCL, 2013, INDOOR BUILT ENVIRON, V22, P471, DOI 10.1177/1420326X12441806. Tan YQ, 2020, SCI TOTAL ENVIRON, V716, DOI 10.1016/j.scitotenv.2020.137027. Tang T, 2012, ENVIRON SCI POLLUT R, V19, P3840, DOI 10.1007/s11356-011-0647-5. Busso IT, 2020, TOXICOL RES-GER, V36, P139. Tecer LH, 2008, J TOXICOL ENV HEAL A, V71, P512, DOI 10.1080/15287390801907459. Tellier R, 2006, EMERG INFECT DIS, V12, P1657, DOI 10.3201/eid1211.060426. Thorpe AJ, 2007, ATMOS ENVIRON, V41, P8007, DOI 10.1016/j.atmosenv.2007.07.006. Tiwari A, 2020, SCI TOTAL ENVIRON, V723, DOI 10.1016/j.scitotenv.2020.138078. Tiwari A, 2019, SCI TOTAL ENVIRON, V672, P410, DOI 10.1016/j.scitotenv.2019.03.350. Tobler A., 2020, SCI TOTAL ENV, V745, P1. Tseng CC, 2006, AEROSOL SCI TECH, V40, P683, DOI 10.1080/02786820600796590. ULRICH RS, 1991, J ENVIRON PSYCHOL, V11, P201, DOI 10.1016/S0272-4944(05)80184-7. US-EPA, 2017, QUALITY ASSURANCE HD. van Meerloo J, 2011, METHODS MOL BIOL, V731, P237, DOI 10.1007/978-1-61779-080-5\_20. Verreault D, 2008, MICROBIOL MOL BIOL R, V72, P413, DOI 10.1128/MMBR.00002-08. Voliotis A, 2017, ENVIRON SCI POLLUT R, V24, P3027, DOI 10.1007/s11356-016-8047-5. Wang DB, 2013, AEROSOL SCI TECH, V47, P231, DOI 10.1080/02786826.2012.744446. Wang YG, 2008, J AIR WASTE MANAGE, V58, P1449, DOI 10.3155/1047-3289.58.11.1449. Warnes SL, 2015, MBIO, V6, DOI 10.1128/mBio.01697-15. Wayne O.R., 1998, SCI AM, P85. Weggeberg H., 2019, ENV CHEM ECOTOXICOL, V1, P26, DOI DOI 10.1016/J.ENCECO.2019.08.001. Wei TT, 2018, ENVIRON TOXICOL PHAR, V60, P195, DOI 10.1016/j.etap.2018.04.004. Weijers EP, 2004, ATMOS ENVIRON, V38, P2993, DOI 10.1016/j.atmosenv.2004.02.045. Weitekamp CA, 2020, INHAL TOXICOL, V32, P1, DOI 10.1080/08958378.2020.1725187. White JK, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11060639. WHO, 2009, INFECT CONTROL. Wiegman CH, 2014, CLIN SCI, V126, P425, DOI 10.1042/CS20130039. Wu WD, 2018, J ALLERGY CLIN IMMUN, V141, P833, DOI 10.1016/j.jaci.2017.12.981. Xu XC, 2020, J IMMUNOL RES, V2020, DOI 10.1155/2020/8254909. Yan J, 2018, P NATL ACAD SCI USA, V115, P1081, DOI 10.1073/pnas.1716561115. Yang Y, 2019, ENVIRON POLLUT, V247, P874, DOI 10.1016/j.envpol.2018.12.060. Ye GZ, 2019, SCI TOTAL ENVIRON, V691, P874, DOI 10.1016/j.scitotenv.2019.07.192. Yuan Y, 2019, SCI TOTAL ENVIRON, V678, P301, DOI 10.1016/j.scitotenv.2019.04.431. Zhang ZH, 2018, FUEL, V215, P161, DOI 10.1016/j.fuel.2017.10.097. Zhao Y, 2014, ANN AGR ENV MED, V21, P464, DOI 10.5604/12321966.1120585. Zhou J, 2021, CLIN INFECT DIS, V73, pE1870, DOI 10.1093/cid/ciaa905. Zhou Y, 2020, ENVIRON POLLUT, V265, DOI 10.1016/j.envpol.2020.114825. Zhu D., 2018, BIG DATA COGN COMPUT, V2, P5, DOI DOI 10.3390/BDCC2010005. Zhu YF, 2002, ATMOS ENVIRON, V36, P4323, DOI 10.1016/S1352-2310(02)00354-0.}, Number-of-Cited-References = {242}, Times-Cited = {27}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {66}, Journal-ISO = {Sci. Total Environ.}, Doc-Delivery-Number = {PM0FY}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000603487500015}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000358218600040, Author = {Jordan, M. I. and Mitchell, T. M.}, Title = {Machine learning: Trends, perspectives, and prospects}, Journal = {SCIENCE}, Year = {2015}, Volume = {349}, Number = {6245, SI}, Pages = {255-260}, Month = {JUL 17}, Abstract = {Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.}, Publisher = {AMER ASSOC ADVANCEMENT SCIENCE}, Address = {1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA}, Type = {Review}, Language = {English}, Affiliation = {Jordan, MI (Corresponding Author), Univ Calif Berkeley, Dept Elect Engn \& Comp Sci, Dept Stat, Berkeley, CA 94720 USA. Jordan, M. I., Univ Calif Berkeley, Dept Elect Engn \& Comp Sci, Dept Stat, Berkeley, CA 94720 USA. Mitchell, T. M., Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA.}, DOI = {10.1126/science.aaa8415}, ISSN = {0036-8075}, EISSN = {1095-9203}, Keywords-Plus = {NEURAL-NETWORKS}, Research-Areas = {Science \& Technology - Other Topics}, Web-of-Science-Categories = {Multidisciplinary Sciences}, Author-Email = {jordan@cs.berkeley.edu tom.mitchell@cs.cmu.edu}, Affiliations = {University of California System; University of California Berkeley; Carnegie Mellon University}, ResearcherID-Numbers = {Jordan, Michael I/C-5253-2013 }, ORCID-Numbers = {Jordan, Michael/0000-0001-8935-817X}, Cited-References = {{[}Anonymous], 2009, ELEMENTS STAT LEARNI. Balcan M. -F., 2012, P 29 C COMP LEARN TH. Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006. Berthet Q, 2013, ANN STAT, V41, P1780, DOI 10.1214/13-AOS1127. Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826. Blum A., 2013, J ACM, V20. Boyd S., 2010, FDN TRENDS MACH LEAR, V3, P1, DOI DOI 10.1561/2200000016. Chandrasekaran V, 2013, P NATL ACAD SCI USA, V110, pE1181, DOI 10.1073/pnas.1302293110. Decatur SE, 2000, SIAM J COMPUT, V29, P854, DOI 10.1137/S0097539797325648. Duchi JC, 2014, J ACM, V61, DOI 10.1145/2666468. Dwork C, 2006, LECT NOTES COMPUT SC, V3876, P265, DOI 10.1007/11681878\_14. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597. Kleiner A, 2014, J R STAT SOC B, V76, P795, DOI 10.1111/rssb.12050. Mahoney MW, 2011, FOUND TRENDS MACH LE, V3, P123, DOI 10.1561/2200000035. Mitchell T., 2015, P 25 C ART INT AAAI. Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Romero A., 2015, INT C LEARNING REPRE, P1097. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Schultz W, 1997, SCIENCE, V275, P1593, DOI 10.1126/science.275.5306.1593. Shalev-Shwartz S., 2012, P 15 C ART INT STAT. Sra S, 2012, OPTIMIZATION FOR MACHINE LEARNING, P1. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. Taylor ME, 2009, J MACH LEARN RES, V10, P1633. Thrun S., 1998, LEARNING TO LEARN. VALIANT LG, 1984, COMMUN ACM, V27, P1134, DOI 10.1145/1968.1972. Wehbe L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112575. Xu K, 2015, PR MACH LEARN RES, V37, P2048. Yaylali E., 2011, ENCY OPERATIONS RES. Zhang YG, 2014, EURASIP J ADV SIG PR, DOI 10.1186/1687-6180-2014-17.}, Number-of-Cited-References = {31}, Times-Cited = {2751}, Usage-Count-Last-180-days = {421}, Usage-Count-Since-2013 = {3376}, Journal-ISO = {Science}, Doc-Delivery-Number = {CN1ZB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000358218600040}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000394541200005, Author = {Tian, Yong-hong and Chen, Xi-lin and Xiong, Hong-kai and Li, Hong-liang and Dai, Li-rong and Chen, Jing and Xing, Jun-liang and Chen, Jing and Wu, Xi-hong and Hu, Wei-min and Hu, Yu and Huang, Tie-jun and Gao, Wen}, Title = {Towards human-like and transhuman perception in AI 2.0: a review}, Journal = {FRONTIERS OF INFORMATION TECHNOLOGY \& ELECTRONIC ENGINEERING}, Year = {2017}, Volume = {18}, Number = {1}, Pages = {58-67}, Month = {JAN}, Abstract = {Perception is the interaction interface between an intelligent system and the real world. Without sophisticated and flexible perceptual capabilities, it is impossible to create advanced artificial intelligence (AI) systems. For the next-generation AI, called `AI 2.0', one of the most significant features will be that AI is empowered with intelligent perceptual capabilities, which can simulate human brain's mechanisms and are likely to surpass human brain in terms of performance. In this paper, we briefly review the state-of-the-art advances across different areas of perception, including visual perception, auditory perception, speech perception, and perceptual information processing and learning engines. On this basis, we envision several R\&D trends in intelligent perception for the forthcoming era of AI 2.0, including: (1) human-like and transhuman active vision; (2) auditory perception and computation in an actual auditory setting; (3) speech perception and computation in a natural interaction setting; (4) autonomous learning of perceptual information; (5) large-scale perceptual information processing and learning platforms; and (6) urban omnidirectional intelligent perception and reasoning engines. We believe these research directions should be highlighted in the future plans for AI 2.0.}, Publisher = {ZHEJIANG UNIV PRESS}, Address = {Xixi Campus, Zhejiang University, No. 148 Tianmushan Road, Hangzhou, Zhejiang, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Huang, TJ (Corresponding Author), Peking Univ, Sch Elect Engn \& Comp Sci, Beijing 100871, Peoples R China. Tian, Yong-hong; Chen, Jing; Wu, Xi-hong; Huang, Tie-jun; Gao, Wen, Peking Univ, Sch Elect Engn \& Comp Sci, Beijing 100871, Peoples R China. Chen, Xi-lin, Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China. Xiong, Hong-kai, Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China. Li, Hong-liang, Univ Elect Sci \& Technol China, Sch Elect Engn, Chengdu 611730, Peoples R China. Dai, Li-rong; Hu, Yu, Univ Sci \& Technol China, Dept Elect Engn \& Informat Sci, Hefei 230027, Peoples R China. Hu, Wei-min, Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China. Chen, Jing, Beijing Inst Technol, Sch Optoelect, Beijing 100081, Peoples R China.}, DOI = {10.1631/FITEE.1601804}, ISSN = {2095-9184}, EISSN = {2095-9230}, Keywords = {Intelligent perception; Active vision; Auditory perception; Speech perception; Autonomous learning}, Keywords-Plus = {SPEECH RECOGNITION; PARAMETERS}, Research-Areas = {Computer Science; Engineering}, Web-of-Science-Categories = {Computer Science, Information Systems; Computer Science, Software Engineering; Engineering, Electrical \& Electronic}, Author-Email = {yhtian@pku.edu.cn tjhuang@pku.edu.cn}, Affiliations = {Peking University; Chinese Academy of Sciences; Institute of Computing Technology, CAS; Shanghai Jiao Tong University; University of Electronic Science \& Technology of China; Chinese Academy of Sciences; University of Science \& Technology of China, CAS; Chinese Academy of Sciences; Institute of Automation, CAS; Beijing Institute of Technology}, ResearcherID-Numbers = {Xing, Junliang/HGE-9630-2022 }, ORCID-Numbers = {Xing, Junliang/0000-0001-6801-0510 Xiong, Hongkai/0000-0003-4552-0029}, Funding-Acknowledgement = {Strategic Consulting Research Project of Chinese Academy of Engineering {[}2016-ZD-04-03]}, Funding-Text = {Project supported by the Strategic Consulting Research Project of Chinese Academy of Engineering (No. 2016-ZD-04-03)}, Cited-References = {Amodei D., 2015, ARXIV151202595. {[}Anonymous], 2016, ARXIV. Bear M.F., 2001, NEUROSCIENCE, P208. Bruna J, 2013, IEEE T PATTERN ANAL, V35, P1872, DOI 10.1109/TPAMI.2012.230. Candes EJ, 2006, IEEE T INFORM THEORY, V52, P489, DOI 10.1109/TIT.2005.862083. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Duarte MF, 2008, IEEE SIGNAL PROC MAG, V25, P83, DOI 10.1109/MSP.2007.914730. Han JG, 2013, IEEE T CYBERNETICS, V43, P1318, DOI 10.1109/TCYB.2013.2265378. Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597. Hochreiter Sepp, 1997, NEURAL COMPUT, V9, P1735, DOI 10.1162/neco.1997.9.8.1735. Hou Y.Z., 2014, IND SCI TRIB, V13, P94, DOI DOI 10.3969/J.ISSN.1673-5641.2014.24.046. Jiang H., 2014, APSIPA T SIGNAL INFO, V3, P1, DOI DOI 10.1109/PCS.2013.6737678. Kadambi A, 2013, ACM T GRAPHIC, V32, DOI 10.1145/2508363.2508428. Kale P.V., 2014, INT J SCI RES, V3, P1150. Kendrick KM, 1998, APPL ANIM BEHAV SCI, V57, P213, DOI 10.1016/S0168-1591(98)00098-7. King S, 2014, LOQUENS, V1, DOI 10.3989/loquens.2014.006. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Lacey G., 2016, DEEP LEARNING FPGAS. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Li T, 2015, IEEE T CIRC SYST VID, V25, P367, DOI 10.1109/TCSVT.2014.2358029. Ling ZH, 2015, IEEE SIGNAL PROC MAG, V32, P35, DOI 10.1109/MSP.2014.2359987. Lippmann RP, 1997, SPEECH COMMUN, V22, P1, DOI 10.1016/S0167-6393(97)00021-6. Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914. Mahendran A, 2015, PROC CVPR IEEE, P5188, DOI 10.1109/CVPR.2015.7299155. Makhoul J, 2016, INTERSPEECH, P1. Mattys SL, 2012, LANG COGNITIVE PROC, V27, P953, DOI 10.1080/01690965.2012.705006. McMackin L., 2012, SPIE, V8353. Mountcastle V.B., 1978, MINDFUL BRAIN CORTIC, P7. Musialski P, 2013, COMPUT GRAPH FORUM, V32, P146, DOI 10.1111/cgf.12077. Ngiam J., 2011, ICML, P689, DOI DOI 10.5555/3104482.3104569. Niwa K, 2016, INT CONF ACOUST SPEE, P435, DOI 10.1109/ICASSP.2016.7471712. Oord AVD, 2016, ARXIV160903499. Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018. Pratt G, 2013, IEEE ROBOT AUTOM MAG, V20, P10, DOI 10.1109/MRA.2013.2255424. Priano F.H., 2016, P 17 INT DIG GOV RES, P465, DOI DOI 10.1145/2912160.2912187. Raina R., 2007, LEARNING, P759, DOI DOI 10.1145/1273496.1273592. Robinson E. A., 1967, GEOPHYS PROSPECT, V15, P311, DOI {[}10.1111/j.1365-2478.1967.tb01793.x, DOI 10.1111/J.1365-2478.1967.TB01793.X]. ROY R, 1989, IEEE T ACOUST SPEECH, V37, P984, DOI 10.1109/29.32276. Salakhutdinov R., 2009, ARTIF INTELL, P448. Saon G, 2015, 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, P3140. Seide F., 2011, INTERSPEECH 2011 C I, P437. Soltau Hagen, 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P5572, DOI 10.1109/ICASSP.2014.6854669. Song T., 2016, P IEEE INFOCOM 2016, P1. Suzuki L. C. S. R., 2015, THESIS. Tadano R, 2015, IEEE I CONF COMP VIS, P3595, DOI 10.1109/ICCV.2015.410. Tokuda K, 2013, P IEEE, V101, P1234, DOI 10.1109/JPROC.2013.2251852. TURK M, 1991, J COGNITIVE NEUROSCI, V3, P71, DOI 10.1162/jocn.1991.3.1.71. Vesel`y K., 2013, INTERSPEECH. Wang WF, 2016, INTERSPEECH, P2243, DOI 10.21437/Interspeech.2016-134. Xiong W, 2017, IEEE-ACM T AUDIO SPE, V25, P2410, DOI 10.1109/TASLP.2017.2756440. Zhang JP, 2011, IEEE T INTELL TRANSP, V12, P1624, DOI 10.1109/TITS.2011.2158001.}, Number-of-Cited-References = {51}, Times-Cited = {22}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {51}, Journal-ISO = {Front. Inform. Technol. Elect. Eng.}, Doc-Delivery-Number = {EL3TC}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000394541200005}, OA = {Bronze}, DA = {2023-04-22}, } @article{ WOS:000434005700036, Author = {Reynolds, Jonathan and Ahmad, Muhammad Waseem and Rezgui, Yacine}, Title = {Holistic modelling techniques for the operational optimisation of multi-vector energy systems}, Journal = {ENERGY AND BUILDINGS}, Year = {2018}, Volume = {169}, Pages = {397-416}, Month = {JUN 15}, Abstract = {Modern district energy systems are highly complex with several controllable and uncontrollable variables. To effectively manage a multi-vector district requires a holistic perspective in terms of both modelling and optimisation. Current district optimisation strategies found in the literature often consider very simple models for energy generation and conversion technologies. To improve upon the state of the art, more realistic and accurate models must be produced whilst remaining computationally and mathematically simple enough to calculate within short periods. Therefore, this paper provides a comprehensive review of modelling techniques for common district energy conversion technologies including Power-to Gas. In addition, dynamic building modelling techniques are reviewed, as buildings must be considered active and flexible participants in a district energy system. In both cases, a specific focus is placed on artificial intelligence-based models suitable for implementation in the real-time operational optimisation of multi-vector systems. Future research directions identified from this review include the need to integrate simplified models of energy conversion units, energy distribution networks, dynamic building models and energy storage into a holistic district optimisation framework. Finally, a future district energy management solution is proposed. It leverages semantic modelling to allow interoperability of heterogeneous data sources to provide added value inferencing from contextually enriched information. (C) 2018 The Authors. Published by Elsevier B.V.}, Publisher = {ELSEVIER SCIENCE SA}, Address = {PO BOX 564, 1001 LAUSANNE, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Reynolds, J (Corresponding Author), Cardiff Univ, Sch Engn, BRE Ctr Sustainable Engn, Cardiff CF24 3AA, S Glam, Wales. Reynolds, Jonathan; Ahmad, Muhammad Waseem; Rezgui, Yacine, Cardiff Univ, Sch Engn, BRE Ctr Sustainable Engn, Cardiff CF24 3AA, S Glam, Wales.}, DOI = {10.1016/j.enbuild.2018.03.065}, ISSN = {0378-7788}, EISSN = {1872-6178}, Keywords = {Energy modelling; Multi-vector energy systems; Power-to-Gas; Building energy modelling; Urban energy systems; Energy management; Optimisation}, Keywords-Plus = {POWER-TO-GAS; ARTIFICIAL NEURAL-NETWORKS; TERM WIND-SPEED; SMALL-SCALE CHP; OF-THE-ART; PREDICTIVE CONTROL; HEAT-PUMP; PERFORMANCE PREDICTION; SIMULATION PROGRAMS; ELECTRICITY SYSTEM}, Research-Areas = {Construction \& Building Technology; Energy \& Fuels; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Energy \& Fuels; Engineering, Civil}, Author-Email = {ReynoldsJ8@Cardiff.ac.uk AhmadM3@Cardiff.ac.uk RezguiY@Cardiff.ac.uk}, Affiliations = {Cardiff University}, ResearcherID-Numbers = {Ahmad, Muhammad Waseem/AAL-9468-2021 Rezgui, Yacine/ABE-6712-2020 }, ORCID-Numbers = {Rezgui, Yacine/0000-0002-5711-8400 Ahmad, Muhammad Waseem/0000-0002-7269-4369}, Funding-Acknowledgement = {EPSRC (Engineering and Physical Sciences Research Council); BRE (Building Research Establishment); European Commission {[}723562, 731125]}, Funding-Text = {The authors would like to acknowledge the financial support of EPSRC (Engineering and Physical Sciences Research Council) and BRE (Building Research Establishment) as well as the European Commission as part of the Horizon2020 THERMOSS (Project Id: 723562) and PENTAGON (Project Id: 731125) projects.}, Cited-References = {Afram A, 2015, APPL ENERG, V137, P134, DOI 10.1016/j.apenergy.2014.10.026. Ahmad, 2013, ADV CONTROL STRATEGI. Ahmad M. W., 2016, IAQ 2016 DEFINING IN. Ahmad MW, 2017, ENERG BUILDINGS, V147, P77, DOI 10.1016/j.enbuild.2017.04.038. Ahmad MW, 2016, BUILD SIMUL-CHINA, V9, P359, DOI 10.1007/s12273-016-0285-4. Ahmad MW, 2016, ENERG BUILDINGS, V120, P85, DOI 10.1016/j.enbuild.2016.03.059. Ahmad MW, 2013, ENERG BUILDINGS, V63, P138, DOI 10.1016/j.enbuild.2013.03.055. Allegrini J, 2015, RENEW SUST ENERG REV, V52, P1391, DOI 10.1016/j.rser.2015.07.123. Arnold M., 2009, P POW EN SOC GEN M, P1, DOI DOI 10.1109/PES.2009.5275230. Arnold M., 2010, PROC IEEE PES GEN M, P1. Ascione F, 2016, ENERG BUILDINGS, V111, P131, DOI 10.1016/j.enbuild.2015.11.033. Atam E., 2015, IEEE T CONTR SYST T, V24, DOI {[}10.1109/TCST.2015.2445851.1-1, DOI 10.1109/TCST.2015.2445851.1-1]. Atam E, 2016, RENEW SUST ENERG REV, V54, P1653, DOI 10.1016/j.rser.2015.10.007. Atthajariyakul S, 2005, ENERG CONVERS MANAGE, V46, P2553, DOI 10.1016/j.enconman.2004.12.007. Bacher P, 2011, ENERG BUILDINGS, V43, P1511, DOI 10.1016/j.enbuild.2011.02.005. Bagnasco A, 2015, ENERG BUILDINGS, V103, P261, DOI 10.1016/j.enbuild.2015.05.056. Bahrami S., 2015, IEEE T SMART GRID, V7, DOI {[}10.1109/TSG.2015.2464374.1-1, DOI 10.1109/TSG.2015.2464374.1-1]. Bai JB, 2014, ENERG CONVERS MANAGE, V79, P294, DOI 10.1016/j.enconman.2013.12.041. Banos R, 2011, RENEW SUST ENERG REV, V15, P1753, DOI 10.1016/j.rser.2010.12.008. Baumann C., 2013, EC 823 APPL ECONOMET, P1. Beausoleil-Morrison I., 2008, EXPT SIMULATION BASE. Beausoleil-Morrison I, 2006, HVAC\&R RES, V12, P641, DOI 10.1080/10789669.2006.10391199. Beausoleil-Morrison I, 2010, J POWER SOURCES, V195, P1416, DOI 10.1016/j.jpowsour.2009.09.013. Bensmann B, 2016, APPL ENERG, V167, P107, DOI 10.1016/j.apenergy.2016.01.038. Bensmann B, 2013, ELECTROCHIM ACTA, V110, P570, DOI 10.1016/j.electacta.2013.05.102. Berthou T, 2014, ENERG BUILDINGS, V74, P91, DOI 10.1016/j.enbuild.2014.01.038. Best RE, 2015, APPL ENERG, V159, P161, DOI 10.1016/j.apenergy.2015.08.076. Blackmore A, 2016, PROCEEDINGS OF THE ASME POWER CONFERENCE, 2016. Bracale A, 2013, ENERGIES, V6, P733, DOI 10.3390/en6020733. Bujak J, 2008, ENERGY, V33, P1779, DOI 10.1016/j.energy.2008.08.004. Cadenas E, 2009, RENEW ENERG, V34, P274, DOI 10.1016/j.renene.2008.03.014. Catalao JPS, 2011, RENEW ENERG, V36, P1245, DOI 10.1016/j.renene.2010.09.016. Chae YT, 2016, ENERG BUILDINGS, V111, P184, DOI 10.1016/j.enbuild.2015.11.045. Chaudhary G, 2016, APPL ENERG, V182, P115, DOI 10.1016/j.apenergy.2016.08.073. Clegg S, 2015, IEEE T SUSTAIN ENERG, V6, P1234, DOI 10.1109/TSTE.2015.2424885. Coakley D, 2014, RENEW SUST ENERG REV, V37, P123, DOI 10.1016/j.rser.2014.05.007. Connolly D., 2009, REV COMPUTER TOOLS A, DOI {[}10.1016/j.apenergy.2009.09.026, DOI 10.1016/J.APENERGY.2009.09.026]. Corberan J. M., 2011, QUASISTEADY STATE MA, DOI {[}10.1016/j.enbuild.2010.08.017, DOI 10.1016/J.ENBUILD.2010.08.017]. de Boer HS, 2014, ENERGY, V72, P360, DOI 10.1016/j.energy.2014.05.047. De Coninck R, 2016, J BUILD PERFORM SIMU, V9, P288, DOI 10.1080/19401493.2015.1046933. Dowson M, 2012, ENERG BUILDINGS, V49, P173, DOI 10.1016/j.enbuild.2012.02.007. Duffie JA, 2003, SOLAR ENG THERMAL PR, V116, DOI {[}10.1115/1.2930068, DOI 10.1115/1.2930068]. Durisch W, 2007, SOL ENERG MAT SOL C, V91, P79, DOI 10.1016/j.solmat.2006.05.011. Esen H, 2008, INT J REFRIG, V31, P65, DOI 10.1016/j.ijrefrig.2007.06.007. Fan C, 2017, APPL ENERG, V195, P222, DOI 10.1016/j.apenergy.2017.03.064. Fannou JLC, 2014, ENERG BUILDINGS, V81, P381, DOI 10.1016/j.enbuild.2014.06.040. Ferguson A, 2009, J BUILD PERFORM SIMU, V2, P1, DOI 10.1080/19401490802588424. Ferreira PM, 2008, IEEE IJCNN, P3582, DOI 10.1109/IJCNN.2008.4634310. Ferreira P.M., 2012, 2012 INT JOINT C NEU, DOI {[}10.1109/IJCNN.2012.6252365, DOI 10.1109/IJCNN.2012.6252365]. Foley AM, 2012, RENEW ENERG, V37, P1, DOI 10.1016/j.renene.2011.05.033. Foucquier A, 2013, RENEW SUST ENERG REV, V23, P272, DOI 10.1016/j.rser.2013.03.004. Gaglia AG, 2017, RENEW ENERG, V101, P236, DOI 10.1016/j.renene.2016.08.051. Gang WJ, 2013, APPL ENERG, V112, P1146, DOI 10.1016/j.apenergy.2012.12.031. Geidl M, 2007, IEEE T POWER SYST, V22, P145, DOI 10.1109/TPWRS.2006.888988. Gensler A, 2016, SYST MAN CYB SMC 201. Godefroy J, 2007, APPL THERM ENG, V27, P68, DOI 10.1016/j.applthermaleng.2006.04.029. Golles M, 2014, CONTROL ENG PRACT, V22, P94, DOI 10.1016/j.conengprac.2013.09.012. Gotz M, 2016, RENEW ENERG, V85, P1371, DOI 10.1016/j.renene.2015.07.066. Gopisetty S., 2014, GRAND RENEWABLE ENER, P4. Gu W, 2010, 2010 IEEE PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION: SMART SOLUTIONS FOR A CHANGING WORLD. Gu W, 2014, INT J ELEC POWER, V54, P26, DOI 10.1016/j.ijepes.2013.06.028. Guan XH, 2010, IEEE T SMART GRID, V1, P243, DOI 10.1109/TSG.2010.2083705. Guandalini G, 2014, P ASME TURB EXP 2014, V2015, P117, DOI {[}10.1016/j.apenergy.2015.02.005, DOI 10.1016/J.APENERGY.2015.02.055]. Haller M., 2009, 11 INT IBPSA C, P732. Hamou S, 2014, ENRGY PROCED, V50, P553, DOI 10.1016/j.egypro.2014.06.067. Heo Y, 2012, ENERG BUILDINGS, V47, P550, DOI 10.1016/j.enbuild.2011.12.029. Hiremath RB, 2007, RENEW SUST ENERG REV, V11, P729, DOI 10.1016/j.rser.2005.07.005. Jentsch M, 2014, ENRGY PROCED, V46, P254, DOI 10.1016/j.egypro.2014.01.180. Kalogirou SA, 2014, RENEW ENERG, V63, P90, DOI 10.1016/j.renene.2013.08.049. Kalogirou SA, 2009, ADV BUILD ENERGY RES, V3, P83, DOI 10.3763/aber.2009.0304. Kaneko T, 2007, 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS APPLICATIONS TO POWER SYSTEMS, VOLS 1 AND 2, P43, DOI 10.1109/isap.2007.4441657. Karim MA, 2014, RENEW ENERG, V67, P192, DOI 10.1016/j.renene.2013.11.027. Keirstead J, 2012, RENEW SUST ENERG REV, V16, P3847, DOI 10.1016/j.rser.2012.02.047. Kharb RK, 2014, RENEW SUST ENERG REV, V33, P602, DOI 10.1016/j.rser.2014.02.014. Krarti M, 2003, J SOL ENERG-T ASME, V125, P331, DOI 10.1115/1.1592186. Kusiak A, 2009, IEEE T ENERGY CONVER, V24, P125, DOI 10.1109/TEC.2008.2006552. Kuster C, 2017, SUSTAIN CITIES SOC, V35, P257, DOI 10.1016/j.scs.2017.08.009. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Lee YM, 2015, ENRGY PROCED, V78, P2106, DOI 10.1016/j.egypro.2015.11.253. Li XW, 2014, RENEW SUST ENERG REV, V37, P517, DOI 10.1016/j.rser.2014.05.056. Li Y, 2011, FRONT ENERGY, V5, P181, DOI 10.1007/s11708-011-0149-7. Lund H, 2010, ENERGY, V35, P1381, DOI 10.1016/j.energy.2009.11.023. Luo ZY, 2014, INT J HEAT MASS TRAN, V75, P262, DOI 10.1016/j.ijheatmasstransfer.2014.03.072. Lydia M, 2014, RENEW SUST ENERG REV, V30, P452, DOI 10.1016/j.rser.2013.10.030. Lydia M, 2013, IEEE T SUSTAIN ENERG, V4, P827, DOI 10.1109/TSTE.2013.2247641. Ma J., 2011, INNOVATIVE SMART GRI, P1, DOI {[}10.1109/ISGT.2011.5759140, DOI 10.1109/ISGT.2011.5759140]. Ma L, 2009, RENEW SUST ENERG REV, V13, P915, DOI 10.1016/j.rser.2008.02.002. Ma T., 2014, SOLAR PHOTOVOLTAIC S, DOI {[}10.1016/j.rser.2014.04.057, DOI 10.1016/J.RSER.2014.04.057]. Ma T, 2014, SOL ENERGY, V100, P31, DOI 10.1016/j.solener.2013.12.003. Makaire D., 2010, 32 TLM IEA EN CONS E, P1. Marino DL, 2016, IEEE IND ELEC, P7046, DOI 10.1109/IECON.2016.7793413. Maroufmashat A, 2015, ENERGY, V93, P2546, DOI 10.1016/j.energy.2015.10.079. McKenna E, 2016, APPL ENERG, V165, P445, DOI 10.1016/j.apenergy.2015.12.089. Mechaqrane A, 2004, NEURAL COMPUT APPL, V13, P32, DOI 10.1007/s00521-004-0401-8. Mellit A, 2010, ENERG CONVERS MANAGE, V51, P2431, DOI 10.1016/j.enconman.2010.05.007. Men ZX, 2016, RENEW ENERG, V87, P203, DOI 10.1016/j.renene.2015.10.014. Meybodi MA, 2011, J ENG GAS TURB POWER, V133, DOI 10.1115/1.4003670. Mocanu E, 2016, SUSTAIN ENERGY GRIDS, V6, P91, DOI 10.1016/j.segan.2016.02.005. Mohandes MA, 2004, RENEW ENERG, V29, P939, DOI 10.1016/j.renene.2003.11.009. Monetti V, 2015, ENRGY PROCED, V78, P2971, DOI 10.1016/j.egypro.2015.11.693. Morii H., 2009, P TRANSM DISTR C EXP, P1, DOI DOI 10.1109/TD-ASIA.2009.5356831. Motte F, 2013, RENEW ENERG, V49, P1, DOI 10.1016/j.renene.2012.04.049. Mourshed M, 2015, ENRGY PROCED, V75, P1132, DOI 10.1016/j.egypro.2015.07.531. Mustafaraj G, 2014, APPL ENERG, V130, P72, DOI 10.1016/j.apenergy.2014.05.019. Niemi R, 2012, RENEW ENERG, V48, P524, DOI 10.1016/j.renene.2012.05.017. Notton G, 2013, ENRGY PROCED, V42, P43, DOI 10.1016/j.egypro.2013.11.004. Oldewurtel F, 2012, ENERG BUILDINGS, V45, P15, DOI 10.1016/j.enbuild.2011.09.022. Olivares DE, 2015, IEEE T SMART GRID, V6, P2681, DOI 10.1109/TSG.2015.2469631. Omu A, 2013, ENERG POLICY, V61, P249, DOI 10.1016/j.enpol.2013.05.009. Orehounig K, 2015, APPL ENERG, V154, P277, DOI 10.1016/j.apenergy.2015.04.114. Papantoniou S, 2015, ENERG BUILDINGS, V98, P45, DOI 10.1016/j.enbuild.2014.10.083. Parisio A, 2015, IEEE INT CON AUTO SC, P7, DOI 10.1109/CoASE.2015.7294033. Patel H, 2008, IEEE T ENERGY CONVER, V23, P302, DOI 10.1109/TEC.2007.914308. Petrocelli D, 2014, J PHYS CONF SER, V547, DOI 10.1088/1742-6596/547/1/012017. Privara S, 2011, ENERG BUILDINGS, V43, P564, DOI 10.1016/j.enbuild.2010.10.022. Qadrdan M, 2015, INT J HYDROGEN ENERG, V40, P5763, DOI 10.1016/j.ijhydene.2015.03.004. Quan H, 2014, IEEE T NEUR NET LEAR, V25, P303, DOI 10.1109/TNNLS.2013.2276053. Raftery P, 2011, ENERG BUILDINGS, V43, P2356, DOI 10.1016/j.enbuild.2011.05.020. Rajh B, 2016, ENERG CONVERS MANAGE, V125, P230, DOI 10.1016/j.enconman.2016.02.036. Reddy T. A., 2006, TECHNICAL REPORT. Reddy TA, 2007, HVAC\&R RES, V13, P221, DOI 10.1080/10789669.2007.10390952. Reddy TA, 2007, HVAC\&R RES, V13, P243, DOI 10.1080/10789669.2007.10390953. Ren HB, 2010, APPL ENERG, V87, P1001, DOI 10.1016/j.apenergy.2009.09.023. Reynders G, 2014, ENERG BUILDINGS, V82, P263, DOI 10.1016/j.enbuild.2014.07.025. Reynolds J, 2018, ENERGY, V151, P729, DOI 10.1016/j.energy.2018.03.113. Reynolds J, 2017, INT ICE CONF ENG, P704. Reynolds J, 2017, SUSTAIN CITIES SOC, V35, P816, DOI 10.1016/j.scs.2017.05.012. ROYER S, 2014, IFAC PAPERSONLINE, V47, P10850, DOI DOI 10.3182/20140824-6-ZA-1003.01519. Rusinowski H, 2010, ENERGY, V35, P1107, DOI 10.1016/j.energy.2009.06.004. Ryu S, 2017, ENERGIES, V10, DOI 10.3390/en10010003. Sandels C, 2015, ENERG BUILDINGS, V108, P279, DOI 10.1016/j.enbuild.2015.08.052. Savola T, 2005, APPL THERM ENG, V25, P1219, DOI 10.1016/j.applthermaleng.2004.08.009. Schiebahn S, 2015, INT J HYDROGEN ENERG, V40, P4285, DOI 10.1016/j.ijhydene.2015.01.123. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Sharafi M, 2014, INT J ENERG RES, V38, P1949, DOI 10.1002/er.3202. Sheikhi A, 2015, IEEE T SMART GRID, V6, P675, DOI 10.1109/TSG.2014.2377020. Siroky J, 2011, APPL ENERG, V88, P3079, DOI 10.1016/j.apenergy.2011.03.009. Staino A, 2016, ENERG BUILDINGS, V128, P713, DOI 10.1016/j.enbuild.2016.07.009. Stoyanov L, 2017, 2017 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES, DRIVES AND POWER SYSTEMS (ELMA), P91, DOI 10.1109/ELMA.2017.7955408. Sun WJ, 2015, APPL THERM ENG, V87, P586, DOI 10.1016/j.applthermaleng.2015.04.082. Tang P., 2011, P INT WORKSHOP COMPU, P486, DOI 10.1061/41182(416)60. Tang PB, 2010, AUTOMAT CONSTR, V19, P829, DOI 10.1016/j.autcon.2010.06.007. Tongdan Jin, 2010, 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), P745, DOI 10.1109/PMAPS.2010.5528405. Villalva MG, 2009, IEEE T POWER ELECTR, V24, P1198, DOI 10.1109/TPEL.2009.2013862. Virtuani A, 2015, SOL ENERGY, V120, P439, DOI 10.1016/j.solener.2015.07.045. Wang H, 2015, J NANOMATER, V2015, DOI 10.1155/2015/529138. Wang HZ, 2017, APPL ENERG, V188, P56, DOI 10.1016/j.apenergy.2016.11.111. Weber C, 2011, ENERGY, V36, P1292, DOI 10.1016/j.energy.2010.11.014. Welch R.L., 2009, INT JOINT C NEUR NET, P3335, DOI DOI 10.1109/IJCNN.2009.5179034. Wetter M., 2008, P SIMBUILD 3 NAT C I, P69. Wouters C, 2015, ENERGY, V85, P30, DOI 10.1016/j.energy.2015.03.051. Xiong XH, 2013, AUTOMAT CONSTR, V31, P325, DOI 10.1016/j.autcon.2012.10.006. Yaici W, 2016, RENEW ENERG, V86, P302, DOI 10.1016/j.renene.2015.08.028. Yap WK, 2015, RENEW ENERG, V78, P42, DOI 10.1016/j.renene.2014.12.065. Yuce B, 2014, ENERG BUILDINGS, V80, P45, DOI 10.1016/j.enbuild.2014.04.052. Zhang N, 2002, ENERG CONVERS MANAGE, V43, P1323, DOI 10.1016/S0196-8904(02)00018-3. Zhang YT, 2013, CHIN CONTR CONF, P2402. Zhao HX, 2012, RENEW SUST ENERG REV, V16, P3586, DOI 10.1016/j.rser.2012.02.049. Zhou Q, 2008, INT J ENERG RES, V32, P1418, DOI 10.1002/er.1458.}, Number-of-Cited-References = {159}, Times-Cited = {23}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {22}, Journal-ISO = {Energy Build.}, Doc-Delivery-Number = {GH9RD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000434005700036}, OA = {hybrid, Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000674591100001, Author = {Raita, Yoshihiko and Camargo, Carlos A. and Liang, Liming and Hasegawa, Kohei}, Title = {Big Data, Data Science, and Causal Inference: A Primer for Clinicians}, Journal = {FRONTIERS IN MEDICINE}, Year = {2021}, Volume = {8}, Month = {JUL 6}, Abstract = {Clinicians handle a growing amount of clinical, biometric, and biomarker data. In this ``big data{''} era, there is an emerging faith that the answer to all clinical and scientific questions reside in ``big data{''} and that data will transform medicine into precision medicine. However, data by themselves are useless. It is the algorithms encoding causal reasoning and domain (e.g., clinical and biological) knowledge that prove transformative. The recent introduction of (health) data science presents an opportunity to re-think this data-centric view. For example, while precision medicine seeks to provide the right prevention and treatment strategy to the right patients at the right time, its realization cannot be achieved by algorithms that operate exclusively in data-driven prediction modes, as do most machine learning algorithms. Better understanding of data science and its tasks is vital to interpret findings and translate new discoveries into clinical practice. In this review, we first discuss the principles and major tasks of data science by organizing it into three defining tasks: (1) association and prediction, (2) intervention, and (3) counterfactual causal inference. Second, we review commonly-used data science tools with examples in the medical literature. Lastly, we outline current challenges and future directions in the fields of medicine, elaborating on how data science can enhance clinical effectiveness and inform medical practice. As machine learning algorithms become ubiquitous tools to handle quantitatively ``big data,{''} their integration with causal reasoning and domain knowledge is instrumental to qualitatively transform medicine, which will, in turn, improve health outcomes of patients.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Raita, Y (Corresponding Author), Harvard Med Sch, Massachusetts Gen Hosp, Dept Emergency Med, Boston, MA 02115 USA. Raita, Yoshihiko; Camargo, Carlos A.; Liang, Liming; Hasegawa, Kohei, Harvard Med Sch, Massachusetts Gen Hosp, Dept Emergency Med, Boston, MA 02115 USA. Camargo, Carlos A., Massachusetts Gen Hosp, Harvard Med Sch, Div Rheumatol Allergy \& Immunol, Dept Med, Boston, MA USA. Camargo, Carlos A.; Liang, Liming; Hasegawa, Kohei, Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA. Liang, Liming; Hasegawa, Kohei, Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA.}, DOI = {10.3389/fmed.2021.678047}, Article-Number = {678047}, EISSN = {2296-858X}, Keywords = {big data; data science; causal inference; the ladder of causation; machine learning}, Keywords-Plus = {RESPIRATORY SYNCYTIAL VIRUS; BRONCHIOLITIS; CHILDREN; RISK; PREDNISOLONE; ASSOCIATION; MEDICINE; EFFICACY; ASTHMA}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {yraita1@mgh.harvard.edu}, Affiliations = {Harvard University; Harvard Medical School; Massachusetts General Hospital; Harvard University; Harvard Medical School; Massachusetts General Hospital; Harvard University; Harvard T.H. Chan School of Public Health; Harvard University; Harvard T.H. Chan School of Public Health}, ResearcherID-Numbers = {Camargo, Carlos A./C-2145-2008}, ORCID-Numbers = {Camargo, Carlos A./0000-0002-5071-7654}, Funding-Acknowledgement = {National Institutes of Health (Bethesda, MD) {[}R01 AI-127507, R01 AI-134940, R01 AI-137091, R01 AI-148338, UG3/UH3 OD-023253]}, Funding-Text = {This work was supported by grants (R01 AI-127507, R01 AI-134940, R01 AI-137091, R01 AI-148338, and UG3/UH3 OD-023253) from the National Institutes of Health (Bethesda, MD). The funding organization was not involved in the conception, preparation or approval of the manuscript, or decision to submit the manuscript for publication.}, Cited-References = {{[}Anonymous], GINA MAIN REP GLOBA. Ashley EA, 2016, NAT REV GENET, V17, P507, DOI 10.1038/nrg.2016.86. Atreya MR, 2019, CURR OPIN PEDIATR, V31, P322, DOI 10.1097/MOP.0000000000000753. Baum A, 2017, LANCET DIABETES ENDO, V5, P808, DOI 10.1016/S2213-8587(17)30176-6. Camargo CA, 1999, ARCH INTERN MED, V159, P2582, DOI 10.1001/archinte.159.21.2582. Castro-Rodriguez JA, 2010, J ALLERGY CLIN IMMUN, V126, P212, DOI 10.1016/j.jaci.2010.06.032. Cloutier MM, 2020, J ALLERGY CLIN IMMUN, V146, P1217, DOI 10.1016/j.jaci.2020.10.003. Davies NM, 2018, BMJ-BRIT MED J, V362, DOI 10.1136/bmj.k601. Donoho D, 2017, J COMPUT GRAPH STAT, V26, P745, DOI 10.1080/10618600.2017.1384734. Donovan BM, 2020, CLIN INFECT DIS, V70, P1658, DOI 10.1093/cid/ciz448. Doshi-Velez F, 2014, PEDIATRICS, V133, pE54, DOI 10.1542/peds.2013-0819. Dumas O, 2019, J ALLERGY CLIN IMMUN, V143, P1371, DOI 10.1016/j.jaci.2018.08.043. Dumas O, 2016, THORAX, V71, P712, DOI 10.1136/thoraxjnl-2016-208535. Fisher R. A., 1946, Statistical methods for research workers.. Folkersen L, 2020, NAT METAB, V2, P1135, DOI 10.1038/s42255-020-00287-2. Fujiogi M, 2019, PEDIATRICS, V144, DOI 10.1542/peds.2019-2614. GAIL M, 1985, BIOMETRICS, V41, P361, DOI 10.2307/2530862. Gauderman WJ, 2015, NEW ENGL J MED, V372, P905, DOI 10.1056/NEJMoa1414123. Goldstein BA, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.0004. Hankinson RJ., 2003, CAUSE EXPLANATION AN. Hasegawa K, 2016, EXPERT REV RESP MED, V10, P891, DOI 10.1080/17476348.2016.1190647. Hasegawa K, 2014, EXPERT REV ANTI-INFE, V12, P817, DOI 10.1586/14787210.2014.906901. Hernan MA, 2020, CAUSAL INFERENCE. Hernan MA., 2019, CHANCE, V32, P42, DOI DOI 10.1080/09332480.2019.1579578. Hernan MA, 2018, AM J PUBLIC HEALTH, V108, P616, DOI 10.2105/AJPH.2018.304337. Hernan MA, 2013, ANN INTERN MED, V159, P560, DOI 10.7326/0003-4819-159-8-201310150-00709. Hernandez-Diaz S, 2006, AM J EPIDEMIOL, V164, P1115, DOI 10.1093/aje/kwj275. Hume D., 2000, ENQUIRY HUMAN UNDERS, V3. Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751. James G, 2013, INTRO STAT LEARNING, V2nd. Jartti T, 2007, PEDIAT ALLERG IMM-UK, V18, P326, DOI 10.1111/j.1399-3038.2007.00512.x. Joffe MM, 1999, AM J EPIDEMIOL, V150, P327. Junod SW, FDA CLIN DRUG TRIALS. Kleinbaum DG, 2013, APPL REGRESSION ANAL. Marra F, 2009, PEDIATRICS, V123, P1003, DOI 10.1542/peds.2008-1146. MCCONNOCHIE KM, 1986, AM J DIS CHILD, V140, P806, DOI 10.1001/archpedi.1986.02140220088039. Oommen A, 2003, LANCET, V362, P1433, DOI 10.1016/S0140-6736(03)14685-5. Panickar J, 2009, NEW ENGL J MED, V360, P329, DOI 10.1056/NEJMoa0804897. Pearl J, 2011, ECONOMET THEOR. Pearl J., 2018, NEW SCI CAUSE EFFECT. Pearl J, 2019, COMMUN ACM, V62, P54, DOI 10.1145/3241036. Pearl J, 2016, J CAUSAL INFERENCE, V4, DOI 10.1515/jci-2016-0021. Piters WAAD, 2016, AM J RESP CRIT CARE, V194, P1104, DOI 10.1164/rccm.201602-0220OC. Raita Y, 2021, J ALLERGY CLIN IMMUN, V147, P2108, DOI 10.1016/j.jaci.2020.11.002. Ralston SL, 2014, PEDIATRICS, V134, pE1474, DOI 10.1542/peds.2014-2742. Scarpa J, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.0005. Schuler MS, 2017, AM J EPIDEMIOL, V185, P65, DOI 10.1093/aje/kww165. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. Stewart CJ, 2019, PEDIAT ALLERG IMM-UK, V30, P848, DOI 10.1111/pai.13101. Stewart CJ, 2018, J INFECT DIS, V217, P1160, DOI 10.1093/infdis/jix680. Sun BB, 2018, NATURE, V558, P73, DOI 10.1038/s41586-018-0175-2. Toivonen L., 2021, CLIN INFECT DIS, V72, P1546, DOI {[}DOI 10.1093/cid/ciaa262, 10.1093/cid/ciaa262]. Toivonen L, 2020, PEDIATRICS, V146, DOI 10.1542/peds.2020-0421. Toivonen L, 2019, J ALLERGY CLIN IMMUN, V143, P1925, DOI 10.1016/j.jaci.2018.12.1004. Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7. Turi KN, 2018, AM J RESP CRIT CARE, V198, P1064, DOI 10.1164/rccm.201711-2348OC. van der Laan MJ, 2007, STAT APPL GENET MOL, V6, DOI 10.2202/1544-6115.1309. VanderWeele TJ, 2016, ANNU REV PUBL HEALTH, V37, P17, DOI 10.1146/annurev-publhealth-032315-021402. Vuillermin P, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005311.pub2. Wager S, 2018, J AM STAT ASSOC, V113, P1228, DOI 10.1080/01621459.2017.1319839. Zhu ZZ, 2021, J ALLERGY CLIN IMMUN, V147, P796, DOI 10.1016/j.jaci.2020.07.004. Zhu ZZ, 2020, J ALLERGY CLIN IMMUN, V145, P537, DOI 10.1016/j.jaci.2019.09.035. Zhu ZZ, 2019, EUR RESPIR J, V54, DOI 10.1183/13993003.01507-2019.}, Number-of-Cited-References = {63}, Times-Cited = {8}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {28}, Journal-ISO = {Front. Med.}, Doc-Delivery-Number = {TL1CF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000674591100001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000794463500001, Author = {Giuffrida, Nadia and Fajardo-Calderin, Jenny and Masegosa, Antonio D. and Werner, Frank and Steudter, Margarete and Pilla, Francesco}, Title = {Optimization and Machine Learning Applied to Last-Mile Logistics: A Review}, Journal = {SUSTAINABILITY}, Year = {2022}, Volume = {14}, Number = {9}, Month = {MAY}, Abstract = {The growth in e-commerce that our society has faced in recent years is changing the view companies have on last-mile logistics, due to its increasing impact on the whole supply chain. New technologies are raising users' expectations with the need to develop customized delivery experiences; moreover, increasing pressure on supply chains has also created additional challenges for suppliers. At the same time, this phenomenon generates an increase in the impact on the liveability of our cities, due to traffic congestion, the occupation of public spaces, and the environmental and acoustic pollution linked to urban logistics. In this context, the optimization of last-mile deliveries is an imperative not only for companies with parcels that need to be delivered in the urban areas, but also for public administrations that want to guarantee a good quality of life for citizens. In recent years, many scholars have focused on the study of logistics optimization techniques and, in particular, the last mile. In addition to traditional optimization techniques, linked to the disciplines of operations research, the recent advances in the use of sensors and IoT, and the consequent large amount of data that derives from it, are pushing towards a greater use of big data and analytics techniques-such as machine learning and artificial intelligence-which are also in this sector. Based on this premise, the aim of this work is to provide an overview of the most recent literature advances related to last-mile delivery optimization techniques; this is to be used as a baseline for scholars who intend to explore new approaches and techniques in the study of last-mile logistics optimization. A bibliometric analysis and a critical review were conducted in order to highlight the main studied problems, the algorithms used, and the case studies. The results from the analysis allow the studies to be clustered into traditional optimization models, machine learning approaches, and mixed methods. The main research gaps and limitations of the current literature are assessed in order to identify unaddressed challenges and provide research suggestions for future approaches.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Giuffrida, N (Corresponding Author), Univ Coll Dublin, Sch Architecture Planning \& Environm Policy, Richview Campus, Dublin D04 V1W8, Ireland. Giuffrida, Nadia; Pilla, Francesco, Univ Coll Dublin, Sch Architecture Planning \& Environm Policy, Richview Campus, Dublin D04 V1W8, Ireland. Fajardo-Calderin, Jenny; Masegosa, Antonio D., Univ Deusto, Fac Engn, DeustoTech, Av Univ 24, Bilbao 48007, Spain. Werner, Frank; Steudter, Margarete, Software AG, Altenkesseler Str 17, D-66115 Saarbrucken, Germany.}, DOI = {10.3390/su14095329}, Article-Number = {5329}, EISSN = {2071-1050}, Keywords = {city logistics; freight transport; vehicle routing problem}, Keywords-Plus = {VEHICLE-ROUTING PROBLEM; VARIABLE NEIGHBORHOOD SEARCH; TIME WINDOWS; SIMULTANEOUS PICKUP; ANOMALY DETECTION; META-HEURISTICS; ALGORITHM; DELIVERY; VRP}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {nadia.giuffrida@ucd.ie fajardo.jenny@deusto.es ad.masegosa@deusto.es frank.werner@softwareag.com margarete.steudter@softwareag.com francesco.pilla@ucd.ie}, Affiliations = {University College Dublin; University of Deusto}, ResearcherID-Numbers = {Masegosa, Antonio D./E-3302-2012 Giuffrida, Nadia/V-6875-2018}, ORCID-Numbers = {Pilla, Francesco/0000-0002-1535-1239 Masegosa, Antonio D./0000-0001-7759-9072 Fajardo Calderin, Jenny/0000-0002-9355-3610 Giuffrida, Nadia/0000-0002-4446-8292}, Funding-Acknowledgement = {European Commission {[}861,540]}, Funding-Text = {This article was partially funded by the European Commission through the SENATOR project (H2020MG-2018-2020, RIA, project n. 861,540).}, Cited-References = {Adewumi AO, 2018, INT J SYST ASSUR ENG, V9, P155, DOI 10.1007/s13198-016-0493-4. Albadrani A, 2021, 2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), P790, DOI 10.1109/CCWC51732.2021.9376171. Alcaraz JJ, 2019, TRANSPORT RES E-LOG, V129, P263, DOI 10.1016/j.tre.2019.08.004. Ancele Y, 2021, TRANSPORT RES C-EMER, V128, DOI 10.1016/j.trc.2021.103077. Andelmin J, 2017, TRANSPORT SCI, V51, P1288, DOI 10.1287/trsc.2016.0734. {[}Anonymous], 2021, DHL LOGISTICS TREND, V5th. Avci M, 2016, EXPERT SYST APPL, V53, P160, DOI 10.1016/j.eswa.2016.01.038. Baldacci R, 2012, EUR J OPER RES, V218, P1, DOI 10.1016/j.ejor.2011.07.037. Baller AC, 2020, TRANSPORT SCI, V54, P1034, DOI 10.1287/trsc.2019.0940. Berhan E, 2014, J INF KNOWL MANAG, V13, DOI 10.1142/S0219649214500221. Bernardo M, 2018, J ADV TRANSPORT, DOI 10.1155/2018/9848104. Braekers K, 2016, COMPUT IND ENG, V99, P300, DOI 10.1016/j.cie.2015.12.007. Bricher D, 2020, J COMPUT INF SCI ENG, V20, DOI 10.1115/1.4046332. Caceres-Cruz J, 2015, ACM COMPUT SURV, V47, DOI 10.1145/2666003. Caggiani L., 2021, TRANSP RES PROC, V52, P75, DOI {[}10.1016/j.trpro.2021.01.010, DOI 10.1016/J.TRPRO.2021.01.010]. Calabro G., 2022, TRANSP RES PROCEDIA, V62, P155, DOI DOI 10.1016/J.TRPRO.2022.02.020. Cattaruzza D, 2016, TRANSPORT SCI, V50, P676, DOI 10.1287/trsc.2015.0608. Cattaruzza D, 2014, EUR J OPER RES, V236, P833, DOI 10.1016/j.ejor.2013.06.012. Chu JC, 2017, NETW SPAT ECON, V17, P41, DOI 10.1007/s11067-015-9317-3. Costa L, 2019, TRANSPORT SCI, V53, P946, DOI 10.1287/trsc.2018.0878. EC, E COMM STAT IND. El Ouadi J, 2020, I CONF LOGISTICS, DOI 10.1109/LOGISTIQUA49782.2020.9353901. Elshaer R, 2020, COMPUT IND ENG, V140, DOI 10.1016/j.cie.2019.106242. Eshtehadi R, 2020, COMPUT OPER RES, V115, DOI 10.1016/j.cor.2019.104859. Euchi J, 2015, SWARM EVOL COMPUT, V21, P41, DOI 10.1016/j.swevo.2014.12.003. Feng T, 2015, EUR J TRANSP INFRAST, V15, P662. Ganji M, 2020, J CLEAN PROD, V259, DOI 10.1016/j.jclepro.2020.120824. Gao MJ, 2009, WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, P793, DOI 10.1109/WKDD.2009.211. Ghilas V, 2016, COMPUT OPER RES, V72, P12, DOI 10.1016/j.cor.2016.01.018. Goel RK, 2020, INTELL DAT CENT SYST, P157, DOI 10.1016/B978-0-12-815715-2.00011-7. Golden B, 2008, OPER RES COMPUT SCI, V43, pV. Grabenschweiger J, 2021, CENT EUR J OPER RES, V29, P113, DOI 10.1007/s10100-020-00725-2. Grangier P, 2016, EUR J OPER RES, V254, P80, DOI 10.1016/j.ejor.2016.03.040. Gu WJ, 2019, COMPUT OPER RES, V112, DOI 10.1016/j.cor.2019.07.019. Guermazi Y, 2020, COMM COM INF SC, V1323, P320, DOI 10.1007/978-3-030-65965-3\_21. Gutierrez-Rodriguez AE, 2019, EXPERT SYST APPL, V118, P470, DOI 10.1016/j.eswa.2018.10.036. Hassanzadeh A, 2017, APPL SOFT COMPUT, V58, P307, DOI 10.1016/j.asoc.2017.05.010. Hess A, 2021, TRANSPORT RES E-LOG, V145, DOI 10.1016/j.tre.2020.102147. Hosseinabadi AAR, 2019, IEEE ACCESS, V7, P175454, DOI 10.1109/ACCESS.2019.2957722. Interreg Europe Sustainable Urban Logistics, POL BRIEF POL LEARN. Jabir E, 2017, TRANSPORT RES D-TR E, V57, P422, DOI 10.1016/j.trd.2017.09.003. Jozefowiez N, 2008, EUR J OPER RES, V189, P293, DOI 10.1016/j.ejor.2007.05.055. Kheirkhahzadeh M, 2009, IEEE C EVOL COMPUTAT, P1791, DOI 10.1109/CEC.2009.4983158. Kiba-Janiak M, 2021, SUSTAIN CITIES SOC, V71, DOI 10.1016/j.scs.2021.102984. Knoll D, 2016, PROC CIRP, V52, P145, DOI 10.1016/j.procir.2016.07.078. Kretzschmar J, 2016, LECT NOTES COMPUT SC, V9714, P175, DOI 10.1007/978-3-319-40973-3\_17. Kumar VS, 2014, PROCEDIA ENGINEER, V97, P2176, DOI 10.1016/j.proeng.2014.12.461. Lagos C, 2018, IEEE LAT AM T, V16, P1732, DOI 10.1109/TLA.2018.8444393. Lahyani R, 2015, EUR J OPER RES, V241, P1, DOI 10.1016/j.ejor.2014.07.048. Lickert H, 2021, PROCEDIA CIRP, V96, P272, DOI DOI 10.1016/J.PROCIR.2021.01.086. Lin N, 2019, IEEE ACCESS, V7, P86102, DOI 10.1109/ACCESS.2019.2925831. Lin SW, 2009, EXPERT SYST APPL, V36, P1505, DOI 10.1016/j.eswa.2007.11.060. Liu SC, 2016, INT J ADV MANUF TECH, V85, P2345, DOI 10.1007/s00170-015-8081-3. Marcucci E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410623. Mavrovouniotis M, 2015, INFORM SCIENCES, V294, P456, DOI 10.1016/j.ins.2014.10.002. Mor A, 2020, 4OR-Q J OPER RES, V18, P129, DOI 10.1007/s10288-020-00433-2. Okulewicz M, 2019, SWARM EVOL COMPUT, V48, P44, DOI 10.1016/j.swevo.2019.03.008. Orenstein I, 2019, EURO J TRANSP LOGIST, V8, P683, DOI 10.1007/s13676-019-00144-7. Oyola J, 2018, EURO J TRANSP LOGIST, V7, P193, DOI 10.1007/s13676-016-0100-5. Oyola J, 2017, EURO J TRANSP LOGIST, V6, P349, DOI 10.1007/s13676-016-0099-7. Perboli G, 2018, IET INTELL TRANSP SY, V12, P262, DOI 10.1049/iet-its.2017.0357. Pillac V, 2013, EUR J OPER RES, V225, P1, DOI 10.1016/j.ejor.2012.08.015. Psaraftis HN, 2016, NETWORKS, V67, P3, DOI 10.1002/net.21628. Qin GY, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16040576. Rosen O., 2012, P 2012 AM CONTROL C, p1117 1122. Sarikan SS, 2018, PROCEDIA COMPUT SCI, V140, P64, DOI 10.1016/j.procs.2018.10.293. Savic M, 2021, IEEE ACCESS, V9, P59406, DOI 10.1109/ACCESS.2021.3072916. SENATOR, 2021, D2 1 STAT ART OPT MA. Simeonova L, 2018, EXPERT SYST APPL, V114, P183, DOI 10.1016/j.eswa.2018.07.034. Sindhwani V, 2020, IEEE INT CONF ROBOT, P186, DOI 10.1109/ICRA40945.2020.9197074. Sivaramkumar V, 2018, INT J ADV MANUF TECH, V98, P1287, DOI 10.1007/s00170-018-2346-6. Sumalee A, 2011, TRANSPORT RES C-EMER, V19, P338, DOI 10.1016/j.trc.2010.05.018. Tamayo S., 2020, TRANSPORT RES PROCED, V46, P220, DOI DOI 10.1016/J.TRPRO.2020.03.184. Tian ZG, 2021, INT J PROD RES, V59, P2229, DOI 10.1080/00207543.2020.1809733. van Eck NJ, 2011, ISSI NEWSLETTER. Vidal T, 2015, COMPUT OPER RES, V58, P87, DOI 10.1016/j.cor.2014.10.019. Wang JH, 2020, IEEE T SYST MAN CY-S, V50, P4732, DOI 10.1109/TSMC.2018.2861879. Wang JH, 2016, IEEE T CYBERNETICS, V46, P582, DOI 10.1109/TCYB.2015.2409837. Wojtusiak J, 2012, COMPUT MATH APPL, V64, P3658, DOI 10.1016/j.camwa.2012.01.079. Yan XY, 2019, IEEE ACCESS, V7, P77208, DOI 10.1109/ACCESS.2019.2919963. Zhang HZ, 2019, INFORM SCIENCES, V490, P166, DOI 10.1016/j.ins.2019.03.070. Zhao MJ, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0238443. Zhao SY, 2020, PROC CVPR IEEE, P6277, DOI 10.1109/CVPR42600.2020.00631.}, Number-of-Cited-References = {83}, Times-Cited = {5}, Usage-Count-Last-180-days = {29}, Usage-Count-Since-2013 = {58}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {1E4LZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000794463500001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000781297500001, Author = {Rosario, Alberico Travassos and Dias, Joana Carmo}, Title = {Sustainability and the Digital Transition: A Literature Review}, Journal = {SUSTAINABILITY}, Year = {2022}, Volume = {14}, Number = {7}, Month = {APR}, Abstract = {The digital transition processes have demonstrated an enormous capacity to develop and implement sustainable solutions, which allow solving several problems such as poverty, high rates of species extinction and lack of equal opportunity. However, little attention is paid to the connection between the digital transition and sustainability. Thus, a systematic bibliometric literature review was developed to fill this knowledge gap and demonstrate the potential contributions of the digital transition to environmental, economic, and social sustainability aspects. In environmental sustainability, the digital transition involves the application of technologies such as Artificial Intelligence (AI), big data analytics, Internet of Things (IoT), and mobile technologies that are used to develop and implement sustainability solutions in areas such as sustainable urban development, sustainable production, and pollution control. In economic sustainability, emerging digital technologies can drive transformation into a more sustainable circular economy, the digital sharing economy, and establish sustainable manufacturing and infrastructure design. In the digital transition to social sustainability, the studies analyzed demonstrate the need for multidimensional policy perspectives to address the current digital divide. For effective management of the digital transition that achieves sustainability goals, the study discusses alternative approaches that include innovation through experimentation and dynamic and sustainable advantages achievable through temporary benefits.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Dias, JC (Corresponding Author), Univ Europeia, Ctr Invest Org Mercados \& Gestao Ind COMEGI, P-1200649 Lisbon, Portugal. Rosario, Alberico Travassos, Univ Europeia, Res Unit Governance Competitiveness \& Publ Polici, P-1200649 Lisbon, Portugal. Dias, Joana Carmo, Univ Europeia, Ctr Invest Org Mercados \& Gestao Ind COMEGI, P-1200649 Lisbon, Portugal.}, DOI = {10.3390/su14074072}, Article-Number = {4072}, EISSN = {2071-1050}, Keywords = {sustainability; digital transition; sustainable development; systematic bibliometric literature review (LRSB)}, Keywords-Plus = {TECHNOLOGIES}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {alberico@ua.pt joana.carmo.dias@universidadeeuropeia.pt}, Affiliations = {Universidade Europeia; Universidade Europeia}, ResearcherID-Numbers = {Rosário, Albérico/AAT-7696-2020 }, ORCID-Numbers = {Rosário, Albérico/0000-0003-4793-4110 Carmo Dias, Joana/0000-0001-5900-2121}, Funding-Acknowledgement = {FCT-Fundacao para a Ciencia e a Tecnologia, I.P. {[}UIDB/04005/2020]}, Funding-Text = {This research is supported by national funding's of FCT-Fundacao para a Ciencia e a Tecnologia, I.P., in the project << UIDB/04005/2020 >>.}, Cited-References = {Salas-Zapata WA, 2019, SUSTAIN DEV, V27, P153, DOI 10.1002/sd.1885. Arcelay I, 2021, ENERGIES, V14, DOI 10.3390/en14092609. Barranquero A, 2021, REVESCO-REV ESTUD CO, DOI 10.5209/REVE.71863. Bellandi M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132313052. Bibri S.E., 2016, P 2 NORW BIG DAT S N, V1818, P4. Bibri S. E., 2017, J BIG DATA-GER, V4, P1, DOI {[}10.1186/s40537-017-0091-6, DOI 10.1186/S40537-017-0091-6]. Birat JP, 2021, MATER TECHNIQUE-FR, V108, DOI 10.1051/mattech/2021005. Cawley A, 2019, JOURNALISM STUD, V20, P1028, DOI 10.1080/1461670X.2018.1481348. Clini P, 2021, SCIRES-IT, V11, P1, DOI 10.2423/i22394303v11n1p1. Costa J, 2021, J THEOR APPL EL COMM, V16, P3043, DOI 10.3390/jtaer16070166. Costa J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12198112. Demartini M, 2019, PROCEDIA MANUF, V33, P264, DOI 10.1016/j.promfg.2019.04.032. Diener F, 2020, INT J FINANC STUD, V8, DOI 10.3390/ijfs8010016. Dodgson JE, 2021, J HUM LACT, V37, P27, DOI 10.1177/0890334420977815. Eizaguirre A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082303. El Hilali W, 2020, INT J INOV SCI, V12, P52, DOI 10.1108/IJIS-08-2019-0083. Feroz AK, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13031530. Fischer J, 2019, PEOPLE NAT, V1, P115, DOI 10.1002/pan3.13. Fraga-Lamas P, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21175745. Garcia-Muina F, 2021, J CLEAN PROD, V327, DOI 10.1016/j.jclepro.2021.129439. Gerlitz L, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084386. Gibbes C, 2020, ENVIRON DEV SUSTAIN, V22, P447, DOI 10.1007/s10668-018-0209-9. Grimal L., 2021, P DES SOC GOTH SWED, V1, P1471, DOI {[}10.1017/pds.2021.408, DOI 10.1017/PDS.2021.408]. Hallin A, 2021, BUS STRATEG ENVIRON, V30, P1948, DOI 10.1002/bse.2726. Hewitt R.J., 2020, GLOB TRANSIT, V2, P138, DOI DOI 10.1016/J.GLT.2020.07.003. Avila-Gutierrez MJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12051889. Joyce A, 2016, J CLEAN PROD, V135, P1474, DOI 10.1016/j.jclepro.2016.06.067. Lahiani M., 2020, IOP Conference Series: Earth and Environmental Science, V588, DOI 10.1088/1755-1315/588/4/042055. Liu Y, 2020, INT J PROD ECON, V229, DOI 10.1016/j.ijpe.2020.107889. Mandviwalla M, 2021, EUR J INFORM SYST, V30, P359, DOI 10.1080/0960085X.2021.1891004. Margiono Ari, 2021, Journal of Business Strategy, V42, P315, DOI 10.1108/JBS-11-2019-0215. Melnyk L, 2019, ECON ANN-XXI, V179, P22, DOI 10.21003/ea.V179-02. Moreau N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126541. Nagano A., 2019, P 3 WORLD C SMART TR, P228, DOI {[}10.1109/WorldS4.2019.8904031, DOI 10.1109/WORLDS4.2019.8904031]. Nidumolu R, 2009, HARVARD BUS REV, V87, P56. Nikmehr B, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13095040. Pouri MJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10124453. Purvis B, 2019, SUSTAIN SCI, V14, P681, DOI 10.1007/s11625-018-0627-5. Raimundo R, 2021, EUR J INVEST HEALTH, V11, P276, DOI 10.3390/ejihpe11010021. Rosario A, 2021, J THEOR APPL EL COMM, V16, P3003, DOI 10.3390/jtaer16070164. Rosario A, 2021, J INF SCI ENG, V37, P1067, DOI 10.6688/JISE.202109\_37(5).0006. Bayon AS, 2021, REVESCO-REV ESTUD CO, DOI 10.5209/REVE.75564. Scharl S, 2019, INT J ENERG RES, V43, P3891, DOI 10.1002/er.4462. Schmitt U, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030839. Smith D, 2013, CHANDOS INF PROF SER, P47. Stojanova S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041663. Sudarsan Rachuri, 2010, 2010 IEEE International Conference on Automation Science and Engineering (CASE 2010), P144, DOI 10.1109/COASE.2010.5584472. Sugiyama M, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9122193. Tang L, 2009, INT J SUST DEV WORLD, V16, P94, DOI 10.1080/13504500902794000. Tonelli C., 2021, BIOCLIMATIC APPROACH, DOI {[}10.1007/978-3-030-59328-5\_23, DOI 10.1007/978-3-030-59328-5\_23]. Volpe S, 2021, AIMS MATER SCI, V8, P640, DOI 10.3934/matersci.2021039. Xiao Y, 2019, J PLAN EDUC RES, V39, P93, DOI 10.1177/0739456X17723971.}, Number-of-Cited-References = {52}, Times-Cited = {11}, Usage-Count-Last-180-days = {92}, Usage-Count-Since-2013 = {161}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {0L2GC}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000781297500001}, OA = {gold, Green Published, Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000515446900002, Author = {Sohail, Ayesha and Arif, Fatima}, Title = {Supervised and unsupervised algorithms for bioinformatics and data science}, Journal = {PROGRESS IN BIOPHYSICS \& MOLECULAR BIOLOGY}, Year = {2020}, Volume = {151}, Pages = {14-22}, Month = {MAR}, Abstract = {Bioinformatics refers to an ever evolving huge field of research based on millions of algorithms, designated to several data banks. Such algorithms are either supervised or unsupervised. In this article, a detailed overview of the supervised and unsupervised techniques is presented with the aid of examples. The aim of this article is to provide the readers with the basic understanding of the state of the art models, which are key ingredients of explainable machine learning in the field of bioinformatics. (C) 2019 Elsevier Ltd. All rights reserved.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Sohail, A (Corresponding Author), Comsats Univ Islamabad, Dept Math, Lahore Campus, Islamabad 54000, Pakistan. Sohail, Ayesha; Arif, Fatima, Comsats Univ Islamabad, Dept Math, Lahore Campus, Islamabad 54000, Pakistan.}, DOI = {10.1016/j.pbiomolbio.2019.11.012}, ISSN = {0079-6107}, EISSN = {1873-1732}, Keywords = {Machine learning; Evolutionary bioinformatics; Support vector machine learning; Algorithms}, Keywords-Plus = {SUPPORT VECTOR MACHINE; GENE-EXPRESSION DATA; DNA MICROARRAYS; CLASSIFICATION; MODEL; CLASSIFIERS}, Research-Areas = {Biochemistry \& Molecular Biology; Biophysics}, Web-of-Science-Categories = {Biochemistry \& Molecular Biology; Biophysics}, Author-Email = {ayeshasohail81@gmail.com}, Affiliations = {COMSATS University Islamabad (CUI)}, ResearcherID-Numbers = {Sohail, Ayesha/AAP-8462-2021}, ORCID-Numbers = {Sohail, Ayesha/0000-0001-6835-6212}, Funding-Acknowledgement = {HEC/PSF/ICT {[}PSF/ILP/P-HIT/Engg (085)]}, Funding-Text = {This research was partially supported by HEC/PSF/ICT/Project number PSF/ILP/P-HIT/Engg (085) titled Design Improvement of High Torque Low-Speed Diesel Engine (Phase -1).}, Cited-References = {Amari S, 1999, NEURAL NETWORKS, V12, P783, DOI 10.1016/S0893-6080(99)00032-5. Arras L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181142. Back AD., 2003, CLASSIFICATION USING. Barman RK, 2017, SCI REP-UK, V7, DOI 10.1038/srep46070. Ben-Hur A, 2008, PLOS COMPUT BIOL, V4, DOI 10.1371/journal.pcbi.1000173. Boswell D., 2002, INTRO SUPPORT VECTOR. Boughorbel S, 2005, 2005 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), VOLS 1 AND 2, P113, DOI 10.1109/ICME.2005.1521373. Brown MPS, 2000, P NATL ACAD SCI USA, V97, P262, DOI 10.1073/pnas.97.1.262. Brynjolfsson E, 2017, SCIENCE, V358, P1530, DOI 10.1126/science.aap8062. Calisir D, 2011, EXPERT SYST APPL, V38, P8311, DOI 10.1016/j.eswa.2011.01.017. Camacho DM, 2018, CELL, V173, P1581, DOI 10.1016/j.cell.2018.05.015. Cao RZ, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-120. Caruana R, 2001, ADV NEUR IN, V13, P402. Chen W, 2017, SCI REP-UK, V7, DOI 10.1038/srep40242. Choudhury A, 2019, ADV INTELL SYST COMP, V740, P67, DOI 10.1007/978-981-13-1280-9\_6. Cinelli M, 2017, BIOINFORMATICS, V33, P951, DOI 10.1093/bioinformatics/btw771. Cristianini N., 2000, INTRO SUPPORT VECTOR, DOI {[}DOI 10.1017/CB09780511801389, 10.1017/CBO9780511801389]. Delahunt C.B., 2018, ARXIV180808124. Erickson BJ, 2017, RADIOGRAPHICS, V37, P505, DOI 10.1148/rg.2017160130. Garro BA, 2016, APPL SOFT COMPUT, V38, P548, DOI 10.1016/j.asoc.2015.10.002. Han LF, 2015, IEEE J BIOMED HEALTH, V19, P728, DOI 10.1109/JBHI.2014.2325615. Hand DJ, 2006, STAT SCI, V21, P1, DOI 10.1214/088342306000000060. Hegedus T, 1996, DISCRETE APPL MATH, V66, P205, DOI 10.1016/0166-218X(94)00161-6. Herbrich R., 2001, LEARNING KERNEL CLAS. Hong MY, 2016, IEEE SIGNAL PROC MAG, V33, P57, DOI 10.1109/MSP.2015.2481563. Hou SR, 2017, RADIOENGINEERING, V26, P890, DOI 10.13164/re.2017.0890. Jaluria P, 2007, MICROB CELL FACT, V6, DOI 10.1186/1475-2859-6-4. Jonsson N., 2018, WAYS USE MACHINE LEA. Kavakiotis I, 2017, COMPUT STRUCT BIOTEC, V15, P104, DOI 10.1016/j.csbj.2016.12.005. Kavzoglu T., 1999, P 25 ANN TECHN C EXH, P675. Kim W, 2012, J BREAST CANCER, V15, P230, DOI 10.4048/jbc.2012.15.2.230. Koay J, 2004, P ANN INT IEEE EMBS, V26, P1159. Kourou K, 2015, COMPUT STRUCT BIOTEC, V13, P8, DOI 10.1016/j.csbj.2014.11.005. Landahl H. D., 1943, BULL MATH BIOPHYS, V5, P135, DOI 10.1007/BF02478260. Lederman M., 2018, EC ARTIFICIAL INTELL. Lee JS, 2018, ANN LAB MED, V38, P473, DOI 10.3343/alm.2018.38.5.473. Lee Juyoung, 2011, Osong Public Health Res Perspect, V2, P75, DOI 10.1016/j.phrp.2011.07.005. Levy B, 2018, FERTIL STERIL, V109, P201, DOI 10.1016/j.fertnstert.2018.01.005. Li XM, 2002, MICROCIRCULATION, V9, P13, DOI 10.1038/sj.mn.7800118. Li YF, 2018, BRIEF BIOINFORM, V19, P325, DOI 10.1093/bib/bbw113. Libbrecht MW, 2015, NAT REV GENET, V16, P321, DOI 10.1038/nrg3920. Mamoshina P, 2016, MOL PHARMACEUT, V13, P1445, DOI 10.1021/acs.molpharmaceut.5b00982. Peker M, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0477-6. Peters J, 2017, ADAPT COMPUT MACH LE. Prasad A, 2019, ANALYST, V144, P197, DOI 10.1039/c8an01020j. Rai P., 2011, KERNEL METHODS NONLI. Rojas R., 1996, NEURAL NETWORKS, P287. Rojas-Dominguez A, 2018, IEEE ACCESS, V6, P7164, DOI 10.1109/ACCESS.2017.2779794. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. Souza C.R., 2010, CREATIV COMMON ATTRI, V3. Tarca AL, 2007, PLOS COMPUT BIOL, V3, P953, DOI 10.1371/journal.pcbi.0030116. Vanitha CDA, 2015, PROCEDIA COMPUT SCI, V47, P13, DOI 10.1016/j.procs.2015.03.178. Vijayarani S., 2015, INT J COMPUT BUS RES, V6. Vijayarani S., 2015, INT J SCI ENG TECHNO, V4, P816. Wainberg M, 2018, NAT BIOTECHNOL, V36, P829, DOI 10.1038/nbt.4233. Wang RY, 2019, PEDIATR NEONATOL, V60, P35, DOI 10.1016/j.pedneo.2018.03.006. Ye F, 2018, MULTIMED TOOLS APPL, V77, P3889, DOI 10.1007/s11042-016-4233-1. Zanaty EA, 2012, EGYPT INFORM J, V13, P177, DOI 10.1016/j.eij.2012.08.002. Zurada JM., 1992, INTRO ARTIFICIAL NEU, V8.}, Number-of-Cited-References = {59}, Times-Cited = {18}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {39}, Journal-ISO = {Prog. Biophys. Mol. Biol.}, Doc-Delivery-Number = {KO3KI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000515446900002}, DA = {2023-04-22}, } @article{ WOS:000854198700001, Author = {Liu, Yusha and Yang, Kun}, Title = {Communication, sensing, computing and energy harvesting in smart cities}, Journal = {IET SMART CITIES}, Year = {2022}, Volume = {4}, Number = {4}, Pages = {265-274}, Month = {DEC}, Abstract = {A smart city provides diverse services based on real-time data obtained from different devices deployed in urban areas. These devices are largely battery-powered and widely placed. Therefore, providing continuous energy to these devices and ensuring their efficient sensing and communications are critical for the wide deployment of smart cities. To achieve frequent and effective data exchange, advanced enabling information and communication technology (ICT) infrastructure is in urgent demand. An ideal network in future smart cities should be capable of sensing the physical environment and intelligently mapping the digital world. Therefore, in this paper, we propose design guidelines on how to integrate communications with sensing, computing and/or energy harvesting in the context of smart cities, aiming to offer research insights on developing integrated communications, sensing, computing and energy harvesting (ICSCE) for promoting the development ICT infrastructure in smart cities. To put these four pillars of smart cities together and to take advantage of ever-increasing artificial intelligence (AI) technologies, the authors propose a promising AI-enabled ICSCE architecture by leveraging the digital twin network. The proposed architecture models the physical deep neural network-aided ICSCE system in a virtual space, where offline training is performed by using the collected real-time data from the environment and physical devices.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Yang, K (Corresponding Author), Univ Essex, Sch Comp Sci \& Elect Engn, Colchester, Essex, England. Liu, Yusha; Yang, Kun, Univ Elect Sci \& Technol China, Sch Informat \& Commun Engn, Chengdu, Peoples R China. Yang, Kun, Univ Essex, Sch Comp Sci \& Elect Engn, Colchester, Essex, England.}, DOI = {10.1049/smc2.12041}, EarlyAccessDate = {SEP 2022}, EISSN = {2631-7680}, Keywords = {Energy harvesting; IoT and mobile communications; networks and telematics; smart cities}, Keywords-Plus = {UNMANNED AERIAL VEHICLES; JOINT COMMUNICATION; RESOURCE-ALLOCATION; WIRELESS; DEPLOYMENT; PLACEMENT; NETWORKS; CITY}, Research-Areas = {Computer Science; Engineering; Telecommunications}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Telecommunications}, Author-Email = {kunyang@essex.ac.uk}, Affiliations = {University of Electronic Science \& Technology of China; University of Essex}, Funding-Acknowledgement = {Department of Science and Technology of Sichuan Province {[}22QYCX0168]; Ministry of Science and Technology of the People's Republic of China {[}2021YFB2900204]; National Natural Science Foundation of China {[}62132004]}, Funding-Text = {Department of Science and Technology of Sichuan Province, Grant/Award Number: 22QYCX0168; Ministry of Science and Technology of the People's Republic of China, Grant/Award Number: 2021YFB2900204; National Natural Science Foundation of China, Grant/Award Number: 62132004}, Cited-References = {Attarifar M, 2019, IEEE WIREL COMMUN LE, V8, P616, DOI 10.1109/LWC.2018.2890470. Bai T, 2020, IEEE J SEL AREA COMM, V38, P2666, DOI 10.1109/JSAC.2020.3007035. Barbarossa S, 2014, IEEE SIGNAL PROC MAG, V31, P45, DOI 10.1109/MSP.2014.2334709. Bayerlein H, 2021, IEEE OPEN J COMM SOC, V2, P1171, DOI 10.1109/OJCOMS.2021.3081996. Belli L, 2020, SMART CITIES-BASEL, V3, P1039, DOI 10.3390/smartcities3030052. Chen N, 2021, IEEE INTERNET THINGS, V8, P8719, DOI 10.1109/JIOT.2020.3047613. Chen X, 2021, IEEE INTERNET THINGS, V8, P12093, DOI 10.1109/JIOT.2021.3060858. Chi ZC, 2017, IEEE INFOCOM SER. Du R, 2019, IEEE COMMUN SURV TUT, V21, P1533, DOI 10.1109/COMST.2018.2881008. Feng ZY, 2021, IEEE NETWORK, V35, P34, DOI 10.1109/MNET.121.2100320. Guo XZ, 2020, IEEE ACM T NETWORK, V28, P2449, DOI 10.1109/TNET.2020.3013921. Harrison C, 2010, IBM J RES DEV, V54, DOI 10.1147/JRD.2010.2048257. Hu J, 2021, IEEE WIREL COMMUN, V28, P104, DOI 10.1109/MWC.001.2000156. Hu XY, 2018, IEEE T WIREL COMMUN, V17, P2375, DOI 10.1109/TWC.2018.2794345. Kopeikin A, 2012, IEEE GLOBE WORK, P1579, DOI 10.1109/GLOCOMW.2012.6477821. Li P, 2019, IEEE NETWORK, V33, P133, DOI 10.1109/MNET.2019.1800544. Liu X, 2020, IEEE T SIGNAL PROCES, V68, P3929, DOI 10.1109/TSP.2020.3004739. Ma D, 2020, IEEE COMMUN SURV TUT, V22, P1222, DOI 10.1109/COMST.2019.2962526. Mozaffari M, 2016, IEEE COMMUN LETT, V20, P1647, DOI 10.1109/LCOMM.2016.2578312. Mu JS, 2021, IEEE COMMUN LETT, V25, P3301, DOI 10.1109/LCOMM.2021.3098748. Qiu C, 2019, IEEE WIREL COMMUN LE, V8, P1575, DOI 10.1109/LWC.2019.2928544. Sanislav T, 2021, IEEE ACCESS, V9, P39530, DOI 10.1109/ACCESS.2021.3064066. Santos J, 2018, IEEE COMMUN MAG, V56, P177, DOI 10.1109/MCOM.2018.1701322. Tang J, 2020, IEEE ACCESS, V8, P9124, DOI 10.1109/ACCESS.2020.2964042. Tu W, 2018, IEEE COMMUN MAG, V56, P126, DOI 10.1109/MCOM.2018.1700870. Wang KZ, 2018, IEEE T CLOUD COMPUT, V6, P760, DOI 10.1109/TCC.2016.2522439. Wu DP, 2018, MOBILE NETW APPL, V23, P597, DOI 10.1007/s11036-018-1033-z. Wu K, 2022, IEEE J SEL AREA COMM, V40, P1873, DOI 10.1109/JSAC.2022.3156649. Wu K, 2023, IEEE INTERNET THINGS, V10, P1973, DOI 10.1109/JIOT.2021.3139683. Wu QQ, 2021, IEEE J SEL AREA COMM, V39, P2912, DOI 10.1109/JSAC.2021.3088681. Xie HM, 2019, IEEE INTERNET THINGS, V6, P2205, DOI 10.1109/JIOT.2018.2883403. Yin SX, 2019, IEEE T VEH TECHNOL, V68, P1050, DOI 10.1109/TVT.2018.2883093. Yuan Q, 2019, IEEE T INTELL TRANSP, V20, P3235, DOI 10.1109/TITS.2018.2873112. Zeng Y, 2017, IEEE T WIREL COMMUN, V16, P3747, DOI 10.1109/TWC.2017.2688328. Zhan C, 2018, IEEE T VEH TECHNOL, V67, P10155, DOI 10.1109/TVT.2018.2859450. Zhan C, 2018, IEEE WIREL COMMUN LE, V7, P328, DOI 10.1109/LWC.2017.2776922. Zhan PC, 2011, IEEE T AERO ELEC SYS, V47, P2068, DOI 10.1109/TAES.2011.5937283. Zhang J. Andrew, 2021, IEEE Journal of Selected Topics in Signal Processing, V15, P1295, DOI 10.1109/JSTSP.2021.3113120. Zhang XY, 2013, IEEE INFOCOM SER, P3093. Zhou S, 2019, IEEE COMMUN MAG, V57, P49, DOI 10.1109/MCOM.2019.1800230.}, Number-of-Cited-References = {40}, Times-Cited = {0}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {10}, Journal-ISO = {IET Smart Cities}, Doc-Delivery-Number = {6U3ZF}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000854198700001}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000526928500002, Author = {McClements, David Julian}, Title = {Future foods: a manifesto for research priorities in structural design of foods}, Journal = {FOOD \& FUNCTION}, Year = {2020}, Volume = {11}, Number = {3}, Pages = {1933-1945}, Month = {MAR 1}, Abstract = {A number of major challenges facing modern society are related to the food supply. As the global population grows, it will be critical to feed everyone without damaging the environment. Advances in biotechnology, nanotechnology, structural design, and artificial intelligence are providing farmers and food manufacturers will new tools to address these problems. More and more people are migrating from rural to urban environments, leading to a change in their dietary habits, especially increasing consumption of animal-based products and highly-processed foods. Animal-based foods lead to more greenhouse gas production, land use, water use, and pollution than plant-based ones. Moreover, many animal-based and highly-processed foods have adverse effects on human health and wellbeing. Consumers are therefore being encouraged to consume more plant-based foods, such as fruits, vegetables, cereals, and legumes. Many people, however, do not have the time, money, or inclination to prepare foods from fresh produce. Consequently, there is a need for the food industry to create a new generation of processed foods that are desirable, tasty, inexpensive, and convenient, but that are also healthy and sustainable. This article highlights some of the main food-related challenges faced by modern society and how scientists are developing innovative technologies to address them.}, Publisher = {ROYAL SOC CHEMISTRY}, Address = {THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {McClements, DJ (Corresponding Author), Univ Massachusetts, Dept Food Sci, Amherst, MA 01003 USA. McClements, David Julian, Univ Massachusetts, Dept Food Sci, Amherst, MA 01003 USA.}, DOI = {10.1039/c9fo02076d}, ISSN = {2042-6496}, EISSN = {2042-650X}, Keywords-Plus = {SLOWLY DIGESTIBLE STARCH; DELIVERY-SYSTEMS; RESISTANT STARCH; GUT MICROBIOTA; DIETARY FIBER; CULTURED MEAT; REDUCED-FAT; EMULSIONS; SAFETY; BIOAVAILABILITY}, Research-Areas = {Biochemistry \& Molecular Biology; Food Science \& Technology}, Web-of-Science-Categories = {Biochemistry \& Molecular Biology; Food Science \& Technology}, Author-Email = {mcclements@foodsci.umass.edu}, Affiliations = {University of Massachusetts System; University of Massachusetts Amherst}, ResearcherID-Numbers = {McClements, David J/F-8283-2011}, ORCID-Numbers = {McClements, David J/0000-0002-9016-1291}, Funding-Acknowledgement = {National Institute of Food and Agriculture, USDA, Massachusetts Agricultural Experiment Station {[}MAS00491]; USDA, AFRI {[}2016-08782]}, Funding-Text = {This material was partly based upon work supported by the National Institute of Food and Agriculture, USDA, Massachusetts Agricultural Experiment Station (MAS00491) and USDA, AFRI Grants (2016-08782).}, Cited-References = {Aguayo-Mendoza MG, 2019, FOOD QUAL PREFER, V71, P87, DOI 10.1016/j.foodqual.2018.06.006. Akhtar Y., 2018, PROTEINS FOOD PROCES, V2, P263, DOI 10.1016/B978-0-08-100722-8.00011-5. Alexander P, 2017, GLOB FOOD SECUR-AGR, V15, P22, DOI 10.1016/j.gfs.2017.04.001. {[}Anonymous], 2014, J NURS REGUL, V5, pS3. {[}Anonymous], 2019, CANC DISCOV, V10, pOF5. {[}Anonymous], 2010, PASSIONS CONTEXT J H, V1, p11n. Atzberger C, 2013, REMOTE SENS-BASEL, V5, P949, DOI 10.3390/rs5020949. Bhat ZF, 2019, COMPR REV FOOD SCI F, V18, P1192, DOI 10.1111/1541-4337.12473. Birt DF, 2013, ADV NUTR, V4, P587, DOI 10.3945/an.113.004325. Bolhuis Dieuwerke P, 2014, PLoS One, V9, pe93370, DOI 10.1371/journal.pone.0093370. Bordoni L, 2019, BIOCHIMIE, V160, P156, DOI 10.1016/j.biochi.2019.03.006. Bouwmeester H, 2009, REGUL TOXICOL PHARM, V53, P52, DOI 10.1016/j.yrtph.2008.10.008. Braconi D, 2018, EXPERT REV PROTEOMIC, V15, P153, DOI 10.1080/14789450.2018.1421072. Campbell C. L., 2017, Food Structure, V13, P1, DOI 10.1016/j.foostr.2016.08.002. Cani PD, 2018, GUT, V67, P1716, DOI 10.1136/gutjnl-2018-316723. Capuano E, 2017, CRIT REV FOOD SCI, V57, P3543, DOI 10.1080/10408398.2016.1180501. Chung C, 2016, CRIT REV FOOD SCI, V56, P650, DOI 10.1080/10408398.2013.792236. Darvishi F, 2018, APPL MICROBIOL BIOT, V102, P5925, DOI 10.1007/s00253-018-9099-x. de Toro-Martin J, 2017, NUTRIENTS, V9, DOI 10.3390/nu9080913. Delaney B, 2018, TOXICOL SCI, V162, P361, DOI 10.1093/toxsci/kfx249. Dwyer JT, 2014, NUTR REV, V72, P127, DOI 10.1111/nure.12086. Es I, 2019, BIOTECHNOL ADV, V37, P410, DOI 10.1016/j.biotechadv.2019.02.006. Finnigan TJA, 2011, WOODHEAD PUBL FOOD S, P335. Fuentes-Zaragoza E, 2010, FOOD RES INT, V43, P931, DOI 10.1016/j.foodres.2010.02.004. Gentile CL, 2018, SCIENCE, V362, P776, DOI 10.1126/science.aau5812. Gibney MJ, 2017, AM J CLIN NUTR, V106, P717, DOI 10.3945/ajcn.117.160440. Gidley MJ, 2019, TRENDS FOOD SCI TECH, V86, P563, DOI 10.1016/j.tifs.2018.12.006. Gidley MJ, 2013, CURR OPIN COLLOID IN, V18, P371, DOI 10.1016/j.cocis.2013.04.003. Goncalves RFS, 2018, TRENDS FOOD SCI TECH, V78, P270, DOI 10.1016/j.tifs.2018.06.011. Gu M, 2019, FOOD HYDROCOLLOID, V91, P283, DOI 10.1016/j.foodhyd.2019.01.040. Gupta S, 2019, FRONT NUTR, V6, DOI 10.3389/fnut.2019.00070. Hernandez A. E., 2016, NUTRACEUTICALS EFFIC, P839. Hruby A, 2015, PHARMACOECONOMICS, V33, P673, DOI 10.1007/s40273-014-0243-x. Hu YQ, 2016, FOOD HYDROCOLLOID, V61, P300, DOI 10.1016/j.foodhyd.2016.05.028. Huang Y, 2010, J FOOD SCI, V75, pC121, DOI 10.1111/j.1750-3841.2009.01455.x. Jaenke R, 2017, CRIT REV FOOD SCI, V57, P3357, DOI 10.1080/10408398.2015.1118009. Jedrusek-Golinska A, 2020, COMPR REV FOOD SCI F, V19, P835, DOI 10.1111/1541-4337.12530. Kamthan A, 2016, THEOR APPL GENET, V129, P1639, DOI 10.1007/s00122-016-2747-6. Kaur A, 2019, MOL NUTR FOOD RES, V63, DOI 10.1002/mnfr.201801012. Keoleian GA, 2018, MEATS BURGER LIFE CY. Khot LR, 2012, CROP PROT, V35, P64, DOI 10.1016/j.cropro.2012.01.007. Kroger M, 2006, COMPR REV FOOD SCI F, V5, P35, DOI 10.1111/j.1541-4337.2006.tb00081.x. Kwiecien I, 2018, GELS-BASEL, V4, DOI 10.3390/gels4020047. Lehmann U, 2007, TRENDS FOOD SCI TECH, V18, P346, DOI 10.1016/j.tifs.2007.02.009. Lennerz B, 2018, CLIN CHEM, V64, P64, DOI 10.1373/clinchem.2017.273532. Liu XW, 2016, WATER RESOURCES AND ENVIRONMENT, P81. Liu X, 2015, J AGR FOOD CHEM, V63, P8534, DOI 10.1021/acs.jafc.5b04217. Louis-Jean S, 2019, J AGR FOOD CHEM, V67, P12675, DOI 10.1021/acs.jafc.9b04879. Ma Z, 2013, FOOD BIOPROCESS TECH, V6, P648, DOI 10.1007/s11947-012-1000-9. Mancano G, 2018, CURR OPIN FOOD SCI, V22, P145, DOI 10.1016/j.cofs.2018.03.012. Mattick CS, 2018, B ATOM SCI, V74, P32, DOI 10.1080/00963402.2017.1413059. Mattick CS, 2015, ENVIRON SCI TECHNOL, V49, P11941, DOI 10.1021/acs.est.5b01614. McClements D.J., 2019, FUTURE FOODS MODERN. McClements D.J, 2014, NANOPARTICLE MICROPA. McClements DJ, 2018, FOOD FUNCT, V9, P22, DOI {[}10.1039/c7fo01515a, 10.1039/C7FO01515A]. McClements DJ, 2017, SEMIN CANCER BIOL, V46, P215, DOI 10.1016/j.semcancer.2017.06.003. McClements DJ, 2015, COMPR REV FOOD SCI F, V14, P824, DOI 10.1111/1541-4337.12170. McClements DJ, 2009, CRIT REV FOOD SCI, V49, P577, DOI 10.1080/10408390902841529. McDougall GJ, 2005, BIOFACTORS, V23, P189, DOI 10.1002/biof.5520230403. Miller DD, 2013, FOOD POLICY, V42, P115, DOI 10.1016/j.foodpol.2013.06.008. Mozaffarian D, 2016, CIRCULATION, V133, P187, DOI 10.1161/CIRCULATIONAHA.115.018585. Murray JD, 2016, TRANSGENIC RES, V25, P321, DOI 10.1007/s11248-016-9927-7. Nair R, 2010, PLANT SCI, V179, P154, DOI 10.1016/j.plantsci.2010.04.012. Omenn GS, 1996, J NATL CANCER I, V88, P1550, DOI 10.1093/jnci/88.21.1550. Ozdemir V, 2016, OMICS, V20, P69, DOI 10.1089/omi.2015.0193. Parada J, 2007, J FOOD SCI, V72, pR21, DOI 10.1111/j.1750-3841.2007.00274.x. Parfitt J, 2010, PHILOS T R SOC B, V365, P3065, DOI 10.1098/rstb.2010.0126. Poore J, 2018, SCIENCE, V360, P987, DOI 10.1126/science.aaq0216. Rios RV, 2014, FOOD SCI TECH-BRAZIL, V34, P3, DOI 10.1590/S0101-20612014000100001. Ritala A, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.02009. Robinson E, 2014, AM J CLIN NUTR, V100, P123, DOI 10.3945/ajcn.113.081745. Rowland I, 2018, EUR J NUTR, V57, P1, DOI 10.1007/s00394-017-1445-8. Sajilata MG, 2006, COMPR REV FOOD SCI F, V5, P1, DOI 10.1111/j.1541-4337.2006.tb00076.x. Salvia-Trujillo L, 2016, FOOD CHEM, V210, P295, DOI 10.1016/j.foodchem.2016.04.125. Sarao LK, 2017, CRIT REV FOOD SCI, V57, P344, DOI 10.1080/10408398.2014.887055. Scazzina F, 2013, BRIT J NUTR, V109, P1163, DOI 10.1017/S0007114513000032. Scholten E, 2017, FOOD FUNCT, V8, P481, DOI {[}10.1039/C6FO01099G, 10.1039/c6fo01099g]. Singh H, 2009, PROG LIPID RES, V48, P92, DOI 10.1016/j.plipres.2008.12.001. Sozer N, 2009, TRENDS BIOTECHNOL, V27, P82, DOI 10.1016/j.tibtech.2008.10.010. Specht L, 2018, CELLULAR AGR EXTENSI. Specht L, 2018, FOOD TECHNOL-CHICAGO, V72, P16. Tan H, 2014, ACS APPL MATER INTER, V6, P13977, DOI 10.1021/am503341j. Teoh PL, 2011, FOOD BIOTECHNOL, V25, P77, DOI 10.1080/08905436.2011.547332. Terpou A, 2019, NUTRIENTS, V11, DOI 10.3390/nu11071591. Tey SL, 2018, NUTRIENTS, V10, DOI 10.3390/nu10020161. van den Boer J, 2017, FOODS, V6, DOI 10.3390/foods6100087. Van Doorn G, 2015, J SENS STUD, V30, P305, DOI 10.1111/joss.12159. van Huis A, 2017, AGRON SUSTAIN DEV, V37, DOI 10.1007/s13593-017-0452-8. Velikov KP, 2008, SOFT MATTER, V4, P1964, DOI 10.1039/b804863k. Wee MSM, 2018, FOOD FUNCT, V9, P5301, DOI 10.1039/c8fo00791h. Wiebe MG, 2002, APPL MICROBIOL BIOT, V58, P421, DOI 10.1007/s00253-002-0931-x. Willett W, 2019, LANCET, V393, P447, DOI 10.1016/S0140-6736(18)31788-4. Williams BA, 2019, J ANIM SCI BIOTECHNO, V10, DOI 10.1186/s40104-019-0350-9. Wunderlich S, 2015, ADV NUTR, V6, P842, DOI 10.3945/an.115.008870. Xiao JB, 2013, CRIT REV FOOD SCI, V53, P497, DOI 10.1080/10408398.2010.548108. Yildirim M, 2016, FOOD SCI BIOTECHNOL, V25, P1613, DOI 10.1007/s10068-016-0248-7. Young VB, 2017, BMJ-BRIT MED J, V356, DOI 10.1136/bmj.j831. Zafar S, 2019, J BIOTECHNOL, V301, P35, DOI 10.1016/j.jbiotec.2019.05.307. Zhang GY, 2009, CRIT REV FOOD SCI, V49, P852, DOI 10.1080/10408390903372466. Zhang RJ, 2016, FOOD BIOPHYS, V11, P71, DOI 10.1007/s11483-015-9418-z. Zhang ZP, 2017, FOOD HYDROCOLLOID, V65, P198, DOI 10.1016/j.foodhyd.2016.11.018. Zhu FM, 2018, CRIT REV FOOD SCI, V58, P1260, DOI 10.1080/10408398.2016.1251390. 2015, CORSALUD, V6.}, Number-of-Cited-References = {103}, Times-Cited = {31}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {92}, Journal-ISO = {Food Funct.}, Doc-Delivery-Number = {LE7UH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000526928500002}, DA = {2023-04-22}, } @article{ WOS:000579994300001, Author = {Huang, Yingjing and Fei, Teng and Kwan, Mei-Po and Kang, Yuhao and Li, Jun and Li, Yizhuo and Li, Xiang and Bian, Meng}, Title = {GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human-Environment Relationships}, Journal = {ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION}, Year = {2020}, Volume = {9}, Number = {9}, Month = {SEP}, Abstract = {In recent years, with the growing accessibility of abundant contextual emotion information, which is benefited by the numerous georeferenced user-generated content and the maturity of artificial intelligence (AI)-based emotional computing technics, the emotion layer of human-environment relationship is proposed for enriching traditional methods of various related disciplines such as urban planning. This paper proposes the geographic information system (GIS)-based emotional computing concept, which is a novel framework for applying GIS methods to collective human emotion. The methodology presented in this paper consists of three key steps: (1) collecting georeferenced data containing emotion and environment information such as social media and official sites, (2) detecting emotions using AI-based emotional computing technics such as natural language processing (NLP) and computer vision (CV), and (3) visualizing and analyzing the spatiotemporal patterns with GIS tools. This methodology is a great synergy of multidisciplinary cutting-edge techniques, such as GIScience, sociology, and computer science. Moreover, it can effectively and deeply explore the connection between people and their surroundings with the help of GIS methods. Generally, the framework provides a standard workflow to calculate and analyze the new information layer for researchers, in which a measured human-centric perspective onto the environment is possible.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Fei, T (Corresponding Author), Wuhan Univ, Sch Resource \& Environm Sci, Wuhan 430000, Peoples R China. Huang, Yingjing; Fei, Teng; Li, Jun; Li, Yizhuo, Wuhan Univ, Sch Resource \& Environm Sci, Wuhan 430000, Peoples R China. Kwan, Mei-Po, Chinese Univ Hong Kong, Dept Geog \& Resource Management, Shatin, Hong Kong, Peoples R China. Kwan, Mei-Po, Chinese Univ Hong Kong, Inst Space \& Earth Informat Sci, Shatin, Hong Kong, Peoples R China. Kwan, Mei-Po, Univ Utrecht, Dept Human Geog \& Spatial Planning, NL-3584 CB Utrecht, Netherlands. Kang, Yuhao, Univ Wisconsin, Dept Geog, Geospatial Data Sci Lab, Madison, WI 53706 USA. Li, Xiang, Informat Engn Univ, Inst Surveying \& Mapping, Zhengzhou 450000, Peoples R China. Bian, Meng, Wuhan Univ, Sch Remote Sensing \& Informat Engn, Wuhan 430000, Peoples R China.}, DOI = {10.3390/ijgi9090551}, Article-Number = {551}, EISSN = {2220-9964}, Keywords = {human-environment relationship; collective emotion; GIS-based emotional computing}, Keywords-Plus = {LIFE SATISFACTION; FACIAL EXPRESSIONS; NEGATIVE AFFECT; DEPRESSED MOOD; AIR-POLLUTION; PERCEPTIONS; TWITTER; SCALE; SENSE; CONNECTEDNESS}, Research-Areas = {Computer Science; Physical Geography; Remote Sensing}, Web-of-Science-Categories = {Computer Science, Information Systems; Geography, Physical; Remote Sensing}, Author-Email = {huangyingjing@whu.edu.cn feiteng@whu.edu.cn mpkwan@cuhk.edu.hk yuhao.kang@wisc.edu leejun@whu.edu.cn liyizhuo@whu.edu.cn lixiangzzchxy@163.com bian@whu.edu.cn}, Affiliations = {Wuhan University; Chinese University of Hong Kong; Chinese University of Hong Kong; Utrecht University; University of Wisconsin System; University of Wisconsin Madison; PLA Information Engineering University; Wuhan University}, ResearcherID-Numbers = {Kwan, Mei-Po/S-4162-2016 Huang, Yingjing/AAX-1361-2021 Kang, Yuhao/U-2821-2019 fei, teng/AAF-5448-2021}, ORCID-Numbers = {Kwan, Mei-Po/0000-0001-8602-9258 Huang, Yingjing/0000-0002-8772-1403 Kang, Yuhao/0000-0003-3810-9450 fei, teng/0000-0002-3415-1654}, Funding-Acknowledgement = {State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University {[}19E02]}, Funding-Text = {This work is supported by Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University (Grant No. 19E02).}, Cited-References = {Abdullah S., 2015, P 18 ACM C COMP SUPP. Alfarrarjeh A., 2017, P 2017 IEEE INT C DA. Allisio L., 2013, P 1 INT WORKSH EM SE. Andrade E, 2019, SEX RES SOC POLICY, V16, P317, DOI 10.1007/s13178-018-0318-0. Arroyo I., 2009, P ART INT ED BRIGHT. Barrett K. C., 1987, HDB INFANT DEV, P555, DOI DOI 10.1177/0272431613483005. Barrett LF, 1998, COGNITION EMOTION, V12, P579, DOI 10.1080/026999398379574. Bartlett M. S., 2006, Journal of Multimedia, V1, DOI 10.4304/jmm.1.6.22-35. Bates W, 2009, ASIAN-PAC ECON LIT, V23, P1, DOI 10.1111/j.1467-8411.2009.01235.x. Boyd D, 2012, INFORM COMMUN SOC, V15, P662, DOI 10.1080/1369118X.2012.678878. Brave S, 2003, HUM FAC ER, P81. Capaldi CA, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00976. Chakraverty S, 2015, J INF KNOWL MANAG, V14, DOI 10.1142/S0219649215500227. Chen L., 2018, J HUM SETTL W CHINA, V33, P54, DOI {[}10.13791/j.cnki.hsfwest.20180109, DOI 10.13791/J.CNKI.HSFWEST.20180109]. Chien Y. C., 2017, P GIS RES UK GISRUK. Choi J, 2012, IEEE T INF TECHNOL B, V16, P279, DOI 10.1109/TITB.2011.2169804. Clements L, 2005, ESSAY EUR LAW, P21. de Vries S, 2003, ENVIRON PLANN A, V35, P1717, DOI 10.1068/a35111. Dewan P., ARXIV161007772. Dhall A, 2012, IEEE MULTIMEDIA, V19, P34, DOI 10.1109/MMUL.2012.26. DIENER E, 1995, J PERS SOC PSYCHOL, V69, P851, DOI 10.1037/0022-3514.69.5.851. DIENER E, 1995, J PERS SOC PSYCHOL, V68, P653, DOI 10.1037/0022-3514.69.1.120. DIENER E, 1985, J PERS ASSESS, V49, P71, DOI 10.1207/s15327752jpa4901\_13. Diener E, 2013, SOC INDIC RES, V112, P497, DOI 10.1007/s11205-012-0076-y. Diener E, 2009, SOC INDIC RES SER, V39, P7, DOI 10.1007/978-90-481-2354-4\_2. Do HJ, 2016, INT CONF BIG DATA, P415, DOI 10.1109/BIGCOMP.2016.7425960. Doytsher Y., 2017, P 1 ACM SIGSPATIAL W. Easterlin R.A., 1974, NATIONS HOUSEHOLDS E, P89, DOI DOI 10.1016/B978-0-12-205050-3.50008-7. Easterlin RA, 2012, P NATL ACAD SCI USA, V109, P9775, DOI 10.1073/pnas.1205672109. EKMAN P, 1992, COGNITION EMOTION, V6, P169, DOI 10.1080/02699939208411068. EKMAN P, 1971, J PERS SOC PSYCHOL, V17, P124, DOI 10.1037/h0030377. Ekman P., 2002, ENVIRON PSYCH NONVER. El Kaliouby R., 2004, P 2004 IEEE INT C SY. Elith J, 2011, DIVERS DISTRIB, V17, P43, DOI 10.1111/j.1472-4642.2010.00725.x. Ellsworth P.C., 1994, SENSE CULTURE SENSIB, DOI {[}10.1037/10152-001, DOI 10.1037/10152-001]. English T, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00185. Everett G, 2015, REV INCOME WEALTH, V61, P34, DOI 10.1111/roiw.12175. Feng S, 2011, KNOWL INF SYST, V27, P281, DOI 10.1007/s10115-010-0325-9. FRIJDA NH, 1994, EMOTION CULTURE EMPI, P51, DOI DOI 10.1037/10152-002. Gao C, 2013, FRONT EARTH SCI-PRC, V7, P406, DOI 10.1007/s11707-013-0402-y. Gervasoni L., 2017, P IEEE INT C BIG DAT, DOI {[}10.1109/BigData.2016.7840844, DOI 10.1109/BIGDATA.2016.7840844]. Gimblett R, 2001, LANDSCAPE URBAN PLAN, V54, P63, DOI 10.1016/S0169-2046(01)00126-8. Golder SA, 2011, SCIENCE, V333, P1878, DOI 10.1126/science.1202775. Goodchild M.F., 2013, DIALOGUES HUM GEOGR, V3, P280, DOI DOI 10.1177/2043820613513392. Goodchild MF, 2007, GEOJOURNAL, V69, P211, DOI 10.1007/s10708-007-9111-y. Grahn Patrik, 2003, Urban Forestry \& Urban Greening, V2, P001, DOI 10.1078/1618-8667-00019. Gross JJ, 1997, PSYCHOL AGING, V12, P590, DOI 10.1037/0882-7974.12.4.590. Gross R, 2010, IMAGE VISION COMPUT, V28, P807, DOI 10.1016/j.imavis.2009.08.002. Harker LA, 2001, J PERS SOC PSYCHOL, V80, P112, DOI 10.1037//0022-3514.80.1.112. Healey JA, 2005, IEEE T INTELL TRANSP, V6, P156, DOI 10.1109/TITS.2005.848368. Hertenstein MJ, 2009, MOTIV EMOTION, V33, P99, DOI 10.1007/s11031-009-9124-6. Hijazi IH, 2016, INT J E-PLAN RES, V5, P1, DOI 10.4018/IJEPR.2016010101. Howell AJ, 2011, PERS INDIV DIFFER, V51, P166, DOI 10.1016/j.paid.2011.03.037. Hu YJ, 2019, ANN AM ASSOC GEOGR, V109, P1052, DOI 10.1080/24694452.2018.1535886. Huang YJ, 2020, CITIES, V102, DOI 10.1016/j.cities.2020.102719. Jang MH, 2012, INT J GEOGR INF SCI, V26, P1393, DOI 10.1080/13658816.2011.635596. Jerritta S., 2011, P INT C SIGN PROC IT. JIANG B, 2014, ENVIRON BEHAV, V48, P607, DOI DOI 10.1177/0013916514552321. Jorgensen BS, 2001, J ENVIRON PSYCHOL, V21, P233, DOI 10.1006/jevp.2001.0226. Kang Y., 2018, P UB POS IND NAV LOC. Kang YH, 2019, T GIS, V23, P450, DOI 10.1111/tgis.12552. Kaplan R, 2001, ENVIRON BEHAV, V33, P507, DOI 10.1177/00139160121973115. Kapoor A, 2007, INT J HUM-COMPUT ST, V65, P724, DOI 10.1016/j.ijhcs.2007.02.003. Keltner D., 1998, REV GEN PSYCHOL, V2, P320, DOI {[}10.1037//1089-2680.2.3.320, DOI 10.1037/1089-2680.2.3.320, 10.1037/1089-2680.2.3.320]. Kitayama S, 2000, COGNITION EMOTION, V14, P93, DOI 10.1080/026999300379003. Kitchin R, 2015, GEOJOURNAL, V80, P463, DOI 10.1007/s10708-014-9601-7. LaFrance M, 2003, PSYCHOL BULL, V129, P305, DOI 10.1037/0033-2909.129.2.305. Laurent J, 1999, PSYCHOL ASSESSMENT, V11, P326, DOI 10.1037/1040-3590.11.3.326. Li LN, 2013, CARTOGR GEOGR INF SC, V40, P61, DOI 10.1080/15230406.2013.777139. Li YZ, 2021, INT J GEOGR INF SCI, V35, P227, DOI 10.1080/13658816.2020.1755040. Liu Y, 2020, J SPAT INT SCI, P51, DOI 10.5311/JOSIS.2020.20.665. Liu Y, 2015, ANN ASSOC AM GEOGR, V105, P512, DOI 10.1080/00045608.2015.1018773. Lopez-Ornelas E, 2015, LECT NOTES COMPUT SC, V9182, P48, DOI 10.1007/978-3-319-20367-6\_6. Lucas R.E., 2006, GLOBAL SELF ASSESSME, P29. MacKerron G, 2013, GLOBAL ENVIRON CHANG, V23, P992, DOI 10.1016/j.gloenvcha.2013.03.010. Mayer FS, 2004, J ENVIRON PSYCHOL, V24, P503, DOI 10.1016/j.jenvp.2004.10.001. Mayol A., 2017, REV DECONOMIE INDUST, V158, P101. Mitchell L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064417. Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x. Muller M.J., 1997, P HUM FACT COMP SYST, DOI {[}10.1145/279044.279052, DOI 10.1145/279044.279052]. Munda Giuseppe, 2005, Environment Development and Sustainability, V7, P117, DOI 10.1007/s10668-003-4713-0. Nisbet EK, 2011, PSYCHOL SCI, V22, P1101, DOI 10.1177/0956797611418527. Ollander S, 2016, IEEE SYS MAN CYBERN, P4362, DOI 10.1109/SMC.2016.7844917. Olson JM, 2008, GEOFORUM, V39, P898, DOI 10.1016/j.geoforum.2007.03.011. Pang B, 2004, ANN M ASS COMP LING, P271, DOI DOI 10.3115/1218955.1218990. PATTISON WD, 1964, J GEOGR, V63, P211, DOI 10.1080/00221346408985265. Paulhus D.L., 2007, HDB RES METHODS PERS, P224, DOI {[}https://doi.org/10.1002/0470013435.ch6, DOI 10.1017/CBO9780511996481]. Petrantonakis PC, 2010, IEEE T AFFECT COMPUT, V1, P81, DOI 10.1109/T-AFFC.2010.7. Picard R.W., 2000, AFFECTIVE COMPUTING. Picard RW, 2003, INT J HUM-COMPUT ST, V59, P55, DOI 10.1016/S1071-5819(03)00052-1. Plunz RA, 2019, LANDSCAPE URBAN PLAN, V189, P235, DOI 10.1016/j.landurbplan.2019.04.024. Poria S, 2014, KNOWL-BASED SYST, V69, P108, DOI 10.1016/j.knosys.2014.06.011. Quercia D., 2013, P 5 ANN ACM WEB SCI. Rani P, 2006, PATTERN ANAL APPL, V9, P58, DOI 10.1007/s10044-006-0025-y. Resch B, 2016, URBAN PLAN, V1, P114, DOI 10.17645/up.v1i2.617. Robinson MD, 2002, J PERS SOC PSYCHOL, V83, P198, DOI 10.1037//0022-3514.83.1.198. Sabatini F., ARXIV150708863, DOI {[}10.2139/ssrn.2771042, DOI 10.2139/SSRN.2771042]. Shafer CS, 2000, LANDSCAPE URBAN PLAN, V49, P163, DOI 10.1016/S0169-2046(00)00057-8. Singh VK, 2017, PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), P1818, DOI 10.1145/3123266.3127908. Stedman RC, 2003, SOC NATUR RESOUR, V16, P671, DOI 10.1080/08941920309189. Strapparava C., 2004, P LANG RES EV LISB P. Suh E, 1998, J PERS SOC PSYCHOL, V74, P482, DOI 10.1037/0022-3514.74.2.482. Svoray T, 2018, J ENVIRON PSYCHOL, V58, P93, DOI 10.1016/j.jenvp.2018.07.006. Swann WB, 2007, AM PSYCHOL, V62, P84, DOI 10.1037/0003-066X.62.2.84. Takac P, 2016, 2016 INTERNATIONAL CONFERENCE ON EMERGING ELEARNING TECHNOLOGIES AND APPLICATIONS (ICETA). The United Nations Sustainable Development Solutions Network, 2019, WORLD HAPPINESS REPO. Thompson CW, 2012, LANDSCAPE URBAN PLAN, V105, P221, DOI 10.1016/j.landurbplan.2011.12.015. Tuan Y-F, 1979, PHILOS GEOGRAPHY, V20, P387, DOI DOI 10.1007/978-94-009-9394-5\_19. WATSON D, 1988, J PERS SOC PSYCHOL, V54, P1063, DOI 10.1037/0022-3514.54.6.1063. Welsch H, 2006, ECOL ECON, V58, P801, DOI 10.1016/j.ecolecon.2005.09.006. Wheeler BW, 2012, HEALTH PLACE, V18, P1198, DOI 10.1016/j.healthplace.2012.06.015. White MP, 2013, PSYCHOL SCI, V24, P920, DOI 10.1177/0956797612464659. Wierzbicka A., 2004, EMOTION CULTURE EMPI, P133. Woolf B., 2009, P INT C HUM COMP INT. Wu Chuanjun, 1991, ECON GEOGR, V3, P7. Yang Q S, 2001, ECON GEOGR, V21, P532, DOI DOI 10.3969/J.ISSN.1000-8462.2001.05.005. Yang W, 2015, APPL GEOGR, V63, P184, DOI 10.1016/j.apgeog.2015.06.017. Yu Z., 2015, P ACM INT C MULT INT. Zeile P, 2015, LECT NOTES GEOINF CA, P209, DOI 10.1007/978-3-319-18368-8\_11. Zhang F, 2018, LANDSCAPE URBAN PLAN, V180, P148, DOI 10.1016/j.landurbplan.2018.08.020. Zhen F., 2017, BIG DATA SUPPORT URB, P43. Zheng SQ, 2019, NAT HUM BEHAV, V3, P237, DOI 10.1038/s41562-018-0521-2. Zijlema WL, 2016, INT J HYG ENVIR HEAL, V219, P212, DOI 10.1016/j.ijheh.2015.11.006.}, Number-of-Cited-References = {123}, Times-Cited = {11}, Usage-Count-Last-180-days = {20}, Usage-Count-Since-2013 = {97}, Journal-ISO = {ISPRS Int. Geo-Inf.}, Doc-Delivery-Number = {OD6XN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000579994300001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000955359500001, Author = {Albahra, Samer and Gorbett, Tom and Robertson, Scott and D'Aleo, Giana and Ockunzzi, Samuel and Lallo, Daniel and Hu, Bo and Rashidi, Hooman H.}, Title = {Artificial intelligence and machine learning overview in pathology \& laboratory medicine: A general review of data preprocessing and basic supervised concepts}, Journal = {SEMINARS IN DIAGNOSTIC PATHOLOGY}, Year = {2023}, Volume = {40}, Number = {2}, Pages = {71-87}, Month = {MAR}, Abstract = {Machine learning (ML) is becoming an integral aspect of several domains in medicine. Yet, most pathologists and laboratory professionals remain unfamiliar with such tools and are unprepared for their inevitable integration. To bridge this knowledge gap, we present an overview of key elements within this emerging data science discipline. First, we will cover general, well-established concepts within ML, such as data type concepts, data preprocessing methods, and ML study design. We will describe common supervised and unsupervised learning algorithms and their associated common machine learning terms (provided within a comprehensive glossary of terms that are discussed within this review). Overall, this review will offer a broad overview of the key concepts and algorithms in machine learning, with a focus on pathology and laboratory medicine. The objective is to provide an updated useful reference for those new to this field or those who require a refresher.}, Publisher = {W B SAUNDERS CO-ELSEVIER INC}, Address = {1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA}, Type = {Review}, Language = {English}, Affiliation = {Albahra, S; Rashidi, HH (Corresponding Author), 9500 Euclid Ave, Cleveland, OH 44195 USA. Albahra, Samer; Gorbett, Tom; Robertson, Scott; D'Aleo, Giana; Ockunzzi, Samuel; Lallo, Daniel; Rashidi, Hooman H., Cleveland Clin, Pathol \& Lab Med Inst PLMI, Cleveland, OH USA. Hu, Bo, Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH USA. Albahra, Samer; Gorbett, Tom; Robertson, Scott; D'Aleo, Giana; Ockunzzi, Samuel; Lallo, Daniel; Hu, Bo; Rashidi, Hooman H., Cleveland Clin, PLMIs Ctr Artificial Intelligence \& Data Sci, Cleveland Hts, OH USA. Albahra, Samer; Rashidi, Hooman H., 9500 Euclid Ave, Cleveland, OH 44195 USA.}, DOI = {10.1053/j.semdp.2023.02.002}, EarlyAccessDate = {MAR 2023}, ISSN = {0740-2570}, EISSN = {1930-1111}, Keywords = {Artificial intelligence; Machine learning; Pathology; Laboratory medicine; Supervised; Learning; Predictive modeling}, Keywords-Plus = {STATISTICS}, Research-Areas = {Medical Laboratory Technology; Pathology}, Web-of-Science-Categories = {Medical Laboratory Technology; Pathology}, Author-Email = {albahrs@ccf.org rashidh@ccf.org}, Affiliations = {Cleveland Clinic Foundation; Cleveland Clinic Foundation; Cleveland Clinic Foundation}, Cited-References = {Aggarwal Rakesh, 2016, Perspect Clin Res, V7, P187. Al-Zebari A., 2019, PROC 1 INT INFORMAT, P1. ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209. {[}Anonymous], IMP ENC TOOL MILO PR. {[}Anonymous], PREDICTIVE MODELLING. {[}Anonymous], NLP OV. {[}Anonymous], 2019, SUPPORT VECTOR MACHI. {[}Anonymous], MULT ASS REM TOOL MA. Arbet J, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2020.513. Asif H, 2017, IFIP ADV INF COMM TE, V502, P155, DOI 10.1007/978-3-319-58469-0\_11. Bensken WP, 2021, SURG INFECT, V22, P590, DOI 10.1089/sur.2020.429. Bisong E., 2019, BUILDING MACHINE LEA, P243, DOI DOI 10.1007/978-1-4842-4470-8\_20. Boureau Y.L., THEORETICAL ANAL FEA, P8. Brownlee J., 2017, GENTLE INTRO BAG WOR. Brownlee J, WHY ONE HOT ENCODE D. Cardenas-Lopez FA, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200455. Chapman W, 2007, BIOL TRANSLATIONAL C, P81. Chen PH, 2020, ACAD RADIOL, V27, P6, DOI 10.1016/j.acra.2019.08.010. CHOMSKY N, 1956, IRE T INFORM THEOR, V2, P113. Ciresan D., 2012, PROC C WORKSHOP NEUR, P2843. Duckworth C, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-02481-y. Falconer W., 1784, UNIVERSAL DICT MARIN. Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451. Girshick R, 2014, PROC CVPR IEEE, P580, DOI 10.1109/CVPR.2014.81. Glen S, 2018, STAT HOW TO. Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013. Hall P, 2008, ANN STAT, V36, P2135, DOI 10.1214/07-AOS537. Harrison JH, 2021, ARCH PATHOL LAB MED, V145, P1228, DOI {[}10.5858/arpa.2020-0541-CP), 10.5858/arpa.2020-0541-CP]. Hyafil L., 1976, Information Processing Letters, V5, P15, DOI 10.1016/0020-0190(76)90095-8. Jayatilake SMDAC, 2021, J HEALTHC ENG, V2021, DOI 10.1155/2021/6679512. Juluru K, 2021, RADIOGRAPHICS, V41, P1420, DOI 10.1148/rg.2021210025. LeCun Y, 1999, LECT NOTES COMPUT SC, V1681, P319, DOI 10.1007/3-540-46805-6\_19. Lokesh S, 2019, CLUSTER COMPUT, V22, P11669, DOI 10.1007/s10586-017-1447-6. Mehta D, 2002, THEOR COMPUT SCI, V270, P609, DOI 10.1016/S0304-3975(01)00011-1. Michalski R.S., 2013, MACHINE LEARNING ART. Nadkarni PM, 2011, J AM MED INFORM ASSN, V18, P544, DOI 10.1136/amiajnl-2011-000464. Neveol A, 2018, J BIOMED SEMANT, V9, DOI 10.1186/s13326-018-0179-8. Papagelis A, 2001, P 18 INT C MACHINE L, P393, DOI 10.1.1.85.3752. Papaluta V, MEDIUM 0114. Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877. Rahman S, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17031082. Ranganathan P, 2019, INDIAN J CRIT CARE M, V23, pS169, DOI 10.5005/jp-journals-10071-23198. Rashidi HH, 2023, FRONT ONCOL, V13, DOI 10.3389/fonc.2023.1130229. Rashidi Hooman H, 2023, J Thromb Haemost, V21, P728, DOI 10.1016/j.jtha.2022.12.019. Rashidi HH, 2019, ACAD PATHOL, V6, DOI 10.1177/2374289519873088. Schober P, 2021, ANESTH ANALG, V132, P108, DOI 10.1213/ANE.0000000000005206. SEAL HL, 1967, BIOMETRIKA, V54, P1. Starkhagen C, 2022, QUALITATIVE DATA UNS. Uddin S, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-19728-x. Vayena E, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002689. Wang Y, 2021, IEEE ACCESS, V9, P54310, DOI 10.1109/ACCESS.2021.3071301. Wright AI, 2021, IEEE J BIOMED HEALTH, V25, P307, DOI 10.1109/JBHI.2020.3046094. Yang Q, 2022, ARXIV. Yim WW, 2016, JAMA ONCOL, V2, P797, DOI 10.1001/jamaoncol.2016.0213.}, Number-of-Cited-References = {54}, Times-Cited = {0}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {3}, Journal-ISO = {Semin. Diagn. Pathol.}, Doc-Delivery-Number = {A5ET2}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000955359500001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000518682300001, Author = {Ruehle, Fabian}, Title = {Data science applications to string theory}, Journal = {PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS}, Year = {2020}, Volume = {839}, Pages = {1-117}, Month = {JAN 21}, Abstract = {We first introduce various algorithms and techniques for machine learning and data science. While there is a strong focus on neural network applications in unsupervised, supervised and reinforcement learning, other machine learning techniques are discussed as well. These include various clustering and anomaly detection algorithms, support vector machines, and decision trees. In addition, we review data science techniques such as genetic algorithms and topological data analysis. This first part of the review makes some reference to concepts in physics, but the explanations and examples do not assume any knowledge of string theory and should therefore be accessible to a wide variety of readers with a physics background. After that, we illustrate applications to string theory. We give an overview of existing string theory data sets and describe how they can be studied using data science techniques. We also explain the computational complexity involved in the investigation of string vacua. Example codes that illustrate the techniques introduced in this review are available from Fabian Ruehle (0000). (C) 2020 The Author. Published by Elsevier B.V.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Ruehle, F (Corresponding Author), CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland. Ruehle, Fabian, CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland. Ruehle, Fabian, Univ Oxford, Dept Phys, Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, England.}, DOI = {10.1016/j.physrep.2019.09.005}, ISSN = {0370-1573}, EISSN = {1873-6270}, Keywords-Plus = {NEURAL-NETWORKS; LEARNING ALGORITHM; CLASSIFICATION; MODELS; DYNAMICS; GAME; GO}, Research-Areas = {Physics}, Web-of-Science-Categories = {Physics, Multidisciplinary}, Author-Email = {fabian.ruehle@cern.ch}, Affiliations = {European Organization for Nuclear Research (CERN); University of Oxford}, ORCID-Numbers = {Ruehle, Fabian/0000-0002-8409-9823}, Funding-Acknowledgement = {EPSRC, UK network grant {[}EP/N007158/1]; ICTP Trieste; Microsoft Research; BCTP at Bonn University; Simons Center for Geometry and Physics, USA; Banff International Research Station; Casa Matematica Oaxaca; Universidad Nacional Autonoma de Mexico; University of Pennsylvania; Northeastern University; Aspen Center for Physics; EPSRC {[}EP/N007158/1] Funding Source: UKRI}, Funding-Text = {I also thank the EPSRC, UK network grant EP/N007158/1 for support during the time I started to work on machine learning, and the ICTP Trieste, Microsoft Research, the BCTP at Bonn University, and the Simons Center for Geometry and Physics, USA for financial support for schools and conferences we organized on machine learning. I am furthermore thankful for support and hospitality by the Banff International Research Station and the Casa Matematica Oaxaca, Universidad Nacional Autonoma de Mexico, University of Pennsylvania, Northeastern University, and the Aspen Center for Physics, where part of this work was carried out.}, Cited-References = {Aaronson S., 2017, ELECT C COMPUTATIONA, V24. Abadi M, 2015, TENSORFLOW LARGE SCA, DOI DOI 10.1038/NN.3331. Abel S., POWER GENETIC ALGORI. Abel S, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2014)010. Acharya B.S., HEPTH06062121. ACKLEY DH, 1985, COGNITIVE SCI, V9, P147. Adams Henry, 2014, Mathematical Software - ICMS 2014. 4th International Congress. Proceedings. LNCS: 8592, P129, DOI 10.1007/978-3-662-44199-2\_23. Aizerman M. A., 1964, AUTOMAT REM CONTR, V25, P821, DOI DOI 10.1234/12345678. Akrami Y, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2010)057. ALLANACH BC, 2004, J HIGH ENERGY PHYS. Allen-Zhu Z., LEARNING GEN OVERPAR. Altenberg, 1995, FDN GENETIC ALGORITH, V3, P23. Altman R, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)186. Anandkumar A., 2016, ARXIV160205908. Anderson LB, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2017)077. Anderson LB, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)047. {[}Anonymous], 2015, GUDHI USER REFERENCE. {[}Anonymous], 2017, AUTOMATIC DIFFERENTI. {[}Anonymous], 1994, ADV NEURAL INFORM PR. {[}Anonymous], 2015, PROC CVPR IEEE, DOI {[}10.1109/CVPR.2015.7298594, DOI 10.1109/CVPR.2015.7298594]. {[}Anonymous], 2019, MATHEMATICA. Arjovsky M., 2017, ARXIV170104862. Arjovsky M, 2017, PR MACH LEARN RES, V70. Ashok SK, 2004, J HIGH ENERGY PHYS. Ba J. L., 2016, ARXIV160706450, P2. Bauer U., 2017, RIPSER LEAN C CODE C. BELLMAN R, 1966, SCIENCE, V153, P34, DOI 10.1126/science.153.3731.34. Bianco S, 2018, IEEE ACCESS, V6, P64270, DOI 10.1109/ACCESS.2018.2877890. Blaback J, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/03/003. Blaback J, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2013)054. Blickle T, 1996, EVOL COMPUT, V4, P361, DOI 10.1162/evco.1996.4.4.361. Blumenhagen R., 2013, BASIC CONCEPTS STRIN, DOI {[}10.1007/978-3-642-29497-6, DOI 10.1007/978-3-642-29497-6]. Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401. Bouchard V, 2003, ADV THEOR MATH PHYS, V7, P205. Braun V, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2015)125. Breiman L, 1984, CLASSIFICATION REGRE, DOI {[}DOI 10.1201/9781315139470, 10.1002/widm.8, DOI 10.1002/WIDM.8]. Bridges C. L., 1987, Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, P9. Brockman, 2016, OPENAI GYM. Buchbinder EI, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2014)025. Bull K, 2019, PHYS LETT B, V795, P700, DOI 10.1016/j.physletb.2019.06.067. Bull K, 2018, PHYS LETT B, V785, P65, DOI 10.1016/j.physletb.2018.08.008. CANDELAS P, 1985, NUCL PHYS B, V258, P46, DOI 10.1016/0550-3213(85)90602-9. CANDELAS P, 1988, NUCL PHYS B, V298, P493, DOI 10.1016/0550-3213(88)90352-5. Candelas P, 1998, NUCL PHYS B, V511, P295, DOI 10.1016/S0550-3213(96)00410-5. Carey M.R., 1979, COMPUTERS INTRACTABI. Carifio J, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)157. CARPENTER GA, 1991, NEURAL NETWORKS, V4, P565, DOI 10.1016/0893-6080(91)90012-T. Carrazza S., 1804, SAMPLING RIEMANN THE. Charbonneau P., 1995, USERS GUIDE PIKAIA 1. Charbonneau P, 2002, 451STR NCAR. Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953. Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785. Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482. Chollet F., 2015, KERAS, DOI DOI 10.1097/WAD.0B013E3182163B62. Cirafici M, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2016)045. Cole A, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)054. Cole A, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/03/025. Constantin A., FORMULAE LINE BUNDLE. Constantin A, 2019, PHYS LETT B, V792, P258, DOI 10.1016/j.physletb.2019.03.048. COPPERSMITH D, 1990, J SYMB COMPUT, V9, P251, DOI 10.1016/S0747-7171(08)80013-2. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Cvetic M, 2004, NUCL PHYS B, V698, P163, DOI 10.1016/j.nuclphysb.2004.07.036. Cvetic M, 2019, PHYS REV LETT, V123, DOI 10.1103/PhysRevLett.123.101601. Cvetic M, 2011, FORTSCHR PHYS, V59, P243, DOI 10.1002/prop.201000093. Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274. Davis L., 1991, HDB GENETIC ALGORITH, V115. De Rainville F.-M., 2012, P 14 ANN C COMP GEN, P85, DOI DOI 10.1145/2330784.2330799. Denef F, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/05/072. Denef F, 2007, ANN PHYS-NEW YORK, V322, P1096, DOI 10.1016/j.aop.2006.07.013. Denef F, 2018, ANN PHYS-NEW YORK, V392, P93, DOI 10.1016/j.aop.2018.03.013. DeWolfe O, 2005, J HIGH ENERGY PHYS. DiCerbo G., 2016, ARXIV160802997. Dijkstra TPT, 2005, NUCL PHYS B, V710, P3, DOI 10.1016/j.nuclphysb.2004.12.032. Doersch C, 2016, TUTORIAL VARIATIONAL. Douglas MR, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/01/031. Douglas MR, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/05/046. Du Q, 1999, SIAM REV, V41, P637, DOI 10.1137/S0036144599352836. Duchi J, 2011, J MACH LEARN RES, V12, P2121. Edelsbrunner H, 2002, DISCRETE COMPUT GEOM, V28, P511, DOI 10.1007/s00454-002-2885-2. Erbin H., GANS GENERATING EFT. Ester M., 1996, KDD 96, V96, P226, DOI DOI 10.5555/3001460.3001507. Faraggi AE, 2018, NUCL PHYS B, V927, P1, DOI 10.1016/j.nuclphysb.2017.12.006. Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504. Ge R., 2015, C LEARN THEOR, P797, DOI DOI 10.1109/ICMTMA.2015.197. Glorot X., 2010, P 13 INT C ART INT S, P249. Gmeiner F, 2006, J HIGH ENERGY PHYS. Goldberg D.E., 1989, GENETIC ALGORITHMS S, DOI DOI 10.1111/J.1365-2486.2009.02080.X. Goldberger J., 2004, ADV NEURAL INF PROCE, V17, P513, DOI DOI 10.1109/TCSVT.2013.2242640. Golmant N., COMPUTATIONAL INEFFI. Goodfellow I., 2016, ADV NEURAL INFORM PR. Goodfellow I.J., 2014, ARXIV14126572. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. GRASSI A, 1991, MATH ANN, V290, P287, DOI 10.1007/BF01459246. Gray J, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2013)070. Green M.B., 1987, CAMBRIDGE MONOGRAPHS, V2. GREEN MB, 1987, CAMBRIDGE MONOGRAPHS, V1, P469. Grinis R., 2013, ARXIV13016641. GROSS M, 1994, DUKE MATH J, V74, P271, DOI 10.1215/S0012-7094-94-07414-0. Grossberg S., 2012, NEURAL NETW OFF J IN, V37. Gunasekar S., 2017, ADV NEURAL INFORM PR, P6151. Halverson J, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2019)003. Halverson J, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.046015. Halverson J, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.126006. Halverson J, 2017, PHYS REV D, V95, DOI 10.1103/PhysRevD.95.026005. Hashimoto K, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.106017. Hashimoto K, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.106014. Hashimoto K, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.046019. Hastie T., 2009, ELEMENTS STAT LEARNI, DOI {[}DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-84858-7]. He K. M., 2016, PROC IEEE C COMPUT V, DOI DOI 10.1109/CVPR.2016.90. He KM, 2015, IEEE I CONF COMP VIS, P1026, DOI 10.1109/ICCV.2015.123. He Y.-H., DISTINGUISHING ELLIP. He Y.-H., DEEP LEARNING LANDSC. Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527. Holland JH., 1975, ADAPTATION NATURAL A, DOI DOI 10.1137/1018105. Horava P, 1996, NUCL PHYS B, V460, P506, DOI 10.1016/0550-3213(95)00621-4. Huang YC, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)014. Hyafil L., 1976, Information Processing Letters, V5, P15, DOI 10.1016/0020-0190(76)90095-8. Ibanez LE, 2012, STRING THEORY AND PARTICLE PHYSICS: AN INTRODUCTION TO STRING PHENOMENOLOGY, P1. Ioffe S, 2015, ARXIV 1502 03167, V37, P448, DOI DOI 10.1007/S13398-014-0173-7.2. Janocha K., 2017, SCHEDAE INFORM, DOI DOI 10.4467/20838476SI.16.004.6185. Keskar N. S., 2017, ICLR. Kingma D., 2014, 14126980 ARXIV, DOI DOI 10.48550/ARXIV.1412.6980. Kingma D. P, 2013, ARXIV13126114. Klaewer D, 2019, PHYS LETT B, V789, P438, DOI 10.1016/j.physletb.2019.01.002. Klambauer G., 2017, P 31 INT C NEURAL IN, P971, DOI DOI 10.5555/3294771.3294864. Klikauer T, 2016, TRIPLEC-COMMUN CAPIT, V14, P260. Krefl D., RIEMANN THETA BOLTZM. Krefl D, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.066014. Kreuzer M, 2004, COMPUT PHYS COMMUN, V157, P87, DOI 10.1016/S0010-4655(03)00491-0. KREUZER M, 1992, NUCL PHYS B, V388, P113, DOI 10.1016/0550-3213(92)90547-O. KREUZER M, 1993, NUCL PHYS B, V405, P305, DOI 10.1016/0550-3213(93)90549-5. Kreuzer M, 2000, ADV THEOR MATH PHYS, V4, P1209, DOI 10.4310/ATMP.2000.v4.n6.a2. Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386. Kubo M., IMPLICIT REGULARIZAT. KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694. Kurach K., 2018, 180704720 ARXIV. Langkvist M, 2014, PATTERN RECOGN LETT, V42, P11, DOI 10.1016/j.patrec.2014.01.008. Larochelle H., 2008, P 25 INT C MACH LEAR, P536, DOI DOI 10.1145/1390156.1390224. Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791. LeCun Y., 1985, P COGNITIVA, V85, P599. Lee J., 2019, ARXIV190206720. Lee J, 2017, ARXIV171100165. LENSTRA AK, 1982, MATH ANN, V261, P515, DOI 10.1007/BF01457454. LIN JH, 1991, IEEE T INFORM THEORY, V37, P145, DOI 10.1109/18.61115. Lin M, 2014, PUBLIC HEALTH NUTR, V17, P2029, DOI {[}10.1017/S1368980013002176, 10.1109/PLASMA.2013.6634954]. LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489. Lucic M., 2017, 171110337 ARXIV. Luke S, 1998, GEN PROGR 1998 P 2 A, P240. Maddison Chris J, 2014, NEURAL INF PROCESS S. Magalhaes-Mendes Jorge, 2013, WSEAS Transactions on Computers, V12, P164. MAHALANOBIS P. C., 1936, GEN DISTANCE STAT, DOI {[}DOI 10.1007/S13171-019-00164-5, DOI 10.1145/1390156.1390302]. Maldacena J., 1999, International Journal of Theoretical Physics, V38, P1113, DOI 10.1023/A:1026654312961. Manders K., 1976, P 8 ANN ACM S THEOR, P23. Martius G. S., 2017, 5 INT C LEARN REPR I. Masters Dominic, REVISITING SMALL BAT. Matijasevi J.V, 1970, DOKL AKAD NAUK SSSR, V191, P279. Mayr E.W., 1998, LECT NOTES COMPUTER, V1367. McCandlish S., EMPIRICAL MODEL LARG. Morrison DR., 2012, FORTSCHR PHYS, V60, P1187, DOI {[}10.1002/prop.201200086, DOI 10.1002/PROP.201200086]. Mutter A, 2019, NUCL PHYS B, V940, P113, DOI 10.1016/j.nuclphysb.2019.01.013. Murthy S.K., 1998, DATA MIN KNOWL DISC, P1. MURTY KG, 1987, MATH PROGRAM, V39, P117, DOI 10.1007/BF02592948. Neal R.M., 1996, BAYESIAN LEARNING NE, V118, DOI DOI 10.1007/978-1-4612-0745-0. Nesterov Yu. E., 1983, Doklady Akademii Nauk SSSR, V269, P543. Nibbelink SG, 2015, FORTSCHR PHYS, V63, P609, DOI 10.1002/prop.201500041. Nibbelink SG, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.046002. Nie J., 2012, ARXIV12060319. Nielsen M.A., 2015, NEURAL NETWORKS DEEP. Nilles HP, 2012, COMPUT PHYS COMMUN, V183, P1363, DOI 10.1016/j.cpc.2012.01.026. Nilles HP, 2015, MOD PHYS LETT A, V30, DOI 10.1142/S0217732315300086. Novak R., 2018, INT C LEARN REPR, P1. Obied G., SITTER SPACE SWAMPLA, Patent No. 180608362. Otter N, 2017, EPJ DATA SCI, V6, DOI 10.1140/epjds/s13688-017-0109-5. OUDOT S. Y, 2015, MATH SURVEYS MONOGR, V209. Parker David B., 1985, TR47 MIT CTR COMP RE. Pfau D., 2016, NIPS WORKSH ADV TRAI. Plauschinn E, 2019, PHYS REP, V798, P1, DOI 10.1016/j.physrep.2018.12.002. Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877. Razali N.M., 2011, P WORLD C ENG. REID M, 1987, MATH ANN, V278, P329, DOI 10.1007/BF01458074. Rezende D. J., 2014, INT C MACH LEARN. Ruder S., ARXIV160904747. Ruehle F, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2017)038. Ruehle Fabian, GITHUB PAGE MAT THIS. RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0. Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y. Sagun Levent, 2014, ARXIV14126615. Salimans T, 2016, ADV NEUR IN, V29. Salzberg S. L., 1994, MACH LEARN, V16, P235, DOI DOI 10.1007/BF00993309. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Scholler F., ALL WEIGHT SYSTEMS C. Schwarz JH, 1996, PHYS LETT B, V367, P97, DOI 10.1016/0370-2693(95)01429-2. Shor PW, 1997, SIAM J COMPUT, V26, P1484, DOI 10.1137/S0036144598347011. Siegel Carl Ludwig, 1972, NACHR AKAD WISS GOTT, V3, P21. Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. Srivastava N, 2014, J MACH LEARN RES, V15, P1929. Su J., 2017, CORR. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. Szegedy C., 2016, P IEEE C COMPUTER VI, P2818, DOI 10.1109/cvpr.2016.308. Tan AH, 2006, LECT NOTES COMPUT SC, V3971, P470. Taylor W, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2018)111. Taylor W, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2015)164. Tian Zhang, 1996, SIGMOD Record, V25, P103, DOI 10.1145/235968.233324. Tokui Seiya, 2015, P WORKSH MACH LEARN. Vafa C, 1996, NUCL PHYS B, V469, P403, DOI 10.1016/0550-3213(96)00172-1. Vafa C., HEPTH0509212. vanLaarhoven T., L2 REGULARIZATION VE. Vavasis S., 1991, INT SERIES MONOGRAPH. Wall C.T.C, 1966, INVENT MATH, V1, P355, DOI {[}DOI 10.1007/BF01389738, 10.1007/BF01389738]. Wang YN, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2018)009. Weinberger Kilian Q, 2006, ADV NEURAL INFORM PR, P1473, DOI DOI 10.1007/978-3-319-13168-9\_. Williams J., PIKAIA. Wilson AC, 2017, ADV NEUR IN, V30. WITTEN E, 1995, NUCL PHYS B, V443, P85, DOI 10.1016/0550-3213(95)00158-O. Yamaguchi A, 2000, NUCL PHYS B-PROC SUP, V83-4, P840. Yao Y, 2007, CONSTR APPROX, V26, P289, DOI 10.1007/s00365-006-0663-2. Yao ZW, 2018, ADV NEUR IN, V31. YELLOTT JI, 1977, J MATH PSYCHOL, V15, P109, DOI 10.1016/0022-2496(77)90026-8. Zeiler M. D., 2012, ADADELTA ADAPTIVE LE, Vabs/1212.5701. Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1\_53. Zhang C., 2016, 5 INT C LEARN REPR I. Zhang LW, 2018, PR MACH LEARN RES, V80. Zomorodian A, 2005, DISCRETE COMPUT GEOM, V33, P249, DOI 10.1007/s00454-004-1146-y.}, Number-of-Cited-References = {224}, Times-Cited = {48}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {11}, Journal-ISO = {Phys. Rep.-Rev. Sec. Phys. Lett.}, Doc-Delivery-Number = {KT0DY}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000518682300001}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000679379300007, Author = {Huang, Di and Wang, Shuaian and Liu, Zhiyuan}, Title = {A systematic review of prediction methods for emergency management}, Journal = {INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION}, Year = {2021}, Volume = {62}, Month = {AUG}, Abstract = {With the trend of global warming and destructive human activities, the frequent occurrences of catastrophes have posed devastating threats to human life and social stability worldwide. The emergency management (EM) system plays a significant role in saving people's lives and reducing property damage. The prediction system for the occurrence of emergency events and resulting impacts is widely recognized as the first stage of the EM system, the accuracy of which has a significant impact on the efficiency of resource allocation, dispatching, and evacuation. In fact, the number and variety of contributions to prediction techniques, such as statistic analysis, artificial intelligence, and simulation method, are exploded in recent years, motivating the need for a systematic analysis of the current works on disaster prediction. To this end, this paper presents a systematic review of contributions on prediction methods for emergency occurrence and resource demand of both natural and manmade disasters. Through a detailed discussion on the features of each type of emergency event, this paper presents a comprehensive survey of state-of-the-art prediction technologies which have been widely applied in EM. After that, we summarize the challenges of current efforts and point out future directions.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Liu, ZY (Corresponding Author), Southeast Univ, Sch Transportat, Jiangsu Prov Collaborat Innovat Ctr Modern Urban, Jiangsu Key Lab Urban ITS, Nanjing, Peoples R China. Huang, Di; Liu, Zhiyuan, Southeast Univ, Sch Transportat, Jiangsu Prov Collaborat Innovat Ctr Modern Urban, Jiangsu Key Lab Urban ITS, Nanjing, Peoples R China. Huang, Di; Wang, Shuaian, Hong Kong Polytech Univ, Dept Logist \& Maritime Studies, Hung Hom, Hong Kong, Peoples R China.}, DOI = {10.1016/j.ijdrr.2021.102412}, EarlyAccessDate = {JUN 2021}, Article-Number = {102412}, ISSN = {2212-4209}, Keywords = {Emergency management system; Disaster; Prediction methods; Resource demand; Artificial intelligence; Review}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINE; BIG-DATA; SPATIAL PREDICTION; DEMAND PREDICTION; DECISION-MAKING; TIME-SERIES; EARTHQUAKE; MODELS; RISK}, Research-Areas = {Geology; Meteorology \& Atmospheric Sciences; Water Resources}, Web-of-Science-Categories = {Geosciences, Multidisciplinary; Meteorology \& Atmospheric Sciences; Water Resources}, Author-Email = {zhiyuanl@seu.edu.cn}, Affiliations = {Southeast University - China; Hong Kong Polytechnic University}, Funding-Acknowledgement = {National Key R\&D Program of China {[}2018YFE0102700]}, Funding-Text = {This study is supported by the National Key R\&D Program of China (Project No. 2018YFE0102700) .}, Cited-References = {Abdelgawad H, 2009, TRANSP LETT, V1, P41, DOI 10.3328/TL.2009.01.01.41-58. Adab H, 2015, INT J WILDLAND FIRE, V24, P763, DOI 10.1071/WF13113. Aggarwal CC, 2018, NEURAL NETWORKS DEEP. Aghamohammadi H, 2013, INT J ENVIRON SCI TE, V10, P931, DOI 10.1007/s13762-013-0281-5. Alkheder S, 2017, J FORECASTING, V36, P100, DOI 10.1002/for.2425. Altay N, 2006, EUR J OPER RES, V175, P475, DOI 10.1016/j.ejor.2005.05.016. Firmino PRA, 2020, CHAOS SOLITON FRACT, V140, DOI 10.1016/j.chaos.2020.110211. Alves LGA, 2018, PHYSICA A, V505, P435, DOI 10.1016/j.physa.2018.03.084. Alves LGA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134862. Alzahrani A., 2017, INT C SMART CIT INFR, P139. Amezquita-Sanchez JP, 2017, SCI IRAN, V24, P2645, DOI 10.24200/sci.2017.4589. Amit SNKB, 2017, 2017 INTERNATIONAL ELECTRONICS SYMPOSIUM ON KNOWLEDGE CREATION AND INTELLIGENT COMPUTING (IES-KCIC), P239. Anastasopoulos PC, 2012, ACCIDENT ANAL PREV, V45, P628, DOI 10.1016/j.aap.2011.09.015. Anaya-Arenas AM, 2014, ANN OPER RES, V223, P53, DOI 10.1007/s10479-014-1581-y. Anbarasan M, 2020, COMPUT COMMUN, V150, P150, DOI 10.1016/j.comcom.2019.11.022. Aringhieri R, 2017, COMPUT OPER RES, V78, P349, DOI 10.1016/j.cor.2016.09.016. Asim KM, 2017, NAT HAZARDS, V85, P471, DOI 10.1007/s11069-016-2579-3. Avand M, 2021, J HYDROL, V595, DOI 10.1016/j.jhydrol.2020.125663. Ayati E, 2011, J SAFETY RES, V42, P209, DOI 10.1016/j.jsr.2011.03.006. Balica SF, 2013, ENVIRON MODELL SOFTW, V41, P84, DOI 10.1016/j.envsoft.2012.11.002. Bao J, 2019, ACCIDENT ANAL PREV, V122, P239, DOI 10.1016/j.aap.2018.10.015. Bellos V, 2016, J HYDROL, V540, P331, DOI 10.1016/j.jhydrol.2016.06.040. Boccaletti S, 2020, CHAOS SOLITON FRACT, V135, DOI 10.1016/j.chaos.2020.109794. Bouchnita A, 2020, CHAOS SOLITON FRACT, V138, DOI 10.1016/j.chaos.2020.109941. Box G. E. P., 1970, Time series analysis, forecasting and control. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Brodsky EE, 2014, SCIENCE, V344, P700, DOI 10.1126/science.1255202. Bullock J.A., 2017, INTRO EMERGENCY MANA. Chang LY, 2017, J TRANSP SAF SECUR, V9, P419, DOI 10.1080/19439962.2016.1237601. Chang SE, 2003, ENVIRON PLANN A, V35, P1051, DOI 10.1068/a35195. Chavez O, 2016, GEOMAT NAT HAZ RISK, V7, P1162, DOI 10.1080/19475705.2015.1016554. Chen N, 2019, ARTIF INTELL REV, V52, P2131, DOI 10.1007/s10462-017-9589-8. Chen PA, 2013, J HYDROL, V497, P71, DOI 10.1016/j.jhydrol.2013.05.038. Chen W, 2020, SCI TOTAL ENVIRON, V701, DOI 10.1016/j.scitotenv.2019.134979. Chimmula VKR, 2020, CHAOS SOLITON FRACT, V135, DOI 10.1016/j.chaos.2020.109864. Chu J., 2012, SYST ENG PROCEDIA, P391, DOI DOI 10.1016/J.SEPRO.2011.10.061. Cox TS, 2018, P INT COMP SOFTW APP, P534, DOI 10.1109/COMPSAC.2018.10290. Dai HZ, 2017, COMPUT-AIDED CIV INF, V32, P344, DOI 10.1111/mice.12257. Dang V.N., 2021, INT J DISAST RISK RE. Diaz-Robles LA, 2008, ATMOS ENVIRON, V42, P8331, DOI 10.1016/j.atmosenv.2008.07.020. Dubey A., 2020, ARXIV PREPRINT ARXIV. Dubois D. J., 1980, FUZZY SETS SYSTEMS T, V144. EM-DAT, 2020, HUM COST DIS OV LAST. EM-DAT, 2019, NATURAL DISASTERS. Farahani RZ, 2020, EUR J OPER RES, V287, P787, DOI 10.1016/j.ejor.2020.03.005. Faturechi R, 2015, J INFRASTRUCT SYST, V21, DOI 10.1061/(ASCE)IS.1943-555X.0000212. Fidani Cristiano, 2013, Animals, V3, P693, DOI 10.3390/ani3030693. Galindo G, 2013, SOCIO-ECON PLAN SCI, V47, P20, DOI 10.1016/j.seps.2012.11.002. Grant RA, 2010, J ZOOL, V281, P263, DOI 10.1111/j.1469-7998.2010.00700.x. Grant RA, 2011, INT J ENV RES PUB HE, V8, P1936, DOI 10.3390/ijerph8061936. Graves R, 2011, PURE APPL GEOPHYS, V168, P367, DOI 10.1007/s00024-010-0161-6. Gu Y, 2020, TRANSPORT RES E-LOG, V133, DOI 10.1016/j.tre.2019.11.003. Guha-Sapir D., 2012, ANN DISASTER STAT RE. GUL M, 2018, HEALTH SYST, V7, P1. Guo L, 2009, ICEET: 2009 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT TECHNOLOGY, VOL 2, PROCEEDINGS, P539, DOI 10.1109/ICEET.2009.369. Hadid B, 2020, J PROCESS CONTR, V86, P44, DOI 10.1016/j.jprocont.2019.12.007. Hatcher WG, 2018, IEEE ACCESS, V6, P24411, DOI 10.1109/ACCESS.2018.2830661. Hawe GI, 2012, ACM COMPUT SURV, V45, DOI 10.1145/2379776.2379784. Higuchi Hiroko, 2014, 2014 43rd International Conference on Parallel Processing Workshops (ICCPW). Proceedings, P349, DOI 10.1109/ICPPW.2014.52. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Holguin-Veras J, 2012, NAT HAZARDS REV, V13, P117, DOI 10.1061/(ASCE)NH.1527-6996.0000068. Homma S, 2014, PROCEDIA COMPUT SCI, V29, P855, DOI 10.1016/j.procs.2014.05.077. Hu R, 2019, J HYDROL, V575, P911, DOI 10.1016/j.jhydrol.2019.05.087. Huang D, 2021, TRANSPORTMETRICA A, V17, P1272, DOI 10.1080/23249935.2020.1858206. Huang D, 2020, TRANSPORT RES C-EMER, V111, P1, DOI 10.1016/j.trc.2019.12.004. Huang L, 2018, SAFETY SCI, V109, P46, DOI 10.1016/j.ssci.2018.05.012. Huang M, 2012, TRANSPORT RES E-LOG, V48, P2, DOI 10.1016/j.tre.2011.05.004. Huang X, 2015, NAT HAZARDS, V77, P717, DOI 10.1007/s11069-015-1620-2. Humagain S, 2020, TRANSPORT REV, V40, P35, DOI 10.1080/01441647.2019.1649319. Jaafari A, 2019, AGR FOREST METEOROL, V266, P198, DOI 10.1016/j.agrformet.2018.12.015. Jain M., 2014, AAAI SPRING S APPL C. Jonkman SN, 2008, NAT HAZARDS, V46, P353, DOI 10.1007/s11069-008-9227-5. Juang WC, 2017, BMJ OPEN, V7, DOI 10.1136/bmjopen-2017-018628. Kamdem JS, 2020, CHAOS SOLITON FRACT, V140, DOI 10.1016/j.chaos.2020.110215. Kim B.H, 2020, KSCE J CIV ENG, V24, P1. Kirbas I, 2020, CHAOS SOLITON FRACT, V138, DOI 10.1016/j.chaos.2020.110015. Koc K, 2020, NAT HAZARDS, V104, P1079, DOI 10.1007/s11069-020-04205-3. Kossobokov VG, 2013, NAT HAZARDS, V69, P1155, DOI 10.1007/s11069-012-0198-1. Lee JG, 2015, BIG DATA RES, V2, P74, DOI 10.1016/j.bdr.2015.01.003. Lee S, 2017, GEOMAT NAT HAZ RISK, V8, P1185, DOI 10.1080/19475705.2017.1308971. Li ACY, 2012, TRANSPORT RES E-LOG, V48, P715, DOI 10.1016/j.tre.2011.12.004. Li XP, 2011, MATH METHOD OPER RES, V74, P281, DOI 10.1007/s00186-011-0363-4. Li ZX, 2011, GEOD GEODYN, V2, P7, DOI 10.3724/SP.J.1246.2011.0007. Liang H, 2019, IEEE ACCESS, V7, P176746, DOI 10.1109/ACCESS.2019.2957837. Liao B, 2020, IEEE ACCESS, V8, P120331, DOI 10.1109/ACCESS.2020.3006358. Lin AQ, 2020, INT J DISAST RISK RE, V49, DOI 10.1016/j.ijdrr.2020.101682. Lin L, 2015, TRANSPORT RES C-EMER, V55, P444, DOI 10.1016/j.trc.2015.03.015. Liu, 2007, SERV OP LOG INF 2007, P1. Liu WM, 2012, SAFETY SCI, V50, P530, DOI 10.1016/j.ssci.2011.11.007. Lodree E, 2016, OPERATIONAL RES EMER, V1, P330. Lohumi K, 2018, 2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR DISASTER MANAGEMENT (ICT-DM). Looper JP, 2012, J HYDROL, V412, P114, DOI 10.1016/j.jhydrol.2011.05.046. Mabonga J, 2018, 17 INT C AUT AG MULT. Maier HR, 2010, ENVIRON MODELL SOFTW, V25, P891, DOI 10.1016/j.envsoft.2010.02.003. Mannering F, 2018, ANAL METHODS ACCID R, V17, P1, DOI 10.1016/j.amar.2017.10.002. Mannering F, 2016, ANAL METHODS ACCID R, V11, P1, DOI 10.1016/j.amar.2016.04.001. Masci F, 2015, J GEOPHYS RES-SPACE, V120, P10289, DOI 10.1002/2015JA021336. May F., 2007, FIRE ENV INNOVATIONS, P443. Mei G, 2020, IEEE INTERNET THINGS, V7, P4371, DOI 10.1109/JIOT.2019.2952593. Mohammadi R, 2014, ENG APPL ARTIF INTEL, V36, P204, DOI 10.1016/j.engappai.2014.07.022. Molina M, 2005, LECT NOTES COMPUT SC, V3571, P88. Mori K, 2013, 2013 13TH INTERNATIONAL CONFERENCE ON ITS TELECOMMUNICATIONS (ITST), P337, DOI 10.1109/ITST.2013.6685569. Mosavi A, 2018, WATER-SUI, V10, DOI 10.3390/w10111536. Moustra M, 2011, EXPERT SYST APPL, V38, P15032, DOI 10.1016/j.eswa.2011.05.043. Mukhopadhyay A, 2017, AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, P168. Nami MH, 2018, INT J ENVIRON SCI TE, V15, P373, DOI 10.1007/s13762-017-1371-6. Nguyen L, 2022, IEEE T BIG DATA, V8, P229, DOI 10.1109/TBDATA.2019.2941887. Oh S, 2015, TRANSPORT REV, V35, P4, DOI 10.1080/01441647.2014.992496. Ortu?o M., 2013, DECISION AID MODELS, V7, P17, DOI {[}10.2991/978-94-91216-74-9\_2, DOI 10.2991/978-94-91216-74-9\_2]. Ozdamar L, 2015, EUR J OPER RES, V244, P55, DOI 10.1016/j.ejor.2014.11.030. Panakkat A., 2008, NAT HAZARDS REV, V9, P70, DOI DOI 10.1061/(ASCE)1527-6988(2008)9:2(70). Parisien MA, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/7/075005. Parisien MA, 2012, INT J WILDLAND FIRE, V21, P313, DOI 10.1071/WF11044. Phillips J, 2012, SOC SCI RES, V41, P681, DOI 10.1016/j.ssresearch.2012.01.001. Pohl D, 2016, NEUROCOMPUTING, V172, P168, DOI 10.1016/j.neucom.2015.01.084. Qiao HJ, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20185076. Qiu JN, 2014, DECIS SUPPORT SYST, V62, P94, DOI 10.1016/j.dss.2014.03.007. Rahman R, 2018, IEEE INT C INTELL TR, P1291, DOI 10.1109/ITSC.2018.8569443. Rawls CG, 2010, TRANSPORT RES B-METH, V44, P521, DOI 10.1016/j.trb.2009.08.003. Revilla-Romero B, 2014, HYDROL EARTH SYST SC, V18, P4467, DOI 10.5194/hess-18-4467-2014. Rohde D, 2010, COMPUT ENVIRON URBAN, V34, P58, DOI 10.1016/j.compenvurbsys.2009.09.001. Sabbaghtorkan M, 2020, EUR J OPER RES, V284, P1, DOI 10.1016/j.ejor.2019.06.029. Sahoo BK, 2020, CHAOS SOLITON FRACT, V139, DOI 10.1016/j.chaos.2020.110034. Sakai Tetsuhiro, 2014, 2014 IEEE 7th International Workshop on Computational Intelligence and Applications (IWCIA), P95, DOI 10.1109/IWCIA.2014.6988085. Sarkar K, 2020, CHAOS SOLITON FRACT, V139, DOI 10.1016/j.chaos.2020.110049. Schneider PJ, 2006, NAT HAZARDS REV, V7, P40, DOI {[}10.1061/ASCE1527-6988(2006)7:2(40), DOI 10.1061/(ASCE)1527-6988(2006)7:2(40)]. Seo S, 2018, PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), P257, DOI 10.1145/3278721.3278758. Shah SA, 2019, IEEE ACCESS, V7, P54595, DOI 10.1109/ACCESS.2019.2913340. Shahid F, 2020, CHAOS SOLITON FRACT, V140, DOI 10.1016/j.chaos.2020.110212. Shastri S, 2020, CHAOS SOLITON FRACT, V140, DOI 10.1016/j.chaos.2020.110227. Sheu JB, 2007, TRANSPORT RES E-LOG, V43, P687, DOI 10.1016/j.tre.2006.04.004. Sheu JB, 2007, TRANSPORT RES E-LOG, V43, P655, DOI 10.1016/j.tre.2007.01.001. Shrestha DL, 2013, HYDROL EARTH SYST SC, V17, P1913, DOI 10.5194/hess-17-1913-2013. Singh S, 2020, CHAOS SOLITON FRACT, V139, DOI 10.1016/j.chaos.2020.110086. Song B, 1996, J URBAN PLAN D-ASCE, V122, P1, DOI 10.1061/(ASCE)0733-9488(1996)122:1(1). Sood SK, 2018, SUSTAIN COMPUT-INFOR, V20, P102, DOI 10.1016/j.suscom.2017.12.001. Sun BZ, 2013, APPL MATH MODEL, V37, P7062, DOI 10.1016/j.apm.2013.02.008. Takabatake T, 2017, INT J DISAST RISK RE, V23, P1, DOI 10.1016/j.ijdrr.2017.04.003. Tambe M, 2012, ANN ALLERTON CONF, P1822, DOI 10.1109/Allerton.2012.6483443. Tao L, 2015, 3RD INTERNATIONAL CONFERENCE ON TRANSPORTATION INFORMATION AND SAFETY (ICTIS 2015), P107, DOI 10.1109/ICTIS.2015.7232194. Thibaud M, 2018, DECIS SUPPORT SYST, V108, P79, DOI 10.1016/j.dss.2018.02.005. Tian HM, 2019, WORLD WIDE WEB, V22, P1325, DOI 10.1007/s11280-018-0548-3. Tsunomori F, 2014, RADIAT MEAS, V60, P35, DOI 10.1016/j.radmeas.2013.11.006. Tufekci S, 1998, IEEE T ENG MANAGE, V45, P103, DOI 10.1109/TEM.1998.669742. Nguyen VQ, 2017, 2017 IEEE THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2017), P154, DOI 10.1109/BigMM.2017.58. Vecchi GA, 2011, MON WEATHER REV, V139, P1070, DOI 10.1175/2010MWR3499.1. Vickery PJ, 2009, J WIND ENG IND AEROD, V97, P392, DOI 10.1016/j.jweia.2009.05.005. Wang DL, 2020, J ENVIRON MANAGE, V262, DOI 10.1016/j.jenvman.2020.110382. Wang PP, 2020, CHAOS SOLITON FRACT, V140, DOI 10.1016/j.chaos.2020.110214. Wang PP, 2020, CHAOS SOLITON FRACT, V139, DOI 10.1016/j.chaos.2020.110058. Wang ZQ, 2021, NAT HAZARDS, V105, P2045, DOI 10.1007/s11069-020-04389-8. Wei Y, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2007GL032250. Wei Y, 2014, PURE APPL GEOPHYS, V171, P3281, DOI 10.1007/s00024-014-0777-z. Wu CH, 2015, HYDROL EARTH SYST SC, V19, P1385, DOI 10.5194/hess-19-1385-2015. Wu JD, 2008, STOCH ENV RES RISK A, V22, P719, DOI 10.1007/s00477-007-0181-7. Wu JM, 2020, TRANSPORT RES B-METH, V141, P223, DOI 10.1016/j.trb.2020.09.011. Xhafa, CONCURRENCY COMPUT P, V30. Xiangwei Zhao, 2021, Natural Hazards Review, V22, DOI 10.1061/(ASCE)NH.1527-6996.0000419. Xu KC, 2016, TRANSPORT RES A-POL, V87, P90, DOI 10.1016/j.tra.2016.02.012. Xu XY, 2010, EXPERT SYST APPL, V37, P4313, DOI 10.1016/j.eswa.2009.11.069. Yau SC, 2011, NAT HAZARDS REV, V12, P184, DOI 10.1061/(ASCE)NH.1527-6996.0000035. Yi P. F., 2010, SOCIO-ECON PLAN SCI, V44, P151, DOI {[}10.1016/j.seps.2009.11.002, DOI 10.1016/J.SEPS.2009.11.002]. Yin WH, 2014, TRANSPORT RES C-EMER, V42, P44, DOI 10.1016/j.trc.2014.02.015. Yin ZY, 2012, AI MAG, V33, P59, DOI 10.1609/aimag.v33i4.2432. Yousefi M, 2020, KYBERNETES, V49, P2335, DOI 10.1108/K-10-2018-0520. Yu F, 2018, INT J DISAST RISK RE, V30, P244, DOI 10.1016/j.ijdrr.2018.04.012. Yu H, 2011, IEEE T IND ELECTRON, V58, P5438, DOI 10.1109/TIE.2011.2164773. Yu PS, 2017, J HYDROL, V552, P92, DOI 10.1016/j.jhydrol.2017.06.020. Yuan ZN, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P984, DOI 10.1145/3219819.3219922. Zafar U, 2019, EAI SPRINGER INNOVAT, P291, DOI 10.1007/978-3-319-99966-1\_27. Zambrano AM, 2017, FUTURE GENER COMP SY, V75, P206, DOI 10.1016/j.future.2016.10.009. Zeng X, 2016, NAT HAZARDS, V83, P177, DOI 10.1007/s11069-016-2307-z. Zhang C, 2015, PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS \& MULTIAGENT SYSTEMS (AAMAS'15), P1911. Zhang SJ, 2018, NAT HAZARD EARTH SYS, V18, P969, DOI 10.5194/nhess-18-969-2018. Zhao S., 2020, SOCIO-ECON PLAN SCI, V74. Zhao XY, 2017, INT CONF DAT MIN WOR, P1158, DOI 10.1109/ICDMW.2017.165. Zhou HJ, 2015, J MT SCI-ENGL, V12, P1169, DOI 10.1007/s11629-015-3453-6. Zhou L, 2018, INT J DISAST RISK RE, V27, P567, DOI 10.1016/j.ijdrr.2017.09.037. Zhu XX, 2019, NAT HAZARDS, V97, P65, DOI 10.1007/s11069-019-03626-z. Zhu XX, 2016, EARTHQ SCI, V29, P337, DOI 10.1007/s11589-016-0170-3. Zifa W, 2008, EARTHQ ENG ENG VIB, V7, P225, DOI 10.1007/s11803-008-0856-1.}, Number-of-Cited-References = {181}, Times-Cited = {23}, Usage-Count-Last-180-days = {22}, Usage-Count-Since-2013 = {87}, Journal-ISO = {Int. J. Disaster Risk Reduct.}, Doc-Delivery-Number = {TS0WW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000679379300007}, DA = {2023-04-22}, } @article{ WOS:000572537200011, Author = {Liu, Yingli and Niu, Chen and Wang, Zhuo and Gan, Yong and Zhu, Yan and Sun, Shuhong and Shen, Tao}, Title = {Machine learning in materials genome initiative: A review}, Journal = {JOURNAL OF MATERIALS SCIENCE \& TECHNOLOGY}, Year = {2020}, Volume = {57}, Pages = {113-122}, Month = {NOV 15}, Abstract = {Discovering new materials with excellent performance is a hot issue in the materials genome initiative. Traditional experiments and calculations often waste large amounts of time and money and are also limited by various conditions. Therefore, it is imperative to develop a new method to accelerate the discovery and design of new materials. In recent years, material discovery and design methods using machine learning have attracted much attention from material experts and have made some progress. This review first outlines available materials database and material data analytics tools and then elaborates on the machine learning algorithms used in materials science. Next, the field of application of machine learning in materials science is summarized, focusing on the aspects of structure determination, performance prediction, fingerprint prediction, and new material discovery. Finally, the review points out the problems of data and machine learning in materials science and points to future research. Using machine learning algorithms, the authors hope to achieve amazing results in material discovery and design. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science \& Technology.}, Publisher = {JOURNAL MATER SCI TECHNOL}, Address = {72 WENHUA RD, SHENYANG 110015, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Shen, T (Corresponding Author), Kunming Univ Sci \& Technol, Fac Informat Engn \& Automat, Kunming 650500, Yunnan, Peoples R China. Wang, Z (Corresponding Author), Cent South Univ, Light Alloy Res Inst, Changsha 410083, Peoples R China. Liu, Yingli; Niu, Chen; Zhu, Yan; Shen, Tao, Kunming Univ Sci \& Technol, Fac Informat Engn \& Automat, Kunming 650500, Yunnan, Peoples R China. Liu, Yingli; Shen, Tao, Kunming Univ Sci \& Technol, Comp Technol Applicat Key Lab Yunnan Prov, Kunming 650500, Yunnan, Peoples R China. Wang, Zhuo, Cent South Univ, Light Alloy Res Inst, Changsha 410083, Peoples R China. Gan, Yong, Chinese Acad Engn, Beijing 100088, Peoples R China. Sun, Shuhong, Kunming Univ Sci \& Technol, Fac Mat Sci \& Engn, Kunming 650093, Yunnan, Peoples R China. Wang, Zhuo, Chengdu MatAi Technol Co Ltd, Chengdu 610041, Sichuan, Peoples R China.}, DOI = {10.1016/j.jmst.2020.01.067}, ISSN = {1005-0302}, EISSN = {1941-1162}, Keywords = {Materials genome initiative (MGI); Materials database; Machine learning; Materials properties prediction; Materials design and discovery}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; MECHANICAL-PROPERTIES; MATERIALS DISCOVERY; DATA SCIENCE; DESIGN; PREDICTION; INFORMATICS; COMPOSITES; INFRASTRUCTURE; SIMULATION}, Research-Areas = {Materials Science; Metallurgy \& Metallurgical Engineering}, Web-of-Science-Categories = {Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}, Author-Email = {wangzhao@mat.ai shentao@kust.edu.cn}, Affiliations = {Kunming University of Science \& Technology; Kunming University of Science \& Technology; Central South University; Kunming University of Science \& Technology}, Funding-Acknowledgement = {National Natural Science Foundation of China {[}61971208, 61671225 and51864027]; Yunnan Applied Basic Research Projects {[}2018FA034]; Yunnan Reserve Talents of Young and Middleaged Academic and Technical Leaders; YunnanYoung Top Talents of Ten Thousands Plan {[}2018 73]; Scientific ResearchFoundation of Kunming University of Science and Technology {[}KKSY201703016]}, Funding-Text = {This work was financially supported by the National Natural Science Foundation of China (Nos. 61971208, 61671225 and51864027), the Yunnan Applied Basic Research Projects (No. 2018FA034), the Yunnan Reserve Talents of Young and Middleaged Academic and Technical Leaders (Shen Tao, 2018), the YunnanYoung Top Talents of Ten Thousands Plan (Shen Tao, Zhu Yan, Yunren Social Development No. 2018 73) and the Scientific ResearchFoundation of Kunming University of Science and Technology (No. KKSY201703016).}, Cited-References = {Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894. Akbari E, 2014, RSC ADV, V4, P36896, DOI 10.1039/c4ra06291d. Al-Jabar AJA, 2017, APPL PHYS A-MATER, V123, DOI 10.1007/s00339-017-0885-6. Alec B., 2002, ACTA CRYSTALLOGR B, V58, P364. Allen FH, 2002, ACTA CRYSTALLOGR B, V58, P380, DOI 10.1107/S0108768102003890. Altinkok N, 2004, MATER DESIGN, V25, P595, DOI 10.1016/j.matdes.2004.02.014. Anijdan SHM, 2006, MATER DESIGN, V27, P605, DOI 10.1016/j.matdes.2004.11.027. Artrith N, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5017661. Artrith N, 2016, COMP MATER SCI, V114, P135, DOI 10.1016/j.commatsci.2015.11.047. Aykol M, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13779. Balachandran PV, 2015, SCI REP-UK, V5, DOI 10.1038/srep13285. Bartok AP, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136403. Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401. Behler J, 2008, PHYS STATUS SOLIDI B, V245, P2618, DOI 10.1002/pssb.200844219. Behler J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.185501. BERGERHOFF G, 1983, J CHEM INF COMP SCI, V23, P66, DOI 10.1021/ci00038a003. Bertinetto C, 2009, J MOL GRAPH MODEL, V27, P797, DOI 10.1016/j.jmgm.2008.12.001. Bhadeshia H. K. D. H., 2009, STAT ANAL DATA MIN, V1, P296, DOI DOI 10.1002/SAM.10018. Bhat TN, 2015, JOM-US, V67, P1866, DOI 10.1007/s11837-015-1487-4. Bhattacharyya T, 2011, MAT SCI ENG A-STRUCT, V528, P2394, DOI 10.1016/j.msea.2010.11.054. Blaiszik B, 2016, JOM-US, V68, P2045, DOI 10.1007/s11837-016-2001-3. Botu V, 2017, COMP MATER SCI, V129, P332, DOI 10.1016/j.commatsci.2016.12.007. Brough DB, 2017, INTEGR MATER MANUF I, V6, P36, DOI 10.1007/s40192-017-0089-0. Bunn JK, 2015, J MATER RES, V30, P879, DOI 10.1557/jmr.2015.80. Canakci A, 2013, MET MATER INT, V19, P519, DOI 10.1007/s12540-013-3021-y. Carrera GVSM, 2008, TETRAHEDRON, V64, P2216, DOI 10.1016/j.tet.2007.12.021. Chih-Hsuan W., 2013, NUCLEIC ACIDS RES, V41, P518. Curtarolo S, 2012, COMP MATER SCI, V58, P227, DOI 10.1016/j.commatsci.2012.02.002. Deng ZH, 2018, COMP MATER SCI, V155, P48, DOI 10.1016/j.commatsci.2018.07.049. Deringer VL, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.094203. Dhaliwal G, 2019, CARBON, V142, P300, DOI 10.1016/j.carbon.2018.10.020. Dini G, 2009, COMP MATER SCI, V45, P959, DOI 10.1016/j.commatsci.2008.12.015. Faber F, 2015, INT J QUANTUM CHEM, V115, P1094, DOI 10.1002/qua.24917. Faber FA, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.135502. Garcia-Papani F, 2018, CHEMOMETR INTELL LAB, V177, P114, DOI 10.1016/j.chemolab.2018.03.012. Ghiringhelli LM, 2017, NEW J PHYS, V19, DOI 10.1088/1367-2630/aa57bf. Ghiringhelli LM, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.105503. Gomez-Bombarelli R, 2016, NAT MATER, V15, P1120, DOI {[}10.1038/NMAT4717, 10.1038/nmat4717]. Greeley J, 2006, NAT MATER, V5, P909, DOI 10.1038/nmat1752. Green ML, 2017, APPL PHYS REV, V4, DOI 10.1063/1.4977487. Hachmann J, 2014, ENERG ENVIRON SCI, V7, P698, DOI 10.1039/c3ee42756k. Hansen K, 2015, J PHYS CHEM LETT, V6, P2326, DOI 10.1021/acs.jpclett.5b00831. Hansen MG, 2013, COLLISION AND GROUNDING OF SHIPS AND OFFSHORE STRUCTURES, P9. Hattrick-Simpers JR, 2016, APL MATER, V4, DOI 10.1063/1.4950995. Hong WT, 2016, J PHYS CHEM C, V120, P78, DOI 10.1021/acs.jpcc.5b10071. Hu B, 2017, COMP MATER SCI, V136, P29, DOI 10.1016/j.commatsci.2017.03.027. Isayev O, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15679. Isayev O, 2015, CHEM MATER, V27, P735, DOI 10.1021/cm503507h. Jacobsen MD, 2016, INTEGR MATER MANUF I, V5, DOI 10.1186/s40192-016-0055-2. Jain A, 2016, J MATER RES, V31, P977, DOI 10.1557/jmr.2016.80. Jain A, 2016, APL MATER, V4, DOI 10.1063/1.4944683. Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323. Jha A, 2019, MODEL SIMUL MATER SC, V27, DOI 10.1088/1361-651X/aaf8ca. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Jose R, 2018, APPL MATER TODAY, V10, P127, DOI 10.1016/j.apmt.2017.12.015. Kalidindi SR, 2016, MRS BULL, V41, P596, DOI 10.1557/mrs.2016.164. Kalidindi SR, 2015, NANOTECHNOLOGY, V26, DOI 10.1088/0957-4484/26/34/344006. Kalinin SV, 2015, NAT MATER, V14, P973, DOI {[}10.1038/nmat4395, 10.1038/NMAT4395]. Kaneko H, 2018, CHEMOMETR INTELL LAB, V177, P74, DOI 10.1016/j.chemolab.2018.04.015. Kim B, 1998, IEEE T SEMICONDUCT M, V11, P692, DOI 10.1109/66.728566. Kim C, 2016, CHEM MATER, V28, P1304, DOI 10.1021/acs.chemmater.5b04109. Kim E, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0055-6. Kim E, 2017, CHEM MATER, V29, P9436, DOI 10.1021/acs.chemmater.7b03500. Kirklin S, 2016, ACTA MATER, V102, P125, DOI 10.1016/j.actamat.2015.09.016. Kirklin S., 2015, NPJ COMPUT MATER, P1. Kiyohara S, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1600746. Koker R, 2007, MATER DESIGN, V28, P616, DOI 10.1016/j.matdes.2005.07.021. Kong CS, 2012, J CHEM INF MODEL, V52, P1812, DOI 10.1021/ci200628z. Kononova O, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0224-1. Krallinger M, 2017, CHEM REV, V117, P7673, DOI 10.1021/acs.chemrev.6b00851. Landis DD, 2012, COMPUT SCI ENG, V14, P51, DOI 10.1109/MCSE.2012.16. Le TC, 2016, CHEM REV, V116, P6107, DOI 10.1021/acs.chemrev.5b00691. Lee J, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.115104. Lin LC, 2012, NAT MATER, V11, P633, DOI {[}10.1038/NMAT3336, 10.1038/nmat3336]. Liu Y, 2017, J MATERIOMICS, V3, P159, DOI 10.1016/j.jmat.2017.08.002. Lookman T, 2017, CURR OPIN SOLID ST M, V21, P121, DOI 10.1016/j.cossms.2016.10.002. Lorenz S, 2004, CHEM PHYS LETT, V395, P210, DOI 10.1016/j.cplett.2004.07.076. Lu WC, 2017, J MATERIOMICS, V3, P191, DOI 10.1016/j.jmat.2017.08.003. Lu ZY, 2012, DATABASE-OXFORD, DOI 10.1093/database/bas043. MANNODIKANAKKITHOD, 2016, SCI REP-UK, V6, DOI DOI 10.1038/SREP20952. Mauro JC, 2016, CHEM MATER, V28, P4267, DOI 10.1021/acs.chemmater.6b01054. Medasani B, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/s41524-016-0001-z. Mercier S, 2018, CHEMOMETR INTELL LAB, V177, P1, DOI 10.1016/j.chemolab.2018.04.001. Meredig B, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.094104. Meredig B, 2017, CURR OPIN SOLID ST M, V21, P159, DOI 10.1016/j.cossms.2017.01.003. Niu F, 2012, INT J SEMANT WEB INF, V8, P42, DOI 10.4018/jswis.2012070103. Nosengo N, 2016, NATURE, V533, P22, DOI 10.1038/533022a. Nunez M, 2019, COMP MATER SCI, V158, P117, DOI 10.1016/j.commatsci.2018.11.002. Nyshadham C, 2017, ACTA MATER, V122, P438, DOI 10.1016/j.actamat.2016.09.017. O'Mara J, 2016, JOM-US, V68, P2031, DOI 10.1007/s11837-016-1984-0. Oliynyk AO, 2018, ACCOUNTS CHEM RES, V51, P59, DOI 10.1021/acs.accounts.7b00490. Oliynyk AO, 2016, CHEM MATER, V28, P7324, DOI 10.1021/acs.chemmater.6b02724. Oses C, 2018, MRS BULL, V43, P670, DOI 10.1557/mrs.2018.207. Paliwal M, 2009, EXPERT SYST APPL, V36, P2, DOI 10.1016/j.eswa.2007.10.005. Pattanayak S, 2015, COMP MATER SCI, V104, P60, DOI 10.1016/j.commatsci.2015.03.029. Petrich L, 2017, COMP MATER SCI, V136, P297, DOI 10.1016/j.commatsci.2017.05.012. Pilania G, 2018, J MATER SCI, V53, P6652, DOI 10.1007/s10853-018-1987-z. Pilania G, 2016, SCI REP-UK, V6, DOI 10.1038/srep19375. Pilania G, 2015, ACTA CRYSTALLOGR B, V71, P507, DOI 10.1107/S2052520615013979. Pilania G, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.214302. Pilania G, 2016, FRONT MATER, V3, DOI 10.3389/fmats.2016.00019. Pilania G, 2013, SCI REP-UK, V3, DOI 10.1038/srep02810. Pizzi G, 2016, COMP MATER SCI, V111, P218, DOI 10.1016/j.commatsci.2015.09.013. Puchala B, 2016, JOM-US, V68, P2035, DOI 10.1007/s11837-016-1998-7. Pyzer-Knapp EO, 2015, ADV FUNCT MATER, V25, P6495, DOI 10.1002/adfm.201501919. Raccuglia P, 2016, NATURE, V533, P73, DOI 10.1038/nature17439. Ramprasad R., 2017, C KIM NPJ COMPUT MAT, V54, P1. Remita MA, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1602-3. Ren F, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1566. Rupp M, 2015, INT J QUANTUM CHEM, V115, P1058, DOI 10.1002/qua.24954. Rupp M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.058301. Salem AA, 2017, INTEGR MATER MANUF I, V6, P111, DOI 10.1007/s40192-017-0090-7. Schutt KT, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.205118. Seko A, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.054303. Seshadri R, 2016, APL MATER, V4, DOI 10.1063/1.4944682. Shabani MO, 2012, METALL MATER TRANS A, V43A, P2158, DOI 10.1007/s11661-011-1040-1. Shabani MO, 2011, APPL MATH MODEL, V35, P5707, DOI 10.1016/j.apm.2011.05.008. Shafyei A, 2006, MAT SCI ENG A-STRUCT, V431, P206, DOI 10.1016/j.msea.2006.05.150. Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270. Sparks TD, 2016, SCRIPTA MATER, V111, P10, DOI 10.1016/j.scriptamat.2015.04.026. Spellings M, 2018, AICHE J, V64, P2198, DOI 10.1002/aic.16157. Srinivasan S, 2013, MATERIALS, V6, P279, DOI 10.3390/ma6010279. Stanev V, 2018, NPJ COMPUT MATER, V4, DOI {[}10.1038/s41524-018-0085-8, 10.1038/s41524-018-0099-2]. Stefano C., 2003, PHYS REV LETT, V91. Taylor RH, 2014, COMP MATER SCI, V93, P178, DOI 10.1016/j.commatsci.2014.05.014. Toyoura K, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.054112. Huan TD, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.014106. Tuntas R, 2015, J COMPOS MATER, V49, P3431, DOI 10.1177/0021998314565430. Tzuc OM, 2018, CHEMOMETR INTELL LAB, V177, P151, DOI 10.1016/j.chemolab.2018.02.010. Varol T, 2013, COMPOS PART B-ENG, V54, P224, DOI 10.1016/j.compositesb.2013.05.015. Voyles PM, 2017, CURR OPIN SOLID ST M, V21, P141, DOI 10.1016/j.cossms.2016.10.001. Wagner N, 2016, FRONT MATER, V3, DOI 10.3389/fmats.2016.00028. Wang CS, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0227-7. Ward L, 2018, COMP MATER SCI, V152, P60, DOI 10.1016/j.commatsci.2018.05.018. Ward L, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.024104. Ward L, 2017, CURR OPIN SOLID ST M, V21, P167, DOI 10.1016/j.cossms.2016.07.002. Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28. Wei CH, 2013, NUCLEIC ACIDS RES, V41, pW518, DOI 10.1093/nar/gkt441. Wicker JGP, 2015, CRYSTENGCOMM, V17, P1927, DOI 10.1039/c4ce01912a. Wilmer CE, 2012, NAT CHEM, V4, P83, DOI {[}10.1038/nchem.1192, 10.1038/NCHEM.1192]. Xue DZ, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11241. Yan J, 2015, ENERG ENVIRON SCI, V8, P983, DOI 10.1039/c4ee03157a. Yang XY, 2018, COMP MATER SCI, V146, P319, DOI 10.1016/j.commatsci.2018.01.039. Yang ZJ, 2018, COMP MATER SCI, V151, P278, DOI 10.1016/j.commatsci.2018.05.014. Ye DD, 2018, CHEMOMETR INTELL LAB, V177, P129, DOI 10.1016/j.chemolab.2018.04.002. Yuan RH, 2018, ADV MATER, V30, DOI 10.1002/adma.201702884. Zhang Q, 2018, CHEMOMETR INTELL LAB, V177, P26, DOI 10.1016/j.chemolab.2018.04.004. Zhao TK, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0069-8. Zheng T, 2017, INT J MED INFORM, V97, P120, DOI 10.1016/j.ijmedinf.2016.09.014.}, Number-of-Cited-References = {149}, Times-Cited = {58}, Usage-Count-Last-180-days = {68}, Usage-Count-Since-2013 = {308}, Journal-ISO = {J. Mater. Sci. Technol.}, Doc-Delivery-Number = {NS8WW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000572537200011}, DA = {2023-04-22}, } @article{ WOS:000612766700011, Author = {Quer, Giorgio and Arnaout, Ramy and Henne, Michael and Arnaout, Rima}, Title = {Machine Learning and the Future of Cardiovascular Care JACC State-of-the-Art Review}, Journal = {JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY}, Year = {2021}, Volume = {77}, Number = {3}, Pages = {300-313}, Month = {JAN 26}, Abstract = {The role of physicians has always been to synthesize the data available to them to identify diagnostic patterns that guide treatment and follow response. Today, increasingly sophisticated machine learning algorithms may grow to support clinical experts in some of these tasks. Machine learning has the potential to benefit patients and cardiologists, but only if clinicians take an active role in bringing these new algorithms into practice. The aim of this review is to introduce clinicians who are not data science experts to key concepts in machine learning that will allow them to better understand the field and evaluate new literature and developments. The current published data in machine learning for cardiovascular disease is then summarized, using both a bibliometric survey, with code publicly available to enable similar analysis for any research topic of interest, and select case studies. Finally, several ways that clinicians can and must be involved in this emerging field are presented. (C) 2021 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.}, Publisher = {ELSEVIER SCIENCE INC}, Address = {STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA}, Type = {Review}, Language = {English}, Affiliation = {Arnaout, R (Corresponding Author), Univ Calif San Francisco, Dept Med, Div Cardiol, Bakar Computat Hlth Sci Inst,Ctr Intelligent Imag, 555 Mission Bay Blvd South, San Francisco, CA 94158 USA. Quer, Giorgio, Scripps Res Translat Inst, La Jolla, CA USA. Arnaout, Ramy, Beth Israel Deaconess Med Ctr, Dept Pathol, Div Clin Pathol, Beth Israel Lahey Hlth, 330 Brookline Ave, Boston, MA 02215 USA. Henne, Michael, Univ Calif San Francisco, Dept Med, Div Cardiol, San Francisco, CA 94143 USA. Arnaout, Rima, Univ Calif San Francisco, Dept Med, Div Cardiol, Bakar Computat Hlth Sci Inst,Ctr Intelligent Imag, 555 Mission Bay Blvd South, San Francisco, CA 94158 USA.}, DOI = {10.1016/j.jacc.2020.11.030}, EarlyAccessDate = {JAN 2021}, ISSN = {0735-1097}, EISSN = {1558-3597}, Keywords = {artificial intelligence; bibliometric analysis; cardiology; deep learning; literature search; machine learning}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; HEART-FAILURE; CLASSIFICATION; VALIDATION; CARDIOLOGY}, Research-Areas = {Cardiovascular System \& Cardiology}, Web-of-Science-Categories = {Cardiac \& Cardiovascular Systems}, Author-Email = {rima.arnaout@ucsf.edu}, Affiliations = {Harvard University; Beth Israel Deaconess Medical Center; University of California System; University of California San Francisco; University of California System; University of California San Francisco}, Funding-Acknowledgement = {National Institutes of Health (National Center for Advancing Translational Sciences, NCATS) {[}UL1TR002550]; National Science Foundation Convergence Accelerator {[}OIA2040727]; National Institutes of Health {[}R01HL15039401]; Department of Defense {[}W81XWH-19-1-0294]; American Heart Association {[}17IGMV33870001]; Chan Zuckerberg Biohub}, Funding-Text = {Resources at Scripps Research (to Dr. Quer) were provided by the National Institutes of Health (UL1TR002550 from the National Center for Advancing Translational Sciences, NCATS) and in part by the National Science Foundation Convergence Accelerator (OIA2040727). Drs. Ramy and Rima Arnaout were supported by the National Institutes of Health (R01HL15039401), Department of Defense (W81XWH-19-1-0294), and the American Heart Association (17IGMV33870001). Dr. Rima Arnaout is additionally supported by the Chan Zuckerberg Biohub. Mr. Henne has reported that he has no relationships relevant to the contents of this paper to disclose.}, Cited-References = {Abdill RJ, 2019, ELIFE, V8, DOI 10.7554/eLife.45133. AiCure, 2016, US ART INT MEAS OPT. Akron Children's H, ACCURACY ARTIFICIALL. Al'Arefilb SJ, 2020, EUR HEART J, V41, P359, DOI 10.1093/eurheartj/ehz565. Arnaout R., 2020, EXPERT LEVEL PRENATA, DOI {[}10.1101/2020.06.22.20137786, DOI 10.1101/2020.06.22.20137786]. Attia ZI, 2019, LANCET, V394, P861, DOI 10.1016/S0140-6736(19)31721-0. Attia ZI, 2019, NAT MED, V25, P70, DOI 10.1038/s41591-018-0240-2. Au-Yeung WTM, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0160-7. Beaulieu-Jones BK, 2019, CIRC-CARDIOVASC QUAL, V12, DOI 10.1161/CIRCOUTCOMES.118.005122. Benz DC, 2020, J CARDIOVASC COMPUT, V14, P444, DOI 10.1016/j.jcct.2020.01.002. Blendowski M, 2020, INT J COMPUT ASS RAD, V15, P269, DOI 10.1007/s11548-019-02089-8. Carlin CS, 2018, J AM MED INFORM ASSN, V25, P1600, DOI 10.1093/jamia/ocy122. Chang AC, 2020, INTELLIGENCE BASED M. Chen HH, 2020, INT J CARDIOL, V316, P272, DOI 10.1016/j.ijcard.2020.03.075. Chu JB, 2018, J BIOMED INFORM, V87, P118, DOI 10.1016/j.jbi.2018.10.002. Cilla M, 2018, INT J NUMER METH BIO, V34, DOI 10.1002/cnm.3121. Commandeur FC, 2019, EUR HEART J, V40, P4. Dekker M, 2020, IJC HEART VASC, V26, DOI 10.1016/j.ijcha.2019.100434. Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593. Dey D, 2019, J AM COLL CARDIOL, V73, P1317, DOI 10.1016/j.jacc.2018.12.054. Diller GP, 2019, INT J CARDIOVAS IMAG, V35, P2189, DOI 10.1007/s10554-019-01671-0. Doris MK, 2020, J NUCL CARDIOL, V27, P494, DOI 10.1007/s12350-018-1317-5. Du XQ, 2019, IEEE J TRANSL ENG HE, V7, DOI 10.1109/JTEHM.2019.2900628. Duchateau N, 2018, IEEE T MED IMAGING, V37, P755, DOI 10.1109/TMI.2017.2714343. Eisenberg E, 2020, CIRC-CARDIOVASC IMAG, V13, DOI 10.1161/CIRCIMAGING.119.009829. Eko Devices Inc., 2021, HEART FAIL MON EK EL. Elite Data Science, OV MACH LEARN WHAT I. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056. Fang MC, 2017, MED CARE, V55, pE137, DOI 10.1097/MLR.0000000000000524. Fries JA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11012-3. Gadaleta Matteo, 2019, Computer (Long Beach Calif), V52, P18, DOI 10.1109/MC.2019.2932716. Gessert N, 2019, IEEE T MED IMAGING, V38, P426, DOI 10.1109/TMI.2018.2865659. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216. Guo FM, 2020, MED IMAGE ANAL, V61, DOI 10.1016/j.media.2020.101636. Hannun AY, 2019, NAT MED, V25, P65, DOI 10.1038/s41591-018-0268-3. Henglin M, 2017, CIRC-CARDIOVASC IMAG, V10, DOI 10.1161/CIRCIMAGING.117.005614. Hever G, 2020, J CLIN MONIT COMPUT, V34, P339, DOI 10.1007/s10877-019-00307-x. Hospices Civils de Lyon, 2020, CAN WE PRED COR RES. Huang OW, 2020, IEEE T MED IMAGING, V39, P2277, DOI 10.1109/TMI.2020.2970867. Johns Hopkins University, 2021, CAN MED SYST COMP MA. Johnson KW, 2018, J AM COLL CARDIOL, V71, P2668, DOI 10.1016/j.jacc.2018.03.521. Kakadiaris IA, 2018, J AM HEART ASSOC, V7, DOI 10.1161/JAHA.118.009476. Katz DH, 2017, J CARDIOVASC TRANSL, V10, P275, DOI 10.1007/s12265-017-9739-z. KOSSMANN CE, 1965, J AMER MED ASSOC, V191, P922, DOI 10.1001/jama.1965.03080110046011. Kustner T, 2019, MAGN RESON MED, V82, P1527, DOI 10.1002/mrm.27783. Leclerc S, 2019, IEEE T MED IMAGING, V38, P2198, DOI 10.1109/TMI.2019.2900516. Lee J, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-59315-6. Levy AE, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0227324. Li L, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aaa9364. Litjens G, 2019, JACC-CARDIOVASC IMAG, V12, P1549, DOI 10.1016/j.jcmg.2019.06.009. Luo Y, 2017, J CARDIOVASC TRANSL, V10, P305, DOI 10.1007/s12265-016-9727-8. Madani A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-017-0013-1. Marcus G., 2020, ARXIV PREPRINT ARXIV. Matsumoto T, 2020, INT HEART J, V61, P781, DOI 10.1536/ihj.19-714. Miotto R, 2016, SCI REP-UK, V6, DOI 10.1038/srep26094. Molnar C., 2020, INTERPRETABLE MACHIN, DOI DOI 10.3168/JDS.S0022-0302(99)75342-7. Myers PD, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-50933-3. Nicol ED, 2019, JACC-CARDIOVASC IMAG, V12, P1058, DOI 10.1016/j.jcmg.2018.11.037. Norgeot B, 2020, NAT MED, V26, P1320, DOI 10.1038/s41591-020-1041-y. Obermeyer Z, 2017, NEW ENGL J MED, V377, P1209, DOI 10.1056/NEJMp1705348. Optima Integrated, 2021, TAIL DRUG TITR US AR. Optima Integrated Health, 2017, PIL HEALTHC COORD HY. Ostvik A, 2019, ULTRASOUND MED BIOL, V45, P374, DOI 10.1016/j.ultrasmedbio.2018.07.024. Papworth Hospital N.H.S. Foundation Trust, 2021, ASS SPEC ALG DET CLI. Pazinato DV, 2016, IEEE J BIOMED HEALTH, V20, P256, DOI 10.1109/JBHI.2014.2386796. Pina A, 2020, EUR J PREV CARDIOL, V27, P1639, DOI 10.1177/2047487319898951. Poplin R, 2018, NAT BIOMED ENG, V2, P158, DOI 10.1038/s41551-018-0195-0. Porumb M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56927-5. Qin C, 2019, IEEE T MED IMAGING, V38, P280, DOI 10.1109/TMI.2018.2863670. Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259. Rasmussen T, 2021, J NUCL CARDIOL, V28, P1923, DOI 10.1007/s12350-019-01949-9. Rezaei Z, 2020, CELL J, V22, P319, DOI 10.22074/cellj.2020.6615. Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x. Sardar P, 2019, JACC-CARDIOVASC INTE, V12, P1293, DOI 10.1016/j.jcin.2019.04.048. Sengupta PP, 2020, JACC-CARDIOVASC IMAG, V13, P2017, DOI 10.1016/j.jcmg.2020.07.015. Sengupta PP, 2013, JACC-CARDIOVASC IMAG, V6, P1206, DOI 10.1016/j.jcmg.2013.09.003. Shameer K, 2018, HEART, V104, P1156, DOI 10.1136/heartjnl-2017-311198. Shomorony I, 2020, GENOME MED, V12, DOI 10.1186/s13073-019-0705-z. Smulyan H, 2019, AM J MED, V132, P153, DOI 10.1016/j.amjmed.2018.08.025. Standford Medicine, 2017, STANF MED 2017 HLTH. Tadesse GA, 2019, IEEE ENG MED BIO, P4262, DOI 10.1109/EMBC.2019.8857737. Toba S, 2020, JAMA CARDIOL, V5, P449, DOI 10.1001/jamacardio.2019.5620. Tokodi M, 2020, EUR HEART J, V41, P1747, DOI 10.1093/eurheartj/ehz902. Topol E., 2019, TOPOL REV PREPARING. University of Michigan, 2016, IMPR ADH OUTC ART IN. University of Zurich, 2019, DEEP LEARN IM REC CC. van Velzen SGM, 2020, RADIOLOGY, V295, P66, DOI 10.1148/radiol.2020191621. Wong KCL, 2018, MED IMAGE ANAL, V49, P105, DOI 10.1016/j.media.2018.07.010. Yang Yang, 2019, JMIR Aging, V2, pe12153, DOI 10.2196/12153. Yao XX, 2020, AM HEART J, V219, P31, DOI 10.1016/j.ahj.2019.10.007. Yu C, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0763-6. Zech JR, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002683.}, Number-of-Cited-References = {92}, Times-Cited = {89}, Usage-Count-Last-180-days = {24}, Usage-Count-Since-2013 = {71}, Journal-ISO = {J. Am. Coll. Cardiol.}, Doc-Delivery-Number = {PZ5FV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000612766700011}, OA = {hybrid, Green Accepted}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000900750300006, Author = {Ray, Saikat Sinha and Verma, Rohit Kumar and Singh, Ashutosh and Ganesapillai, Mahesh and Kwon, Young-Nam}, Title = {A holistic review on how artificial intelligence has redefined water treatment and seawater desalination processes}, Journal = {DESALINATION}, Year = {2023}, Volume = {546}, Month = {JAN 15}, Abstract = {In the modern era, deep learning (DL), and machine learning (ML), have emerged as potential technologies that are widely applied in the fields of science, engineering, and technology. These tools have been extensively used to optimize seawater desalination and water treatment processes to achieve efficient performance. Indeed, automation has played a key role in redefining the issues of water treatment and seawater desalination. Artificial intelligence (AI) has been developed as a versatile tool for processing data and optimizing smart water services while addressing the issues of monitoring, management, and labor costs. Recently, specific AI tools, such as artificial neural networks (ANNs) and genetic algorithms, have been implemented for self-monitoring and modeling applications in the field of water treatment and seawater desalination. In the present article, the application of AI in the water treatment and seawater desalination sectors is thoroughly reviewed. Additionally, conventional modeling approaches are compared with ANN modeling. Furthermore, the challenges and shortcomings are discussed, along with future prospects. Moreover, the applications of AI mechanisms in data processing, optimization, modeling, prediction, and decision-making during water treatment and seawater desalination processes are underscored. Finally, innovative trends in seawater desalination and water treatment with AI tools are summarized.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Kwon, YN (Corresponding Author), Ulsan Natl Inst Sci \& Technol UNIST, Dept Urban \& Environm Engn UEE, Ulsan, South Korea. Singh, A (Corresponding Author), Shiv Nadar Univ, Sch Nat Sci SONS, Dept Life Sci, Delhi Ncr, India. Ray, Saikat Sinha; Kwon, Young-Nam, Ulsan Natl Inst Sci \& Technol UNIST, Dept Urban \& Environm Engn UEE, Ulsan, South Korea. Verma, Rohit Kumar; Singh, Ashutosh, Shiv Nadar Univ, Sch Nat Sci SONS, Dept Life Sci, Delhi Ncr, India. Ganesapillai, Mahesh, Vellore Inst Technol VIT, Sch Chem \& Environm Engn SCHEME, Vellore, Tamil Nadu, India.}, DOI = {10.1016/j.desal.2022.116221}, Article-Number = {116221}, ISSN = {0011-9164}, EISSN = {1873-4464}, Keywords = {Artificial intelligence (AI); Machine learning (ML); Artificial neural networks (ANNs); Desalination; Water treatment}, Keywords-Plus = {NEURAL-NETWORK MODEL; WASTE-WATER; TREATMENT-PLANT; OSMOSIS; PERFORMANCE; PREDICTION; REMOVAL; SYSTEMS; OPTIMIZATION; SIMULATION}, Research-Areas = {Engineering; Water Resources}, Web-of-Science-Categories = {Engineering, Chemical; Water Resources}, Author-Email = {ashutosh.singh@snu.edu.in kwonyn@unist.ac.kr}, Affiliations = {Ulsan National Institute of Science \& Technology (UNIST); Shiv Nadar University; Vellore Institute of Technology (VIT); VIT Vellore}, Funding-Acknowledgement = {National Research Foundation of Korea (ROK) - Ministry of Education, Science and Technology {[}NRF-2018R1D1A1B07043609]; Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea Government (MOTIE) {[}20202020800330]}, Funding-Text = {This study has been financially assisted by the National Research Foundation of Korea (ROK) as supported by Ministry of Education, Science and Technology (NRF-2018R1D1A1B07043609) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant financed by the Korea Government (MOTIE) (20202020800330).}, Cited-References = {Abdel-Shafy HI, 2016, EGYPT J CHEM, V59, P229. Agarwal A., 2022, DESALINATION, V7. Ahmadi A, 2022, WATER-SUI, V14, DOI 10.3390/w14060949. Akratos CS, 2008, CHEM ENG J, V143, P96, DOI 10.1016/j.cej.2007.12.029. Al Aani S, 2019, DESALINATION, V458, P84, DOI 10.1016/j.desal.2019.02.005. Alam G, 2022, CHEM ENG J, V427, DOI 10.1016/j.cej.2021.130011. Ambat I, 2019, BIOMASS BIOENERG, V120, P471, DOI 10.1016/j.biombioe.2018.10.016. {[}Anonymous], REPORT OPEX WATERV W. aquatech, INNOVATIONS DESALPRO. Arismendy L, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166348. Bagheri M, 2019, PROCESS SAF ENVIRON, V123, P229, DOI 10.1016/j.psep.2019.01.013. Bernardelli A, 2020, WATER SCI TECHNOL, V81, P2391, DOI 10.2166/wst.2020.298. Bonny T, 2022, DESALINATION, V522, DOI 10.1016/j.desal.2021.115443. Cabrera P, 2017, DESALINATION, V416, P140, DOI 10.1016/j.desal.2017.04.032. Caie P.D., 2021, ARTIF INTELL, P149, DOI {[}10.1016/b978-0-323-67538-3.00008-7, DOI 10.1016/B978-0-323-67538-3.00008-7]. Caldera U, 2016, DESALINATION, V385, P207, DOI 10.1016/j.desal.2016.02.004. Chau KW, 2006, MAR POLLUT BULL, V52, P726, DOI 10.1016/j.marpolbul.2006.04.003. Curteanu S, 2014, IND ENG CHEM RES, V53, P4902, DOI 10.1021/ie500248q. Daigger GT, 2011, WATER SCI TECHNOL, V63, P516, DOI 10.2166/wst.2011.252. Derbali M, 2017, IEEE ACCESS, V5, P23266, DOI 10.1109/ACCESS.2017.2716978. digitalwater.solutions, US. Doorn N, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142561. Elsaid K, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104099. Fan MY, 2018, CHEMOSPHERE, V200, P330, DOI 10.1016/j.chemosphere.2018.02.111. Fetanat M, 2021, IND ENG CHEM RES, V60, P5236, DOI 10.1021/acs.iecr.0c05446. Garg MC, 2014, ENVIRON TECHNOL, V35, P2988, DOI 10.1080/09593330.2014.927928. Gaudio MT, 2021, EARTH SYST ENVIRON, V5, P385, DOI 10.1007/s41748-021-00220-x. Gernaey KV, 2004, ENVIRON MODELL SOFTW, V19, P763, DOI 10.1016/j.envsoft.2003.03.005. Guo H, 2015, J ENVIRON SCI-CHINA, V32, P90, DOI 10.1016/j.jes.2015.01.007. Hadjimichael A, 2016, AI COMMUN, V29, P747, DOI 10.3233/AIC-160714. Hariri RH, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0206-3. He Q, 2022, ENERGY, V7, DOI {[}10.1016/j.egyai.2021.100123, DOI 10.1016/J.EGYAI.2021.100123]. Hernandez-del-Olmo F, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19143139. Hilal AM, 2022, ADSORPT SCI TECHNOL, V2022, DOI 10.1155/2022/8448489. Hu JH, 2021, J MEMBRANE SCI, V619, DOI 10.1016/j.memsci.2020.118513. Hutson M., 2018, ARTIF INTELL. Ihsanullah I, 2021, SCI TOTAL ENVIRON, V780, DOI 10.1016/j.scitotenv.2021.146585. Im SJ, 2021, CHEMOSPHERE, V275, DOI 10.1016/j.chemosphere.2021.130047. Jahandideh-Tehrani M, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-8228-z. Jeppsson U., 1996, MODELLING ASPECTS WA. Jones E, 2019, SCI TOTAL ENVIRON, V657, P1343, DOI 10.1016/j.scitotenv.2018.12.076. Juntunen P, 2012, APPL COMPUT INTELL S, V2012, DOI 10.1155/2012/846321. Kabsch-Korbutowicz M, 2011, ENVIRON PROT ENG, V37, P75. Kamali M, 2021, CHEM ENG J, V417, DOI 10.1016/j.cej.2020.128070. Kandeal AW, 2021, ENERGY TECHNOL-GER, V9, DOI 10.1002/ente.202100189. Khan MA, 2022, AIN SHAMS ENG J, V13, DOI 10.1016/j.asej.2021.11.004. Kibria MG, 2018, IEEE ACCESS, V6, P32328, DOI 10.1109/ACCESS.2018.2837692. Kim Y, 2021, J ENVIRON MANAGE, V300, DOI 10.1016/j.jenvman.2021.113795. Krishnan KSD, 2017, 2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), P2434. Kshirsagar P.R., 2022, SCI PROGRAMMING-NETH, V2022. Kumar B.R., 2022, TRENDS INFRASTRUCTUR, P1. Lee YG, 2009, DESALINATION, V247, P180, DOI 10.1016/j.desal.2008.12.023. Lowe M, 2022, WATER-SUI, V14, DOI 10.3390/w14091384. Lunani M., 2018, OPFLOW, V44, P6. Mahadeva R, 2022, WATER SUPPLY, V22, P2874, DOI 10.2166/ws.2021.432. Malviya Arti, 2021, Environmental Technology Reviews, V10, P177, DOI 10.1080/21622515.2021.1913242. Mamandipoor B, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-8064-1. Manu DS, 2017, APPL WATER SCI, V7, P3783, DOI 10.1007/s13201-017-0526-4. Mehmood Hamid, 2020, 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G), P135, DOI 10.1109/AI4G50087.2020.9311018. Meighani HM, 2013, DESALIN WATER TREAT, V51, P7476, DOI 10.1080/19443994.2013.773861. Mittal S, 2021, CHEM ENG PROCESS, V164, DOI 10.1016/j.cep.2021.108403. Mokhtari HA, 2021, DESALIN WATER TREAT, V212, P31, DOI 10.5004/dwt.2021.26616. Nasir N, 2022, J WATER PROCESS ENG, V48, DOI 10.1016/j.jwpe.2022.102920. Nasr M, 2016, SEP SCI TECHNOL, V51, P96, DOI 10.1080/01496395.2015.1062399. Viet ND, 2021, CHEMOSPHERE, V272, DOI 10.1016/j.chemosphere.2021.129872. Nguyen K.A., 2017, P 9 INT C MACH LEARN, P517. Nicklow J, 2010, J WATER RES PLAN MAN, V136, P412, DOI 10.1061/(ASCE)WR.1943-5452.0000053. Niewersch C, 2020, DESALINATION, V476, DOI 10.1016/j.desal.2019.114175. Nourani V, 2018, WATER SCI TECHNOL, V78, P2064, DOI 10.2166/wst.2018.477. Panasonic global, US. Paszkowicz W, 2009, MATER MANUF PROCESS, V24, P174, DOI 10.1080/10426910802612270. Pinto A, 2009, WIT TRANS ECOL ENVIR, V125, P185, DOI 10.2495/WRM090171. Raman MRG, 2020, INT J CRIT INFR PROT, V31, DOI 10.1016/j.ijcip.2020.100393. Ramesh P., 2022, RELEVANCE ARTIFICIAL, P311. Ray SS, 2022, ENVIRON TECHNOL INNO, V28, DOI 10.1016/j.eti.2022.102849. Ray SS, 2022, PROCESS SAF ENVIRON, V160, P1, DOI 10.1016/j.psep.2022.01.058. Ray SS, 2018, ENVIRON CHEM LETT, V16, P1247, DOI 10.1007/s10311-018-0750-7. Riedl MO, 2019, HUM BEHAV EMERG TECH, V1, P33, DOI 10.1002/hbe2.117. Ruiz-Garcia A, 2017, DESALIN WATER TREAT, V73, P73, DOI 10.5004/dwt.2017.20807. Sadi M, 2019, J WATER REUSE DESAL, V9, P372, DOI 10.2166/wrd.2019.024. Sahith J.K., 2022, EC IND ASP, P139. Salem H, 2022, ALEX ENG J, V61, P10007, DOI 10.1016/j.aej.2022.03.050. Sendrescu D, 2013, MATH PROBL ENG, V2013, DOI 10.1155/2013/103748. smartterra, US. Sohani A, 2022, J THERM ANAL CALORIM, V147, P3919, DOI 10.1007/s10973-021-10744-z. Son M, 2021, DESALINATION, V516, DOI 10.1016/j.desal.2021.115233. streamwisedi, US. Sundui B, 2021, CLEAN TECHNOL ENVIR, V23, P127, DOI 10.1007/s10098-020-01993-x. Suquet J, 2020, WATER-SUI, V12, DOI 10.3390/w12082115. Swan R, 2017, J HYDROINFORM, V19, P719, DOI 10.2166/hydro.2017.083. synodalerweg, US. Tanudjaja HJ, 2022, IND ENG CHEM RES, V61, P8470, DOI 10.1021/acs.iecr.1c04662. Thornton C, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P847, DOI 10.1145/2487575.2487629. Tiyasha, 2020, J HYDROL, V585, DOI 10.1016/j.jhydrol.2020.124670. transcendh2o, US. Tuggener L, 2019, 2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), P31, DOI 10.1109/SDS.2019.00-11. Umar M, 2015, CRIT REV ENV SCI TEC, V45, P193, DOI 10.1080/10643389.2013.852378. Wan D., 2018, IOP C SERIES EARTH E. Wang D, 2021, SCI TOTAL ENVIRON, V784, DOI 10.1016/j.scitotenv.2021.147138. Wang GM, 2022, ARTIF INTELL REV, V55, P565, DOI 10.1007/s10462-021-10038-8. Wang YY, 2021, NPJ 2D MATER APPL, V5, DOI 10.1038/s41699-021-00246-9. xylem, ENUSPRODUCTS SERVICE. Yetilmezsoy K., 2017, HDB ENV MAT MANAG, P1, DOI DOI 10.1007/978-3-319-58538-3\_149-1. Zhang GY, 2001, ALGAE AND THEIR BIOTECHNOLOGICAL POTENTIAL, P79. Zhang H., 2022, AI BIG DATA WATER EN. Zhang XY, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.113028. Zhang YY, 2019, WATER RES, V164, DOI 10.1016/j.watres.2019.114888. Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014. Zieminska-Stolarska A, 2012, ECOL CHEM ENG S, V19, P197, DOI 10.2478/v10216-011-0015-x. Ziyad Sami B.F., 2022, TAIWAN SCI REPORTS, V12, P1, DOI DOI 10.1038/S41598-022-06969-Z.}, Number-of-Cited-References = {110}, Times-Cited = {0}, Usage-Count-Last-180-days = {18}, Usage-Count-Since-2013 = {18}, Journal-ISO = {Desalination}, Doc-Delivery-Number = {7D8RF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000900750300006}, DA = {2023-04-22}, } @article{ WOS:000706184900001, Author = {Balogun, Abdul-Lateef and Tella, Abdulwaheed and Baloo, Lavania and Adebisi, Naheem}, Title = {A review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information science}, Journal = {URBAN CLIMATE}, Year = {2021}, Volume = {40}, Month = {DEC}, Abstract = {Air pollution is a global geo-hazard with significant implications, including deterioration of health and premature death. Climatic variables such as temperature, rainfall, wind, and humidity impact air pollution by affecting the strength, transportation, and dispersion of pollutants in the atmosphere. Emerging data science tools, particularly Machine Learning (ML) big data analytics, are being utilized to predict air pollution intensity and frequency under varying climatic conditions for effective mitigation plans. However, comprehensive documentation of these digitalization approaches and outcomes in terms of correlating future air pollution with climate change remains scant. This study addresses this gap by systematically reviewing pertinent literature on climate change and air pollution studies. We also investigated the potentials of integrated spatial data science for spatial modelling and identifying cities vulnerable to air pollution hazards. Our findings show that climatic factors and seasonal variations are critical predictors of air quality in urban areas. A strong correlation exists between climate change and air quality, and air quality in urbanized regions is projected to deteriorate with climate change in the future. Therefore, climatic variables remain essential factors for the prediction of air quality. Also, air pollutants tend to have higher concentration in the warm season, making the consideration of seasonal changes crucial in air quality management. The study also revealed that machine learning algorithms such as random forest, gradient boosting machine, and classification and regression trees (CART) accurately predict air pollution hazard when integrated with spatial models. The detailed review}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Tella, A (Corresponding Author), Univ Teknol PETRONAS, Dept Civil \& Environm Engn, Geospatial Anal \& Modelling GAM Res Lab, Seri Iskandar 32610, Perak, Malaysia. Balogun, Abdul-Lateef; Tella, Abdulwaheed; Adebisi, Naheem, Univ Teknol PETRONAS, Dept Civil \& Environm Engn, Geospatial Anal \& Modelling GAM Res Lab, Seri Iskandar 32610, Perak, Malaysia. Baloo, Lavania, Univ Teknol PETRONAS, Dept Civil \& Environm Engn, Seri Iskandar 32610, Perak, Malaysia.}, DOI = {10.1016/j.uclim.2021.100989}, EarlyAccessDate = {OCT 2021}, Article-Number = {100989}, ISSN = {2212-0955}, Keywords = {Air pollution; Climate change; Digitalization; Sustainable cities; Machine learning; Spatial data science}, Keywords-Plus = {FINE PARTICULATE MATTER; ARTIFICIAL NEURAL-NETWORKS; LOW-EMISSION ZONES; SPATIOTEMPORAL PREDICTION; ENERGY EFFICIENCY; RANDOM FOREST; HEALTH-RISK; GREEN INFRASTRUCTURE; PM2.5 CONCENTRATIONS; OZONE CONCENTRATIONS}, Research-Areas = {Environmental Sciences \& Ecology; Meteorology \& Atmospheric Sciences}, Web-of-Science-Categories = {Environmental Sciences; Meteorology \& Atmospheric Sciences}, Author-Email = {tellaabdulwaheed01@gmail.com}, Affiliations = {Universiti Teknologi Petronas; Universiti Teknologi Petronas}, ResearcherID-Numbers = {Tella, Abdulwaheed/ABF-8657-2020 Adebisi, Naheem/GPF-8462-2022 Tella, Abdulwaheed/CAA-2751-2022}, ORCID-Numbers = {Tella, Abdulwaheed/0000-0002-4380-3343 Tella, Abdulwaheed/0000-0002-4380-3343}, Cited-References = {Abd Rahman NH, 2015, QUAL QUANT, V49, P2633, DOI 10.1007/s11135-014-0132-6. Abhijith KV, 2017, ATMOS ENVIRON, V162, P71, DOI 10.1016/j.atmosenv.2017.05.014. Adams MD, 2016, J ENVIRON MANAGE, V168, P133, DOI 10.1016/j.jenvman.2015.12.012. Addanki SC, 2017, SUSTAIN CITIES SOC, V32, P1, DOI 10.1016/j.scs.2017.03.009. Ahmad T, 2020, SUSTAIN CITIES SOC, V54, DOI 10.1016/j.scs.2019.102010. Althuwaynee OF, 2020, GISCI REMOTE SENS, V57, P207, DOI 10.1080/15481603.2020.1712064. An RP, 2018, INT J OBESITY, V42, P1112, DOI 10.1038/s41366-018-0089-y. Analitis A, 2020, ATMOS ENVIRON, V240, DOI 10.1016/j.atmosenv.2020.117757. {[}Anonymous], 2016, THE GUARDIAN. Bai L, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040780. Bai Y, 2016, ATMOS POLLUT RES, V7, P557, DOI 10.1016/j.apr.2016.01.004. Baklanov A, 2016, ATMOS ENVIRON, V126, P235, DOI 10.1016/j.atmosenv.2015.11.059. Balogun AL, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101888. Banerjee T, 2011, ENVIRON POLLUT, V159, P865, DOI 10.1016/j.envpol.2010.12.026. Beevers SD, 2013, J EXPO SCI ENV EPID, V23, P647, DOI 10.1038/jes.2013.6. Berman JD, 2015, ENVIRON TECHNOL INNO, V3, P1, DOI 10.1016/j.eti.2014.10.003. Bherwani H, 2021, INT J ENVIRON SCI TE, V18, P1019, DOI 10.1007/s13762-020-03122-z. Boogaard H, 2012, SCI TOTAL ENVIRON, V435, P132, DOI 10.1016/j.scitotenv.2012.06.089. Briggs DJ, 1997, INT J GEOGR INF SCI, V11, P699, DOI 10.1080/136588197242158. Briggs NL, 2016, AEROSOL AIR QUAL RES, V16, P3075, DOI 10.4209/aaqr.2016.03.0120. Brusseau ML, 2019, WATER RES, V148, P41, DOI 10.1016/j.watres.2018.10.035. Bui QT, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13142709. Carro-Calvo L, 2017, ATMOS ENVIRON, V167, P496, DOI 10.1016/j.atmosenv.2017.08.050. Catalano M, 2016, ENVIRON SCI POLICY, V60, P69, DOI 10.1016/j.envsci.2016.03.008. Cheng Z, 2016, ENVIRON INT, V89-90, P212, DOI 10.1016/j.envint.2016.02.003. Choe SA, 2018, HUM REPROD, V33, P1071, DOI 10.1093/humrep/dey076. Choi JE, 2018, COMMUN STAT APPL MET, V25, P199, DOI 10.29220/CSAM.2018.25.2.199. Choubin B, 2020, SCI TOTAL ENVIRON, V701, DOI 10.1016/j.scitotenv.2019.134474. D'Amato G, 2016, ALLERGY ASTHMA IMMUN, V8, P391, DOI 10.4168/aair.2016.8.5.391. Delavar MR, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8020099. Di Q, 2017, NEW ENGL J MED, V376, P2513, DOI 10.1056/NEJMoa1702747. Dijkema MBA, 2008, ATMOS ENVIRON, V42, P9098, DOI 10.1016/j.atmosenv.2008.09.039. Dotse SQ, 2016, ENVIRON POLLUT, V219, P337, DOI 10.1016/j.envpol.2016.10.059. Dou J, 2019, SCI TOTAL ENVIRON, V662, P332, DOI 10.1016/j.scitotenv.2019.01.221. Duffy R, 2018, HARNESSING DIGITAL R. Fan JL, 2018, RENEW SUST ENERG REV, V94, P732, DOI 10.1016/j.rser.2018.06.029. Fernando HJS, 2012, ENVIRON POLLUT, V163, P62, DOI 10.1016/j.envpol.2011.12.018. Fong IH, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2020.105622. Fourtane S, 2018, REDUCING AIR POLLUTI. Nieto PJG, 2018, SCI TOTAL ENVIRON, V621, P753, DOI 10.1016/j.scitotenv.2017.11.291. Gaskins AJ, 2019, ENVIRON HEALTH PERSP, V127, DOI {[}10.1289/EHP4601, 10.1289/ehp4601]. Gautam S, 2020, EXPOS HEALTH, V12, P89, DOI 10.1007/s12403-018-0287-9. Ghorani-Azam A, 2016, J RES MED SCI, V21, DOI 10.4103/1735-1995.189646. Gray J, 2015, SOFTW SYST MODEL, V14, P1319, DOI 10.1007/s10270-015-0494-9. Guo SZ, 2020, IEEE T AERO ELEC SYS, V56, P3134, DOI 10.1109/TAES.2020.2965787. Gurjar BR, 2008, ATMOS ENVIRON, V42, P1593, DOI 10.1016/j.atmosenv.2007.10.048. Gurjar BR, 2016, ATMOS ENVIRON, V142, P475, DOI 10.1016/j.atmosenv.2016.06.030. Hanaoka T, 2020, ENVIRON POLLUT, V261, DOI 10.1016/j.envpol.2019.113650. Hao SY, 2019, TRANSPORT RES C-EMER, V107, P287, DOI 10.1016/j.trc.2019.08.005. Hart JE, 2015, J AM HEART ASSOC, V4, DOI 10.1161/JAHA.115.002301. Hassan N., 2015, ASIA PACIFIC J PUBLI. Hassan NA, 2016, ASIA-PAC J PUBLIC HE, V28, p38S, DOI 10.1177/1010539515592951. Hengl T, 2018, PEERJ, V6, DOI 10.7717/peerj.5518. Holman C, 2015, ATMOS ENVIRON, V111, P161, DOI 10.1016/j.atmosenv.2015.04.009. Honarvar AR, 2019, BIG DATA RES, V17, P56, DOI 10.1016/j.bdr.2018.05.006. Hoq M.N., 2019, 2 INT C EL COMP COMM, DOI DOI 10.1109/ECACE.2019.8679335. Hrust L, 2009, ATMOS ENVIRON, V43, P5588, DOI 10.1016/j.atmosenv.2009.07.048. IEA, 2015, ENERGY EFFICIENCY MA. Jacob DJ, 2009, ATMOS ENVIRON, V43, P51, DOI 10.1016/j.atmosenv.2008.09.051. Jayasooriya VM, 2017, URBAN FOR URBAN GREE, V21, P34, DOI 10.1016/j.ufug.2016.11.007. Jeong JI, 2013, ATMOS ENVIRON, V69, P46, DOI 10.1016/j.atmosenv.2012.11.061. Joharestani MZ, 2019, ATMOSPHERE-BASEL, V10, DOI 10.3390/atmos10070373. Jumaah HJ, 2019, GEOMAT NAT HAZ RISK, V10, P2185, DOI 10.1080/19475705.2019.1683084. Kaimian F, 2019, AEROSOL AIR QUAL RES, V19, P1400, DOI 10.4209/aaqr.2018.12.0450. Karatzas K., 2018, VIETNAM J COMPUT SCI, V5, P177, DOI {[}10.1007/s40595-018-0113-0, DOI 10.1007/S40595-018-0113-0]. Khan MF, 2016, ATMOS CHEM PHYS, V16, P597, DOI 10.5194/acp-16-597-2016. Khormali A, 2016, ISA T, V63, P256, DOI 10.1016/j.isatra.2016.03.004. Kim Sun-Young, 2014, Environ Health Toxicol, V29, pe2014012, DOI 10.5620/eht.e2014012. Kumar A, 2016, J AIR WASTE MANAGE, V66, P470, DOI 10.1080/10962247.2016.1143887. Kumar P, 2019, ENVIRON INT, V133, DOI 10.1016/j.envint.2019.105181. Largeron Y, 2016, ATMOS ENVIRON, V135, P92, DOI 10.1016/j.atmosenv.2016.03.045. Larkin A, 2016, ENVIRON SCI TECHNOL, V50, P9142, DOI 10.1021/acs.est.6b02549. Latif MT, 2018, ATMOS ENVIRON, V177, P28, DOI 10.1016/j.atmosenv.2018.01.002. Leong WC, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2019.103208. Letzter R, 2019, TODAYS CLIMATE CHANG. Li JM, 2018, ENVIRON POLLUT, V238, P471, DOI 10.1016/j.envpol.2018.03.050. Li R, 2019, ATMOS ENVIRON, V208, P10, DOI 10.1016/j.atmosenv.2019.03.029. Li XH, 2016, ENVIRON HEALTH-GLOB, V15, DOI 10.1186/s12940-016-0104-5. Liu QY, 2016, SCI REP-UK, V6, DOI 10.1038/srep33331. Lou CR, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13100928. Ma J, 2020, J CLEAN PROD, V244, DOI 10.1016/j.jclepro.2019.118955. Ma J, 2019, ATMOS ENVIRON, V214, DOI 10.1016/j.atmosenv.2019.116885. Ma J, 2016, APPL ENERG, V183, P193, DOI 10.1016/j.apenergy.2016.08.096. Ma J, 2016, BUILD ENVIRON, V98, P121, DOI 10.1016/j.buildenv.2016.01.005. Ma XY, 2020, SCI TOTAL ENVIRON, V737, DOI 10.1016/j.scitotenv.2020.140389. MacMunn A, 2018, MORE 4 10 AM LIVE UN. Maleki H, 2019, CLEAN TECHNOL ENVIR, V21, P1341, DOI 10.1007/s10098-019-01709-w. Masih A, 2019, GLOB J ENVIRON SCI M, V5, P515, DOI 10.22034/gjesm.2019.04.10. Mokhtar N, 2020, IOP C SERIES MAT SCI. Molter A, 2021, ENVIRON MODELL SOFTW, V143, DOI 10.1016/j.envsoft.2021.105108. Monteiro A, 2016, ATMOS POLLUT RES, V7, P339, DOI 10.1016/j.apr.2015.10.013. Morais C.D., 2012, IS PHRASE 80 DATA IS. Morley DW, 2018, ENVIRON MODELL SOFTW, V105, P17, DOI 10.1016/j.envsoft.2018.03.030. Nazarenko E., 2019, 2019 INT MULTICONFER, P1, DOI DOI 10.1109/FAREASTCON.2019.8934236. Nebenzal A, 2020, ENVIRON MODELL SOFTW, V128, DOI 10.1016/j.envsoft.2020.104701. Nitze I., 2012, P 4 C GEOGRAPHIC OBJ. Niu HY, 2016, SCI TOTAL ENVIRON, V571, P103, DOI 10.1016/j.scitotenv.2016.07.147. Nuckols JR, 2004, ENVIRON HEALTH PERSP, V112, P1007, DOI 10.1289/ehp.6738. OECD, 2020, DIG SCI TECHN INN. OECD O., 2012, OECD ENV OUTLOOK 205, DOI {[}10.1787/9789264122246-en, DOI 10.1787/9789264122246-EN]. Sayad YO, 2019, FIRE SAFETY J, V104, P130, DOI 10.1016/j.firesaf.2019.01.006. Pearce JL, 2011, ATMOS ENVIRON, V45, P1328, DOI 10.1016/j.atmosenv.2010.11.051. Pourghasemi HR, 2021, NAT HAZARDS, V108, P1291, DOI 10.1007/s11069-021-04732-7. Pucer JF, 2018, ENVIRON POLLUT, V242, P398, DOI 10.1016/j.envpol.2018.06.084. Qiao C., 2010, COMPUTER TECHNOLOGY, V20, P250. Qin QD, 2017, APPL ENERG, V185, P604, DOI 10.1016/j.apenergy.2016.10.127. Quarmby S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102757. Reid CE, 2015, ENVIRON SCI TECHNOL, V49, P3887, DOI 10.1021/es505846r. Roadknight CM, 1997, IEEE T NEURAL NETWOR, V8, P852, DOI 10.1109/72.595883. Rojas-Rueda D, 2012, ENVIRON INT, V49, P100, DOI 10.1016/j.envint.2012.08.009. Roser M, 2019, ACCESS ENERGY, P11. Russo A, 2013, ATMOS ENVIRON, V79, P822, DOI 10.1016/j.atmosenv.2013.07.072. Salmond JA, 2016, ENVIRON HEALTH-GLOB, V15, DOI 10.1186/s12940-016-0103-6. Schornobay-Lui E, 2019, MANAG ENVIRON QUAL, V30, P414, DOI 10.1108/MEQ-03-2018-0055. Shaftel H, 2020, CLIMATE CHANGE DO WE. Shi Z, 2019, ATMOSPHERIC SCI ENV, P331. Soleimani Z, 2019, ENVIRON SCI POLLUT R, V26, P6359, DOI 10.1007/s11356-018-3952-4. Son Y, 2018, SCI TOTAL ENVIRON, V639, P40, DOI 10.1016/j.scitotenv.2018.05.144. Speak AF, 2012, ATMOS ENVIRON, V61, P283, DOI 10.1016/j.atmosenv.2012.07.043. Spellman G, 1999, APPL GEOGR, V19, P123, DOI 10.1016/S0143-6228(98)00039-3. Stocker TF, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1, DOI 10.1017/cbo9781107415324. Szpiro AA, 2013, ENVIRONMETRICS, V24, P501, DOI 10.1002/env.2233. Tambo E, 2016, ENVIRON INT, V95, P152, DOI 10.1016/j.envint.2016.04.010. Tella A, 2021, ATMOS POLLUT RES. Tella A., 2021, J ADV GEOSPATIAL SCI, V1, P115. Tella A, 2021, GEOMAT NAT HAZ RISK, V12, P443, DOI 10.1080/19475705.2021.1879942. Tian B., 2016, GIS TECHNOLOGY APPL. Tian HQ, 2016, NATURE, V531, P225, DOI 10.1038/nature16946. Tong CHM, 2018, ATMOS ENVIRON, V193, P79, DOI 10.1016/j.atmosenv.2018.08.053. Tong WT, 2020, SPATIOTEMPORAL ANALYSIS OF AIR POLLUTION AND ITS APPLICATION IN PUBLIC HEALTH, P107, DOI 10.1016/B978-0-12-815822-7.00005-4. Torlay L, 2017, Brain Inform, V4, P159, DOI 10.1007/s40708-017-0065-7. UNEP, 2020, URB AIR ACT PLATF. UNPF, 2020, URB. Valencia VH, 2020, ATMOS POLLUT RES, V11, DOI 10.1016/j.apr.2019.12.014. VoPham T, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0386-x. Vos PEJ, 2013, ENVIRON POLLUT, V183, P113, DOI 10.1016/j.envpol.2012.10.021. Wang HW, 2020, J CLEAN PROD, V253, DOI 10.1016/j.jclepro.2019.119841. Wang LJ, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11010030. Wang Q, 2019, ENVIRON POLLUT, V247, P989, DOI 10.1016/j.envpol.2019.01.086. Wang S., 2018, POTENTIAL BIG DATA U, P45. Wang SJ, 2017, J CLEAN PROD, V142, P1800, DOI 10.1016/j.jclepro.2016.11.104. Wang SJ, 2020, J CLEAN PROD, V243, DOI 10.1016/j.jclepro.2019.118615. Wang YW, 2019, ENVIRON INT, V133, DOI 10.1016/j.envint.2019.105161. Watson GL, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.06.088. Whitworth KW, 2011, ENVIRON HEALTH-GLOB, V10, DOI 10.1186/1476-069X-10-21. WHO, 2018, AMB OUTD AIR POLL 20. Wong DW, 2004, J EXPO ANAL ENV EPID, V14, P404, DOI 10.1038/sj.jea.7500338. Wotton BM, 2003, CLIMATIC CHANGE, V60, P275, DOI 10.1023/A:1026075919710. Wu RR, 2016, SCI TOTAL ENVIRON, V560, P62, DOI 10.1016/j.scitotenv.2016.04.030. Wu XD, 2008, KNOWL INF SYST, V14, P1, DOI 10.1007/s10115-007-0114-2. Yamamoto SS, 2014, INT J HYG ENVIR HEAL, V217, P133, DOI 10.1016/j.ijheh.2013.08.003. Yang DY, 2018, ATMOS ENVIRON, V182, P171, DOI 10.1016/j.atmosenv.2018.03.053. Yang JY, 2020, SUSTAIN CITIES SOC, V54, DOI 10.1016/j.scs.2019.101941. Yu RY, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010086. Yusoff MF, 2019, ATMOS ENVIRON, V207, P105, DOI 10.1016/j.atmosenv.2019.03.023. Zhan Y, 2018, ENVIRON POLLUT, V233, P464, DOI 10.1016/j.envpol.2017.10.029. Zhan Y, 2017, ATMOS ENVIRON, V155, P129, DOI 10.1016/j.atmosenv.2017.02.023. Zhang SH, 2018, J CLEAN PROD, V185, P761, DOI 10.1016/j.jclepro.2018.02.293. Zhang SH, 2015, ENRGY PROCED, V83, P10, DOI 10.1016/j.egypro.2015.12.191. Zhang W, 2014, CHIN J CANCER, V33, P173, DOI 10.5732/cjc.014.10034. Zhou YL, 2019, J CLEAN PROD, V209, P134, DOI 10.1016/j.jclepro.2018.10.243. Zhu LY, 2019, SUSTAIN CITIES SOC, V49, DOI 10.1016/j.scs.2019.101593.}, Number-of-Cited-References = {163}, Times-Cited = {12}, Usage-Count-Last-180-days = {23}, Usage-Count-Since-2013 = {100}, Journal-ISO = {Urban CLim.}, Doc-Delivery-Number = {WF3BU}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000706184900001}, DA = {2023-04-22}, } @article{ WOS:000698879200003, Author = {Tariq, Zeeshan and Aljawad, Murtada Saleh and Hasan, Amjed and Murtaza, Mobeen and Mohammed, Emad and El-Husseiny, Ammar and Alarifi, Sulaiman A. and Mahmoud, Mohamed and Abdulraheem, Abdulazeez}, Title = {A systematic review of data science and machine learning applications to the oil and gas industry}, Journal = {JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY}, Year = {2021}, Volume = {11}, Number = {12}, Pages = {4339-4374}, Month = {DEC}, Abstract = {This study offered a detailed review of data sciences and machine learning (ML) roles in different petroleum engineering and geosciences segments such as petroleum exploration, reservoir characterization, oil well drilling, production, and well stimulation, emphasizing the newly emerging field of unconventional reservoirs. The future of data science and ML in the oil and gas industry, highlighting what is required from ML for better prediction, is also discussed. This study also provides a comprehensive comparison of different ML techniques used in the oil and gas industry. With the arrival of powerful computers, advanced ML algorithms, and extensive data generation from different industry tools, we see a bright future in developing solutions to the complex problems in the oil and gas industry that were previously beyond the grip of analytical solutions or numerical simulation. ML tools can incorporate every detail in the log data and every information connected to the target data. Despite their limitations, they are not constrained by limiting assumptions of analytical solutions or by particular data and/or power processing requirements of numerical simulators. This detailed and comprehensive study can serve as an exclusive reference for ML applications in the industry. Based on the review conducted, it was found that ML techniques offer a great potential in solving problems in almost all areas of the oil and gas industry involving prediction, classification, and clustering. With the generation of huge data in everyday oil and gas industry activates, machine learning and big data handling techniques are becoming a necessity toward a more efficient industry.}, Publisher = {SPRINGER HEIDELBERG}, Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY}, Type = {Review}, Language = {English}, Affiliation = {Alarifi, SA (Corresponding Author), King Fahd Univ Petr \& Minerals, Dhahran, Saudi Arabia. Tariq, Zeeshan; Aljawad, Murtada Saleh; Hasan, Amjed; Murtaza, Mobeen; Mohammed, Emad; El-Husseiny, Ammar; Alarifi, Sulaiman A.; Mahmoud, Mohamed; Abdulraheem, Abdulazeez, King Fahd Univ Petr \& Minerals, Dhahran, Saudi Arabia.}, DOI = {10.1007/s13202-021-01302-2}, EarlyAccessDate = {SEP 2021}, ISSN = {2190-0558}, EISSN = {2190-0566}, Keywords = {Oil and gas industry; Systematic review; Machine learning; Future of data science in oil and gas}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORKS; COMPRESSIVE STRENGTH PREDICTION; WATER SATURATION PREDICTION; PVT PROPERTIES; WELL LOGS; COMMITTEE MACHINE; RESERVOIR; MODEL; PRESSURE; INTELLIGENCE}, Research-Areas = {Energy \& Fuels; Engineering; Geology}, Web-of-Science-Categories = {Energy \& Fuels; Engineering, Petroleum; Geosciences, Multidisciplinary}, Author-Email = {salarifi@kfupm.edu.sa}, Affiliations = {King Fahd University of Petroleum \& Minerals}, ResearcherID-Numbers = {Alarifi, Sulaiman A./AAD-3222-2021 Tariq, Zeeshan/ABD-8533-2020}, ORCID-Numbers = {Alarifi, Sulaiman A./0000-0003-3643-4014 Tariq, Zeeshan/0000-0001-5456-7115}, Cited-References = {Aadnoy BS, 2010, J CAN PETROL TECHNOL, V49, P25, DOI 10.2118/141515-PA. Abbas Ahmed K., 2019, Egyptian Journal of Petroleum, V28, P339, DOI 10.1016/j.ejpe.2019.06.006. ABDELGAWAD K, 2018, J ENERGY RESOUR TECH. Abdi Y, 2018, ARAB J GEOSCI, V11, DOI 10.1007/s12517-018-3929-0. Abdulraheem A, 2009, SOC PETR ENG SPE SAU, DOI 10.2118/126094-ms. Adesina FAS., 2015, PETROLEUM COAL J, V57, P60. Agwu OE, 2018, J PETROL SCI ENG, V167, P300, DOI 10.1016/j.petrol.2018.04.019. Ahmadi Mohammad Ali, 2019, Petroleum, V5, P271, DOI 10.1016/j.petlm.2018.06.002. Ahmadi M. A., 2018, EGYPT J PET, V27, P1, DOI {[}10.1016/j.ejpe.2016.12.002, DOI 10.1016/J.EJPE.2016.12.002]. Ahmadi M.A., 2015, PETROLEUM, V1, P307, DOI {[}10.1016/j.petlm.2015.08.003, DOI 10.1016/J.PETLM.2015.08.003]. Ahmed A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226527. Akbari M, 2017, J PETROL SCI ENG, V152, P416, DOI 10.1016/j.petrol.2017.03.003. Al-Anazi A., 2010, NAT RESOUR RES, DOI 10.1007/s11053-010-9118-9. Al-Bulushi NI, 2012, NEURAL COMPUT APPL, V21, P409, DOI 10.1007/s00521-010-0501-6. Al-Hajri NM, 2020, SPE PROD OPER, V35, P987, DOI 10.2118/198646-PA. Al-Hameedi AT, 2018, SPE AS PAC OIL GAS C, DOI 10.2118/191933-MS. Al-Marhoun MA, 2002, SOC PETR ENG AB DHAB, DOI 10.2523/78592-ms. Al-Shammasi AA, 2001, SPE RESERV EVAL ENG, V4, P146, DOI 10.2118/71302-PA. Al-Shehri D, SPE EUR VIRT, DOI 10.2118/200527-MS. Alarifi S, 2015, ALL DAYS, DOI 10.2118/172729-MS. Alarifi SA, 2021, SPE PROD OPER, V36, P468, DOI 10.2118/204470-PA. Alkinani HH., 2020, EGYPT J PET, DOI 10.1016/j.ejpe.2019.12.003. Ameen MS, 2009, MAR PETROL GEOL, V26, P430, DOI 10.1016/j.marpetgeo.2009.01.017. Amiri M, 2014, 20 FORM EV S JAP. Amiri M, 2015, J NAT GAS SCI ENG, V22, P468, DOI 10.1016/j.jngse.2014.12.027. ANDREA TA, 1991, J MED CHEM, V34, P2824, DOI 10.1021/jm00113a022. Anemangely M, 2019, J PETROL SCI ENG, V174, P306, DOI 10.1016/j.petrol.2018.11.032. Anifowose Fatai A., 2013, International Journal of Computer Information Systems and Industrial Management Applications, V5, P413. Anifowose F. A., 2013, P SPE MIDDLE E OIL G, DOI {[}10.2118/164465-MS, DOI 10.2118/164465-MS]. Anifowose FA, 2012, SOC PETR ENG SAUD AR, P1, DOI {[}10.2118/160921-ms, DOI 10.2118/160921-MS]. Anifowose F, 2011, J NAT GAS SCI ENG, V3, P505, DOI 10.1016/j.jngse.2011.05.002. Anifowose FA, 2017, J PETROL SCI ENG, V151, P480, DOI 10.1016/j.petrol.2017.01.024. {[}Anonymous], 2016, MECHATRONIC FUTURES, DOI DOI 10.1007/978-3-319-32156-1\_5. {[}Anonymous], 2018, PETROLEUM, DOI DOI 10.1016/J.PETLM.2018.04.002. {[}Anonymous], 2018, PETROLEUM. {[}Anonymous], 2001, SPE MIDDLE E OIL SHO. Arabjamaloei R, 2011, PETROL SCI TECHNOL, V29, P1637, DOI 10.1080/10916460902882818. Ariturk MS, 2019, ENV SCI. Aulia A, 2014, ALL DAYS, DOI 10.2118/167827-MS. Avseth P., 2002, PETROPHYSICS, V43. Awoleke OO, 2011, SPE RESERV EVAL ENG, V14, P544, DOI 10.2118/127919-PA. Ba alawi M, 2020, DAY 3 WED JANUARY 15, DOI 10.2523/IPTC-19854-MS. Baarimah SO, 2014, SOC PETR ENG INT PET, P3953. Bageri BS, 2015, SPE MIDDL E OIL GAS, P499, DOI {[}10.2118/172564-ms, DOI 10.2118/172564-MS]. BAGHERI A, 2019, MEAS J INT MEAS CONF. Bahorich M.S., 1995, LEAD EDGE, V14, P1053, DOI {[}DOI 10.1190/1.1437077, 10.1190/1.1437077]. Barbosa LFFM, 2019, J PETROL SCI ENG, V183, DOI 10.1016/j.petrol.2019.106332. Berthelot A, 2013, J APPL GEOPHYS, V88, P52, DOI 10.1016/j.jappgeo.2012.09.006. Bhattacharya S, 2019, J PETROL SCI ENG, V176, P702, DOI 10.1016/j.petrol.2019.01.013. Bhattacharya S, 2018, J PETROL SCI ENG, V170, P1005, DOI 10.1016/j.petrol.2018.06.075. Bilgesu HI, 1997, P SPE E REG C EXH, DOI 10.2523/39231-ms. Bondi G, 2018, GEODERMA, V318, P137, DOI 10.1016/j.geoderma.2017.11.035. BOURGOYNE AT, 1974, SOC PETROL ENG J, V14, P371, DOI 10.2118/4238-PA. Brazell S, 2019, PETROPHYSICS, V60, P469, DOI 10.30632/PJV60N4-2019a1. Buhulaigah A, 2017, SPE MIDDL E OIL GAS, DOI 10.2118/183688-MS. Chen FF, 2015, J PETROL SCI ENG, V134, P131, DOI 10.1016/j.petrol.2015.07.020. Chhantyal K, 2017, P IEEE SENSORS, DOI 10.1109/ICSENS.2017.8234010. Chou JS, 2011, J COMPUT CIVIL ENG, V25, P242, DOI 10.1061/(ASCE)CP.1943-5487.0000088. DABISPO V, 2017, J PET SCI ENG. DEOSARKAR M, 2012, POWDER TECHNOL. Desouky M, 2020, ACS OMEGA, V5, P16919, DOI 10.1021/acsomega.0c02123. Devi PRS, 2015, PROCEDIA COMPUT SCI, V54, P405, DOI 10.1016/j.procs.2015.06.047. DI H, 2016, GEOPHYSICS. Di H, 2018, AAPG ANN CONV EXH. Di HB, 2014, COMPUT GEOSCI-UK, V72, P192, DOI 10.1016/j.cageo.2014.07.011. Dignum V, 2018, ITU J ICT DISCOVERIE, V1, P1. Dao DV, 2019, MATERIALS, V12, DOI 10.3390/ma12060983. Du S., 2017, P SPE ANN TECHN C EX, DOI DOI 10.2118/187202-MS. Dupriest FE, 2005, ALL DAYS, DOI 10.2118/92194-MS. El-Sebakhy EA, 2009, J PETROL SCI ENG, V64, P25, DOI 10.1016/j.petrol.2008.12.006. Eleibide M, 2018, SOC PETR ENG SPE KIN. Elkatatny Salaheldin, 2018, Neural Computing and Applications, V30, P2673, DOI 10.1007/s00521-017-2850-x. Elkatatny S, 2019, NEURAL COMPUT APPL, V31, P4123, DOI 10.1007/s00521-018-3344-1. Elkatatny S, 2016, J PETROL SCI ENG, V146, P1202, DOI 10.1016/j.petrol.2016.08.021. Evangelatosorn GI, 2016, IADCSPE178852MS. Fang L, 2021, FRONT CHEM SCI ENG, V15, P902, DOI 10.1007/s11705-020-1985-y. Fertl WH, 1971, SOC PETROPHYSICISTS. Ganji-Azad E, 2014, J NAT GAS SCI ENG, V21, P951, DOI 10.1016/j.jngse.2014.10.009. Gharbi RB, 1999, ENERG FUEL, V13, P454, DOI 10.1021/ef980143v. Gharbi RBC, 1999, SPE RESERV EVAL ENG, V2, P255, DOI 10.2118/56850-PA. Gholanlo Hamid Heydari, 2016, Petroleum, V2, P166, DOI 10.1016/j.petlm.2016.04.002. Gidh Y, 2012, P SPE INT INT EN INT. Gowida A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020686. Guitton A, 2017, STAT IMAGING FAULTS, DOI 10.1190/segam2017-17589633.1. Hale D, 2013, GEOPHYSICS, V78, pS105, DOI 10.1190/GEO2012-0327.1. Hassan A, 2018, SPE KINGD SAUD AR AN, DOI 10.2118/192251-MS. Hassan A, 2020, INT PETR TECHN C DHA, DOI 10.2523/IPTC-19706-Abstract. Hassan A., 2017, SPE ANN TECHN C EXH, P1, DOI 10.2118/187458-MS. HE J, 2021, SPE J. Hegde C, 2018, J NAT GAS SCI ENG, V56, P397, DOI 10.1016/j.jngse.2018.06.006. Helle HB, 2002, PETROL GEOSCI, V8, P109, DOI 10.1144/petgeo.8.2.109. Hemmati-Sarapardeh A, 2014, FUEL, V116, P39, DOI 10.1016/j.fuel.2013.07.072. Hoang M, 2016, TUNING VISCOSITY DEN, P156. Hossain M, 2018, J CLEAN PROD, V182, P926, DOI 10.1016/j.jclepro.2018.02.091. Hu YS, 2019, ENRGY PROCED, V159, P104, DOI 10.1016/j.egypro.2018.12.026. Hua YM, 2015, PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTERNET OF THINGS, P1, DOI 10.1109/ICAIOT.2015.7111524. Huang L., 2017, LEAD EDGE, DOI 10.1190/tle36030249.1. Huang YM, 2020, ENERG SOURCE PART A, V42, P1464, DOI 10.1080/15567036.2019.1604861. Iino A, 2020, RAPID SIMULATION ACC, DOI 10.15530/urtec-2020-2468. Jacobs T., 2019, J PET TECHNOL, V71, P34, DOI DOI 10.2118/0219-0034-JPT. Jeirani Z, 2006, J JPN PETROL INST, V49, P65, DOI 10.1627/jpi.49.65. Kamalyar K, 2012, PETROL SCI TECHNOL, V30, P35, DOI 10.1080/10916461003752561. Kar S, 2014, APPL SOFT COMPUT, V15, P243, DOI 10.1016/j.asoc.2013.10.014. Kenari SAJ, 2013, J PETROL SCI ENG, V104, P1, DOI 10.1016/j.petrol.2013.03.009. Kewalramani MA, 2006, AUTOMAT CONSTR, V15, P374, DOI 10.1016/j.autcon.2005.07.003. Khamidy N.I., 2019, SPE MIDDL E OIL GAS, DOI {[}10.2118/194726-MS, DOI 10.2118/194726-MS]. Khashman A, 2017, PROCEDIA COMPUT SCI, V108, P2358, DOI 10.1016/j.procs.2017.05.039. Khazaeni Y, 2011, SPE RESERV EVAL ENG, V14, P735, DOI 10.2118/132643-PA. KUMAR A, 2020, APPL SCI. Le Bas C, 2016, J INNOV ECON MANAG, P9, DOI 10.3917/jie.021.0009. Lecampion B, 2018, J NAT GAS SCI ENG, V49, P66, DOI 10.1016/j.jngse.2017.10.012. Liu HY, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9204396. LIVINGSTONE DJ, 1993, J MED CHEM, V36, P1295, DOI 10.1021/jm00061a023. Livingstone DJ, 1997, J COMPUT AID MOL DES, V11, P135, DOI 10.1023/A:1008074223811. Lolon E, 2016, DAY 3 THU FEBR 11, DOI 10.2118/179171-MS. Luo GF, 2019, SPE RESERV EVAL ENG, V22, P800, DOI 10.2118/195681-PA. Luthi SM, 1997, MATH GEOL, V29, P413, DOI 10.1007/BF02769643. Lv XC, 2019, APPL GEOPHYS, V16, P483, DOI 10.1007/s11770-019-0773-2. Maghrabi S, 2014, SOC PETR ENG EUR UNC, DOI 10.2118/167691-ms. Maity D, 2019, J PETROL SCI ENG, V172, P588, DOI 10.1016/j.petrol.2018.09.062. Maniar H, 2018, 2018 SEG INT EXP ANN. Manshad A, 2017, RES GATE. Mardi M, 2012, PETROL SCI TECHNOL, V30, P425, DOI 10.1080/10916460903452033. Marfurt KJ, 1998, GEOPHYSICS, V63, P1150, DOI 10.1190/1.1444415. MARTINELLI G, 2013, PET GEOSCI. Masoudi R, 2020, SPE ANN TECHN C EXH, DOI 10.2118/201693-MS. Matin SS, 2018, APPL SOFT COMPUT, V70, P980, DOI 10.1016/j.asoc.2017.06.030. Mehrad M, 2020, J PETROL SCI ENG, V192, DOI 10.1016/j.petrol.2020.107338. Melville PD, 2002, ABU DHAB INT PETR EX, DOI 10.2118/78511-MS. Miri R., 2007, INT OIL C EXHIBITION, DOI {[}10.2118/108500-MS, DOI 10.2118/108500-MS]. Mishra S, 2015, DATA ANALYTICS PRODU, DOI 10.15530/urtec-2015-2167005. Mnati KH., 2018, IRAQI J CHEM PET ENG, V19, P21, DOI {[}10.31699/IJCPE.2018.4.3, DOI 10.31699/IJCPE.2018.4.3]. Mohaghegh S, 2000, J PETROL TECHNOL, V52, P82, DOI 10.2118/62415-JPT. Mohaghegh SD., 2017, SHALE ANALYTICS DATA, DOI 10.1007/978-3-319-48753-3. Mohaghegh SD, 2011, J NAT GAS SCI ENG, V3, P697, DOI 10.1016/j.jngse.2011.08.003. Mollajan A., 2013, 47 US ROCK MECH GEOM. MOORE B, 2018, COMP MATER SCI. MURRAY AS, 1955, T AM I MIN MET ENG, V204, P196. Murtaza M, 2020, ENERG FUEL, V34, P7388, DOI 10.1021/acs.energyfuels.0c01001. Naderpour H, 2018, J BUILD ENG, V16, P213, DOI 10.1016/j.jobe.2018.01.007. Najibi AR, 2015, J PETROL SCI ENG, V126, P78, DOI 10.1016/j.petrol.2014.12.010. Navratil J, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00033. Negara A, 2017, DAY 4 THU APRIL 27 2, DOI 10.2118/188077-MS. Nooruddin HA, 2014, COMPUT GEOSCI-UK, V64, P72, DOI 10.1016/j.cageo.2013.11.007. Numbere OG, 2013, SPE NIG ANN INT C EX, DOI 10.2118/167586-MS. Oguntade T, 2020, APPL ANN PREDICTING, DOI 10.2118/203720-MS. Omar S, 2013, INT J COMPUTER APPL, V79, P33, DOI DOI 10.5120/13715-1478. Osarogiagbon A, 2020, PROCESS SAF ENVIRON, V142, P126, DOI 10.1016/j.psep.2020.05.046. Osman EA, 2003, P MIDDL E OIL SHOW, DOI 10.2118/81422-ms. Pandey SK, 2019, NEURAL PROCESS LETT, V50, P1907, DOI 10.1007/s11063-018-09976-2. QI J, 2017, GEOPHYSICS. Qi LS, 2006, COMPUT GEOSCI-UK, V32, P947, DOI 10.1016/j.cageo.2005.10.020. Rabbani E, 2012, INT J ROCK MECH MIN, V56, P100, DOI 10.1016/j.ijrmms.2012.07.033. Rahmanifard H, 2018, J NAT GAS SCI ENG, V52, P367, DOI 10.1016/j.jngse.2018.01.047. Rahmati AS, 2019, OIL GAS SCI TECHNOL, V74, DOI 10.2516/ogst/2019021. Raj J.S., 2019, J ISMAC, V1, P147, DOI {[}10.36548/jismac.2019.3.002, DOI 10.36548/JISMAC.2019.3.002]. Ramamoorthy A., 2018, ITU J, V1, P77. Ramirez A.M., 2017, SPE LAT AM CAR PETR. Rasheed A, 2020, IEEE ACCESS, V8, P21980, DOI 10.1109/ACCESS.2020.2970143. Rasheed Khan M, 2018, SOC PETR ENG SPE KIN, DOI 10.2118/192307-ms. Rastogi A, 2019, SPE LIQ RICH BAS C N, DOI 10.2118/197095-MS. Razi MM, 2013, J DISPER SCI TECHNOL, V34, P822, DOI 10.1080/01932691.2012.704746. Reiber F, 1999, P IADC SPE AS PAC DR, DOI 10.2523/52836-ms. Rolon L, 2009, J NAT GAS SCI ENG, V1, P118, DOI 10.1016/j.jngse.2009.08.003. Rooki R, 2012, INT J MINER PROCESS, V110, P53, DOI 10.1016/j.minpro.2012.03.012. Rooki R., 2014, GEOMATERIALS, DOI 10.4236/gm.2014.41005. Safiuddin M, 2016, MATERIALS, V9, DOI 10.3390/ma9050396. Sagheer A, 2019, NEUROCOMPUTING, V323, P203, DOI 10.1016/j.neucom.2018.09.082. Salehi SM., 2014, J PET SCI RES, DOI 10.14355/jpsr.2014.0302.04. Samek W., 2018, ITU J ICT DISCOVERIE, V1, P39. Samnejad M, 2020, DIGITAL TWIN DRILLIN, DOI 10.4043/30738-MS. Sebtosheikh MA, 2015, J PETROL SCI ENG, V134, P143, DOI 10.1016/j.petrol.2015.08.001. Sefidi AC, 2019, PETROL SCI TECHNOL, V37, P2302, DOI 10.1080/10916466.2018.1490759. Seyyedattar M, 2020, FUEL, V269, DOI 10.1016/j.fuel.2019.116834. Shabbir J., 2018, J LATEX CLASS, V14, P1, DOI {[}10.48550/arXiv.1804.01396, DOI 10.48550/ARXIV.1804.01396]. Shadravan A., 2017, SPE DRILL COMPLETION, V32, P131, DOI {[}10.2118/175238-PA, DOI 10.2118/175238-PA]. Shahkarami A, 2014, GREENH GASES, V4, P289, DOI 10.1002/ghg.1414. SHAHRIAR A, 2011, J MAT CIV ENG. Sharma MSR, 2010, J PETROL SCI ENG, V72, P134, DOI 10.1016/j.petrol.2010.03.011. Shojaei MJ, 2014, J NAT GAS SCI ENG, V20, P214, DOI 10.1016/j.jngse.2014.06.012. Shokir EMEM, 2004, P SPE AS PAC C INT M, P35, DOI {[}10.2118/87001-ms, DOI 10.2118/87001-MS]. Shokrollahi A, 2015, J TAIWAN INST CHEM E, V55, P17, DOI 10.1016/j.jtice.2015.04.009. Sibai FN, 2011, EXPERT SYST APPL, V38, P5940, DOI 10.1016/j.eswa.2010.11.029. Silva AA, 2015, J APPL GEOPHYS, V117, P118, DOI 10.1016/j.jappgeo.2015.03.027. Simandoux P, 1963, I FR PET SUPPL ISSUE. Solomon O, 2017, SPE NIG ANN INT C EX, DOI 10.2118/189068-MS. Somasundaram S., 2017, LEAD EDGE, DOI 10.1190/tle36110947b1.1. Somvanshi M, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA). Srinivasan G, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30117-1. Sun HF, 2019, J PETROL SCI ENG, V175, P654, DOI 10.1016/j.petrol.2018.12.075. Tahmasebi P, 2017, EXPERT SYST APPL, V88, P435, DOI 10.1016/j.eswa.2017.07.015. Tariq Z, 2018, SOC PETR ENG SPE KIN, DOI 10.2118/192184-MS. TARIQ Z, 2019, NEURAL COMPUT APPL. Tariq Z., 2016, INT PETROLEUM TECHNO. Tariq Z., 2017, SPE187974MS, DOI DOI 10.2118/187974-MS. Tariq Z, 2017, SPE RES CHAR SIM C E, P1340, DOI {[}10.2118/186062-MS, DOI 10.2118/186062-MS]. Tariq Z, 2021, J ENERG RESOUR-ASME, V143, DOI 10.1115/1.4050579. Tariq Z, 2020, NEURAL COMPUT APPL, V32, P11919, DOI 10.1007/s00521-019-04674-z. Tariq Z, 2020, ACS OMEGA, V5, P17646, DOI 10.1021/acsomega.0c02122. Tariq Z, 2020, ACS OMEGA, V5, P11643, DOI 10.1021/acsomega.0c00943. Tariq Z, 2018, PETROPHYSICS, V59, P761, DOI 10.30632/PJV59N6-2018a2. Taunk K, 2019, PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), P1255, DOI 10.1109/ICCS45141.2019.9065747. Tian X, 2019, J NAT GAS SCI ENG, V63, P27, DOI 10.1016/j.jngse.2019.01.003. Tomiwa O, 2019, IMPROVED WATER BASED, DOI 10.2118/198861-MS. TRTNIK G, 2009, ULTRASONICS. Tschannen V, 2020, GEOPHYSICS, V85, pN17, DOI 10.1190/GEO2019-0569.1. Van SL, 2018, J ENERG RESOUR-ASME, V140, DOI 10.1115/1.4038054. Van SL, 2017, J PETROL SCI ENG, V157, P207, DOI 10.1016/j.petrol.2017.07.034. Van SL, 2017, ENERGIES, V10, DOI 10.3390/en10070842. WANG S, 2019, J PET SCI ENG. Wang Y, 2011, MODEL DEEPWATER FLOA. Wattenbarger R.A., 1998, SPE ROCKY MOUNTAIN R, DOI DOI 10.2118/39931-MS. Weyrauch Timo, 2016, J FRUGAL INNOVATION, V2, DOI {[}10.1186/s40669-016-0005-y, DOI 10.1186/S40669-016-0005-Y]. XIONG W, 2018, GEOPHYSICS. Yadollahi M. M., 2015, Materials Research Innovations, V19, P453, DOI 10.1179/1433075X15Y.0000000020. YANG D, 2008, INT J NUMER METHODS. Yilmaz I, 2008, ROCK MECH ROCK ENG, V41, P781, DOI 10.1007/s00603-007-0138-7. Yu W., 2013, SPE PRODUCTION OPERA. Zapico JL, 2008, SMART MATER STRUCT, V17, DOI 10.1088/0964-1726/17/4/045016. Zhao T, 2015, INTERPRETATION-J SUB, V3, pSAE29, DOI 10.1190/INT-2015-0044.1. Zheng York, 2019, Leading Edge, V38, P526, DOI 10.1190/tle38070526.1. Zhou H, 2016, SOC PETR ENG IADC SP, DOI 10.2118/180573-MS.}, Number-of-Cited-References = {222}, Times-Cited = {9}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {42}, Journal-ISO = {J. Pet. Explor. Prod. Technol.}, Doc-Delivery-Number = {WK0CS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000698879200003}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000611850000003, Author = {Mahmood, Asif and Wang, Jin-Liang}, Title = {Machine learning for high performance organic solar cells: current scenario and future prospects}, Journal = {ENERGY \& ENVIRONMENTAL SCIENCE}, Year = {2021}, Volume = {14}, Number = {1}, Pages = {90-105}, Month = {JAN 1}, Abstract = {Machine learning (ML) is a field of computer science that uses algorithms and techniques for automating solutions to complex problems that are hard to program using conventional programming methods. Owing to the chemical versatility of organic building blocks, a large number of organic semi-conductors have been used for organic solar cells. Selecting a suitable organic semi-conductor is like searching for a needle in a haystack. Data-driven science, the fourth paradigm of science, has the potential to guide experimentalists to discover and develop new high-performance materials. The last decade has seen impressive progress in materials informatics and data science; however, data-driven molecular design of organic solar cell materials is still challenging. The data-analysis capability of machine learning methods is well known. This review is written about the use of machine learning methods for organic solar cell research. In this review, we have outlined the basics of machine learning and common procedures for applying machine learning. A brief introduction on different classes of machine learning algorithms as well as related software and tools is provided. Then, the current research status of machine learning in organic solar cells is reviewed. We have discussed the challenges in anticipating the data driven material design, such as the complexity metric of organic solar cells, diversity of chemical structures and necessary programming ability. We have also proposed some suggestions that can enhance the usefulness of machine learning for organic solar cell research enterprises.}, Publisher = {ROYAL SOC CHEMISTRY}, Address = {THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Wang, JL (Corresponding Author), Beijing Inst Technol, Sch Chem \& Chem Engn, Beijing Key Lab Photoelect Electrophoton Convers, Key Lab Cluster Sci,Minist Educ, Beijing 100081, Peoples R China. Mahmood, Asif; Wang, Jin-Liang, Beijing Inst Technol, Sch Chem \& Chem Engn, Beijing Key Lab Photoelect Electrophoton Convers, Key Lab Cluster Sci,Minist Educ, Beijing 100081, Peoples R China.}, DOI = {10.1039/d0ee02838j}, ISSN = {1754-5692}, EISSN = {1754-5706}, Keywords-Plus = {FINGERPRINT SIMILARITY SEARCH; MOLECULAR DESIGN; FULLERENE; EFFICIENCY; ACCEPTOR; PHOTOVOLTAICS; MORPHOLOGY; CHEMISTRY; CANDIDATES; ENERGIES}, Research-Areas = {Chemistry; Energy \& Fuels; Engineering; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Energy \& Fuels; Engineering, Chemical; Environmental Sciences}, Author-Email = {jinlwang@bit.edu.cn}, Affiliations = {Beijing Institute of Technology}, ResearcherID-Numbers = {Mahmood, Asif/S-5579-2019}, ORCID-Numbers = {Mahmood, Asif/0000-0001-9412-1011}, Funding-Acknowledgement = {National Natural Science Foundation of China {[}21672023, 21971014, 21950410533]; National Key Research and Development Program of China {[}2018YFA0901800]; Thousand Youth Talents Plan of China; BIT Teli Young Fellow Recruitment Program}, Funding-Text = {The authors acknowledge the support from the National Natural Science Foundation of China (No. 21672023, 21971014, and 21950410533) and the National Key Research and Development Program of China (2018YFA0901800). Jin-Liang Wang was supported by the Thousand Youth Talents Plan of China and BIT Teli Young Fellow Recruitment Program. The authors thank the Analysis \& Testing Center, Beijing Institute of Technology.}, Cited-References = {Bredas JL, 2009, ACCOUNTS CHEM RES, V42, P1691, DOI 10.1021/ar900099h. CAHN JW, 1961, ACTA METALL MATER, V9, P795, DOI 10.1016/0001-6160(61)90182-1. Cao DS, 2013, BIOINFORMATICS, V29, P1092, DOI 10.1093/bioinformatics/btt105. Cereto-Massague A, 2015, METHODS, V71, P58, DOI 10.1016/j.ymeth.2014.08.005. Chen C, 2020, ADV ENERGY MATER, V10, DOI 10.1002/aenm.201903242. Cova TFGG, 2019, FRONT CHEM, V7, DOI 10.3389/fchem.2019.00809. Du PF, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0108-5. Duong DT, 2012, J POLYM SCI POL PHYS, V50, P1405, DOI 10.1002/polb.23153. Gao JH, 2020, ENERG ENVIRON SCI, V13, P958, DOI 10.1039/c9ee04020j. Gu GH, 2019, J MATER CHEM A, V7, P17096, DOI 10.1039/c9ta02356a. Gunes S, 2007, CHEM REV, V107, P1324, DOI 10.1021/cr050149z. Hachmann J, 2014, ENERG ENVIRON SCI, V7, P698, DOI 10.1039/c3ee42756k. Han GC, 2020, ADV MATER, V32, DOI 10.1002/adma.202000975. Hong HX, 2008, J CHEM INF MODEL, V48, P1337, DOI 10.1021/ci800038f. Hu DQ, 2020, ENERG ENVIRON SCI, V13, P2134, DOI 10.1039/d0ee00714e. Hu R, 2020, NANO ENERGY, V72, DOI 10.1016/j.nanoen.2020.104687. Imahori H, 2009, ACCOUNTS CHEM RES, V42, P1809, DOI 10.1021/ar900034t. Imamura Y, 2017, J PHYS CHEM C, V121, P28275, DOI 10.1021/acs.jpcc.7b08446. Iwasaki Y, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-39278-z. Jones L, 2013, MICROSC MICROANAL, V19, P1050, DOI 10.1017/S1431927613001402. Jorgensen PB, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5023563. Jun Yuan H. Z., 2020, CHEM, V6, P2147. Kerber A, 2004, MATCH-COMMUN MATH CO, P187. Kodali HK, 2012, MODEL SIMUL MATER SC, V20, DOI 10.1088/0965-0393/20/3/035015. Lee MH, 2020, ADV INTELL SYST-GER, V2, DOI 10.1002/aisy.201900108. Lee MH, 2020, ENERGY TECHNOL-GER, V8, DOI 10.1002/ente.201900974. Lee MH, 2020, ORG ELECTRON, V76, DOI 10.1016/j.orgel.2019.105465. Lee MH, 2019, ADV ELECTRON MATER, V5, DOI 10.1002/aelm.201900573. Lee MH, 2019, ADV ENERGY MATER, V9, DOI 10.1002/aenm.201900891. Li S, 2020, J CHEM INF MODEL, V60, P1424, DOI 10.1021/acs.jcim.9b01113. Linderl T, 2017, ADV ENERGY MATER, V7, DOI 10.1002/aenm.201700237. Liu GC, 2019, ADV ENERGY MATER, V9, DOI 10.1002/aenm.201803657. Liu KK, 2019, J MATER CHEM A, V7, P24389, DOI 10.1039/c9ta08328f. Liu KJ, 2005, J CHEM INF MODEL, V45, P515, DOI 10.1021/ci049847v. Liu QS, 2020, SCI BULL, V65, P272, DOI 10.1016/j.scib.2020.01.001. Liu T, 2020, ENERG ENVIRON SCI, V13, P2115, DOI 10.1039/d0ee00662a. Lopez SA, 2017, JOULE, V1, P857, DOI 10.1016/j.joule.2017.10.006. Mahmood A, 2020, SOL RRL, V4, DOI 10.1002/solr.202000337. Mahmood A, 2019, PHYS CHEM CHEM PHYS, V21, P2128, DOI 10.1039/c8cp05763j. Mahmood A, 2018, J PHYS CHEM C, V122, P29122, DOI 10.1021/acs.jpcc.8b09336. Mahmood A, 2018, J MATER CHEM A, V6, P16769, DOI 10.1039/c8ta06392c. Mahmood A, 2018, DYES PIGMENTS, V149, P470, DOI 10.1016/j.dyepig.2017.10.037. Majeed N, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.201907259. Mauri A, 2006, MATCH-COMMUN MATH CO, V56, P237. Moriwaki H, 2018, J CHEMINFORMATICS, V10, DOI 10.1186/s13321-018-0258-y. Muegge I, 2016, EXPERT OPIN DRUG DIS, V11, P137, DOI 10.1517/17460441.2016.1117070. Nagasawa S, 2018, J PHYS CHEM LETT, V9, P2639, DOI 10.1021/acs.jpclett.8b00635. Noruzi R, 2020, COMPUT AIDED DESIGN, V118, DOI 10.1016/j.cad.2019.102771. Olivares-Amaya R, 2011, ENERG ENVIRON SCI, V4, P4849, DOI 10.1039/c1ee02056k. Oliynyk AO, 2019, CHEM MATER, V31, P8243, DOI 10.1021/acs.chemmater.9b03854. Padula D, 2019, ADV ENERGY MATER, V9, DOI 10.1002/aenm.201902463. Padula D, 2019, MATER HORIZ, V6, P343, DOI 10.1039/c8mh01135d. Pattanaik L, 2020, CHEM-US, V6, P1204, DOI 10.1016/j.chempr.2020.05.002. Paul A, 2019, MOL INFORM, V38, DOI 10.1002/minf.201900038. Peng SP, 2019, J CHEM INF MODEL, V59, P4993, DOI 10.1021/acs.jcim.9b00732. Perea JD, 2017, J PHYS CHEM C, V121, P18153, DOI 10.1021/acs.jpcc.7b03228. Pereira F, 2017, J CHEM INF MODEL, V57, P11, DOI 10.1021/acs.jcim.6b00340. Pfeifer Spencer, 2018, Materials Discovery, V11, P6, DOI 10.1016/j.md.2018.06.002. Pokuri BSS, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0231-y. Pokuri BSS, 2019, COMP MATER SCI, V163, P1, DOI 10.1016/j.commatsci.2019.02.030. Pyzer-Knapp EO, 2016, MATER HORIZ, V3, P226, DOI 10.1039/c5mh00282f. Pyzer-Knapp EO, 2015, ADV FUNCT MATER, V25, P6495, DOI 10.1002/adfm.201501919. Sahu H, 2019, J PHYS CHEM LETT, V10, P7277, DOI 10.1021/acs.jpclett.9b02772. Sahu H, 2019, J MATER CHEM A, V7, P17480, DOI 10.1039/c9ta04097h. Sahu H, 2018, ADV ENERGY MATER, V8, DOI 10.1002/aenm.201801032. Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663. Scharber MC, 2006, ADV MATER, V18, P789, DOI 10.1002/adma.200501717. Schleder GR, 2019, J PHYS-MATER, V2, DOI 10.1088/2515-7639/ab084b. Sui MY, 2019, SOL RRL, V3, DOI 10.1002/solr.201900258. Sun WB, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aay4275. Sun WB, 2019, ADV THEOR SIMUL, V2, DOI 10.1002/adts.201800116. Tetko IV, 2005, J COMPUT AID MOL DES, V19, P453, DOI 10.1007/s10822-005-8694-y. Vieira S., 2020, MACH LEARN, V21-44, DOI 10.1016/B978-0-12-815739-8.00002-X. Vo AH, 2020, CHEM RES TOXICOL, V33, P20, DOI 10.1021/acs.chemrestox.9b00227. Wadsworth A, 2019, CHEM SOC REV, V48, P1596, DOI 10.1039/c7cs00892a. Wan SS, 2020, J MATER CHEM A, V8, P4856, DOI 10.1039/c9ta14070k. Wan XJ, 2020, CHEM SOC REV, V49, P2828, DOI 10.1039/d0cs00084a. Wang JL, 2018, ACS ENERGY LETT, V3, P2967, DOI 10.1021/acsenergylett.8b01808. Wang JL, 2016, J AM CHEM SOC, V138, P7687, DOI 10.1021/jacs.6b03495. Wang T, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.201906041. Wang YL, 2020, ENERG ENVIRON SCI, V13, P1309, DOI 10.1039/c9ee04199k. Wodo O, 2012, ORG ELECTRON, V13, P1105, DOI 10.1016/j.orgel.2012.03.007. Wodo O, 2012, COMP MATER SCI, V55, P113, DOI 10.1016/j.commatsci.2011.12.012. Wu Y, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00388-2. Xie Y, 2019, ENERG ENVIRON SCI, V12, P3556, DOI 10.1039/c9ee02939g. Yang CY, 2020, ENERG ENVIRON SCI, V13, P2864, DOI 10.1039/d0ee01763a. Yap CW, 2011, J COMPUT CHEM, V32, P1466, DOI 10.1002/jcc.21707. Ye L, 2017, ADV ENERGY MATER, V7, DOI 10.1002/aenm.201602000. Yuan GZ, 2019, J MATER CHEM A, V7, P20274, DOI 10.1039/c9ta06311k. Yue QH, 2020, J AM CHEM SOC, V142, P11613, DOI 10.1021/jacs.0c04084. Zawodzki M, 2015, ACS APPL MATER INTER, V7, P16161, DOI 10.1021/acsami.5b04972. Zhan LL, 2020, ENERG ENVIRON SCI, V13, P635, DOI 10.1039/c9ee03710a. Zhang C, 2020, SMALL, V16, DOI 10.1002/smll.201907681. Zhang JY, 2019, ISCIENCE, V19, P883, DOI 10.1016/j.isci.2019.08.038. Zhang Y, 2018, NPJ COMPUT MATER, V4, DOI {[}10.1186/s41016-018-0133-8, 10.1038/s41524-018-0081-z]. Zhao ZW, 2020, CHEM MATER, V32, P7777, DOI 10.1021/acs.chemmater.0c02325. Zhou T, 2019, ENGINEERING-PRC, V5, P1017, DOI 10.1016/j.eng.2019.02.011. Zhou ZC, 2018, NAT ENERGY, V3, P952, DOI 10.1038/s41560-018-0234-9. Zhu C, 2020, ENERG ENVIRON SCI, V13, P2459, DOI 10.1039/d0ee00862a.}, Number-of-Cited-References = {99}, Times-Cited = {117}, Usage-Count-Last-180-days = {112}, Usage-Count-Since-2013 = {452}, Journal-ISO = {Energy Environ. Sci.}, Doc-Delivery-Number = {PY1ZW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000611850000003}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000467513500032, Author = {Toivonen, Tuuli and Heikinheimo, Vuokko and Fink, Christoph and Hausmann, Anna and Hiippala, Tuomo and Jarv, Olle and Tenkanen, Henrikki and Di Minin, Enrico}, Title = {Social media data for conservation science: A methodological overview}, Journal = {BIOLOGICAL CONSERVATION}, Year = {2019}, Volume = {233}, Pages = {298-315}, Month = {MAY}, Abstract = {Improved understanding of human-nature interactions is crucial to conservation science and practice, but collecting relevant data remains challenging. Recently, social media have become an increasingly important source of information on human-nature interactions. However, the use of advanced methods for analysing social media is still limited, and social media data are not used to their full potential. In this article, we present available sources of social media data and approaches to mining and analysing these data for conservation science. Specifically, we (i) describe what kind of relevant information can be retrieved from social media platforms, (ii) provide a detailed overview of advanced methods for spatio-temporal, content and network analyses, (iii) exemplify the potential of these approaches for real-world conservation challenges, and (iv) discuss the limitations of social media data analysis in conservation science. Combined with other data sources and carefully considering the biases and ethical issues, social media data can provide a complementary and cost-efficient information source for addressing the grand challenges of biodiversity conservation in the Anthropocene epoch.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Toivonen, T; Heikinheimo, V (Corresponding Author), Univ Helsinki, Dept Geosci \& Geog, Helsinki, Finland. Toivonen, T; Heikinheimo, V (Corresponding Author), Univ Helsinki, Helsinki Inst Sustainabil Sci HELSUS, Helsinki, Finland. Toivonen, Tuuli; Heikinheimo, Vuokko; Fink, Christoph; Hausmann, Anna; Hiippala, Tuomo; Jarv, Olle; Tenkanen, Henrikki; Di Minin, Enrico, Univ Helsinki, Dept Geosci \& Geog, Helsinki, Finland. Hiippala, Tuomo, Univ Helsinki, Dept Languages, Helsinki, Finland. Di Minin, Enrico, Univ KwaZulu Natal, Sch Life Sci, ZA-4041 Durban, South Africa. Toivonen, Tuuli; Heikinheimo, Vuokko; Fink, Christoph; Hausmann, Anna; Hiippala, Tuomo; Jarv, Olle; Tenkanen, Henrikki; Di Minin, Enrico, Univ Helsinki, Helsinki Inst Sustainabil Sci HELSUS, Helsinki, Finland.}, DOI = {10.1016/j.biocon.2019.01.023}, ISSN = {0006-3207}, EISSN = {1873-2917}, Keywords = {Social media; Nature conservation; Biodiversity; Spatial analysis; Content analysis; Machine learning; Artificial intelligence}, Keywords-Plus = {CULTURAL ECOSYSTEM SERVICES; BIG DATA; COMMUNITY DETECTION; NETWORK SITES; TWITTER; CHALLENGES; INTENSITY; PATTERNS; TRADE; SPACE}, Research-Areas = {Biodiversity \& Conservation; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Biodiversity Conservation; Ecology; Environmental Sciences}, Author-Email = {tuuli.toivonen@helsinki.fi vuokko.heikinheimo@helsinki.fi}, Affiliations = {University of Helsinki; University of Helsinki; University of Kwazulu Natal; University of Helsinki}, ResearcherID-Numbers = {Hiippala, Tuomo/F-1088-2013 Fink, Christoph/AEX-0106-2022 Järv, Olle/N-5312-2019 Tenkanen, Henrikki/N-2183-2019 Di Minin, Enrico/J-6904-2013 Järv, Olle/L-3488-2016 }, ORCID-Numbers = {Fink, Christoph/0000-0003-1251-9726 Järv, Olle/0000-0003-3446-1545 Tenkanen, Henrikki/0000-0002-0918-4710 Di Minin, Enrico/0000-0002-5562-318X Järv, Olle/0000-0003-3446-1545 Heikinheimo, Vuokko/0000-0001-5119-0957 Hiippala, Tuomo/0000-0002-8504-9422 Hausmann, Anna/0000-0002-9639-9532 Toivonen, Tuuli/0000-0002-6625-4922}, Funding-Acknowledgement = {Kone Foundation; University of Helsinki; Helsinki Institute of Sustainability Science (HELSUS); Academy of Finland {[}296524]; Helsinki Metropolitan Region Urban Research Program}, Funding-Text = {All authors would like to thank the Kone Foundation and the University of Helsinki for support. A.H. and E.D.M. would like to thank the Helsinki Institute of Sustainability Science (HELSUS) for support. C.F. was funded thanks to a University of Helsinki grant to E.D.M. E.D.M. would also like to thank the Academy of Finland 2016-2019, Grant 296524, for support. H.T. was supported by the Helsinki Metropolitan Region Urban Research Program.}, Cited-References = {Ahas R, 2010, J URBAN TECHNOL, V17, P3, DOI 10.1080/10630731003597306. Ahn YY, 2010, NATURE, V466, P761, DOI 10.1038/nature09182. Allan JD, 2015, FRONT ECOL ENVIRON, V13, P418, DOI 10.1890/140328. {[}Anonymous], 2011, SAGE HDB SOCIAL NETW. {[}Anonymous], 2018, DETECTRON. {[}Anonymous], 2013, WSDM, DOI {[}10.1145/2433396.2433471, DOI 10.1145/2433396.2433471]. Arts K, 2015, AMBIO, V44, pS661, DOI 10.1007/s13280-015-0705-1. Bakshy E., 2011, P 4 ACM INT C WEB SE, P65, DOI DOI 10.1145/1935826.1935845. Batrinca B, 2015, AI SOC, V30, P89, DOI 10.1007/s00146-014-0549-4. Becken S, 2017, J ENVIRON MANAGE, V203, P87, DOI 10.1016/j.jenvman.2017.07.007. Bennett NJ, 2017, BIOL CONSERV, V205, P93, DOI 10.1016/j.biocon.2016.10.006. Boyd D, 2012, INFORM COMMUN SOC, V15, P662, DOI 10.1080/1369118X.2012.678878. Brooker P, 2016, DIGITAL METHODS FOR SOCIAL SCIENCE: AN INTERDISCIPLINARY GUIDE TO RESEARCH INNOVATION, P34. Burnap P, 2015, INT J PARALLEL EMERG, V30, P80, DOI 10.1080/17445760.2014.902057. Campbell H, 2018, INSECT CONSERV DIVER, V11, P143, DOI 10.1111/icad.12278. Carter S, 2013, LANG RESOUR EVAL, V47, P195, DOI 10.1007/s10579-012-9195-y. Castells M., 2010, MEDIA STUD READ, V2, P152. Chamberlain BP, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0188702. Cong L, 2014, TOURISM MANAGE, V40, P300, DOI 10.1016/j.tourman.2013.07.005. Crampton JW, 2013, CARTOGR GEOGR INF SC, V40, P130, DOI 10.1080/15230406.2013.777137. Crandall DJ, 2010, P NATL ACAD SCI USA, V107, P22436, DOI 10.1073/pnas.1006155107. Croitoru A, 2015, COMPUT ENVIRON URBAN, V53, P47, DOI 10.1016/j.compenvurbsys.2014.11.002. Cumming GS, 2010, DIVERS DISTRIB, V16, P414, DOI 10.1111/j.1472-4642.2010.00651.x. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Di Camillo CG, 2018, BIODIVERS CONSERV, V27, P1257, DOI 10.1007/s10531-017-1492-8. Di Minin E, 2019, CONSERV BIOL, V33, P210, DOI 10.1111/cobi.13104. Di Minin E, 2018, NAT ECOL EVOL, V2, P406, DOI 10.1038/s41559-018-0466-x. Di Minin E, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00063. Di Minin E, 2015, BIOSCIENCE, V65, P637, DOI 10.1093/biosci/biv064. Ding Y, 2011, J INFORMETR, V5, P498, DOI 10.1016/j.joi.2011.02.006. Dylewski Lukasz, 2017, Naturwissenschaften, V104, P48, DOI 10.1007/s00114-017-1470-8. Ebeling-Schuld AM, 2017, WILDLIFE SOC B, V41, P523, DOI 10.1002/wsb.796. Eid E, 2018, ORYX, V52, P730, DOI 10.1017/S0030605316001629. Fisher DM, 2018, J ENVIRON MANAGE, V222, P465, DOI 10.1016/j.jenvman.2018.05.045. Frank M.R., 2014, ARXIV14101393. Freelon D, 2018, POLIT COMMUN, V35, P665, DOI 10.1080/10584609.2018.1477506. Ghermandi A, 2016, WATER RES, V105, P297, DOI 10.1016/j.watres.2016.09.009. Giovos I, 2018, FISHERIES MANAG ECOL, V25, P287, DOI 10.1111/fme.12293. Gliozzo G, 2016, ECOL SOC, V21, DOI 10.5751/ES-08436-210306. Gonzalez MC, 2008, NATURE, V453, P779, DOI 10.1038/nature06958. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Grabowicz PA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029358. Grave E, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P3483. Greer K, 2017, J OUTDOOR REC TOUR, V18, P56, DOI 10.1016/j.jort.2017.02.002. Hagen M., 2015, P SEMEVAL. Hampton SE, 2013, FRONT ECOL ENVIRON, V11, P156, DOI 10.1890/120103. Han J, 2012, MOR KAUF D, P1. Hausmann A, 2018, CONSERV LETT, V11, DOI 10.1111/conl.12343. Hausmann A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00858-6. Havlin P, 2018, CAN J ZOOL, V96, P357, DOI 10.1139/cjz-2017-0090. Hawelka B, 2014, CARTOGR GEOGR INF SC, V41, P260, DOI 10.1080/15230406.2014.890072. Hawkins R, 2017, GEOFORUM, V79, P114, DOI 10.1016/j.geoforum.2016.06.019. Hawksey M., 2010, TAGS USING GOOGLE SP. He K., 2017, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2017.322. Heikinheimo V., 2018, DIGITAL IMAGINATIONS, DOI {[}10.5281/zenodo.1472745, DOI 10.5281/ZENODO.1472745]. Heikinheimo V, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6030085. Hiippala T, 2019, DIGIT SCHOLARSH HUM, V34, P290, DOI 10.1093/llc/fqy049. Hinsley A, 2016, CONSERV BIOL, V30, P1038, DOI 10.1111/cobi.12721. Hochmair HH, 2018, LECT NOTES GEOINF CA, P293, DOI 10.1007/978-3-319-71470-7\_15. Hu YJ, 2018, GEOGR COMPASS, V12, DOI 10.1111/gec3.12404. Huang QY, 2016, INT J GEOGR INF SCI, V30, P1873, DOI 10.1080/13658816.2016.1145225. JARIC I, 2016, PEERJ, V4, DOI DOI 10.7717/PEERJ.2202. Jarv O, 2014, TRANSPORT RES C-EMER, V38, P122, DOI 10.1016/j.trc.2013.11.003. Johnson J, 2016, PROC CVPR IEEE, P4565, DOI 10.1109/CVPR.2016.494. Joseph K, 2014, 2 1S DONT MAKE WHOLE, P75, DOI {[}10.1007/978-3-319-05579-4\_10, DOI 10.1007/978-3-319-05579-4\_10]. Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003. Karpathy A, 2015, PROC CVPR IEEE, P3128, DOI 10.1109/CVPR.2015.7298932. Kemp S., 2018, DIGITAL 2018 ESSENTI. Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8. Krishna R, 2017, INT J COMPUT VISION, V123, P32, DOI 10.1007/s11263-016-0981-7. Ladle RJ, 2016, FRONT ECOL ENVIRON, V14, P270, DOI 10.1002/fee.1260. Landherr A, 2010, BUS INFORM SYST ENG+, V2, P371, DOI 10.1007/s12599-010-0127-3. Lange PG, 2007, J COMPUT-MEDIAT COMM, V13, P361, DOI 10.1111/j.1083-6101.2007.00400.x. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Lee H, 2019, ECOL INDIC, V96, P505, DOI 10.1016/j.ecolind.2018.08.035. Levin N, 2017, APPL GEOGR, V79, P115, DOI 10.1016/j.apgeog.2016.12.009. Levin N, 2015, ECOL APPL, V25, P2153, DOI 10.1890/15-0113.1.sm. Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1\_48. Liu Y, 2015, ANN ASSOC AM GEOGR, V105, P512, DOI 10.1080/00045608.2015.1018773. Lomborg S, 2014, INFORM SOC, V30, P256, DOI 10.1080/01972243.2014.915276. Longley PA, 2015, ENVIRON PLANN A, V47, P465, DOI 10.1068/a130122p. Lunstrum E, 2017, GEOFORUM, V79, P134, DOI 10.1016/j.geoforum.2016.04.009. Macdonald DW, 2016, ANIMALS, V6, DOI 10.3390/ani6050026. Maninis K.-K, 2018, P IEEE C COMP VIS PA, DOI {[}10.1016/0165-022X(85)90009-0, DOI 10.1016/0165-022X(85)90009-0]. Masse M., 2011, REST API DESIGN RULE. Maxwell S, 2016, NATURE, V536, P143, DOI 10.1038/536143a. McCay-Peet Lori, 2017, SAGE HDB SOCIAL MEDI, P13. Mikolov T., 2013, ADV NEURAL INFORM PR, V26, P3111, DOI DOI 10.1162/JMLR.2003.3.4-5.951. Mikolov T., 2017, T ASSOC COMPUT LING, V5, P135, DOI {[}10.1162/tacl\_a\_00051, DOI 10.1162/TACL\_A\_00051]. Miller TR, 2011, BIOL CONSERV, V144, P948, DOI 10.1016/j.biocon.2010.04.001. Neutens T, 2008, J GEOGR SYST, V10, P89, DOI 10.1007/s10109-007-0057-x. Norouzzadeh MS, 2018, P NATL ACAD SCI USA, V115, pE5716, DOI 10.1073/pnas.1719367115. Palla G, 2005, NATURE, V435, P814, DOI 10.1038/nature03607. Papworth SK, 2015, CONSERV BIOL, V29, P825, DOI 10.1111/cobi.12455. Peters ME, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P1499. Poorthuis A., 2016, KEY METHODS GEOGRAPH, P248. Poorthuis A, 2017, J URBAN TECHNOL, V24, P115, DOI 10.1080/10630732.2017.1335153. Preotiuc-Pietro D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138717. Ramachandram D, 2017, IEEE SIGNAL PROC MAG, V34, P96, DOI 10.1109/MSP.2017.2738401. Rashidi TH, 2017, TRANSPORT RES C-EMER, V75, P197, DOI 10.1016/j.trc.2016.12.008. Rawat W, 2017, NEURAL COMPUT, V29, P2352, DOI {[}10.1162/neco\_a\_00990, 10.1162/NECO\_a\_00990]. Reihanian A, 2016, J KING SAUD UNIV-COM, V28, P303, DOI 10.1016/j.jksuci.2015.07.001. Reinecke L, 2014, COMPUT HUM BEHAV, V30, P95, DOI 10.1016/j.chb.2013.07.030. Richards DR, 2015, ECOL INDIC, V53, P187, DOI 10.1016/j.ecolind.2015.01.034. Rocha RG, 2017, EUR J WILDLIFE RES, V63, DOI 10.1007/s10344-017-1145-y. Ruths D, 2014, SCIENCE, V346, P1063, DOI 10.1126/science.346.6213.1063. Schuette S, 2018, PHYTOKEYS, P87, DOI 10.3897/phytokeys.96.23667. Schwartz HA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073791. See L, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050055. Sevin E, 2013, J PLACE MANAG DEV, V6, P227, DOI 10.1108/JPMD-10-2012-0037. Sherren K, 2017, FRONT ECOL ENVIRON, V15, P289, DOI 10.1002/fee.1507. Shoval N, 2007, ANN ASSOC AM GEOGR, V97, P282, DOI 10.1111/j.1467-8306.2007.00536.x. Sloan L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0115545. Sonter LJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162372. Spalding M, 2017, MAR POLICY, V82, P104, DOI 10.1016/j.marpol.2017.05.014. Sui D, 2011, INT J GEOGR INF SCI, V25, P1737, DOI 10.1080/13658816.2011.604636. Takhteyev Y, 2012, SOC NETWORKS, V34, P73, DOI 10.1016/j.socnet.2011.05.006. Tenkanen H, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-18007-4. Thelwall M, 2009, ADV COMPUT, V76, P19, DOI 10.1016/S0065-2458(09)01002-X. Tieskens KF, 2017, LAND USE POLICY, V62, P29, DOI 10.1016/j.landusepol.2016.12.001. Van Berkel DB, 2018, ECOSYST SERV, V31, P326, DOI 10.1016/j.ecoser.2018.03.022. van Zanten BT, 2016, P NATL ACAD SCI USA, V113, P12974, DOI 10.1073/pnas.1614158113. Varol O., 2017, CORR. Venter O, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12558. Waldron A, 2013, P NATL ACAD SCI USA, V110, P12144, DOI 10.1073/pnas.1221370110. Wang ZZ, 2018, TRAVEL BEHAV SOC, V11, P141, DOI 10.1016/j.tbs.2017.02.005. Weiss Karl, 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0043-6. Wellman B, 2001, SCIENCE, V293, P2031, DOI 10.1126/science.1065547. Willemen L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129785. Wood SA, 2013, SCI REP-UK, V3, DOI 10.1038/srep02976. Wu XY, 2017, J TRANSP LAND USE, V10, P789, DOI 10.5198/jtlu.2017.1130. Wu YL, 2018, OCEAN COAST MANAGE, V153, P76, DOI 10.1016/j.ocecoaman.2017.12.010. Yan YW, 2018, INT J GEOGR INF SCI, V32, P1699, DOI 10.1080/13658816.2018.1458989. Zellers R, 2018, PROC CVPR IEEE, P5831, DOI 10.1109/CVPR.2018.00611. Zhang WW, 2010, SOC SCI COMPUT REV, V28, P75, DOI 10.1177/0894439309335162. Zhao ZY, 2012, KNOWL-BASED SYST, V26, P164, DOI 10.1016/j.knosys.2011.07.017. Zook M, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005399. 2018, SCI TOTAL ENVIRON, V636, P1128, DOI DOI 10.1016/J.SCITOTENV.2018.04.353. 2016, MM16 P 2016 ACM, P1008, DOI DOI 10.1145/2964284.2964288. 2018, APPL GEOGR, V90, P44, DOI DOI 10.1016/J.APGEOG.2017.11.004.}, Number-of-Cited-References = {140}, Times-Cited = {187}, Usage-Count-Last-180-days = {33}, Usage-Count-Since-2013 = {141}, Journal-ISO = {Biol. Conserv.}, Doc-Delivery-Number = {HX6KW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000467513500032}, OA = {Green Published, hybrid}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000544029600001, Author = {Keyes, Timothy J. and Domizi, Pablo and Lo, Yu-Chen and Nolan, Garry P. and Davis, Kara L.}, Title = {A Cancer Biologist's Primer on Machine Learning Applications in High-Dimensional Cytometry}, Journal = {CYTOMETRY PART A}, Year = {2020}, Volume = {97}, Number = {8}, Pages = {782-799}, Month = {AUG}, Abstract = {The application of machine learning and artificial intelligence to high-dimensional cytometry data sets has increasingly become a staple of bioinformatic data analysis over the past decade. This is especially true in the field of cancer biology, where protocols for collecting multiparameter single-cell data in a high-throughput fashion are rapidly developed. As the use of machine learning methodology in cytometry becomes increasingly common, there is a need for cancer biologists to understand the basic theory and applications of a variety of algorithmic tools for analyzing and interpreting cytometry data. We introduce the reader to several keystone machine learning-based analytic approaches with an emphasis on defining key terms and introducing a conceptual framework for making translational or clinically relevant discoveries. The target audience consists of cancer cell biologists and physician-scientists interested in applying these tools to their own data, but who may have limited training in bioinformatics. (c) 2020 International Society for Advancement of Cytometry}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Davis, KL (Corresponding Author), Lokey Stem Cell Res Bldg SIM1,265 Campus Dr, Palo Alto, CA 94305 USA. Keyes, Timothy J., Stanford Univ, Sch Med, Med Scientist Training Program, Stanford, CA USA. Keyes, Timothy J.; Domizi, Pablo; Lo, Yu-Chen; Davis, Kara L., Stanford Univ, Sch Med, Dept Pediat, Stanford, CA USA. Nolan, Garry P., Stanford Univ, Sch Med, Baxter Lab Stem Cell, Dept Microbiol \& Immunol, Stanford, CA USA.}, DOI = {10.1002/cyto.a.24158}, EarlyAccessDate = {JUN 2020}, ISSN = {1552-4922}, EISSN = {1552-4930}, Keywords = {machine learning; mass cytometry; cancer; computational cytometry; data science}, Keywords-Plus = {ACUTE LYMPHOBLASTIC-LEUKEMIA; FLOW-CYTOMETRY; MASS CYTOMETRY; CELL SUBSETS; IDENTIFICATION; IMMUNE; SELECTION; REGULARIZATION; NORMALIZATION; VISUALIZATION}, Research-Areas = {Biochemistry \& Molecular Biology; Cell Biology}, Web-of-Science-Categories = {Biochemical Research Methods; Cell Biology}, Author-Email = {tkeyes@stanford.edu kardavis@stanford.edu}, Affiliations = {Stanford University; Stanford University; Stanford University}, ORCID-Numbers = {Domizi, Pablo/0000-0003-2903-0337 Keyes, Timothy/0000-0003-0423-9679}, Funding-Acknowledgement = {US National Institutes of Health (National Cancer Institute) {[}1F31CA239365-01]; V Foundation; Andrew McDonough B+ Foundation; Hyundai Scholar Hope Grant; Maternal and Child Health Research Institute; NIH {[}U54CA209971, U54HG010426, U19AI100627]; Parker Institute for Cancer Immunotherapy; Leukemia and Lymphoma Society}, Funding-Text = {We thank Dr. Nima Aghaeepour (Stanford University School of Medicine) and Dr. Brice Gaudilliere (Stanford University) for useful discussions. This work was supported by the US National Institutes of Health (National Cancer Institute 1F31CA239365-01 to T.J.K.). Kara Davis's work on this publication was funded by The V Foundation, the Andrew McDonough B+ Foundation, the Hyundai Scholar Hope Grant, and the Maternal and Child Health Research Institute. Pablo Domizi and Yu-Chen Lo's work was funded by the Leukemia and Lymphoma Society. Garry Nolan's work on the publication was funded by NIH: U54CA209971, U54HG010426, U19AI100627, and the Parker Institute for Cancer Immunotherapy.}, Cited-References = {Aghaeepour N, 2018, BIOINFORMATICS, V34, P4131, DOI 10.1093/bioinformatics/bty430. Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI {[}10.1038/NMETH.2365, 10.1038/nmeth.2365]. Aghaeepour N, 2011, CYTOM PART A, V79A, P6, DOI 10.1002/cyto.a.21007. Amir ED, 2013, NAT BIOTECHNOL, V31, P545, DOI 10.1038/nbt.2594. Amodio M, 2019, NAT METHODS, V16, P1139, DOI 10.1038/s41592-019-0576-7. Andrews TS, 2018, MOL ASPECTS MED, V59, P114, DOI 10.1016/j.mam.2017.07.002. {[}Anonymous], 2009, ELEMENTS STAT LEARNI. Avanzi MP, 2018, CELL REP, V23, P2130, DOI 10.1016/j.celrep.2018.04.051. Bandyopadhyay S, 2019, CYTOM PART B-CLIN CY, V96, P46, DOI 10.1002/cyto.b.21743. Beam AL, 2018, JAMA-J AM MED ASSOC, V319, P1317, DOI 10.1001/jama.2017.18391. Becht E., 2018, EVALUATION UMAP ALTE. Becht E, 2019, NAT BIOTECHNOL, V37, P38, DOI 10.1038/nbt.4314. Becht E, 2019, BIOINFORMATICS, V35, P301, DOI 10.1093/bioinformatics/bty491. Behbehani GK, 2017, CLIN LAB MED, V37, P945, DOI 10.1016/j.cll.2017.07.010. Belkina AC, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13055-y. Bendall SC, 2011, SCIENCE, V332, P687, DOI 10.1126/science.1198704. Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008. Bruggner RV, 2014, P NATL ACAD SCI USA, V111, pE2770, DOI 10.1073/pnas.1408792111. Buldini B, 2019, FRONT PEDIATR, V7, DOI 10.3389/fped.2019.00412. Chen G, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00317. Chen H, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1005112. Chen XJ, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00248. Chen YB, 2013, BONE MARROW TRANSPL, V48, P755, DOI 10.1038/bmt.2012.143. Chester C, 2015, J IMMUNOL, V195, P773, DOI 10.4049/jimmunol.1500633. Chevrier S, 2017, CELL, V169, P736, DOI 10.1016/j.cell.2017.04.016. Chew V, 2017, P NATL ACAD SCI USA, V114, pE5900, DOI 10.1073/pnas.1706559114. Coenen A, 2020, UNDERSTANDING UMAP G. Cox DR, 1972, BIOMETRIKA, V45, P562. Diaz-Papkovich A., 2018, BIORXIV, DOI {[}10.1101/423632, DOI 10.1101/423632]. Diggins KE, 2017, NAT METHODS, V14, P275, DOI {[}10.1038/NMETH.4149, 10.1038/nmeth.4149]. Doxie DB, 2018, PIGM CELL MELANOMA R, V31, P708, DOI 10.1111/pcmr.12712. Emmons S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159161. Ferrell PB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153207. Finak G, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003806. Finck R, 2013, CYTOM PART A, V83A, P483, DOI 10.1002/cyto.a.22271. Friedman J, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i01. Gay Laura, 2016, F1000Res, V5, DOI 10.12688/f1000research.7210.1. Goltsev Y, 2018, CELL, V174, P968, DOI 10.1016/j.cell.2018.07.010. Gonzalez VD, 2018, CELL REP, V22, P1875, DOI 10.1016/j.celrep.2018.01.053. Good Z, 2018, NAT MED, V24, P474, DOI 10.1038/nm.4505. Gupta A, 2019, CYTOM PART A, V95A, P366, DOI 10.1002/cyto.a.23701. Hahne F, 2010, CYTOM PART A, V77A, P121, DOI 10.1002/cyto.a.20823. Hartmann FJ, 2020, NAT REV RHEUMATOL, V16, P87, DOI 10.1038/s41584-019-0338-z. Herzenberg LA, 2002, CLIN CHEM, V48, P1819. Hu ZC, 2019, BIOINFORMATICS, V35, P1197, DOI 10.1093/bioinformatics/bty768. Jevremovic D, 2019, CYTOM PART B-CLIN CY, V96, P99, DOI 10.1002/cyto.b.21768. Jimenez-Carretero D, 2018, J IMMUNOL, V200, P3319, DOI 10.4049/jimmunol.1800446. JOHNSON SC, 1967, PSYCHOMETRIKA, V32, P241, DOI 10.1007/BF02289588. Keren L, 2018, CELL, V174, P1373, DOI 10.1016/j.cell.2018.08.039. Kimball AK, 2018, J IMMUNOL, V200, P3, DOI 10.4049/jimmunol.1701494. Kourou K, 2015, COMPUT STRUCT BIOTEC, V13, P8, DOI 10.1016/j.csbj.2014.11.005. Kuhn M., 2013, APPL PREDICTIVE MODE, V26, DOI DOI 10.1007/978-1-4614-6849-3. Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05. Kvistborg P, 2015, IMMUNITY, V42, P591, DOI 10.1016/j.immuni.2015.04.006. Lavin Y, 2017, CELL, V169, P750, DOI 10.1016/j.cell.2017.04.014. Le Meur N, 2007, CYTOM PART A, V71A, P393, DOI 10.1002/cyto.a.20396. Lever J, 2017, NAT METHODS, V14, P641, DOI 10.1038/nmeth.4346. Levine JH, 2015, CELL, V162, P184, DOI 10.1016/j.cell.2015.05.047. Li HM, 2017, BIOINFORMATICS, V33, P3423, DOI 10.1093/bioinformatics/btx448. Lo K, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-145. Lowther DE, 2016, JCI INSIGHT, V1, DOI 10.1172/jci.insight.85935. Lux M, 2018, BIOINFORMATICS, V34, P2245, DOI 10.1093/bioinformatics/bty082. Malek M, 2015, BIOINFORMATICS, V31, P606, DOI 10.1093/bioinformatics/btu677. Marx V, 2019, NAT METHODS, V16, P463, DOI 10.1038/s41592-019-0432-9. McInnes J. Healy, 2018, STATISTICS-ABINGDON, V1050, P6, DOI DOI 10.1038/NMETH.1253. Mizrahi O, 2018, CYTOM PART B-CLIN CY, V94, P211, DOI 10.1002/cyto.b.21515. Murtagh F, 2012, WIRES DATA MIN KNOWL, V2, P86, DOI 10.1002/widm.53. Neuberg D, 2018, BLOOD, V132, P825, DOI {[}10.1182/blood-2018-04-843714, DOI 10.1182/BL00D-2018-04-843714]. Newman AM, 2015, NAT METHODS, V12, P453, DOI {[}10.1038/NMETH.3337, 10.1038/nmeth.3337]. O'Neill K, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1003365. Oetjen KA, 2018, JCI INSIGHT, V3, DOI 10.1172/jci.insight.124928. Olsen L. R, 2018, CYTOMETRY, V95, P156. Olsen LR, 2019, IMMUNITY, V50, P535, DOI 10.1016/j.immuni.2019.02.015. Ornatsky O, 2010, J IMMUNOL METHODS, V361, P1, DOI 10.1016/j.jim.2010.07.002. Polley MYC, 2013, JNCI-J NATL CANCER I, V105, P1677, DOI 10.1093/jnci/djt282. Porwit A, 2019, CYTOM PART B-CLIN CY, V96, P183, DOI 10.1002/cyto.b.21783. Pyne S, 2009, P NATL ACAD SCI USA, V106, P8519, DOI 10.1073/pnas.0903028106. Qiu P, 2017, CYTOM PART A, V91A, P281, DOI 10.1002/cyto.a.23068. Qiu P, 2011, NAT BIOTECHNOL, V29, P886, DOI 10.1038/nbt.1991. Real R, 1996, SYST BIOL, V45, P380, DOI 10.2307/2413572. Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616. Saeys Y, 2007, BIOINFORMATICS, V23, P2507, DOI 10.1093/bioinformatics/btm344. Samusik N, 2016, NAT METHODS, V13, P493, DOI {[}10.1038/NMETH.3863, 10.1038/nmeth.3863]. Schuyler RP, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02367. Seiler C, 2019, UNCERTAINTY QUANTIFI. Shibata M, 2019, CANCERS, V11, DOI 10.3390/cancers11050732. Shlens J., 2014, GOOGLE RES. Siska PJ, 2017, JCI INSIGHT, V2, DOI 10.1172/jci.insight.93411. Spitzer MH, 2017, CELL, V168, P487, DOI 10.1016/j.cell.2016.12.022. Spitzer MH, 2015, SCIENCE, V349, DOI 10.1126/science.1259425. Stoeckius M, 2017, NAT METHODS, V14, P865, DOI {[}10.1038/NMETH.4380, 10.1038/nmeth.4380]. Theunissen P, 2017, BLOOD, V129, P347, DOI 10.1182/blood-2016-07-726307. Theunissen PMJ, 2017, BRIT J HAEMATOL, V178, P257, DOI 10.1111/bjh.14682. Tibshirani R, 1996, J ROY STAT SOC B MET, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x. Troyanskaya O, 2020, NAT CANCER, V1, P149, DOI 10.1038/s43018-020-0034-6. Tusher VG, 2001, P NATL ACAD SCI USA, V98, P5116, DOI 10.1073/pnas.091062498. Van Gassen S, 2015, CYTOM PART A, V87A, P636, DOI 10.1002/cyto.a.22625. van Unen V, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01689-9. VANDERMAATEN L, 2008, J MACH LEARN RES, V164, P10. Wang SJ, 2007, BIOINFORMATICS, V23, P972, DOI 10.1093/bioinformatics/btm046. Wattenberg M., 2016, DISTILL, V1, pe2, DOI DOI 10.23915/DISTILL.00002. Weber LM, 2016, CYTOM PART A, V89A, P1084, DOI 10.1002/cyto.a.23030. Wickham H., 2019, J OPEN SOURCE SOFTW, V4, P1686, DOI DOI 10.21105/JOSS.01686. Yang Y, 2017, TEMPORAL DATA MINING VIA UNSUPERVISED ENSEMBLE LEARNING, P19, DOI 10.1016/B978-0-12-811654-8.00003-8. Zhu YFPP, 2018, CELL REP, V24, P2329, DOI 10.1016/j.celrep.2018.07.097. Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x.}, Number-of-Cited-References = {106}, Times-Cited = {10}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {20}, Journal-ISO = {Cytom. Part A}, Doc-Delivery-Number = {MU4BU}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000544029600001}, OA = {Green Accepted, Bronze}, DA = {2023-04-22}, } @article{ WOS:000922676400005, Author = {Kataria, Suchitra and Ravindran, Vinod}, Title = {Digital Health and Rheumatology: The Indian Context}, Journal = {INDIAN JOURNAL OF RHEUMATOLOGY}, Year = {2022}, Volume = {17}, Number = {7, 3}, Pages = {377-383}, Month = {DEC}, Abstract = {India as a country of contrast and diversity has witnessed digital evolution in different waves and stages. The technology is already an integral part of lives of millions in India; however, its application in the health management remains limited unlike developed economies. COVID-19 pandemic has plunged the country into universal, regional, or local lockdowns repeatedly since the last year. An unexpected and unforeseen impact of this has been the usage of technology for doctor-patient interactions through telemedicine. Hitherto limited to certain pockets, virtual interactions with doctors, ordering laboratory investigations through an application or procuring medicines through internet, are now part of mainstream patient behavior. This is a crucial change in the mindset but requires a lot more to be done at various levels to tap its full potential with rheumatologists being at the forefront and leading the change in their specialty. The pool of rheumatologists is very small and mostly concentrated in few urban areas, leading to diagnostic delay, suboptimal treatment, and poor outcomes. Technology could, therefore, become a catalyst for change and harbinger for greater clinician access. There are plenty of discussions about the impact and potential of deep learning, artificial intelligence, remote monitoring with wearables, etc., but plenty of them may not be relevant to Indian patients in the current scenario. Hence, the context, relevance, and applicability are the key for rheumatologists when making a judgment.}, Publisher = {WOLTERS KLUWER MEDKNOW PUBLICATIONS}, Address = {WOLTERS KLUWER INDIA PVT LTD , A-202, 2ND FLR, QUBE, C T S NO 1498A-2 VILLAGE MAROL, ANDHERI EAST, MUMBAI, Maharashtra, INDIA}, Type = {Review}, Language = {English}, Affiliation = {Ravindran, V (Corresponding Author), Ctr Rheumatol, Kozhikode 673009, Kerala, India. Kataria, Suchitra, Melange Commun Pte Ltd, Singapore, Singapore. Ravindran, Vinod, Ctr Rheumatol, Kozhikode 673009, Kerala, India.}, DOI = {10.4103/injr.injr\_127\_21}, ISSN = {0973-3698}, EISSN = {0973-3701}, Keywords = {Digital health; disease management apps; e-pharmacy; fifth-generation; patient data; remote monitoring; telemedicine; virtual care; wearables}, Keywords-Plus = {RECORDS}, Research-Areas = {Rheumatology}, Web-of-Science-Categories = {Rheumatology}, Author-Email = {drvinod12@gmail.com}, ResearcherID-Numbers = {Kataria, Suchitra/ACP-3967-2022}, Cited-References = {{[}Anonymous], 2018, NAT HLTH PROF IND. {[}Anonymous], 2020, NAT INFR PIP REP TAS, VII. {[}Anonymous], 2021, DENS PHYS TOT NUMB P. {[}Anonymous], 2019, DIG IND REP. {[}Anonymous], 2016, KPMG OPPI REP HEALTH. {[}Anonymous], EL HLTH REC EHR STAN. {[}Anonymous], 2016, MAN HOSP ANN NAT LAU. {[}Anonymous], 2016, GLOBAL HLTH WORKFORC. {[}Anonymous], 2020, SE ASIA 2020 VIRTUAL. Apollo Telehealth, 2021, TEL. Gunasegaran T., 2021, MOBILE HLTH NEW 0524. Kataria S, 2020, J ROY COLL PHYS EDIN, V50, P262, DOI 10.4997/JRCPE.2020.309. Kataria S, 2018, RHEUMATOL INT, V38, P1949, DOI 10.1007/s00296-018-4037-x. Practo, 2021, YOUR HOM HLTH. Salve P., 2021, EC TIMES. Sheth A, 2021, BAIN REPORT INDIA SH. Srivastava SK, 2016, HEALTHC INFORM RES, V22, P261, DOI 10.4258/hir.2016.22.4.261. Willige A., THIS IS WHAT HEALTHC.}, Number-of-Cited-References = {18}, Times-Cited = {2}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {0}, Journal-ISO = {Indian J. Rheumatol.}, Doc-Delivery-Number = {8J8QF}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000922676400005}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000531147900001, Author = {Pourmohammad, Parisa and Jahani, Ali and Zare Chahooki, Mohamad Ali and Goshtasb Meigooni, Hamid}, Title = {Road impact assessment modelling on plants diversity in national parks using regression analysis in comparison with artificial intelligence}, Journal = {MODELING EARTH SYSTEMS AND ENVIRONMENT}, Year = {2020}, Volume = {6}, Number = {3}, Pages = {1281-1292}, Month = {SEP}, Abstract = {Increasing urban demand and population growth in cities have led to an increase in demand for developing new ways. Parchin-Pasdaran Road, which runs from the heart of Khojir National Park, is a big threat to this park. Despite these environmental threats, the development and creation of new highways is unavoidable. This research was carried out to study the effect of the road on Smith-Wilson evenness index and Simpson diversity index in Khojir National Park. The Land Management Units were created using the ArcGIS software. Using appropriate algorithm in artificial neural network structure and linear regression of species evenness and diversity was modelled. For modelling of species evenness and diversity, factors like bulk density, particle density, moisture content, porosity and distance from the road were used. Finally, considering that the amount of R-2 in artificial neural network method was statistically significant for Smith-Wilson and Simpson (0.54), (0.71) and in the regression method, respectively (0.25), (0.75), was obtained, the neural network model was selected as the optimal model. Based on the analysis of sensitivity analysis, humidity factors at 5 and 10 cm from the soil surface, the actual 5 cm particle density on the Smith-Wilson index and the porosity at 10 cm from the soil surface had the most effect on the Russian Simpson index.}, Publisher = {SPRINGER HEIDELBERG}, Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY}, Type = {Review}, Language = {English}, Affiliation = {Jahani, A (Corresponding Author), Coll Environm, Nat Environm \& Biodivers, Karaj, Iran. Pourmohammad, Parisa; Jahani, Ali; Goshtasb Meigooni, Hamid, Coll Environm, Nat Environm \& Biodivers, Karaj, Iran. Zare Chahooki, Mohamad Ali, Univ Tehran, Nat Resources Fac, Dept Rehabil Arid \& Mt Reg, Karaj, Iran.}, DOI = {10.1007/s40808-020-00799-6}, EarlyAccessDate = {MAY 2020}, ISSN = {2363-6203}, EISSN = {2363-6211}, Keywords = {Artificial neural network; Sensitivity analysis; Simpson's index; Smith-Wilson index; Regression}, Keywords-Plus = {DECISION-SUPPORT-SYSTEM; PROTECTED AREAS; NEURAL-NETWORKS; PREDICTION}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {ajahani@ut.ac.ir}, Affiliations = {University of Tehran}, ResearcherID-Numbers = {Zare Chahouki, Mohammad Ali/AAW-4194-2021 Jahani, Ali/L-4850-2019}, ORCID-Numbers = {Zare Chahouki, Mohammad Ali/0000-0002-2538-0332 Jahani, Ali/0000-0003-4965-3291}, Cited-References = {Adeney JM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005014. Akinyemi AF., 2010, OBECHE J, V28, P106. {[}Anonymous], 1992, DESIGN NATURE. Arsene CTC, 2012, EXPERT SYST APPL, V39, P13214, DOI 10.1016/j.eswa.2012.05.080. Barber CP, 2014, BIOL CONSERV, V177, P203, DOI 10.1016/j.biocon.2014.07.004. Barber CP, 2012, BIOL CONSERV, V149, P6, DOI 10.1016/j.biocon.2011.08.024. CALLAN R, 1999, ESSENCE NEURAL NETWO. Canada E, 2007, HERRAMIENTAS MIRADA. Canteiro M, 2018, TOUR MANAG PERSPECT, V28, P220, DOI 10.1016/j.tmp.2018.09.007. Chopra P., 2014, INT J LATEST TRENDS, V3, P400. Drumm A, 2005, NATURE CONSERVANCY, V1. Femandez FJ, 2009, ENVIRON MODELL SOFTW, V24, P686, DOI 10.1016/j.envsoft.2008.10.010. GERRARD JM, 1992, J RAPTOR RES, V26, P159. Iliadis LS, 2007, ENVIRON MODELL SOFTW, V22, P1066, DOI 10.1016/j.envsoft.2006.05.026. Jahani A., 2016, Journal of Natural Environment, V69, P951. Jahani A, 2019, INT J ENVIRON SCI TE, V16, P955, DOI 10.1007/s13762-018-1665-3. Jahani Ali, 2019, Journal of Forest Science (Prague), V65, P61, DOI 10.17221/86/2018-JFS. Jahani A, 2016, J ENVIRON PLANN MAN, V59, P222, DOI 10.1080/09640568.2015.1005732. Johnston FM, 2004, ARCT ANTARCT ALP RES, V36, P201, DOI 10.1657/1523-0430(2004)036{[}0201:IORDOS]2.0.CO;2. Joppa LN, 2008, P NATL ACAD SCI USA, V105, P6673, DOI 10.1073/pnas.0802471105. Lama AK, 2014, ERDKUNDE, V68, P229, DOI 10.3112/erdkunde.2014.04.01. Lee MA, 2012, ENVIRON POLLUT, V163, P273, DOI 10.1016/j.envpol.2011.12.038. Leondes C T, 1998, FUZZY LOGIC EXPERT S. Maier HR, 2010, ENVIRON MODELL SOFTW, V25, P891, DOI 10.1016/j.envsoft.2010.02.003. Makhdoum MF, 2002, ENVIRON MANAGE, V30, P151, DOI 10.1007/s00267-001-2647-6. Marion JL, 2016, J FOREST, V114, P352, DOI 10.5849/jof.15-498. Nasr MS, 2012, ALEX ENG J, V51, P37, DOI 10.1016/j.aej.2012.07.005. Nuruddin MF, 2015, J MATER CIVIL ENG, V27, DOI 10.1061/(ASCE)MT.1943-5533.0001279. Picton P., 2000, NEURAL NETWORKS. Potter KM, 2005, LANDSCAPE URBAN PLAN, V71, P77, DOI 10.1016/j.landurbplan.2004.02.001. Vali A, 2012, GEOGR ENV PLAN J, V44, P5.}, Number-of-Cited-References = {31}, Times-Cited = {18}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Model. Earth Syst. Environ.}, Doc-Delivery-Number = {MA5KL}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000531147900001}, DA = {2023-04-22}, } @article{ WOS:000938601500001, Author = {Thurzo, Andrej and Strunga, Martin and Urban, Renata and Surovkova, Jana and Afrashtehfar, Kelvin I. I.}, Title = {Impact of Artificial Intelligence on Dental Education: A Review and Guide for Curriculum Update}, Journal = {EDUCATION SCIENCES}, Year = {2023}, Volume = {13}, Number = {2}, Month = {FEB}, Abstract = {In this intellectual work, the clinical and educational aspects of dentistry were confronted with practical applications of artificial intelligence (AI). The aim was to provide an up-to-date overview of the upcoming changes and a brief analysis of the influential advancements in the use of AI in dental education since 2020. In addition, this review provides a guide for a dental curriculum update for undergraduate and postgraduate education in the context of advances in AI applications and their impact on dentistry. Unsurprisingly, most dental educators have limited knowledge and skills to assess AI applications, as they were not trained to do so. Also, AI technology has evolved exponentially in recent years. Factual reliability and opportunities with OpenAI Inc.'s ChatGPT are considered critical inflection points in the era of generative AI. Updating curricula at dental institutions is inevitable as advanced deep-learning approaches take over the clinical areas of dentistry and reshape diagnostics, treatment planning, management, and telemedicine screening. With recent advances in AI language models, communication with patients will change, and the foundations of dental education, including essay, thesis, or scientific paper writing, will need to adapt. However, there is a growing concern about its ethical and legal implications, and further consensus is needed for the safe and responsible implementation of AI in dental education.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Thurzo, A (Corresponding Author), Comenius Univ, Fac Med, Dept Orthodont Regenerat \& Forens Dent, Bratislava 81250, Slovakia. Afrashtehfar, KI (Corresponding Author), Ajman Univ, Coll Dent, Clin Sci Dept, Evidence Based Practice Unit, Box 346, Ajman City, U Arab Emirates. Afrashtehfar, KI (Corresponding Author), Univ Bern, Sch Dent Med, Dept Reconstruct Dent \& Gerodontol, CH-3010 Bern, Switzerland. Thurzo, Andrej; Strunga, Martin; Urban, Renata; Surovkova, Jana, Comenius Univ, Fac Med, Dept Orthodont Regenerat \& Forens Dent, Bratislava 81250, Slovakia. Afrashtehfar, Kelvin I. I., Ajman Univ, Coll Dent, Clin Sci Dept, Evidence Based Practice Unit, Box 346, Ajman City, U Arab Emirates. Afrashtehfar, Kelvin I. I., Univ Bern, Sch Dent Med, Dept Reconstruct Dent \& Gerodontol, CH-3010 Bern, Switzerland.}, DOI = {10.3390/educsci13020150}, Article-Number = {150}, EISSN = {2227-7102}, Keywords = {AI; generative AI; AI academic implementation; dentistry; AI plagiarism; ChatGPT; Midjourney; health professions; AI detectors; education curriculum}, Keywords-Plus = {DENTISTRY; 3D}, Research-Areas = {Education \& Educational Research}, Web-of-Science-Categories = {Education \& Educational Research}, Author-Email = {thurzo3@uniba.sk kelvin.afrashtehfar@unibe.ch}, Affiliations = {Comenius University Bratislava; Ajman University; University of Bern}, ResearcherID-Numbers = {Thurzo, Andrej/AAX-7034-2021}, ORCID-Numbers = {Afrashtehfar, Kelvin Ian/0000-0002-6053-8967 Thurzo, Andrej/0000-0002-7810-5721}, Cited-References = {Adleberg J, 2022, J AM COLL RADIOL, V19, P1151, DOI 10.1016/j.jacr.2022.06.008. Afrashtehfar KI, 2022, BRIT DENT J, V232, P285, DOI 10.1038/s41415-022-4042-z. Afrashtehfar KI, 2022, EDUC SCI, V12, DOI 10.3390/educsci12080538. Afrashtehfar Kelvin I, 2021, F1000Res, V10, P473, DOI 10.12688/f1000research.53059.1. Arcas BAY, 2022, DAEDALUS-US, V151, P183, DOI 10.1162/daed\_a\_01909. Albright J, 2009, RES PAP EDUC, V24, P201, DOI 10.1080/02671520902867200. Alex S, 9 THINGS KNOW CHAT G. Aydin KC, 2020, J DENT EDUC, V84, P1166, DOI 10.1002/jdd.12362. Dawood A, 2015, BRIT DENT J, V219, P521, DOI 10.1038/sj.bdj.2015.914. Deborah R., WIRED. Ducret M, 2022, J DENT, V127, DOI 10.1016/j.jdent.2022.104344. Eschert T, 2022, MEDICINA-LITHUANIA, V58, DOI 10.3390/medicina58081059. Gamage KAA, 2020, EDUC SCI, V10, DOI 10.3390/educsci10110301. Gamage KAA, 2020, EDUC SCI, V10, DOI 10.3390/educsci10100291. Gandedkar NH, 2021, SEMIN ORTHOD, V27, P69, DOI 10.1053/j.sodo.2021.05.003. Gichoya JW, 2022, LANCET DIGIT HEALTH, V4, pE406, DOI 10.1016/S2589-7500(22)00063-2. Halpern B, DIFFERENCE CHATGPT G. Herman D, END HIGH SCH ENGLISH. Islam NM, 2022, J DENT EDUC, V86, P1545, DOI 10.1002/jdd.13010. Joda T, 2022, CLIN ORAL INVEST, V26, P4283, DOI 10.1007/s00784-022-04475-0. Kalhan R, CHATGPT CAN GENERATE. Kasirzadeh A, 2022, Arxiv. Khorsandi D, 2021, ACTA BIOMATER, V122, P26, DOI 10.1016/j.actbio.2020.12.044. Latorre-Pellicer A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21031042. Lee M, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3502030. LeResche L, 2022, JDR CLIN TRANSL RES, V7, p40S, DOI 10.1177/23800844221116840. Lin GSS, 2022, EDUC SCI, V12, DOI 10.3390/educsci12110801. Linjawi AI, 2018, ADV MED EDUC PRACT, V9, P855, DOI 10.2147/AMEP.S175395. Maddahi Y, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.612740. Mattheos N, 2008, EUR J DENT EDUC, V12, P85, DOI 10.1111/j.1600-0579.2007.00483.x. McAndrew M, 2012, J DENT EDUC, V76, P1474. Mladenovic R, 2022, J DENT EDUC, DOI 10.1002/jdd.13060. OpenAI, CHATGPT OPT LANG MOD. Paullada A, 2021, PATTERNS, V2, DOI 10.1016/j.patter.2021.100336. Saghiri MA, 2022, J DENT EDUC, V86, P736, DOI 10.1002/jdd.12856. Schwendicke F, 2020, J DENT RES, V99, P769, DOI 10.1177/0022034520915714. Schwendicke F, 2023, J DENT, V128, DOI 10.1016/j.jdent.2022.104363. Shah P.K., 2021, DENT UPDATE, V48, P556, DOI {[}10.12968/denu.2021.48.7.556, DOI 10.12968/DENU.2021.48.7.556]. Siddiqui Tania Arshad, 2022, J Pak Med Assoc, V72(Suppl 1), pS91, DOI 10.47391/JPMA.AKU-18. Stephen M., ATLANTIC. Tadinada A, 2022, J DENT EDUC, DOI 10.1002/jdd.13131. Tekkesin M.S., 2021, CRANIO, V38, P81, DOI {[}10.52142/omujecm.38.si.dent.1, DOI 10.52142/OMUJECM.38.SI.DENT.1]. Thurzo A, 2010, BRATISL MED J, V111, P168. Thurzo A, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22207752. Thurzo A, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14183858. Thurzo A, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10071269. Thurzo A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19137693. Thurzo A, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9121695. Wiggers K., TECHCRUNCH. Yuzbasioglu E, 2021, J DENT EDUC, V85, P60, DOI 10.1002/jdd.12385.}, Number-of-Cited-References = {50}, Times-Cited = {1}, Usage-Count-Last-180-days = {59}, Usage-Count-Since-2013 = {59}, Journal-ISO = {Educ. Sci.}, Doc-Delivery-Number = {9H1LQ}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000938601500001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000395596400002, Author = {Lin, Eugene and Lane, Hsien-Yuan}, Title = {Machine learning and systems genomics approaches for multi-omics data}, Journal = {BIOMARKER RESEARCH}, Year = {2017}, Volume = {5}, Month = {JAN 20}, Abstract = {In light of recent advances in biomedical computing, big data science, and precision medicine, there is a mammoth demand for establishing algorithms in machine learning and systems genomics (MLSG), together with multi-omics data, to weigh probable phenotype-genotype relationships. Software frameworks in MLSG are extensively employed to analyze hundreds of thousands of multi-omics data by high-throughput technologies. In this study, we reviewed the MLSG software frameworks and future directions with respect to multi-omics data analysis and integration. Our review was targeted at researching recent approaches and technical solutions for the MLSG software frameworks using multi-omics platforms.}, Publisher = {BMC}, Address = {CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Lane, HY (Corresponding Author), China Med Univ, Grad Inst Biomed Sci, Taichung, Taiwan. Lane, HY (Corresponding Author), China Med Univ Hosp, Dept Psychiat, Taichung, Taiwan. Lin, Eugene; Lane, Hsien-Yuan, China Med Univ, Grad Inst Biomed Sci, Taichung, Taiwan. Lin, Eugene, Vita Genom Inc, Taipei, Taiwan. Lin, Eugene, TickleFish Syst Corp, Seattle, WA USA. Lane, Hsien-Yuan, China Med Univ Hosp, Dept Psychiat, Taichung, Taiwan.}, DOI = {10.1186/s40364-017-0082-y}, Article-Number = {2}, EISSN = {2050-7771}, Keywords = {Genomics; Pharmacogenomics; Single nucleotide polymorphisms; Machine learning; Multi-omics; Systems genomics}, Keywords-Plus = {GENE-GENE INTERACTIONS; TAIWANESE POPULATION; HAPLOTYPE ANALYSIS; FEATURE-SELECTION; PUBLIC-HEALTH; DRUG EFFICACY; MODEL; PHARMACOGENOMICS; CLASSIFICATION; REGULARIZATION}, Research-Areas = {Oncology; Research \& Experimental Medicine}, Web-of-Science-Categories = {Oncology; Medicine, Research \& Experimental}, Author-Email = {hylane@gmail.com}, Affiliations = {China Medical University Taiwan; Vita Genomics Incorporated; China Medical University Taiwan; China Medical University Hospital - Taiwan}, Funding-Acknowledgement = {Ministry of Economic Affairs in Taiwan (SBIR) {[}S099000280249-154]; Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence {[}MOHW105-TDU-B-212-133019]; China Medical University Hospital, Taiwan {[}DMR-101-091, DMR-102-069]}, Funding-Text = {This work was supported by the Ministry of Economic Affairs in Taiwan (SBIR Grant S099000280249-154), Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence (MOHW105-TDU-B-212-133019), and China Medical University Hospital, Taiwan (DMR-101-091 and DMR-102-069). The funding supports had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.}, Cited-References = {Akavia UD, 2010, CELL, V143, P1005, DOI 10.1016/j.cell.2010.11.013. ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209. {[}Anonymous], 2014, C4 5 PROGRAMS MACHIN. Bishop C.M., 1996, NEURAL NETWORKS PATT. Bush WS, 2009, PACIFIC SYMPOSIUM ON BIOCOMPUTING 2009, P368. Chang SW, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-170. Chen YC, 2014, COMPUT BIOL MED, V48, P1, DOI 10.1016/j.compbiomed.2014.02.006. Domingos P, 1997, MACH LEARN, V29, P103, DOI 10.1023/A:1007413511361. Draghici S, 2003, BIOINFORMATICS, V19, P98, DOI 10.1093/bioinformatics/19.1.98. Fridley BL, 2012, GENET EPIDEMIOL, V36, P352, DOI 10.1002/gepi.21628. Friedman J., 2001, ELEMENTS STAT LEARNI, V1. Friedman J, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i01. Greene CS, 2009, BIODATA MIN, V2, DOI 10.1186/1756-0381-2-5. HOLLAND JH, 1992, SCI AM, V267, P66, DOI 10.1038/scientificamerican0792-66. Holzinger ER, 2014, BIOINFORMATICS, V30, P698, DOI 10.1093/bioinformatics/btt572. Huang LC, 2009, J TRANSL MED, V7, DOI 10.1186/1479-5876-7-81. Katsanis SH, 2008, SCIENCE, V320, P53, DOI 10.1126/science.1156604. Ke Wan-Sheng, 2010, Adv Appl Bioinform Chem, V3, P39. Kessler RC, 2015, JAMA PSYCHIAT, V72, P49, DOI 10.1001/jamapsychiatry.2014.1754. Kim D, 2013, BIODATA MIN, V6, DOI 10.1186/1756-0381-6-23. Kim W, 2012, J BREAST CANCER, V15, P230, DOI 10.4048/jbc.2012.15.2.230. Kirk P, 2012, BIOINFORMATICS, V28, P3290, DOI 10.1093/bioinformatics/bts595. Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X. Kononenko I, 2001, ARTIF INTELL MED, V23, P89, DOI 10.1016/S0933-3657(01)00077-X. Krumsiek J, 2011, BMC SYST BIOL, V5, DOI 10.1186/1752-0509-5-21. Kung SY, 1998, P IEEE, V86, P1244, DOI 10.1109/5.687838. Lanckriet GRG, 2004, BIOINFORMATICS, V20, P2626, DOI 10.1093/bioinformatics/bth294. Landset S., 2015, J BIG DATA, P24. Lane HY, 2012, MOL DIAGN THER, V16, P15, DOI 10.2165/11597270-000000000-00000. Leung MKK, 2016, P IEEE, V104, P176, DOI 10.1109/JPROC.2015.2494198. Lin E, 2010, OPEN ACCESS BIOINFOR, V2, P55. Lin E, 2012, PHARM REGULATORY AFF, V1, pe116. Lin E, 2009, CURR TOPIC GENET, V3, P83. Lin EG, 2008, PHARMACOGENOMICS, V9, P935, DOI 10.2217/14622416.9.7.935. Lin Eugene, 2008, Adv Appl Bioinform Chem, V1, P13. Lin E, 2008, MOL DIAGN THER, V12, P219, DOI 10.1007/BF03256287. Lin E, 2006, MOL DIAGN THER, V10, P367, DOI 10.1007/BF03256213. Lin E, 2007, PHARMACOGENOMICS, V8, P75, DOI 10.2217/14622416.8.1.75. Lin E, 2006, PHARMACOGENOMICS, V7, P1017, DOI 10.2217/14622416.7.7.1017. Lin E, 2016, PROG NEURO-PSYCHOPH, V64, P334, DOI 10.1016/j.pnpbp.2015.02.008. Lin E, 2015, PHARMACOGENOMICS, V16, P555, DOI {[}10.2217/PGS.15.5, 10.2217/pgs.15.5]. Lin Eugene, 2012, Current Pharmacogenomics \& Personalized Medicine, V10, P239. Lin Eugene, 2011, Current Pharmacogenomics \& Personalized Medicine, V9, P323. Lin E, 2009, REJUV RES, V12, P387, DOI 10.1089/rej.2009.0871. Lin E, 2009, GENET TEST MOL BIOMA, V13, P485, DOI 10.1089/gtmb.2008.0145. LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489. Lock EF, 2013, BIOINFORMATICS, V29, P2610, DOI 10.1093/bioinformatics/btt425. MADIGAN D, 1995, INT STAT REV, V63, P215, DOI 10.2307/1403615. Mankoo PK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024709. Pearl J., 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4. Ritchie MD, 2015, NAT REV GENET, V16, P85, DOI 10.1038/nrg3868. Rosado P, 2013, EXPERT SYST APPL, V40, P4770, DOI 10.1016/j.eswa.2013.02.032. Rumelhart D.E., 1986, PARALLEL DISTRIBUTED, V1, P318. Saeys Y, 2007, BIOINFORMATICS, V23, P2507, DOI 10.1093/bioinformatics/btm344. SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136. Shen HB, 2006, BIOINFORMATICS, V22, P1717, DOI 10.1093/bioinformatics/btl170. Shen R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035236. Shin HJ, 2007, BIOINFORMATICS, V23, P3217, DOI 10.1093/bioinformatics/btm511. Snyderman R, 2012, BIOTECHNOL J, V7, P973, DOI 10.1002/biot.201100297. Tseng CJ, 2014, NEURAL COMPUT APPL, V24, P1311, DOI 10.1007/s00521-013-1359-1. Vapnik V., 2013, NATURE STAT LEARNING. Wahl S, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0282-y. Wang CH, 2012, J INVEST MED, V60, P1169, DOI 10.2310/JIM.0b013e3182746498. Wu LSH, 2009, NEPHROL DIAL TRANSPL, V24, P3360, DOI 10.1093/ndt/gfp271. Zhu J, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001301. Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x. Zou H, 2006, J COMPUT GRAPH STAT, V15, P265, DOI 10.1198/106186006X113430.}, Number-of-Cited-References = {70}, Times-Cited = {97}, Usage-Count-Last-180-days = {35}, Usage-Count-Since-2013 = {98}, Journal-ISO = {Biomark. Res.}, Doc-Delivery-Number = {EM8YG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000395596400002}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000600933500001, Author = {Fang, Jie and Swain, Anand and Unni, Rohit and Zheng, Yuebing}, Title = {Decoding Optical Data with Machine Learning}, Journal = {LASER \& PHOTONICS REVIEWS}, Year = {2021}, Volume = {15}, Number = {2}, Month = {FEB}, Abstract = {Optical spectroscopy and imaging techniques play important roles in many fields such as disease diagnosis, biological study, information technology, optical science, and materials science. Over the past decade, machine learning (ML) has proved promising in decoding complex data, enabling rapid and accurate analysis of optical spectra and images. This review aims to shed light on various ML algorithms for optical data analysis with a focus on their applications in a wide range of fields. The goal of this work is to sketch the validity of ML-based optical data decoding. The review concludes with an outlook on unaddressed problems and opportunities in this emerging subject that interfaces optics, data science, and ML.}, Publisher = {WILEY-V C H VERLAG GMBH}, Address = {POSTFACH 101161, 69451 WEINHEIM, GERMANY}, Type = {Review}, Language = {English}, Affiliation = {Zheng, YB (Corresponding Author), Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA. Zheng, YB (Corresponding Author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. Fang, Jie; Swain, Anand; Unni, Rohit; Zheng, Yuebing, Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA. Fang, Jie; Swain, Anand; Unni, Rohit; Zheng, Yuebing, Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA.}, DOI = {10.1002/lpor.202000422}, EarlyAccessDate = {DEC 2020}, Article-Number = {2000422}, ISSN = {1863-8880}, EISSN = {1863-8899}, Keywords = {data decoding; machine learning; optical data; optics}, Keywords-Plus = {NEURAL-NETWORK ANALYSIS; RAMAN-SPECTROSCOPY; LISTERIA-MONOCYTOGENES; RAPID IDENTIFICATION; LIGHT-SCATTERING; WAVE-GUIDE; CLASSIFICATION; MICROSCOPY; BACTERIA; CANCER}, Research-Areas = {Optics; Physics}, Web-of-Science-Categories = {Optics; Physics, Applied; Physics, Condensed Matter}, Author-Email = {zheng@austin.utexas.edu}, Affiliations = {University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin}, ResearcherID-Numbers = {Fang, Jie/ABD-4939-2020 }, ORCID-Numbers = {Fang, Jie/0000-0002-0793-9323 Zheng, Yuebing/0000-0002-9168-9477}, Funding-Acknowledgement = {National Aeronautics and Space Administration Early Career Faculty Award {[}80NSSC17K0520]; National Science Foundation {[}NSF-ECCS-2001650, NSF-CMMI-1761743]; National Institute of General Medical Sciences of the National Institutes of Health {[}DP2GM128446]}, Funding-Text = {J.F. and A.S. contributed equally to this work. The authors would like to thank Dr. Kan Yao, Mr. David Zhang, Mr. Akash S. Nivarthi, and Dr. Zilong Wu for the helpful discussions. They acknowledge the financial support of the National Aeronautics and Space Administration Early Career Faculty Award (80NSSC17K0520), the National Science Foundation (NSF-ECCS-2001650 and NSF-CMMI-1761743), and the National Institute of General Medical Sciences of the National Institutes of Health (DP2GM128446).}, Cited-References = {Ahijado-Guzman R, 2012, ACS NANO, V6, P7514, DOI 10.1021/nn302825u. Alpaydin E, 2014, ADAPT COMPUT MACH LE, P115. Amat F, 2014, NAT METHODS, V11, P951, DOI {[}10.1038/NMETH.3036, 10.1038/nmeth.3036]. {[}Anonymous], 1995, OPTICAL SCATTERING M. ASPNES DE, 1979, PHYS REV B, V20, P3292, DOI 10.1103/PhysRevB.20.3292. Baenke F, 2013, DIS MODEL MECH, V6, P1353, DOI 10.1242/dmm.011338. Baker N., 2019, WORKSH BAS RES NEEDS. Ballard Z., 2018, OPTICS BIOPHOTONICS. Ballard ZS, 2017, ACS NANO, V11, P2266, DOI 10.1021/acsnano.7b00105. Bao K, 2012, IEEE INT C BIO BIO W. Bardera A., 2017, ENTROPY, V19, P9. Barletta L, 2017, 2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC). Barth C, 2018, COMMUN PHYS-UK, V1, DOI 10.1038/s42005-018-0060-1. Basha SHS, 2020, NEUROCOMPUTING, V378, P112, DOI 10.1016/j.neucom.2019.10.008. Bayramoglu N., 2014, 22 INT C PATT REC SW. Behmann J, 2015, PRECIS AGRIC, V16, P239, DOI 10.1007/s11119-014-9372-7. BEIJERSBERGEN MW, 1993, OPT COMMUN, V96, P123, DOI 10.1016/0030-4018(93)90535-D. BEIJERSBERGEN MW, 1994, OPT COMMUN, V112, P321, DOI 10.1016/0030-4018(94)90638-6. Belgiu M, 2016, ISPRS J PHOTOGRAMM, V114, P24, DOI 10.1016/j.isprsjprs.2016.01.011. Bellouard Y., 2009, MICROROBOTICS METHOD. Berisha S, 2019, ANALYST, V144, P1642, DOI 10.1039/c8an01495g. Bielecki C, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.7.076030. Bigio I. J., 2016, QUANTITATIVE BIOMEDI. Borhani N, 2018, OPTICA, V5, P960, DOI 10.1364/OPTICA.5.000960. Boyd R., 1992, NONLINEAR OPTICS. Bredensteiner EJ, 1999, COMPUT OPTIM APPL, V12, P53, DOI 10.1023/A:1008663629662. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Brereton RG, 2010, ANALYST, V135, P230, DOI 10.1039/b918972f. Buchl NR, 2008, YEAST, V25, P787, DOI 10.1002/yea.1633. Bulgarevich DS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20438-6. Cheng CH, 2016, SCI REP-UK, V6, DOI 10.1038/srep19757. Chlingaryan A, 2018, COMPUT ELECTRON AGR, V151, P61, DOI 10.1016/j.compag.2018.05.012. Choy T.C., 2015, INT SER MONOGR PHYS. Chugh S, 2019, J LIGHTWAVE TECHNOL, V37, P6080, DOI 10.1109/JLT.2019.2946572. Chugh S, 2019, OPT EXPRESS, V27, P36414, DOI 10.1364/OE.27.036414. Colomb T, 2006, J OPT SOC AM A, V23, P3177, DOI 10.1364/JOSAA.23.003177. Conangla GP, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.223602. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Coufal H. J., 2000, HOLOGRAPHIC DATA STO. Doster T, 2017, APPL OPTICS, V56, P3386, DOI 10.1364/AO.56.003386. Ellis DI, 2002, APPL ENVIRON MICROB, V68, P2822, DOI 10.1128/AEM.68.6.2822-2828.2002. Feizi A, 2016, LAB CHIP, V16, P4350, DOI 10.1039/c6lc00976j. Fercher A., 1996, J BIOMED OPT, V1, P2. Ferreira AC, 2020, METHODS ECOL EVOL, V11, P1072, DOI 10.1111/2041-210X.13436. Fujiwara H., 2007, SPECTROSCOPIC ELLIPS, DOI {[}DOI 10.1002/9780470060193, 10.1002/9780470060193]. Fusco S, 2014, ADV MATER, V26, P952, DOI 10.1002/adma.201304098. Gaidon A, 2018, INT J COMPUT VISION, V126, P899, DOI 10.1007/s11263-018-1108-0. Gao X, 2019, PROC SPIE, V10873, DOI 10.1117/12.2509147. Gardiner DJ., 1989, PRACTICAL RAMAN SPEC, DOI {[}10.1007/978-3-642-74040-4, DOI 10.1007/978-3-642-74040-4]. Gniadecka M, 2004, J INVEST DERMATOL, V122, P443, DOI 10.1046/j.0022-202X.2004.22208.x. Goodacre R, 1998, MICROBIOL-SGM, V144, P1157, DOI 10.1099/00221287-144-5-1157. Griffiths P.R., 2007, FOURIER TRANSFORM IN. Gu M, 2014, LIGHT-SCI APPL, V3, DOI 10.1038/lsa.2014.58. Gupta RK, 2020, LASER PHOTONICS REV, V14, DOI 10.1002/lpor.202000120. Hammes GG, 2005, SPECTROSCOPY FOR THE BIOLOGICAL SCIENCES, P1, DOI 10.1002/0471733555. HANDA A, 2016, PROC CVPR IEEE, P4077, DOI DOI 10.1109/CVPR.2016.442. Hartl BA, 2018, BIOMED OPT EXPRESS, V9, DOI 10.1364/BOE.9.003559. HECKENBERG NR, 1992, OPT LETT, V17, P221, DOI 10.1364/OL.17.000221. Hegde RS, 2020, NANOSCALE ADV, V2, P1007, DOI 10.1039/c9na00656g. Helal KM, 2019, FEBS LETT, V593, P2535, DOI 10.1002/1873-3468.13520. Ho CS, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12898-9. Hollandi R, 2020, CELL SYST, V10, P453, DOI 10.1016/j.cels.2020.04.003. HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8. HUANG D, 1991, SCIENCE, V254, P1178, DOI 10.1126/science.1957169. Huang YS, 2003, J RAMAN SPECTROSC, V34, P1, DOI 10.1002/jrs.960. Hussain R, 2020, LIGHT-SCI APPL, V9, DOI 10.1038/s41377-020-0255-6. Izadyyazdanabadi M, 2018, INT C MED IM COMP CO. Jenkins Francis A, 1937, FUNDAMENTALS OPTICS. Jo M. K., 2018, 13 NAN MAT DEV C NMD. Jorgensen TM, 2008, SKIN RES TECHNOL, V14, P364, DOI 10.1111/j.1600-0846.2008.00304.x. Joung HA, 2020, ACS NANO, V14, P229, DOI 10.1021/acsnano.9b08151. Jun G., 2010, PHOT GLOB C. Kaakinen M, 2014, J MICROSC-OXFORD, V253, P65, DOI 10.1111/jmi.12098. Kachris C, 2013, IEEE COMMUN MAG, V51, P39, DOI 10.1109/MCOM.2013.6588648. Kakkava E, 2019, OPT FIBER TECHNOL, V52, DOI 10.1016/j.yofte.2019.101985. Khan FN, 2019, J LIGHTWAVE TECHNOL, V37, P493, DOI 10.1109/JLT.2019.2897313. Khan F, 2017, SIG PROCESS COMMUN. Khatun Z, 2011, BANGLADESH MED J, V40, P22. Kiarashinejad Y, 2020, ADV INTELL SYST-GER, V2, DOI 10.1002/aisy.201900132. Kiarashinejad Y, 2019, ADV THEOR SIMUL, V2, DOI 10.1002/adts.201900088. Kim G., 2019, BIORXIV. Kingston BR, 2019, P NATL ACAD SCI USA, V116, P14937, DOI 10.1073/pnas.1907646116. Kistenev YV, 2019, BIOCHEMISTRY-MOSCOW+, V84, P108, DOI 10.1134/S0006297919140074. Koydemir H. C., 2016, OPTICS BIOPHOTONICS. Koydemir HC, 2015, LAB CHIP, V15, P1284, DOI 10.1039/c4lc01358a. Krauss SD, 2018, J BIOPHOTONICS, V11, DOI 10.1002/jbio.201800022. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Kuhner L, 2019, ACS SENSORS, V4, P1973, DOI 10.1021/acssensors.9b00488. Lasch P, 2018, ANAL CHEM, V90, P8896, DOI 10.1021/acs.analchem.8b01024. Leal AG, 2019, IEEE SENS J, V19, P567, DOI 10.1109/JSEN.2018.2878735. Li B, 2013, J BIOMED OPT, V18, DOI 10.1117/1.JBO.18.6.066004. Li CX, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47834-w. Li D, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43432-y. Li J, 2017, IEEE PHOTONIC TECH L, V29, P1455, DOI 10.1109/LPT.2017.2726139. Li WT, 2020, NAT BIOMED ENG, V4, P767, DOI 10.1038/s41551-020-0577-y. Li X, 2019, IEEE T INTELL TRANSP, V20, P2072, DOI 10.1109/TITS.2018.2857566. Liakos KG, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082674. Lichtman JW, 2005, NAT METHODS, V2, P910, DOI 10.1038/NMETH817. Lin XY, 2018, NANO RES, V11, P6316, DOI 10.1007/s12274-018-2155-0. Liu A, 2018, OPT EXPRESS, V26, P22100, DOI 10.1364/OE.26.022100. Maguire CM, 2018, SCI TECHNOL ADV MAT, V19, P732, DOI 10.1080/14686996.2018.1517587. Maier SA, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.193408. Majumder SK, 2005, J BIOMED OPT, V10, DOI 10.1117/1.1897396. McReynolds N, 2017, SCI REP-UK, V7, DOI 10.1038/srep43631. Mennel L, 2020, NATURE, V579, P62, DOI 10.1038/s41586-020-2038-x. Moshkov N, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61808-3. Mumbru J, 1999, P SOC PHOTO-OPT INS, V3804, P14, DOI 10.1117/12.363963. Murtagh F, 2012, WIRES DATA MIN KNOWL, V2, P86, DOI 10.1002/widm.53. Musumeci F, 2019, IEEE COMMUN SURV TUT, V21, P1383, DOI 10.1109/COMST.2018.2880039. Narhi M, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07355-y. Novotny L., 2012, PRINCIPLES NANOOPTIC. Ntziachristos V, 2010, NAT METHODS, V7, P603, DOI {[}10.1038/NMETH.1483, 10.1038/nmeth.1483]. Pavillon N, 2018, P NATL ACAD SCI USA, V115, pE2676, DOI 10.1073/pnas.1711872115. Pedrotti F.L., 1987, INTRO OPTICS. Perkowitz S., 2012, OPTICAL CHARACTERIZA. Peschke K.-D., 2006, P 4 IASTED INT C BIO. Pomplun J, 2007, PHYS STATUS SOLIDI B, V244, P3419, DOI 10.1002/pssb.200743192. Prasad P.N., 2004, INTRO BIOPHOTONICS. Qu YR, 2019, ACS PHOTONICS, V6, P1168, DOI 10.1021/acsphotonics.8b01526. Rahmani B, 2018, LIGHT-SCI APPL, V7, DOI 10.1038/s41377-018-0074-1. Rebuffo CA, 2006, APPL ENVIRON MICROB, V72, P994, DOI 10.1128/AEM.72.2.994-1000.2006. Rebuffo-Scheer CA, 2007, APPL ENVIRON MICROB, V73, P1036, DOI 10.1128/AEM.02004-06. Rickard JJS, 2020, NAT BIOMED ENG, V4, P610, DOI 10.1038/s41551-019-0510-4. Riley P, 2019, NATURE, V572, P27, DOI 10.1038/d41586-019-02307-y. Rivenson Y, 2018, ACS PHOTONICS, V5, P2354, DOI 10.1021/acsphotonics.8b00146. Rivenson Y, 2017, OPTICA, V4, P1437, DOI 10.1364/OPTICA.4.001437. Cuevas AR, 2018, J LIGHTWAVE TECHNOL, V36, P3733, DOI 10.1109/JLT.2018.2850801. Rosch P, 2006, BIOPOLYMERS, V82, P312, DOI 10.1002/bip.20449. Rosch P, 2005, APPL ENVIRON MICROB, V71, P1626, DOI 10.1128/AEM.71.3.1626-1637.2005. ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Sajda P, 2006, ANNU REV BIOMED ENG, V8, P537, DOI 10.1146/annurev.bioeng.8.061505.095802. Schuller JA, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.107401. Scott NW, 2019, BIOPHYS J, V116, p566A, DOI 10.1016/j.bpj.2018.11.3045. Scully M. O., 1999, QUANTUM OPTICS. Sessions V., 2006, ICIQ, P485. Shahkarami S, 2018, 2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), DOI 10.1080/10803548.2018.1486056. Shorten C, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0197-0. Sigurdsson S, 2004, IEEE T BIO-MED ENG, V51, P1784, DOI 10.1109/TBME.2004.831538. Smith W. J., 2008, MODERN OPTICAL ENG, V4th. Stelzle F, 2011, J TRANSL MED, V9, DOI 10.1186/1479-5876-9-20. Su TH, 2012, OPT EXPRESS, V20, DOI 10.1364/OE.20.009396. Sunny S, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224885. Takagi R, 2017, OPT REV, V24, P117, DOI 10.1007/s10043-017-0303-5. Tanaka K, 2019, ACS NANO, V13, P12687, DOI 10.1021/acsnano.9b04220. Tang QY, 2019, PHYS REV LETT, V123, DOI 10.1103/PhysRevLett.123.207801. Taylor JN, 2019, J PHYS CHEM B, V123, P4358, DOI 10.1021/acs.jpcb.9b01159. Tominaga J, 1998, APPL PHYS LETT, V73, P2078, DOI 10.1063/1.122383. Torok P., 2007, OPTICAL IMAGING MICR. Udelhoven T., 2000, APPL SPECTROSC. Unni R, 2020, ACS PHOTONICS, V7, P2703, DOI 10.1021/acsphotonics.0c00630. van der Maaten L, 2008, J MACH LEARN RES, V9, P2579. Vartholomeos P, 2013, IEEE T AUTOM SCI ENG, V10, P545, DOI 10.1109/TASE.2013.2248083. Wang HD, 2020, LIGHT-SCI APPL, V9, DOI 10.1038/s41377-020-00358-9. Wang J, 2012, NAT PHOTONICS, V6, P488, DOI {[}10.1038/NPHOTON.2012.138, 10.1038/nphoton.2012.138]. Wang MS, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18793-y. Wang MS, 2019, SMALL, V15, DOI 10.1002/smll.201900982. Wang P, 2018, APPL OPTICS, V57, P8258, DOI 10.1364/AO.57.008258. Wang Q, 2020, QUANT SCI STUD, V1, P239, DOI 10.1162/qss\_a\_00011. Wang Z, 2017, J STRUCT CONTROL HLT, V25, pe2076. Weng S, 2017, J BIOMED OPT, V22, DOI 10.1117/1.JBO.22.10.106017. Weng SZ, 2018, SPECTROCHIM ACTA A, V189, P1, DOI 10.1016/j.saa.2017.08.004. Wenning M, 2010, J BIOPHOTONICS, V3, P493, DOI 10.1002/jbio.201000015. Wiecha PR, 2020, NANO LETT, V20, P329, DOI 10.1021/acs.nanolett.9b03971. Wiecha PR, 2019, NAT NANOTECHNOL, V14, P237, DOI 10.1038/s41565-018-0346-1. Wimmer G, 2016, INT CONF IMAG PROC. Wu ACY, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0534-z. WU Y, 2019, CONF LASER ELECTR. Wu YC, 2019, ACS PHOTONICS, V6, P294, DOI 10.1021/acsphotonics.8b01479. Wu ZL, 2018, ACS NANO, V12, P5030, DOI 10.1021/acsnano.8b02566. Wu ZL, 2016, NANOSCALE, V8, P18461, DOI 10.1039/c6nr06608a. Xu RL, 2015, PARTICUOLOGY, V18, P11, DOI 10.1016/j.partic.2014.05.002. Xue J., 2018, BIOPHYSICS BIOL BIOP. Yan B, 2015, BMC CANCER, V15, DOI 10.1186/s12885-015-1653-7. Yang M, 2019, J PHYS D APPL PHYS, V52, DOI 10.1088/1361-6463/aafa3c. Yao K, 2019, J PHYS CHEM C, V123, P11814, DOI 10.1021/acs.jpcc.8b11245. Yao K, 2019, NANOPHOTONICS-BERLIN, V8, P339, DOI 10.1515/nanoph-2018-0183. Yao QY, 2018, IEEE ACCESS, V6, P15898, DOI 10.1109/ACCESS.2018.2811724. Yeung C, 2020, ACS PHOTONICS, V7, P2309, DOI 10.1021/acsphotonics.0c01067. Yu A, 2018, 2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC). Yu Y, 2018, BIOMED OPT EXPRESS, V9, P6053, DOI 10.1364/BOE.9.006053. Yue J, 2020, J RAMAN SPECTROSC, V51, P602, DOI 10.1002/jrs.5820. Zahavy T, 2018, OPTICA, V5, P666, DOI 10.1364/OPTICA.5.000666. Zakharov VE, 2009, PHYSICA D, V238, P540, DOI 10.1016/j.physd.2008.12.002. Zhang QM, 2019, LIGHT-SCI APPL, V8, DOI 10.1038/s41377-019-0151-0. Zhang YJ, 2018, LASER PHYS, V28, DOI 10.1088/1555-6611/aa9d6d. Zhang YX, 2018, BIOINSPIR BIOMIM NAN, V7, P1, DOI 10.1680/jbibn.16.00034. Zhou JJ, 2019, LIGHT-SCI APPL, V8, DOI 10.1038/s41377-019-0192-4. Zhu ZL, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4895924. Zibar D, 2017, NAT PHOTONICS, V11, P749, DOI 10.1038/s41566-017-0058-3. Zunger A, 2018, NAT REV CHEM, V2, DOI 10.1038/s41570-018-0121.}, Number-of-Cited-References = {191}, Times-Cited = {12}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {78}, Journal-ISO = {Laser Photon. Rev.}, Doc-Delivery-Number = {QK1XH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000600933500001}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000604758900001, Author = {Pena-Guerrero, Jose and Nguewa, Paul A. and Garcia-Sosa, Alfonso T.}, Title = {Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2021}, Volume = {11}, Number = {5}, Month = {SEP}, Abstract = {Machine learning (ML) is becoming capable of transforming biomolecular interaction description and calculation, promising an impact on molecular and drug design, chemical biology, toxicology, among others. The first improvements can be seen from biomolecule structure prediction to chemical synthesis, molecular generation, mechanism of action elucidation, inverse design, polypharmacology, organ or issue targeting of compounds, property and multiobjective optimization. Chemical design proposals from an algorithm may be inventive and feasible. Challenges remain, with the availability, diversity, and quality of data being critical for developing useful ML models; marginal improvement seen in some cases, as well as in the interpretability, validation, and reuse of models. The ultimate aim of ML should be to facilitate options for the scientist to propose and undertake ideas and for these to proceed faster. Applications are ripe for transformative results in understudied, neglected, and rare diseases, where new data and therapies are strongly required. Progress and outlook on these themes are provided in this study. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Structure and Mechanism > Molecular Structures}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Nguewa, PA (Corresponding Author), Univ Navarra, Dept Microbiol \& Parasitol, ISTUN Inst Trop Hlth, IdiSNA Navarra Inst Hlth Res, E-31008 Navarra, Spain. Garcia-Sosa, AT (Corresponding Author), Univ Tartu, Inst Chem, Ravila 14a, EE-54011 Tartu, Estonia. Pena-Guerrero, Jose; Nguewa, Paul A., Univ Navarra, Dept Microbiol \& Parasitol, ISTUN Inst Trop Hlth, IdiSNA Navarra Inst Hlth Res, E-31008 Navarra, Spain. Garcia-Sosa, Alfonso T., Univ Tartu, Inst Chem, Ravila 14a, EE-54011 Tartu, Estonia.}, DOI = {10.1002/wcms.1513}, EarlyAccessDate = {JAN 2021}, Article-Number = {e1513}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {Artificial intelligence; drug design; data science; drug discovery; machine learning; molecular design; neglected diseases}, Keywords-Plus = {LARGE-SCALE; MOLECULAR DESIGN; DISCOVERY; PREDICTION; BINDING; IDENTIFICATION; SIMILARITY; PEPTIDES; BIOLOGY; DOCKING}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {panguewa@unav.es alfonso.tlatoani.garcia.sosa@ut.ee}, Affiliations = {University of Navarra; University of Tartu}, ResearcherID-Numbers = {Garcia-Sosa, Alfonso T./E-4551-2015 Nguewa, Paul/T-6982-2017}, ORCID-Numbers = {Garcia-Sosa, Alfonso T./0000-0003-0542-4446 Nguewa, Paul/0000-0002-2193-7316}, Funding-Acknowledgement = {``la Caixa{''} Foundation {[}LCF/PR/PR13/11080005]; Departamento de Educacion, Gobierno de Navarra; EU COST Action {[}CA18217, CA18218]; EU Project unCoVer {[}DLV101016216]; Fundacion Caja Navarra; Fundacion Roviralta; Gobierno de Navarra-Salud {[}12/2017]; Inversiones Garcilaso de la Vega; Spanish Ministry of Education, Culture, and Sport (PhD fellowship) {[}FPU17/03304]; Ubesol; Haridus-ja Teadusministeerium {[}IUT34-14]; Laser Ebro}, Funding-Text = {``la Caixa{''} Foundation, Grant/Award Number: LCF/PR/PR13/11080005; Departamento de Educacion, Gobierno de Navarra; EU COST Action, Grant/Award Numbers: CA18217, CA18218; EU Project unCoVer, Grant/Award Number: DLV101016216; Fundacion Caja Navarra; Fundacion Roviralta; Gobierno de Navarra-Salud, Grant/Award Number: 12/2017; Haridus-ja Teadusministeerium, Grant/Award Number: IUT34-14; Inversiones Garcilaso de la Vega; Laser Ebro; Spanish Ministry of Education, Culture, and Sport (PhD fellowship), Grant/Award Number: FPU17/03304; Ubesol}, Cited-References = {Adeshina YO, 2020, P NATL ACAD SCI USA, V117, P18477, DOI 10.1073/pnas.2000585117. Alcaro S, 2019, FRONT CHEM, V7, DOI 10.3389/fchem.2019.00071. Amabilino S, 2020, J CHEM INF MODEL, V60, P5699, DOI 10.1021/acs.jcim.0c00343. Anastasia Kyrykovych L, DEEP NEURAL NETWORKS. {[}Anonymous], OVERVIEW. {[}Anonymous], 2016, IEEE-ASME T MECH, VPP, P1, DOI DOI 10.1109/IEEESTD.2016.7460875. {[}Anonymous], 2020, BBC NEWS. {[}Anonymous], 2014, C4 5 PROGRAMS MACHIN. {[}Anonymous], 2019, TRIALSITENEWS. Aung MT, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-53448-z. Bakhoum Mor, 2018, PERSONAL DATA COMPET. Banterle F, 2018, INTERFACE DATA PROTE, P411. Barabasi AL, 2004, NAT REV GENET, V5, P101, DOI 10.1038/nrg1272. Bernhardt V, 2019, PARASITOL RES, V118, P389, DOI 10.1007/s00436-018-6145-7. Bickerton GR, 2012, NAT CHEM, V4, P90, DOI {[}10.1038/NCHEM.1243, 10.1038/nchem.1243]. Blaschke T, 2018, MOL INFORM, V37, DOI 10.1002/minf.201700123. Bragato M, 2020, CHEM SCI, V11, P11859, DOI 10.1039/d0sc04235h. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Brown N, 2020, J COMPUT AID MOL DES, V34, P709, DOI 10.1007/s10822-020-00317-x. Brown N, 2019, J CHEM INF MODEL, V59, P1096, DOI 10.1021/acs.jcim.8b00839. Burger B, 2020, NATURE, V583, P237, DOI 10.1038/s41586-020-2442-2. Casimiro-Soriguer CS, 2019, BIOL DIRECT, V14, DOI 10.1186/s13062-019-0246-9. Chen HM, 2019, TRENDS PHARMACOL SCI, V40, P806, DOI 10.1016/j.tips.2019.09.004. Chen HM, 2018, DRUG DISCOV TODAY, V23, P1241, DOI 10.1016/j.drudis.2018.01.039. Chen LY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220113. Choo K, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15724-9. Clark AM, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0057-7. Cole DJ, 2020, FARADAY DISCUSS, V224, P247, DOI 10.1039/d0fd00028k. Coley CW, 2020, ANGEW CHEM INT EDIT, V59, P22858, DOI 10.1002/anie.201909987. Coley CW, 2020, ANGEW CHEM INT EDIT, V59, P23414, DOI 10.1002/anie.201909989. Collaborative Drug Discovery, 2015, COLL DRUG DISC PUBL. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Croft SL, 2003, TRENDS PARASITOL, V19, P502, DOI 10.1016/j.pt.2003.09.008. Cruz-Monteagudo M, 2014, DRUG DISCOV TODAY, V19, P1069, DOI 10.1016/j.drudis.2014.02.003. del Rosario Z, 2020, J CHEM PHYS, V153, DOI 10.1063/5.0006124. Desai B, 2013, J MED CHEM, V56, P3033, DOI 10.1021/jm400099d. Deshpande D, 2018, CLIN INFECT DIS, V67, pS293, DOI 10.1093/cid/ciy611. Diamond Light Source, 2020, MAIN PROT STRUCT XCH. DiMasi JA, 2016, J HEALTH ECON, V47, P20, DOI 10.1016/j.jhealeco.2016.01.012. Dinic J, 2020, DRUG RESIST UPDATE, V52, DOI 10.1016/j.drup.2020.100713. Duran-Frigola M, 2019, WIRES COMPUT MOL SCI, V9, DOI 10.1002/wcms.1408. Duros V, 2017, ANGEW CHEM INT EDIT, V56, P10815, DOI 10.1002/anie.201705721. Do DT, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa128. Ekins S, 2019, NAT MATER, V18, P435, DOI 10.1038/s41563-019-0338-z. Ekins S, 2018, PHARM RES-DORDR, V35, DOI 10.1007/s11095-018-2481-7. Ekins S, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003878. Elton DC, 2019, MOL SYST DES ENG, V4, P828, DOI 10.1039/c9me00039a. Ericksen SS, 2017, J CHEM INF MODEL, V57, P1579, DOI 10.1021/acs.jcim.7b00153. Esposito C, 2020, J CHEM INF MODEL, V60, P4730, DOI 10.1021/acs.jcim.0c00525. Faber FA, 2017, J CHEM THEORY COMPUT, V13, P5255, DOI 10.1021/acs.jctc.7b00577. Ferrero E, 2020, PLOS COMPUT BIOL, V16, DOI 10.1371/journal.pcbi.1008126. Finn C, 2017, PR MACH LEARN RES, V70. Fitzpatrick C, 2017, MAJOR INFECT DIS, DOI {[}10.1596/978-1-4648-0524-0\_ch17, DOI 10.1596/978-1-4648-0524-0\_CH17]. Freeze JG, 2019, CHEM REV, V119, P6595, DOI 10.1021/acs.chemrev.8b00759. Friederich P, 2020, CHEM SCI, V11, P4584, DOI 10.1039/d0sc00445f. Friedman N, 1997, MACH LEARN, V29, P131, DOI 10.1023/A:1007465528199. Froemming NS, 2009, J CHEM PHYS, V131, DOI 10.1063/1.3272274. Fujiwara Y, 2008, J CHEM INF MODEL, V48, P930, DOI 10.1021/ci700085q. Garcia-Sosa AT, 2019, FUTURE MED CHEM, V11, P2247, DOI 10.4155/fmc-2019-0006. Garcia-Sosa AT, 2018, CURR COMPUT-AID DRUG, V14, P131, DOI 10.2174/1573409914666180308163231. Garcia-Sosa AT, 2012, J CHEM INF MODEL, V52, P2165, DOI 10.1021/ci200587h. Garcia-Sosa AT, 2010, J COMPUT CHEM, V31, P174, DOI 10.1002/jcc.21306. Garcia-Sosa AT, 2009, QSAR COMB SCI, V28, P815, DOI 10.1002/qsar.200810174. Garcia-Sosa AT, 2003, J MOL MODEL, V9, P172, DOI 10.1007/s00894-003-0129-x. Gaulton A, 2012, NUCLEIC ACIDS RES, V40, pD1100, DOI 10.1093/nar/gkr777. Geng LG, 2012, J INEQUAL APPL, DOI 10.1186/1029-242X-2012-23. Glavatskikh M, 2019, J CHEMINFORMATICS, V11, DOI 10.1186/s13321-019-0391-2. Glick M, 2006, J CHEM INF MODEL, V46, P193, DOI 10.1021/ci050374h. Glisic S, 2016, MOLECULES, V21, DOI 10.3390/molecules21050589. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Gradus JL, 2020, JAMA PSYCHIAT, V77, P25, DOI 10.1001/jamapsychiatry.2019.2905. Guney E, 2017, BIOCOMPUT-PAC SYM, P132, DOI 10.1142/9789813207813\_0014. Hanson-Heine MWD, 2020, CHEM SCI, V11, P4644, DOI 10.1039/d0sc01523g. Hodos RA, 2016, WIRES SYST BIOL MED, V8, P186, DOI 10.1002/wsbm.1337. Hong Y, 2020, WIRES COMPUT MOL SCI, V10, DOI 10.1002/wcms.1450. Horrobin DF, 2003, NAT REV DRUG DISCOV, V2, P151, DOI 10.1038/nrd1012. Hotez PJ, 2007, NEW ENGL J MED, V357, P1018, DOI 10.1056/NEJMra064142. Hutson M, 2020, SCIENCE, V368, P927, DOI 10.1126/science.368.6494.927. Inamuddin, 2021, APPL NANOBIOTECHNOLO. Irwin JJ, 2020, J CHEM INF MODEL, V60, P6065, DOI 10.1021/acs.jcim.0c00675. Jamal S, 2013, BMC BIOINFORMATICS, V14, P329, DOI 10.1186/1471-2105-14-329. Jasial S, 2018, J MED CHEM, V61, P10255, DOI 10.1021/acs.jmedchem.8b01404. Jimenez-Luna J, 2020, NAT MACH INTELL, V2, P573, DOI 10.1038/s42256-020-00236-4. Jimenez-Luna J, 2020, MOLECULES, V25, DOI 10.3390/molecules25112487. Kabra R, 2020, BIOCHEM J, V477, P2007, DOI 10.1042/BCJ20200176. Katritch V, 2013, ANNU REV PHARMACOL, V53, P531, DOI 10.1146/annurev-pharmtox-032112-135923. Kim B, 2016, ADV NEUR IN, V29. Kim S, 2016, NUCLEIC ACIDS RES, V44, pD1202, DOI 10.1093/nar/gkv951. Komatsu R, 2010, J PHARMACOL TOX MET, V61, P271, DOI 10.1016/j.vascn.2010.01.006. Krenn M, 2020, MACH LEARN-SCI TECHN, V1, DOI 10.1088/2632-2153/aba947. Kuenzi BM, 2020, CANCER CELL, V38, P672, DOI 10.1016/j.ccell.2020.09.014. Lahey SLJ, 2020, CHEM SCI, V11, P2362, DOI 10.1039/c9sc06017k. Lampa S, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01256. Lane T, 2018, MOL PHARMACEUT, V15, P4346, DOI 10.1021/acs.molpharmaceut.8b00083. Lee K, 2009, GLOB INST, P1. Liu HB, 2014, J CHEM INF MODEL, V54, P1050, DOI 10.1021/ci500004h. Lowe D, 2020, ANOTHER AI GENERATED. Lyu J, 2019, NATURE, V566, P224, DOI 10.1038/s41586-019-0917-9. Ma JS, 2015, J CHEM INF MODEL, V55, P263, DOI 10.1021/ci500747n. MacLeod BP, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aaz8867. Maria JPS, 2017, ACS CHEM BIOL, V12, P2448, DOI 10.1021/acschembio.7b00468. Mason DJ, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01096. Matsuzaka Y, 2020, FRONT BIOENG BIOTECH, V7, DOI 10.3389/fbioe.2019.00485. Mayr A, 2018, CHEM SCI, V9, P5441, DOI 10.1039/c8sc00148k. Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007. Mizuno S, 2012, BMC SYST BIOL, V6, DOI 10.1186/1752-0509-6-52. Moret M, 2020, NAT MACH INTELL, V2, P171, DOI 10.1038/s42256-020-0160-y. Muratov EN, 2020, CHEM SOC REV, V49, P3525, DOI 10.1039/d0cs00098a. Mysinger MM, 2012, J MED CHEM, V55, P6582, DOI 10.1021/jm300687e. Myszczynska MA, 2020, NAT REV NEUROL, V16, P440, DOI 10.1038/s41582-020-0377-8. Nabirotchkin S, 2020, CURR OPIN PHARMACOL, V51, P78, DOI 10.1016/j.coph.2019.12.004. Neves BJ, 2020, PLOS COMPUT BIOL, V16, DOI 10.1371/journal.pcbi.1007025. Le NQK, 2019, J PROTEOME RES, V18, P3503, DOI 10.1021/acs.jproteome.9b00411. Le NQK, 2017, J COMPUT CHEM, V38, P2000, DOI 10.1002/jcc.24842. Nielsen AN, 2020, BIOL PSYCHIAT, V87, P164, DOI 10.1016/j.biopsych.2019.06.021. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Papadatos G, 2016, NUCLEIC ACIDS RES, V44, pD1220, DOI 10.1093/nar/gkv1253. Parks CD, 2020, J COMPUT AID MOL DES, V34, P99, DOI 10.1007/s10822-020-00289-y. Perryman AL, 2018, PHARM RES-DORDR, V35, DOI 10.1007/s11095-018-2439-9. Pickrell JK, 2016, NAT GENET, V48, P709, DOI 10.1038/ng.3570. Piir G, 2018, ENVIRON HEALTH PERSP, V126, DOI {[}10.1289/EHP3264, 10.1289/ehp3264]. Plante A, 2019, MOLECULES, V24, DOI 10.3390/molecules24112097. Polishchuk P, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00431-w. PyTorch, 2020, PYTORCH IS OPT TENS. Ragoza M, 2017, J CHEM INF MODEL, V57, P942, DOI 10.1021/acs.jcim.6b00740. Rajkomar A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0029-1. Ramsundar B, 2019, DEEP LEARNING LIFE S, P297. RDKit, 2020, OP SOURC CHEM MACH L. Reker D, 2016, CHEM SCI, V7, P3919, DOI 10.1039/c5sc04272k. Reker Daniel, 2019, Drug Discov Today Technol, V32-33, P73, DOI 10.1016/j.ddtec.2020.06.001. Reker D, 2014, P NATL ACAD SCI USA, V111, P4067, DOI 10.1073/pnas.1320001111. Reyzin L, 2019, NATURE, V565, P166, DOI 10.1038/d41586-019-00012-4. Rodriguez-Perez R, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00434-7. Sandfort F, 2020, CHEM-US, V6, P1379, DOI 10.1016/j.chempr.2020.02.017. Scantlebury J, 2020, J CHEM INF MODEL, V60, P3722, DOI 10.1021/acs.jcim.0c00263. Schaduangrat N, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-0408-x. Schmidt J, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0221-0. Schneider P, 2020, NAT REV DRUG DISCOV, V19, P353, DOI 10.1038/s41573-019-0050-3. Segler MHS, 2018, ACS CENTRAL SCI, V4, P120, DOI 10.1021/acscentsci.7b00512. Senior AW, 2020, NATURE, V577, P706, DOI 10.1038/s41586-019-1923-7. Skuta C, 2017, NAT METHODS, V14, P758, DOI 10.1038/nmeth.4365. Smith J, 2020, EXSCIENTIAS 1 AI DES. Smith JS, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10827-4. Snell J, 2017, ADV NEUR IN, V30. Stahl N, 2019, J CHEM INF MODEL, V59, P3166, DOI 10.1021/acs.jcim.9b00325. Stevanovic S, 2019, MOLECULES, V24, DOI 10.3390/molecules24071282. Struble TJ, 2020, J MED CHEM, V63, P8667, DOI 10.1021/acs.jmedchem.9b02120. Tucs A, 2020, ACS OMEGA, V5, P22847, DOI 10.1021/acsomega.0c02088. Unterthiner T, 2014, P DEEP LEARN WORKSH, V27, P1. Vamathevan J, 2019, NAT REV DRUG DISCOV, V18, P463, DOI 10.1038/s41573-019-0024-5. van de Sande WWJ, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002550. Vanden Eynde JJ, 2020, MOLECULES, V25, DOI 10.3390/molecules25010119. Vardell Emily, 2020, Medical Reference Services Quarterly, V39, P67, DOI 10.1080/02763869.2019.1693231. Viira B, 2016, BIOORGAN MED CHEM, V24, P2519, DOI 10.1016/j.bmc.2016.04.018. Vilar S, 2014, NAT PROTOC, V9, P2147, DOI 10.1038/nprot.2014.151. Visscher PM, 2017, AM J HUM GENET, V101, P5, DOI 10.1016/j.ajhg.2017.06.005. Walters WP, 2020, NAT BIOTECHNOL, V38, P143, DOI 10.1038/s41587-020-0418-2. Wang YL, 2009, NUCLEIC ACIDS RES, V37, pW623, DOI 10.1093/nar/gkp456. Wang YH, 2020, CURR OPIN STRUC BIOL, V61, P139, DOI 10.1016/j.sbi.2019.12.016. Wheatley M, 2012, BRIT J PHARMACOL, V165, P1688, DOI 10.1111/j.1476-5381.2011.01629.x. Whitehouse AJ, 2019, J MED CHEM, V62, P10586, DOI 10.1021/acs.jmedchem.9b01203. WHO, 2011, WORLD MALARIA REPORT 2011, P1. WHO, 2010, SCREENING DONATED BLOOD FOR TRANSFUSION: TRANSMISSIBLE INFECTIONS, P1. World Health Organization, 2020, END NEGL ATT SUST DE. World Health Organization, 2020, WHO SCAB OTH ECT. World Health Organization, 2019, TECHNICAL REPORT SER, V304. World Health Organization, 2019, YAWS FACT SHEETS. World Health Organization, 2018, WHO LYMPH FIL EP. World Health Organization, 2011, REP WHO 2011. World Health Organization, 2016, FOODB TREM, P6. World Health Organization Media Centre, 2014, SOIL TRANSM HELM INF, V366. World Health Organization (WHO), 2020, ECH FACT SHEET. World Health Organization (WHO), GLOB HLTH OBS GHO DA. World Health Organization (WHO), 2020, DRAC GUIN WORM DIS F. Wu ZQ, 2018, CHEM SCI, V9, P513, DOI 10.1039/c7sc02664a. Yang JC, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00069. Yang X, 2019, CHEM REV, V119, P10520, DOI 10.1021/acs.chemrev.8b00728. Yosipof A, 2018, FRONT CHEM, V6, DOI 10.3389/fchem.2018.00162. Zhang J, 2019, J CHEM INF MODEL, V59, P4150, DOI 10.1021/acs.jcim.9b00633. Zhavoronkov A, 2019, NAT BIOTECHNOL, V37, P1038, DOI 10.1038/s41587-019-0224-x. Zong NS, 2017, BIOINFORMATICS, V33, P2337, DOI 10.1093/bioinformatics/btx160.}, Number-of-Cited-References = {181}, Times-Cited = {14}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {59}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {TV0HF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000604758900001}, DA = {2023-04-22}, } @article{ WOS:000793483600004, Author = {Chen, Chen and Yaari, Zvi and Apfelbaum, Elana and Grodzinski, Piotr and Shamay, Yosi and Heller, Daniel A.}, Title = {Merging data curation and machine learning to improve nanomedicines}, Journal = {ADVANCED DRUG DELIVERY REVIEWS}, Year = {2022}, Volume = {183}, Month = {APR}, Abstract = {Nanomedicine design is often a trial-and-error process, and the optimization of formulations and in vivo properties requires tremendous benchwork. To expedite the nanomedicine research progress, data science is steadily gaining importance in the field of nanomedicine. Recently, efforts have explored the potential to predict nanomaterials synthesis and biological behaviors via advanced data analytics. Machine learning algorithms process large datasets to understand and predict various material properties in nanomedicine synthesis, pharmacologic parameters, and efficacy. ``Big data{''} approaches may enable even larger advances, especially if researchers capitalize on data curation methods. However, the concomitant use of data curation processes needed to facilitate the acquisition and standardization of large, heterogeneous data sets, to support advanced data analytics methods such as machine learning has yet to be leveraged. Currently, data curation and data analytics areas of nanotechnology-focused data science, or `nanoinformatics', have been proceeding largely independently. This review highlights the current efforts in both areas and the potential opportunities for coordination to advance the capabilities of data analytics in nanomedicine.(c) 2022 Elsevier B.V. All rights reserved.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Heller, DA (Corresponding Author), Mem Sloan Kettering Canc Ctr, New York, NY 10065 USA. Chen, Chen; Yaari, Zvi; Heller, Daniel A., Mem Sloan Kettering Canc Ctr, New York, NY 10065 USA. Chen, Chen; Heller, Daniel A., Mem Sloan Kettering Canc Ctr, Triinst PhD Program Chem Biol, New York, NY 10065 USA. Apfelbaum, Elana; Heller, Daniel A., Cornell Univ, Dept Pharmacol, Weill Cornell Med, New York, NY 10065 USA. Grodzinski, Piotr, NCI, Nanodelivery Syst \& Devices Branch, NIH, Bethesda, MD 20892 USA. Shamay, Yosi, Technion Israel Inst Technol, Dept Biomed Engn, Haifa, Israel.}, DOI = {10.1016/j.addr.2022.114172}, EarlyAccessDate = {MAR 2022}, Article-Number = {114172}, ISSN = {0169-409X}, EISSN = {1872-8294}, Keywords = {Nanotechnology; Artificial intelligence; Nanoparticles; data mining; Cancer therapeutics; Particle characterization; Data curation}, Keywords-Plus = {PROTEIN CORONA; COLLOIDAL STABILITY; NANOPARTICLES; PREDICTION; SHAPE; SIZE; DELIVERY; DESIGN; NANOINFORMATICS; FORMULATION}, Research-Areas = {Pharmacology \& Pharmacy}, Web-of-Science-Categories = {Pharmacology \& Pharmacy}, Author-Email = {hellerd@mskcc.org}, Affiliations = {Memorial Sloan Kettering Cancer Center; Memorial Sloan Kettering Cancer Center; Cornell University; Weill Cornell Medicine; National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI); Technion Israel Institute of Technology}, ORCID-Numbers = {Chen, Chen/0000-0002-4803-0183}, Funding-Acknowledgement = {NCI {[}R01-CA215719, P30-CA008748]; NINDS {[}R01-NS116353]; American Cancer Society Research Scholar Grant {[}GC230452]; Louis and Rachel Rudin Foundation {[}901/91]; Alan and Sandra Gerry Metastasis Research Initiative; Commonwealth Foundation for Cancer Research; Experimental Therapeutics Center at Memorial Sloan Kettering Cancer Center; Israeli Science Foundation grant ISF}, Funding-Text = {This work was supported in part by the NCI (R01-CA215719, P30-CA008748) , NINDS (R01-NS116353) , the American Cancer Society Research Scholar Grant (GC230452) , the Expect Miracles Foundation-Financial Services Against Cancer, Emerson Collective, the Louis and Rachel Rudin Foundation, the Alan and Sandra Gerry Metastasis Research Initiative, the Center for Metastasis Research Scholars Fellowship Program, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, and the Experimental Therapeutics Center at Memorial Sloan Kettering Cancer Center. YS would like to thank funding from Israeli Science Foundation grant ISF\#901/91. Figure 1 and 2 were created with BioRender.com .}, Cited-References = {accessdata, SCRIPTS. Adir O, 2020, ADV MATER, V32, DOI 10.1002/adma.201901989. Alafeef M, 2020, ACS SENSORS, V5, P1689, DOI 10.1021/acssensors.0c00329. Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI {[}10.1146/annurev.bioeng-071811-150124, 10.1146/annurev-bioeng-071811-150124]. Alves VM, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aav9784. Anselmo AC, 2021, BIOENG TRANSL MED, V6, DOI 10.1002/btm2.10246. Aublant JM, 2020, ACS NANO, V14, P14255, DOI 10.1021/acsnano.0c08407. Auer A, 2020, BIOINFORMATICS, V36, P3620, DOI 10.1093/bioinformatics/btaa154. Ayala V, 2013, J NANOPART RES, V15, DOI 10.1007/s11051-013-1874-0. Bai CJ, 2020, MOL THER-ONCOLYTICS, V17, P9, DOI 10.1016/j.omto.2020.03.002. Ban Z, 2020, P NATL ACAD SCI USA, V117, P10492, DOI 10.1073/pnas.1919755117. Barenholz Y, 2012, J CONTROL RELEASE, V160, P117, DOI 10.1016/j.jconrel.2012.03.020. Begines B., 2020, RECENT DEV FUTURE PR, V10. Bento AP, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00456-1. Beynon R, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000022.pub3. Bhardwaj V, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01369. Blanco E, 2015, NAT BIOTECHNOL, V33, P941, DOI 10.1038/nbt.3330. Brinson LC, 2020, ACS MACRO LETT, V9, P1086, DOI 10.1021/acsmacrolett.0c00264. Brown TD, 2020, ACS BIOMATER SCI ENG, V6, P4916, DOI 10.1021/acsbiomaterials.0c00743. Bulbake U, 2017, PHARMACEUTICS, V9, DOI 10.3390/pharmaceutics9020012. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Cao CS, 2018, GENOM PROTEOM BIOINF, V16, P17, DOI 10.1016/j.gpb.2017.07.003. Cheng Q, 2020, NAT NANOTECHNOL, V15, P313, DOI 10.1038/s41565-020-0669-6. Choi JG, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19646-x. Cohen A. M., 2010, P ACM INT C HLTH INF. Curtis C, 2019, NANOSCALE, V11, P22515, DOI 10.1039/c9nr06327g. Dauga D, 2015, GENESIS, V53, P132, DOI 10.1002/dvg.22842. Del Pino P, 2014, MATER HORIZ, V1, P301, DOI 10.1039/c3mh00106g. Dey S, 2021, NAT REV METHOD PRIME, V1, DOI 10.1038/s43586-020-00009-8. Dimitri A., 2018, FRONTIERS NANOSCIENC, V4. Docter D, 2015, CHEM SOC REV, V44, P6094, DOI 10.1039/c5cs00217f. Donahue ND, 2019, ADV DRUG DELIVER REV, V143, P68, DOI 10.1016/j.addr.2019.04.008. educacionyfp, US. Egorov E, 2021, DRUG DELIV TRANSL RE, V11, P345, DOI 10.1007/s13346-021-00929-2. Elkordy AA, 2021, J DRUG DELIV SCI TEC, V63, DOI 10.1016/j.jddst.2021.102459. EMBL-EBI, US. Florez L, 2012, SMALL, V8, P2222, DOI 10.1002/smll.201102002. Francia V, 2020, BEILSTEIN J NANOTECH, V11, P338, DOI 10.3762/bjnano.11.25. Freitas A., 2016, NEW HORIZONS DATA DR, P87. Furxhi I, 2019, TOXICOL LETT, V312, P157, DOI 10.1016/j.toxlet.2019.05.016. Gaheen S., 2013, COMPUT SCI DISCOV, V6. Ghahramani Z, 2015, NATURE, V521, P452, DOI 10.1038/nature14541. Grondin CJ, 2016, ENVIRON HEALTH PERSP, V124, P1592, DOI 10.1289/EHP174. Ha MK, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21431-9. Hayashi Y, 2013, ENVIRON SCI TECHNOL, V47, P14367, DOI 10.1021/es404132w. He Y, 2020, J CONTROL RELEASE, V322, P274, DOI 10.1016/j.jconrel.2020.03.043. Holinski Alexandra, 2020, F1000Res, V9, DOI 10.12688/f1000research.25413.1. Hou XC, 2021, NAT REV MATER, V6, P1078, DOI 10.1038/s41578-021-00358-0. Huang Y, 2021, J CONTROL RELEASE, V334, P127, DOI 10.1016/j.jconrel.2021.04.016. idescat, US. Irizarry RA., 2020, HARV DATA SCI REV, V2, DOI {[}10.1162/99608f92.dd363929, DOI 10.1162/99608F92.DD363929]. Jeliazkova N, 2015, BEILSTEIN J NANOTECH, V6, P1609, DOI 10.3762/bjnano.6.165. Jiang Q, 2019, ADV MATER, V31, DOI 10.1002/adma.201804785. Jones DE, 2016, COMPUT METH PROG BIO, V132, P93, DOI 10.1016/j.cmpb.2016.04.025. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Juan A, 2020, PHARMACEUTICS, V12, DOI 10.3390/pharmaceutics12090802. Kabanov AV, 2003, ADV DRUG DELIVER REV, V55, P151, DOI 10.1016/S0169-409X(02)00176-X. Kang B, 2015, CHEM SOC REV, V44, P8301, DOI 10.1039/c5cs00092k. Kang H, 2015, NANOSCALE, V7, P18848, DOI 10.1039/c5nr05264e. Karolinska Institutet, US. Kingston BR, 2019, P NATL ACAD SCI USA, V116, P14937, DOI 10.1073/pnas.1907646116. Kinnear C, 2017, CHEM REV, V117, P11476, DOI 10.1021/acs.chemrev.7b00194. Kister T, 2018, ACS NANO, V12, P5969, DOI 10.1021/acsnano.8b02202. Kotzabasaki MI, 2020, RSC ADV, V10, P5385, DOI 10.1039/c9ra09475j. Kuehn BM, 2021, JAMA-J AM MED ASSOC, V325, P1931, DOI 10.1001/jama.2021.7215. Kumar R, 2020, ACS NANO, V14, P17626, DOI 10.1021/acsnano.0c08549. Labouta HI, 2019, ACS NANO, V13, P1583, DOI 10.1021/acsnano.8b07562. Launer-Wachs S, 2022, bioRxiv, DOI {[}10.1101/2022.02.13.480241, DOI 10.1101/2022.02.13.480241]. Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682. Lever J, 2019, NAT METHODS, V16, P505, DOI 10.1038/s41592-019-0422-y. Lijowski M., 2010, NATURE PRECEDINGS. Liu SY, 2020, NAT BIOMED ENG, V4, P1063, DOI 10.1038/s41551-020-00637-1. Lyngdoh A, 2013, CHANDOS DIGIT INFORM, P153. Maastricht University, US. Manzari MT, 2021, NAT REV MATER, V6, P351, DOI 10.1038/s41578-020-00269-6. Maojo V, 2012, INT J NANOMED, V7, P3867, DOI 10.2147/IJN.S24582. Maojo V, 2010, PEDIATR RES, V67, P481, DOI 10.1203/PDR.0b013e3181d6245e. Miele E, 2009, INT J NANOMED, V4, P99. Miller AL, 2007, J OCCUP ENVIRON HYG, V4, pD131, DOI 10.1080/15459620701683947. MISVIK BIOLOGY LTD, US. Mitragotri S, 2014, NAT REV DRUG DISCOV, V13, P655, DOI 10.1038/nrd4363. Mizrachi A, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14292. Monopoli MP, 2011, J AM CHEM SOC, V133, P2525, DOI 10.1021/ja107583h. Morris SA, 2015, BEILSTEIN J NANOTECH, V6, P1580, DOI 10.3762/bjnano.6.161. Mulvaney P, 2016, ACS NANO, V10, P9763, DOI 10.1021/acsnano.6b07629. National Technical University Of Athens, US. Ouyang B, 2020, NAT MATER, V19, P1362, DOI 10.1038/s41563-020-0755-z. Panch T, 2018, J GLOB HEALTH, V8, DOI 10.7189/jogh.08.020303. Panneerselvam S, 2014, INT J MOL SCI, V15, P7158, DOI 10.3390/ijms15057158. Pellegrino F., 2020, SCI REP-UK, V10. Pollice R, 2021, ACCOUNTS CHEM RES, V54, P849, DOI 10.1021/acs.accounts.0c00785. Poon W, 2020, NAT NANOTECHNOL, V15, P819, DOI 10.1038/s41565-020-0759-5. Pottel J, 2020, SCIENCE, V369, P403, DOI 10.1126/science.aaz9906. Provost F, 2013, BIG DATA, V1, P51, DOI 10.1089/big.2013.1508. Raccuglia P, 2016, NATURE, V533, P73, DOI 10.1038/nature17439. Rasmussen MK, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15889-3. Reker D, 2021, NAT NANOTECHNOL, V16, P725, DOI 10.1038/s41565-021-00870-y. Reker D, 2019, SCI TRANSL MED, V11, DOI 10.1126/scitranslmed.aau6753. Russo DP, 2020, ANAL CHEM, V92, P13971, DOI 10.1021/acs.analchem.0c02878. Rybinska-Fryca A, 2020, NANOSCALE, V12, P20669, DOI 10.1039/d0nr05220e. Sanita G, 2020, FRONT MOL BIOSCI, V7, DOI 10.3389/fmolb.2020.587012. Schneider P, 2020, NAT REV DRUG DISCOV, V19, P353, DOI 10.1038/s41573-019-0050-3. Shamay Y, 2018, NAT MATER, V17, P361, DOI 10.1038/s41563-017-0007-z. Shamay Y, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aaf7374. silico toxicology, US. Singh AV, 2020, ADV INTELL SYST-GER, V2, DOI 10.1002/aisy.202000084. Singh AV, 2021, ACS APPL MATER INTER, V13, P1943, DOI 10.1021/acsami.0c18470. Singh AV, 2020, ADV HEALTHC MATER, V9, DOI 10.1002/adhm.201901862. Sterling T, 2015, J CHEM INF MODEL, V55, P2324, DOI 10.1021/acs.jcim.5b00559. Stetefeld Jorg, 2016, Biophys Rev, V8, P409, DOI 10.1007/s12551-016-0218-6. Stillman NR, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00366-8. Sun DX, 2020, ACS NANO, V14, P12281, DOI 10.1021/acsnano.9b09713. Tao HC, 2021, NAT REV MATER, V6, P701, DOI 10.1038/s41578-021-00337-5. Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7. Toy R, 2014, NANOMEDICINE-UK, V9, P121, DOI 10.2217/nnm.13.191. Tran PHL, 2020, INT J PHARMACEUT, V575, DOI 10.1016/j.ijpharm.2019.118956. Ventola C Lee, 2017, P T, V42, P742. Wang PF, 2018, J AM CHEM SOC, V140, P2478, DOI 10.1021/jacs.7b09024. Wilhelm S, 2016, NAT REV MATER, V1, DOI 10.1038/natrevmats.2016.14. Xiao ZY, 2012, ACS NANO, V6, P3670, DOI 10.1021/nn301869z. Yamankurt G, 2019, NAT BIOMED ENG, V3, P318, DOI 10.1038/s41551-019-0351-1. Yan XL, 2020, ACS SUSTAIN CHEM ENG, V8, P19096, DOI 10.1021/acssuschemeng.0c07453. Yan XL, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16413-3. Ye Z, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162721. Yoo J, 2019, CANCERS, V11, DOI 10.3390/cancers11050640. Youshia J, 2017, EUR J PHARM BIOPHARM, V119, P333, DOI 10.1016/j.ejpb.2017.06.030. Yu FB, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abf4130. Yu WQ, 2020, ACS CENTRAL SCI, V6, P100, DOI 10.1021/acscentsci.9b01139. Zanganeh S, 2016, INT J BIOCHEM CELL B, V75, P143, DOI 10.1016/j.biocel.2016.01.005. Zhang H, 2018, SMALL, V14, DOI 10.1002/smll.201800360. Zheng S, 2019, METHODS MOL BIOL, V1939, P231, DOI 10.1007/978-1-4939-9089-4\_13. Zhu H, 2020, ANNU REV PHARMACOL, V60, P573, DOI 10.1146/annurev-pharmtox-010919-023324. Zhu H, 2020, CHEM COMMUN, V56, P8131, DOI 10.1039/d0cc02592e.}, Number-of-Cited-References = {133}, Times-Cited = {10}, Usage-Count-Last-180-days = {16}, Usage-Count-Since-2013 = {43}, Journal-ISO = {Adv. Drug Deliv. Rev.}, Doc-Delivery-Number = {1D0EN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000793483600004}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000456614000014, Author = {Chan, Stephen and Siegel, Eliot L.}, Title = {Will machine learning end the viability of radiology as a thriving medical specialty?}, Journal = {BRITISH JOURNAL OF RADIOLOGY}, Year = {2019}, Volume = {92}, Number = {1094}, Abstract = {There have been tremendous advances in artificial intelligence (AI) and machine learning (ML) within the past decade, especially in the application of deep learning to various challenges. These include advanced competitive games (such as Chess and Go), self-driving cars, speech recognition, and intelligent personal assistants. Rapid advances in computer vision for recognition of objects in pictures have led some individuals, including computer science experts and health care system experts in machine learning, to make predictions that ML algorithms will soon lead to the replacement of the radiologist. However, there are complex technological, regulatory, and medicolegal obstacles facing the implementation of machine learning in radiology that will definitely preclude replacement of the radiologist by these algorithms within the next two decades and beyond. While not a comprehensive review of machine learning, this article is intended to highlight specific features of machine learning which face significant technological and health care systems challenges. Rather than replacing radiologists, machine learning will provide quantitative tools that will increase the value of diagnostic imaging as a biomarker, increase image quality with decreased acquisition times, and improve workflow, communication, and patient safety. In the foreseeable future, we predict that today's generation of radiologists will be replaced not by ML algorithms, but by a new breed of data science-savvy radiologists who have embraced and harnessed the incredible potential that machine learning has to advance our ability to care for our patients. In this way, radiology will remain a viable medical specialty for years to come.}, Publisher = {BRITISH INST RADIOLOGY}, Address = {36 PORTLAND PLACE, LONDON W1N 4AT, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Chan, S (Corresponding Author), Harlem Hosp Med Ctr, Dept Radiol, New York, NY 10037 USA. Chan, S (Corresponding Author), Columbia Univ, New York, NY 10027 USA. Chan, Stephen, Harlem Hosp Med Ctr, Dept Radiol, New York, NY 10037 USA. Chan, Stephen, Columbia Univ, New York, NY 10027 USA. Siegel, Eliot L., VA Maryland Hlth Care Syst, Dept Diagnost Radiol \& Nucl Med, Baltimore, MD USA.}, DOI = {10.1259/bjr.20180416}, Article-Number = {20180416}, ISSN = {0007-1285}, EISSN = {1748-880X}, Keywords-Plus = {COMPUTER-AIDED DETECTION; MAMMOGRAPHY; MODEL}, Research-Areas = {Radiology, Nuclear Medicine \& Medical Imaging}, Web-of-Science-Categories = {Radiology, Nuclear Medicine \& Medical Imaging}, Author-Email = {sc56md@gmail.com}, Affiliations = {Columbia University}, Cited-References = {Acemoglu D., 2017, WORKING PAPER. {[}Anonymous], 2016, VIDEO RSNA 2016 AI R. {[}Anonymous], 1997, INNOVATORS DILEMMA. Bahl M, 2018, RADIOLOGY, V286, P810, DOI 10.1148/radiol.2017170549. BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x. Birdwell RL, 2009, RADIOLOGY, V253, P9, DOI 10.1148/radiol.2531090611. Bloch A, 1979, MURPHYS LAW OTHER RE, V41. Brynjolfson E, 2014, 2 MACHINE AGE, P192. Chan Stephen, 2006, J Am Coll Radiol, V3, P778, DOI 10.1016/j.jacr.2006.03.014. Chockley K, 2016, J AM COLL RADIOL, V13, P1415, DOI 10.1016/j.jacr.2016.07.010. Christiansen CM, 2015, HARVARD BUS REV. Dargan R, 2017, NOT SO ELEMENTARY EX. Davenport T, 2018, AI WILL CHANGE RADIO. Ding JR, 2012, BIOINFORMATICS, V28, P167, DOI 10.1093/bioinformatics/btr629. Domingos P, 2015, MASTER ALGORITHM QUE, P25. Domingos P, 2012, COMMUN ACM, V55, P78, DOI 10.1145/2347736.2347755. Dreyer K, 2016, 2016 ANN M RAD SOC N. Edwards, 2017, FDA GUIDANCE CLIN DE. Enzmann DR, 2014, J AM COLL RADIOL, V11, P464, DOI 10.1016/j.jacr.2013.12.006. Erickson BJ, 2018, J AM COLL RADIOL, V15, P521, DOI 10.1016/j.jacr.2017.12.027. Fenton JJ, 2011, J NATL CANCER I, V103, P1152, DOI 10.1093/jnci/djr206. Freer TW, 2001, RADIOLOGY, V220, P781, DOI 10.1148/radiol.2203001282. Grove A. S., 1996, ONLY PARANOID SURVIV. Gunderman R, 2003, RADIOLOGY, V229, P314, DOI 10.1148/radiol.2292030030. Henson J, 1967, PAPERWORK EXPLOSION. Itti L, 1998, IEEE T PATTERN ANAL, V20, P1254, DOI 10.1109/34.730558. Jackson WL, 2014, THE STATE OF CAD FOR. Keats T.E., 2013, ATLAS NORMAL ROENTGE. Kelly Kevin, 2016, INEVITABLE UNDERSTAN. Kim C, 2018, BARRONS LIPPER MUTUA, pL7. Knight W, 2018, MIT TECHNOLOGY REV. Koch C., 2016, SCI AM. Kohli M, 2017, AM J ROENTGENOL, V208, P754, DOI 10.2214/AJR.16.17224. Kohli MD, 2017, J DIGIT IMAGING, V30, P392, DOI 10.1007/s10278-017-9976-3. Lakhani P, 2017, RADIOLOGY, V284, P574, DOI 10.1148/radiol.2017162326. Lewis-Kraus G., 2016, GREAT AI AWAKENING. LUSTED LB, 1971, SCIENCE, V171, P1217, DOI 10.1126/science.171.3977.1217. Marr B, 2018, 6 BEST FREE ONLINE A. MASARIE FE, 1985, COMPUT BIOMED RES, V18, P458, DOI 10.1016/0010-4809(85)90022-9. McBee MP, 2018, ACAD RADIOL, DOI {[}10.106/j.acra.2018.02.018, DOI 10.106/J.ACRA.2018.02.018]. McGinty G, 2013, IMAGING 3 0TM. McKinsey Global Institute, 2017, FUT WORKS AUT EMPL P. MCNEIL BJ, 1984, MED DECIS MAKING, V4, P137, DOI 10.1177/0272989X8400400203. METZ CE, 1978, SEMIN NUCL MED, V8, P283, DOI 10.1016/S0001-2998(78)80014-2. Mezrich JL, 2015, J AM COLL RADIOL, V12, P572, DOI 10.1016/j.jacr.2014.10.025. Muhkerjee S. A.I., 2017, WHAT HAPPENS DIAGNOS. News FDA, 2018, ART WINS FDA CLEAR O. Noble M, 2009, ARCH GYNECOL OBSTET, V279, P881, DOI 10.1007/s00404-008-0841-y. Oakden-Rayner L, 2018, PHILOS ARGUMENT USIN. Partners R, 2017, RAD PARTN JOINT IBM. Philpotts LE, 2009, RADIOLOGY, V253, P17, DOI 10.1148/radiol.2531090689. Polikar R., 2006, IEEE Circuits and Systems Magazine, V6, P21, DOI 10.1109/MCAS.2006.1688199. Rao VM, 2010, J AM COLL RADIOL, V7, P802, DOI 10.1016/j.jacr.2010.05.019. Ruder S., 2017, TRANSFER LEARNING MA. Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y. Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270. Simonyan K., 2013, DEEP INSIDE CONVOLUT. Tanz J, 2016, SOON WE WONT PROGRAM. Terdiman T, 2018, FACEBOOK NYU BELIEVE. The American Medical Association, 2018, AMA PASS 1 POL REC A. Thompson C, 2013, RISE CENTAURS, P1. U.S. Food and Drug Administration, 2018, EXP ABBR 510 K PROGR. U.S. Food and Drug Administration, 2018, BRIEF FDA OFF VOL MO. U.S. Food and Drug Administration, 2018, FDA PERM MARK ART IN. US Food and Drug Administration,, 2018, FDA PERM MARK CLIN D. Verghese A, 2018, JAMA-J AM MED ASSOC, V319, P19, DOI 10.1001/jama.2017.19198. Walter S, 2018, COMMUNICATION. Zhang Q., 2018, VISUAL INTERPRETABIL. Zhu S-C, 2017, INTERPRETING CNN KNO.}, Number-of-Cited-References = {69}, Times-Cited = {44}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {25}, Journal-ISO = {Br. J. Radiol.}, Doc-Delivery-Number = {HI7CW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000456614000014}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000727577100002, Author = {Kong, Sung Hye and Shin, Chan Soo}, Title = {Applications of Machine Learning in Bone and Mineral Research}, Journal = {ENDOCRINOLOGY AND METABOLISM}, Year = {2021}, Volume = {36}, Number = {5}, Pages = {928-937}, Month = {OCT}, Abstract = {In this unprecedented era of the overwhelming volume of medical data, machine learning can be a promising tool that may shed light on an individualized approach and a better understanding of the disease in the field of osteoporosis research, similar to that in other research fields. This review aimed to provide an overview of the latest studies using machine learning to address issues, mainly focusing on osteoporosis and fractures. Machine learning models for diagnosing and classifying osteoporosis and detecting fractures from images have shown promising performance. Fracture risk prediction is another promising field of research, and studies are being conducted using various data sources. However, these approaches may be biased due to the nature of the techniques or the quality of the data. Therefore, more studies based on the proposed guidelines are needed to improve the technical feasibility and generalizability of artificial intelligence algorithms.}, Publisher = {KOREAN ENDOCRINE SOC}, Address = {101-2503, 109 MAPO-DAERO, MAPO-GU, SEOUL, 04146, SOUTH KOREA}, Type = {Review}, Language = {English}, Affiliation = {Shin, CS (Corresponding Author), Seoul Natl Univ, Dept Internal Med, Coll Med, 101 Daehak Ro, Seoul 03080, South Korea. Kong, Sung Hye; Shin, Chan Soo, Seoul Natl Univ, Dept Internal Med, Coll Med, 101 Daehak Ro, Seoul 03080, South Korea. Kong, Sung Hye, Seoul Natl Univ, Dept Internal Med, Bundang Hosp, Seongnam, South Korea. Shin, Chan Soo, Seoul Natl Univ Hosp, Dept Internal Med, Seoul, South Korea.}, DOI = {10.3803/EnM.2021.1111}, ISSN = {2093-596X}, EISSN = {2093-5978}, Keywords = {Osteoporosis; Data science; Medical informatics}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORKS; AUTOMATED CLASSIFICATION; TEXTURE ANALYSIS; FRACTURES; RISK; DENSITY; RADIOGRAPHS; DIAGNOSIS}, Research-Areas = {Endocrinology \& Metabolism}, Web-of-Science-Categories = {Endocrinology \& Metabolism}, Author-Email = {csshin@snu.ac.kr}, Affiliations = {Seoul National University (SNU); Seoul National University (SNU); Seoul National University (SNU); Seoul National University Hospital}, ORCID-Numbers = {Kong, Sung Hye/0000-0002-8791-0909}, Funding-Acknowledgement = {Korea Research Foundation {[}2021R1A2C2003410]}, Funding-Text = {This study was funded by the Korea Research Foundation (Proj-ect number 2021R1A2C2003410) .}, Cited-References = {Adams M, 2019, J MED IMAG RADIAT ON, V63, P27, DOI 10.1111/1754-9485.12828. Almog YA, 2020, J MED INTERNET RES, V22, DOI 10.2196/22550. {[}Anonymous], 2018, NATURE, V555, P285, DOI 10.1038/d41586-018-03067-x. {[}Anonymous], 2018, LANCET, V392, P95, DOI 10.1016/S0140-6736(18)31562-9. {[}Anonymous], 2021, FDA CLEAR ALG. Areeckal AS, 2018, OSTEOPOROSIS INT, V29, P665, DOI 10.1007/s00198-017-4328-1. Aspray TJ, 2013, AGE AGEING, V42, P548, DOI 10.1093/ageing/aft095. Badgeley MA, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0105-1. Basu S, 2018, DIABETES CARE, V41, P604, DOI 10.2337/dc17-2252. Brett Alan, 2009, Spine (Phila Pa 1976), V34, P2437, DOI 10.1097/BRS.0b013e3181b2eb69. Burns JE, 2017, RADIOLOGY, V284, P788, DOI 10.1148/radiol.2017162100. Carballido-Gamio J, 2019, ANN BIOMED ENG, V47, P2199, DOI 10.1007/s10439-019-02298-x. Chen YF, 2018, J HEALTHC ENG, V2018, DOI 10.1155/2018/9621640. Chung SW, 2018, ACTA ORTHOP, V89, P468, DOI 10.1080/17453674.2018.1453714. Cook S, 2012, PROGRAMMING DEV GUID. Cuaya-Simbro G, 2020, FOUND COMPUT DECIS S, V45, P65, DOI 10.2478/fcds-2020-0005. Dimitriadis Vlasios K, 2021, Stud Health Technol Inform, V281, P555, DOI 10.3233/SHTI210232. Dwivedi R., 2020, REVISITING COMPLEXIT. Engels A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232969. England JR, 2019, AM J ROENTGENOL, V212, P513, DOI 10.2214/AJR.18.20490. Fan YH, 2020, ENDOCRINE, V67, P412, DOI 10.1007/s12020-019-02121-6. Fang YJ, 2021, EUR RADIOL, V31, P1831, DOI 10.1007/s00330-020-07312-8. Gebre RK, 2021, ANN BIOMED ENG, V49, P367, DOI 10.1007/s10439-020-02563-4. Gonzalez G, 2018, PROC SPIE, V10574, DOI 10.1117/12.2293455. Hong N, 2020, ENDOCRINOL METAB, V35, P71, DOI 10.3803/EnM.2020.35.1.71. Ibrahim H, 2021, TRIALS, V22, DOI 10.1186/s13063-020-04951-6. Jimenez-Sanchez A, 2020, INT J COMPUT ASS RAD, V15, P847, DOI 10.1007/s11548-020-02150-x. Kanis JA, 2017, J CLIN DENSITOM, V20, P360, DOI 10.1016/j.jocd.2017.06.022. Kim DH, 2018, CLIN RADIOL, V73, P439, DOI 10.1016/j.crad.2017.11.015. Kim DW, 2019, KOREAN J RADIOL, V20. Kim Ha Young, 2017, J Bone Metab, V24, P125, DOI 10.11005/jbm.2017.24.2.125. Kitamura G, 2020, EUR J RADIOL, V130, DOI 10.1016/j.ejrad.2020.109139. Kong SH, 2020, JBMR PLUS, V4, DOI 10.1002/jbm4.10337. Korfiatis VC, 2018, IEEE J BIOMED HEALTH, V22, P1189, DOI 10.1109/JBHI.2017.2723463. Krishnaraj A, 2019, J AM COLL RADIOL, V16, P1473, DOI 10.1016/j.jacr.2019.02.033. Kruse C, 2017, OSTEOPOROSIS INT, V28, P819, DOI 10.1007/s00198-016-3828-8. Kruse C, 2017, CALCIFIED TISSUE INT, V100, P348, DOI 10.1007/s00223-017-0238-7. Lee JS, 2019, DENTOMAXILLOFAC RAD, V48, DOI 10.1259/dmfr.20170344. Leiserson MDM, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0208422. Lindsey R, 2018, P NATL ACAD SCI USA, V115, P11591, DOI 10.1073/pnas.1806905115. Liu J, 2020, J MED SYST, V44, DOI 10.1007/s10916-019-1502-3. Mawatari T, 2020, EUR J RADIOL, V130, DOI 10.1016/j.ejrad.2020.109188. Meng J, 2019, J INT MED RES, V47, P3088, DOI 10.1177/0300060519850648. Muehlematter UJ, 2019, EUR RADIOL, V29, P2207, DOI 10.1007/s00330-018-5846-8. Murata K, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-76866-w. Mutasa S, 2020, J DIGIT IMAGING, V33, P1209, DOI 10.1007/s10278-020-00364-8. Nam KH, 2019, J KOREAN NEUROSURG S, V62, P442, DOI 10.3340/jkns.2018.0178. National Osteoporosis Foundation National Bone Health Policy, 2019, NEW REPORT BURDEN OS. Olczak J, 2017, ACTA ORTHOP, V88, P581, DOI 10.1080/17453674.2017.1344459. Park SH, 2018, RADIOLOGY, V286, P800, DOI 10.1148/radiol.2017171920. Pranata YD, 2019, COMPUT METH PROG BIO, V171, P27, DOI 10.1016/j.cmpb.2019.02.006. Shim JG, 2020, ARCH OSTEOPOROS, V15, DOI 10.1007/s11657-020-00802-8. Shioji Mitsunori, 2017, BMC Res Notes, V10, P590, DOI 10.1186/s13104-017-2910-4. Singh A, 2017, COMPUT BIOL MED, V91, P148, DOI 10.1016/j.compbiomed.2017.10.011. Snyder A, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002309. Sounderajah V, 2020, NAT MED, V26, P807, DOI 10.1038/s41591-020-0941-1. Su Y, 2019, JBMR PLUS, V3, DOI 10.1002/jbm4.10207. Sun C, 2017, IEEE I CONF COMP VIS, P843, DOI 10.1109/ICCV.2017.97. Sun XX, 2020, J MATER CHEM B, V8, P6027, DOI 10.1039/d0tb00476f. Tecle N, 2020, J HAND SURG-AM, V45, P175, DOI 10.1016/j.jhsa.2019.11.019. Tomita N, 2018, COMPUT BIOL MED, V98, P8, DOI 10.1016/j.compbiomed.2018.05.011. Urakawa T, 2019, SKELETAL RADIOL, V48, P239, DOI 10.1007/s00256-018-3016-3. Valentinitsch A, 2019, OSTEOPOROSIS INT, V30, P1275, DOI 10.1007/s00198-019-04910-1. Wang J, 2019, OSTEOPOROSIS INT, V30, P1491, DOI 10.1007/s00198-019-04892-0. Wang YS, 2020, J BIOMED INFORM, V102, DOI 10.1016/j.jbi.2019.103364. Weber GM, 2014, JAMA-J AM MED ASSOC, V311, P2479, DOI 10.1001/jama.2014.4228. Williams SA, 2019, NAT MED, V25, P1851, DOI 10.1038/s41591-019-0665-2. Yamada Y, 2020, ACTA ORTHOP, V91, P699, DOI 10.1080/17453674.2020.1803664. Yamamoto N, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10111534. Yasaka K, 2020, EUR RADIOL, V30, P3549, DOI 10.1007/s00330-020-06677-0. Ye CY, 2020, INT J MED INFORM, V137, DOI 10.1016/j.ijmedinf.2020.104105. Yu JS, 2020, CLIN RADIOL, V75, DOI 10.1016/j.crad.2019.10.022. Zhang B, 2020, BONE, V140, DOI 10.1016/j.bone.2020.115561. Zhang TX, 2019, BIOMARKERS, V24, P120, DOI 10.1080/1354750X.2018.1539767. Zheng KN, 2020, ARTIF INTELL MED, V107, DOI 10.1016/j.artmed.2020.101885.}, Number-of-Cited-References = {75}, Times-Cited = {3}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {12}, Journal-ISO = {Endocrinol. Metab.}, Doc-Delivery-Number = {XK6MK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000727577100002}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000594311100001, Author = {Ben Atitallah, Safa and Driss, Maha and Boulila, Wadii and Ben Ghezala, Henda}, Title = {Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions}, Journal = {COMPUTER SCIENCE REVIEW}, Year = {2020}, Volume = {38}, Month = {NOV}, Abstract = {The rapid growth of urban populations worldwide imposes new challenges on citizens' daily lives, including environmental pollution, public security, road congestion, etc. New technologies have been developed to manage this rapid growth by developing smarter cities. Integrating the Internet of Things (IoT) in citizens' lives enables the innovation of new intelligent services and applications that serve sectors around the city, including healthcare, surveillance, agriculture, etc. IoT devices and sensors generate large amounts of data that can be analyzed to gain valuable information and insights that help to enhance citizens' quality of life. Deep Learning (DL), a new area of Artificial Intelligence (AI), has recently demonstrated the potential for increasing the efficiency and performance of IoT big data analytics. In this survey, we provide a review of the literature regarding the use of IoT and DL to develop smart cities. We begin by defining the IoT and listing the characteristics of IoT-generated big data. Then, we present the different computing infrastructures used for IoT big data analytics, which include cloud, fog, and edge computing. After that, we survey popular DL models and review the recent research that employs both IoT and DL to develop smart applications and services for smart cities. Finally, we outline the current challenges and issues faced during the development of smart city services. (C) 2020 Elsevier Inc. All rights reserved.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Driss, M (Corresponding Author), Univ Manouba, Natl Sch Comp Sci, RIADI Lab, Manouba, Tunisia. Ben Atitallah, Safa; Driss, Maha; Boulila, Wadii; Ben Ghezala, Henda, Univ Manouba, Natl Sch Comp Sci, RIADI Lab, Manouba, Tunisia. Driss, Maha; Boulila, Wadii, Taibah Univ, Coll Comp Sci \& Engn, Medina, Saudi Arabia.}, DOI = {10.1016/j.cosrev.2020.100303}, Article-Number = {100303}, ISSN = {1574-0137}, EISSN = {1876-7745}, Keywords = {Internet of Things; Deep Learning; Smart city; Big data analytics; Review}, Keywords-Plus = {CONVOLUTIONAL NEURAL-NETWORKS; FALL DETECTION; INTERNET; THINGS; CHALLENGES; CLASSIFICATION; ARCHITECTURES; REQUIREMENTS; AGRICULTURE; PREDICTION}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory \& Methods}, Author-Email = {maha.idriss@riadi.rnu.tn}, Affiliations = {Universite de la Manouba; Taibah University}, ResearcherID-Numbers = {Ben Ghezala, Henda Hajjami/AAK-7052-2021 Boulila, Wadii/AGY-5718-2022 }, ORCID-Numbers = {Ben Ghezala, Henda Hajjami/0000-0002-6874-1388 Driss, Maha/0000-0001-8236-8746 Boulila, Wadii/0000-0003-2133-0757 Ben Atitallah, safa/0000-0003-0796-3507}, Cited-References = {Abbasi A, 2014, 2014 IEEE JOINT INTELLIGENCE AND SECURITY INFORMATICS CONFERENCE (JISIC), P56, DOI 10.1109/JISIC.2014.18. Abu Alsheikh M, 2016, IEEE NETWORK, V30, P22, DOI 10.1109/MNET.2016.7474340. Adhikari K., 2019, INT J COMPUT SYST EN, P255. Agiwal M, 2016, IEEE COMMUN SURV TUT, V18, P1617, DOI 10.1109/COMST.2016.2532458. Ahmed E, 2017, COMPUT NETW, V129, P459, DOI 10.1016/j.comnet.2017.06.013. Aicha AN, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18051654. Al Nuaimi E, 2015, J INTERNET SERV APPL, V6, DOI 10.1186/s13174-015-0041-5. Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095. Al-Sarem M, 2019, IEEE ACCESS, V7, P152788, DOI 10.1109/ACCESS.2019.2947855. Ali AH, 2019, INT J INTEGR ENG, V11, P138. Ali MS, 2019, IEEE COMMUN SURV TUT, V21, P1676, DOI 10.1109/COMST.2018.2886932. Ali S, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18124226. Amato G, 2017, EXPERT SYST APPL, V72, P327, DOI 10.1016/j.eswa.2016.10.055. {[}Anonymous], 2020, CHAINER FLEXIBLE FRA. {[}Anonymous], 2015, NATURE, DOI DOI 10.1038/NATURE14539. {[}Anonymous], 2018, AIRNET MACHINE LEARN. {[}Anonymous], 2019, APPL SCI BASEL, DOI DOI 10.3390/APP9204237. {[}Anonymous], 2016, P 25 INT JOINT C ART. {[}Anonymous], 2016, PROC INT CONF DATA. {[}Anonymous], 2015, SOFTWARE, DOI DOI 10.5431/ARAMIT5201. {[}Anonymous], 2015, US. {[}Anonymous], 2020, TYPES ANAL DESCRIPTI. Arulkumaran K, 2017, IEEE SIGNAL PROC MAG, V34, P26, DOI 10.1109/MSP.2017.2743240. Athira V., 2018, PROCEDIA COMPUT SCI, V132, P1394, DOI 10.1016/j.procs.2018.05.068. Badar M, 2020, COMPUT SCI REV, V35, DOI 10.1016/j.cosrev.2019.100203. Bastien F., 2012, P DEEP LEARN UNS FEA. Bengio Y., 2007, NIPS 06, P153, DOI DOI 10.7551/MITPRESS/7503.003.0024. Bengio Y., 2015, DEEP LEARNING. Bertsimas D, 2020, MANAGE SCI, V66, P1025, DOI 10.1287/mnsc.2018.3253. Bonomi F., 2012, P 1 ED MCC WORKSH MO, P13, DOI {[}DOI 10.1145/2342509.2342513, 10.1145/2342509.2342513]. Bonomi F., 2014, BIG DATA INTERNET TH, P169, DOI DOI 10.1007/978-3-319-05029-4\_7. Bostami B, 2019, EAI SPRINGER INNOVAT, P47, DOI 10.1007/978-3-319-93557-7\_4. Botta A, 2016, FUTURE GENER COMP SY, V56, P684, DOI 10.1016/j.future.2015.09.021. Boulila W, 2019, EARTH SCI INFORM, V12, P295, DOI 10.1007/s12145-018-00376-7. Boulila W, 2018, EARTH SCI INFORM, V11, P31, DOI 10.1007/s12145-017-0313-7. Brynjolfsson E., 2017, HARVARD BUSINESS REV. Bu FY, 2019, FUTURE GENER COMP SY, V99, P500, DOI 10.1016/j.future.2019.04.041. Buhrmester V., 2019, ANAL EXPLAINERS BLAC. Bura H, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON COGNITIVE COMPUTING (ICCC), P17, DOI 10.1109/ICCC.2018.00010. Cai BY, 2019, IEEE INTERNET THINGS, V6, P7693, DOI 10.1109/JIOT.2019.2902887. Chebbi I, 2018, 2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP). Chebbi I, 2015, LECT NOTES ARTIF INT, V9330, P638, DOI 10.1007/978-3-319-24306-1\_62. Chen JS, 2019, P IEEE, V107, P1655, DOI 10.1109/JPROC.2019.2921977. Chen M., 2014, BIG DATA RELATED TEC. Chen Q, 2019, IEEE TETCI, V3, P392, DOI 10.1109/TETCI.2019.2907718. Chen SW, 2017, IEEE ROBOT AUTOM LET, V2, P781, DOI 10.1109/LRA.2017.2651944. Chen XW, 2014, IEEE ACCESS, V2, P514, DOI 10.1109/ACCESS.2014.2325029. Chung A, 2020, PRACT PERIOD STRUCT, V25, DOI 10.1061/(ASCE)SC.1943-5576.0000463. Cisek D., 2017, P 2017 NEW YORK SCI, P1. Collobert R, 2011, BIGLEARN NIPS WORKSH. Dai B, 2017, IEEE I CONF COMP VIS, P2989, DOI 10.1109/ICCV.2017.323. de Almeida PRL, 2015, EXPERT SYST APPL, V42, P4937, DOI 10.1016/j.eswa.2015.02.009. Deng C, 2019, IEEE T GEOSCI REMOTE, V57, P1741, DOI 10.1109/TGRS.2018.2868851. Deng L, 2014, APSIPA TRANS SIGNAL, V3, DOI 10.1017/atsip.2013.9. Din IU, 2019, MULTIMED TOOLS APPL, V78, P30241, DOI 10.1007/s11042-018-6943-z. Driss Maha, 2008, Proceedings 3rd International Design and Test Workshop (IDT 2008), P45, DOI 10.1109/IDT.2008.4802463. Driss M., 2011, ACM INT C P SERIES, P106, DOI DOI 10.1145/2095536.2095556. Driss M, 2020, IEEE ACCESS, V8, P59326, DOI 10.1109/ACCESS.2020.2982592. Driss M, 2008, PROCEEDINGS OF THE SIXTH IEEE EUROPEAN CONFERENCE ON WEB SERVICES, P73, DOI 10.1109/ECOWS.2008.19. Feng PM, 2014, INT CONF DIGIT SIG, P12, DOI 10.1109/ICDSP.2014.6900806. Ferentinos KP, 2018, COMPUT ELECTRON AGR, V145, P311, DOI 10.1016/j.compag.2018.01.009. Fernandez-Carames TM, 2018, IEEE ACCESS, V6, P32979, DOI 10.1109/ACCESS.2018.2842685. Frank R, 2013, ARTECH HSE INTEGR MI, P1. Freitas AA, 2014, SIGKDD EXPLOR, V15, P1, DOI {[}10.1145/2594473.2594475, DOI 10.1145/2594473.2594475]. Furno A, 2017, IEEE INFOCOM SER. Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007. Gers FA, 2000, NEURAL COMPUT, V12, P2451, DOI 10.1162/089976600300015015. Gharaibeh A, 2017, IEEE COMMUN SURV TUT, V19, P2456, DOI 10.1109/COMST.2017.2736886. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Gopalakrishnan K, 2017, CONSTR BUILD MATER, V157, P322, DOI 10.1016/j.conbuildmat.2017.09.110. Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013. Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010. Hani N, 2020, J FIELD ROBOT, V37, P263, DOI 10.1002/rob.21902. Hani N, 2018, IEEE INT C INT ROBOT, P2559, DOI 10.1109/IROS.2018.8594304. Hasan M., 2019, PAPERS SSRN. Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002. Hastie T., 2009, ELEMENTS STAT LEARNI, P485, DOI 10.1007/978-0-387-84858-7\_14. Hinton Geoffrey E., 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P599, DOI 10.1007/978-3-642-35289-8\_32. Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527. Hitaj B, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P603, DOI 10.1145/3133956.3134012. Hochreiter S, 1998, INT J UNCERTAIN FUZZ, V6, P107, DOI 10.1142/S0218488598000094. Hughes D.P., 2015, ARXIV. Hwang K., 2017, BIG DATA ANAL CLOUD. Jalali R, 2015, INT CONF INTELL NEXT, P108, DOI 10.1109/ICIN.2015.7073815. James G, 2013, SPRINGER TEXTS STAT, V103, P373, DOI 10.1007/978-1-4614-7138-7\_10. Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889. Kamilaris A, 2018, COMPUT ELECTRON AGR, V147, P70, DOI 10.1016/j.compag.2018.02.016. Kelly J, 2015, SCI DATA, V2, DOI 10.1038/sdata.2015.7. Kepski Michal, 2020, UR FALL DETECTION DA, V38. Khatoun R, 2016, COMMUN ACM, V59, P46, DOI 10.1145/2858789. Kim TY, 2019, ENERGY, V182, P72, DOI 10.1016/j.energy.2019.05.230. Kingma DP, 2014, ADV NEUR IN, V27. Krylovskiy A, 2015, 2015 3RD INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD) AND INTERNATIONAL CONFERENCE ON OPEN AND BIG (OBD), P25, DOI 10.1109/FiCloud.2015.55. Kumar R, 2019, COMPUT SCI REV, V33, P1, DOI 10.1016/j.cosrev.2019.05.002. Lane ND, 2015, P 2015 INT WORKSH IN, V7, P12, DOI DOI 10.1145/2820975.2820980. Larochelle H, 2012, J MACH LEARN RES, V13, P643. Latif S, 2018, IEEE SENS J, V18, P9393, DOI 10.1109/JSEN.2018.2870759. Le Roux N, 2008, NEURAL COMPUT, V20, P1631, DOI 10.1162/neco.2008.04-07-510. Ledig C, 2017, PROC CVPR IEEE, P105, DOI 10.1109/CVPR.2017.19. Letic J., 2019, INTERNET THINGS STAT. Li H, 2018, IEEE NETWORK, V32, P96, DOI 10.1109/MNET.2018.1700202. Li JA, 2017, PROC CVPR IEEE, P1951, DOI 10.1109/CVPR.2017.211. Li SC, 2018, J IND INF INTEGR, V10, P1, DOI 10.1016/j.jii.2018.01.005. Li X., 2014, P NIPS, DOI {[}10.1145/2592798.2592820, DOI 10.1145/2592798.2592820]. Li YJ, 2017, PROC CVPR IEEE, P5892, DOI 10.1109/CVPR.2017.624. Lim C, 2018, CITIES, V82, P86, DOI 10.1016/j.cities.2018.04.011. Liu B, 2018, SYMMETRY-BASEL, V10, DOI 10.3390/sym10010011. Liu C, 2018, IEEE T SERV COMPUT, V11, P249, DOI 10.1109/TSC.2017.2662008. Liu C, 2016, LECT NOTES COMPUT SC, V9677, P37, DOI 10.1007/978-3-319-39601-9\_4. Liu W, 2018, IEEE VEHIC NETW CONF. Liu X, 2018, IEEE INT C INT ROBOT, P1045, DOI 10.1109/IROS.2018.8594239. Liu Y, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), P380, DOI 10.1109/ICHI.2017.45. Lu N, 2019, IEEE J BIOMED HEALTH, V23, P314, DOI 10.1109/JBHI.2018.2808281. Mahdavinejad MS, 2018, DIGIT COMMUN NETW, V4, P161, DOI 10.1016/j.dcan.2017.10.002. Manic M, 2016, IEEE IND ELECTRON M, V10, P32, DOI 10.1109/MIE.2016.2615575. Maragatham G, 2019, J MED SYST, V43, DOI 10.1007/s10916-019-1243-3. Marjani M, 2017, IEEE ACCESS, V5, P5247, DOI 10.1109/ACCESS.2017.2689040. Markovic R., 2019, BUILD ENV, P319. Mauldin TR, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18103363. Minoli D, 2019, WIREL COMMUN MOB COM, V2019, DOI 10.1155/2019/5710834. Mitchell R, 2013, ARTIFICIAL INTELLIGE. Mohammadi M, 2018, IEEE COMMUN SURV TUT, V20, P2923, DOI 10.1109/COMST.2018.2844341. Mohammadi M, 2018, IEEE COMMUN MAG, V56, P94, DOI 10.1109/MCOM.2018.1700298. Moosavi S., 2019, P 27 ACM SIGSPATIAL. Moosavi S, 2019, 27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), P33, DOI 10.1145/3347146.3359078. Muhammad K, 2019, IEEE T IND INFORM, V15, P3113, DOI 10.1109/TII.2019.2897594. Muhammad K, 2018, IEEE ACCESS, V6, P18174, DOI 10.1109/ACCESS.2018.2812835. Muhammad K, 2018, NEUROCOMPUTING, V288, P30, DOI 10.1016/j.neucom.2017.04.083. Mukherjee M, 2018, IEEE COMMUN SURV TUT, V20, P1826, DOI 10.1109/COMST.2018.2814571. Mukhopadhyay SC, 2015, IEEE SENS J, V15, P1321, DOI 10.1109/JSEN.2014.2370945. Newman S., 2015, BUILDING MICROSERVIC. Nguyen G, 2019, ARTIF INTELL REV, V52, P77, DOI 10.1007/s10462-018-09679-z. Olah C., 2015, UNDERSTANDING LSTM N. Pan Z., 2017, 29 IAAI C. Pereira CR, 2016, LECT NOTES COMPUT SC, V9605, P377, DOI 10.1007/978-3-319-50478-0\_19. Piatetsky Gregory, 2020, PYTHON LEADS 11 TOP. Popa D, 2019, NEURAL COMPUT APPL, V31, P1317, DOI 10.1007/s00521-018-3724-6. Portmann E., 2018, BLOCKCHAIN BLUEPRINT, DOI {[}10.1365/s40702-018-00468-4, DOI 10.1365/S40702-018-00468-4]. Qiu JF, 2016, EURASIP J ADV SIG PR, DOI 10.1186/s13634-016-0355-x. Qolomany B, 2019, IEEE ACCESS, V7, P90316, DOI 10.1109/ACCESS.2019.2926642. Rahnemoonfar M, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17040905. Rashid RA, 2019, INT CONF UBIQ FUTUR, P66, DOI 10.1109/ICUFN.2019.8806026. Rathore MM, 2016, COMPUT NETW, V101, P63, DOI 10.1016/j.comnet.2015.12.023. Reka SS, 2019, ENERGIES, V12, DOI 10.3390/en12112140. Ren HL, 2018, IEEE INT C INTELL TR, P3346, DOI 10.1109/ITSC.2018.8569437. Safaei M, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12030328. Safaei M, 2020, SOFTWARE PRACT EXPER, V50, P428, DOI 10.1002/spe.2785. Santos GL, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19071644. Schubert S, 2016, POLIT VIERTELJAHR, P3. Shah SA, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8040508. Shahroudy A, 2016, PROC CVPR IEEE, P1010, DOI 10.1109/CVPR.2016.115. Shi BB, 2018, J AM COLL RADIOL, V15, P527, DOI 10.1016/j.jacr.2017.11.036. Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198. Shojaei-Hashemi A, 2018, IEEE INT SYMP CIRC S, DOI 10.1109/ISCAS.2018.8351648. Shokri R, 2015, CCS'15: PROCEEDINGS OF THE 22ND ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1310, DOI 10.1145/2810103.2813687. Singh Dilpreet, 2015, J Big Data, V2, P8. Singh D, 2019, IEEE T INTELL TRANSP, V20, P879, DOI 10.1109/TITS.2018.2835308. Singh UP, 2019, IEEE ACCESS, V7, P43721, DOI 10.1109/ACCESS.2019.2907383. Sladojevic S, 2016, COMPUT INTEL NEUROSC, V2016, DOI 10.1155/2016/3289801. Soh PW, 2018, IEEE ACCESS, V6, P38186, DOI 10.1109/ACCESS.2018.2849820. Statista, 2020, SMART CIT IN GLOB SP. Statista, 2019, UK PEOPL LIV AL. Stergiou C, 2018, FUTURE GENER COMP SY, V78, P964, DOI 10.1016/j.future.2016.11.031. Sucerquia A, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17010198. Suk HI, 2015, BRAIN STRUCT FUNCT, V220, P841, DOI 10.1007/s00429-013-0687-3. Sundsoy P., 2016, 2016 INT C ART INT T. Tahir A, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8121433. Tariq F., 2019, ARXIV. Thakuriah P, 2017, SPRING GEOGR, P11, DOI 10.1007/978-3-319-40902-3\_2. Tokui Seiya, 2015, P WORKSH MACH LEARN. Torti E, 2018, 2018 21ST EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2018), P405, DOI 10.1109/DSD.2018.00075. United Nations, 2018, 68 WORLD POP PROJ LI. van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094. Vaquero LM, 2014, ACM SIGCOMM COMP COM, V44, P27, DOI 10.1145/2677046.2677052. Vedaldi A, 2015, MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, P689, DOI 10.1145/2733373.2807412. Waller MA, 2013, J BUS LOGIST, V34, P77, DOI 10.1111/jbl.12010. Wang J, 2017, IEEE T MED IMAGING, V36, P1172, DOI 10.1109/TMI.2017.2655486. Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550. WERBOS PJ, 1990, P IEEE, V78, P1550, DOI 10.1109/5.58337. Wessel Paul, 2016, WHAT IS SMART PARKIN. White G, 2017, J SYST SOFTWARE, V132, P186, DOI 10.1016/j.jss.2017.05.125. Whitmore A, 2015, INFORM SYST FRONT, V17, P261, DOI 10.1007/s10796-014-9489-2. Yan K, 2019, IEEE ACCESS, V7, P157633, DOI 10.1109/ACCESS.2019.2949065. Yang SG, 2019, TRANSPORT RES C-EMER, V107, P248, DOI 10.1016/j.trc.2019.08.010. Yaqoob I, 2017, IEEE WIREL COMMUN, V24, P10, DOI 10.1109/MWC.2017.1600421. Yassine A, 2019, FUTURE GENER COMP SY, V91, P563, DOI 10.1016/j.future.2018.08.040. Ying Wang, 2018, MATEC Web of Conferences, V232, DOI 10.1051/matecconf/201823201056. Yu W, 2018, IEEE ACCESS, V6, P6900, DOI 10.1109/ACCESS.2017.2778504. Zahid A, 2019, PLANT METHODS, V15, DOI 10.1186/s13007-019-0522-9. Zeng D, 2019, IEEE ACCESS, V7, P104514, DOI 10.1109/ACCESS.2019.2932117. Zhang CY, 2019, IEEE COMMUN SURV TUT, V21, P2224, DOI 10.1109/COMST.2019.2904897. Zhang PC, 2019, IEEE ACCESS, V7, P63550, DOI 10.1109/ACCESS.2019.2914270. Zhang QC, 2018, INFORM FUSION, V42, P146, DOI 10.1016/j.inffus.2017.10.006. Zhao J, 2018, 2018 9TH INTHERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN FOR THIN-FILM TRANSISTORS (CAD-TFT), P9, DOI 10.1109/EI2.2018.8582388. Zhao L, 2019, IEEE COMMUN MAG, V57, P88, DOI 10.1109/MCOM.2019.1800603. Zheng ZB, 2018, INT J WEB GRID SERV, V14, P352, DOI 10.1504/IJWGS.2018.095647. Zhou J, 2017, IEEE COMMUN MAG, V55, P26, DOI 10.1109/MCOM.2017.1600363CM. Zhou ZY, 2018, IEEE NETWORK, V32, P54, DOI 10.1109/MNET.2018.1700442. Zhu NY, 2018, INT J AGR BIOL ENG, V11, P32, DOI 10.25165/j.ijabe.20181104.4475. Zinelli A, 2019, IEEE INT VEH SYM, P683, DOI 10.1109/IVS.2019.8813777.}, Number-of-Cited-References = {201}, Times-Cited = {85}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {76}, Journal-ISO = {Comput. Sci. Rev.}, Doc-Delivery-Number = {OY5UF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000594311100001}, DA = {2023-04-22}, } @article{ WOS:000721506900001, Author = {Ranasinghe, Kavindu and Sabatini, Roberto and Gardi, Alessandro and Bijjahalli, Suraj and Kapoor, Rohan and Fahey, Thomas and Thangavel, Kathiravan}, Title = {Advances in Integrated System Health Management for mission-essential and safety-critical aerospace applications}, Journal = {PROGRESS IN AEROSPACE SCIENCES}, Year = {2022}, Volume = {128}, Month = {JAN 1}, Abstract = {Integrated System Health Management (ISHM) is a promising technology that fuses sensor data and historical state-of-health information of components and subsystems to provide actionable information and enable intelligent decision-making regarding the operation and maintenance of aerospace systems. ISHM fundamentally relies on assessments and predictions of system health, including the early detection of failures and estimation of Remaining Useful Life (RUL). Model-based, data-driven or hybrid reasoning techniques can be utilized to maximise the timeliness and reliability of diagnosis and prognosis information. The benefits of ISHM include enhancing the maintainability, reliability, safety and performance of systems. The next evolution of the ISHM concept, Intelligent Health and Mission Management (IHMM), delves deeper into the utilization of on-line system health predictions to modify mission profiles to ensure safety and reliability, as well as efficiency through predictive integrity. This concept is particularly important for Trusted Autonomous System (TAS) applications, where an accurate assessment of the current and future system state-of-health to make operational decisions (with or without human intervention) is integral to both flight safety and mission success. IHMM systems introduce the capability of predicting degradation in the functional performance of subsystems, with sufficient time to dynamically identify which appropriate restorative or reconfiguration actions to take in order to ensure that the system can perform at an acceptable level of operational capability before the onset of a failure event. This paper reviews some of the key advancements and contributions to knowledge in the field of ISHM for the aerospace industry, with a particular focus on various architectures and reasoning strategies involving the use of artificial intelligence. The paper also discusses the key challenges faced in the development and deployment of ISHM systems in the aerospace industry and highlights the safety-critical role that IHMM will play in future cyber-physical and autonomous system applications (both vehicle and ground support systems), such as Unmanned Aircraft Systems (UAS) Traffic Management (UTM), Urban Air Mobility (UAM) and Distributed Satellite Systems (DSS).}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Sabatini, R (Corresponding Author), Khalifa Univ Sci \& Technol, Coll Engn, Dept Aerosp Engn, POB 127788, Abu Dhabi, U Arab Emirates. Ranasinghe, Kavindu; Gardi, Alessandro; Bijjahalli, Suraj; Kapoor, Rohan; Fahey, Thomas; Thangavel, Kathiravan, RMIT Univ, STEM Coll, Sxhool Engn, Melbourne, Vic 3001, Australia. Sabatini, Roberto, Khalifa Univ Sci \& Technol, Coll Engn, Dept Aerosp Engn, POB 127788, Abu Dhabi, U Arab Emirates.}, DOI = {10.1016/j.paerosci.2021.100758}, EarlyAccessDate = {NOV 2021}, Article-Number = {100758}, ISSN = {0376-0421}, EISSN = {1873-1724}, Keywords = {Avionics; Integrated system health management; Prognostics; Diagnostics; Health and usage monitoring systems; Artificial intelligence; Machine learning; Intelligent health and mission management; Unmanned aircraft system; UAS; Satellite systems; UAS Traffic management; UTM; Distributed satellite systems}, Keywords-Plus = {USEFUL LIFE PREDICTION; ADAPTIVE NEURO-FUZZY; HIDDEN MARKOV-MODELS; OF-THE-ART; FAULT-DIAGNOSIS; KALMAN FILTER; GAUSSIAN-PROCESSES; CHARGE ESTIMATION; DATA-DRIVEN; PART 1}, Research-Areas = {Engineering}, Web-of-Science-Categories = {Engineering, Aerospace}, Author-Email = {roberto.sabatini@ku.ac.ae}, Affiliations = {Royal Melbourne Institute of Technology (RMIT); Khalifa University of Science \& Technology}, ResearcherID-Numbers = {Sabatini, Roberto/Q-6752-2016 }, ORCID-Numbers = {Sabatini, Roberto/0000-0002-3399-2291 Fahey, Thomas/0000-0003-2847-2280 Ranasinghe, Kavindu/0000-0001-5132-4230 THANGAVEL, KATHIRAVAN/0000-0002-3401-9493}, Cited-References = {A.C. Services, AIRB REAL TIM HLTH M. Ackerman R, 2017, TRENDS COGN SCI, V21, P607, DOI 10.1016/j.tics.2017.05.004. Ahmadi A, 2007, PROC MONOGR ENG WATE, P2067. Ahmadzadeh F, 2013, MINER ENG, V53, P1, DOI 10.1016/j.mineng.2013.05.026. Ai-Chang M, 2004, IEEE INTELL SYST, V19, P8, DOI 10.1109/MIS.2004.1265878. Aleksendric D., 2015, 5 COMPOSITE MAT MODE. An D, 2015, RELIAB ENG SYST SAFE, V133, P223, DOI 10.1016/j.ress.2014.09.014. An D, 2013, RELIAB ENG SYST SAFE, V115, P161, DOI 10.1016/j.ress.2013.02.019. {[}Anonymous], 2008, NASA TECH BRIEFS, V32. {[}Anonymous], 2011, BAYESIAN INFERENCE S. {[}Anonymous], SAE INT ANNOUNCES FO. Antunes P., 2018, APPL MACHINE LEARNIN. Bajwa A, 2003, AEROSP CONF PROC, P869. Bansal P, 2016, TRANSPORT RES C-EMER, V67, P1, DOI 10.1016/j.trc.2016.01.019. Barad SG, 2012, MECH SYST SIGNAL PR, V27, P729, DOI 10.1016/j.ymssp.2011.09.011. Benedettini O, 2009, P I MECH ENG G-J AER, V223, P157, DOI 10.1243/09544100JAERO446. Benenson Rodrigo, 2008, International Journal of Vehicle Autonomous Systems, V6, P4, DOI 10.1504/IJVAS.2008.016486. Benkedjouh T., 2013, HLTH ASSESSMENT LIFE. Bertsimas D, 2010, J GLOBAL OPTIM, V48, P323, DOI 10.1007/s10898-009-9496-x. BEZDEK JC, 1984, COMPUT GEOSCI, V10, P191, DOI 10.1016/0098-3004(84)90020-7. Bijjahalli S, 2021, IEEE T INTELL TRANSP, V22, P356, DOI 10.1109/TITS.2019.2957876. Bijjahalli S, 2020, PROG AEROSP SCI, V115, DOI 10.1016/j.paerosci.2020.100617. Blue MD, 1996, RADIAT MEAS, V26, P807, DOI 10.1016/S1350-4487(96)00087-X. Boller C, 2007, PHILOS T R SOC A, V365, P561, DOI 10.1098/rsta.2006.1924. Boschert S., 2018, TOOLS METHODS COMPET, P209. Boyce R, 2018, STUD SYST DECIS CONT, V117, P355, DOI 10.1007/978-3-319-64816-3\_20. Chakraborty S, 2021, APPL MATH MODEL, V90, P662, DOI 10.1016/j.apm.2020.09.037. Che CC, 2019, AEROSP SCI TECHNOL, V94, DOI 10.1016/j.ast.2019.105423. Chen CC, 2012, MECH SYST SIGNAL PR, V28, P597, DOI 10.1016/j.ymssp.2011.10.009. Choi J-H., 2011, ANN C PROGN HLTH MAN. Coble J., 2020, INT J PROGN HEALTH M, V6, P1, DOI {[}10.36001/ijphm.2015.v6i3.2271, DOI 10.36001/IJPHM.2015.V6I3.2271]. Coppe A, 2011, AIAA J, V49, P2818, DOI 10.2514/1.J051268. Cox M.T., 2011, METAREASONING INTRO. Daigle M., 2011, AER C 2011 IEEE, P1. Daroogheh N, 2018, J FRANKLIN I, V355, P3753, DOI 10.1016/j.jfranklin.2018.02.023. Daum F, 2005, IEEE AERO EL SYS MAG, V20, P57, DOI 10.1109/MAES.2005.1499276. Deb S, 2001, P SOC PHOTO-OPT INS, V4389, P60, DOI 10.1117/12.434253. DEKLEER J, 1987, ARTIF INTELL, V32, P97, DOI 10.1016/0004-3702(87)90063-4. Diez-Olivan A, 2017, NEUROCOMPUTING, V241, P97, DOI 10.1016/j.neucom.2017.02.024. Doucet A., 2001, SEQUENTIAL MONTE CAR. Endsley MR, 1999, ERGONOMICS, V42, P462, DOI 10.1080/001401399185595. Ezhilarasu CM, 2021, IEEE ACCESS, V9, P11437, DOI 10.1109/ACCESS.2021.3050877. Ezhilarasu CM, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10082854. Ezhilarasu CM, 2019, PROG AEROSP SCI, V105, P60, DOI 10.1016/j.paerosci.2019.01.001. Federal Aviation Administration, 2020, URB AIR MOB CONC OP. Figueroa F., 2016, ROADMAP INTELLIGENT, P62. Figueroa F, 2006, PROCEEDINGS OF THE 2006 IEEE SENSORS APPLICATIONS SYMPOSIUM, P202, DOI 10.1109/SAS.2006.1634273. Figueroa J., 2012, AIAA INFOTECH AEROSP. Franzese M., 2019, ENCYCL BIOINFORM COM, V1, P753, DOI {[}10.1016/B978-0-12-809633-8, DOI 10.1016/B978-0-12-809633-8.20488-3, 10.1016/B978-0-12-809633-8.20488-3]. Fritzen CP, 2005, KEY ENG MAT, V293-294, P3, DOI 10.4028/www.scientific.net/KEM.293-294.3. Galati A., 2019, AIAC18 18 AUSTR INT, P916. Gandomi AH, 2013, ELSEV INSIGHT, P1, DOI 10.1016/B978-0-12-398364-0.00001-2. Garg S., 2012, ADV INTELLIGENT AUTO, V241, P201. Gehmann H., 2003, COLUMBIA ACCIDENT IN, VOne. Ghahramani Z, 2001, INT J PATTERN RECOGN, V15, P9, DOI 10.1142/S0218001401000836. Ghanem R, 2006, STRUCT CONTROL HLTH, V13, P245, DOI 10.1002/stc.139. Giurgiutiu V, 2002, J VIB ACOUST, V124, P116, DOI 10.1115/1.1421056. Goebel K., 2008, 62 M SOC MACH FAIL P, P119. Grandjean P., 2004, SPAC OPS 2004 C SPAC. Grandjean P., 2004, SPACE OPS 2004 C. Grieves M, 2014, WHITEPAPER. Grosan C, 2011, INTEL SYST REF LIBR, V17, P149. Gustafsson F, 2010, IEEE AERO EL SYS MAG, V25, P53, DOI 10.1109/MAES.2010.5546308. Hallinan JS, 2012, METHOD MICROBIOL, V39, P27, DOI 10.1016/B978-0-08-099387-4.00002-8. Hassan Ali Hajj, 2015, International Journal of Computer Theory and Engineering, V7, P191, DOI 10.7763/IJCTE.2015.V7.955. He M., 2016, USING DEEP LEARNING. He QP, 2007, IEEE T SEMICONDUCT M, V20, P345, DOI 10.1109/TSM.2007.907607. He W.W., 2011, IMAPS ADV TECHN WORK. He W, 2013, MICROELECTRON RELIAB, V53, P840, DOI 10.1016/j.microrel.2012.11.010. He XG, 2007, 2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, P1635, DOI 10.1109/ICAL.2007.4338834. Herrmann J, 2020, DATA DRIVEN METAREAS. Hess A, 2005, AEROSP CONF PROC, P3610. Higuchi T, 1997, J STAT COMPUT SIM, V59, P1, DOI 10.1080/00949659708811843. Holland S., 2010, HLTH MANAGEMENT. IATA, 2019, FUEL FACT SHEET. Jaw L.C., 2009, AIRCRAFT ENGINE CONT. Jennions I.K, 2013, INTEGRATED VEHICLE H, P200. Jennions IK, 2011, INTEGRATED VEHICLE HEALTH MANAGEMENT: PERSPECTIVES ON AN EMERGING FIELD, P1, DOI 10.4271/R-405. Jigajinni V.S., 2018, INT J ARTIFICIAL INT, V9, P43. Johnson S.B., 2005, NASA MARSHALL SPACE, V21, p20060003929. Julier SJ, 2004, P IEEE, V92, P401, DOI 10.1109/JPROC.2003.823141. Julier SJ, 1997, P SOC PHOTO-OPT INS, V3068, P182, DOI 10.1117/12.280797. Jung M, 2018, PROCEDIA MANUF, V19, P111, DOI 10.1016/j.promfg.2018.01.016. Jurafsky D, 2009, SPEECH LANGUAGE PROC, V2nd. Kamlu S., 2019, INT J COMPUT COMPLE, V1, P196. Kaplan T, 2012, METHOD CELL BIOL, V110, P263, DOI 10.1016/B978-0-12-388403-9.00011-4. Kaur K, 2018, J ENG TECHNOL MANAGE, V48, P87, DOI 10.1016/j.jengtecman.2018.04.006. Keryk C, 2018, J AEROSP TECHNOL MAN, V10, DOI 10.5028/jatm.v10.779. Kessler S., 2009, STRUCTURAL HLTH MONI, V1, P1034. Kim JS, 2002, P SOC PHOTO-OPT INS, V4700, P342, DOI 10.1117/12.475048. KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671. Kistan T, 2018, AEROSPACE, V5, DOI 10.3390/aerospace5040103. Kopardekar P.H., 2014, AUVSI UNMANNED SYST. Kourousis KI, 2013, AVIATION, V17, P98, DOI 10.3846/16487788.2013.840055. Kwok C, 2004, P IEEE, V92, P469, DOI 10.1109/JPROC.2003.823144. Lan YJ, 2017, EARLY WARNING FOR INFECTIOUS DISEASE OUTBREAK: THEORY AND PRACTICE, P35, DOI 10.1016/B978-0-12-812343-0.00003-5. Laursen L., 2013, IEEE SPECTRUM TECH T. Lazaro-Gredilla M, 2010, J MACH LEARN RES, V11, P1865. Lebold M., 2002, MAINT REL C MARCON, P6. Lee E., 2019, P AIAC18 18 AUSTR IN, P816. Lee J, 2014, MECH SYST SIGNAL PR, V42, P314, DOI 10.1016/j.ymssp.2013.06.004. Lemistre M., 2002, THEORETICAL CONSIDER, P493. Li DZ, 2013, APPL SOFT COMPUT, V13, P283, DOI 10.1016/j.asoc.2012.08.031. Li L, 2019, ENERGIES, V12, DOI 10.3390/en12142784. Lim KYH, 2020, J INTELL MANUF, V31, P1313, DOI 10.1007/s10845-019-01512-w. Lim Y., P AUSTR INT AER C A. Lim YX, 2018, PROG AEROSP SCI, V102, P1, DOI 10.1016/j.paerosci.2018.05.002. Lim YX, 2017, IEEE AERO EL SYS MAG, V32, P4, DOI 10.1109/MAES.2017.160175. Liu QM, 2012, MECH SYST SIGNAL PR, V32, P331, DOI 10.1016/j.ymssp.2012.05.004. Lotfan S, 2015, IEEE INT FUZZY SYST. Lozano JGC, 2008, P AMER CONTR CONF, P3536. Lu F, 2018, P I MECH ENG G-J AER, V232, P556, DOI 10.1177/0954410016682269. Lu F, 2017, AEROSP SCI TECHNOL, V64, P223, DOI 10.1016/j.ast.2017.02.003. Madni AM, 2019, SYSTEMS-BASEL, V7, DOI 10.3390/systems7010007. Mancini S, 2006, J INTEL MAT SYST STR, V17, P577, DOI 10.1177/1045389X06059077. Merwe R. V. D., 2004, SIGMA POINT KALMAN F. Miao XD, 2020, IEEE SENS J, V20, P8403, DOI 10.1109/JSEN.2020.2965988. Michael G.P., 2019, PROGNOSTICS HLTH MAN, P163. Michael G.P., PROGNOSTICS HLTH MAN, P61. Mohammadi E, 2016, AEROSP SCI TECHNOL, V56, P70, DOI 10.1016/j.ast.2016.07.003. Murnane Martin, 2017, CLOSER LOOK STATE CH, P1. Musallam M, 2012, IEEE T RELIAB, V61, P978, DOI 10.1109/TR.2012.2221040. Ofsthun S, 2002, IEEE INSTRU MEAS MAG, V5, P21, DOI 10.1109/MIM.2002.1028368. Orchard M, 2012, CH CRC DATA MIN KNOW, P363. Orchard ME, 2009, T I MEAS CONTROL, V31, P221, DOI 10.1177/0142331208092026. Paul S., 2008, INT C EXP TOT ENG AN. Pecht M, 2009, T I MEAS CONTROL, V31, P309, DOI 10.1177/0142331208092031. Pignol M, 2010, DES AUT TEST EUROPE, P1213. Plett GL, 2004, J POWER SOURCES, V134, P252, DOI 10.1016/j.jpowsour.2004.02.031. Pool A., 1994, AGARD FLIGHT TEST IN, V1, P167. Prevot T., 2016, P 16 AIAA AVIATION T, P1, DOI {[}10.2514/6.2016-3292, DOI 10.2514/6.2016-3292]. Prosser W., 2003, MULT TECHN AC EM MON. Quinonero-Candela JQ, 2005, J MACH LEARN RES, V6, P1939. RABINER LR, 1989, P IEEE, V77, P257, DOI 10.1109/5.18626. Rajamani R., 2013, SAE 2013 AEROTECH C. Rajendran S, 2019, TRANSPORT RES E-LOG, V128, P470, DOI 10.1016/j.tre.2019.06.003. Rakha T, 2018, AUTOMAT CONSTR, V93, P252, DOI 10.1016/j.autcon.2018.05.002. Ramadan HS, 2017, INT J HYDROGEN ENERG, V42, P29033, DOI 10.1016/j.ijhydene.2017.07.219. Ramasamy S, 2017, INT CONF UNMAN AIRCR, P920. Ranasinghe K, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20205892. Ranasinghe K, 2019, ENERGY, V188, DOI 10.1016/j.energy.2019.115945. Rao UM, 2015, PROCEDIA COMPUT SCI, V48, P77, DOI 10.1016/j.procs.2015.04.153. Rasmussen CE, 2004, LECT NOTES ARTIF INT, V3176, P63, DOI 10.1007/978-3-540-28650-9\_4. Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1. Ratkovac M., 2019, SMAR 2019 POTSD GERM. Reichard K, 2006, P REL MAINT S, P107. Research and Technology Goals and Objectives for Integrated Vehicle Health Management (IVHM), 1992, NASA CONTRACTOR REPO. Reuben LCK, 2014, STRUCT HEALTH MONIT, V13, P296, DOI 10.1177/1475921714522844. Roemer M.J., 2007, AAAI FALL S TECHN RE. Rozas H, 2020, MECH SYST SIGNAL PR, V135, DOI 10.1016/j.ymssp.2019.106421. Sabatini R, 2020, IEEE AES SOC VIRTUAL. Sabatini R, 2017, PROG AEROSP SCI, V95, P45, DOI 10.1016/j.paerosci.2017.10.002. Sabatini R, 2016, I NAVIG SAT DIV INT, P1415. Sabatini R, 2013, J NAVIGATION, V66, P501, DOI 10.1017/S0373463313000143. Sabatini R, 2013, J NAVIGATION, V66, P363, DOI 10.1017/S0373463313000027. Saha B., 2011, INT J PROGN HLTH MAN, V2, P61. Saxena A., TURBOFAN ENGINE DEGR. Scandura P.A, 2011, SYSTEM HLTH MANAGEME. Scandura P.A., 2011, SYSTEM HLTH MANAGEME. Schacht-Rodriguez R, 2018, IFAC PAPERSONLINE, V51, P983, DOI 10.1016/j.ifacol.2018.09.705. Schulz E, 2018, J MATH PSYCHOL, V85, P1, DOI 10.1016/j.jmp.2018.03.001. Schwabacher M., 2002, NASA INTEGRATED VEHI. Sheppard JW, 2008, IEEE AUTOTESTCON, P515. Silva RE, 2014, INT J HYDROGEN ENERG, V39, P11128, DOI 10.1016/j.ijhydene.2014.05.005. SiriTeam, 2021, HEY SIRI ON DEVICE D. Smith MS., 2003, NASAS SPACE SHUTTLE. Smith P, 2005, IEEE SENS J, V5, P1469, DOI 10.1109/JSEN.2005.858964. Smola AJ, 2001, ADV NEUR IN, V13, P619. Spreafico C, 2017, COMPUT SCI REV, V25, P19, DOI 10.1016/j.cosrev.2017.05.002. Storm S.E., 2013, THESIS. Strom T.H., 2011, P 2011 AEROSPACE C, P1, DOI DOI 10.1109/AERO.2011.5747587. Swanton G., 1997, DEV TRANSFER FUNCTIO. Taie MA, 2012, IV INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS 2012 (ICUMT), P128, DOI 10.1109/ICUMT.2012.6459652. Tang L, 2007, AEROSP CONF PROC, P3708. Tao F, 2018, INT J ADV MANUF TECH, V94, P3563, DOI 10.1007/s00170-017-0233-1. Terejanu G.A., 2008, EXTENDED KALMAN FILT. Thrun S, 2006, J FIELD ROBOT, V23, P661, DOI 10.1002/rob.20147. Timothy W, 2017, INTEGRATED VEHICLE H, P65. Tobon-mejia D., 2011, PROGN SYST HLTH MAN, P1, DOI {[}10.1109/PHM.2011.5939488, DOI 10.1109/PHM.2011.5939488]. Tung SW, 2013, INFORM SCIENCES, V220, P124, DOI 10.1016/j.ins.2012.02.031. Tung SW, 2011, IEEE T NEURAL NETWOR, V22, P1928, DOI 10.1109/TNN.2011.2167720. Nguyen VD, 2019, INT J PROGN HEALTH M, V10. Vasavi S., MATER TODAY-PROC. Vatani A, 2015, PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 6. Vianna W.O.L., 2015, P ANN C PROGN HLTH M. Wahab M.S., 2004, AVIATION, V8, P10. Wang HX, 2017, MATERIALS, V10, DOI 10.3390/ma10050543. Wang WP, 2009, 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3, P257, DOI 10.1109/ICICISYS.2009.5358175. Welch G., 1960, INTRO KALMAN FILTER, P1994. West D., 2016, MOVING FORWARD SELF. Widodo A, 2007, MECH SYST SIGNAL PR, V21, P2560, DOI 10.1016/j.ymssp.2006.12.007. Wijetunge Sumudu, 2010, 2010 17th International Conference on Telecommunications (ICT 2010), P694, DOI 10.1109/ICTEL.2010.5478798. Williams Z., 2006, 2006 IEEE Aerospace Conference (IEEE Cat. No. 05TH8853C). Wobschall D, 2007, IEEE AUTOTESTCON, P359, DOI 10.1109/AUTEST.2007.4374241. Worner M, 2016, IEEE POSITION LOCAT, P666, DOI 10.1109/PLANS.2016.7479759. Woodard S.E., 2002, AIRCRAFT TECHNOLOGY. Wu M.-C., 2002, FABRICATION EXTREMEL, V41, P49. Wu Q, 2018, J HYMENOPT RES, V66, P1, DOI {[}10.3897/jhr.66.28881, 10.1007/s10845-018-1428-5]. Xia M, 2020, APPL SOFT COMPUT, V93, DOI 10.1016/j.asoc.2020.106351. Xiao F, 2019, ADV MECH ENG, V11, DOI 10.1177/1687814019832216. Xiong Liu, 2011, 2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing, P1, DOI 10.1109/IPTC.2011.8. Xiong R, 2018, J POWER SOURCES, V405, P18, DOI 10.1016/j.jpowsour.2018.10.019. Xu JP, 2017, INTEGRATED SYSTEM HEALTH MANAGEMENT: PERSPECTIVES ON SYSTEMS ENGINEERING TECHNIQUES, P1, DOI 10.1016/B978-0-12-812207-5.00001-8. Yang D, 2017, ENRGY PROCED, V105, P2059, DOI 10.1016/j.egypro.2017.03.583. Yang L., 2006, DISTANCE METRIC LEAR, V2, P2. Yu JB, 2017, AEROSP SCI TECHNOL, V68, P345, DOI 10.1016/j.ast.2017.05.030. Yu W., 2019, AIAC18 18 AUSTR INT, P876. Zhang HY, 2020, IOP CONF SER-MAT SCI, V719, DOI 10.1088/1757-899X/719/1/012074. Zhang QJ, 2003, IEEE T MICROW THEORY, V51, P1339, DOI 10.1109/TMTT.2003.809179. Zhao WG, 2020, APPL MATH NONLIN SCI, V5, P71, DOI 10.2478/AMNS.2020.1.00008. Zhao ZQ, 2017, RELIAB ENG SYST SAFE, V164, P74, DOI 10.1016/j.ress.2017.02.007. Zilberstein S, 2011, METAREASONING BOUNDE. Zio E, 2010, RELIAB ENG SYST SAFE, V95, P49, DOI 10.1016/j.ress.2009.08.001.}, Number-of-Cited-References = {213}, Times-Cited = {12}, Usage-Count-Last-180-days = {25}, Usage-Count-Since-2013 = {75}, Journal-ISO = {Prog. Aeosp. Sci.}, Doc-Delivery-Number = {XB7LM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000721506900001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000663353600001, Author = {Groft, Stephen C. and Posada, Manuel and Taruscio, Domenica}, Title = {Progress, challenges and global approaches to rare diseases}, Journal = {ACTA PAEDIATRICA}, Year = {2021}, Volume = {110}, Number = {10}, Pages = {2711-2716}, Month = {OCT}, Abstract = {Rare diseases occur globally at every stage of life. Patients, families and caregivers have many unmet medical and social needs leading to extraordinary psychosocial and economic burdens. Efforts to improve diagnostic capabilities and to develop therapies for an estimated 7000 rare diseases have met with considerable success. In the United States, a rare disease or condition is one affecting fewer than 200,000 people. In the European Union (EU), a rare disease is any disease affecting fewer than 5 people in 10,000 (less than 1 in 2000 people). However, there are no effective treatments for 90 per cent of rare diseases. There is a need to expand awareness, advocacy and outreach to everyone including those with low incomes, poor literacy, minority ethnic status and living in underserved and marginalised populations in urban and rural areas as well as in developing nations throughout the world. The acceptance of patients as research partners complements the increased research emphasis and major regulatory initiatives leading to expedited review and approval programmes for products for serious or life-threatening conditions. The pipeline of new therapies provides hope to untreated patients. Advances in medical bioinformatics, artificial intelligence and machine learning with access to big data continue to identify novel therapeutics for screening and evaluation. Advanced analytics can identify the patterns of disease occurrence, predict disease progression, identify patient response to treatments, establish optimal care guidelines and generate research hypotheses with the narrowly identified research patient populations.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Groft, SC (Corresponding Author), NIH, Nat Ctr Adv Translat Sci, Bethesda, MD 20814 USA. Groft, Stephen C., NIH, Nat Ctr Adv Translat Sci, Bethesda, MD 20814 USA. Posada, Manuel, Inst Salud Carlos III, Inst Rare Dis Res IIER, Madrid, Spain. Taruscio, Domenica, Natl Ctr Rare Dis, Ist Super Sanita, Rome, Italy.}, DOI = {10.1111/apa.15974}, EarlyAccessDate = {JUN 2021}, ISSN = {0803-5253}, EISSN = {1651-2227}, Keywords = {global needs; Orphan Drugs; Patient Advocacy Groups; Patient-Centric Research; rare diseases}, Keywords-Plus = {NETWORK}, Research-Areas = {Pediatrics}, Web-of-Science-Categories = {Pediatrics}, Author-Email = {stephen.groft@nih.gov}, Affiliations = {National Institutes of Health (NIH) - USA; Instituto de Salud Carlos III; Instituto de Investigacion de Enfermedades Raras (IIER); Istituto Superiore di Sanita (ISS)}, ORCID-Numbers = {Groft, Stephen/0000-0002-7532-8962}, Cited-References = {{[}Anonymous], 2020, CELL GENE THERAPY IN, V6, P137, DOI {[}10.18609/cgti.2020.018, DOI 10.18609/CGTI.2020.018]. {[}Anonymous], 2019, SUBMITTING DOCUMENTS. Ayme S., 2010, ORPHANET J RARE DIS, V5, pP1, DOI {[}10.1186/1750-1172-5-S1-P1, DOI 10.1186/1750-1172-5-S1-P1]. Baynam GS, 2020, NAT GENET, V52, P21, DOI 10.1038/s41588-019-0552-2. Chan AYL, 2020, VALUE HEALTH, V23, P1580, DOI 10.1016/j.jval.2020.06.020. D'Angelo CS, 2020, FRONT PEDIATR, V8, DOI 10.3389/fped.2020.579924. European Medicines Agency, EMA REG SCI 2025 STR. Ferreira CR, 2019, AM J MED GENET A, V179, P885, DOI 10.1002/ajmg.a.61124. Gahl WA, 2015, JAMA-J AM MED ASSOC, V314, P1797, DOI 10.1001/jama.2015.12249. Henares Kevin, 2020, DEVSTONE COMP. Kerr K, 2020, ORPHANET J RARE DIS, V15, DOI 10.1186/s13023-020-01376-x. Rauschert S, 2020, CLIN EPIGENETICS, V12, DOI 10.1186/s13148-020-00842-4. Taruscio D, 2020, MOL GENET METAB, V129, P243, DOI 10.1016/j.ymgme.2020.01.004. The EveryLife Foundation, 2021, NAT EC BURD RAR DIS. Wakap SN, 2020, EUR J HUM GENET, V28, P165, DOI 10.1038/s41431-019-0508-0.}, Number-of-Cited-References = {15}, Times-Cited = {19}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {14}, Journal-ISO = {Acta Paediatr.}, Doc-Delivery-Number = {UN4XP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000663353600001}, DA = {2023-04-22}, } @article{ WOS:000345734700045, Author = {Araghi, Sahar and Khosravi, Abbas and Creighton, Douglas}, Title = {A review on computational intelligence methods for controlling traffic signal timing}, Journal = {EXPERT SYSTEMS WITH APPLICATIONS}, Year = {2015}, Volume = {42}, Number = {3}, Pages = {1538-1550}, Month = {FEB 15}, Abstract = {Urban traffic as one of the most important challenges in modern city life needs practically effective and efficient solutions. Artificial intelligence methods have gained popularity for optimal traffic light control. In this paper, a review of most important works in the field of controlling traffic signal timing, in particular studies focusing on Q-learning, neural network, and fuzzy logic system are presented. As per existing literature, the intelligent methods show a higher performance compared to traditional controlling methods. However, a study that compares the performance of different learning methods is not published yet. In this paper, the aforementioned computational intelligence methods and a fixed-time method are implemented to set signals times and minimize total delays for an isolated intersection. These methods are developed and compared on a same platform. The intersection is treated as an intelligent agent that learns to propose an appropriate green time for each phase. The appropriate green time for all the intelligent controllers are estimated based on the received traffic information. A comprehensive comparison is made between the performance of Q-learning, neural network, and fuzzy logic system controller for two different scenarios. The three intelligent learning controllers present close performances with multiple replication orders in two scenarios. On average Q-learning has 66\%, neural network 71\%, and fuzzy logic has 74\% higher performance compared to the fixed-time controller. (C) 2014 Elsevier Ltd. All rights reserved.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Araghi, S (Corresponding Author), Deakin Univ, CISR, Melbourne, Vic 3216, Australia. Araghi, Sahar; Khosravi, Abbas; Creighton, Douglas, Deakin Univ, CISR, Melbourne, Vic 3216, Australia.}, DOI = {10.1016/j.eswa.2014.09.003}, ISSN = {0957-4174}, EISSN = {1873-6793}, Keywords = {Traffic signal timing; Machine learning; Q-learning; Neural network; Fuzzy logic system; Isolated intersection}, Keywords-Plus = {FUZZY-LOGIC; MULTIAGENT SYSTEM; APPROXIMATION; ARCHITECTURE}, Research-Areas = {Computer Science; Engineering; Operations Research \& Management Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Engineering, Electrical \& Electronic; Operations Research \& Management Science}, Author-Email = {saraghi@deakin.edu.au abbas.khosravi@deakin.edu.au douglas.creighton@deakin.edu.au}, Affiliations = {Deakin University}, ResearcherID-Numbers = {Khosravi, Abbas/AAQ-8102-2021}, Cited-References = {Abdi J, 2013, NEURAL COMPUT APPL, V23, P141, DOI 10.1007/s00521-012-0977-3. Abdi J, 2012, ENG APPL ARTIF INTEL, V25, P1022, DOI 10.1016/j.engappai.2011.09.011. Abdoos M, 2013, ENG APPL ARTIF INTEL, V26, P1575, DOI 10.1016/j.engappai.2013.01.007. Abdoos M, 2011, IEEE INT C INTELL TR, P1580, DOI 10.1109/ITSC.2011.6083114. Abdulhai B, 2003, J TRANSP ENG, V129, P278, DOI 10.1061/(ASCE)0733-947X(2003)129:3(278). Arel I, 2010, IET INTELL TRANSP SY, V4, P128, DOI 10.1049/iet-its.2009.0070. Balaji, 2011, THESIS U MADRA SINGA. Balaji PG, 2011, ENG APPL ARTIF INTEL, V24, P12, DOI 10.1016/j.engappai.2010.08.007. Balaji PG, 2010, IEEE COMPUT INTELL M, V5, P43, DOI 10.1109/MCI.2010.938363. Balaji PG, 2009, 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, P1627, DOI 10.1109/FUZZY.2009.5277360. Bi YR, 2014, EXPERT SYST APPL, V41, P7338, DOI 10.1016/j.eswa.2014.06.022. Bishop C.M., 1996, NEURAL NETWORKS PATT. Cai C., 2010, THESIS U COLL LONDON. Capek K., 2011, ADV TRANSPORTATION S, P5. Chao KH, 2008, LECT NOTES ARTIF INT, V5177, P17, DOI 10.1007/978-3-540-85563-7\_8. Chin D. C., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P2188, DOI 10.1109/ACC.1999.786341. Chiou YC, 2013, J ADV TRANSPORT, V47, P43, DOI 10.1002/atr.1205. CHIU S, 1993, PROCEEDINGS OF THE 32ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P1897, DOI 10.1109/CDC.1993.325523. Choy MC, 2003, IEEE T SYST MAN CY A, V33, P597, DOI 10.1109/TSMCA.2003.817394. Cools SB, 2008, ADV INFORM KNOWL PRO, P41, DOI 10.1007/978-1-84628-982-8\_3. Da Silva Bruno C, 2006, P 5 INT JOINT C AUT, P810. Dai Y., 2010, 2010 INT JOINT C NEU, P1. DEKKERS A, 1991, MATH PROGRAM, V50, P367, DOI 10.1007/BF01594945. El-Tantawy S, 2013, IEEE T INTELL TRANSP, V14, P1140, DOI 10.1109/TITS.2013.2255286. FAVILLA J, 1993, SECOND IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, P506, DOI 10.1109/FUZZY.1993.327519. Gartner N. H., 1991, TRANSPORTATION RES R. Granberg M, 2001, ADV TRANSPORT, V8, P399. Granberg M, 2000, ADV TRANSPORT, V6, P349. Heltimo J, 2002, ADV TRANSPORT, V12, P659. Houli D., 2010, EURASIP J ADV SIG PR, P1687. Hu Y, 2007, IEEE C EVOL COMPUTAT, P1785, DOI 10.1109/CEC.2007.4424689. Hunt P., 1982, TRAFFIC ENG CONTROL, V23, P190. Jee-Hyong Lee, 1995, 1995 International IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies (Cat. No.95TH8070), P376, DOI 10.1109/IACET.1995.527591. Kononen V., 2000, NEW METHODS TRAFFIC, V1, P358. Koonce P., 2008, TECH REP. Kronborg P., 1996, TECHNICAL REPORT. Kronborg P., 1993, TRAFFIC ENG CONTROL, V34, P195. Lee JH, 1999, IEEE T SYST MAN CY C, V29, P263, DOI 10.1109/5326.760570. Lehmuskoski V, 2000, TRANSPORT RES REC, P73. Li H, 2008, P 2008 INT WORK INF, P179. Malej A, 2007, ELEKTROTEH VESTN, V74, P291. Mirchandani P, 2001, TRANSPORT RES C-EMER, V9, P415, DOI 10.1016/S0968-090X(00)00047-4. Mitchell Tom M., 1997, MACH LEARN. Murat YS, 2005, TRANSPORT RES C-EMER, V13, P19, DOI 10.1016/j.trc.2004.12.004. Nagare A., 2012, INT J APPL INFORM SY, V1, P50, DOI {[}https://doi.org/10.5120/ijais12-450115, DOI 10.5120/IJAIS12-450115]. Nair B. Madhavan, 2007, Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, P1229. Nakatsuyama M., 1985, P 9 TRIENN WORLD C I, P2865. Niittymaki J, 2003, FUZZY SET SYST, V133, P109, DOI 10.1016/S0165-0114(02)00128-8. Niittymaki J, 2001, ADV TRANSPORT, V8, P327. Niittymaki J, 2000, IEEE SYS MAN CYBERN, P3578, DOI 10.1109/ICSMC.2000.886564. Niittymaki J, 2001, EUR J OPER RES, V131, P273, DOI 10.1016/S0377-2217(00)00127-2. Niittymaki J, 2001, TRANSPORT PLAN TECHN, V24, P227, DOI 10.1080/03081060108717669. Niittymaki J, 2001, EUR J OPER RES, V131, P229, DOI 10.1016/S0377-2217(00)00122-3. Niittymaki J, 2000, FUZZY SET SYST, V116, P11, DOI 10.1016/S0165-0114(99)00034-2. Niittymaki J, 1998, TRANSPORT RES REC, P30, DOI 10.3141/1651-05. Niittymaki J., 2001, FUZZY ADAPTIVE TRAFF, V5, P2870. Niittymaki J., 1996, TRAM SIMULATION HELS, P76. Niittymaki J, 1997, TRANSPORT RES REC, V1572, P24, DOI {[}10.3141/1572-04, DOI 10.3141/1572-04]. Niittymaki J., 1996, TRANSPORT RES REC, P24. Niittymaki J., 2008, ADV TRANSPORTATION S, P43. Niittymaki J., 2001, FUZZY TRAFFIC SIGNAL, P346. PAPPIS CP, 1977, IEEE T SYST MAN CYB, V7, P707, DOI 10.1109/TSMC.1977.4309605. Prashanth LA, 2011, IEEE T INTELL TRANSP, V12, P412, DOI 10.1109/TITS.2010.2091408. Puterman M.L., 2014, MARKOV DECISION PROC, DOI DOI 10.1002/9780470316887. Sabetghadam B, 2012, 2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P509, DOI 10.1109/IRI.2012.6303051. SIMS AG, 1980, IEEE T VEH TECHNOL, V29, P130, DOI 10.1109/T-VT.1980.23833. SPALL JC, 1992, IEEE T AUTOMAT CONTR, V37, P332, DOI 10.1109/9.119632. Spall JC, 1997, TRANSPORT RES C-EMER, V5, P153, DOI 10.1016/S0968-090X(97)00012-0. Srinivasan D, 2006, IEEE T INTELL TRANSP, V7, P261, DOI 10.1109/TITS.2006.874716. Sutton R. S., 1998, INTRO REINFORCEMENT, V2, DOI DOI 10.1109/TNN.1998.712192. Sutton RS, 1996, ADV NEUR IN, V8, P1038. SYED MASIUR Rahman, 2009, {[}交通运输系统工程与信息, Journal of Transporation Systems Engineering \& Information Technology], V9, P58. Teodorovic D, 2006, ANN OPER RES, V143, P123, DOI 10.1007/s10479-006-7376-z. Thorpe T.L., 1996, TECHNICAL REPORT. Vincent R., 1988, 170 RR TRRL TRANSP R. Webster F. V, 1958, TECHNICAL REPORT. Wen KG, 2007, 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-5, P2256, DOI 10.1109/ROBIO.2007.4522521. Wiering M, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P453. Wiering M., 2000, MULTIAGENT REINFORCE. Wu Wei, 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), P1335, DOI 10.1109/ICSMC.2001.973106. Wunderlich R, 2008, IEEE T INTELL TRANSP, V9, P536, DOI 10.1109/TITS.2008.928266. Yang WC, 2012, IEEE INT C INTELL TR, P391, DOI 10.1109/ITSC.2012.6338691. Yin HB, 2002, TRANSPORT RES C-EMER, V10, P85, DOI 10.1016/S0968-090X(01)00004-3. ZADEH LA, 1975, INFORM SCIENCES, V8, P301, DOI 10.1016/0020-0255(75)90046-8. ZADEH LA, 1975, INFORM SCIENCES, V9, P43, DOI 10.1016/0020-0255(75)90017-1. ZADEH LA, 1975, INFORM SCIENCES, V8, P199, DOI {[}10.1016/0020-0255(75)90036-5, 10.1016/0020-0255(75)90046-8]. Zeng R, 2007, 2 INT C INN COMP INF, P527. Zhang WB, 2007, GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, P124, DOI 10.1109/GrC.2007.138.}, Number-of-Cited-References = {88}, Times-Cited = {71}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {177}, Journal-ISO = {Expert Syst. Appl.}, Doc-Delivery-Number = {AU6TN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000345734700045}, DA = {2023-04-22}, } @article{ WOS:000669902500011, Author = {Pedrero, Victor and Reynaldos-Grandon, Katiuska and Ureta-Achurraz, Joaquin and Cortez-Pinto, Erick}, Title = {Overview of machine learning and its application in the management of emergency services}, Journal = {REVISTA MEDICA DE CHILE}, Year = {2021}, Volume = {149}, Number = {2}, Pages = {248-254}, Month = {FEB}, Abstract = {The processes associated with health care generate a large amount of information that is difficult to analyze using standard statistical procedures. In this context, disciplines such as Data Science became relevant, mainly through strategies such as Machine Learning (ML). The latter groups a series of tools whose purpose is to develop algorithms to extract information from data, whether for explanation, classification, or prediction. Despite its usefulness as support for clinical decisions, its potential in health care management has been less explored. Also, there are difficulties in understanding these types of studies. This work tries to offer a nontechnical overview of the ML concept and its advantages for health care management. It collects examples of ML applications in emergency department management.}, Publisher = {SOC MEDICA SANTIAGO}, Address = {BERNARDA MORIN 488 PROVIDENCIA, CASILLA 168 CORREO 55, SANTIAGO 9, 00000, CHILE}, Type = {Review}, Language = {Spanish}, Affiliation = {Reynaldos-Grandon, K (Corresponding Author), Ave Republ 217, Santiago, Chile. Pedrero, Victor; Reynaldos-Grandon, Katiuska, Univ Andres Bello, Fac Enfermeria, Santiago, Chile. Cortez-Pinto, Erick, Serv Salud Metropolitano Sur, Dept Gest TIC, Santiago, Chile.}, ISSN = {0034-9887}, EISSN = {0717-6163}, Keywords = {Emergency Medical Services; Health Information Management; Machine Learning}, Keywords-Plus = {HEALTH-CARE; MODEL; RISK}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {katiuska.reynaldos@unab.cl}, Affiliations = {Universidad Andres Bello}, Cited-References = {Andersen JKH, 2019, RMD OPEN, V5, DOI 10.1136/rmdopen-2018-000891. Bailetti T, 2016, TECHNOL INNOV MANAG, P15. Bates DW, 2014, HEALTH AFFAIR, V33, P1123, DOI 10.1377/hlthaff.2014.0041. Beam AL, 2018, JAMA-J AM MED ASSOC, V319, P1317, DOI 10.1001/jama.2017.18391. Besga A, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/685067. Buttigieg SC, 2016, INNOV ENTREP HEALTH, V3, P1, DOI 10.2147/IEH.S68183. Cao LB, 2017, ACM COMPUT SURV, V50, DOI 10.1145/3076253. Fluxicon BV, 2016, LEVERAGING HUMAN PRO. Garad A, 2019, IND COMMER TRAIN, V51, P329, DOI 10.1108/ICT-10-2018-0090. Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101. Levin S, 2018, ANN EMERG MED, V71, P565, DOI 10.1016/j.annemergmed.2017.08.005. Matsumoto CL, 2017, CAN FAM PHYSICIAN, V63, pE395. Mesgarpour M, 2017, INT J MED INFORM, V103, P65, DOI 10.1016/j.ijmedinf.2017.04.010. Mesquita R, 2017, CHRON RESP DIS, V14, P256, DOI 10.1177/1479972316687207. Hiriart GM, 2014, ACTA BIOETH, V20, P215, DOI 10.4067/S1726-569X2014000200009. Mora G, 2018, SIGNOS, V10, P161. Mora J., 2016, GESTION PRECESOS CON, V1a. Polat H, 2017, J MED SYST, V41, DOI 10.1007/s10916-017-0703-x. Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259. Reynaldos-Grandon K, 2020, REV MED CHILE, V148, P128, DOI 10.4067/S0034-98872020000100128. Rojas E, 2016, J BIOMED INFORM, V61, P224, DOI 10.1016/j.jbi.2016.04.007. Sidey-Gibbons JAM, 2019, BMC MED RES METHODOL, V19, DOI 10.1186/s12874-019-0681-4. Smits FTM, 2008, SCAND J PRIM HEALTH, V26, P111, DOI 10.1080/02813430802112997. Wiemken TL, 2020, ANNU REV PUBL HEALTH, V41, P21, DOI 10.1146/annurev-publhealth-040119-094437. Wolff P, 2019, EXPERT SYST APPL, V138, DOI 10.1016/j.eswa.2019.07.005. Zemmal N, 2016, J MED IMAG HEALTH IN, V6, P53, DOI 10.1166/jmihi.2016.1591.}, Number-of-Cited-References = {26}, Times-Cited = {1}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {19}, Journal-ISO = {Rev. Medica Chile}, Doc-Delivery-Number = {TE3GO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000669902500011}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000668603600004, Author = {Bianchi, Jonas and Ruellas, Antonio and Prieto, Juan Carlos and Li, Tengfei and Soroushmehr, Reza and Najarian, Kayvan and Gryak, Jonathan and Deleat-Besson, Romain and Le, Celia and Yatabe, Marilia and Gurgel, Marcela and Al Turkestani, Najla and Paniagua, Beatriz and Cevidanes, Lucia}, Title = {Decision Support Systems in Temporomandibular Joint Osteoarthritis: A review of Data Science and Artificial Intelligence Applications}, Journal = {SEMINARS IN ORTHODONTICS}, Year = {2021}, Volume = {27}, Number = {2}, Pages = {78-86}, Month = {JUN}, Abstract = {With the exponential growth of computational systems and increased patient data acquisition, dental research faces new challenges to manage a large quantity of information. For this reason, data science approaches are needed for the integrative diagnosis of multifactorial diseases, such as Temporomandibular joint (TMJ) Osteoarthritis (OA). The Data science spectrum includes data capture/acquisition, data processing with optimized web based storage and management, data analytics involving in-depth statistical analysis, machine learning (ML) approaches, and data communication. Artificial intelligence (AI) plays a crucial role in this process. It consists of developing computational systems that can perform human intelligence tasks, such as disease diagnosis, using many features to help in the decision-making support. Patient's clinical parameters, imaging exams, and molecular data are used as the input in cross-validation tasks, and human annotation/diagnosis is also used as the gold standard to train computational learning models and automatic disease classifiers. This paper aims to review and describe AI and ML techniques to diagnose TMJ OA and data science approaches for imaging processing. We used a web-based system for multi-center data communication, algorithms integration, statistics deployment, and process the computational machine learning models. We successfully show AI and data-science applications using patients' data to improve the TMJ OA diagnosis decision-making towards personalized medicine. (Semin Orthod 2021; 27:78-86) (c) 2021 Elsevier Inc. All rights reserved.}, Publisher = {ELSEVIER INC}, Address = {525 B STREET, STE 1900, SAN DIEGO, CA 92101-4495 USA}, Type = {Review}, Language = {English}, Affiliation = {Bianchi, J (Corresponding Author), Univ Pacific, Dept Orthodont, Arthur A Dugoni Sch Dent, San Francisco, CA 94103 USA. Bianchi, Jonas, Univ Pacific, Dept Orthodont, Arthur A Dugoni Sch Dent, San Francisco, CA 94103 USA. Ruellas, Antonio; Deleat-Besson, Romain; Le, Celia; Yatabe, Marilia; Gurgel, Marcela; Al Turkestani, Najla, Univ Michigan, Sch Dent, Dept Orthodont \& Pediat Dent, Ann Arbor, MI 48109 USA. Prieto, Juan Carlos, Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USA. Li, Tengfei, Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA. Soroushmehr, Reza, Univ Michigan, Dept Computat Med \& Bioinformat, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Orthodont \& Pediat Dent, Ann Arbor, MI 48109 USA. Paniagua, Beatriz, Kitware Inc, Carrboro, NC USA.}, DOI = {10.1053/j.sodo.2021.05.004}, EarlyAccessDate = {JUN 2021}, ISSN = {1073-8746}, EISSN = {1558-4631}, Keywords-Plus = {MACHINE; BIOMARKERS; DISORDERS; CRITERIA; NETWORK}, Research-Areas = {Dentistry, Oral Surgery \& Medicine}, Web-of-Science-Categories = {Dentistry, Oral Surgery \& Medicine}, Author-Email = {jbianchi@pacific.edu}, Affiliations = {University of the Pacific; University of Michigan System; University of Michigan; University of North Carolina; University of North Carolina Chapel Hill; University of North Carolina; University of North Carolina Chapel Hill; University of Michigan System; University of Michigan; University of Michigan System; University of Michigan; Kitware, Inc.}, ORCID-Numbers = {Gryak, Jonathan/0000-0002-5125-7741 Li, Tengfei/0000-0001-6142-3865 Gurgel, Marcela/0000-0001-9978-0542 AL TURKESTANI, NAJLA/0000-0002-7650-3638}, Cited-References = {Alyass A, 2015, BMC MED GENOMICS, V8, DOI 10.1186/s12920-015-0108-y. Bay-Jensen AC, 2016, OSTEOARTHR CARTILAGE, V24, P9, DOI 10.1016/j.joca.2015.10.014. Berrar D., 2019, CROSS VALIDATION, P542, DOI {[}DOI 10.1016/B978-0-12-809633-8.20349-X, 10.1016/B978-0-12-809633-8.20349-X]. Bianchi J, 2021, INT J ORAL MAX SURG, V50, P227, DOI 10.1016/j.ijom.2020.04.018. Bianchi Jonas, 2020, Multimodal Learn Clin Decis Support Clin Image Based Proc (2020), V12445, P44, DOI 10.1007/978-3-030-60946-7\_5. Bianchi J, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64942-0. Bianchi J, 2019, DENTOMAXILLOFAC RAD, V48, DOI 10.1259/dmfr.20190049. Brahim A, 2019, COMPUT MED IMAG GRAP, V73, P11, DOI 10.1016/j.compmedimag.2019.01.007. Brickley MR, 1998, J DENT, V26, P305, DOI 10.1016/S0300-5712(97)00027-4. Brosset S, 2020, IEEE ENG MED BIO, P1270, DOI 10.1109/EMBC44109.2020.9175692. Browne MW, 2000, J MATH PSYCHOL, V44, P108, DOI 10.1006/jmps.1999.1279. Cates, 2003, ITK SOFTW GUID, P804. Chan T, 1999, LECT NOTES COMPUT SC, V1682, P141. Chang GH, 2020, EUR RADIOL, V30, P3538, DOI 10.1007/s00330-020-06658-3. Chen LY, 2020, MED PHYS, V47, P1115, DOI 10.1002/mp.13978. Cohen, ARTIF INTELL, P2021, DOI {[}10.1016/b978-0-323-67538-3.00002-6, DOI 10.1016/B978-0-323-67538-3.00002-6]. Corbella, 2020, ORAL SURG ORAL MED O, V132, P225. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. de Dumast P, 2018, COMPUT MED IMAG GRAP, V67, P45, DOI 10.1016/j.compmedimag.2018.04.009. de Souza Raphael Freitas, 2012, Cochrane Database Syst Rev, pCD007261, DOI 10.1002/14651858.CD007261.pub2. Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593. Fan Y, 2019, DENTOMAXILLOFAC RAD, V48, DOI 10.1259/dmfr.20180261. Fontana MA, 2019, CLIN ORTHOP RELAT R, V477, P1267, DOI 10.1097/CORR.0000000000000687. Gao, MODEL BASED MODEL FR, P20181, DOI {[}10.1038/s41598-018-24783-4, DOI 10.1038/S41598-018-24783-4]. Gerig, ITK-SNAP : an interactive tool for semi-automatic segmentation of multi-modality biomedical images, Patent No. {[}20163342-3345, 334520163342]. Ghahramani Z, 2015, NATURE, V521, P452, DOI 10.1038/nature14541. Haeberle HS, 2019, J ARTHROPLASTY, V34, P2201, DOI 10.1016/j.arth.2019.05.055. He K. M., 2016, PROC IEEE C COMPUT V, DOI DOI 10.1109/CVPR.2016.90. HODGES DC, 1991, AM J PHYS ANTHROPOL, V85, P367, DOI 10.1002/ajpa.1330850402. Jamshidi A, 2019, NAT REV RHEUMATOL, V15, P49, DOI 10.1038/s41584-018-0130-5. Johnson VL, 2012, SEMIN MUSCULOSKEL R, V16, P410, DOI 10.1055/s-0032-1329894. Karhade AV, 2019, J ARTHROPLASTY, V34, P2272, DOI 10.1016/j.arth.2019.06.013. Kononenko I., 2007, MACHINE LEARNING DAT, P59, DOI {[}10.1533/9780857099440.59, DOI 10.1533/9780857099440.59]. Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141. Larheim TA, 2015, DENTOMAXILLOFAC RAD, V44, DOI 10.1259/dmfr.20140235. Li, An End-to-End Segmentation Network for the Temporomandibular Joints CBCT Image based on 3D U-Net, Patent No. {[}2020664-668, 2020664668]. Lotz M, 2014, POSTGRAD MED J, V90, P171, DOI 10.1136/postgradmedj-2013-203726rep. Ma RH, 2016, SCI REP-UK, V6, DOI 10.1038/srep34714. Mendonca Eneida A, 2004, J Dent Educ, V68, P589. Michoud L, 2019, PROC SPIE, V10953, DOI 10.1117/12.2506032. Muehlhauser L., 2012, SINGULARITY HYPOTHES, P15. Mullins IM, 2006, COMPUT BIOL MED, V36, P1351, DOI 10.1016/j.compbiomed.2005.08.003. Nelson AE, 2019, OSTEOARTHR CARTILAGE, V27, P994, DOI 10.1016/j.joca.2018.12.027. Paniagua B, 2017, PROC SPIE, V10137, DOI 10.1117/12.2254070. Pauwels R, 2014, DENTOMAXILLOFAC RAD, V43, DOI 10.1259/dmfr.20140059. Pauwels R, 2012, OR SURG OR MED OR PA, V114, P127, DOI 10.1016/j.oooo.2012.01.020. Pieper S, 2004, 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, P632. Raghupathi W, 2014, HEALTH INF SCI SYST, V2, DOI 10.1186/2047-2501-2-3. Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4\_28. Schiffman E, 2014, J ORAL FACIAL PAIN H, V28, P6, DOI 10.11607/jop.1151. Shafiq-ul-Hassan M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-28895-9. Shoukri B, 2019, J DENT RES, V98, P1103, DOI 10.1177/0022034519865187. Stetter BJ, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.00009. Szymczak S, 2009, GENET EPIDEMIOL, V33, pS51, DOI 10.1002/gepi.20473. Thrall JH, 2018, J AM COLL RADIOL, V15, P504, DOI 10.1016/j.jacr.2017.12.026. Tubau, Shape variation analyzer: a classifier for temporomandibular joint damaged by osteoarthritis, Patent No. {[}201973.1095021, 2019731095021]. Wadhwa S, 2008, J DENT EDUC, V72, P930. Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z. Zhang H, 2017, TECHNOL CANCER RES T, V16, P81, DOI 10.1177/1533034615627584. Zhao BS, 2014, TRANSL ONCOL, V7, P88, DOI 10.1593/tlo.13865. Zhu, 2015, CHALLENGES DATA QUAL, DOI {[}10.5334/dsj-2015-002, DOI 10.5334/DSJ-2015-002].}, Number-of-Cited-References = {61}, Times-Cited = {3}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {10}, Journal-ISO = {Semin. Orthod.}, Doc-Delivery-Number = {TC4IG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000668603600004}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000878982900001, Author = {Liu, Yang and Wei, Yu-Shen and Yan, Hong and Li, Guan-Bin and Lin, Liang}, Title = {Causal Reasoning Meets Visual Representation Learning: A Prospective Study}, Journal = {MACHINE INTELLIGENCE RESEARCH}, Year = {2022}, Volume = {19}, Number = {6}, Pages = {485-511}, Month = {DEC}, Abstract = {Visual representation learning is ubiquitous in various real-world applications, including visual comprehension, video understanding, multi-modal analysis, human-computer interaction, and urban computing. Due to the emergence of huge amounts of multimodal heterogeneous spatial/temporal/spatial-temporal data in the big data era, the lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models. The majority of the existing methods tend to fit the original data/variable distributions and ignore the essential causal relations behind the multi-modal knowledge, which lacks unified guidance and analysis about why modern visual representation learning methods easily collapse into data bias and have limited generalization and cognitive abilities. Inspired by the strong inference ability of human-level agents, recent years have therefore witnessed great effort in developing causal reasoning paradigms to realize robust representation and model learning with good cognitive ability. In this paper, we conduct a comprehensive review of existing causal reasoning methods for visual representation learning, covering fundamental theories, models, and datasets. The limitations of current methods and datasets are also discussed. Moreover, we propose some prospective challenges, opportunities, and future research directions for benchmarking causal reasoning algorithms in visual representation learning. This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods, publicly available benchmarks, and consensus-building standards for reliable visual representation learning and related real-world applications more efficiently.}, Publisher = {SPRINGERNATURE}, Address = {CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Lin, L (Corresponding Author), Sun Yat Sen Univ, Sch Comp Sci \& Engn, Guangzhou 510006, Peoples R China. Liu, Yang; Wei, Yu-Shen; Yan, Hong; Li, Guan-Bin; Lin, Liang, Sun Yat Sen Univ, Sch Comp Sci \& Engn, Guangzhou 510006, Peoples R China.}, DOI = {10.1007/s11633-022-1362-z}, EarlyAccessDate = {NOV 2022}, ISSN = {2731-538X}, EISSN = {2731-5398}, Keywords = {Causal reasoning; visual representation learning; reliable artificial intelligence; spatial-temporal data; multi-modal analysis}, Keywords-Plus = {CONVOLUTIONAL NETWORKS; GRAPH}, Research-Areas = {Automation \& Control Systems; Computer Science}, Web-of-Science-Categories = {Automation \& Control Systems; Computer Science, Artificial Intelligence}, Author-Email = {liuy856@mail.sysu.edu.cn welysh8@mail2.sysu.edu.cn yanh36@mail2.sysu.edu.cn liguanbin@mail.sysu.edu.cn linliang@ieee.org}, Affiliations = {Sun Yat Sen University}, ResearcherID-Numbers = {Li, Jiaxi/HTS-3430-2023 Lin, L/HKO-8213-2023 l, j/HNC-5728-2023 }, ORCID-Numbers = {Li, Jiaxi/0000-0002-8197-8590 Yan, Hong/0000-0003-4100-6751 Liang, Lin/0000-0003-2248-3755}, Funding-Acknowledgement = {National Natural Science Foundation of China {[}62002395, 61976250, U1811463]; National Key R\&D Program of China {[}2021ZD0111601]; Guangdong Basic and Applied Basic Research Foundation, China {[}2021A15150123, 2020B1515020048]}, Funding-Text = {This work was supported in part by National Natural Science Foundation of China (Nos. 62002395, 61976250 and U1811463), the National Key R\&D Program of China (No. 2021ZD0111601), the Guangdong Basic and Applied Basic Research Foundation, China (Nos. 2021A15150123 and 2020B1515020048).}, Cited-References = {Agarwal Vedika, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P9687, DOI 10.1109/CVPR42600.2020.00971. Agrawal A, 2018, PROC CVPR IEEE, P4971, DOI 10.1109/CVPR.2018.00522. Aich A, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P152, DOI 10.1109/ICCV48922.2021.00022. Akula AR, 2022, ISCIENCE, V25, DOI 10.1016/j.isci.2021.103581. Anderson P, 2018, PROC CVPR IEEE, P3674, DOI 10.1109/CVPR.2018.00387. Antol S, 2015, IEEE I CONF COMP VIS, P2425, DOI 10.1109/ICCV.2015.279. Armeni I, 2019, IEEE I CONF COMP VIS, P5663, DOI 10.1109/ICCV.2019.00576. Arnab A, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P6816, DOI 10.1109/ICCV48922.2021.00676. Azulay A, 2019, J MACH LEARN RES, V20. Bao WT., 2021, EVIDENTIAL DEEP LEAR, P13329. Bertasius G, 2021, PR MACH LEARN RES, V139. Bowden RJ, 1984, INSTRUMENTAL VARIABL. Busta M, 2017, IEEE I CONF COMP VIS, P2223, DOI 10.1109/ICCV.2017.242. Cao QX, 2022, IEEE T NEUR NET LEAR, V33, P2758, DOI 10.1109/TNNLS.2020.3045034. Cao QX., 2021, LINGUISTICALLY ROUTI, P1594. Carreira J, 2017, PROC CVPR IEEE, P4724, DOI 10.1109/CVPR.2017.502. Chattopadhyay A, 2019, PR MACH LEARN RES, V97. Chen J., 2020, ARXIV. Chen L., 2020, CVPR. Chen L, 2021, AAAI CONF ARTIF INTE, V35, P1036. Chen L, 2019, IEEE I CONF COMP VIS, P4612, DOI 10.1109/ICCV.2019.00471. Chen Q, 2021, PROC CVPR IEEE, P13034, DOI 10.1109/CVPR46437.2021.01284. Chen TS, 2022, IEEE T PATTERN ANAL, V44, P1371, DOI 10.1109/TPAMI.2020.3025814. Chen TS, 2019, PROC CVPR IEEE, P6156, DOI 10.1109/CVPR.2019.00632. Chen X. L., 2015, ARXIV. Chen XX, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3440756. Chen YB, 2021, PROC CVPR IEEE, P7012, DOI 10.1109/CVPR46437.2021.00694. Chen Y, 2019, IEEE INT CON MULTI, P508, DOI 10.1109/ICME.2019.00094. Chen Z. F., 2022, P 10 INT C LEARNING. Cheng L., IN PRESS. Cheng Y, 2020, MM `20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P3884, DOI 10.1145/3394171.3413869. CHRISTIANSEN R, IN PRESS. Dai B, 2017, PROC CVPR IEEE, P3298, DOI 10.1109/CVPR.2017.352. Dai JF, 2016, ADV NEUR IN, V29. Deng JJ., 2021, TRANSVG END TO END V, P1749. Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171. Dosovitskiy A., 2021, ICLR, DOI DOI 10.48550/ARXIV.2010.11929. Erhan D, 2014, PROC CVPR IEEE, P2155, DOI 10.1109/CVPR.2014.276. Feichtenhofer C, 2020, PROC CVPR IEEE, P200, DOI 10.1109/CVPR42600.2020.00028. Feichtenhofer C, 2019, IEEE I CONF COMP VIS, P6201, DOI 10.1109/ICCV.2019.00630. Fire A, 2017, IEEE COMPUT SOC CONF, P48, DOI 10.1109/CVPRW.2017.13. Fu C-Y., 2017, ARXIV PREPRINT ARXIV. Gangapure VN, 2018, IEEE T CIRC SYST VID, V28, P1263, DOI 10.1109/TCSVT.2017.2662743. Gao RH, 2020, PROC CVPR IEEE, P10454, DOI 10.1109/CVPR42600.2020.01047. Geirhos R., 2019, PROC INT C LEARN REP. Girshick R., 2015, IEEE I CONF COMP VIS, P1440, DOI DOI 10.1109/ICCV.2015.169. Girshick R., 2014, PROC CVPR IEEE, P580, DOI {[}DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81]. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Goyal Y, 2017, PROC CVPR IEEE, P6325, DOI 10.1109/CVPR.2017.670. Grunde-McLaughlin M., 2021, AGQA BENCHMARK COMPO, P11282. Gu JX, 2019, PROC CVPR IEEE, P1969, DOI 10.1109/CVPR.2019.00207. Guansong Pang, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P12170, DOI 10.1109/CVPR42600.2020.01219. Guo XJ, 2022, INFORM SCIENCES, V589, P849, DOI 10.1016/j.ins.2021.12.118. Gupta V., 2022, VQUAD VIDEO QUESTION, P282. Harradon M., 2018, ARXIV. He K., 2017, PROC IEEE INT C COMP, P2961, DOI DOI 10.1109/ICCV.2017.322. He YX, 2023, TRANSPORTMETRICA A, V19, DOI {[}10.1109/CVPR.2016.90, 10.1080/23249935.2022.2033348]. Hendrycks D., 2019, PROC INT C LEARN REP. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Hou F., 2019, MOBILE CROWD SENSING. Hu XT, 2021, PROC CVPR IEEE, P3956, DOI 10.1109/CVPR46437.2021.00395. Huang D, 2020, AAAI CONF ARTIF INTE, V34, P11021. Huang JQ, 2022, AAAI CONF ARTIF INTE, P998. Hung Z. S., 2019, ARXIV. Jiang P, 2020, AAAI CONF ARTIF INTE, V34, P11109. Johnson J, 2015, PROC CVPR IEEE, P3668, DOI 10.1109/CVPR.2015.7298990. Kamath A., 2021, MDETR MODULATED DETE, P1760. Kyono Trent, 2021, IEEE Transactions on Artificial Intelligence, V2, P494, DOI 10.1109/TAI.2021.3101185. Lan H. Y., 2022, ARXIV. Lee TE, 2021, IEEE INT CONF ROBOT, P4776, DOI 10.1109/ICRA48506.2021.9561439. Lei J, 2021, PROC CVPR IEEE, P7327, DOI 10.1109/CVPR46437.2021.00725. Li GB, 2018, PROC CVPR IEEE, P3243, DOI 10.1109/CVPR.2018.00342. Li GB, 2017, PROC CVPR IEEE, P247, DOI 10.1109/CVPR.2017.34. Li HF, 2019, IEEE I CONF COMP VIS, P7273, DOI 10.1109/ICCV.2019.00737. Li LJ., 2021, ADVERSARIAL VQA NEW, P2022. Li LZ, 2021, CONCURR COMP-PRACT E, V33, DOI 10.1002/cpe.6347. Li X., 2021, ARXIV. Li Y. C., 2022, P IEEECVF C COMPUTER, P2928. Li YK, 2018, LECT NOTES COMPUT SC, V11205, P346, DOI 10.1007/978-3-030-01246-5\_21. Li YK, 2017, PROC CVPR IEEE, P7244, DOI 10.1109/CVPR.2017.766. Liang XD, 2019, IEEE T PATTERN ANAL, V41, P871, DOI 10.1109/TPAMI.2018.2820063. Liang YZ, 2019, IEEE I CONF COMP VIS, P10402, DOI 10.1109/ICCV.2019.01050. Lin J, 2019, IEEE I CONF COMP VIS, P7082, DOI 10.1109/ICCV.2019.00718. Lin JX, 2019, ADV NEUR IN, V32. Lin K, 2021, PROC CVPR IEEE, P1954, DOI 10.1109/CVPR46437.2021.00199. Lin T.-Y., 2017, IEEE C COMP VIS PATT, DOI DOI 10.1109/CVPR.2017.106. Lin WY, 2021, PR MACH LEARN RES, V139. Lin XR, 2022, AAAI CONF ARTIF INTE, P1610. Lin XR, 2022, AAAI CONF ARTIF INTE, P1620. Lin XR, 2021, PROC CVPR IEEE, P7032, DOI 10.1109/CVPR46437.2021.00696. Ling ZL, 2021, IEEE TETCI, V5, P530, DOI 10.1109/TETCI.2020.2978238. Liu DG, 2021, 15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021), P351, DOI 10.1145/3460231.3474263. Liu F., 2021, HAIR HIERARCHICAL VI, P1678. Liu HL., 2021, REFER IT IN RGBD BOT, P6028. Liu R. Y., 2022, P IEEECVF C COMPUTER, P12755. Liu Y., 2016, COMBINING MULTIPLE F, P139. Liu Y. J., 2022, P IEEECVF C COMPUTER, P17081. Liu Y, 2022, IEEE T IMAGE PROCESS, V31, P1978, DOI 10.1109/TIP.2022.3147032. Liu Y, 2021, IEEE T IMAGE PROCESS, V30, P5573, DOI 10.1109/TIP.2021.3086590. Liu Y, 2020, IEEE T IMAGE PROCESS, V29, P3168, DOI 10.1109/TIP.2019.2957930. Liu Y, 2019, IEEE T CIRC SYST VID, V29, P2416, DOI 10.1109/TCSVT.2018.2868123. Liu Y, 2018, IEEE SIGNAL PROC LET, V25, P848, DOI 10.1109/LSP.2018.2823910. Liu Y, 2018, COMPLEXITY, DOI 10.1155/2018/5345241. Liu YF., 2021, RELATION AWARE INSTA, P5608. Liu Yuchen, 2021, ARXIV. Liu Yulin, 2022, ARXIV. Lu CW, 2016, LECT NOTES COMPUT SC, V9905, P852, DOI 10.1007/978-3-319-46448-0\_51. Lu JS, 2019, ADV NEUR IN, V32. Lv F. R., 2022, P IEEECVF C COMPUTER, P8046. Mao CZ., 2021, GENERATIVE INTERVENT, P3946. Mitrovic J., 2021, INT C LEARNING REPRE. Moraffah Raha, 2020, ACM SIGKDD Explorations Newsletter, V22, P18, DOI 10.1145/3400051.3400058. Najibi M, 2016, PROC CVPR IEEE, P2369, DOI 10.1109/CVPR.2016.260. Narendra T., 2018, ARXIV. Ni JY, 2022, INT CONF ACOUST SPEE, P4448, DOI 10.1109/ICASSP43922.2022.9746752. Niu Y. L., 2021, P 35 C NEURAL INFORM, P16292. Niu YL, 2021, PROC CVPR IEEE, P12695, DOI 10.1109/CVPR46437.2021.01251. OShaughnessy M., 2020, ADV NEURAL INFORM PR, P5453, DOI DOI 10.5555/3495724.3496182. Parafita A, 2019, IEEE INT CONF COMP V, P4167, DOI 10.1109/ICCVW.2019.00512. Pearl J., 2009, CAUSALITY, DOI DOI 10.1017/CBO9780511803161. Peters J, 2017, ADAPT COMPUT MACH LE. Plummer BA, 2017, IEEE I CONF COMP VIS, P1946, DOI 10.1109/ICCV.2017.213. Qi H., 2018, P 32 AAAI C ARTIFICI. Qi MS, 2019, PROC CVPR IEEE, P3952, DOI 10.1109/CVPR.2019.00408. Radford A, 2021, PR MACH LEARN RES, V139. Rastgoo R, 2021, EXPERT SYST APPL, V164, DOI 10.1016/j.eswa.2020.113794. Redmon J., 2017, PROC CVPR IEEE, P6517, DOI DOI 10.1109/CVPR.2017.690. Redmon J, 2016, PROC CVPR IEEE, P779, DOI 10.1109/CVPR.2016.91. Ren M, 2022, MACH INTELL RES, V19, P209, DOI 10.1007/s11633-022-1330-7. Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031. Scholkopf B, 2021, P IEEE, V109, P612, DOI 10.1109/JPROC.2021.3058954. Sharma P, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P2556. Shen X., 2020, ARXIV. Shen Z. Y., 2021, ARXIV. Shen ZQ, 2017, IEEE I CONF COMP VIS, P1937, DOI 10.1109/ICCV.2017.212. Shetty Rakshith, 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P8210, DOI 10.1109/CVPR.2019.00841. Shi JX, 2019, PROC CVPR IEEE, P8368, DOI 10.1109/CVPR.2019.00857. Shi L, 2019, PROC CVPR IEEE, P12018, DOI 10.1109/CVPR.2019.01230. Shi W. J., IEEE T PATTERN ANAL, DOI 10.1109/TPAMI.2021.3133717. Si CY, 2019, PROC CVPR IEEE, P1227, DOI 10.1109/CVPR.2019.00132. Smith SC, 2020, J IEEE I C DEVELOP L. Stocking K. C., 2022, P C ROBOT LEARNING, P1776. Su W. J., 2020, 8 INT C LEARNING REP. Sun C, 2018, LECT NOTES COMPUT SC, V11215, P335, DOI 10.1007/978-3-030-01252-6\_20. Sun MJ, 2021, PROC CVPR IEEE, P14055, DOI 10.1109/CVPR46437.2021.01384. Tan H, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P5100. Tan J, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P13506, DOI 10.1109/ICCV48922.2021.01327. Tang K H, 2020, PROC 34 INT C NEURAL, DOI DOI 10.5555/3495724.3495852. Tang K. H., 2021, ARXIV. Tang KH, 2020, PROC CVPR IEEE, P3713, DOI 10.1109/CVPR42600.2020.00377. Tang KH, 2019, PROC CVPR IEEE, P6612, DOI 10.1109/CVPR.2019.00678. Thao Minh Le, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P9969, DOI 10.1109/CVPR42600.2020.00999. Tjoa E, 2021, IEEE T NEUR NET LEAR, V32, P4793, DOI 10.1109/TNNLS.2020.3027314. Uijlings JRR, 2013, INT J COMPUT VISION, V104, P154, DOI 10.1007/s11263-013-0620-5. Vaswani A., 2017, ADV NEUR IN, P5998, DOI DOI 10.48550/ARXIV.1706.03762. von Kugelgen Julius, 2021, IEEE Trans Artif Intell, V2, P18, DOI 10.1109/TAI.2021.3073088. Wang J, 2019, IEEE I CONF COMP VIS, P4662, DOI 10.1109/ICCV.2019.00476. Wang LC, 2019, IEEE I CONF COMP VIS, P6221, DOI 10.1109/ICCV.2019.00631. Wang LM, 2016, LECT NOTES COMPUT SC, V9912, P20, DOI 10.1007/978-3-319-46484-8\_2. Wang LW, 2021, PROC CVPR IEEE, P14085, DOI 10.1109/CVPR46437.2021.01387. Wang RZ, 2020, AAAI CONF ARTIF INTE, V34, P9185. Wang T., 2020, VISUAL COMMONSENSE R, P10757. Wang WG, 2022, IEEE T PATTERN ANAL, V44, P3239, DOI 10.1109/TPAMI.2021.3051099. Wang WJ, 2021, SIGIR `21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1288, DOI 10.1145/3404835.3462962. Wang X, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P7545, DOI 10.1109/ICCV48922.2021.00747. Wang ZW, 2021, PROC CVPR IEEE, P13209, DOI 10.1109/CVPR46437.2021.01301. Wei TX, 2021, KDD `21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P1791, DOI 10.1145/3447548.3467289. Welling M, 2014, P 2 INT C LEARNING R. Wu A, 2019, ADV NEUR IN, V32. Wu CY, 2019, PROC CVPR IEEE, P284, DOI 10.1109/CVPR.2019.00037. Wu F, 2017, IEEE T KNOWL DATA EN, V29, P2304, DOI 10.1109/TKDE.2017.2720737. Wu J, 2020, MM `20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P1283, DOI 10.1145/3394171.3413862. Wu J, 2020, AAAI CONF ARTIF INTE, V34, P12386. Wu LF, 2021, INT J AUTOM COMPUT, V18, P334, DOI 10.1007/s11633-020-1258-8. Wu P, 2021, IEEE T IMAGE PROCESS, V30, P3513, DOI 10.1109/TIP.2021.3062192. Wu XY, 2020, IEEE T CYBERNETICS, V50, P4983, DOI 10.1109/TCYB.2019.2940509. Xiao JB, 2021, PROC CVPR IEEE, P9772, DOI 10.1109/CVPR46437.2021.00965. Xiong CM, 2016, IEEE INT CONF ROBOT, P2144, DOI 10.1109/ICRA.2016.7487364. Xu DJ, 2017, PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), P1645, DOI 10.1145/3123266.3123427. Xu L, 2021, PROC CVPR IEEE, P9873, DOI 10.1109/CVPR46437.2021.00975. Xu Z. W., 2021, P 35 C NEURAL INFORM, P3205. Yan PX, 2019, IEEE I CONF COMP VIS, P7283, DOI 10.1109/ICCV.2019.00738. Yan SJ, 2018, AAAI CONF ARTIF INTE, P7444. Yang CY, 2020, PROC CVPR IEEE, P588, DOI 10.1109/CVPR42600.2020.00067. Yang MY, 2021, PROC CVPR IEEE, P9588, DOI 10.1109/CVPR46437.2021.00947. Yang S., IEEE T KNOWL DATA EN, DOI 10.1109/TKDE.2021.3119185. Yang S., IEEE T BIG DATA, DOI 10.1109/TB-DATA.2021.3062937. Yang SB., 2020, GRAPH STRUCTURED REF, P9949. Yang SB, 2021, IEEE T PATTERN ANAL, V43, P2765, DOI 10.1109/TPAMI.2020.2973983. Yang SB, 2019, IEEE I CONF COMP VIS, P4643, DOI 10.1109/ICCV.2019.00474. Yang SB, 2019, PROC CVPR IEEE, P4140, DOI 10.1109/CVPR.2019.00427. Yang X., IN PRESS. Yang X, 2021, PROC CVPR IEEE, P9842, DOI 10.1109/CVPR46437.2021.00972. Yang ZC, 2016, PROC CVPR IEEE, P21, DOI 10.1109/CVPR.2016.10. Yeh RA, 2018, PROC CVPR IEEE, P6125, DOI 10.1109/CVPR.2018.00641. Yen-Chun Chen, 2020, Computer Vision - ECCV 2020 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12375), P104, DOI 10.1007/978-3-030-58577-8\_7. Yi K., 2020, P 8 INT C LEARN REPR. Yoo D, 2015, IEEE I CONF COMP VIS, P2659, DOI 10.1109/ICCV.2015.305. YU K, IN PRESS. Yu K, 2022, ACM T KNOWL DISCOV D, V16, DOI 10.1145/3488055. Yu K, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3436891. Yu K, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3409382. Yu K, 2020, IEEE T NEUR NET LEAR, V31, P2005, DOI 10.1109/TNNLS.2019.2927636. Yu K, 2020, IEEE T PATTERN ANAL, V42, P2240, DOI 10.1109/TPAMI.2019.2908373. Yu WJ, 2019, ADV NEUR IN, V32. Yue Z., 2020, ADV NEURAL INFORM PR, P2734. Yue ZQ, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P8579, DOI 10.1109/ICCV48922.2021.00848. Yue ZQ, 2021, PROC CVPR IEEE, P15399, DOI 10.1109/CVPR46437.2021.01515. Zellers R, 2019, PROC CVPR IEEE, P6713, DOI 10.1109/CVPR.2019.00688. Zellers R, 2018, PROC CVPR IEEE, P5831, DOI 10.1109/CVPR.2018.00611. Zhang C., 2021, ACRE ABSTRACT CAUSAL, P10638. Zhang CH, 2021, PROC CVPR IEEE, P4484, DOI 10.1109/CVPR46437.2021.00446. Zhang D., 2020, P 34 INT C NEURAL IN. Zhang DW, 2022, IEEE T PATTERN ANAL, V44, P5866, DOI 10.1109/TPAMI.2021.3074313. Zhang DW, 2022, IEEE T PATTERN ANAL, V44, P3349, DOI 10.1109/TPAMI.2020.3046647. Zhang H, 2017, P IEEE C COMP VIS PA, P5532. Zhang P, 2016, PROC CVPR IEEE, P5014, DOI 10.1109/CVPR.2016.542. Zhang QS, 2018, FRONT INFORM TECH EL, V19, P27, DOI 10.1631/FITEE.1700808. Zhang QS, 2021, IEEE T PATTERN ANAL, V43, P3863, DOI 10.1109/TPAMI.2020.2992207. Zhang QS, 2021, IEEE T PATTERN ANAL, V43, P3949, DOI 10.1109/TPAMI.2020.2993147. Zhang QS, 2021, IEEE T PATTERN ANAL, V43, P3416, DOI 10.1109/TPAMI.2020.2982882. Zhang QS, 2019, PROC CVPR IEEE, P6254, DOI 10.1109/CVPR.2019.00642. Zhang QS, 2018, PROC CVPR IEEE, P8827, DOI 10.1109/CVPR.2018.00920. Zhang SY, 2020, MM `20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P4373, DOI 10.1145/3394171.3413518. Zhang X., 2021, P 29 ACM INT C MULTI, P1793, DOI {[}10.1145/3474085.3475328, DOI 10.1145/3474085.3475328]. Zhang XH., 2021, LEARNING CAUSAL REPR, P11250. Zhang XQ, 2021, INT J AUTOM COMPUT, V18, P311, DOI 10.1007/s11633-020-1274-8. Zhang Y, 2021, SIGIR `21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P11, DOI 10.1145/3404835.3462875. Zheng Y, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P2980, DOI 10.1145/3442381.3449788. Zheng Yu, 2014, ACM T INTEL SYST TEC, V5, P3, DOI {[}DOI 10.1145/2629592, 10.1145/2629592]. Zhou BL, 2018, LECT NOTES COMPUT SC, V11205, P831, DOI 10.1007/978-3-030-01246-5\_49. Zhou K, 2016, DESTECH TRANS COMP. Zhu JY, 2017, IEEE I CONF COMP VIS, P2242, DOI 10.1109/ICCV.2017.244. Zhu Y. Y., IEEE T IND INFORM, DOI 10.1109/TII.2022.3179243. Zitnick CL, 2014, LECT NOTES COMPUT SC, V8693, P391, DOI 10.1007/978-3-319-10602-1\_26.}, Number-of-Cited-References = {236}, Times-Cited = {0}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {9}, Journal-ISO = {Mach. Intell. Res.}, Doc-Delivery-Number = {6G6SK}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000878982900001}, OA = {hybrid, Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000922993000001, Author = {Cantarero-Garcia, Guadalupe and Molla, Marina and Alonso Gonzalez-Lezcano, Roberto}, Title = {Smart citizen in architecture and landscape. Method design based on spatial intelligence and universal accessibility learning by students with intellectual disabilities}, Journal = {FRONTIERS IN BUILT ENVIRONMENT}, Year = {2023}, Volume = {9}, Month = {JAN 13}, Abstract = {The Smart Citizen concept is at an early stage of research in the field of architecture and landscape architecture. ICTs and their use by citizens have been studied exclusively in the fields of engineering and telecommunications sciences as well as Artificial Intelligence. This study seeks to publicize the Smart Citizen concept in architecture and landscape from a spatial understanding and the perception of citizens with intellectual disabilities. A real case study developed by architects in collaboration with psychologists focused on the development of spatial intelligence for people with intellectual disabilities is presented in this study. ``The students that participated in these activities belong to San Pablo CEU University course financed by ONCE Foundation (FONCE) and the European Social Fund. `` The purpose is to question the effectiveness of the use of technologies for said cognitive development and how even the increased use of GPS navigator systems could be a detriment to the citizen when trying to orient him or herself in open spaces. The result to highlight in this review is to know if a person with a disability is equally capable of understanding a space and navigate it without the aid of GPS as a person without an intellectual disability. Both analogical tools (2D plan) and digital tools (GPS) are used under the same conditions. New lines of research are presented in the study of spatial intelligence through innovating tools or TICs in relation to urban elements where concepts like scale, proportion, light, and shade were identified.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Cantarero-Garcia, G (Corresponding Author), CEU Univ, Univ San Pablo CEU, Escuela Politecn Super, Urbanizac Monteprincipe, Madrid, Spain. Cantarero-Garcia, Guadalupe; Molla, Marina; Alonso Gonzalez-Lezcano, Roberto, CEU Univ, Univ San Pablo CEU, Escuela Politecn Super, Urbanizac Monteprincipe, Madrid, Spain.}, DOI = {10.3389/fbuil.2023.1094760}, Article-Number = {1094760}, EISSN = {2297-3362}, Keywords = {smart citizen; smart city; architecture; landscape; intelectual disability}, Keywords-Plus = {CITIES; INCLUSIVITY; CITY}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil}, Author-Email = {gcgarcia@ceu.es}, Affiliations = {San Pablo CEU University}, ResearcherID-Numbers = {GARCIA, GUADALUPE CANTARERO/E-7035-2017 Gonzalez Lezcano, Roberto Alonso/K-5670-2014}, ORCID-Numbers = {GARCIA, GUADALUPE CANTARERO/0000-0003-3169-8547 Gonzalez Lezcano, Roberto Alonso/0000-0002-6185-4929}, Funding-Acknowledgement = {CEU San Pablo University; {[}EC01/0720- MGI22RGL]}, Funding-Text = {The authors wish to thank CEU San Pablo University Foundation for the funds dedicated to the ARIE Research Group, through the Project Ref. EC01/0720- MGI22RGL provided by the CEU San Pablo University.}, Cited-References = {Baghezza R, 2022, IEEE INTERNET THINGS, V9, P7491, DOI 10.1109/JIOT.2021.3127137. Blacutt AA, 2020, SMART CITIES-BASEL, V3, P1334, DOI 10.3390/smartcities3040064. Brenner N, 2002, ANTIPODE, V34, P349, DOI 10.1111/1467-8330.00246. Bricout J, 2021, INT J E-PLAN RES, V10, P94, DOI 10.4018/IJEPR.20210401.oa8. Cantarero G., 2020, IMAGINAR COMPARTIR C. Cantarero-Garcia G., 2018, GESTION INTELIGENTE, P101. Caragliu A, 2011, J URBAN TECHNOL, V18, P65, DOI 10.1080/10630732.2011.601117. Cardullo P, 2019, GEOJOURNAL, V84, P1, DOI 10.1007/s10708-018-9845-8. Carrillo Marcos M., 2013, INTELIGENCIA CONDUCT. Colom Roberto, 2010, Dialogues Clin Neurosci, V12, P489. Dembski F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062307. Gardner Howard., 1983, MULTIPLE INTELLIGENC. Goleman D., 1995, EMOTIONAL INTELLIGEN. Ismagilova E, 2019, INT J INFORM MANAGE, V47, P88, DOI 10.1016/j.ijinfomgt.2019.01.004. Kurbatova SM, 2020, IOP CONF SER-MAT SCI, V962, DOI 10.1088/1757-899X/962/3/032074. Nam T., 2011, P 12 ANN INT DIG GOV, V11, P282, DOI {[}https://doi.org/10.1145/2037556.2037602, DOI 10.1145/2037556.2037602, 10.1145/2037556.2037602]. Neirotti P, 2014, CITIES, V38, P25, DOI 10.1016/j.cities.2013.12.010. Rebernik N., 2017, P PRODUCTION DISABIL, P70. Romero R., 2018, PAISAJES APROXIMACI. Roselli M., 2015, REV NEUROPSICOL NEUR, V15, P175. Shapiro JM, 2006, REV ECON STAT, V88, P324, DOI 10.1162/rest.88.2.324. Sternberg RJ, 2019, J INTELL-BASEL, V7, DOI 10.3390/jintelligence7040023. Tan SY, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030899. Tian J., 2018, P 18 INT C ELECT BUS, P7392. Tomor Z, 2020, INT J PUBLIC ADM DIG, V7, P1, DOI 10.4018/IJPADA.2020010101. van den Berg AC, 2020, PUBLIC ADMIN REV, V80, P989, DOI 10.1111/puar.13215.}, Number-of-Cited-References = {26}, Times-Cited = {0}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {2}, Journal-ISO = {Front. Built Environ.}, Doc-Delivery-Number = {8K3FY}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000922993000001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000524758400006, Author = {Falini, Stefano and Angelotti, Giovanni and Cecconi, Maurizio}, Title = {ICU management based on big data}, Journal = {CURRENT OPINION IN ANESTHESIOLOGY}, Year = {2020}, Volume = {33}, Number = {2}, Pages = {162-169}, Month = {APR}, Abstract = {Purpose of review The availability of large datasets and computational power has prompted a revolution in Intensive Care. Data represent a great opportunity for clinical practice, benchmarking, and research. Machine learning algorithms can help predict events in a way the human brain can simply not process. This possibility comes with benefits and risks for the clinician, as finding associations does not mean proving causality. Recent findings Current applications of Data Science still focus on data documentation and visualization, and on basic rules to identify critical lab values. Recently, algorithms have been put in place for prediction of outcomes such as length of stay, mortality, and development of complications. These results have begun being implemented for more efficient allocation of resources and in benchmarking processes, to allow identification of successful practices and margins for improvement. In parallel, machine learning models are increasingly being applied in research to expand medical knowledge. Data have always been part of the work of intensivists, but the current availability has not been completely exploited. The intensive care community has to embrace and guide the data science revolution in order to decline it in favor of patients' care.}, Publisher = {LIPPINCOTT WILLIAMS \& WILKINS}, Address = {TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA}, Type = {Review}, Language = {English}, Affiliation = {Falini, S (Corresponding Author), Ist Clin Humanitas, Via Alessandro Manzoni 56, I-20089 Rozzano, Italy. Falini, Stefano; Cecconi, Maurizio, Humanitas Clin \& Res Ctr, Dept Anesthesia \& Intens Care, Rozzano, Italy. Angelotti, Giovanni, Humanitas Clin \& Res Ctr, Data Sci Core Facil, Rozzano, Italy. Cecconi, Maurizio, Humanitas Univ, Milan, Italy.}, DOI = {10.1097/ACO.0000000000000834}, ISSN = {0952-7907}, EISSN = {1473-6500}, Keywords = {benchmarking; big data; clinical prediction model; data science; intensive care medicine}, Keywords-Plus = {CARE; TRIALS; MEDICINE; SEPSIS}, Research-Areas = {Anesthesiology}, Web-of-Science-Categories = {Anesthesiology}, Author-Email = {stefano.falini@humanitas.it}, Affiliations = {IRCCS Humanitas Research Hospital; IRCCS Humanitas Research Hospital; Humanitas University}, ResearcherID-Numbers = {Cecconi, Maurizio/A-6241-2012 Cecconi, Maurizio/HDN-8785-2022 Angelotti, Giovanni/HNC-2169-2023}, ORCID-Numbers = {Cecconi, Maurizio/0000-0002-4376-6538 Cecconi, Maurizio/0000-0002-4376-6538 Angelotti, Giovanni/0000-0003-3264-2721}, Cited-References = {Aboab J, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aad9072. Amsterdam UMC Database, AMST UMC DAT. Angus DC, 2015, JAMA-J AM MED ASSOC, V314, P767, DOI 10.1001/jama.2015.7762. Antcliffe DB, 2019, AM J RESP CRIT CARE, V199, P980, DOI 10.1164/rccm.201807-1419OC. Asimov I., 1950, ROBOT SERIES. Bailly S, 2018, INTENS CARE MED, V44, P1524, DOI 10.1007/s00134-017-5034-3. Bender Duane, 2013, P 26 IEEE INT S COMP. Bothwell LE, 2016, NEW ENGL J MED, V374, P2175, DOI 10.1056/NEJMms1604593. Bundy A, 2017, AI SOC, V32, P285, DOI 10.1007/s00146-016-0685-0. Clifford GD, 2017, COMPUT CARDIOL, V44, P65. Cosgriff CV, 2019, BIOMED ENG COMPUT BI, V10, DOI 10.1177/1179597219856564. Crist obal Esteban Stephanie L, 2017, ARXIV170602633. Dalianis H, 2018, CLIN TEXT MINING, P5. Darst JR, 2010, CONGENIT HEART DIS, V5, P339, DOI 10.1111/j.1747-0803.2010.00433.x. Deming W. Edwards, 2002, CONTRIBUTORS WIKIMED. Docherty AB, 2015, CURR OPIN CRIT CARE, V21, P467, DOI 10.1097/MCC.0000000000000228. Ebell Mark H, 2017, Evid Based Med, V22, P88, DOI 10.1136/ebmed-2017-110704. Evans R S, 2016, Yearb Med Inform, VSuppl 1, pS48, DOI 10.15265/IYS-2016-s006. Frieden TR, 2017, NEW ENGL J MED, V377, P465, DOI 10.1056/NEJMra1614394. Girbes ARJ, 2020, J THORAC DIS, V12, pS101, DOI 10.21037/jtd.2019.10.36. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Halford GS, 2005, PSYCHOL SCI, V16, P70, DOI 10.1111/j.0956-7976.2005.00782.x. Haynes AB, 2009, NEW ENGL J MED, V360, P491, DOI 10.1056/NEJMsa0810119. Ioannidis JPA, 2001, JAMA-J AM MED ASSOC, V286, P821, DOI 10.1001/jama.286.7.821. Johnson AEW, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.35. Komorowski M, 2018, NAT MED, V24, P1716, DOI 10.1038/s41591-018-0213-5. Lange Dylan W. de, 2017, Rev. bras. ter. intensiva, V29, P128, DOI {[}10.5935/0103-507X.20170022, 10.5935/0103-507x.20170022]. Makary MA, 2016, BMJ-BRIT MED J, V353, DOI 10.1136/bmj.i2139. McWilliams CJ, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-025925. Moody GB, 2009, COMPUT CARDIOL, V36, P541. Murdoch TB, 2013, JAMA-J AM MED ASSOC, V309, P1351, DOI 10.1001/jama.2013.393. Nair S, 2016, SECONDARY ANAL ELECT, P17, DOI 10.1007/978-3-319-43742-2\_3. Niven AS, 2019, ANN AM THORAC SOC, V16, P649, DOI 10.1513/AnnalsATS.201812-847IP. Operations Evaluation Group, 1980, REPR METH EST PLAN V. Peden CJ, 2009, J INTENSIVE CARE SOC, V10, P260, DOI DOI 10.1177/175114370901000409. Pollard TJ, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.178. Pronovost P, 2006, NEW ENGL J MED, V355, P2725, DOI 10.1056/NEJMoa061115. Rello J, 2018, CLIN MICROBIOL INFEC, V24, P1264, DOI 10.1016/j.cmi.2018.03.011. Reyna MA, 2019, CRIT CARE MED, P1. Rhodes A, 2012, INTENS CARE MED, V38, P1647, DOI 10.1007/s00134-012-2627-8. Roggeveen LF, 2019, TRIALS, V20, DOI 10.1186/s13063-019-3911-5. Roth JA, 2018, INFECT CONT HOSP EP, V39, P1457, DOI 10.1017/ice.2018.265. Salluh JIF, 2018, ANN INTENSIVE CARE, V8, DOI 10.1186/s13613-018-0363-0. Salluh JIF, 2017, INTENS CARE MED, V43, P1703, DOI 10.1007/s00134-017-4760-x. Schmidt AF, 2013, J CLIN EPIDEMIOL, V66, P599, DOI 10.1016/j.jclinepi.2012.08.008. Scicluna BP, 2017, LANCET RESP MED, V5, P816, DOI 10.1016/S2213-2600(17)30294-1. Shah ND, 2018, JAMA-J AM MED ASSOC, V320, P27, DOI 10.1001/jama.2018.5602. Shillan D, 2019, CRIT CARE, V23, DOI 10.1186/s13054-019-2564-9. Snow J, 1855, MODE COMMUNICATION C. Thompson W., 1889, POPULAR LECT ADDRESS, V1, P73. Timsit JF, 2019, INTENS CARE MED, V45, P118, DOI 10.1007/s00134-018-5436-x. Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7. Vincent JL, 2010, CRIT CARE MED, V38, pS534, DOI 10.1097/CCM.0b013e3181f208ac. Woodhouse D, 2009, CURR OPIN CRIT CARE, V15, P450, DOI 10.1097/MCC.0b013e32833079fb.}, Number-of-Cited-References = {54}, Times-Cited = {3}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {13}, Journal-ISO = {Curr. Opin. Anesthesiol.}, Doc-Delivery-Number = {LB6QN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000524758400006}, DA = {2023-04-22}, } @article{ WOS:000651380300008, Author = {Hassan, Nehal and Slight, Robert and Weiand, Daniel and Vellinga, Akke and Morgan, Graham and Aboushareb, Fathy and Slight, Sarah P.}, Title = {Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? A systematic review}, Journal = {INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS}, Year = {2021}, Volume = {150}, Month = {JUN}, Abstract = {Background and objectives: Sepsis is a life-threatening condition that is associated with increased mortality. Artificial intelligence tools can inform clinical decision making by flagging patients at risk of developing infection and subsequent sepsis. This systematic review aims to identify the optimal set of predictors used to train machine learning algorithms to predict the likelihood of an infection and subsequent sepsis. Methods: This systematic review was registered in PROSPERO database (CRD42020158685). We conducted a systematic literature review across 3 large databases: Medline, Cumulative Index of Nursing and Allied Health Literature, and Embase. Quantitative primary research studies that focused on sepsis prediction associated with bacterial infection in adults in all care settings were eligible for inclusion. Results: Seventeen articles met our inclusion criteria. We identified 194 predictors that were used to train machine learning algorithms, with 13 predictors used on average across all included studies. The most prevalent predictors included age, gender, smoking, alcohol intake, heart rate, blood pressure, lactate level, cardiovascular disease, endocrine disease, cancer, chronic kidney disease (eGFR<60 mL/min), white blood cell count, liver dysfunction, surgical approach (open or minimally invasive), and pre-operative haematocrit < 30 \%. All included studies used artificial intelligence techniques, with average sensitivity 75.7 +/- 17.88, and average specificity 63.08 +/- 22.01. Conclusion: The type of predictors influenced the predictive power and predictive timeframe of the developed machine learning algorithm. Predicting the likelihood of sepsis through artificial intelligence can help concentrate finite resources to those patients who are most at risk. Future studies should focus on developing more sensitive and specific algorithms.}, Publisher = {ELSEVIER IRELAND LTD}, Address = {ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND}, Type = {Review}, Language = {English}, Affiliation = {Slight, SP (Corresponding Author), Newcastle Univ, Sch Pharm, King George VI Bldg, Newcastle Upon Tyne NE1 7RU, Tyne \& Wear, England. Hassan, Nehal; Slight, Sarah P., Newcastle Univ, Sch Pharm, King George VI Bldg, Newcastle Upon Tyne NE1 7RU, Tyne \& Wear, England. Slight, Robert; Weiand, Daniel, Newcastle Tyne Hosp NHS Fdn Trust, Freeman Hosp, Newcastle Upon Tyne NE7 7DN, Tyne \& Wear, England. Vellinga, Akke, Natl Univ Ireland Galway, Sch Med, Univ Rd, Galway H91 TK33, Ireland. Morgan, Graham, Newcastle Univ, Sch Comp, Urban Sci Bldg, Newcastle Upon Tyne NE4 5TG, Tyne \& Wear, England. Aboushareb, Fathy, Northumbria Healthcare NHS Fdn Trust, Rake Lane, N Shields NE29 8NH, Tyne \& Wear, England.}, DOI = {10.1016/j.ijmedinf.2021.104457}, EarlyAccessDate = {APR 2021}, Article-Number = {104457}, ISSN = {1386-5056}, EISSN = {1872-8243}, Keywords = {Sepsis; Prediction; Machine learning; Decision-making; Artificial intelligence}, Keywords-Plus = {PREDICTION; ONSET; MODEL}, Research-Areas = {Computer Science; Health Care Sciences \& Services; Medical Informatics}, Web-of-Science-Categories = {Computer Science, Information Systems; Health Care Sciences \& Services; Medical Informatics}, Author-Email = {n.a.m.hassan2@newcastle.ac.uk bob.slight@nhs.net dweand@nhs.net akke.vellinga@nuigalway.ie graham.morgan@ncl.ac.uk fathy.aboushareb@hs.net Sarah.Slight@newcastle.ac.uk}, Affiliations = {Newcastle University - UK; Newcastle Freeman Hospital; Newcastle Upon Tyne Hospitals NHS Foundation Trust; Newcastle University - UK}, ResearcherID-Numbers = {Vellinga, Akke/H-2130-2011}, ORCID-Numbers = {Slight, Sarah P/0000-0002-0339-846X Morgan, Graham/0000-0002-0089-0395 Hassan, Nehal/0000-0002-8302-5769 Weiand, Daniel/0000-0001-5854-3452 Slight, Robert/0000-0003-3255-0640 Vellinga, Akke/0000-0002-6583-4300}, Funding-Acknowledgement = {Newcastle University, UK}, Funding-Text = {The first author (NH) is awarded NUROS scholarship by Newcastle University, UK towards tuition fees, as this project is a part of a doctorate degree.}, Cited-References = {Alberto L, 2017, J HOSP INFECT, V96, P305, DOI 10.1016/j.jhin.2017.05.005. Back JS, 2016, RES NURS HEALTH, V39, P317, DOI 10.1002/nur.21734. Beam AL, 2018, JAMA-J AM MED ASSOC, V319, P1317, DOI 10.1001/jama.2017.18391. Bhattacharjee P, 2017, CHEST, V151, P898, DOI 10.1016/j.chest.2016.06.020. Bloch E, 2019, J HEALTHC ENG, V2019, DOI 10.1155/2019/5930379. Bose N., 2019, HARNESSING POTENTIAL. Calvert JS, 2016, COMPUT BIOL MED, V74, P69, DOI 10.1016/j.compbiomed.2016.05.003. Danner OK, 2017, AM J SURG, V213, P617, DOI 10.1016/j.amjsurg.2017.01.006. Desautels T, 2016, JMIR MED INF, V4, P67, DOI 10.2196/medinform.5909. Faisal M, 2018, CRIT CARE MED, V46, P612, DOI {[}10.1097/CCM.0000000000002967, 10.1097/ccm.0000000000002967]. Fathi M, 2019, AUST CRIT CARE, V32, P155, DOI 10.1016/j.aucc.2018.02.005. Fleuren LM, 2020, INTENS CARE MED, V46, P383, DOI 10.1007/s00134-019-05872-y. Giannini HM, 2019, CRIT CARE MED, V47, P1485, DOI 10.1097/CCM.0000000000003891. Ginestra JC, 2019, CRIT CARE MED, V47, P1477, DOI 10.1097/CCM.0000000000003803. Gupta A, 2020, HEALTH INFORM J, V26, P841, DOI 10.1177/1460458219852872. Islam MM, 2019, COMPUT METH PROG BIO, V170, P1, DOI 10.1016/j.cmpb.2018.12.027. Khojandi A, 2018, METHOD INFORM MED, V57, P185, DOI 10.3414/ME18-01-0014. Lederer DJ, 2019, ANN AM THORAC SOC, V16, P22, DOI 10.1513/AnnalsATS.201808-564PS. Leisman DE, 2020, CRIT CARE MED, V48, P623, DOI 10.1097/CCM.0000000000004246. Liu R, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-42637-5. Lu HX, 2019, WORLD J EMERG SURG, V14, DOI 10.1186/s13017-019-0231-8. Lukaszewski RA, 2008, CLIN VACCINE IMMUNOL, V15, P1089, DOI 10.1128/CVI.00486-07. Mehta S, 2019, J THORAC DIS, V11, P21, DOI 10.21037/jtd.2018.11.74. Moher D, 2015, SYST REV-LONDON, V4, DOI {[}10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1186/s13643-015-0087-2]. Moons KGM, 2015, ANN INTERN MED, V162, pW1, DOI 10.7326/M14-0698. Morrill JH, 2020, CRIT CARE MED, V48, pE976, DOI 10.1097/CCM.0000000000004510. Nachimuthu Senthil K, 2012, AMIA Annu Symp Proc, V2012, P653. Nemati S, 2018, CRIT CARE MED, V46, P547, DOI {[}10.1097/CCM.0000000000002936, 10.1097/ccm.0000000000002936]. Saqib Mohammed, 2018, Annu Int Conf IEEE Eng Med Biol Soc, V2018, P4038, DOI 10.1109/EMBC.2018.8513254. Sartelli M, 2018, WORLD J EMERG SURG, V13, DOI 10.1186/s13017-018-0165-6. Scherpf M, 2019, COMPUT BIOL MED, V113, DOI 10.1016/j.compbiomed.2019.103395. Seetharaman S, 2019, AM J MED, V132, P862, DOI 10.1016/j.amjmed.2019.01.032. Singer M, 2016, JAMA-J AM MED ASSOC, V315, P801, DOI 10.1001/jama.2016.0287. Slight SP, 2019, LANCET DIGIT HEALTH, V1, pE403, DOI 10.1016/S2589-7500(19)30158-X. Sood A, 2017, J SURG RES, V209, P60, DOI 10.1016/j.jss.2016.09.059. van Wyk F, 2019, INT J MED INFORM, V122, P55, DOI 10.1016/j.ijmedinf.2018.12.002. Wang HE, 2016, CRIT CARE MED, V44, P1285, DOI 10.1097/CCM.0000000000001666. Wheeler DS, 2015, CRIT CARE, V19, DOI 10.1186/s13054-015-1167-3.}, Number-of-Cited-References = {38}, Times-Cited = {8}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {15}, Journal-ISO = {Int. J. Med. Inform.}, Doc-Delivery-Number = {SD4YS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000651380300008}, DA = {2023-04-22}, } @article{ WOS:000663012500001, Author = {Li, Shunning and Liu, Yuanji and Chen, Dong and Jiang, Yi and Nie, Zhiwei and Pan, Feng}, Title = {Encoding the atomic structure for machine learning in materials science}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2022}, Volume = {12}, Number = {1}, Month = {JAN}, Abstract = {In recent years, we have witnessed a widespread application of machine learning techniques in the field of materials science, owing to the increased availability of research data and sophisticated algorithms. At the core of this technology lies the ability to encode material structures into descriptors that are understandable for a computer. Although significant advances have been made in this area, there is a continued need to explore efficient structure-encoding strategies so as to maximize the predictive power of the machine learning models. Here we present a revision of the exciting progress in four representative structural features that are capable of describing the structures of diverse materials: structure graph, Coulomb matrix, topological descriptor, and diffraction fingerprint. Particular attention is given to the studies of crystalline solids, which appear more challenging to be encoded than molecules. By summarizing previous works and presenting critical appraisals of these descriptors, this review could offer some guideline for the selection of structural features and stimulate inspiration for the design of powerful descriptors suited towards different tasks. This article is categorized under: Structure and Mechanism > Computational Materials Science Data Science > Artificial Intelligence/Machine Learning}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Pan, F (Corresponding Author), Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China. Li, Shunning; Liu, Yuanji; Chen, Dong; Jiang, Yi; Nie, Zhiwei; Pan, Feng, Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China.}, DOI = {10.1002/wcms.1558}, EarlyAccessDate = {JUN 2021}, Article-Number = {e1558}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {atomic structure; crystalline solids; machine learning; structural feature}, Keywords-Plus = {PREDICTING PROPERTIES; MOLECULAR DESCRIPTOR; PERSISTENT HOMOLOGY; CRYSTAL-STRUCTURES; DESIGN PRINCIPLES; NEURAL-NETWORKS; DISCOVERY; MODELS; ELECTROCATALYSTS; REPRESENTATIONS}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {panfeng@pkusz.edu.cn}, Affiliations = {Peking University; University Town of Shenzhen}, ResearcherID-Numbers = {Li, Shunning/ABB-4187-2021 }, ORCID-Numbers = {Li, Shunning/0000-0002-5381-6025 Nie, Zhiwei/0000-0002-2781-5248}, Funding-Acknowledgement = {Chemistry and Chemical Engineering Guangdong Laboratory {[}1922018]; National Key R\&D Program of China {[}2016YFB0700600, 2020YFB0704500]; Shenzhen Science and Technology Research Grant {[}JCYJ20200109140416788]}, Funding-Text = {Chemistry and Chemical Engineering Guangdong Laboratory, Grant/Award Number: 1922018; National Key R\&D Program of China, Grant/Award Numbers: 2016YFB0700600, 2020YFB0704500; Shenzhen Science and Technology Research Grant, Grant/Award Number: JCYJ20200109140416788}, Cited-References = {Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894. Ahmad Z, 2018, ACS CENTRAL SCI, V4, P996, DOI 10.1021/acscentsci.8b00229. {[}Anonymous], 2003, CRC HDB CHEM PHYS. Bachman JC, 2016, CHEM REV, V116, P140, DOI 10.1021/acs.chemrev.5b00563. Back S, 2019, J PHYS CHEM LETT, V10, P4401, DOI 10.1021/acs.jpclett.9b01428. Ball NM, 2010, INT J MOD PHYS D, V19, P1049, DOI 10.1142/S0218271810017160. Bang-Jensen J., 2000, DIGRAPHS THEORY ALGO. Barker J., 2016, ARXIV161105126. Bartok AP, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.184115. Baxevanis AD., 2020, BIOINFORMATICS. Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401. Behler J, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3553717. Blatov VA., 2004, CRYSTALLOGR REV, V10, P249, DOI {[}DOI 10.1080/08893110412331323170, 10.1080/08893110412331323170]. Bonchev D., 1991, CHEM GRAPH THEORY IN. Bracewell R., 1965, FOURIER TRANSFORM IT. Briggs N., 1993, ALGEBRAIC GRAPH THEO. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Cang Z., 2015, MOL BASED MATH BIOL, V3, P140, DOI DOI 10.1515/MLBMB-2015-0009. Cang ZX, 2018, INT J NUMER METH BIO, V34, DOI 10.1002/cnm.2914. Cang ZX, 2017, BIOINFORMATICS, V33, P3549, DOI 10.1093/bioinformatics/btx460. Cang ZX, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005690. Cao Z, 2019, CRYSTALS, V9, DOI 10.3390/cryst9040191. CARHART RE, 1985, J CHEM INF COMP SCI, V25, P64, DOI 10.1021/ci00046a002. Carlsson G, 2009, B AM MATH SOC, V46, P255, DOI 10.1090/S0273-0979-09-01249-X. Carlucci L, 2014, CHEM REV, V114, P7557, DOI 10.1021/cr500150m. Chazal F., 2017, ARXIV171004019. Chemali E, 2018, J POWER SOURCES, V400, P242, DOI 10.1016/j.jpowsour.2018.06.104. Chen C, 2019, CHEM MATER, V31, P3564, DOI 10.1021/acs.chemmater.9b01294. Chen QF, 2020, ACS APPL MATER INTER, V12, P45184, DOI 10.1021/acsami.0c13104. Chen X, 2020, J PHYS CHEM LETT, V11, P4392, DOI 10.1021/acs.jpclett.0c00974. Collins CR, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5020441. Cordero B, 2008, DALTON T, P2832, DOI 10.1039/b801115j. Curtarolo S, 2012, COMP MATER SCI, V58, P227, DOI 10.1016/j.commatsci.2012.02.002. Dabaghian Y, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002581. De Silva V., 2004, P S POINT BAS GRAPH, P157, DOI DOI 10.2312/SPBG/SPBG04/157-166. Dimiduk DM, 2018, INTEGR MATER MANUF I, V7, P157, DOI 10.1007/s40192-018-0117-8. Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253. Faber F, 2015, INT J QUANTUM CHEM, V115, P1094, DOI 10.1002/qua.24917. Faber FA, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5020710. Faber FA, 2017, J CHEM THEORY COMPUT, V13, P5255, DOI 10.1021/acs.jctc.7b00577. Faulon JL, 2003, J CHEM INF COMP SCI, V43, P707, DOI 10.1021/ci020345w. Friedrich W, 1913, ANN PHYS-BERLIN, V41, P971. Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074. Ghiringhelli LM, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.105503. Ghosh DC, 2002, INT J MOL SCI, V3, P87, DOI 10.3390/i3020087. Goldsmith BR, 2018, AICHE J, V64, P2311, DOI 10.1002/aic.16198. Gong S, 2019, PHYS REV B, V100, DOI 10.1103/PhysRevB.100.184103. Greenspan H, 2016, IEEE T MED IMAGING, V35, P1153, DOI 10.1109/TMI.2016.2553401. Grisafi A, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.036002. Gu GH, 2020, ADV MATER, V32, DOI 10.1002/adma.201907865. Gyulassy AG, 2007, IEEE T VIS COMPUT GR, V13, P1432, DOI 10.1109/TVCG.2007.70603. Hachmann J, 2014, ENERG ENVIRON SCI, V7, P698, DOI 10.1039/c3ee42756k. Hansen K, 2015, J PHYS CHEM LETT, V6, P2326, DOI 10.1021/acs.jpclett.5b00831. Hansen K, 2013, J CHEM THEORY COMPUT, V9, P3404, DOI 10.1021/ct400195d. Hatcher A., 2001, ALGEBRAIC TOPOLOGY. HENKE BL, 1993, ATOM DATA NUCL DATA, V54, P181, DOI 10.1006/adnd.1993.1013. Hey T., 2009, 4 PARADIGM DATA INTE. Himanen L, 2020, COMPUT PHYS COMMUN, V247, DOI 10.1016/j.cpc.2019.106949. Hu XS, 2016, IEEE T TRANSP ELECTR, V2, P140, DOI 10.1109/TTE.2015.2512237. Huo H., 2017, UNIFIED REPRESENTATI. Isayev O, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15679. Isayev O, 2015, CHEM MATER, V27, P735, DOI 10.1021/cm503507h. Ivanciuc O, 2000, J CHEM INF COMP SCI, V40, P1412, DOI 10.1021/ci000068y. Ivezic, 2014, STAT DATA MINING MAC. Iwasaki Y, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0006-2. Jablonka KM, 2020, CHEM REV, V120, P8066, DOI 10.1021/acs.chemrev.0c00004. Jager MOJ, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0096-5. Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323. Jain A, 2011, COMP MATER SCI, V50, P2295, DOI 10.1016/j.commatsci.2011.02.023. Jensen F., 2017, INTRO COMPUTATIONAL. Jha D, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35934-y. Jiang Y, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00493-w. Jie JS, 2019, SCI BULL, V64, P612, DOI 10.1016/j.scib.2019.04.015. Jin WG, 2018, PR MACH LEARN RES, V80. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Jorgensen P. B., 2018, ARXIV180603146. Kadurin A, 2017, ONCOTARGET, V8, P10883, DOI 10.18632/oncotarget.14073. Kanal IY, 2013, J PHYS CHEM LETT, V4, P1613, DOI 10.1021/jz400215j. Kasson PM, 2007, BIOINFORMATICS, V23, P1753, DOI 10.1093/bioinformatics/btm250. Kearnes S, 2016, J COMPUT AID MOL DES, V30, P595, DOI 10.1007/s10822-016-9938-8. Kim S, 2016, NUCLEIC ACIDS RES, V44, pD1202, DOI 10.1093/nar/gkv951. Kowalski P, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.075309. Lee CY, 2016, JMLR WORKSH CONF PRO, V51, P464. Lee JG, 2017, KOREAN J RADIOL, V18, P570, DOI 10.3348/kjr.2017.18.4.570. Lee Y, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15396. Li Y, 2014, CHEM REV, V114, P7268, DOI 10.1021/cr500010r. Li Z, 2017, CATAL TODAY, V280, P232, DOI 10.1016/j.cattod.2016.04.013. Li ZZ, 2019, ADV FUNCT MATER, V29, DOI 10.1002/adfm.201807280. Lin SR, 2020, J MATER CHEM A, V8, P5663, DOI 10.1039/c9ta13404b. Liu XY, 2020, PHYS CHEM CHEM PHYS, V22, P24191, DOI 10.1039/d0cp03810e. Lopez SA, 2017, JOULE, V1, P857, DOI 10.1016/j.joule.2017.10.006. Lu SH, 2020, ADV MATER, V32, DOI 10.1002/adma.202002658. Lu SH, 2019, SMALL METHODS, V3, DOI 10.1002/smtd.201900360. Lu SH, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05761-w. Ma W, 2019, ADV MATER, V31, DOI 10.1002/adma.201901111. Ma XY, 2019, J PHYS CHEM LETT, V10, P6734, DOI 10.1021/acs.jpclett.9b02420. Martin RL, 2012, J CHEM INF MODEL, V52, P308, DOI 10.1021/ci200386x. Martin RM., 2008, ELECT STRUCTURE BASI. Min S, 2017, BRIEF BIOINFORM, V18, P851, DOI 10.1093/bib/bbw068. Miotto M, 2019, BIOINFORMATICS, V35, P2569, DOI 10.1093/bioinformatics/bty1011. Montavon G, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/9/095003. Mueller T, 2016, REV COMP CH, V29, P186. Nandy A, 2019, ACS CATAL, V9, P8243, DOI 10.1021/acscatal.9b02165. Nie ZW, 2021, ADV ENERGY MATER, V11, DOI 10.1002/aenm.202003580. NILAKANTAN R, 1987, J CHEM INF COMP SCI, V27, P82, DOI 10.1021/ci00054a008. Nolan AM, 2018, JOULE, V2, P2016, DOI 10.1016/j.joule.2018.08.017. Nuhic A, 2013, J POWER SOURCES, V239, P680, DOI 10.1016/j.jpowsour.2012.11.146. O'Boyle NM, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-33. Palmer, 1977, STRUCTURE DETERMINAT. Panapitiya G, 2018, J AM CHEM SOC, V140, P17508, DOI 10.1021/jacs.8b08800. Park WB, 2017, IUCRJ, V4, P486, DOI 10.1107/S205225251700714X. PARR RG, 1983, J AM CHEM SOC, V105, P7512, DOI 10.1021/ja00364a005. Paruzzo FM, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06972-x. Qu C, 2018, ANNU REV PHYS CHEM, V69, P151, DOI 10.1146/annurev-physchem-050317-021139. Raff L. M., 2012, NEURAL NETWORKS CHEM. Rajan K, 2005, MATER TODAY, V8, P38, DOI 10.1016/S1369-7021(05)71123-8. Ramprasad R, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0056-5. Raschka S., 2015, PYTHON MACHINE LEARN. Ravi D, 2017, IEEE J BIOMED HEALTH, V21, P4, DOI 10.1109/JBHI.2016.2636665. Razzak MI, 2018, L N COMPUT VIS BIOME, V26, P323, DOI 10.1007/978-3-319-65981-7\_12. Ren Z., 2020, ARXIV200507609. Roberto Todeschini VC., 2009, MOL DESCRIPTORS CHEM. Rosner M, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.085102. Rogers D, 2010, J CHEM INF MODEL, V50, P742, DOI 10.1021/ci100050t. Rosen AS, 2021, MATTER-US, V4, P1578, DOI 10.1016/j.matt.2021.02.015. Rosenbrock CW, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0027-x. Rupp M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.058301. Saal JE, 2013, JOM-US, V65, P1501, DOI 10.1007/s11837-013-0755-4. Sahu H, 2018, ADV ENERGY MATER, V8, DOI 10.1002/aenm.201801032. Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663. Schmidt J, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0221-0. Schmidt R, 2016, NANO LETT, V16, P2945, DOI 10.1021/acs.nanolett.5b04733. Schuler M, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.036601. Schutt KT, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5019779. Schutt KT, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.205118. Schutt KT, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms13890. Schutt KT, 2019, J CHEM THEORY COMPUT, V15, P448, DOI 10.1021/acs.jctc.8b00908. Seko A, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.144110. Seko A, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.205901. Severson KA, 2019, NAT ENERGY, V4, P383, DOI 10.1038/s41560-019-0356-8. SPARKS TD, 2020, ANNU REV MATER RES, V50, P27, DOI DOI 10.1146/ANNUREV-MATSCI-110519094700. STEINHARDT PJ, 1983, PHYS REV B, V28, P784, DOI 10.1103/PhysRevB.28.784. Steinhoff A, 2014, NANO LETT, V14, P3743, DOI 10.1021/nl500595u. Sterling T, 2015, J CHEM INF MODEL, V55, P2324, DOI 10.1021/acs.jcim.5b00559. Swamidass SJ, 2005, BIOINFORMATICS, V21, pI359, DOI 10.1093/bioinformatics/bti1055. Thomson GP, 1927, NATURE, V119, P890, DOI 10.1038/119890a0. Toukmaji AY, 1996, COMPUT PHYS COMMUN, V95, P73, DOI 10.1016/0010-4655(96)00016-1. Tran K, 2018, NAT CATAL, V1, P696, DOI 10.1038/s41929-018-0142-1. Tshitoyan V, 2019, NATURE, V571, P95, DOI 10.1038/s41586-019-1335-8. Ulissi ZW, 2017, ACS CATAL, V7, P6600, DOI 10.1021/acscatal.7b01648. von Lilienfeld OA, 2020, NAT REV CHEM, V4, P347, DOI 10.1038/s41570-020-0189-9. Wang XJ, 2020, J AM CHEM SOC, V142, P7737, DOI 10.1021/jacs.0c01825. Wang Y, 2015, NAT MATER, V14, P1026, DOI {[}10.1038/nmat4369, 10.1038/NMAT4369]. Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28. Way MJ., 2016, ADV MACHINE LEARNING. Wei J, 2019, INFOMAT, V1, P338, DOI 10.1002/inf2.12028. WEININGER D, 1988, J CHEM INF COMP SCI, V28, P31, DOI 10.1021/ci00057a005. Weng MY, 2019, SCI CHINA CHEM, V62, P982, DOI 10.1007/s11426-019-9502-5. Weyl H., 1997, CLASSICAL GROUPS THE. Willatt MJ, 2019, J CHEM PHYS, V150, DOI 10.1063/1.5090481. Willatt MJ, 2018, PHYS CHEM CHEM PHYS, V20, P29661, DOI 10.1039/c8cp05921g. WOLLAN EO, 1948, PHYS REV, V73, P830, DOI 10.1103/PhysRev.73.830. Wu KD, 2018, J COMPUT CHEM, V39, P1444, DOI 10.1002/jcc.25213. Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386. Xia KL, 2015, J COMPUT CHEM, V36, P408, DOI 10.1002/jcc.23816. Xia KL, 2014, INT J NUMER METH BIO, V30, P814, DOI 10.1002/cnm.2655. Xiao DQ, 2011, J AM CHEM SOC, V133, P9014, DOI 10.1021/ja2020313. Xie T, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.145301. Xue DZ, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11241. Yao Y, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3103496. Zhang Y, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13214-1. Zheng XL, 2018, CHEM SCI, V9, P8426, DOI 10.1039/c8sc02648c. Zhou QH, 2020, J PHYS CHEM LETT, V11, P3920, DOI 10.1021/acs.jpclett.0c00665. Ziletti A, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05169-6.}, Number-of-Cited-References = {174}, Times-Cited = {14}, Usage-Count-Last-180-days = {34}, Usage-Count-Since-2013 = {130}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {YG0QO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000663012500001}, DA = {2023-04-22}, } @article{ WOS:000526785800022, Author = {Boje, Calin and Guerriero, Annie and Kubicki, Sylvain and Rezgui, Yacine}, Title = {Towards a semantic Construction Digital Twin: Directions for future research}, Journal = {AUTOMATION IN CONSTRUCTION}, Year = {2020}, Volume = {114}, Month = {JUN}, Abstract = {As the Architecture, Engineering and Construction sector is embracing the digital age, the processes involved in the design, construction and operation of built assets are more and more influenced by technologies dealing with value-added monitoring of data from sensor networks, management of this data in secure and resilient storage systems underpinned by semantic models, as well as the simulation and optimisation of engineering systems. Aside from enhancing the efficiency of the value chain, such information-intensive models and associated technologies play a decisive role in minimising the lifecycle impacts of our buildings. While Building Information Modelling provides procedures, technologies and data schemas enabling a standardised semantic representation of building components and systems, the concept of a Digital Twin conveys a more holistic socio-technical and process-oriented characterisation of the complex artefacts involved by leveraging the synchronicity of the cyber-physical bi-directional data flows. Moreover, BIM lacks semantic completeness in areas such as control systems, including sensor networks, social systems, and urban artefacts beyond the scope of buildings, thus requiring a holistic, scalable semantic approach that factors in dynamic data at different levels. The paper reviews the multi-faceted applications of BIM during the construction stage and highlights limits and requirements, paving the way to the concept of a Construction Digital Twin. A definition of such a concept is then given, described in terms of underpinning research themes, while elaborating on areas for future research.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Boje, C (Corresponding Author), Luxembourg Inst Sci \& Technol, Esch Sur Alzette, Luxembourg. Boje, Calin; Guerriero, Annie; Kubicki, Sylvain, Luxembourg Inst Sci \& Technol, Esch Sur Alzette, Luxembourg. Rezgui, Yacine, Cardiff Univ, BRE Trust Ctr Sustainable Engn, Cardiff, S Glam, Wales.}, DOI = {10.1016/j.autcon.2020.103179}, Article-Number = {103179}, ISSN = {0926-5805}, EISSN = {1872-7891}, Keywords = {Digital Twin; BIM; Review; Industry Foundation Classes (IFC); Internet of Things (IoT); Framework; Artificial Intelligence (AI); Big data; Construction safety; Construction site}, Keywords-Plus = {BUILDING INFORMATION MODELS; 4D BIM; HAZARD IDENTIFICATION; APPLICATION FRAMEWORK; AEC INDUSTRY; SIMULATION; MANAGEMENT; ONTOLOGY; DESIGN; 3D}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil}, Author-Email = {calin.boje@list.lu}, Affiliations = {Luxembourg Institute of Science \& Technology; Cardiff University}, ResearcherID-Numbers = {Rezgui, Yacine/ABE-6712-2020 Kubicki, Sylvain/I-6965-2019 }, ORCID-Numbers = {Rezgui, Yacine/0000-0002-5711-8400 Kubicki, Sylvain/0000-0003-2985-0378 Boje, Calin/0000-0002-5150-9355 Guerriero, Annie/0000-0002-8804-1995}, Funding-Acknowledgement = {Fonds National de la Recherche Luxembourg; Agence Nationale de la Recherche France {[}11237662 (LU)/ANR-16-CE10-0006-01 (FR)]; EPSRC {[}EP/T019514/1] Funding Source: UKRI}, Funding-Text = {The authors acknowledge financial support from Fonds National de la Recherche Luxembourg, and Agence Nationale de la Recherche France, to 4DCollab project, grant reference: 11237662 (LU)/ANR-16-CE10-0006-01 (FR).}, Cited-References = {Abanda FH, 2013, EXPERT SYST APPL, V40, P5563, DOI 10.1016/j.eswa.2013.04.027. Akanmu A, 2015, ENG CONSTR ARCHIT MA, V22, P516, DOI 10.1108/ECAM-07-2014-0097. Alam KM, 2017, IEEE ACCESS, V5, P2050, DOI 10.1109/ACCESS.2017.2657006. {[}Anonymous], 2016, MECHATRONIC FUTURES, DOI DOI 10.1007/978-3-319-32156-1\_5. {[}Anonymous], {[}No title captured]. {[}Anonymous], 1673912018 ISO. {[}Anonymous], {[}No title captured]. {[}Anonymous], {[}No title captured]. {[}Anonymous], 2018, INT ARCH PHOTOGRAMM. {[}Anonymous], {[}No title captured]. {[}Anonymous], {[}No title captured]. {[}Anonymous], {[}No title captured]. {[}Anonymous], {[}No title captured]. {[}Anonymous], {[}No title captured]. {[}Anonymous], 2015, DIG BUILT BRIT LEV 3. {[}Anonymous], {[}No title captured]. Aram S., 2014, 31 INT S AUT ROB CON, P434, DOI {[}10.22260/ISARC2014/0058, DOI 10.22260/ISARC2014/0058]. Barnaghi P, 2012, INT J SEMANT WEB INF, V8, P1, DOI {[}10.4018/jswis.2012010101, 10.4018/jswis.201201010149]. Batty M, 2018, ENVIRON PLAN B-URBAN, V45, P817, DOI 10.1177/2399808318796416. Beetz J, 2009, AI EDAM, V23, P89, DOI 10.1017/S0890060409000122. Benjaoran V, 2010, SAFETY SCI, V48, P395, DOI 10.1016/j.ssci.2009.09.009. Boje C, 2018, ADV ENG INFORM, V37, P103, DOI 10.1016/j.aei.2018.05.002. Bolton A., 2018, GEMINI PRINCIPLES, P15, DOI {[}10.17863/CAM.32260, DOI 10.17863/CAM.32260]. Bradley A, 2016, AUTOMAT CONSTR, V71, P139, DOI 10.1016/j.autcon.2016.08.019. Butkovic B, 2019, J INF TECHNOL CONSTR, V24, P256. Castronovo Fadi, 2014, 2014 International Conference on Computing in Civil and Building Engineering. Proceedings, P315. Charef R, 2018, J BUILD ENG, V19, P242, DOI 10.1016/j.jobe.2018.04.028. Chen LJ, 2014, AUTOMAT CONSTR, V46, P64, DOI 10.1016/j.autcon.2014.05.009. Cheng Jack C. P., 2017, Visualization in Engineering, V5, DOI 10.1186/s40327-017-0053-2. Chin S., 2012, CARBON RES CONVERS, P1, DOI {[}10.1061/40754(183)33, DOI 10.1061/40754(183)33]. COLLIER M, 1995, ELECTRONIC LIBRARY AND VISUAL INFORMATION RESEARCH - ELVIRA 1, P1. Compton M, 2012, J WEB SEMANT, V17, P25, DOI 10.1016/j.websem.2012.05.003. Costa G, 2015, AUTOMAT CONSTR, V57, P239, DOI 10.1016/j.autcon.2015.05.007. Curry E, 2013, ADV ENG INFORM, V27, P206, DOI 10.1016/j.aei.2012.10.003. Delgado JMD, 2018, J COMPUT CIVIL ENG, V32, DOI 10.1061/(ASCE)CP.1943-5487.0000749. Diaz H, 2017, AUTOMAT CONSTR, V73, P102, DOI 10.1016/j.autcon.2016.09.007. Ding K, 2018, PROC INT SYMP SOFTW, P47, DOI 10.1109/ISSRE.2018.00016. Ding LY, 2014, AUTOMAT CONSTR, V46, P82, DOI 10.1016/j.autcon.2014.04.009. GhaffarianHoseini A, 2017, RENEW SUST ENERG REV, V72, P935, DOI 10.1016/j.rser.2016.12.061. Glaessgen EH, 2012, 53 AIAAASMEASCEAHSAS, DOI DOI 10.2514/6.2012-1818. Golparvar-Fard M, 2011, J CONSTR ENG M, V137, P1099, DOI 10.1061/(ASCE)CO.1943-7862.0000371. Grieves M, 2014, WHITEPAPER. Guerriero A, 2017, INT ICE CONF ENG, P1023. Haag S., 2018, MANUF LETT, V15, P64, DOI DOI 10.1016/J.MFGLET.2018.02.006. Hamledari H, 2018, J COMPUT CIVIL ENG, V32, DOI 10.1061/(ASCE)CP.1943-5487.0000727. Hamledari H, 2017, J COMPUT CIVIL ENG, V31, DOI 10.1061/(ASCE)CP.1943-5487.0000660. Han KK, 2017, AUTOMAT CONSTR, V73, P184, DOI 10.1016/j.autcon.2016.11.004. Han KK, 2015, AUTOMAT CONSTR, V53, P44, DOI 10.1016/j.autcon.2015.02.007. Heesom D, 2004, CONSTR MANAG ECON, V22, P171, DOI {[}10.1080/0144619042000201376, DOI 10.1080/0144619042000201376]. Horrocks I, 2005, LECT NOTES COMPUT SC, V3703, P37. Howell S, 2017, RENEW SUST ENERG REV, V77, P193, DOI 10.1016/j.rser.2017.03.107. Hu ZZ, 2011, AUTOMAT CONSTR, V20, P167, DOI 10.1016/j.autcon.2010.09.014. Huhnt W, 2010, ADV ENG INFORM, V24, P404, DOI 10.1016/j.aei.2010.07.009. Jupp J, 2017, PROCEDIA ENGINEER, V180, P190, DOI 10.1016/j.proeng.2017.04.178. Kassem M, 2015, AUTOMAT CONSTR, V52, P42, DOI 10.1016/j.autcon.2015.02.008. Kim C, 2013, AUTOMAT CONSTR, V31, P75, DOI 10.1016/j.autcon.2012.11.041. Kim C, 2013, AUTOMAT CONSTR, V35, P44, DOI 10.1016/j.autcon.2013.03.005. Kim HJ, 2013, AUTOMAT CONSTR, V35, P285, DOI 10.1016/j.autcon.2013.05.020. Kim K, 2016, AUTOMAT CONSTR, V70, P128, DOI 10.1016/j.autcon.2016.06.012. Kramer M, 2018, IOP CONF SER-MAT SCI, V365, DOI 10.1088/1757-899X/365/2/022067. Kropp C, 2018, AUTOMAT CONSTR, V86, P11, DOI 10.1016/j.autcon.2017.10.027. Kubicki S, 2019, AUTOMAT CONSTR, V101, P160, DOI 10.1016/j.autcon.2018.12.009. Kuster C, 2017, SUSTAIN CITIES SOC, V35, P257, DOI 10.1016/j.scs.2017.08.009. Laakso M, 2012, J INF TECHNOL CONSTR, V17, P134. Lawrence M, 2014, AUTOMAT CONSTR, V45, P107, DOI 10.1016/j.autcon.2014.05.006. Lee YC, 2015, AUTOMAT CONSTR, V58, P176, DOI 10.1016/j.autcon.2015.07.010. Li H, 2009, AUTOMAT CONSTR, V18, P912, DOI 10.1016/j.autcon.2009.04.002. Liu HX, 2015, AUTOMAT CONSTR, V53, P29, DOI 10.1016/j.autcon.2015.03.008. Lu QQ, 2016, INT J PROJ MANAG, V34, P3, DOI 10.1016/j.ijproman.2015.09.004. Ma ZL, 2018, AUTOMAT CONSTR, V90, P1, DOI 10.1016/j.autcon.2018.02.004. Madni AM, 2019, SYSTEMS-BASEL, V7, DOI 10.3390/systems7010007. Martinez GS, 2018, IEEE IND ELEC, P3084, DOI 10.1109/IECON.2018.8591464. Marzouk M, 2018, J CLEAN PROD, V188, P217, DOI 10.1016/j.jclepro.2018.03.280. Marzouk M, 2016, AUTOMAT CONSTR, V61, P1, DOI 10.1016/j.autcon.2015.09.008. Mawlana M, 2015, AUTOMAT CONSTR, V60, P25, DOI 10.1016/j.autcon.2015.09.005. Mohammadi N, 2017, 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI). Moon H, 2014, ADV ENG INFORM, V28, P50, DOI 10.1016/j.aei.2013.12.001. Niknam M, 2016, CONSTRUCTION RESEARCH CONGRESS 2016: OLD AND NEW CONSTRUCTION TECHNOLOGIES CONVERGE IN HISTORIC SAN JUAN, P689. Olde Scholtenhuis Leon L., 2014, Construction in a Global Network. 2014 Construction Research Congress. Proceedings, P160. Pargmann H, 2018, 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), P233, DOI 10.1109/ICCCBDA.2018.8386518. Park MW, 2012, J COMPUT CIVIL ENG, V26, P541, DOI 10.1061/(ASCE)CP.1943-5487.0000168. Patterson EA, 2016, PROG NUCL ENERG, V87, P97, DOI 10.1016/j.pnucene.2015.11.009. Pauwels P, 2011, AUTOMAT CONSTR, V20, P506, DOI 10.1016/j.autcon.2010.11.017. Pauwels P, 2017, AUTOMAT CONSTR, V73, P145, DOI 10.1016/j.autcon.2016.10.003. Pauwels P, 2016, AUTOMAT CONSTR, V63, P100, DOI 10.1016/j.autcon.2015.12.003. Prudhomme C, 2020, COMPUTING, V102, P365, DOI 10.1007/s00607-019-00701-y. Qi QL, 2018, IEEE ACCESS, V6, P3585, DOI 10.1109/ACCESS.2018.2793265. Russell A, 2009, AUTOMAT CONSTR, V18, P219, DOI 10.1016/j.autcon.2008.08.001. Rwamamara Romuald, 2010, Construction Innovation, V10, P248, DOI 10.1108/14714171011060060. Sacks R, 2009, J CONSTR ENG M, V135, P1307, DOI 10.1061/(ASCE)CO.1943-7862.0000102. Sakhakarmi S, 2019, J CONSTR ENG M, V145, DOI 10.1061/(ASCE)CO.1943-7862.0001601. Schleich B, 2017, CIRP ANN-MANUF TECHN, V66, P141, DOI 10.1016/j.cirp.2017.04.040. Schluse M, 2018, IEEE T IND INFORM, V14, P1722, DOI 10.1109/TII.2018.2804917. Schneider G.F., 2017, P 5 LINK DAT ARCH CO, P9, DOI {[}10.13140/RG.2.2.21802.52169, DOI 10.13140/RG.2.2.21802.52169]. Shang ZX, 2016, CONSTRUCTION RESEARCH CONGRESS 2016: OLD AND NEW CONSTRUCTION TECHNOLOGIES CONVERGE IN HISTORIC SAN JUAN, P2187. Smith P, 2014, PROCD SOC BEHV, V119, P475, DOI 10.1016/j.sbspro.2014.03.053. Srewil Y, 2013, IFIP ADV INF COMM TE, V408, P172. Stocker TF, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1, DOI 10.1017/cbo9781107415324. Succar B, 2009, AUTOMAT CONSTR, V18, P357, DOI 10.1016/j.autcon.2008.10.003. Tanyer AM, 2005, AUTOMAT CONSTR, V14, P15, DOI 10.1016/j.autcon.2004.06.002. Tao F, 2019, IEEE T IND INFORM, V15, P2405, DOI 10.1109/TII.2018.2873186. Tao F, 2018, INT J ADV MANUF TECH, V94, P3563, DOI 10.1007/s00170-017-0233-1. Tauscher E., 2014, 2014 International Conference on Computing in Civil and Building Engineering. Proceedings, P745. Tomko M, 2019, ENVIRON PLAN B-URBAN, V46, P395, DOI 10.1177/2399808318816992. Tongal H, 2018, J HYDROL, V564, P266, DOI 10.1016/j.jhydrol.2018.07.004. Dang T, 2016, J CONSTR ENG M, V142, DOI 10.1061/(ASCE)CO.1943-7862.0001007. Trebbe M, 2015, AUTOMAT CONSTR, V49, P83, DOI 10.1016/j.autcon.2014.10.002. Tuegel E. J., 2011, INT J AEROSP ENG, V2011, P1, DOI {[}DOI 10.1155/2011/154798, 10.1155/2011/154798]. Turkan Y, 2012, AUTOMAT CONSTR, V22, P414, DOI 10.1016/j.autcon.2011.10.003. Tuttas S, 2017, PFG-J PHOTOGRAMM REM, V85, P3, DOI 10.1007/s41064-016-0002-z. Venugopal M, 2015, ADV ENG INFORM, V29, P940, DOI 10.1016/j.aei.2015.09.006. Wang D, 2017, AUTOMAT CONSTR, V82, P122, DOI 10.1016/j.autcon.2017.02.001. Wang WC, 2014, AUTOMAT CONSTR, V37, P68, DOI 10.1016/j.autcon.2013.10.009. Whitlock K., 2018, J ENG PROJECT PRODUC, V8, P47, DOI {[}10.32738/jeppm.201801.0006, DOI 10.32738/JEPPM.201801.0006]. Yuan X, 2016, AUTOMAT CONSTR, V66, P1, DOI 10.1016/j.autcon.2016.02.005. Yusen X., 2018, 2018 11 INT C MANAGE, P1, DOI {[}10.1109/MLSD.2018.855186, DOI 10.1109/MLSD.2018.855186]. Zhang S, 2015, AUTOMAT CONSTR, V52, P29, DOI 10.1016/j.autcon.2015.02.005. Zhang SJ, 2015, SAFETY SCI, V72, P31, DOI 10.1016/j.ssci.2014.08.001. Zhang ZX, 2018, J INF TECHNOL CONSTR, V23, P285. Zheng Y, 2019, J AMB INTEL HUM COMP, V10, P1141, DOI 10.1007/s12652-018-0911-3.}, Number-of-Cited-References = {120}, Times-Cited = {241}, Usage-Count-Last-180-days = {177}, Usage-Count-Since-2013 = {724}, Journal-ISO = {Autom. Constr.}, Doc-Delivery-Number = {LE5UL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000526785800022}, OA = {Green Accepted, hybrid}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000543385900327, Author = {Gotovtsev, Pavel}, Title = {How IoT Can Integrate Biotechnological Approaches for City Applications-Review of Recent Advancements, Issues, and Perspectives}, Journal = {APPLIED SCIENCES-BASEL}, Year = {2020}, Volume = {10}, Number = {11}, Month = {JUN}, Abstract = {There are a number of significant changes taking place in modern city development and most of them are based on the number of recent technological progress. This paper provides a review and analysis of recent approaches of biotechnology that can find a place in today's cities and discusses how those technologies can be integrated into a city's Internet of Things (IoT). Firstly, several biotechnologies that focus on rain gardens, urban vertical farming systems, and city photobioreactors are discussed in the context of their integration in a city's IoT. The next possible application of biofuel cells to the sensor network's energy supply is discussed. It is shown that such devices can influence the low-power sensor network structure as an additional energy source for transmitters. This paper shows the possibility of bioelectrochemical biosensor applications, discusses self-powered biosensors, and shows that such a system can be widely applied to rainwater monitoring in rain gardens and green streets. Significant attention is paid to recent approaches in synthetic biology. Both cell-based biosensors and bioactuators with synthetic genetic circuits are discussed. The development of cell-based biosensors can significantly enhance the sensing possibilities of a city's IoT. We show the possible ways to develop cyber-physical systems (CPSs) with the systems mentioned above. Aspects of data handling for the discussed biotechnologies and the methods of intelligent systems, including those that are machine learning-based, applied to the IoT in a city are presented.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Gotovtsev, P (Corresponding Author), Natl Res Ctr Kurchatov Inst, Biotechnol \& Bioenergy Dept, 1 Akad Kurchalova Pl, Moscow 123182, Russia. Gotovtsev, Pavel, Natl Res Ctr Kurchatov Inst, Biotechnol \& Bioenergy Dept, 1 Akad Kurchalova Pl, Moscow 123182, Russia.}, DOI = {10.3390/app10113990}, Article-Number = {3990}, EISSN = {2076-3417}, Keywords = {Internet of Things; smart city; wireless sensor networks; biofuel cells; biosensors; biotechnology; synthetic biology; cyber-physical systems}, Keywords-Plus = {MICROBIAL FUEL-CELL; NEURAL-NETWORK-MODEL; SYNTHETIC BIOLOGY; ARTIFICIAL-INTELLIGENCE; GREEN ARCHITECTURE; RAIN GARDENS; BIG DATA; INTERNET; DESIGN; OPTIMIZATION}, Research-Areas = {Chemistry; Engineering; Materials Science; Physics}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied}, Author-Email = {Gotovtsev\_PM@nrcki.ru}, Affiliations = {National Research Centre - Kurchatov Institute}, ResearcherID-Numbers = {Pavel, Gotovtsev/A-5384-2014}, ORCID-Numbers = {Pavel, Gotovtsev/0000-0003-2172-5839}, Funding-Acknowledgement = {NRC ``Kurchatov Institute{''}, Thematic Plan 1.11, ``Development of Nature-Like Bioenergy and Hybrid Energy Sources for Different Application Fields{''}}, Funding-Text = {This work was supported by the NRC ``Kurchatov Institute{''}, Thematic Plan 1.11, ``Development of Nature-Like Bioenergy and Hybrid Energy Sources for Different Application Fields{''}.}, Cited-References = {Adekunle A, 2019, BIOSENS BIOELECTRON, V132, P382, DOI 10.1016/j.bios.2019.03.011. Ahteensuu M, 2017, SCI ENG ETHICS, V23, P1541, DOI 10.1007/s11948-016-9868-9. Aitken M, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720908892. Al-Chalabi M, 2015, SUSTAIN CITIES SOC, V18, P74, DOI 10.1016/j.scs.2015.06.003. Allam Z., 2020, BIOTECHNOLOGY FUTURE, P1, DOI {[}10.1007/978-3-030-43815-9\_1, DOI 10.1007/978-3-030-43815-9\_1]. Angioni S, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00560. Anzoise V, 2020, URBAN STUD, V57, P655, DOI 10.1177/0042098019828997. Autixier L, 2014, SCI TOTAL ENVIRON, V499, P238, DOI 10.1016/j.scitotenv.2014.08.030. Banerjee A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12655-2. Bhattacharya M, 2020, BIOCATAL AGR BIOTECH, V25, DOI 10.1016/j.bcab.2020.101580. Bianchini F, 2016, BIOSYSTEMS, V148, P32, DOI 10.1016/j.biosystems.2016.01.001. Bilal M, 2019, PROCESS SAF ENVIRON, V124, P8, DOI 10.1016/j.psep.2019.01.032. Boles KS, 2017, NAT BIOTECHNOL, V35, P672, DOI 10.1038/nbt.3859. Buhk HJ, 2014, NEW BIOTECHNOL, V31, P528, DOI 10.1016/j.nbt.2014.02.007. Chen X, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8346. Chen ZB, 2020, SCIENCE, V368, P78, DOI 10.1126/science.aay2790. Cheng Jianlin, 2008, IEEE Rev Biomed Eng, V1, P41, DOI 10.1109/RBME.2008.2008239. Chi-Sheng Shih, 2016, IET Cyber-Physical Systems: Theory \& Applications, V1, P3, DOI 10.1049/iet-cps.2016.0025. Choi S, 2011, LAB CHIP, V11, P1110, DOI {[}10.1039/c0lc00494d, 10.1039/c01c00494d]. Church GM, 2012, SCIENCE, V337, P1628, DOI 10.1126/science.1226355. Church SP, 2015, LANDSCAPE URBAN PLAN, V134, P229, DOI 10.1016/j.landurbplan.2014.10.021. Clancy K, 2010, CURR OPIN BIOTECH, V21, P572, DOI 10.1016/j.copbio.2010.07.005. Connell JL, 2013, P NATL ACAD SCI USA, V110, P18380, DOI 10.1073/pnas.1309729110. Costello Z, 2018, NPJ SYST BIOL APPL, V4, DOI 10.1038/s41540-018-0054-3. Cotton GJ, 1999, J AM CHEM SOC, V121, P1100, DOI 10.1021/ja983804b. Damborsky P, 2016, ESSAYS BIOCHEM, V60, P91, DOI 10.1042/EBC20150010. Daniel R, 2013, NATURE, V497, P619, DOI 10.1038/nature12148. del Rio-Chanona EA, 2016, ALGAL RES, V13, P7, DOI 10.1016/j.algal.2015.11.004. Del Vecchio D, 2008, MOL SYST BIOL, V4, DOI 10.1038/msb4100204. Del Vecchio D, 2017, CELL SYST, V4, P109, DOI 10.1016/j.cels.2016.12.001. Deng H, 2012, CHEMSUSCHEM, V5, P1006, DOI 10.1002/cssc.201100257. Erlich Y, 2017, SCIENCE, V355, P950, DOI 10.1126/science.aaj2038. Fernandez-Rodriguez J, 2017, NAT CHEM BIOL, V13, P706, DOI 10.1038/nchembio.2390. Frank S, 2020, INEQUALITY AND UNCERTAINTY: CURRENT CHALLENGES FOR CITIES, P63, DOI 10.1007/978-981-32-9162-1\_4. Galdzicki M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017005. Garcia-Camacho F, 2016, ALGAL RES, V14, P58, DOI 10.1016/j.algal.2016.01.002. Gorin KV, 2019, RESULTS ENG, V4, DOI 10.1016/j.rineng.2019.100041. Gotovtsev P.M., 2019, P 2019 INT C SENSING, P1. Gotovtsev P, 2018, ROBOTICS, V7, DOI 10.3390/robotics7010002. Gotovtsev PM, 2016, 2016 IEEE 3RD WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P542, DOI 10.1109/WF-IoT.2016.7845476. Grattieri M, 2018, ACS SENSORS, V3, P44, DOI 10.1021/acssensors.7b00818. Greenman J, 2019, SUSTAIN ENERG FUELS, V3, P2546, DOI 10.1039/c9se00354a. Grunberg TW, 2020, CURR OPIN BIOTECH, V63, P41, DOI 10.1016/j.copbio.2019.11.015. Gupta N, 2019, BIOSENS BIOELECTRON, V141, DOI 10.1016/j.bios.2019.111435. Halilovic A., 2019, 2019 8 MEDITERRANEAN, P1, DOI {[}10.1109/MECO.2019.8760166, DOI 10.1109/MECO.2019.8760166]. Hashemi N, 2016, TECHNOLOGY, V4, P98, DOI 10.1142/S2339547816400124. Helder M, 2010, BIORESOURCE TECHNOL, V101, P3541, DOI 10.1016/j.biortech.2009.12.124. Hsu L, 2019, TRENDS BIOTECHNOL, V37, P795, DOI 10.1016/j.tibtech.2019.04.014. Hu DW, 2008, ACTA ASTRONAUT, V63, P1067, DOI 10.1016/j.actaastro.2008.02.008. Huarachi-Olivera R, 2018, ELECTRON J BIOTECHN, V31, P34, DOI 10.1016/j.ejbt.2017.10.013. Ikpehai A, 2019, IEEE INTERNET THINGS, V6, P2225, DOI 10.1109/JIOT.2018.2883728. Jiang Y, 2018, RENEW SUST ENERG REV, V81, P292, DOI 10.1016/j.rser.2017.06.099. Jiang Y, 2017, BIOSENS BIOELECTRON, V94, P344, DOI 10.1016/j.bios.2017.02.052. Jin J, 2014, IEEE INTERNET THINGS, V1, P112, DOI 10.1109/JIOT.2013.2296516. Kaneshiro H, 2014, BIOCHEM ENG J, V83, P90, DOI 10.1016/j.bej.2013.12.011. Karr JR, 2012, CELL, V150, P389, DOI 10.1016/j.cell.2012.05.044. Katz E, 2019, CHEMPHYSCHEM, V20, P9, DOI 10.1002/cphc.201800900. Keating KW, 2019, CURR OPIN CHEM ENG, V24, P107, DOI 10.1016/j.coche.2019.03.002. Kobusinska A, 2018, FUTURE GENER COMP SY, V87, P416, DOI 10.1016/j.future.2018.05.021. Koch J, 2020, NAT BIOTECHNOL, V38, P39, DOI 10.1038/s41587-019-0356-z. LAHOZBELTRA R, 1993, BIOSYSTEMS, V29, P1, DOI 10.1016/0303-2647(93)90078-Q. Lauffenburger DA, 2000, P NATL ACAD SCI USA, V97, P5031, DOI 10.1073/pnas.97.10.5031. Le Feuvre RA, 2018, SYN SYST BIOTECHNO, V3, P105, DOI 10.1016/j.synbio.2018.04.002. Libbrecht MW, 2015, NAT REV GENET, V16, P321, DOI 10.1038/nrg3920. Liu X, 2015, J POWER SOURCES, V277, P110, DOI 10.1016/j.jpowsour.2014.11.129. Liu XY, 2018, ADV MATER, V30, DOI 10.1002/adma.201704821. Liu XY, 2017, P NATL ACAD SCI USA, V114, P2200, DOI 10.1073/pnas.1618307114. Logan BE, 2006, TRENDS MICROBIOL, V14, P512, DOI 10.1016/j.tim.2006.10.003. Luger J., 2019, CITY, V23, P676, DOI {[}10.1080/13604813.2019.1684026, DOI 10.1080/13604813.2019.1684026]. Do MH, 2020, SCI TOTAL ENVIRON, V712, DOI 10.1016/j.scitotenv.2019.135612. Mohamed SN, 2020, BIORESOURCE TECHNOL, V295, DOI 10.1016/j.biortech.2019.122226. Monteiro A, 2019, COMPUT COMMUN, V135, P1, DOI 10.1016/j.comcom.2018.11.006. Naraghi ZG, 2015, ELECTROCHIM ACTA, V180, P535, DOI 10.1016/j.electacta.2015.08.136. Navarro PJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16050641. Nielsen AAK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05378-z. Nielsen AAK, 2016, SCIENCE, V352, DOI 10.1126/science.aac7341. Norville Julie E, 2010, J Biol Eng, V4, P17, DOI 10.1186/1754-1611-4-17. Oliot M, 2017, ELECTROCHIM ACTA, V246, P879, DOI 10.1016/j.electacta.2017.06.114. Oltvai ZN, 2002, SCIENCE, V298, P763, DOI 10.1126/science.1078563. Oncel SS, 2016, WOOD PUBL SER CIVIL, V66, P237, DOI 10.1016/B978-0-08-100546-0.00011-X. de la Rosa EO, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19061378. Pant D, 2010, BIORESOURCE TECHNOL, V101, P1533, DOI 10.1016/j.biortech.2009.10.017. Pappu JSM, 2013, BIORESOURCE TECHNOL, V130, P224, DOI 10.1016/j.biortech.2012.12.082. Petrolo R., 2016, MANAGEMENT CYBER PHY, P31. Polling B, 2017, LAND USE POLICY, V69, P372, DOI 10.1016/j.landusepol.2017.09.034. Pruvost J, 2016, CHEM ENG J, V284, P850, DOI 10.1016/j.cej.2015.08.118. Qadir QM, 2018, IEEE ACCESS, V6, P77454, DOI 10.1109/ACCESS.2018.2883151. Ragheb A, 2016, PROCD SOC BEHV, V216, P778, DOI 10.1016/j.sbspro.2015.12.075. Ren H, 2014, BIOSENS BIOELECTRON, V61, P587, DOI 10.1016/j.bios.2014.05.037. Reshetilov AN, 2017, APPL BIOCHEM MICRO+, V53, P123, DOI 10.1134/S0003683817010161. Reshetilov AN, 2017, IOP C SER EARTH ENV, V52, DOI {[}10.1088/1742-6596/52/1/012010, 10.1088/1755-1315/52/1/012010]. Reshetilov AN, 2015, APPL BIOCHEM MICRO+, V51, P264, DOI 10.1134/S0003683815020167. Saha HN, 2017, 2017 8TH ANNUAL INDUSTRIAL AUTOMATION AND ELECTROMECHANICAL ENGINEERING CONFERENCE (IEMECON), P364, DOI 10.1109/IEMECON.2017.8079624. Salwe SS, 2019, IETE TECH REV, V36, P61, DOI 10.1080/02564602.2017.1400412. Santoro C, 2017, J POWER SOURCES, V356, P225, DOI 10.1016/j.jpowsour.2017.03.109. Sarkar A., 2019, TOOLS TECHNIQUES PRO, P307, DOI 10.1016/B978-0-12-814679. Sarpeshkar R, 2014, PHILOS T R SOC A, V372, DOI 10.1098/rsta.2013.0110. Shadrin D, 2020, IEEE T INSTRUM MEAS, V69, P4103, DOI 10.1109/TIM.2019.2947125. Shadrin D, 2018, IEEE IMTC P, P251. Shadrin D, 2019, IEEE SENS J, V19, P11573, DOI 10.1109/JSEN.2019.2935812. Shin J, 2020, MOL SYST BIOL, V16, DOI 10.15252/msb.20199401. Smith RSH, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.201907401. Somov A, 2018, IEEE PERVAS COMPUT, V17, P65, DOI 10.1109/MPRV.2018.2873849. Somov A, 2018, 2018 IEEE 4TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P802. Song XP, 2018, URBAN FOR URBAN GREE, V29, P49, DOI 10.1016/j.ufug.2017.11.004. Stankovic JA, 2014, IEEE INTERNET THINGS, V1, P3, DOI 10.1109/JIOT.2014.2312291. Supriyanto, 2019, BIOSYST ENG, V177, P122, DOI 10.1016/j.biosystemseng.2018.10.002. Taketani M, 2020, NAT BIOTECHNOL, V38, P962, DOI 10.1038/s41587-020-0468-5. Talaei M, 2019, ENG FAIL ANAL, V101, P9, DOI 10.1016/j.engfailanal.2019.02.060. Teo JJY, 2015, IEEE T BIOMED CIRC S, V9, P453, DOI 10.1109/TBCAS.2015.2461446. Torrance A.W., 2010, MINNESOTA J LAW SCI, V11. Vaidyanathan P, 2015, P IEEE, V103, P2196, DOI 10.1109/JPROC.2015.2443832. Nguyen V, 2019, ASIA-PAC POWER ENERG, P240, DOI 10.1109/APEEC.2019.8720344. Vishnevskaya M, 2019, IOP C SER EARTH ENV, V337, DOI 10.1088/1755-1315/337/1/012002. Wagner HJ, 2019, MATER TODAY, V22, P25, DOI 10.1016/j.mattod.2018.04.006. Yang N, 2019, CHEM ENG J, V356, P506, DOI 10.1016/j.cej.2018.08.161. Yoon C, 2018, INT CONF ADV COMMUN, P749. Yu K, 2015, BIOTECHNOL ADV, V33, P155, DOI 10.1016/j.biotechadv.2014.11.005. Yuan YP, 2017, RENEW SUST ENERG REV, V74, P771, DOI 10.1016/j.rser.2017.03.004. Zanella A, 2014, IEEE INTERNET THINGS, V1, P22, DOI 10.1109/JIOT.2014.2306328. Zeng J, 2018, ACS SYNTH BIOL, V7, P2007, DOI 10.1021/acssynbio.8b00138. Zhang M, 2019, BIOSENS BIOELECTRON, V141, DOI 10.1016/j.bios.2019.111394. Zhang Y, 2017, CURR OPIN CHEM ENG, V16, P9, DOI 10.1016/j.coche.2017.03.002. Zhou X, 2018, CELL, V172, P744, DOI 10.1016/j.cell.2018.01.015. Zhu CS, 2017, IEEE COMMUN MAG, V55, P14, DOI 10.1109/MCOM.2017.1700142. Zhu C, 2015, IEEE ACCESS, V3, P2151, DOI 10.1109/ACCESS.2015.2497312.}, Number-of-Cited-References = {126}, Times-Cited = {6}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {30}, Journal-ISO = {Appl. Sci.-Basel}, Doc-Delivery-Number = {MC6HQ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000543385900327}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000568826300059, Author = {Zounemat-Kermani, Mohammad and Matta, Elena and Cominola, Andrea and Xia, Xilin and Zhang, Qing and Liang, Qiuhua and Hinkelmann, Reinhard}, Title = {Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects}, Journal = {JOURNAL OF HYDROLOGY}, Year = {2020}, Volume = {588}, Month = {SEP}, Abstract = {Neurocomputing methods have contributed significantly to the advancement of modelling techniques in surface water hydrology and hydraulics in the last couple of decades, primarily due to their vast performance advantages and usage amenity. This comprehensive review considers the research progress in the past two decades, the current state-of-the-art, and future prospects of the application of neurocomputing to different aspects of hydrological sciences, i.e., quantitative surface hydrology and hydraulics. An extensive literature survey, by running over more than 800 peer-reviewed papers, outlines and concisely explores the past and recent tendencies in the application of conventional neural-based approaches and modern neurocomputing models in relevant topics of hydrological and hydraulic sciences. Apart from segregated descriptions and analyses of the main facets of surface hydrology and hydraulics, this review offers a practical summary of prevailing neurocomputing methods used in different subfields of hydrology and water engineering. Six relevant topics to modelling hydrological and hydraulic sciences are articulated and analysed, including modelling of water level in surface water bodies, flood and risk assessment, sediment transport in river systems, urban water demand prediction, modelling flow through hydro-structures, and hydraulics of sewers. This review is meant to be a mainstream guideline for researchers and practitioners whose work is associated with data mining and machine learning methods in various areas of water engineering and hydrological sciences to assist them to decide on suitable methods, network structures and modelling strategies for a given problem.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Zounemat-Kermani, M (Corresponding Author), Shahid Bahonar Univ, Pajoohesh Sq, Kerman 7616914111, Iran. Zounemat-Kermani, Mohammad, Shaihd Bahonar Univ Kerman, Dept Water Engn, Kerman, Iran. Matta, Elena, Tech Univ Berlin, Dept Water Engn, Campus El Gouna, Berlin, Germany. Matta, Elena; Zhang, Qing; Hinkelmann, Reinhard, Tech Univ Berlin, Chair Water Resources Management \& Modeling Hydro, Berlin, Germany. Cominola, Andrea, Tech Univ Berlin, Chair Smart Water Networks, Berlin, Germany. Cominola, Andrea, Einstein Ctr Digital Future, Berlin, Germany. Xia, Xilin; Liang, Qiuhua, Loughborough Univ, Sch Architecture Bldg \& Civil Engn, Loughborough, Leics, England.}, DOI = {10.1016/j.hydrol.2020.125085}, Article-Number = {125085}, ISSN = {0022-1694}, EISSN = {1879-2707}, Keywords = {Artificial neural networks; Machine learning; Hydroinformatics; Hydrosciences; Artificial intelligence; Soft computing}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; SUSPENDED SEDIMENT CONCENTRATION; SHORT-TERM-MEMORY; LEARNING-MACHINE; DEMAND PREDICTION; HYBRID MODELS; RIVER; LEVEL; ANN; SIMULATION}, Research-Areas = {Engineering; Geology; Water Resources}, Web-of-Science-Categories = {Engineering, Civil; Geosciences, Multidisciplinary; Water Resources}, Author-Email = {zounemat@uk.ac.ir}, Affiliations = {Technical University of Berlin; Technical University of Berlin; Technical University of Berlin; Loughborough University}, ResearcherID-Numbers = {Cominola, Andrea/AAU-7028-2020}, ORCID-Numbers = {Cominola, Andrea/0000-0002-4031-4704}, Funding-Acknowledgement = {Alexander von Humboldt Foundation}, Funding-Text = {The first author, as a Georg Forster Research fellow, would like to express his gratitude to the Alexander von Humboldt Foundation for supporting him during his research visit at Technische Universitat Berlin.}, Cited-References = {Adamowski J, 2012, WATER RESOUR RES, V48, DOI 10.1029/2010WR009945. Adamowski J, 2010, J HYDROL ENG, V15, P729, DOI 10.1061/(ASCE)HE.1943-5584.0000245. Adamowski JF, 2008, J WATER RES PL-ASCE, V134, P119, DOI 10.1061/(ASCE)0733-9496(2008)134:2(119). Al-Ani RRA, 2019, CIV ENG J-TEHRAN, V5, P82, DOI 10.28991/cej-2019-03091227. Al-Zahrani MA, 2015, WATER RESOUR MANAG, V29, P3651, DOI 10.1007/s11269-015-1021-z. Alizamir M, 2018, HYDROLOG SCI J, V63, P63, DOI 10.1080/02626667.2017.1410891. Alp M, 2007, ENVIRON MODELL SOFTW, V22, P2, DOI 10.1016/j.envsoft.2005.09.009. Altunkaynak A, 2017, J WATER RES PLAN MAN, V143, DOI {[}10.1061/(ASCE)WR.1943-5452.0000761, 10.1061/(asce)wr.1943-5452.0000761]. Amezquita-Sanchez JP, 2016, SCI IRAN, V23, P2417, DOI 10.24200/sci.2016.2301. Anmala J, 2019, WATER SUPPLY, V19, P1831, DOI 10.2166/ws.2019.058. Anmala J, 2015, J ENVIRON ENG, V141, DOI 10.1061/(ASCE)EE.1943-7870.0000801. {[}Anonymous], 2019, WATER SUI, DOI DOI 10.3390/W11101959. Araghinejad S, 2011, J HYDROL, V407, P94, DOI 10.1016/j.jhydrol.2011.07.011. Azamathulla HM, 2012, APPL SOFT COMPUT, V12, P1227, DOI 10.1016/j.asoc.2011.12.003. Babel MS, 2011, WATER RESOUR MANAG, V25, P1653, DOI 10.1007/s11269-010-9766-x. BAKSHI BR, 1993, AICHE J, V39, P57, DOI 10.1002/aic.690390108. Banda M.S., 2018, THESIS. BARNARD E, 1992, IEEE T NEURAL NETWOR, V3, P232, DOI 10.1109/72.125864. Bennett C, 2013, EXPERT SYST APPL, V40, P1014, DOI 10.1016/j.eswa.2012.08.012. Bergstrom S., 1976, APPL HBV RUNOFF MODE. Bonakdari H, 2011, ENG APPL COMP FLUID, V5, P384, DOI 10.1080/19942060.2011.11015380. Bougadis J, 2005, HYDROL PROCESS, V19, P137, DOI 10.1002/hyp.5763. Campisi-Pinto S, 2012, WATER RESOUR MANAG, V26, P3539, DOI 10.1007/s11269-012-0089-y. Catano-Lopera Y.A., 2017, P WAT ENV FED 2017, V2017, P642. Chang FJ, 2014, J HYDROL, V517, P836, DOI 10.1016/j.jhydrol.2014.06.013. Chang FJ, 2006, ADV WATER RESOUR, V29, P1, DOI 10.1016/j.advwatres.2005.04.015. Chang FJ, 2001, IEEE T SYST MAN CY C, V31, P530, DOI 10.1109/5326.983936. Chang LC, 2018, WATER-SUI, V10, DOI 10.3390/w10091283. Chang LC, 2014, J HYDROL, V519, P476, DOI 10.1016/j.jhydrol.2014.07.036. Chang LC, 2010, J HYDROL, V385, P257, DOI 10.1016/j.jhydrol.2010.02.028. Chen IT, 2018, J HYDROL, V556, P131, DOI 10.1016/j.jhydrol.2017.10.015. CHEN L, 2018, WATER-SUI, V10, DOI DOI 10.3390/W10101362. Chen SH., 2015, HYDRAULIC STRUCTURES, DOI 10.1007/978-3-662-47331-3. Chien N., 1999, MECH SEDIMENT TRANSP, DOI DOI 10.1061/9780784404003. Cigizoglu HK, 2006, J HYDROL, V317, P221, DOI 10.1016/j.jhydrol.2005.05.019. Cigizoglu HK, 2006, ADV ENG SOFTW, V37, P63, DOI 10.1016/j.advengsoft.2005.05.002. Coelho B., 2019, International Journal of Water, V13, P173, DOI 10.1504/IJW.2019.099515. Cominola A, 2019, WATER RESOUR RES, V55, P9315, DOI 10.1029/2019WR024897. Cominola A, 2018, J CLEAN PROD, V172, P1607, DOI 10.1016/j.jclepro.2017.10.203. Cominola A, 2015, ENVIRON MODELL SOFTW, V72, P198, DOI 10.1016/j.envsoft.2015.07.012. Coulibaly P, 2010, J HYDROL, V381, P76, DOI 10.1016/j.jhydrol.2009.11.027. CRED, 2018, EM DAT INT DIS DAT 2. Dawson CW, 2006, J HYDROL, V319, P391, DOI 10.1016/j.jhydrol.2005.07.032. Dawson CW, 2001, PROG PHYS GEOG, V25, P80, DOI 10.1191/030913301674775671. Bui DT, 2016, J HYDROL, V540, P317, DOI 10.1016/j.jhydrol.2016.06.027. Donkor EA, 2014, J WATER RES PLAN MAN, V140, P146, DOI 10.1061/(ASCE)WR.1943-5452.0000314. Ebtehaj I, 2018, ALEX ENG J, V57, P1783, DOI 10.1016/j.aej.2017.05.021. Ebtehaj I, 2017, J HYDROINFORM, V19, P207, DOI 10.2166/hydro.2016.025. Ebtehaj I, 2013, ENG APPL COMP FLUID, V7, P382, DOI 10.1080/19942060.2013.11015479. El-Din AG, 2002, WATER RES, V36, P1115, DOI 10.1016/S0043-1354(01)00287-1. Fahimi F, 2017, THEOR APPL CLIMATOL, V128, P875, DOI 10.1007/s00704-016-1735-8. Fernando A., 2006, COMBINED SEWER OVERF. Firat M, 2008, HYDROL PROCESS, V22, P2122, DOI 10.1002/hyp.6812. Firat M, 2010, J HYDROL, V384, P46, DOI 10.1016/j.jhydrol.2010.01.005. Firat M, 2009, WATER RESOUR MANAG, V23, P617, DOI 10.1007/s11269-008-9291-3. Ghalehkhondabi I, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-017-6030-3. Ghiassi M, 2008, J WATER RES PL-ASCE, V134, P138, DOI 10.1061/(ASCE)0733-9496(2008)134:2(138). Ghorbani K, 2017, INT J MOD PHYS A, V32, DOI 10.1142/S0217751X17501317. Goll A., 2017, THESIS. Govindaraju RS, 2000, J HYDROL ENG, V5, P115. Ham F., 2001, PRINCIPLES NEUROCOMP. Herrera M, 2010, J HYDROL, V387, P141, DOI 10.1016/j.jhydrol.2010.04.005. Hervouet J., 2007, TELEMAC VERSION 5 7. Hosseini K, 2016, KSCE J CIV ENG, V20, P468, DOI 10.1007/s12205-015-0462-5. Hou HQ, 2014, APPL MECH MATER, V551, P127, DOI 10.4028/www.scientific.net/AMM.551.127. House-Peters LA, 2011, WATER RESOUR RES, V47, DOI 10.1029/2010WR009624. Hu P, 2019, IEEE C EVOL COMPUTAT, P1088, DOI 10.1109/CEC.2019.8790060. Ilonen J, 2003, NEURAL PROCESS LETT, V17, P93, DOI 10.1023/A:1022995128597. Jain A, 2001, WATER RESOUR MANAG, V15, P299, DOI 10.1023/A:1014415503476. Jain A, 2007, APPL SOFT COMPUT, V7, P585, DOI 10.1016/j.asoc.2006.03.002. Joshi R, 2016, HYDROL PROCESS, V30, P1354, DOI 10.1002/hyp.10723. Kaloop MR, 2017, GEOMAT NAT HAZ RISK, V8, P1320, DOI 10.1080/19475705.2017.1327464. Kamanbedast A.A., 2012, WORLD APPL SCI J, V17, P913. Keitel J, 2016, ENVIRON SCI POLLUT R, V23, P6883, DOI 10.1007/s11356-015-5915-3. Keshtegar B, 2018, WATER RESOUR MANAG, V32, P1101, DOI 10.1007/s11269-017-1857-5. Khan MYA, 2019, INT J SEDIMENT RES, V34, P95, DOI 10.1016/j.ijsrc.2018.09.001. Khan MS, 2006, J HYDROL ENG, V11, P199, DOI 10.1061/(ASCE)1084-0699(2006)11:3(199). Khosravi K, 2018, J HYDROL, V567, P165, DOI 10.1016/j.jhydrol.2018.10.015. Kia MB, 2012, ENVIRON EARTH SCI, V67, P251, DOI 10.1007/s12665-011-1504-z. Kisi O, 2016, WATER RESOUR MANAG, V30, P3979, DOI 10.1007/s11269-016-1405-8. Klotz D., 2018, HYDROL EARTH SYST SC, V22, P6005, DOI {[}10.5194/hess-22-6005-2018, DOI 10.5194/HESS-22-6005-2018]. Krysanova V., 2000, USER MANUAL. Kumar D, 2016, CATENA, V138, P77, DOI 10.1016/j.catena.2015.11.013. Kumar M, 2011, IRRIGATION SCI, V29, P11, DOI 10.1007/s00271-010-0230-8. LIANG C, 2018, WATER-SUI, V10, DOI {[}DOI 10.3390/w10101389, DOI 10.3390/W10101389]. Liu JU, 2003, PHYS CHEM EARTH, V28, P219, DOI 10.1016/S1474-7065(03)00026-3. Liu QJ, 2013, GEOMORPHOLOGY, V186, P181, DOI 10.1016/j.geomorph.2013.01.012. Ma Y., 2019, E P 38 IAHR WORLD C. Mahdavi-Meymand Amin, 2021, ISH Journal of Hydraulic Engineering, V27, P58, DOI 10.1080/09715010.2019.1574619. Maier HR, 2010, ENVIRON MODELL SOFTW, V25, P891, DOI 10.1016/j.envsoft.2010.02.003. Maier HR, 2000, ENVIRON MODELL SOFTW, V15, P101, DOI 10.1016/S1364-8152(99)00007-9. Makarynskyy O, 2004, ESTUAR COAST SHELF S, V61, P351, DOI 10.1016/j.ecss.2004.06.004. Man ZH, 2013, SIGNAL PROCESS, V93, P1624, DOI 10.1016/j.sigpro.2012.07.016. Mandic D., 2001, ADAPT LEARN SYST SIG, DOI 10.1002/047084535X. Matta E, 2019, J WATER CLIM CHANGE, V10, P893, DOI 10.2166/wcc.2018.254. Melesse AM, 2011, AGR WATER MANAGE, V98, P855, DOI 10.1016/j.agwat.2010.12.012. Mosavi A, 2018, WATER-SUI, V10, DOI 10.3390/w10111536. Mouatadid S, 2017, URBAN WATER J, V14, P630, DOI 10.1080/1573062X.2016.1236133. Mounce SR, 2014, WATER SCI TECHNOL, V69, P1326, DOI 10.2166/wst.2014.024. Msiza IS, 2007, IEEE SYS MAN CYBERN, P108. Nagy HM, 2002, J HYDRAUL ENG-ASCE, V128, P588, DOI 10.1061/(ASCE)0733-9429(2002)128:6(588). Najafzadeh M, 2016, J PIPELINE SYST ENG, V7, DOI 10.1061/(ASCE)PS.1949-1204.0000204. Nourani V, 2014, J HYDROL, V514, P358, DOI 10.1016/j.jhydrol.2014.03.057. Odan FK, 2012, J WATER RES PLAN MAN, V138, P245, DOI 10.1061/(ASCE)WR.1943-5452.0000177. Pacchin E, 2019, WATER RESOUR MANAG, V33, P1481, DOI 10.1007/s11269-019-02213-y. Panda RK, 2010, COMPUT GEOSCI-UK, V36, P735, DOI 10.1016/j.cageo.2009.07.012. Parsaie A, 2018, NEURAL COMPUT APPL, V29, P1393, DOI 10.1007/s00521-016-2667-z. Parsaie A, 2015, WATER RESOUR MANAG, V29, P973, DOI 10.1007/s11269-014-0827-4. Rajaee T., 2019, J HYDROL. Rajaee T, 2011, SCI TOTAL ENVIRON, V409, P2917, DOI 10.1016/j.scitotenv.2010.11.028. Rajaee T, 2009, SCI TOTAL ENVIRON, V407, P4916, DOI 10.1016/j.scitotenv.2009.05.016. Rao A.R., 2000, ARTIFICIAL NEURAL NE, DOI 10.1007/978-94-015-9341-0. Robson A.J., 2017, SC130006R ENV AG, P242. Sahu M, 2011, FLOW MEAS INSTRUM, V22, P438, DOI 10.1016/j.flowmeasinst.2011.06.009. Salomons E, 2007, J HYDROINFORM, V9, P51, DOI 10.2166/hydro.2006.017. Sarker C, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11192331. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. See L, 1999, HYDROLOG SCI J, V44, P763, DOI 10.1080/02626669909492272. Seo YW, 2016, PROCEEDINGS OF THE ASME CONFERENCE ON INFORMATION STORAGE AND PROCESSING SYSTEMS, 2016. Shafizadeh-Moghadam H, 2018, J ENVIRON MANAGE, V217, P1, DOI 10.1016/j.jenvman.2018.03.089. Stone P, 2000, AUTON ROBOT, V8, P345, DOI 10.1023/A:1008942012299. Sung JY, 2017, WATER-SUI, V9, DOI 10.3390/w9090644. Svozil D, 1997, CHEMOMETR INTELL LAB, V39, P43, DOI 10.1016/S0169-7439(97)00061-0. Termeh SVR, 2018, SCI TOTAL ENVIRON, V615, P438, DOI 10.1016/j.scitotenv.2017.09.262. Tiwari MK, 2013, WATER RESOUR RES, V49, P6486, DOI 10.1002/wrcr.20517. van Gerven Marcel, 2017, Front Comput Neurosci, V11, P114, DOI 10.3389/fncom.2017.00114. van Rijn L C., 2001, STATE OF THE ART SAN, P2229. Vollmer S., 2006, SEDIMENT DYNAMICS HY. Wang YS, 2018, ENERGIES, V11, DOI 10.3390/en11082163. Wieprecht S, 2013, HYDROLOG SCI J, V58, P587, DOI 10.1080/02626667.2012.755264. Wolfs V, 2017, WATER RESOUR MANAG, V31, P283, DOI 10.1007/s11269-016-1524-2. Wu L, 2010, J HYDROINFORM, V12, P172, DOI 10.2166/hydro.2009.082. Yaseen ZM, 2019, J HYDROL, V569, P387, DOI 10.1016/j.jhydrol.2018.11.069. Yu PS, 2006, J HYDROL, V328, P704, DOI 10.1016/j.jhydrol.2006.01.021. Zaji AH, 2019, SCI IRAN, V26, P178, DOI 10.24200/sci.2018.20695. Zeng YH, 2009, COMMUN NONLINEAR SCI, V14, P2373, DOI 10.1016/j.cnsns.2008.06.020. Zhang, 2018, THESIS. Zhang D, 2018, WATER RESOUR MANAG, V32, P2079, DOI 10.1007/s11269-018-1919-3. Zhang D, 2018, J HYDROL, V556, P409, DOI 10.1016/j.jhydrol.2017.11.018. Zhang XL, 2015, J HYDROL, V530, P137, DOI 10.1016/j.jhydrol.2015.09.047. Zhao JC, 2019, THESIS. Zhou X, 2011, THESIS. Zhu YM, 2007, GEOMORPHOLOGY, V84, P111, DOI 10.1016/j.geomorph.2006.07.010. Zounemat-Kermani M, 2020, J HYDROL, V585, DOI 10.1016/j.jhydrol.2020.124759. Zounemat-Kermani M, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2019.101030. Zounemat-Kermani M, 2019, ATMOS POLLUT RES, V10, P1812, DOI 10.1016/j.apr.2019.07.013. Zounemat-Kermani M, 2019, FLOW MEAS INSTRUM, V68, DOI 10.1016/j.flowmeasinst.2019.101573. Zounemat-Kermani M, 2018, APPL SOFT COMPUT, V69, P165, DOI 10.1016/j.asoc.2018.04.041. Zounemat-Kermani M, 2017, HYDROL RES, V48, P1240, DOI 10.2166/nh.2016.219. Zounemat-Kermani M, 2016, J HYDROL, V535, P457, DOI 10.1016/j.jhydrol.2016.02.012. Zounemat-Kermani M, 2014, APPL ARTIF INTELL, V28, P16, DOI 10.1080/08839514.2014.862771. Zounemat-Kermani M, 2013, WATER-SUI, V5, P1441, DOI 10.3390/w5031441. Zubaidi SL, 2018, WATER RESOUR MANAG, V32, P4527, DOI 10.1007/s11269-018-2061-y.}, Number-of-Cited-References = {153}, Times-Cited = {38}, Usage-Count-Last-180-days = {18}, Usage-Count-Since-2013 = {102}, Journal-ISO = {J. Hydrol.}, Doc-Delivery-Number = {NN5KB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000568826300059}, DA = {2023-04-22}, } @article{ WOS:000654951400001, Author = {Zippel, Claus and Bohnet-Joschko, Sabine}, Title = {Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov}, Journal = {INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH}, Year = {2021}, Volume = {18}, Number = {10}, Month = {MAY}, Abstract = {Although advances in machine-learning healthcare applications promise great potential for innovative medical care, few data are available on the translational status of these new technologies. We aimed to provide a comprehensive characterization of the development and status quo of clinical studies in the field of machine learning. For this purpose, we performed a registry-based analysis of machine-learning-related studies that were published and first available in the ClinicalTrials.gov database until 2020, using the database's study classification. In total, n = 358 eligible studies could be included in the analysis. Of these, 82\% were initiated by academic institutions/university (hospitals) and 18\% by industry sponsors. A total of 96\% were national and 4\% international. About half of the studies (47\%) had at least one recruiting location in a country in North America, followed by Europe (37\%) and Asia (15\%). Most of the studies reported were initiated in the medical field of imaging (12\%), followed by cardiology, psychiatry, anesthesia/intensive care medicine (all 11\%) and neurology (10\%). Although the majority of the clinical studies were still initiated in an academic research context, the first industry-financed projects on machine-learning-based algorithms are becoming visible. The number of clinical studies with machine-learning-related applications and the variety of medical challenges addressed serve to indicate their increasing importance in future clinical care. Finally, they also set a time frame for the adjustment of medical device-related regulation and governance.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Bohnet-Joschko, S (Corresponding Author), Witten Herdecke Univ, Fac Management Econ \& Soc, Chair Management \& Innovat Hlth Care, D-58448 Witten, Germany. Zippel, Claus; Bohnet-Joschko, Sabine, Witten Herdecke Univ, Fac Management Econ \& Soc, Chair Management \& Innovat Hlth Care, D-58448 Witten, Germany.}, DOI = {10.3390/ijerph18105072}, Article-Number = {5072}, EISSN = {1660-4601}, Keywords = {machine learning; digital health; registry analysis; ClinicalTrials; gov; device regulation}, Keywords-Plus = {BIG DATA ANALYTICS; ARTIFICIAL-INTELLIGENCE; TRANSLATIONAL RESEARCH; DATA SCIENCE; HEALTH-CARE; TRIALS; MEDICINE; CANCER; CLASSIFICATION; INFORMATION}, Research-Areas = {Environmental Sciences \& Ecology; Public, Environmental \& Occupational Health}, Web-of-Science-Categories = {Environmental Sciences; Public, Environmental \& Occupational Health}, Author-Email = {claus.zippel@uni-wh.de Sabine.Bohnet-Joschko@uni-wh.de}, ORCID-Numbers = {Bohnet-Joschko, Sabine/0000-0002-1119-9786}, Funding-Acknowledgement = {Ministry of Economic Affairs, Innovation, Digitalization and Energy of North Rhine-Westphalia {[}ITG-1-1]}, Funding-Text = {The APC is paid for under the ATLAS project which is funded by the Ministry of Economic Affairs, Innovation, Digitalization and Energy of North Rhine-Westphalia (funding code: ITG-1-1).}, Cited-References = {Bate A, 2021, DRUG SAFETY, V44, P125, DOI 10.1007/s40264-020-01001-7. Baumann S, 2019, EUR J RADIOL, V119, DOI 10.1016/j.ejrad.2019.108657. Beck ACC, 2019, HEALTH POLICY, V123, P1185, DOI 10.1016/j.healthpol.2019.10.002. Bell SA, 2014, ORPHANET J RARE DIS, V9, DOI 10.1186/s13023-014-0170-0. Benke K, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122796. Blomberg SN, 2019, RESUSCITATION, V138, P322, DOI 10.1016/j.resuscitation.2019.01.015. Bonekamp D, 2018, RADIOLOGY, V289, P128, DOI 10.1148/radiol.2018173064. Brinker TJ, 2018, J MED INTERNET RES, V20, DOI 10.2196/11936. Broome DT, 2020, CURR DIABETES REP, V20, DOI 10.1007/s11892-020-1287-2. Burian E, 2020, J CLIN MED, V9, DOI 10.3390/jcm9051514. Califf RM, 2012, JAMA-J AM MED ASSOC, V307, P1838, DOI 10.1001/jama.2012.3424. Camacho DM, 2018, CELL, V173, P1581, DOI 10.1016/j.cell.2018.05.015. Campanella G, 2019, NAT MED, V25, P1301, DOI 10.1038/s41591-019-0508-1. Casagranda I, 2016, HEALTH POLICY, V120, P111, DOI 10.1016/j.healthpol.2015.12.003. Chen PHC, 2019, NAT MATER, V18, P410, DOI 10.1038/s41563-019-0345-0. Chen YP, 2017, THERANOSTICS, V7, P390, DOI 10.7150/thno.17087. Cihoric N, 2016, RADIAT ONCOL, V11, DOI 10.1186/s13014-016-0624-8. Cleophas T.J., 2020, MACHINE LEARNING MED. Cohen IG, 2020, LANCET DIGIT HEALTH, V2, pE376, DOI 10.1016/S2589-7500(20)30112-6. Contopoulos-Ioannidis DG, 2008, SCIENCE, V321, P1298, DOI 10.1126/science.1160622. De Geer J, 2019, AM J ROENTGENOL, V213, P325, DOI 10.2214/AJR.18.20774. Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593. Ehrhardt S, 2015, JAMA-J AM MED ASSOC, V314, P2566, DOI 10.1001/jama.2015.12206. Erickson BJ, 2017, RADIOGRAPHICS, V37, P505, DOI 10.1148/rg.2017160130. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056. European Parliament and Council, 2017, OFF J EUR UNION, V117, P1, DOI DOI 10.1080/21548331.1992.11705401. FDA, 2021, ARTIFICIAL INTELLIGE. Frohlich H, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1122-7. Garcia-Ordas MT, 2020, HEALTHCARE-BASEL, V8, DOI 10.3390/healthcare8040371. Gerke S, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0262-2. Grant J, 2003, RES EVALUAT, V12, P217, DOI 10.3152/147154403781776618. Green LW, 2009, ANNU REV PUBL HEALTH, V30, P151, DOI 10.1146/annurev.publhealth.031308.100049. Grobler L, 2008, LANCET, V372, P1201, DOI 10.1016/S0140-6736(08)61498-1. Hasselblatt Hanna, 2009, J Evid Based Med, V2, P36, DOI 10.1111/j.1756-5391.2009.01001.x. Hekler A, 2019, EUR J CANCER, V118, P91, DOI 10.1016/j.ejca.2019.06.012. Hirsch BR, 2013, JAMA INTERN MED, V173, P972, DOI 10.1001/jamainternmed.2013.627. Jaroszewski AC, 2019, J CONSULT CLIN PSYCH, V87, P370, DOI 10.1037/ccp0000389. Kawasaki T, 2020, ACAD RADIOL, V27, P1700, DOI 10.1016/j.acra.2019.12.013. Kelchtermans P, 2014, PROTEOMICS, V14, P353, DOI 10.1002/pmic.201300289. Kickingereder P, 2019, LANCET ONCOL, V20, P728, DOI 10.1016/S1470-2045(19)30098-1. Kohli M, 2017, AM J ROENTGENOL, V208, P754, DOI 10.2214/AJR.16.17224. Kulkarni S, 2020, ACAD RADIOL, V27, P62, DOI 10.1016/j.acra.2019.10.001. Larson DB, 2021, J AM COLL RADIOL, V18, P413, DOI {[}10.1016/j.jacr.2020.09.060, 10.1016/j.jacr.2020.09.060413]. Lee D, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18010271. Lin J, 2021, J CLIN ONCOL, V39, DOI 10.1200/JCO.2021.39.3\_suppl.43. Lundberg SM, 2018, NAT BIOMED ENG, V2, P749, DOI 10.1038/s41551-018-0304-0. Maier-Hein L, 2017, NAT BIOMED ENG, V1, P691, DOI 10.1038/s41551-017-0132-7. Maros ME, 2020, NAT PROTOC, V15, P479, DOI 10.1038/s41596-019-0251-6. McCray AT, 2000, ANN INTERN MED, V133, P609, DOI 10.7326/0003-4819-133-8-200010170-00013. McCray AT, 2000, J AM MED INFORM ASSN, V7, P313, DOI 10.1136/jamia.2000.0070313. Mehta N, 2018, INT J MED INFORM, V114, P57, DOI 10.1016/j.ijmedinf.2018.03.013. Mohr DC, 2019, J MED INTERNET RES, V21, DOI 10.2196/13609. Morris ZS, 2011, J ROY SOC MED, V104, P510, DOI 10.1258/jrsm.2011.110180. Murdoch TB, 2013, JAMA-J AM MED ASSOC, V309, P1351, DOI 10.1001/jama.2013.393. Ngiam KY, 2019, LANCET ONCOL, V20, pE262, DOI 10.1016/S1470-2045(19)30149-4. Ogino D, 2014, TRIALS, V15, DOI 10.1186/1745-6215-15-428. Pesapane F, 2018, INSIGHTS IMAGING, V9, P745, DOI 10.1007/s13244-018-0645-y. Prabhakar B, 2021, COMPUT MED IMAG GRAP, V87, DOI 10.1016/j.compmedimag.2020.101818. Raghupathi W, 2014, HEALTH INF SCI SYST, V2, DOI 10.1186/2047-2501-2-3. Ross JS, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000144. Scherer J, 2020, JCO CLIN CANCER INFO, V4, P1027, DOI 10.1200/CCI.20.00045. Sidey-Gibbons JAM, 2019, BMC MED RES METHODOL, V19, DOI 10.1186/s12874-019-0681-4. Stern AD, 2020, BIOSTATISTICS, V21, P363, DOI 10.1093/biostatistics/kxz044. Subbaswamy A, 2020, BIOSTATISTICS, V21, P345, DOI 10.1093/biostatistics/kxz041. Subramanian J, 2010, J THORAC ONCOL, V5, P1116, DOI 10.1097/JTO.0b013e3181e76159. Tesche C, 2020, JACC-CARDIOVASC IMAG, V13, P760, DOI 10.1016/j.jcmg.2019.06.027. Thrall JH, 2018, J AM COLL RADIOL, V15, P504, DOI 10.1016/j.jacr.2017.12.026. Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7. Trochim W, 2011, CTS-CLIN TRANSL SCI, V4, P153, DOI 10.1111/j.1752-8062.2011.00291.x. U.S. National Library of Medicine, 2016, MASCH LEARN MESH UN. Uribe CF, 2019, J NUCL MED, V60, P451, DOI 10.2967/jnumed.118.223495. USA National Library of Medicine, CLINICALTRIALS GOV A. USA National Library of Medicine, CLINICALTRIALS GOV P. Velasco-Garrido M., 2008, HLTH TECHNOLOGY ASSE. Wan N, 2019, BMC CANCER, V19, DOI 10.1186/s12885-019-6003-8. Wang YC, 2017, J BUS RES, V70, P287, DOI 10.1016/j.jbusres.2016.08.002. Wong D, 2018, NATURE, V555, P446, DOI 10.1038/d41586-018-02881-7. Zarin DA, 2005, NEW ENGL J MED, V353, P2779, DOI 10.1056/NEJMsa053234. Zarin DA, 2011, NEW ENGL J MED, V364, P852, DOI 10.1056/NEJMsa1012065. Zippel C, 2020, PHARMACEUTICALS-BASE, V13, DOI 10.3390/ph13010012. Zippel C, 2017, HEALTH POLICY, V121, P880, DOI 10.1016/j.healthpol.2017.06.005.}, Number-of-Cited-References = {81}, Times-Cited = {5}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Int. J. Environ. Res. Public Health}, Doc-Delivery-Number = {SI6PY}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000654951400001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000898561500011, Author = {Hall, Ola and Ohlsson, Mattias and Rognvaldsson, Thorsteinn}, Title = {A review of explainable AI in the satellite data, deep machine learning, and human poverty domain}, Journal = {PATTERNS}, Year = {2022}, Volume = {3}, Number = {10}, Month = {SEP 9}, Abstract = {Recent advances in artificial intelligence and deep machine learning have created a step change in how to measure human development indicators, in particular asset-based poverty. The combination of satellite imagery and deep machine learning now has the capability to estimate some types of poverty at a level close to what is achieved with traditional household surveys. An increasingly important issue beyond static estimations is whether this technology can contribute to scientific discovery and, consequently, new knowledge in the poverty and welfare domain. A foundation for achieving scientific insights is domain knowledge, which in turn translates into explainability and scientific consistency. We perform an integrative literature review focusing on three core elements relevant in this context-transparency, interpretability, and explainability-and investigate how they relate to the poverty, machine learning, and satellite imagery nexus. Our inclusion criteria for papers are that they cover poverty/wealth prediction, using survey data as the basis for the ground truth poverty/wealth estimates, be applicable to both urban and rural settings, use satellite images as the basis for at least some of the inputs (features), and the method should include deep neural networks. Our review of 32 papers shows that the status of the three core elements of explainable machine learning (transparency, interpretability, and domain knowledge) is varied and does not completely fulfill the requirements set up for scientific insights and discoveries. We argue that explainability is essential to support wider dissemination and acceptance of this research in the development community and that explainability means more than just interpretability.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Hall, O (Corresponding Author), Lund Univ, Dept Human Geog, Lund, Sweden. Hall, Ola, Lund Univ, Dept Human Geog, Lund, Sweden. Ohlsson, Mattias; Rognvaldsson, Thorsteinn, Halmstad Univ, Ctr Appl Intelligent Syst Res, Halmstad, Sweden. Ohlsson, Mattias, Lund Univ, Dept Astron \& Theoret Phys, Div Computat Biol \& Biol Phys, Lund, Sweden.}, DOI = {10.1016/j.patter.2022.100600}, Article-Number = {100600}, ISSN = {2666-3899}, Keywords-Plus = {POPULATION; SYSTEMS; IMAGERY; WILL}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications}, Author-Email = {ola.hall@keg.lu.se}, Affiliations = {Lund University; Halmstad University; Lund University}, Funding-Acknowledgement = {Swedish Research Council {[}2019-04253]; Riksbankens Jubileumsfond {[}MXM19-1104:1]}, Funding-Text = {The authors would like to thank financial support during the project from the Swedish Research Council 2019-04253 and Riksbankens Jubileumsfond MXM19-1104:1. We would also like to thank the reviewers for their insightful comments on the paper.}, Cited-References = {Andersson M, 2019, ISPRS INT GEO-INF, V8, DOI 10.3390/ijgi8110498. Bustos MFA, 2020, POPUL ENVIRON, V42, P255, DOI 10.1007/s11111-020-00360-8. Atzberger C, 2013, REMOTE SENS-BASEL, V5, P949, DOI 10.3390/rs5020949. Ayush K, 2020, Arxiv, DOI 10.48550/arXiv.2002.01612. Ayush K, 2021, AAAI CONF ARTIF INTE, V35, P12. Babenko B., 2017, POVERTY MAPPING USIN, DOI DOI 10.48550/ARXIV.1711.06323. Blumenstock Joshua, 2020, Nature, DOI 10.1038/d41586-020-01393-7. Burke M, 2021, SCIENCE, V371, P1219, DOI 10.1126/science.abe8628. Castro DA, 2023, GEOJOURNAL, V88, P1081, DOI 10.1007/s10708-022-10618-3. Chen D., 2017, TEMPORAL POVERTY PRE. Chen HG, 2019, Arxiv, DOI {[}DOI 10.48550/ARXIV.1911.11888, 10.48550/arXiv.1911.11888]. Chen X, 2015, REMOTE SENS-BASEL, V7, P4937, DOI 10.3390/rs70404937. Chen X, 2011, P NATL ACAD SCI USA, V108, P8589, DOI 10.1073/pnas.1017031108. Chi GH, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2113658119. Council N.R., 1998, PEOPLE PIXELS LINKIN, DOI {[}10.17226/5963, DOI 10.17226/5963]. Daoud A., 2022, PREPRINT, DOI {[}10.48550/arXiv.2202.00109, DOI 10.48550/ARXIV.2202.00109]. Elvidge CD, 1997, INT J REMOTE SENS, V18, P1373, DOI 10.1080/014311697218485. Engstrom R, 2022, WORLD BANK ECON REV, V36, P382, DOI 10.1093/wber/lhab015. Espey J, 2015, DATA DEV NEEDS ASSES. Espi n-Noboa L., 2022, INT C LEARNING REPRE, P1. Gulum MA, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11104573. Hall O., 2010, OPEN REMOTE SENSING, V3, P1, DOI {[}10.2174/1875413901003010001, DOI 10.2174/1875413901003010001]. He KM, 2016, LECT NOTES COMPUT SC, V9908, P630, DOI 10.1007/978-3-319-46493-0\_38. Head A., 2017, P 9 INT C INFORM COM, DOI DOI 10.1145/3136560.3136576. Henderson JV, 2012, AM ECON REV, V102, P994, DOI 10.1257/aer.102.2.994. Ho-Phuoc T., 2019, ARXIV. Hofer M., 2020, ASIAN DEV BANK EC WO, V629, DOI 10.22617/WPS200432-2. Hu J, 2018, PROC CVPR IEEE, P7132, DOI {[}10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]. Huang L.Y., 2021, 29105 NATL BUR EC RE, DOI {[}10.3386/w29105, DOI 10.3386/W29105]. Irvin J., 2017, USING SATELLITE IMAG. Jarry R., 2021, PRRS 2021 11 IAPR IN, P550, DOI {[}10.1007/978-3-030-68787-8\_40, DOI 10.1007/978-3-030-68787-8\_40]. Jean N, 2016, SCIENCE, V353, P790, DOI 10.1126/science.aaf7894. Jerven M, 2017, FORUM DEV STUD, V44, P31, DOI 10.1080/08039410.2016.1260050. Keola S, 2015, WORLD DEV, V66, P322, DOI 10.1016/j.worlddev.2014.08.017. Kim J.H., 2016, INCORPORATING SPATIA, DOI {[}10.13140/RG.2.2.27604.60803, DOI 10.13140/RG.2.2.27604.60803]. Kondmann L., 2020, INT C LEARNING REPRE, P1. Kuffer M, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8060455. Lee KM, 2021, Arxiv, DOI {[}10.48550/arXiv.2009.00544, DOI 10.48550/ARXIV.2009.00544]. Lipton ZC, 2018, COMMUN ACM, V61, P36, DOI 10.1145/3233231. Liu HY, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13112067. Longley PA, 2002, PROG HUM GEOG, V26, P231, DOI 10.1191/0309132502ph366pr. Mellander C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139779. Mikami H, 2019, Arxiv, DOI 10.48550/arXiv.1811.05233. Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007. Montavon G, 2018, DIGIT SIGNAL PROCESS, V73, P1, DOI 10.1016/j.dsp.2017.10.011. Neumann K, 2010, AGR SYST, V103, P316, DOI 10.1016/j.agsy.2010.02.004. Ni Y, 2021, IEEE GEOSCI REMOTE S, V18, P1545, DOI 10.1109/LGRS.2020.3006019. Noor Abdisalan M, 2008, Popul Health Metr, V6, P5, DOI 10.1186/1478-7954-6-5. Ostberg W, 2018, LAND-BASEL, V7, DOI 10.3390/land7020044. Pandey SM, 2018, AAAI CONF ARTIF INTE, P7793. Perez A, 2017, Arxiv, DOI {[}10.48550/arXiv.1711.03654, DOI 10.48550/ARXIV.1711.03654]. Perez A, 2019, Arxiv. Ravallion M, 2020, ANNU REV ECON, V12, P167, DOI 10.1146/annurev-economics-081919-022924. Roscher R, 2020, IEEE ACCESS, V8, P42200, DOI 10.1109/ACCESS.2020.2976199. Russakovsky O., 2015, INT J COMPUT VISION, V115, P211. Rutstein S.O., 2014, MAKING DEMOGRAPHIC H, V9. Sako T., 2021, PREPRINT, DOI {[}10.48550/arXiv.2107.14700, DOI 10.48550/ARXIV.2107.14700]. Selvaraju RR, 2017, IEEE I CONF COMP VIS, P618, DOI 10.1109/ICCV.2017.74. Shrikumar A, 2017, PR MACH LEARN RES, V70. Snyder H, 2019, J BUS RES, V104, P333, DOI 10.1016/j.jbusres.2019.07.039. Tan CQ, 2018, LECT NOTES COMPUT SC, V11141, P270, DOI 10.1007/978-3-030-01424-7\_27. Tan YM, 2020, IEEE J-STARS, V13, P553, DOI 10.1109/JSTARS.2020.2968468. Tang B, 2022, APPL ECON PERSPECT P, V44, P930, DOI 10.1002/aepp.13221. Tingzon I., 2019, INT ARCH PHOTOGRAMME, VXLII-4/W19, P425, DOI {[}10.5194/isprs-archives-XLII-4-W19-425-2019, DOI 10.5194/ISPRS-ARCHIVES-XLII-4-W19-425-2019]. van der Velden BHM, 2022, MED IMAGE ANAL, V79, DOI 10.1016/j.media.2022.102470. Weiss M, 2020, REMOTE SENS ENVIRON, V236, DOI 10.1016/j.rse.2019.111402. Wu P., 2019, ADV REM SENS, V08, P89, DOI {[}10.4236/ars.2019.84006, DOI 10.4236/ARS.2019.84006]. Wu P., 2019, 2019 INT C DATA MINI, P206, DOI {[}10.1109/ICDMW.2019.00039, DOI 10.1109/ICDMW.2019.00039]. Xie M, 2016, AAAI CONF ARTIF INTE, P3929. Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981. Yeh C, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16185-w. Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1\_53. Zhang KH, 2014, IEEE T PATTERN ANAL, V36, P2002, DOI 10.1109/TPAMI.2014.2315808. Zhao XZ, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11040375. Zhou Y, 2022, J RURAL STUD, V93, P408, DOI 10.1016/j.jrurstud.2019.01.008.}, Number-of-Cited-References = {75}, Times-Cited = {0}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Patterns}, Doc-Delivery-Number = {7A6KC}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000898561500011}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000691223200001, Author = {Munawar, Hafiz Suliman and Hammad, Ahmed W. A. and Haddad, Assed and Pereira Soares, Carlos Alberto and Waller, S. Travis}, Title = {Image-Based Crack Detection Methods: A Review}, Journal = {INFRASTRUCTURES}, Year = {2021}, Volume = {6}, Number = {8}, Month = {AUG}, Abstract = {Annually, millions of dollars are spent to carry out defect detection in key infrastructure including roads, bridges, and buildings. The aftermath of natural disasters like floods and earthquakes leads to severe damage to the urban infrastructure. Maintenance operations that follow for the damaged infrastructure often involve a visual inspection and assessment of their state to ensure their functional and physical integrity. Such damage may appear in the form of minor or major cracks, which gradually spread, leading to ultimate collapse or destruction of the structure. Crack detection is a very laborious task if performed via manual visual inspection. Many infrastructure elements need to be checked regularly and it is therefore not feasible as it will require significant human resources. This may also result in cases where cracks go undetected. A need, therefore, exists for performing automatic defect detection in infrastructure to ensure its effectiveness and reliability. Using image processing techniques, the captured or scanned images of the infrastructure parts can be analyzed to identify any possible defects. Apart from image processing, machine learning methods are being increasingly applied to ensure better performance outcomes and robustness in crack detection. This paper provides a review of image-based crack detection techniques which implement image processing and/or machine learning. A total of 30 research articles have been collected for the review which is published in top tier journals and conferences in the past decade. A comprehensive analysis and comparison of these methods are performed to highlight the most promising automated approaches for crack detection.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Hammad, AWA (Corresponding Author), Univ New South Wales, Sch Built Environm, Sydney, NSW 2052, Australia. Munawar, Hafiz Suliman; Hammad, Ahmed W. A., Univ New South Wales, Sch Built Environm, Sydney, NSW 2052, Australia. Haddad, Assed, Univ Fed Rio de Janeiro, Pea POLI \& EQ, Programa Engn Ambiental, BR-21941909 Rio De Janeiro, Brazil. Pereira Soares, Carlos Alberto, Univ Fed Fluminense, Engn Civil, BR-24210240 Niteroi, RJ, Brazil. Waller, S. Travis, Univ New South Wales, Sch Civil \& Environm Engn, Sydney, NSW 2052, Australia.}, DOI = {10.3390/infrastructures6080115}, Article-Number = {115}, EISSN = {2412-3811}, Keywords = {crack detection; machine learning; artificial intelligence; image processing}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; ALGORITHM; SYSTEM}, Research-Areas = {Construction \& Building Technology; Engineering; Transportation}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil; Transportation Science \& Technology}, Author-Email = {h.munawar@unsw.edu.au a.hammad@unsw.edu.au assed@poli.ufrj.br capsoares@id.uff.br s.waller@unsw.edu.au}, Affiliations = {University of New South Wales Sydney; Universidade Federal do Rio de Janeiro; Universidade Federal Fluminense; University of New South Wales Sydney}, ResearcherID-Numbers = {Soares, Carlos Alberto Pereira/Q-1507-2019 Haddad, Assed N./C-9206-2014 }, ORCID-Numbers = {Soares, Carlos Alberto Pereira/0000-0002-1332-5854 Haddad, Assed N./0000-0002-4793-0905 Munawar, Hafiz Suliman/0000-0001-8492-0274 Hammad, Ahmed WA/0000-0001-6190-0078}, Cited-References = {ABOUDI J, 1987, ENG FRACT MECH, V26, P637, DOI 10.1016/0013-7944(87)90129-9. ADELI H, 1994, J AEROSPACE ENG, V7, P104, DOI 10.1061/(ASCE)0893-1321(1994)7:1(104). Bang S, 2019, COMPUT-AIDED CIV INF, V34, P713, DOI 10.1111/mice.12440. Bansal M, 2021, SOFT COMPUT, V25, P4423, DOI 10.1007/s00500-020-05453-y. Bhat S., 2020, P INT C EM TRENDS IN, P1. BUDIANSKY B, 1976, INT J SOLIDS STRUCT, V12, P81, DOI 10.1016/0020-7683(76)90044-5. Dung CV, 2019, AUTOMAT CONSTR, V99, P52, DOI 10.1016/j.autcon.2018.11.028. Chen FC, 2018, IEEE T IND ELECTRON, V65, P4392, DOI 10.1109/TIE.2017.2764844. Dhital D, 2012, EXP MECH, V52, P1111, DOI 10.1007/s11340-011-9567-z. Dorafshan S., 2017, IDA TRANSP DEP, V1, P1. Dorafshan S, 2019, INFRASTRUCTURES-BASE, V4, DOI 10.3390/infrastructures4020019. Dorafshan S, 2018, J BRIDGE ENG, V23, DOI 10.1061/(ASCE)BE.1943-5592.0001291. Fan R, 2019, IEEE INT VEH SYM, P474, DOI 10.1109/IVS.2019.8814000. Feng C, 2017, COMPUTING IN CIVIL ENGINEERING 2017: INFORMATION MODELLING AND DATA ANALYTICS, P298. Fujita Y, 2011, MACH VISION APPL, V22, P245, DOI 10.1007/s00138-009-0244-5. Gavilan M, 2011, SENSORS-BASEL, V11, P9628, DOI 10.3390/s111009628. Han T, 2018, T I MEAS CONTROL, V40, P2681, DOI 10.1177/0142331217708242. Hasni H, 2017, ARCH CIV MECH ENG, V17, P609, DOI 10.1016/j.acme.2016.11.005. Jahanshahi MR, 2012, AUTOMAT CONSTR, V22, P567, DOI 10.1016/j.autcon.2011.11.018. Ju HY, 2020, J COMPUT CIVIL ENG, V34, DOI 10.1061/(ASCE)CP.1943-5487.0000869. Kankar PK, 2012, INT J MODEL IDENTIF, V15, P185, DOI 10.1504/IJMIC.2012.045691. Kim IH, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18061881. Koch C, 2015, ADV ENG INFORM, V29, P196, DOI 10.1016/j.aei.2015.01.008. Kong XX, 2018, COMPUT-AIDED CIV INF, V33, P783, DOI 10.1111/mice.12353. Landstrom A, 2012, IEEE J-STSP, V6, P866, DOI 10.1109/JSTSP.2012.2212416. Lee Y, 2010, COMPUT-AIDED CIV INF, V25, P132, DOI 10.1111/j.1467-8667.2009.00626.x. Lei B, 2018, J AEROSPACE ENG, V31, DOI 10.1061/(ASCE)AS.1943-5525.0000879. Lin H, 2019, J INTELL MANUF, V30, P2525, DOI 10.1007/s10845-018-1415-x. Lins RG, 2016, IEEE T INSTRUM MEAS, V65, P583, DOI 10.1109/TIM.2015.2509278. Liong S.T., 2019, ARXIV190312139. Liu HX, 2009, COMPUT-AIDED CIV INF, V24, P535, DOI 10.1111/j.1467-8667.2009.00614.x. Luo QJ, 2019, CONSTR BUILD MATER, V204, P244, DOI 10.1016/j.conbuildmat.2019.01.150. Mohan A, 2018, ALEX ENG J, V57, P787, DOI 10.1016/j.aej.2017.01.020. Mstafa RJ, 2020, IEEE ACCESS, V8, P161825, DOI 10.1109/ACCESS.2020.3021356. Hoang ND, 2019, COMPLEXITY, V2019, DOI 10.1155/2019/5910625. Hoang ND, 2018, ADV CIV ENG, V2018, DOI 10.1155/2018/7419058. Ni FT, 2019, STRUCT CONTROL HLTH, V26, DOI 10.1002/stc.2286. Nishikawa T, 2012, COMPUT-AIDED CIV INF, V27, P29, DOI 10.1111/j.1467-8667.2011.00716.x. Noshad Z, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19071568. Olivares J., 2017, EURASIP J IMAGE VIDE, V2017, P1. Oliveira H, 2013, IEEE T INTELL TRANSP, V14, P155, DOI 10.1109/TITS.2012.2208630. Olson M., 2018, ADV NEURAL INFORM PR, P3623. Palermo F, 2020, IEEE INT CONF ROBOT, P632, DOI 10.1109/ICRA40945.2020.9196936. Pauly L., 2017, P 34 ISARC, P479, DOI DOI 10.22260/ISARC2017/0066. Pingrang Wang, 2010, Proceedings of the 2010 3rd International Congress on Image and Signal Processing (CISP 2010), P2530, DOI 10.1109/CISP.2010.5647496. Prasanna P, 2016, IEEE T AUTOM SCI ENG, V13, P591, DOI 10.1109/TASE.2014.2354314. Salman M, 2013, IEEE INT C INTELL TR, P2039, DOI 10.1109/ITSC.2013.6728529. Saravanan N, 2010, APPL SOFT COMPUT, V10, P344, DOI 10.1016/j.asoc.2009.08.006. Sari Yuslena, 2019, 2019 6th International Conference on Electric Vehicular Technology (ICEVT). Proceedings, P349, DOI 10.1109/ICEVT48285.2019.8993969. Shan BH, 2016, KSCE J CIV ENG, V20, P803, DOI 10.1007/s12205-015-0461-6. SHAN Q, 1993, APPL PHYS LETT, V62, P2649, DOI 10.1063/1.109274. Sharma M., 2018, SCI TECHNOL ASIA, V23, P19. Sheng P, 2018, C IND ELECT APPL, P1228. Shi Y, 2016, IEEE T INTELL TRANSP, V17, P3434, DOI 10.1109/TITS.2016.2552248. Sitara RGS., 2018, INT J APPL ENG RES, V13, P6056. Wang BS, 2007, J SOUND VIB, V302, P1037, DOI 10.1016/j.jsv.2007.01.008. Wu LL, 2016, J COMPUT CIVIL ENG, V30, DOI 10.1061/(ASCE)CP.1943-5487.0000451. Wu XY, 2021, INT C PATT RECOG, P6577, DOI 10.1109/ICPR48806.2021.9413312. Yang F, 2020, IEEE T INTELL TRANSP, V21, P1525, DOI 10.1109/TITS.2019.2910595. Yang XC, 2018, COMPUT-AIDED CIV INF, V33, P1090, DOI 10.1111/mice.12412. Yeum CM, 2015, COMPUT-AIDED CIV INF, V30, P759, DOI 10.1111/mice.12141. Ying L, 2010, COMPUT-AIDED CIV INF, V25, P572, DOI 10.1111/j.1467-8667.2010.00674.x. Yoo HS, 2016, KSCE J CIV ENG, V20, P1151, DOI 10.1007/s12205-015-1645-9. Zhang A, 2017, COMPUT-AIDED CIV INF, V32, P805, DOI 10.1111/mice.12297. Zhang KG, 2018, J COMPUT CIVIL ENG, V32, DOI 10.1061/(ASCE)CP.1943-5487.0000736. Zhang L, 2016, IEEE IMAGE PROC, P3708, DOI 10.1109/ICIP.2016.7533052. Zhang WY, 2014, SENSORS-BASEL, V14, P19307, DOI 10.3390/s141019307. Zhou Q, 2021, PATTERN RECOGN LETT, V145, P96, DOI 10.1016/j.patrec.2021.02.005. Zhu Jun, 2011, Journal of Nanjing University of Science and Technology, V35, P755. Zou Q, 2019, IEEE T IMAGE PROCESS, V28, P1498, DOI 10.1109/TIP.2018.2878966. Zou Q, 2012, PATTERN RECOGN LETT, V33, P227, DOI 10.1016/j.patrec.2011.11.004.}, Number-of-Cited-References = {71}, Times-Cited = {37}, Usage-Count-Last-180-days = {20}, Usage-Count-Since-2013 = {66}, Journal-ISO = {Infrastructures-Basel}, Doc-Delivery-Number = {UJ3XV}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000691223200001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000781406800001, Author = {Jiang, Huiwei and Peng, Min and Zhong, Yuanjun and Xie, Haofeng and Hao, Zemin and Lin, Jingming and Ma, Xiaoli and Hu, Xiangyun}, Title = {A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images}, Journal = {REMOTE SENSING}, Year = {2022}, Volume = {14}, Number = {7}, Month = {APR}, Abstract = {Change detection based on remote sensing images plays an important role in the field of remote sensing analysis, and it has been widely used in many areas, such as resources monitoring, urban planning, disaster assessment, etc. In recent years, it has aroused widespread interest due to the explosive development of artificial intelligence (AI) technology, and change detection algorithms based on deep learning frameworks have made it possible to detect more delicate changes (such as the alteration of small buildings) with the help of huge amounts of remote sensing data, especially high-resolution (HR) data. Although there are many methods, we still lack a deep review of the recent progress concerning the latest deep learning methods in change detection. To this end, the main purpose of this paper is to provide a review of the available deep learning-based change detection algorithms using HR remote sensing images. The paper first describes the change detection framework and classifies the methods from the perspective of the deep network architectures adopted. Then, we review the latest progress in the application of deep learning in various granularity structures for change detection. Further, the paper provides a summary of HR datasets derived from different sensors, along with information related to change detection, for the potential use of researchers. Simultaneously, representative evaluation metrics for this task are investigated. Finally, a conclusion of the challenges for change detection using HR remote sensing images, which must be dealt with in order to improve the model's performance, is presented. In addition, we put forward promising directions for future research in this area.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Zhong, YJ (Corresponding Author), Guangdong Surveying \& Mapping Inst, Lands \& Resource Dept, 13 Guangpu Middle Rd, Guangzhou 510663, Peoples R China. Jiang, Huiwei, Natl Geomat Ctr China, Beijing 100830, Peoples R China. Jiang, Huiwei; Xie, Haofeng; Lin, Jingming; Hu, Xiangyun, Wuhan Univ, Sch Remote Sensing \& Informat Engn, 129 Luoyu Rd, Wuhan 430079, Peoples R China. Peng, Min; Hao, Zemin, Geotech Invest \& Surveying Res Inst Co Ltd, Shenyang 110004, Peoples R China. Zhong, Yuanjun; Ma, Xiaoli, Guangdong Surveying \& Mapping Inst, Lands \& Resource Dept, 13 Guangpu Middle Rd, Guangzhou 510663, Peoples R China. Hu, Xiangyun, Wuhan Univ, Inst Artificial Intelligence Geomat, 129 Luoyu Rd, Wuhan 430079, Peoples R China.}, DOI = {10.3390/rs14071552}, Article-Number = {1552}, EISSN = {2072-4292}, Keywords = {deep learning; change detection; high-resolution; remote sensing images}, Keywords-Plus = {CONVOLUTIONAL NEURAL-NETWORK; SCENE CHANGE DETECTION; FUSION NETWORK; CLASSIFICATION; SATELLITE; ACCURACY; SEGMENTATION; PIXEL; AREA; CNN}, Research-Areas = {Environmental Sciences \& Ecology; Geology; Remote Sensing; Imaging Science \& Photographic Technology}, Web-of-Science-Categories = {Environmental Sciences; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science \& Photographic Technology}, Author-Email = {huiwei\_jiang@whu.edu.cn minpeng@whu.edu.cn yuanjun.zhong.gd@gmail.com xiehaofeng@whu.edu.cn haozemin@whu.edu.cn linjingming@whu.edu.cn xiaoli.ma1010@gmail.com huxy@whu.edu.cn}, Affiliations = {Wuhan University; Wuhan University}, Funding-Acknowledgement = {Chinese National Natural Science Foundation Projects {[}92038301, 41771363]; Guangdong Surveying and Mapping Institute of Lands and Resource Department, Shenyang Geotechnical Investigation \& Surveying Research Institute Co., Ltd.}, Funding-Text = {This research was funded by the Chinese National Natural Science Foundation Projects (Grant Nos. 92038301 and 41771363), and was supported by the fundings of Guangdong Surveying and Mapping Institute of Lands and Resource Department, Shenyang Geotechnical Investigation \& Surveying Research Institute Co., Ltd.}, Cited-References = {Amberkar A., 2018, P 2018 INT C CURRENT, P1, DOI {[}10.1109/icctct.2018.8551185, DOI 10.1109/ICCTCT.2018.8551185]. Andermatt P., 2020, P AS C COMP VIS ACCV, P103. Arjovsky M., 2017, ARXIV170107875. Ban YF, 2016, REMOTE SENS DIGIT IM, V20, P19, DOI 10.1007/978-3-319-47037-5\_2. Bao TF, 2020, IEEE GEOSCI REMOTE S, V17, P1797, DOI 10.1109/LGRS.2019.2955309. Baziotis C., 2019, P N AM CHAPT ASS COM. Benedek C, 2009, IEEE T GEOSCI REMOTE, V47, P3416, DOI 10.1109/TGRS.2009.2022633. Bochkovskiy A., 2020, ARXIV, DOI DOI 10.48550/ARXIV.2004.10934. Bourdis N, 2011, INT GEOSCI REMOTE SE, P4176, DOI 10.1109/IGARSS.2011.6050150. Bovolo F, 2015, IEEE GEOSC REM SEN M, V3, P8, DOI 10.1109/MGRS.2015.2443494. Brock AM, 2018, PROCEEDINGS PERVASIVE DISPLAYS 2018: THE 7TH ACM INTERNATIONAL SYMPOSIUM ON PERVASIVE DISPLAYS, DOI 10.1145/3205873.3205877. Bruzzone L, 1997, IEEE T GEOSCI REMOTE, V35, P858, DOI 10.1109/36.602528. Buda M, 2018, NEURAL NETWORKS, V106, P249, DOI 10.1016/j.neunet.2018.07.011. Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555. Cao C, 2019, ENVIRONMENTS, V6, DOI 10.3390/environments6020025. Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8\_13. Chang XB, 2018, PROC CVPR IEEE, P1488, DOI 10.1109/CVPR.2018.00161. Chen H., 2019, P 10 INT WORKSH AN M. Chen H, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3066802. Chen H, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3095166. Chen H, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101662. Chen HRX, 2020, IEEE T GEOSCI REMOTE, V58, P2848, DOI 10.1109/TGRS.2019.2956756. Chen J, 2021, IEEE J-STARS, V14, P1194, DOI 10.1109/JSTARS.2020.3037893. Chen J, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7060213. Chen LCE, 2018, LECT NOTES COMPUT SC, V11211, P833, DOI 10.1007/978-3-030-01234-2\_49. Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184. Chen LC, 2016, PROC CVPR IEEE, P3640, DOI 10.1109/CVPR.2016.396. Chen PH, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13224597. Chen X, 2016, ADV NEUR IN, V29. Cheng Chen, 2021, 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), P201, DOI 10.1109/ICCEAI52939.2021.00039. Cheng G, 2020, IEEE J-STARS, V13, P3735, DOI 10.1109/JSTARS.2020.3005403. Cheng G, 2017, P IEEE, V105, P1865, DOI 10.1109/JPROC.2017.2675998. Daudt RC, 2018, IEEE IMAGE PROC, P4063, DOI 10.1109/ICIP.2018.8451652. Daudt RC, 2018, INT GEOSCI REMOTE SE, P2115. de Bem PP, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060901. de Lima RP, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010086. Deng ZP, 2018, ISPRS J PHOTOGRAMM, V145, P3, DOI 10.1016/j.isprsjprs.2018.04.003. Ding Q, 2021, INT J APPL EARTH OBS, V105, DOI 10.1016/j.jag.2021.102591. Fischer Asja, 2012, Progress in Pattern Recognition, Image Analysis, ComputerVision, and Applications. Proceedings 17th Iberoamerican Congress, CIARP 2012, P14, DOI 10.1007/978-3-642-33275-3\_2. Fisher P, 1997, INT J REMOTE SENS, V18, P679, DOI 10.1080/014311697219015. Fujita A, 2017, PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, P5, DOI 10.23919/MVA.2017.7986759. Gao F, 2016, IEEE GEOSCI REMOTE S, V13, P1792, DOI 10.1109/LGRS.2016.2611001. Gong JQ, 2019, PHOTOGRAMM ENG REM S, V85, P543, DOI 10.14358/PERS.85.8.543. Gong MG, 2016, IEEE T NEUR NET LEAR, V27, P125, DOI 10.1109/TNNLS.2015.2435783. Gong MG, 2017, ISPRS J PHOTOGRAMM, V129, P212, DOI 10.1016/j.isprsjprs.2017.05.001. Gong MG, 2017, IEEE T GEOSCI REMOTE, V55, P2658, DOI 10.1109/TGRS.2017.2650198. Goodfellow I.J., 2014, GENERATIVE ADVERSARI, V63, P139, DOI {[}10.1145/3422622, DOI 10.1145/3422622]. Guo E., 2018, ARXIV181009111. Guo HN, 2021, REMOTE SENS ENVIRON, V264, DOI 10.1016/j.rse.2021.112589. Guo YJ, 2021, IEEE J-STARS, V14, P214, DOI 10.1109/JSTARS.2020.3032672. Gupta RK., 2019, ALGAE KARNATAKA CHEC, P1. Han PC, 2019, NEUROCOMPUTING, V349, P190, DOI 10.1016/j.neucom.2019.04.029. Han XF, 2015, PROC CVPR IEEE, P3279, DOI 10.1109/CVPR.2015.7298948. Han Y, 2019, COMPUT IND, V107, P50, DOI 10.1016/j.compind.2019.01.012. Harley AW, 2017, IEEE I CONF COMP VIS, P5048, DOI 10.1109/ICCV.2017.539. Hazel GG, 2000, IEEE T GEOSCI REMOTE, V38, P1199, DOI 10.1109/36.843012. He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90. Hewamalage H, 2021, INT J FORECASTING, V37, P388, DOI 10.1016/j.ijforecast.2020.06.008. Hou B, 2020, IEEE T GEOSCI REMOTE, V58, P1790, DOI 10.1109/TGRS.2019.2948659. Huang G, 2017, PROC CVPR IEEE, P2261, DOI 10.1109/CVPR.2017.243. Huang X, 2015, IEEE T GEOSCI REMOTE, V53, P3639, DOI 10.1109/TGRS.2014.2380779. Hussain M, 2013, ISPRS J PHOTOGRAMM, V80, P91, DOI 10.1016/j.isprsjprs.2013.03.006. Ibrahim M.S., 2018, P C COMP VIS PATT RE, P12712. Iyer V, 2018, PROC SPIE, V10794, DOI 10.1117/12.2326848. Jacobsen K, 2011, INT ARCH PHOTOGRAMM, V39-4, P137. Ji SP, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111343. Ji SP, 2019, IEEE T GEOSCI REMOTE, V57, P574, DOI 10.1109/TGRS.2018.2858817. Jiang FL, 2020, IEEE GEOSCI REMOTE S, V17, P1223, DOI 10.1109/LGRS.2019.2941318. Jiang HW, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12030484. Jocher G., YOLOV5. Kaiyu Li, 2020, CCRIS 2020: 2020 International Conference on Control, Robotics and Intelligent System, P42, DOI 10.1145/3437802.3437810. Kampffmeyer M, 2016, IEEE COMPUT SOC CONF, P680, DOI 10.1109/CVPRW.2016.90. Ke L, 2018, IEEE ACCESS, V6, P27442, DOI 10.1109/ACCESS.2018.2807380. Kerdegari H, 2019, PROC SPIE, V11155, DOI 10.1117/12.2533055. Khan S, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2008. Khelifi L, 2020, IEEE ACCESS, V8, P126385, DOI 10.1109/ACCESS.2020.3008036. Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386. Lan G., 2016, DEEP LEARNING. Larabi M., 2016, P 1 INT WORKSH PATT. Lebedev M., 2018, INT ARCH PHOTOGRAM R, V42, P565, DOI {[}DOI 10.5194/ISPRS-ARCHIVES-XLII-2-565-2018, 10.5194/isprs-archives-XLII-2-565-2018]. Lee H., 2007, NIPS, V19, P801. Lee H, 2016, INT GEOSCI REMOTE SE, P3322, DOI 10.1109/IGARSS.2016.7729859. Lei JJ, 2020, IEEE T GEOSCI REMOTE, V58, P5693, DOI 10.1109/TGRS.2020.2968802. Lei Y, 2019, IEEE ACCESS, V7, P36600, DOI 10.1109/ACCESS.2019.2902613. Li BL, 2009, INT J REMOTE SENS, V30, P1283, DOI 10.1080/01431160802474022. Li XH, 2021, ISPRS J PHOTOGRAMM, V179, P14, DOI 10.1016/j.isprsjprs.2021.07.007. Li X, 2020, INT J REMOTE SENS, V41, P7327, DOI 10.1080/01431161.2020.1757782. Li XL, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11030258. Li Y, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1264. Li YF, 2021, IEEE T PATTERN ANAL, V43, P334, DOI 10.1109/TPAMI.2019.2922396. Liu GC, 2019, PATTERN RECOGN, V96, DOI 10.1016/j.patcog.2019.106971. Liu J, 2018, IEEE T NEUR NET LEAR, V29, P545, DOI 10.1109/TNNLS.2016.2636227. Liu JF, 2020, IEEE GEOSCI REMOTE S, V17, P127, DOI 10.1109/LGRS.2019.2916601. Liu M.-Y., 2017, P INT C NEUR INF PRO. Liu P., 2016, P 25 INT JOINT C ART, P2873. Liu RC, 2019, IEEE ACCESS, V7, P156349, DOI 10.1109/ACCESS.2019.2947286. Liu RY, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11232844. Liu T, 2021, REMOTE SENS ENVIRON, V256, DOI 10.1016/j.rse.2021.112308. Liu T, 2017, J APPL REMOTE SENS, V11, DOI 10.1117/1.JRS.11.042615. Liu X, 2018, INT GEOSCI REMOTE SE, P7137. Long J., 2015, P CVPR, P3431, DOI DOI 10.48550/ARXIV.1411.4038. Lowe DG, 2004, INT J COMPUT VISION, V60, P91, DOI 10.1023/B:VISI.0000029664.99615.94. Lyu HB, 2016, INT GEOSCI REMOTE SE, P5157, DOI {[}10.1109/IGARSS.2016.7730345, 10.1109/IGARSS.2016.7730344]. Lyu HB, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8060506. Mazzini D, 2018, IEEE I C CONS ELECT. Mesquita DB, 2020, IEEE GEOSCI REMOTE S, V17, P1455, DOI 10.1109/LGRS.2019.2945906. Minaei S, 2022, INT J SPORT NUTR EXE, V32, P16, DOI 10.1123/ijsnem.2021-0090. Mou LC, 2019, IEEE T GEOSCI REMOTE, V57, P924, DOI 10.1109/TGRS.2018.2863224. Moya L, 2020, REMOTE SENS ENVIRON, V242, DOI 10.1016/j.rse.2020.111743. Mueller J, 2016, AAAI CONF ARTIF INTE, P2786. Newell A, 2016, LECT NOTES COMPUT SC, V9912, P483, DOI 10.1007/978-3-319-46484-8\_29. Nurmaini S, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9010135. Okatani T., 2015, P PROCEDINGS BRIT MA, V61, P1, DOI 10.5244/c.29.61. Olofsson P, 2014, REMOTE SENS ENVIRON, V148, P42, DOI 10.1016/j.rse.2014.02.015. Olofsson P, 2013, REMOTE SENS ENVIRON, V129, P122, DOI 10.1016/j.rse.2012.10.031. Ordonez FJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010115. OTSU N, 1979, IEEE T SYST MAN CYB, V9, P62, DOI 10.1109/TSMC.1979.4310076. Peng DF, 2021, IEEE T GEOSCI REMOTE, V59, P5891, DOI 10.1109/TGRS.2020.3011913. Peng DF, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11111382. Pratomo J, 2018, EUR J REMOTE SENS, V51, P838, DOI 10.1080/22797254.2018.1496798. Qin R, 2016, ISPRS J PHOTOGRAMM, V122, P41, DOI 10.1016/j.isprsjprs.2016.09.013. Radford A., 2016, UNSUPERVISED REPRESE. Rahman F, 2018, IEEE GLOB CONF SIG, P958, DOI 10.1109/GlobalSIP.2018.8646512. Redmon J., 2015, ARXIV. Redmon J., 2016, ARXIV161208242. Redmon J, 2018, Arxiv, DOI DOI 10.48550/ARXIV.1804.02767. Ren CJ, 2021, IEEE T GEOSCI REMOTE, V59, P10047, DOI 10.1109/TGRS.2020.3043766. Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031. Ridd MK, 1998, REMOTE SENS ENVIRON, V63, P95, DOI 10.1016/S0034-4257(97)00112-0. Rodrigo C.D., 2018, ARXIV181008452. Ronneberger O., 2015, INT C MEDICAL IMAGE, P234. Ru LX, 2021, IEEE T IMAGE PROCESS, V30, P1382, DOI 10.1109/TIP.2020.3039328. Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y. Sarigul M, 2019, NEURAL NETWORKS, V116, P279, DOI 10.1016/j.neunet.2019.04.025. Shao RZ, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13183750. Shao ZF, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9040311. Sharifzadeh F, 2019, J INDIAN SOC REMOTE, V47, P551, DOI 10.1007/s12524-018-0891-y. Shen L, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13245094. Shi Q., 2021, IEEE T GEOSCI REMOTE, DOI DOI 10.1109/TGRS.2021.3085870. Shi WZ, 2021, IEEE T GEOSCI REMOTE, V59, P4654, DOI 10.1109/TGRS.2020.3015826. Shi WZ, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101688. Shorten C, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0197-0. Simonyan K., 2015, INT C LEARNING REPRE, DOI DOI 10.2146/AJHP170251. SINGH A, 1989, INT J REMOTE SENS, V10, P989, DOI 10.1080/01431168908903939. Song A, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10111827. Song H, 2022, IEEE T NEUR NET LEAR, DOI 10.1109/TNNLS.2022.3152527. Song L, 2021, INT J APPL EARTH OBS, V105, DOI 10.1016/j.jag.2021.102597. Sun K, 2019, PROC CVPR IEEE, P5686, DOI 10.1109/CVPR.2019.00584. Sun Y, 2017, JOINT URB REMOTE SEN. Sun Y, 2014, PROC CVPR IEEE, P1891, DOI 10.1109/CVPR.2014.244. Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594. Tewkesbury AP, 2015, REMOTE SENS ENVIRON, V160, P1, DOI 10.1016/j.rse.2015.01.006. Tian S., 2020, ARXIV201103247. Nguyen TL, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062482. Vaswani A, 2017, ADV NEUR IN, V30. Wang AL, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20041151. Wang MY, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12020205. Wang Q, 2019, IEEE T GEOSCI REMOTE, V57, P3, DOI 10.1109/TGRS.2018.2849692. Wang Q, 2018, REMOTE SENS LETT, V9, P923, DOI 10.1080/2150704X.2018.1492172. Wang SD, 2020, IEEE T IMAGE PROCESS, V29, P5396, DOI 10.1109/TIP.2020.2983560. Wang Y, 2019, INT GEOSCI REMOTE SE, P198, DOI 10.1109/IGARSS.2019.8898211. Wen YD, 2016, LECT NOTES COMPUT SC, V9911, P499, DOI 10.1007/978-3-319-46478-7\_31. Woo SH, 2018, LECT NOTES COMPUT SC, V11211, P3, DOI 10.1007/978-3-030-01234-2\_1. Wu C, 2017, IEEE T GEOSCI REMOTE, V55, P2367, DOI 10.1109/TGRS.2016.2642125. Wu C, 2016, SIGNAL PROCESS, V124, P184, DOI 10.1016/j.sigpro.2015.09.020. Xiang S, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13163336. Xinyu Jiang, 2019, 2019 6th International Conference on Systems and Informatics (ICSAI), P547, DOI 10.1109/ICSAI48974.2019.9010267. Xu XD, 2018, IEEE T GEOSCI REMOTE, V56, P937, DOI 10.1109/TGRS.2017.2756851. Xuan Li, 2021, 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), P188, DOI 10.1109/DTPI52967.2021.9540199. Yang J, 2007, LECT NOTES COMPUT SC, V4663, P197. Yang KP, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3113912. Ye XF, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, P2720, DOI 10.1109/ICInfA.2015.7279746. You YN, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12152460. Yu F., 2015, MULTISCALE CONTEXT A. Zabalza J, 2016, NEUROCOMPUTING, V185, P1, DOI 10.1016/j.neucom.2015.11.044. Zhan Y, 2017, IEEE GEOSCI REMOTE S, V14, P1845, DOI 10.1109/LGRS.2017.2738149. Zhang CX, 2020, ISPRS J PHOTOGRAMM, V166, P183, DOI 10.1016/j.isprsjprs.2020.06.003. Zhang H, 2019, PR MACH LEARN RES, V97. Zhang LF, 2012, IEEE T GEOSCI REMOTE, V50, P879, DOI 10.1109/TGRS.2011.2162339. Zhang L, 2021, ISPRS J PHOTOGRAMM, V177, P147, DOI 10.1016/j.isprsjprs.2021.05.002. Zhang MY, 2019, IEEE GEOSCI REMOTE S, V16, P266, DOI 10.1109/LGRS.2018.2869608. Zhang M, 2020, IEEE T GEOSCI REMOTE, V58, P7232, DOI 10.1109/TGRS.2020.2981051. Zhang YD, 2021, LECT NOTES COMPUT SC, V12901, P14, DOI 10.1007/978-3-030-87193-2\_2. Zhang Z., 2018, ARXIV180709562. Zhang Z, 2020, IEEE ACCESS, V8, P20818, DOI 10.1109/ACCESS.2019.2960931. Zhao HS, 2017, PROC CVPR IEEE, P6230, DOI 10.1109/CVPR.2017.660. Zhao WZ, 2020, IEEE T GEOSCI REMOTE, V58, P2720, DOI 10.1109/TGRS.2019.2953879. Zheng Z, 2021, ISPRS J PHOTOGRAMM, V175, P247, DOI 10.1016/j.isprsjprs.2021.03.005. Zheng Z, 2021, REMOTE SENS ENVIRON, V265, DOI 10.1016/j.rse.2021.112636. Zhong YR, 2018, LECT NOTES COMPUT SC, V11206, P104, DOI 10.1007/978-3-030-01216-8\_7. Zhou K, 2016, DESTECH TRANS COMP. Zhou ZW, 2018, LECT NOTES COMPUT SC, V11045, P3, DOI 10.1007/978-3-030-00889-5\_1. Zhu JY, 2017, IEEE I CONF COMP VIS, P2242, DOI 10.1109/ICCV.2017.244. Zhu QQ, 2019, INT GEOSCI REMOTE SE, P3061, DOI 10.1109/IGARSS.2019.8899293.}, Number-of-Cited-References = {194}, Times-Cited = {25}, Usage-Count-Last-180-days = {151}, Usage-Count-Since-2013 = {276}, Journal-ISO = {Remote Sens.}, Doc-Delivery-Number = {0L3VZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000781406800001}, OA = {gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000454356400002, Author = {Weichenthal, Scott and Hatzopoulou, Marianne and Brauer, Michael}, Title = {A picture tells a thousand...exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology}, Journal = {ENVIRONMENT INTERNATIONAL}, Year = {2019}, Volume = {122}, Pages = {3-10}, Month = {JAN}, Abstract = {Background: Artificial intelligence (AI) is revolutionizing our world, with applications ranging from medicine to engineering. Objectives: Here we discuss the promise, challenges, and probable data sources needed to apply AI in the fields of exposure science and environmental health. In particular, we focus on the use of deep convolutional neural networks to estimate environmental exposures using images and other complementary data sources such as cell phone mobility and social media information. Discussion: Characterizing the health impacts of multiple spatially-correlated exposures remains a challenge in environmental epidemiology. A shift toward integrated measures that simultaneously capture multiple aspects of the urban built environment could improve efficiency and provide important insights into how our collective environments influence population health. The widespread adoption of AI in exposure science is on the frontier. This will likely result in new ways of understanding environmental impacts on health and may allow for analyses to be efficiently scaled for broad coverage. Image-based convolutional neural networks may also offer a costeffective means of estimating local environmental exposures in low and middle-income countries where monitoring and surveillance infrastructure is limited. However, suitable databases must first be assembled to train and evaluate these models and these novel approaches should be complemented with traditional exposure metrics. Conclusions: The promise of deep learning in environmental health is great and will complement existing measurements for data-rich settings and could enhance the resolution and accuracy of estimates in data poor scenarios. Interdisciplinary partnerships will be needed to fully realize this potential.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Weichenthal, S (Corresponding Author), McGill Univ, Dept Epidemiol Biostat \& Occupat Hlth, Fac Med, 1110 Ave Pins Ouest, Montreal, PQ H3A 1A3, Canada. Weichenthal, Scott, McGill Univ, Dept Epidemiol Biostat \& Occupat Hlth, Montreal, PQ, Canada. Hatzopoulou, Marianne, Univ Toronto, Dept Civil Engn, Toronto, ON, Canada. Brauer, Michael, Univ British Columbia, Sch Populat \& Publ Hlth, Vancouver, BC, Canada.}, DOI = {10.1016/j.envint.2018.11.042}, ISSN = {0160-4120}, EISSN = {1873-6750}, Keywords-Plus = {LAND-USE REGRESSION; GOOGLE STREET VIEW; SPATIAL-DISTRIBUTION; ULTRAFINE PARTICLES; NEURAL-NETWORKS; SATELLITE; HEALTH; CLASSIFICATION; PREDICTION; VALIDITY}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {scott.weichenthal@mcgill.ca}, Affiliations = {McGill University; University of Toronto; University of British Columbia}, ResearcherID-Numbers = {Brauer, Michael/Y-2810-2019 }, ORCID-Numbers = {Brauer, Michael/0000-0002-9103-9343 Weichenthal, Scott/0000-0002-9634-5323}, Funding-Acknowledgement = {NSERC Discovery Grant; CIHR Foundation Grant; Quebec Ministry of Economy, Science and Innovation; FRQS (Fonds de Recherche du Quebec-Sante); British Columbia Lung Association Professorship; GRePEC salary award - Cancer Research Society}, Funding-Text = {Dr. Weichenthal received research support from an NSERC Discovery Grant, a CIHR Foundation Grant, and a GRePEC salary award funded by the Cancer Research Society, the Quebec Ministry of Economy, Science and Innovation, and FRQS (Fonds de Recherche du Quebec-Sante). Dr. Brauer is supported in part by the British Columbia Lung Association Professorship.}, Cited-References = {Angermueller C, 2016, MOL SYST BIOL, V12, DOI 10.15252/msb.20156651. Apte JS, 2017, ENVIRON SCI TECHNOL, V51, P6999, DOI 10.1021/acs.est.7b00891. Arhami M, 2013, ENVIRON SCI POLLUT R, V20, P4777, DOI 10.1007/s11356-012-1451-6. Arthur R, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189327. Asimina S, 2018, ENVIRON MONIT ASSESS, V190, DOI 10.1007/s10661-018-6537-2. Aykanat M, 2017, EURASIP J IMAGE VIDE, DOI 10.1186/s13640-017-0213-2. Bellinger C, 2017, BMC PUBLIC HEALTH, V17, DOI 10.1186/s12889-017-4914-3. Boddapati V, 2017, PROCEDIA COMPUT SCI, V112, P2048, DOI 10.1016/j.procs.2017.08.250. Brauer M, 2014, EPIDEMIOLOGY, V25, P526, DOI 10.1097/EDE.0000000000000110. Brauer M, 2012, ENVIRON SCI TECHNOL, V46, P652, DOI 10.1021/es2025752. Chakma A, 2017, IEEE IMAGE PROC, P3949. Chollet F, 2018, 2018 DEEP LEARNING R. Chow CK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110042. Christiansen EM, 2018, CELL, V173, P792, DOI 10.1016/j.cell.2018.03.040. Costa DG, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18041080. Cruz-Roa A, 2017, SCI REP-UK, V7, DOI 10.1038/srep46450. DEFRIES RS, 1994, INT J REMOTE SENS, V15, P3567, DOI 10.1080/01431169408954345. Deng X, WHAT IS IT THERE GEN. Ding WF, 2016, ENVIRON SCI POLLUT R, V23, P19481, DOI 10.1007/s11356-016-7149-4. Edwards N, 2013, APPL GEOGR, V38, P22, DOI 10.1016/j.apgeog.2012.11.010. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056. Fallah-Shorshani M, 2018, ENVIRON SCI TECHNOL, V52, P10777, DOI 10.1021/acs.est.8b02260. {[}范竣翔 Fan Junxiang], 2017, {[}测绘科学, Science of Surveying and Mapping], V42, P76. Gan WQ, 2012, ENVIRON RES, V116, P11, DOI 10.1016/j.envres.2012.04.001. Gebru T, 2017, P NATL ACAD SCI USA, V114, P13108, DOI 10.1073/pnas.1700035114. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216. Han Y, 2015, ARXIV160702383V1CSSD. Henderson SB, 2011, ENVIRON HEALTH PERSP, V119, P1266, DOI 10.1289/ehp.1002288. Henriksen A, 2018, J MED INTERNET RES, V20, DOI 10.2196/jmir.9157. Jean N, 2016, SCIENCE, V353, P790, DOI 10.1126/science.aaf7894. Jiang AH, 2015, I C INTELL COMPUT TE, P722, DOI 10.1109/ICICTA.2015.183. Kaur Gaganjot, 2018, INT J ENV SCI DEV, V9, P8, DOI {[}10.18178/ijesd.2018.9.1.1066, DOI 10.18178/IJESD.2018.9.1.1066]. Knibbs LD, 2014, ENVIRON RES, V135, P204, DOI 10.1016/j.envres.2014.09.011. Landrigan PJ, 2018, LANCET, V391, P462, DOI 10.1016/S0140-6736(17)32345-0. Larkin A, 2017, ENVIRON SCI TECHNOL, V51, P6957, DOI 10.1021/acs.est.7b01148. Li X, 2017, ENVIRON POLLUT, V231, P997, DOI 10.1016/j.envpol.2017.08.114. Li XH, 2016, ENVIRON SCI POLLUT R, V23, P19341, DOI 10.1007/s11356-016-7143-x. Li XJ, 2018, URBAN FOR URBAN GREE, V31, P109, DOI 10.1016/j.ufug.2018.02.013. Li XJ, 2015, URBAN FOR URBAN GREE, V14, P675, DOI 10.1016/j.ufug.2015.06.006. Liu CB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0145955. Maharana A, 2018, JAMA NETW OPEN, V1, DOI 10.1001/jamanetworkopen.2018.1535. Mooney SJ, 2014, AM J EPIDEMIOL, V180, P626, DOI 10.1093/aje/kwu180. Naik N, 2017, P NATL ACAD SCI USA, V114, P7571, DOI 10.1073/pnas.1619003114. Novotny EV, 2011, ENVIRON SCI TECHNOL, V45, P4407, DOI 10.1021/es103578x. Nyhan MM, 2019, J EXPO SCI ENV EPID, V29, P238, DOI 10.1038/s41370-018-0038-9. Nyhan M, 2016, ENVIRON SCI TECHNOL, V50, P9671, DOI 10.1021/acs.est.6b02385. Patterson Z, 2016, TRANSPORT RES REC, P35, DOI 10.3141/2594-07. Patton AP, 2015, ENVIRON SCI TECHNOL, V49, P6051, DOI 10.1021/es5061676. Penn SL, 2015, SCI TOTAL ENVIRON, V527, P47, DOI 10.1016/j.scitotenv.2015.03.147. Pichai S., 2018, AI GOOGLE OUR PRINCI. Piczak KJ, 2015, IEEE INT WORKS MACH. Poplin R, 2018, NAT BIOMED ENG, V2, P158, DOI 10.1038/s41551-018-0195-0. Qi ZG, 2018, IEEE T KNOWL DATA EN, V30, P2285, DOI 10.1109/TKDE.2018.2823740. Rawat W, 2017, NEURAL COMPUT, V29, P2352, DOI {[}10.1162/neco\_a\_00990, 10.1162/NECO\_a\_00990]. Rugel EJ, 2017, ENVIRON RES, V159, P474, DOI 10.1016/j.envres.2017.08.033. Ryan PH, 2007, INHAL TOXICOL, V19, P127, DOI 10.1080/08958370701495998. Schootman M, 2016, INT J HEALTH GEOGR, V15, DOI 10.1186/s12942-016-0050-z. Simonyan K., 2013, ARXIV PREPRINT ARXIV. Tao Z, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161389. Vienneau D, 2013, ENVIRON SCI TECHNOL, V47, P13555, DOI 10.1021/es403089q. von Fischer JC, 2017, ENVIRON SCI TECHNOL, V51, P4091, DOI 10.1021/acs.est.6b06095. VoPham T, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0386-x. Weichenthal S, 2016, ENVIRON POLLUT, V208, P241, DOI 10.1016/j.envpol.2015.04.011. Xie JQ, 2018, JMIR MHEALTH UHEALTH, V6, DOI 10.2196/mhealth.9754. Zhang C, 2018, MACH VISION APPL, V29, P601, DOI 10.1007/s00138-018-0919-x. Zhu D., 2018, BIG DATA COGN COMPUT, V2, P5, DOI DOI 10.3390/BDCC2010005.}, Number-of-Cited-References = {67}, Times-Cited = {54}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {44}, Journal-ISO = {Environ. Int.}, Doc-Delivery-Number = {HF6OB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000454356400002}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000688578200001, Author = {Martinho, Vitor Joao Pereira Domingues and Guine, Raquel de Pinho Ferreira}, Title = {Integrated-Smart Agriculture: Contexts and Assumptions for a Broader Concept}, Journal = {AGRONOMY-BASEL}, Year = {2021}, Volume = {11}, Number = {8}, Month = {AUG}, Abstract = {The innovative technologies developed in the different fields of science (nanotechnology, artificial intelligence, genetic modification, etc.) opened new and infinite possibilities for the several stakeholders that carry out their activities in the different economic sectors. For agriculture, these new approaches are particularly relevant and may bring interesting contributions, considering the specificities of the sector, often dealing with contexts of land abandonment and narrow profit margins. Nonetheless, the question in these unstopped evolutions is about the interlinkages with sustainability. In this context, the objectives of this study are to highlight the main insights from the available scientific literature about the interrelationships between the new trends in the agriculture and the sustainability. To achieve these aims, a search on the Web of Science Core Collection (WoS) and Scopus databases was carried out, on 15 May 2021, for the topics `smart agriculture' and `sustainability'. A total of 231 documents (102 from WoS and 129 from Scopus) were obtained, remaining 155 documents after removing the duplicated, which were surveyed through systematic review following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach. As main insights, the concerns of the researchers with the impacts on the sustainability from the transformations in the farming organization are highlighted. On the other hand, it was shown the relevance and the new opportunities, including in terms of food supply, arising from the precision agriculture, agricultural intelligence, vertical/urban farming, circular economy, internet of things, and crowdfarming. We suggest the new and wider concept of `integrated-smart agriculture', better than `climate-smart agriculture'.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Martinho, VJPD (Corresponding Author), Polytech Inst Viseu IPV, Agr Sch ESAV, P-3504510 Viseu, Portugal. Martinho, Vitor Joao Pereira Domingues, Polytech Inst Viseu IPV, Agr Sch ESAV, P-3504510 Viseu, Portugal. Polytech Inst Viseu IPV, CERNAS IPV Res Ctr, P-3504510 Viseu, Portugal.}, DOI = {10.3390/agronomy11081568}, Article-Number = {1568}, EISSN = {2073-4395}, Keywords = {agriculture; new technologies; sustainability; systematic review; PRISMA}, Keywords-Plus = {CLIMATE-CHANGE ADAPTATION; ENVIRONMENTAL SUSTAINABILITY; DIGITAL AGRICULTURE; CROP PRODUCTION; SYSTEM; PRODUCTIVITY; IMPACT; FARM; TECHNOLOGIES; INNOVATIONS}, Research-Areas = {Agriculture; Plant Sciences}, Web-of-Science-Categories = {Agronomy; Plant Sciences}, Author-Email = {vdmartinho@esav.ipv.pt raquelguine@esav.ipv.pt}, ResearcherID-Numbers = {Martinho, Vítor João Pereira Domingues/Y-6540-2019 Guine, Raquel/N-1834-2013}, ORCID-Numbers = {Guine, Raquel/0000-0003-0595-6805}, Funding-Acknowledgement = {FCT-Foundation for Science and Technology, I.P. {[}UIDB/00681/2020]}, Funding-Text = {This work is funded by National Funds through the FCT-Foundation for Science and Technology, I.P., within the scope of the project Refa UIDB/00681/2020.}, Cited-References = {Acosta-Alba I, 2019, AGR SYST, V171, P155, DOI 10.1016/j.agsy.2019.02.001. Adenugba F, 2019, MATH BIOSCI ENG, V16, P5490, DOI 10.3934/mbe.2019273. Adesipo A, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20215977. Agrawal S, 2019, WIRES ENERGY ENVIRON, V8, DOI 10.1002/wene.325. Ajayi AE, 2016, ECOL ENG, V94, P592, DOI 10.1016/j.ecoleng.2016.06.104. Alhassan ARM, 2021, PEERJ, V9, DOI 10.7717/peerj.11064. Amadu FO, 2020, WORLD DEV, V126, DOI 10.1016/j.worlddev.2019.104692. Anand P, 2020, IEEE ACCESS, V8, P168825, DOI 10.1109/ACCESS.2020.3022842. Anderson J.R., 2018, ENCY FOOD SECURITY S, P1. Arakelyan I., 2017, BUILDING CLIMATE RES, P115. Arenas-Calle LN, 2019, FRONT SUSTAIN FOOD S, V3, DOI 10.3389/fsufs.2019.00105. Aryal JP, 2020, REV DEV ECON, V24, P973, DOI 10.1111/rode.12670. Aryal JP, 2020, INT J INNOV SUSTAIN, V14, P219, DOI 10.1504/IJISD.2020.106243. Bai HZ, 2017, FIELD CROP RES, V211, P89, DOI 10.1016/j.fcr.2017.06.010. Baratella V, 2018, AGR WATER MANAGE, V204, P149, DOI 10.1016/j.agwat.2018.04.003. Berhanu Y, 2021, AGR SYST, V187, DOI 10.1016/j.agsy.2020.102988. Bhatasara S, 2018, J INTEGR ENVIRON SCI, V15, P87, DOI 10.1080/1943815X.2018.1450766. Bhatt R., 2019, AGRONOMIC CROPS, P499. Bhatt R, 2019, SUSTAINABLE MANAGEMENT OF SOIL AND ENVIRONMENT, P29, DOI 10.1007/978-981-13-8832-3\_2. Bhatt R, 2016, INT SOIL WATER CONSE, V4, P64, DOI 10.1016/j.iswcr.2015.12.001. Bhattacharyya P., 2020, SOIL MANAGEMENT CLIM, P41. Bhattacharyya P., 2020, CLIMATE SMART AGR CO, P73. Bosma RH, 2016, REV AQUACULT, V8, P43, DOI 10.1111/raq.12072. Branca G, 2021, J CLEAN PROD, V278, DOI 10.1016/j.jclepro.2020.123847. Brohm KA, 2020, INT J QUAL RES, V14, P291, DOI 10.24874/IJQR14.01-18. Bu FY, 2019, FUTURE GENER COMP SY, V99, P500, DOI 10.1016/j.future.2019.04.041. Castillo K., P 2016 ASEE ANN C EX, VVolume 2016. Cavanagh CJ, 2021, J PEASANT STUD, V48, P1207, DOI 10.1080/03066150.2019.1707812. Cesco S, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11030907. Chacho P., P 2019 IEEE CHILEAN. Chandra A, 2017, J POLIT ECOL, V24, P821, DOI 10.2458/v24i1.20969. Chhogyel N, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12104319. Chinseu EL, 2022, INT J AGR SUSTAIN, V20, P17, DOI 10.1080/14735903.2021.1911511. Choudhary M, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.01812. Clapp J, 2018, J PEASANT STUD, V45, P80, DOI 10.1080/03066150.2017.1381602. Clercq M.D., 2018, AGR 4 0 FUTURE FARMI, P30. Cochran FV, 2016, ECOL INDIC, V67, P204, DOI 10.1016/j.ecolind.2016.01.045. Conteratto C, 2020, RISUS, V11, P33, DOI 10.23925/2179-3565.2020v11i2p33-43. Coppede N, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16217-4. Czekaj M, 2020, GLOB FOOD SECUR-AGR, V26, DOI 10.1016/j.gfs.2020.100416. Dabkiene V, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121509. Delian E, 2019, SCI PAP-SER MANAG EC, V19, P127. Drexler K, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063040. Dutta P., 2020, NEW FRONTIERS STRESS, V17, P3, DOI {[}10.1007/978-981-15-1322-0\_1, DOI 10.1007/978-981-15-1322-0\_1]. El Ansari L, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10070998. El Bilali H., 2020, SCI EXPERTS C AGR FO, V78, P321, DOI 10.1007/978-3-030- 40049-1\_41. Eli-Chukwu NC, 2019, ENG TECHNOL APPL SCI, V9, P4377. Emira S.S.A., P 2019 15 INT COMP E, P126. Ennouri K, 2019, MATH PROBL ENG, V2019, DOI 10.1155/2019/9404565. Faling M, 2019, POLICY SCI, V52, P525, DOI 10.1007/s11077-019-09355-1. Findlater KM, 2019, ENVIRON SCI POLICY, V100, P47, DOI 10.1016/j.envsci.2019.05.027. Fiore Mariantonietta, 2015, International Journal of Globalisation and Small Business, V7, P300, DOI 10.1504/IJGSB.2015.072694. Fischer H. W., 2016, World Development Perspectives, V2, P5, DOI 10.1016/j.wdp.2016.06.005. Food and Agriculture Organization of the United Nations, CLIM SMART AGR. Fuchs LE, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11061564. Fungo B, 2020, AGROFOREST SYST, V94, P1023, DOI 10.1007/s10457-019-00473-6. Furstenau LB, 2020, IEEE ACCESS, V8, P140079, DOI 10.1109/ACCESS.2020.3012812. Fusco G, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125168. Gerardeaux E, 2018, FIELD CROP RES, V226, P38, DOI 10.1016/j.fcr.2018.07.007. Githiru M, 2017, FRONT ENV SCI-SWITZ, V5, DOI 10.3389/fenvs.2017.00069. Gobble MM, 2016, RES TECHNOL MANAGE, V59, P3. Goparaju L, 2019, SPAT INF RES, V27, P613, DOI 10.1007/s41324-019-00258-0. Gras C, 2020, CURR OPIN ENV SUST, V45, P1, DOI 10.1016/j.cosust.2020.04.001. Greenland S, 2019, SOC RESPONSIB J, V15, P727, DOI 10.1108/SRJ-07-2018-0181. Hao PF, 2020, J CLEAN PROD, V275, DOI 10.1016/j.jclepro.2020.123885. Heideker A., P 2020 IEEE INT WORK, P68. Herrero M, 2021, LANCET PLANET HEALTH, V5, pE50, DOI 10.1016/S2542-5196(20)30277-1. Herrero M, 2020, NAT FOOD, V1, P266, DOI 10.1038/s43016-020-0074-1. Hossain A, 2019, INT LETT NAT SCI, V75, P27, DOI 10.18052/www.scipress.com/ILNS.75.27. Huang YP, 2020, IEEE ACCESS, V8, P207672, DOI 10.1109/ACCESS.2020.3038184. Idoje G, 2021, COMPUT ELECTR ENG, V92, DOI 10.1016/j.compeleceng.2021.107104. Imran MA, 2019, LAND USE POLICY, V88, DOI 10.1016/j.landusepol.2019.104113. Islam N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041821. Issad H. A., 2019, Engineering in Agriculture, Environment and Food, V12, P511. Jat HS, 2019, CATENA, V181, DOI 10.1016/j.catena.2019.05.005. Kadar H.H., P 2019 9 IEEE INT C, P121, DOI DOI 10.1109/ICCSCE47578.2019.9068592. Kakraliya SK, 2018, INDIAN J AGR SCI, V88, P1543. Kamienski C, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19020276. Kibria G, 2017, J CLIM CHANG, V3, P73, DOI 10.3233/JCC-170015. Kimaro AA, 2016, NUTR CYCL AGROECOSYS, V105, P217, DOI 10.1007/s10705-015-9711-8. Kiwia A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102891. KUHLMAN T., 2010, SUSTAINABILITY-BASEL, V2, P3436, DOI DOI 10.3390/SU2113436. Kumari S, 2018, CLIMATE CHANGE AND ENVIRONMENTAL CONCERNS: BREAKTHROUGHS IN RESEARCH AND PRACTICE, P111, DOI 10.4018/978-1-5225-5487-5.ch006. Lang CD, 2021, J CLEAN PROD, V293, DOI 10.1016/j.jclepro.2021.126063. Long TB, 2019, J CLEAN PROD, V232, P993, DOI 10.1016/j.jclepro.2019.05.212. Long TB, 2017, INT FOOD AGRIBUS MAN, V20, P5, DOI {[}10.22434/ifamr2016.0081, 10.22434/IFAMR2016.0081]. Long TB, 2016, J CLEAN PROD, V112, P9, DOI 10.1016/j.jclepro.2015.06.044. Luo XS, 2017, CURR OPIN ENV SUST, V24, P78, DOI 10.1016/j.cosust.2017.02.004. Dung LT, 2020, ASIAN J AGRIC DEV, V17, P109, DOI 10.37801/ajad2020.17.1.7. Machekano H, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9020091. Makate C, 2019, ENVIRON SCI POLICY, V96, P37, DOI 10.1016/j.envsci.2019.01.014. Makate C, 2017, AGREKON, V56, P67, DOI 10.1080/03031853.2017.1283241. Manik B.K, 2019, INT J INNOV TECHNOL, V8, P144. Ciruela-Lorenzo AM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041325. Martinho VJPD, 2020, FOODS, V9, DOI 10.3390/foods9111651. Mazhar R, 2021, J CLEAN PROD, V283, DOI 10.1016/j.jclepro.2020.124620. Mizik T, 2021, AGRONOMY-BASEL, V11, DOI {[}10.3390/agronomy11061096/, 10.3390/agronomy11061096]. Mohanty S., 2020, SMART VILLAGE TECHNO, VVolume 17, P3, DOI DOI 10.1007/978-3-030-37794-6\_1. Moher D, 2015, SYST REV-LONDON, V4, DOI {[}10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1186/s13643-015-0087-2]. Moreno A., 2019, P IOP C SERIES EARTH, V335. Morimoto E, P ASABE ANN INT M DE. Msangi J.P., 2014, FOOD SECURITY SMALL, VVolume 9783319094953, P173. Mukherjee P., 2021, SECURITY PRIVACY APP, V308, P55. Mukhtar Ahmed, 2013, Australian Journal of Crop Science, V7, P1642. Munoz M, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20030596. Musa FB, 2018, ENVIRONMENTS, V5, DOI 10.3390/environments5110122. Mylona P., 9 INT C INF COMM TEC, P236. Nadaraja D, 2021, SUSTAIN PROD CONSUMP, V26, P892, DOI 10.1016/j.spc.2020.12.042. Nair P.K.R., 2019, COCONUT PALM COCOS N, P779. Nair PKR, 2017, AGROFOREST SYST, V91, P901, DOI 10.1007/s10457-016-9966-3. Nasser F, 2020, FRONT SUSTAIN FOOD S, V4, DOI 10.3389/fsufs.2020.00073. Naughton S, 2020, AQUACULTURE, V526, DOI 10.1016/j.aquaculture.2020.735377. Nhamo N, 2017, SMART TECHNOLOGIES FOR SUSTAINABLE SMALLHOLDER AGRICULTURE: UPSCALING IN DEVELOPING COUNTRIES, P1, DOI 10.1016/B978-0-12-810521-4.00001-3. Noor-E-Sabiha, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051580. Noponen MRA, 2017, CRAFT AND SCIENCE OF COFFEE, P81, DOI 10.1016/B978-0-12-803520-7.00004-9. Nyamadzawo G, 2015, INT J AGR SUSTAIN, V13, P23, DOI 10.1080/14735903.2013.863450. Obasi P.C., 2020, CLIMATE CHANGE HAZAR, P813, DOI DOI 10.1007/978-3-030-37425-9\_41. Oerther DB, 2016, PROCEDIA ENGINEER, V159, P267, DOI 10.1016/j.proeng.2016.08.173. Ofori M, 2019, IEEE INT CONF BIG DA, P5152, DOI 10.1109/BigData47090.2019.9006587. Ologeh I.O., 2016, PROMOTING CLIMATE SM, P99. Osorio-Garcia AM, 2020, AGROECOL SUST FOOD, V44, P378, DOI 10.1080/21683565.2019.1629373. Pareek A, 2020, J EXP BOT, V71, P451, DOI 10.1093/jxb/erz518. Paul BK, 2020, INT J AGR SUSTAIN, V18, P35, DOI 10.1080/14735903.2019.1695348. Martinho VJPD, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126683. Martinho VJPD, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062080. Martinho VJPD, 2020, AGRICULTURE-BASEL, V10, DOI 10.3390/agriculture10010024. Martinho VJPD, 2018, ENERGY STRATEG REV, V22, P396, DOI 10.1016/j.esr.2018.11.002. Pramanik P., 2019, CARBON MANAGEMENT TR, P403. Rahman MM, 2021, ENVIRON SUSTAIN IND, V10, DOI 10.1016/j.indic.2021.100106. Rampa A, 2020, LAND-BASEL, V9, DOI 10.3390/land9120471. Reidsma P, 2015, AGR SYST, V141, P160, DOI 10.1016/j.agsy.2015.10.009. Ronga D, 2020, HORTICULTURAE, V6, DOI 10.3390/horticulturae6040058. Rosenzweig C, 2020, NAT FOOD, V1, P94, DOI 10.1038/s43016-020-0031-z. Rout S.K., 2020, INT J MOD AGRIC, V9, P674. Ruiz-Real JL, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111839. Saroar MM, 2016, CLIM CHANG MANAG, P157, DOI 10.1007/978-3-319-39880-8\_10. SCHROEDER K, 1994, MATH COMPUT MODEL, V20, P1, DOI 10.1016/0895-7177(94)90227-5. scopus, SCOP DAT. Sengupta A, 2021, IEEE CONSUM ELECTR M, V10, P63, DOI 10.1109/MCE.2021.3064818. Shafi U, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19173796. Singh R, 2017, ENERGY ECOL ENVIRON, V2, P296, DOI 10.1007/s40974-017-0074-7. Singh VK, 2020, INDIAN J AGR SCI, V90, P1378. Snyder CS, 2017, SOIL RES, V55, P463, DOI {[}10.1071/SR16335, 10.1071/sr16335]. Sosa-Hernandez MA, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00744. Stata, STAT SOFTW STAT DAT. StataCorp, 2017, STAT STAT SOFTW REL. StataCorp, 2017, STAT 15 BAS REF MAN. Steinke J, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212926. Streimikis J, 2021, BUS STRATEG ENVIRON, V30, P576, DOI 10.1002/bse.2640. Subbarao GV, 2017, PLANT SCI, V262, P165, DOI 10.1016/j.plantsci.2017.05.004. Sverdrup H, 2002, MANAG FOR ECOSYST, V5, P21. Symeonaki EG, 2019, SPRING EARTH SYST SC, P147, DOI 10.1007/978-3-030-02312-6\_9. Symeonaki EG, 2019, INT J SUST AGR MANAG, V5, P181, DOI 10.1504/IJSAMI.2019.101673. Taneja G, 2019, CLIMATE SMART AGRICULTURE IN SOUTH ASIA: TECHNOLOGIES, POLICIES AND INSTITUTIONS, P91, DOI 10.1007/978-981-10-8171-2\_5. Taylor M, 2018, J PEASANT STUD, V45, P89, DOI 10.1080/03066150.2017.1312355. Thierfelder C, 2017, FOOD SECUR, V9, P537, DOI 10.1007/s12571-017-0665-3. Tolga A.C., 2020, INT C INT FUZZ SYST, V1029, P745. Tolga AC, 2020, J INTELL FUZZY SYST, V39, P6325, DOI 10.3233/JIFS-189100. Toorop RA, 2020, AGR SYST, V185, DOI 10.1016/j.agsy.2020.102942. Torquebiau E, 2018, CAH AGRIC, V27, DOI 10.1051/cagri/2018010. Torres-Reyna O., GETTING STARTED FACT. Totin E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10061990. Tran N, 2020, MAR POLICY, V120, DOI 10.1016/j.marpol.2020.104153. Tripathy A.S., 2019, MODERN TECHNIQUES AG, P23. Tripathy PK, 2021, IEEE CONSUM ELECTR M, V10, P57, DOI 10.1109/MCE.2021.3055930. United Nations (n.d.), 17 GOALS SUST DEV. Valecce G., P 2019 IEEE INT C CO. Van Eck N.J., VOSVIEWER MANUAL MAN. van Wijk MT, 2020, FRONT SUSTAIN FOOD S, V4, DOI 10.3389/fsufs.2020.558483. Vanbergen AJ, 2020, ADV ECOL RES, V63, P193, DOI 10.1016/bs.aecr.2020.08.002. Venkatramanan V, 2021, FRONT ENERGY RES, V8, DOI 10.3389/fenrg.2020.614212. Venkatramanan V, 2020, GLOBAL CLIMATE CHANGE AND ENVIRONMENTAL POLICY: AGRICULTURE PERSPECTIVES, pV. Venkatramanan V, 2019, SUSTAINABLE GREEN TE, P29, DOI DOI 10.1007/978-981-13-2772-8\_2. Verburg R, 2019, ENVIRON SCI POLICY, V97, P16, DOI 10.1016/j.envsci.2019.03.017. Verdouw C, 2021, AGR SYST, V189, DOI 10.1016/j.agsy.2020.103046. Vernooy R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124978. Vorotnikov IL, 2020, SCI PAP-SER MANAG EC, V20, P633. VOSviewer, VOSVIEWER SOFTW. Vu V.A., P 2018 INT C ADV TEC, P72. Web of Science, WEB SCI CORE COLLECT. Were K., 2016, CLIMATE CHANGE MULTI, P431. Whitfield S, 2018, FRONT SUSTAIN FOOD S, V2, DOI 10.3389/fsufs.2018.00002. Whitfield S, 2015, FOOD SECUR, V7, P1291, DOI 10.1007/s12571-015-0512-3. Wu F, 2020, DISCRETE DYN NAT SOC, V2020, DOI 10.1155/2020/1854193. Xie L, 2021, LAND-BASEL, V10, DOI 10.3390/land10030245. Yamoah FA, 2020, ENVIRON MANAGE, V66, P600, DOI 10.1007/s00267-020-01327-z. Zotero, ZOT SOFTW.}, Number-of-Cited-References = {187}, Times-Cited = {6}, Usage-Count-Last-180-days = {17}, Usage-Count-Since-2013 = {46}, Journal-ISO = {Agronomy-Basel}, Doc-Delivery-Number = {UF4XH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000688578200001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000449273000032, Author = {Sanchez-Pinto, L. Nelson and Luo, Yuan and Churpek, Matthew M.}, Title = {Big Data and Data Science in Critical Care}, Journal = {CHEST}, Year = {2018}, Volume = {154}, Number = {5}, Pages = {1239-1248}, Month = {NOV}, Abstract = {The digitalization of the health-care system has resulted in a deluge of clinical big data and has prompted the rapid growth of data science in medicine. Data science, which is the field of study dedicated to the principled extraction of knowledge from complex data, is particularly relevant in the critical care setting. The availability of large amounts of data in the ICU, the need for better evidence-based care, and the complexity of critical illness makes the use of data science techniques and data-driven research particularly appealing to intensivists. Despite the increasing number of studies and publications in the field, thus far there have been few examples of data science projects that have resulted in successful implementations of datadriven systems in the ICU. However, given the expected growth in the field, intensivists should be familiar with the opportunities and challenges of big data and data science. The present article reviews the definitions, types of algorithms, applications, challenges, and future of big data and data science in critical care.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Churpek, MM (Corresponding Author), Univ Chicago, Pulm \& Crit Care, 5841 S Maryland Ave,MC 6023, Chicago, IL 60637 USA. Sanchez-Pinto, L. Nelson, Northwestern Univ, Dept Pediat Crit Care, Feinberg Sch Med, Chicago, IL 60611 USA. Sanchez-Pinto, L. Nelson; Luo, Yuan, Northwestern Univ, Dept Prevent Med Hlth \& Biomed Informat, Feinberg Sch Med, Chicago, IL 60611 USA. Churpek, Matthew M., Univ Chicago, Dept Med, 5841 S Maryland Ave, Chicago, IL 60637 USA.}, DOI = {10.1016/j.chest.2018.04.037}, ISSN = {0012-3692}, EISSN = {1931-3543}, Keywords = {big data; critical care; data science; machine learning; prediction models}, Keywords-Plus = {ELECTRONIC MEDICAL-RECORD; PRECISION MEDICINE; DECISION-SUPPORT; CRITICAL ILLNESS; CLASSIFICATION; DISEASE; SEPSIS; IMPLEMENTATION; VALIDATION; PREDICTION}, Research-Areas = {General \& Internal Medicine; Respiratory System}, Web-of-Science-Categories = {Critical Care Medicine; Respiratory System}, Author-Email = {matthew.churpek@uchospitals.edu}, Affiliations = {Northwestern University; Feinberg School of Medicine; Northwestern University; Feinberg School of Medicine; University of Chicago}, ResearcherID-Numbers = {Sanchez-Pinto, L. Nelson/AAO-9748-2021 Luo, Yuan/K-5563-2016}, ORCID-Numbers = {Sanchez-Pinto, L. Nelson/0000-0002-7434-6747 Churpek, Matthew/0000-0002-4030-5250 Luo, Yuan/0000-0003-0195-7456}, Funding-Acknowledgement = {National Heart, Lung and Blood Institute; National Institute of General Medical Sciences}, Funding-Text = {The authors have reported to CHEST the following: M. M. C. has a patent pending for risk stratification algorithms for hospitalized patients; he is also supported by a career development award from the National Heart, Lung and Blood Institute and a research project grant program award from the National Institute of General Medical Sciences. None declared (L. N. S.-P., Y. L.).}, Cited-References = {Aczon M., 2017, ARXIV170106675. Awdishu L, 2016, J AM MED INFORM ASSN, V23, P609, DOI 10.1093/jamia/ocv159. Badawi O, 2014, JMIR MED INF, V2, P41, DOI 10.2196/medinform.3447. Bar Y, P SPIE2015. Bates DW, 2014, HEALTH AFFAIR, V33, P1123, DOI 10.1377/hlthaff.2014.0041. Bishop Christopher M., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119. Bright TJ, 2012, ANN INTERN MED, V157, P29, DOI 10.7326/0003-4819-157-1-201207030-00450. Buchman TG, 2016, CRIT CARE MED, V44, P1635, DOI 10.1097/CCM.0000000000002028. Calfee CS, 2014, LANCET RESP MED, V2, P611, DOI 10.1016/S2213-2600(14)70097-9. Celi LA, 2013, AM J RESP CRIT CARE, V187, P1157, DOI 10.1164/rccm.201212-2311ED. Churpek MM, 2016, CRIT CARE MED, V44, P368, DOI 10.1097/CCM.0000000000001571. Churpek MM, 2014, AM J RESP CRIT CARE, V190, P649, DOI 10.1164/rccm.201406-1022OC. Committee on the Learning Health Care System in America Institute of Medicine, 2013, BEST CARE LOWER COST, DOI DOI 10.17226/13444. Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593. Dunitz M, 2015, ENG MED BIOL SCI EMB. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056. Ghassemi M., 2014, P 20 ACM SIGKDD INT. Ghassemi M, 2015, CRIT CARE, V19, DOI 10.1186/s13054-015-0801-4. Gonzalez G, 2018, AM J RESP CRIT CARE, V197, P193, DOI 10.1164/rccm.201705-0860OC. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216. Han YY, 2005, PEDIATRICS, V116, P1506, DOI 10.1542/peds.2005-1287. Hardin J, 2015, AM STAT, V69, P343, DOI 10.1080/00031305.2015.1077729. Henry KE, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aab3719. Hinton G.E., 2012, COMPUT SCI. Iwashyna Theodore J, 2014, Ann Am Thorac Soc, V11, P1130, DOI 10.1513/AnnalsATS.201405-185AS. James G., 2013, INTRO STAT LEARNING, V112. Johnson AEW, P MACHINE LEARNING R. Johnson AEW, 2016, P IEEE, V104, P444, DOI 10.1109/JPROC.2015.2501978. Joshi R, 2012, AM MED INF ASS ANN S. Kahneman D., 2011, THINKING, V1st Ed.. Kizzier-Carnahan V, 2019, J PATIENT SAF, V15, P246, DOI 10.1097/PTS.0000000000000270. KNAUS WA, 1981, CRIT CARE MED, V9, P591, DOI 10.1097/00003246-198108000-00008. KNAUS WA, 1985, CRIT CARE MED, V13, P818, DOI 10.1097/00003246-198510000-00009. Knox DB, 2015, INTENS CARE MED, V41, P814, DOI 10.1007/s00134-015-3764-7. Lehman LW, 2012, AMIA ANN S P. Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005. Luo Y, 2016, P 30 AAAI C ART INT. Luo Y, 2017, J CARDIOVASC TRANSL, V10, P305, DOI 10.1007/s12265-016-9727-8. Mayhew MB, 2018, J BIOMED INFORM, V78, P33, DOI 10.1016/j.jbi.2017.11.015. Miotto R, 2016, SCI REP-UK, V6, DOI 10.1038/srep26094. Murdoch TB, 2013, JAMA-J AM MED ASSOC, V309, P1351, DOI 10.1001/jama.2013.393. Nemati S, 2018, CRIT CARE MED, V46, P547, DOI {[}10.1097/CCM.0000000000002936, 10.1097/ccm.0000000000002936]. Neuraz A, 2015, CRIT CARE MED, V43, P1587, DOI 10.1097/CCM.0000000000001015. Obermeyer Z, 2017, NEW ENGL J MED, V377, P1209, DOI 10.1056/NEJMp1705348. Pickering BW, 2015, INT J MED INFORM, V84, P299, DOI 10.1016/j.ijmedinf.2015.01.017. Provost F, 2013, BIG DATA, V1, P51, DOI 10.1089/big.2013.1508. Raghupathi W, 2014, HEALTH INF SCI SYST, V2, DOI 10.1186/2047-2501-2-3. Roederer A, 2015, ENG MED BIOL SOC EMB. Saeed M, 2011, CRIT CARE MED, V39, P952, DOI 10.1097/CCM.0b013e31820a92c6. Seymour CW, 2017, CRIT CARE, V21, DOI 10.1186/s13054-017-1836-5. Sjoding MW, 2016, ANN AM THORAC SOC, V13, P1443, DOI 10.1513/AnnalsATS.201606-498ED. Sun JX, 2009, CRIT CARE MED, V37, P72, DOI 10.1097/CCM.0b013e3181930174. Tangri N, 2015, AM J KIDNEY DIS, V65, P530, DOI 10.1053/j.ajkd.2014.12.005. Verghese A, 2018, JAMA-J AM MED ASSOC, V319, P19, DOI 10.1001/jama.2017.19198. Vranas KC, 2017, CRIT CARE MED, V45, P1607, DOI 10.1097/CCM.0000000000002548. Weissman GE, 2016, ANN AM THORAC SOC, V13, P1538, DOI 10.1513/AnnalsATS.201602-131OC. Wong HR, 2017, INTENS CARE MED, V43, P1507, DOI 10.1007/s00134-017-4727-y. Wong HR, 2016, CRIT CARE MED, V44, pE1000, DOI 10.1097/CCM.0000000000001833.}, Number-of-Cited-References = {59}, Times-Cited = {114}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {68}, Journal-ISO = {Chest}, Doc-Delivery-Number = {GZ3FR}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000449273000032}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000862338700001, Author = {Velayudhan, Nibi Kulangara and Pradeep, Preeja and Rao, Sethuraman N. and Devidas, Aryadevi Remanidevi and Ramesh, Maneesha Vinodini}, Title = {IoT-Enabled Water Distribution Systems-A Comparative Technological Review}, Journal = {IEEE ACCESS}, Year = {2022}, Volume = {10}, Pages = {101042-101070}, Abstract = {Water distribution systems are one of the critical infrastructures and major assets of the water utility in a nation. The infrastructure of the distribution systems consists of resources, treatment plants, reservoirs, distribution lines, and consumers. A sustainable water distribution network management has to take care of accessibility, quality, quantity, and reliability of water. As water is becoming a depleting resource for the coming decades, the regulation and accounting of water in terms of the above four parameters is a critical task. There have been many efforts towards the establishment of a monitoring and controlling framework, capable of automating various stages of the water distribution processes. The current trending technologies such as Information and Communication Technology (ICT), Internet of Things (IoT), and Artificial Intelligence (AI) have the potential to track this spatially varying network to collect, process, and analyze the water distribution network attributes and events. In this work, we investigate the role and scope of the IoT technologies in different stages of the water distribution systems. Our survey covers the state-of-the-art monitoring and control systems for the water distribution networks, and the status of IoT architectures for water distribution networks. We explore the existing water distribution systems, providing the necessary background information on the current status. This work also presents an IoT Architecture for Intelligent Water Networks - IoTA4IWNet, for real-time monitoring and control of water distribution networks. We believe that, these components need to be designed and implemented effectively to build a robust water distribution network.}, Publisher = {IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC}, Address = {445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA}, Type = {Review}, Language = {English}, Affiliation = {Velayudhan, NK (Corresponding Author), Amrita Vishwa Vidyapeetham, Ctr Wireless Networks \& Applicat WNA, Amritapuri 690525, India. Velayudhan, Nibi Kulangara; Rao, Sethuraman N.; Devidas, Aryadevi Remanidevi; Ramesh, Maneesha Vinodini, Amrita Vishwa Vidyapeetham, Ctr Wireless Networks \& Applicat WNA, Amritapuri 690525, India. Pradeep, Preeja, Univ Coll Cork, Sch Comp Sci \& Informat Technol, Insight Ctr Data Analyt, Cork T12 K8AF, Ireland.}, DOI = {10.1109/ACCESS.2022.3208142}, ISSN = {2169-3536}, Keywords = {Water resources; Monitoring; Distribution networks; Statistics; Sociology; Internet of Things; Ocean temperature; Internet of Things; IoT communication technologies; IoT services; water distribution network}, Keywords-Plus = {BIG DATA ANALYTICS; THINGS IOT; DECISION-SUPPORT; INTERNET; MANAGEMENT; EDGE; FRAMEWORK; ARCHITECTURE; DESIGN; CHALLENGES}, Research-Areas = {Computer Science; Engineering; Telecommunications}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Telecommunications}, Author-Email = {nibikv@am.amrita.edu}, Affiliations = {Amrita Vishwa Vidyapeetham; Amrita Vishwa Vidyapeetham Amritapuri; University College Cork}, ORCID-Numbers = {Devidas, Aryadevi/0000-0002-1440-671X Pradeep, Preeja/0000-0001-6708-4964}, Funding-Acknowledgement = {Project ``Fast Forward to SDG6: Acceptable and Affordable Water in Secondary Indian Cities (4WARD)''; Department of Science and Technology (DST), Water Technology Initiative-National Consortia on Urban Water System (UWS) {[}DST/TM/EWO/WTI/2K19/UWS-03(G2)]}, Funding-Text = {This work was supported in part by the Project ``Fast Forward to SDG6: Acceptable and Affordable Water in Secondary Indian Cities (4WARD),'' and in part by the Department of Science and Technology (DST), Water Technology Initiative-National Consortia on Urban Water System (UWS) under Project DST/TM/EWO/WTI/2K19/UWS-03(G2).}, Cited-References = {Abdou BA, 2019, 2019 IEEE 5TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P616, DOI 10.1109/WF-IoT.2019.8767260. Abu-Bakar H, 2021, J CLEAN PROD, V292, DOI 10.1016/j.jclepro.2021.125872. Addeen HH, 2021, IEEE ACCESS, V9, P99905, DOI 10.1109/ACCESS.2021.3095713. Adedeji KB, 2019, AFRICON. Adedeji KB, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229555. Adhikari BK, 2018, PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), P1185, DOI 10.1109/ICCONS.2018.8662931. Adu-Manu KS, 2017, ACM T SENSOR NETWORK, V13, DOI 10.1145/3005719. Aftab H, 2020, DIGIT COMMUN NETW, V6, P333, DOI 10.1016/j.dcan.2019.05.003. Ahmed A, 2021, ANN TELECOMMUN, V76, P187, DOI 10.1007/s12243-020-00791-2. Ahmed E, 2017, COMPUT NETW, V129, P459, DOI 10.1016/j.comnet.2017.06.013. Al Nafea Roaa, 2021, 2021 International Conference on Information Technology (ICIT), P779, DOI 10.1109/ICIT52682.2021.9491638. Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095. AL-Turjman F, 2021, IEEE T IND INFORM, V17, P2919, DOI 10.1109/TII.2020.2990741. Alabdan R, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12100168. Aleksandrovics V., 2016, INFORM TECHNOLOGY MA, V19, P78, DOI DOI 10.1515/ITMS-2016-0015. AlMetwally Saif Allah H., 2020, Procedia CIRP, V91, P478, DOI 10.1016/j.procir.2020.03.107. ALPEROVITS E, 1977, WATER RESOUR RES, V13, P885, DOI 10.1029/WR013i006p00885. AlQahtani A. A. S., 2022, PROC IEEE INT IOT EL, P1. Alshattnawi S, 2017, 2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), P289, DOI 10.1109/ICTCS.2017.31. Aly M, 2019, INTERNET THINGS-NETH, V6, DOI 10.1016/j.iot.2019.100050. Aminzadeh R., 2010, PROC IEEE ASIAPACIFI, P1. Amorsi N., 2019, D6 1 COMMUNICATION D. {[}Anonymous], 2016, Smart Water, V1, DOI 10.1186/s40713-016-0004-4. {[}Anonymous], 2017, IOT STANDARDIZATION. {[}Anonymous], 2020, PER CAP AV WAT. {[}Anonymous], 2010, S E QUEENSL WAT STRA. {[}Anonymous], 2018, 802 11AC 5 GENERATIO. Arora J, 2019, PROCEDIA COMPUT SCI, V155, P710, DOI 10.1016/j.procs.2019.08.102. Asghari P, 2019, COMPUT NETW, V148, P241, DOI 10.1016/j.comnet.2018.12.008. Ashi Z., 2020, INT J COMPUT APPL, V175, P30, DOI DOI 10.5120/IJCA2020920648. Ashok T., 2021, J INNOV RES SCI TECH, V1, P15. Ashton K., 2009, RFID J, V22, P97, DOI DOI 10.1145/2967977. Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010. Babun L, 2021, COMPUT NETW, V192, DOI 10.1016/j.comnet.2021.108040. Bakalos N, 2019, IEEE SIGNAL PROC MAG, V36, P36, DOI 10.1109/MSP.2018.2885359. Balakrishnan S., 2019, INT J LAKES RIVERS, V12, P27. Barros EG, 2018, WATER SCI TECH-W SUP, V18, P1270, DOI 10.2166/ws.2017.188. Benedict S, 2020, IEEE T COMPUT SOC SY, V7, P1146, DOI 10.1109/TCSS.2020.3008995. Bennion H, 2007, J PALEOLIMNOL, V38, P285, DOI 10.1007/s10933-007-9108-z. Benouahi M, 2008, 46165 WORLD BANK. Bette G, 2019, IEEE INSTRU MEAS MAG, V22, P35, DOI 10.1109/MIM.2019.8917902. Bhola PK, 2019, J HYDROINFORM, V21, P240, DOI 10.2166/hydro.2018.044. Bhuiyan MN, 2021, IEEE INTERNET THINGS, V8, P10474, DOI 10.1109/JIOT.2021.3062630. Bonetto R., 2012, 2012 IEEE INT S WORL, P1. Bria A, 2020, PATTERN RECOGN LETT, V135, P188, DOI 10.1016/j.patrec.2020.04.019. Camps-Mur D, 2013, IEEE WIREL COMMUN, V20, P96, DOI 10.1109/MWC.2013.6549288. Cattani M., 2017, PROC 3 INT WORKSHOP, P3. Cembrano G, 2000, CONTROL ENG PRACT, V8, P1177, DOI 10.1016/S0967-0661(00)00058-7. Chan TK, 2018, IEEE ACCESS, V6, P78846, DOI 10.1109/ACCESS.2018.2885444. Chau KW, 2006, MAR POLLUT BULL, V52, P726, DOI 10.1016/j.marpolbul.2006.04.003. Chen YH, 2018, AUTOMAT CONSTR, V89, P307, DOI 10.1016/j.autcon.2018.02.008. Chettri L, 2020, IEEE INTERNET THINGS, V7, P16, DOI 10.1109/JIOT.2019.2948888. Chinnusamy S., 2018, PROC WDSACCWI JOINT, V1, P23. Cirillo Flavio, 2019, IEEE Internet of Things Magazine, V2, P12, DOI 10.1109/IOTM.0001.1800022. Cloete NA, 2016, IEEE ACCESS, V4, P3975, DOI 10.1109/ACCESS.2016.2592958. Colakovic A, 2018, COMPUT NETW, V144, P17, DOI 10.1016/j.comnet.2018.07.017. Dahlman E., 2013, 4G LTE LTE ADV MOBIL. Daigavane V. V., 2017, ADV WIRELESS MOBILE, V10, P1107. Darabkh KA, 2017, J SUPERCOMPUT, V73, P5332, DOI 10.1007/s11227-017-2089-4. Dawod A, 2019, 2019 IEEE INTERNATIONAL CONGRESS ON INTERNET OF THINGS (IEEE ICIOT 2019), P147, DOI 10.1109/ICIOT.2019.00034. de Matos E, 2020, COMPUT NETW, V166, DOI 10.1016/j.comnet.2019.106988. Di Nardo A, 2021, WATER-SUI, V13, DOI 10.3390/w13040501. Dogo E. M., 2019, ARTIF INTELL, DOI {[}10.1007/978-3-030-04110-6\_7, DOI 10.1007/978-3-030-04110-6\_7]. Dong Z., 2016, J ENVIRON STUD SCI, V6, P200. Ejaz W, 2020, COMPUT COMMUN, V153, P11, DOI 10.1016/j.comcom.2020.01.043. Ericsson, 2018, ERICSSON MOBILITY RE. Farley M, 2005, WA SCI TECHNOL, V5, P41, DOI 10.2166/ws.2005.0006. Farris I, 2019, IEEE COMMUN SURV TUT, V21, P812, DOI 10.1109/COMST.2018.2862350. Ferro E, 2005, IEEE WIREL COMMUN, V12, P12, DOI 10.1109/MWC.2005.1404569. Food and Agriculture Organization, 2021, AQUASTAT FAOS GLOB I. Fornai F, 2017, IEEE J OCEANIC ENG, V42, P5, DOI 10.1109/JOE.2016.2552818. Frauendorfer R., 2010, ISSUES CHALLENGES RE. Fu Y., 2018, PROC 2018 IEEE 3 INT, p483?489, DOI {[}10.1109/DSC.2018.00078, DOI 10.1109/DSC.2018.00078]. Gaffoor T. A., 2017, REAL TIME CONTROL OP. Garrido-Baserba M, 2020, ENVIRON SCI TECHNOL, V54, P4698, DOI 10.1021/acs.est.9b04251. Geetha S., 2017, Smart Water, V2, P1, DOI 10.1186/s40713-017-0005-y. Georgakopoulos D, 2016, COMPUTING, V98, P1041, DOI 10.1007/s00607-016-0510-0. Gericke G. A., 2020, J PHYS C SER, V1577. Ghosh AM, 2021, IEEE T IND INFORM, V17, P2191, DOI 10.1109/TII.2020.3008711. Girod S, 2011, COUNTRY PROFILE GERM. Goap A, 2018, COMPUT ELECTRON AGR, V155, P41, DOI 10.1016/j.compag.2018.09.040. Perea RG, 2019, BIOSYST ENG, V177, P59, DOI 10.1016/j.biosystemseng.2018.03.011. Gopavanitha K., 2017, P 2017 INT C ENERGY, P3227. Govinda K., 2016, INT J APPL ENG RES, V11, P2848. Grieco LA, 2014, COMPUT COMMUN, V54, P32, DOI 10.1016/j.comcom.2014.07.013. GSMA, 2019, NB IOT DEPL GUID BAS. Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010. Guillet A., 2012, 2012 15 INT S ANTENN, P1. Guo FX, 2021, IEEE INTERNET THINGS, V8, P11891, DOI 10.1109/JIOT.2021.3063686. Gye Woon Choi, 2016, Smart Water, V1, DOI 10.1186/s40713-016-0002-6. Haartsen JC, 2000, IEEE PERS COMMUN, V7, P28, DOI 10.1109/98.824570. Hadi MS, 2018, COMPUT NETW, V132, P180, DOI 10.1016/j.comnet.2018.01.016. Hadipour M, 2020, ISA T, V96, P309, DOI 10.1016/j.isatra.2019.06.026. Haghiabi AH, 2018, WATER QUAL RES J CAN, V53, P3, DOI 10.2166/wqrj.2018.025. Hajjaji Y, 2021, COMPUT SCI REV, V39, DOI 10.1016/j.cosrev.2020.100318. Hakak Saqib, 2020, IEEE Internet of Things Magazine, V3, P38, DOI 10.1109/IOTM.0001.1900092. Hall J, 2007, J AM WATER WORKS ASS, V99, P66. Hall RP, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9020314. Hamdy A, 2003, IRRIG DRAIN, V52, P3, DOI 10.1002/ird.73. Hammer M, 1976, WATER WASTEWATER TEC, V7th. Hammi B, 2018, IET NETW, V7, P1, DOI 10.1049/iet-net.2017.0163. Hassanzadeh A, 2020, Arxiv, DOI DOI 10.1061/\%28ASCE\%29EE.1943-7870.0001686. Hendriks S., 2016, THESIS UTRECHT U UTR. Hijmans R.J., 2012, RASTER GEOGRAPHIC AN. Hindy Hanan, 2019, Computer Security. ESORICS 2018 International Workshops, CyberICPS 2018 and SECPRE 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11387), P3, DOI 10.1007/978-3-030-12786-2\_1. Hofmann P, 2021, ENVIRON URBAN, V33, P173, DOI 10.1177/0956247820957280. Hosseyni S., 2011, WIT T BUILT ENV, V119, P45. Howell S, 2018, ENVIRON MODELL SOFTW, V102, P94, DOI 10.1016/j.envsoft.2018.01.006. Huang MF, 2020, COMPUT NETW, V173, DOI 10.1016/j.comnet.2020.107208. Humayed A. A., 2019, THESIS U KANSAS LAWR. Hung YH, 2019, IEEE ACCESS, V7, P181505, DOI 10.1109/ACCESS.2019.2958973. Hutson S. S., 2004, ESTIMATED USE WATER. Ikpehai A, 2019, IEEE INTERNET THINGS, V6, P2225, DOI 10.1109/JIOT.2018.2883728. Imani M, 2021, SCI TOTAL ENVIRON, V768, DOI 10.1016/j.scitotenv.2020.144459. Ismail S, 2022, IEEE ACCESS, V10, P35942, DOI 10.1109/ACCESS.2022.3163742. Israeli Water System, 2019, CIRCULAR EC BUSINESS. Jamaluddin A, 2016, 2016 2ND INTERNATIONAL CONFERENCE OF INDUSTRIAL, MECHANICAL, ELECTRICAL, AND CHEMICAL ENGINEERING (ICIMECE), P243, DOI 10.1109/ICIMECE.2016.7910449. Jang D., 2018, ADV CIV ENG, V2018, P1. Jin W, 2020, IEEE ACCESS, V8, P187975, DOI 10.1109/ACCESS.2020.3030297. Kamaludin KH, 2017, 2017 IEEE CONFERENCE ON SYSTEMS, PROCESS AND CONTROL (ICSPC), P18. Kamaruidzaman NS, 2020, IOP C SER EARTH ENV, V498, DOI 10.1088/1755-1315/498/1/012068. Karim Y, 2019, 2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS \& MOBILE COMMUNICATION CONFERENCE (UEMCON), P1110, DOI 10.1109/UEMCON47517.2019.8993005. Karray F, 2016, PROCEDIA COMPUT SCI, V96, P294, DOI 10.1016/j.procs.2016.08.141. Kassab W, 2020, J NETW COMPUT APPL, V163, DOI 10.1016/j.jnca.2020.102663. Kayan H., 2022, ACM COMPUT SURV, V54, P1. Kaye J. J., 2012, P CHI HUM FACT COMP, P677. Khanna A, 2019, COMPUT ELECTRON AGR, V157, P218, DOI 10.1016/j.compag.2018.12.039. Kimani K, 2019, INT J CRIT INFR PROT, V25, P36, DOI 10.1016/j.ijcip.2019.01.001. Kingdom B., 2006, PRIVATE SECTOR CAN H, V8. Konig S., 2019, DIGITAL TRANSFORMATI, V28. Koo D, 2015, PROCEDIA ENGINEER, V118, P489, DOI 10.1016/j.proeng.2015.08.465. Krig S., 2014, COMPUTER VISION METR. Kumar DS, 2020, MICROPROCESS MICROSY, V77, DOI 10.1016/j.micpro.2020.103167. Kyriakides E, 2015, STUD COMPUT INTELL, V565, P1, DOI 10.1007/978-3-662-44160-2. L.L.C. Guardtime Federal, 2017, CISC VIS NETW IND GL. Lalle Y, 2021, COMPUT NETW, V190, DOI 10.1016/j.comnet.2021.107940. Lalle Y, 2019, GLOB INFORM INFRAS. Lambrou TP, 2014, IEEE SENS J, V14, DOI 10.1109/JSEN.2014.2316414. Laspidou C.S., 2014, WATER UTIL J, V8, P79. Lawal K., 2022, ENERGY BUILT ENV, P251, DOI DOI 10.1016/J.ENBENV.2021.01.009. Lee I, 2015, BUS HORIZONS, V58, P431, DOI 10.1016/j.bushor.2015.03.008. Lee SW, 2015, DESALIN WATER TREAT, V55, P339, DOI 10.1080/19443994.2014.917887. Leoi S., 2020, WATER CONSUMPTION GO. Leow C. Y., 2018, P 2018 2 INT C SMART, P105, DOI DOI 10.1109/ICSSA.2018.8535994. Li JD, 2020, WATER-SUI, V12, DOI 10.3390/w12020412. Li Y., 2017, P INT C ELECT BUSINE, P38. Li Y, 2021, IEEE INTERNET THINGS, V8, P4035, DOI 10.1109/JIOT.2020.3019199. Lucin I, 2021, IEEE ACCESS, V9, P155113, DOI 10.1109/ACCESS.2021.3129703. Lueth K. L, 2019, STATE IOT 2020 12 BI. Maamar Z, 2019, COGN SYST RES, V56, P233, DOI 10.1016/j.cogsys.2019.04.001. Maddocks Andrew, 2015, RANKING WORLDS MOST. Mahdin H., 2017, INT J ADV SCI ENG IN, V7, P1522, DOI {[}DOI 10.18517/ijaseit.7.4-2.3386, DOI 10.18517/IJASEIT.7.4-2.3386]. Manavalan E, 2019, COMPUT IND ENG, V127, P925, DOI 10.1016/j.cie.2018.11.030. Manoharan AM, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC 2018), P57. Manyika J., 2015, INTERNET THINGS MAPP. Maroli AA, 2021, CLEAN TECHNOL ENVIR, V23, P271, DOI 10.1007/s10098-020-01975-z. Talavera JM, 2017, COMPUT ELECTRON AGR, V142, P283, DOI 10.1016/j.compag.2017.09.015. McKinney DC, 2002, ENVIRON MODELL SOFTW, V17, P413, DOI 10.1016/S1364-8152(02)00015-4. Megalingam RK, 2021, IEEE-ASME T MECH, V26, P288, DOI 10.1109/TMECH.2020.3014293. Mehmood H., 2020, STRATEGIC FORESIGHT. Mehrtak Mohammad, 2021, J Med Life, V14, P448, DOI 10.25122/jml-2021-0100. Mhaisen N, 2018, 2018 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), P41. Mistry I, 2020, MECH SYST SIGNAL PR, V135, DOI 10.1016/j.ymssp.2019.106382. Moore S., 2018, GARTN NEWSR. Morimoto R., 2010, SOCIOECON PLANN SCI, V44, P247, DOI DOI 10.1016/J.SEPS.2010.07.005. Myint CZ, 2017, 2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), P435. Narendran S, 2017, IEEE GLOB HUMANIT C, P215. Nasir A, 2014, SENSORS-BASEL, V14, P18353, DOI 10.3390/s141018353. Nasser AA, 2020, IEEE ACCESS, V8, P147647, DOI 10.1109/ACCESS.2020.3015655. Ngu AH, 2017, IEEE INTERNET THINGS, V4, P1, DOI 10.1109/JIOT.2016.2615180. Nie XT, 2020, COMPUT COMMUN, V154, P188, DOI 10.1016/j.comcom.2020.02.052. Niswar M, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND INTELLIGENCE SYSTEM (IOTAIS), P6, DOI 10.1109/IOTAIS.2018.8600828. Nizetic S, 2020, J CLEAN PROD, V274, DOI 10.1016/j.jclepro.2020.122877. Noor MBM, 2019, COMPUT NETW, V148, P283, DOI 10.1016/j.comnet.2018.11.025. Ntuli N, 2016, PROCEDIA COMPUT SCI, V83, P1164, DOI 10.1016/j.procs.2016.04.239. Obeid AM, 2016, IET SCI MEAS TECHNOL, V10, P420, DOI 10.1049/iet-smt.2015.0255. Oberascher M, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103442. Omoniwa B, 2019, IEEE INTERNET THINGS, V6, P4118, DOI 10.1109/JIOT.2018.2875544. Ou J, 2014, APPL MECH MATER, V496-500, P1626, DOI 10.4028/www.scientific.net/AMM.496-500.1626. Pacheco J, 2017, I C COMP SYST APPLIC, P1285, DOI 10.1109/AICCSA.2017.85. Pande A. M., 2017, INT J ELECT ENG RES, V9, P1071. Pappu S., 2017, INT J APPL ENG, V12, P5447. Pathinarupothi RK, 2019, IEEE INTERNET THINGS, V6, P2449, DOI 10.1109/JIOT.2018.2870068. Pierleoni P, 2020, IEEE ACCESS, V8, P5455, DOI 10.1109/ACCESS.2019.2961511. Plageras AP, 2018, FUTURE GENER COMP SY, V82, P349, DOI 10.1016/j.future.2017.09.082. Pozzebon A, 2015, INTL EURASIP WORK RF, P152, DOI 10.1109/EURFID.2015.7332401. Pradeep P, 2021, PERVASIVE MOB COMPUT, V72, DOI 10.1016/j.pmcj.2021.101342. Pradeep P, 2019, COMPUT COMMUN, V137, P44, DOI 10.1016/j.comcom.2019.02.002. Pradhan Puja, 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). Proceedings, P1, DOI 10.1109/PVSC.2015.7355890. Prasath NK, 2017, PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSPC'17), P258. Pujar PM, 2016, PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), P155, DOI 10.1109/ICATCCT.2016.7911983. Qasim SR., 2000, WATER WORKS ENG PLAN. Qiu T, 2020, IEEE T IND INFORM, V16, P4297, DOI 10.1109/TII.2019.2946618. Rafique W, 2020, IEEE INTERNET THINGS, V7, P4543, DOI 10.1109/JIOT.2020.2971013. Rahim MS, 2020, WATER-SUI, V12, DOI 10.3390/w12010294. Rakesh N., 2016, PROC INT C INVENTIVE, P1. Ramesh MV, 2017, IEEE GLOB HUMANIT C, P108. Ranjan R, 2018, IEEE CLOUD COMPUT, V5, P12, DOI 10.1109/MCC.2018.032591612. Rathnayaka K, 2015, WATER-SUI, V7, P202, DOI 10.3390/w7010202. Ray B., 2016, URBAN DISASTERS RESI, P317, DOI {[}10.1016/B978-0-12-802169-9.00020-3, DOI 10.1016/B978-0-12-802169-9.00020-3, 10.1016/B978-0-12-802169-9.00020-3.]. Ray PP, 2018, J KING SAUD UNIV-COM, V30, P291, DOI 10.1016/j.jksuci.2016.10.003. Ray Partha Pratim, 2016, Future Computing and Informatics Journal, V1, P35, DOI 10.1016/j.fcij.2017.02.001. Riggs C., 2019, PROC 5 C MOBILE SECU, P1. Robles T., 2015, J WIREL MOB NETW UBI, V6, P4, DOI DOI 10.22667/JOWUA.2015.03.31.004. Romano M, 2014, ENVIRON MODELL SOFTW, V60, P265, DOI 10.1016/j.envsoft.2014.06.016. Roy SK, 2021, IEEE INTERNET THINGS, V8, P5023, DOI 10.1109/JIOT.2020.3036126. Salman O, 2018, COMPUT NETW, V143, P221, DOI 10.1016/j.comnet.2018.07.020. Saravanan K, 2018, ENVIRON MONIT ASSESS, V190, DOI 10.1007/s10661-018-6914-x. Saravanan M, 2017, 2017 GLOBAL INTERNET OF THINGS SUMMIT (GIOTS 2017), P83. Sector of Israel, 2012, RED WAT LOSS MUN WAT. SemTech, 2021, LORA DEV. Sen J, 2015, CLOUD TECHNOLOGY: CONCEPTS, METHODOLOGIES, TOOLS, AND APPLICATIONS, P1585, DOI 10.4018/978-1-4666-6539-2.ch074. Sesia S., 2011, LTE UMTS LONG TERM E. Shafiee ME, 2018, SUSTAIN CITIES SOC, V37, P485, DOI 10.1016/j.scs.2017.11.042. Shah SH, 2016, 2016 THE 4TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE), P381, DOI 10.1109/SEGE.2016.7589556. Silva DRC, 2019, IEEE INSTRU MEAS MAG, V22, P52, DOI 10.1109/MIM.2019.8674635. Siryani J, 2017, IEEE INTERNET THINGS, V4, P1056, DOI 10.1109/JIOT.2017.2722358. Sonkoly B, 2020, J NETW COMPUT APPL, V170, DOI 10.1016/j.jnca.2020.102785. Srinidhi NN, 2019, ENG SCI TECHNOL, V22, P1, DOI 10.1016/j.jestch.2018.09.003. Sriskanthan N, 2002, MICROPROCESS MICROSY, V26, P281, DOI 10.1016/S0141-9331(02)00039-X. Stankovic JA, 2014, IEEE INTERNET THINGS, V1, P3, DOI 10.1109/JIOT.2014.2312291. StatCan, 2018, SURV DRINK WAT PLANT. Statista Research Department, 2019, AV PER CAP WAT CONS. Stone J, 2018, HAVE GUESS MUCH WATE. Suciu G, 2017, 2017 21ST INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), P606, DOI 10.1109/CSCS.2017.92. Sun AY, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/ab1b7d. Suresh M, 2017, IEEE REGION 10 SYMP. Tagawa K., 2011, PROC NFC FORUM MONAC, V21, P2011. Ten CW, 2010, IEEE T SYST MAN CY A, V40, P853, DOI 10.1109/TSMCA.2010.2048028. Teng HJ, 2019, FUTURE GENER COMP SY, V94, P351, DOI 10.1016/j.future.2018.11.039. Thomas G, 2014, PROCEDIA ENVIRON SCI, V21, P3, DOI 10.1016/j.proenv.2014.09.002. Tiyasha, 2020, J HYDROL, V585, DOI 10.1016/j.jhydrol.2020.124670. Tokognon CJA, 2017, IEEE INTERNET THINGS, V4, P619, DOI 10.1109/JIOT.2017.2664072. Toutsop Otily, 2021, 2021 8th International Conference on Future Internet of Things and Cloud (FiCloud), P413, DOI 10.1109/FiCloud49777.2021.00067. Turcu C, 2018, Arxiv. Ullah M, 2020, IEEE INTERNET THINGS, V7, P10111, DOI 10.1109/JIOT.2020.3000056. UN Water, 2020, HUM RIGHTS WAT SAN. UN Water, 2017, SUSTAINABLE DEV GOAL. United Nations, 2018, SDG 6 SYNTH REP 2018, DOI DOI 10.18356/E8FC060B-EN. Unni S, 2015, 2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), P36, DOI 10.1109/WIOPT.2015.7151030. Verma P, 2015, 2015 IEEE FIRST INTERNATIONAL SMART CITIES CONFERENCE (ISC2). Vermesan O, 2011, RIVER PUBL SER COMM, P9. Votruba L., 1988, DEV WATER SCI. Want R, 2006, IEEE PERVAS COMPUT, V5, P25, DOI 10.1109/MPRV.2006.2. Want R, 2011, IEEE PERVAS COMPUT, V10, P4, DOI 10.1109/MPRV.2011.55. Wei QJ, 2011, APPL MECH MATER, V58-60, P2027, DOI 10.4028/www.scientific.net/AMM.58-60.2027. White JC, 2021, WATER RES, V189, DOI 10.1016/j.watres.2020.116651. White R., 2007, AUSTRALAS SCI, V28, P35. World Bank, 2021, ANN FRESHW WITHDR DO. World Data Lab, 2021, WAT SCARC CLOCK. Wu F, 2021, IEEE INTERNET THINGS, V8, P9970, DOI 10.1109/JIOT.2021.3050445. Wu N, 2019, INT CONF WIREL OPT, P96. Xiang XJ, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106515. Yakubu Jimoh, 2019, Journal of Reliable Intelligent Environments, V5, P209, DOI 10.1007/s40860-019-00081-2. Yeram P., 2020, SMART WATER MANAGEME. Yousefnezhad N, 2020, J NETW COMPUT APPL, V171, DOI 10.1016/j.jnca.2020.102779. Yu R, 2021, IEEE NETWORK, V35, P148, DOI 10.1109/MNET.011.2000295. Yuan ZG, 2019, WATER RES, V155, P381, DOI 10.1016/j.watres.2019.02.034. Zhao W, 2018, IEEE NETWORK, V32, P101, DOI 10.1109/MNET.2018.1700164. Zigbee Alliance, 2015, ZIGBEE SPEC. Zulkifli SN, 2018, SENSOR ACTUAT B-CHEM, V255, P2657, DOI 10.1016/j.snb.2017.09.078.}, Number-of-Cited-References = {262}, Times-Cited = {1}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {15}, Journal-ISO = {IEEE Access}, Doc-Delivery-Number = {4Z6TP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000862338700001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000802044600006, Author = {Tang, Ruifan and De Donato, Lorenzo and Besinovic, Nikola and Flammini, Francesco and Goverde, Rob M. P. and Lin, Zhiyuan and Liu, Ronghui and Tang, Tianli and Vittorini, Valeria and Wang, Ziyulong}, Title = {A literature review of Artificial Intelligence applications in railway systems}, Journal = {TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES}, Year = {2022}, Volume = {140}, Month = {JUL}, Abstract = {Nowadays it is widely accepted that Artificial Intelligence (AI) is significantly influencing a large number of domains, including railways. In this paper, we present a systematic literature review of the current state-of-the-art of AI in railway transport. In particular, we analysed and discussed papers from a holistic railway perspective, covering sub-domains such as maintenance and inspection, planning and management, safety and security, autonomous driving and control, revenue management, transport policy, and passenger mobility. This review makes an initial step towards shaping the role of AI in future railways and provides a summary of the current focuses of AI research connected to rail transport. We reviewed about 139 scientific papers covering the period from 2010 to December 2020. We found that the major research efforts have been put in AI for rail maintenance and inspection, while very limited or no research has been found on AI for rail transport policy and revenue management. The remaining sub domains received mild to moderate attention. AI applications are promising and tend to act as a game-changer in tackling multiple railway challenges. However, at the moment, AI research in railways is still mostly at its early stages. Future research can be expected towards developing advanced combined AI applications (e.g. with optimization), using AI in decision making, dealing with uncertainty and tackling newly rising cybersecurity challenges.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Lin, ZY (Corresponding Author), Univ Leeds, 34-40 Univ Rd, Leeds LS2 9JT, England. Tang, Ruifan; Lin, Zhiyuan; Liu, Ronghui; Tang, Tianli, Univ Leeds, Inst Transport Studies, 34-40 Univ Rd, Leeds LS2 9JT, England. De Donato, Lorenzo; Vittorini, Valeria, Univ Naples Federico II, Dept Elect Engn \& Informat Technol, Via Claudio 21, I-80125 Naples, Italy. Besinovic, Nikola; Goverde, Rob M. P.; Wang, Ziyulong, Delft Univ Technol, Dept Transport \& Planning, POB 5048, NL-2600 GA Delft, Netherlands. Flammini, Francesco, Linnaeus Univ, Dept Comp Sci \& Media Technol, Vaxjo, Sweden. Flammini, Francesco, Malardalen Univ, Sch Innovat Design \& Engn, Vasteras, Sweden. Tang, Tianli, Southeast Univ, Jiangsu Prov Collaborat Innovat Ctr Modern Urban T, Sch Transportat, Jiangsu Key Lab Urban ITS, Nanjing 211189, Peoples R China. Lin, Zhiyuan, Univ Leeds, 34-40 Univ Rd, Leeds LS2 9JT, England.}, DOI = {10.1016/j.trc.2022.103679}, EarlyAccessDate = {MAY 2022}, Article-Number = {103679}, ISSN = {0968-090X}, EISSN = {1879-2359}, Keywords = {Artificial Intelligence; Railways; Transportation; Machine Learning; Autonomous driving; Maintenance; Smart mobility; Train control; Traffic management}, Keywords-Plus = {AUTOMATED VISUAL INSPECTION; CONDITION-BASED MAINTENANCE; BIG DATA; TRANSPORTATION SYSTEMS; TRACK MAINTENANCE; LEARNING APPROACH; DEFECT DETECTION; PREDICTION; OPTIMIZATION; MODEL}, Research-Areas = {Transportation}, Web-of-Science-Categories = {Transportation Science \& Technology}, Author-Email = {Z.Lin@leeds.ac.uk}, Affiliations = {University of Leeds; University of Naples Federico II; Delft University of Technology; Linnaeus University; Malardalen University; Southeast University - China; University of Leeds}, ResearcherID-Numbers = {Wang, Ziyulong/GPW-8486-2022 Tang, Tianli/GRX-7209-2022 Flammini, Francesco/C-1589-2008 Goverde, Rob/H-9055-2013 }, ORCID-Numbers = {Wang, Ziyulong/0000-0003-4664-2087 Flammini, Francesco/0000-0002-2833-7196 Goverde, Rob/0000-0001-8840-4488 Tang, Tianli/0000-0003-2182-6525 Besinovic, Nikola/0000-0003-4111-2255}, Funding-Acknowledgement = {Shift2Rail Joint Undertaking (JU) {[}881782 RAILS]; European Union; UK Rail Safety and Standards Board (RSSB) {[}RSSB/494204565]}, Funding-Text = {This research has received funding from the Shift2Rail Joint Undertaking (JU) under grant agreement No 881782 RAILS. The JU receives support from the European Unions Horizon 2020 research and innovation programme and the Shift2Rail JU members other than the Union. Co-authors Ronghui Liu and Zhiyuan Lin are also partially supported by the Assisted Very Short Term Planning (VSTP) /Dynamic Timetabling Project (RSSB/494204565) funded by UK Rail Safety and Standards Board (RSSB) .}, Cited-References = {Alawad H, 2020, IEEE ACCESS, V8, P633, DOI 10.1109/ACCESS.2019.2962072. Alfieri A, 2006, TRANSPORT SCI, V40, P378, DOI 10.1287/trsc.1060.0155. An M, 2011, INFORM SCIENCES, V181, P3946, DOI 10.1016/j.ins.2011.04.051. Antoniou Antreas, 2017, ARXIV171104340. Attoh-Okine Nii, 2014, 2014 IEEE International Conference on Big Data (Big Data), P7, DOI 10.1109/BigData.2014.7004424. Babaeizadeh M., 2017, ARXIV 161106256. Barbour W, 2018, TRANSPORT RES C-EMER, V93, P211, DOI 10.1016/j.trc.2018.05.019. Barman R, 2015, 2015 INTERNATIONAL SYMPOSIUM ON ADVANCED COMPUTING AND COMMUNICATION (ISACC), P28, DOI 10.1109/ISACC.2015.7377310. Bengio Y, 2021, EUR J OPER RES, V290, P405, DOI 10.1016/j.ejor.2020.07.063. Besinovic N, 2022, IEEE T INTELL TRANSP, V23, P14011, DOI 10.1109/TITS.2021.3131637. Besinovic N, 2020, TRANSPORT REV, V40, P457, DOI 10.1080/01441647.2020.1728419. Besinovic N, 2013, J RAIL TRANSPORT PLA, V3, P126, DOI 10.1016/j.jrtpm.2013.10.008. Budd S, 2021, MED IMAGE ANAL, V71, DOI 10.1016/j.media.2021.102062. Bukhsh ZA, 2019, TRANSPORT RES C-EMER, V101, P35, DOI 10.1016/j.trc.2019.02.001. Burroughs D, 2019, FUTURE INTELLIGENCE. Carboni M, 2020, INT J FATIGUE, V139, DOI 10.1016/j.ijfatigue.2020.105753. Carvajal Carreo W., 2017, THESIS KTH ROYAL I T. Cascavilla G, 2021, COMPUT SECUR, V105, DOI 10.1016/j.cose.2021.102258. Cerreto F, 2018, J ADV TRANSPORT, DOI 10.1155/2018/6164534. Cesme B, 2014, TRANSPORT RES C-EMER, V48, P1, DOI 10.1016/j.trc.2014.08.006. Chen LL, 2020, IEEE T INSTRUM MEAS, V69, P6203, DOI 10.1109/TIM.2020.2968161. Cherfi ZL, 2012, SOFT COMPUT, V16, P741, DOI 10.1007/s00500-011-0766-4. Cirovic G, 2013, EXPERT SYST APPL, V40, P2208, DOI 10.1016/j.eswa.2012.10.041. Copeland B., 2019, ARTIF INTELL. Corman F, 2015, IEEE T INTELL TRANSP, V16, P1274, DOI 10.1109/TITS.2014.2358392. de Bruin T, 2017, IEEE T NEUR NET LEAR, V28, P523, DOI 10.1109/TNNLS.2016.2551940. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Deng W.-t, 2018, DESTECH T COMP SCI E, DOI {[}10.12783/dtcse/CCNT2018/24719, DOI 10.12783/DTCSE/CCNT2018/24719]. Denoeux T., 2020, GUIDED TOUR ARTIFICI, P119. Edwards T, 2017, LECT NOTE NETW SYST, V4, P167, DOI 10.1007/978-3-319-48725-0\_16. Eker OF, 2011, IEEE T IND ELECTRON, V58, P1718, DOI 10.1109/TIE.2010.2051399. European Commission, 2016, COM2020380 EC. European Commission and Joint Research Centre, 2019, ARTIF INTELL, DOI {[}10.2760/936974, DOI 10.2760/936974]. Faghih-Roohi S, 2016, IEEE IJCNN, P2584, DOI 10.1109/IJCNN.2016.7727522. FAIR STATIONS, 2019, FUT SEC ACC RAIL STA. Famurewa SM, 2017, J QUAL MAINT ENG, V23, P310, DOI 10.1108/JQME-11-2016-0059. Fay A, 2000, ENG APPL ARTIF INTEL, V13, P719, DOI 10.1016/S0952-1976(00)00027-0. Feng H, 2014, IEEE T INSTRUM MEAS, V63, P877, DOI 10.1109/TIM.2013.2283741. Ferrari A, 2018, EMPIR SOFTW ENG, V23, P3684, DOI 10.1007/s10664-018-9596-7. Fink O, 2013, EXPERT SYST APPL, V40, P6033, DOI 10.1016/j.eswa.2013.04.038. Firlik B, 2020, P I MECH ENG F-J RAI, V234, P702, DOI 10.1177/0954409719866368. Flammini F., 2013, SECURITY ENG INTELLI, V8128, P442. Fragnelli V, 2014, EUR TRANSP RES REV, V6, P113, DOI 10.1007/s12544-013-0116-y. Fumeo E, 2015, PROCEDIA COMPUT SCI, V53, P437, DOI 10.1016/j.procs.2015.07.321. Gallo M, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19153424. Gao S., 2018, 12 EUROPEAN C NONDES. Geng YX, 2020, MEASUREMENT, V166, DOI 10.1016/j.measurement.2020.108191. Ghofrani F, 2018, TRANSPORT RES C-EMER, V90, P226, DOI 10.1016/j.trc.2018.03.010. Gibert X, 2017, IEEE T INTELL TRANSP, V18, P153, DOI 10.1109/TITS.2016.2568758. Gibert X, 2015, IEEE IMAGE PROC, P621, DOI 10.1109/ICIP.2015.7350873. Gibert X, 2015, IEEE WINT CONF APPL, P694, DOI 10.1109/WACV.2015.98. Goverde RMP, 2016, TRANSPORT RES C-EMER, V67, P62, DOI 10.1016/j.trc.2016.02.004. Gul M, 2018, HUM ECOL RISK ASSESS, V24, P1786, DOI 10.1080/10807039.2017.1422975. Guler H, 2016, GRADEVINAR, V68, P979, DOI 10.14256/JCE.1458.2015. Guler H, 2013, J COMPUT CIVIL ENG, V27, P292, DOI 10.1061/(ASCE)CP.1943-5487.0000221. Hadj-Mabrouk H., 2019, AIMS ELECT ELECT ENG, V3, P33, DOI {[}10.3934/ElectrEng.2019.1.33, DOI 10.3934/ELECTRENG.2019.1.33]. Hajizadeh S, 2016, IFAC PAPERSONLINE, V49, P78, DOI 10.1016/j.ifacol.2016.07.014. Han Y, 2020, NEUROCOMPUTING, V396, P556, DOI 10.1016/j.neucom.2018.10.107. Hickish B, 2020, INT J RAIL TRANSP, V8, P307, DOI 10.1080/23248378.2019.1669500. Ho TK, 2012, EXPERT SYST APPL, V39, P861, DOI 10.1016/j.eswa.2011.07.084. Hu C, 2016, PROCEEDINGS OF THE ASME JOINT RAIL CONFERENCE, 2016. Hu LQ, 2019, J VIS COMMUN IMAGE R, V58, P37, DOI 10.1016/j.jvcir.2018.10.024. Hua GF, 2020, IEEE ACCESS, V8, P176830, DOI 10.1109/ACCESS.2020.3021253. Huang P, 2020, TRANSPORT RES E-LOG, V141, DOI 10.1016/j.tre.2020.102022. Huawei, 2020, MAK YOUR RAIL JOURN. Huo JW, 2016, J COMPUT CIVIL ENG, V30, DOI 10.1061/(ASCE)CP.1943-5487.0000559. Jagadish HV, 2014, COMMUN ACM, V57, P86, DOI 10.1145/2611567. Jamshidi A, 2018, TRANSPORT RES C-EMER, V95, P185, DOI 10.1016/j.trc.2018.07.007. Jamshidi A, 2017, RISK ANAL, V37, P1495, DOI 10.1111/risa.12836. Jamshidi A, 2017, J INFRASTRUCT SYST, V23, DOI 10.1061/(ASCE)IS.1943-555X.0000357. Jayaswal P, 2011, J VIB CONTROL, V17, P1131, DOI 10.1177/1077546310361858. Jiang Y, 2019, OPTIK, V180, P455, DOI 10.1016/j.ijleo.2018.11.053. Kang GQ, 2019, IEEE T INSTRUM MEAS, V68, P2679, DOI 10.1109/TIM.2018.2868490. Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004. Kecman P, 2015, PUBLIC TRANSPORT, V7, P295, DOI 10.1007/s12469-015-0106-7. Kecman P, 2015, IEEE T INTELL TRANSP, V16, P465, DOI 10.1109/TITS.2014.2347136. Khadilkar H, 2019, IEEE T INTELL TRANSP, V20, P727, DOI 10.1109/TITS.2018.2829165. Khouzani AHE, 2017, J TRANSP ENG A-SYST, V143, DOI 10.1061/JTEPBS.0000002. Kitchenham B., 2004, PROCEDURES PERFORMIN. Kour R, 2019, P I MECH ENG F-J RAI, V233, P1012, DOI 10.1177/0954409718822915. Krummenacher G, 2018, IEEE T INTELL TRANSP, V19, P1176, DOI 10.1109/TITS.2017.2720721. Kuppusamy P, 2020, PHYS COMMUN-AMST, V42, DOI 10.1016/j.phycom.2020.101131. L DW, 2020, IEEE ACCESS, V8, P72471, DOI 10.1109/ACCESS.2020.2988030. Lasisi A, 2018, TRANSPORT RES C-EMER, V91, P230, DOI 10.1016/j.trc.2018.04.001. Lee J, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16040549. Lee JS, 2018, J TRANSP ENG A-SYST, V144, DOI 10.1061/JTEPBS.0000173. Li HF, 2014, TRANSPORT RES C-EMER, V45, P17, DOI 10.1016/j.trc.2014.04.013. Li SK, 2021, TRANSPORT RES B-METH, V148, P82, DOI 10.1016/j.trb.2021.04.009. Lin T.Y., 2014, ECCV, P740. Lin ZY, 2016, TRANSPORT RES B-METH, V94, P97, DOI 10.1016/j.trb.2016.09.007. Liu FB, 2018, IET INTELL TRANSP SY, V12, P568, DOI 10.1049/iet-its.2017.0287. Liu L, 2016, P I MECH ENG F-J RAI, V230, P1629, DOI 10.1177/0954409715619603. Liu L, 2016, IEEE T INSTRUM MEAS, V65, P2, DOI 10.1109/TIM.2015.2479101. Liu S, 2019, TRANSP SAFETY ENV, V1, P185, DOI 10.1093/tse/tdz007. Liu Y, 2019, TRANSPORT RES C-EMER, V101, P18, DOI 10.1016/j.trc.2019.01.027. Luo D., 2018, C ADV SYST PUBL TRAN. Luo HL, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20174930. Maire F, 2010, I C CONT AUTOMAT ROB, P2172, DOI 10.1109/ICARCV.2010.5707923. Marsh W., 2016, SAFETY RELIABILITY, V36, P35. McMahon P, 2020, IEEE ACCESS, V8, P48177, DOI 10.1109/ACCESS.2020.2978902. Mokalled H., 2019, RESILIENCE CYBERPHYS, P49, DOI 10.1007/978-3-319-95597. Monarch R. M., 2021, HUMAN IN THE LOOP MA. Morabit M, 2020, G202029 GERAD. Morris B., 2016, INT J VEHICULAR TECH, P1. Moura J, 2017, PROC CIRP, V59, P67, DOI 10.1016/j.procir.2016.09.024. Na KM, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10238509. Nabochenko O., 2019, COMMUNICATIONS SCI L, V21, P42. Nakhaee MC, 2019, LECT NOTES COMPUT SC, V11495, P91, DOI 10.1007/978-3-030-18744-6\_6. Ning LB, 2019, IEEE INT C INTELL TR, P3469, DOI 10.1109/ITSC.2019.8917180. Nowakowski W, 2018, L N INST COMP SCI SO, V222, P43, DOI 10.1007/978-3-319-93710-6\_5. Obara M, 2018, IEEE INT CONF BIG DA, P4525, DOI 10.1109/BigData.2018.8622214. Omta WA, 2020, SLAS DISCOV, V25, P655, DOI 10.1177/2472555220919345. Oneto L, 2017, IEEE T SYST MAN CY-S, V47, P2754, DOI 10.1109/TSMC.2017.2693209. Ou DX, 2019, TRANSPORT RES REC, V2673, P448, DOI 10.1177/0361198119837222. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Pandey R, 2022, INT J HUM-COMPUT ST, V160, DOI 10.1016/j.ijhcs.2022.102772. Pappaterra MJ, 2021, INFRASTRUCTURES-BASE, V6, DOI 10.3390/infrastructures6100136. Pappaterra MJ, 2019, IEEE SYS MAN CYBERN, P445, DOI 10.1109/SMC.2019.8913864. Peer E, 2018, IEEE SYS MAN CYBERN, P3063, DOI 10.1109/SMC.2018.00520. Posada Moreno A.F., 2020, RWTH202002698, DOI {[}10.18154/RWTH-2020-02698, DOI 10.18154/RWTH-2020-02698]. Powell WB, 2014, INTERFACES, V44, P567, DOI 10.1287/inte.2014.0741. Prokhorchenko A., 2019, E EUR J ENTERP TECHN, V3, P30, DOI DOI 10.15587/1729-4061.2014.25184. Przegalinska A., 2019, STATE ART FUTURE ART. Pu H, 2019, APPL SOFT COMPUT, V78, P41, DOI 10.1016/j.asoc.2019.01.051. Pu M., 2014, COMPUT MODEL NEW TEC, V18, P1068. Rabatel J, 2011, EXPERT SYST APPL, V38, P7003, DOI 10.1016/j.eswa.2010.12.014. RAILS D1.1,, 2020, DEL D1 1 DEF REF TAX, DOI {[}10.13140/RG.2.2.24887.75681, DOI 10.13140/RG.2.2.24887.75681]. RAILS D1.3,, 2021, DEL D1 3 APPL AR, DOI {[}10.13140/RG.2.2.15604.07049, DOI 10.13140/RG.2.2.15604.07049]. Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031. Ritika S., 2018, DATA AUGMENTATION RA, DOI DOI 10.48550/ARXIV.1802.01286. Roost Dano, 2020, 2020 7th Swiss Conference on Data Science (SDS), P63, DOI 10.1109/SDS49233.2020.00024. Runeson P, 2007, PROC INT CONF SOFTW, P499. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Sacha D, 2017, NEUROCOMPUTING, V268, P164, DOI 10.1016/j.neucom.2017.01.105. Sadeghi J, 2012, J MECH SCI TECHNOL, V26, P113, DOI 10.1007/s12206-011-1016-5. Sammouri W, 2013, PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), P62. Sammouri W, 2014, 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P918, DOI 10.1109/ITSC.2014.6957806. Santur Y., 2017, P IEEE INT ART INT D, P1, DOI DOI 10.1109/IDAP.2017.8090245. Santur Y., 2016, INT J APPL MATH ELEC, V4, P1, DOI {[}10.18100/ijamec.270656.Special, DOI 10.18100/IJAMEC.270656.SPECIAL]. Santur Y, 2018, TURK J ELECTR ENG CO, V26, P987, DOI 10.3906/elk-1704-214. Santur Y, 2016, 2016 NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND BIOMEDICAL ENGINEERING (ELECO), P745. Schaefer H., 1970, WIT T BUILT ENV, V7, DOI {[}10.2495/CR940042, DOI 10.2495/CR940042]. Schlake BW, 2010, P I MECH ENG F-J RAI, V224, P499, DOI 10.1243/09544097JRRT376. Schpbach K., 2018, AUTOMATED CAPACITY P. Semrov D, 2016, TRANSPORT RES B-METH, V86, P250, DOI 10.1016/j.trb.2016.01.004. Serna A, 2018, TRANSP RES PROC, V33, P291, DOI 10.1016/j.trpro.2018.10.105. Shang LD, 2018, INT CONF ADV COMMUN, P45. Sharma S, 2018, TRANSPORT RES C-EMER, V90, P34, DOI 10.1016/j.trc.2018.02.019. Shebani A, 2018, WEAR, V406, P173, DOI 10.1016/j.wear.2018.01.007. Shihab S.A.M., 2019, ARXIV PREPRINT ARXIV. Sikorska JZ, 2011, MECH SYST SIGNAL PR, V25, P1803, DOI 10.1016/j.ymssp.2010.11.018. Soukup D, 2014, LECT NOTES COMPUT SC, V8887, P668, DOI 10.1007/978-3-319-14249-4\_64. Sturari M, 2017, 2017 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR). Sysyn M, 2019, URBAN RAIL TRANSIT, V5, P123, DOI 10.1007/s40864-019-0105-0. Zarembski Allan M., 2014, 2014 IEEE International Conference on Big Data (Big Data), P96, DOI 10.1109/BigData.2014.7004437. Zhang D, 2017, INT J COMPUT COMMUN, V12, P577, DOI 10.15837/ijccc.2017.4.2914. Zhang HR, 2018, SAFETY SCI, V110, P217, DOI 10.1016/j.ssci.2018.04.003. Zhang JL, 2020, IET INTELL TRANSP SY, V14, P1210, DOI 10.1049/iet-its.2019.0873. Zhang YH, 2015, IEEE J-STARS, V8, P845, DOI 10.1109/JSTARS.2014.2359136. Zhang Z.P., 2020, ASME JT RAIL C, pV001T08A014, DOI {[}10.1115/JRC2020-8102, DOI 10.1115/JRC2020-8102]. Zheng YJ, 2014, COMPUT OPER RES, V43, P1, DOI 10.1016/j.cor.2013.09.002. Zhou FF, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1539, DOI 10.1109/ICIT.2016.7474989. Zhou FQ, 2014, P I MECH ENG F-J RAI, V228, P794, DOI 10.1177/0954409713495532. Zhu HZ, 2018, J ADV TRANSPORT, DOI 10.1155/2018/6142724. Zhuang H, 2016, ENGINEERING, V2, P366, DOI 10.1016/J.ENG.2016.03.019. Zilko AA, 2016, TRANSPORT RES C-EMER, V68, P350, DOI 10.1016/j.trc.2016.04.018. ZIMASS, 2019, ZIMASS SMART MOB AW.}, Number-of-Cited-References = {167}, Times-Cited = {8}, Usage-Count-Last-180-days = {41}, Usage-Count-Since-2013 = {70}, Journal-ISO = {Transp. Res. Pt. C-Emerg. Technol.}, Doc-Delivery-Number = {1P5JI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000802044600006}, OA = {hybrid, Green Published}, DA = {2023-04-22}, } @article{ WOS:000707357700008, Author = {Vivanco-Benavides, Luis Enrique and Martinez-Gonzalez, Claudia Lizbeth and Mercado-Zuniga, Cecilia and Torres-Torres, Carlos}, Title = {Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: A review}, Journal = {COMPUTATIONAL MATERIALS SCIENCE}, Year = {2022}, Volume = {201}, Month = {JAN}, Abstract = {Machine learning has proven to be technically flexible in recent years, which allows it to be successfully implemented in problems in various areas of knowledge. Carbon nanotubes have been studied to describe their properties or predict possible material responses during their synthesis process or in different conditions and environments. In this review, we analyze the machine learning approaches used in modeling physical properties in carbon nanotubes. This work reveals a remarkable match between the amount of experimental data, the number of parameters, and the algorithms used to model uncontrolled physical properties exhibited by carbon nanotubes. The importance of artificial neural networks, support vector machines, decision trees, random forests, and K-Nearest Neighbors is highlighted, mainly in analyzing these nanostructures. The evaluation of mechanical, thermal, electrical, and electronic properties of carbon nanotubes has been reported. Regarding the thermal, electrical, and electronic properties, it is still necessary to complement the molecular dynamics and density functional theory results, respectively, with machine learning. Mechanical properties present an open line of research regarding vibrational properties, where chiral geometric parameters are used to study the vibrational response of carbon nanotubes; therefore, more accurate estimates are required to predict these frequencies. There is conclusive evidence that there is a relationship between detecting defects in carbon nanotubes and the number of iterations required to describe thermionic and vibrational properties using machine learning. An understanding of the vibratory behavior in these nanomaterials would be helpful in the development of nanosensors. Finally, using simulation models and machine learning would help reduce cost and experimentation time studying these properties.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Martinez-Gonzalez, CL (Corresponding Author), Inst Politecn Nacl, ESIME Zacatenco, Secc Estudios Posgrad \& Invest, Ciudad De Mexico 07738, Mexico. Vivanco-Benavides, Luis Enrique; Martinez-Gonzalez, Claudia Lizbeth; Torres-Torres, Carlos, Inst Politecn Nacl, ESIME Zacatenco, Secc Estudios Posgrad \& Invest, Ciudad De Mexico 07738, Mexico. Vivanco-Benavides, Luis Enrique, Tecnol Estudios Super Coacalco, Div Ingn Sistemas Comp, Coacalco Berriozabal 55700, Edo De Mexico, Mexico. Mercado-Zuniga, Cecilia, Tecnol Estudios Super Coacalco, Subdirecc C, Coacalco Berriozabal 55700, Edo De Mexico, Mexico.}, DOI = {10.1016/j.commatsci.2021.110939}, EarlyAccessDate = {OCT 2021}, Article-Number = {110939}, ISSN = {0927-0256}, EISSN = {1879-0801}, Keywords = {Artificial intelligence; Carbon nanotubes; Materials informatics; Materials data science; Statistical learning}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; DENSITY-FUNCTIONAL THEORY; CONVECTIVE HEAT-TRANSFER; THERMAL-CONDUCTIVITY; RAMAN-SPECTROSCOPY; GENETIC ALGORITHM; ELECTRONIC-PROPERTIES; VIBRATIONAL ANALYSIS; MATERIALS DISCOVERY; SINGLE}, Research-Areas = {Materials Science}, Web-of-Science-Categories = {Materials Science, Multidisciplinary}, Author-Email = {clmartinezg@ipn.mx}, Affiliations = {Instituto Politecnico Nacional - Mexico}, ResearcherID-Numbers = {Martinez-Gonzalez, Claudia Lizbeth/T-9559-2018}, ORCID-Numbers = {Martinez-Gonzalez, Claudia Lizbeth/0000-0002-1307-0847}, Funding-Acknowledgement = {Instituto Politecnico Nacional; Consejo Nacional de Ciencia y Tecnologia (CONACyT)}, Funding-Text = {Authors acknowledge the support of the Instituto Politecnico Nacional and Consejo Nacional de Ciencia y Tecnologia (CONACyT) .}, Cited-References = {Abad SNK, 2017, IRAN J SCI TECHNOL A, V41, P151, DOI 10.1007/s40995-017-0198-9. Aci M, 2016, APPL PHYS A-MATER, V122, DOI 10.1007/s00339-016-0153-1. Afrand M, 2016, INT COMMUN HEAT MASS, V77, P49, DOI 10.1016/j.icheatmasstransfer.2016.07.008. Aggarwal C.C, 2015, DATA MINING, DOI {[}10.1007/978-3-319-14142-8., DOI 10.1007/978-3-319-14142-8, 10.1007/978-3-319-14142-8, DOI 10.1007/978-3-319-14142-8.5]. Aggarwal CC, 2018, NEURAL NETWORKS DEEP. Aghajamali A, 2021, CHEM PHYS LETT, V779, DOI 10.1016/j.cplett.2021.138853. Agrawal A, 2019, MRS COMMUN, V9, P779, DOI 10.1557/mrc.2019.73. Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894. Ahmadi MH, 2018, INT J HEAT TECHNOL, V36, P773, DOI 10.18280/ijht.360301. Ahmadloo E, 2016, INT COMMUN HEAT MASS, V74, P69, DOI 10.1016/j.icheatmasstransfer.2016.03.008. Ajori S, 2018, PHYSICA E, V104, P327, DOI 10.1016/j.physe.2018.08.005. Ajori S, 2018, EUR PHYS J D, V72, DOI 10.1140/epjd/e2017-80241-4. Alencar RS, 2021, CARBON, V173, P163, DOI 10.1016/j.carbon.2020.10.083. Alnaqi AA, 2019, PHYSICA A, V521, P493, DOI 10.1016/j.physa.2019.01.057. Alred JM, 2018, COMPOS SCI TECHNOL, V166, P3, DOI 10.1016/j.compscitech.2018.03.035. Alyani SJ, 2019, J ALLOY COMPD, V799, P169, DOI 10.1016/j.jallcom.2019.05.175. Awad M., 2015, EFFICIENT LEARNING M. Azqhandi MHA, 2017, J COLLOID INTERF SCI, V505, P278, DOI 10.1016/j.jcis.2017.05.098. Baghban A, 2019, INT J HEAT MASS TRAN, V128, P825, DOI 10.1016/j.ijheatmasstransfer.2018.09.041. Bahiraei M, 2019, POWDER TECHNOL, V353, P276, DOI 10.1016/j.powtec.2019.05.034. Bahl A, 2019, NANOIMPACT, V15, DOI 10.1016/j.impact.2019.100179. Balachandran PV, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.043802. Balachandran PV, 2015, SCI REP-UK, V5, DOI 10.1038/srep13285. Bian L, 2021, BIOSENS BIOELECTRON, V180, DOI 10.1016/j.bios.2021.113085. Boroushak SH, 2018, DIAM RELAT MATER, V86, P173, DOI 10.1016/j.diamond.2018.04.023. Braga AR, 2020, ECOL INFORM, V59, DOI 10.1016/j.ecoinf.2020.101107. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Canadija M, 2021, DEEP LEARNING FRAMEW, V184, DOI {[}10.1016/j. carbon.2021.08.091, DOI 10.1016/J.CARBON.2021.08.091]. Chang J, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64397-3. Cheng Y., 2021, ARTIFICIAL INTELLIGE, DOI {[}10.1557/mrs.2019.158, DOI 10.1557/MRS.2019.158]. Cleophas TJ, 2020, MACHINE LEARNING MED, DOI {[}10.1007/978-3-030-33970-8, DOI 10.1007/978-3-030-33970-8]. De Volder MFL, 2013, SCIENCE, V339, P535, DOI 10.1126/science.1222453. Deringer VL, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.094203. Devadiga U, 2019, J MATER RES TECHNOL, V8, P3970, DOI 10.1016/j.jmrt.2019.07.005. Dijkstra M, 2021, NAT MATER, V20, P762, DOI 10.1038/s41563-021-01014-2. Dil EA, 2016, J IND ENG CHEM, V34, P186, DOI 10.1016/j.jiec.2015.11.010. Dineva K., 2020, INT MULT SCI GEOCONF, V2020, P317, DOI {[}10.5593/sgem2020/2.1/s07.041.Augus, DOI 10.5593/SGEM2020/2.1/S07.041.AUGUS]. Dresselhaus MS, 2002, CARBON, V40, P2043, DOI 10.1016/S0008-6223(02)00066-0. Efron B., 2016, COMPUTER AGE STAT IN, DOI {[}10.1017/cbo9781316576533, DOI 10.1017/CBO9781316576533, 10.1017/CBO9781316576533]. Farahbakhsh J, 2019, J MEMBRANE SCI, V581, P123, DOI 10.1016/j.memsci.2019.03.050. Fernandez M, 2016, CARBON, V103, P142, DOI 10.1016/j.carbon.2016.03.005. Ferrari AC, 2002, DIAM RELAT MATER, V11, P1053, DOI 10.1016/S0925-9635(01)00730-0. Fish J, 2021, NAT MATER, V20, P774, DOI 10.1038/s41563-020-00913-0. Flood E, 2019, CHEM REV, V119, P7737, DOI 10.1021/acs.chemrev.8b00630. Forster GD, 2020, CARBON, V169, P465, DOI 10.1016/j.carbon.2020.06.086. Friederich P, 2021, NAT MATER, V20, P750, DOI 10.1038/s41563-020-0777-6. Ghaedi AM, 2016, J MOL LIQ, V216, P654, DOI 10.1016/j.molliq.2016.01.068. Ghahdarijani AM, 2017, INT COMMUN HEAT MASS, V84, P11, DOI 10.1016/j.icheatmasstransfer.2017.03.014. Ghasemi A, 2019, PHYSICA A, V514, P36, DOI 10.1016/j.physa.2018.09.004. Ghavanloo E, 2012, APPL MATH MODEL, V36, P4988, DOI 10.1016/j.apm.2011.12.036. Ghosal S, 2021, PHYS CHEM CHEM PHYS, V23, P14608, DOI 10.1039/d1cp01423d. Goak JC, 2020, DIAM RELAT MATER, V106, DOI 10.1016/j.diamond.2020.107815. Gonzalez VJ, 2018, CARBON, V139, P1027, DOI 10.1016/j.carbon.2018.07.062. Gonzalez-Durruthy M, 2017, NANOMATERIALS-BASEL, V7, DOI 10.3390/nano7110386. Gonzalez-Durruthy M, 2017, J CHEM INF MODEL, V57, P1029, DOI 10.1021/acs.jcim.6b00458. Green H, 2021, J CHEM INF MODEL, V61, P2523, DOI 10.1021/acs.jcim.1c00103. Hajilounezhad T, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00603-8. Hamadneh NN, 2019, J KING SAUD UNIV SCI, V31, P618, DOI 10.1016/j.jksus.2018.03.013. Harada T, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3400031. Hart GLW, 2021, NAT REV MATER, V6, P730, DOI 10.1038/s41578-021-00340-w. Hastie T., 2008, ELEMENTS STAT LEARNI, DOI {[}10.1109/SITIS.2013.106, DOI 10.1109/SITIS.2013.106]. Hazra A, CARBON NANOMATERIAL. Hemmat Esfe M, 2016, INT COMMUN HEAT MASS, V76, P376, DOI 10.1016/j.icheatmasstransfer.2015.12.012. Hemmat Esfe M, 2016, INT COMMUN HEAT MASS, V75, P192, DOI 10.1016/j.icheatmasstransfer.2016.04.002. Hemmati-Sarapardeh A, 2014, FUEL, V116, P39, DOI 10.1016/j.fuel.2013.07.072. Ho KC, 2018, J CHEM THEORY COMPUT, V14, P6026, DOI 10.1021/acs.jctc.8b00333. Huang JS, 2021, COMPOS STRUCT, V267, DOI 10.1016/j.compstruct.2021.113917. Husch T, 2021, J CHEM PHYS, V154, DOI 10.1063/5.0032362. Hussain M, 2019, APPL MATH MODEL, V75, P506, DOI 10.1016/j.apm.2019.05.039. Iakovlev VY, 2019, CARBON, V153, P100, DOI 10.1016/j.carbon.2019.07.013. Isayev O., 2019, MAT INFORMATICS METH, DOI {[}10.1016/S1369-7021(05)71123-8, DOI 10.1016/S1369-7021(05)71123-8]. Jalal M, 2019, J COMPUT DES ENG, V6, P209. James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7\_1. Jiang JN, 2017, CURR APPL PHYS, V17, P1670, DOI 10.1016/j.cap.2017.09.007. Kajendirarajah U, 2020, PHYS CHEM CHEM PHYS, V22, P17857, DOI 10.1039/d0cp02950e. Karimipour A, 2019, PHYSICA A, V521, P89, DOI 10.1016/j.physa.2019.01.055. Khabushev EM, 2019, J PHYS CHEM LETT, V10, P6962, DOI 10.1021/acs.jpclett.9b02777. Kim JH, 2013, CHEM PHYS, V413, P55, DOI 10.1016/j.chemphys.2012.09.017. Kotzabasaki M, 2021, NANOSCALE ADV, V3, P3167, DOI 10.1039/d0na00600a. Kronberg R, 2021, J PHYS CHEM C, V125, P15918, DOI 10.1021/acs.jpcc.1c03858. Kumar N, 2019, CHEM MATER, V31, P314, DOI 10.1021/acs.chemmater.8b02837. Kumar SD, 2020, MATER TODAY-PROC, V27, P1152, DOI 10.1016/j.matpr.2020.02.006. Kusdhany MIM, 2021, CARBON, V179, P190, DOI 10.1016/j.carbon.2021.04.036. Labouta HI, 2019, ACS NANO, V13, P1583, DOI 10.1021/acsnano.8b07562. Lavagnini E, 2021, J PHYS CHEM B, V125, P3942, DOI 10.1021/acs.jpcb.1c00480. Le TT, 2021, J COMPOS MATER, V55, P787, DOI 10.1177/0021998320953540. Lee SJR, 2021, J CHEM PHYS, V154, DOI 10.1063/5.0040782. Liu J, 2017, COMP MATER SCI, V129, P290, DOI 10.1016/j.commatsci.2016.12.035. Liu Y, 2017, J MATERIOMICS, V3, P159, DOI 10.1016/j.jmat.2017.08.002. Louie SG, 2021, NAT MATER, V20, P728, DOI 10.1038/s41563-021-01015-1. Lu WC, 2017, J MATERIOMICS, V3, P191, DOI 10.1016/j.jmat.2017.08.003. Luo QX, 2021, NANOSCALE ADV, V3, P206, DOI 10.1039/d0na00634c. Makeev MA, 2019, CURR OPIN CHEM ENG, V23, P58, DOI 10.1016/j.coche.2019.02.008. Malekimoghadam R, 2019, COMPOS PART B-ENG, V177, DOI 10.1016/j.compositesb.2019.107405. Marzari N, 2021, NAT MATER, V20, P736, DOI 10.1038/s41563-021-01013-3. Matos MAS, 2019, SCRIPTA MATER, V166, P117, DOI 10.1016/j.scriptamat.2019.03.003. Matos MAS, 2019, CARBON, V146, P265, DOI 10.1016/j.carbon.2019.02.001. Mehralian F, 2017, J MOL GRAPH MODEL, V73, P30, DOI 10.1016/j.jmgm.2017.01.017. Mehralian F, 2017, MATER RES EXPRESS, V4, DOI 10.1088/2053-1591/aa576a. Mendoza-Cachu D, 2018, DIAM RELAT MATER, V84, P26, DOI 10.1016/j.diamond.2018.03.004. Mitiche I, 2018, ELECTR POW SYST RES, V163, P261, DOI 10.1016/j.epsr.2018.06.016. Moghaddam MR, 2018, NEW J CHEM, V42, P6479, DOI 10.1039/c7nj04073c. Moghaddari M, 2020, J MOL LIQ, V307, DOI 10.1016/j.molliq.2020.112977. Moradikazerouni A, 2019, PHYSICA A, V521, P138, DOI 10.1016/j.physa.2019.01.051. Morgan D, 2020, ANNU REV MATER RES, V50, P71, DOI 10.1146/annurev-matsci-070218-010015. Mortazavi B, 2021, COMPUT PHYS COMMUN, V258, DOI 10.1016/j.cpc.2020.107583. Nakayama T, 2017, APPL PHYS EXPRESS, V10, DOI 10.7567/APEX.10.125101. Nasruddin, 2018, IOP CONF SER-MAT SCI, V333, DOI 10.1088/1757-899X/333/1/012031. Nezhadali A, 2017, J ELECTROANAL CHEM, V795, P32, DOI 10.1016/j.jelechem.2017.04.032. Nezhadali A, 2016, SENSOR ACTUAT B-CHEM, V224, P134, DOI 10.1016/j.snb.2015.09.154. Ni DY, 2021, COMP MATER SCI, V191, DOI 10.1016/j.commatsci.2021.110306. Nordlund K, 2019, J NUCL MATER, V520, P273, DOI 10.1016/j.jnucmat.2019.04.028. Olumegbon IA, 2021, J THERM ANAL CALORIM, V145, P1769, DOI 10.1007/s10973-020-10491-7. Pacheco-Sanchez JH, 2019, FUEL, V236, P1117, DOI 10.1016/j.fuel.2018.09.031. Papadopoulos V, 2018, COMPUT METHOD APPL M, V328, P411, DOI 10.1016/j.cma.2017.09.010. Park Y, 2019, J PHYS CHEM C, V123, P14003, DOI 10.1021/acs.jpcc.9b02174. Pedro D., 2012, COMMUN ACM, V55, P9. Alvarez MP, 2014, ANGEW CHEM INT EDIT, V53, P7033, DOI 10.1002/anie.201400719. Peng YP, 2020, PHYSICA A, V549, DOI 10.1016/j.physa.2019.124015. Petrich L, 2017, COMP MATER SCI, V136, P297, DOI 10.1016/j.commatsci.2017.05.012. Picheau E, 2021, ACS NANO, V15, P596, DOI 10.1021/acsnano.0c06048. Poltavsky I, 2021, J PHYS CHEM LETT, V12, P6551, DOI 10.1021/acs.jpclett.1c01204. Rahman A, 2021, COMPOS SCI TECHNOL, V207, DOI 10.1016/j.compscitech.2020.108627. Raja MAZ, 2017, J TAIWAN INST CHEM E, V80, P935, DOI 10.1016/j.jtice.2017.08.016. Rajan K., 2013, MAT INFORMATICS INTR, P1, DOI DOI 10.1016/B978-0-12-394399-6.00001-1. Rajan K, 2015, ANNU REV MATER RES, V45, P153, DOI 10.1146/annurev-matsci-070214-021132. Ramakrishna S, 2019, J INTELL MANUF, V30, P2307, DOI 10.1007/s10845-018-1392-0. Ramezanizadeha M, 2019, RENEW SUST ENERG REV, V114, DOI 10.1016/j.rser.2019.109345. Rickman JM, 2019, ACTA MATER, V168, P473, DOI 10.1016/j.actamat.2019.01.051. Scarisoreanu M, 2019, APPL SURF SCI, V470, P507, DOI 10.1016/j.apsusc.2018.11.122. Schleder GR, 2019, J PHYS-MATER, V2, DOI 10.1088/2515-7639/ab084b. Sharma A, 2021, PHYS REV B, V103, DOI 10.1103/PhysRevB.103.035101. Sharma S, 2021, DEF TECHNOL, V17, P234, DOI 10.1016/j.dt.2020.04.004. Shevlin S, 2021, NAT MATER, V20, P727, DOI 10.1038/s41563-021-01038-8. Singh S., 2021, CARBON TREND, V5, DOI 10.1016/j.cartre.2021.100091. Sirico DG, 2021, CONF LASER ELECTR. Sparks TD, 2020, ANNU REV MATER RES, V50, P27, DOI 10.1146/annurev-matsci-110519-094700. Suslova E, 2020, CARBON, V168, P597, DOI 10.1016/j.carbon.2020.07.026. Takdastan A, 2019, J IND ENG CHEM, V78, P352, DOI 10.1016/j.jiec.2019.05.034. Talla JA, 2019, CHINESE J PHYS, V59, P418, DOI 10.1016/j.cjph.2019.01.022. Talla JA, 2012, PHYSICA B, V407, P966, DOI 10.1016/j.physb.2011.12.120. Tanaka G, 2019, NEURAL NETWORKS, V115, P100, DOI 10.1016/j.neunet.2019.03.005. Tao HC, 2021, NAT REV MATER, V6, P701, DOI 10.1038/s41578-021-00337-5. Thankachan T, 2017, INT J HYDROGEN ENERG, V42, P28612, DOI 10.1016/j.ijhydene.2017.09.149. Torres-Torres C, 2015, PHYSICA E, V73, P156, DOI 10.1016/j.physe.2015.05.035. Tu JV, 1996, J CLIN EPIDEMIOL, V49, P1225, DOI 10.1016/S0895-4356(96)00002-9. Unke OT, 2021, CHEM REV, V121, P10142, DOI 10.1021/acs.chemrev.0c01111. Vafaei A, 2021, J MOL LIQ, V324, DOI 10.1016/j.molliq.2020.114766. van Gestel T, 2004, MACH LEARN, V54, P5, DOI 10.1023/B:MACH.0000008082.80494.e0. Vasudevan R, 2021, J APPL PHYS, V129, DOI 10.1063/5.0043300. Verpoort PC, 2018, COMP MATER SCI, V147, P176, DOI 10.1016/j.commatsci.2018.02.002. Villa-Manriquez JF, 2017, J BIOPHOTONICS, V10, P1074, DOI 10.1002/jbio.201600169. Voyles PM, 2017, CURR OPIN SOLID ST M, V21, P141, DOI 10.1016/j.cossms.2016.10.001. Vu-Bac N, 2014, COMPOS PART B-ENG, V59, P80, DOI 10.1016/j.compositesb.2013.11.014. Ward L, 2017, CURR OPIN SOLID ST M, V21, P167, DOI 10.1016/j.cossms.2016.07.002. Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28. Wu B, 2018, J POWER SOURCES, V395, P128, DOI 10.1016/j.jpowsour.2018.05.040. Wu QH, 2016, CLUSTER COMPUT, V19, P2075, DOI 10.1007/s10586-016-0646-x. Xiang Y., 2021, MAT SCI FORUM, P29, DOI {[}10.4028/www.scientific.net/MSF.1023.29, DOI 10.4028/WWW.SCIENTIFIC.NET/MSF.1023.29]. Xu Q, 2021, ACS APPL NANO MATER, V4, P600, DOI 10.1021/acsanm.0c02896. Xu X, 2021, CARBON, V177, P189, DOI 10.1016/j.carbon.2021.02.077. Xue Z, 2020, IEEE ACCESS, V8, P40755, DOI 10.1109/ACCESS.2020.2976879. Yadav U, 2021, PHYS REV B, V103, DOI 10.1103/PhysRevB.103.035407. Yan XL, 2019, NANOSCALE, V11, P8352, DOI 10.1039/c9nr00844f. Yang F., 2020, CARBON TRENDS, V1, P100009, DOI {[}10.1016/J.CARTRE.2020.100009, DOI 10.1016/J.CARTRE.2020.100009]. Yang Y, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-018-0142-3. Yeh MK, 2008, MAT SCI ENG A-STRUCT, V483-84, P289, DOI 10.1016/j.msea.2006.09.138. Yousefi F, 2016, HEAT MASS TRANSFER, V52, P2345, DOI 10.1007/s00231-015-1745-6. Yousefi M, 2021, J ENVIRON CHEM ENG, V9, DOI 10.1016/j.jece.2021.105677. Yu M.-F, STRENGTH BREAKING ME. Yue S, 2021, J CHEM PHYS, V154, DOI 10.1063/5.0031215. Zawadzka A, 2019, OPT MATER, V96, DOI 10.1016/j.optmat.2019.109295. Zheng LN, 2019, ANAL CHEM, V91, P12713, DOI 10.1021/acs.analchem.9b02178. Zhu JX, 2021, NANO ENERGY, V86, DOI 10.1016/j.nanoen.2021.106035. Zhu XY, 2020, J ELECTROANAL CHEM, V862, DOI 10.1016/j.jelechem.2020.113940. Zhu XZ, 2019, J HAZARD MATER, V378, DOI 10.1016/j.jhazmat.2019.06.004. Ziari H, 2018, CONSTR BUILD MATER, V160, P415, DOI 10.1016/j.conbuildmat.2017.11.071.}, Number-of-Cited-References = {177}, Times-Cited = {17}, Usage-Count-Last-180-days = {17}, Usage-Count-Since-2013 = {73}, Journal-ISO = {Comput. Mater. Sci.}, Doc-Delivery-Number = {WH0CS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000707357700008}, DA = {2023-04-22}, } @article{ WOS:000956310000001, Author = {Zhang, Jiawei and Liu, Zhen and Jiang, Weidong and Liu, Yongxiang and Zhou, Xiaolin and Li, Xiang}, Title = {Application of deep generative networks for SAR/ISAR: a review}, Journal = {ARTIFICIAL INTELLIGENCE REVIEW}, Abstract = {Military, agricultural, and urban planning have all made extensive use of SAR/ISAR in the realm of remote sensing. SAR/ISAR images are more capable of identifying the details of the targets than optical images and can be taken in any condition. Due to the challenges associated with SAR/ISAR imaging, the lack of data causes many jobs relying on data-driven deep learning algorithms to perform less than satisfactorily. Cropping, rotation, and other procedures are examples of classic data augmentation techniques now in use, although they do not fundamentally differ from basic replication and cannot increase the model's stability and robustness. Deep generative models are used to generate SAR/ISAR images, which is a more efficient way than the conventional ones. The generation techniques are outlined and organized depending on the application fields in this review, including SAR/ISAR data augmentation (26 papers), SAR/ISAR image translation (29 papers), SAR/ISAR image enhancement (22 papers), azimuth interpolation (9 papers), and deceptive jamming (1 paper). The connected works are then summarized based on several deep generative models. 87 linked studies and 5 associated survey papers from 2017 to 2022 are compiled in this review. Finally, the summarized works are systematically analyzed. There are 27 papers using MSTAR for image generation, which is the mostly applied dataset. For evaluation, the combination of SSIM and PSNR is applied most widely (32.19\%). In conclusion, this review offers fresh perspectives on the direction in which deep generative models for SAR/ISAR image generation are headed. The cutting-edge methods outlined in this paper are also available to researchers in other domains.}, Publisher = {SPRINGER}, Address = {VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS}, Type = {Review; Early Access}, Language = {English}, Affiliation = {Liu, Z (Corresponding Author), Natl Univ Def Technol, Coll Elect Sci \& Technol, Changsha 410073, Peoples R China. Zhang, Jiawei; Liu, Zhen; Jiang, Weidong; Liu, Yongxiang; Zhou, Xiaolin; Li, Xiang, Natl Univ Def Technol, Coll Elect Sci \& Technol, Changsha 410073, Peoples R China.}, DOI = {10.1007/s10462-023-10469-5}, EarlyAccessDate = {MAR 2023}, ISSN = {0269-2821}, EISSN = {1573-7462}, Keywords = {Synthetic aperture radar image; Deep learning; Generative adversarial network; Image generation; Artificial intelligence}, Keywords-Plus = {CONVOLUTIONAL NEURAL-NETWORK; OPTICAL IMAGE TRANSLATION; SAR IMAGES; ADVERSARIAL NETWORK; POLARIZATION; SIMULATION; GAN}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence}, Author-Email = {zhen\_liu@nudt.edu.cn}, Affiliations = {National University of Defense Technology - China}, Funding-Acknowledgement = {National Key Research and Development Program of China {[}2021YFB3100800]; National Natural Science Foundation of China {[}62022091,62201588, 61921001]}, Funding-Text = {AcknowledgementsThis work was supported in part by National Key Research and Development Program of China under Grant 2021YFB3100800, in part by the National Natural Science Foundation of China under Grants 62022091,62201588, and 61921001.}, Cited-References = {Ai J., 2021, IEEE GEOSCI REMOTE S, V19, P1. Arjovsky M., 2017, ARXIV, DOI DOI 10.48550/ARXIV.1701.04862. Arjovsky M, 2017, PR MACH LEARN RES, V70. Baier G, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3068532. Bank D., 2020, ARXIV. Bao XJ, 2019, INT GEOSCI REMOTE SE, P9995, DOI 10.1109/IGARSS.2019.8899286. Barratt S, 2018, Arxiv, DOI DOI 10.48550/ARXIV.1801.01973. Bermudez JD, 2019, IEEE GEOSCI REMOTE S, V16, P1220, DOI 10.1109/LGRS.2019.2894734. Bernardi R, 2016, J ARTIF INTELL RES, V55, P409, DOI 10.1613/jair.4900. Bhagvati C., 2012, INT J COMPUT APPL, V43, P7, DOI DOI 10.5120/6169-8590. Bhamidipati SRM., 2020, SN COMPUT SCI, V1, P1, DOI {[}10.1007/s42979-020-00364-z, DOI 10.1007/S42979-020-00364-Z]. Bi H, 2020, IEEE T GEOSCI REMOTE, V58, P2928, DOI 10.1109/TGRS.2019.2958067. Chai T., 2014, GEOSCIENTIFIC MODEL, V7, P1525, DOI {[}DOI 10.5194/GMDD-7-1525-2014, 10.5194/gmdd-7-1525-2014]. Chang YL, 2011, PROG ELECTROMAGN RES, V119, P35, DOI 10.2528/PIER11061507. Chaochao Xiao, 2021, 2021 2nd Information Communication Technologies Conference (ICTC), P54, DOI 10.1109/ICTC51749.2021.9441611. Chen HZ, 2012, IEEE GEOSCI REMOTE S, V9, P1127, DOI 10.1109/LGRS.2012.2190969. Chen J., 2019, Biodiesel Production: Technologies, Challenges, and Future Prospects, P229. Chen JS, 2017, IEEE T IMAGE PROCESS, V26, P3317, DOI 10.1109/TIP.2017.2651389. Chen X., 2016, ADV NEURAL INFORM PR, P2172, DOI DOI 10.1007/S00542-016-3060-7. Choi J, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P14347, DOI 10.1109/ICCV48922.2021.01410. Chuan Du, 2022, IEEE Geoscience and Remote Sensing Letters, V19, DOI 10.1109/LGRS.2021.3073691. Cui ZY, 2019, IEEE ACCESS, V7, P42255, DOI 10.1109/ACCESS.2019.2907728. Dan Xie, 2021, 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), P454, DOI 10.1109/ICEICT53123.2021.9531250. de Almeida FQ, 2018, IEEE T GEOSCI REMOTE, V56, P2772, DOI 10.1109/TGRS.2017.2783444. Denis Loic, 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, P411, DOI 10.1109/IGARSS47720.2021.9555039. Dhillon IS, 2007, IEEE T PATTERN ANAL, V29, P1944, DOI 10.1109/TP'AMI.2007.1115. Dietrich-Sussner R, 2021, 2021 IEEE INT GEOSC, P4548. Ding J, 2016, IEEE GEOSCI REMOTE S, V13, P364, DOI 10.1109/LGRS.2015.2513754. Doi K, 2020, INT GEOSCI REMOTE SE, P2069, DOI 10.1109/IGARSS39084.2020.9323085. Du L., 2021, 2021 INT JOINT C BIO, V19, P479. Du SY, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2021.3065682. Enomoto K, 2018, INT GEOSCI REMOTE SE, P1752. Fan JH, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11060625. Fan WW, 2020, SIGNAL PROCESS, V172, DOI 10.1016/j.sigpro.2020.107528. Farmanov N, 2023, IEEE J SELECTED TOP. FRANCESCHETTI G, 1995, INT GEOSCI REMOTE SE, P2283, DOI 10.1109/IGARSS.1995.524171. Fu SL, 2021, SCI CHINA INFORM SCI, V64, DOI 10.1007/s11432-020-3077-5. Gao F, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10060846. Gao JH, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010191. Glorot X., 2010, P 13 INT C ART INT S, P249. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Green RM, 1998, INT J REMOTE SENS, V19, P2419, DOI 10.1080/014311698214811. Gu F, 2019, INT GEOSCI REMOTE SE, P2575, DOI 10.1109/IGARSS.2019.8899202. Guo J, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13183575. He C, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19040871. Heygster G, 2010, IEEE T GEOSCI REMOTE, V48, P1019, DOI 10.1109/TGRS.2009.2031843. Ho J., 2020, ADV NEURAL INFORM PR, V33. Huang BH, 2020, IEEE WINT CONF APPL, P1795, DOI 10.1109/WACV45572.2020.9093471. Huang HH, 2019, INT GEOSCI REMOTE SE, P2782, DOI 10.1109/IGARSS.2019.8900494. {[}黄琼男 Huang Qiongnan], 2021, {[}兵器装备工程学报, Journal of Ordnance Equipment Engineering], V42, P31. Huang Ying, 2022, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, P1576, DOI 10.1109/IGARSS46834.2022.9884284. Hwang J, 2021, I C INF COMM TECH CO, P312, DOI 10.1109/ICTC52510.2021.9621194. Hwang J, 2020, I C INF COMM TECH CO, P191, DOI 10.1109/ICTC49870.2020.9289381. Isola P, 2017, PROC CVPR IEEE, P5967, DOI 10.1109/CVPR.2017.632. Ji G, 2021, IEEE GEOSCI REMOTE S, V18, P296, DOI 10.1109/LGRS.2020.2969891. Jiayuan Kong, 2021, 2021 13th International Conference on Advanced Infocomm Technology (ICAIT), P215, DOI 10.1109/ICAIT52638.2021.9701974. Jie W, 2020, THESIS HARBIN I TECH. Jing WB, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3077407. Jozdani S, 2022, INT J APPL EARTH OBS, V108, DOI 10.1016/j.jag.2022.102734. Khoshboresh-Masouleh M, 2020, J APPL REMOTE SENS, V14, DOI 10.1117/1.JRS.14.034503. Korhonen J, 2012, INT WORK QUAL MULTIM, P37, DOI 10.1109/QoMEX.2012.6263880. Kudryavtsev V, 2014, J GEOPHYS RES-OCEANS, V119, P6046, DOI 10.1002/2014JC010173. Lalitha V, 2022, IEEE J-STARS. Lange J, 2019, THESIS HUMBOLDT U BE. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Li Guozhong, 2022, Personal and Ubiquitous Computing, V26, P395, DOI 10.1007/s00779-019-01240-1. Li JT, 2022, INT J REMOTE SENS, V43, P5306, DOI 10.1080/01431161.2022.2133578. Li JW, 2019, J ELECTRON INF TECHN, V41, P143, DOI 10.11999/JEIT180050. Li L, 2020, IEEE GEOSCI REMOTE S. Li WZ, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14205270. Li XR, 2021, IET IMAGE PROCESS, V15, P997, DOI 10.1049/ipr2.12080. Li X, 2022, INT J APPL EARTH OBS, V106, DOI 10.1016/j.jag.2021.102638. Li Yanshan, 2022, Chinese Journal of Aeronautics, V35, P204, DOI 10.1016/j.cja.2021.08.036. Li Y, 2020, IEEE ACCESS, V8, P60338, DOI 10.1109/ACCESS.2020.2977103. Li YH, 2019, SCI CHINA INFORM SCI, V62, DOI 10.1007/s11432-018-9668-6. Li ZF, 2006, IEEE T AERO ELEC SYS, V42, P436, DOI 10.1109/TAES.2006.1642562. Liang M, 2021, INFECT DIS THER, V10, P1267, DOI 10.1007/s40121-021-00447-1. Liu CA, 2019, J INTEGR AGR, V18, P506, DOI {[}10.1016/S2095-3119(18)62016-7, 10.1016/s2095-3119(18)62016-7]. Liu XH, 2021, Arxiv. Liu Y, 2021, IMAGE VISION COMPUT, V105, DOI 10.1016/j.imavis.2020.104087. Lu Q, 2019, CHIN HIGH RES EARTH, P419. Lu Qinglin, 2020, Telecommunication Engineering, V60, P121, DOI 10.3969/j.issn.1001-893x.2020.01.020. Lu Qinglin, 2019, 2019 International Conference on Electronic Engineering and Informatics (EEI). Proceedings, P488, DOI 10.1109/EEI48997.2019.00111. Luo Y, 2022, J IRON STEEL RES INT, V29, P1669, DOI 10.1007/s42243-022-00745-z. Luo ZM, 2020, INT GEOSCI REMOTE SE, P2459, DOI 10.1109/IGARSS39084.2020.9323439. Ma PL, 2023, ARTIF INTELL REV, V56, P1627, DOI 10.1007/s10462-022-10209-1. Mirza M, 2014, Arxiv, DOI DOI 10.48550/ARXIV.1411.1784. Mohammadi M, 2021, J INDIAN SOC REMOTE, V49, P2377, DOI 10.1007/s12524-021-01399-2. Niu X, 2018, LECT NOTES COMPUT SC, V11166, P245, DOI 10.1007/978-3-030-00764-5\_23. Nunez JA, 1996, CELEST MECH DYN ASTR, V64, P43, DOI 10.1007/BF00051604. Odena A, 2017, PR MACH LEARN RES, V70. Kingma DP, 2014, Arxiv, DOI DOI 10.48550/ARXIV.1312.6114. Perry RP, 1999, IEEE T AERO ELEC SYS, V35, P188, DOI 10.1109/7.745691. Prickett M. J., 1980, EASCON'80 Record. IEEE Electronics and Aerospace Systems Conventions, P340. Qin D, 2021, IEEE GEOSCI REMOTE S, V18, P127, DOI 10.1109/LGRS.2020.2965743. Qin D, 2019, 2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), P788, DOI 10.1109/SIPROCESS.2019.8868757. Qin JK, 2022, IEEE J-STARS, V15, P7153, DOI 10.1109/JSTARS.2022.3199091. Radford A, 2016, Arxiv. Renga A, 2019, IEEE T GEOSCI REMOTE, V57, P1463, DOI 10.1109/TGRS.2018.2866934. Reyes MF, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11172067. Ruo-Yi Zhou, 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, P5267, DOI 10.1109/IGARSS47720.2021.9553814. Schlegl T, 2017, LECT NOTES COMPUT SC, V10265, P146, DOI 10.1007/978-3-319-59050-9\_12. Shao Zikang, 2022, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, P3355, DOI 10.1109/IGARSS46834.2022.9883157. Shaoyan Du, 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, P4260, DOI 10.1109/IGARSS47720.2021.9554120. Sharifi A, 2020, J INDIAN SOC REMOTE, V48, P1289, DOI 10.1007/s12524-020-01155-y. Sharifi A, 2021, J SCI FOOD AGR, V101, P891, DOI 10.1002/jsfa.10696. Sharma A, 2023, J COMPUT INFORM SYST, V63, P37, DOI 10.1080/08874417.2021.2021114. Shen HF, 2020, ISPRS J PHOTOGRAMM, V161, P90, DOI 10.1016/j.isprsjprs.2020.01.006. Shi H, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2022.3168391. Singh P, 2021, ARCH COMPUT METHOD E, V28, P4633, DOI 10.1007/s11831-021-09548-z. Singh V, 2022, Arxiv. Smith J. P., 2022, 2022 IEEE 30 ANN INT, P1. Sohl-Dickstein J, 2015, PR MACH LEARN RES, V37, P2256. Solimene R, 2014, IEEE SIGNAL PROC MAG, V31, P90, DOI 10.1109/MSP.2014.2311271. Soloveitchik M, 2021, Arxiv. Song Q., 2021, IEEE T GEOSCI ELECT, V60, P1. Song Q, 2019, INT GEOSCI REMOTE SE, P9498, DOI 10.1109/IGARSS.2019.8898922. Song Q, 2017, IEEE GEOSCI REMOTE S, V14, P2245, DOI 10.1109/LGRS.2017.2758900. Sun YC, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14081793. Sung F, 2018, PROC CVPR IEEE, P1199, DOI 10.1109/CVPR.2018.00131. TOMIYASU K, 1978, P IEEE, V66, P563, DOI 10.1109/PROC.1978.10961. Topouzelis KN, 2008, SENSORS-BASEL, V8, P6642, DOI 10.3390/s8106642. Toriya H, 2019, INT GEOSCI REMOTE SE, P923, DOI 10.1109/IGARSS.2019.8898605. Vehmas R, 2021, IEEE ACCESS. Wang HB, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14051291. Wang JY, 2019, J ENG-JOE, V2019, P8093, DOI 10.1049/joe.2019.0696. Wang K, 2019, IEEE GEOSCI REMOTE S, V16, P912, DOI 10.1109/LGRS.2018.2884898. Wang L, 2019, IEEE ACCESS, V7, P129136, DOI 10.1109/ACCESS.2019.2939649. Wang PY, 2017, 2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), DOI 10.1109/INTMAG.2017.8007930. Wang RN, 2022, J EAT DISORD, V10, DOI 10.1186/s40337-022-00584-z. Wang XT, 2021, IEEE INT CONF COMP V, P1905, DOI 10.1109/ICCVW54120.2021.00217. Wei Juan, 2022, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, P6025, DOI 10.1109/IGARSS46834.2022.9884166. WILEY CA, 1985, IEEE T AERO ELEC SYS, V21, P440, DOI 10.1109/TAES.1985.310578. Wu C, 1976, SYSTEMS DESIGN DRIVE, P968. Xiang DL, 2019, IEEE T GEOSCI REMOTE, V57, P3873, DOI 10.1109/TGRS.2018.2888891. Xiaoyu Liu, 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, P2361, DOI 10.1109/IGARSS47720.2021.9554365. Yamaguchi Y, 2012, P IEEE, V100, P2851, DOI 10.1109/JPROC.2012.2195469. {[}严继伟 Yan Jiwei], 2022, {[}电光与控制, Electronics Optics \& Control], V29, P62. {[}杨龙 Yang Long], 2019, {[}兵工学报, Acta Armamentarii], V40, P2488. Yang R, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13010034. Yang X, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2022.3165371. Yang X, 2022, PATTERN RECOGN, V121, DOI 10.1016/j.patcog.2021.108208. Yates G, 2006, IEE P-RADAR SON NAV, V153, P208, DOI 10.1049/ip-rsn:20045091. Yu Ning, 2022, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, P2864, DOI 10.1109/IGARSS46834.2022.9883519. Yuan H., 2022, IEEE GEOSCI REMOTE S, V19, P1. Yuan YX, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14153509. Zenati H, 2019, Arxiv. Zhai J, 2019, PR ELECTROMAGN RES S, P1386, DOI 10.1109/PIERS-Fall48861.2019.9021403. Zhang JW, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12199902. Zhang JW, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12147314. Zhang JX, 2020, IEEE ACCESS, V8, P70925, DOI 10.1109/ACCESS.2020.2987105. Zhang JB, 2022, IEEE T INTELL TRANSP, DOI 10.1109/TITS.2022.3157955. Zhang JH, 2023, ARTIF INTELL REV, V56, P1013, DOI 10.1007/s10462-022-10192-7. Zhang L, 2022, IEEE J-STARS, V15, P804, DOI 10.1109/JSTARS.2021.3131187. Zhang L, 2011, IEEE T IMAGE PROCESS, V20, P2378, DOI 10.1109/TIP.2011.2109730. Zhang MR, 2018, INT GEOSCI REMOTE SE, P5292. Zhang Q, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13010128. Zhang S, 2021, THESIS U ELECT SCI T. Zheng C, 2019, INT GEOSCI REMOTE SE, P1911, DOI 10.1109/IGARSS.2019.8900084. ZHU JY, 2017, IEEE INT C COMP VIS, DOI DOI 10.1109/ICCV.2017.244. Zongcheng Zuo, 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, P3026, DOI 10.1109/IGARSS47720.2021.9555111. Zou LC, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20226673.}, Number-of-Cited-References = {162}, Times-Cited = {0}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Artif. Intell. Rev.}, Doc-Delivery-Number = {A6PA5}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000956310000001}, DA = {2023-04-22}, } @article{ WOS:000878280200001, Author = {Loetsch, Jorn and Ultsch, Alfred and Mayer, Benjamin and Kringel, Dario}, Title = {Artificial intelligence and machine learning in pain research: a data scientometric analysis}, Journal = {PAIN REPORTS}, Year = {2022}, Volume = {7}, Number = {6}, Month = {NOV-DEC}, Abstract = {The collection of increasing amounts of data in health care has become relevant for pain therapy and research. This poses problems for analyses with classical approaches, which is why artificial intelligence (AI) and machine learning (ML) methods are being included into pain research. The current literature on AI and ML in the context of pain research was automatically searched and manually curated. Common machine learning methods and pain settings covered were evaluated. Further focus was on the origin of the publication and technical details, such as the included sample sizes of the studies analyzed with ML. Machine learning was identified in 475 publications from 18 countries, with 79\% of the studies published since 2019. Most addressed pain conditions included low back pain, musculoskeletal disorders, osteoarthritis, neuropathic pain, and inflammatory pain. Most used ML algorithms included random forests and support vector machines; however, deep learning was used when medical images were involved in the diagnosis of painful conditions. Cohort sizes ranged from 11 to 2,164,872, with a mode at n = 100; however, deep learning required larger data sets often only available from medical images. Artificial intelligence and ML, in particular, are increasingly being applied to pain-related data. This report presents application examples and highlights advantages and limitations, such as the ability to process complex data, sometimes, but not always, at the cost of big data requirements or black-box decisions.}, Publisher = {LIPPINCOTT WILLIAMS \& WILKINS}, Address = {TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA}, Type = {Review}, Language = {English}, Affiliation = {Lotsch, J (Corresponding Author), Goethe Univ, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. Loetsch, Jorn; Mayer, Benjamin; Kringel, Dario, Goethe Univ, Inst Clin Pharmacol, Frankfurt, Germany. Loetsch, Jorn, Fraunhofer Inst Translat Med \& Pharmacol ITMP, Frankfurt, Germany. Ultsch, Alfred, Univ Marburg, DataBion Res Grp, Hans Meerwein Str, Marburg, Germany.}, DOI = {10.1097/PR9.0000000000001044}, Article-Number = {e1044}, EISSN = {2471-2531}, Keywords = {Data science; Machine learning; Biometrics; Knowledge discovery; Pain; Precision medicine}, Keywords-Plus = {LOW-BACK-PAIN; FEATURE-SELECTION; VARIABLES}, Research-Areas = {Neurosciences \& Neurology}, Web-of-Science-Categories = {Neurosciences}, Author-Email = {j.loetsch@em.uni-frankfurt.de}, Affiliations = {Goethe University Frankfurt; Philipps University Marburg}, ORCID-Numbers = {Lotsch, Jorn/0000-0002-5818-6958}, Funding-Acknowledgement = {Deutsche Forschungsgemeinschaft {[}DFG LO 612/16-1]}, Funding-Text = {J. Lotsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1: ``Generative artificial intelligence-based algorithm to increase the predictivity of preclinical studies while keeping sample sizes small{''}). This public funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Data availability statement: The R code used for information retrieval is available at https://github.com/JornLotsch/AI4pain}, Cited-References = {{[}Anonymous], 1995, HDB BRAIN THEORY NEU, DOI {[}DOI 10.1109/IJCNN.2004.1381049, 10.5555/303568.303704]. {[}Anonymous], 1924, B G OD SIQUE, V2, P67. Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556. Barbieri S, 2022, INT J EPIDEMIOL, V51, P933, DOI 10.1093/ije/dyab258. Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012. Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324. Breimann L., 1993, CLASSIFICATION REGRE. Burri A, 2018, EUR J PAIN, V22, P1439, DOI 10.1002/ejp.1233. Cheng YJ, 2022, ULTRASOUND MED BIOL, V48, P488, DOI 10.1016/j.ultrasmedbio.2021.11.003. Chollet F., 2018, DEEP LEARNING R SHEL. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964. Creswell Antonia, 2016, Computer Vision - ECCV 2016. 14th European Conference: Workshops. Proceedings: LNCS 9913, P798, DOI 10.1007/978-3-319-46604-0\_55. Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274. Deng L, 2013, FOUND TRENDS SIGNAL, V7, pI, DOI 10.1561/2000000039. Dhar V, 2013, COMMUN ACM, V56, P64, DOI 10.1145/2500499. Dindorf C, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21186323. Dreyfus H. L., 1992, AI \& Society, V6, P18, DOI 10.1007/BF02472766. Ester M., 1996, KDD 96, V96, P226, DOI DOI 10.5555/3001460.3001507. FIX E, 1989, INT STAT REV, V57, P238, DOI 10.2307/1403797. Fontaine D, 2022, EUR J PAIN, V26, P1282, DOI 10.1002/ejp.1948. Fontelo P, 2018, SYST REV-LONDON, V7, DOI 10.1186/s13643-018-0819-1. Fouladvand Sajjad, 2021, AMIA Annu Symp Proc, V2021, P476. Fritz RL, 2020, J MED INTERNET RES, V22, DOI 10.2196/23943. Gastner MT, 2004, P NATL ACAD SCI USA, V101, P7499, DOI 10.1073/pnas.0400280101. Gerke S., 2022, FRONT SURG, V9. Gilron I, 2016, PAIN, V157, P1532, DOI 10.1097/j.pain.0000000000000558. Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616. Hastie T, 2004, J MACH LEARN RES, V5, P1391. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527. Hotelling H, 1933, J EDUC PSYCHOL, V24, P498, DOI 10.1037/h0070888. Iannetti GD, 2013, TRENDS COGN SCI, V17, P371, DOI 10.1016/j.tics.2013.06.002. Ihaka R., 1996, J COMPUTATIONAL GRAP, V5, P299, DOI {[}DOI 10.1080/10618600.1996.10474713, 10.2307/1390807]. Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301. Kapoor S., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2207.07048. Kerstin L, 2022, EUR SPINE J, V31, P1992, DOI 10.1007/s00586-021-07066-x. Kim K, 2019, METHOD INFORM MED, V58, P222, DOI 10.1055/s-0040-1705122. Klikauer T, 2016, TRIPLEC-COMMUN CAPIT, V14, P260. KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007/BF00337288. Kovalchik S, 2020, RISMED DOWNLOAD CONT. Kringel D, 2018, EUR J PAIN, V22, P1735, DOI 10.1002/ejp.1270. Kursa MB, 2010, J STAT SOFTW, V36, P1, DOI 10.18637/jss.v036.i11. LaCroix-Fralish ML, 2007, PAIN, V131, DOI 10.1016/j.pain.2007.04.041. Lamichhane B, 2021, NEUROIMAGE-CLIN, V29, DOI 10.1016/j.nicl.2020.102530. Lang DT., 2020, RCARTOGRAM INTERFACE. Leibig C, 2022, LANCET DIGIT HEALTH, V4, pE507, DOI 10.1016/S2589-7500(22)00070-X. Lippmann C, 2019, BIOINFORMATICS, V35, P2362, DOI 10.1093/bioinformatics/bty986. Lo A, 2015, P NATL ACAD SCI USA, V112, P13892, DOI 10.1073/pnas.1518285112. Lo WLA, 2018, JMIR MHEALTH UHEALTH, V6, DOI 10.2196/mhealth.8127. Lotsch J, 2018, BRIT J ANAESTH, V121, P1123, DOI 10.1016/j.bja.2018.06.007. Lotsch J, 2021, EUR J PAIN, V25, P442, DOI 10.1002/ejp.1683. Lotsch J, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010079. Lotsch J, 2018, BREAST CANCER RES TR, V171, P399, DOI 10.1007/s10549-018-4841-8. Lotsch J, 2018, CLIN PHARMACOL THER, V103, P975, DOI 10.1002/cpt.960. Lotsch J, 2018, PAIN, V159, P623, DOI 10.1097/j.pain.0000000000001118. Lotsch J., 2020, ADV STUDIES CLASSIFI, P57. Lotsch J., 2022, BIOMEDINFORMATICS, V2. Lotsch J., 2018, BMC BIG DATA ANALYTI, V3, DOI {[}10.1186/s41044-41018-40032-41041, DOI 10.1186/S41044-41018-40032-41041]. Luger G., 2004, ARTIF INTELL, V5th. MacQueen J., 1967, PROC 15 BERKELEY S M, P281, DOI DOI 10.1007/S11665-016-2173-6. Malkusch S, 2021, CPT-PHARMACOMET SYST, V10, P1371, DOI 10.1002/psp4.12704. Mallari B, 2019, J PAIN RES, V12, P2053, DOI 10.2147/JPR.S200498. MATHEW B, 1988, SPINE, V13, P168. McCulloch Warren S., 1943, BULL MATH BIOPHYS, V5, P115, DOI 10.1007/BF02478259. McInnes L, 2017, INT CONF DAT MIN WOR, P33, DOI 10.1109/ICDMW.2017.12. Menendez ME, 2019, J BONE JOINT SURG AM, V101, P330, DOI 10.2106/JBJS.18.00695. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. NELSON C W, 1988, Journal of Medical Systems, V12, P1, DOI 10.1007/BF01002372. Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720. Pierson E, 2021, NAT MED, V27, P136, DOI 10.1038/s41591-020-01192-7. Raymaekers J, 2020, BIOINFORMATICS, V36, P3849, DOI 10.1093/bioinformatics/btaa243. Reynolds KJ, 2019, NAT HUM BEHAV, V3, P14, DOI 10.1038/s41562-018-0498-x. Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4\_28. Roos EM, 1998, J ORTHOP SPORT PHYS, V28, P88, DOI 10.2519/jospt.1998.28.2.88. ROTTELEUR G, 1988, LASER SURG MED, V8, P283, DOI 10.1002/lsm.1900080310. RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0. Saeys Y, 2007, BIOINFORMATICS, V23, P2507, DOI 10.1093/bioinformatics/btm344. SANTOSA F, 1986, SIAM J SCI STAT COMP, V7, P1307, DOI 10.1137/0907087. Schiffmann W., 1994, OPTIMIZATION BACKPRO. Sears ED, 2016, JAMA INTERN MED, V176, P1866, DOI 10.1001/jamainternmed.2016.6364. Steinhaus H., 1956, B ACAD POLONAISE SCI, V4, P801. Team RC., 2017, R LANGUAGE ENV STAT, DOI DOI 10.1007/978-3-540-74686-7. Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994. Ultsch A., 2003, CLASSIFICATION TOOL. Ultsch A., 2005, ESOM MAPS TOOLS CLUS. Ultsch A., 2007, P INT WORKSHOP SELF. Ultsch A., 2003, P WORKSH SELF ORG MA, P225. Ultsch A, 2022, BMC BIOINFORMATICS, V23, DOI 10.1186/s12859-022-04769-w. Ultsch A, 2017, J BIOMED INFORM, V66, P95, DOI 10.1016/j.jbi.2016.12.011. van Rossum G., 1995, TECHNICAL REPORT CS. WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967. Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3\_1. Wishart DS, 2018, NUCLEIC ACIDS RES, V46, pD1074, DOI 10.1093/nar/gkx1037. Yang JS, 2021, IEEE T INSTRUM MEAS, V70, DOI 10.1109/TIM.2021.3119135. Yin WT, 2022, NEUROCOMPUTING, V483, P140, DOI 10.1016/j.neucom.2022.02.017. Zhao S., 2020, ADV NEURAL INFORM PR, P7559.}, Number-of-Cited-References = {97}, Times-Cited = {0}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {3}, Journal-ISO = {Pain Rep.}, Doc-Delivery-Number = {5X0EL}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000878280200001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000557537700004, Author = {Chae, Dongwoo}, Title = {Data science and machine learning in anesthesiology}, Journal = {KOREAN JOURNAL OF ANESTHESIOLOGY}, Year = {2020}, Volume = {73}, Number = {4}, Pages = {285-295}, Month = {AUG}, Abstract = {Machine learning (ML) is revolutionizing anesthesiology research. Unlike classical research methods that are largely inference-based, ML is geared more towards making accurate predictions. ML is a field of artificial intelligence concerned with developing algorithms and models to perform prediction tasks in the absence of explicit instructions. Most ML applications, despite being highly variable in the topics that they deal with, generally follow a common workflow. For classification tasks, a researcher typically tests various ML models and compares the predictive performance with the reference logistic regression model. The main advantage of ML lies in its ability to deal with many features with complex interactions and its specific focus on maximizing predictive performance. However, emphasis on data-driven prediction can sometimes neglect mechanistic understanding. This article mainly focuses on the application of supervised ML to electronic health record (EHR) data. The main limitation of EHR-based studies is in the difficulty of establishing causal relationships. However, the associated low cost and rich information content provide great potential to uncover hitherto unknown correlations. In this review, the basic concepts of ML are introduced along with important terms that any ML researcher should know. Practical tips regarding the choice of software and computing devices are also provided. Towards the end, several examples of successful ML applications in anesthesiology are discussed. The goal of this article is to provide a basic roadmap to novice ML researchers working in the field of anesthesiology.}, Publisher = {KOREAN SOC ANESTHESIOLOGISTS}, Address = {101-3503, LOTTE CASTLE PRESIDENT, 109 MAPO-DAERO, MAPO-GU, SEOUL, SOUTH KOREA}, Type = {Review}, Language = {English}, Affiliation = {Chae, D (Corresponding Author), Yonsei Univ, Dept Pharmacol, Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea. Chae, Dongwoo, Yonsei Univ, Dept Pharmacol, Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea.}, DOI = {10.4097/kja.20124}, ISSN = {2005-6419}, EISSN = {2005-7563}, Keywords = {Artificial intelligence; Data science; Electronic health record; Machine learning; Predictive analytics; Risk score system}, Keywords-Plus = {PREDICT; PAIN}, Research-Areas = {Anesthesiology}, Web-of-Science-Categories = {Anesthesiology}, Author-Email = {dongy@yuhs.ac}, Affiliations = {Yonsei University; Yonsei University Health System}, ORCID-Numbers = {, Dongwoo/0000-0002-7675-3821}, Cited-References = {Chae D, 2020, ANAESTHESIA, V75, P218, DOI 10.1111/anae.14849. Chen JH, 2017, NEW ENGL J MED, V376, P2507, DOI 10.1056/NEJMp1702071. Child C G, 1964, Major Probl Clin Surg, V1, P1. Demir-Kavuk O, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-412. Freund Y, 2001, MACH LEARN, V43, P293, DOI 10.1023/A:1010852229904. Gomez D, 2016, NEURAL COMPUT, V28, P216, DOI 10.1162/NECO\_a\_00793. Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601. Jolliffe IT, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2015.0202. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Lee HC, 2018, J CLIN MED, V7, DOI 10.3390/jcm7110428. Lee HC, 2018, J CLIN MED, V7, DOI 10.3390/jcm7100322. Lobo JM, 2008, GLOBAL ECOL BIOGEOGR, V17, P145, DOI 10.1111/j.1466-8238.2007.00358.x. Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259. Remeseiro B, 2019, COMPUT BIOL MED, V112, DOI 10.1016/j.compbiomed.2019.103375. Schapire RE, 2012, ADAPT COMPUT MACH LE, P53. Sun SL, 2020, IEEE T CYBERNETICS, V50, P3668, DOI 10.1109/TCYB.2019.2950779. Tighe P, 2011, PAIN MED, V12, P1566, DOI 10.1111/j.1526-4637.2011.01228.x. Tighe PJ, 2015, PAIN MED, V16, P1386, DOI 10.1111/pme.12713. Tighe PJ, 2012, PAIN MED, V13, P1347, DOI 10.1111/j.1526-4637.2012.01477.x. Weilbach C, 2006, ACTA ANAESTH BELG, V57, P361.}, Number-of-Cited-References = {20}, Times-Cited = {6}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {4}, Journal-ISO = {Korean J. Anesthesiol.}, Doc-Delivery-Number = {MX2DW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000557537700004}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000531366700037, Author = {Kamkar, Shiva and Ghezloo, Fatemeh and Moghaddam, Hamid Abrishami and Borji, Ali and Lashgari, Reza}, Title = {Multiple-target tracking in human and machine vision}, Journal = {PLOS COMPUTATIONAL BIOLOGY}, Year = {2020}, Volume = {16}, Number = {4}, Month = {APR}, Abstract = {Author summary Multiple-target tracking (MTT) is a challenging task vital for both a human's daily life and for many artificial intelligent systems, such as those used for urban traffic control. Neuroscientists are interested in discovering the underlying neural mechanisms that successfully exploit cognitive resources, e.g., spatial attention or memory, during MTT. Computer-vision specialists aim to develop powerful MTT algorithms based on advanced models or data-driven computational methods. In this paper, we review MTT studies from both communities and discuss how findings from cognitive studies can inspire developers to construct higher performing MTT algorithms. Moreover, some directions have been proposed through which MTT algorithms could raise new questions in the cognitive science domain, and answering them can shed light on neural processes underlying MTT. Humans are able to track multiple objects at any given time in their daily activities-for example, we can drive a car while monitoring obstacles, pedestrians, and other vehicles. Several past studies have examined how humans track targets simultaneously and what underlying behavioral and neural mechanisms they use. At the same time, computer-vision researchers have proposed different algorithms to track multiple targets automatically. These algorithms are useful for video surveillance, team-sport analysis, video analysis, video summarization, and human-computer interaction. Although there are several efficient biologically inspired algorithms in artificial intelligence, the human multiple-target tracking (MTT) ability is rarely imitated in computer-vision algorithms. In this paper, we review MTT studies in neuroscience and biologically inspired MTT methods in computer vision and discuss the ways in which they can be seen as complementary.}, Publisher = {PUBLIC LIBRARY SCIENCE}, Address = {1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA}, Type = {Review}, Language = {English}, Affiliation = {Moghaddam, HA (Corresponding Author), KN Toosi Univ Technol, Machine Vis \& Med Image Proc Lab, Fac Elect \& Comp Engn, Tehran, Iran. Lashgari, R (Corresponding Author), Inst Res Fundamental Sci IPM, Brain Engn Res Ctr, Tehran, Iran. Kamkar, Shiva; Moghaddam, Hamid Abrishami, KN Toosi Univ Technol, Machine Vis \& Med Image Proc Lab, Fac Elect \& Comp Engn, Tehran, Iran. Kamkar, Shiva; Ghezloo, Fatemeh; Lashgari, Reza, Inst Res Fundamental Sci IPM, Brain Engn Res Ctr, Tehran, Iran. Borji, Ali, HCL Amer, New York, NY USA.}, DOI = {10.1371/journal.pcbi.1007698}, Article-Number = {e1007698}, ISSN = {1553-734X}, EISSN = {1553-7358}, Keywords-Plus = {ARTIFICIAL BRAIN PROJECTS; VISUAL WORKING-MEMORY; OBJECT TRACKING; IDENTITY TRACKING; EYE-MOVEMENTS; SPATIAL-RESOLUTION; ATTENTIVE TRACKING; POSITION TRACKING; WORLD SURVEY; MOTION}, Research-Areas = {Biochemistry \& Molecular Biology; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Biochemical Research Methods; Mathematical \& Computational Biology}, Author-Email = {rezalashgari@ipm.ir moghaddam@kntu.ac.ir}, Affiliations = {K. N. Toosi University of Technology}, ResearcherID-Numbers = {Abrishami Moghaddam, Hamid/AAW-9288-2021 Kamkar, Shiva/HTP-4665-2023 }, ORCID-Numbers = {Kamkar, Shiva/0000-0002-3074-3396 Borji, Ali/0000-0001-8198-0335 Lashgari, Reza/0000-0003-1768-8342 Ghezloo, Fatemeh/0000-0003-3888-2793}, Cited-References = {Abstracts from The Academy of Breastfeeding Medicine, 2015, BREASTFEED MED, V10, pS1. {[}Anonymous], 2017, J ONCOL PRACT, V13, pe353. {[}Anonymous], 2013, ROSSIYSKIY KARDIO S3, V4, P1, DOI DOI 10.1186/2049-1891-4-1. {[}Anonymous], 2010 20 INT C PATT R, P2756. {[}Anonymous], 2017, DIABETOLOGIE STOF S2, V12, pS94, DOI 10.1055/s-0043-115953. {[}Anonymous], 2006, CHINESE SCI MANAGEME, V14, P100. {[}Anonymous], 2012, REGEN MED S3, V7, pS14. {[}Anonymous], 2016, OFFICIAL J EUROPEAN, V59, P20. Atkinson R.C., HUMAN MEMORY PROPOSE. Bacigalupo F, 2015, J COGNITIVE NEUROSCI, V27, P1180, DOI 10.1162/jocn\_a\_00771. Bahrami B, 2003, VIS COGN, V10, P949, DOI 10.1080/13506280344000158. Barris S, 2008, SPORTS MED, V38, P1025, DOI 10.2165/00007256-200838120-00006. Bell D, 2014, INT ARCH OTORHINOLAR, V18, pS149. Bernardin K, 2008, EURASIP J IMAGE VIDE, DOI 10.1155/2008/246309. Borji A, 2019, IEEE T PATTERN ANAL. Borji A, 2013, IEEE T PATTERN ANAL, V35, P185, DOI 10.1109/TPAMI.2012.89. Cabido R, 2012, SOFT COMPUT, V16, P217, DOI 10.1007/s00500-011-0715-2. Caicedo JC, 2015, IEEE I CONF COMP VIS, P2488, DOI 10.1109/ICCV.2015.286. Cao LJ, 2015, SIGNAL PROCESS, V112, P154, DOI 10.1016/j.sigpro.2014.08.041. Cavanagh P, 2005, TRENDS COGN SCI, V9, P349, DOI 10.1016/j.tics.2005.05.009. Cheng C, 2019, J EXP CHILD PSYCHOL, V187, DOI 10.1016/j.jecp.2019.06.002. Chu Q, P IEEE INT C COMP VI, P4836. Cohen MA, 2011, ATTEN PERCEPT PSYCHO, V73, P1422, DOI 10.3758/s13414-011-0089-7. de Garis H, 2010, NEUROCOMPUTING, V74, P3, DOI 10.1016/j.neucom.2010.08.004. Deori B., 2014, INT J INFORM THEORY, V3, P346, DOI {[}DOI 10.5121/IJIT.2014.3304, 10.5121/ijit.2014.3304]. Du B, 2017, SIGNAL PROCESS, V139, P173, DOI 10.1016/j.sigpro.2017.04.003. Erlikhman G, 2013, J EXP PSYCHOL HUMAN, V39, P1625, DOI 10.1037/a0031750. Farazi H, 2017, IEEE INT C INT ROBOT, P6118. Flombaum JI, 2008, COGNITION, V107, P904, DOI 10.1016/j.cognition.2007.12.015. Fougnie D, 2006, PSYCHOL SCI, V17, P526, DOI 10.1111/j.1467-9280.2006.01739.x. Franconeri SL, 2010, PSYCHOL SCI, V21, P920, DOI 10.1177/0956797610373935. Franconeri SL, 2012, ATTEN PERCEPT PSYCHO, V74, P691, DOI 10.3758/s13414-011-0265-9. Goertzel B, 2010, NEUROCOMPUTING, V74, P30, DOI 10.1016/j.neucom.2010.08.012. Goodale MA, SEPARATE VISUAL PATH. Hagen T, 2018, I-PERCEPTION, V9, DOI 10.1177/2041669518795932. Han M, 2004, IEEE IMAGE PROC, P3065. Han YM, 2017, BRIT J RADIOL, V90, DOI 10.1259/bjr.20170099. Hesar HD, 2018, MACH VISION APPL, V29, P433, DOI 10.1007/s00138-017-0897-4. Hong ZB, 2015, PROC CVPR IEEE, P749, DOI 10.1109/CVPR.2015.7298675. Horowitz TS, 2007, PERCEPT PSYCHOPHYS, V69, P172, DOI 10.3758/BF03193740. Horowitz TS, 2006, PSYCHON B REV, V13, P516, DOI 10.3758/BF03193879. Howard CJ, 2008, VISION RES, V48, P1164, DOI 10.1016/j.visres.2008.01.023. Howard CJ, 2011, VISION RES, V51, P1907, DOI 10.1016/j.visres.2011.07.001. {[}胡路明 Hu Luming], 2018, {[}心理学报, Acta Psychologica Sinica], V50, P1235. Hu WM, 2004, IEEE T SYST MAN CY C, V34, P334, DOI 10.1109/TSMCC.2004.829274. Hyona Jukka, 2019, Vision (Basel), V3, DOI 10.3390/vision3030037. Intriligator J, 2001, COGNITIVE PSYCHOL, V43, P171, DOI 10.1006/cogp.2001.0755. Iordanescu L, 2009, J VISION, V9, DOI 10.1167/9.4.1. Jansen M, 2019, CEREB CORTEX, V29, P336, DOI 10.1093/cercor/bhy221. Jansen M, 2015, CEREB CORTEX, V25, P3877, DOI 10.1093/cercor/bhu270. Joint United Nations Programme on HIV/AIDS, 2009, REPROD HEALTH MATTER, V17, P180. Kamble PR, 2019, ARTIF INTELL REV, V52, P1655, DOI 10.1007/s10462-017-9582-2. Kamkar S, 2018, FRONT SYST NEUROSCI, V12, DOI 10.3389/fnsys.2018.00054. Keane BP, 2006, COGNITIVE PSYCHOL, V52, P346, DOI 10.1016/j.cogpsych.2005.12.001. Kuo CH, 2011, INCVPR 2011 2011 JUN, P1217. Lashgari R, 2012, J NEUROSCI, V32, P11396, DOI 10.1523/JNEUROSCI.0429-12.2012. Lei BJ, 2006, PATTERN RECOGN LETT, V27, P1816, DOI 10.1016/j.patrec.2006.02.017. Li J, 2019, COGNITION, V182, P260, DOI 10.1016/j.cognition.2018.10.016. Li J, 2018, J COGN PSYCHOL, V30, P609, DOI 10.1080/20445911.2018.1476517. Li J, 2018, COGNITION EMOTION, V32, P464, DOI 10.1080/02699931.2017.1315929. Li XB, 2015, CEREB CORTEX, V25, P1920, DOI 10.1093/cercor/bhu002. Lochner MJ, 2014, ATTEN PERCEPT PSYCHO, V76, P2326, DOI 10.3758/s13414-014-0694-3. Luo W., 2019, IEEE T PATTERN ANAL. Luo W., 2014, ARXIV14097618. Luu T, 2015, ATTEN PERCEPT PSYCHO, V77, P1919, DOI 10.3758/s13414-015-0891-8. Lyu C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145489. Ma Y, 2019, IEEE T CIRCUITS SYST. Mahadevan V., 2012, P ADV NEUR INF PROC, P1673. Mahadevan V, 2013, IEEE T PATTERN ANAL, V35, P541, DOI 10.1109/TPAMI.2012.98. Mahadevan V, 2009, PROC CVPR IEEE, P1007, DOI 10.1109/CVPRW.2009.5206573. Makovski T, 2009, J EXP PSYCHOL HUMAN, V35, P1687, DOI 10.1037/a0016453. Manafifard M, 2017, COMPUT VIS IMAGE UND, V159, P19, DOI 10.1016/j.cviu.2017.02.002. Meyerhoff HS, 2017, ATTEN PERCEPT PSYCHO, V79, P1255, DOI 10.3758/s13414-017-1338-1. Milan A., 2016, ARXIV PREPRINT ARXIV. Milan A, 31 AAAI C ART INT 20. Mottaghi R, 2014, PROC CVPR IEEE, P891, DOI 10.1109/CVPR.2014.119. Murphy-Chutorian E, 2005, WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, P16. Naimaster EJ, 2013, ENERG BUILDINGS, V61, P153, DOI 10.1016/j.enbuild.2012.09.045. Nummenmaa L, 2017, CEREB CORTEX, V27, P162, DOI 10.1093/cercor/bhw380. Ojha S, 2015 INT C PERV COMP, P1. Oksama L, 2004, VIS COGN, V11, P631, DOI 10.1080/13506280344000473. Oksama L, 2016, COGNITION, V146, P393, DOI 10.1016/j.cognition.2015.10.016. Papenmeier F, 2014, J EXP PSYCHOL HUMAN, V40, P159, DOI 10.1037/a0033117. Plourde M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0188373. PYLYSHYN Z W, 1988, Spatial Vision, V3, P179, DOI 10.1163/156856888X00122. Pylyshyn ZW, 2004, VIS COGN, V11, P801, DOI 10.1080/13506280344000518. Qi Y, INT C BRAIN INSP COG, P112. Ren DG, 2009, J VISION, V9, DOI 10.1167/9.5.18. Ren L., 2018, ECCV, P586. Romeas T, 2016, PSYCHOL SPORT EXERC, V22, P1, DOI 10.1016/j.psychsport.2015.06.002. Scheirer WJ, 2014, IEEE T PATTERN ANAL, V36, P1679, DOI 10.1109/TPAMI.2013.2297711. Scholl BJ, 2009, COMPUTATION, COGNITION, AND PYLYSHYN, P49. Scimeca JM, 2015, WIRES COGN SCI, V6, P109, DOI 10.1002/wcs.1328. Shim WM, 2008, PSYCHON B REV, V15, P390, DOI 10.3758/PBR.15.2.390. Shuwairi SM, 2007, J COGNITIVE NEUROSCI, V19, P1275, DOI 10.1162/jocn.2007.19.8.1275. Smeulders A.W.M., 2013, IEEE T PATTERN ANAL, V36, P1442, DOI DOI 10.1109/TPAMI.2013.230. Smith K., 2005, COMP VIS PATT REC WO, P36, DOI DOI 10.1109/CVPR.2005.453. Solera F, 2015, IEEE I CONF COMP VIS, P4373, DOI 10.1109/ICCV.2015.497. St Clair R, 2010, J VISION, V10, DOI 10.1167/10.4.18. Sun MD, 2018, ATTEN PERCEPT PSYCHO, V80, P374, DOI 10.3758/s13414-017-1466-7. Tang QY, 2016, IEEE INT CONF ELECTR, P1, DOI 10.1109/ICEIEC.2016.7589674. Tombu M, 2011, ATTEN PERCEPT PSYCHO, V73, P738, DOI 10.3758/s13414-010-0060-z. Vater C, 2017, J VISION, V17, DOI 10.1167/17.5.21. Viswanathan L, 2002, PERCEPTION, V31, P1415, DOI 10.1068/p3432. Viswanathan L., 1998, ATTENTION DEPTH DISP. Wang CD, 2019, Q J EXP PSYCHOL, V72, P1903, DOI 10.1177/1747021818817388. Wang CD, 2018, CORTEX, V108, P265, DOI 10.1016/j.cortex.2018.09.005. Wang YJ, 2013, APPL INTELL, V39, P614, DOI 10.1007/s10489-013-0437-5. Wang YS, 2015, NAT NEUROSCI, V18, P97, DOI 10.1038/nn.3878. Wei LQ, 2018, ATTEN PERCEPT PSYCHO, V80, P118, DOI 10.3758/s13414-017-1420-8. Wei LQ, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.00589. Wong SC, 2017, IEEE T IMAGE PROCESS, V26, P4669, DOI 10.1109/TIP.2017.2696744. Wu CC, 2018, CURR BIOL, V28, P3430, DOI 10.1016/j.cub.2018.08.042. Wu CC, 2018, VISION RES, V145, P49, DOI 10.1016/j.visres.2017.10.009. Wu CC, 2018, ATTEN PERCEPT PSYCHO, V80, P453, DOI 10.3758/s13414-017-1447-x. Yilmaz A, 2006, ACM COMPUT SURV, V38, DOI 10.1145/1177352.1177355. Yilmaz O, 2012, NEURAL NETWORKS, V29-30, P20, DOI 10.1016/j.neunet.2012.01.005. Zelinsky GJ, 2008, VIS COGN, V16, P553, DOI 10.1080/13506280802000752. Zelinsky GJ, 2010, J VISION, V10, DOI 10.1167/10.14.29. Zhang KH, 2016, IEEE T IMAGE PROCESS, V25, P1779, DOI 10.1109/TIP.2016.2531283. Zhang L, 2013, SELECTIVE VISUAL ATT. Zhao ZQ, 2019, IEEE T NEUR NET LEAR, V30, P3212, DOI {[}10.1109/TNNLS.2018.2876865, 10.23977/icamcs.2018.001]. 2014, REG ANESTH PAIN MED, V9.}, Number-of-Cited-References = {123}, Times-Cited = {11}, Usage-Count-Last-180-days = {13}, Usage-Count-Since-2013 = {49}, Journal-ISO = {PLoS Comput. Biol.}, Doc-Delivery-Number = {LL2EG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000531366700037}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000909574400001, Author = {Malik, Sumbal and Khan, Manzoor Ahmed and El-Sayed, Hesham and Khan, Jalal and Ullah, Obaid}, Title = {How Do Autonomous Vehicles Decide?}, Journal = {SENSORS}, Year = {2023}, Volume = {23}, Number = {1}, Month = {JAN}, Abstract = {The advancement in sensor technologies, mobile network technologies, and artificial intelligence has pushed the boundaries of different verticals, e.g., eHealth and autonomous driving. Statistics show that more than one million people are killed in traffic accidents yearly, where the vast majority of the accidents are caused by human negligence. Higher-level autonomous driving has great potential to enhance road safety and traffic efficiency. One of the most crucial links to building an autonomous system is the task of decision-making. The ability of a vehicle to make robust decisions on its own by anticipating and evaluating future outcomes is what makes it intelligent. Planning and decision-making technology in autonomous driving becomes even more challenging, due to the diversity of the dynamic environments the vehicle operates in, the uncertainty in the sensor information, and the complex interaction with other road participants. A significant amount of research has been carried out toward deploying autonomous vehicles to solve plenty of issues, however, how to deal with the high-level decision-making in a complex, uncertain, and urban environment is a comparatively less explored area. This paper provides an analysis of decision-making solutions approaches for autonomous driving. Various categories of approaches are analyzed with a comparison to classical decision-making approaches. Following, a crucial range of research gaps and open challenges have been highlighted that need to be addressed before higher-level autonomous vehicles hit the roads. We believe this survey will contribute to the research of decision-making methods for autonomous vehicles in the future by equipping the researchers with an overview of decision-making technology, its potential solution approaches, and challenges.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {El-Sayed, H (Corresponding Author), United Arab Emirates Univ, Coll Informat Technol, Abu Dhabi 15551, U Arab Emirates. El-Sayed, H (Corresponding Author), United Arab Emirates Univ, Emirates Ctr Mobil Res ECMR, Abu Dhabi 15551, U Arab Emirates. Malik, Sumbal; Khan, Manzoor Ahmed; El-Sayed, Hesham; Khan, Jalal; Ullah, Obaid, United Arab Emirates Univ, Coll Informat Technol, Abu Dhabi 15551, U Arab Emirates. Malik, Sumbal; Khan, Manzoor Ahmed; El-Sayed, Hesham, United Arab Emirates Univ, Emirates Ctr Mobil Res ECMR, Abu Dhabi 15551, U Arab Emirates.}, DOI = {10.3390/s23010317}, Article-Number = {317}, EISSN = {1424-8220}, Keywords = {autonomous driving; decision-making; behavioural planning}, Keywords-Plus = {DECISION-MAKING; BEHAVIOR}, Research-Areas = {Chemistry; Engineering; Instruments \& Instrumentation}, Web-of-Science-Categories = {Chemistry, Analytical; Engineering, Electrical \& Electronic; Instruments \& Instrumentation}, Author-Email = {helsayed@uaeu.ac.ae}, Affiliations = {United Arab Emirates University; United Arab Emirates University}, ORCID-Numbers = {Khan, Manzoor/0000-0002-0319-8126 Malik, Sumbal/0000-0003-2759-3144 Ullah, Obaid/0000-0003-1434-7948 Khan, Muhammad Jalal/0000-0002-6230-1760 El-Sayed, Hesham/0000-0002-7488-0915}, Funding-Acknowledgement = {Emirates Center for Mobility Research (ECMR) of the United Arab Emirates University {[}31R151]}, Funding-Text = {This research was funded by the Emirates Center for Mobility Research (ECMR) of the United Arab Emirates University (grant number 31R151).}, Cited-References = {Aksjonov A, 2021, IEEE INT C INTELL TR, P660, DOI {[}10.1109/ITSC48978.2021.9565085, 10.1109/ITSC48978.2021.95645085]. {[}Anonymous], DARPA URBAN CHALLENG. {[}Anonymous], 2018, GLOB STAT REP ROAD S. Arab Aliasghar, 2016, 2016 IEEE International Conference on Automation Science and Engineering (CASE), P221, DOI 10.1109/COASE.2016.7743384. Ardelt M., 2010, IFAC PROC VOL, V43, P566, DOI DOI 10.3182/20100712-3-DE-2013.00006. Artunedo A, 2019, IEEE ACCESS, V7, P180039, DOI 10.1109/ACCESS.2019.2959432. Artunedo A, 2019, IEEE INT VEH SYM, P1645, DOI 10.1109/IVS.2019.8814070. Bachute M. R., 2021, MACH LEARN APPL, V6, P1172, DOI {[}10.1016/j.mlwa.2021.100164, DOI 10.1016/J.MLWA.2021.100164]. Bahram M., 2017, THESIS TU MUNCHEN MU. Batkovic I, 2022, THESIS CHALMERS TEKN. Bey H, 2019, IEEE INT VEH SYM, P1033, DOI 10.1109/IVS.2019.8813787. Bhattacharyya RP, 2019, IEEE INT CONF ROBOT, P789, DOI 10.1109/ICRA.2019.8793750. Bidot Julien, 2010, P MULTIKONFERENZ WIR, P2309. Borgo R, 2018, Arxiv, DOI 10.48550/ARXIV.1810.06338. Calvo J. A., 2018, CEUR WORKSHOP PROC, P2. Chandiramani J., 2017, THESIS DELFT U TECHN. Chang, 2017, POLYM REV, P1, DOI DOI 10.1080/15583724.2017.1380039. Chen JY, 2022, IEEE T INTELL TRANSP, V23, P5068, DOI 10.1109/TITS.2020.3046646. Chen JY, 2020, IEEE INT C INT ROBOT, P1999, DOI 10.1109/IROS45743.2020.9341020. Chen JY, 2019, IEEE INT C INT ROBOT, P2884, DOI 10.1109/IROS40897.2019.8968225. Claussmann L, 2020, IEEE T INTELL TRANSP, V21, P1826, DOI 10.1109/TITS.2019.2913998. Coskun S, 2018, 2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), P1032. Deshpande N, 2020, I C CONT AUTOMAT ROB, P428. Cuenca LG, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8121536. Gonzalez D. S., 2019, THESIS U GRENOBLE AL. Gu TY, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P5474, DOI 10.1109/IROS.2016.7759805. Hadded M, 2021, CONCURR COMP-PRACT E, V33, DOI 10.1002/cpe.6246. Hang P, 2022, Arxiv. Hang P, 2022, IEEE T INTELL TRANSP, V23, P3829, DOI 10.1109/TITS.2021.3069463. Hang P, 2021, IEEE T INTELL TRANSP, V22, P2076, DOI 10.1109/TITS.2020.3036984. Haydari A, 2022, IEEE T INTELL TRANSP, V23, P11, DOI 10.1109/TITS.2020.3008612. Hegedus T, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10217716. Hoel C.J., 2019, THESIS CHALMERS U TE. Hoel C.J.E., 2021, THESIS CHALMERS TEKN. Hoel CJ, 2020, IEEE T INTELL VEHICL, V5, P294, DOI 10.1109/TIV.2019.2955905. Hsu T, 2021, PSYCHOL HEALTH, V36, P236, DOI 10.1080/08870446.2020.1766041. Hu ZY, 2022, J VIB CONTROL, V28, P520, DOI 10.1177/10775463211009383. Huang YF, 2022, P I MECH ENG D-J AUT, V236, P1500, DOI 10.1177/09544070211039720. Hubmann C, 2018, IEEE T INTELL VEHICL, V3, P5, DOI 10.1109/TIV.2017.2788208. Hubmann C, 2016, 2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P1010, DOI 10.1109/ITSC.2016.7795679. Hussein A, 2017, ACM COMPUT SURV, V50, DOI 10.1145/3054912. Janai J, 2020, FOUND TRENDS COMPUT, V12, P1, DOI 10.1561/0600000079. Katrakazas C, 2015, TRANSPORT RES C-EMER, V60, P416, DOI 10.1016/j.trc.2015.09.011. Bui KHN, 2018, COMPUT ELECTR ENG, V71, P1012, DOI 10.1016/j.compeleceng.2017.10.016. Khan M.A., 2022, ACM COMPUT SURV, V55, DOI {[}10.1145/3485767, DOI 10.1145/3485767]. Khan MA, 2005, RTAS 2005: 11th IEEE Real Time and Embedded Technology and Applications Symposium, Proceedings, P98. Kiennert C, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3232848. Kiran BR, 2022, IEEE T INTELL TRANSP, V23, P4909, DOI 10.1109/TITS.2021.3054625. Korpan R., 2018, P HRI WS EXPLAINABLE. Le Mero L, 2022, IEEE T INTELL TRANSP, V23, P14128, DOI 10.1109/TITS.2022.3144867. Leon F, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060660. Li GF, 2022, TRANSPORT RES C-EMER, V134, DOI 10.1016/j.trc.2021.103452. Li H., 2020, P 20 COTA INT C TRAN, P816. Li S, 2021, CHIN J MECH ENG-EN, V34, DOI 10.1186/s10033-021-00639-3. Li Z., 2021, PROC 26 INT C AUTOM, P1, DOI {[}10.23919/ICAC50006.2021.9594261, DOI 10.23919/ICAC50006.2021.9594261]. Lima P. F, 2018, THESIS KTH ROYAL I T. Lin YC, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10182293. Liu M., 2022, IEEE T INTELL TRANSP. Liu Q, 2021, IEEE INT C INTELL TR, P30, DOI 10.1109/ITSC48978.2021.9564580. Liu SW, 2020, COMPUT COMMUN, V157, P143, DOI 10.1016/j.comcom.2020.04.021. Liu W, 2013, PROCEEDINGS OF THE 2013 6TH IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), P130, DOI 10.1109/RAM.2013.6758572. Liu Y, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10165589. Lv KX, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10091551. Ma JC, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14010031. Mabrouk A, 2021, SIMUL MODEL PRACT TH, V107, DOI 10.1016/j.simpat.2020.102213. Malik S, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21113783. Mei XD, 2021, Arxiv. Montanaro U, 2019, VEHICLE SYST DYN, V57, P779, DOI 10.1080/00423114.2018.1492142. Montemerlo M, 2008, J FIELD ROBOT, V25, P569, DOI 10.1002/rob.20258. Nilsson J, 2016, IEEE INTEL TRANSP SY, V8, P68, DOI 10.1109/MITS.2016.2565718. Nozari S, 2022, IEEE ACCESS, V10, P49738, DOI 10.1109/ACCESS.2022.3172712. Olsson M., 2016, BEHAV TREES DECISION. Orzechowski PF, 2020, IEEE INT VEH SYM, P767, DOI 10.1109/IV47402.2020.9304723. Paden B, 2016, IEEE T INTELL VEHICL, V1, P33, DOI 10.1109/TIV.2016.2578706. Palatti J, 2021, IEEE INT C INTELL TR, P508, DOI 10.1109/ITSC48978.2021.9564499. Pendleton SD, 2017, MACHINES, V5, DOI 10.3390/machines5010006. Peng B, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14020208. Peng Hang, 2021, 2021 40th Chinese Control Conference (CCC), P6106, DOI 10.23919/CCC52363.2021.9550305. Policy F.A.V., 2016, ITE J, V86, P11. Prathiba SB, 2021, IEEE T VEH TECHNOL, V70, P13340, DOI 10.1109/TVT.2021.3122257. Qiao Z., 2021, THESIS CARNEGIE MELL. Saad W., 2010, THESIS U OSLO OSLO. Sado F, 2020, Arxiv. Schwarting W, 2018, ANNU REV CONTR ROBOT, V1, P187, DOI 10.1146/annurev-control-060117-105157. Shetty S, 2022, FREE RADICAL RES, V56, P427, DOI 10.1080/10715762.2022.2133702. Society of Automotive Engineers, 2019, TAX DEF TERMS REL DR. Song WL, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/1025349. Song WT, 2018, IEEE INT SYMP INFO, P1. Speidel O., 2021, P 2021 IEEE INT C AU, P1. Sun LT, 2019, IEEE INT VEH SYM, P207, DOI 10.1109/IVS.2019.8814223. Talebpour A, 2015, TRANSP RES PROC, V7, P420, DOI 10.1016/j.trpro.2015.06.022. Thurachen S., 2022, THESIS AALTO U SINGA. Urmson C., 2007, TARTAN RACING MULTIM. Viana IB, 2019, INT CONF CONNECT VEH. Wang H, 2021, TRANSPORT RES B-METH, V149, P322, DOI 10.1016/j.trb.2021.05.007. Wang HJ, 2021, IEEE T VEH TECHNOL, V70, P8707, DOI 10.1109/TVT.2021.3098321. Wang P, 2021, IEEE INT CONF ROBOT, P1036, DOI 10.1109/ICRA48506.2021.9560907. Wang WC, 2022, MULTIMED TOOLS APPL, V81, P39873, DOI 10.1007/s11042-022-12300-9. Wei HR, 2018, IEEE INT C INTELL TR, P583, DOI 10.1109/ITSC.2018.8569307. Werling M, 2010, IEEE INT CONF ROBOT, P987, DOI 10.1109/ROBOT.2010.5509799. Yang DF, 2020, IEEE INT VEH SYM, P1807, DOI 10.1109/IV47402.2020.9304561. Yu LL, 2018, FUTURE INTERNET, V10, DOI 10.3390/fi10060051. Yuan TT, 2022, T EMERG TELECOMMUN T, V33, DOI 10.1002/ett.4427. Yun W.J., 2022, J COMMUN NETW-S KOR. Zhang C, 2022, IEEE INT VEH SYM, P323, DOI 10.1109/IV51971.2022.9827139. Zhang YX, 2021, IEEE T NEUR NET LEAR, V32, P5526, DOI 10.1109/TNNLS.2020.3042981. Zhao XM, 2022, INT J FUZZY SYST, V24, P1390, DOI 10.1007/s40815-021-01196-6. Zheng B., 2021, ARXIV. Ziegler J, 2014, IEEE INTEL TRANSP SY, V6, P8, DOI 10.1109/MITS.2014.2306552.}, Number-of-Cited-References = {109}, Times-Cited = {0}, Usage-Count-Last-180-days = {28}, Usage-Count-Since-2013 = {28}, Journal-ISO = {Sensors}, Doc-Delivery-Number = {7Q7NT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000909574400001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000560033900003, Author = {Schleder, Gabriel R. and Padilha, Antonio C. M. and Acosta, Carlos Mera and Costa, Marcio and Fazzio, Adalberto}, Title = {From DFT to machine learning: recent approaches to materials science-a review}, Journal = {JOURNAL OF PHYSICS-MATERIALS}, Year = {2019}, Volume = {2}, Number = {3}, Month = {JUL 1}, Abstract = {Recent advances in experimental and computational methods are increasing the quantity and complexity of generated data. This massive amount of raw data needs to be stored and interpreted in order to advance the materials science field. Identifying correlations and patterns from large amounts of complex data is being performed by machine learning algorithms for decades. Recently, the materials science community started to invest in these methodologies to extract knowledge and insights from the accumulated data. This review follows a logical sequence starting from density functional theory as the representative instance of electronic structure methods, to the subsequent high-throughput approach, used to generate large amounts of data. Ultimately, data-driven strategies which include data mining, screening, and machine learning techniques, employ the data generated. We show how these approaches to modern computational materials science are being used to uncover complexities and design novel materials with enhanced properties. Finally, we point to the present research problems, challenges, and potential future perspectives of this new exciting field.}, Publisher = {IOP Publishing Ltd}, Address = {TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Schleder, GR; Fazzio, A (Corresponding Author), Fed Univ ABC, Ctr Nat \& Human Sci, BR-09210580 Santo Andre, SP, Brazil. Schleder, GR; Fazzio, A (Corresponding Author), CNPEM, Brazilian Nanotechnol Natl Lab, BR-13083970 Campinas, SP, Brazil. Schleder, Gabriel R.; Acosta, Carlos Mera; Fazzio, Adalberto, Fed Univ ABC, Ctr Nat \& Human Sci, BR-09210580 Santo Andre, SP, Brazil. Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera; Costa, Marcio; Fazzio, Adalberto, CNPEM, Brazilian Nanotechnol Natl Lab, BR-13083970 Campinas, SP, Brazil.}, DOI = {10.1088/2515-7639/ab084b}, Article-Number = {032001}, EISSN = {2515-7639}, Keywords = {machine learning; artificial intelligence; materials informatics; density functional theory (DFT); high-throughput; data science; big data screening}, Keywords-Plus = {DENSITY-FUNCTIONAL THEORY; NEURAL-NETWORK POTENTIALS; GENERALIZED GRADIENT APPROXIMATION; ELECTRONIC-STRUCTURE CALCULATIONS; CALCULATING WAVE-FUNCTIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; HIGH-THROUGHPUT; CRYSTAL-STRUCTURE; UNREASONABLE EFFECTIVENESS}, Research-Areas = {Materials Science}, Web-of-Science-Categories = {Materials Science, Multidisciplinary}, Author-Email = {gabriel.schleder@ufabc.edu.br adalberto.fazzio@lnnano.cnpem.br}, ResearcherID-Numbers = {Schleder, Gabriel R/C-7986-2016 Fazzio, Adalberto/I-9933-2017 Schleder, Gabriel/GLU-0316-2022 Costa, Marcio/J-1890-2016 }, ORCID-Numbers = {Schleder, Gabriel R/0000-0003-3129-8682 Costa, Marcio/0000-0003-1029-8202 Fazzio, Adalberto/0000-0001-5384-7676 Mera Acosta, Carlos Augusto/0000-0002-9148-2142 Michejevs Padilha, Antonio Claudio/0000-0003-1697-2800}, Funding-Acknowledgement = {FundacAo de Amparo a Pesquisa do Estado de SAo Paulo (FAPESP) {[}2017/18139-6, 18/05565-0, 18/11856-7, 16/14011-2, 17/02317-2]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) {[}16/14011-2, 18/11856-7] Funding Source: FAPESP}, Funding-Text = {GRS, ACMP, CMA, MC, and AF acknowledge financial support from the FundacAo de Amparo a Pesquisa do Estado de SAo Paulo (FAPESP), project numbers 2017/18139-6, 18/05565-0, 18/11856-7, 16/14011-2, 17/02317-2.}, Cited-References = {Abadi M, 2015, TENSORFLOW LARGE SCA, DOI DOI 10.1038/NN.3331. Acosta CM, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.041302. Acosta CM, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.036401. Adamo C, 1999, J CHEM PHYS, V110, P6158, DOI 10.1063/1.478522. Agapito LA, 2015, PHYS REV X, V5, DOI 10.1103/PhysRevX.5.011006. Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894. AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165, DOI 10.1016/0009-2614(89)85118-8. Aichhorn M, 2016, COMPUT PHYS COMMUN, V204, P200, DOI 10.1016/j.cpc.2016.03.014. Allison J, 2011, JOM-US, V63, P15, DOI 10.1007/s11837-011-0053-y. Alvarez-Quiceno JC, 2017, J PHYS-CONDENS MAT, V29, DOI 10.1088/1361-648X/aa75f0. Amorim RG, 2007, NANO LETT, V7, P2459, DOI 10.1021/nl071217v. Ando Y, 2015, ANNU REV CONDEN MA P, V6, P361, DOI 10.1146/annurev-conmatphys-031214-014501. Ando Y, 2013, J PHYS SOC JPN, V82, DOI 10.7566/JPSJ.82.102001. Andrade X, 2015, PHYS CHEM CHEM PHYS, V17, P31371, DOI 10.1039/c5cp00351b. Andreoni W, 2000, PARALLEL COMPUT, V26, P819, DOI 10.1016/S0167-8191(00)00014-4. {[}Anonymous], ARXIV180510950CONDMA. {[}Anonymous], 2009, ACM SIGKDD EXPLOR NE, DOI {[}10.1145/1656274.1656278, DOI 10.1145/1656274.1656278]. {[}Anonymous], 2006, COMPUTATIONAL NANOSC. Armitage NP, 2018, REV MOD PHYS, V90, DOI 10.1103/RevModPhys.90.015001. Arsenault LF, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.155136. Artrith N, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.014112. Artrith N, 2016, COMP MATER SCI, V114, P135, DOI 10.1016/j.commatsci.2015.11.047. Artrith N, 2014, NANO LETT, V14, P2670, DOI 10.1021/nl5005674. Artrith N, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.153101. Aryasetiawan F, 1998, REP PROG PHYS, V61, P237, DOI 10.1088/0034-4885/61/3/002. Ashton M, 2017, NANO LETT, V17, P5251, DOI 10.1021/acs.nanolett.7b01367. Ashton M, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.106101. Balabin RM, 2011, PHYS CHEM CHEM PHYS, V13, P11710, DOI 10.1039/c1cp00051a. Balachandran PV, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.043802. Balachandran PV, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14282. Balachandran PV, 2015, SCI REP-UK, V5, DOI 10.1038/srep13285. Balan AP, 2018, NAT NANOTECHNOL, V13, P602, DOI 10.1038/s41565-018-0134-y. Baletto F, 2005, REV MOD PHYS, V77, P371, DOI 10.1103/RevModPhys.77.371. Bansil A, 2016, REV MOD PHYS, V88, DOI 10.1103/RevModPhys.88.021004. Baquiao DJR, 2019, COMP MATER SCI, V158, P382, DOI 10.1016/j.commatsci.2018.11.030. Barnard AS, 2010, REP PROG PHYS, V73, DOI 10.1088/0034-4885/73/8/086502. Baroni S, 2001, REV MOD PHYS, V73, P515, DOI 10.1103/RevModPhys.73.515. Bartel CJ, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aav0693. Bartel CJ, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06682-4. Bartok AP, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1701816. Bartok AP, 2015, INT J QUANTUM CHEM, V115, P1051, DOI 10.1002/qua.24927. Bartok AP, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.184115. Bartok AP, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136403. Basak Debasish, 2007, NEURAL INFORM PROCES, V11, P203, DOI DOI 10.1007/978-1-4302-5990-9\_4. Bassman L, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0129-0. Becke A. D., 1993, Journal of Chemical Physics, V98, P5648, DOI 10.1063/1.464913. BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098. Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401. Behler J, 2017, ANGEW CHEM INT EDIT, V56, P12828, DOI 10.1002/anie.201703114. Behler J, 2015, INT J QUANTUM CHEM, V115, P1032, DOI 10.1002/qua.24890. Behler J, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3553717. Behler J, 2008, PHYS STATUS SOLIDI B, V245, P2618, DOI 10.1002/pssb.200844219. Behler J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.185501. Bell G, 2009, SCIENCE, V323, P1297, DOI 10.1126/science.1170411. Bhattacharya S, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.085205. Bjorkman T, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.235502. Blase X, 2018, CHEM SOC REV, V47, P1022, DOI 10.1039/c7cs00049a. Bloch F., 1929, Z PHYS, V52, P555, DOI DOI 10.1007/BF01339455. BLOCHL PE, 1994, PHYS REV B, V49, P16223, DOI 10.1103/PhysRevB.49.16223. Blum V, 2009, COMPUT PHYS COMMUN, V180, P2175, DOI 10.1016/j.cpc.2009.06.022. Bock HH, 2008, ADV DATA ANAL CLASSI, V2, P1, DOI 10.1007/s11634-008-0022-7. Bode M, 2007, NATURE, V447, P190, DOI 10.1038/nature05802. Boes JR, 2017, J PHYS CHEM C, V121, P3479, DOI 10.1021/acs.jpcc.6b12752. Boes JR, 2016, INT J QUANTUM CHEM, V116, P979, DOI 10.1002/qua.25115. Bogojeski M, 2018, ARXIV181106255V1. Borysov SS, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171501. Botu V, 2015, INT J QUANTUM CHEM, V115, P1074, DOI 10.1002/qua.24836. Bouckaert RR, 2004, LECT NOTES ARTIF INT, V3339, P1089. Bowler DR, 2012, REP PROG PHYS, V75, DOI 10.1088/0034-4885/75/3/036503. Bradlyn B, 2017, NATURE, V547, P298, DOI 10.1038/nature23268. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Brockherde F, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00839-3. Broecker P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09098-0. Brown A.C., 1868, EARTH ENV SCI TR SO, V25, P151. Brunet F., 2010, THESIS. Burke K, 2013, INT J QUANTUM CHEM, V113, P96, DOI 10.1002/qua.24259. Burke K, 2012, J CHEM PHYS, V136, DOI 10.1063/1.4704546. Burkert T, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.027203. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Butler KT, 2016, CHEM SOC REV, V45, P6138, DOI 10.1039/c5cs00841g. Cano J, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.035139. Cao G, 2018, ARXIV180804733CONDMA. Cao GH, 2017, SCI BULL, V62, P1649, DOI 10.1016/j.scib.2017.11.016. Capelle K., 2006, Brazilian Journal of Physics, V36, P1318, DOI 10.1590/S0103-97332006000700035. Carleo G, 2017, SCIENCE, V355, P602, DOI 10.1126/science.aag2302. Caro MA, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.166101. Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI {[}10.1038/nphys4035, 10.1038/NPHYS4035]. Carrete J, 2014, ADV FUNCT MATER, V24, P7427, DOI 10.1002/adfm.201401201. Carvalho D, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.115453. Castro A, 2006, PHYS STATUS SOLIDI B, V243, P2465, DOI 10.1002/pssb.200642067. Ch'ng K, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.031038. Chen W, 2016, J MATER CHEM C, V4, P4414, DOI 10.1039/c5tc04339e. Chmiela S, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06169-2. Choudhary K, 2018, ARXIV181010640CONDMA. Choudhary K, 2018, PHYS REV MATER, V2, DOI {[}10.1103/PhysRevMaterials.2.083801, 10.1103/physrevmaterials.2.083801]. Choudhary K, 2018, PHYS REV B, V98, DOI {[}10.1103/PhysRevB.98.014107, 10.1103/physrevb.98.014107]. Choudhary K, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.82. Choudhary K, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05402-0. Clark SJ, 2005, Z KRISTALLOGR, V220, P567, DOI 10.1524/zkri.220.5.567.65075. Coey J. M. D., 2010, MAGNETISM MAGNETIC M, DOI {[}10.1017/CBO9780511845000, DOI 10.1017/CBO9780511845000]. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Costa M, 2018, J PHYS-CONDENS MAT, V30, DOI 10.1088/1361-648X/aacc08. Costa M, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.115142. Curtarolo S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.135503. Curtarolo S, 2013, NAT MATER, V12, P191, DOI {[}10.1038/NMAT3568, 10.1038/nmat3568]. Curtarolo S, 2012, COMP MATER SCI, V58, P227, DOI 10.1016/j.commatsci.2012.02.002. da Silva EZ, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115411. de Jong M, 2015, SCI DATA, V2, DOI 10.1038/sdata.2015.9. de Pablo JJ, 2014, CURR OPIN SOLID ST M, V18, P99, DOI 10.1016/j.cossms.2014.02.003. De S, 2016, PHYS CHEM CHEM PHYS, V18, P13754, DOI 10.1039/c6cp00415f. Dehghannasiri R, 2017, COMP MATER SCI, V129, P311, DOI 10.1016/j.commatsci.2016.11.041. Deng DL, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.195145. Deringer VL, 2018, FARADAY DISCUSS, V211, P45, DOI 10.1039/c8fd00034d. Deringer VL, 2018, J PHYS CHEM LETT, V9, P2879, DOI 10.1021/acs.jpclett.8b00902. Deringer VL, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.156001. Deringer VL, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.094203. Desgranges C, 2018, J CHEM PHYS, V149, DOI 10.1063/1.5037098. Deslippe J, 2012, COMPUT PHYS COMMUN, V183, P1269, DOI 10.1016/j.cpc.2011.12.006. Dey P, 2014, COMP MATER SCI, V83, P185, DOI 10.1016/j.commatsci.2013.10.016. Dion M, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.246401. Dirac PAM, 1929, P R SOC LOND A-CONTA, V123, P714, DOI 10.1098/rspa.1929.0094. Domingos P, 2012, COMMUN ACM, V55, P78, DOI 10.1145/2347736.2347755. Dovesi R, 2018, WIRES COMPUT MOL SCI, V8, DOI 10.1002/wcms.1360. Dragoni D, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.013808. Dral PO, 2015, J CHEM THEORY COMPUT, V11, P2120, DOI 10.1021/acs.jctc.5b00141. Draxl C, 2018, MRS BULL, V43, P676, DOI 10.1557/mrs.2018.208. Dudarev SL, 1998, PHYS REV B, V57, P1505, DOI 10.1103/PhysRevB.57.1505. EAGAR TW, 1995, TECHNOL REV, V98, P43. Enkovaara J, 2010, J PHYS-CONDENS MAT, V22, DOI 10.1088/0953-8984/22/25/253202. Eshuis H, 2012, THEOR CHEM ACC, V131, DOI 10.1007/s00214-011-1084-8. Faber FA, 2017, J CHEM THEORY COMPUT, V13, P5255, DOI 10.1021/acs.jctc.7b00577. Faber FA, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.135502. Fagan SB, 2004, NANO LETT, V4, P975, DOI 10.1021/nl049805l. Fagan SB, 2000, PHYS REV B, V61, P9994, DOI 10.1103/PhysRevB.61.9994. Fagan SB, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.033405. Ferre G, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4978623. Ferre G, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4930541. Feynman R, 2011, FEYNMAN LECT PHYS, VI. Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340. Fischer CC, 2006, NAT MATER, V5, P641, DOI 10.1038/nmat1691. Freysoldt C, 2014, REV MOD PHYS, V86, DOI 10.1103/RevModPhys.86.253. Frisch M. J., 2013, GAUSSIAN 09 REVISION, DOI DOI 10.12691/WJOC-5-1-2. Fu L, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.045302. Fu LA, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.106802. Fu L, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.195312. Fujimura K, 2013, ADV ENERGY MATER, V3, P980, DOI 10.1002/aenm.201300060. Furche F, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.195120. Gao T, 2016, J CHEMINFORMATICS, V8, DOI 10.1186/s13321-016-0133-7. Gastegger M, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5019667. Gastegger M, 2016, J CHEM PHYS, V144, DOI 10.1063/1.4950815. Gastegger M, 2015, J CHEM THEORY COMPUT, V11, P2187, DOI 10.1021/acs.jctc.5b00211. Gaultois MW, 2016, APL MATER, V4, DOI 10.1063/1.4952607. GEROSA M, 2017, J PHYS CONDENS MATT, V30, DOI DOI 10.1088/1361-648X/AA9725. Ghiringhelli LM, 2017, NEW J PHYS, V19, DOI 10.1088/1367-2630/aa57bf. Ghiringhelli LM, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.105503. Giannozzi P, 2017, J PHYS-CONDENS MAT, V29, DOI 10.1088/1361-648X/aa8f79. Giannozzi P, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/39/395502. Giustino F, 2017, REV MOD PHYS, V89, DOI 10.1103/RevModPhys.89.015003. Glick J, 2013, INFORM MAT SCI ENG, P147, DOI {[}10.1016/B978-0-12-394399-6.00008-4, DOI 10.1016/B978-0-12-394399-6.00008-4]. Goedecker S, 1999, REV MOD PHYS, V71, P1085, DOI 10.1103/RevModPhys.71.1085. Goedecker S, 1996, PHYS REV B, V54, P1703, DOI 10.1103/PhysRevB.54.1703. Goedecker S, 2004, J CHEM PHYS, V120, P9911, DOI 10.1063/1.1724816. Goldsmith BR, 2018, AICHE J, V64, P2311, DOI 10.1002/aic.16198. Goldsmith BR, 2017, NEW J PHYS, V19, DOI 10.1088/1367-2630/aa57c2. Gonze X, 2016, COMPUT PHYS COMMUN, V205, P106, DOI 10.1016/j.cpc.2016.04.003. Gonze X, 2009, COMPUT PHYS COMMUN, V180, P2582, DOI 10.1016/j.cpc.2009.07.007. Gonze X, 2002, COMP MATER SCI, V25, P478, DOI 10.1016/S0927-0256(02)00325-7. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Gopal P, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.245202. Gorai P, 2017, NAT REV MATER, V2, DOI 10.1038/natrevmats.2017.53. Gordon MS, 2005, THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY: THE FIRST FORTY YEARS, P1167, DOI 10.1016/B978-044451719-7/50084-6. Gossett E, 2018, COMP MATER SCI, V152, P134, DOI 10.1016/j.commatsci.2018.03.075. Grazulis S, 2009, J APPL CRYSTALLOGR, V42, P726, DOI 10.1107/S0021889809016690. Greeley J, 2006, NAT MATER, V5, P909, DOI 10.1038/nmat1752. Gresch D, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.075146. Gribbon P, 2005, DRUG DISCOV TODAY, V10, P17, DOI 10.1016/S1359-6446(04)03275-1. Grimme S, 2004, J COMPUT CHEM, V25, P1463, DOI 10.1002/jcc.20078. Grimme S, 2010, J CHEM PHYS, V132, DOI 10.1063/1.3382344. Grisafi A, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.036002. Gulans A, 2014, J PHYS-CONDENS MAT, V26, DOI 10.1088/0953-8984/26/36/363202. Gulans A, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.201105. Haastrup S, 2018, 2D MATER, V5, DOI 10.1088/2053-1583/aacfc1. Hachmann J, 2011, J PHYS CHEM LETT, V2, P2241, DOI 10.1021/jz200866s. Halevy A, 2009, IEEE INTELL SYST, V24, P8, DOI 10.1109/MIS.2009.36. Hammer B, 2000, ADV CATAL, V45, P71. Hansen K, 2015, J PHYS CHEM LETT, V6, P2326, DOI 10.1021/acs.jpclett.5b00831. Harl J, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.056401. Hartree DR, 1928, P CAMB PHILOS SOC, V24, P111. Hasan MZ, 2010, REV MOD PHYS, V82, P3045, DOI 10.1103/RevModPhys.82.3045. Hase F, 2018, ACS CENTRAL SCI, V4, P1134, DOI 10.1021/acscentsci.8b00307. Hase F, 2016, CHEM SCI, V7, P5139, DOI 10.1039/c5sc04786b. Hastie T., 2009, ELEMENTS STAT LEARNI, DOI {[}DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-84858-7]. Hattrick-Simpers JR, 2018, MOL SYST DES ENG, V3, P509, DOI 10.1039/c8me00005k. Hautier G, 2010, CHEM MATER, V22, P3762, DOI 10.1021/cm100795d. He YP, 2018, J PHYS CHEM LETT, V9, P4562, DOI 10.1021/acs.jpclett.8b01707. HEDIN L, 1965, PHYS REV, V139, pA796, DOI 10.1103/PhysRev.139.A796. Hegde G, 2017, SCI REP-UK, V7, DOI 10.1038/srep42669. Heiles S, 2013, INT J QUANTUM CHEM, V113, P2091, DOI 10.1002/qua.24462. Hellenbrandt M., 2004, CRYSTALLOGR REV, V10, P17, DOI DOI 10.1080/08893110410001664882. Herr JE, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5020067. Herres J, 2018, ANXIETY STRESS COPIN, V31, P387, DOI 10.1080/10615806.2018.1472492. Herring C, 1940, PHYS REV, V57, P1169, DOI 10.1103/PhysRev.57.1169. Hey T., 2009, 4 PARADIGM DATA INTE, P17. Heyd J, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2204597. Hill J., 2018, COMPUTATIONAL MAT SY, P193, DOI DOI 10.1007/978-3-319-68280-8\_9. Hill J, 2016, MRS BULL, V41, P399, DOI 10.1557/mrs.2016.93. Larsen AH, 2017, J PHYS-CONDENS MAT, V29, DOI 10.1088/1361-648X/aa680e. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRevB.7.1912. Hsieh TH, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1969. Hu WJ, 2017, PHYS REV E, V95, DOI 10.1103/PhysRevE.95.062122. Huang B, 2018, HDB MAT MODELING, P1, DOI DOI 10.1007/978-3-319-42913-7\_67-1. Huang B, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4964627. Huembeli P, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.134109. Hutchinson M. L, 2017, OVERCOMING DATA SCAR. Hutter J, 2014, WIRES COMPUT MOL SCI, V4, P15, DOI 10.1002/wcms.1159. IHM J, 1979, J PHYS C SOLID STATE, V12, P4409, DOI 10.1088/0022-3719/12/21/009. IHM J, 1980, J PHYS C SOLID STATE, V13, P3095, DOI 10.1088/0022-3719/13/16/516. Isayev O, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15679. Isayev O, 2015, CHEM MATER, V27, P735, DOI 10.1021/cm503507h. Jager MOJ, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0096-5. Jain A, 2018, PHYS REV B, V98, DOI 10.1103/PhysRevB.98.214112. Jain A, 2016, J MATER RES, V31, P977, DOI 10.1557/jmr.2016.80. Jain A, 2016, APL MATER, V4, DOI 10.1063/1.4944683. Jain A, 2015, CONCURR COMP-PRACT E, V27, P5037, DOI 10.1002/cpe.3505. Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323. Ji H, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5022839. Jiang B, 2016, INT REV PHYS CHEM, V35, P479, DOI 10.1080/0144235X.2016.1200347. Jindal S, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4983392. John P C S, 2018, ARXIV180710363. Jonayat ASM, 2018, ACS APPL ENERG MATER, V1, P6217, DOI 10.1021/acsaem.8b01261. Jones RO, 2015, REV MOD PHYS, V87, P897, DOI 10.1103/RevModPhys.87.897. Jose KVJ, 2012, J CHEM PHYS, V136, DOI 10.1063/1.4712397. Ju SH, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.021024. KABSCH W, 1976, ACTA CRYSTALLOGR A, V32, P922, DOI 10.1107/S0567739476001873. Kandathil SM, 2013, J COMPUT CHEM, V34, P1850, DOI 10.1002/jcc.23333. Kane CL, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.226801. Kane CL, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.146802. Khorshidi A, 2016, COMPUT PHYS COMMUN, V207, P310, DOI 10.1016/j.cpc.2016.05.010. Kim B., 2017, ARXIV170208608. Kim C, 2016, CHEM MATER, V28, P1304, DOI 10.1021/acs.chemmater.5b04109. Kim K, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.123801. Kitaev A, 2006, ANN PHYS-NEW YORK, V321, P2, DOI 10.1016/j.aop.2005.10.005. Kitaev AY, 2003, ANN PHYS-NEW YORK, V303, P2, DOI 10.1016/S0003-4916(02)00018-0. Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481. Klikauer T, 2016, TRIPLEC-COMMUN CAPIT, V14, P260. Klintenberg M, 2014, APPL PHYS RES, V6, P31, DOI {[}10.5539/apr.v6n4p31, DOI 10.5539/APR.V6N4P31]. Knox SW, 2018, WILEY SER PROBAB ST, P1, DOI 10.1002/9781119439868. Kochat V, 2018, SCI ADV, V4, DOI 10.1126/sciadv.1701373. Kohavi R, 2002, HDB DATA MINING KNOW, P548. Kohn W, 1999, REV MOD PHYS, V71, P1253, DOI 10.1103/RevModPhys.71.1253. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kolb B, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01251-z. Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865. Krack M, 2005, THEOR CHEM ACC, V114, P145, DOI 10.1007/s00214-005-0655-y. Kranz JJ, 2018, J CHEM THEORY COMPUT, V14, P2341, DOI 10.1021/acs.jctc.7b00933. Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169. KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558. Kuhn T. S., 1962, STRUCTURE SCI REVOLU. Kuisma M, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.115106. Kumar N, 2019, CHEM MATER, V31, P314, DOI 10.1021/acs.chemmater.8b02837. Lagaris IE, 1997, COMPUT PHYS COMMUN, V104, P1, DOI 10.1016/S0010-4655(97)00054-4. Lambert H, 2018, COMPUT PHYS COMMUN, V232, P256, DOI 10.1016/j.cpc.2018.04.029. Landis DD, 2012, COMPUT SCI ENG, V14, P51, DOI 10.1109/MCSE.2012.16. Larsen PM, 2019, PHYS REV MATER, V3, DOI 10.1103/PhysRevMaterials.3.034003. Lebegue S, 2013, PHYS REV X, V3, DOI 10.1103/PhysRevX.3.031002. Lederer Y, 2018, ACTA MATER, V159, P364, DOI 10.1016/j.actamat.2018.07.042. LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785. Lee J, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.115104. Lee K, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.081101. Legrain F, 2018, J CHEM INF MODEL, V58, P2460, DOI 10.1021/acs.jcim.8b00279. Legrain F, 2018, J PHYS CHEM B, V122, P625, DOI 10.1021/acs.jpcb.7b05296. Legrain F, 2017, CHEM MATER, V29, P6220, DOI 10.1021/acs.chemmater.7b00789. Lejaeghere K, 2016, SCIENCE, V351, DOI 10.1126/science.aad3000. Li H, 2017, WHICH MACHINE LEARNI. Li HC, 2018, J CHEM THEORY COMPUT, V14, P5764, DOI 10.1021/acs.jctc.8b00873. Li L, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.245129. Li L, 2016, INT J QUANTUM CHEM, V116, P819, DOI 10.1002/qua.25040. Li W, 2014, COMPUT PHYS COMMUN, V185, P1747, DOI 10.1016/j.cpc.2014.02.015. Li XT, 2017, J CHEM PHYS, V147, DOI 10.1063/1.4997292. Li XR, 2018, 2D MATER, V5, DOI 10.1088/2053-1583/aadb1e. Li ZW, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.096405. LI ZQ, 1987, P NATL ACAD SCI USA, V84, P6611, DOI 10.1073/pnas.84.19.6611. LIECHTENSTEIN AI, 1995, PHYS REV B, V52, pR5467, DOI 10.1103/PhysRevB.52.R5467. Lipton Z. C., 2018, QUEUE, V16, P31, DOI {[}10.1145/32363863241340., DOI 10.1145/3236386.3241340]. Liu CC, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.195430. Liu J, 2018, ARXIV180804748CONDMA. Liu JP, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.125133. Liu Q, 2017, J PHYS CHEM A, V121, P7273, DOI 10.1021/acs.jpca.7b07045. Liu Y, 2017, J MATERIOMICS, V3, P159, DOI 10.1016/j.jmat.2017.08.002. Lu SH, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05761-w. Lv BQ, 2015, PHYS REV X, V5, DOI 10.1103/PhysRevX.5.031013. Lyakhov AO, 2013, COMPUT PHYS COMMUN, V184, P1172, DOI 10.1016/j.cpc.2012.12.009. Ma XF, 2015, J PHYS CHEM LETT, V6, P3528, DOI 10.1021/acs.jpclett.5b01660. Madsen GKH, 2006, J AM CHEM SOC, V128, P12140, DOI 10.1021/ja062526a. Madsen GKH, 2018, COMPUT PHYS COMMUN, V231, P140, DOI 10.1016/j.cpc.2018.05.010. Magee CL, 2012, COMPLEXITY, V18, P10, DOI 10.1002/cplx.20309. MANNODIKANAKKITHOD, 2016, SCI REP-UK, V6, DOI DOI 10.1038/SREP20952. Marini A, 2009, COMPUT PHYS COMMUN, V180, P1392, DOI 10.1016/j.cpc.2009.02.003. Marques MAL, 2003, COMPUT PHYS COMMUN, V151, P60, DOI 10.1016/S0010-4655(02)00686-0. Martins TB, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.196803. Marx D., 2000, NIC SERIES, V1, P301. Marx D., 2009, AB INITIO MOL DYNAMI. Mathew K, 2017, COMP MATER SCI, V139, P140, DOI 10.1016/j.commatsci.2017.07.030. Mathew K, 2016, COMP MATER SCI, V122, P183, DOI 10.1016/j.commatsci.2016.05.020. Acosta CM, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.155438. Mera Acosta C, 2019, ARXIV190102276CONDMA. Meredig B, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.094104. METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114. Michael P K L, 2016, HIGH ENTROPY ALLOYS. Mills K, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.042113. Mohr S, 2015, PHYS CHEM CHEM PHYS, V17, P31360, DOI 10.1039/c5cp00437c. Montavon G, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/9/095003. Morgan D, 2005, MEAS SCI TECHNOL, V16, P296, DOI 10.1088/0957-0233/16/1/039. Mortensen JJ, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.035109. Mueller T, 2016, REV COMP CH, V29, P186. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Nardelli MB, 2018, COMP MATER SCI, V143, P462, DOI 10.1016/j.commatsci.2017.11.034. Natarajan AR, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0110-y. National Institute for Materials Science (NIMS), 2011, SUP MAT DAT SUPERCON. Neese F, 2012, WIRES COMPUT MOL SCI, V2, P73, DOI 10.1002/wcms.81. Nguyen TT, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5024577. NOMAD, 2017, NOV MAT DISC NOMAD R. Norskov JK, 2009, NAT CHEM, V1, P37, DOI {[}10.1038/NCHEM.121, 10.1038/nchem.121]. Nosengo N, 2016, NATURE, V533, P22, DOI 10.1038/533022a. Novaes FD, 2006, BRAZ J PHYS, V36, P799, DOI 10.1590/S0103-97332006000500039. Novoselov KS, 2005, P NATL ACAD SCI USA, V102, P10451, DOI 10.1073/pnas.0502848102. Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896. Nyshadham C, 2018, ARXIV180909203, P12. Oganov AR, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2210932. Oganov AR, 2011, ACCOUNTS CHEM RES, V44, P227, DOI 10.1021/ar1001318. Okamoto Y, 2017, J PHYS CHEM A, V121, P3299, DOI 10.1021/acs.jpca.7b01629. Oliynyk AO, 2016, CHEM MATER, V28, P7324, DOI 10.1021/acs.chemmater.6b02724. Olsen T, 2019, PHYS REV MATER, V3, DOI 10.1103/PhysRevMaterials.3.024005. Olsthoorn B., 2018, ARXIV181012814. Ong SP, 2013, COMP MATER SCI, V68, P314, DOI 10.1016/j.commatsci.2012.10.028. Ouyang RH, 2019, J PHYS-MATER, V2, DOI 10.1088/2515-7639/ab077b. Ouyang RH, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.083802. Owolabi TO, 2015, J SUPERCOND NOV MAGN, V28, P75, DOI 10.1007/s10948-014-2891-7. Padilha JE, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.066803. PARR RG, 1995, ANNU REV PHYS CHEM, V46, P701, DOI 10.1146/annurev.pc.46.100195.003413. Paszke Adam, 2017, ADV NEUR INF PROC SY, DOI DOI 10.18653/V1/D18-1244. Patra TK, 2017, ACS COMB SCI, V19, P96, DOI 10.1021/acscombsci.6b00136. Paul A, 2019, ANNU REV MATER RES, V49, P31, DOI 10.1146/annurev-matsci-070218-121825. Paul JT, 2017, J PHYS-CONDENS MAT, V29, DOI 10.1088/1361-648X/aa9305. Perdew JP, 2010, INT J QUANTUM CHEM, V110, P2801, DOI 10.1002/qua.22829. PERDEW JP, 1992, PHYS REV B, V45, P13244, DOI 10.1103/PhysRevB.45.13244. PERDEW JP, 1992, PHYS REV B, V46, P6671, DOI 10.1103/PhysRevB.46.6671. Perdew JP, 1996, J CHEM PHYS, V105, P9982, DOI 10.1063/1.472933. Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865. Perdew JP, 2001, AIP CONF PROC, V577, P1, DOI 10.1063/1.1390175. Pereira DA, 2007, BRIT J PHARMACOL, V152, P53, DOI 10.1038/sj.bjp.0707373. Petersilka M., 1996, Physical Review Letters, V76, P1212, DOI 10.1103/PhysRevLett.76.1212. Peterson AA, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4960708. PHILLIPS JC, 1959, PHYS REV, V116, P287, DOI 10.1103/PhysRev.116.287. Pickard CJ, 2011, J PHYS-CONDENS MAT, V23, DOI 10.1088/0953-8984/23/5/053201. Pilania G, 2016, SCI REP-UK, V6, DOI 10.1038/srep19375. Pilania G, 2016, FRONT MATER, V3, DOI 10.3389/fmats.2016.00019. Pilania G, 2013, SCI REP-UK, V3, DOI 10.1038/srep02810. Pizzi G, 2016, COMP MATER SCI, V111, P218, DOI 10.1016/j.commatsci.2015.09.013. Pizzi G, 2014, COMPUT PHYS COMMUN, V185, P422, DOI 10.1016/j.cpc.2013.09.015. Po HC, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00133-2. Polini M, 2013, NAT NANOTECHNOL, V8, P625, DOI {[}10.1038/nnano.2013.161, 10.1038/NNANO.2013.161]. Ponte P, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.205146. Pronobis W, 2018, EUR PHYS J B, V91, DOI 10.1140/epjb/e2018-90148-y. Pronobis W, 2018, J CHEM THEORY COMPUT, V14, P2991, DOI 10.1021/acs.jctc.8b00110. Quaranta V, 2017, J PHYS CHEM LETT, V8, P1476, DOI 10.1021/acs.jpclett.7b00358. Quinlan JR., 1993, C4 5 PROGRAMS MACHIN. Rajan AC, 2018, CHEM MATER, V30, P4031, DOI 10.1021/acs.chemmater.8b00686. Rajan K, 2005, MATER TODAY, V8, P38, DOI 10.1016/S1369-7021(05)71123-8. Ramakrishnan R, 2015, J CHEM THEORY COMPUT, V11, P2087, DOI 10.1021/acs.jctc.5b00099. Ramprasad R, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0056-5. Ratcliff LE, 2017, WIRES COMPUT MOL SCI, V7, DOI 10.1002/wcms.1290. Ren F, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1566. Richard RM, 2012, J CHEM PHYS, V137, DOI 10.1063/1.4742816. Rocha AR, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.085414. RUNGE E, 1984, PHYS REV LETT, V52, P997, DOI 10.1103/PhysRevLett.52.997. Rupp M, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5043213. Rupp M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.058301. Saad Y, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.104104. Saal JE, 2013, JOM-US, V65, P1501, DOI 10.1007/s11837-013-0755-4. Sadeghi A, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4828704. Sahoo SS, 2018, PR MACH LEARN RES, V80. SALPETER EE, 1951, PHYS REV, V84, P1232, DOI 10.1103/PhysRev.84.1232. SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206. Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663. Sanvito S, 2018, HDB MAT MODELING APP, P1, DOI DOI 10.1007/978-3-319-50257-1\_108-1. Sanvito S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1602241. Schablitzki T, 2013, MODEL SIMUL MATER SC, V21, DOI 10.1088/0965-0393/21/7/075008. Schleder GR, 2019, INT J QUANTUM CHEM, V119, DOI 10.1002/qua.25874. Schleder GR, 2017, J COMPUT CHEM, V38, P2675, DOI 10.1002/jcc.24899. Schmidt E, 2018, COMP MATER SCI, V149, P250, DOI 10.1016/j.commatsci.2018.03.029. Schmidt J, 2017, CHEM MATER, V29, P5090, DOI 10.1021/acs.chemmater.7b00156. SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347, DOI 10.1002/jcc.540141112. Schmidt TM, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.113407. Schrodinger E, 1926, PHYS REV, V28, P1049, DOI 10.1103/PhysRev.28.1049. Schutt KT, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.205118. Schuett O, 2018, J CHEM THEORY COMPUT, V14, P4168, DOI 10.1021/acs.jctc.8b00378. Schutt KT, 2019, J CHEM THEORY COMPUT, V15, P448, DOI 10.1021/acs.jctc.8b00908. Schwarz K, 2003, COMP MATER SCI, V28, P259, DOI 10.1016/S0927-0256(03)00112-5. Segall MD, 2002, J PHYS-CONDENS MAT, V14, P2717, DOI 10.1088/0953-8984/14/11/301. Seino J, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5007230. Seko A., 2018, NANOINFORMATICS, P3, DOI DOI 10.1007/978-981-10-7617-6\_1. Seko A, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.144110. Shao YH, 2015, MOL PHYS, V113, P184, DOI 10.1080/00268976.2014.952696. Sharma BR, 2014, SCI REP-UK, V4, DOI 10.1038/srep07164. Shi WJ, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.205118. Simm GN, 2019, J PHYS CHEM A, V123, P385, DOI 10.1021/acs.jpca.8b10007. Skylaris CK, 2005, J CHEM PHYS, V122, DOI 10.1063/1.1839852. Smith JS, 2017, CHEM SCI, V8, P3192, DOI 10.1039/c6sc05720a. Smith JS, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5023802. Snyder JC, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4834075. Snyder JC, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.253002. Soler JM, 2002, J PHYS-CONDENS MAT, V14, P2745, DOI 10.1088/0953-8984/14/11/302. Sosso GC, 2018, MOL SIMULAT, V44, P866, DOI 10.1080/08927022.2018.1447107. Stanev V, 2018, NPJ COMPUT MATER, V4, DOI {[}10.1038/s41524-018-0085-8, 10.1038/s41524-018-0099-2]. STEINHARDT PJ, 1983, PHYS REV B, V28, P784, DOI 10.1103/PhysRevB.28.784. Stokbro K, 2003, ANN NY ACAD SCI, V1006, P212, DOI 10.1196/annals.1292.014. Suchsland P, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.174435. Sun BC, 2016, NANOSCALE HORIZ, V1, P89, DOI 10.1039/c5nh00126a. Sun JW, 2016, NAT CHEM, V8, P831, DOI {[}10.1038/NCHEM.2535, 10.1038/nchem.2535]. Supka AR, 2017, COMP MATER SCI, V136, P76, DOI 10.1016/j.commatsci.2017.03.055. Takahashi K, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.054110. Takahashi K, 2016, COMP MATER SCI, V112, P364, DOI 10.1016/j.commatsci.2015.11.013. Tang F, 2019, NATURE, V566, P486, DOI 10.1038/s41586-019-0937-5. Tao JM, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.146401. Tawfik SA, 2019, ADV THEOR SIMUL, V2, DOI 10.1002/adts.201800128. Tehrani AM, 2018, J AM CHEM SOC, V140, P9844, DOI 10.1021/jacs.8b02717. Teng PY, 2018, PHYS REV E, V98, DOI 10.1103/PhysRevE.98.033305. Thomas LH, 1927, P CAMB PHILOS SOC, V23, P542, DOI 10.1017/S0305004100011683. Thompson AP, 2015, J COMPUT PHYS, V285, P316, DOI 10.1016/j.jcp.2014.12.018. Thouin F, 2019, NAT MATER, V18, P349, DOI {[}10.1016/0022-3093(95)00355-X, 10.1038/s41563-018-0262-7]. THOULESS DJ, 1982, PHYS REV LETT, V49, P405, DOI 10.1103/PhysRevLett.49.405. Tian FH, 2006, J PHYS CHEM B, V110, P17866, DOI 10.1021/jp0635462. Pham TL, 2017, SCI TECHNOL ADV MAT, V18, P756, DOI 10.1080/14686996.2017.1378060. Pham TL, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5021089. Tkatchenko A, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.073005. Togo A, 2015, SCRIPTA MATER, V108, P1, DOI 10.1016/j.scriptamat.2015.07.021. Torres A, 2015, PHYS CHEM CHEM PHYS, V17, P5386, DOI 10.1039/c4cp04635h. Tran F, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.226401. TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993. Ubaru S, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.214102. Ueno Tsuyoshi, 2016, Materials Discovery, V4, P18, DOI 10.1016/j.md.2016.04.001. Ullrich CA, 2014, BRAZ J PHYS, V44, P154, DOI 10.1007/s13538-013-0141-2. van Heel M, 2016, OPEN J STAT, V6, P701, DOI DOI 10.4236/OJS.2016.64059. van Nieuwenburg EPL, 2017, NAT PHYS, V13, P435, DOI {[}10.1038/NPHYS4037, 10.1038/nphys4037]. VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892. VandeVondele J, 2005, COMPUT PHYS COMMUN, V167, P103, DOI 10.1016/j.cpc.2004.12.014. VandeVondele J, 2007, J CHEM PHYS, V127, DOI 10.1063/1.2770708. Venderley J, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.257204. Vergniory M G, 2018, ARXIV180710271CONDMA. von Lilienfeld OA, 2015, INT J QUANTUM CHEM, V115, P1084, DOI 10.1002/qua.24912. Vydrov OA, 2010, J CHEM PHYS, V133, DOI 10.1063/1.3521275. Wang C, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.144432. Wang H, 2018, COMPUT PHYS COMMUN, V228, P178, DOI 10.1016/j.cpc.2018.03.016. Wang L., 2016, PHYS REV B, V94, DOI {[}10.1103/PhysRevB.94.195105, DOI 10.1103/PHYSREVB.94.195105]. Wang YC, 2012, COMPUT PHYS COMMUN, V183, P2063, DOI 10.1016/j.cpc.2012.05.008. Wang YC, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.094116. Wang ZH, 2014, RSC ADV, V4, P4069, DOI 10.1039/c3ra47187j. Ward L, 2018, MRS BULL, V43, P683, DOI 10.1557/mrs.2018.204. Ward L, 2018, ACTA MATER, V159, P102, DOI 10.1016/j.actamat.2018.08.002. Ward L, 2018, COMP MATER SCI, V152, P60, DOI 10.1016/j.commatsci.2018.05.018. Ward L, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.024104. Ward L, 2017, CURR OPIN SOLID ST M, V21, P167, DOI 10.1016/j.cossms.2016.07.002. Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28. Warren JA, 2018, MRS BULL, V43, P452, DOI 10.1557/mrs.2018.122. Weeks C, 2011, PHYS REV X, V1, DOI 10.1103/PhysRevX.1.021001. Werner HJ, 2012, WIRES COMPUT MOL SCI, V2, P242, DOI 10.1002/wcms.82. Wetzel SJ, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.022140. WIGNER EP, 1960, COMMUN PUR APPL MATH, V13, P1, DOI 10.1002/cpa.3160130102. Wilkinson Mark D, 2016, Sci Data, V3, P160018, DOI 10.1038/sdata.2016.18. Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893. Wolpert DH, 1996, NEURAL COMPUT, V8, P1341, DOI 10.1162/neco.1996.8.7.1341. Wrasse EO, 2014, PHYS CHEM CHEM PHYS, V16, P8114, DOI 10.1039/c3cp55233k. Wu K, 2013, CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), P380. Wu QS, 2018, COMPUT PHYS COMMUN, V224, P405, DOI 10.1016/j.cpc.2017.09.033. WU RQ, 1994, SCIENCE, V265, P376, DOI 10.1126/science.265.5170.376. Xiao D, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.096404. Xie T, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.145301. Yamawaki M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aar4192. Yang DW, 2017, CHEM MATER, V29, P524, DOI 10.1021/acs.chemmater.6b03221. Yang KS, 2012, NAT MATER, V11, P614, DOI {[}10.1038/NMAT3332, 10.1038/nmat3332]. Yao K, 2018, CHEM SCI, V9, P2261, DOI 10.1039/c7sc04934j. Yao K, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4973380. Ye WK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06322-x. Yu LP, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.068701. Zeni C, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5024558. Zhang HJ, 2009, NAT PHYS, V5, P438, DOI 10.1038/NPHYS1270. Zhang LF, 2018, J CHEM PHYS, V149, DOI 10.1063/1.5027645. Zhang LF, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.143001. Zhang PF, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.066401. Zhang TT, 2019, NATURE, V566, P475, DOI 10.1038/s41586-019-0944-6. Zhang WZ, 2019, PHYS REV E, V99, DOI 10.1103/PhysRevE.99.032142. Zhang Y, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.245119. Zhang Y, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.216401. Zhang Y, 2018, NPJ COMPUT MATER, V4, DOI {[}10.1186/s41016-018-0133-8, 10.1038/s41524-018-0081-z]. Zhang ZC, 1998, MAT SCI ENG B-SOLID, V54, P149, DOI 10.1016/S0921-5107(98)00157-3. Zhao X L, 2018, ARXIV180801731CONDMA. Zhao Y, 2018, ACS CENTRAL SCI, V4, P246, DOI 10.1021/acscentsci.7b00556. Zhou M, 2014, SCI REP-UK, V4, DOI 10.1038/srep07102. Zhu Z, 2017, ARXIV170804766. Zhu L, 2016, J CHEM PHYS, V144, DOI 10.1063/1.4940026. Zhuo Y, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06625-z. Zhuo Y, 2018, J PHYS CHEM LETT, V9, P1668, DOI 10.1021/acs.jpclett.8b00124. Ziletti A, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05169-6. Zunger A, 2018, NAT REV CHEM, V2, DOI 10.1038/s41570-018-0121.}, Number-of-Cited-References = {505}, Times-Cited = {297}, Usage-Count-Last-180-days = {130}, Usage-Count-Since-2013 = {387}, Journal-ISO = {J. Phys-Mater.}, Doc-Delivery-Number = {NA7YM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000560033900003}, OA = {gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000600551200003, Author = {Qin, S. Joe and Dong, Yining and Zhu, Qinqin and Wang, Jin and Liu, Qiang}, Title = {Bridging systems theory and data science: A unifying review of dynamic latent variable analytics and process monitoring}, Journal = {ANNUAL REVIEWS IN CONTROL}, Year = {2020}, Volume = {50}, Pages = {29-48}, Abstract = {This paper is concerned with data science and analytics as applied to data from dynamic systems for the purpose of monitoring, prediction, and inference. Collinearity is inevitable in industrial operation data. Therefore, we focus on latent variable methods that achieve dimension reduction and collinearity removal. We present a new dimension reduction expression of state space framework to unify dynamic latent variable analytics for process data, dynamic factor models for econometrics, subspace identification of multivariate dynamic systems, and machine learning algorithms for dynamic feature analysis. We unify or differentiate them in terms of model structure, objectives with constraints, and parsimony of parameterization. The Kalman filter theory in the latent space is used to give a system theory foundation to some empirical treatments in data analytics. We provide a unifying review of the connections among the dynamic latent variable methods, dynamic factor models, subspace identification methods, dynamic feature extractions, and their uses for prediction and process monitoring. Both unsupervised dynamic latent variable analytics and the supervised counterparts are reviewed. Illustrative examples are presented to show the similarities and differences among the analytics in extracting features for prediction and monitoring.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Qin, SJ (Corresponding Author), City Univ Hong Kong, Ctr Syst Informat Engn, Sch Data Sci, 83 Tat Chee Ave, Hong Kong, Peoples R China. Qin, SJ (Corresponding Author), City Univ Hong Kong, Ctr Syst Informat Engn, Hong Kong Inst Data Sci, 83 Tat Chee Ave, Hong Kong, Peoples R China. Qin, S. Joe, City Univ Hong Kong, Ctr Syst Informat Engn, Sch Data Sci, 83 Tat Chee Ave, Hong Kong, Peoples R China. Qin, S. Joe, City Univ Hong Kong, Ctr Syst Informat Engn, Hong Kong Inst Data Sci, 83 Tat Chee Ave, Hong Kong, Peoples R China. Dong, Yining, Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. Zhu, Qinqin, Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. Wang, Jin, Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. Liu, Qiang, Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Boston, MA USA.}, DOI = {10.1016/j.arcontrol.2020.09.004}, ISSN = {1367-5788}, EISSN = {1872-9088}, Keywords = {Data science; Latent variable analytics; Machine learning; Process data analytics; Kalman filtering; Multivariate time series}, Keywords-Plus = {PARTIAL LEAST-SQUARES; SLOW FEATURE ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; FISHER DISCRIMINANT-ANALYSIS; TIME-SERIES; FACTOR MODEL; SUBSPACE IDENTIFICATION; FAULT-DIAGNOSIS; MULTIBLOCK PLS; REGRESSION}, Research-Areas = {Automation \& Control Systems}, Web-of-Science-Categories = {Automation \& Control Systems}, Author-Email = {joe.qin@cityu.edu.hk}, Affiliations = {City University of Hong Kong; City University of Hong Kong; Stanford University; University of Waterloo; Auburn University System; Auburn University; Northeastern University}, ResearcherID-Numbers = {zhu, qin/HIR-6291-2022 Qin, S. Joe/A-4234-2010 }, ORCID-Numbers = {Qin, S. Joe/0000-0001-7631-2535 Wang, Jin/0000-0002-7638-8537}, Funding-Acknowledgement = {City University of Hong Kong {[}9380123]}, Funding-Text = {Financial support for this work from the City University of Hong Kong under Project 9380123, SGP: Bridging between Systems Theory and Dynamic Data Learning towards Industrial Intelligence and Industry 4.0, is gratefully acknowledged.}, Cited-References = {Akaike H., 1976, MATH SCI ENG, V126, P27, DOI {[}10.1016/S0076-5392(08)60869-3, DOI 10.1016/S0076-5392(08)60869-3]. Akaike H, 1975, SIAM J CONTROL, V13, P162. Alcala CF, 2010, IND ENG CHEM RES, V49, P7849, DOI 10.1021/ie9018947. Anderson B. D. O., 2012, OPTIMAL FILTERING. {[}Anonymous], 1976, J ECONOMETRICS. Askari M. R., 2020, ANN REV CONTRO UNPUB. Baffi G, 2002, CHEM ENG RES DES, V80, P75, DOI 10.1205/026387602753393240. Bai JS, 2015, J BUS ECON STAT, V33, P221, DOI 10.1080/07350015.2014.941467. BASILEVSKY A, 1979, J AM STAT ASSOC, V74, P284, DOI 10.2307/2286324. Blaschke T, 2007, NEURAL COMPUT, V19, P994, DOI 10.1162/neco.2007.19.4.994. Blaschke T, 2006, NEURAL COMPUT, V18, P2495, DOI 10.1162/neco.2006.18.10.2495. Bode CA, 2007, ANNU REV CONTROL, V31, P241, DOI 10.1016/j.arcontrol.2007.07.001. BOX GEP, 1954, ANN MATH STAT, V25, P290, DOI 10.1214/aoms/1177728786. BOX GEP, 1977, BIOMETRIKA, V64, P355, DOI 10.1093/biomet/64.2.355. Brillinger DR., 1981, TIME SERIES DATA ANA. BROOMHEAD DS, 1986, PHYSICA D, V20, P217, DOI 10.1016/0167-2789(86)90031-X. Chen JH, 2002, CHEM ENG SCI, V57, P63, DOI 10.1016/S0009-2509(01)00366-9. Chiang L, 2017, ANN REV CHEM BIOMOLE, V8. Chiang L. H., 2000, FAULT DETECTION DIAG, DOI DOI 10.1007/978-1-4471-0347-9. Chiang LH, 2000, CHEMOMETR INTELL LAB, V50, P243, DOI 10.1016/S0169-7439(99)00061-1. Chun H, 2010, J R STAT SOC B, V72, P3, DOI 10.1111/j.1467-9868.2009.00723.x. Deistler M, 2019, NUMER ALGEBR CONTROL, V9, P383, DOI 10.3934/naco.2019025. Deistler M, 2015, ADV STUD THEOR APPL, V48, P379, DOI 10.1007/978-3-319-03122-4\_24. Deistler M, 2010, EUR J CONTROL, V16, P211, DOI 10.3166/EJC.16.211-224. DEJONG S, 1995, J CHEMOMETR, V9, P323, DOI 10.1002/cem.1180090406. Dong D, 1996, COMPUT CHEM ENG, V20, P65, DOI 10.1016/0098-1354(95)00003-K. Dong YN, 2020, IEEE T IND INFORM, V16, P4068, DOI 10.1109/TII.2019.2958074. Dong YN, 2020, IND ENG CHEM RES, V59, P2353, DOI 10.1021/acs.iecr.9b04741. Dong YN, 2018, J PROCESS CONTR, V68, P64, DOI 10.1016/j.jprocont.2018.04.006. Dong YN, 2018, COMPUT CHEM ENG, V114, P69, DOI 10.1016/j.compchemeng.2017.10.029. Dong YN, 2018, J PROCESS CONTR, V67, P1, DOI 10.1016/j.jprocont.2017.05.002. DOWNS JJ, 1993, COMPUT CHEM ENG, V17, P245, DOI 10.1016/0098-1354(93)80018-I. ENGLE R, 1981, J AM STAT ASSOC, V76, P774, DOI 10.2307/2287567. Fletcher NM, 2008, CAN J CHEM ENG, V86, P960, DOI 10.1002/cjce.20094. Forni M, 2005, J AM STAT ASSOC, V100, P830, DOI 10.1198/016214504000002050. Forni M, 2000, REV ECON STAT, V82, P540, DOI 10.1162/003465300559037. Gajjar S, 2018, J PROCESS CONTR, V67, P112, DOI 10.1016/j.jprocont.2017.03.005. Ge ZQ, 2013, IND ENG CHEM RES, V52, P3543, DOI 10.1021/ie302069q. GELADI P, 1986, ANAL CHIM ACTA, V185, P1, DOI 10.1016/0003-2670(86)80028-9. GEWEKE JF, 1981, J ECONOMETRICS, V17, P287, DOI 10.1016/0304-4076(81)90003-8. Goerg G., 2012, 30 INT C MACH LEARN. Hoskuldsson A, 2001, CHEMOMETR INTELL LAB, V55, P23, DOI 10.1016/S0169-7439(00)00113-1. Hotelling H, 1936, BIOMETRIKA, V28, P321, DOI 10.2307/2333955. Hu B, 2012, J PROCESS CONTR, V22, P207, DOI 10.1016/j.jprocont.2011.09.002. Huang B, 2001, J PROCESS CONTR, V11, P19, DOI 10.1016/S0959-1524(99)00062-1. Huang B, 2005, J PROCESS CONTR, V15, P53, DOI 10.1016/j.jprocont.2004.04.007. Izenman A. J., 1975, Journal of Multivariate Analysis, V5, P248, DOI 10.1016/0047-259X(75)90042-1. Jackson J. E., 2005, USERS GUIDE PRINCIPA, V587. JACKSON JE, 1979, TECHNOMETRICS, V21, P341, DOI 10.2307/1267757. Jiang BB, 2015, COMPUT CHEM ENG, V77, P1, DOI 10.1016/j.compchemeng.2015.03.001. Jin JH, 2001, J INTELL MANUF, V12, P257, DOI 10.1023/A:1011248925750. Jolliffe I., 2002, PRINCIPAL COMPONENT. Juricek BC, 2004, IND ENG CHEM RES, V43, P458, DOI 10.1021/ie0301684. Kailath T., 1980, LINEAR SYSTEMS. Kano M, 2008, COMPUT CHEM ENG, V32, P12, DOI 10.1016/j.compchemeng.2007.07.005. KASPAR MH, 1993, CHEM ENG SCI, V48, P3447, DOI 10.1016/0009-2509(93)85001-6. Khatibisepehr S, 2013, J PROCESS CONTR, V23, P1575, DOI 10.1016/j.jprocont.2013.05.007. KRAMER MA, 1991, AICHE J, V37, P233, DOI 10.1002/aic.690370209. Ku WF, 1995, CHEMOMETR INTELL LAB, V30, P179, DOI 10.1016/0169-7439(95)00076-3. Lakshminarayanan S, 1997, AICHE J, V43, P2307, DOI 10.1002/aic.690430916. Lam C, 2012, ANN STAT, V40, P694, DOI 10.1214/12-AOS970. Lam C, 2011, BIOMETRIKA, V98, P901, DOI 10.1093/biomet/asr048. LARIMORE WE, 1990, PROCEEDINGS OF THE 29TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, P596, DOI 10.1109/CDC.1990.203665. Larimore WE, 1996, SIGNAL PROCESS, V52, P131, DOI 10.1016/0165-1684(96)00049-7. Li G., 2011, IFAC P, V44, P12886. Li G, 2014, IEEE T IND ELECTRON, V61, P6438, DOI 10.1109/TIE.2014.2301761. Li G, 2011, IEEE T NEURAL NETWOR, V22, P2262, DOI 10.1109/TNN.2011.2165853. Li G, 2010, AUTOMATICA, V46, P204, DOI 10.1016/j.automatica.2009.10.030. Li WH, 2001, J PROCESS CONTR, V11, P661, DOI 10.1016/S0959-1524(00)00041-X. Liu HB, 2019, IND ENG CHEM RES, V58, P16676, DOI 10.1021/acs.iecr.9b00701. Liu Q, 2018, J PROCESS CONTR, V67, P12, DOI 10.1016/j.jprocont.2016.11.009. Ljung L., 1999, SYSTEM IDENTIFICATIO, V2nd. Lv Y, 2012, IND ENG CHEM RES, V51, P16092, DOI 10.1021/ie3005379. MACGREGOR JF, 1994, AICHE J, V40, P826, DOI 10.1002/aic.690400509. Negiz A, 1997, AICHE J, V43, P2002, DOI 10.1002/aic.690430810. NG V, 1992, J ECONOMETRICS, V52, P245, DOI 10.1016/0304-4076(92)90072-Y. Odelson BJ, 2006, AUTOMATICA, V42, P303, DOI 10.1016/j.automatica.2005.09.006. Palo T. J., 2013, IND ENG CHEM RES, V52, P13685. Pan JZ, 2008, BIOMETRIKA, V95, P365, DOI 10.1093/biomet/asn009. PENA D, 1987, J AM STAT ASSOC, V82, P836, DOI 10.2307/2288794. Pena D, 2019, J AM STAT ASSOC, V114, P1683, DOI 10.1080/01621459.2018.1520117. Pena D, 2016, J AM STAT ASSOC, V111, P1121, DOI 10.1080/01621459.2015.1072542. Qin S. J., 2020, IFAC P VOLUMES. Qin SJ, 2006, COMPUT CHEM ENG, V30, P1502, DOI 10.1016/j.compchemeng.2006.05.045. Qin SJ, 2019, COMPUT CHEM ENG, V126, P465, DOI 10.1016/j.compchemeng.2019.04.003. Qin SJ, 2013, AICHE J, V59, P496, DOI 10.1002/aic.13959. Qin SJ, 2012, ANNU REV CONTROL, V36, P220, DOI 10.1016/j.arcontrol.2012.09.004. Qin SJ, 2006, J PROCESS CONTR, V16, P179, DOI 10.1016/j.jprocont.2005.06.002. QIN SJ, 1992, COMPUT CHEM ENG, V16, P379, DOI 10.1016/0098-1354(92)80055-E. Qin SJ, 2003, J CHEMOMETR, V17, P480, DOI 10.1002/cem.800. Qin SJ, 1996, COMPUT CHEM ENG, V20, P147, DOI 10.1016/0098-1354(95)00011-P. QIN SJ, 1993, IFAC SYMP SERIES, V1993, P93. Raich A. C., 1996, P 13 IFAC WORLD C, P283. Reinsel G. C., 1998, LECT NOTES STAT, V136. Richthofer S, 2015, 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P190, DOI 10.1109/ICMLA.2015.158. RICKER NL, 1988, IND ENG CHEM RES, V27, P343, DOI 10.1021/ie00074a023. Rosipal R, 2002, J MACH LEARN RES, V2, P97, DOI 10.1162/15324430260185556. Rosipal R, 2006, LECT NOTES COMPUT SC, V3940, P34, DOI 10.1007/11752790\_2. Rosipal R, 2011, CHEMOINFORMATICS AND ADVANCED MACHINE LEARNING PERSPECTIVES: COMPLEX COMPUTATIONAL METHODS AND COLLABORATIVE TECHNIQUES, P169, DOI 10.4018/978-1-61520-911-8.ch009. Russell EL, 2000, CHEMOMETR INTELL LAB, V51, P81, DOI 10.1016/S0169-7439(00)00058-7. Scherrer W., 2019, HDB STAT, V41, P145, DOI DOI 10.1016/BS.HOST.2019.01.004. Scholkopf B, 1998, NEURAL COMPUT, V10, P1299, DOI 10.1162/089976698300017467. Severson Kristen, 2015, IFAC - Papers Online, V48, P931, DOI 10.1016/j.ifacol.2015.09.646. Shang C, 2018, IEEE T IND ELECTRON, V65, P8895, DOI 10.1109/TIE.2018.2811358. Shang C, 2014, J PROCESS CONTR, V24, P223, DOI 10.1016/j.jprocont.2014.01.012. Shin J, 2017, APPL ENERG, V195, P616, DOI 10.1016/j.apenergy.2017.03.081. Shumway R. H., 1982, Journal of Time Series Analysis, V3, P253, DOI 10.1111/j.1467-9892.1982.tb00349.x. Stock JH, 2002, J AM STAT ASSOC, V97, P1167, DOI 10.1198/016214502388618960. Sun L., 2013, MULTILABEL DIMENSION. TAN SF, 1995, AICHE J, V41, P1471, DOI 10.1002/aic.690410612. Tibshirani R, 1996, J ROY STAT SOC B MET, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x. Trygg J, 2002, J CHEMOMETR, V16, P119, DOI 10.1002/cem.695. Tsay R.S., 2013, MULTIVARIATE TIME SE. Valle S, 1999, IND ENG CHEM RES, V38, P4389, DOI 10.1021/ie990110i. Vanhatalo E, 2017, CHEMOMETR INTELL LAB, V167, P1, DOI 10.1016/j.chemolab.2017.05.016. VANOVERSCHEE P, 1994, AUTOMATICA, V30, P75, DOI 10.1016/0005-1098(94)90230-5. VAUTARD R, 1989, PHYSICA D, V35, P395, DOI 10.1016/0167-2789(89)90077-8. VERHAEGEN M, 1994, AUTOMATICA, V30, P61, DOI 10.1016/0005-1098(94)90229-1. Viberg M, 1997, AUTOMATICA, V33, P1603, DOI 10.1016/S0005-1098(97)00097-6. Wang D, 2018, IEEE ACCESS, V6, DOI 10.1109/ACCESS.2017.2774261. Wang J, 2002, J PROCESS CONTR, V12, P841, DOI 10.1016/S0959-1524(02)00016-1. Wang ZX, 2015, J PROCESS CONTR, V26, P56, DOI 10.1016/j.jprocont.2015.01.003. WEARE BC, 1982, MON WEATHER REV, V110, P481, DOI 10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2. Willems J. C., 1997, INTRO MATH SYSTEMS T, V26. Wiskott L, 2002, NEURAL COMPUT, V14, P715, DOI 10.1162/089976602317318938. Witten DM, 2009, STAT APPL GENET MOL, V8, DOI 10.2202/1544-6115.1470. Wold H., 1966, RES PAPERS STAT, P411. Wold S, 1996, J CHEMOMETR, V10, P463. WOLD S, 1992, CHEMOMETR INTELL LAB, V14, P71, DOI 10.1016/0169-7439(92)80093-J. Yao Y, 2009, ANNU REV CONTROL, V33, P172, DOI 10.1016/j.arcontrol.2009.08.001. Yue HH, 2001, IND ENG CHEM RES, V40, P4403, DOI 10.1021/ie000141+. Zhao CH, 2018, AICHE J, V64, P1662, DOI 10.1002/aic.16048. Zhou L, 2017, IEEE T CONTR SYST T, V25, P366, DOI 10.1109/TCST.2016.2550426. Zhu Q., 2016, IFAC PAPERS ONLINE, V49, P1044. Zhu Q., 2019, 2019 IEEE GLOBECOM W, P1, DOI 10.1109/PHM-Qingdao46334.2019.8943068. Zhu QQ, 2020, COMPUT CHEM ENG, V137, DOI 10.1016/j.compchemeng.2020.106809. Zhu QQ, 2017, J PROCESS CONTR, V60, P95, DOI 10.1016/j.jprocont.2017.06.017. Zhu W, 2019, AICHE J, V65, P582, DOI 10.1002/aic.16452. Zou H, 2006, J COMPUT GRAPH STAT, V15, P265, DOI 10.1198/106186006X113430.}, Number-of-Cited-References = {139}, Times-Cited = {46}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {52}, Journal-ISO = {Annu. Rev. Control}, Doc-Delivery-Number = {PH6WV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000600551200003}, DA = {2023-04-22}, } @article{ WOS:000736485400001, Author = {Jasinska-Piadlo, A. and Bond, R. and Biglarbeigi, P. and Brisk, R. and Campbell, P. and McEneaneny, D.}, Title = {What can machines learn about heart failure? A systematic literature review}, Journal = {INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS}, Year = {2022}, Volume = {13}, Number = {3}, Pages = {163-183}, Month = {APR}, Abstract = {This paper presents a systematic literature review with respect to application of data science and machine learning (ML) to heart failure (HF) datasets with the intention of generating both a synthesis of relevant findings and a critical evaluation of approaches, applicability and accuracy in order to inform future work within this field. This paper has a particular intention to consider ways in which the low uptake of ML techniques within clinical practice could be resolved. Literature searches were performed on Scopus (2014-2021), ProQuest and Ovid MEDLINE databases (2014-2021). Search terms included `heart failure' or `cardiomyopathy' and `machine learning', `data analytics', `data mining' or `data science'. 81 out of 1688 articles were included in the review. The majority of studies were retrospective cohort studies. The median size of the patient cohort across all studies was 1944 (min 46, max 93260). The largest patient samples were used in readmission prediction models with the median sample size of 5676 (min. 380, max. 93260). Machine learning methods focused on common HF problems: detection of HF from available dataset, prediction of hospital readmission following index hospitalization, mortality prediction, classification and clustering of HF cohorts into subgroups with distinctive features and response to HF treatment. The most common ML methods used were logistic regression, decision trees, random forest and support vector machines. Information on validation of models was scarce. Based on the authors' affiliations, there was a median 3:1 ratio between IT specialists and clinicians. Over half of studies were co-authored by a collaboration of medical and IT specialists. Approximately 25\% of papers were authored solely by IT specialists who did not seek clinical input in data interpretation. The application of ML to datasets, in particular clustering methods, enabled the development of classification models assisting in testing the outcomes of patients with HF. There is, however, a tendency to over-claim the potential usefulness of ML models for clinical practice. The next body of work that is required for this research discipline is the design of randomised controlled trials (RCTs) with the use of ML in an intervention arm in order to prospectively validate these algorithms for real-world clinical utility.}, Publisher = {SPRINGERNATURE}, Address = {CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Jasinska-Piadlo, A (Corresponding Author), Southern Hlth \& Social Care Trust, Craigavon Hosp, CVD Res Unit, 68 Lurgan Rd, Portadown BT63 5QQ, North Ireland. Jasinska-Piadlo, A (Corresponding Author), Ulster Univ, Fac Comp Engn \& Built Environm, Shore Rd, Jordanstown BT37 0QB, North Ireland. Jasinska-Piadlo, A.; Brisk, R.; McEneaneny, D., Southern Hlth \& Social Care Trust, Craigavon Hosp, CVD Res Unit, 68 Lurgan Rd, Portadown BT63 5QQ, North Ireland. Jasinska-Piadlo, A.; Bond, R.; Biglarbeigi, P.; Brisk, R., Ulster Univ, Fac Comp Engn \& Built Environm, Shore Rd, Jordanstown BT37 0QB, North Ireland. Campbell, P., Southern Hlth \& Social Care Trust, Craigavon Hosp, Cardiol Dept, 68 Lurgan Rd, Portadown BT63 5QQ, North Ireland. McEneaneny, D., Ulster Univ, Ctr Adv Cardiovasc Res, Shore Rd, Jordanstown BT37 0QB, North Ireland.}, DOI = {10.1007/s41060-021-00300-1}, EarlyAccessDate = {DEC 2021}, ISSN = {2364-415X}, EISSN = {2364-4168}, Keywords = {Heart failure; Machine learning; Data analytics; Data science; Heart failure dataset}, Keywords-Plus = {RISK PREDICTION MODELS; EJECTION FRACTION; ESC GUIDELINES; READMISSION; DIAGNOSIS; MORTALITY; CLASSIFICATION; MANAGEMENT; EVENTS}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Information Systems}, Author-Email = {jasinska\_piadlo-a@ulster.ac.uk}, Affiliations = {Ulster University; Ulster University}, ORCID-Numbers = {Jasinska-Piadlo, Alicja/0000-0002-3603-5999 McEneaney, David/0000-0002-1734-0736 Brisk, Rob/0000-0002-3865-0792 Biglarbeigi, Pardis/0000-0002-5908-6334 Bond, Raymond/0000-0002-1078-2232}, Funding-Acknowledgement = {Public Health Agency and Research and Development Department of the Health and Social Care in Northern Ireland, UK}, Funding-Text = {Dr Jasinska-Piadlowas awarded a Doctoral Fellowship Award by Public Health Agency and Research and Development Department of the Health and Social Care in Northern Ireland, UK.}, Cited-References = {Adler ED, 2020, EUR J HEART FAIL, V22, P139, DOI 10.1002/ejhf.1628. Africa A., 2016, ARPN J ENG APPL SCI, V11, P9350. Agibetov A, 2020, J CLIN MED, V9, DOI 10.3390/jcm9051334. Ahmad T, 2018, J AM HEART ASSOC, V7, DOI 10.1161/JAHA.117.008081. Alba AC, 2013, CIRC-HEART FAIL, V6, P881, DOI 10.1161/CIRCHEARTFAILURE.112.000043. Aleryani A., 2020, SN COMPUT SCI, V1, P134, DOI {[}10.1007/s42979-020-00131-0, DOI 10.1007/S42979-020-00131-0]. Ali L, 2019, IEEE ACCESS, V7, P54007, DOI 10.1109/ACCESS.2019.2909969. Aljaaf AJ, 2015, 2015 THIRD INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), P101, DOI 10.1109/TAEECE.2015.7113608. Alotaibi FS, 2019, INT J ADV COMPUT SC, V10, P261. {[}Anonymous], 2020, Circulation, V141, pe33, DOI 10.1161/CIR.0000000000000746. {[}Anonymous], 2016, REC ONS CHEST PAIN S. Antman EM, 2000, JAMA-J AM MED ASSOC, V284, P835, DOI 10.1001/jama.284.7.835. Austin PC, 2013, J CLIN EPIDEMIOL, V66, P398, DOI 10.1016/j.jclinepi.2012.11.008. B.H. Foundation, 2018, HEART FAIL STAT. Balabaeva K, 2019, PROCEDIA COMPUT SCI, V156, P87, DOI 10.1016/j.procs.2019.08.183. Balabaeva K, 2019, STUD HEALTH TECHNOL, V261, P179, DOI 10.3233/978-1-61499-975-1-179. Barrett M, 2019, EPMA J, V10, P445, DOI 10.1007/s13167-019-00188-9. Bazoukis G, 2021, HEART FAIL REV, V26, P23, DOI 10.1007/s10741-020-10007-3. Ben-Assuli O, 2021, INFORM SYST MANAGE, V38, P237, DOI 10.1080/10580530.2020.1847362. Ben-Assuli O, 2019, HEALTH POLICY TECHN, V8, P7, DOI 10.1016/j.hlpt.2018.12.003. Benjamens S, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-00324-0. Blackstone EH, 2018, J AM COLL CARDIOL, V72, P650, DOI 10.1016/j.jacc.2018.05.045. Bradshaw PJ, 2006, HEART, V92, P905, DOI 10.1136/hrt.2005.073122. Burns DJP, 2020, JACC-HEART FAIL, V8, P212, DOI 10.1016/j.jchf.2019.09.007. Chen PP, 2019, J BIOMED INFORM, V100, DOI 10.1016/j.jbi.2019.103303. Chen YW, 2020, CMC-COMPUT MATER CON, V65, P495, DOI 10.32604/cmc.2020.011278. Cheung B. L. P., 2018, P 2018 IEEE INT C BI, P222, DOI {[}10.1109/BHI.2018.8333409, DOI 10.1109/BHI.2018.8333409]. Chicco D, 2020, BMC MED INFORM DECIS, V20, DOI 10.1186/s12911-020-1023-5. Choi E, 2016, ARXIV160203686. Choi E, 2017, J AM MED INFORM ASSN, V24, P361, DOI 10.1093/jamia/ocw112. Chu JB, 2020, J BIOMED INFORM, V109, DOI 10.1016/j.jbi.2020.103518. Cleland JGF, 2006, EUR HEART J, V27, P1928, DOI 10.1093/eurheartj/ehl099. Dey D, 2019, J AM COLL CARDIOL, V73, P1317, DOI 10.1016/j.jacc.2018.12.054. Di Tanna GL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0224135. Dickstein K, 2008, EUR HEART J, V29, P2388, DOI 10.1093/eurheartj/ehn309. Dua D., 2017, UCI MACHINE LEARNING. Dziewiecka E, 2020, ESC HEART FAIL, V7, P2455, DOI 10.1002/ehf2.12809. Eichler K, 2007, BMC FAM PRACT, V8, DOI 10.1186/1471-2296-8-1. Elming MB, 2017, CIRCULATION, V136, P1772, DOI 10.1161/CIRCULATIONAHA.117.028829. England, 2019, TOPOL PROGRAMME DIGI. ESC, 2017, PREVENTING SUDDEN DE. Escamilla A.K.G., 2019, DIMENSIONALITY REDUC. Ezaz G, 2014, J AM HEART ASSOC, V3, DOI 10.1161/JAHA.113.000472. Feldman D, 2013, J HEART LUNG TRANSPL, V32, P157, DOI 10.1016/j.healun.2012.09.013. Friedman C, 2013, INT J MED INFORM, V82, pE63, DOI 10.1016/j.ijmedinf.2012.05.010. Friedman CP, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001456. Frisoli TM, 2017, CIRC-CARDIOVASC QUAL, V10, DOI 10.1161/CIRCOUTCOMES.117.003617. Frizzell JD, 2017, JAMA CARDIOL, V2, P204, DOI 10.1001/jamacardio.2016.3956. Fry E., 2018, TECHS NEXT BIG WAVE. Garg R., 2016, ARXIV160901586. General Medical Council, 2013, GOOD MED PRACTICE. Gong J, 2020, IRBM, V41, P71, DOI 10.1016/j.irbm.2019.08.002. Gu J, 2021, INT J CARDIOL, V323, P148, DOI 10.1016/j.ijcard.2020.08.065. Hasan S.M.M., 2018, 2018 INT C COMP COMM, P1. Hedman AK, 2020, HEART, V106, P342, DOI 10.1136/heartjnl-2019-315481. Heidenreich PA, 2014, J CARD FAIL, V20, P465, DOI 10.1016/j.cardfail.2014.04.020. Hicks SA, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-90285-5. Hu ZY, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0237724. Hussain L, 2021, WAVE RANDOM COMPLEX, V31, P2337, DOI 10.1080/17455030.2020.1743378. Janssen KJM, 2010, J CLIN EPIDEMIOL, V63, P721, DOI 10.1016/j.jclinepi.2009.12.008. Javeed A, 2020, MOB INF SYST, V2020, DOI 10.1155/2020/8843115. Jensen PB, 2012, NAT REV GENET, V13, P395, DOI 10.1038/nrg3208. Jiang Wei, 2019, JMIR Med Inform, V7, pe14756, DOI 10.2196/14756. Jing LY, 2020, JACC-HEART FAIL, V8, P578, DOI 10.1016/j.jchf.2020.01.012. Kannan R, 2019, SPRINGERBR APPL SCI, P63, DOI 10.1007/978-981-13-0059-2\_8. Kaptein YE, 2020, BMC CARDIOVASC DISOR, V20, DOI 10.1186/s12872-020-01620-z. Kaur G., 2018, P 2018 41 INT C TELE, V1, P1. Kelly CJ, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1426-2. Kubus L, 2018, SIG P ALGO ARCH ARR, P191, DOI 10.23919/SPA.2018.8563352. KUMAR GK, 2016, INDIAN J SCI TECHNOL, V9. KWON JM, 2019, PLOS ONE, V14, DOI DOI 10.1371/JOURNAL.PONE.0219302. Le H.M., 2018, J COMPUT SCI CYBERN, V34, P33, DOI DOI 10.15625/1813-9663/34/1/12665. Le MT, 2020, PROC INT CONF ADV, P221, DOI 10.1109/ATC50776.2020.9255445. Lewis G.E. Maor, SCI REP-UK, V11. Liang PY, 2020, IEEE INT C BIOINFORM, P2009, DOI 10.1109/BIBM49941.2020.9313253. Liaqat RM., 2016, INT J COMPUT SCI INF, V14, P61. liu Daowen, 2019, Chinese Medical Sciences Journal, V34, P90, DOI 10.24920/003579. Liu R, 2014, IEEE DATA MINING, P911, DOI 10.1109/ICDM.2014.89. Liu XX, 2019, LANCET, V394, P1225, DOI 10.1016/S0140-6736(19)31819-7. Lorenzoni G, 2019, J CLIN MED, V8, DOI 10.3390/jcm8091298. Lu XH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245177. Mahajan SM, 2019, STUD HEALTH TECHNOL, V264, P243, DOI 10.3233/SHTI190220. Mahajan SM, 2018, EUR J CARDIOVASC NUR, V17, P675, DOI 10.1177/1474515118799059. Mahajan SM, 2018, STUD HEALTH TECHNOL, V250, P250, DOI 10.3233/978-1-61499-872-3-250. Mahajan SM, 2017, STUD HEALTH TECHNOL, V245, P506, DOI 10.3233/978-1-61499-830-3-506. Mathis MR, 2020, ANESTH ANALG, V130, P1188, DOI 10.1213/ANE.0000000000004630. McMurray JJV, 2019, NEW ENGL J MED, V381, P1995, DOI 10.1056/NEJMoa1911303. McMurray JJV, 2014, NEW ENGL J MED, V371, P993, DOI 10.1056/NEJMoa1409077. Medline, 2021, MEDL OV DAT. Moher D, 2015, SYST REV-LONDON, V4, DOI {[}10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1186/s13643-015-0087-2]. Moore L, 2014, IEEE SYS MAN CYBERN, P882, DOI 10.1109/SMC.2014.6974023. N.I. for ClinicalExcellence, 2018, CHRON HEART FAIL AD. Nagamine T, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77286-6. Nashef SAM, 2002, EUR J CARDIO-THORAC, V22, P101, DOI 10.1016/S1010-7940(02)00208-7. Nouraei H, 2021, INT J CARDIOL, V331, P138, DOI 10.1016/j.ijcard.2021.01.052. O'Gara PT, 2013, CIRCULATION, V128, pE481, DOI {[}10.1161/01.cir.0000440804.93914.d8, 10.1016/j.jacc.2012.11.019, 10.1161/CIR.0b013e3182742cf6]. Panahiazar M, 2015, STUD HEALTH TECHNOL, V216, P40, DOI 10.3233/978-1-61499-564-7-40. Ponikowski P, 2016, EUR HEART J, V37, P2129, DOI 10.1093/eurheartj/ehw128. Priyanka H., 2016, INT J DATA MINING KN, V6, P31. Qiao ND, 2019, ENDOCR CONNECT, V8, P952, DOI 10.1530/EC-19-0156. Rahimi K, 2014, JACC-HEART FAIL, V2, P440, DOI 10.1016/j.jchf.2014.04.008. Rammal HF, 2018, INT J ADV COMPUT SC, V9, P363. Rehman Akif, 2020, PMAM `20: Proceedings of the Eleventh International Workshop on Programming Models and Applications for Multicores and Manycores, DOI 10.1145/3380536.3380540. Rjeily CB, 2017, 2017 FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), P29. Roth GA, 2020, J AM COLL CARDIOL, V76, P2982, DOI 10.1016/j.jacc.2020.11.010. Saqlain M., 2016, INT J COMPUT SCI INF, V14, P413. Saqlain M, 2016, INT CONF PARA PROC, P426, DOI 10.1109/ICPPW.2016.66. Sarijaloo F, 2021, CLIN CARDIOL, V44, P230, DOI 10.1002/clc.23532. Savitz S, 2020, HEALTH SERV RES, V55, P85. Sax DR, 2021, ANN EMERG MED, V77, P237, DOI 10.1016/j.annemergmed.2020.09.436. Schrub F, 2020, ARCH CARDIOVASC DIS, V113, P381, DOI 10.1016/j.acvd.2020.03.012. Scopus, 2021, SCOP DAT. Shameer K, 2017, BIOCOMPUTING, P276, DOI 10.1142/9789813207813\_0027. Sideris C, 2016, COMPUT BIOL MED, V73, P165, DOI 10.1016/j.compbiomed.2016.04.014. Simpson J, 2018, JACC-HEART FAIL, V6, P463, DOI 10.1016/j.jchf.2018.03.020. Slotnick HB, 1996, ACAD MED, V71, P28, DOI 10.1097/00001888-199601000-00014. Somani S, 2021, EUROPACE, V23, P1179, DOI 10.1093/europace/euaa377. Spatharou A., 2020, MCKINSEY TRANSFORMIN. Stampehl M, 2020, CURR MED RES OPIN, V36, P179, DOI 10.1080/03007995.2019.1662654. Sun Jimeng, 2012, AMIA Annu Symp Proc, V2012, P901. Suzuki S, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221911. Szummer K, 2017, EUR HEART J, V38, P3056, DOI 10.1093/eurheartj/ehx515. Taslimitehrani V, 2016, J BIOMED INFORM, V60, P260, DOI 10.1016/j.jbi.2016.01.009. Topaz M., 2016, WESTERN J NURS RES, V1, P19. Topol E., 2019, TOPOL REV PREPARING. Tripoliti EE, 2017, COMPUT STRUCT BIOTEC, V15, P26, DOI 10.1016/j.csbj.2016.11.001. Tse G, 2020, ESC HEART FAIL, V7, P3716, DOI 10.1002/ehf2.12929. UKGovernment, 2018, FUT HEALTHC OUR VIS. UKGovernment, 2021, SOFTW MED DEV CHANG. Ul Haq A, 2018, MOB INF SYST, V2018, DOI 10.1155/2018/3860146. UnitedNations D.o.E., 2015, WORLD POPULATION AGI. Vollmer S, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.l6927. Wang Z, 2020, INT J NUMER METH BIO, V36, DOI 10.1002/cnm.3273. Wang Z, 2018, INT J MED INFORM, V115, P10, DOI 10.1016/j.ijmedinf.2018.04.003. Xiao C, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195024. Yuan YB, 2017, INT CONF MACH LEARN, P48. Zhang X., 2019, PROC SIAM INT C DATA, P576. Zhou YD, 2020, J AM HEART ASSOC, V9, DOI 10.1161/JAHA.120.019628.}, Number-of-Cited-References = {138}, Times-Cited = {3}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {6}, Journal-ISO = {Int. J, Data Sci. Anal.}, Doc-Delivery-Number = {0I4BM}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000736485400001}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000462661000046, Author = {Liyanage, Sohani and Dia, Hussein and Abduljabbar, Rusul and Bagloee, Saeed Asadi}, Title = {Flexible Mobility On-Demand: An Environmental Scan}, Journal = {SUSTAINABILITY}, Year = {2019}, Volume = {11}, Number = {5}, Month = {MAR 1}, Abstract = {On-demand shared mobility is increasingly being promoted as an influential strategy to address urban transport challenges in large and fast-growing cities. The appeal of this form of transport is largely attributed to its convenience, ease of use, and affordability made possible through digital platforms and innovations. The convergence of the shared economy with a number of established and emerging technologiessuch as artificial intelligence (AI), Internet of Things (IoT), and Cloud and Fog computingis helping to expedite their deployment as a new form of public transport. Recently, this has manifested itself in the form of Flexible Mobility on Demand (FMoD) solutions, aimed at meeting personal travel demands through flexible routing and scheduling. Increasingly, these shared mobility solutions are blurring the boundaries with existing forms of public transport, particularly bus operations. This paper presents an environmental scan and analysis of the technological, social, and economic impacts surrounding disruptive technology-driven shared mobility trends. Specifically, the paper includes an examination of current and anticipated external factors that are of direct relevance to collaborative and low carbon mobility. The paper also outlines how these trends are likely to influence the mobility industries now and into the future. The paper collates information from a wide body of literature and reports on findings from actual use cases' that exist today which have used these disruptive mobility solutions to deliver substantial benefits to travellers around the world. Finally, the paper provides stakeholders with insight into identifying and responding to the likely needs and impacts of FMoD and informs their policy and strategy positions on the implementation of smart mobility systems in their cities and jurisdictions.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Liyanage, S; Dia, H (Corresponding Author), Swinburne Univ Technol, Dept Civil \& Construct Engn, POB 218, Hawthorn, Vic, Australia. Liyanage, Sohani; Dia, Hussein; Abduljabbar, Rusul; Bagloee, Saeed Asadi, Swinburne Univ Technol, Dept Civil \& Construct Engn, POB 218, Hawthorn, Vic, Australia.}, DOI = {10.3390/su11051262}, Article-Number = {1262}, EISSN = {2071-1050}, Keywords = {Flexible Mobility on Demand (FMoD); Mobility-as-a-Service (MaaS); shared mobility; Internet of Things (IoT); Cloud and Fog computing; sustainable public transport}, Keywords-Plus = {ROBUST OPTIMIZATION MODEL; TIME-SERIES ANALYSIS; PUBLIC TRANSPORTATION; NEURAL-NETWORKS; BIKE SHARE; RESPONSIVE TRANSPORT; AUTONOMOUS VEHICLES; PREDICTION MODEL; CAR DEPENDENCY; SAN-FRANCISCO}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences; Environmental Studies}, Author-Email = {sliyanage@swin.edu.au hdia@swin.edu.au rabduljabbar@swin.edu.au sasadibagloee@swin.edu.au}, Affiliations = {Swinburne University of Technology}, ResearcherID-Numbers = {abduljabbar, rusul/AAO-1128-2020 Liyanage, Sohani/Q-6258-2019 }, ORCID-Numbers = {abduljabbar, rusul/0000-0002-5943-8176 Liyanage, Sohani/0000-0002-1875-5300 Dia, Hussein/0000-0001-8778-7296 Asadi Bagloee, Saeed/0000-0001-6078-6314}, Funding-Acknowledgement = {Swinburne University of Technology; Iraqi Government}, Funding-Text = {Sohani Liyanage acknowledges her PhD scholarship provided by the Swinburne University of Technology. Rusul Abduljabbar acknowledges the Iraqi Government for her PhD scholarship.}, Cited-References = {Abdmouleh Z, 2017, RENEW ENERG, V113, P266, DOI 10.1016/j.renene.2017.05.087. ABDULJABBAR R, 2019, SUSTAINABILITY-BASEL, V11, DOI {[}DOI 10.3390/SU11010189, DOI 10.3390/su11010189]. Agard B., 2006, P 12 IFAC S INF CONT, P1. Agatz N, 2012, EUR J OPER RES, V223, P295, DOI 10.1016/j.ejor.2012.05.028. Andrade T.C., 2014, DEV APPL USING CLUST, P13. {[}Anonymous], 2006, INTRO DATA MINING. {[}Anonymous], 2016, IEEE-ASME T MECH, VPP, P1, DOI DOI 10.1109/IEEESTD.2016.7460875. {[}Anonymous], 2016, T1 TRAVEL DEMAND MOD. Anthes G, 2013, COMMUN ACM, V56, P13, DOI 10.1145/2461256.2461262. Arel I, 2010, IEEE COMPUT INTELL M, V5, P13, DOI 10.1109/MCI.2010.938364. Atasoy B, 2015, TRANSPORT RES C-EMER, V56, P373, DOI 10.1016/j.trc.2015.04.009. Bagloee SA, 2018, EXPERT SYST APPL, V95, P142, DOI 10.1016/j.eswa.2017.11.039. Bagloee SA, 2016, J MOD TRANSP, V24, P284, DOI 10.1007/s40534-016-0117-3. Bagloee SA, 2014, J ADV TRANSPORT, V48, P486, DOI 10.1002/atr.1198. Bagloee SA, 2012, TRANSPORT RES REC, P1, DOI 10.3141/2319-01. Bagloee SA, 2011, TRANSPORT RES B-METH, V45, P1787, DOI 10.1016/j.trb.2011.07.005. Baptista P, 2014, PROCD SOC BEHV, V111, P28, DOI 10.1016/j.sbspro.2014.01.035. Barber L., 2016, UBER REVEALS LONDON. Bell JE, 2004, ADV ENG INFORM, V18, P41, DOI 10.1016/j.aei.2004.07.001. Bellos I, 2017, M\&SOM-MANUF SERV OP, V19, P185, DOI 10.1287/msom.2016.0605. Ben-Elia E, 2013, TRANSPORTATION, V40, P269, DOI 10.1007/s11116-012-9426-5. Bottou L, 2018, SIAM REV, V60, P223, DOI 10.1137/16M1080173. Bouton S., 2015, URBAN MOBILITY TIPPI. Brake J, 2007, TRANSPORT POLICY, V14, P458, DOI 10.1016/j.tranpol.2007.09.001. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Briand AS, 2017, TRANSPORT RES C-EMER, V79, P274, DOI 10.1016/j.trc.2017.03.021. Burns L.D., 2012, BUSINESS PLAN SUSTAI. Burrows A., 2015, JOURNEYS FUTURE. Butler B., 2018, WHAT IS FOG COMPUTIN. Buys L, 2012, AUSTRALAS J AGEING, V31, P181, DOI 10.1111/j.1741-6612.2011.00567.x. Cagliero L, 2017, COMPUTING, V99, P39, DOI 10.1007/s00607-016-0505-x. Cao Y, 2016, PROCEDIA ENGINEER, V138, P478, DOI 10.1016/j.proeng.2016.01.283. Caterini AL, 2018, SPRINGERBRIEF COMPUT, DOI 10.1007/978-3-319-75304-1. Caulfield B, 2009, TRANSPORT RES D-TR E, V14, P527, DOI 10.1016/j.trd.2009.07.008. Ceapa I., 2012, P ACM SIGKDD INT WOR, P134, DOI DOI 10.1145/2346496.2346518. Center for Automated Research, 2016, IMP NEW MOB SERV AUT. Cernov M., 2010, EFFECT ENV AWARENESS. Cervero R, 2004, TRANSPORT RES REC, P117. Chan ND, 2012, TRANSPORT REV, V32, P93, DOI 10.1080/01441647.2011.621557. Chong ZJ, 2013, ADV INTELL SYST, V193, P671. Chun Wei Choo, 1999, Bulletin of the American Society for Information Science, V25, P21, DOI 10.1002/bult.117. Cici B, 2014, UBICOMP'14: PROCEEDINGS OF THE 2014 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P201, DOI 10.1145/2632048.2632055. City Department of Transportation in the City of Brussels MoBIB, MOBIB DIFF SUPP OUR. Citylab, 2016, WHY HELS ON DEM BUS. Consulting L., 2012, CAP BIK 2011. Correia G, 2011, TRANSPORT RES A-POL, V45, P81, DOI 10.1016/j.tra.2010.11.001. Curran A., 2008, TRANSLINK PUBLIC BIK. Currie G., 2016, ATSE PARLIAMENTARY B. Davidson P, 2016, ROAD TRANSP RES, V25, P51. Davison L, 2014, TRANSPORT POLICY, V31, P47, DOI 10.1016/j.tranpol.2013.11.004. de Lorimier A, 2013, INT J SUSTAIN TRANSP, V7, P35, DOI 10.1080/15568318.2012.660104. Della Corte V, 2017, EUR J TOUR RES, V17, P7. DeMaio P., 2009, J PUBLIC TRANSPORT, V12, P41, DOI {[}DOI 10.5038/2375-0901.12.4.3, 10.5038/2375-0901.12.4.3]. DeMaio P., 2004, J PUBLIC TRANSPORT, V7, P1, DOI DOI 10.5038/2375-0901.7.2.1. Deng L, 2013, FOUND TRENDS SIGNAL, V7, pI, DOI 10.1561/2000000039. Dia H., 2017, LOW CARBON MOBILITY. Dia H., 2016, P 23 ITS WORLD C MEL. Dial RB, 1995, TRANSPORT RES C-EMER, V3, P261, DOI 10.1016/0968-090X(95)00010-G. Diana M, 2006, J ADV TRANSPORT, V40, P23, DOI 10.1002/atr.5670400103. DOHERTY MJ, 1987, J TRANSP ENG-ASCE, V113, P84, DOI 10.1061/(ASCE)0733-947X(1987)113:1(84). Dowling R, 2015, TRANSPORT POLICY, V40, P58, DOI 10.1016/j.tranpol.2015.02.007. DOWNING DJ, 1985, TECHNOMETRICS, V27, P151, DOI 10.2307/1268763. Du K. L., 2013, NEURAL NETWORKS STAT. Ebrahimi S., 2018, P TRANSP RES BOARD 9. El Mahrsi MK, 2017, IEEE T INTELL TRANSP, V18, P712, DOI 10.1109/TITS.2016.2600515. Enoch M., 2006, TRANSP RES BOARD 85. Ester M., 1996, KDD 96, V96, P226, DOI DOI 10.5555/3001460.3001507. Fagnant DJ, 2015, TRANSPORT RES REC, P98, DOI 10.3141/2536-12. Fagnant DJ, 2014, TRANSPORT RES C-EMER, V40, P1, DOI 10.1016/j.trc.2013.12.001. Ferreira SLC, 2018, MICROCHEM J, V140, P176, DOI 10.1016/j.microc.2018.04.002. Finger E.M., 2015, MOBILITY SERVICE HEL. Finger M., 2015, MOBILITY SERVICES HE. Firnkorn J, 2011, ECOL ECON, V70, P1519, DOI 10.1016/j.ecolecon.2011.03.014. Fishman E., 168 INT TRANSP FOR. Fishman E, 2016, J SAFETY RES, V56, P41, DOI 10.1016/j.jsr.2015.11.007. Fishman E, 2015, TRANSPORT RES A-POL, V71, P17, DOI 10.1016/j.tra.2014.10.021. Fishman E, 2013, TRANSPORT REV, V33, P148, DOI 10.1080/01441647.2013.775612. Ford, 2015, FORT SMART MOB. Frost, 2016, AN GLOB DEM BUS TRAN. Galba T, 2013, INT J ELECTR COMPUT, V4, P21. Galland S, 2014, TRANSPORT RES C-EMER, V45, P83, DOI 10.1016/j.trc.2013.12.012. GAUDRY M, 1975, TRANSPORT RES, V9, P249, DOI 10.1016/0041-1647(75)90066-0. Giesecke R., 2016, P 2016 11 INT C ECOL, P1, DOI {[}10.1109/EVER.2016.7476443, DOI 10.1109/EVER.2016.7476443]. Goodall W., 2017, DELOITTE REV, V20. Goodwill J.A., 2008, 549RPWO28 BD NAT CTR. Gould E., 2015, TRANS ECOL ENV, V194, P349, DOI {[}10.2495/SC150311, DOI 10.2495/SC150311]. Greenfield Adam, 2014, GUARDIAN. Guinness RE, 2015, SENSORS-BASEL, V15, P9962, DOI 10.3390/s150509962. GVH (Greater Hannover Transport Association), HANN. Hannah L.A., 2006, STOCHASTIC OPTIMIZAT, P1. Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002. Hawas YE, 2013, J PUBLIC TRANSPORT, V16, P107, DOI 10.5038/2375-0901.16.4.6. He W, 2014, IEEE T IND INFORM, V10, P1587, DOI 10.1109/TII.2014.2299233. He ZX, 2017, J CLEAN PROD, V140, P1719, DOI 10.1016/j.jclepro.2016.08.155. Hensher DA, 2017, TRANSPORT RES A-POL, V98, P86, DOI 10.1016/j.tra.2017.02.006. Hietanen S., MOBILITY SERVICE EUR. Hietanen S., 2014, EUROTRANSPORT MAGASI. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Holmberg P.-E., 2016, MOBILITY SERVICE DES, P1. Hoyer PO, 2004, J MACH LEARN RES, V5, P1457. Hu PF, 2017, J NETW COMPUT APPL, V98, P27, DOI 10.1016/j.jnca.2017.09.002. Intelligent Transport Systems, 2018, MOB SERV DOES AUSTR. International Transport Forum, 2015, URB MOB SYST UPGR SH. Inturri G., 2018, NEW TRENDS EMERGING. Javanshour F., 2016, P 34 C AUSTR I TRANS. Javanshour F, 2019, TRANSPORTMETRICA A, V15, P698, DOI 10.1080/23249935.2018.1528485. Jaworski P., 2017, P 2011 14 INT IEEE C, P391. Jittrapirom P, 2017, URBAN PLAN, V2, P13, DOI 10.17645/up.v2i2.931. Jung J, 2017, IET INTELL TRANSP SY, V11, P334, DOI 10.1049/iet-its.2016.0276. Jung J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020539. Kaas Hans-Werner, 2016, AUTOMOTIVE REVOLUTIO. Kaltenbrunner A, 2010, PERVASIVE MOB COMPUT, V6, P455, DOI 10.1016/j.pmcj.2010.07.002. Kamargianni M, 2016, TRANSP RES PROC, V14, P3294, DOI 10.1016/j.trpro.2016.05.277. Karlsson ICM, 2016, TRANSP RES PROC, V14, P3265, DOI 10.1016/j.trpro.2016.05.273. Katzev R., 2003, ANALYSES SOCIAL ISSU, V3, P65, DOI {[}10.1111/j.1530-2415.2003.00015.x, DOI 10.1111/J.1530-2415.2003.00015.X]. Kaufman R., 2016, CHASING NEXT UBER NE. Kawamura K, 2009, LECT NOTES ARTIF INT, V5712, P656, DOI 10.1007/978-3-642-04592-9\_81. Khan Zaheer, 2013, 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing (UCC), P381, DOI 10.1109/UCC.2013.77. Khattak AJ, 2004, J URBAN PLAN D-ASCE, V130, P42, DOI 10.1061/(ASCE)0733-9488(2004)130:1(42). Kieu L.M., 2013, P AUSTR TRANSP RES F. Kieu LM, 2015, IEEE T INTELL TRANSP, V16, P1537, DOI 10.1109/TITS.2014.2368998. Kim P., 2017, MATLAB DEEP LEARNING, P121, DOI {[}10.1007/978-1-4842-2845-6, DOI 10.1007/978-1-4842-2845-6]. Kleijnen JPC, 2000, EUR J OPER RES, V120, P14, DOI 10.1016/S0377-2217(98)00392-0. KLEMA VC, 1980, IEEE T AUTOMAT CONTR, V25, P164, DOI 10.1109/TAC.1980.1102314. Komodakis N, 2015, IEEE SIGNAL PROC MAG, V32, P31, DOI 10.1109/MSP.2014.2377273. Krista Huhtala-Jenks M.F., 2014, ITS TRANSP MANAG S, V12, P1. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Lane BW, 2012, J TRANSP GEOGR, V22, P221, DOI 10.1016/j.jtrangeo.2011.10.006. Lathia N, 2013, PERVASIVE MOB COMPUT, V9, P643, DOI 10.1016/j.pmcj.2012.10.007. Lazarus J, 2018, LECT N MOBIL, P141, DOI 10.1007/978-3-319-60934-8\_13. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Li H., 2015, SUSTAINABILITY, V9, P697. Liddle B, 2013, J TRANSP GEOGR, V28, P22, DOI 10.1016/j.jtrangeo.2012.10.010. Lifthero, 2019, LIFT HER. Liimatainen H, 2014, TECHNOL FORECAST SOC, V81, P177, DOI 10.1016/j.techfore.2013.03.001. Lim E, 2010, WINT SIMUL C PROC, P1246, DOI 10.1109/WSC.2010.5679068. Lindner A, 2017, TRAVEL BEHAV SOC, V6, P100, DOI 10.1016/j.tbs.2016.08.003. Little T.D., 2013, TIME SERIES ANAL. Liu J., 2010, P C TRAFF TRANSP STU, V383, P741, DOI DOI 10.1061/41123\%28383\%2971. Liu J, 2018, FUTURE GENER COMP SY, V78, P817, DOI 10.1016/j.future.2017.02.017. Liu LJ, 2017, TRANSPORT RES C-EMER, V84, P74, DOI 10.1016/j.trc.2017.08.001. Liu T, 2015, TRANSPORT POLICY, V39, P63, DOI 10.1016/j.tranpol.2015.02.004. Liu YP, 2017, TRANSPORT RES D-TR E, V57, P363, DOI 10.1016/j.trd.2017.09.021. Luk J., 2003, ROAD TRANSPORT RES, V12, P41. Lv YS, 2015, IEEE T INTELL TRANSP, V16, P865, DOI 10.1109/TITS.2014.2345663. Ma JH, 2017, J ADV TRANSPORT, DOI 10.1155/2017/3865701. Maas Australia, 2016, MASS AUSTR MOB SERV. Maas Global, 2016, BETT YOUR OWN CAR. Mackett R, 2002, P I CIVIL ENG-MUNIC, V151, P29. MALCOLM SA, 1994, J OPER RES SOC, V45, P1040, DOI 10.2307/2584145. Manyika J., 2013, DISRUPTIVE TECHNOLOG, VMay, P163. McCann MT, 2017, IEEE SIGNAL PROC MAG, V34, P85, DOI 10.1109/MSP.2017.2739299. Meddin R, 2011, BIKE SHARING WORLD 1. Melvey J.M., 2015, OPER RES, V43, P264, DOI {[}10.1287/opre.43.2.264, DOI 10.1287/OPRE.43.2.264]. Menard S., 2007, HDB LONGITUDINAL RES, V136. Midgley P., 2009, JOURNEYS, V2, P23. Mirchevska Branka, 2017, WORKSHOP DRIV ASSIST, P32. Mitchell TM, 1997, ARTIFICIAL NEURAL NE. Mitchell W.J., 2010, REINVENTING AUTOMOBI, P240. Morency C., 2006, P IEEE ITSC, P44. Mukai N, 2008, LECT NOTES ARTIF INT, V5178, P567, DOI 10.1007/978-3-540-85565-1\_70. Mulley C., 2009, RES TRANSP ECON, V25, P39, DOI DOI 10.1016/J.RETREC.2009.08.008. Nagurney A, 2005, INT J KNOWL CULT CHA, V4, DOI {[}10.18848/1447-9524/CGP/V04/50227, DOI 10.18848/1447-9524/CGP/V04/50227]. Nelson John D., 2010, RES TRANSP ECON, V29, P243, DOI {[}10.1016/j.retrec.2010.07.030, DOI 10.1016/J.RETREC.2010.07.030]. Nemtanu F.C., 2017, P 2017 40 INT SPRING, P1. Nin J., 2014, LECT NOTES COMPUT SC, V8313. NSW Transport, 2018, DEM PUBL TRANSP. Omidvar MN, 2014, IEEE T EVOLUT COMPUT, V18, P378, DOI 10.1109/TEVC.2013.2281543. Owyang J., 2015, 10 WAYS MOBILITY SER. Papadimitratos P, 2009, IEEE COMMUN MAG, V47, P84, DOI 10.1109/MCOM.2009.5307471. Parker J, 2011, P I CIVIL ENG-TRANSP, V164, P181, DOI 10.1680/tran.2011.164.3.181. Pavone M, 2012, INT J ROBOT RES, V31, P839, DOI 10.1177/0278364912444766. Pavone Marco, 2015, AUTONOMES FAHREN, P399, DOI DOI 10.1007/978-3-662-45854-9\_19. PourMohammadBagher L, 2017, APPL SOFT COMPUT, V58, P388, DOI 10.1016/j.asoc.2017.04.066. Rashidi TH, 2017, TRANSPORT RES C-EMER, V75, P197, DOI 10.1016/j.trc.2016.12.008. Raymond Rudy, 2011, P 19 ACM SIGSPATIAL, P377. REHAK B, 1984, J MATER SCI LETT, V3, P1011, DOI 10.1007/BF00720343. Rigole P., 2014, THESIS. ROBBINS H, 1951, ANN MATH STAT, V22, P400, DOI 10.1214/aoms/1177729586. Robinson SM, 1996, MATH OPER RES, V21, P513, DOI 10.1287/moor.21.3.513. Roca E., 2012, TRAFFIC CONGESTION E, P709. Rosin J., 2018, OPTIBUS USES ARTIFIC. Rothenberg S., 2013, SUSTAINABILITY SERVI. Russell PS, 2011, TRANSPLANTATION, V91, P847, DOI 10.1097/TP.0b013e3182122f82. Russom P., 2012, HIGH PERFORMANCE DAT. Ryden C., 2005, MOBILITY SERVICES UR. Saberi M, 2018, J TRANSP GEOGR, V66, P154, DOI 10.1016/j.jtrangeo.2017.11.018. Salim Bitam A.M., 2012, INT J SOFT COMPUT EN, V2, P568. Sallab A., 2017, ELECT IMAGING, V2017, P70, DOI DOI 10.2352/ISSN.2470-1173.2017.19.AVM-023. Schepers P., 2018, SAFETY E BIKES SAFET. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. SCHNEIDER MH, 1990, OPER RES, V38, P439, DOI 10.1287/opre.38.3.439. Schulz T., 2016, SERVICE COMPOSITION. Seber George A. F., 2012, LINEAR REGRESSION AN, V329. Seik FT, 2000, HABITAT INT, V24, P75. Shahbaz M, 2016, RENEW SUST ENERG REV, V57, P83, DOI 10.1016/j.rser.2015.12.096. Shaheen S., 2016, SHARED MOBILITY CURR, P120. Shaheen S., 2016, FHWAHOP16023 US DEP. Shaheen Susan, 2016, INNOVATIVE MOBILITY. Shaheen SA, 2007, TRANSPORT RES REC, P81, DOI 10.3141/1992-10. Shaheen SA, 2011, TRANSPORT RES REC, P33, DOI 10.3141/2247-05. Shaheen SA, 2010, TRANSPORT RES REC, P159, DOI 10.3141/2143-20. Shapiro A, 2002, MATH PROGRAM, V94, P1, DOI 10.1007/s10107-002-0313-2. Share A.B., 2011, MELBOURNE BIKE SHARE. Sheehan R., 2014, MOBILITY ON DEMAND. Shen W., 2015, MANAGING AUTONOMOUS. Shen Y, 2018, TRANSPORT RES A-POL, V113, P125, DOI 10.1016/j.tra.2018.04.004. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. Machado CAS, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10124342. Spieser K, 2014, LECT N MOBIL, P229, DOI 10.1007/978-3-319-05990-7\_20. Stein D.M., SCHEDULING DIAL RIDE. Stojmenovic I, 2016, CONCURR COMP-PRACT E, V28, P2991, DOI 10.1002/cpe.3485. Sulopuisto, 2016, WHY HELSINKIS INNOVA. Sun FZ, 2019, CLUSTER COMPUT, V22, P2239, DOI 10.1007/s10586-018-1708-z. Sun Zhi-jun, 2012, Application Research of Computers, V29, P2806, DOI 10.3969/j.issn.1001-3695.2012.08.002. Suthaharan S., 2016, INTEGRATED SERIES IN. Taylor M. A. P., 2005, J E ASIA SOC TRANSPO, V6, P3135. TEAL RF, 1987, TRANSPORT RES A-POL, V21, P203, DOI 10.1016/0191-2607(87)90014-8. Thiagarajan A, 2009, SENSYS 09: PROCEEDINGS OF THE 7TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, P85. Titcomb J., 2016, TELEGRAPH. Tran TD, 2015, PROC CIRP, V30, P293, DOI 10.1016/j.procir.2015.02.156. Transport London, 2010, TRAV IN LOND. Trepanier M, 2012, CAN J CIVIL ENG, V39, P610, DOI 10.1139/L2012-048. Tsubouchi K, 2010, IET INTELL TRANSP SY, V4, P270, DOI 10.1049/iet-its.2009.0113. Tsubouchi K, 2010, INT J INTELL TRANSP, V8, P188, DOI 10.1007/s13177-010-0014-9. Tsubouchi K, 2012, INT J INTELL TRANSP, V10, P82, DOI 10.1007/s13177-012-0044-6. Urban Innovation Vienna Smart City Wien, 2018, MOB PLATF FUT. van den Berg VAC, 2016, TRANSPORT RES B-METH, V94, P43, DOI 10.1016/j.trb.2016.08.018. Varagouli EG, 2005, MATH COMPUT MODEL, V42, P817, DOI 10.1016/j.mcm.2005.09.010. Weber S, 2006, LECT NOTES COMPUT SC, V4245, P146. Weise T, 2012, J COMPUT SCI TECH-CH, V27, P907, DOI 10.1007/s11390-012-1274-4. Wickham J., 1999, C URB SUB END CENT F, P1, DOI {[}10.1017/CBO9781107415324.004, DOI 10.1017/CBO9781107415324.004]. Wollschlaeger D., 2015, DIGITAL DISRUPTION F, P16. Wong Y.Z., 2017, EMERGING TRANSPORT T. World Resources lnstitute, 1994, WORLD RES 1994 95. Xhafa F, 2010, FUTURE GENER COMP SY, V26, P608, DOI 10.1016/j.future.2009.11.005. Xiaowei Hu, 2015, CICTP 2015. Efficient, Safe and Green Multimodal Transportation. 15th COTA International Conference of Transportation Professionals. Proceedings, P3841, DOI 10.1061/9780784479292.354. Yan YD, 2013, J TRANSP ENG-ASCE, V139, P625, DOI 10.1061/(ASCE)TE.1943-5436.0000536. Yan YD, 2012, TRANSPORT RES C-EMER, V25, P113, DOI 10.1016/j.trc.2012.05.006. Yang T., 2011, P TRANSPORTATION RES. Yang XS, 2011, LECT NOTES COMPUT SC, V6630, P21. Yu H., 2015, LANDSCAPE, VPP, P1, DOI 10.1109/TC.2015.2389827. Zakir J., 2015, ISSUES INFORM SYSTEM, V16, P81. Zhang R, 2015, P AMER CONTR CONF, P2573, DOI 10.1109/ACC.2015.7171122. Zhang XY, 2018, IEEE T PATTERN ANAL, V40, P849, DOI 10.1109/TPAMI.2017.2695539. Zhao J, 2017, INFORM FUSION, V38, P43, DOI 10.1016/j.inffus.2017.02.007. Zhou CJ, 2015, 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), P1430, DOI 10.1109/ICGCIoT.2015.7380692. Zhou CJ, 2013, INT CONF DAT MIN WOR, P1069, DOI 10.1109/ICDMW.2013.20. {[}周家中 Zhou Jiazhong], 2014, {[}铁道学报, Journal of the China Railway Society], V36, P1. Zhu JY, 2018, TRANSPORT RES C-EMER, V93, P410, DOI 10.1016/j.trc.2018.06.016. Zipcar, 2014, ZIPC ANN MILL SURV S.}, Number-of-Cited-References = {251}, Times-Cited = {20}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {65}, Journal-ISO = {Sustainability}, Doc-Delivery-Number = {HQ8GA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000462661000046}, OA = {Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000707933500001, Author = {Bai, Qifeng and Liu, Shuo and Tian, Yanan and Xu, Tingyang and Banegas-Luna, Antonio Jesus and Perez-Sanchez, Horacio and Huang, Junzhou and Liu, Huanxiang and Yao, Xiaojun}, Title = {Application advances of deep learning methods for de novo drug design and molecular dynamics simulation}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2022}, Volume = {12}, Number = {3}, Month = {MAY}, Abstract = {De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation is a dynamical way to study the interaction mechanism between the ligands and receptors based on the molecular force field. De novo drug design and MD simulation are effective tools for novel drug discovery. With the development of technology, deep learning methods, and interpretable machine learning (IML) have emerged in the research area of drug design. Deep learning methods and IML can be used further to improve the efficiency and accuracy of de novo drug design and MD simulations. The application summary of deep learning methods for de novo drug design, MD simulations, and IML can further promote the technical development of drug discovery. In this article, two major workflow methods and the related components of classical algorithm and deep learning are described for de novo drug design from a new perspective. The application progress of deep learning is also summarized for MD simulations. Furthermore, IML is introduced for the deep learning model interpretability of de novo drug design and MD simulations. Our paper deals with an interesting topic about deep learning applications of de novo drug design and MD simulations for the scientific community. This article is categorized under: Data Science > Chemoinformatics Data Science > Artificial Intelligence/Machine Learning}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Bai, QF (Corresponding Author), Lanzhou Univ, Inst Biochem \& Mol Biol, Sch Basic Med Sci, Key Lab Preclin Study New Drugs Gansu Prov, Lanzhou 730000, Gansu, Peoples R China. Xu, TY (Corresponding Author), Shenzhen Tencent Comp Ltd, Tencent AI Lab, Shenzhen, Peoples R China. Perez-Sanchez, H (Corresponding Author), UCAM Univ Catolica Murcia, Dept Comp Engn, Struct Bioinformat \& High Performance Comp Res Gr, Murcia, Spain. Bai, Qifeng, Lanzhou Univ, Inst Biochem \& Mol Biol, Sch Basic Med Sci, Key Lab Preclin Study New Drugs Gansu Prov, Lanzhou 730000, Gansu, Peoples R China. Liu, Shuo; Tian, Yanan; Liu, Huanxiang, Lanzhou Univ, Sch Pharm, Lanzhou, Gansu, Peoples R China. Xu, Tingyang; Huang, Junzhou, Shenzhen Tencent Comp Ltd, Tencent AI Lab, Shenzhen, Peoples R China. Banegas-Luna, Antonio Jesus; Perez-Sanchez, Horacio, UCAM Univ Catolica Murcia, Dept Comp Engn, Struct Bioinformat \& High Performance Comp Res Gr, Murcia, Spain. Yao, Xiaojun, Lanzhou Univ, Coll Chem \& Chem Engn, Lanzhou, Gansu, Peoples R China.}, DOI = {10.1002/wcms.1581}, EarlyAccessDate = {OCT 2021}, Article-Number = {e1581}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {de novo drug design; deep learning; explainable artificial intelligence; interpretable machine learning; MD simulation}, Keywords-Plus = {SCORING FUNCTION; NEURAL-NETWORK; SCREENING LIBRARIES; GENETIC ALGORITHM; FORCE-FIELDS; DOCKING; DISCOVERY; PROGRAM; MODEL; INTELLIGENCE}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {baiqf@lzu.edu.cn tingyangxu@tencent.com hperez@ucam.edu}, Affiliations = {Lanzhou University; Lanzhou University; Tencent; Universidad Catolica de Murcia; Lanzhou University}, ResearcherID-Numbers = {Xu, Tingyang/AHA-6587-2022 Bai, Qifeng/A-2950-2019 Xu, Tingyang/HGU-8709-2022 Perez-Sanchez, Horacio/O-5017-2016 Banegas-Luna, Antonio Jesus/O-7331-2016 }, ORCID-Numbers = {Bai, Qifeng/0000-0001-7296-6187 Perez-Sanchez, Horacio/0000-0003-4468-7898 Banegas-Luna, Antonio Jesus/0000-0003-1158-8877 Liu, Huanxiang/0000-0002-9284-3667}, Funding-Acknowledgement = {Tencent AI Lab Rhino-Bird Focused Research Program {[}JR202004]; Lanzhou University}, Funding-Text = {Tencent AI Lab Rhino-Bird Focused Research Program, Grant/Award Number: JR202004; Lanzhou University}, Cited-References = {Abraham Mark James, 2015, SoftwareX, V1-2, P19, DOI 10.1016/j.softx.2015.06.001. Allen WJ, 2015, J COMPUT CHEM, V36, P1132, DOI 10.1002/jcc.23905. Angermueller C, 2016, MOL SYST BIOL, V12, DOI 10.15252/msb.20156651. Arus-Pous J, 2019, J CHEMINFORMATICS, V11, DOI 10.1186/s13321-019-0393-0. Baell JB, 2010, J MED CHEM, V53, P2719, DOI 10.1021/jm901137j. Bai Q., 2020, ARXIV200609747. Bai QF, 2021, COMPUT STRUCT BIOTEC, V19, P3573, DOI 10.1016/j.csbj.2021.06.017. Bai QF, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa161. Banegas-Luna AJ, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22094394. Barbault F, 2015, EXPERT OPIN DRUG DIS, V10, P1047, DOI 10.1517/17460441.2015.1076389. Baskin II, 2020, EXPERT OPIN DRUG DIS, V15, P755, DOI 10.1080/17460441.2020.1745183. Bennett WFD, 2020, J CHEM INF MODEL, V60, P5375, DOI 10.1021/acs.jcim.0c00318. Bitencourt-Ferreira G, 2019, METHODS MOL BIOL, V2053, P125, DOI 10.1007/978-1-4939-9752-7\_9. Bitencourt-Ferreira G, 2019, METHODS MOL BIOL, V2053, P203, DOI 10.1007/978-1-4939-9752-7\_13. BOHM HJ, 1992, J COMPUT AID MOL DES, V6, P61, DOI 10.1007/BF00124387. Borhani DW, 2012, J COMPUT AID MOL DES, V26, P15, DOI 10.1007/s10822-011-9517-y. Case DA, 2005, J COMPUT CHEM, V26, P1668, DOI 10.1002/jcc.20290. Chen HM, 2018, DRUG DISCOV TODAY, V23, P1241, DOI 10.1016/j.drudis.2018.01.039. Cheron N, 2016, J MED CHEM, V59, P4171, DOI 10.1021/acs.jmedchem.5b00886. Chew AK, 2020, CHEM SCI, V11, P12464, DOI 10.1039/d0sc03261a. Chmiela S, 2019, COMPUT PHYS COMMUN, V240, P38, DOI 10.1016/j.cpc.2019.02.007. Chmiela S, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06169-2. Chmiela S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603015. Chong B, 2021, PHYS CHEM CHEM PHYS, V23, P6800, DOI 10.1039/d0cp06378a. Cucurull G., 2017, ARXIV171010903, DOI DOI 10.48550/ARXIV.1710.10903. Dahl GE, 2012, IEEE T AUDIO SPEECH, V20, P30, DOI 10.1109/TASL.2011.2134090. Dai H., 2018, ARXIV08786. Dana D, 2018, MOLECULES, V23, DOI 10.3390/molecules23092384. De Cao N., 2018, ARXIV180511973. DEBNATH AK, 1991, J MED CHEM, V34, P786, DOI 10.1021/jm00106a046. Devi RV, 2015, APPL SOFT COMPUT, V27, P543, DOI 10.1016/j.asoc.2014.09.042. Doerr S, 2021, J CHEM THEORY COMPUT, V17, P2355, DOI 10.1021/acs.jctc.0c01343. Douguet D, 2010, NUCLEIC ACIDS RES, V38, pW615, DOI 10.1093/nar/gkq322. Durrant JD, 2009, CHEM BIOL DRUG DES, V73, P168, DOI 10.1111/j.1747-0285.2008.00761.x. Elton DC, 2019, MOL SYST DES ENG, V4, P828, DOI 10.1039/c9me00039a. Farnaby W, 2019, NAT CHEM BIOL, V15, P672, DOI 10.1038/s41589-019-0294-6. Ferraro M, 2021, J PHYS CHEM B, V125, P101, DOI 10.1021/acs.jpcb.0c09742. Francoeur PG, 2020, J CHEM INF MODEL, V60, P4200, DOI 10.1021/acs.jcim.0c00411. Freedman DH, 2019, NATURE, V576, pS49, DOI 10.1038/d41586-019-03846-0. Gastegger M, 2017, CHEM SCI, V8, P6924, DOI 10.1039/c7sc02267k. Gaulton A, 2012, NUCLEIC ACIDS RES, V40, pD1100, DOI 10.1093/nar/gkr777. Gawehn E, 2016, MOL INFORM, V35, P3, DOI 10.1002/minf.201501008. GEHLHAAR DK, 1995, J MED CHEM, V38, P466, DOI 10.1021/jm00003a010. Genheden S, 2015, EXPERT OPIN DRUG DIS, V10, P449, DOI 10.1517/17460441.2015.1032936. GILLET VJ, 1994, J CHEM INF COMP SCI, V34, P207, DOI 10.1021/ci00017a027. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Guimaraes G.L., 2017, ARXIV PREPRINT ARXIV. Guvench Olgun, 2008, V443, P63, DOI 10.1007/978-1-59745-177-2\_4. He T, 2017, J CHEMINFORMATICS, V9, DOI 10.1186/s13321-017-0209-z. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Hou TJ, 2011, J CHEM INF MODEL, V51, P69, DOI 10.1021/ci100275a. Huey R, 2007, J COMPUT CHEM, V28, P1145, DOI 10.1002/jcc.20634. Husic BE, 2020, J CHEM PHYS, V153, DOI 10.1063/5.0026133. Imbernon B, 2021, BIOINFORMATICS, V37, P1515, DOI 10.1093/bioinformatics/btz958. Imrie F, 2020, J CHEM INF MODEL, V60, P1983, DOI 10.1021/acs.jcim.9b01120. Ishchenko AV, 2002, J MED CHEM, V45, P2770, DOI 10.1021/jm0105833. Jamal S, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.00780. Jimenez-Luna J, 2020, NAT MACH INTELL, V2, P573, DOI 10.1038/s42256-020-00236-4. Jimenez-Roses M., PREDICTION LIGAND RE. Jin WG, 2018, PR MACH LEARN RES, V80. Jorgensen WL, 2009, ACCOUNTS CHEM RES, V42, P724, DOI 10.1021/ar800236t. Jorgensen WL, 2004, SCIENCE, V303, P1813, DOI 10.1126/science.1096361. Kamenecka T, 2009, J BIOL CHEM, V284, P12853, DOI 10.1074/jbc.M809430200. Khemchandani Y, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00454-3. King DB, 2015, ACS SYM SER, V1214, P1. Kingma D., 2014, 14126980 ARXIV, DOI DOI 10.48550/ARXIV.1412.6980. Kipf T.N., 2016, ARXIV. Korb O, 2009, J CHEM INF MODEL, V49, P84, DOI 10.1021/ci800298z. Krishnan SR, 2021, J CHEM INF MODEL, V61, P621, DOI 10.1021/acs.jcim.0c01060. Kusner MJ, 2017, PR MACH LEARN RES, V70. Lavecchia A, 2019, DRUG DISCOV TODAY, V24, P2017, DOI 10.1016/j.drudis.2019.07.006. Li Y., 2021, ARXIV210408474. Li Y, 2017, J CHEM INF MODEL, V57, P1007, DOI 10.1021/acs.jcim.7b00049. Li YJ, 2019, IEEE INT C BIOINFORM, P303, DOI 10.1109/BIBM47256.2019.8982964. Li Yujia, 2018, PROC INT C LEARN REP. Lipinski CA, 1997, ADV DRUG DELIVER REV, V23, P3, DOI 10.1016/S0169-409X(96)00423-1. Liu W, 2021, WIRES COMPUT MOL SCI, V11, DOI 10.1002/wcms.1511. Lundberg SM, 2017, ADV NEUR IN, V30. Lyngdoh GA, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-78368-1. Makhzani A., 2015, ARXIV151105644. Marchetti F, 2021, J PHYS CHEM LETT, V12, P3724, DOI 10.1021/acs.jpclett.1c00045. Marialke J, 2008, J CHEM INF MODEL, V48, P186, DOI 10.1021/ci700124r. Martinez-Rosell G, 2017, CURR TOP MED CHEM, V17, P2617, DOI 10.2174/1568026617666170414142549. Masuda T., 2020, ARXIV201014442. Milardi D, 2015, EUR J MED CHEM, V91, P1, DOI 10.1016/j.ejmech.2014.10.078. Molnar C., 2020, INTERPRETABLE MACHIN, DOI DOI 10.3168/JDS.S0022-0302(99)75342-7. Morley SD, 2004, J COMPUT AID MOL DES, V18, P189, DOI 10.1023/B:JCAM.0000035199.48747.1e. Morris GM, 2009, J COMPUT CHEM, V30, P2785, DOI 10.1002/jcc.21256. Morris GM, 1998, J COMPUT CHEM, V19, P1639, DOI 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. Mouchlis VD, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22041676. Murdoch WJ, 2019, P NATL ACAD SCI USA, V116, P22071, DOI 10.1073/pnas.1900654116. Noe F, 2020, ANNU REV PHYS CHEM, V71, P361, DOI 10.1146/annurev-physchem-042018-052331. OLUROTIMI O, 1994, IEEE T NEURAL NETWOR, V5, P185, DOI 10.1109/72.279184. Ozturk H, 2018, BIOINFORMATICS, V34, P821, DOI 10.1093/bioinformatics/bty593. Pegg SCH, 2001, J COMPUT AID MOL DES, V15, P911, DOI 10.1023/A:1014389729000. Phillips JC, 2020, J CHEM PHYS, V153, DOI 10.1063/5.0014475. Plante A, 2019, MOLECULES, V24, DOI 10.3390/molecules24112097. PLIMPTON S, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/jcph.1995.1039. Polishchuk PG, 2013, J COMPUT AID MOL DES, V27, P675, DOI 10.1007/s10822-013-9672-4. Polykovskiy D, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.565644. Preuer K, 2018, J CHEM INF MODEL, V58, P1736, DOI 10.1021/acs.jcim.8b00234. Prykhodko O, 2019, J CHEMINFORMATICS, V11, DOI 10.1186/s13321-019-0397-9. Ragoza M., 2020, ARXIV201008687. Rezende DJ, 2014, PR MACH LEARN RES, V32, P1278. Ribeiro M.T., 2016, ARXIV PREPRINT ARXIV. Ruiz-Carmona S, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003571. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Ryu S., 2018, ARXIV180510988. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Schneider G, 2005, NAT REV DRUG DISCOV, V4, P649, DOI 10.1038/nrd1799. Scott WRP, 1999, J PHYS CHEM A, V103, P3596, DOI 10.1021/jp984217f. Segler MHS, 2018, ACS CENTRAL SCI, V4, P120, DOI 10.1021/acscentsci.7b00512. Shi TT, 2020, CHEMOMETR INTELL LAB, V205, DOI 10.1016/j.chemolab.2020.104122. Simonyan K., 2018, P INT C LEARN REPR, V75, P398. Sivaraman G, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00367-7. Skalic M, 2019, MOL PHARMACEUT, V16, P4282, DOI 10.1021/acs.molpharmaceut.9b00634. Skalic M, 2019, J CHEM INF MODEL, V59, P1205, DOI 10.1021/acs.jcim.8b00706. Stepniewska-Dziubinska MM, 2018, BIOINFORMATICS, V34, P3666, DOI 10.1093/bioinformatics/bty374. Sterling T, 2015, J CHEM INF MODEL, V55, P2324, DOI 10.1021/acs.jcim.5b00559. Stumpfe D, 2012, J MED CHEM, V55, P2932, DOI 10.1021/jm201706b. Sundararajan M, 2017, PR MACH LEARN RES, V70. Nguyen T, 2021, BIOINFORMATICS, V37, P1140, DOI 10.1093/bioinformatics/btaa921. Tietze S, 2007, J CHEM INF MODEL, V47, P1657, DOI 10.1021/ci7001236. Truhlar DG, 2007, J COMPUT CHEM, V28, P73, DOI 10.1002/jcc.20529. Walden DM, 2021, MOLECULES, V26, DOI 10.3390/molecules26010182. Wang H, 2018, COMPUT PHYS COMMUN, V228, P178, DOI 10.1016/j.cpc.2018.03.016. Wang KL, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbab072. Wang RX, 2000, J MOL MODEL, V6, P498, DOI 10.1007/s0089400060498. Wang WJ, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0261-5. Wang YH, 2020, CURR OPIN STRUC BIOL, V61, P139, DOI 10.1016/j.sbi.2019.12.016. Wen M, 2017, J PROTEOME RES, V16, P1401, DOI 10.1021/acs.jproteome.6b00618. XU K, 2018, IEEE INT SYMP CIRC S. Xu MY, 2021, J CHEM INF MODEL, V61, P3240, DOI 10.1021/acs.jcim.0c01494. Xu YJ, 2019, FUTURE MED CHEM, V11, P567, DOI 10.4155/fmc-2018-0358. Yang YY, 2020, CHEM SCI, V11, P8312, DOI 10.1039/d0sc03126g. Yao K, 2018, CHEM SCI, V9, P2261, DOI 10.1039/c7sc04934j. Ye WL, 2020, J CHEM INF MODEL, V60, P4216, DOI 10.1021/acs.jcim.9b00977. Ying Rex, 2019, Adv Neural Inf Process Syst, V32, P9240. You JX, 2018, ADV NEUR IN, V31. Yu Y, 2021, ACS OMEGA, V6, P22945, DOI 10.1021/acsomega.1c03613. Zhang L, 2017, DRUG DISCOV TODAY, V22, P1680, DOI 10.1016/j.drudis.2017.08.010. Zhang N, 2016, BIOORG MED CHEM LETT, V26, P3594, DOI 10.1016/j.bmcl.2016.06.013. Zhang TL, 2020, BRIEF BIOINFORM, V21, P1609, DOI 10.1093/bib/bbz087. Zhao LL, 2020, FRONT GENET, V10, DOI 10.3389/fgene.2019.01243. Zhao QC, 2019, IEEE INT C BIOINFORM, P64, DOI 10.1109/BIBM47256.2019.8983125. Zhavoronkov A, 2019, NAT BIOTECHNOL, V37, P1038, DOI 10.1038/s41587-019-0224-x. Zheng LZ, 2019, ACS OMEGA, V4, P15956, DOI 10.1021/acsomega.9b01997. Zheng SJ, 2020, NAT MACH INTELL, V2, P134, DOI 10.1038/s42256-020-0152-y. Zhokhova NI, 2017, MOL INFORM, V36, DOI 10.1002/minf.201700054. Zhou ZP, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47148-x.}, Number-of-Cited-References = {151}, Times-Cited = {21}, Usage-Count-Last-180-days = {51}, Usage-Count-Since-2013 = {166}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {1D5ZT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000707933500001}, DA = {2023-04-22}, } @article{ WOS:000480685300012, Author = {Bradley, Alison and van der Meer, Robert and McKay, Colin}, Title = {Personalized Pancreatic Cancer Management A Systematic Review of How Machine Learning Is Supporting Decision-making}, Journal = {PANCREAS}, Year = {2019}, Volume = {48}, Number = {5}, Pages = {598-604}, Month = {MAY-JUN}, Abstract = {This review critically analyzes how machine learning is being used to support clinical decision-making in the management of potentially resectable pancreatic cancer. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines, electronic searches of MEDLINE, Embase, PubMed, and Cochrane Database were undertaken. Studies were assessed using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) checklist. In total 89,959 citations were retrieved. Six studies met the inclusion criteria. Three studies were Markov decision-analysis models comparing neoadjuvant therapy versus upfront surgery. Three studies predicted survival time using Bayesian modeling (n = 1) and artificial neural network (n = 1), and one study explored machine learning algorithms including Bayesian network, decision trees, k-nearest neighbor, and artificial neural networks. The main methodological issues identified were limited data sources, which limits generalizability and potentiates bias; lack of external validation; and the need for transparency in methods of internal validation, consecutive sampling, and selection of candidate predictors. The future direction of research relies on expanding our view of the multidisciplinary team to include professionals from computing and data science with algorithms developed in conjunction with clinicians and viewed as aids, not replacement, to traditional clinical decision-making.}, Publisher = {LIPPINCOTT WILLIAMS \& WILKINS}, Address = {TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA}, Type = {Review}, Language = {English}, Affiliation = {Bradley, A (Corresponding Author), Univ Strathclyde, Business Sch, DuncanWing 606,199 Cathedral St, Glasgow G4 0QU, Lanark, Scotland. Bradley, Alison; van der Meer, Robert, Univ Strathclyde, Business Sch, Dept Management Sci, Glasgow, Lanark, Scotland. Bradley, Alison; McKay, Colin, Glasgow Royal Infirm, West Scotland Pancreat Canc Unit, Glasgow, Lanark, Scotland.}, DOI = {10.1097/MPA.0000000000001312}, ISSN = {0885-3177}, EISSN = {1536-4828}, Keywords = {machine learning; pancreatic cancer; decision-analysis; predictive modeling; personalized medicine}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORKS; BAYESIAN NETWORKS; PREDICTION; MODELS; HEALTH; RISK; ADENOCARCINOMA; RESECTION; THERAPY; TRIALS}, Research-Areas = {Gastroenterology \& Hepatology}, Web-of-Science-Categories = {Gastroenterology \& Hepatology}, Author-Email = {bradley\_alison@live.co.uk}, Affiliations = {University of Strathclyde; University of Glasgow}, ResearcherID-Numbers = {Van Der Meer, Robert B/O-1731-2016}, ORCID-Numbers = {Van Der Meer, Robert B/0000-0002-9442-1628}, Cited-References = {Abbod MF, 2009, EXPERT REV ANTICANC, V9, P867, DOI {[}10.1586/era.09.47, 10.1586/ERA.09.47]. Abbod MF, 2006, ONCOL REP, V15, P1019. Altman DG, 2001, BMJ-BRIT MED J, V323, P224, DOI 10.1136/bmj.323.7306.224. Altman DG, 2001, ANN INTERN MED, V134, P663, DOI 10.7326/0003-4819-134-8-200104170-00012. Altman DG, 2009, BMJ-BRIT MED J, V338, DOI 10.1136/bmj.b605. Andriulli A, 2012, ANN SURG ONCOL, V19, P1644, DOI 10.1245/s10434-011-2110-8. Asare EA, 2016, J SURG ONCOL, V114, P291, DOI 10.1002/jso.24316. Ashley SW, 2012, CURR PROB SURG, V49, P731, DOI 10.1067/j.cpsurg.2012.08.002. Barr S., 2002, FUZZY LOGIC MED. Bartosch-Harlid A, 2008, BRIT J SURG, V95, P817, DOI 10.1002/bjs.6239. Bouchon-Meunier B, 1995, LOGIQUE FLOUE SES AP. Bouwmeester W, 2012, PLOS MED, V9, DOI 10.1371/journal.pmed.1001221. Catto JWF, 2009, CLIN CANCER RES, V15, P3150, DOI 10.1158/1078-0432.CCR-08-1960. Catto JWF, 2003, CLIN CANCER RES, V9, P4172. de Geus SWL, 2016, EJSO-EUR J SURG ONC, V42, P1552, DOI 10.1016/j.ejso.2016.07.016. Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593. Dweiri FT, 2006, DECIS SUPPORT SYST, V42, P712, DOI 10.1016/j.dss.2005.04.001. Ferlay J, 2013, EUR J CANCER, V49, P1374, DOI 10.1016/j.ejca.2012.12.027. Ghavidel AA, 2014, J THORAC CARDIOV SUR, V148, P1291, DOI 10.1016/j.jtcvs.2014.02.028. Grossi E., 2015, BMC CARDIOVASC DISOR, V5, P31. Gursel G., 2016, DIGIT MED, V2, P101, DOI DOI 10.4103/2226-8561.194697. Hampson LV, 2014, STAT MED, V33, P4186, DOI 10.1002/sim.6225. Hashimoto DA, 2018, ANN SURG, V268, P70, DOI 10.1097/SLA.0000000000002693. Hayward J, 2010, ARTIF INTELL MED, V49, P187, DOI 10.1016/j.artmed.2010.04.009. Johnson SR, 2010, J CLIN EPIDEMIOL, V63, P355, DOI 10.1016/j.jclinepi.2009.06.003. Lee CH, 2017, KIDNEY RES CLIN PRAC, V36, P3, DOI 10.23876/j.krcp.2017.36.1.3. Lee JC, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-010491. Lucas PJF, 2004, ARTIF INTELL MED, V30, P201, DOI 10.1016/j.artmed.2003.11.001. Marcus G., 2018, ARXIV180100631. McNeill F. M., 1994, FUZZY LOGIC PRACTICA. Moher D, 2009, PLOS MED, V6, DOI {[}10.1371/journal.pmed.1000097, 10.1136/bmj.b2700, 10.7326/0003-4819-151-4-200908180-00136, 10.1136/bmj.b4037]. Moher David, 2009, Open Med, V3, pe123. Moons KGM, 2009, BMJ-BRIT MED J, V338, DOI 10.1136/bmj.b375. Obermeyer Z, 2017, NEW ENGL J MED, V377, P1209, DOI 10.1056/NEJMp1705348. Pancreatic Cancer UK, PANCR CANC UK POL BR. Pereira RD, 2015, THESCIENTIFICWORLDJO, V2015, DOI DOI 10.1155/2015/212703. Pratihar DK, 1999, INT J APPROX REASON, V20, P145, DOI 10.1016/S0888-613X(98)10026-9. Reis MAM, 2004, BRAZ J MED BIOL RES, V37, P755, DOI 10.1590/S0100-879X2004000500018. Reiteinianova Z., 2010, WDS, V10, P31. Roychowdhury A, 2004, INFORM SCIENCES, V162, P105, DOI 10.1016/j.ins.2004.03.004. Seker H, 2003, IEEE T INF TECHNOL B, V7, P114, DOI 10.1109/TITB.2003.811876. Sharma G, 2015, ANN SURG ONCOL, V22, pS1229, DOI 10.1245/s10434-015-4711-0. Siegel RL, 2015, CA-CANCER J CLIN, V65, P5, DOI 10.3322/caac.21254. Skinner B. F., 1938, BEHAV ORGANISMS EXPT. Smith BJ, 2014, J AM MED INFORM ASSN, V21, P203, DOI 10.1136/amiajnl-2013-002171. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. Tempero MA, 2014, J NATL COMPR CANC NE, V12, P1083, DOI 10.6004/jnccn.2014.0106. Tonelli MR, 2017, JAMA-J AM MED ASSOC, V318, P1649, DOI 10.1001/jama.2017.11914. van de Schoot R, 2014, CHILD DEV, V85, P842, DOI 10.1111/cdev.12169. VanHouten JP, 2012, J SURG RES, V174, P222, DOI 10.1016/j.jss.2011.08.022. Velikova M, 2014, INT J APPROX REASON, V55, P59, DOI 10.1016/j.ijar.2013.03.016. Verduijn M, 2007, J BIOMED INFORM, V40, P609, DOI 10.1016/j.jbi.2007.07.003. Versteijne E, 2018, BRIT J SURG, V105, P946, DOI 10.1002/bjs.10870. Walczak S, 2017, J GASTROINTEST SURG, V21, P1606, DOI 10.1007/s11605-017-3518-7. Winter JM, 2012, ANN SURG ONCOL, V19, P169, DOI 10.1245/s10434-011-1900-3. Xu CP, 2014, J CANCER RES CLIN, V140, P549, DOI 10.1007/s00432-013-1572-4. Zhang XZ, 2017, ETHNIC DIS, V27, P95, DOI 10.18865/ed.27.2.95.}, Number-of-Cited-References = {57}, Times-Cited = {11}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {22}, Journal-ISO = {Pancreas}, Doc-Delivery-Number = {IQ3XN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000480685300012}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000821876800001, Author = {Basu, Bikramjit and Gowtham, N. H. and Xiao, Yang and Kalidindi, Surya R. and Leong, Kam W.}, Title = {Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials}, Journal = {ACTA BIOMATERIALIA}, Year = {2022}, Volume = {143}, Pages = {1-25}, Month = {APR 15}, Abstract = {Conventional approaches to developing biomaterials and implants require intuitive tailoring of manufacturing protocols and biocompatibility assessment. This leads to longer development cycles, and high costs. To meet existing and unmet clinical needs, it is critical to accelerate the production of implantable biomaterials, implants and biomedical devices. Building on the Materials Genome Initiative, we define the concept `biomaterialomics' as the integration of multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools throughout the entire pipeline of biomaterials development. The Data Science-driven approach is envisioned to bring together on a single platform, the computational tools, databases, experimental methods, machine learning, and advanced manufacturing (e.g., 3D printing) to develop the fourth-generation biomaterials and implants, whose clinical performance will be predicted using `digital twins'. While analysing the key elements of the concept of `biomaterialomics', significant emphasis has been put forward to effectively utilize high-throughput biocompatibility data together with multiscale physics-based models, E-platform/online databases of clinical studies, data science approaches, including metadata management, AI/ Machine Learning (ML) algorithms and uncertainty predictions. Such integrated formulation will allow one to adopt cross-disciplinary approaches to establish processing-structure-property (PSP) linkages. A few published studies from the lead author's research group serve as representative examples to illustrate the formulation and relevance of the `Biomaterialomics' approaches for three emerging research themes, i.e. patient-specific implants, additive manufacturing, and bioelectronic medicine. The increased adaptability of AI/ML tools in biomaterials science along with the training of the next generation researchers in data science are strongly recommended. Statement of significance This leading opinion review paper emphasizes the need to integrate the concepts and algorithms of the data science with biomaterials science. Also, this paper emphasizes the need to establish a mathematically rigorous cross-disciplinary framework that will allow a systematic quantitative exploration and curation of critical biomaterials knowledge needed to drive objectively the innovation efforts within a suitable uncertainty quantification framework, as embodied in `biomaterialomics' concept, which integrates multiomics data and high-dimensional analysis with artificial intelligence (AI) tools, like machine learning. The formulation of this approach has been demonstrated for patient-specific implants, additive manufacturing, and bioelectronic medicine. (c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Basu, B (Corresponding Author), Indian Inst Sci, Mat Res Ctr, Bangalore, Karnataka, India. Basu, B (Corresponding Author), Indian Inst Sci, Translat Ctr Excellence Biomat Orthoped \& Dent Ap, Bangalore 560012, Karnataka, India. Basu, Bikramjit; Gowtham, N. H., Indian Inst Sci, Mat Res Ctr, Bangalore, Karnataka, India. Basu, Bikramjit, Indian Inst Sci, Translat Ctr Excellence Biomat Orthoped \& Dent Ap, Bangalore 560012, Karnataka, India. Kalidindi, Surya R., Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. Xiao, Yang; Leong, Kam W., Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA.}, DOI = {10.1016/j.actbio.2022.02.027}, EarlyAccessDate = {APR 2022}, ISSN = {1742-7061}, EISSN = {1878-7568}, Keywords-Plus = {ELECTRIC-FIELD STIMULATION; GENE REGULATORY NETWORK; STRUCTURE-PROPERTY LINKAGES; HIGH-THROUGHPUT DISCOVERY; STATIC MAGNETIC-FIELD; STEM-CELL FATE; SUBSTRATE CONDUCTIVITY; ACCELERATED DEVELOPMENT; MECHANICAL-PROPERTIES; MOLECULAR SIMULATION}, Research-Areas = {Engineering; Materials Science}, Web-of-Science-Categories = {Engineering, Biomedical; Materials Science, Biomaterials}, Author-Email = {bikram@iisc.ac.in}, Affiliations = {Indian Institute of Science (IISC) - Bangalore; Indian Institute of Science (IISC) - Bangalore; University System of Georgia; Georgia Institute of Technology; Columbia University}, ResearcherID-Numbers = {Leong, Kam W/O-9302-2019 }, ORCID-Numbers = {Leong, Kam W/0000-0002-8133-4955 Xiao, Yang/0000-0001-7878-4923}, Funding-Acknowledgement = {Department of Biotechnology, Government of India (NIT Rourkela, India); Abdul Kalam National Innovation Fellowship of Indian National Academy of Engineering; Chiranjib Bhhatacharyya, Indian Institute of Science, Bangalore, India {[}CRG/2020/001145]; Department of Science and Technology-Science Engineering Research Board-(DST-SERB) , Ministry of Science and Technology, Government of India {[}IMP/2018/000622]; SERB, Government of India; Government of India}, Funding-Text = {One of the authors, BB acknowledges the financial support pro-vided by the Department of Biotechnology, Government of India, under the `Centre of Excellence and Innovation in Biotechnology' scheme, the Translational Centre on Biomaterials for Orthopedic and Dental applications (in particular, collaboration with Deabsish Sarkar, NIT Rourkela, India) , Abdul Kalam National Innovation Fel-lowship of Indian National Academy of Engineering, and ongoing research projects, ``Investigation on Machine learning approaches for optimization of process parameter for additive manufacturing and accelerated design of patient specific hip implants, based on Finite Element Analysis' (CRG/2020/001145, collaboration with Chi-ranjib Bhhatacharyya, Indian Institute of Science, Bangalore, India) , and IMPRINT project entitled ``Development of new generation Ac-etabular Socket Liner and Femoral Head Prototypes with unique 3D microstructures and better fracture resistance for Osteoporosis and Osteoarthritis treatment.{''} (IMP/2018/000622) , sponsored by the Department of Science and Technology-Science Engineering Re-search Board- (DST-SERB) , Ministry of Science and Technology, Gov-ernment of India. SK would like to thank the SERB, Government of India for the Vajra fellowship. BB and KWL acknowledge the SPARC research program, ``Electrical stimulation with electroactive biomaterials as therapeutic strategy for intractable bone and neu-rodegenerative diseases{''}, funded by the Government of India. BB ackowledges Professors P. Balaram and Ramray Bhat, Indian Insti-tute of Science, Bangalore for their suggestions. BB also appreciates the help from Nitu Bhaskar, Soumitra Das, Srimanta Barui, Swati Sharma and Prerana S. during manuscript preparation.}, Cited-References = {Adams BL, 2013, MICROSTRUCTURE-SENSITIVE DESIGN FOR PERFORMANCE OPTIMIZATION, P1. Afewerki S, 2020, NANOMED-NANOTECHNOL, V24, DOI 10.1016/j.nano.2019.102143. Ahmed W, 2019, MATER TODAY BIO, V2, DOI 10.1016/j.mtbio.2019.100017. Akita T, 2003, ANALYTICAL TEM OBSER. Allison J, 2006, JOM-US, V58, P25, DOI 10.1007/s11837-006-0223-5. Almodovar J, 2013, LAB CHIP, V13, P1562, DOI 10.1039/c3lc41407h. Alt V, 2017, INJURY, V48, P599, DOI 10.1016/j.injury.2016.12.011. {[}Anonymous], 2008, INTEGRATED COMPUTATI. {[}Anonymous], 2014, MAT GEN IN STRAT PLA. {[}Anonymous], 1986, PRINCIPAL COMPONENT, DOI DOI 10.1007/B98835. Aoyagi K, 2019, ADDIT MANUF, V27, P353, DOI 10.1016/j.addma.2019.03.013. Autefage H, 2015, P NATL ACAD SCI USA, V112, P4280, DOI 10.1073/pnas.1419799112. Bajpai I, 2014, J BIOMED MATER RES B, V102, P524, DOI 10.1002/jbm.b.33031. Bajpai I, 2013, J AM CERAM SOC, V96, P2100, DOI 10.1111/jace.12386. Bajpai I, 2012, J BIOMED MATER RES B, V100B, P1206, DOI 10.1002/jbm.b.32685. Baker AEG, 2019, ADV MATER, V31, DOI 10.1002/adma.201901166. Baker BA, 2014, BIOMATERIALS, V35, P6716, DOI 10.1016/j.biomaterials.2014.04.075. Balasubramaniam B, 2021, ACS PHARMACOL TRANSL, V4, P8, DOI 10.1021/acsptsci.0c00174. Barata D, 2016, ACTA BIOMATER, V34, P1, DOI 10.1016/j.actbio.2015.09.009. Barui S., 2016, MAT SCI ENG C, V70. Barui S, 2020, ACS APPL MATER INTER, V12, P34254, DOI 10.1021/acsami.0c03572. Barui S, 2019, BIOMATERIALS, V213, DOI 10.1016/j.biomaterials.2019.05.023. Barui S, 2017, CURR OPIN BIOMED ENG, V2, P116, DOI 10.1016/j.cobme.2017.05.010. Basu B, 2017, IND INST MET SER, P1, DOI 10.1007/978-981-10-3059-8. Basu B., 2018, BIOMATERIALS MUSCULO. Basu B, 2020, BIOMATERIALS SCI IMP. Basu B., 2009, ADV BIOMATERIALS FUN. Basu B., 2017, BIOMATERIALS SCI TIS. Basu B, 2021, J CLIN NEUROSCI, V85, P132, DOI 10.1016/j.jocn.2020.12.020. Basu B, 2015, J BIOMED MATER RES B, V103, P1168, DOI 10.1002/jbm.b.33270. Basu B, 2011, J APPL POLYM SCI, V121, P2500, DOI 10.1002/app.33961. Basu B, 2009, CERAM INT, V35, P237, DOI 10.1016/j.ceramint.2007.10.003. Basu S, 2021, J PHYS CHEM B, V125, P3, DOI 10.1021/acs.jpcb.0c08255. Bechhofer, 2004, W3C. Bell G, 2009, SCIENCE, V323, P1297, DOI 10.1126/science.1170411. Bhaskar N, 2018, ACS BIOMATER SCI ENG, V4, P3194, DOI 10.1021/acsbiomaterials.8b00583. Birgani ZT, 2016, J MATER SCI-MATER M, V27, DOI 10.1007/s10856-016-5666-9. Bishop Christopher M., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119. Boda SK, 2017, J BIOMED MATER RES B, V105, P2174, DOI 10.1002/jbm.b.33740. Boda SK, 2017, ACS APPL MATER INTER, V9, P19389, DOI 10.1021/acsami.6b08694. Boda SK, 2015, BIOELECTROCHEMISTRY, V106, P276, DOI 10.1016/j.bioelechem.2015.07.009. Boda SK, 2015, J MATER CHEM B, V3, P3150, DOI 10.1039/c5tb00118h. Bodhak S, 2008, J BIOMED MATER RES A, V85A, P83, DOI 10.1002/jbm.a.31393. Bodhak S, 2009, J BIOMATER APPL, V23, P407, DOI 10.1177/0885328208090012. Boehm J, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL025546. Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324. Broderick S, 2008, JOM-US, V60, P56, DOI 10.1007/s11837-008-0035-x. Brough DB, 2017, INTEGR MATER MANUF I, V6, P36, DOI 10.1007/s40192-017-0089-0. Cahan P, 2014, CELL, V158, P903, DOI 10.1016/j.cell.2014.07.020. Campoccia D, 2013, BIOMATERIALS, V34, P8533, DOI 10.1016/j.biomaterials.2013.07.089. Caplin JD, 2019, ACTA BIOMATER, V93, P2, DOI 10.1016/j.actbio.2019.01.015. Cecen A, 2018, ACTA MATER, V146, P76, DOI 10.1016/j.actamat.2017.11.053. Chai LE, 2014, COMPUT BIOL MED, V48, P55, DOI 10.1016/j.compbiomed.2014.02.011. Chanda S, 2016, APPL SOFT COMPUT, V38, P296, DOI 10.1016/j.asoc.2015.10.020. Chandorkar Y., 2015, BIOMACROMOLECULES. Chandorkar Y, 2019, ACS BIOMATER SCI ENG, V5, P19, DOI 10.1021/acsbiomaterials.8b00252. Chandorkar Y, 2014, BIOMACROMOLECULES, V15, P863, DOI 10.1021/bm401715z. Chatterjee S, 2019, J MECH BEHAV BIOMED, V94, P249, DOI 10.1016/j.jmbbm.2019.03.001. Chatterjee S, 2018, J BIOMECH ENG-T ASME, V140, DOI 10.1115/1.4040249. Chaudhuri O, 2016, NAT MATER, V15, P326, DOI {[}10.1038/NMAT4489, 10.1038/nmat4489]. Chen SS, 2019, J BIOMED MATER RES A, V107, P2512, DOI 10.1002/jbm.a.36757. Chun S, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70149-0. Cilla M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183755. Cleveland WS, 2001, INT STAT REV, V69, P21, DOI 10.2307/1403527. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Cranford SW, 2013, ADV MATER, V25, P802, DOI 10.1002/adma.201202553. Crawford RE, 1997, ANN RHEUM DIS, V56, P455, DOI 10.1136/ard.56.8.455. Dalby MJ, 2008, J R SOC INTERFACE, V5, P1055, DOI 10.1098/rsif.2008.0016. Darnell M, 2018, P NATL ACAD SCI USA, V115, pE8368, DOI 10.1073/pnas.1802568115. Das S, 2022, INT J APPL CERAM TEC, V19, P924, DOI 10.1111/ijac.13885. Das S, 2019, J INDIAN I SCI, V99, P405, DOI 10.1007/s41745-019-00129-5. DebRoy T, 2021, NAT REV MATER, V6, P48, DOI 10.1038/s41578-020-00236-1. DebRoy T, 2019, NAT MATER, V18, P1026, DOI 10.1038/s41563-019-0408-2. DebRoy T, 2018, PROG MATER SCI, V92, P112, DOI 10.1016/j.pmatsci.2017.10.001. Drosback M., 2014, JOM-US, V66, P334. Dubey AK, 2011, J BIOL PHYS, V37, P39, DOI 10.1007/s10867-010-9194-4. Dubey AK, 2014, J AM CERAM SOC, V97, P481, DOI 10.1111/jace.12647. Dubey AK, 2013, J MATER SCI-MATER M, V24, P1789, DOI 10.1007/s10856-013-4921-6. Dubey AK, 2012, J COMPUT THEOR NANOS, V9, P137, DOI 10.1166/jctn.2012.2008. Dubey AK, 2011, J BIOMED MATER RES B, V98B, P18, DOI 10.1002/jbm.b.31827. Dubey AK, 2009, J APPL PHYS, V105, DOI 10.1063/1.3086627. Duffy C, 2016, ACTA BIOMATER, V34, P104, DOI 10.1016/j.actbio.2015.12.030. Dutta RC, 2017, BIOTECHNOL ADV, V35, P240, DOI 10.1016/j.biotechadv.2017.01.001. Epa VC, 2014, ADV FUNCT MATER, V24, P2085, DOI 10.1002/adfm.201302877. Excoffier L, 2005, EVOL BIOINFORM, V1, P47, DOI 10.1177/117693430500100003. Eyckmans J, 2013, BIOMATERIALS, V34, P4612, DOI 10.1016/j.biomaterials.2013.03.011. Fisher RA, 2017, NAT REV MICROBIOL, V15, P453, DOI 10.1038/nrmicro.2017.42. FIX E, 1989, INT STAT REV, V57, P238, DOI 10.2307/1403797. Galaxy, 2016, US. Godoy-Gallardo M, 2021, BIOACT MATER, V6, P4470, DOI 10.1016/j.bioactmat.2021.04.033. Gong X, 2017, INTEGR MATER MANUF I, V6, P218, DOI 10.1007/s40192-017-0100-9. Groen N, 2016, ACTA BIOMATER, V34, P133, DOI 10.1016/j.actbio.2016.02.015. Correa MG, 2020, BEILSTEIN J NANOTECH, V11, P1450, DOI 10.3762/bjnano.11.129. Guo YL, 2021, J INTELL MANUF, V32, P347, DOI {[}10.1007/s10845-020-01575-0, 10.1109/JSYST.2020.3022244]. HALL EO, 1951, P PHYS SOC LOND B, V64, P747, DOI 10.1088/0370-1301/64/9/303. Hebels DGAJ, 2017, BIOMATERIALS, V149, P88, DOI 10.1016/j.biomaterials.2017.10.008. Hemar Y, 2006, BIOMACROMOLECULES, V7, P674, DOI 10.1021/bm050566l. Hepatotoxicity of chemotherapeutic agents, 2008, CHEMOTHERAPY SOURCE, P209. Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601. Hohman M, 2009, DRUG DISCOV TODAY, V14, P261, DOI 10.1016/j.drudis.2008.11.015. HUBzero, US. Hwang NS, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002498. Ideker T, 2006, ANN BIOMED ENG, V34, P257, DOI 10.1007/s10439-005-9047-7. iMAT- Georgia Tech Institute, 1996, MAT INN NETW. Jackson M, 2010, MODEL SIMUL MATER SC, V18, DOI 10.1088/0965-0393/18/6/065008. Jain S, 2015, CARBON, V81, P193, DOI 10.1016/j.carbon.2014.09.048. Jain S, 2013, BIOMATERIALS, V34, P9252, DOI 10.1016/j.biomaterials.2013.08.057. Jin ZQ, 2019, MANUF LETT, V22, P11, DOI 10.1016/j.mfglet.2019.09.005. Jonkers I, 2008, J BIOMECH, V41, P3405, DOI 10.1016/j.jbiomech.2008.09.011. Kaiser J, 2018, SCIENCE, V361, P212, DOI 10.1126/science.361.6399.212. Kaiser J, 2015, SCIENCE, V347, P601, DOI 10.1126/science.347.6222.601. Kaiser J, 2015, SCIENCE, V347, P226, DOI 10.1126/science.347.6219.226. Kalelkar PP, 2022, NAT REV MATER, V7, P39, DOI 10.1038/s41578-021-00362-4. Kalidindi S., 2015, HIERARCHICAL MAT INF. Kalidindi SR, 2019, INTEGR MATER MANUF I, V8, P441, DOI 10.1007/s40192-019-00156-1. Kalidindi SR, 2019, MRS COMMUN, V9, P518, DOI 10.1557/mrc.2019.56. Kalidindi SR, 2016, JOM-US, V68, P2126, DOI 10.1007/s11837-016-2036-5. Kalidindi SR, 2015, ANNU REV MATER RES, V45, P171, DOI 10.1146/annurev-matsci-070214-020844. Kalidindi SR, 2015, INT MATER REV, V60, P150, DOI 10.1179/1743280414Y.0000000043. Kalmodia S, 2011, J BIOMED NANOTECHNOL, V7, P74, DOI 10.1166/jbn.2011.1208. Kamali A, 2010, J BONE JOINT SURG BR, V92B, P717, DOI 10.1302/0301-620X.92B5.23320. Kennedy MC, 2001, J R STAT SOC B, V63, P425, DOI 10.1111/1467-9868.00294. Khalid S, 2020, BIOMATER SCI-UK, V8, P6840, DOI 10.1039/d0bm00845a. Khare D., 2020, BIOMATERIALS. Khosravani A, 2017, ACTA MATER, V123, P55, DOI 10.1016/j.actamat.2016.10.033. Kilian KA, 2016, ACTA BIOMATER, V34, pV, DOI 10.1016/j.actbio.2016.03.019. Kim HD, 2016, ACTA BIOMATER, V34, P21, DOI 10.1016/j.actbio.2016.02.022. Kim HN, 2019, INTEGR MATER MANUF I, V8, P257, DOI 10.1007/s40192-019-00141-8. Klyne G., 2014, W3C. KNIME, 2016, US. Kottan N, 2022, J BIOMECH ENG-T ASME, V144, DOI 10.1115/1.4052373. Kumar A, 2016, MAT SCI ENG R, V103, pIII, DOI 10.1016/j.mser.2016.01.001. Kumar A, 2016, J BIOMATER APPL, V30, P1168, DOI 10.1177/0885328215617058. Kumar G, 2011, BIOMATERIALS, V32, P9188, DOI 10.1016/j.biomaterials.2011.08.054. Kumari S, 2021, APL BIOENG, V5, DOI 10.1063/5.0029486. Laaksonen TJ, 2009, BIOMATERIALS, V30, P1978, DOI 10.1016/j.biomaterials.2008.12.028. Lanphier E, 2015, NATURE, V519, P410, DOI 10.1038/519410a. Latypov MI, 2017, J COMPUT PHYS, V346, P242, DOI 10.1016/j.jcp.2017.06.013. Le NNT, 2016, ACTA BIOMATER, V34, P93, DOI 10.1016/j.actbio.2015.09.019. Liang L, 2018, J R SOC INTERFACE, V15, DOI 10.1098/rsif.2017.0844. Ludlow JW, 2012, TISSUE ENG PART B-RE, V18, P218, DOI {[}10.1089/ten.teb.2011.0551, 10.1089/ten.TEB.2011.0551]. Lv Ji, 2021, {[}Biosafety and Health, 生物安全与健康], V3, P22. Ma W, 2020, J APPL PHYS, V128, DOI 10.1063/5.0013720. Magennis EP, 2016, ACTA BIOMATER, V34, P84, DOI 10.1016/j.actbio.2015.11.008. Mallik PK, 2014, J BIOMED MATER RES A, V102, P842, DOI 10.1002/jbm.a.34752. Mandal S, 2018, J MATER RES, V33, P2062, DOI 10.1557/jmr.2018.188. Mandal S, 2018, J MATER SCI-MATER M, V29, DOI 10.1007/s10856-018-6034-8. MatNavi (NIMS Materials Database), 2014, US. Mattiassi S, 2021, BIOMATER SCI-UK, V9, P5175, DOI 10.1039/d1bm00400j. Matweb, 2014, US. Mauro JC, 2018, CURR OPIN SOLID ST M, V22, P58, DOI 10.1016/j.cossms.2017.09.001. Mauro JC, 2016, CHEM MATER, V28, P4267, DOI 10.1021/acs.chemmater.6b01054. McCulloch W. S., 1943, B MATH BIOPHYS, V5, P115, DOI {[}10.1007/BF02478259, DOI 10.1007/BF02478259]. McDowell DL, 2007, JOM-US, V59, P21, DOI 10.1007/s11837-007-0111-7. McDowell DL, 2010, INTEGRATED DESIGN OF MULTISCALE, MULTIFUNCTIONAL MATERIALS AND PRODUCTS, P1. McKinney W., 2010, P 9 PYTH SCI C, P51, DOI {[}10.25080/majora-92bf1922-00a, DOI 10.25080/MAJORA-92BF1922-00A]. McMurray RJ, 2011, NAT MATER, V10, P637, DOI {[}10.1038/NMAT3058, 10.1038/nmat3058]. Meininger S, 2016, ACTA BIOMATER, V31, P401, DOI 10.1016/j.actbio.2015.11.050. Minev IR, 2015, SCIENCE, V347, P159, DOI 10.1126/science.1260318. Morris SA, 2014, CELL, V158, P889, DOI 10.1016/j.cell.2014.07.021. Muiznieks LD, 2013, BBA-MOL BASIS DIS, V1832, P866, DOI 10.1016/j.bbadis.2012.11.022. nanoamor, US. Nasir H, 2010, WORLD CINEMAS TRANSN, pix, DOI DOI 10.1002/9780470634370. Naskar S, 2020, BIOMATERIALS, V226, DOI 10.1016/j.biomaterials.2019.119522. Naskar S, 2018, ACS APPL BIO MATER, V1, P414, DOI 10.1021/acsabm.8b00147. Naskar S, 2019, REGEN ENG TRANSL MED, V5, P99, DOI 10.1007/s40883-018-0071-1. Naskar S, 2017, ACS BIOMATER SCI ENG, V3, P1154, DOI 10.1021/acsbiomaterials.7b00206. Nath S, 2007, J BIOMED MATER RES A, V83A, P191, DOI 10.1002/jbm.a.31203. Nath S, 2009, J BIOMED MATER RES B, V88B, P1, DOI 10.1002/jbm.b.31050. NIST (National Institute of Standards and Technology), 2014, DAT GAT. Olson G.B., 1998, J COMPUT-AIDED MATER, V4, P143, DOI DOI 10.1023/A:1008670319664. Olson GB, 2000, SCIENCE, V288, P993, DOI 10.1126/science.288.5468.993. Olson GB, 1997, SCIENCE, V277, P1237, DOI 10.1126/science.277.5330.1237. Orange, 2016, US. Padbury R, 2020, DATA DRIVEN APPROACH. Pan HH, 2006, CHINESE J INORG CHEM, V22, P1392. Panchal JH, 2013, COMPUT AIDED DESIGN, V45, P4, DOI 10.1016/j.cad.2012.06.006. Panda AK, 2021, MAT SCI ENG R, V146, DOI 10.1016/j.mser.2021.100630. Panda AK, 2021, ACS APPL MATER INTER, V13, P164, DOI 10.1021/acsami.0c17257. Pathak S, 2015, MAT SCI ENG R, V91, P1, DOI 10.1016/j.mser.2015.02.001. Pedregosa F., 2012, J MACH LEARN RES, V12. PETCH NJ, 1953, J IRON STEEL I, V174, P25. Pinto JP, 2014, NUCLEIC ACIDS RES, V42, pW154, DOI 10.1093/nar/gku455. Popova E, 2017, INTEGR MATER MANUF I, V6, P54, DOI 10.1007/s40192-017-0088-1. Project Jupyter, 2016, US. Qin W, 2010, BIOMATERIALS, V31, P1007, DOI 10.1016/j.biomaterials.2009.10.013. Radley AH, 2017, NAT PROTOC, V12, P1089, DOI 10.1038/nprot.2017.022. Rajon DA, 2002, PHYS MED BIOL, V47, P1741, DOI 10.1088/0031-9155/47/10/310. Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1. Ravikumar K, 2019, REGEN ENG TRANSL MED, V5, P10, DOI 10.1007/s40883-018-0073-z. Ravikumar K, 2019, BIOMATERIALS, V209, P54, DOI 10.1016/j.biomaterials.2019.04.010. Ravikumar K, 2018, J BIOMATER APPL, V32, P1174, DOI 10.1177/0885328217750820. Ravikumar K, 2017, BIOELECTROCHEMISTRY, V116, P52, DOI 10.1016/j.bioelechem.2017.03.004. Ravikumar K, 2016, RSC ADV, V6, P10837, DOI 10.1039/c5ra26104j. Ravikumar K., 2017, J BIOMATER APPL, V32. Rawool SB, 2007, BIOSYSTEMS, V90, P636, DOI 10.1016/j.biosystems.2007.02.003. Ren YX, 2022, METHODOL COMPUT APPL, V24, P431, DOI 10.1007/s11009-021-09863-9. Roy S, 2018, APPL SOFT COMPUT, V65, P272, DOI 10.1016/j.asoc.2018.01.025. Russo G, 2020, EXPERT OPIN DRUG DIS, V15, P1267, DOI 10.1080/17460441.2020.1791076. Sadowska JM, 2021, MATER TODAY, V46, P136, DOI 10.1016/j.mattod.2020.12.018. Sadtler K, 2019, BIOMATERIALS, V192, P405, DOI 10.1016/j.biomaterials.2018.11.002. Sanni O, 2015, ADV HEALTHC MATER, V4, P695, DOI 10.1002/adhm.201400648. Sarkar D, 2018, J AM CERAM SOC, V101, P1333, DOI 10.1111/jace.15255. Sarkar D, 2017, MAT SCI ENG C-MATER, V77, P1216, DOI 10.1016/j.msec.2017.03.123. Sarkar D, 2016, ADV ENG MATER, V18, P1634, DOI 10.1002/adem.201600147. Schmidt J, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0221-0. Scime L, 2019, ADDIT MANUF, V25, P151, DOI 10.1016/j.addma.2018.11.010. Seabold S., 2010, 9 PYTH SCI C, DOI DOI 10.25080/MAJORA-92BF1922-011. Shah AP, 2005, HEALTH PHYS, V89, P199, DOI 10.1097/01.HP.0000164653.55582.fd. Shen JW, 2008, BIOMATERIALS, V29, P513, DOI 10.1016/j.biomaterials.2007.10.016. Shirke P.U., 2021, ACTA BIOMATER. Steven M.J.B., 2012, BIOMATERIOMICS, V1. Sui YP, 2003, DIFFERENTIATION, V71, P578, DOI 10.1111/j.1432-0436.2003.07109001.x. Sundell G, 2017, ACTA BIOMATER, V48, P445, DOI 10.1016/j.actbio.2016.11.044. Tahmasebi P, 2020, ADV WATER RESOUR, V142, DOI 10.1016/j.advwatres.2020.103619. Tang WWC, 2015, CELL, V161, P1453, DOI 10.1016/j.cell.2015.04.053. Thrivikraman G, 2018, BIOMATERIALS, V150, P60, DOI 10.1016/j.biomaterials.2017.10.003. Thrivikraman G, 2016, BIOMATERIALS, V77, P26, DOI 10.1016/j.biomaterials.2015.10.078. Thrivikraman G, 2015, ACS APPL MATER INTER, V7, P23015, DOI 10.1021/acsami.5b06390. Thrivikraman G, 2014, BIOMATERIALS, V35, P6219, DOI 10.1016/j.biomaterials.2014.04.018. Thrivikraman G, 2014, RSC ADV, V4, P12763, DOI 10.1039/c3ra44483j. Thrivikraman G, 2013, BIOMATERIALS, V34, P7073, DOI 10.1016/j.biomaterials.2013.05.076. TORQUATO S, 1993, PHYS REV E, V47, P2950, DOI 10.1103/PhysRevE.47.2950. Torquato S., 2002, APPL MECH REV, DOI DOI 10.1115/1.1483342. Tripathi G, 2012, J APPL POLYM SCI, V124, P3051, DOI 10.1002/app.35339. Tripathi G, 2012, J APPL POLYM SCI, V124, P2133, DOI 10.1002/app.35236. Tsimbouri PM, 2013, BIOMATERIALS, V34, P2177, DOI 10.1016/j.biomaterials.2012.12.019. Turner DM, 2016, MODEL SIMUL MATER SC, V24, DOI 10.1088/0965-0393/24/7/075002. van Blitterswijk D.S.C.A., 2008, ANN TISSUE ENG REGEN. van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37. Verma M, 2006, BIOSYSTEMS, V84, P39, DOI 10.1016/j.biosystems.2005.10.001. Voigt SP, 2021, MATER LETT, V295, DOI 10.1016/j.matlet.2021.129836. Wadee A, 2011, EXPERT OPIN DRUG DEL, V8, P1323, DOI 10.1517/17425247.2011.602671. Wan Thomas T H, 2006, J Med Syst, V30, P3, DOI 10.1007/s10916-006-7397-9. Wang YM, 2021, APPL MATER TODAY, V25, DOI 10.1016/j.apmt.2021.101192. Ward AC, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.01039. Warren J., 2014, MAT GENOME INITIATIV. Weaver JS, 2016, INTEGR MATER MANUF I, V5, DOI 10.1186/s40192-016-0054-3. Werbos P, 1974, REGRESSION NEW TOOLS. Westphal E, 2021, ADDIT MANUF, V41, DOI 10.1016/j.addma.2021.101965. Wiemken TL, 2020, ANNU REV PUBL HEALTH, V41, P21, DOI 10.1146/annurev-publhealth-040119-094437. Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18. Yabansu YC, 2017, ACTA MATER, V124, P182, DOI 10.1016/j.actamat.2016.10.071. Yamako G, 2014, MED ENG PHYS, V36, P694, DOI 10.1016/j.medengphy.2014.02.018. Yamazoe H, 2005, J BIOSCI BIOENG, V100, P292, DOI 10.1263/jbb.100.292. Zhang M, 2019, INT J FATIGUE, V128, DOI 10.1016/j.ijfatigue.2019.105194. Zhou Q, 2007, P NATL ACAD SCI USA, V104, P16438, DOI 10.1073/pnas.0701014104. Zuowei Zhu, 2020, Procedia CIRP, V91, P534, DOI 10.1016/j.procir.2020.03.108. Zygourakis K, 1996, BIOMATERIALS, V17, P125, DOI 10.1016/0142-9612(96)85757-7. ZYGOURAKIS K, 1991, BIOTECHNOL BIOENG, V38, P459, DOI 10.1002/bit.260380504.}, Number-of-Cited-References = {250}, Times-Cited = {7}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {22}, Journal-ISO = {Acta Biomater.}, Doc-Delivery-Number = {2S6CA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000821876800001}, DA = {2023-04-22}, } @article{ WOS:000836472200016, Author = {Stein, Helge S. and Sanin, Alexey and Rahmanian, Fuzhan and Zhang, Bojing and Vogler, Monika and Flowers, Jackson K. and Fischer, Leon and Fuchs, Stefan and Choudhary, Nirmal and Schroeder, Lisa}, Title = {From materials discovery to system optimization by integrating combinatorial electrochemistry and data science}, Journal = {CURRENT OPINION IN ELECTROCHEMISTRY}, Year = {2022}, Volume = {35}, Month = {OCT}, Abstract = {Insight generation from electrochemical experiments augmented by data science requires broad, systematic, and well-defined parameter variations which build upon automation, data management, and flexible instrumentation interfaces. Combinatorial electrochemical synthesis of interfaces and interphases with liquid electrolytes by automated high-throughput robots offers the required high reproducibility. However, automation of electrochemistry is not enough as data needs to be collected in ways that make it machine readable and interpretable. Once established this integration allows scientists and algorithms to transfer knowledge and insights from interfaces and interphases to systems like batteries. Herein, we present an overview of recent innovative methods of combinatorial electrochemistry and synthesis which have been integrated into our platform for accelerated electrochemical storage research (PLACES/R), targeting the entire battery research value chain.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Stein, HS (Corresponding Author), Karlsruhe Inst Technol KIT, Inst Phys Chem IPC, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany. Stein, HS (Corresponding Author), Helmholtz Inst Ulm HIU, Helmholtzstr 11, D-89081 Ulm, Germany. Stein, Helge S.; Sanin, Alexey; Rahmanian, Fuzhan; Zhang, Bojing; Vogler, Monika; Flowers, Jackson K.; Fischer, Leon; Fuchs, Stefan; Choudhary, Nirmal; Schroeder, Lisa, Karlsruhe Inst Technol KIT, Inst Phys Chem IPC, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany. Stein, Helge S.; Sanin, Alexey; Rahmanian, Fuzhan; Zhang, Bojing; Vogler, Monika; Flowers, Jackson K.; Fischer, Leon; Fuchs, Stefan; Choudhary, Nirmal; Schroeder, Lisa, Helmholtz Inst Ulm HIU, Helmholtzstr 11, D-89081 Ulm, Germany.}, DOI = {10.1016/j.coelec.2022.101053}, EarlyAccessDate = {JUN 2022}, Article-Number = {101053}, ISSN = {2451-9103}, Keywords = {Combinatorial; High-throughput; Electrochemistry; Data science; Machine learning; Integration; Batteries}, Keywords-Plus = {SEMICONDUCTOR MATERIAL LIBRARIES; THROUGHPUT}, Research-Areas = {Chemistry; Electrochemistry; Materials Science}, Web-of-Science-Categories = {Chemistry, Physical; Electrochemistry; Materials Science, Multidisciplinary}, Author-Email = {helge.stein@kit.edu}, Affiliations = {Helmholtz Association; Karlsruhe Institute of Technology}, ResearcherID-Numbers = {Stein, Helge/M-5595-2019 }, ORCID-Numbers = {Stein, Helge/0000-0002-3461-0232 Sanin, Alexey/0000-0003-1796-9224}, Funding-Acknowledgement = {German Research Foundation (DFG) {[}390874152]; European Union {[}957189]; Bundesministerium fur Bildung und Forschung (BMBF) {[}03XP0323D, 03XP0363A]}, Funding-Text = {This work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm-Karlsruhe) and was funded by the German Research Foundation (DFG) under Project ID 390874152 (POLiS Cluster of Excellence). This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957189. This project received funding from Bundesministerium fur Bildung und Forschung (BMBF) in the framework of the BMBF-Kompetenzcluster InZePro for the projects DataBatt No 03XP0323D and InForm No 03XP0363A.}, Cited-References = {Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894. Allan D., 2019, SYNCHROTRON RADIAT N, V32, P19, DOI DOI 10.1080/08940886.2019.1608121. Ament SE, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0213-0. Amici J, 2022, ADV ENERGY MATER, V12, DOI 10.1002/aenm.202102785. Amis EJ, 2002, MRS BULL, V27, P295, DOI 10.1557/mrs2002.96. {[}Anonymous], MAT ACCELERATION PLA, V109. Attia PM, 2020, NATURE, V578, P397, DOI 10.1038/s41586-020-1994-5. Banko L, 2020, ACS COMB SCI, V22, P401, DOI 10.1021/acscombsci.0c00057. Bhowmik A, 2022, ADV ENERGY MATER, V12, DOI 10.1002/aenm.202102698. Bhowmik A, 2019, ENERGY STORAGE MATER, V21, P446, DOI 10.1016/j.ensm.2019.06.011. Bond AM, 2022, CURR OPIN ELECTROCHE, V34, DOI 10.1016/j.coelec.2022.101009. Borhani-Haghighi S, 2016, NANOTECHNOLOGY, V27, DOI 10.1088/0957-4484/27/45/455402. Brandt N., 2021, DATA SCI J, V20, P8, DOI DOI 10.5334/DSJ-2021-008. Burke S, 2021, AUTONOMOUS OPTIMIZAT. Castelli IE, 2021, ARXIV210601616 COND. Daboss S, ELECTROCHEM SCI ADV, DOI DOI 10.1002/ELSA.202100122. Dahn JR, 2002, CHEM MATER, V14, P3519, DOI 10.1021/cm020236x. Dechent P, 2021, BATTERIES SUPERCAPS, V4, P1821, DOI 10.1002/batt.202100148. Fichtner M, 2022, BATTERIES SUPERCAPS, V5, DOI 10.1002/batt.202100224. Fleischauer MD, 2005, MEAS SCI TECHNOL, V16, P212, DOI 10.1088/0957-0233/16/1/028. Garcia G, 2017, ACS APPL MATER INTER, V9, P18691, DOI 10.1021/acsami.7b01705. Gomes CP, 2019, MRS COMMUN, V9, P600, DOI 10.1557/mrc.2019.50. Green ML, 2017, APPL PHYS REV, V4, DOI 10.1063/1.4977487. Gregoire JM, 2013, REV SCI INSTRUM, V84, DOI 10.1063/1.4790419. Grote JP, 2014, REV SCI INSTRUM, V85, DOI 10.1063/1.4896755. Gundry L, 2022, FARADAY DISCUSS, V233, P44, DOI 10.1039/d1fd00050k. Gundry L, 2021, CHEM COMMUN, V57, P1855, DOI 10.1039/d0cc07549c. Herring P, 2020, SOFTWAREX, V11, DOI 10.1016/j.softx.2020.100506. Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323. Jin J., 2013, SCANNING DROP SENSOR. Kennedy GF, 2019, ANAL CHEM, V91, P12220, DOI 10.1021/acs.analchem.9b01891. Kitano H, 2021, NPJ SYST BIOL APPL, V7, DOI 10.1038/s41540-021-00189-3. Kollender JP, 2015, ELECTROCHIM ACTA, V179, P32, DOI 10.1016/j.electacta.2015.04.103. Kong S, MAT REPRESENTATION T, V14. Liu XN, 2012, NANO LETT, V12, P5733, DOI 10.1021/nl302992q. Ludwig A, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0205-0. Lundberg SM, 2017, ADV NEUR IN, V30. Maier WF, 2019, ACS COMB SCI, V21, P437, DOI 10.1021/acscombsci.8b00189. Mardare AI, 2013, ELECTROCHIM ACTA, V110, P539, DOI 10.1016/j.electacta.2013.03.065. Mardare Andrei Ionut, ELECTROCHIM ACTA, V110, P539, DOI {[}10.1016/j.electacta.2013.03.065, DOI 10.1016/J.ELECTACTA.2013.03.065]. Meyer R, 2015, CHEMSUSCHEM, V8, P1279, DOI 10.1002/cssc.201402918. Newhouse PF, 2018, ENERG ENVIRON SCI, V11, P2444, DOI 10.1039/c8ee00179k. Newhouse PF, 2015, J MATER CHEM A, V3, P5901, DOI 10.1039/c4ta05671j. Potyrailo R, 2011, ACS COMB SCI, V13, P579, DOI 10.1021/co200007w. Rahmanian F, 2022, ADV MATER INTERFACES, V9, DOI 10.1002/admi.202101987. Roch LM, 2018, SCI ROBOT, V3, DOI 10.1126/scirobotics.aat5559. Rohr B, 2020, CHEM SCI, V11, P2696, DOI 10.1039/c9sc05999g. Sainburg T, 2021, ARXIV200912981 CS Q. Sliozberg K, 2015, CHEMSUSCHEM, V8, P1270, DOI 10.1002/cssc.201402917. Soedarmadji E, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0216-x. Stein H, 2015, PHYS STATUS SOLIDI A, V212, P2798, DOI 10.1002/pssa.201532384. Stein HS, 2019, CHEM SCI, V10, P9640, DOI 10.1039/c9sc03766g. Stein HS, 2019, MATER HORIZ, V6, P1251, DOI 10.1039/c8mh01641k. Stein HS, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0019-4. Stein HS, 2019, CHEM SCI, V10, P47, DOI 10.1039/c8sc03077d. Takeuchi I, 2005, REV SCI INSTRUM, V76, DOI 10.1063/1.1927079. Umehara M, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0172-5. Vaddi K, 2019, ACS COMB SCI, V21, P726, DOI 10.1021/acscombsci.9b00086. Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18. Yang L, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2106042118. Zakutayev A, 2017, HIGH THROUGHPUT EXPT, DOI DOI 10.7799/1407128.}, Number-of-Cited-References = {61}, Times-Cited = {2}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Curr. Opin. Electrochem.}, Doc-Delivery-Number = {3N9NW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000836472200016}, DA = {2023-04-22}, } @article{ WOS:000701169800003, Author = {Calzolari, Giovanni and Liu, Wei}, Title = {Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review}, Journal = {BUILDING AND ENVIRONMENT}, Year = {2021}, Volume = {206}, Month = {DEC}, Abstract = {Fast and accurate airflow simulations in the built environment are critical to provide acceptable thermal comfort and air quality to the occupants. Computational Fluid Dynamics (CFD) offers detailed analysis on airflow motion, heat transfer, and contaminant transport in indoor environment, as well as wind flow and pollution dispersion around buildings in urban environments. However, CFD still faces many challenges mainly in terms of computational expensiveness and accuracy. With the increasing availability of large amount of data, data driven models are starting to be investigated to either replace, improve, or aid CFD simulations. More specifically, the abilities of deep learning and Artificial Neural Networks (ANN) as universal non-linear approximator, handling of high dimensionality fields, and computational inexpensiveness are very appealing. In built environment research, deep learning applications to airflow simulations shows the ANN as surrogate, replacement for expensive CFD analysis. Surrogate modeling enables fast or even real-time predictions, but usually at a cost of a degraded accuracy. The objective of this work is to critically review deep learning interactions with fluid mechanics simulations in general, to propose and inform about different techniques other than surrogate modeling for built environment applications. The literature review shows that ANNs can enhance the turbulence model in various way for coupled CFD simulations of higher accuracy, improve the efficiency of Proper Orthogonal Decomposition (POD) methods, leverage crucial physical properties and information with physics informed deep learning modeling, and even unlock new advanced methods for flow analysis such as super-resolution techniques. These promising methods are largely yet to be explored in the built environment scene. Unavoidably, deep learning models also presents challenges such as the availability of consistent large flow databases, the extrapolation task problem, and over-fitting, etc.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Liu, W (Corresponding Author), KTH Royal Inst Technol, Dept Civil \& Architectural Engn, Div Sustainable Bldg, Brinellvagen 23, S-10044 Stockholm, Sweden. Calzolari, Giovanni; Liu, Wei, KTH Royal Inst Technol, Dept Civil \& Architectural Engn, Div Sustainable Bldg, Brinellvagen 23, S-10044 Stockholm, Sweden.}, DOI = {10.1016/j.buildenv.2021.108315}, EarlyAccessDate = {SEP 2021}, Article-Number = {108315}, ISSN = {0360-1323}, EISSN = {1873-684X}, Keywords = {Artificial intelligence; Neural networks; Fluid mechanics; Turbulence}, Keywords-Plus = {PROPER ORTHOGONAL DECOMPOSITION; ARTIFICIAL NEURAL-NETWORKS; INVERSE DESIGN; MODEL IDENTIFICATION; TURBULENCE MODELS; HEAT-TRANSFER; SIMULATION; FLOWS; MACHINE; CABIN}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Environmental; Engineering, Civil}, Author-Email = {weiliu2@kth.se}, Affiliations = {Royal Institute of Technology}, ResearcherID-Numbers = {Liu, Wei/B-3532-2016 }, ORCID-Numbers = {Liu, Wei/0000-0003-1285-2334 Calzolari, Giovanni/0000-0001-9287-6103}, Funding-Acknowledgement = {Digital Futures, C3.ai Digital Transformation Institute; Energimyndigheten (Swedish Energy Agency) {[}50057-1]}, Funding-Text = {This work was partially supported by the Digital Futures, C3.ai Digital Transformation Institute, and the Energimyndigheten (Swedish Energy Agency, grant No. 50057-1) .}, Cited-References = {Agarap, 2018, ARXIV180308375 AG. Albers RAW, 2015, BUILD ENVIRON, V83, P1, DOI 10.1016/j.buildenv.2014.09.006. {[}Anonymous], 1995, HDB BRAIN THEORY NEU, DOI {[}DOI 10.1109/IJCNN.2004.1381049, 10.5555/303568.303704]. {[}Anonymous], 2010, 51 AIAA ASME ASCE AH. {[}Anonymous], 2018, GUIDE CONVOLUTION AR. Bai K, 2021, ACM T GRAPHIC, V40, DOI 10.1145/3412360. Ballarin F, 2015, INT J NUMER METH ENG, V102, P1136, DOI 10.1002/nme.4772. Basak Debasish, 2007, NEURAL INFORM PROCES, V11, P203, DOI DOI 10.1007/978-1-4302-5990-9\_4. Beck A, 2019, J COMPUT PHYS, V398, DOI 10.1016/j.jcp.2019.108910. Berger MJ, 2005, J PARALLEL DISTR COM, V65, P414, DOI 10.1016/j.jpdc.2004.11.010. BERKOOZ G, 1993, ANNU REV FLUID MECH, V25, P539, DOI 10.1146/annurev.fl.25.010193.002543. Brunton SL, 2020, ANNU REV FLUID MECH, V52, P477, DOI 10.1146/annurev-fluid-010719-060214. Bulkeley H., 2013, CITIES CLIMATE CHANG, V382. Carlucci S, 2018, BUILD ENVIRON, V137, P73, DOI 10.1016/j.buildenv.2018.03.053. Coley D, 2010, BUILD ENVIRON, V45, P89, DOI 10.1016/j.buildenv.2009.05.009. DEARDORFF JW, 1970, J FLUID MECH, V41, P453, DOI 10.1017/S0022112070000691. Deng ZW, 2019, PHYS FLUIDS, V31, DOI 10.1063/1.5127031. Ding C, 2019, BUILD ENVIRON, V165, DOI 10.1016/j.buildenv.2019.106394. Duraisamy K., 2017, STATUS EMERGING IDEA. Duraisamy K, 2021, PHYS REV FLUIDS, V6, DOI 10.1103/PhysRevFluids.6.050504. Duraisamy K, 2019, ANNU REV FLUID MECH, V51, P357, DOI 10.1146/annurev-fluid-010518-040547. Duvigneau R., 2002, P 9 AIAA ISSMO S MUL, DOI {[}10.2514/6.2002-5465, DOI 10.2514/6.2002-5465]. Erichson NB, 2020, P ROY SOC A-MATH PHY, V476, DOI 10.1098/rspa.2020.0097. Font B, 2021, J COMPUT PHYS, V434, DOI 10.1016/j.jcp.2021.110199. Fresca S., 2021, ARXIV PREPRINT ARXIV. Fukami K, 2021, J FLUID MECH, V909, DOI 10.1017/jfm.2020.948. Fukami K, 2020, THEOR COMP FLUID DYN, V34, P497, DOI 10.1007/s00162-020-00518-y. Fukami K, 2019, J FLUID MECH, V870, P106, DOI 10.1017/jfm.2019.238. Gao H., 2020, SUPER RESOLUTION DEN. Geneva N, 2019, J COMPUT PHYS, V383, P125, DOI 10.1016/j.jcp.2019.01.021. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Guastoni Luca, 2020, Journal of Physics: Conference Series, V1522, DOI 10.1088/1742-6596/1522/1/012022. Guastoni L., 2020, 11 INT S TURBULENCE. Guastoni L., 2020, ARXIV PREPRINT ARXIV. Guo XX, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P481, DOI 10.1145/2939672.2939738. He Y, 2004, INT J ENGINE RES, P281, DOI {[}10.1243/146808704323224204, DOI 10.1243/146808704323224204]. Hintea D, 2015, ICIMCO 2015 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL. 1, P629. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. HOFFMAN GH, 1975, PHYS FLUIDS, V18, P309, DOI 10.1063/1.861138. HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8. Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126. Huijbregts Z, 2012, BUILD ENVIRON, V55, P43, DOI 10.1016/j.buildenv.2012.01.008. Iyengar M, 2007, IPACK 2007: PROCEEDINGS OF THE ASME INTERPACK CONFERENCE 2007, VOL 1, P819. Kalogirou SA, 2006, INT J LOW-CARBON TEC, V1, P201, DOI 10.1093/ijlct/1.3.201. Kanov K, 2015, COMPUT SCI ENG, V17, P10, DOI 10.1109/MCSE.2015.103. Kolen J, 2001, GRADIENT FLOW RECURR, DOI 10.1109/9780470544037.ch14. Kutler P., 1984, P 17 FLUID DYNAMICS, DOI {[}10.2514/6.1984-1531, DOI 10.2514/6.1984-1531]. Launder B., 1973, FREE TURBULENT SHEAR, DOI 10.1016/0017-9310(73)90125-7. Launder B. E., 1974, Computer Methods in Applied Mechanics and Engineering, V3, P269, DOI 10.1016/0045-7825(74)90029-2. Lauriks T, 2021, ATMOS ENVIRON, V246, DOI 10.1016/j.atmosenv.2020.118127. Lee C, 1997, PHYS FLUIDS, V9, P1740, DOI 10.1063/1.869290. Li Y, 2008, J TURBUL, V9, P1, DOI 10.1080/14685240802376389. Ling J, 2016, J FLUID MECH, V807, P155, DOI 10.1017/jfm.2016.615. Liu B, 2020, PHYS FLUIDS, V32, DOI 10.1063/1.5140772. Liu JL, 2016, BUILD ENVIRON, V96, P91, DOI 10.1016/j.buildenv.2015.11.007. Liu W, 2015, ENERG BUILDINGS, V104, P147, DOI 10.1016/j.enbuild.2015.07.011. Lucia DJ, 2004, PROG AEROSP SCI, V40, P51, DOI 10.1016/j.paerosci.2003.12.001. Lui HFS, 2019, J FLUID MECH, V872, P963, DOI 10.1017/jfm.2019.358. Maulik R., 2019, ARXIV PREPRINT ARXIV. Medsker LR., 2001, APPL, V5, P64. Milano M, 2002, J COMPUT PHYS, V182, P1, DOI 10.1006/jcph.2002.7146. Mohan A.T., 2019, ARXIV190300033. Mohan A.T., 2018, DEEP LEARNING BASED. Moin P, 1998, ANNU REV FLUID MECH, V30, P539, DOI 10.1146/annurev.fluid.30.1.539. Pope S. B., 2001, TURBULENT FLOWS. Rai MM, 2001, J PROPUL POWER, V17, P176, DOI 10.2514/2.5725. Rudy S, 2019, SIAM J APPL DYN SYST, V18, P643, DOI 10.1137/18M1191944. Schlatter P, 2009, PHYS FLUIDS, V21, DOI 10.1063/1.3139294. Schmitt FG, 2007, CR MECANIQUE, V335, P617, DOI 10.1016/j.crme.2007.08.004. Shirui Luo, 2020, High Performance Computing. ISC High Performance 2020 International Workshops. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12321), P137, DOI 10.1007/978-3-030-59851-8\_9. Singh AP, 2017, AIAA J, V55, P2215, DOI 10.2514/1.J055595. Slotnick J., 2014, NF1676L18332. Spalart P.R., FLOW TURBUL COMBUST, P1. SPALART PR, 1994, RECH AEROSPATIALE, P5. Srebric J, 2008, BUILD ENVIRON, V43, P294, DOI 10.1016/j.buildenv.2006.03.023. Srinivasan PA, 2019, PHYS REV FLUIDS, V4, DOI 10.1103/PhysRevFluids.4.054603. Stamou A, 2006, BUILD ENVIRON, V41, P1171, DOI 10.1016/j.buildenv.2005.06.029. Tanaka H., 2019, INT J HIGH RISE BUIL, V8, P291. Teo C. L., 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics. `Decision Aiding for Complex Systems (Cat. No.91CH3067-6), P1535, DOI 10.1109/ICSMC.1991.169906. THIBAULT J, 1991, INT J HEAT MASS TRAN, V34, P2063, DOI 10.1016/0017-9310(91)90217-3. Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994. TRACEY B., 2013, 51 AIAA AER SCI M IN, DOI DOI 10.2514/6.2013-259. TRACEY B. D., 2015, 53 AIAA AER SCI M, DOI {[}10.2514/6.2015-1287, DOI 10.2514/6.2015-1287]. van Druenen T, 2019, BUILD ENVIRON, V163, DOI 10.1016/j.buildenv.2019.106293. Wang JX, 2017, PHYS REV FLUIDS, V2, DOI 10.1103/PhysRevFluids.2.034603. Wang JH, 2018, INDOOR BUILT ENVIRON, V27, P1379, DOI 10.1177/1420326X17718053. Wang M, 2009, HVAC\&R RES, V15, P1099, DOI 10.1080/10789669.2009.10390881. Wang Z, 2018, INT J NUMER METH FL, V86, P255, DOI 10.1002/fld.4416. Wang Z, 2019, APPL ENERG, V240, P386, DOI 10.1016/j.apenergy.2019.02.066. Warey A, 2020, INT J HEAT MASS TRAN, V148, DOI 10.1016/j.ijheatmasstransfer.2019.119083. Wei TS, 2017, DES AUT CON, DOI 10.1145/3061639.3062224. Wong SL, 2010, APPL ENERG, V87, P551, DOI 10.1016/j.apenergy.2009.06.028. Yang WM, 2019, IEEE T MULTIMEDIA, V21, P3106, DOI 10.1109/TMM.2019.2919431. Yarlanki S, 2012, INTSOC CONF THERMAL, P38, DOI 10.1109/ITHERM.2012.6231411. Yokoyama R, 2009, ENERG CONVERS MANAGE, V50, P319, DOI 10.1016/j.enconman.2008.09.017. Zhang JS, 2000, CHINESE PHYS LETT, V17, P88, DOI 10.1088/0256-307X/17/2/004. Zhang L, 1996, INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, P1358, DOI 10.1109/ICSMC.1996.571309. Zhang TH, 2014, BUILD ENVIRON, V82, P20, DOI 10.1016/j.buildenv.2014.08.002. Zhang TH, 2014, INDOOR BUILT ENVIRON, V23, P1187, DOI 10.1177/1420326X13499596.}, Number-of-Cited-References = {99}, Times-Cited = {18}, Usage-Count-Last-180-days = {42}, Usage-Count-Since-2013 = {157}, Journal-ISO = {Build. Environ.}, Doc-Delivery-Number = {UX9QF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000701169800003}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000852001600001, Author = {Travaini, Guido Vittorio and Pacchioni, Federico and Bellumore, Silvia and Bosia, Marta and De Micco, Francesco}, Title = {Machine Learning and Criminal Justice: A Systematic Review of Advanced Methodology for Recidivism Risk Prediction}, Journal = {INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH}, Year = {2022}, Volume = {19}, Number = {17}, Month = {SEP}, Abstract = {Recent evolution in the field of data science has revealed the potential utility of machine learning (ML) applied to criminal justice. Hence, the literature focused on finding better techniques to predict criminal recidivism risk is rapidly flourishing. However, it is difficult to make a state of the art for the application of ML in recidivism prediction. In this systematic review, out of 79 studies from Scopus and PubMed online databases we selected, 12 studies that guarantee the replicability of the models across different datasets and their applicability to recidivism prediction. The different datasets and ML techniques used in each of the 12 studies have been compared using the two selected metrics. This study shows how each method applied achieves good performance, with an average score of 0.81 for ACC and 0.74 for AUC. This systematic review highlights key points that could allow criminal justice professionals to routinely exploit predictions of recidivism risk based on ML techniques. These include the presence of performance metrics, the use of transparent algorithms or explainable artificial intelligence (XAI) techniques, as well as the high quality of input data.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {De Micco, F (Corresponding Author), Campus Biomed Univ Rome, Bioeth \& Humanities Res Unit, I-00128 Rome, Italy. De Micco, F (Corresponding Author), Campus Biomed Univ Hosp Fdn, Dept Clin Affairs, I-00128 Rome, Italy. Travaini, Guido Vittorio; Pacchioni, Federico; Bellumore, Silvia; Bosia, Marta, Univ Vita Salute San Raffaele, Sch Med, I-20132 Milan, Italy. Bosia, Marta, IRCCS San Raffaele Sci Inst, Dept Clin Neurosci, I-20132 Milan, Italy. De Micco, Francesco, Campus Biomed Univ Rome, Bioeth \& Humanities Res Unit, I-00128 Rome, Italy. De Micco, Francesco, Campus Biomed Univ Hosp Fdn, Dept Clin Affairs, I-00128 Rome, Italy.}, DOI = {10.3390/ijerph191710594}, Article-Number = {10594}, EISSN = {1660-4601}, Keywords = {machine learning; recidivism; crime prediction; artificial intelligence; explainable artificial intelligence}, Keywords-Plus = {BIG DATA; LIMITS}, Research-Areas = {Environmental Sciences \& Ecology; Public, Environmental \& Occupational Health}, Web-of-Science-Categories = {Environmental Sciences; Public, Environmental \& Occupational Health}, Author-Email = {f.demicco@policlinicocampus.it}, Affiliations = {Vita-Salute San Raffaele University; Vita-Salute San Raffaele University; IRCCS Ospedale San Raffaele; University Campus Bio-Medico - Rome Italy; Fondazione Policlinico Universitario Campus Bio-Medico}, ResearcherID-Numbers = {Bosia, Marta/K-5388-2016}, ORCID-Numbers = {Pacchioni, Federico/0000-0002-5220-2574 TRAVAINI, GUIDO VITTORIO/0000-0002-3033-834X Bosia, Marta/0000-0002-9658-2759}, Cited-References = {Abrams DS, 2012, J LEGAL STUD, V41, P347, DOI 10.1086/666006. Ahmad Tohari, 2019, ICIC Express Letters, V13, P93, DOI 10.24507/icicel.13.02.93. Angelakopoulos N, 2022, AUST J FORENSIC SCI, V54, P75, DOI 10.1080/00450618.2020.1766111. Bansak K, 2019, POLIT ANAL, V27, P370, DOI 10.1017/pan.2018.55. Berk R., 2012, CRIMINAL JUSTICE FOR. Berk R, 2009, J R STAT SOC A STAT, V172, P191, DOI 10.1111/j.1467-985X.2008.00556.x. Bernert RA, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17165929. Borden HG, 1928, J AM INST CRIM LAW C, V19, P328, DOI 10.2307/1134622. Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726. Bublitz C, 2019, INT J LAW PSYCHIAT, V65, DOI 10.1016/j.ijlp.2018.10.002. Butsara N., 2019, P 17 INT C ICT KNOWL, P1. De Micco F, 2022, FRONT MED-LAUSANNE, V9, DOI 10.3389/fmed.2022.901788. De Micco F, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19010015. Dodge J, 2019, PROCEEDINGS OF IUI 2019, P275, DOI 10.1145/3301275.3302310. Dressel J, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao5580. Duwe G., 2015, CRIMINAL JUSTICE POL, V28, P570, DOI DOI 10.1177/0887403415604899. European Commission for the Efficiency of Justice (CEPEJ), EUR ETH CHART US ART. Fazel S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130390. Gendreau P, 1996, CRIMINOLOGY, V34, P575, DOI 10.1111/j.1745-9125.1996.tb01220.x. Ghasemi M, 2021, CRIM JUSTICE BEHAV, V48, P518, DOI 10.1177/0093854820969753. Gottfredson SD, 2006, CRIME DELINQUENCY, V52, P178, DOI 10.1177/0011128705281748. Gunning D, 2019, AI MAG, V40, P44, DOI 10.1609/aimag.v40i2.2850. Haarsma G, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02926. Janssen M, 2016, GOV INFORM Q, V33, P371, DOI 10.1016/j.giq.2016.08.011. Karimi-Haghighi M., 2021, P 18 INT C ARTIFICIA. Khademi A., 2020, P AAAI 2020 34 AAAI. Linthicum KP, 2019, BEHAV SCI LAW, V37, P214, DOI 10.1002/bsl.2392. Liu YY, 2011, J QUANT CRIMINOL, V27, P547, DOI 10.1007/s10940-011-9137-7. Newton A., EC SOCIAL COSTS REOF. Ozkan T, 2020, SEX ABUSE-J RES TR, V32, P375, DOI 10.1177/1079063219852944. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI {[}10.1136/bmj.n71, 10.1371/journal.pmed.1003583, 10.1016/j.ijsu.2021.105906]. Raghavan M., 2016, ARXIV160905807. Rees M., 2018, FUTURE PROSPECTS HUM. Rubim Borges Fortes P, 2020, ASIAN J LAW SOC, V7, P453, DOI 10.1017/als.2020.12. Salo B, 2019, CRIM JUSTICE BEHAV, V46, P939, DOI 10.1177/0093854819848793. Scendoni R, 2022, LEGAL MED-TOKYO, V54, DOI 10.1016/j.legalmed.2021.102010. Scendoni R, 2020, FORENSIC SCI INT, V313, DOI 10.1016/j.forsciint.2020.110341. Sheridan T. B., 1986, Proceedings 1986 IEEE International Conference on Robotics and Automation (Cat. No.86CH2282-2), P808. Singh A, 2021, IEEE ACCESS, V9, P135024, DOI 10.1109/ACCESS.2021.3116205. Singh JP, 2014, INT J FORENSIC MENT, V13, P193, DOI 10.1080/14999013.2014.922141. Skeem J.L.., 2014, VA LAW REV, V26, P2013. Ting MH, 2018, J SOC WORK, V18, P631, DOI 10.1177/1468017317743137. Tolan Songul, 2019, P 17 INT C ARTIFICIA, P83. Tollenaar N, 2013, J R STAT SOC A STAT, V176, P565, DOI 10.1111/j.1467-985X.2012.01056.x. Tollenaar N, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0213245. Tonry M., 2014, FEDERAL SENTENCING R, V26, P167. van Berkel Niels, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359130. Waller MA, 2013, J BUS LOGIST, V34, P77, DOI 10.1111/jbl.12010. Whiting P, 2016, J CLIN EPIDEMIOL, V69, P225, DOI 10.1016/j.jclinepi.2015.06.005. Zanzotto FM, 2019, J ARTIF INTELL RES, V64, P243, DOI 10.1613/jair.1.11345.}, Number-of-Cited-References = {50}, Times-Cited = {2}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {11}, Journal-ISO = {Int. J. Environ. Res. Public Health}, Doc-Delivery-Number = {4K5PO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000852001600001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000486393900023, Author = {Le, Vincent}, Title = {SPIRIT IN THE CRYPT NEGARESTANI VS LAND}, Journal = {COSMOS AND HISTORY-THE JOURNAL OF NATURAL AND SOCIAL PHILOSOPHY}, Year = {2019}, Volume = {15}, Number = {1}, Pages = {535-563}, Abstract = {Iranian philosopher Reza Negarestani's first 2008 book Cyclonopedia was written under the influence of Nick Land's nihilistic and antihumanist philosophy which seeks to critique anthropomorphism by confronting us with our coming extinction beyond which our concepts of reason cannot reach. Since Cyclonopedia's publication, however, Negarestani has left behind Landian nihilism to develop in his 2018 book Intelligence and Spirit a neorationalist philosophy of mind whose primary influences are Sellars, Brandom, and Hegel. At 579 clearly written yet dense pages, it is difficult even for a review article to encapsulate the book in its entirety. The first half of this article instead aims to provide a sense of the book's overall project by focusing on how Negarestani outlines and develops his neorationalist philosophy through a critique of Land's antihumanism. Never one to remain silent whilst others seek to resurrect Hegel from the dead, since December 2018, Land has been releasing a draft on his blog Urban Futures 2.1 of his new monograph Crypto-Current: Bitcoin and Philosophy, which proffers the most up to date articulation of his main antihumanist tenets. Having organized Intelligence and Spirit around Negarestani's objections to Land, this article's second half turns to Crypto-Current to see how Land is able to provide convincing responses to each of Negarestani's objections, showing some to be based on strawman characterizations, others to stem from misunderstandings of Land's position, and still others to lack traction at all. By putting Negarestani and Land's new books in combat, we will ultimately see that the grounds for Negarestani's efforts to move continental philosophy from its Kanto-Landian phase to a renewed Hegelian phase is unsuccessful in that antihumanism is able to respond to each of his objections in kind.}, Publisher = {COSMOS PUBL COOPERATIVE}, Address = {C/O ARRAN GARE, PHILOSOPHY \& CULTURAL INQUIRY, PO BOX 218, HAWTHORN, VIC 3122, AUSTRALIA}, Type = {Review}, Language = {English}, ISSN = {1832-9101}, Keywords = {Reza Negarestani; Nick Land; Intelligence and Spirit; Crypto-current; Bitcoin; cryptocurrency; antihumanism; neorationalism; Hegel; Kant; artificial intelligence; Sellars; Brandom; nihilism; blockchain; accelerationism}, Research-Areas = {Philosophy}, Web-of-Science-Categories = {Philosophy}, Author-Email = {eltnecniv@gmail.com}, Cited-References = {Land N., 2012, FANGED NOUMENA COLLE. Land Nick, CRYPTO CURRENT BITCO. Negarestani Reza, 2018, INTELLIGENCE SPIRIT. Negarestani Reza, 2008, CYCLONOPEDIA COMPLIC.}, Number-of-Cited-References = {4}, Times-Cited = {0}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {1}, Journal-ISO = {Cosm. Hist.}, Doc-Delivery-Number = {IY4WO}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000486393900023}, DA = {2023-04-22}, } @article{ WOS:000680488900001, Author = {Xiong, Guoli and Shen, Chao and Yang, Ziyi and Jiang, Dejun and Liu, Shao and Lu, Aiping and Chen, Xiang and Hou, Tingjun and Cao, Dongsheng}, Title = {Featurization strategies for protein-ligand interactions and their applications in scoring function development}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2022}, Volume = {12}, Number = {2}, Month = {MAR}, Abstract = {The predictive performance of classical scoring functions (SFs) seems to have reached a plateau. Currently, SFs relying on sophisticated machine learning techniques have shown great potential in binding affinity prediction and virtual screening. As one of the most indispensable components in the workflow of training a machine learning scoring function (MLSF), the featurization or representation process enables us to catch certain physical processes that are important for protein-ligand interactions and to obtain machine-readable descriptors. Currently, according to how they are derived, the descriptors used in MLSFs for both continuous and binary binding affinity estimates can be grouped into two broad categories: handcrafted features and automated-extraction features. Moreover, the automated-extraction features emerge as a new featurization trend along with the application of deep learning algorithms. Here, we make a thorough summary of the advances in the featurization strategies for protein-ligand interactions in the context of MLSFs, with emphasis on the recently rising automated-extraction features. We also discuss the similarity between protein-ligand interaction representations and small-molecule representations, and the challenges confronted by the scientific community in characterizing protein-ligand interactions. We expect that this review could inspire the development of novel featurization approaches and boosted MLSFs. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Software > Molecular Modeling Molecular and Statistical Mechanics > Molecular Interactions}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Cao, DS (Corresponding Author), Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410003, Peoples R China. Hou, TJ (Corresponding Author), Zhejiang Univ, Hangzhou Inst Innovat Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China. Chen, X (Corresponding Author), Cent South Univ, Dept Dermatol, Hunan Engn Res Ctr Skin Hlth \& Dis, Hunan Key Lab Skin Canc \& Psoriasis,Xiangya Hosp, Changsha 410008, Hunan, Peoples R China. Xiong, Guoli; Yang, Ziyi; Cao, Dongsheng, Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410003, Peoples R China. Shen, Chao; Jiang, Dejun; Hou, Tingjun, Zhejiang Univ, Hangzhou Inst Innovat Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China. Jiang, Dejun, Zhejiang Univ, Coll Comp Sci \& Technol, Hangzhou, Peoples R China. Liu, Shao, Cent South Univ, Xiangya Hosp, Dept Pharm, Changsha, Peoples R China. Lu, Aiping; Cao, Dongsheng, Hong Kong Baptist Univ, Inst Adv Translat Med Bone \& Joint Dis, Sch Chinese Med, Hong Kong, Peoples R China. Chen, Xiang, Cent South Univ, Dept Dermatol, Hunan Engn Res Ctr Skin Hlth \& Dis, Hunan Key Lab Skin Canc \& Psoriasis,Xiangya Hosp, Changsha 410008, Hunan, Peoples R China.}, DOI = {10.1002/wcms.1567}, EarlyAccessDate = {AUG 2021}, Article-Number = {e1567}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {artificial intelligence; feature engineering; machine learning; protein-ligand interaction; scoring functions}, Keywords-Plus = {BINDING-AFFINITY PREDICTION; NEURAL-NETWORK; INTERACTION FINGERPRINTS; DRUG DISCOVERY; RANDOM FOREST; DOCKING; INHIBITORS; COMPLEXES; REPRESENTATIONS; IDENTIFICATION}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {chenxiangck@126.com tingjunhou@zju.edu.cn oriental-cds@163.com}, Affiliations = {Central South University; Zhejiang University; Zhejiang University; Central South University; Hong Kong Baptist University; Central South University}, ResearcherID-Numbers = {Hou, Tingjun/C-7492-2011 Shen, Chao/AAV-2938-2020 Xiong, Guoli/GWV-7207-2022 }, ORCID-Numbers = {Hou, Tingjun/0000-0001-7227-2580 Shen, Chao/0000-0003-2783-5529 Xiong, Guoli/0000-0001-9949-2313}, Funding-Acknowledgement = {Changsha Municipal Natural Science Foundation {[}kq2014144]; Changsha Science and Technology Bureau project {[}kq2001034]; HKBU Strategic Development Fund project {[}SDF19-0402-P02]; Key R\&D Program of Zhejiang Province {[}2020C03010]; Leading Talent of ``Ten Thousand Plan{''}-National High-Level Talents Special Support Plan; National Natural Science Foundation of China {[}21575128, 81773632]; Zhejiang Provincial Natural Science Foundation of China {[}LZ19H300001]}, Funding-Text = {Changsha Municipal Natural Science Foundation, Grant/Award Number: kq2014144; Changsha Science and Technology Bureau project, Grant/Award Number: kq2001034; HKBU Strategic Development Fund project, Grant/Award Number: SDF19-0402-P02; Key R\&D Program of Zhejiang Province, Grant/Award Number: 2020C03010; Leading Talent of ``Ten Thousand Plan{''}-National High-Level Talents Special Support Plan; National Natural Science Foundation of China, Grant/Award Numbers: 21575128, 81773632; Zhejiang Provincial Natural Science Foundation of China, Grant/Award Number: LZ19H300001}, Cited-References = {Adeshina YO, 2020, P NATL ACAD SCI USA, V117, P18477, DOI 10.1073/pnas.2000585117. Ain QU, 2015, WIRES COMPUT MOL SCI, V5, P405, DOI 10.1002/wcms.1225. Arciniega M, 2014, J CHEM INF MODEL, V54, P1401, DOI 10.1021/ci500028u. Ashtawy HM., 2011, 2011 IEEE INT C BIOI. Ashtawy HM, 2018, J CHEM INF MODEL, V58, P119, DOI 10.1021/acs.jcim.7b00309. Ashtawy HM, 2018, J CHEM INF MODEL, V58, P134, DOI 10.1021/acs.jcim.7b00310. Ashtawy HM, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S4-S8. Ashtawy HM, 2012, IEEE ACM T COMPUT BI, V9, P1301, DOI 10.1109/TCBB.2012.36. Ballester PJ, 2014, J CHEM INF MODEL, V54, P944, DOI 10.1021/ci500091r. Ballester PJ, 2010, BIOINFORMATICS, V26, P1169, DOI 10.1093/bioinformatics/btq112. Berman HM, 2000, NUCLEIC ACIDS RES, V28, P235, DOI 10.1093/nar/28.1.235. Boyles F, 2020, BIOINFORMATICS, V36, P758, DOI 10.1093/bioinformatics/btz665. Cang ZX, 2018, INT J NUMER METH BIO, V34, DOI 10.1002/cnm.2914. Cang ZX, 2018, PLOS COMPUT BIOL, V14, DOI 10.1371/journal.pcbi.1005929. Cang ZX, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005690. Cao DS, 2015, BIOINFORMATICS, V31, P279, DOI 10.1093/bioinformatics/btu624. Cao Y, 2014, BIOINFORMATICS, V30, P1674, DOI 10.1093/bioinformatics/btu104. Chen F, 2017, PHYS CHEM CHEM PHYS, V19, P10163, DOI 10.1039/c6cp08232g. Chen LY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220113. Chen LF, 2020, BIOINFORMATICS, V36, P4406, DOI 10.1093/bioinformatics/btaa524. Cheng TJ, 2009, J CHEM INF MODEL, V49, P1079, DOI 10.1021/ci9000053. Chuang KV, 2020, J MED CHEM, V63, P8705, DOI 10.1021/acs.jmedchem.0c00385. Chupakhin V, 2014, COMPUT STRUCT BIOTEC, V10, P33, DOI 10.1016/j.csbj.2014.05.004. Cournia Z, 2017, J CHEM INF MODEL, V57, P2911, DOI 10.1021/acs.jcim.7b00564. Da C, 2014, J CHEM INF MODEL, V54, P2555, DOI 10.1021/ci500319f. Da Silva F, 2018, CHEMMEDCHEM, V13, P507, DOI 10.1002/cmdc.201700505. Das S, 2010, J CHEM INF MODEL, V50, P298, DOI 10.1021/ci9004139. Deng Z, 2004, J MED CHEM, V47, P337, DOI 10.1021/jm030331x. Ding B, 2013, J CHEM INF MODEL, V53, P114, DOI 10.1021/ci300508m. Dong J, 2021, BRIEF BIOINFORM, V22, P474, DOI 10.1093/bib/bbz150. Dong J, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0109-z. Nguyen DD, 2020, PHYS CHEM CHEM PHYS, V22, P4343, DOI 10.1039/c9cp06554g. Nguyen DD, 2020, J COMPUT AID MOL DES, V34, P131, DOI 10.1007/s10822-019-00237-5. Nguyen DD, 2019, J CHEM INF MODEL, V59, P3291, DOI 10.1021/acs.jcim.9b00334. Nguyen DD, 2019, INT J NUMER METH BIO, V35, DOI 10.1002/cnm.3179. Nguyen DD, 2019, J COMPUT AID MOL DES, V33, P71, DOI 10.1007/s10822-018-0146-6. Durrant JD, 2011, J CHEM INF MODEL, V51, P2897, DOI 10.1021/ci2003889. Durrant JD, 2011, J MOL GRAPH MODEL, V29, P888, DOI 10.1016/j.jmgm.2011.01.004. Durrant JD, 2010, J CHEM INF MODEL, V50, P1865, DOI 10.1021/ci100244v. Edelsbrunner H, 2000, ANN IEEE SYMP FOUND, P454. Fei JC, 2018, MOLECULES, V23, DOI 10.3390/molecules23112935. Feinberg EN, 2018, ACS CENTRAL SCI, V4, P1520, DOI 10.1021/acscentsci.8b00507. Francoeur PG, 2020, J CHEM INF MODEL, V60, P4200, DOI 10.1021/acs.jcim.0c00411. FRESNAIS L, 2021, BRIEF BIOINFORM, V22. Gabel J, 2014, J CHEM INF MODEL, V54, P2807, DOI 10.1021/ci500406k. Gainza P, 2020, NAT METHODS, V17, P184, DOI 10.1038/s41592-019-0666-6. Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074. Gomes J, 2017, ARXIV170310603. Gonczarek A, 2018, COMPUT BIOL MED, V100, P253, DOI 10.1016/j.compbiomed.2017.09.007. Guedes IA, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01089. Huang N, 2006, J MED CHEM, V49, P6789, DOI 10.1021/jm0608356. Huang SY, 2010, PHYS CHEM CHEM PHYS, V12, P12899, DOI 10.1039/c0cp00151a. Imrie F, 2018, J CHEM INF MODEL, V58, P2319, DOI 10.1021/acs.jcim.8b00350. Ji BH, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbab054. Jimenez J, 2018, J CHEM INF MODEL, V58, P287, DOI 10.1021/acs.jcim.7b00650. Kellenberger E, 2006, J CHEM INF MODEL, V46, P717, DOI 10.1021/ci050372x. Khamis MA, 2015, ARTIF INTELL MED, V63, P135, DOI 10.1016/j.artmed.2015.02.002. Kinnings SL, 2011, J CHEM INF MODEL, V51, P408, DOI 10.1021/ci100369f. Kitchen DB, 2004, NAT REV DRUG DISCOV, V3, P935, DOI 10.1038/nrd1549. Kooistra AJ, 2016, NUCLEIC ACIDS RES, V44, pD365, DOI 10.1093/nar/gkv1082. Koppisetty CAK, 2013, J CHEM INF MODEL, V53, P2559, DOI 10.1021/ci400321r. Kumar S, 2021, J CHEMINFORMATICS, V13, DOI 10.1186/s13321-021-00507-1. Kwon Y, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21228424. Landrum G., 2016, RDKIT OPEN SOURCE CH. Lee I, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1007129. Li GB, 2013, J CHEM INF MODEL, V53, P592, DOI 10.1021/ci300493w. Li HJ, 2021, WIRES COMPUT MOL SCI, V11, DOI 10.1002/wcms.1478. Li HJ, 2020, WIRES COMPUT MOL SCI, V10, DOI 10.1002/wcms.1465. Li HJ, 2019, BIOINFORMATICS, V35, P3989, DOI 10.1093/bioinformatics/btz183. Li HJ, 2015, MOL INFORM, V34, P115, DOI 10.1002/minf.201400132. Li HJ, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-291. Li J, 2019, INTERDISCIP SCI, V11, P320, DOI 10.1007/s12539-019-00327-w. Li L, 2011, J CHEM INF MODEL, V51, P2132, DOI 10.1021/ci200078f. Li LW, 2011, J CHEM INF MODEL, V51, P755, DOI 10.1021/ci100490w. Li Y., 2019, 2019 IEEE INT C BIOI. Lim J, 2019, J CHEM INF MODEL, V59, P3981, DOI 10.1021/acs.jcim.9b00387. Liu J, 2015, J CHEM INF MODEL, V55, P475, DOI 10.1021/ci500731a. Liu Q, 2013, J CHEM INF MODEL, V53, P3076, DOI 10.1021/ci400450h. Liu X, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa411. Lo YC, 2018, DRUG DISCOV TODAY, V23, P1538, DOI 10.1016/j.drudis.2018.05.010. Lu JN, 2019, J CHEM INF MODEL, V59, P4540, DOI 10.1021/acs.jcim.9b00645. Macari G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21249548. MACCS (Molecular ACCess System), 2002, MDL INF SYST. Mason J S, 2000, Pac Symp Biocomput, P576. Meiler J, 2006, PROTEINS, V65, P538, DOI 10.1002/prot.21086. Mitchell JBO, 2014, WIRES COMPUT MOL SCI, V4, P468, DOI 10.1002/wcms.1183. Moman E, 2019, J COMPUT AID MOL DES, V33, P943, DOI 10.1007/s10822-019-00248-2. MORGAN HL, 1965, J CHEM DOC, V5, P107, DOI 10.1021/c160017a018. Morris GM, 2009, J COMPUT CHEM, V30, P2785, DOI 10.1002/jcc.21256. Mysinger MM, 2012, J MED CHEM, V55, P6582, DOI 10.1021/jm300687e. Nguyen DD, 2017, J CHEM INF MODEL, V57, P1715, DOI 10.1021/acs.jcim.7b00226. Oum YH, 2020, EUR J MED CHEM, V201, DOI 10.1016/j.ejmech.2020.112479. Ouyang XC, 2011, J BIOINFORM COMPUT B, V9, P1, DOI 10.1142/S021972001100577X. Pei J, 2019, J CHEM INF MODEL, V59, P3305, DOI 10.1021/acs.jcim.9b00356. Pereira JC, 2016, J CHEM INF MODEL, V56, P2495, DOI 10.1021/acs.jcim.6b00355. Pinzi L, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20184331. Ragoza M, 2017, J CHEM INF MODEL, V57, P942, DOI 10.1021/acs.jcim.6b00740. Rogers D, 2010, J CHEM INF MODEL, V50, P742, DOI 10.1021/ci100050t. Rohrer SG, 2009, J CHEM INF MODEL, V49, P169, DOI 10.1021/ci8002649. Sanchez-Cruz N, 2021, BIOINFORMATICS, V37, P1376, DOI 10.1093/bioinformatics/btaa982. Sato T, 2010, J CHEM INF MODEL, V50, P170, DOI 10.1021/ci900382e. Schneider G, 1999, ANGEW CHEM INT EDIT, V38, P2894, DOI 10.1002/(SICI)1521-3773(19991004)38:19<2894::AID-ANIE2894>3.0.CO;2-F. SHEN C, 2021, BRIEF BIOINFORM, V22. SHEN C, 2021, BRIEF BIOINFORM. Shen C, 2020, WIRES COMPUT MOL SCI, V10, DOI 10.1002/wcms.1429. Shen C, 2021, BRIEF BIOINFORM, V22, P497, DOI 10.1093/bib/bbz173. Shoichet BK, 2004, NATURE, V432, P862, DOI 10.1038/nature03197. Sieg J, 2019, J CHEM INF MODEL, V59, P947, DOI 10.1021/acs.jcim.8b00712. Skalic M, 2019, BIOINFORMATICS, V35, P1237, DOI 10.1093/bioinformatics/bty758. Son J, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0249404. Sotriffer CA, 2008, PROTEINS, V73, P395, DOI 10.1002/prot.22058. Stepniewska-Dziubinska MM, 2018, BIOINFORMATICS, V34, P3666, DOI 10.1093/bioinformatics/bty374. Su MY, 2019, J CHEM INF MODEL, V59, P895, DOI 10.1021/acs.jcim.8b00545. Sulimov VB, 2019, CURR MED CHEM, V26, P7555, DOI 10.2174/0929867325666180904115000. Sun HY, 2016, SCI REP-UK, V6, DOI 10.1038/srep24817. Torres PHM, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20184574. Truhlar DG, 2007, J COMPUT CHEM, V28, P73, DOI 10.1002/jcc.20529. Wallach I., 2015, ARXIV151002855. Wang B, 2017, THEOR CHEM ACC, V136, P1, DOI 10.1007/s00214-017-2083-1. Wang C, 2017, J COMPUT CHEM, V38, P169, DOI 10.1002/jcc.24667. WANG D, 2021, BRIEF BIOINFORM, V22. Wang X, 2020, BIOINFORMATICS, V36, P2113, DOI 10.1093/bioinformatics/btz870. Waszkowycz B, 2011, WIRES COMPUT MOL SCI, V1, P229, DOI 10.1002/wcms.18. Wee JJ, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbab136. Wee JJ, 2021, J CHEM INF MODEL, V61, P1617, DOI 10.1021/acs.jcim.0c01415. WEININGER D, 1989, J CHEM INF COMP SCI, V29, P97, DOI 10.1021/ci00062a008. Wojcikowski M, 2019, BIOINFORMATICS, V35, P1334, DOI 10.1093/bioinformatics/bty757. Wojcikowski M, 2017, SCI REP-UK, V7, DOI 10.1038/srep46710. Wojcikowski M, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0078-2. Wu JS, 2015, J MED CHEM, V58, P7807, DOI 10.1021/acs.jmedchem.5b00921. Wu KD, 2018, J COMPUT CHEM, V39, P1444, DOI 10.1002/jcc.25213. Wu KD, 2018, J CHEM INF MODEL, V58, P520, DOI 10.1021/acs.jcim.7b00558. Xiong GL, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa094. Xu D, 2016, J CHEM INF MODEL, V56, P1139, DOI 10.1021/acs.jcim.5b00709. Xu L, 2014, J MED CHEM, V57, P3737, DOI 10.1021/jm401908w. Yan YN, 2017, J CHEM INF MODEL, V57, P1793, DOI 10.1021/acs.jcim.7b00017. Yang JC, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00069. Yang X, 2019, CHEM REV, V119, P10520, DOI 10.1021/acs.chemrev.8b00728. Yang ZY, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa194. Yasuo N, 2019, J CHEM INF MODEL, V59, P1050, DOI 10.1021/acs.jcim.8b00673. Ye WL, 2020, J CHEM INF MODEL, V60, P4216, DOI 10.1021/acs.jcim.9b00977. Zhang XJ, 2021, J CHEMINFORMATICS, V13, DOI 10.1186/s13321-021-00486-3. Zheng LZ, 2019, ACS OMEGA, V4, P15956, DOI 10.1021/acsomega.9b01997. Zheng Z, 2018, J CHEM THEORY COMPUT, V14, P5045, DOI 10.1021/acs.jctc.8b00516. Zhu FQ, 2020, J CHEM INF MODEL, V60, P2766, DOI 10.1021/acs.jcim.0c00026. Zilian D, 2013, J CHEM INF MODEL, V53, P1923, DOI 10.1021/ci400120b. Zomorodian A, 2005, DISCRETE COMPUT GEOM, V33, P249, DOI 10.1007/s00454-004-1146-y. Zsoldos Z, 2007, J MOL GRAPH MODEL, V26, P198, DOI 10.1016/j.jmgm.2006.06.002.}, Number-of-Cited-References = {148}, Times-Cited = {5}, Usage-Count-Last-180-days = {19}, Usage-Count-Since-2013 = {72}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {ZP6TE}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000680488900001}, DA = {2023-04-22}, } @incollection{ WOS:000684003800005, Author = {Sengupta, Abhishek and Naresh, G. and Mishra, Astha and Parashar, Diksha and Narad, Priyanka}, Editor = {Donev, R and KarabenchevaChristova, T}, Title = {Proteome analysis using machine learning approaches and its applications to diseases}, Booktitle = {PROTEOMICS AND SYSTEMS BIOLOGY}, Series = {Advances in Protein Chemistry and Structural Biology}, Year = {2021}, Volume = {127}, Pages = {161-216}, Abstract = {With the tremendous developments in the fields of biological and medical technologies, huge amounts of data are generated in the form of genomic data, images in medical databases or as data on protein sequences, and so on. Analyzing this data through different tools sheds light on the particulars of the disease and our body's reactions to it, thus, aiding our understanding of the human health. Most useful of these tools is artificial intelligence and deep learning (DL). The artificially created neural networks in DL algorithms help extract viable data from the datasets, and further, to recognize patters in these complex datasets. Therefore, as a part of machine learning, DL helps us face all the various challenges that come forth during protein prediction, protein identification and their quantification. Proteomics is the study of such proteins, their structures, features, properties and so on. As a form of data science, Proteomics has helped us progress excellently in the field of genomics technologies. One of the major techniques used in proteomics studies is mass spectrometry (MS). However, MS is efficient with analysis of large datasets only with the added help of informatics approaches for data analysis and interpretation; these mainly include machine learning and deep learning algorithms. In this chapter, we will discuss in detail the applications of deep learning and various algorithms of machine learning in proteomics.}, Publisher = {ELSEVIER ACADEMIC PRESS INC}, Address = {525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA}, Type = {Review; Book Chapter}, Language = {English}, Affiliation = {Narad, P (Corresponding Author), Amity Univ Uttar Pradesh, Amity Inst Biotechnol, Noida, India. Sengupta, Abhishek; Naresh, G.; Mishra, Astha; Parashar, Diksha; Narad, Priyanka, Amity Univ Uttar Pradesh, Amity Inst Biotechnol, Noida, India.}, DOI = {10.1016/bs.apcsb.2021.02.003}, ISSN = {1876-1623}, ISBN = {978-0-323-85319-4}, Keywords-Plus = {MASS-SPECTROMETRY; GEL-ELECTROPHORESIS; 2-DIMENSIONAL ELECTROPHORESIS; SAMPLE PREPARATION; PROTEINS; IDENTIFICATION; BIOMARKERS; DATABASE; PEPTIDEATLAS; TECHNOLOGIES}, Research-Areas = {Biochemistry \& Molecular Biology; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Biochemistry \& Molecular Biology; Mathematical \& Computational Biology}, Author-Email = {pnarad@amity.edu}, Affiliations = {Amity University Noida}, ResearcherID-Numbers = {Narad, Priyanka/ABI-2361-2020}, Cited-References = {Aebersold R, 2003, NATURE, V422, P198, DOI 10.1038/nature01511. Allmer J, 2011, EXPERT REV PROTEOMIC, V8, P645, DOI {[}10.1586/EPR.11.54, 10.1586/epr.11.54]. Anderson NL, 1998, ELECTROPHORESIS, V19, P1853, DOI 10.1002/elps.1150191103. {[}Anonymous], MACH LEARN. Aslam B, 2017, J CHROMATOGR SCI, V55, P182, DOI 10.1093/chromsci/bmw167. Baldwin MA, 2004, MOL CELL PROTEOMICS, V3, P1, DOI 10.1074/mcp.R300012-MCP200. Bantscheff M, 2012, ANAL BIOANAL CHEM, V404, P939, DOI 10.1007/s00216-012-6203-4. BJELLQVIST B, 1982, J BIOCHEM BIOPH METH, V6, P317, DOI 10.1016/0165-022X(82)90013-6. Blackstock WP, 1999, TRENDS BIOTECHNOL, V17, P121, DOI 10.1016/S0167-7799(98)01245-1. Chen C, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21082873. Chen T, 2015, GENOM PROTEOM BIOINF, V13, P36, DOI 10.1016/j.gpb.2015.01.004. Colinge J, 2007, PLOS COMPUT BIOL, V3, P1151, DOI 10.1371/journal.pcbi.0030114. Cote RG, 2012, MOL CELL PROTEOMICS, V11, P1682, DOI 10.1074/mcp.O112.021543. Dayhoff JE, 2001, CANCER, V91, P1615, DOI 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L. DeSouza LV, 2013, CLIN BIOCHEM, V46, P421, DOI 10.1016/j.clinbiochem.2012.10.025. Deutsch EW, 2008, EMBO REP, V9, P429, DOI 10.1038/embor.2008.56. Dhingra V, 2005, INT J PHARMACEUT, V299, P1, DOI 10.1016/j.ijpharm.2005.04.010. Diamandis EP, 2004, CLIN CHEM, V50, P793, DOI 10.1373/clinchem.2004.032177. Diamandis EP, 2004, MOL CELL PROTEOMICS, V3, P367, DOI 10.1074/mcp.R400007-MCP200. Domon B, 2006, SCIENCE, V312, P212, DOI 10.1126/science.1124619. Edwards N., 2009, CLIN PROTEOM, V5, P23. Farrah T, 2013, J PROTEOME RES, V12, P162, DOI {[}10.1021/pr301012j, 10.1021/Pr301012j]. Farrah T, 2012, PROTEOMICS, V12, P1170, DOI 10.1002/pmic.201100515. Feist P, 2015, INT J MOL SCI, V16, P3537, DOI 10.3390/ijms16023537. Geer LY, 2004, J PROTEOME RES, V3, P958, DOI 10.1021/pr0499491. Gevaert K, 2003, NAT BIOTECHNOL, V21, P566, DOI 10.1038/nbt810. Goel R, 2012, MOL BIOSYST, V8, P453, DOI 10.1039/c1mb05340j. Griss J, 2013, NAT METHODS, V10, P95, DOI 10.1038/nmeth.2343. Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616. Gygi SP, 2000, CURR OPIN CHEM BIOL, V4, P489, DOI 10.1016/S1367-5931(00)00121-6. Higdon R, 2014, J PROTEOME RES, V13, P107, DOI 10.1021/pr400884c. Hoopmann MR, 2013, CURR OPIN BIOTECH, V24, P31, DOI 10.1016/j.copbio.2012.10.013. Issaq HJ, 2008, BIOTECHNIQUES, V44, P697, DOI 10.2144/000112823. Kandasamy K., 2009, NUCLEIC ACIDS RES, V37. Kinsinger CR, 2012, PROTEOMICS, V12, P11, DOI 10.1002/pmic.201100562. Kolker E, 2012, NUCLEIC ACIDS RES, V40, pD1093, DOI 10.1093/nar/gkr1177. Lin SH, 2006, ANAL CHEM, V78, P5762, DOI 10.1021/ac060613f. LOO JA, 1992, P NATL ACAD SCI USA, V89, P286, DOI 10.1073/pnas.89.1.286. Mann M, 2001, ANNU REV BIOCHEM, V70, P437, DOI 10.1146/annurev.biochem.70.1.437. Mann M, 2001, TRENDS BIOCHEM SCI, V26, P54, DOI 10.1016/S0968-0004(00)01726-6. Martens L, 2011, METHODS MOL BIOL, V694, P213, DOI 10.1007/978-1-60761-977-2\_14. Montague E, 2014, OMICS, V18, P335, DOI 10.1089/omi.2014.0061. Tran NH, 2019, NAT METHODS, V16, P63, DOI 10.1038/s41592-018-0260-3. OFARRELL PH, 1975, J BIOL CHEM, V250, P4007. Ong Shao-En, 2007, Methods Mol Biol, V359, P37. Padula MP, 2017, PROTEOMES, V5, DOI 10.3390/proteomes5020011. Pandey A, 2000, NATURE, V405, P837, DOI 10.1038/35015709. PATTERSON SD, 1995, ELECTROPHORESIS, V16, P1104, DOI 10.1002/elps.11501601187. Perez-Riverol Y, 2015, PROTEOMICS, V15, P930, DOI 10.1002/pmic.201400302. Prasad TSK, 2009, NUCLEIC ACIDS RES, V37, pD767, DOI 10.1093/nar/gkn892. Rabilloud T, 2014, PROTEOMICS, V14, P157, DOI 10.1002/pmic.201300413. Rabilloud T, 2011, J PROTEOMICS, V74, P1829, DOI 10.1016/j.jprot.2011.05.040. Ramos Y, 2011, ELECTROPHORESIS, V32, P1323, DOI 10.1002/elps.201000677. Riffle M, 2009, PROTEOMICS, V9, P4653, DOI 10.1002/pmic.200900216. Schaab C, 2012, MOL CELL PROTEOMICS, V11, DOI 10.1074/mcp.M111.014068. Shevchenko A, 1996, ANAL CHEM, V68, P850, DOI 10.1021/ac950914h. Shiio Y, 2006, NAT PROTOC, V1, P139, DOI 10.1038/nprot.2006.22. Sleno L, 2012, J MASS SPECTROM, V47, P226, DOI 10.1002/jms.2953. Smith LM, 2013, NAT METHODS, V10, P186, DOI 10.1038/nmeth.2369. Swan AL, 2013, OMICS, V17, P595, DOI 10.1089/omi.2013.0017. Tran JC, 2009, ANAL CHEM, V81, P6201, DOI 10.1021/ac900729r. Tyagi S., 2010, INT J PHARM SCI REV, V3, P87. Veenstra TD, 2005, MOL CELL PROTEOMICS, V4, P409, DOI 10.1074/mcp.M500006-MCP200. Vizcaino JA, 2014, NAT BIOTECHNOL, V32, P223, DOI 10.1038/nbt.2839. Vizcaino JA, 2013, NUCLEIC ACIDS RES, V41, pD1063, DOI 10.1093/nar/gks1262. Wagner PD, 2004, ANN NY ACAD SCI, V1022, P9, DOI 10.1196/annals.1318.003. Walther TC, 2010, J CELL BIOL, V190, P491, DOI 10.1083/jcb.201004052. Wang M, 2012, MOL CELL PROTEOMICS, V11, P492, DOI 10.1074/mcp.O111.014704. Wang R, 2012, NAT BIOTECHNOL, V30, P135, DOI 10.1038/nbt.2112. Westermeier R, 2014, ARCH PHYSIOL BIOCHEM, V120, P168, DOI 10.3109/13813455.2014.945188. Wilhelm M, 2014, NATURE, V509, P582, DOI 10.1038/nature13319. Wilkins MR, 1996, BIO-TECHNOL, V14, P61, DOI 10.1038/nbt0196-61. Wilkins MR, 1999, J MOL BIOL, V289, P645, DOI 10.1006/jmbi.1999.2794. Wittig I, 2009, PROTEOMICS, V9, P5214, DOI 10.1002/pmic.200900151. Wright EP, 2014, PROTEOMICS, V14, P872, DOI 10.1002/pmic.201300424. Xie F, 2011, J BIOL CHEM, V286, P25443, DOI 10.1074/jbc.R110.199703. Yates JR, 2009, ANNU REV BIOMED ENG, V11, P49, DOI 10.1146/annurev-bioeng-061008-124934. Yates JR, 2011, NAT METHODS, V8, P633, DOI 10.1038/nmeth.1659. Yates JR, 1998, J MASS SPECTROM, V33, P1. Yocum Anastasia K., 2009, Briefings in Functional Genomics \& Proteomics, V8, P145, DOI 10.1093/bfgp/eln056.}, Number-of-Cited-References = {80}, Times-Cited = {1}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {17}, Journal-ISO = {Adv. Protein Chem. Struct. Biol.}, Doc-Delivery-Number = {BS0RD}, Web-of-Science-Index = {Book Citation Index – Science (BKCI-S); Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000684003800005}, DA = {2023-04-22}, } @article{ WOS:000744234900015, Author = {Kriza, Christine and Amenta, Valeria and Zenie, Alexandre and Panidis, Dimitris and Chassaigne, Hubert and Urban, Patricia and Holzwarth, Uwe and Sauer, Aisha Vanessa and Reina, Vittorio and Griesinger, Claudius Benedict}, Title = {Artificial intelligence for imaging-based COVID-19 detection: Systematic review comparing added value of AI versus human readers}, Journal = {EUROPEAN JOURNAL OF RADIOLOGY}, Year = {2021}, Volume = {145}, Month = {DEC}, Abstract = {Purpose: A growing number of studies have examined whether Artificial Intelligence (AI) systems can support imaging-based diagnosis of COVID-19-caused pneumonia, including both gains in diagnostic performance and speed. However, what is currently missing is a combined appreciation of studies comparing human readers and AI. Methods: We followed PRISMA-DTA guidelines for our systematic review, searching EMBASE, PUBMED and Scopus databases. To gain insights into the potential value of AI methods, we focused on studies comparing the performance of human readers versus AI models or versus AI-supported human readings. Results: Our search identified 1270 studies, of which 12 fulfilled specific selection criteria. Concerning diagnostic performance, in testing datasets reported sensitivity was 42-100\% (human readers, n = 9 studies), 60-95\% (AI systems, n = 10) and 81-98\% (AI-supported readers, n = 3), whilst reported specificity was 26-100\% (human readers, n = 8), 61-96\% (AI systems, n = 10) and 78-99\% (AI-supported readings, n = 2). One study highlighted the potential of AI-supported readings for the assessment of lung lesion burden changes, whilst two studies indicated potential time savings for detection with AI. Conclusions: Our review indicates that AI systems or AI-supported human readings show less performance variability (interquartile range) in general, and may support the differentiation of COVID-19 pneumonia from other forms of pneumonia when used in high-prevalence and symptomatic populations. However, inconsistencies related to study design, reporting of data, areas of risk of bias, as well as limitations of statistical analyses complicate clear conclusions. We therefore support efforts for developing critical elements of study design when assessing the value of AI for diagnostic imaging.}, Publisher = {ELSEVIER IRELAND LTD}, Address = {ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND}, Type = {Review}, Language = {English}, Affiliation = {Kriza, C (Corresponding Author), European Commiss, Joint Res Ctr JRC, Directorate Hlth F, Consumers \& Reference Mat,Unit Consumer Prod Safe, Via E Fermi 2749 TP 281, I-21027 Ispra, Lombardy, Italy. Kriza, Christine; Amenta, Valeria; Zenie, Alexandre; Panidis, Dimitris; Chassaigne, Hubert; Urban, Patricia; Holzwarth, Uwe; Sauer, Aisha Vanessa; Reina, Vittorio; Griesinger, Claudius Benedict, European Commiss, Joint Res Ctr JRC, Via E Fermi 2749 TP 281 Ispra, Lombardy, Italy.}, DOI = {10.1016/j.ejrad.2021.110028}, EarlyAccessDate = {NOV 2021}, Article-Number = {110028}, ISSN = {0720-048X}, EISSN = {1872-7727}, Keywords-Plus = {DEEP; RADIOLOGISTS; PERFORMANCE; AGREEMENT}, Research-Areas = {Radiology, Nuclear Medicine \& Medical Imaging}, Web-of-Science-Categories = {Radiology, Nuclear Medicine \& Medical Imaging}, Author-Email = {Christine.KRIZA@ec.europa.eu}, Funding-Acknowledgement = {European Commission Joint Research Centre (JRC) within the Consumer Products Safety Unit of Directorate for Health, Consumers and Reference Materials through the JRC's Work Programme for-2020-2021, running under Horizon 2020; current EU Framework Programme}, Funding-Text = {This work was supported by the European Commission Joint Research Centre (JRC) within the Consumer Products Safety Unit of Directorate for Health, Consumers and Reference Materials through the JRC's Work Programme for-2020-2021, running under Horizon 2020, the current EU Framework Programme for research and innovation funding.}, Cited-References = {Aggarwal R, 2021, NPJ DIGIT MED, V4, DOI 10.1038/s41746-021-00438-z. Asai T, 2021, J ANESTH, V35, P328, DOI 10.1007/s00540-020-02875-8. Bai HX, 2020, RADIOLOGY, V296, pE156, DOI 10.1148/radiol.2020201491. Castiglioni I, 2021, EUR RADIOL EXP, V5, DOI 10.1186/s41747-020-00203-z. Centre of Reviews and Dissemination, 2009, SYST REV-LONDON. Chiu WHK, 2020, J THORAC IMAG, V35, P369, DOI 10.1097/RTI.0000000000000559. Choy G, 2018, RADIOLOGY, V288, P318, DOI 10.1148/radiol.2018171820. Lopez-Cabrera JD, 2021, HEALTH TECHNOL-GER, V11, P411, DOI 10.1007/s12553-021-00520-2. DeGrave AJ, 2021, NAT MACH INTELL, V3, P610, DOI 10.1038/s42256-021-00338-7. Dorr Francisco, 2020, Intell Based Med, V3, P100014, DOI 10.1016/j.ibmed.2020.100014. Frank RA, 2018, RADIOLOGY, V289, P313, DOI 10.1148/radiol.2018180850. Gallagher EJ, 1996, ANN EMERG MED, V27, P236, DOI 10.1016/S0196-0644(96)80067-9. Gisev N, 2013, RES SOC ADMIN PHARM, V9, P330, DOI 10.1016/j.sapharm.2012.04.004. Hosny A, 2018, NAT REV CANCER, V18, P500, DOI 10.1038/s41568-018-0016-5. Javor D, 2020, EUR J RADIOL, V133, DOI 10.1016/j.ejrad.2020.109402. Krishnamoorthy S, 2021, INDIAN J RADIOL IMAG, V31, pS53, DOI 10.4103/ijri.IJRI\_914\_20. Lessmann N, 2021, RADIOLOGY, V298, pE18, DOI 10.1148/radiol.2020202439. Liu XX, 2019, LANCET DIGIT HEALTH, V1, pE271, DOI 10.1016/S2589-7500(19)30123-2. Mei XY, 2020, NAT MED, V26, P1224, DOI 10.1038/s41591-020-0931-3. Moher D, 2015, SYST REV-LONDON, V4, DOI {[}10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1186/s13643-015-0087-2]. Murphy K, 2020, RADIOLOGY, V296, pE166, DOI 10.1148/radiol.2020201874. Ni QQ, 2020, EUR RADIOL, V30, P6517, DOI 10.1007/s00330-020-07044-9. Shen JY, 2019, JMIR MED INF, V7, DOI 10.2196/10010. Sukhija A, 2021, INDIAN J RADIOL IMAG, V31, pS87, DOI 10.4103/ijri.IJRI\_777\_20. Wang HM, 2021, EUR J NUCL MED MOL I, V48, P1478, DOI 10.1007/s00259-020-05075-4. Wang MH, 2020, LANCET DIGIT HEALTH, V2, pE506, DOI 10.1016/S2589-7500(20)30199-0. Wang Z, 2021, PATTERN RECOGN, V110, DOI 10.1016/j.patcog.2020.107613. Wehbe RM, 2021, RADIOLOGY, V299, pE167, DOI 10.1148/radiol.2020203511. Whiting PF, 2011, ANN INTERN MED, V155, P529, DOI 10.7326/0003-4819-155-8-201110180-00009. World Health Organization, WHO COR DASHB. Xie QC, 2021, EUR RADIOL, V31, P3864, DOI 10.1007/s00330-020-07553-7. Yang SY, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm.2020.03.132. Yang YH, 2021, J X-RAY SCI TECHNOL, V29, P1, DOI 10.3233/XST-200735. Zhang R, 2021, RADIOLOGY, V298, pE88, DOI 10.1148/radiol.2020202944. Zhou M, 2021, ANN TRANSL MED, V9, DOI 10.21037/atm-20-5328.}, Number-of-Cited-References = {35}, Times-Cited = {3}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {6}, Journal-ISO = {Eur. J. Radiol.}, Doc-Delivery-Number = {YJ0NB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000744234900015}, OA = {hybrid, Green Published}, DA = {2023-04-22}, } @article{ WOS:000468128200001, Author = {Bock, Frederic E. and Aydin, Roland C. and Cyron, Christian J. and Huber, Norbert and Kalidindi, Surya R. and Klusemann, Benjamin}, Title = {A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics}, Journal = {FRONTIERS IN MATERIALS}, Year = {2019}, Volume = {6}, Month = {MAY 15}, Abstract = {Machine learning tools represent key enablers for empowering material scientists and engineers to accelerate the development of novel materials, processes and techniques. One of the aims of using such approaches in the field of materials science is to achieve high-throughput identification and quantification of essential features along the process-structure-property-performance chain. In this contribution, machine learning and statistical learning approaches are reviewed in terms of their successful application to specific problems in the field of continuum materials mechanics. They are categorized with respect to their type of task designated to be either descriptive, predictive or prescriptive; thus to ultimately achieve identification, prediction or even optimization of essential characteristics. The respective choice of the most appropriate machine learning approach highly depends on the specific use-case, type of material, kind of data involved, spatial and temporal scales, formats, and desired knowledge gain as well as affordable computational costs. Different examples are reviewed involving case-by-case dependent application of different types of artificial neural networks and other data-driven approaches such as support vector machines, decision trees and random forests as well as Bayesian learning, and model order reduction procedures such as principal component analysis, among others. These techniques are applied to accelerate the identification of material parameters or salient features for materials characterization, to support rapid design and optimization of novel materials or manufacturing methods, to improve and correct complex measurement devices, or to better understand and predict fatigue behavior, among other examples. Besides experimentally obtained datasets, numerous studies draw required information from simulation-based data mining. Altogether, it is shown that experiment- and simulation-based data mining in combination with machine leaning tools provide exceptional opportunities to enable highly reliant identification of fundamental interrelations within materials for characterization and optimization in a scale-bridging manner. Potentials of further utilizing applied machine learning in materials science and empowering significant acceleration of knowledge output are pointed out.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Bock, FE (Corresponding Author), Helmholtz Zentrum Geesthacht, Inst Mat Res Mat Mech, Geesthacht, Germany. Bock, Frederic E.; Aydin, Roland C.; Cyron, Christian J.; Huber, Norbert; Klusemann, Benjamin, Helmholtz Zentrum Geesthacht, Inst Mat Res Mat Mech, Geesthacht, Germany. Cyron, Christian J., Hamburg Univ Technol TUHH, Inst Continuum \& Mat Mech, Hamburg, Germany. Huber, Norbert, Hamburg Univ Technol TUHH, Inst Mat Phys \& Technol, Hamburg, Germany. Kalidindi, Surya R., Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA. Kalidindi, Surya R., Georgia Inst Technol, Sch Computat Sci \& Engn, Atlanta, GA 30332 USA. Klusemann, Benjamin, Leuphana Univ Luneburg, Inst Prod \& Proc Innovat, Luneburg, Germany.}, DOI = {10.3389/fmats.2019.00110}, Article-Number = {110}, ISSN = {2296-8016}, Keywords = {machine learning; materials mechanics; data mining; process-structure-property-performance relationship; knowledge discovery}, Keywords-Plus = {STRUCTURE-PROPERTY LINKAGES; VISCOPLASTIC MATERIAL PARAMETERS; SPHERICAL INDENTATION DATA; ARTIFICIAL NEURAL-NETWORK; DATA SCIENCE; ELASTIC LOCALIZATION; MULTIOBJECTIVE OPTIMIZATION; RESIDUAL-STRESSES; GENETIC ALGORITHM; FATIGUE LIFE}, Research-Areas = {Materials Science}, Web-of-Science-Categories = {Materials Science, Multidisciplinary}, Author-Email = {frederic.bock@hzg.de}, Affiliations = {Helmholtz Association; Helmholtz-Zentrum Geesthacht - Zentrum fur Material- und Kustenforschung; Hamburg University of Technology; Hamburg University of Technology; University System of Georgia; Georgia Institute of Technology; University System of Georgia; Georgia Institute of Technology; Leuphana University Luneburg}, ResearcherID-Numbers = {Klusemann, Benjamin/AAC-5939-2019 Klusemann, Benjamin/G-9265-2014 Huber, Norbert/I-4004-2013 Cyron, Christian Johannes/ABE-2064-2021 }, ORCID-Numbers = {Klusemann, Benjamin/0000-0002-8516-5087 Huber, Norbert/0000-0002-4252-9207 Cyron, Christian Johannes/0000-0001-8264-0885 Bock, Frederic E./0000-0002-6541-2036}, Funding-Acknowledgement = {Helmholtz-Association via an ERC-Recognition-Award {[}ERC-RA-0022]; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) {[}192346071-SFB 986]; NIST {[}70NANB18H039]}, Funding-Text = {FB and BK acknowledge support from the Helmholtz-Association via an ERC-Recognition-Award under contract number ERC-RA-0022. From CC and NH, support from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Projektnummer 192346071-SFB 986 is acknowledged. SK acknowledges support from NIST 70NANB18H039.}, Cited-References = {Abadi Martin, 2016, arXiv. Abdi H., 2009, ENCY BIOMETRICS, DOI {[}10.1007/978-0-387-73003-5\_479, DOI 10.1007/978-0-387-73003-5\_479]. Agarwal R, 2014, INFORM SYST RES, V25, P443, DOI 10.1287/isre.2014.0546. Agrawal A, 2018, INT J FATIGUE, V113, P389, DOI 10.1016/j.ijfatigue.2018.04.017. Agrawal A, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2497, DOI 10.1145/2983323.2983343. Agrawal A, 2014, INTEGR MATER MANUF I, V3, DOI 10.1186/2193-9772-3-8. Altschuh P, 2017, J MEMBRANE SCI, V540, P88, DOI 10.1016/j.memsci.2017.06.020. Andrieu C, 2003, MACH LEARN, V50, P5, DOI 10.1023/A:1020281327116. {[}Anonymous], 1986, PRINCIPAL COMPONENT, DOI DOI 10.1007/B98835. Asteris PG, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17061344. Aydin RC, 2019, FRONT MATER, V6, DOI 10.3389/fmats.2019.00061. Benedyczak K, 2016, 2016 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING \& SIMULATION (HPCS 2016), P613, DOI 10.1109/HPCSim.2016.7568392. BEZDEK JC, 1984, COMPUT GEOSCI, V10, P191, DOI 10.1016/0098-3004(84)90020-7. Bin Younis H, 2018, PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), P825, DOI 10.1109/ICACI.2018.8377568. Bostanabad R, 2016, ACTA MATER, V103, P89, DOI 10.1016/j.actamat.2015.09.044. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Brough DB, 2017, INTEGR MATER MANUF I, V6, P147, DOI 10.1007/s40192-017-0093-4. Brough DB, 2017, CURR OPIN SOLID ST M, V21, P129, DOI 10.1016/j.cossms.2016.05.002. Cang R., 2016, ASME 2016 INT DES EN. Cang RJ, 2018, COMP MATER SCI, V150, P212, DOI 10.1016/j.commatsci.2018.03.074. Cecen A, 2018, ACTA MATER, V146, P76, DOI 10.1016/j.actamat.2017.11.053. Chang Y. W., 2008, PROC WCCI WORKSHOP C, P53. Chapman P., 1999, 4 CRISP DM SIG WORKS. Chollet F., 2018, DEEP LEARNINGWITH PY. Chollet F., 2015, DATA SCI CENT. Chopra P, 2016, ADV MATER SCI ENG, V2016, DOI 10.1155/2016/7648467. Chowdhury A, 2016, COMP MATER SCI, V123, P176, DOI 10.1016/j.commatsci.2016.05.034. Chupakhin S, 2019, INT J ADV MANUF TECH, V102, P1567, DOI 10.1007/s00170-018-3034-2. Chupakhin S, 2017, J STRAIN ANAL ENG, V52, P137, DOI 10.1177/0309324717696400. Conduit B., 2014, Patent GB, Patent No. 1408536. Conduit BD, 2018, SCRIPTA MATER, V146, P82, DOI 10.1016/j.scriptamat.2017.11.008. Conduit BD, 2017, MATER DESIGN, V131, P358, DOI 10.1016/j.matdes.2017.06.007. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Deb K, 2002, IEEE T EVOLUT COMPUT, V6, P182, DOI 10.1109/4235.996017. DeCost BL, 2017, ACTA MATER, V133, P30, DOI 10.1016/j.actamat.2017.05.014. DeCost BL, 2015, COMP MATER SCI, V110, P126, DOI 10.1016/j.commatsci.2015.08.011. Delen D., 2018, J BUS ANAL, V1, P2, DOI {[}DOI 10.1080/2573234X.2018.1507324, 10.1080/2573234X.2018.1507324]. Deshpande P. D., 2016, P 2 WORLD C INT COMP, P155. Ding K, 2006, WORLD METALL, P1. Fast T, 2011, ACTA MATER, V59, P4595, DOI 10.1016/j.actamat.2011.04.005. FATEMI A, 1988, FATIGUE FRACT ENG M, V11, P149, DOI 10.1111/j.1460-2695.1988.tb01169.x. Freitag S, 2009, COMPUT STRUCT, V87, P1187, DOI 10.1016/j.compstruc.2008.12.007. Fukunaga K., 1990, Introduction to Statistical Pattern Recognition. FUKUSHIMA K, 1980, BIOL CYBERN, V36, P193, DOI 10.1007/BF00344251. Fullwood DT, 2008, ACTA MATER, V56, P942, DOI 10.1016/j.actamat.2007.10.044. Gallicchio C., 2017, P 25 EUR S ART NEUR, P77. Gao ZM, 2016, APPL PHYS A-MATER, V122, DOI 10.1007/s00339-016-0144-2. Ghosh I, 2014, NEURAL COMPUT APPL, V25, P653, DOI 10.1007/s00521-013-1532-6. Gibson LJ, 1997, CELLULAR SOLIDS STRU, DOI DOI 10.1017/CBO9781139878326. Gobert C, 2018, ADDIT MANUF, V21, P517, DOI 10.1016/j.addma.2018.04.005. Gomberg JA, 2017, ACTA MATER, V133, P100, DOI 10.1016/j.actamat.2017.05.009. Hambli R, 2011, BIOMECH MODEL MECHAN, V10, P133, DOI 10.1007/s10237-010-0222-x. Hashash YMA, 2004, INT J NUMER METH ENG, V59, P989, DOI 10.1002/nme.905. Haykin S., 2004, NEURAL NETWORKS COMP. Heerens J, 2009, J MATER RES, V24, P907, DOI 10.1557/JMR.2009.0116. Hochreiter S, 1998, INT J UNCERTAIN FUZZ, V6, P107, DOI 10.1142/S0218488598000094. Hochreiter Sepp, 1997, NEURAL COMPUT, V9, P1735, DOI 10.1162/neco.1997.9.8.1735. HORNIK K, 1991, NEURAL NETWORKS, V4, P251, DOI 10.1016/0893-6080(91)90009-T. Hu YY, 2018, COMP MATER SCI, V142, P244, DOI 10.1016/j.commatsci.2017.09.059. Huber N, 2004, J MATER RES, V19, P101, DOI 10.1557/jmr.2004.19.1.101. Huber N, 2002, P ROY SOC A-MATH PHY, V458, P1593, DOI 10.1098/rspa.2001.0927. Huber N, 2001, COMPUT METHOD APPL M, V191, P353, DOI 10.1016/S0045-7825(01)00278-X. Huber N, 2018, FRONT MATER, V5, DOI 10.3389/fmats.2018.00069. Ibanez R, 2019, INT J MATER FORM, V12, P717, DOI 10.1007/s12289-018-1448-x. Ibanez R, 2018, ARCH COMPUT METHOD E, V25, P47, DOI 10.1007/s11831-016-9197-9. Jha SK, 2018, JOM-US, V70, P1147, DOI 10.1007/s11837-018-2881-5. Jia J, 2006, COMPOS STRUCT, V74, P106, DOI 10.1016/j.compstruct.2005.03.012. Kafka OL, 2018, JOM-US, V70, P1154, DOI 10.1007/s11837-018-2868-2. Kalidindi SR, 2015, ANNU REV MATER RES, V45, P171, DOI 10.1146/annurev-matsci-070214-020844. Kalidindi SR, 2011, JOM-US, V63, P34, DOI 10.1007/s11837-011-0057-7. Kalidindi SR, 2010, CMC-COMPUT MATER CON, V17, P103. Khosravani A, 2017, ACTA MATER, V123, P55, DOI 10.1016/j.actamat.2016.10.033. Kirchdoerfer T, 2018, INT J NUMER METH ENG, V113, P1697, DOI 10.1002/nme.5716. Kirchdoerfer T, 2017, COMPUT METHOD APPL M, V326, P622, DOI 10.1016/j.cma.2017.07.039. Kirchdoerfer T, 2016, COMPUT METHOD APPL M, V304, P81, DOI 10.1016/j.cma.2016.02.001. Klancnik S, 2016, ADV PROD ENG MANAG, V11, P366, DOI 10.14743/apem2016.4.234. Klotzer D, 2006, J MATER RES, V21, P677, DOI 10.1557/JMR.2006.0077. KRONER E, 1977, J MECH PHYS SOLIDS, V25, P137, DOI 10.1016/0022-5096(77)90009-6. Landi G, 2010, ACTA MATER, V58, P2716, DOI 10.1016/j.actamat.2010.01.007. Le BA, 2015, INT J NUMER METH ENG, V104, P1061, DOI 10.1002/nme.4953. LeCun Y, 1999, LECT NOTES COMPUT SC, V1681, P319, DOI 10.1007/3-540-46805-6\_19. Li S. Z., 1995, Markov random field modeling in computer vision. Ling Julia, 2017, Materials Discovery, V10, P19, DOI 10.1016/j.md.2018.03.002. Lipton Z. C., 2015, ARXIV150600019. Liu H, 1995, PROC INT C TOOLS ART, P388, DOI 10.1109/TAI.1995.479783. Liu RQ, 2017, INTEGR MATER MANUF I, V6, P160, DOI 10.1007/s40192-017-0094-3. Liu RQ, 2015, INTEGR MATER MANUF I, V4, DOI 10.1186/s40192-015-0042-z. Liu RQ, 2015, SCI REP-UK, V5, DOI 10.1038/srep11551. Liu ZL, 2019, COMPUT METHOD APPL M, V345, P1138, DOI 10.1016/j.cma.2018.09.020. Liu ZL, 2016, J MECH PHYS SOLIDS, V95, P663, DOI 10.1016/j.jmps.2016.05.002. Liu ZL, 2016, COMPUT METHOD APPL M, V306, P319, DOI 10.1016/j.cma.2016.04.004. Lubbers N, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.052111. Maass W, 2002, NEURAL COMPUT, V14, P2531, DOI 10.1162/089976602760407955. Mai HH, 2016, NEURAL COMPUT APPL, V27, P1519, DOI 10.1007/s00521-015-1950-8. Mesquita Sa Junior J. J., 2018, PROGR PATTERN RECOGN, P669. Moore BA, 2018, COMP MATER SCI, V148, P46, DOI 10.1016/j.commatsci.2018.01.056. Mosallam A, 2016, J INTELL MANUF, V27, P1037, DOI 10.1007/s10845-014-0933-4. Neal R.M., 1996, BAYESIAN LEARNING NE, V118, DOI DOI 10.1007/978-1-4612-0745-0. Niezgoda SR, 2008, ACTA MATER, V56, P5285, DOI 10.1016/j.actamat.2008.07.005. Niezgoda SR, 2013, INTEGR MATER MANUF I, V2, DOI 10.1186/2193-9772-2-3. Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5. Oeser M, 2009, INT J NUMER METH ENG, V78, P843, DOI 10.1002/nme.2518. Orr M. J. L., 1996, INTRO RADIAL BASIS F. Padhye N., 2011, MULTIOBJECTIVE EVOLU, P219, DOI DOI 10.1007/978-0-85729-652-8\_7. Paulson NH, 2018, MATER DESIGN, V154, P170, DOI 10.1016/j.matdes.2018.05.009. Popova E, 2017, INTEGR MATER MANUF I, V6, P54, DOI 10.1007/s40192-017-0088-1. Popova M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aap7885. Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. Russell S. J., 2016, ARTIFICIAL INTELLIGE. Sabour Sara, 2017, C NEUR INF PROC SYST. Sahu NK, 2018, IOP CONF SER-MAT SCI, V346, DOI 10.1088/1757-899X/346/1/012037. SCHAJER GS, 1988, J ENG MATER-T ASME, V110, P344, DOI 10.1115/1.3226060. Schijve J., 2001, FATIGUE STRUCTURES M, DOI DOI 10.1007/978-1-4020-6808-9. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Schwarzer M, 2019, COMP MATER SCI, V162, P322, DOI 10.1016/j.commatsci.2019.02.046. Sikorska JZ, 2011, MECH SYST SIGNAL PR, V25, P1803, DOI 10.1016/j.ymssp.2010.11.018. Silver D., 2013, CORR, V1312, P5602, DOI DOI 10.1038/NATURE14236. Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270. Junior RCSF, 2009, INT J FATIGUE, V31, P831, DOI 10.1016/j.ijfatigue.2008.11.005. Smith J, 2016, COMPUT MECH, V57, P583, DOI 10.1007/s00466-015-1240-4. Spear AD, 2018, JOM-US, V70, P1143, DOI 10.1007/s11837-018-2894-0. Steinwart I., 2008, SUPPORT VECTOR MACHI, DOI DOI 10.1007/978-0-387-77242-4. Sundararaghavan V, 2005, COMP MATER SCI, V32, P223, DOI 10.1016/j.commatsci.2004.07.004. Tan P-N, 2009, INTRO DATA MINING. Toshio O., 2012, NEW STAGE MATNAVI MA. Turner DM, 2016, ACTA MATER, V102, P136, DOI 10.1016/j.actamat.2015.09.011. Tyulyukovskiy E, 2006, J MATER RES, V21, P664, DOI 10.1557/JMR.2006.0076. Upadhyay V, 2012, ADV INTEL SOFT COMPU, V131, P761. Van Hasselt Hado, 2016, P AAAI C ART INT, V30. Vassiopoulos AP, 2007, INT J FATIGUE, V29, P20, DOI 10.1016/j.ijfatigue.2006.03.004. Voyles PM, 2017, CURR OPIN SOLID ST M, V21, P141, DOI 10.1016/j.cossms.2016.10.001. Wang BX, 2016, COMP MATER SCI, V125, P136, DOI 10.1016/j.commatsci.2016.08.035. Wang HX, 2017, MATERIALS, V10, DOI 10.3390/ma10050543. Wang L, 2011, APPL MATH MECH-ENGL, V32, P739, DOI 10.1007/s10483-011-1453-x. WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698. Willumeit R, 2013, ACTA BIOMATER, V9, P8722, DOI 10.1016/j.actbio.2013.02.042. Witten IH, 2011, MOR KAUF D, P1. Xiong J, 2014, J INTELL MANUF, V25, P157, DOI 10.1007/s10845-012-0682-1. Yabansu YC, 2017, ACTA MATER, V124, P182, DOI 10.1016/j.actamat.2016.10.071. Yabansu YC, 2015, ACTA MATER, V94, P26, DOI 10.1016/j.actamat.2015.04.049. Yabansu YC, 2014, ACTA MATER, V81, P151, DOI 10.1016/j.actamat.2014.08.022. Yan WT, 2018, COMPUT MECH, V61, P521, DOI 10.1007/s00466-018-1539-z. Yang ZJ, 2018, COMP MATER SCI, V151, P278, DOI 10.1016/j.commatsci.2018.05.014. Zhi LX, 2016, NEURAL COMPUT APPL, V27, P197, DOI 10.1007/s00521-014-1712-z. 2011, INT J FATIGUE, V33, P313, DOI DOI 10.1016/J.IJFATIGUE.2010.09.003.}, Number-of-Cited-References = {146}, Times-Cited = {135}, Usage-Count-Last-180-days = {41}, Usage-Count-Since-2013 = {167}, Journal-ISO = {Front. Mater.}, Doc-Delivery-Number = {HY4WI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000468128200001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000838158100002, Author = {Heidari, Arash and Navimipour, Nima Jafari and Unal, Mehmet}, Title = {Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review}, Journal = {SUSTAINABLE CITIES AND SOCIETY}, Year = {2022}, Volume = {85}, Month = {OCT}, Abstract = {The goal of managing smart cities and societies is to maximize the efficient use of finite resources while enhancing the quality of life. To establish a sustainable urban existence, smart cities use some new technologies such as the Internet of Things (IoT), Internet of Drones (IoD), and Internet of Vehicles (IoV). The created data by these technologies are submitted to analytics to obtain new information for increasing the smart societies and cities' efficiency and effectiveness. Also, smart traffic management, smart power, and energy management, city surveillance, smart buildings, and patient healthcare monitoring are the most common applications in smart cities. However, the Artificial intelligence (AI), Machine Learning (ML), and Deep Learning (DL) approach all hold a lot of promise for managing automated activities in smart cities. Therefore, we discuss different research issues and possible research paths in which the aforementioned techniques might help materialize the smart city notion. The goal of this research is to offer a better understanding of (1) the fundamentals of smart city and society management, (2) the most recent developments and breakthroughs in this field, (3) the benefits and drawbacks of existing methods, and (4) areas that require further investigation and consideration. IoT, cloud computing, edge computing, fog computing, IoD, IoV, and hybrid models are the seven key emerging de-velopments in information technology that, in this paper, are considered to categorize the state-of-the-art techniques. The results indicate that the Conventional Neural Network (CNN) and Long Short-Term Memory (LSTM) are the most commonly used ML method in the publications. According to research, the majority of papers are about smart cities' power and energy management. Furthermore, most papers have concentrated on improving only one parameter, where the accuracy parameter obtains the most attention. In addition, Python is the most frequently used language, which was used in 69.8\% of the papers.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Navimipour, NJ (Corresponding Author), Kadir Has Univ, Fac Engn \& Nat Sci, Dept Comp Engn, Istanbul, Turkey. Heidari, Arash, Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran. Navimipour, Nima Jafari, Kadir Has Univ, Fac Engn \& Nat Sci, Dept Comp Engn, Istanbul, Turkey. Unal, Mehmet, Nisantasi Univ, Dept Comp Engn, Istanbul, Turkey. Heidari, Arash, Islamic Azad Univ, Dept Comp Engn, Shabestar Branch, Shabestar, Iran.}, DOI = {10.1016/j.scs.2022.104089}, EarlyAccessDate = {AUG 2022}, Article-Number = {104089}, ISSN = {2210-6707}, EISSN = {2210-6715}, Keywords = {Smart cities; Sustainable city; Power management; Machine learning; City management; Deep learning; Review}, Keywords-Plus = {ENERGY MANAGEMENT; CITY; SECURITY; INTERNET; OPTIMIZATION; GENERATION; NETWORK; DESIGN; THINGS; MODEL}, Research-Areas = {Construction \& Building Technology; Science \& Technology - Other Topics; Energy \& Fuels}, Web-of-Science-Categories = {Construction \& Building Technology; Green \& Sustainable Science \& Technology; Energy \& Fuels}, Author-Email = {nima.navimipour@khas.edu.tr}, Affiliations = {Islamic Azad University; Kadir Has University; Nisantasi University; Islamic Azad University}, ResearcherID-Numbers = {Heidari, Arash/AAK-9761-2021 Jafari Navimipour, Nima/AAF-5662-2021}, ORCID-Numbers = {Heidari, Arash/0000-0003-4279-8551 Jafari Navimipour, Nima/0000-0002-5514-5536}, Cited-References = {Aazam M, 2021, COMPUT NETW, V191, DOI 10.1016/j.comnet.2021.108019. Abbasalizad-Farhangi M, 2021, CRIT REV FOOD SCI, DOI 10.1080/10408398.2021.1971155. Abdel-Basset M, 2021, IEEE INTERNET THINGS, V8, P12422, DOI 10.1109/JIOT.2021.3063677. Alaoui EA, 2021, SUSTAIN CITIES SOC, V67, DOI 10.1016/j.scs.2020.102702. Abdolazimi R, 2022, 2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), P112, DOI 10.1109/CCWC54503.2022.9720798. Adil M, 2021, SUSTAIN CITIES SOC, V75, DOI 10.1016/j.scs.2021.103311. Ahmed I, 2022, INT J INTELL SYST, V37, P6493, DOI 10.1002/int.22852. Ahmed I, 2021, APPL SOFT COMPUT, V107, DOI 10.1016/j.asoc.2021.107489. Ahmed R, 2022, DIGIT SIGNAL PROCESS, V120, DOI 10.1016/j.dsp.2021.103290. Akram MW, 2022, IEEE T INTELL TRANSP, V23, P19634, DOI 10.1109/TITS.2021.3129913. Alamaniotis M, 2021, ADV DATA SCI METHODO, P293. Alanne K, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103445. Ali A, 2021, MULTIMED TOOLS APPL, V80, P31401, DOI 10.1007/s11042-020-10486-4. AlZubi AA, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102539. Anthopoulos LG, 2022, CITIES, V125, DOI 10.1016/j.cities.2022.103660. Ben Atitallah S, 2020, COMPUT SCI REV, V38, DOI 10.1016/j.cosrev.2020.100303. Bhardwaj T., 2022, ARTIF INTELL, P175. Bhattacharya S, 2022, INTERNET TECHNOL LET, V5, DOI 10.1002/itl2.187. Bin Ahmad KA, 2022, SUSTAIN CITIES SOC, V80, DOI 10.1016/j.scs.2022.103695. Bisogni C, 2022, IEEE T IND INFORM, V18, P5619, DOI 10.1109/TII.2022.3141400. Bokhari SAA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14020620. Butt UM, 2021, IEEE ACCESS, V9, P47516, DOI 10.1109/ACCESS.2021.3068306. Canli H, 2021, IEEE ACCESS, V9, P61171, DOI 10.1109/ACCESS.2021.3074887. Cepeda-Pacheco JC, 2022, NEURAL COMPUT APPL, V34, P7691, DOI 10.1007/s00521-021-06872-0. Carrera B, 2021, SUSTAIN CITIES SOC, V72, DOI 10.1016/j.scs.2021.103025. Catal C, 2022, NEURAL COMPUT APPL, V34, P1007, DOI 10.1007/s00521-021-06597-0. Chang QQ, 2021, SUSTAIN CITIES SOC, V70, DOI 10.1016/j.scs.2021.102938. Chen C, 2022, J PARALLEL DISTR COM, V165, P66, DOI 10.1016/j.jpdc.2022.03.010. Chen C, 2022, ACM T INTERNET TECHN, V22, DOI 10.1145/3430505. Chen C, 2021, COMPUT NETW, V186, DOI 10.1016/j.comnet.2020.107744. Chen DL, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102655. Chen JJ, 2021, J ADV TRANSPORT, V2021, DOI 10.1155/2021/7552180. Chen N, 2021, IEEE WIREL COMMUN, V28, P26, DOI 10.1109/MWC.001.2000243. Chen Z, 2022, SUSTAIN ENERGY TECHN, V49, DOI 10.1016/j.seta.2021.101724. de Araujo Arthur Cruz, 2020, IEEE INTERNET THINGS. Doewes R. I., 2022, CURR PROB CARDIOLOGY. Elsaeidy AA, 2021, IEEE ACCESS, V9, P154864, DOI 10.1109/ACCESS.2021.3128701. Elsisi M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21041038. Esmaeilzadeh Armin, 2022, Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys). Lecture Notes in Networks and Systems (296), P175, DOI 10.1007/978-3-030-82199-9\_12. Esmailiyan M., 2021, CURR PROB CARDIOLOGY. Ghazal TM, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13080218. Ghosh T, 2021, SUSTAIN CITIES SOC, V74, DOI 10.1016/j.scs.2021.103189. Goh CC, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21154956. Guo C, 2021, IEEE T POWER DELIVER, V36, P2374, DOI 10.1109/TPWRD.2020.3043938. Gupta R, 2021, T EMERG TELECOMMUN T, V32, DOI 10.1002/ett.4176. Han ZC, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103343. Hassan H, 2022, ENVIRON TECHNOL, V43, P2867, DOI 10.1080/09593330.2021.1907451. Hassan SU, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2019.102045. Heidari A, 2022, NEURAL COMPUT APPL, V34, P15313, DOI 10.1007/s00521-022-07424-w. Heidari A, 2022, COMPUT BIOL MED, V145, DOI 10.1016/j.compbiomed.2022.105461. Heidari A, 2022, COMPUT BIOL MED, V141, DOI 10.1016/j.compbiomed.2021.105141. Heidari A, 2022, KYBERNETES, V51, P952, DOI 10.1108/K-12-2020-0909. Heidari A, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.539. Heidari A, 2020, INT J COMMUN SYST, V33, DOI 10.1002/dac.4474. Hong T, 2021, WIREL COMMUN MOB COM, V2021, DOI 10.1155/2021/9999596. Hosseinzadeh M, 2021, J SUPERCOMPUT, V77, P2590, DOI 10.1007/s11227-020-03357-0. Ibrahim MS., 2018, ACTA ELECT MALAYSIA, V2, P01, DOI {[}10.26480/aem.02.2018.01.05, DOI 10.26480/AEM.02.2018.01.05]. Jain S, 2022, CLUSTER COMPUT, V25, P1111, DOI 10.1007/s10586-021-03496-w. Jamali J., 2020, INTERNET THINGS. Jamali MAJ, 2020, EAI SPRINGER INNOVAT, P85, DOI 10.1007/978-3-030-18468-1\_4. Jamali MAJ, 2020, EAI SPRINGER INNOVAT, P33, DOI 10.1007/978-3-030-18468-1\_3. Janakiramaiah B, 2021, EVOL INTELL, V14, P635, DOI 10.1007/s12065-020-00353-4. Janarthanan R, 2021, SUSTAIN CITIES SOC, V67, DOI 10.1016/j.scs.2021.102720. Kaczmarek I, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103479. Kaluarachchi Y, 2022, SMART CITIES-BASEL, V5, P455, DOI 10.3390/smartcities5020025. Karaci A, 2022, NEURAL COMPUT APPL, V34, P8253, DOI 10.1007/s00521-022-06918-x. Kilicay-Ergin N, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112110037. Kim D, 2021, IEEE SYST J, V15, P346, DOI 10.1109/JSYST.2020.3007184. Kumar P, 2021, IEEE T NETW SCI ENG, V8, P2326, DOI 10.1109/TNSE.2021.3089435. Kumar P, 2021, J SYST ARCHITECT, V115, DOI 10.1016/j.sysarc.2020.101954. Li B, 2021, PROG PLANN, V146, DOI 10.1016/j.progress.2019.100436. Li C., 2017, ACTA ELECT MALAYSIA, V1, P1, DOI DOI 10.26480/AEM.01.2017.01.04. Li W, 2021, MOBILE NETW APPL, V26, P234, DOI 10.1007/s11036-020-01700-6. Li XM, 2022, FUTURE GENER COMP SY, V128, P167, DOI 10.1016/j.future.2021.10.006. Li X, 2021, ANN IEEE INT CONF SE, DOI 10.1109/SECON52354.2021.9491595. Lian J, 2021, SUSTAIN ENERGY TECHN, V44, DOI 10.1016/j.seta.2021.101032. Liu JJ, 2021, SOFT COMPUT, V25, P12017, DOI 10.1007/s00500-021-05696-3. Liu LL, 2021, SUSTAIN ENERGY TECHN, V47, DOI 10.1016/j.seta.2021.101425. Liu Q, 2021, SUSTAIN CITIES SOC, V73, DOI 10.1016/j.scs.2021.103067. Liu X, 2022, IEEE T IND INFORM, V18, P5628, DOI 10.1109/TII.2022.3144016. Liu Y, 2020, COMPUT COMMUN, V150, P346, DOI 10.1016/j.comcom.2019.11.031. Lv ZH, 2022, ACM T MULTIM COMPUT, V18, DOI 10.1145/3529395. Lv ZH, 2021, FUTURE GENER COMP SY, V115, P90, DOI 10.1016/j.future.2020.08.037. Lv ZH, 2021, IEEE COMMUN MAG, V59, P126, DOI 10.1109/MCOM.001.2000945. Ma C, 2021, ENERGY REP, V7, P7999, DOI 10.1016/j.egyr.2021.08.124. Madyatmadja Evaristus Didik, 2021, 2021 1st International Conference on Computer Science and Artificial Intelligence (ICCSAI), P324, DOI 10.1109/ICCSAI53272.2021.9609771. Miranda L, 2022, ARTIF INTELL REV, V55, P3369, DOI 10.1007/s10462-021-10094-0. Mishra Bhupesh Kumar, 2020, Journal of Reliable Intelligent Environments, V6, P51, DOI 10.1007/s40860-020-00099-x. Mishra KN, 2021, WIRELESS PERS COMMUN, V119, P1341, DOI 10.1007/s11277-021-08283-9. Mora H, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106854. Mouratidis K, 2021, SUSTAIN CITIES SOC, V74, DOI 10.1016/j.scs.2021.103182. Muhammad AN, 2021, NEURAL COMPUT APPL, V33, P2973, DOI 10.1007/s00521-020-05151-8. Myeong S, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031687. Nagarajan SM, 2021, SUSTAIN CITIES SOC, V71, DOI 10.1016/j.scs.2021.102945. Naoui MA, 2021, SMART SUSTAIN BUILT, V10, P90, DOI 10.1108/SASBE-04-2019-0040. Nasif A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21124223. Nassif AB, 2021, IEEE ACCESS, V9, P20717, DOI 10.1109/ACCESS.2021.3054129. Ning Z., 2021, IEEE J-STSP. Nwogbaga NE, 2021, J CLOUD COMPUT-ADV S, V10, DOI 10.1186/s13677-021-00254-6. Oberascher M, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103442. Oladipo I. D., 2022, IOT IOE DRIVEN SMART, P143. Ortiz A.C., 2022, SCI REP-UK, V12, P1, DOI DOI 10.1038/S41598-021-99269-X. Pinto G, 2022, ADV APPL ENERGY. Priya Dharshini K., 2022, IMMERSIVE TECHNOLOGY, P179. Rajagopal A, 2022, INNOVATION KNOWLEDGE, P157, DOI {[}10.1007/978-3-030-91532-2\_9, DOI 10.1007/978-3-030-91532-2\_9]. Ramu SP, 2022, SUSTAIN CITIES SOC, V79, DOI 10.1016/j.scs.2021.103663. Ritesh Kumar J., 2019, MALAYS J SUSTAIN AGR, V3, P39, DOI {[}10.26480/mjsa.01.2019.39.43, DOI 10.26480/MJSA.01.2019.39.43]. Rolnick D, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3485128. Safaei M, 2021, COMPUT BIOL MED, V136, DOI 10.1016/j.compbiomed.2021.104754. Said O, 2021, SUSTAIN CITIES SOC, V69, DOI 10.1016/j.scs.2021.102830. Salem AH, 2022, VEH COMMUN, V33, DOI 10.1016/j.vehcom.2021.100432. Samir M, 2021, IEEE T MOBILE COMPUT, V20, P2835, DOI 10.1109/TMC.2020.2991326. Serdar MZ, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103452. Shah SSM, 2021, COMPUT INTELL-US, V37, P1309, DOI 10.1111/coin.12368. Singh Arindam, 2022, Intelligent Sustainable Systems: Selected Papers of WorldS4 2021 . Lecture Notes in Networks and Systems (334), P431, DOI 10.1007/978-981-16-6369-7\_39. Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364. Sinha Trisha, 2022, Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2021. Lecture Notes in Networks and Systems (218), P207, DOI 10.1007/978-981-16-2164-2\_18. Sun D., 2021, IEEE T IND INFORM. Umer M. A., 2021, MACHINE INTELLIGENCE, P49. Vahdat S, 2022, KYBERNETES, V51, P2065, DOI 10.1108/K-04-2021-0333. Vahdat Sahar, 2020, Proceedings of the Indian National Science Academy Part B Biological Sciences, V90, DOI 10.1007/s40011-020-01172-4. Vijayalakshmi B, 2021, INT J COMMUN SYST, V34, DOI 10.1002/dac.4609. Wan LT, 2021, ACM T INTERNET TECHN, V21, DOI 10.1145/3448612. Wang DY, 2021, COGN SYST RES, V67, P33, DOI 10.1016/j.cogsys.2020.12.009. Wang FC, 2021, WORLD WIDE WEB, V24, P805, DOI 10.1007/s11280-021-00877-4. Wang H, 2022, APPL ENERG, V315, DOI 10.1016/j.apenergy.2022.118824. Wang JW, 2022, FRONT NEUROROBOTICS, V16, DOI 10.3389/fnbot.2022.877069. Wang W, 2021, IEEE T INTELL TRANSP, V22, P3567, DOI 10.1109/TITS.2020.2995856. Wu QQ, 2021, IEEE J SEL AREA COMM, V39, P2912, DOI 10.1109/JSAC.2021.3088681. Xu XL, 2021, ACM T SENSOR NETWORK, V17, DOI 10.1145/3447032. Yao LY, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031080. Yigitcanlar T, 2021, J URBAN TECHNOL, V28, P135, DOI 10.1080/10630732.2020.1753483. Yin L., 2022, SECUR COMMUN NETW, V2022. Zekic-Susac M, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2020.102074. Zhang CY, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103373. Zhang YC, 2021, SUSTAIN ENERGY TECHN, V45, DOI 10.1016/j.seta.2020.100986. Zhao LQ, 2022, IEEE SENS J, V22, P10890, DOI 10.1109/JSEN.2022.3172132. Zhao LQ, 2022, KSII T INTERNET INF, V16, P1, DOI 10.3837/tiis.2022.01.001. Zheng WF, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.908. Zheng WF, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12084059.}, Number-of-Cited-References = {140}, Times-Cited = {27}, Usage-Count-Last-180-days = {156}, Usage-Count-Since-2013 = {233}, Journal-ISO = {Sust. Cities Soc.}, Doc-Delivery-Number = {3Q3TT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000838158100002}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000782283800001, Author = {Ahmad, Kashif and Maabreh, Majdi and Ghaly, Mohamed and Khan, Khalil and Qadir, Junaid and Al-Fuqaha, Ala}, Title = {Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges}, Journal = {COMPUTER SCIENCE REVIEW}, Year = {2022}, Volume = {43}, Month = {FEB}, Abstract = {As the globally increasing population drives rapid urbanization in various parts of the world, there is a great need to deliberate on the future of the cities worth living. In particular, as modern smart cities embrace more and more data-driven artificial intelligence services, it is worth remembering that (1) technology can facilitate prosperity, wellbeing, urban livability, or social justice, but only when it has the right analog complements (such as well-thought out policies, mature institutions, responsible governance); and (2) the ultimate objective of these smart cities is to facilitate and enhance human welfare and social flourishing. Researchers have shown that various technological business models and features can in fact contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In the light of these observations, addressing the philosophical and ethical questions involved in ensuring the security, safety, and interpretability of such AI algorithms that will form the technological bedrock of future cities assumes paramount importance. Globally there are calls for technology to be made more humane and human-centered. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical (data and algorithmic) challenges to a successful deployment of AI in human-centric applications, with a particular emphasis on the convergence of these concepts/challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions. We believe such rigorous analysis will provide a baseline for future research in the domain. (C) 2021 Elsevier Inc. All rights reserved.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Ahmad, K (Corresponding Author), Hamad Bin Khalifa Univ, Coll Sci \& Engn CSE, Informat \& Comp Technol ICT Div, Doha, Qatar. Ahmad, Kashif; Al-Fuqaha, Ala, Hamad Bin Khalifa Univ, Coll Sci \& Engn CSE, Informat \& Comp Technol ICT Div, Doha, Qatar. Maabreh, Majdi, Hashemite Univ, Fac Prince Al Hussein Bin Abdallah Informat Tech, Dept Informat Technol, POB 330127, Zarqa 13133, Jordan. Ghaly, Mohamed, Hamad Bin Khalifa Univ, Coll Islamic Studies, Res Ctr Islamic Legislat \& Eth, Doha, Qatar. Khan, Khalil, Pak Austria Fachhochschule, Inst Appl Sci \& Techn, Dept Informat Technol \& Comp Sci, Haripur, KPK, Pakistan. Qadir, Junaid, Qatar Univ, Fac Engn, Dept Comp Sci \& Engn, Doha, Qatar. Qadir, Junaid, Informat Technol Univ, Dept Elect Engn, Lahore, Pakistan.}, DOI = {10.1016/j.cosrev.2021.100452}, Article-Number = {100452}, ISSN = {1574-0137}, EISSN = {1876-7745}, Keywords = {Smart cities; Machine learning; AI ethics; Adversarial attacks; Explainability; Interpretability; Privacy; Security; Data management; Data auditing; Data ownership; Data bias; Trojan attacks; Evasion attacks}, Keywords-Plus = {BIG-DATA; ADVERSARIAL ATTACKS; SPECIAL-ISSUE; SOCIAL MEDIA; HEALTH-CARE; MACHINE; PRIVACY; AI; CLOUD; REPRODUCIBILITY}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory \& Methods}, Author-Email = {kahmad@hbku.edu.qa aalfuqaha@hbku.edu.qa}, Affiliations = {Qatar Foundation (QF); Hamad Bin Khalifa University-Qatar; Hashemite University; Qatar Foundation (QF); Hamad Bin Khalifa University-Qatar; Qatar University}, ResearcherID-Numbers = {Qadir, Junaid/Q-6329-2019 Qadir, Junaid/GQH-4631-2022 }, ORCID-Numbers = {Qadir, Junaid/0000-0001-9466-2475 Qadir, Junaid/0000-0001-9466-2475 Khan, Khalil/0000-0002-0864-5255 Ahmad, Kashif/0000-0002-0931-9275}, Funding-Acknowledgement = {NPRP grant from the Qatar National Research Fund (a member of Qatar Foundation) {[}13S-0206-200273]}, Funding-Text = {This publication was made possible by NPRP grant \# {[}13S-0206-200273] from the Qatar National Research Fund (a member of Qatar Foundation) . The statements made herein are solely the responsibility of the authors.}, Cited-References = {Ackerman E, 2019, IEEE SPECT. Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052. Ahmad K., 2020, ARXIV PREPRINT ARXIV. Ahmad K., 2020, ARTIF INTELL. Ahmad K, 2020, IEEE ACCESS, V8, P96495, DOI 10.1109/ACCESS.2020.2995681. Ahmad K, 2019, ACM T MULTIM COMPUT, V15, DOI 10.1145/3306240. Ahmad K, 2019, SIGNAL PROCESS-IMAGE, V74, P110, DOI 10.1016/j.image.2019.02.002. Ahmad MA, 2018, ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, P559, DOI {[}10.1145/3233547.3233667, 10.1109/ICHI.2018.00095]. Akman V, 2000, J EXP THEOR ARTIF IN, V12, P247, DOI 10.1080/09528130050111419. Ali A., 2016, BIG DATA ANAL, V1, P1, DOI DOI 10.1186/S41044-016-0002-4. Alonso J.M., 2017, CEX AI IA. Alvear O, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020460. Anderson Emily E, 2017, AJOB Empir Bioeth, V8, P178, DOI 10.1080/23294515.2017.1362488. Anderson M., 2011, MACHINE ETHICS. Anderson M, 2006, IEEE INTELL SYST, V21, P10, DOI 10.1109/MIS.2006.70. {[}Anonymous], 2020, PERSPECTIVES ISSUES. {[}Anonymous], 2020, QATARS NATL ARTIFICI. {[}Anonymous], 2020, GADDRESSING UNINTEND. {[}Anonymous], 2020, THE CNN. {[}Anonymous], 2020, EXPLAINABLE MODELS H. {[}Anonymous], 2020, SECURE SUSTAINABLE S. {[}Anonymous], 2020, OECD PRINCIPLES. {[}Anonymous], 2020, MICROSOFT PRINCIPLES. {[}Anonymous], 2020, RESPONSE VS NONRESPO. {[}Anonymous], 2020, 6 SECURITY RISKS ENT. {[}Anonymous], 2020, AI IS TRANSFORMING S. {[}Anonymous], 2020, WHO OWNS SMART CITYS. {[}Anonymous], 2020, MACHINE BIAS THERES. {[}Anonymous], 2020, APPLE CARD ALGORITHM. {[}Anonymous], 2020, WHY ITS SO HARD USER. {[}Anonymous], 2020, IS IT TIME NATL DATA. {[}Anonymous], 2020, 2 YEAR FIGHT STOP AM. {[}Anonymous], 2020, HIGH LEVEL EXPERT GR. {[}Anonymous], 2020, EXPLAINABILITY AI WH. {[}Anonymous], 2019, NAT ART INT RES DEV. {[}Anonymous], 2020, REAL TRAFFIC FLOW DA. {[}Anonymous], 2020, GOOGLE COMPUTERS TRA. {[}Anonymous], 2020, EXPLAINABLE ARTIFICI. {[}Anonymous], 2020, EVERYTHING YOU NEED. {[}Anonymous], 2020, ARTIF INTELL. {[}Anonymous], 2020, ETHICS DATA SHARING. {[}Anonymous], 2020, AMAZON SCRAPS SECRET. {[}Anonymous], 2020, G20 ADOPTED HUMAN CE. {[}Anonymous], 2020, EXPLAINABLE AI PREMO. {[}Anonymous], 2020, COMMON CHALLENGES IN. {[}Anonymous], 2020, STANFORD SCHOLARS SH. Antoniou Antreas, 2017, ARXIV171104340. ARUP, 2020, YOU KNOW RIGHT QUEST. Augusto J.C, 2019, HDB SMART CITIES. Awad E, 2018, NATURE, V563, P59, DOI 10.1038/s41586-018-0637-6. Bai S., 2019, PROC CVPR WORKSHOPS, P117. Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012. Barredo-Arrieta A, 2019, IEEE INT C INTELL TR, P2232, DOI 10.1109/ITSC.2019.8916985. Bauchner H, 2016, JAMA-J AM MED ASSOC, V315, P1237, DOI 10.1001/jama.2016.2420. Baum S, 2017, GLOBAL CATASTROPHIC, P17, DOI 10.2139/ssrn.3070741. Beardsley M, 2019, BRIT J EDUC TECHNOL, V50, P1019, DOI 10.1111/bjet.12781. Becker AS, 2019, EUR J RADIOL, V120, DOI 10.1016/j.ejrad.2019.108649. Beg OA, 2017, IEEE T IND INFORM, V13, P2693, DOI 10.1109/TII.2017.2656905. Beijing A, 2019, BEIJ AI PRINC. Bellamy R. K. E., 2018, ARXIV181001943. Bench-Capon TJM, 2020, ARTIF INTELL, V281, DOI 10.1016/j.artint.2020.103239. Bertino E, 2019, ACM J DATA INF QUAL, V11, DOI 10.1145/3312750. Bhandary A, 2020, PATTERN RECOGN LETT, V129, P271, DOI 10.1016/j.patrec.2019.11.013. Biggio Battista, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P387, DOI 10.1007/978-3-642-40994-3\_25. Biggio B., ARXIV PREPRINT ARXIV. Biggio B, 2018, PATTERN RECOGN, V84, P317, DOI 10.1016/j.patcog.2018.07.023. Boddington P., 2017, ARTIF INTELL. Boddington P, OXFORD HDB ETHICS. Borenstein J., 2021, ETHICS, V1, P61, DOI {[}10.1007/s43681-020-00002-7, DOI 10.1007/S43681-020-00002-7]. Bostrom N, 2014, CAMBRIDGE HANDBOOK OF ARTIFICIAL INTELLIGENCE, P316. Bote J.-J, 2019, DESIDOC J LIB INFORM, V39. Bozzelli Guido, 2019, Digital Applications in Archaeology and Cultural Heritage, V15, DOI 10.1016/j.daach.2019.e00124. Bramhall S., 2020, SMU DATA SCI REV, V3, P4. Braun T, 2018, SUSTAIN CITIES SOC, V39, P499, DOI 10.1016/j.scs.2018.02.039. Brundage M, 2014, J EXP THEOR ARTIF IN, V26, P355, DOI 10.1080/0952813X.2014.895108. Bundy A, 2017, AI SOC, V32, P285, DOI 10.1007/s00146-016-0685-0. Buolamwini Joy, 2018, P MACH LEARN RES C F, P1. Burr C, 2019, MIND MACH, V29, P461, DOI 10.1007/s11023-019-09497-4. Calo R., 2017, UCDL REV, V51, P399. Calvo P, 2020, ETHICS INF TECHNOL, V22, P141, DOI 10.1007/s10676-019-09523-0. Cao YL, 2019, PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), P2267, DOI 10.1145/3319535.3339815. Cardullo P, 2019, RIGHT TO THE SMART CITY, P1. Cardullo P, 2020, CITIZENS SMART CITY. Carlini N., 2019, ARXIV190206705. Carlini N, 2018, 2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), P1, DOI 10.1109/SPW.2018.00009. Champneys MD, 2021, STRUCT HEALTH MONIT, V20, P1476, DOI 10.1177/1475921720920233. Chander A., 2019, ARXIV PREPRINT ARXIV. Chatila R, 2019, INTEL SYST CONTR AUT, V95, P11, DOI 10.1007/978-3-030-12524-0\_2. Chen JH, 2020, AM J BIOETHICS, V20, P1, DOI 10.1080/15265161.2020.1822674. Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785. Chen YZ, 2019, E-ENERGY'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, P1, DOI 10.1145/3307772.3328314. Choo J, 2018, IEEE COMPUT GRAPH, V38, P84, DOI 10.1109/MCG.2018.042731661. Conati C., 2018, ARXIV PREPRINT ARXIV. Corbett E, 2017, HEALTHCATALYST. Corbett-Davies S., 2018, ARXIV180800023. Corona I, 2013, INFORM SCIENCES, V239, P201, DOI 10.1016/j.ins.2013.03.022. Correia-Silva JR, 2018, IEEE IJCNN. Crawford K., 2016, NEW YORK TIMES. Crawford K, 2016, NATURE, V538, P311, DOI 10.1038/538311a. Creus R., 2020, ARXIV PREPRINT ARXIV. Danaher, 2016, PHILOS TECHNOLOGY, V29, P1, DOI {[}10.1007/s13347-015-0211-1, DOI 10.1007/S13347-015-0211-1]. Danaher J, 2016, ETHICS INF TECHNOL, V18, P299, DOI 10.1007/s10676-016-9403-3. Das S, 2020, OXFORD HDB ETHICS, DOI {[}10.1093/oxfordhb/9780190067397.013.3, DOI 10.1093/OXFORDHB/9780190067397.013.3]. Davaslioglu K, 2019, IEEE INT SYMP DYNAM, P515. Davaslioglu K, 2018, IEEE ICC. David N, 2018, PUB ADMIN INF TECH, V24, P19, DOI 10.1007/978-3-319-58577-2\_2. Davis E, 2015, ARTIF INTELL, V220, P121, DOI 10.1016/j.artint.2014.12.003. Delobelle P., 2020, FINDINGS ASS COMPUTA, V1, P3255, DOI DOI 10.18653/V1/2020.FINDINGS-EMNLP.292. Demetrio Luca, 2019, 3 IT C CYB SEC ITASE. Dhaliwal J, 2018, ARXIV PREPRINT ARXIV. Doshi-Velez F., 2017, ACCOUNTABILITY AI LA. Drew C, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0119. Dubber M., 2020, OXFORD HDB ETHICS AI. Dunn C, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166434. Ebell Christoph, 2021, AI Ethics, V1, P131, DOI 10.1007/s43681-021-00052-5. Ekbia H, 2015, J ASSOC INF SCI TECH, V66, P1523, DOI 10.1002/asi.23294. Ericsson D., 2020, ARXIV PREPRINT ARXIV. Eykholt K, 2018, PROC CVPR IEEE, P1625, DOI 10.1109/CVPR.2018.00175. Farrar C.R., 1999, STRUCTURAL HLTH MONI. Fawaz Hassan Ismail, 2019, P 2019 INT JOINT C N, P1, DOI DOI 10.1109/IJCNN.2019.8851936. Feigenbaum E.A., 1981, HDB ARTIFICIAL INTEL. Fidel G., 2019, ARXIV PREPRINT ARXIV. Finlayson SG, 2019, SCIENCE, V363, P1287, DOI 10.1126/science.aaw4399. Fjeld J., 2020, BERKMAN KLEIN CTR RE, DOI DOI 10.2139/SSRN.3518482. Floridi L, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0360. Furbach Ulrich, 2019, HDB MASCHINENETHIK. Gao X, 2020, NEUROCOMPUTING, V396, P487, DOI 10.1016/j.neucom.2018.10.109. Gao YS, 2019, 35TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSA), P113, DOI 10.1145/3359789.3359790. Gebru T, 2019, ARXIV PREPRINT ARXIV. Geiger A, 2013, INT J ROBOT RES, V32, P1231, DOI 10.1177/0278364913491297. Gharaibeh A, 2017, IEEE COMMUN SURV TUT, V19, P2456, DOI 10.1109/COMST.2017.2736886. Ghosal S, 2018, P NATL ACAD SCI USA, V115, P4613, DOI 10.1073/pnas.1716999115. Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068. Gilpin LH, 2018, PR INT CONF DATA SC, P80, DOI 10.1109/DSAA.2018.00018. Go H, 2020, TOUR REV, V75, P625, DOI 10.1108/TR-02-2019-0062. Goldfarb A., 2019, EC ARTIFICIAL INTELL. Gong Y, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P617, DOI 10.1145/3292500.3330832. Goodman E.P, 2019, SMART CITY ETHICS CH. Google AI blog, 2020, FACETS OPEN SOURCE V. Green B., 2019, SMART ENOUGH CITY PU. Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009. Gunkel DJ, 2012, MACHINE QUESTION: CRITICAL PERSPECTIVES ON AI, ROBOTS, AND ETHICS, P1. Gunning David, 2017, DEFENSE ADV RES PROJ, V2, P2, DOI DOI 10.1126/SCIROBOTICS.AAY7120. Haeffelin M, 2005, ANN GEOPHYS-GERMANY, V23, P253, DOI 10.5194/angeo-23-253-2005. Hagendorff T, 2020, MIND MACH, V30, P99, DOI 10.1007/s11023-020-09517-8. Haibe-Kains B, 2020, NATURE, V586, pE14, DOI 10.1038/s41586-020-2766-y. Hall P., 2019, INTRO MACHINE LEARNI. Han J, 2019, COMPUT STAND INTER, V62, P84, DOI 10.1016/j.csi.2018.08.004. Han SS, 2020, JAMA DERMATOL, V156, P29, DOI 10.1001/jamadermatol.2019.3807. Hand DJ, 2018, BIG DATA, V6, P176, DOI 10.1089/big.2018.0083. Hartl A., 2019, ARXIV PREPRINT ARXIV. Haspiel J, 2018, ACMIEEE INT CONF HUM, P119, DOI 10.1145/3173386.3177057. Hassan MU, 2020, IEEE COMMUN SURV TUT, V22, P746, DOI 10.1109/COMST.2019.2944748. Hickok M, 2021, ETHICS, V1, P41, DOI {[}10.1007/s43681-020-00008-1, DOI 10.1007/S43681-020-00008-1]. Hiller JS, 2017, HASTINGS LAW J, V68, P309. Hitaj D., 2018, ABS180900615 CORR. Dau HA, 2019, IEEE-CAA J AUTOMATIC, V6, P1293, DOI 10.1109/JAS.2019.1911747. Holland S., 2020, DATA PROTECTION PRIV, P1. Houben S, 2013, IEEE IJCNN. Huang ZH, 2019, IEEE GLOB COMM CONF. Huet E, 2015, FORBES. Hummel P., 2020, PHILOS TECHNOL, P1, DOI {[}10.1007/S13347-020-00404-9, DOI 10.1007/S13347-020-00404-9]. Hussain F, 2020, IEEE COMMUN SURV TUT, V22, P1686, DOI 10.1109/COMST.2020.2986444. Ignatiev A, 2019, ADV NEUR IN, V32. Islam SN, 2019, IEEE T IND INFORM, V15, P6522, DOI 10.1109/TII.2019.2931436. Ismagilova E, 2022, INFORM SYST FRONT, V24, P393, DOI 10.1007/s10796-020-10044-1. Jan MA, 2019, J NETW COMPUT APPL, V137, P1, DOI 10.1016/j.jnca.2019.02.023. Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2. Juuti M, 2019, 2019 4TH IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY (EUROS\&P), P512, DOI 10.1109/EuroSP.2019.00044. Kakderi C., 2019, J SMART CITIES, V1, P4, DOI DOI 10.18063/JSC.2016.01.002. Kamwa I, 2012, IEEE T SMART GRID, V3, P152, DOI 10.1109/TSG.2011.2164948. Kania E.B, 2017, QUANTUM TECHNOLOGIES. Kesarwani M, 2018, 34TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2018), P371, DOI 10.1145/3274694.3274740. Khanapuri E, 2019, 2019 IEEE/ACM 5TH INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR SMART CYBER-PHYSICAL SYSTEMS (SESCPS 2019), P39, DOI 10.1109/SEsCPS.2019.00014. Kim H, 2020, 2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC). Kim J, 2018, LECT NOTES COMPUT SC, V11206, P577, DOI 10.1007/978-3-030-01216-8\_35. Kim J, 2017, IEEE I CONF COMP VIS, P2961, DOI 10.1109/ICCV.2017.320. Kitchin R, 2017, DATA AND THE CITY. Kitchin R, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0115. Kohane I.S, 2018, ARXIV180405296. Korinek A, 2019, INTEGRATING ETHICAL. Kotia J., 2019, INT C MAN MACH INT, P181. Kreuter F, 2020, SOC SCI COMPUT REV, V38, P533, DOI 10.1177/0894439318816389. Krishna K., 2020, THIEVES SESAME STREE. Kroll J.A, 2020, ACCOUNTABILITY COMPU. Kuutti S, 2021, IEEE T INTELL TRANSP, V22, P712, DOI 10.1109/TITS.2019.2962338. LaGrandeur LaGrandeur K. K., 2015, ARTIF INTELL, P97. Latif S, 2019, IEEE TECHNOL SOC MAG, V38, P82, DOI 10.1109/MTS.2019.2930273. Lee HY, 2008, INT EL DEVICES MEET, P297, DOI 10.1109/IEDM.2008.4796677. Lee S, 2020, EXPERT SYST APPL, V144, DOI 10.1016/j.eswa.2019.113074. Lev-Aretz Y, 2019, HASTINGS LAW J, V70, P1491. Li GL, 2020, IEEE T IND INFORM, V16, P3267, DOI 10.1109/TII.2019.2951766. Li GF, 2022, IEEE T AUTOM SCI ENG, V19, P2665, DOI 10.1109/TASE.2021.3088897. Li MH, 2020, IEEE INTERNET THINGS, V7, P6266, DOI 10.1109/JIOT.2019.2962914. Li W, 2014, PROC CVPR IEEE, P152, DOI 10.1109/CVPR.2014.27. Li X, 2011, IEEE COMMUN MAG, V49, P68, DOI 10.1109/MCOM.2011.6069711. Li Y., 2020, IEEE INTERNET THINGS. Lim HSM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205791. Lin P, 2012, INTELL ROBOT AUTON, P1. Lin P, 2017, ROBOT ETHICS 2 0 FOR. Liu S, 2020, ARXIV PREPRINT ARXIV. Liu T, 2018, PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL SYMPOSIUM ON HARDWARE ORIENTED SECURITY AND TRUST (HOST), P227, DOI 10.1109/HST.2018.8383920. Liu YT, 2020, INT SYM QUAL ELECT, P33, DOI 10.1109/ISQED48828.2020.9137011. Lowd D., 2005, P 11 ACM SIGKDD INT, P641, DOI DOI 10.1145/1081870.1081950. Lundberg S.M., 2017, PROC 31 INT C NEURAL, VNIPS'17, P4768. Lundberg SM, 2018, NAT BIOMED ENG, V2, P749, DOI 10.1038/s41551-018-0304-0. Lyons M, 1998, AUTOMATIC FACE AND GESTURE RECOGNITION - THIRD IEEE INTERNATIONAL CONFERENCE PROCEEDINGS, P200, DOI 10.1109/AFGR.1998.670949. Ma XJ, 2021, PATTERN RECOGN, V110, DOI 10.1016/j.patcog.2020.107332. Mallapuram S, 2017, 2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), P447. Manandhar K, 2014, IEEE T CONTROL NETW, V1, P370, DOI 10.1109/TCNS.2014.2357531. Marino DL, 2018, IEEE IND ELEC, P3237, DOI 10.1109/IECON.2018.8591457. Mark R., 2019, ORBIT J, V2, P1, DOI {[}10.29297/orbit.v2i2.110, DOI 10.29297/ORBIT.V2I2.110]. Martinez A., 1998, 24 CVC, V24. Martinez-Balleste A, 2013, IEEE COMMUN MAG, V51, P136, DOI 10.1109/MCOM.2013.6525606. Martinsson J., 2020, ARXIV PREPRINT ARXIV. Marulli F, 2019, PROCEEDINGS OF THE 2019 SUMMER SIMULATION CONFERENCE (SUMMERSIM `19). Massoli F.V., 2020, PATTERN RECOGN LETT. McKinney SM, 2020, NATURE, V586, pE17, DOI 10.1038/s41586-020-2767-x. McKinney SM, 2020, NATURE, V577, P89, DOI 10.1038/s41586-019-1799-6. Meingast Marci, 2006, Conf Proc IEEE Eng Med Biol Soc, V2006, P5453. Miao CL, 2018, PROCEEDINGS OF THE 2018 THE NINETEENTH INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC `18), P111, DOI 10.1145/3209582.3209594. Miao CL, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P13, DOI 10.1145/3178876.3186032. Milic P, 2018, PUB ADMIN INF TECH, V24, P55, DOI 10.1007/978-3-319-58577-2\_4. Mizukami Y., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P2001, DOI 10.1109/ICPR.2010.493. M├╝ller V.C., 2020, ETHICS ARTIFICIAL IN. Mohseni S, 2019, ARXIV PREPRINT ARXIV. Moor JH, 2006, IEEE INTELL SYST, V21, P18, DOI 10.1109/MIS.2006.80. Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123. Moradi P., 2020, OXFORD HDB ETHICS, P271, DOI 10.1093/oxfordhb/9780190067397. 013.17. Morley J, 2021, MIND MACH, V31, P239, DOI 10.1007/s11023-021-09563-w. Morley J, 2020, SOC SCI MED, V260, DOI 10.1016/j.socscimed.2020.113172. Mulgan T, 2016, SUPERINTELLIGENCE PA. Murdoch W.J., 2019, P NATL ACAD SCI USA, DOI DOI 10.1073/PNAS.1900654116. Nagasubramanian K, 2019, PLANT METHODS, V15, DOI 10.1186/s13007-019-0479-8. Nagenborg M., 2021, TECHNOLOGY CITY PHIL, V36. Newaz AKM, 2020, ARXIV PREPRINT ARXIV. Nguyen K-T, 2019, CVPR WORKSH, P363. Ntoutsi E, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1356. Obermeyer Z, 2019, FAT{*}'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P89, DOI 10.1145/3287560.3287593. Offenhuber D, 2020, ROUTLEDGE COMPANION, P210. ONeil, 2016, WEAPONS MATH DESTRUC. Orekondy T., 2019, INT C LEARN REPR. Orekondy T, 2019, PROC CVPR IEEE, P4949, DOI 10.1109/CVPR.2019.00509. Oshea T. J., 2016, P GNU RADIO C, V1. Panda P., 2018, EXPLAINABLE ADVERSAR. Papernot N, 2017, PROCEEDINGS OF THE 2017 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIA CCS'17), P506, DOI 10.1145/3052973.3053009. Papernot N, 2016, 1ST IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, P372, DOI 10.1109/EuroSP.2016.36. Parker LE, 2018, AI MAG, V39, P25, DOI 10.1609/aimag.v39i2.2803. Patil HK, 2014, IEEE INT CONGR BIG, P762, DOI 10.1109/BigData.Congress.2014.112. Paul R, 2020, I S BIOMED IMAGING, P1517, DOI 10.1109/ISBI45749.2020.9098740. Peng F., 2020, INT C FRONT CYB SEC, P133. Ploug T, 2020, BMC MED ETHICS, V21, DOI 10.1186/s12910-020-00519-w. Potapov A, 2014, J EXP THEOR ARTIF IN, V26, P405, DOI 10.1080/0952813X.2014.895112. Powers T.M., 2020, OXFORD HDB ETHICS. Puiutta E., 2020, ARXIV PREPRINT ARXIV. Putnam V., 2019, IUI WORKSH, V19. Qayyum A., 2020, ARXIV, DOI DOI 10.1109/RBME.2020.3013489. Qayyum A, 2020, FRONT BIG DATA, V3, DOI 10.3389/fdata.2020.587139. Qayyum A, 2020, IEEE COMMUN SURV TUT, V22, P998, DOI 10.1109/COMST.2020.2975048. Qolomany B., 2020, IEEE INTERNET THINGS. Qolomany B, 2019, IEEE ACCESS, V7, P90316, DOI 10.1109/ACCESS.2019.2926642. Qolomany B, 2017, INT WIREL COMMUN, P1285, DOI 10.1109/IWCMC.2017.7986470. Raghavan M, 2020, FAT{*} `20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P469, DOI 10.1145/3351095.3372828. Rahman MA, 2020, IEEE NETWORK, V34, P98, DOI 10.1109/MNET.011.2000353. Rahnama A, 2020, ARXIV PREPRINT ARXIV. Raji Inioluwa Deborah, 2021, FAccT `21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, P515, DOI 10.1145/3442188.3445914. Reis JCS, 2019, PROCEEDINGS OF THE 11TH ACM CONFERENCE ON WEB SCIENCE (WEBSCI'19), P17, DOI 10.1145/3292522.3326027. Ren K, 2020, ENGINEERING-PRC, V6, P346, DOI 10.1016/j.eng.2019.12.012. Ristani E, 2016, LECT NOTES COMPUT SC, V9914, P17, DOI 10.1007/978-3-319-48881-3\_2. Rizzo SG, 2019, IEEE INT C INTELL TR, P3567, DOI 10.1109/ITSC.2019.8917519. Roh Y, 2021, IEEE T KNOWL DATA EN, V33, P1328, DOI 10.1109/TKDE.2019.2946162. Romanou A, 2018, COMPUT LAW SECUR REV, V34, P99, DOI 10.1016/j.clsr.2017.05.021. Roscher R, 2020, IEEE ACCESS, V8, P42200, DOI 10.1109/ACCESS.2020.2976199. Russell S, 2015, NATURE, V521, P415, DOI 10.1038/521415a. Saboe D, 2021, SCI TOTAL ENVIRON, V764, DOI 10.1016/j.scitotenv.2020.142876. Sado F., 2020, ARXIV PREPRINT ARXIV. Said N, 2019, MULTIMED TOOLS APPL, V78, P31267, DOI 10.1007/s11042-019-07942-1. Samangouei P., 2018, INT C LEARN REPR. Samie F, 2020, IEEE INTERNET THINGS, V7, P8287, DOI 10.1109/JIOT.2020.2989053. Santia G.C., 2018, 12 INT AAAI C WEB SO, V(2018, P531. Sato M, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4323. Savulescu J., 2015, ARTIF INTELL, P79, DOI DOI 10.1007/978-3-319-09668-1\_6. Schiff Daniel, 2021, IEEE Transactions on Technology and Society, V2, P31, DOI 10.1109/TTS.2021.3052127. Seeliger A., 2019, PROFILESSEMEX ISWC, P30. Selvaraju RR, 2017, IEEE I CONF COMP VIS, P618, DOI 10.1109/ICCV.2017.74. Serban A, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3398394. Shahriari Kyarash, 2017, 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), P197, DOI 10.1109/IHTC.2017.8058187. Shanahan M, 2015, TECHNOLOGICAL SINGUL, DOI DOI 10.7551/MITPRESS/10058.001.0001. Shao SY, 2019, COMPUT IND, V106, P85, DOI 10.1016/j.compind.2019.01.001. Sharif M, 2016, CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1528, DOI 10.1145/2976749.2978392. Shi T, 2008, J AM STAT ASSOC, V103, P584, DOI 10.1198/016214507000001283. Shi Y, 2018, IEEE MILIT COMMUN C, P407, DOI 10.1109/MILCOM.2018.8599832. Shokri R, 2017, P IEEE S SECUR PRIV, P3, DOI 10.1109/SP.2017.41. Sholla Sahil, 2018, International Journal of Computing and Digital Systems, V7, P167, DOI 10.12785/ijcds/070306. Sholla S, 2021, J AMB INTEL HUM COMP, V12, P1487, DOI 10.1007/s12652-020-02217-2. Sholla S, 2017, CHINA COMMUN, V14, P160, DOI 10.1109/CC.2017.7942323. Silberg J., 2019, NOTES AI FRONTIER TA. Sitawarin Chawin, 2018, ARXIV180206430. Soares Eduardo, 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), P469, DOI 10.1109/ICMLA.2019.00087. Sokol K, 2020, FAT{*} `20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P56, DOI 10.1145/3351095.3372870. Stallkamp J, 2012, NEURAL NETWORKS, V32, P323, DOI 10.1016/j.neunet.2012.02.016. Steinhardt J., 2017, ADV NEURAL INFORM PR, P3520, DOI DOI 10.5555/3294996.3295110. Strumbelj E, 2014, KNOWL INF SYST, V41, P647, DOI 10.1007/s10115-013-0679-x. Su JW, 2019, IEEE T EVOLUT COMPUT, V23, P828, DOI 10.1109/TEVC.2019.2890858. Sun JP, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19102254. Swedan S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04940. Taghanaki S.A., 2018, LNCS, P87, DOI DOI 10.1007/978-3-030-02628-8\_10. Taylor Linnet, 2016, GROUP PRIVACY NEW CH, V126. Thippeswamy G, 2019, GUIDE ANTICIPATING F. Thomas DR, 2017, PROCEEDINGS OF THE 2017 INTERNET MEASUREMENT CONFERENCE (IMC'17), P445, DOI 10.1145/3131365.3131389. Tjoa E, 2021, IEEE T NEUR NET LEAR, V32, P4793, DOI 10.1109/TNNLS.2020.3027314. Torrance S, 2008, AI SOC, V22, P461, DOI 10.1007/s00146-007-0095-4. Tulli S, 2020, AAAI CONF ARTIF INTE, V34, P13738. Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069. van der Schyff K, 2020, COMPUT SECUR, V94, DOI 10.1016/j.cose.2020.101822. Varshney KR, 2017, BIG DATA-US, V5, P246, DOI 10.1089/big.2016.0051. Veres M, 2020, IEEE T INTELL TRANSP, V21, P3152, DOI 10.1109/TITS.2019.2929020. Wachter S, 2018, COMPUT LAW SECUR REV, V34, P436, DOI 10.1016/j.clsr.2018.02.002. Wallach W., 2008, MORAL MACHINES TEACH. Wang HJ, 2020, PROC CVPR IEEE, P339, DOI 10.1109/CVPR42600.2020.00042. Wang YB, 2017, PROC CVPR IEEE, P2097, DOI 10.1109/CVPR.2017.226. Willis K.S., 2020, ROUTLEDGE COMPANION. Winfield AF, 2019, P IEEE, V107, P509, DOI 10.1109/JPROC.2019.2900622. Wolanin A, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/ab68ac. Wu X, 2018, TRANSPORT RES C-EMER, V96, P321, DOI 10.1016/j.trc.2018.09.021. Xiao H., 2017, ARXIV170807747. Xie JF, 2019, IEEE COMMUN SURV TUT, V21, P2794, DOI 10.1109/COMST.2019.2899617. Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981. Yang S.C.H., 2017, NIPS 2017 WORKSH TEA, P127. Yenter A, 2017, 2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), P540. Yeung K., 2019, OXFORD HDB ETHICS. Yin LJ, 2006, PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION - PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE, P211. Yu HY, 2019, IEEE ACCESS, V7, P6288, DOI 10.1109/ACCESS.2018.2888940. Zang L, 2017, PERS UBIQUIT COMPUT, V21, P911, DOI 10.1007/s00779-017-1052-y. Zantedeschi V., 2017, P 10 ACM WORKSHOP AR, P39, DOI 10.1145/3128572.3140449. Zeng Y., 2018, ARXIV PREPRINT ARXIV. Zhang HC, 2019, ADV NEUR IN, V32. Zhang H, 2018, IEEE T CONTROL NETW, V5, P383, DOI 10.1109/TCNS.2016.2614099. Zhang K, 2017, IEEE COMMUN MAG, V55, P122, DOI 10.1109/MCOM.2017.1600267CM. Zhang WE, 2020, ACM T INTEL SYST TEC, V11, DOI 10.1145/3374217. Zhang Y., 2020, IEEE T SMART GRID. Zheng L, 2015, IEEE I CONF COMP VIS, P1116, DOI 10.1109/ICCV.2015.133. Zhou XY, 2019, 2019 RESILIENCE WEEK (RWS), P206, DOI 10.1109/RWS47064.2019.8971816. Zhou Y, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1259. Zhu J., 2018, 2018 IEEE C COMPUTAT, P1, DOI DOI 10.1109/CIG.2018.8490433.}, Number-of-Cited-References = {345}, Times-Cited = {18}, Usage-Count-Last-180-days = {35}, Usage-Count-Since-2013 = {60}, Journal-ISO = {Comput. Sci. Rev.}, Doc-Delivery-Number = {0M6TM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000782283800001}, DA = {2023-04-22}, } @article{ WOS:000383773600049, Author = {Kubota, Ken J. and Chen, Jason A. and Little, Max A.}, Title = {Machine learning for large-scale wearable sensor data in Parkinson's disease: Concepts, promises, pitfalls, and futures}, Journal = {MOVEMENT DISORDERS}, Year = {2016}, Volume = {31}, Number = {9}, Pages = {1314-1326}, Month = {SEP}, Abstract = {For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, wearable, sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that learn from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. (c) 2016 International Parkinson and Movement Disorder Society}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Kubota, KJ (Corresponding Author), tranSMART Fdn, Dept Data Sci, 401 Edgewater Pl,Suite 600, Wakefield, MA 01880 USA. Kubota, Ken J., tranSMART Fdn, Dept Data Sci, 401 Edgewater Pl,Suite 600, Wakefield, MA 01880 USA. Chen, Jason A., Verge Genom, San Francisco, CA USA. Chen, Jason A., Univ Calif Los Angeles, Interdept Program Bioinformat, Los Angeles, CA USA. Little, Max A., Aston Univ, Birmingham, W Midlands, England. Little, Max A., MIT, Media Lab, Cambridge, MA 02139 USA.}, DOI = {10.1002/mds.26693}, ISSN = {0885-3185}, EISSN = {1531-8257}, Keywords = {machine learning; artificial intelligence; data science; wearables; digital sensors}, Keywords-Plus = {LEVODOPA-INDUCED DYSKINESIAS; SYMPTOMS; MOVEMENT; UPDRS}, Research-Areas = {Neurosciences \& Neurology}, Web-of-Science-Categories = {Clinical Neurology}, Author-Email = {Ken.Kubota@transmartfoundation.org}, Affiliations = {University of California System; University of California Los Angeles; Aston University; Massachusetts Institute of Technology (MIT)}, Funding-Acknowledgement = {Parkinson\'s UK {[}J-0901] Funding Source: Medline; Parkinson\'s UK {[}J-0901, J-1403] Funding Source: researchfish}, Cited-References = {Abiola S, 2015, MOVEMENT DISORD, V30, pS568. Albert MV., 2012, FRONT NEUROL, V3, P158, DOI {[}10.3389/fneur.2012.00158, DOI 10.3389/FNEUR.2012.00158]. Nguyen A, 2015, PROC CVPR IEEE, P427, DOI 10.1109/CVPR.2015.7298640. {[}Anonymous], 2001, RES METHODS KNOWLEDG. {[}Anonymous], 1995, DIGIT SIGNAL PROCESS. {[}Anonymous], 2009, ELEMENTS STAT LEARNI. Arlot S, 2010, STAT SURV, V4, P40, DOI 10.1214/09-SS054. Arora S, 2015, PARKINSONISM RELAT D, V21, P650, DOI 10.1016/j.parkreldis.2015.02.026. Belkin M, 2006, J MACH LEARN RES, V7, P2399. Bishop Christopher M., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119. Brakedal B, 2014, PARKINSONISM RELAT D, V20, P617, DOI 10.1016/j.parkreldis.2014.03.008. Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726. Cancela J, 2010, IEEE ENG MED BIO, P1008, DOI 10.1109/IEMBS.2010.5627775. Cook DJ, 2015, IEEE J BIOMED HEALTH, V19, P1882, DOI 10.1109/JBHI.2015.2461659. Cortes C, 2008, LECT NOTES ARTIF INT, V5254, P38, DOI 10.1007/978-3-540-87987-9\_8. eMarketer, 2014, SMARTPHONE USER PENE. Ghahramani Z, 2015, NATURE, V521, P452, DOI 10.1038/nature14541. Goetz CG, 2007, MOVEMENT DISORD, V22, P41, DOI 10.1002/mds.21198. Goodfellow I., 2016, DEEP LEARNING UNPUB. Hand DJ, 2006, STAT SCI, V21, P1, DOI 10.1214/088342306000000060. Hoff JI, 2001, MOVEMENT DISORD, V16, P58, DOI 10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9. Jane YN, 2016, J BIOMED INFORM, V60, P169, DOI 10.1016/j.jbi.2016.01.014. Kaufman S., 2011, ACM T KNOWL DISCOV D, P556, DOI DOI 10.1145/2382577.2382579. Keijsers NLW, 2003, MOVEMENT DISORD, V18, P70, DOI 10.1002/mds.10310. Lawton M, 2015, J PARKINSON DIS, V5, P269, DOI 10.3233/JPD-140523. Little MA, 2009, IEEE T BIO-MED ENG, V56, P1015, DOI 10.1109/TBME.2008.2005954. Mazilu S., 2012, 2012 6th International Conference on Pervasive Computing Technologies for Healthcare, P123, DOI 10.4108/icst.pervasivehealth.2012.248680. Memedi M, 2011, COMPUT METH PROG BIO, V104, P219, DOI 10.1016/j.cmpb.2011.07.017. Neto EC, 2016, BIOCOMPUT-PAC SYM, P273. Patel S, 2009, IEEE T INF TECHNOL B, V13, P864, DOI 10.1109/TITB.2009.2033471. Rigas G, 2012, IEEE T INF TECHNOL B, V16, P478, DOI 10.1109/TITB.2011.2182616. Roy SH, 2011, IEEE ENG MED BIO, P4832, DOI 10.1109/IEMBS.2011.6091197. Sculley D., 2015, ADV NEURAL INFORM PR, P2503, DOI DOI 10.5555/2969442.2969519. Stamatakis J, 2013, COMPUT INTEL NEUROSC, V2013, P13. Tripoliti EE, 2013, COMPUT METH PROG BIO, V110, P12, DOI 10.1016/j.cmpb.2012.10.016. Tsipouras MG, 2010, IEEE ENG MED BIO, P2411, DOI 10.1109/IEMBS.2010.5626130. Van Der Maaten L., 2009, J MACH LEARN RES, V10, P13, DOI DOI 10.1080/13506280444000102. Vassar S. D., 2012, PARKINSONS DIS, V2012, P10. Wahid F, 2015, IEEE J BIOMED HEALTH, V19, P1794, DOI 10.1109/JBHI.2015.2450232. White N, 2012, J APPL STAT, V39, P2363, DOI 10.1080/02664763.2012.710897. Zhan A, 2016160100960 ARXIV. Zwartjes DGM, 2010, IEEE T BIO-MED ENG, V57, P2778, DOI 10.1109/TBME.2010.2049573.}, Number-of-Cited-References = {42}, Times-Cited = {108}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {51}, Journal-ISO = {Mov. Disord.}, Doc-Delivery-Number = {DW6PO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000383773600049}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000954714300013, Author = {Hidalgo, Edgar M. and Wright, Leah and Isaksson, Mats and Lambert, Gavin and Marwick, Thomas H.}, Title = {Current Applications of Robot-Assisted Ultrasound Examination}, Journal = {JACC-CARDIOVASCULAR IMAGING}, Year = {2023}, Volume = {16}, Number = {2}, Pages = {239-247}, Month = {FEB}, Abstract = {Despite advances in miniaturization and automation, the need for expert acquisition of a full echocardiogram, including Doppler, has restricted access in remote areas. Recent developments in robotics, teleoperation, and upgraded telecommunications infrastructure may provide a solution to this deficiency. Robot-assisted teleoperated ultrasound examination can aid medical diagnosis in remote locations and may improve health inequalities between rural and urban settings. This review aimed to analyze the status of teleoperated robotic systems for ultrasound examinations, evaluate clinical and preclinical applications, identify limitations, and outline future directions for clinical use. Overall, robot-assisted teleoperated ultrasound is feasible and safe in the reported clinical and preclinical studies, with the robots able to follow the hand movements performed by sonographers and researchers from a distance or in local networks. Moreover, multiple types of ultrasound examinations have been performed in remote areas, with a high success rate nearly comparable to that of conventional sonography. The studies showed that although a low-bandwidth link can be used to control a robot, the bandwidth requirements for real-time transmission of video and ultrasound images are significantly higher. Furthermore, if haptic feedback is implemented, the bandwidth requirements are increased. Haptically enabled systems that improve robotic control are necessary for accelerating the introduction to clinical use. Haptic feedback and enhanced front-end interface control for remote users are vital aspects required for clinical application. The incorporation of artificial intelligence through either aiding in window acquisition (knowledge of anatomical landmarks to adjust scanning planes) or through measurement and disease identification is yet to be researched. However, it has the potential to lead to dramatic advances. A new generation of robots is in development, and several projects in the preclinical stage reveal a promising future to overcome the shortage of health professionals in remote areas. (J Am Coll Cardiol Img 2023;16:239-247) (c) 2023 by the American College of Cardiology Foundation.}, Publisher = {ELSEVIER SCIENCE INC}, Address = {STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA}, Type = {Review}, Language = {English}, Affiliation = {Marwick, TH (Corresponding Author), Baker Heart \& Diabet Inst, 75 Commercial Rd, Melbourne, Vic 3004, Australia. Hidalgo, Edgar M.; Isaksson, Mats; Lambert, Gavin, Swinburne Univ Technol, Dept Mech Engn \& Prod Design Engn, Melbourne, Vic, Australia. Wright, Leah; Marwick, Thomas H., Baker Heart \& Diabet Inst, 75 Commercial Rd, Melbourne, Vic 3004, Australia. Lambert, Gavin, Swinburne Univ Technol, Iverson Hlth Innovat Res Inst, Melbourne, Vic, Australia.}, DOI = {10.1016/j.jcmg.2022.07.018}, ISSN = {1936-878X}, EISSN = {1876-7591}, Keywords = {robotics; tele; echography; telemedicine; telerobotics; ultrasound; imaging}, Keywords-Plus = {TELE-ECHOGRAPHY; CLINICAL-PRACTICE; FEASIBILITY; ARM; SYSTEM; ECHOCARDIOGRAPHY; NETWORK; TIME}, Research-Areas = {Cardiovascular System \& Cardiology; Radiology, Nuclear Medicine \& Medical Imaging}, Web-of-Science-Categories = {Cardiac \& Cardiovascular Systems; Radiology, Nuclear Medicine \& Medical Imaging}, Author-Email = {tom.marwick@baker.edu.au}, Affiliations = {Swinburne University of Technology; Swinburne University of Technology}, ResearcherID-Numbers = {Marwick, Thomas/C-7261-2013 }, ORCID-Numbers = {Isaksson, Mats/0000-0003-3047-6811 Lambert, Gavin/0000-0003-0315-645X Wright, Leah/0000-0003-3269-6287 Marwick, Thomas/0000-0001-9065-0899 HIDALGO FLOREZ, EDGAR MAURICIO/0000-0003-1832-4305}, Cited-References = {Arbeille P, 2005, ULTRASOUND OBST GYN, V26, P221, DOI 10.1002/uog.1987. Arbeille P, 2008, 2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR 2008), THETA 16TH EDITION, VOL I, PROCEEDINGS, P45, DOI 10.1109/AQTR.2008.4588703. Arbeille P, 2016, TELEMED E-HEALTH, V22, P599, DOI 10.1089/tmj.2015.0186. Arbeille P, 2014, ULTRASOUND MED BIOL, V40, P2521, DOI 10.1016/j.ultrasmedbio.2014.05.015. Barron AJ, 2018, JRSM CARDIOVASC DIS, V7, DOI 10.1177/2048004018779736. Boman K, 2014, JACC-CARDIOVASC IMAG, V7, P799, DOI 10.1016/j.jcmg.2014.05.006. Boman K, 2009, TELEMED J E-HEALTH, V15, P142, DOI 10.1089/tmj.2008.0079. Brattain LJ, 2021, BIOSENSORS-BASEL, V11, DOI 10.3390/bios11120522. Briot S, 2015, DYNAMICS PARALLEL RO. Bucolo M, 2020, ENERGIES, V13, DOI 10.3390/en13133376. Chen AI, 2020, NAT MACH INTELL, V2, P104, DOI 10.1038/s42256-020-0148-7. Conti F, 2014, EXPT ROBOTICS 12 INT, P97, DOI DOI 10.1007/978-3-642-28572-1\_7. Delgorge C, 2005, IEEE T INF TECHNOL B, V9, P50, DOI 10.1109/TITB.2004.840062. Dey D, 2019, J AM COLL CARDIOL, V73, P1317, DOI 10.1016/j.jacc.2018.12.054. Geng C, 2020, PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), P389, DOI 10.1109/ITNEC48623.2020.9084796. Georgescu M, 2016, TELEMED E-HEALTH, V22, P276, DOI 10.1089/tmj.2015.0100. Giuliani M, 2020, HEALTH TECHNOL-GER, V10, P649, DOI 10.1007/s12553-019-00399-0. Guan XL, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), P469. Huang QH, 2019, BIOMED SIGNAL PROCES, V54, DOI 10.1016/j.bspc.2019.101606. Ito K, 2013, MED ENG PHYS, V35, P165, DOI 10.1016/j.medengphy.2012.04.011. Joonho Seo, 2017, 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), P592. Kim T, 2022, NPJ 2D MATER APPL, V6, DOI 10.1038/s41699-021-00280-7. Koizumi N, 2009, IEEE T ROBOT, V25, P522, DOI 10.1109/TRO.2009.2019785. Krupa A, 2016, IEEE SYST J, V10, P974, DOI 10.1109/JSYST.2014.2314773. Lynch Kevin M., 2017, MODERN ROBOTICS. Martinelli T, 2007, J ULTRAS MED, V26, P1611, DOI 10.7863/jum.2007.26.11.1611. Masuda K, 2011, 2011 HLTH BIOENGINEE, P1. Matusova M, 2019, MATEC WEB CONF, V299, DOI 10.1051/matecconf/201929902008. Methil NS, 2006, IEEE INT CONF ROBOT, P3911, DOI 10.1109/ROBOT.2006.1642301. Najafi F, 2011, J MECH ROBOT, V3, DOI 10.1115/1.4003446. Narang A, 2021, JAMA CARDIOL, V6, P624, DOI 10.1001/jamacardio.2021.0185. Nedadur R, 2022, HEART, V108, P1592, DOI 10.1136/heartjnl-2021-319725. Ozkan H, 2020, IEEE T INSTRUM MEAS, V69, P173, DOI 10.1109/TIM.2019.2895484. Pandilov Z, 2014, ACTA TEHNICA CORVINI, VVII, P143, DOI DOI 10.3311/PP.CH.2014-5.01. reportlinker, MARK MARK REP NOV 20. Sajja KC, 2020, J NEUROINTERV SURG, V12, P345, DOI 10.1136/neurintsurg-2019-015763. Santos L, 2019, IEEE INT C INT ROBOT, P1339, DOI 10.1109/IROS40897.2019.8968481. Santos L, 2018, IEEE T AUTOM SCI ENG, V15, P1337, DOI 10.1109/TASE.2018.2790900. Sengupta PP, 2014, JACC-CARDIOVASC IMAG, V7, P804, DOI 10.1016/j.jcmg.2014.03.014. Takeuchi R, 2008, J MED SYST, V32, P235, DOI 10.1007/s10916-008-9128-x. Vieyres P, 2003, IND ROBOT, V30, P77, DOI 10.1108/01439910310457742. Wang SY, 2016, IEEE ROBOT AUTOM MAG, V23, P118, DOI 10.1109/MRA.2016.2580478. WHO Study Group on Training in Diagnostic Ultrasound, 1998, TRAIN DIAGN ULTR ESS. Wu SZ, 2020, IEEE T ULTRASON FERR, V67, P2241, DOI 10.1109/TUFFC.2020.3020721. Ye RZ, 2021, CHEST, V159, P270, DOI 10.1016/j.chest.2020.06.068. Zhang J, 2018, CIRCULATION, V138, P1623, DOI 10.1161/CIRCULATIONAHA.118.034338.}, Number-of-Cited-References = {46}, Times-Cited = {0}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {3}, Journal-ISO = {JACC-Cardiovasc. Imag.}, Doc-Delivery-Number = {A4FY3}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000954714300013}, DA = {2023-04-22}, } @article{ WOS:000434868800219, Author = {Bai, Lu and Wang, Jianzhou and Ma, Xuejiao and Lu, Haiyan}, Title = {Air Pollution Forecasts: An Overview}, Journal = {INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH}, Year = {2018}, Volume = {15}, Number = {4}, Month = {APR}, Abstract = {Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Wang, JZ (Corresponding Author), Dongbei Univ Finance \& Econ, Sch Stat, Dalian 116025, Peoples R China. Bai, Lu; Wang, Jianzhou; Ma, Xuejiao, Dongbei Univ Finance \& Econ, Sch Stat, Dalian 116025, Peoples R China. Lu, Haiyan, Univ Technol Sydney, Fac Engn \& Informat Technol, Sydney, NSW 2007, Australia.}, DOI = {10.3390/ijerph15040780}, Article-Number = {780}, ISSN = {1660-4601}, Keywords = {air pollution forecast; forecasting models; statistical methods; artificial intelligence methods; numerical forecast methods; hybrid models}, Keywords-Plus = {FUZZY TIME-SERIES; EMISSION INVENTORIES; NEURAL-NETWORK; MODEL; PM10; PREDICTION; LEVEL; URBAN; DECOMPOSITION; PROJECTION}, Research-Areas = {Environmental Sciences \& Ecology; Public, Environmental \& Occupational Health}, Web-of-Science-Categories = {Environmental Sciences; Public, Environmental \& Occupational Health}, Author-Email = {baildctg@hotmail.com wjz@lzu.edu.cn xuejiaomadufe@163.com haiyan.lu@uts.edu.au}, Affiliations = {Dongbei University of Finance \& Economics; University of Technology Sydney}, ResearcherID-Numbers = {Lu, Haiyan Helen/T-8426-2019 Wang, Jianzhou/ABE-8452-2020 }, ORCID-Numbers = {Wang, Jianzhou/0000-0001-9078-7617 Bai, Lu/0000-0001-9010-381X Lu, Hai Yan/0000-0001-5655-0237 Ma, Xuejiao/0000-0002-6984-2455}, Funding-Acknowledgement = {National Social Science Foundation of China {[}17ZDA093]}, Funding-Text = {This work was supported by Major Program of National Social Science Foundation of China (Grant No. 17ZDA093).}, Cited-References = {Abd Rahman NH, 2015, QUAL QUANT, V49, P2633, DOI 10.1007/s11135-014-0132-6. Abdul-Wahab S, 2011, CLEAN TECHNOL ENVIR, V13, P177, DOI 10.1007/s10098-010-0283-7. ADAMS RM, 1982, J ENVIRON ECON MANAG, V9, P42, DOI 10.1016/0095-0696(82)90005-5. {[}Anonymous], 2017, INT J ENV RES PUBLIC. Anwar F., 2016, ATMOS CLIM SCI, V6, P129, DOI {[}10.4236/acs.2016.61011, DOI 10.4236/ACS.2016.61011]. Bai Y, 2016, ATMOS POLLUT RES, V7, P557, DOI 10.1016/j.apr.2016.01.004. Beelen R, 2014, LANCET, V383, P785, DOI 10.1016/S0140-6736(13)62158-3. Bhoi S., 2006, P 8 C ATM CHEM ATL G. Cartelle D, 2016, CHEM ENGINEER TRANS, V54, P229, DOI 10.3303/CET1654039. Catalano M, 2016, ENVIRON SCI POLICY, V60, P69, DOI 10.1016/j.envsci.2016.03.008. Celikler D, 2011, PROCD SOC BEHV, V15, P2463, DOI 10.1016/j.sbspro.2011.04.129. Celikler D, 2011, PROCD SOC BEHV, V15, P1438, DOI 10.1016/j.sbspro.2011.03.308. Chahine T, 2007, ENVIRON HEALTH PERSP, V115, P1617, DOI 10.1289/ehp.10318. Chen DS, 2015, AEROSOL AIR QUAL RES, V15, P1325, DOI 10.4209/aaqr.2014.10.0253. Chen L, 2006, INT J WIREL MOB COMP, V6, P608. Chen Q, 2010, APPL SUPPORT VECTOR. {[}程兴宏 CHENG Xing-hong], 2009, {[}环境科学研究, Research of Environmental Sciences], V22, P1411. Chuang MT, 2011, ATMOS ENVIRON, V45, P6241, DOI 10.1016/j.atmosenv.2011.06.071. Colominas MA, 2014, BIOMED SIGNAL PROCES, V14, P19, DOI 10.1016/j.bspc.2014.06.009. CORDERO EC, 2001, MELBOURNE STUDIES ED, V41, P85. Cortina-Januchs MG, 2015, ATMOS POLLUT RES, V6, P626, DOI 10.5094/APR.2015.071. Das SP, 2018, INT J MACH LEARN CYB, V9, P97, DOI 10.1007/s13042-015-0359-0. DENG JL, 1982, SYST CONTROL LETT, V1, P288, DOI 10.1016/S0167-6911(82)80025-X. Deqi X., 1993, ACTA SCI CIRCUMSTANT, V4, P482. Desonie D., 2007, ATMOSPHERE AIR POLLU. Dincer NG, 2018, ECOL INFORM, V43, P157, DOI 10.1016/j.ecoinf.2017.12.001. Drucker H, 1997, ADV NEUR IN, V9, P155. Elangasinghe MA, 2014, ATMOS POLLUT RES, V5, P696, DOI 10.5094/APR.2014.079. Falke S.R., 2009, MICROARRAYS CRC MATH, V12. Fan C., 2016, ECOL ECON, V32, P170. Fan Chunzen, 2015, ECOLOGICAL EC, V31, P128. Feng X, 2015, ATMOS ENVIRON, V107, P118, DOI 10.1016/j.atmosenv.2015.02.030. Feng Y, 2011, ATMOS ENVIRON, V45, P1979, DOI 10.1016/j.atmosenv.2011.01.022. Ferreira J, 2013, ATMOS ENVIRON, V75, P43, DOI 10.1016/j.atmosenv.2013.03.052. Fu ML, 2015, NEURAL COMPUT APPL, V26, P1789, DOI 10.1007/s00521-015-1853-8. Glahn H. R., 1972, Journal of Applied Meteorology, V11, P1203, DOI 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2. Goodrick SL, 2013, INT J WILDLAND FIRE, V22, P83, DOI 10.1071/WF11116. Grell GA, 2005, ATMOS ENVIRON, V39, P6957, DOI 10.1016/j.atmosenv.2005.04.027. Grivas G, 2006, ATMOS ENVIRON, V40, P1216, DOI 10.1016/j.atmosenv.2005.10.036. Hong WC, 2011, APPL MATH MODEL, V35, P1282, DOI 10.1016/j.apm.2010.09.005. HUBER PJ, 1985, ANN STAT, V13, P435, DOI 10.1214/aos/1176349519. Huebnerova Z, 2014, ATMOS POLLUT RES, V5, P471, DOI 10.5094/APR.2014.055. Hunt A., 2016, OECD ENV WORKING PAP, P01. Inman RH, 2013, PROG ENERG COMBUST, V39, P535, DOI 10.1016/j.pecs.2013.06.002. JANG JSR, 1993, IEEE T SYST MAN CYB, V23, P665, DOI 10.1109/21.256541. Kaboodvandpour S, 2015, NAT HAZARDS, V78, P879, DOI 10.1007/s11069-015-1748-0. Kaya I, 2009, STOCH ENV RES RISK A, V23, P529, DOI 10.1007/s00477-008-0238-2. Kemp AC, 2011, P NATL ACAD SCI USA, V108, P11017, DOI 10.1073/pnas.1015619108. Kin Seng Lei, 2012, Advances in Neural Networks - ISNN 2012. Proceedings 9th International Symposium on Neural Networks, P509, DOI 10.1007/978-3-642-31346-2\_57. Koch A. S., 2013, P IEEE GREN C, P1. Kosko B, 1992, NEURAL NETWORKS FUZZ. Kukkonen J, 2012, ATMOS CHEM PHYS, V12, P1, DOI 10.5194/acp-12-1-2012. Kumar A, 2011, ATMOS POLLUT RES, V2, P436, DOI 10.5094/APR.2011.050. Kumar A, 2011, SCI TOTAL ENVIRON, V409, P5517, DOI 10.1016/j.scitotenv.2011.08.069. Kurt A, 2010, EXPERT SYST APPL, V37, P7986, DOI 10.1016/j.eswa.2010.05.093. Lafuente R, 2016, FERTIL STERIL, V106, P880, DOI 10.1016/j.fertnstert.2016.08.022. Larsson J, 2008, ENVIRON RESOUR ECON, V41, P563, DOI 10.1007/s10640-008-9212-1. Leduc S., 2002, MODELS 3 COMMUNITY M, P307. Lubinski W, 2005, ANN AGR ENV MED, V12, P1. Luo X, 2012, PROCEDIA ENVIRON SCI, V12, P159, DOI 10.1016/j.proenv.2012.01.261. Ma D, 2014, J HEBEI I ARCH ENG, V32, P53. Manar T.E., 2017, CLIMAT EAU SOC. Mendenhall W, 2011, INT J GYNECOL OBS S1, V78, P1. Mishra D, 2015, ATMOS POLLUT RES, V6, P99, DOI 10.5094/APR.2015.012. Monteiro A, 2005, INT J ENVIRON POLLUT, V25, P4, DOI 10.1504/IJEP.2005.007650. Naddafi K, 2012, IRAN J ENVIRON HEALT, V9, DOI 10.1186/1735-2746-9-28. Nadiri AA, 2018, COMPUT CONCRETE, V21, P103, DOI 10.12989/cac.2018.21.1.103. Nie B, 2008, ENVIRON SCI TECHNOL, V27, P125. Pan L., 2011, PROCEDIA ENG, V12, P74, DOI DOI 10.1016/J.PROENG.2011.05.013. Placet M, 2000, ATMOS ENVIRON, V34, P2183, DOI 10.1016/S1352-2310(99)00464-1. Pouliot G., 2005, 14 INT EM INV C TRAN, P1. Qiao C., 2010, COMPUTER TECHNOLOGY, V20, P250. Qin SS, 2015, ATMOS ENVIRON, V120, P339, DOI 10.1016/j.atmosenv.2015.09.006. Qin SS, 2014, ATMOS ENVIRON, V98, P665, DOI 10.1016/j.atmosenv.2014.09.046. Riddle A, 2004, ATMOS ENVIRON, V38, P1029, DOI 10.1016/j.atmosenv.2003.10.052. Scott GM, 2000, J AIR WASTE MANAGE, V50, P1831, DOI 10.1080/10473289.2000.10464216. Seika M, 1996, SCI TOTAL ENVIRON, V189, P221, DOI 10.1016/0048-9697(96)05213-8. Sharma N., 2018, INTRO AIR POLLUTION. Shi L, 2008, INT J ENVIRON POLLUT, V35, P42, DOI 10.1504/IJEP.2008.021130. Silibello C, 2015, ATMOS POLLUT RES, V6, P928, DOI 10.1016/j.apr.2015.04.002. Siwek K., 2012, IMPROVING ACCURACY P. Solomon S, 1999, REV GEOPHYS, V37, P275, DOI 10.1029/1999RG900008. SONG Q, 1993, FUZZY SET SYST, V54, P269, DOI 10.1016/0165-0114(93)90372-O. Song YL, 2015, ATMOS ENVIRON, V118, P58, DOI 10.1016/j.atmosenv.2015.06.032. Stern AC., 1977, AIR POLLUTION EFFECT. Sykes A.O, 1993, AM STAT, V61, P101. Taheri Shahraiyni H, 2016, ATMOSPHERE-BASEL, V7, DOI 10.3390/atmos7020015. Tang Y, 1979, ENV POLLUT CONTROL, V3, P10. Tao J. C., 2003, MATH PRACTICE THEORY, V33, P7. Tartakovsky D, 2013, ENVIRON POLLUT, V179, P138, DOI 10.1016/j.envpol.2013.04.023. Thi N., 2014, P NAT GIS C HA NOI V. TITUS JG, 1990, COAST MANAGE, V18, P65, DOI 10.1080/08920759009362101. Tong Y., 2001, P 6 NAT AC C ENV MON. TSAI CF, 2013, P 2013 IEEE 10 INT C, P370, DOI DOI 10.1109/ICEBE.2013.57. Vedrenne M, 2016, ATMOS ENVIRON, V145, P29, DOI 10.1016/j.atmosenv.2016.09.020. Wang JZ, 2017, EXPERT SYST APPL, V84, P102, DOI 10.1016/j.eswa.2017.04.059. Wang JZ, 2017, ENERGY, V125, P591, DOI 10.1016/j.energy.2017.02.150. Wang JZ, 2016, RENEW SUST ENERG REV, V53, P1149, DOI 10.1016/j.rser.2015.09.067. Wang P, 2015, SCI TOTAL ENVIRON, V505, P1202, DOI 10.1016/j.scitotenv.2014.10.078. Wang Q., 2012, ZHONGGUO HUANJING KE, V5, P32. Wei L., 2016, ENVIRON INT, V572, P34. Werner M., 2014, P HARMO 2014 16 INT. WOLD S, 1987, CHEMOMETR INTELL LAB, V2, P37, DOI 10.1016/0169-7439(87)80084-9. Wongsathan R, 2016, PROCEDIA COMPUT SCI, P273, DOI 10.1016/j.procs.2016.05.057. Xie XY, 2017, J CLEAN PROD, V142, P936, DOI 10.1016/j.jclepro.2016.09.117. Xu YZ, 2017, ATMOS ENVIRON, V148, P239, DOI 10.1016/j.atmosenv.2016.10.046. Yang HF, 2017, ENERGIES, V10, DOI 10.3390/en10091422. ZHANG QG, 1992, IEEE T NEURAL NETWOR, V3, P889, DOI 10.1109/72.165591. Zhang Y, 2012, ATMOS ENVIRON, V60, P632, DOI 10.1016/j.atmosenv.2012.06.031. Zhao H., 2007, P 6 ANN CMAS CHAPEL. Zheng B., 2000, J NANCHANG U ENG TEC, V22, P78. Zhou QP, 2014, SCI TOTAL ENVIRON, V496, P264, DOI 10.1016/j.scitotenv.2014.07.051. 洪钟祥, 1999, {[}气候与环境研究, Climatic and Environmental Research], V4, P225.}, Number-of-Cited-References = {113}, Times-Cited = {123}, Usage-Count-Last-180-days = {16}, Usage-Count-Since-2013 = {123}, Journal-ISO = {Int. J. Environ. Res. Public Health}, Doc-Delivery-Number = {GI9TK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000434868800219}, OA = {Green Published, Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000858012500001, Author = {Blaziak, Mikolaj and Urban, Szymon and Wietrzyk, Weronika and Jura, Maksym and Iwanek, Gracjan and Stanczykiewicz, Bartlomiej and Kuliczkowski, Wiktor and Zymlinski, Robert and Pondel, Maciej and Berka, Petr and Danel, Dariusz and Biegus, Jan and Siennicka, Agnieszka}, Title = {An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review}, Journal = {BIOMEDICINES}, Year = {2022}, Volume = {10}, Number = {9}, Month = {SEP}, Abstract = {Heart failure (HF) is one of the leading causes of mortality and hospitalization worldwide. The accurate prediction of mortality and readmission risk provides crucial information for guiding decision making. Unfortunately, traditional predictive models reached modest accuracy in HF populations. We therefore aimed to present predictive models based on machine learning (ML) techniques in HF patients that were externally validated. We searched four databases and the reference lists of the included papers to identify studies in which HF patient data were used to create a predictive model. Literature screening was conducted in Academic Search Ultimate, ERIC, Health Source Nursing/Academic Edition and MEDLINE. The protocol of the current systematic review was registered in the PROSPERO database with the registration number CRD42022344855. We considered all types of outcomes: mortality, rehospitalization, response to treatment and medication adherence. The area under the receiver operating characteristic curve (AUC) was used as the comparator parameter. The literature search yielded 1649 studies, of which 9 were included in the final analysis. The AUCs for the machine learning models ranged from 0.6494 to 0.913 in independent datasets, whereas the AUCs for statistical predictive scores ranged from 0.622 to 0.806. Our study showed an increasing number of ML predictive models concerning HF populations, although external validation remains infrequent. However, our findings revealed that ML approaches can outperform conventional risk scores and may play important role in HF management.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Blaziak, M; Kuliczkowski, W (Corresponding Author), Wroclaw Med Univ, Inst Heart Dis, PL-50556 Wroclaw, Poland. Blaziak, Mikolaj; Urban, Szymon; Wietrzyk, Weronika; Iwanek, Gracjan; Kuliczkowski, Wiktor; Zymlinski, Robert; Biegus, Jan, Wroclaw Med Univ, Inst Heart Dis, PL-50556 Wroclaw, Poland. Jura, Maksym; Siennicka, Agnieszka, Wroclaw Med Univ, Dept Physiol \& Pathophysiol, PL-50368 Wroclaw, Poland. Stanczykiewicz, Bartlomiej, Wroclaw Med Univ, Dept Psychiat, Div Consultat Psychiat \& Neurosci, PL-50367 Wroclaw, Poland. Pondel, Maciej, Wroclaw Univ Econ \& Business, Inst Informat Syst Econ, PL-53345 Wroclaw, Poland. Berka, Petr, Prague Univ Econ \& Business, Dept Informat \& Knowledge Engn, Churchill Sq 1938-4, Prague 13067, Czech Republic. Danel, Dariusz, Polish Acad Sci, Ludw Hirszfeld Inst Immunol \& Expt Therapy, Dept Anthropol, PL-53114 Wroclaw, Poland.}, DOI = {10.3390/biomedicines10092188}, Article-Number = {2188}, EISSN = {2227-9059}, Keywords = {artificial intelligence; machine learning; deep learning; heart failure; predictive model; systematic review}, Keywords-Plus = {NATRIURETIC PEPTIDE; MORTALITY; RISK; VALIDATION; IDENTIFICATION; READMISSION; BIOMARKERS; PHENOTYPES; FRAMEWORK; DISEASE}, Research-Areas = {Biochemistry \& Molecular Biology; Research \& Experimental Medicine; Pharmacology \& Pharmacy}, Web-of-Science-Categories = {Biochemistry \& Molecular Biology; Medicine, Research \& Experimental; Pharmacology \& Pharmacy}, Author-Email = {m.blaziak@umw.edu.pl wiktor.kuliczkowski@umw.edu.pl}, Affiliations = {Wroclaw Medical University; Wroclaw Medical University; Wroclaw Medical University; Wroclaw University of Economics \& Business; Prague University of Economics \& Business; Polish Academy of Sciences; Hirszfeld Institute of Immunology \& Experimental Therapy of the Polish Academy of Sciences}, ResearcherID-Numbers = {Biegus, Jan/AAF-4207-2021 Pondel, Maciej/Q-4595-2018 Berka, Petr/K-6013-2015 Stanczykiewicz, Bartlomiej/J-5742-2017 }, ORCID-Numbers = {Biegus, Jan/0000-0001-9977-7722 Pondel, Maciej/0000-0002-1978-6571 Danel, Dariusz/0000-0001-6175-3928 Berka, Petr/0000-0003-0464-2257 Jura, Maksym/0000-0003-4316-8623 Blaziak, Mikolaj/0000-0001-8207-1723 Iwanek, Gracjan/0000-0002-8574-9963 Stanczykiewicz, Bartlomiej/0000-0001-9221-3502 Siennicka, Agnieszka/0000-0003-0988-5821 Zymlinski, Robert/0000-0003-1483-7381}, Funding-Acknowledgement = {European Union's Horizon 2020 research and innovation programme {[}857446]}, Funding-Text = {This research and APC were funded by the European Union's Horizon 2020 research and innovation programme, grant number 857446. Presented analyses were conducted in cooperation with experts from the consortium HeartBIT\_4.0-Application of Innovative Medical Data Science technologies for heart diseases.}, Cited-References = {Adler ED, 2020, EUR J HEART FAIL, V22, P139, DOI 10.1002/ejhf.1628. Adrie C, 2009, CRIT CARE, V13, DOI 10.1186/cc7881. Agbor VN, 2018, INT J CARDIOL, V257, P207, DOI 10.1016/j.ijcard.2017.12.048. Ahmad T, 2018, J AM HEART ASSOC, V7, DOI 10.1161/JAHA.117.008081. Ahmad T, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0145881. Al-Tamimi MAA, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.732760. Ambrosy AP, 2014, J AM COLL CARDIOL, V63, P1123, DOI 10.1016/j.jacc.2013.11.053. Asyali MH, 2003, P ANN INT IEEE EMBS, V25, P200, DOI 10.1109/IEMBS.2003.1279568. Attia ZI, 2019, LANCET, V394, P861, DOI 10.1016/S0140-6736(19)31721-0. Baert A, 2018, BMC CARDIOVASC DISOR, V18, DOI 10.1186/s12872-018-0921-2. Bahrarni H, 2008, ARCH INTERN MED, V168, P2138, DOI 10.1001/archinte.168.19.2138. Bazoukis G, 2021, HEART FAIL REV, V26, P23, DOI 10.1007/s10741-020-10007-3. Briongos-Figuero S, 2020, ESC HEART FAIL, V7, P280, DOI 10.1002/ehf2.12548. Cacciatore F, 2012, EUR J PREV CARDIOL, V19, P1401, DOI 10.1177/1741826711422991. Chen WH, 2017, IEEE ENG MED BIO, P3369, DOI 10.1109/EMBC.2017.8037578. Chen WH, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165304. Chirinos JA, 2020, J AM COLL CARDIOL, V75, P1281, DOI 10.1016/j.jacc.2019.12.069. Cikes M, 2019, EUR J HEART FAIL, V21, P74, DOI 10.1002/ejhf.1333. Dini FL, 2010, EUR J ECHOCARDIOGR, V11, P703, DOI 10.1093/ejechocard/jeq047. Duchnowski P, 2019, CARDIOL J, V26, P777, DOI 10.5603/CJ.a2019.0005. Duchnowski P, 2018, BIOMARK MED, V12, P1303, DOI 10.2217/bmm-2018-0186. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056. Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010. Feeny AK, 2019, CIRC-ARRHYTHMIA ELEC, V12, DOI 10.1161/CIRCEP.119.007316. Ghazi L, 2022, JACC-HEART FAIL, V10, P648, DOI 10.1016/j.jchf.2022.07.002. Graven LJ, 2020, CLIN NURS RES, V29, P73, DOI 10.1177/1054773818757312. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216. Handelman GS, 2018, J INTERN MED, V284, P603, DOI 10.1111/joim.12822. Henneges C, 2022, ESC HEART FAIL, V9, P786, DOI 10.1002/ehf2.13618. Hosmer DW, 2013, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118548387. Hosny A, 2018, NAT REV CANCER, V18, P500, DOI 10.1038/s41568-018-0016-5. Januzzi JL, 2006, ARCH INTERN MED, V166, P315, DOI 10.1001/archinte.166.3.315. Jing LY, 2020, JACC-HEART FAIL, V8, P578, DOI 10.1016/j.jchf.2020.01.012. Kakarmath S, 2018, JMIR RES PROTOC, V7, DOI 10.2196/resprot.9466. Karanasiou GS, 2016, HEALTHC TECHNOL LETT, V3, P165, DOI 10.1049/htl.2016.0041. Kmet L. M., 2004, HTA INITIATIVE 13 ST. Kwon JM, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0219302. Kwon JM, 2019, ECHOCARDIOGR-J CARD, V36, P213, DOI 10.1111/echo.14220. Lagu T, 2016, CIRC-HEART FAIL, V9, DOI 10.1161/CIRCHEARTFAILURE.115.002912. LEMESHOW S, 1994, CRIT CARE MED, V22, P1351, DOI 10.1097/00003246-199409000-00003. Liu GZ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093399. Lundberg SM, 2020, NAT MACH INTELL, V2, P56, DOI 10.1038/s42256-019-0138-9. Luo CD, 2022, J TRANSL MED, V20, DOI 10.1186/s12967-022-03340-8. Luo W, 2016, J MED INTERNET RES, V18, DOI 10.2196/jmir.5870. Mahajan SM, 2019, STUD HEALTH TECHNOL, V264, P243, DOI 10.3233/SHTI190220. Mahajan SM, 2019, STUD HEALTH TECHNOL, V264, P238, DOI 10.3233/SHTI190219. McKie PM, 2010, J AM COLL CARDIOL, V55, P2140, DOI 10.1016/j.jacc.2010.01.031. Melillo P, 2011, MED BIOL ENG COMPUT, V49, P67, DOI 10.1007/s11517-010-0728-5. Mohammad MA, 2022, LANCET DIGIT HEALTH, V4, P37, DOI 10.1016/S2589-7500(21)00228-4. Mortazavi BJ, 2016, CIRC-CARDIOVASC QUAL, V9, P629, DOI 10.1161/CIRCOUTCOMES.116.003039. Motwani M, 2017, EUR HEART J, V38, P500, DOI 10.1093/eurheartj/ehw188. Nowak RM, 2017, AM J EMERG MED, V35, P536, DOI 10.1016/j.ajem.2016.12.003. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI {[}10.1136/bmj.n71, 10.1371/journal.pmed.1003583, 10.1016/j.ijsu.2021.105906]. Peressutti D, 2017, MED IMAGE ANAL, V35, P669, DOI 10.1016/j.media.2016.10.002. Pocock SJ, 2013, EUR HEART J, V34, P1404, DOI 10.1093/eurheartj/ehs337. Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778. Royston P, 2013, BMC MED RES METHODOL, V13, DOI 10.1186/1471-2288-13-33. Savarese G, 2022, CARDIOVASC RES, V118, P3272, DOI 10.1093/cvr/cvac013. Schmitz B, 2014, CIRC-CARDIOVASC GENE, V7, P760, DOI 10.1161/CIRCGENETICS.113.000384. Sengupta PP, 2021, JACC-CARDIOVASC IMAG, V14, P1707, DOI 10.1016/j.jcmg.2021.03.020. Siontis GCM, 2015, J CLIN EPIDEMIOL, V68, P25, DOI 10.1016/j.jclinepi.2014.09.007. Understanding AUC-ROC, CURV SAR NARKH DAT S. Urban S, 2022, BIOMEDICINES, V10, DOI 10.3390/biomedicines10071514. Walsh CG, 2018, J CHILD PSYCHOL PSYC, V59, P1261, DOI 10.1111/jcpp.12916.}, Number-of-Cited-References = {64}, Times-Cited = {2}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {4}, Journal-ISO = {Biomedicines}, Doc-Delivery-Number = {4T3HI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000858012500001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000957399100001, Author = {Pitafi, Shahneela and Anwar, Toni and Sharif, Zubair}, Title = {A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms}, Journal = {APPLIED SCIENCES-BASEL}, Year = {2023}, Volume = {13}, Number = {6}, Month = {MAR}, Abstract = {In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most of them locate high-quality or optimum clustering outcomes in the field of computer science, data science, statistics, pattern recognition, artificial intelligence, and machine learning. This research provides a modern, thorough review of both classic and cutting-edge clustering methods. The taxonomy of clustering is presented in this review from an applied angle and the compression of some hierarchical and partitional clustering algorithms with various parameters. We also discuss the open challenges in clustering such as computational complexity, refinement of clusters, speed of convergence, data dimensionality, effectiveness and scalability, data object representation, evaluation measures, data streams, and knowledge extraction; scientists and professionals alike will be able to use it as a benchmark as they strive to advance the state-of-the-art in clustering techniques.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Pitafi, S (Corresponding Author), Univ Teknol PETRONAS, Comp \& Informat Sci Dept CISD, Bandar Seri Iskandar Pera 32610, Malaysia. Pitafi, Shahneela; Anwar, Toni; Sharif, Zubair, Univ Teknol PETRONAS, Comp \& Informat Sci Dept CISD, Bandar Seri Iskandar Pera 32610, Malaysia.}, DOI = {10.3390/app13063529}, Article-Number = {3529}, EISSN = {2076-3417}, Keywords = {clustering algorithms; taxonomy of clustering algorithms; challenges in clustering algorithms}, Keywords-Plus = {EFFICIENT ALGORITHMS; SELECTION; SPLIT}, Research-Areas = {Chemistry; Engineering; Materials Science; Physics}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied}, Author-Email = {shahneela\_22000124@utp.edu.my}, Affiliations = {Universiti Teknologi Petronas}, Funding-Acknowledgement = {Universiti Teknologi PETRONAS (UTP) under the YUTP {[}015LC0-350]}, Funding-Text = {This research work is supported and funded by Universiti Teknologi PETRONAS (UTP) under the YUTP grant scheme with the cost center of 015LC0-350.}, Cited-References = {Abualigah LM, 2018, J COMPUT SCI-NETH, V25, P456, DOI 10.1016/j.jocs.2017.07.018. Agarwal P, 2011, Arxiv. Agrawal R, 2005, DATA MIN KNOWL DISC, V11, P5, DOI 10.1007/s10618-005-1396-1. Ahmad A, 2007, DATA KNOWL ENG, V63, P503, DOI 10.1016/j.datak.2007.03.016. AITKIN M, 1985, J ROY STAT SOC B MET, V47, P67. Aliniya Z, 2019, EXPERT SYST APPL, V117, P243, DOI 10.1016/j.eswa.2018.09.050. {[}Anonymous], 2019, FEATURE SELECTION EN, DOI DOI 10.1007/978-3-030-10674-4. Benabdellah AC, 2019, PROCEDIA COMPUT SCI, V148, P291, DOI 10.1016/j.procs.2019.01.022. Berkhin P., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P414, DOI 10.1145/502512.502574. Bindra Kamalpreet, 2017, 2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), P371, DOI 10.1109/ICRITO.2017.8342454. Boley D, 1998, DATA MIN KNOWL DISC, V2, P325, DOI 10.1023/A:1009740529316. Bouveyron C., 2012, P ESANN, P447. Brito Paula, 2012, Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods. ICPRAM 2012, P229. Carreira-Perpian MA, 2015, Arxiv, DOI DOI 10.48550/ARXIV.1503.00687. Chang DX, 2010, PATTERN RECOGN, V43, P1346, DOI 10.1016/j.patcog.2009.10.020. Chavent M, 2007, COMPUT STAT DATA AN, V52, P687, DOI 10.1016/j.csda.2007.03.013. Comaniciu D, 2002, IEEE T PATTERN ANAL, V24, P603, DOI 10.1109/34.1000236. Dafir Z, 2021, ARTIF INTELL REV, V54, P2411, DOI 10.1007/s10462-020-09918-2. Das Swagatam, 2008, V94, P113. DAY WHE, 1984, J CLASSIF, V1, P7, DOI 10.1007/BF01890115. DEFAYS D, 1977, COMPUT J, V20, P364, DOI 10.1093/comjnl/20.4.364. Deshmukh H. S., 2015, INT J ADV RES COMPUT, V4. Dinh DT, 2021, INFORM SCIENCES, V571, P418, DOI 10.1016/j.ins.2021.04.076. Dinh DT, 2019, COMM COM INF SC, V1103, P1, DOI 10.1007/978-981-15-1209-4\_1. Djouzi K, 2019, 2019 4TH INTERNATIONAL CONFERENCE ON NETWORKING AND ADVANCED SYSTEMS (ICNAS 2019), P117. Dryden N, 2021, INT CONF HIGH PERFOR, DOI 10.1145/3458817.3476181. Duin RPW, 2012, LECT NOTES COMPUT SC, V7626, P51, DOI 10.1007/978-3-642-34166-3\_6. Ezugwu AE, 2021, NEURAL COMPUT APPL, V33, P6247, DOI 10.1007/s00521-020-05395-4. Ezugwu AE, 2020, SN APPL SCI, V2, DOI 10.1007/s42452-020-2073-0. Fahad A, 2014, IEEE T EMERG TOP COM, V2, P267, DOI 10.1109/TETC.2014.2330519. Feng LA, 2010, PATTERN RECOGN LETT, V31, P1216, DOI 10.1016/j.patrec.2010.04.001. Fraley C, 1998, COMPUT J, V41, P578, DOI 10.1093/comjnl/41.8.578. FUKUNAGA K, 1975, IEEE T INFORM THEORY, V21, P32, DOI 10.1109/TIT.1975.1055330. Gama J, 2007, LEARNING DATA STREAM. GOWDA KC, 1978, PATTERN RECOGN, V10, P105. Grira N., 2004, REV MACHINE LEARNING, V1, P9. GUENOCHE A, 1991, J CLASSIF, V8, P5, DOI 10.1007/BF02616245. Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830. Jain A K, 1988, ALGORITHMS CLUSTERIN. Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504. Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011. Jose-Garcia A, 2016, APPL SOFT COMPUT, V41, P192, DOI 10.1016/j.asoc.2015.12.001. Karypis G., 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361), P343, DOI 10.1109/DAC.1999.781339. Kaufman L, 2009, FINDING GROUPS DATA. Khan A, 2022, IEEE INT C CL COMP, P324, DOI 10.1109/CLUSTER51413.2022.00044. Kim J, 2011, COMPUT STAT DATA AN, V55, P2250, DOI 10.1016/j.csda.2011.01.011. Kokate U., 2018, BIG DATA COGN COMPUT, V2, DOI {[}10.3390/bdcc2040032, DOI 10.3390/BDCC2040032]. Leland McInnes J.H., COMP CLUSTERING ALGO. Liao TW, 2005, PATTERN RECOGN, V38, P1857, DOI 10.1016/j.patcog.2005.01.025. MACNAUGHTONSMIT.P, 1964, NATURE, V202, P1034, DOI 10.1038/2021034a0. MacQueen J., 1967, PROC 15 BERKELEY S M, P281, DOI DOI 10.1007/S11665-016-2173-6. Mansalis S, 2018, STAT ANAL DATA MIN, V11, P167, DOI 10.1002/sam.11380. Marriott F.H.C., 1974, INTERPRETATION MULTI. Mullner D., 2011, ARXIV. MURTAGH F, 1985, COMPUT J, V28, P82, DOI 10.1093/comjnl/28.1.82. MURTAGH F, 1983, COMPUT J, V26, P354, DOI 10.1093/comjnl/26.4.354. Murtagh F, 2012, WIRES DATA MIN KNOWL, V2, P86, DOI 10.1002/widm.53. Myhre JN, 2018, PATTERN RECOGN, V76, P491, DOI 10.1016/j.patcog.2017.11.023. Nagpal A, 2013, 2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT 2013), P298. OLSON CF, 1995, PARALLEL COMPUT, V21, P1313, DOI 10.1016/0167-8191(95)00017-I. Oyelade J, 2016, BIOINFORM BIOL INSIG, V10, P237, DOI 10.4137/BBI.S38316. Parsons L., 2004, ACM SIGKDD EXPLOR NE, V6, P90, DOI DOI 10.1145/1007730.1007731. Plant C., 2010, EVOLVING APPL DOMAIN, P185. Rathore P., 2018, THESIS U MELBOURNE P. Ray Susmita, 2019, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), P35, DOI 10.1109/COMITCon.2019.8862451. Sammaknejad N, 2019, J PROCESS CONTR, V73, P123, DOI 10.1016/j.jprocont.2018.12.010. Sanse K., 2015, INT J ADV RES COMPUT, V4, P642. Sasaki H., 2018, J MACH LEARN RES, P17. Savaresi SM, 2002, SIAM PROC S, P299. Saxena A, 2017, NEUROCOMPUTING, V267, P664, DOI 10.1016/j.neucom.2017.06.053. Sharif Zubair, 2022, 2022 International Conference on Digital Transformation and Intelligence (ICDI), P46, DOI 10.1109/ICDI57181.2022.10007397. Sharif Zubair, 2022, 2022 2nd International Conference on Computing and Information Technology (ICCIT), P138, DOI 10.1109/ICCIT52419.2022.9711641. Sharif Z., 2023, J KING SAUD UNIV-COM, DOI {[}10.1016/j.jksuci.2023.01.001, DOI 10.1016/J.JKSUCI.2023.01.001]. Sharif Z, 2023, IEEE INTERNET THINGS, V10, P3079, DOI 10.1109/JIOT.2021.3111838. Shirkhorshidi AS, 2014, LECT NOTES COMPUT SC, V8583, P707, DOI 10.1007/978-3-319-09156-3\_49. SIBSON R, 1973, COMPUT J, V16, P30, DOI 10.1093/comjnl/16.1.30. Singh S., 2020, PROCEDIA COMPUT SCI, V173, P272, DOI {[}10.1016/j.procs.2020.06. 032, DOI 10.1016/J.PROCS.2020.06.032]. SNEATH PHA, 1995, SYST BIOL, V44, P281, DOI 10.2307/2413593. Tan P.-N., 2018, INTRO DATA MINING PE. Verbeek J., 2004, THESIS U AMSTERDAM A. Vidal R, 2011, IEEE SIGNAL PROC MAG, V28, P52, DOI 10.1109/MSP.2010.939739. VOORHEES EM, 1986, INFORM PROCESS MANAG, V22, P465, DOI 10.1016/0306-4573(86)90097-X. Wang Y, 1996, J CLASSIF, V13, P231, DOI 10.1007/BF01246100. Wang Z., 2016, P 2016 SIAM INT C DA, P369. WHARTON SW, 1983, PATTERN RECOGN, V16, P193, DOI 10.1016/0031-3203(83)90022-5. WILLIAMS WT, 1959, J ECOL, V47, P83, DOI 10.2307/2257249. Xu D., 2015, ANN DATA SCI, V2, P165, DOI {[}DOI 10.1007/S40745-015-0040-1, 10.1007/s40745-015-0040-1]. Xu R, 2005, IEEE T NEURAL NETWOR, V16, P645, DOI 10.1109/TNN.2005.845141. ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X. Zerhari B., 2015, P INT C BIG DAT CLOU. Zhong CM, 2008, PATTERN RECOGN LETT, V29, P2067, DOI 10.1016/j.patrec.2008.07.002. Zhou YQ, 2019, KNOWL-BASED SYST, V163, P546, DOI 10.1016/j.knosys.2018.09.013. Zhu J., 2019, THESIS U GEORGIA ATH.}, Number-of-Cited-References = {93}, Times-Cited = {0}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Appl. Sci.-Basel}, Doc-Delivery-Number = {A8EP9}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000957399100001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000884583700001, Author = {Zhang, Yaolong and Lin, Qidong and Jiang, Bin}, Title = {Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Abstract = {Machine learning techniques have been widely applied in many fields of chemistry, physics, biology, and materials science. One of the most fruitful applications is machine learning of the complicated multidimensional function of potential energy or related electronic properties from discrete quantum chemical data. In particular, substantial efforts have been dedicated to developing various atomistic neural network (AtNN) representations, which refer to a family of methods expressing the targeted physical quantity as a sum of atomic components represented by atomic NNs. This class of approaches not only fully preserves the physical symmetry of the system but also scales linearly with respect to the size of a system, enabling accurate and efficient chemical dynamics and spectroscopic simulations in complicated systems and even a number of variably sized systems across the phases. In this review, we discuss different strategies in developing highly efficient and representable AtNN potentials, and in generalizing these scalar AtNN models to learn vectorial and tensorial quantities with the correct rotational equivariance. We also review active learning algorithms to generate practical AtNN models and present selected examples of AtNN applications in gas-surface systems to demonstrate their capabilities of accurately representing both molecular systems and condensed phase systems. We conclude this review by pointing out remaining challenges for the further development of more reliable, transferable, and scalable AtNN representations in more application scenarios. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review; Early Access}, Language = {English}, Affiliation = {Jiang, B (Corresponding Author), Univ Sci \& Technol China, Dept Chem Phys, Sch Chem \& Mat Sci,Anhui Higher Educ Inst, Key Lab Surface \& Interface Chem \& Energy Catalys, Hefei 230026, Anhui, Peoples R China. Zhang, Yaolong; Lin, Qidong; Jiang, Bin, Univ Sci \& Technol China, Dept Chem Phys, Sch Chem \& Mat Sci,Anhui Higher Educ Inst, Key Lab Surface \& Interface Chem \& Energy Catalys, Hefei 230026, Anhui, Peoples R China.}, DOI = {10.1002/wcms.1645}, EarlyAccessDate = {NOV 2022}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {machine learning; neural networks; potential energy surface; representability; data sampling}, Keywords-Plus = {POTENTIAL-ENERGY SURFACES; DISSOCIATIVE CHEMISORPTION; FORCE-FIELD; QUANTUM DYNAMICS; H-ATOM; SCATTERING; METHANE; STATE; WATER; EXCITATION}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {bjiangch@ustc.edu.cn}, Affiliations = {Chinese Academy of Sciences; University of Science \& Technology of China, CAS}, ResearcherID-Numbers = {jiang, bin/F-2391-2014}, ORCID-Numbers = {jiang, bin/0000-0003-2696-5436}, Funding-Acknowledgement = {Anhui Initiative in Quantum Information Technologies {[}AHY090200]; CAS Project for Young Scientists in Basic Research {[}YSBR-005]; National Natural Science Foundation of China {[}22033007, 22073089]; Fundamental Research Funds for Central Universities {[}WK2060000017]}, Funding-Text = {Anhui Initiative in Quantum Information Technologies, Grant/Award Number: AHY090200; CAS Project for Young Scientists in Basic Research, Grant/Award Number: YSBR-005; National Natural Science Foundation of China, Grant/Award Numbers: 22033007, 22073089; The Fundamental Research Funds for Central Universities, Grant/Award Number: WK2060000017}, Cited-References = {Allen AEA, 2021, MACH LEARN-SCI TECHN, V2, DOI 10.1088/2632-2153/abd51e. Anderson B., 2019, ARXIV190604015, V32, P14537. Artrith N, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.014112. Artrith N, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.045439. Artrith N, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.153101. Bartok AP, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.184115. Bartok AP, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136403. Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401. Behler J, 2021, CHEM REV, V121, P10037, DOI 10.1021/acs.chemrev.0c00868. Behler J, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4966192. Behler J, 2011, PHYS CHEM CHEM PHYS, V13, P17930, DOI 10.1039/c1cp21668f. Behler J, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3553717. Behler J, 2007, J CHEM PHYS, V127, DOI 10.1063/1.2746232. Bernstein N, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0236-6. Bholoa A, 2007, NUCL INSTRUM METH B, V255, P1, DOI 10.1016/j.nimb.2006.11.040. Bircher MP, 2021, MACH LEARN-SCI TECHN, V2, DOI 10.1088/2632-2153/abf817. BLANK TB, 1995, J CHEM PHYS, V103, P4129, DOI 10.1063/1.469597. Born M, 1927, ANN PHYS-BERLIN, V84, P0457. Box CL, 2021, JACS AU, V1, P164, DOI 10.1021/jacsau.0c00066. Braams BJ, 2009, INT REV PHYS CHEM, V28, P577, DOI 10.1080/01442350903234923. BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211. Bunermann O, 2015, SCIENCE, V350, P1346, DOI 10.1126/science.aad4972. Busnengo HF, 2000, J CHEM PHYS, V112, P7641, DOI 10.1063/1.481377. Casier B, 2020, J CHEM PHYS, V152, DOI 10.1063/5.0009264. Chen JL, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06478-6. {[}陈俊 Chen Jun], 2015, {[}中国科学. 化学, Scientia Sinica Chimica], V45, P1241. Chen J, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4801658. Chen RJ, 2020, J CHEM PHYS, V152, DOI 10.1063/5.0010104. Chen WK, 2018, J PHYS CHEM LETT, V9, P6702, DOI 10.1021/acs.jpclett.8b03026. Cheng BQ, 2019, P NATL ACAD SCI USA, V116, P1110, DOI 10.1073/pnas.1815117116. Cheng Z, 2020, J PHYS CHEM A, V124, P5007, DOI 10.1021/acs.jpca.0c04526. Chmiela S, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06169-2. Chmiela S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603015. Collins MA, 2002, THEOR CHEM ACC, V108, P313, DOI 10.1007/s00214-002-0383-5. DAW MS, 1984, PHYS REV B, V29, P6443, DOI 10.1103/PhysRevB.29.6443. Dawes R, 2007, J CHEM PHYS, V126, DOI 10.1063/1.2730798. Dawes R, 2008, J CHEM PHYS, V128, DOI 10.1063/1.2831790. del Cueto M, 2020, J PHYS CHEM C, V124, P5174, DOI 10.1021/acs.jpcc.9b10883. Deringer VL, 2021, CHEM REV, V121, P10073, DOI 10.1021/acs.chemrev.1c00022. Deringer VL, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.156001. Dombrowski E, 2015, CATAL TODAY, V244, P10, DOI 10.1016/j.cattod.2014.10.025. Dral PO, 2021, NAT REV CHEM, V5, P388, DOI 10.1038/s41570-021-00278-1. Dral PO, 2019, J COMPUT CHEM, V40, P2339, DOI 10.1002/jcc.26004. Drautz R, 2020, PHYS REV B, V102, DOI 10.1103/PhysRevB.102.024104. Drautz R, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.014104. Eckhoff M, 2021, J CHEM PHYS, V155, DOI 10.1063/5.0073449. Faber FA, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5020710. Fan ZY, 2021, PHYS REV B, V104, DOI 10.1103/PhysRevB.104.104309. Farah K, 2012, CHEMPHYSCHEM, V13, P1127, DOI 10.1002/cphc.201100681. Fu B, 2018, J CHEM THEORY COMPUT, V14, P2289, DOI 10.1021/acs.jctc.8b00006. Gao H, 2019, J CHEM PHYS, V150, DOI 10.1063/1.5097293. Gassner H, 1998, J PHYS CHEM A, V102, P4596, DOI 10.1021/jp972209d. Gastegger M, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5019667. Gastegger M, 2021, CHEM SCI, V12, P11473, DOI 10.1039/d1sc02742e. Gastegger M, 2017, CHEM SCI, V8, P6924, DOI 10.1039/c7sc02267k. Gerrits N, 2019, J PHYS CHEM LETT, V10, P1763, DOI 10.1021/acs.jpclett.9b00560. Gerrits N, 2021, J PHYS CHEM LETT, V12, P12157, DOI 10.1021/acs.jpclett.1c03395. Gilmer J, 2017, PR MACH LEARN RES, V70. Glick ZL, 2021, J CHEM PHYS, V154, DOI 10.1063/5.0050444. Gokcan H, 2022, WIRES COMPUT MOL SCI, V12, DOI 10.1002/wcms.1564. Grisafi A, 2019, ACS CENTRAL SCI, V5, P57, DOI 10.1021/acscentsci.8b00551. Grisafi A, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.036002. Guan YF, 2018, MOL PHYS, V116, P823, DOI 10.1080/00268976.2017.1407460. Gyori T, 2020, J CHEM THEORY COMPUT, V16, P51, DOI 10.1021/acs.jctc.9b01006. Hartke B, 2015, PHYS CHEM CHEM PHYS, V17, P16715, DOI 10.1039/c5cp02580j. Hase WL, 2003, COMPUT SCI ENG, V5, P36, DOI 10.1109/MCISE.2003.1208640. HEADGORDON M, 1995, J CHEM PHYS, V103, P10137, DOI 10.1063/1.469915. HELLSING B, 1984, PHYS SCRIPTA, V29, P360, DOI 10.1088/0031-8949/29/4/014. Ho TS, 1996, J CHEM PHYS, V104, P2584, DOI 10.1063/1.470984. Hobday S, 1999, MODEL SIMUL MATER SC, V7, P397, DOI 10.1088/0965-0393/7/3/308. Hu C, 2022, CHEM PHYS, V554, DOI 10.1016/j.chemphys.2021.111423. Hu DP, 2018, J PHYS CHEM LETT, V9, P2725, DOI 10.1021/acs.jpclett.8b00684. Huang B, 2021, CHEM REV, V121, P10001, DOI 10.1021/acs.chemrev.0c01303. Huang M, 2019, PHYS REV B, V100, DOI 10.1103/PhysRevB.100.201407. Huang SD, 2018, CHEM SCI, V9, P8644, DOI 10.1039/c8sc03427c. Huang YH, 2000, SCIENCE, V290, P111, DOI 10.1126/science.290.5489.111. Huang YF, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.064103. Imbalzano G, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5024611. ISCHTWAN J, 1994, J CHEM PHYS, V100, P8080, DOI 10.1063/1.466801. Jiang B, 2020, J PHYS CHEM LETT, V11, P5120, DOI 10.1021/acs.jpclett.0c00989. Jiang B, 2016, INT REV PHYS CHEM, V35, P479, DOI 10.1080/0144235X.2016.1200347. Jiang B, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.166101. Jiang B, 2014, PHYS CHEM CHEM PHYS, V16, P24704, DOI 10.1039/c4cp03761h. Jiang B, 2014, J CHEM PHYS, V141, DOI 10.1063/1.4887363. Jiang B, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4817187. Jiang HY, 2019, SCIENCE, V364, P379, DOI 10.1126/science.aaw6378. Jinnouchi R, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.225701. Johannes K., 2020, INT C LEARNING REPRE. Juaristi JI, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.116102. Kamath A, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5003074. Kang PL, 2020, ACCOUNTS CHEM RES, V53, P2119, DOI 10.1021/acs.accounts.0c00472. Ko TW, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-020-20427-2. Kocer E, 2020, AIP ADV, V10, DOI 10.1063/1.5111045. Kolb B, 2017, J PHYS CHEM LETT, V8, P666, DOI 10.1021/acs.jpclett.6b02994. Kolb B, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4956453. Krems RV, 2019, PHYS CHEM CHEM PHYS, V21, P13392, DOI 10.1039/c9cp01883b. Langer MF, 2022, NPJ COMPUT MATER, V8, DOI 10.1038/s41524-022-00721-x. Le HM, 2008, J CHEM PHYS, V128, DOI 10.1063/1.2918503. Li GY, 2006, J PHYS CHEM A, V110, P2474, DOI 10.1021/jp054148m. Li H, 2022, NAT COMPUT SCI, V2, P367, DOI 10.1038/s43588-022-00265-6. Li J, 2019, PHYS CHEM CHEM PHYS, V21, P9672, DOI 10.1039/c8cp06919k. Li J, 2016, PHYS CHEM CHEM PHYS, V18, P29825, DOI 10.1039/c6cp06232f. Li J, 2015, J PHYS CHEM A, V119, P4667, DOI 10.1021/acs.jpca.5b02510. Li J, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4832697. Li J, 2012, J CHEM PHYS, V137, DOI 10.1063/1.4748857. Li ZW, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.096405. Lin QD, 2021, J CHEM THEORY COMPUT, V17, P2691, DOI 10.1021/acs.jctc.1c00166. Liu QH, 2018, J PHYS CHEM C, V122, P1761, DOI 10.1021/acs.jpcc.7b12064. Liu XJ, 2021, J CHEM PHYS, V154, DOI 10.1063/5.0046689. Lorenz S, 2004, CHEM PHYS LETT, V395, P210, DOI 10.1016/j.cplett.2004.07.076. Lu DD, 2019, CHEM SCI, V10, P7994, DOI 10.1039/c9sc02445j. Lu DH, 2021, COMPUT PHYS COMMUN, V259, DOI 10.1016/j.cpc.2020.107624. Lu XX, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-32191-6. Lubbers N, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5011181. Malshe M, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3124802. Manzhos S, 2006, J CHEM PHYS, V125, DOI 10.1063/1.2336223. Manzhos S, 2021, CHEM REV, V121, P10187, DOI 10.1021/acs.chemrev.0c00665. Manzhos S, 2015, INT J QUANTUM CHEM, V115, P1012, DOI 10.1002/qua.24795. Manzhos S, 2008, J CHEM PHYS, V129, DOI 10.1063/1.3021471. Marx D., 2009, AB INITIO MOL DYNAMI, DOI DOI 10.1017/CBO9780511609633. Maurer RJ, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.115432. Meuwly M, 2022, J PHYS CHEM B, V126, P2155, DOI 10.1021/acs.jpcb.2c00212. Meuwly M, 2021, CHEM REV, V121, P10218, DOI 10.1021/acs.chemrev.1c00033. Moiraghi R, 2020, J PHYS CHEM LETT, V11, P2211, DOI 10.1021/acs.jpclett.0c00260. Morawietz T, 2016, P NATL ACAD SCI USA, V113, P8368, DOI 10.1073/pnas.1602375113. Morawietz T, 2012, J CHEM PHYS, V136, DOI 10.1063/1.3682557. Mueller T, 2020, J CHEM PHYS, V152, DOI 10.1063/1.5126336. Murrell J.N., 1984, MOL POTENTIAL ENERGY. Musil F, 2021, CHEM REV, V121, P9759, DOI 10.1021/acs.chemrev.1c00021. Nagy T, 2014, J CHEM THEORY COMPUT, V10, P1366, DOI 10.1021/ct400953f. Natarajan SK, 2016, PHYS CHEM CHEM PHYS, V18, P28704, DOI 10.1039/c6cp05711j. Nguyen TT, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5024577. Nigam J, 2022, J CHEM PHYS, V156, DOI 10.1063/5.0087042. Nigam J, 2022, J CHEM PHYS, V156, DOI 10.1063/5.0072784. Nigam J, 2020, J CHEM PHYS, V153, DOI 10.1063/5.0021116. Noe F, 2020, ANNU REV PHYS CHEM, V71, P361, DOI 10.1146/annurev-physchem-042018-052331. Pinheiro M, 2021, CHEM SCI, V12, P14396, DOI 10.1039/d1sc03564a. Pozdnyakov SN, 2020, PHYS REV LETT, V125, DOI 10.1103/PhysRevLett.125.166001. Prudente FV, 1998, J CHEM PHYS, V109, P8801, DOI 10.1063/1.477550. Qu C, 2018, ANNU REV PHYS CHEM, V69, P151, DOI 10.1146/annurev-physchem-050317-021139. Quaranta V, 2017, J PHYS CHEM LETT, V8, P1476, DOI 10.1021/acs.jpclett.7b00358. Raff L. M., 2012, NEURAL NETWORKS CHEM. Raff LM, 2005, J CHEM PHYS, V122, DOI 10.1063/1.1850458. Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1. Rostami S, 2018, J CHEM PHYS, V149, DOI 10.1063/1.5040005. Rupp M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.058301. SCHATZ GC, 1989, REV MOD PHYS, V61, P669, DOI 10.1103/RevModPhys.61.669. Schutt KT, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12875-2. Schutt KT, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5019779. Schutt KT, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms13890. Schutt KT, 2019, J CHEM THEORY COMPUT, V15, P448, DOI 10.1021/acs.jctc.8b00908. SCHUTT KT, 2021, PR MACH LEARN RES, V139. Jimenez AS, 2021, J CHEM THEORY COMPUT, V17, P4648, DOI 10.1021/acs.jctc.1c00347. Shakouri K, 2017, J PHYS CHEM LETT, V8, P2131, DOI 10.1021/acs.jpclett.7b00784. Shao KJ, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4961454. Shapeev AV, 2016, MULTISCALE MODEL SIM, V14, P1153, DOI 10.1137/15M1054183. Shen XJ, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.046101. Shen XJ, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4932226. Shenvi N, 2009, SCIENCE, V326, P829, DOI 10.1126/science.1179240. Shenvi N, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3125436. Sifain AE, 2018, J PHYS CHEM LETT, V9, P4495, DOI 10.1021/acs.jpclett.8b01939. Singraber A, 2019, J CHEM THEORY COMPUT, V15, P1827, DOI 10.1021/acs.jctc.8b00770. Smith JS, 2017, CHEM SCI, V8, P3192, DOI 10.1039/c6sc05720a. Smith JS, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5023802. Sommers GM, 2020, PHYS CHEM CHEM PHYS, V22, P10592, DOI 10.1039/d0cp01893g. Steinfeld J. I., 1999, CHEM KINETICS DYNAMI. Takahashi A, 2017, PHY REV MATER, V1, DOI 10.1103/PhysRevMaterials.1.063801. TERSOFF J, 1988, PHYS REV B, V37, P6991, DOI 10.1103/PhysRevB.37.6991. Thompson AP, 2015, J COMPUT PHYS, V285, P316, DOI 10.1016/j.jcp.2014.12.018. Thorben Frank J., 2022, SO3KRATES SELF ATTEN. Unke O., 2021, ADV NEURAL INFORM PR. Unke OT, 2021, CHEM REV, V121, P10142, DOI 10.1021/acs.chemrev.0c01111. Unke OT, 2019, J CHEM THEORY COMPUT, V15, P3678, DOI 10.1021/acs.jctc.9b00181. van Duin ACT, 2001, J PHYS CHEM A, V105, P9396, DOI 10.1021/jp004368u. Vargas-Hernandez RA, 2019, NEW J PHYS, V21, DOI 10.1088/1367-2630/ab0099. Venturi S, 2020, J PHYS CHEM A, V124, P5129, DOI 10.1021/acs.jpca.0c02395. Westermayr J, 2020, J CHEM PHYS, V153, DOI 10.1063/5.0021915. Westermayr J, 2021, CHEM REV, V121, P9873, DOI 10.1021/acs.chemrev.0c00749. Westermayr J, 2020, J PHYS CHEM LETT, V11, P3828, DOI 10.1021/acs.jpclett.0c00527. Wilkins DM, 2019, P NATL ACAD SCI USA, V116, P3401, DOI 10.1073/pnas.1816132116. Willatt MJ, 2019, J CHEM PHYS, V150, DOI 10.1063/1.5090481. Wille S, 2020, PHYS CHEM CHEM PHYS, V22, P26113, DOI 10.1039/d0cp03462b. Wodtke AM, 2003, J CHEM PHYS, V118, P8033, DOI 10.1063/1.1560143. Wu FF, 2020, PHYS REV B, V102, DOI 10.1103/PhysRevB.102.144107. Xia JF, 2021, CHINESE J CHEM PHYS, V34, P695, DOI 10.1063/1674-0068/cjcp2109159. Xie CJ, 2018, J CHEM PHYS, V149, DOI 10.1063/1.5054310. Xie Z, 2010, J CHEM THEORY COMPUT, V6, P26, DOI 10.1021/ct9004917. Yao K, 2018, CHEM SCI, V9, P2261, DOI 10.1039/c7sc04934j. Ye S, 2020, J AM CHEM SOC, V142, P19071, DOI 10.1021/jacs.0c06530. Ye S, 2019, P NATL ACAD SCI USA, V116, P11612, DOI 10.1073/pnas.1821044116. Yin RR, 2021, PHYS REV LETT, V126, DOI 10.1103/PhysRevLett.126.156101. Yin RR, 2019, J PHYS CHEM LETT, V10, P5969, DOI 10.1021/acs.jpclett.9b01806. Zaverkin V, 2020, J CHEM THEORY COMPUT, V16, P5410, DOI 10.1021/acs.jctc.0c00347. Zaverkin V, 2021, J CHEM THEORY COMPUT, V17, P6658, DOI 10.1021/acs.jctc.1c00527. Zhang LF, 2022, J CHEM PHYS, V156, DOI 10.1063/5.0083669. Zhang LF, 2020, PHYS REV B, V102, DOI 10.1103/PhysRevB.102.041121. Zhang LF, 2018, ADV NEUR IN, V31. Zhang LF, 2019, PHYS REV MATER, V3, DOI 10.1103/PhysRevMaterials.3.023804. Zhang LF, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.143001. Zhang LF, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5019675. Zhang YL, 2022, J CHEM PHYS, V156, DOI 10.1063/5.0080766. Zhang YL, 2021, PHYS REV LETT, V127, DOI 10.1103/PhysRevLett.127.156002. Zhang YL, 2021, PHYS CHEM CHEM PHYS, V23, P1815, DOI 10.1039/d0cp05089j. Zhang YL, 2020, J PHYS CHEM B, V124, P7284, DOI 10.1021/acs.jpcb.0c06926. Zhang YL, 2020, J PHYS CHEM C, V124, P186, DOI 10.1021/acs.jpcc.9b09965. Zhang YL, 2019, J PHYS CHEM LETT, V10, P4962, DOI 10.1021/acs.jpclett.9b02037. Zhang YL, 2019, J PHYS CHEM LETT, V10, P1185, DOI 10.1021/acs.jpclett.9b00085. Zhao LY, 2021, JACS AU, V1, P2377, DOI 10.1021/jacsau.1c00449. Zhou XY, 2022, J PHYS CHEM LETT, V13, P3450, DOI 10.1021/acs.jpclett.2c00593. Zhou XY, 2021, CHINESE J CHEM, V39, P2917, DOI 10.1002/cjoc.202100303. Zhou XY, 2021, PHYS CHEM CHEM PHYS, V23, P4376, DOI 10.1039/d0cp06535h. Zhou XY, 2017, PHYS CHEM CHEM PHYS, V19, P30540, DOI 10.1039/c7cp05993k. Zhu LJ, 2020, PHYS CHEM CHEM PHYS, V22, P13958, DOI 10.1039/d0cp02291h. Zubatyuk R, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aav6490. Zuo YX, 2020, J PHYS CHEM A, V124, P731, DOI 10.1021/acs.jpca.9b08723.}, Number-of-Cited-References = {215}, Times-Cited = {0}, Usage-Count-Last-180-days = {19}, Usage-Count-Since-2013 = {19}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {6G2JO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000884583700001}, DA = {2023-04-22}, } @article{ WOS:000774626800001, Author = {Casadio, Rita and Martelli, Pier Luigi and Savojardo, Castrense}, Title = {Machine learning solutions for predicting protein-protein interactions}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2022}, Volume = {12}, Number = {6}, Month = {NOV}, Abstract = {Proteins are ``social molecules.{''} Recent experimental evidence supports the notion that large protein aggregates, known as biomolecular condensates, affect structurally and functionally many biological processes. Condensate formation may be permanent and/or time dependent, suggesting that biological processes can occur locally, depending on the cell needs. The question then arises as to which extent we can monitor protein-aggregate formation, both experimentally and theoretically and then predict/simulate functional aggregate formation. Available data are relative to mesoscopic interacting networks at a proteome level, to protein-binding affinity data, and to interacting protein complexes, solved with atomic resolution. Powerful algorithms based on machine learning (ML) can extract information from data sets and infer properties of never-seen-before examples. ML tools address the problem of protein-protein interactions (PPIs) adopting different data sets, input features, and architectures. According to recent publications, deep learning is the most successful method. However, in ML-computational biology, convincing evidence of a success story comes out by performing general benchmarks on blind data sets. Results indicate that the state-of-the-art ML approaches, based on traditional and/or deep learning, can still be ameliorated, irrespectively of the power of the method and richness in input features. This being the case, it is quite evident that powerful methods still are not trained on the whole possible spectrum of PPIs and that more investigations are necessary to complete our knowledge of PPI-functional interactions. This article is categorized under: Software > Molecular Modeling Structure and Mechanism > Computational Biochemistry and Biophysics Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Martelli, PL (Corresponding Author), Univ Bologna, Biocomp Grp, Bologna, Italy. Casadio, Rita; Martelli, Pier Luigi; Savojardo, Castrense, Univ Bologna, Biocomp Grp, Bologna, Italy.}, DOI = {10.1002/wcms.1618}, EarlyAccessDate = {MAR 2022}, Article-Number = {e1618}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {deep learning; machine learning; protein-protein interactions}, Keywords-Plus = {INTERACTION SITES PREDICTION; STATISTICAL-ANALYSIS; PHASE-SEPARATION; CONSERVATION; FINGERPRINTS; COVARIANCE; NETWORKS; RESIDUES; ACCURATE}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {pierluigi.martelli@unibo.it}, Affiliations = {University of Bologna}, ResearcherID-Numbers = {Martelli, Pier Luigi/I-8824-2012 }, ORCID-Numbers = {Martelli, Pier Luigi/0000-0002-0274-5669 SAVOJARDO, CASTRENSE/0000-0002-7359-0633}, Funding-Acknowledgement = {Italian Ministry of University and Research {[}2017483NH8\_002]}, Funding-Text = {The work was supported by PRIN2017 grant (project 2017483NH8\_002), delivered to CS by the Italian Ministry of University and Research.}, Cited-References = {Alberti S, 2021, NAT REV MOL CELL BIO, V22, P196, DOI 10.1038/s41580-020-00326-6. Ansari S, 2005, PROTEINS, V61, P344, DOI 10.1002/prot.20593. Baek M, 2021, SCIENCE, V373, P871, DOI 10.1126/science.abj8754. Bai XC, 2015, TRENDS BIOCHEM SCI, V40, P49, DOI 10.1016/j.tibs.2014.10.005. Baldi P., 2021, DEEP LEARNING SCI, P371. Baspinar A, 2014, NUCLEIC ACIDS RES, V42, pW285, DOI 10.1093/nar/gku397. Bendell CJ, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-82. Bishop, 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119.ARNING. Bitencourt-Ferreira G, 2021, CURR MED CHEM, V28, P1746, DOI 10.2174/0929867327666200515101820. Bitencourt-Ferreira G, 2019, METHODS MOL BIOL, V2053, P251, DOI 10.1007/978-1-4939-9752-7\_16. Bock JR, 2001, BIOINFORMATICS, V17, P455, DOI 10.1093/bioinformatics/17.5.455. Boeynaems S, 2018, TRENDS CELL BIOL, V28, P420, DOI 10.1016/j.tcb.2018.02.004. Bronstein MM, 2017, IEEE SIGNAL PROC MAG, V34, P18, DOI 10.1109/MSP.2017.2693418. Bryant P, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28865-w. Carl N, 2008, J CHEM INF MODEL, V48, P1279, DOI 10.1021/ci8000315. Chen Y, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.00291. Daberdaku S, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2043-3. Dhole K, 2014, J THEOR BIOL, V348, P47, DOI 10.1016/j.jtbi.2014.01.028. Ditlev JA, 2018, J MOL BIOL, V430, P4666, DOI 10.1016/j.jmb.2018.08.003. Dong ZJ, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-277. Du XQ, 2017, J CHEM INF MODEL, V57, P1499, DOI 10.1021/acs.jcim.7b00028. Nguyen DD, 2020, PHYS CHEM CHEM PHYS, V22, P4343, DOI 10.1039/c9cp06554g. Dunbar J, 2014, NUCLEIC ACIDS RES, V42, pD1140, DOI 10.1093/nar/gkt1043. DUNCAN BS, 1993, BIOPOLYMERS, V33, P231, DOI 10.1002/bip.360330205. Dunham WH, 2012, PROTEOMICS, V12, P1576, DOI 10.1002/pmic.201100523. Evans R, 2021, BIORXIV, DOI {[}DOI 10.1101/2021.10.04.463034, 10.04.463034]. Feng Z, 2021, BIOCHEMISTRY-US, V60, P2397, DOI 10.1021/acs.biochem.1c00376. Gainza P, 2020, NAT METHODS, V17, P184, DOI 10.1038/s41592-019-0666-6. Gemovic B, 2019, CURR MED CHEM, V26, P3890, DOI {[}10.2174/09298673256661800214113704, 10.2174/0929867325666180214113704]. Gerlich DW, 2017, NAT REV MOL CELL BIO, V18, P593, DOI 10.1038/nrm.2017.93. Ghani U., 2021, BIORXIV, DOI 10.1101/2021.09.07.459290v1. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Greener JG, 2022, NAT REV MOL CELL BIO, V23, P40, DOI 10.1038/s41580-021-00407-0. Guo YZ, 2008, NUCLEIC ACIDS RES, V36, P3025, DOI 10.1093/nar/gkn159. Hamp T, 2015, BIOINFORMATICS, V31, P1945, DOI 10.1093/bioinformatics/btv077. Hashemifar S, 2018, BIOINFORMATICS, V34, P802, DOI 10.1093/bioinformatics/bty573. Heinzinger M, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-3220-8. Hopf TA, 2014, ELIFE, V3, DOI 10.7554/eLife.03430. Hou QZ, 2019, BIOINFORMATICS, V35, P4794, DOI 10.1093/bioinformatics/btz428. Hou QZ, 2017, BIOINFORMATICS, V33, P1479, DOI 10.1093/bioinformatics/btx005. Hou QZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0758-y. Hwang H, 2008, PROTEINS, V73, P705, DOI 10.1002/prot.22106. Hwang H, 2010, PROTEINS, V78, P3111, DOI 10.1002/prot.22830. Jamasb AR, 2021, METHODS MOL BIOL, V2361, P263, DOI 10.1007/978-1-0716-1641-3\_16. Janin J, 2008, Q REV BIOPHYS, V41, P133, DOI 10.1017/S0033583508004708. Jankauskaite J, 2019, BIOINFORMATICS, V35, P462, DOI 10.1093/bioinformatics/bty635. Jelinek J, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1921-4. Jones DT, 2019, NAT REV MOL CELL BIO, V20, P659, DOI 10.1038/s41580-019-0176-5. Jones DT, 2012, BIOINFORMATICS, V28, P184, DOI 10.1093/bioinformatics/btr638. Jordan RA, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-41. Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2. Kawashima S, 2000, NUCLEIC ACIDS RES, V28, P374, DOI 10.1093/nar/28.1.374. Kessel A., 2018, MATH COMPUTATIONAL B, P932. KIDERA A, 1985, J PROTEIN CHEM, V4, P23, DOI 10.1007/BF01025492. Koenderink JJ., 1990, SOLID SHAPE, P699. Kovacs IA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09177-y. Krissinel E, 2007, J MOL BIOL, V372, P774, DOI 10.1016/j.jmb.2007.05.022. Kuang Rui, 2005, Journal of Bioinformatics and Computational Biology, V3, P527, DOI 10.1142/S021972000500120X. Lafontaine DLJ, 2021, NAT REV MOL CELL BIO, V22, P165, DOI 10.1038/s41580-020-0272-6. Lee J, 2020, EXP MOL MED, V52, P1428, DOI 10.1038/s12276-020-0420-2. Lei HJ, 2019, IEEE J BIOMED HEALTH, V23, P1290, DOI 10.1109/JBHI.2018.2845866. Lensink MF, 2021, PROTEINS, V89, P1800, DOI 10.1002/prot.26222. Li FF, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.00390. Li MH, 2007, BIOINFORMATICS, V23, P597, DOI 10.1093/bioinformatics/btl660. Li YW, 2021, BIOINFORMATICS, V37, P896, DOI 10.1093/bioinformatics/btaa750. Liu B, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-381. Liu ZH, 2015, BIOINFORMATICS, V31, P405, DOI 10.1093/bioinformatics/btu626. Low TY, 2021, CELL MOL LIFE SCI, V78, P5325, DOI 10.1007/s00018-021-03856-0. Lu HY, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-00315-3. Lyon AS, 2021, NAT REV MOL CELL BIO, V22, P215, DOI 10.1038/s41580-020-00303-z. McWhite Claire D, 2021, STAR Protoc, V2, P100370, DOI 10.1016/j.xpro.2021.100370. Milanetti E, 2021, COMPUT STRUCT BIOTEC, V19, P29, DOI 10.1016/j.csbj.2020.11.051. Murakami Y, 2010, BIOINFORMATICS, V26, P1841, DOI 10.1093/bioinformatics/btq302. Northey TC, 2018, BIOINFORMATICS, V34, P223, DOI 10.1093/bioinformatics/btx585. Ovchinnikov S, 2014, ELIFE, V3, DOI 10.7554/eLife.02030. Paiano Aurora, 2019, Curr Protoc Protein Sci, V95, pe70, DOI 10.1002/cpps.70. Pan XY, 2010, J PROTEOME RES, V9, P4992, DOI 10.1021/pr100618t. Park Y, 2012, NAT METHODS, V9, P1134, DOI 10.1038/nmeth.2259. Pintar A, 2003, BIOPHYS J, V84, P2553, DOI 10.1016/S0006-3495(03)75060-7. Pintar A, 2002, BIOINFORMATICS, V18, P980, DOI 10.1093/bioinformatics/18.7.980. Piovesan D, 2021, NUCLEIC ACIDS RES, V49, pD361, DOI 10.1093/nar/gkaa1058. Porollo A, 2007, PROTEINS, V66, P630, DOI 10.1002/prot.21248. Porta-Pardo Eduard, 2022, PLoS Comput Biol, V18, pe1009818, DOI 10.1371/journal.pcbi.1009818. Qiu JJ, 2020, J MOL BIOL, V432, P2428, DOI 10.1016/j.jmb.2020.02.026. Rajagopala SV, 2014, NAT BIOTECHNOL, V32, P285, DOI 10.1038/nbt.2831. Rattray DG, 2019, CURR OPIN CHEM BIOL, V48, P81, DOI 10.1016/j.cbpa.2018.11.003. Roden C, 2021, NAT REV MOL CELL BIO, V22, P183, DOI 10.1038/s41580-020-0264-6. Sanchez-Garcia R, 2019, BIOINFORMATICS, V35, P470, DOI 10.1093/bioinformatics/bty647. Savojardo C, 2020, ANNU REV BIOMED DA S, V3, P89, DOI 10.1146/annurev-biodatasci-011720-104428. Savojardo C, 2017, BIOINFORMATICS, V33, P1656, DOI 10.1093/bioinformatics/btx044. Schaefer MH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031826. Schrotter G, 2020, PFG-J PHOTOGRAMM REM, V88, P99, DOI 10.1007/s41064-020-00092-2. Segura J, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-352. Shi YQ, 2021, CELL BIOSCI, V11, DOI 10.1186/s13578-021-00691-5. Siebenmorgen T, 2020, WIRES COMPUT MOL SCI, V10, DOI 10.1002/wcms.1448. Sledzieski S, 2021, CELL SYST, V12, P969, DOI 10.1016/j.cels.2021.08.010. Su MY, 2019, J CHEM INF MODEL, V59, P895, DOI 10.1021/acs.jcim.8b00545. Sun TL, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1700-2. Tunyasuvunakool K, 2021, NATURE, V596, P590, DOI 10.1038/s41586-021-03828-1. Vreven T, 2015, J MOL BIOL, V427, P3031, DOI 10.1016/j.jmb.2015.07.016. Walport LJ, 2021, CHEM SOC REV, V50, P12292, DOI 10.1039/d1cs00548k. Walsh I, 2021, NAT METHODS, V18, P1122, DOI 10.1038/s41592-021-01205-4. Wang B, 2021, IEEE ACM T COMPUT BI, V18, P985, DOI 10.1109/TCBB.2019.2953908. Wang L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-46369-4. Wei ZS, 2016, NEUROCOMPUTING, V193, P201, DOI 10.1016/j.neucom.2016.02.022. Wittmann BJ, 2021, CURR OPIN STRUC BIOL, V69, P11, DOI 10.1016/j.sbi.2021.01.008. Wodak SJ, 2013, CURR OPIN STRUC BIOL, V23, P941, DOI 10.1016/j.sbi.2013.08.002. Xu QF, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-14301-4. Yang F, 2020, BMC BIOINFORMATICS, V21, DOI 10.1186/s12859-020-03646-8. Yang KK, 2018, BIOINFORMATICS, V34, P2642, DOI 10.1093/bioinformatics/bty178. Yin SY, 2009, P NATL ACAD SCI USA, V106, P16622, DOI 10.1073/pnas.0906146106. You ZH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125811. Yuan QM, 2022, BIOINFORMATICS, V38, P125, DOI 10.1093/bioinformatics/btab643. Zellner H, 2012, PROTEINS, V80, P154, DOI 10.1002/prot.23172. Zeng M, 2020, BIOINFORMATICS, V36, P1114, DOI 10.1093/bioinformatics/btz699. Zhang J, 2019, BIOINFORMATICS, V35, pI343, DOI 10.1093/bioinformatics/btz324. Zhang L, 2019, NEUROCOMPUTING, V324, P10, DOI 10.1016/j.neucom.2018.02.097. Zhang QC, 2010, P NATL ACAD SCI USA, V107, P10896, DOI 10.1073/pnas.1005894107.}, Number-of-Cited-References = {118}, Times-Cited = {7}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {39}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {6A4HI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000774626800001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000757657800001, Author = {Wigh, Daniel S. and Goodman, Jonathan M. and Lapkin, Alexei A.}, Title = {A review of molecular representation in the age of machine learning}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2022}, Volume = {12}, Number = {5}, Month = {SEP}, Abstract = {Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial intelligence. Everyone working with molecules, whether chemist or not, needs an understanding of the representation of molecules in a machine-readable format, as this is central to computational chemistry. Four classes of representations are introduced: string, connection table, feature-based, and computer-learned representations. Three of the most significant representations are simplified molecular-input line-entry system (SMILES), International Chemical Identifier (InChI), and the MDL molfile, of which SMILES was the first to successfully be used in conjunction with a variational autoencoder (VAE) to yield a continuous representation of molecules. This is noteworthy because a continuous representation allows for efficient navigation of the immensely large chemical space of possible molecules. Since 2018, when the first model of this type was published, considerable effort has been put into developing novel and improved methodologies. Most, if not all, researchers in the community make their work easily accessible on GitHub, though discussion of computation time and domain of applicability is often overlooked. Herein, we present questions for consideration in future work which we believe will make chemical VAEs even more accessible. This article is categorized under: Data Science > Chemoinformatics}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Lapkin, AA (Corresponding Author), Univ Cambridge, Dept Chem Engn \& Biotechnol, Cambridge CB3 0AS, England. Wigh, Daniel S.; Lapkin, Alexei A., Univ Cambridge, Dept Chem Engn \& Biotechnol, Cambridge CB3 0AS, England. Goodman, Jonathan M., Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge, England.}, DOI = {10.1002/wcms.1603}, EarlyAccessDate = {FEB 2022}, Article-Number = {e1603}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {chemoinformatics; fingerprints; machine learning; molecular representation; variational autoencoder}, Keywords-Plus = {DRUG DISCOVERY; DESIGN; LANGUAGE; SYSTEM; RETROSYNTHESIS; DESCRIPTORS; GENERATION; ALGORITHM; CHEMISTRY; SELECTION}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {aal35@cam.ac.uk}, Affiliations = {University of Cambridge; University of Cambridge}, ResearcherID-Numbers = {Lapkin, Alexei/CAG-1632-2022 Goodman, Jonathan M/A-2123-2008 }, ORCID-Numbers = {Goodman, Jonathan M/0000-0002-8693-9136 Wigh, Daniel/0000-0002-0494-643X Lapkin, Alexei/0000-0001-7621-0889}, Funding-Acknowledgement = {Engineering and Physical Sciences Research Council {[}EP/S024220/1]; UCB Pharma}, Funding-Text = {This work is co-funded by UCB Pharma and Engineering and Physical Sciences Research Council via project EP/S024220/1 EPSRC Centre for Doctoral Training in Automated Chemical Synthesis Enabled by Digital Molecular Technologies'.}, Cited-References = {Ahneman DT, 2018, SCIENCE, V360, P186, DOI 10.1126/science.aar5169. Amar Y, 2019, CHEM SCI, V10, P6697, DOI 10.1039/c9sc01844a. {[}Anonymous], SMIRKS REACT TRANSF. {[}Anonymous], 2016, BIOVA DATABASES CTFI. Ash S, 1997, J CHEM INF COMP SCI, V37, P71, DOI 10.1021/ci960109j. Aspuru-Guzik, 2020, ARXIV190911655. Bender A, 2021, DRUG DISCOV TODAY, V26, P1040, DOI 10.1016/j.drudis.2020.11.037. Bender A, 2020, DRUG DISCOV TODAY, V26, P511, DOI 10.1016/j.drudis.2020.12.009. Boehm M, 2008, J MED CHEM, V51, P2468, DOI 10.1021/jm0707727. Bongini P, 2021, NEUROCOMPUTING, V450, P242, DOI 10.1016/j.neucom.2021.04.039. BREMSER W, 1978, ANAL CHIM ACTA-COMP, V2, P355. Cereto-Massague A, 2015, METHODS, V71, P58, DOI 10.1016/j.ymeth.2014.08.005. ChemAxon, CHEMAXON SMILES EXT. Chen G., 2019, INT C LEARN REPR ICL. Christ CD, 2012, J CHEM INF MODEL, V52, P1745, DOI 10.1021/ci300116p. Clark AM, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0057-7. Clark AM, 2011, J CHEM INF MODEL, V51, P3149, DOI 10.1021/ci200488k. Coley CW, 2019, J CHEM INF MODEL, V59, P2529, DOI 10.1021/acs.jcim.9b00286. Coley CW, 2017, J CHEM INF MODEL, V57, P1757, DOI 10.1021/acs.jcim.6b00601. COREY EJ, 1969, SCIENCE, V166, P178, DOI 10.1126/science.166.3902.178. Dai H., 2018, SYNTAX DIRECTED VARI, P1. DALBY A, 1992, J CHEM INF COMP SCI, V32, P244, DOI 10.1021/ci00007a012. Davies M, 2015, NUCLEIC ACIDS RES, V43, pW612, DOI 10.1093/nar/gkv352. Daylight Chemical Information Systems Inc, 2019, SMILES SIMPL CHEM LA. Daylight Chemical Information Systems Inc, 4 SMARTS LANG DESCR. Degen J, 2008, CHEMMEDCHEM, V3, P1503, DOI 10.1002/cmdc.200800178. Derwent C., 2020, DERWENT WORLD PATENT, P311. DITTMAR PG, 1983, J CHEM INF COMP SCI, V23, P93, DOI 10.1021/ci00039a002. DUBOIS JE, 1987, J CHEM INF COMP SCI, V27, P74, DOI 10.1021/ci00054a007. Durand DJ, 2019, CHEM REV, V119, P6561, DOI 10.1021/acs.chemrev.8b00588. Durant JL, 2002, J CHEM INF COMP SCI, V42, P1273, DOI 10.1021/ci010132r. Elton DC, 2019, MOL SYST DES ENG, V4, P828, DOI 10.1039/c9me00039a. Favre H. A., 2014, NOMENCLATURE ORGANIC. Gallegos LC, 2021, ACCOUNTS CHEM RES, V54, P827, DOI 10.1021/acs.accounts.0c00745. Gao HY, 2018, ACS CENTRAL SCI, V4, P1465, DOI 10.1021/acscentsci.8b00357. Gao KF, 2020, PHYS CHEM CHEM PHYS, V22, P8373, DOI 10.1039/d0cp00305k. Gasteiger J., 2008, HDB CHEMOINFORMATICS, V4. Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074. Giganti D, 2010, J CHEM INF MODEL, V50, P992, DOI 10.1021/ci900507g. Golkov V., 2017, INT C 3D VIS 3DV. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Goodman JM, 2021, J CHEMINFORMATICS, V13, DOI 10.1186/s13321-021-00517-z. Grosnit, 2021, ARXIV210603609. Guha R, 2006, J CHEM INF MODEL, V46, P991, DOI 10.1021/ci050400b. Hanson RM, 2016, J CHEMINFORMATICS, V8, DOI 10.1186/s13321-016-0160-4. Hartenfeller M, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002380. Heller SR, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0068-4. Henderson P, 2018, AAAI CONF ARTIF INTE, P3207. Hoffmann T, 2019, DRUG DISCOV TODAY, V24, P1148, DOI 10.1016/j.drudis.2019.02.013. Irwin JJ, 2020, J CHEM INF MODEL, V60, P6065, DOI 10.1021/acs.jcim.0c00675. Irwin JJ, 2012, J CHEM INF MODEL, V52, P1757, DOI 10.1021/ci3001277. IUPAC and InChI Trust, 2011, INCHI VERSION 1 SOFT. IUPAC and InChI Trust, 2020, INCHI VERS 1 SOFTW V. IUPAC and InChI Trust, 2017, INCHI VERS 1 SOFTW V. Jaeger S, 2018, J CHEM INF MODEL, V58, P27, DOI 10.1021/acs.jcim.7b00616. Jin WG, 2018, PR MACH LEARN RES, V80. Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2. Kajino H, 2019, PR MACH LEARN RES, V97. Kajita S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-17299-w. Kearnes S., 2018, ARXIV PREPRINT ARXIV. Kearnes SM, 2021, J AM CHEM SOC, V143, P18820, DOI 10.1021/jacs.1c09820. Kim S, 2021, NUCLEIC ACIDS RES, V49, pD1388, DOI 10.1093/nar/gkaa971. Koichi S, 2007, J CHEM INF MODEL, V47, P1734, DOI 10.1021/ci600238j. Krenn M., 2020, MACH LEARN-SCI TECHN, V1, P1757. Kurach K, 2019, PR MACH LEARN RES, V97. Kusner MJ, 2017, PR MACH LEARN RES, V70. Kuzminykh D, 2018, MOL PHARMACEUT, V15, P4378, DOI 10.1021/acs.molpharmaceut.7b01134. Landrum G., RDKIT DOCUMENTATION. Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791. Lecun Y., MNIST DATABASE HANDW. Lewell XQ, 1998, J CHEM INF COMP SCI, V38, P511, DOI 10.1021/ci970429i. Lowe DM, 2011, J CHEM INF MODEL, V51, P739, DOI 10.1021/ci100384d. Lucic M., 2018, 32 C NEUR INF PROC S. LYNCH MF, 1985, J CHEM INF COMP SCI, V25, P264, DOI 10.1021/ci00047a024. Melis G., 2017, ARXIV170705589. Mendez D, 2019, NUCLEIC ACIDS RES, V47, pD930, DOI 10.1093/nar/gky1075. Moriwaki H, 2018, J CHEMINFORMATICS, V10, DOI 10.1186/s13321-018-0258-y. NCIB, 441344 NCIB. Neil D., 2018, INT C LEARN REPR ICL. Nigam A., 2021, ARXIV210604011. Nigam AkshatKumar, 2021, Chem Sci, V12, P7079, DOI 10.1039/d1sc00231g. O'Boyle N., 2018, DEEP SMILES ADAPTATI, DOI 10.26434/chemrxiv.7097960.v1. O'Boyle NM, 2012, J CHEMINFORMATICS, V4, DOI 10.1186/1758-2946-4-22. Pence HE, 2010, J CHEM EDUC, V87, P1123, DOI 10.1021/ed100697w. PerkinElmer Inc, 410 FORM SPEC. Pogany P, 2019, J CHEM INF MODEL, V59, P1136, DOI 10.1021/acs.jcim.8b00626. Rajan K, 2021, J CHEMINFORMATICS, V13, DOI 10.1186/s13321-021-00512-4. Ramakrishnan R, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.22. RAPPE AK, 1992, J AM CHEM SOC, V114, P10024, DOI 10.1021/ja00051a040. Rogers D, 2010, J CHEM INF MODEL, V50, P742, DOI 10.1021/ci100050t. Sabando MV., 2021, BRIEF BIOINFORM, V23, P1. Sayle R., 2019, OPEN SOURCING WISWES. Schneider N, 2015, J CHEM INF MODEL, V55, P2111, DOI 10.1021/acs.jcim.5b00543. Schwaller P, 2019, ACS CENTRAL SCI, V5, P1572, DOI 10.1021/acscentsci.9b00576. Segler MHS, 2018, ACS CENTRAL SCI, V4, P120, DOI 10.1021/acscentsci.7b00512. Segler MHS, 2017, CHEM-EUR J, V23, P5966, DOI 10.1002/chem.201605499. Shen C., 2021, MACH LEARN-SCI TECHN, V2. Shields BJ, 2021, NATURE, V590, P89, DOI 10.1038/s41586-021-03213-y. Software N, 2021, SMALLWORLD. Tetko IV, 2019, LECT NOTES COMPUT SC, V11731, P831, DOI 10.1007/978-3-030-30493-5\_79. Warr W., 2021, NIH WORKSH ULTR CHEM, DOI 10.26434/chemrxiv.14554803.v1. Warr WA, 2011, WIRES COMPUT MOL SCI, V1, P557, DOI 10.1002/wcms.36. WEININGER D, 1989, J CHEM INF COMP SCI, V29, P97, DOI 10.1021/ci00062a008. WEININGER D, 1988, J CHEM INF COMP SCI, V28, P31, DOI 10.1021/ci00057a005. Welling M, 2014, P 2 INT C LEARNING R. Winter R, 2019, CHEM SCI, V10, P1692, DOI 10.1039/c8sc04175j. Wiswesser W.J, 1952, CHEM ENG NEWS ARCH, V30, P3523, DOI {[}10.1021/cen-v030n034.p3523, DOI 10.1021/CEN-V030N034.P3523]. WISWESSER WJ, 1982, J CHEM INF COMP SCI, V22, P88, DOI 10.1021/ci00034a005. WISWESSER WJ, 1968, J CHEM DOC, V8, P146, DOI 10.1021/c160030a007. Xiao Z., 2020, 34 C NEUR INF PROC S. Zhang TH, 2012, J CHEM INF MODEL, V52, P2796, DOI 10.1021/ci3001925.}, Number-of-Cited-References = {111}, Times-Cited = {21}, Usage-Count-Last-180-days = {28}, Usage-Count-Since-2013 = {76}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {4J5BT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000757657800001}, OA = {Green Submitted, hybrid, Green Published}, DA = {2023-04-22}, } @article{ WOS:000496444000002, Author = {Li, Xiang and Yan, Ziming and Liu, Zhanli}, Title = {Combination and application of machine learning and computational mechanics}, Journal = {CHINESE SCIENCE BULLETIN-CHINESE}, Year = {2019}, Volume = {64}, Number = {7}, Pages = {635-648}, Abstract = {With the steady development of computer science, machine learning and data science have made significant progress in recent decades. These techniques generally rely on a substantial amount of data samples to extract the abstract mapping hidden within the data. Hence, these technologies have gradually attracted the attention of researchers in the field of computational mechanics. Combining the recent studies of the authors and other researchers, this paper aims to interpret several forms of applications that integrate machine learning and data science with computational mechanics. In the first application, the core algorithm of the convolutional neural network is implemented to solve the linear elastic finite element problem. A standard finite element equation is transformed into an optimization problem in this method. The method is verified by a plane strain linear elastic finite element problem. The method demonstrates promising accuracy by comparing the results obtained by traditional finite element solver. However, some limitations of this method need to be addressed. First, though the optimization process can be accelerated by GPU, the efficiency of the proposed method is still lower than most mainstream numerical solvers. And, the framework of convolutional neural networks requires that the input layer data should be a constant matrix. This is a major challenge for solving nonlinear finite element equations whose stiffness matrices contain variables. These are the issues worth considerations in future studies. In the second application, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of various heterogeneous materials. In the third application, the authors discuss a data-driven computational mechanics framework proposed by Kirchdoerfer and Ortiz. The most outstanding feature of the framework is that explicit material constitutive equations are no longer required. More specifically, experimental material response data are employed in the framework to replace constitutive equations. Combined with traditional compatibility and equilibrium equations, the framework is able to find the optimal stress-strain combination from a material response dataset to best fit the current element. With this framework, the errors and uncertainties induced by the empirical constitutive functions of traditional computational mechanics approaches can be avoided. The aforementioned applications are only the tip of an iceberg in the recent advancement of computational mechanics. Hence, researchers have reasons to believe that there would be more application scenarios that integrate data science and machine learning with computational mechanics in the future. Hopefully, computational mechanics methods with more robustness, efficiency, and fidelity will be developed.}, Publisher = {SCIENCE PRESS}, Address = {300 WEST CHESNUT ST, EPHRATA, PA 17522 USA}, Type = {Review}, Language = {Chinese}, Affiliation = {Liu, ZL (Corresponding Author), Tsinghua Univ, Sch Aerosp Engn, Appl Mech Lab, Beijing 100084, Peoples R China. Li, Xiang; Yan, Ziming; Liu, Zhanli, Tsinghua Univ, Sch Aerosp Engn, Appl Mech Lab, Beijing 100084, Peoples R China.}, DOI = {10.1360/N972019-00005}, ISSN = {0023-074X}, EISSN = {2095-9419}, Keywords = {machine learning; data-driven; artificial neural network; computational mechanics; finite element method}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORKS; CONSTITUTIVE MODEL; HOMOGENIZATION; PREDICTION; FLOW; INFORMATION; RECOGNITION; REGRESSION; FRAMEWORK; ALGORITHM}, Research-Areas = {Science \& Technology - Other Topics}, Web-of-Science-Categories = {Multidisciplinary Sciences}, Author-Email = {liuzhanli@tsinghua.edu.cn}, Affiliations = {Tsinghua University}, Cited-References = {Abedi S, 2016, ACTA GEOTECH, V11, P559, DOI 10.1007/s11440-015-0426-4. Al-Raoush RI, 2005, J HYDROL, V300, P44, DOI 10.1016/j.jhydrol.2004.05.005. ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209. {[}Anonymous], 1995, HDB BRAIN THEORY NEU, DOI {[}DOI 10.1109/IJCNN.2004.1381049, 10.5555/303568.303704]. {[}Anonymous], 1998, GENETIC PROGRAMMING. {[}Anonymous], 2006, PATTERN RECOGN, DOI {[}DOI 10.1117/1.2819119, 10.1117/1.2819119]. ANTONELLINI M, 1994, PURE APPL GEOPHYS, V143, P181, DOI 10.1007/BF00874328. Barthelemy JF, 2013, INT J NUMER ANAL MET, V37, P1948, DOI 10.1002/nag.2115. Basheer IA, 2000, J MICROBIOL METH, V43, P3, DOI 10.1016/S0167-7012(00)00201-3. Bathe KJ, 2007, WILEY ENCY COMPUTER, P1. Beigzadeh R, 2012, INT COMMUN HEAT MASS, V39, P1279, DOI 10.1016/j.icheatmasstransfer.2012.06.008. Belytschko T., 2000, NONLINEAR FINITE ELE. Bennett KC, 2015, ACTA GEOTECH, V10, P1, DOI 10.1007/s11440-014-0363-7. Bernard S., 2013, AAPG MEMOIR, V102, P53, DOI {[}DOI 10.1306/13391705M1023583, 10.1306/13391705M1023583]. Bessa MA, 2017, COMPUT METHOD APPL M, V320, P633, DOI 10.1016/j.cma.2017.03.037. Blair SC, 1996, J GEOPHYS RES-SOL EA, V101, P20359, DOI 10.1029/96JB00879. Boggs Jr S., 2009, PETROLOGY SEDIMENTAR. Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401. Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555. Butz T, 2002, Z ANGEW MATH MECH, V82, P3, DOI 10.1002/1521-4001(200201)82:1<3::AID-ZAMM3>3.0.CO;2-O. Cang RJ, 2018, COMP MATER SCI, V150, P212, DOI 10.1016/j.commatsci.2018.03.074. CHEN Changyan, 2001, CHINESE J GEOTECHNIC, V23, P157. Clement A, 2012, INT J NUMER METH ENG, V91, P799, DOI 10.1002/nme.4293. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. COX DR, 1958, J R STAT SOC B, V20, P215. Cule D, 1999, J APPL PHYS, V86, P3428, DOI 10.1063/1.371225. Deirieh A, 2012, ACTA GEOTECH, V7, P271, DOI 10.1007/s11440-012-0185-4. DISSANAYAKE MWMG, 1994, COMMUN NUMER METH EN, V10, P195, DOI 10.1002/cnm.1640100303. Dudani S. A., 1976, IEEE Transactions on Systems, Man and Cybernetics, VSMC-6, P325, DOI 10.1109/TSMC.1976.5408784. Faller WE, 1997, J AIRCRAFT, V34, P48, DOI 10.2514/2.2134. Feng X., 1995, J ENG GEOL, V4, P54. Feng Xiating, 1999, CHINESE J ROCK MECH, V18, P222. Foster CD, 2013, ACTA GEOTECH, V8, P49, DOI 10.1007/s11440-012-0180-9. Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504. Fukushima K., 1982, COMPETITIONAND COOPE, P267, DOI DOI 10.1007/978-3-642-46466-9\_18. Furukawa T, 1998, INT J NUMER METH ENG, V43, P195, DOI 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6. Gao X S, 2000, CHIN J COMPUT MECH, V17, P223. GATHIER B, 2008, THESIS. {[}葛宏伟 Ge Hongwei], 2004, {[}岩石力学与工程学报, Chinese Journal of Rock Mechanics and Engineering], V23, P1542. Ghaboussi J, 1998, INT J NUMER METH ENG, V42, P105, DOI 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. HAJELA P, 1995, INT J SOLIDS STRUCT, V32, P3341, DOI 10.1016/0020-7683(94)00306-H. Hashash YMA, 2004, INT J NUMER METH ENG, V59, P989, DOI 10.1002/nme.905. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. IVAKHNENKO AG, 1971, IEEE T SYST MAN CYB, VSMC1, P364, DOI 10.1109/TSMC.1971.4308320. Jain AK, 1996, COMPUTER, V29, P31, DOI 10.1109/2.485891. Ji GL, 2011, MAT SCI ENG A-STRUCT, V528, P4774, DOI 10.1016/j.msea.2011.03.017. Jin CY, 2006, ROCK SOIL MECH, V27, P1263. Jung S, 2006, COMPUT STRUCT, V84, P955, DOI 10.1016/j.compstruc.2006.02.015. Karpathy A, 2014, PROC CVPR IEEE, P1725, DOI 10.1109/CVPR.2014.223. KELLER JM, 1985, IEEE T SYST MAN CYB, V15, P580, DOI 10.1109/TSMC.1985.6313426. Kelly S, 2016, ADV WATER RESOUR, V95, P302, DOI 10.1016/j.advwatres.2015.06.010. Kirchdoerfer T, 2018, INT J NUMER METH ENG, V113, P1697, DOI 10.1002/nme.5716. Kirchdoerfer T, 2017, COMPUT METHOD APPL M, V326, P622, DOI 10.1016/j.cma.2017.07.039. Kirchdoerfer T, 2016, COMPUT METHOD APPL M, V304, P81, DOI 10.1016/j.cma.2016.02.001. Kirchdoerfer T, 2018, COMPUT METH APPL SCI, V46, P165, DOI 10.1007/978-3-319-60885-3\_8. Kohli AH, 2013, J GEOPHYS RES-SOL EA, V118, P5109, DOI 10.1002/jgrb.50346. Kondo R, 2017, ACTA MATER, V141, P29, DOI 10.1016/j.actamat.2017.09.004. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Kumar V., 2012, THESIS. Lagaris IE, 1998, IEEE T NEURAL NETWOR, V9, P987, DOI 10.1109/72.712178. Lawrence S, 1997, IEEE T NEURAL NETWOR, V8, P98, DOI 10.1109/72.554195. Le BA, 2015, INT J NUMER METH ENG, V104, P1061, DOI 10.1002/nme.4953. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. LEE SY, 1991, FRONT SED, P545. Lei X, 2019, J APPL MECH-T ASME, V86, DOI 10.1115/1.4041319. Liu RQ, 2015, INTEGR MATER MANUF I, V4, DOI 10.1186/s40192-015-0042-z. Liu ZL, 2016, COMPUT METHOD APPL M, V306, P319, DOI 10.1016/j.cma.2016.04.004. McCulloch W. S., 1943, B MATH BIOPHYS, V5, P115, DOI {[}10.1007/BF02478259, DOI 10.1007/BF02478259]. Mi Y, 2001, NUCL ENG DES, V204, P87, DOI 10.1016/S0029-5493(00)00325-3. Milliken KL, 2000, CATHODOLUMINESCENCE IN GEOSCIENCES, P225. Neter J., 1996, APPL LINEAR STAT MOD. Ohkouchi N., 2003, FRONTIER RES EARTH E, V1, P239. OHSAKI M, 1995, COMPUT STRUCT, V57, P219, DOI 10.1016/0045-7949(94)00617-C. Pettijohn F.G., 1957, SEDIMENTARY ROCKS. Radlinski AP, 2004, J COLLOID INTERF SCI, V274, P607, DOI 10.1016/j.jcis.2004.02.035. Ramuhalli P, 2005, IEEE T NEURAL NETWOR, V16, P1381, DOI 10.1109/TNN.2005.857945. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0. Sahimi M., 2011, FLOW TRANSPORT POROU, DOI 10.1002/9783527636693. Schalkoff RJ., 1997, ARTIFICIAL NEURAL NE. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Silver D, 2018, SCIENCE, V362, P1140, DOI 10.1126/science.aar6404. Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270. Sun Y, 2010, COMP MATER SCI, V48, P686, DOI 10.1016/j.commatsci.2010.03.007. Sundararaghavan V, 2005, COMP MATER SCI, V32, P223, DOI 10.1016/j.commatsci.2004.07.004. Suykens J., 2003, ADV LEARNING THEORY, VVolume 190. Tahmasebi P, 2015, TRANSPORT POROUS MED, V110, P521, DOI 10.1007/s11242-015-0570-1. TAKEUCHI J, 1994, NEURAL NETWORKS, V7, P389, DOI 10.1016/0893-6080(94)90031-0. Torquato S, 2002, ANNU REV MATER RES, V32, P77, DOI 10.1146/annurev.matsci.32.110101.155324. Tu JV, 1996, J CLIN EPIDEMIOL, V49, P1225, DOI 10.1016/S0895-4356(96)00002-9. Venkatesan R., 2017, CONVOLUTIONAL NEURAL, DOI DOI 10.4324/9781315154282. WALKER SH, 1967, BIOMETRIKA, V54, P167, DOI 10.2307/2333860. Wang DH, 2005, SMART MATER STRUCT, V14, P111, DOI 10.1088/0964-1726/14/1/011. Wang L., 2005, THEORY APPL SUPPORT, DOI {[}10.1007/b95439, DOI 10.1002/9781118197448]. Werbos P, 1974, REGRESSION NEW TOOLS. White JA, 2014, INT J NUMER ANAL MET, V38, P1036, DOI 10.1002/nag.2247. Widrow B, 1987, P IEEE 1 INT C NEUR, V1, P143. Wu J G, 1998, CHINESE J COMPUTATIO, V15, P69. {[}夏元友 Xia Yuanyou], 2004, {[}岩石力学与工程学报, Chinese Journal of Rock Mechanics and Engineering], V23, P2703. Yeong CLY, 1998, PHYS REV E, V57, P495, DOI 10.1103/PhysRevE.57.495. Yvonnet J, 2009, COMPUT METHOD APPL M, V198, P2723, DOI 10.1016/j.cma.2009.03.017. Yvonnet J, 2013, INT J MULTISCALE COM, V11, P201, DOI 10.1615/IntJMultCompEng.2013005374. Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1\_53. Zeiler MD, 2011, IEEE I CONF COMP VIS, P2018, DOI 10.1109/ICCV.2011.6126474. Zeiler MD, 2010, PROC CVPR IEEE, P2528, DOI 10.1109/CVPR.2010.5539957. Zeng YH, 2009, COMMUN NONLINEAR SCI, V14, P2373, DOI 10.1016/j.cnsns.2008.06.020. Zhang Y. H, 1998, J HOHAI U, V26, P98. {[}张义民 Zhang Yimin], 2005, {[}计算力学学报, Chinese journal of computational Mechanics], V22, P257. {[}周建春 Zhou Jianchun], 2004, {[}岩石力学与工程学报, Chinese Journal of Rock Mechanics and Engineering], V23, P941. Zhu D. Y., 2006, PRINCIPLE APPL ARTIF. Zhu J, 2009, STAT INTERFACE, V2, P349. Zienkiewicz O. C., 1977, FINITE ELEMENT METHO, V3.}, Number-of-Cited-References = {113}, Times-Cited = {9}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {75}, Journal-ISO = {Chin. Sci. Bull.-Chin.}, Doc-Delivery-Number = {JM8FM}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000496444000002}, OA = {Bronze}, DA = {2023-04-22}, } @article{ WOS:000958886700001, Author = {Nigam, Nikhil and Singh, Dhirendra Pratap and Choudhary, Jaytrilok}, Title = {A Review of Different Components of the Intelligent Traffic Management System (ITMS)}, Journal = {SYMMETRY-BASEL}, Year = {2023}, Volume = {15}, Number = {3}, Month = {MAR}, Abstract = {Traffic congestion is a serious challenge in urban areas. So, to address this challenge, the intelligent traffic management system (ITMS) is used to manage traffic on road networks. Managing traffic helps to focus on environmental impacts as well as emergency situations. However, the ITMS system has many challenges in analyzing scenes of complex traffic. New technologies such as computer vision (CV) and artificial intelligence (AI) are being used to solve these challenges. As a result, these technologies have made a distinct identity in the surveillance industry, particularly when it comes to keeping a constant eye on traffic scenes. There are many vehicle attributes and existing approaches that are being used in the development of ITMS, along with imaging technologies. In this paper, we reviewed the ITMS-based components that describe existing imaging technologies and existing approaches on the basis of their need for developing ITMS. The first component describes the traffic scene and imaging technologies. The second component talks about vehicle attributes and their utilization in existing vehicle-based approaches. The third component explains the vehicle's behavior on the basis of the second component's outcome. The fourth component explains how traffic-related applications can assist in the management and monitoring of traffic flow, as well as in the reduction of congestion and the enhancement of road safety. The fifth component describes the different types of ITMS applications. The sixth component discusses the existing methods of traffic signal control systems (TSCSs). Aside from these components, we also discuss existing vehicle-related tools such as simulators that work to create realistic traffic scenes. In the last section named discussion, we discuss the future development of ITMS and draw some conclusions. The main objective of this paper is to discuss the possible solutions to different problems during the development of ITMS in one place, with the help of components that would play an important role for an ITMS developer to achieve the goal of developing efficient ITMS.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Nigam, N (Corresponding Author), Maulana Azad Natl Inst Technol, Comp Sci \& Engn Dept, Bhopal 462003, Madhya Pradesh, India. Nigam, Nikhil; Singh, Dhirendra Pratap; Choudhary, Jaytrilok, Maulana Azad Natl Inst Technol, Comp Sci \& Engn Dept, Bhopal 462003, Madhya Pradesh, India.}, DOI = {10.3390/sym15030583}, Article-Number = {583}, EISSN = {2073-8994}, Keywords = {intelligent traffic management system (ITMS); vehicle detection; vehicle tracking; traffic signal control systems (TSCSs); simulators}, Keywords-Plus = {VEHICLE TRAJECTORY PREDICTION; ANOMALY DETECTION; OPTIMIZATION; CLASSIFICATION; SURVEILLANCE; RECOGNITION; IMAGES; MODEL; IDENTIFICATION; ALGORITHMS}, Research-Areas = {Science \& Technology - Other Topics}, Web-of-Science-Categories = {Multidisciplinary Sciences}, Author-Email = {193112013@stu.manit.ac.in}, Affiliations = {National Institute of Technology (NIT System); Maulana Azad National Institute of Technology Bhopal}, Cited-References = {Ait Abdelali Hamd, 2021, Advances on Smart and Soft Computing. Proceedings of ICACIn 2020. Advances in Intelligent Systems and Computing (AISC 1188), P517, DOI 10.1007/978-981-15-6048-4\_45. Al-qaness MAA, 2021, COMPUTING, V103, P211, DOI 10.1007/s00607-020-00869-8. Al-Shemarry MS, 2018, EXPERT SYST APPL, V92, P216, DOI 10.1016/j.eswa.2017.09.036. Alam A, 2022, CONCURRENT ENG-RES A, V30, P148, DOI 10.1177/1063293X211069193. Ali A.M., 2020, P 6 INT C ENG MIS 20, P1, DOI {[}10.5772/intechopen.90738, DOI 10.5772/INTECHOPEN.90738]. Anirudh R., 2022, P 2022 INT C INNOVAT, P1. {[}Anonymous], DEV GUID DIST MATR A. {[}Anonymous], DEV LOCATION BASED S. Ariff FNM, 2020, INT CONF SYST ENG, P228, DOI 10.1109/ICSET51301.2020.9265387. Armas R, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0188757. Arunmozhi A, 2018, INT CONF ELECTRO INF, P362. Atibi M, 2015, PROCEDIA COMPUT SCI, V73, P24, DOI 10.1016/j.procs.2015.12.044. Avery RP, 2004, ITSC 2004: 7TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, P737, DOI 10.1109/ITSC.2004.1398994. Azeez Bayar, 2020, 2020 6th International Engineering Conference, Sustainable Technology and Development (IEC). Proceedings, P185, DOI 10.1109/IEC49899.2020.9122929. Bastani V., 2014, P 2014 IEEE INT WORK, P1. Bin Zuraimi MA, 2021, 11TH IEEE SYMPOSIUM ON COMPUTER APPLICATIONS \& INDUSTRIAL ELECTRONICS (ISCAIE 2021), P23, DOI 10.1109/ISCAIE51753.2021.9431784. Bismantoko S., 2020, MAJ ILM PENGKAJ IND, V14, P145, DOI {[}10.29122/mipi.v14i2.4198, DOI 10.29122/MIPI.V14I2.4198]. Bouktif S, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21072302. Chabot Florian, 2017, P IEEE C COMP VIS PA, P2040. Chacha Chen H.W., 2020, P 34 AAAI C ARTIFICI. Chen CH, 2008, ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, PROCEEDINGS, P573, DOI 10.1109/ISDA.2008.319. Chen RB, 2012, PHYSCS PROC, V24, P1350, DOI 10.1016/j.phpro.2012.02.201. Chen XZ, 2018, IEEE T PATTERN ANAL, V40, P1259, DOI 10.1109/TPAMI.2017.2706685. Chen YY, 2016, 2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P132, DOI 10.1109/ITSC.2016.7795543. Chen ZZ, 2012, IEEE INT C INTELL TR, P951, DOI 10.1109/ITSC.2012.6338852. Choi S, 2019, PROCEDIA COMPUT SCI, V151, P327, DOI 10.1016/j.procs.2019.04.046. Chu TS, 2020, IEEE T INTELL TRANSP, V21, P1086, DOI 10.1109/TITS.2019.2901791. Cities, US. Dai A, 2017, PROC CVPR IEEE, P6545, DOI 10.1109/CVPR.2017.693. Dampage S. U., 2020, 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), P63, DOI 10.1109/GUCON48875.2020.9231222. Dave P, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.586. Deo Nachiket, 2018, IEEE T INTELL VEHICL, V3, P129. Djenouri Y, 2022, PATTERN RECOGN LETT, V158, P42, DOI 10.1016/j.patrec.2022.04.012. Dong CQ, 2019, 2019 5TH INTERNATIONAL CONFERENCE ON TRANSPORTATION INFORMATION AND SAFETY (ICTIS 2019), P1352, DOI 10.1109/ICTIS.2019.8883791. Dongjin Han, 2005, Proceedings. 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS) (IEEE Cat. No. 05EX1178), P285. Essien A, 2021, WORLD WIDE WEB, V24, P1345, DOI 10.1007/s11280-020-00800-3. Fathi M, 2022, ARCH COMPUT METHOD E, V29, P1247, DOI 10.1007/s11831-021-09616-4. Fedotov V, 2018, TRANSP RES PROC, V36, P173, DOI 10.1016/j.trpro.2018.12.060. FREUND Y, 1995, INFORM COMPUT, V121, P256, DOI 10.1006/inco.1995.1136. Rachmadi RF, 2018, Arxiv. Gao KZ, 2017, SWARM EVOL COMPUT, V37, P58, DOI 10.1016/j.swevo.2017.05.002. Gao Q, 2007, 2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, P2964, DOI 10.1109/ICAL.2007.4339089. Gaonkar N.U., 2021, INT J PROD RES, V9, P2002, DOI {[}10.22214/ijraset.2021.37630, DOI 10.22214/IJRASET.2021.37630]. Ghanim MS, 2015, J INTELL TRANSPORT S, V19, P327, DOI 10.1080/15472450.2014.936292. Girshick R., 2014, IEEE C COMP VIS PATT, P580, DOI DOI 10.1109/CVPR.2014.81. Girshick R, 2015, IEEE I CONF COMP VIS, P1440, DOI 10.1109/ICCV.2015.169. Guo JY, 2022, Arxiv. Guo JM, 2008, IEEE T VEH TECHNOL, V57, P1417, DOI 10.1109/TVT.2007.909284. Guo-Wu Yuan, 2014, Information Technology Journal, V13, P1863, DOI 10.3923/itj.2014.1863.1867. Gupte S, 2002, IEEE T INTELL TRANSP, V3, P37, DOI 10.1109/6979.994794. Hamdi S, 2021, J IMAGING, V7, DOI 10.3390/jimaging7050090. Hassouna FMA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12197878. He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI {[}10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]. Hikvision, US. Hu TY, 2012, J TRANSP ENG, V138, P1040, DOI 10.1061/(ASCE)TE.1943-5436.0000404. Hu WM, 2004, IEEE T SYST MAN CY C, V34, P334, DOI 10.1109/TSMCC.2004.829274. Huang H, 2008, PROCEEDINGS OF THE 11TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, P298, DOI 10.1109/ITSC.2008.4732559. Indrabayu, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND CYBERNETICS, P115, DOI 10.1109/CyberneticsCom.2016.7892577. Jagannathan P, 2021, WIREL COMMUN MOB COM, V2021, DOI 10.1155/2021/5590894. Javadi S, 2021, IEEE ACCESS, V9, P8381, DOI 10.1109/ACCESS.2021.3049741. Jia HF, 2019, ADV MECH ENG, V11, DOI 10.1177/1687814019842498. Jiang TP, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/6693562. Kaltsa V, 2015, IEEE T IMAGE PROCESS, V24, P2153, DOI 10.1109/TIP.2015.2409559. Karungaru Stephen, 2021, International Journal of Machine Learning and Computing, V11, P304, DOI 10.18178/ijmlc.2021.11.4.1052. Keck M, 2013, IEEE WORK APP COMP, P441, DOI 10.1109/WACV.2013.6475052. Khalkhali MB, 2020, IEEE T INTELL TRANSP, V21, P1131, DOI 10.1109/TITS.2019.2902664. Kim T, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20154126. Klinjun N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132212467. Kumar D, 2017, VISUAL COMPUT, V33, P265, DOI 10.1007/s00371-015-1192-x. Kumar N, 2022, IEEE T INTELL TRANSP, V23, P2411, DOI 10.1109/TITS.2021.3095161. Kurniawan A., 2017, P INT C ENG TECHNOLO. Kusuma T., 2022, INT J KNOWL-BASED IN, VVolume 7. Lee SH, 2015, I SYMP CONSUM ELECTR. Lenkei Z., 2018, THESIS KTH ROYAL I T. Li B, 2017, IEEE INT C INT ROBOT, P1513. Li DL, 2021, IEEE T INTELL TRANSP, V22, P3146, DOI 10.1109/TITS.2020.2982804. Li H, 2019, IEEE T INTELL TRANSP, V20, P1126, DOI 10.1109/TITS.2018.2847291. Li QP, 2018, Arxiv. Li X, 2019, J INTELL TRANSPORT S, V23, P370, DOI 10.1080/15472450.2018.1504294. Li ZC, 2015, J ADV TRANSPORT, V49, P153, DOI 10.1002/atr.1274. Liang X, 2020, IEEE T CIRC SYST VID, V30, P1758, DOI 10.1109/TCSVT.2019.2905881. Liang X, 2020, TRANSPORT RES C-EMER, V111, P156, DOI 10.1016/j.trc.2019.11.008. Liu SR, 2022, IEEE CONF TECH SUST, P100, DOI 10.1109/SusTech53338.2022.9794168. Liu Y, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23111490. Lowe D., 1999, P INT C COMP VIS, V2, P1150, DOI DOI 10.1109/ICCV.1999.790410. Lu L, 2019, IEEE T INTELL TRANSP, V20, P1774, DOI 10.1109/TITS.2018.2835471. Luo WH, 2021, ARTIF INTELL, V293, DOI 10.1016/j.artint.2020.103448. Ma XX, 2005, IEEE I CONF COMP VIS, P1185. Madhogaria S, 2015, IEEE T AERO ELEC SYS, V51, P575, DOI 10.1109/TAES.2014.120141. Mao YX, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2019), P282, DOI 10.1109/ICAIBD.2019.8836980. Miller N, 2015, 2015 12TH CONFERENCE ON COMPUTER AND ROBOT VISION CRV 2015, P269, DOI 10.1109/CRV.2015.42. Ming Yin, 2007, 2007 IEEE Intelligent Transportation Systems Conference, P736. Mir A., 2018, P 2018 IEEE INT C ME, P816. Mittal U., 2020, P 2020 8 INT C RELIA, P396. Musaddid Ahmad Taufiq, 2019, 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), P279, DOI 10.1109/ISRITI48646.2019.9034614. Naiudomthum S, 2022, ATMOSPHERE-BASEL, V13, DOI 10.3390/atmos13111803. Olsen L, 2009, COMPUT GRAPH-UK, V33, P85, DOI 10.1016/j.cag.2008.09.013. Ondruska P, 2016, AAAI CONF ARTIF INTE, P3361. ons, US. Opelt A, 2008, INT J COMPUT VISION, V80, P16, DOI 10.1007/s11263-008-0139-3. Park B, 2009, TRANSPORT RES REC, P76, DOI 10.3141/2128-08. Petrovic V.S., 2004, P BMVC, VVolume 2, P587. Qi CR, 2017, ADV NEUR IN, V30. Rajeshwari M., 2021, 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), P845, DOI 10.1109/ICECA52323.2021.9675957. Rani N.S., 2015, INT J ELECT COMPUT E, V5, P869. Rath M., 2018, IOP C SERIES MAT SCI, VVolume 377, P012201. Redmon J., 2018, ARXIV, DOI DOI 10.48550/ARXIV.1804.02767. Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031. Rin V, 2019, 2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), P304, DOI 10.1109/CCOMS.2019.8821772. Saligrama V, 2010, IEEE SIGNAL PROC MAG, V27, P18, DOI 10.1109/MSP.2010.937393. Samuel D.J., 2021, SVD GAN REAL TIME UN. Santhosh KK, 2021, IEEE T CYBERNETICS, V51, P4148, DOI 10.1109/TCYB.2019.2931139. Saur G., 2014, P VIDEO SURVEILLANCE, V9026, P128. Sharma A., 2017, EVALUATION OPPORTUNI. Shi WG, 2020, KSCE J CIV ENG, V24, P624, DOI {[}10.1007/s12205-020-1837-9, 10.1007/s12205-019-1837-9]. Shi XF, 2005, LECT NOTES COMPUT SC, V3483, P1159. Shobana K., 2010, International Journal of Enterprise Network Management, V4, P3, DOI 10.1504/IJENM.2010.034472. Siddharth R., 2020, IEEE Letters of the Computer Society, V3, P17, DOI 10.1109/LOCS.2020.2974703. Simon M, 2019, IEEE COMPUT SOC CONF, P1190, DOI 10.1109/CVPRW.2019.00158. Sommer L. W., 2016, P 2016 IEEE WINTER C, P1. Song JF, 2018, INT J PARALLEL PROG, V46, P859, DOI 10.1007/s10766-017-0543-9. Sonix, US. Sowmya B., 2021, IJRASET, V9, P3726, DOI {[}10.22214/ijraset.2021.35768, DOI 10.22214/IJRASET.2021.35768]. Srivastav N, 2017, PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), P613, DOI 10.1109/CONFLUENCE.2017.7943225. Srivastava S, 2017, APPL INTELL, V46, P113, DOI 10.1007/s10489-016-0827-6. Sudha D, 2020, SOFT COMPUT, V24, P17417, DOI 10.1007/s00500-020-05042-z. Sun W, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/3805320. Sun ZM, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10132199. Tan F., 2011, P 2011 3 INT WORKSHO, P1. Tao HJ, 2020, J REAL-TIME IMAGE PR, V17, P745, DOI 10.1007/s11554-019-00856-z. Tayara H, 2018, IEEE ACCESS, V6, P2220, DOI 10.1109/ACCESS.2017.2782260. Thaher T., 2019, INTELLIGENT COMPUTIN, P167. TomTom, CAR GPS LAT TOMTOM G. Vikhar P., 2020, IJITEE, V9, P2147, DOI {[}10.35940/ijitee.D1379.029420, DOI 10.35940/IJITEE.D1379.029420]. Vishwakarma S, 2013, VISUAL COMPUT, V29, P983, DOI 10.1007/s00371-012-0752-6. Vlachos M, 2002, PROC INT CONF DATA, P673, DOI 10.1109/ICDE.2002.994784. Vogel A, 2018, ELMAR PROC, P51. Wang CCR, 2008, IEEE T INTELL TRANSP, V9, P83, DOI 10.1109/TITS.2007.908572. Wang H, 2019, IEEE INTEL TRANSP SY, V11, P82, DOI 10.1109/MITS.2019.2903518. Wang MZ, 2022, J ADV TRANSPORT, V2022, DOI 10.1155/2022/6007485. Wang XG, 2006, LECT NOTES COMPUT SC, V3953, P110, DOI 10.1007/11744078\_9. Wang XG, 2013, PATTERN RECOGN LETT, V34, P3, DOI 10.1016/j.patrec.2012.07.005. Wang YN, 2022, IEEE T MOBILE COMPUT, V21, P2228, DOI 10.1109/TMC.2020.3033782. Wang YW, 2021, APPL INTELL, V51, P6837, DOI 10.1007/s10489-020-02184-3. Wang ZG, 2022, P I MECH ENG D-J AUT, V236, P1607, DOI 10.1177/09544070211036311. Wei Liu, 2016, Computer Vision - ECCV 2016. 14th European Conference. Proceedings: LNCS 9905, P21, DOI 10.1007/978-3-319-46448-0\_2. Wei Z., 2021, J PHYS C SERIES P 20, V2083. Wu BF, 2007, IET COMPUT VIS, V1, P2, DOI 10.1049/iet-cvi:20050132. Wu YN, 2010, INT J COMPUT VISION, V90, P198, DOI 10.1007/s11263-009-0287-0. Xie GT, 2018, IEEE T IND ELECTRON, V65, P5999, DOI 10.1109/TIE.2017.2782236. Xiu WQ, 2018, IEEE INT CONF ELECTR, P228. Xu YZ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16081325. Xue YJ, 2020, J ADV TRANSPORT, V2020, DOI 10.1155/2020/8850123. Yao YJ, 2013, IEEE INT C INTELL TR, P614, DOI 10.1109/ITSC.2013.6728299. Ye N, 2016, KSII T INTERNET INF, V10, P3150, DOI 10.3837/tiis.2016.07.016. Zaatouri K, 2018, 2018 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, EMBEDDED SYSTEMS AND COMMUNICATIONS (IINTEC), P16, DOI 10.1109/IINTEC.2018.8695293. Zafar I, 2007, PROC SPIE, V6496, DOI 10.1117/12.704592. Zeng K, 2014, 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014), P493, DOI 10.1109/IIAI-AAI.2014.104. Zhang D, 2018, IET INTELL TRANSP SY, V12, P578, DOI 10.1049/iet-its.2017.0313. Zhang JL, 2021, IEEE T IND INFORM, V17, P5012, DOI 10.1109/TII.2020.3007792. Zhang YS, 2016, IET INTELL TRANSP SY, V10, P445, DOI 10.1049/iet-its.2015.0141. Zhang Z., 2020, P 2020 IEEE INT C IN, VVolume 1, P557. Zhang ZH, 2022, TRANSP LETT, V14, P546, DOI 10.1080/19427867.2021.1906477. Zhao H., 2018, ARCH TRANSP, V46, DOI {[}10.5604/01.3001.0012.2109, DOI 10.5604/01.3001.0012.2109]. Zheng D, 2005, PATTERN RECOGN LETT, V26, P2431, DOI 10.1016/j.patrec.2005.04.014. Zhou JT, 2019, IEEE T INF FOREN SEC, V14, P2537, DOI 10.1109/TIFS.2019.2900907. Zhou Y, 2018, LECT NOTES COMPUT SC, V11066, P647, DOI 10.1007/978-3-030-00015-8\_56. Zhu D., 2009, P 2009 2 INT C IM SI, P1. Zhu QG, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13110284.}, Number-of-Cited-References = {169}, Times-Cited = {0}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {1}, Journal-ISO = {Symmetry-Basel}, Doc-Delivery-Number = {C0JM7}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000958886700001}, DA = {2023-04-22}, } @article{ WOS:000765648800001, Author = {Schwaller, Philippe and Vaucher, Alain C. and Laplaza, Ruben and Bunne, Charlotte and Krause, Andreas and Corminboeuf, Clemence and Laino, Teodoro}, Title = {Machine intelligence for chemical reaction space}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2022}, Volume = {12}, Number = {5}, Month = {SEP}, Abstract = {Discovering new reactions, optimizing their performance, and extending the synthetically accessible chemical space are critical drivers for major technological advances and more sustainable processes. The current wave of machine intelligence is revolutionizing all data-rich disciplines. Machine intelligence has emerged as a potential game-changer for chemical reaction space exploration and the synthesis of novel molecules and materials. Herein, we will address the recent development of data-driven technologies for chemical reaction tasks, including forward reaction prediction, retrosynthesis, reaction optimization, catalysts design, inference of experimental procedures, and reaction classification. Accurate predictions of chemical reactivity are changing the R\&D processes and, at the same time, promoting an accelerated discovery scheme both in academia and across chemical and pharmaceutical industries. This work will help to clarify the key contributions in the fields and the open challenges that remain to be addressed. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Computer Algorithms and Programming Data Science > Chemoinformatics}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Schwaller, P (Corresponding Author), IBM Res Europe, CH-8803 Ruschlikon, Switzerland. Schwaller, Philippe; Vaucher, Alain C.; Laino, Teodoro, IBM Res Europe, CH-8803 Ruschlikon, Switzerland. Schwaller, Philippe; Vaucher, Alain C.; Laplaza, Ruben; Bunne, Charlotte; Krause, Andreas; Corminboeuf, Clemence; Laino, Teodoro, Natl Ctr Competence Res Catalysis NCCR Catalysis, Zurich, Switzerland. Laplaza, Ruben; Corminboeuf, Clemence, Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci \& Engn, Lausanne, Switzerland. Bunne, Charlotte; Krause, Andreas, Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland.}, DOI = {10.1002/wcms.1604}, EarlyAccessDate = {MAR 2022}, Article-Number = {e1604}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {artificial intelligence; chemical reactions; computer-assisted synthesis planning; data-driven approaches; machine intelligence}, Keywords-Plus = {REACTION PREDICTION; ORGANIC-CHEMISTRY; MOLECULAR DESIGN; NEURAL-NETWORKS; KNOWLEDGE-BASE; LINE NOTATION; COMPUTER; OPTIMIZATION; RETROSYNTHESIS; REPRESENTATION}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {philippe.schwaller@epfl.ch}, Affiliations = {Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; Swiss Federal Institutes of Technology Domain; ETH Zurich}, ResearcherID-Numbers = {Schwaller, Philippe/ABG-4328-2021 Laplaza, Rubén/L-9562-2019 LAPLAZA, Rubén/A-9529-2019 }, ORCID-Numbers = {Schwaller, Philippe/0000-0003-3046-6576 LAPLAZA, Rubén/0000-0001-6315-4398 Krause, Andreas/0000-0001-7260-9673 Vaucher, Alain/0000-0001-7554-0288 Bunne, Charlotte/0000-0003-1431-103X}, Funding-Acknowledgement = {Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung {[}180544]}, Funding-Text = {Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung, Grant/Award Number: 180544}, Cited-References = {Ahneman DT, 2018, SCIENCE, V360, P186, DOI 10.1126/science.aar5169. Andersen M, 2021, ACCOUNTS CHEM RES, V54, P2741, DOI 10.1021/acs.accounts.1c00153. {[}Anonymous], DAYLIGHT THEORY SMIL. Ash S, 1997, J CHEM INF COMP SCI, V37, P71, DOI 10.1021/ci960109j. Banerjee S, 2018, PHYS CHEM CHEM PHYS, V20, P18311, DOI 10.1039/c8cp03141j. Beker W, 2019, ANGEW CHEM INT EDIT, V58, P4515, DOI 10.1002/anie.201806920. Bi H., 2021, P 38 INT C MACH LEAR, P904. Bickerton GR, 2012, NAT CHEM, V4, P90, DOI {[}10.1038/NCHEM.1243, 10.1038/nchem.1243]. BITTRACHER A, 2018, J CHEM PHYS, V149. Boitreaud J, 2020, J CHEM INF MODEL, V60, P5658, DOI 10.1021/acs.jcim.0c00833. Bradshaw J., 2019, 7 INT C LEARN REPR. Bradshaw J., 2020, NEURIPS, V33, P6852. Bradshaw J., 2019, ARXIV190605221. Brandt S, 2018, J PHYS CHEM LETT, V9, P2144, DOI 10.1021/acs.jpclett.8b00759. Burger B, 2020, NATURE, V583, P237, DOI 10.1038/s41586-020-2442-2. Button A, 2019, NAT MACH INTELL, V1, P307, DOI 10.1038/s42256-019-0067-7. CHEN B, 2020, INT C MACH LEARN, P1608. Chen L., 2008, HDB CHEMOINFORMATICS, P348. Chen S, 2021, JACS AU, V1, P1612, DOI 10.1021/jacsau.1c00246. Chen WL, 2013, WIRES COMPUT MOL SCI, V3, P560, DOI 10.1002/wcms.1140. Christensen AS, 2020, J CHEM PHYS, V152, DOI 10.1063/1.5126701. Chuang KV, 2018, SCIENCE, V362, DOI 10.1126/science.aat8603. Coley CW, 2019, SCIENCE, V365, P557, DOI 10.1126/science.aax1566. Coley CW, 2019, CHEM SCI, V10, P370, DOI 10.1039/c8sc04228d. Coley CW, 2017, ACS CENTRAL SCI, V3, P1237, DOI 10.1021/acscentsci.7b00355. Coley CW, 2017, ACS CENTRAL SCI, V3, P434, DOI 10.1021/acscentsci.7b00064. Cordova M, 2020, ACS CATAL, V10, P7021, DOI 10.1021/acscatal.0c00774. COREY E. J., 1967, PURE APPL CHEM, V14, P19, DOI 10.1351/pac196714010019. COREY EJ, 1972, J AM CHEM SOC, V94, P421, DOI 10.1021/ja00757a020. COREY EJ, 1985, SCIENCE, V228, P408, DOI 10.1126/science.3838594. Dai HJ, 2019, ADV NEUR IN, V32. DALBY A, 1992, J CHEM INF COMP SCI, V32, P244, DOI 10.1021/ci00007a012. Dan YB, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00352-0. De Cao N., 2018, PROC INT C MACH LEAR. Delannee V, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00476-x. Do K, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P750, DOI 10.1145/3292500.3330958. Dolenc J, 2022, J CHEM INF MODEL, V62, P6704, DOI 10.1021/acs.jcim.2c00516. Duan HL, 2020, RSC ADV, V10, P1371, DOI 10.1039/c9ra08535a. Dugundji J., 1973, TOP CURR CHEM, P19, DOI DOI 10.1007/BFB0051317. Elton DC, 2019, MOL SYST DES ENG, V4, P828, DOI 10.1039/c9me00039a. Engkvist O, 2018, DRUG DISCOV TODAY, V23, P1203, DOI 10.1016/j.drudis.2018.02.014. Estrada JG, 2018, SCIENCE, V362, DOI 10.1126/science.aat8763. Eyke NS, 2020, REACT CHEM ENG, V5, P1963, DOI 10.1039/d0re00232a. Felton Kobi C., 2021, Chemistry Methods, V1, P116, DOI 10.1002/cmtd.202000051. Fitzner M, 2020, CHEM SCI, V11, P13085, DOI 10.1039/d0sc04074f. Fooshee D, 2018, MOL SYST DES ENG, V3, P442, DOI 10.1039/c7me00107j. Fortunato ME, 2020, J CHEM INF MODEL, V60, P3398, DOI 10.1021/acs.jcim.0c00403. Friederich P, 2020, CHEM SCI, V11, P4584, DOI 10.1039/d0sc00445f. FUJITA S, 1986, J CHEM INF COMP SCI, V26, P205, DOI 10.1021/ci00052a009. Gallarati S, 2021, CHEM SCI, V12, P6879, DOI 10.1039/d1sc00482d. Gao CW, 2016, COMPUT PHYS COMMUN, V203, P212, DOI 10.1016/j.cpc.2016.02.013. Gao HY, 2021, J CHEM INF MODEL, V61, P493, DOI 10.1021/acs.jcim.0c01032. Gao HY, 2020, REACT CHEM ENG, V5, P367, DOI {[}10.1039/c9re00348g, 10.1039/C9RE00348G]. Gao HY, 2018, ACS CENTRAL SCI, V4, P1465, DOI 10.1021/acscentsci.8b00357. Gao WH, 2020, J CHEM INF MODEL, V60, P5714, DOI 10.1021/acs.jcim.0c00174. GASTEIGER J, 1992, RECL TRAV CHIM PAY B, V111, P270. GASTEIGER J, 1987, TOP CURR CHEM, V137, P19. Gasteiger J., 1978, ORGANIC COMPOUNDS, P93, DOI {[}10.1007/BFb0050147, DOI 10.1007/BFB0050147]. GELERNTER H, 1990, J CHEM INF COMP SCI, V30, P492, DOI 10.1021/ci00068a023. GELERNTER HL, 1977, SCIENCE, V197, P1041, DOI 10.1126/science.197.4308.1041. Genheden S, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00472-1. Ghiandoni GM, 2019, J CHEM INF MODEL, V59, P4167, DOI 10.1021/acs.jcim.9b00537. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Gottipati SK, 2020, PR MACH LEARN RES, V119. Grambow CA, 2020, SCI DATA, V7, DOI 10.1038/s41597-020-0460-4. Grambow CA, 2020, J PHYS CHEM LETT, V11, P2992, DOI 10.1021/acs.jpclett.0c00500. Granda JM, 2018, NATURE, V559, P377, DOI 10.1038/s41586-018-0307-8. Grisoni F, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abg3338. Guan YF, 2021, CHEM SCI, V12, P2198, DOI 10.1039/d0sc04823b. Guo ZL, 2020, J CHEM INF MODEL, V60, P4474, DOI 10.1021/acs.jcim.0c00320. Hase F, 2018, ACS CENTRAL SCI, V4, P1134, DOI 10.1021/acscentsci.8b00307. Heifets A., 2012, P AAAI C ART INT, V26. Heinen S, 2021, J CHEM PHYS, V155, DOI 10.1063/5.0059742. Heinen S, 2020, MACH LEARN-SCI TECHN, V1, DOI 10.1088/2632-2153/ab6ac4. HENDRICKSON JB, 1971, J AM CHEM SOC, V93, P6847, DOI 10.1021/ja00754a026. Hoonakker F, 2011, INT J ARTIF INTELL T, V20, P253, DOI 10.1142/S0218213011000140. Huang B, 2020, NAT CHEM, V12, P945, DOI 10.1038/s41557-020-0527-z. Ihlenfeldt WD, 1995, ANGEW CHEM INT EDIT, V34, P2613. Jiang S, 2021, IEEE ACCESS, V9, P85071, DOI 10.1109/ACCESS.2021.3083838. Jin W., 2017, ADV NEURAL INFORM PR, V30, P2607. Jones DR, 1998, J GLOBAL OPTIM, V13, P455, DOI 10.1023/A:1008306431147. JORGENSEN WL, 1990, PURE APPL CHEM, V62, P1921, DOI 10.1351/pac199062101921. Jorner K, 2021, CHEM SCI, V12, P1163, DOI 10.1039/d0sc04896h. Judson PN, 2020, J CHEM INF MODEL, V60, P3336, DOI 10.1021/acs.jcim.0c00448. Karpov P, 2019, LECT NOTES COMPUT SC, V11731, P817, DOI 10.1007/978-3-030-30493-5\_78. Kayala MA, 2012, J CHEM INF MODEL, V52, P2526, DOI 10.1021/ci3003039. Kayala MA, 2011, J CHEM INF MODEL, V51, P2209, DOI 10.1021/ci200207y. Kearnes SM, 2021, J AM CHEM SOC, V143, P18820, DOI 10.1021/jacs.1c09820. Kim E, 2021, J CHEM INF MODEL, V61, P123, DOI 10.1021/acs.jcim.0c01074. Kim J, 2021, ARXIV PREPRINT ARXIV. Kingma D., 2014, 14126980 ARXIV, DOI DOI 10.48550/ARXIV.1412.6980. Klucznik T, 2018, CHEM-US, V4, P522, DOI 10.1016/j.chempr.2018.02.002. Korovina K, 2020, PR MACH LEARN RES, V108, P3393. Kovacs DP, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-21895-w. Krenn M, 2020, MACH LEARN-SCI TECHN, V1, DOI 10.1088/2632-2153/aba947. Kreutter D, 2021, CHEM SCI, DOI 10.1039/d1sc02362d. Lee AA, 2019, CHEM COMMUN, V55, P12152, DOI 10.1039/c9cc05122h. Lee J, 2020, SCI ROBOT, V5, DOI 10.1126/scirobotics.abc5986. Lemm D, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-24525-7. Li X., 2020, ANGEW CHEM, V132, P13355. Lin A., 2020, MOL INFORM. Lin KJ, 2020, CHEM SCI, V11, P3355, DOI 10.1039/c9sc03666k. Liu BW, 2017, ACS CENTRAL SCI, V3, P1103, DOI 10.1021/acscentsci.7b00303. Lowe D. M., 2012, THESIS U CAMBRIDGE. Lowe Daniel., 2017, CHEM REACTIONS US PA, V6. Ma SC, 2020, ACS CATAL, V10, P13213, DOI 10.1021/acscatal.0c03472. Mann V, 2021, AICHE J, V67, DOI 10.1002/aic.17190. Maser MR, 2021, J CHEM INF MODEL, V61, P156, DOI 10.1021/acs.jcim.0c01234. Meyer B, 2018, CHEM SCI, V9, P7069, DOI 10.1039/c8sc01949e. Mikulak-Klucznik B, 2020, NATURE, V588, P83, DOI 10.1038/s41586-020-2855-y. Mo YM, 2021, CHEM SCI, V12, P1469, DOI 10.1039/d0sc05078d. Mockus J., 1975, OPTIMIZATION TECHNIQ, P400, DOI DOI 10.1007/3-540-07165-2\_55. Molga K, 2021, ACCOUNTS CHEM RES, V54, P1094, DOI 10.1021/acs.accounts.0c00714. Moon S, 2021, CHEM SCI, V12, P2931, DOI 10.1039/d0sc06222g. Nam J., 2016, ARXIV161209529. Nielsen MK, 2018, J AM CHEM SOC, V140, P5004, DOI 10.1021/jacs.8b01523. Nikitin F, 2020, PHYS CHEM CHEM PHYS, V22, P26478, DOI 10.1039/d0cp04748a. Pattanaik L, 2020, PHYS CHEM CHEM PHYS, V22, P23618, DOI 10.1039/d0cp04670a. Perera D, 2018, SCIENCE, V359, P429, DOI 10.1126/science.aap9112. Pesciullesi G, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18671-7. Probst D., 2021, NAT COMMUN, V13, P1. Probst D., 2021, CHEMRXIV2021MC870, DOI 10.33774/chemrxiv-2021-mc870. Probst D, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-0416-x. Puterman M.L., 2014, MARKOV DECISION PROC, DOI DOI 10.1002/9780470316887. Qian WW, 2020, THEOR COMP CHEM, DOI 10.26434/chemrxiv.11659563.v1. Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1. Ree N., 2021, J CHEM-NY, V13, P1. Rezende DJ, 2014, PR MACH LEARN RES, V32, P1278. Rinehart NI, 2021, ACCOUNTS CHEM RES, V54, P2041, DOI 10.1021/acs.accounts.0c00826. Rogal J, 2021, EUR PHYS J B, V94, DOI 10.1140/epjb/s10051-021-00233-5. Rogers D, 2010, J CHEM INF MODEL, V50, P742, DOI 10.1021/ci100050t. Romero PA, 2013, P NATL ACAD SCI USA, V110, pE193, DOI 10.1073/pnas.1215251110. Sacha M, 2021, J CHEM INF MODEL, V61, P3273, DOI 10.1021/acs.jcim.1c00537. Sandfort F, 2020, CHEM-US, V6, P1379, DOI 10.1016/j.chempr.2020.02.017. Santanilla AB, 2015, SCIENCE, V347, P49, DOI 10.1126/science.1259203. SATOH H, 1995, J CHEM INF COMP SCI, V35, P34, DOI 10.1021/ci00023a005. Schneider N, 2016, J CHEM INF MODEL, V56, P2336, DOI 10.1021/acs.jcim.6b00564. Schneider N, 2015, J CHEM INF MODEL, V55, P39, DOI 10.1021/ci5006614. Schreck JS, 2019, ACS CENTRAL SCI, V5, P970, DOI 10.1021/acscentsci.9b00055. Schwaller P., 2020, THEOR COMP CHEM, DOI 10.26434/chemrxiv.13286741.v1. Schwaller P, 2021, MACH LEARN-SCI TECHN, V2, DOI 10.1088/2632-2153/abc81d. Schwaller P, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abe4166. Schwaller P, 2021, NAT MACH INTELL, V3, P144, DOI 10.1038/s42256-020-00284-w. Schwaller P, 2020, CHEM SCI, V11, P3316, DOI 10.1039/c9sc05704h. Schwaller P, 2019, ACS CENTRAL SCI, V5, P1572, DOI 10.1021/acscentsci.9b00576. Schwaller P, 2018, CHEM SCI, V9, P6091, DOI 10.1039/c8sc02339e. Segler MHS, 2018, NATURE, V555, P604, DOI 10.1038/nature25978. Segler MHS, 2018, ACS CENTRAL SCI, V4, P120, DOI 10.1021/acscentsci.7b00512. Segler MHS, 2017, CHEM-EUR J, V23, P5966, DOI 10.1002/chem.201605499. Seidl P., 2021, ARXIV PREPRINT ARXIV. Seo SW, 2021, AAAI CONF ARTIF INTE, V35, P531. Shi C., 2020, INT C MACH LEARN, V119, P8818. Shibukawa R, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00452-5. Shields BJ, 2021, NATURE, V590, P89, DOI 10.1038/s41586-021-03213-y. Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270. Simm Gregor, 2020, ARXIV200207717, P8959. Singh AR, 2019, CATAL LETT, V149, P2347, DOI 10.1007/s10562-019-02705-x. Smith A, 2020, APPL CATAL B-ENVIRON, V263, DOI 10.1016/j.apcatb.2019.118257. Somnath V. R., 2021, ADV NEURAL INFORM PR, V34, P9405. Srinivas N, 2012, IEEE T INFORM THEORY, V58, P3250, DOI 10.1109/TIT.2011.2182033. Struble TJ, 2020, REACT CHEM ENG, V5, P896, DOI 10.1039/d0re00071j. Sutskever I., 2014, ADV NEURAL INF PROCE, P3104, DOI DOI 10.5555/2969033.2969173. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. Szymkuc S, 2016, ANGEW CHEM INT EDIT, V55, P5904, DOI 10.1002/anie.201506101. Tavakoli M., 2021, ARXIV PREPRINT ARXIV. Tetko IV, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19266-y. Thakkar A, 2020, J MED CHEM, V63, P8791, DOI 10.1021/acs.jmedchem.9b01919. Thakkar A, 2020, CHEM SCI, V11, P154, DOI 10.1039/c9sc04944d. Todd MH, 2005, CHEM SOC REV, V34, P247, DOI 10.1039/b104620a. Toniato A, 2021, NAT MACH INTELL, V3, P485, DOI 10.1038/s42256-021-00319-w. Turing AM., 1950, MIND, VLIX, P433, DOI {[}10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]. Ucak UV, 2021, J CHEMINFORMATICS, V13, DOI 10.1186/s13321-020-00482-z. Vaucher AC, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22951-1. Vaucher AC, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17266-6. VOLLMER JJ, 1983, J CHEM EDUC, V60, P192, DOI 10.1021/ed060p192. Walker E, 2019, J CHEM INF MODEL, V59, P3645, DOI 10.1021/acs.jcim.9b00313. Wang L, 2020, CHEM COMMUN, V56, P9368, DOI 10.1039/d0cc02657c. Wang XR, 2021, CHEM ENG J, V420, DOI 10.1016/j.cej.2021.129845. Wang XX, 2020, CHEM SCI, V11, P10959, DOI 10.1039/d0sc04184j. Warr WA, 2014, MOL INFORM, V33, P469, DOI 10.1002/minf.201400052. Watson IA, 2019, J CHEMINFORMATICS, V11, DOI 10.1186/s13321-018-0323-6. Weber JM, 2019, REACT CHEM ENG, V4, P1969, DOI 10.1039/c9re00213h. Wei JN, 2016, ACS CENTRAL SCI, V2, P725, DOI 10.1021/acscentsci.6b00219. WEININGER D, 1989, J CHEM INF COMP SCI, V29, P97, DOI 10.1021/ci00062a008. WEININGER D, 1988, J CHEM INF COMP SCI, V28, P31, DOI 10.1021/ci00057a005. Wipke W.T., 1977, COMPUTER ASSISTED OR, P97. WIPKE WT, 1974, J AM CHEM SOC, V96, P4825, DOI 10.1021/ja00822a020. Wodrich MD, 2021, ACCOUNTS CHEM RES, V54, P1107, DOI 10.1021/acs.accounts.0c00857. Wu YJ, 2021, CHEM COMMUN, V57, P4114, DOI 10.1039/d1cc00586c. Yan C., 2020, ARXIV PREPRINT ARXIV. Yang K, 2019, J CHEM INF MODEL, V59, P3370, DOI 10.1021/acs.jcim.9b00237. Yang Z, 2020, J MATER CHEM A, V8, P17507, DOI 10.1039/d0ta06203k. You JX, 2018, ADV NEUR IN, V31. Zahrt AF, 2019, SCIENCE, V363, P247, DOI 10.1126/science.aau5631. Zheng SJ, 2020, J CHEM INF MODEL, V60, P47, DOI 10.1021/acs.jcim.9b00949. Zhong M, 2020, NATURE, V581, P178, DOI 10.1038/s41586-020-2242-8.}, Number-of-Cited-References = {197}, Times-Cited = {9}, Usage-Count-Last-180-days = {36}, Usage-Count-Since-2013 = {94}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {4J5BT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000765648800001}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000702393800004, Author = {Snaphaan, Thom and Hardyns, Wim}, Title = {Utilizing geo-referenced imagery for systematic social observation of neighborhood disorder}, Journal = {COMPUTERS ENVIRONMENT AND URBAN SYSTEMS}, Year = {2021}, Volume = {90}, Month = {NOV}, Abstract = {Research methods in social science take advantage from broader trends such as digitalization and increasing computational power, however, this is an evolving explorative search. The main purpose of this article is to describe the methodological innovations in the collection and processing of geo-referenced imagery for the observation of neighborhood disorder. In this narrative review, attention is paid to advances in both the data sources and the data processing methods used. Neighborhood disorder is traditionally measured by means of survey methods and (systematic) (social) observations, but these methods have specific shortcomings, such as respectively the subjective measurement that does not deliver a valid measure of actual prevalence of disorderly phenomena and the intensive use of resources in terms of time and money. This has repercussions for (the interpretation of) the results based on these data. Today, scholars have innovative data sources and cutting-edge data processing methods at their disposal that can meet (some of) these shortcomings, but which have not yet been fully explored. In this article, the evolutions in the use of geo-referenced imagery for the observation of neighborhood disorder from the last 25 years are described with a focus on the empirical opportunities, and the methodological challenges and prospects. We conclude by outlining the road ahead: promising avenues for future research to exploit the full potential of `big primary data'.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Snaphaan, T (Corresponding Author), Univ Ghent, Dept Criminol Criminal Law \& Social Law, Univ Str 4, B-9000 Ghent, Belgium. Snaphaan, Thom; Hardyns, Wim, Univ Ghent, Dept Criminol Criminal Law \& Social Law, Univ Str 4, B-9000 Ghent, Belgium.}, DOI = {10.1016/j.compenvurbsys.2021.101691}, EarlyAccessDate = {AUG 2021}, Article-Number = {101691}, ISSN = {0198-9715}, EISSN = {1873-7587}, Keywords = {Artificial intelligence; Big data; Convolutional neural networks; Geo-referenced imagery; Neighborhood disorder; Systematic social observation}, Keywords-Plus = {GOOGLE STREET VIEW; BIG DATA; PHYSICAL DISORDER; BROKEN WINDOWS; CRIMINOLOGY; CRIME; REPLICATION; VALIDATION; ECOMETRICS; ERROR}, Research-Areas = {Computer Science; Engineering; Environmental Sciences \& Ecology; Geography; Operations Research \& Management Science; Public Administration}, Web-of-Science-Categories = {Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Studies; Geography; Operations Research \& Management Science; Regional \& Urban Planning}, Author-Email = {Thom.Snaphaan@UGent.be}, Affiliations = {Ghent University}, ResearcherID-Numbers = {Snaphaan, Thom/HPB-7575-2023}, Cited-References = {Aggarwal CC, 2018, NEURAL NETWORKS DEEP. Aghaabbasi M, 2018, J TRANSP GEOGR, V73, P185, DOI 10.1016/j.jtrangeo.2018.10.004. Amaya A, 2020, J SURV STAT METHODOL, V8, P89, DOI 10.1093/jssam/smz056. {[}Anonymous], 2002, SURVEY NONRESPONSE. {[}Anonymous], NATURE, DOI 10.1038/nature14539. {[}Anonymous], {*}{*}DATA OBJECT{*}{*}, DOI 10.3886/ICPSR13578.v1. Bader MDM, 2015, HEALTH PLACE, V31, P163, DOI 10.1016/j.healthplace.2014.10.012. Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012. Bell SL, 2015, AREA, V47, P88, DOI 10.1111/area.12152. Bernasco W., 2021, PROMISE PRACTICE APP. Bloch S, 2020, GEOGR REV, V110, P210, DOI 10.1111/gere.12357. Britz D., 2015, UNDERSTANDING CONVOL. Brunton-Smith I., 2018, OXFORD HDB ENV CRIMI, P293. CAMPBELL DT, 1959, PSYCHOL BULL, V56, P81, DOI 10.1037/h0046016. Clews C, 2016, BMC PUBLIC HEALTH, V16, DOI 10.1186/s12889-016-3115-9. Conley J, 2014, APPL SPAT ANAL POLIC, V7, P183, DOI 10.1007/s12061-013-9099-2. Curtis A, 2016, ANN AM ASSOC GEOGR, V106, P819. Dakin K, 2020, CRIME SCI, V9, DOI 10.1186/s40163-020-00122-9. Das S., 2017, CNN ARCHITECTURES LE. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Eykholt K, 2018, PROC CVPR IEEE, P1625, DOI 10.1109/CVPR.2018.00175. Gau JM, 2008, CRIMINOL PUBLIC POL, V7, P163, DOI DOI 10.1111/J.1745-9133.2008.00500.X. Gebru T, 2017, P NATL ACAD SCI USA, V114, P13108, DOI 10.1073/pnas.1700035114. Google, GOOGL CONTR STREET V. Groves RM, 2010, PUBLIC OPIN QUART, V74, P849, DOI 10.1093/poq/nfq065. Grubesic TH, 2018, LANDSCAPE URBAN PLAN, V169, P148, DOI 10.1016/j.landurbplan.2017.09.001. Gunning David, 2017, DEFENSE ADV RES PROJ, V2, P2, DOI DOI 10.1126/SCIROBOTICS.AAY7120. Hao K., 2019, MAKING FACE RECOGNIT. Hardyns W, 2019, CRIME DELINQUENCY, V65, P994, DOI 10.1177/0011128718788042. He L, 2017, COMPUT ENVIRON URBAN, V66, P83, DOI 10.1016/j.compenvurbsys.2017.08.001. Hipp JR, 2022, J QUANT CRIMINOL, V38, P537, DOI 10.1007/s10940-021-09506-9. Hoeben EM, 2018, J QUANT CRIMINOL, V34, P221, DOI 10.1007/s10940-016-9333-6. Hox J. J., 2005, ENCY SOCIAL MEASUREM, P593, DOI DOI 10.1016/B0-12-369398-5/00041-4. HSIEH Y. P., 2017, TOTAL SURVEY ERROR P, P23, DOI DOI 10.1002/9781119041702.CH2. Hwang J, 2017, AM J EPIDEMIOL, V186, P274, DOI 10.1093/aje/kwx005. Hwang J, 2014, AM SOCIOL REV, V79, P726, DOI 10.1177/0003122414535774. Janssen HJ, 2022, INT CRIM JUSTICE REV, V32, P429, DOI 10.1177/1057567719896020. Johnson TP, 2017, SPRING GEOGR, P113, DOI 10.1007/978-3-319-40902-3\_7. Kepper MM, 2017, AM J PREV MED, V52, pS20, DOI 10.1016/j.amepre.2016.06.010. Kim JH, 2021, COMPUT ENVIRON URBAN, V88, DOI 10.1016/j.compenvurbsys.2021.101626. Korbin CE, 2008, CRIMINOL PUBLIC POL, V7, P203, DOI DOI 10.1111/J.1745-9133.2008.00502.X. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Li H, 2018, SUSTAIN CITIES SOC, V38, P55, DOI 10.1016/j.scs.2017.12.020. Marco M, 2015, EUR J PSYCHOL APPL L, V7, P81, DOI 10.1016/j.ejpal.2015.05.001. Marr D., 1982, COMPUTATIONAL INVEST. Mastrofski SD, 2010, HANDBOOK OF QUANTITATIVE CRIMINOLOGY, P225, DOI 10.1007/978-0-387-77650-7\_12. McNeeley S, 2015, EUR J CRIMINOL, V12, P581, DOI 10.1177/1477370815578197. Mittal G, 2016, UBICOMP'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P940, DOI 10.1145/2971648.2971731. Mooney SJ, 2017, AM J EPIDEMIOL, V186, P265, DOI 10.1093/aje/kwx004. Morenoff JD, 2007, SOC SCI MED, V65, P1853, DOI 10.1016/j.socscimed.2007.05.038. Naik N, 2017, P NATL ACAD SCI USA, V114, P7571, DOI 10.1073/pnas.1619003114. Nelson MS, 2014, J CRIM JUSTICE EDUC, V25, P16, DOI 10.1080/10511253.2013.798005. O'Brien DT, 2019, ANNU REV CRIMINOL, V2, P53, DOI 10.1146/annurev-criminol-011518-024638. O'Brien DT, 2015, SOCIOL METHODOL, V45, P101, DOI 10.1177/0081175015576601. Oberwittler D, 2009, PUTTING CRIME IN ITS PLACE: UNITS OF ANALYSIS IN GEOGRAPHIC CRIMINOLOGY, P35, DOI 10.1007/978-0-387-09688-9\_2. Odgers CL, 2012, J CHILD PSYCHOL PSYC, V53, P1009, DOI 10.1111/j.1469-7610.2012.02565.x. Oliveira E. D., 2018, INT J CRIMINOL SOCIO, V7, P32, DOI {[}10.6000/1929-4409.2018.07.04, DOI 10.6000/1929-4409.2018.07.04]. Pridemore WA, 2018, ANNU REV CRIMINOL, V1, P19, DOI 10.1146/annurev-criminol-032317-091849. Raudenbush SW, 1999, SOCIOL METHODOL, V29, P1, DOI 10.1111/0081-1750.00059. Reiss AJ., 1971, SOCIOL METHODOL, V3, P3, DOI DOI 10.2307/270816. Ross CE, 2009, J HEALTH SOC BEHAV, V50, P49, DOI 10.1177/002214650905000104. Rundle AG, 2011, AM J PREV MED, V40, P94, DOI 10.1016/j.amepre.2010.09.034. Rzotkiewicz A, 2018, HEALTH PLACE, V52, P240, DOI 10.1016/j.healthplace.2018.07.001. Saha S., 2018, DATA SCI, V15. Samek, 2017, ARXIV PREPRINT ARXIV. Sampson RJ, 1999, AM J SOCIOL, V105, P603, DOI 10.1086/210356. Sampson RJ, 2004, SOC PSYCHOL QUART, V67, P319, DOI 10.1177/019027250406700401. Sampson RJ, 2013, CRIMINOLOGY, V51, P1, DOI 10.1111/1745-9125.12002. Sanchez J, 2011, PROC CVPR IEEE, P1665, DOI 10.1109/CVPR.2011.5995504. Sastry N, 2006, SOC SCI RES, V35, P1000, DOI 10.1016/j.ssresearch.2005.08.002. Schootman M, 2016, INT J HEALTH GEOGR, V15, DOI 10.1186/s12942-016-0050-z. Sharif M, 2016, CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1528, DOI 10.1145/2976749.2978392. Shet V., 2014, GO BACK TIME STREET. Singer E., 2004, SURV METHODOL. Skogan W. G., 1999, MEASURING WHAT MATTE, P36. Skogan Wesley, 2012, OXFORD HDB CRIME PRE. Snaphaan T., 2020, GERN RES PAPER SERIE, V6, P55. Sukel Maarten, 2020, ICMR `20: Proceedings of the 2020 International Conference on Multimedia Retrieval, P509, DOI 10.1145/3372278.3390708. Sukel M., 2020, URBAN OBJECT DETECTI. Sytsma VA, 2018, J RES CRIME DELINQ, V55, P78, DOI 10.1177/0022427817709502. Szegedy C., 2014, 3 INT C LEARN REPR I. TAYLOR RB, 1999, MEAS WHAT MATT P POL. Thakuriah P, 2017, SPRING GEOGR, P11, DOI 10.1007/978-3-319-40902-3\_2. Vandeviver C., 2014, CRIME SCI, V3, DOI {[}DOI 10.1186/S40163-014-0013-2, 10.1186/s40163-014-0013-2]. Wallace D, 2015, SOC SCI RES, V54, P177, DOI 10.1016/j.ssresearch.2015.06.013. Yang K, 2021, SKIN PHARMACOL PHYS, V34, P229, DOI 10.1159/000515962. Yang SM, 2015, J RES CRIME DELINQ, V52, P534, DOI 10.1177/0022427815580167. Zhang LC, 2012, STAT NEERL, V66, P41, DOI 10.1111/j.1467-9574.2011.00508.x.}, Number-of-Cited-References = {88}, Times-Cited = {2}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {9}, Journal-ISO = {Comput. Environ. Urban Syst.}, Doc-Delivery-Number = {UZ7PN}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000702393800004}, DA = {2023-04-22}, } @article{ WOS:000687767000007, Author = {An, Li and Grimm, Volker and Sullivan, Abigail and Turner, II, B. L. and Malleson, Nicolas and Heppenstall, Alison and Vincenot, Christian and Robinson, Derek and Ye, Xinyue and Liu, Jianguo and Lindkvist, Emilie and Tang, Wenwu}, Title = {Challenges, tasks, and opportunities in modeling agent-based complex systems}, Journal = {ECOLOGICAL MODELLING}, Year = {2021}, Volume = {457}, Month = {OCT 1}, Abstract = {Humanity is facing many grand challenges at unprecedented rates, nearly everywhere, and at all levels. Yet virtually all these challenges can be traced back to the decision and behavior of autonomous agents that constitute the complex systems under such challenges. Agent-based modeling has been developed and employed to address such challenges for a few decades with great achievements and caveats. This article reviews the advances of ABM in social, ecological, and socio-ecological systems, compare ABM with other traditional, equation-based models, provide guidelines for ABM novice, modelers, and reviewers, and point out the challenges and impending tasks that need to be addressed for the ABM community. We further point out great opportunities arising from new forms of data, data science and artificial intelligence, showing that agent behavioral rules can be derived through data mining and machine learning. Towards the end, we call for a new science of Agent-based Complex Systems (ACS) that can pave an effective way to tackle the grand challenges.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {An, L (Corresponding Author), San Diego State Univ, Ctr Complex Human Environm Syst, 5500 Campanile Dr, San Diego, CA 92182 USA. An, L (Corresponding Author), San Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USA. An, Li, San Diego State Univ, Ctr Complex Human Environm Syst, 5500 Campanile Dr, San Diego, CA 92182 USA. An, Li, San Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USA. Grimm, Volker, UFZ Helmholtz Ctr Environm Res, Dept Ecol Modelling, Permoserstr 15, D-04318 Leipzig, Germany. Sullivan, Abigail, Indiana Univ, Environm Resilience Inst, 717 E 8th St, Bloomington, IN 47408 USA. Turner, B. L., II, Arizona State Univ, Sch Geog Sci \& Urban Planning, POB 875302, Tempe, AZ USA. Turner, B. L., II, Arizona State Univ, Sch Sustainabil, POB 875302, Tempe, AZ USA. Malleson, Nicolas, Alan Turing Inst, British Lib, 96 Euston Rd, London NW1 2DB, England. Heppenstall, Alison, Univ Leeds, Ctr Spatial Anal \& Policy, Sch Geog, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England. Vincenot, Christian, Kyoto Univ, Dept Social Informat, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan. Robinson, Derek, Univ Waterloo, Dept Geog \& Environm Management, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. Ye, Xinyue, Texas A\&M Univ, Dept Landscape Architecture \& Urban Planning, College Stn, TX 77843 USA. Ye, Xinyue, Texas A\&M Univ, Urban Data Sci Lab, College Stn, TX 77843 USA. Liu, Jianguo, Michigan State Univ, Ctr Syst Integrat \& Sustainabil, E Lansing, MI 48823 USA. Lindkvist, Emilie, Stockholm Univ, Stockholm Resilience Ctr, Kraftriket 2B, S-10691 Stockholm, Sweden. Tang, Wenwu, Univ North Carolina Charlotte, Dept Geog \& Earth Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA.}, DOI = {10.1016/j.ecolmodel.2021.109685}, EarlyAccessDate = {AUG 2021}, Article-Number = {109685}, ISSN = {0304-3800}, EISSN = {1872-7026}, Keywords = {Agent-based complex systems; Agent-based modelling; Socioecological systems; Data science; Artificial intelligence}, Keywords-Plus = {SOCIAL-ECOLOGICAL SYSTEMS; HUMAN-ENVIRONMENT SYSTEM; LAND-USE; COUPLED HUMAN; COMPUTATIONAL MODEL; SIMULATION; DYNAMICS; FRAMEWORK; PROTOCOL; LESSONS}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Ecology}, Author-Email = {lan@sdsu.edu}, Affiliations = {California State University System; San Diego State University; California State University System; San Diego State University; Helmholtz Association; Helmholtz Center for Environmental Research (UFZ); Indiana University System; Indiana University Bloomington; Arizona State University; Arizona State University-Tempe; Arizona State University; Arizona State University-Tempe; University of Leeds; Kyoto University; University of Waterloo; Texas A\&M University System; Texas A\&M University College Station; Texas A\&M University System; Texas A\&M University College Station; Michigan State University; Stockholm University; University of North Carolina; University of North Carolina Charlotte}, ResearcherID-Numbers = {Liu, Jianguo/G-5211-2015 }, ORCID-Numbers = {Liu, Jianguo/0000-0001-6344-0087 Sullivan, Abigail/0000-0002-2746-859X Malleson, Nick/0000-0002-6977-0615}, Funding-Acknowledgement = {National Science Foundation (NSF) through the Method, Measure \& Statistics and Geography and Spatial Sciences (BCS) {[}1638446]; Dynamics of Integrated Socio-Environmental Systems programs {[}BCS 1826839, DEB 1924111]; European Research Council (ERC) under the European Union {[}757455]; ESRC/Alan Turing Joint Fellowship {[}ES/R007918/1]; MRC {[}MR/S037578/1, MR/S037578/2] Funding Source: UKRI}, Funding-Text = {We are indebted to financial support from the National Science Foundation (NSF) through the Method, Measure \& Statistics and Geography and Spatial Sciences (BCS \#1638446) and the Dynamics of Integrated Socio-Environmental Systems programs (BCS 1826839 and DEB 1924111). We thank the participants of the ABM 17 Symposium (sponsored by the above NSF grant; http://complexities.org/ABM17/) for input and comments. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 757455) and through an ESRC/Alan Turing Joint Fellowship (ES/R007918/1).}, Cited-References = {Abdulkareem SA, 2019, GEOINFORMATICA, V23, P243, DOI 10.1007/s10707-019-00347-0. Agar M, 2005, JASSS-J ARTIF SOC S, V8. An L, 2005, ANN ASSOC AM GEOGR, V95, P54, DOI 10.1111/j.1467-8306.2005.00450.x. An L., 2021, AGENT BASED COMPLEX. An L, 2020, JASSS-J ARTIF SOC S, V23, DOI 10.18564/jasss.4196. An L, 2015, ANN ASSOC AM GEOGR, V105, P891, DOI 10.1080/00045608.2015.1064510. An L, 2014, ANN ASSOC AM GEOGR, V104, P723, DOI 10.1080/00045608.2014.910085. An L, 2012, ECOL MODEL, V229, P25, DOI 10.1016/j.ecolmodel.2011.07.010. {[}Anonymous], INDIVIDUAL BASED MOD. Arthur WB, 1999, SCIENCE, V284, P107, DOI 10.1126/science.284.5411.107. Augusiak J, 2014, ECOL MODEL, V280, P117, DOI 10.1016/j.ecolmodel.2013.11.009. Axelrod R., 2006, HDB COMPUT EC, V2, P1647, DOI 10.1016/S1574-0021(05)02044-7. Axelrod R, 1999, HARNESSING COMPLEXIT. Bae J, 2008, STRATEG ORGAN, V6, P227, DOI 10.1177/1476127008093518. Banino A, 2018, NATURE, V557, P429, DOI 10.1038/s41586-018-0102-6. Bankes SC, 2002, P NATL ACAD SCI USA, V99, P7199, DOI 10.1073/pnas.072081299. Batty M, 2013, NEW SCIENCE OF CITIES, P1. Batty M., 1976, URBAN MODELLING ALGO. Batty M., 2008, DYNAMICS COMPLEX URB, P1, DOI DOI 10.1007/978-3-7908-1937-3\_1. Bin Othman N, 2015, J COMPUT SCI-NETH, V10, P338, DOI 10.1016/j.jocs.2015.03.006. Bonabeau E, 2002, P NATL ACAD SCI USA, V99, P7280, DOI 10.1073/pnas.082080899. Borrill PL, 2011, ELGAR COMPANION RECE, P228. Brantingham PL, 2005, IEEE SYS MAN CYBERN, P3667. Brown DG, 2008, GEOFORUM, V39, P805, DOI 10.1016/j.geoforum.2007.02.010. Cardinot M, 2019, SOFTWAREX, V9, P199, DOI 10.1016/j.softx.2019.02.009. Cheney D. L., 1992, MONKEYS SEE WORLD IN. Chimmula VKR, 2020, CHAOS SOLITON FRACT, V135, DOI 10.1016/j.chaos.2020.109864. Clay Robert, 2020, Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. 18th International Conference, PAAMS 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12092), P68, DOI 10.1007/978-3-030-49778-1\_6. Coleman J. S., 1987, MICRO MACRO LINK PP, P153. Conte R, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00668. Couclelis H., 2002, M CHALL COMPL SPEC W, P14. Crabtree SA, 2017, AM ANTIQUITY, V82, P71, DOI 10.1017/aaq.2016.18. Cranmer M., 2020, ADV NEUR IN. Crawford TW, 2005, ENVIRON PLANN B, V32, P792, DOI 10.1068/b3206ed. Crols T, 2019, GEOINFORMATICA, V23, P201, DOI 10.1007/s10707-019-00346-1. Crooks AT, 2010, INT J GEOGR INF SCI, V24, P661, DOI 10.1080/13658810903569572. Crooks AT, 2014, ENVIRON MODELL SOFTW, V62, P164, DOI 10.1016/j.envsoft.2014.08.027. Crooks AT, 2013, COMPUT ENVIRON URBAN, V41, P100, DOI 10.1016/j.compenvurbsys.2013.05.003. DeAngelis DL, 2019, FRONT ECOL EVOL, V6, DOI 10.3389/fevo.2018.00237. Ding YM, 1996, INT J GEOGR INF SYST, V10, P669, DOI 10.1080/026937996137792. Eliassen S, 2016, ECOL MODEL, V326, P90, DOI 10.1016/j.ecolmodel.2015.09.001. Eliassen S, 2009, AM NAT, V174, P478, DOI 10.1086/605370. Evans MR, 2013, TRENDS ECOL EVOL, V28, P578, DOI 10.1016/j.tree.2013.05.022. Fan WQ, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P417, DOI 10.1145/3308558.3313488. Folke C, 2010, ECOL SOC, V15, DOI 10.5751/es-03610-150420. Ghorbani A, 2015, JASSS-J ARTIF SOC S, V18, DOI 10.18564/jasss.2573. Gimblett H.R., 2002, INTEGRATING GEOGRAPH. Giske J, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1096. Giske J, 2013, AM NAT, V182, P689, DOI 10.1086/673533. Gong ZY, 2013, INT J GEOGR INF SCI, V27, P1152, DOI 10.1080/13658816.2012.741240. Grimm V, 1999, ECOL MODEL, V115, P129, DOI 10.1016/S0304-3800(98)00188-4. Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681. Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023. Grimm V, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17785-2. Grimm V, 2020, JASSS-J ARTIF SOC S, V23, DOI 10.18564/jasss.4259. Grimm V, 2016, ECOL MODEL, V326, P162, DOI 10.1016/j.ecolmodel.2015.07.018. Grimm V, 2014, ECOL MODEL, V280, P129, DOI 10.1016/j.ecolmodel.2014.01.018. Grimm V, 2012, PHILOS T R SOC B, V367, P298, DOI 10.1098/rstb.2011.0180. Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019. Grimm Volker, 2012, AGENT BASED MODELS G, P361. Groeneveld J, 2017, ENVIRON MODELL SOFTW, V87, P39, DOI 10.1016/j.envsoft.2016.10.008. Gross, 1992, INDIVIDUAL BASED MOD. Hassan S., 2008, EUR SOC SIM ASS ANN. Heckbert S, 2010, ANN NY ACAD SCI, V1185, P39, DOI 10.1111/j.1749-6632.2009.05286.x. Helbing D, 2015, J STAT PHYS, V158, P735, DOI 10.1007/s10955-014-1024-9. Heppenstall A, 2016, SYSTEMS-BASEL, V4, DOI 10.3390/systems4010009. Holovatch Y, 2017, EUR J PHYS, V38, P1, DOI 10.1088/1361-6404/aa5a87. HUSTON M, 1988, BIOSCIENCE, V38, P682, DOI 10.2307/1310870. Irwin EG, 2001, AGR ECOSYST ENVIRON, V85, P7, DOI 10.1016/S0167-8809(01)00200-6. Karimi M., 2019, ARXIV PREPRINT ARXIV. Karr JR, 2012, CELL, V150, P389, DOI 10.1016/j.cell.2012.05.044. Kennedy W.G., 2012, AGENT BASED MODELS G, P167, DOI DOI 10.1007/978-90-481-8927-4\_9. Kipf T.N., 2016, ARXIV. Klemmer K., 2019, ARXIV190509796. Kravari K, 2015, JASSS-J ARTIF SOC S, V18, DOI 10.18564/jasss.2661. Lau NC, 2013, J CLIMATE, V26, P9603, DOI 10.1175/JCLI-D-13-00151.1. Levin S., 2012, ENV DEV EC FIRSTVIEW, P1. Levin S, 2013, ENVIRON DEV ECON, V18, P111, DOI 10.1017/S1355770X12000460. LEVINS R, 1966, AM SCI, V54, P421. Lewars EG, 2011, COMPUTATIONAL CHEMISTRY: INTRODUCTION TO THE THEORY AND APPLICATIONS OF MOLECULAR AND QUANTUM MECHANICS, SECOND EDITION, P1, DOI 10.1007/978-90-481-3862-3. Ligmann-Zielinska A, 2020, JASSS-J ARTIF SOC S, V23, DOI 10.18564/jasss.4201. Lindkvist E, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175532. Lindkvist E, 2014, ECOL ECON, V104, P107, DOI 10.1016/j.ecolecon.2014.04.018. Liu J., 2014, COMPLEX DYNAMICS TEL. LIU JG, 1993, ECOL MODEL, V70, P63, DOI 10.1016/0304-3800(93)90073-2. Liu JG, 2007, SCIENCE, V317, P1513, DOI 10.1126/science.1144004. Liu JG, 2013, ECOL SOC, V18, DOI 10.5751/ES-05873-180226. Long Y, 2017, ACM TRANS SPAT ALGOR, V3, DOI 10.1145/3099471. Ma AD, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11020194. Makowsky MD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080380. Malanson GP, 2006, ENVIRON PLANN A, V38, P619, DOI 10.1068/a37340. Malleson N, 2020, JASSS-J ARTIF SOC S, V23, DOI 10.18564/jasss.4266. Malleson N, 2013, ENVIRON PLANN B, V40, P405, DOI 10.1068/b38057. Malleson N, 2010, COMPUT ENVIRON URBAN, V34, P236, DOI 10.1016/j.compenvurbsys.2009.10.005. Manson S.M., 2002, M CHALL COMPL SPEC W, P42. Manson SM, 2001, GEOFORUM, V32, P405, DOI 10.1016/S0016-7185(00)00035-X. Manson S, 2020, JASSS-J ARTIF SOC S, V23, DOI 10.18564/jasss.4174. Marr D, 2004, DARK VICTORY. Martin BT, 2013, AM NAT, V181, P506, DOI 10.1086/669904. Milner-Gulland EJ, 2012, PHILOS T R SOC B, V367, P270, DOI 10.1098/rstb.2011.0175. Muller B, 2013, ENVIRON MODELL SOFTW, V48, P37, DOI 10.1016/j.envsoft.2013.06.003. Murphy JM, 2004, NATURE, V430, P768, DOI 10.1038/nature02771. National Research Council, 2014, ADV LAND CHANG MOD O. Norberg J., 2008, COMPLEXITY THEORY SU. O'Sullivan D., 2012, AGENT BASED MODELS G, P109, DOI DOI 10.1007/978-90-481-8927-4. O'Sullivan D, 2015, ANN ASSOC AM GEOGR, V105, P704, DOI 10.1080/00045608.2015.1039105. Ostrom E, 2009, SCIENCE, V325, P419, DOI 10.1126/science.1172133. Parker DC, 2003, ANN ASSOC AM GEOGR, V93, P314, DOI 10.1111/1467-8306.9302004. Perc M, 2018, EUR J PHYS, V39, DOI 10.1088/1361-6404/aa903d. Polasky S, 2011, J ENVIRON ECON MANAG, V62, P229, DOI 10.1016/j.jeem.2010.09.004. Polhill JG, 2010, JASSS-J ARTIF SOC S, V13. Polhill JG, 2008, JASSS-J ARTIF SOC S, V11. Poteete AR, 2010, WORKING TOGETHER: COLLECTIVE ACTION, THE COMMONS, AND MULTIPLE METHODS IN PRACTICE, P1. Pumain D, 2013, ENVIRON PLANN A, V45, P2243, DOI 10.1068/a45620. Rai S, 2013, 2013 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY (IAT 2013), P171, DOI 10.1109/WI-IAT.2013.106. Railsback S.F., 2019, AGENT BASED INDIVIDU, V2nd. Railsback SF, 2002, ECOLOGY, V83, P1817, DOI 10.1890/0012-9658(2002)083{[}1817:AOHSRU]2.0.CO;2. Railsback SF, 2012, AGENT BASED INDIVIDU. Railsback S, 2017, JASSS-J ARTIF SOC S, V20, DOI 10.18564/jasss.3282. Railsback SF, 2006, SIMUL-T SOC MOD SIM, V82, P609, DOI 10.1177/0037549706073695. Railsback SF, 2013, TRENDS ECOL EVOL, V28, P119, DOI 10.1016/j.tree.2012.08.023. Ramanath A.M., 2004, J ARTIF SOC SOC SIMU, V7. RAO AS, 1991, PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, P473. Rindfuss RR, 2008, J LAND USE SCI, V3, P1, DOI 10.1080/17474230802047955. Robinson DT, 2007, J LAND USE SCI, V2, P31, DOI 10.1080/17474230701201349. Roughgarden J., 2012, BIENN M DIEG CA PHIL. Scheiter S, 2013, NEW PHYTOL, V198, P957, DOI 10.1111/nph.12210. Schill C, 2019, NAT SUSTAIN, V2, P1075, DOI 10.1038/s41893-019-0419-7. Schluter M, 2012, NAT RESOUR MODEL, V25, P219, DOI 10.1111/j.1939-7445.2011.00108.x. Schluter M, 2017, ECOL ECON, V131, P21, DOI 10.1016/j.ecolecon.2016.08.008. Schmidt B., 2002, P 14 EUR SIM S SCS E. Schmolke A, 2010, TRENDS ECOL EVOL, V25, P479, DOI 10.1016/j.tree.2010.05.001. Schulze J, 2017, JASSS-J ARTIF SOC S, V20, DOI 10.18564/jasss.3423. Seidl R, 2015, AMBIO, V44, P750, DOI 10.1007/s13280-015-0670-8. Seppelt R, 2005, ENVIRON MODELL SOFTW, V20, P1543, DOI 10.1016/j.envsoft.2004.12.004. Shaw SL, 2016, INT J GEOGR INF SCI, V30, P1687, DOI 10.1080/13658816.2016.1164317. Shook E, 2013, INT J GEOGR INF SCI, V27, P2160, DOI 10.1080/13658816.2013.771740. Sinsabaugh RL, 2013, ECOL LETT, V16, P930, DOI 10.1111/ele.12113. Stillman RA, 2015, BIOSCIENCE, V65, P140, DOI 10.1093/biosci/biu192. Swarup S., 2020, P 19 INT C AUT AG MU, P1721. Tang WW, 2014, ANN ASSOC AM GEOGR, V104, P485, DOI 10.1080/00045608.2014.892342. Tang WW, 2011, ECOL MODEL, V222, P3605, DOI 10.1016/j.ecolmodel.2011.08.016. Tang WW, 2011, J LAND USE SCI, V6, P121, DOI 10.1080/1747423X.2011.558597. Tang WW, 2010, ANN ASSOC AM GEOGR, V100, P1128, DOI 10.1080/00045608.2010.517739. Tang WW, 2009, T GIS, V13, P315, DOI 10.1111/j.1467-9671.2009.01161.x. Tesfatsion L, 2017, J ECON METHODOL, V24, P384, DOI 10.1080/1350178X.2017.1382068. Thiele JC, 2015, OIKOS, V124, P691, DOI 10.1111/oik.02170. Tubaro P., 2010, B SOCIOLOGICAL METHO, V106, P59. Turner BL, 2003, P NATL ACAD SCI USA, V100, P8080, DOI 10.1073/pnas.1231334100. Verburg PH, 2016, GLOBAL ENVIRON CHANG, V39, P328, DOI 10.1016/j.gloenvcha.2015.08.007. VidalMata RG, 2021, IEEE T PATTERN ANAL, V43, P4272, DOI 10.1109/TPAMI.2020.2996538. Vincenot CE, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2017.2360. Vincenot CE, 2016, FRONT ENV SCI-SWITZ, V4, DOI 10.3389/fenvs.2016.00053. Vincenot CE, 2011, ECOL MODEL, V222, P210, DOI 10.1016/j.ecolmodel.2010.09.029. Voinov A, 2010, ENVIRON MODELL SOFTW, V25, P1268, DOI 10.1016/j.envsoft.2010.03.007. Wang SW, 2013, INT J GEOGR INF SCI, V27, P2122, DOI 10.1080/13658816.2013.776049. Wang SW, 2003, PARALLEL COMPUT, V29, P1481, DOI 10.1016/j.parco.2003.04.003. Wang XD, 2019, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2019), P165, DOI 10.1145/3331184.3331267. Ward JA, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.150703. Wilensky U., 2015, INTRO AGENT BASED MO. Wilensky U., NETLOGO M. Will M., 2020, SOCIO ENV SYSTEMS MO, V2, P16325, DOI 10.18174/sesmo.2020a16325. Wilson E.O., 1975, P1. Yang L, 2008, ADV COMPLEX SYST, V11, P175, DOI 10.1142/S0219525908001556. Ye X., 2016, SIGSPATIAL SPECIAL, V8, P20, DOI DOI 10.1186/S40779-020-0233-6. Ye XY, 2016, GEOJOURNAL, V81, P811, DOI 10.1007/s10708-016-9737-8. Ying Zhitao, 2018, ADV NEURAL INFORM PR, P4800. Zhang HF, 2016, AUTON AGENT MULTI-AG, V30, P1023, DOI 10.1007/s10458-016-9326-8. Zhang Muhan, 2018, P ADV NEURAL INFORM, P5165. Zhu D., 2018, 10 INT C GEOGR INF S. Zvoleff A, 2014, ENVIRON MANAGE, V53, P94, DOI 10.1007/s00267-012-0009-1.}, Number-of-Cited-References = {171}, Times-Cited = {26}, Usage-Count-Last-180-days = {18}, Usage-Count-Since-2013 = {91}, Journal-ISO = {Ecol. Model.}, Doc-Delivery-Number = {UE3BK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000687767000007}, OA = {Bronze}, DA = {2023-04-22}, } @article{ WOS:000951979400001, Author = {Alexandre, Tielle and Bernardini, Flavia and Viterbo, Jose and Pantoja, Carlos Eduardo}, Title = {Machine Learning Applied to Public Transportation by Bus: A Systematic Literature Review}, Journal = {TRANSPORTATION RESEARCH RECORD}, Abstract = {Machine learning (ML) solutions have been proposed to make public transportation more attractive. Works that employ ML in bus transportation focus on various problems, such as travel time prediction or passenger flow prediction. These solutions look to improve elements of transportation services, such as the availability of information on passengers' travel time and the reliability and regularity of the service. An analysis of the solutions proposed in the literature for public transportation by bus can reveal opportunities for data scientists and transportation professionals, and highlight problems that have been only slightly explored. In addition, mapping information about modeling these solutions (e.g., types of data produced by devices on the transportation network, which can be used in modeling a solution) could help beginner data scientists develop public transportation solutions. Transportation professionals can benefit from an overview of possible transportation solutions to improve transportation problems and direct government agency efforts to implement these solutions. This paper presents a survey of ML-based solutions for public bus transportation and details the modeling of these solutions (e.g., data types, ML algorithms). In addition, the problems tackled in the literature are categorized into four themes, and the solutions proposed to deal with them are schematized, highlighting problems that are little explored.}, Publisher = {SAGE PUBLICATIONS INC}, Address = {2455 TELLER RD, THOUSAND OAKS, CA 91320 USA}, Type = {Review; Early Access}, Language = {English}, Affiliation = {Alexandre, T (Corresponding Author), Fluminense Fed Univ, Inst Comp, Niteroi, Brazil. Alexandre, Tielle; Bernardini, Flavia; Viterbo, Jose; Pantoja, Carlos Eduardo, Fluminense Fed Univ, Inst Comp, Niteroi, Brazil. Pantoja, Carlos Eduardo, Fed Ctr Technol Educ CEFET RJ, Syst Informat Dept, Rio De Janeiro, Brazil.}, DOI = {10.1177/03611981231155189}, EarlyAccessDate = {MAR 2023}, ISSN = {0361-1981}, EISSN = {2169-4052}, Keywords = {data and data science; artificial intelligence and advanced computing applications; machine learning (artificial intelligence); public transportation; bus transit systems; buses; innovative public transportation services and technologies}, Keywords-Plus = {TRAVEL-TIME PREDICTION}, Research-Areas = {Engineering; Transportation}, Web-of-Science-Categories = {Engineering, Civil; Transportation; Transportation Science \& Technology}, Author-Email = {tiellesa@id.uff.br}, Affiliations = {Universidade Federal Fluminense; Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ)}, Cited-References = {Abdel-Aty M, 2004, TRANSPORT RES REC, P88, DOI 10.3141/1897-12. Abdelaty H, 2021, TRANSPORT RES D-TR E, V96, DOI 10.1016/j.trd.2021.102868. Affonso G. A., 2021, P INT C EL COMP COMM, P1. Agafonov A., 2019, CEUR WORKSHOP PROC, VVol. 2416, P57. Alsrehin NO, 2019, IEEE ACCESS, V7, P49830, DOI 10.1109/ACCESS.2019.2909114. Avenali A, 2018, WIT TRANS BUILT ENV, V176, P155, DOI 10.2495/UT170141. Bahuleyan H, 2017, J COMPUT CIVIL ENG, V31, DOI 10.1061/(ASCE)CP.1943-5487.0000644. Casey R. F., 2000, ADV PUBLIC TRANSPORT. Ceder A, 2002, J URBAN PLAN D-ASCE, V128, P225, DOI 10.1061/(ASCE)0733-9488(2002)128:4(225). Ceder A., 2016, PUBLIC TRANSIT PLANN. Ceder A., 1981, TRANSPORTATION RES R, V798, P18. Chien SIJ, 2002, J TRANSP ENG, V128, P429, DOI 10.1061/(ASCE)0733-947X(2002)128:5(429). Degeler V, 2021, PUBLIC TRANSPORT, V13, P533, DOI 10.1007/s12469-020-00251-z. Delfau JB, 2018, PROC INT C TOOLS ART, P409, DOI 10.1109/ICTAI.2018.00070. El Mahrsi MK, 2017, IEEE T INTELL TRANSP, V18, P712, DOI 10.1109/TITS.2016.2600515. Faroqi H, 2021, TRANSPORT RES C-EMER, V127, DOI 10.1016/j.trc.2021.103131. Ghaemi MS, 2015, IFAC PAPERSONLINE, V48, P448, DOI 10.1016/j.ifacol.2015.06.121. Grun B, 2019, CH CRC HANDB MOD STA, P157. Heghedus C, 2019, IEEE SYM PARA DISTR, P842, DOI 10.1109/IPDPSW.2019.00138. Heydary MH, 2018, IEEE GREEN TECHNOL, P189, DOI 10.1109/GreenTech.2018.00042. Iovino L, 2021, IEEE T INTELL TRANSP, V22, P2111, DOI 10.1109/TITS.2021.3053373. Jin WZ, 2019, LECT NOTES ELECTR EN, V527, P281, DOI 10.1007/978-981-13-2481-9\_33. Julio N, 2016, RES TRANSP ECON, V59, P250, DOI 10.1016/j.retrec.2016.07.019. Jung J, 2017, IET INTELL TRANSP SY, V11, P334, DOI 10.1049/iet-its.2016.0276. Kadiyala A, 2017, ENVIRON PROG SUSTAIN, V36, P4, DOI 10.1002/ep.12523. Kakarla A., 2021, VEH TECHNOL CONFE, P1. Khiari J, 2016, LECT NOTES ARTIF INT, V9651, P552, DOI 10.1007/978-3-319-31753-3\_44. Kim EJ, 2021, P I CIVIL ENG-MUNIC, V174, P108, DOI 10.1680/jmuen.20.00003. Kim K, 2020, IEEE T INTELL TRANSP, V21, P2002, DOI 10.1109/TITS.2019.2910548. Kitchenham B., 2004, PROCEDURES PERFORMIN, V37. Koontz H., 1972, PRINCIPLES MANAGEMEN. Kumar D, 2019, PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), P159, DOI 10.1109/AICAI.2019.8701247. Li TY, 2018, BDIOT 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS, P43, DOI 10.1145/3289430.3289461. Li Ye, 2021, 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, P243, DOI 10.1109/ECTIDAMTNCON51128.2021.9425771. Luo S., 2020, PHYS LETT B, VVol. 20, P4671. Mendes-Moreira J, 2015, NEUROCOMPUTING, V150, P428, DOI 10.1016/j.neucom.2014.08.072. Mendes-Moreira J, 2015, INFORM SCIENCES, V293, P299, DOI 10.1016/j.ins.2014.09.005. Moreira J. P. C. L. M., 2008, THESIS U PORTO PORTU. Moreira-Matias L, 2016, APPL SOFT COMPUT, V47, P460, DOI 10.1016/j.asoc.2016.06.031. Moreira-Matias L, 2015, IEEE T INTELL TRANSP, V16, P1636, DOI 10.1109/TITS.2014.2376772. Nageshrao SP, 2017, IFAC PAPERSONLINE, V50, P5947, DOI 10.1016/j.ifacol.2017.08.1493. Nakashima H, 2019, INT CONF PERVAS COMP, P561, DOI 10.1109/PERCOMW.2019.8730761. Noor RM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010225. Panovski D., 2020, PROC INT C CONSUMER, P1. Panovski D, 2018, EUR W VIS INF PROCES. Rahimi-Eichi H, 2013, IEEE IND ELECTRON M, V7, P4, DOI 10.1109/MIE.2013.2250351. Rajput P, 2019, ICDCN `19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, P327, DOI 10.1145/3288599.3288624. Reddy KK, 2016, CURR SCI INDIA, V111, P700, DOI 10.18520/cs/v111/i4/700-711. Salvador M. M., 2018, TRANSPORTATION RES P, VVol. 31, P67. Samaras P., 2015, PROC 19 PANHELLENIC, P129. Taparia A., 2021, 2021 7 INT C MODELS, P1. Thiagarajan R., 2021, WEBOLOGY, VVol. 18, P223. Turner S. M., 1998, TRAVEL TIME DATA COL. Wang SF, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310007. Wang YQ, 2021, J CONSTR ENG M, V147, DOI 10.1061/(ASCE)CO.1943-7862.0002124. Wang Y, 2019, TRANSPORT RES C-EMER, V99, P144, DOI 10.1016/j.trc.2018.12.004. Weisbart E. S., 1980, DIGITAL TACHOGRAPH S. Wilson NHM, 2009, OPER RES COMPUT SCI, V46, P1, DOI 10.1007/978-0-387-84812-9. Wongthai Winai, 2019, 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON), P220, DOI 10.1109/ECTI-NCON.2019.8692244. Yamaguchi T, 2018, 2018 IEEE/ACM 5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING APPLICATIONS AND TECHNOLOGIES (BDCAT), P97, DOI 10.1109/BDCAT.2018.00020. Yeung KY, 2001, BIOINFORMATICS, V17, P977, DOI 10.1093/bioinformatics/17.10.977. Yuan TT, 2022, T EMERG TELECOMMUN T, V33, DOI 10.1002/ett.4427. Yuan Y, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9111876. Zheng CJ, 2012, TRANSPORT-VILNIUS, V27, P158, DOI 10.3846/16484142.2012.692710. Zhou XM, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112210611. Zhu L, 2019, IEEE T INTELL TRANSP, V20, P383, DOI 10.1109/TITS.2018.2815678.}, Number-of-Cited-References = {66}, Times-Cited = {0}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {1}, Journal-ISO = {Transp. Res. Record}, Doc-Delivery-Number = {A0FU8}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000951979400001}, DA = {2023-04-22}, } @article{ WOS:000918519500001, Author = {Sajno, Elena and Bartolotta, Sabrina and Tuena, Cosimo and Cipresso, Pietro and Pedroli, Elisa and Riva, Giuseppe}, Title = {Machine learning in biosignals processing for mental health: A narrative review}, Journal = {FRONTIERS IN PSYCHOLOGY}, Year = {2023}, Volume = {13}, Month = {JAN 13}, Abstract = {Machine Learning (ML) offers unique and powerful tools for mental health practitioners to improve evidence-based psychological interventions and diagnoses. Indeed, by detecting and analyzing different biosignals, it is possible to differentiate between typical and atypical functioning and to achieve a high level of personalization across all phases of mental health care. This narrative review is aimed at presenting a comprehensive overview of how ML algorithms can be used to infer the psychological states from biosignals. After that, key examples of how they can be used in mental health clinical activity and research are illustrated. A description of the biosignals typically used to infer cognitive and emotional correlates (e.g., EEG and ECG), will be provided, alongside their application in Diagnostic Precision Medicine, Affective Computing, and brain-computer Interfaces. The contents will then focus on challenges and research questions related to ML applied to mental health and biosignals analysis, pointing out the advantages and possible drawbacks connected to the widespread application of AI in the medical/mental health fields. The integration of mental health research and ML data science will facilitate the transition to personalized and effective medicine, and, to do so, it is important that researchers from psychological/ medical disciplines/health care professionals and data scientists all share a common background and vision of the current research.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Sajno, E (Corresponding Author), Univ Cattolica Sacro Cuore, Humane Technol Lab, Milan, Italy. Sajno, E (Corresponding Author), Univ Pisa, Dept Comp Sci, Pisa, Italy. Sajno, Elena; Riva, Giuseppe, Univ Cattolica Sacro Cuore, Humane Technol Lab, Milan, Italy. Sajno, Elena, Univ Pisa, Dept Comp Sci, Pisa, Italy. Bartolotta, Sabrina, Univ Cattolica Sacro Cuore, ExperienceLab, Milan, Italy. Bartolotta, Sabrina, Univ Cattolica Sacro Cuore, Dept Psychol, Milan, Italy. Tuena, Cosimo; Cipresso, Pietro; Riva, Giuseppe, IRCCS Ist Auxol Italiano, Appl Technol Neuropsychol Lab, Milan, Italy. Cipresso, Pietro, Univ Turin, Dept Psychol, Turin, Italy. Pedroli, Elisa, eCampus Univ, Dept Psychol, Novedrate, Italy.}, DOI = {10.3389/fpsyg.2022.1066317}, Article-Number = {1066317}, ISSN = {1664-1078}, Keywords = {biosignals; artificial intelligence; machine learning; mental health; neurology; precision medicine; affective computing; brain-computer interfaces}, Keywords-Plus = {BRAIN-COMPUTER INTERFACES; COMPUTATIONAL INTELLIGENCE; ARTIFICIAL-INTELLIGENCE; EMOTION RECOGNITION; PRECISION MEDICINE; GENDER-DIFFERENCES; RACIAL BIAS; EEG; BCI; PSYCHIATRY}, Research-Areas = {Psychology}, Web-of-Science-Categories = {Psychology, Multidisciplinary}, Author-Email = {elena.sajno@phd.unipi.it}, Affiliations = {Catholic University of the Sacred Heart; University of Pisa; Catholic University of the Sacred Heart; Catholic University of the Sacred Heart; IRCCS Istituto Auxologico Italiano; University of Turin; Universita Ecampus}, ResearcherID-Numbers = {Cipresso, Pietro/G-4676-2011}, ORCID-Numbers = {Cipresso, Pietro/0000-0002-0662-7678}, Funding-Acknowledgement = {Italian Ministry of Health {[}POSTECH: 39C801\_2018]}, Funding-Text = {Funding Research funded by the Italian Ministry of Health (POSTECH: 39C801\_2018).}, Cited-References = {Aftanas L, 2001, INT J NEUROSCI, V110, P197, DOI 10.3109/00207450108986547. Aggarwal S, 2022, ARCH COMPUT METHOD E, V29, P3001, DOI 10.1007/s11831-021-09684-6. AKSELROD S, 1987, AM J PHYSIOL, V253, pH176, DOI 10.1152/ajpheart.1987.253.1.H176. Al-Nafjan A, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7121239. Al-Fahoum Amjed S, 2014, ISRN Neurosci, V2014, P730218, DOI {[}10.1155/2014/794943, 10.1155/2014/730218]. Alzahab NA, 2021, BRAIN SCI, V11, DOI 10.3390/brainsci11010075. Anders C, 2022, COMPUT BIOL MED, V150, DOI 10.1016/j.compbiomed.2022.106088. {[}Anonymous], PRINCIPLES NEURAL SC. Asan O, 2020, J MED INTERNET RES, V22, DOI 10.2196/15154. Athreya AP, 2019, PHARMACOGENOMICS, V20, P983, DOI 10.2217/pgs-2019-0119. Bianchin M, 2012, PHYSIOL BEHAV, V105, P925, DOI 10.1016/j.physbeh.2011.10.031. Bickman L, 2020, ADM POLICY MENT HLTH, V47, P795, DOI 10.1007/s10488-020-01065-8. Birbaumer N, 2006, PSYCHOPHYSIOLOGY, V43, P517, DOI 10.1111/j.1469-8986.2006.00456.x. Blankertz B, 2007, LECT NOTES COMPUT SC, V4555, P759. Blum J, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02172. BOITEN FA, 1994, INT J PSYCHOPHYSIOL, V17, P103, DOI 10.1016/0167-8760(94)90027-2. Bota PJ, 2019, IEEE ACCESS, V7, P140990, DOI 10.1109/ACCESS.2019.2944001. Bradley MM, 2007, HANDBOOK OF PSYCHOPHYSIOLOGY, 3RD EDITION, P581, DOI 10.1017/CBO9780511546396.025. Braithwaite J. J., 2013, PSYCHOPHYSIOLOGY, V49, P1017, DOI 10.1111/j.1469-8986.2012.01384.x. Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726. Buitelaar J, 2022, FRONT BEHAV NEUROSCI, V16, DOI 10.3389/fnbeh.2022.900981. Bzdok D, 2018, BIOL PSYCHIAT-COGN N, V3, P223, DOI 10.1016/j.bpsc.2017.11.007. Cacioppo J. T., 2000, HDB EMOTIONS, P173, DOI DOI 10.1017/CBO9780511546396.025. Camm AJ, 1996, CIRCULATION, V93, P1043. Camm AJ, 1996, EUR HEART J, V17, P354. Cao Z., 2020, BRAIN SCI ADV, V6, P162, DOI {[}10.26599/BSA.2020.9050017, DOI 10.1016/J.MEDIA.2016.10.010]. Chabot RJ, 1996, CLIN ELECTROENCEPHAL, V27, P26, DOI 10.1177/155005949602700105. Chamola V, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20133620. Chapin T. J, 2013, NEUROTHERAPY NEUROFE. Chen Irene Y, 2019, AMA J Ethics, V21, pE167, DOI 10.1001/amajethics.2019.167. Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14. Chollet F., 2018, DEEP LEARNING PYTHON. Cipresso P, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.02099. Cirillo D, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0288-5. Clarke AR, 2001, CLIN NEUROPHYSIOL, V112, P806, DOI 10.1016/S1388-2457(01)00488-6. Conradsen I, 2012, COMPUT METH PROG BIO, V107, P97, DOI 10.1016/j.cmpb.2011.06.005. Cooke WH, 1998, AM J PHYSIOL-HEART C, V274, pH709, DOI 10.1152/ajpheart.1998.274.2.H709. Demos J. N., 2005, GETTING STARTED NEUR. Dieterich W., 2016, COMPAS RISK SCALES D. DIMBERG U, 1990, BIOL PSYCHOL, V30, P151, DOI 10.1016/0301-0511(90)90024-Q. Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI {[}10.1146/annurev-clinpsy-032816045037, 10.1146/annurev-clinpsy-032816-045037]. Egner T, 2004, CLIN NEUROPHYSIOL, V115, P131, DOI 10.1016/S1388-2457(03)00353-5. Ekman P., 2005, WHAT FACE REVEALS BA. Nicolas-Alonso LF, 2012, SENSORS-BASEL, V12, P1211, DOI 10.3390/s120201211. Fitzgibbon SP, 2004, CLIN NEUROPHYSIOL, V115, P1802, DOI 10.1016/j.clinph.2004.03.009. Floridi L., 2019, 2018 YB DIGITAL ETHI, P9. Floridi L, 2020, SCI ENG ETHICS, V26, P1771, DOI 10.1007/s11948-020-00213-5. Frick J., 2021, P 54 HAWAII INT C SY, P3794. Gao XR, 2003, IEEE T NEUR SYS REH, V11, P137, DOI 10.1109/TNSRE.2003.814449. Gibbs RM, 2018, CELL STEM CELL, V23, P21, DOI 10.1016/j.stem.2018.05.019. Giggins OM, 2013, J NEUROENG REHABIL, V10, DOI 10.1186/1743-0003-10-60. GLOOR P, 1977, NEUROLOGY, V27, P326, DOI 10.1212/WNL.27.4.326. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Graimann B, 2010, FRONT COLLECT, P1, DOI 10.1007/978-3-642-02091-9\_1. Gromala D, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P521, DOI 10.1145/2702123.2702344. Gronfier C, 1996, SLEEP, V19, P817, DOI 10.1093/sleep/19.10.817. Grote T, 2020, J MED ETHICS, V46, P205, DOI 10.1136/medethics-2019-105586. Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009. Hasnul MA, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21155015. Haufe S, 2014, NEUROIMAGE, V87, P96, DOI 10.1016/j.neuroimage.2013.10.067. Healey JA, 2005, IEEE T INTELL TRANSP, V6, P156, DOI 10.1109/TITS.2005.848368. Herff C, 2013, IEEE ENG MED BIO, P2160, DOI 10.1109/EMBC.2013.6609962. Herrmann CS, 2005, CLIN NEUROPHYSIOL, V116, P2719, DOI 10.1016/j.clinph.2005.07.007. Hong KS, 2015, NEUROSCI LETT, V587, P87, DOI 10.1016/j.neulet.2014.12.029. Hossain E, 2019, IEEE ACCESS, V7, P13960, DOI 10.1109/ACCESS.2019.2894819. Houston RJ, 2018, BIOL PSYCHIAT-COGN N, V3, P30, DOI 10.1016/j.bpsc.2017.09.006. Hramov AE, 2021, PHYS REP, V918, P1, DOI 10.1016/j.physrep.2021.03.002. Huys QJM, 2016, NAT NEUROSCI, V19, P404, DOI 10.1038/nn.4238. Iniesta R, 2016, PSYCHOL MED, V46, P2455, DOI 10.1017/S0033291716001367. Insel TR, 2014, AM J PSYCHIAT, V171, P395, DOI 10.1176/appi.ajp.2014.14020138. Intahchomphoo C, 2020, LEG INF MANAG, V20, P74, DOI 10.1017/S1472669620000183. Iosifescu DV, 2016, NEUROPSYCH DIS TREAT, V12, P2131, DOI 10.2147/NDT.S113712. Jacobson NC, 2020, B WORLD HEALTH ORGAN, V98, P270, DOI 10.2471/BLT.19.237107. James G, 2013, SPRINGER TEXTS STAT, V103, P15, DOI 10.1007/978-1-4614-7138-7\_2. Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101. Juliano JM, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20041204. Kaissis GA, 2020, NAT MACH INTELL, V2, P305, DOI 10.1038/s42256-020-0186-1. Kalantari A, 2018, NEUROCOMPUTING, V276, P2, DOI 10.1016/j.neucom.2017.01.126. Khan H, 2021, FRONT HUM NEUROSCI, V14, DOI 10.3389/fnhum.2020.613254. Kim J, 2008, IEEE T PATTERN ANAL, V30, P2067, DOI 10.1109/TPAMI.2008.26. King CE, 2013, J NEUROENG REHABIL, V10, DOI 10.1186/1743-0003-10-77. Klimesch W, 1999, BRAIN RES REV, V29, P169, DOI 10.1016/S0165-0173(98)00056-3. Koelstra S, 2012, IEEE T AFFECT COMPUT, V3, P18, DOI 10.1109/T-AFFC.2011.15. Kreibig SD, 2007, PSYCHOPHYSIOLOGY, V44, P787, DOI 10.1111/j.1469-8986.2007.00550.x. Krepki R, 2007, MULTIMED TOOLS APPL, V33, P73, DOI 10.1007/s11042-006-0094-3. Kuhn M., 2013, APPL PREDICTIVE MODE, DOI {[}DOI 10.1007/978-1-4614-6849-3, 10.1007/978-1-4614-6849-3]. LANG PJ, 1995, AM PSYCHOL, V50, P372, DOI 10.1037/0003-066X.50.5.372. Ledford H, 2019, NATURE, V574, P608, DOI 10.1038/d41586-019-03228-6. Leeb Robert, 2007, Comput Intell Neurosci, P79642, DOI 10.1155/2007/79642. Li YQ, 2010, IEEE T BIO-MED ENG, V57, P2495, DOI 10.1109/TBME.2010.2055564. Lindquist K.A., 2016, HDB EMOTIONS, V4. Liu ZM, 2021, BIOMED SIGNAL PROCES, V68, DOI 10.1016/j.bspc.2021.102595. Mcduff D., 2012, P SIGCHI C HUM FACT, DOI DOI 10.1145/2207676.2208525. Meisler SL, 2019, J NEUROSCI METH, V328, DOI 10.1016/j.jneumeth.2019.108421. Mueller Andreas, 2010, Nonlinear Biomed Phys, V4 Suppl 1, pS1, DOI 10.1186/1753-4631-4-S1-S1. Muller-Putz GR, 2008, IEEE T BIO-MED ENG, V55, P361, DOI 10.1109/TBME.2007.897815. Nakayashiki K, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-90. Naseer N, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00003. Neuhaus AH, 2011, NEUROIMAGE, V55, P514, DOI 10.1016/j.neuroimage.2010.12.038. Noori FM, 2017, NEUROSCI LETT, V647, P61, DOI 10.1016/j.neulet.2017.03.013. Ntoutsi E, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1356. Obermeyer Z, 2019, SCIENCE, V366, P447, DOI 10.1126/science.aax2342. Orru G, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02970. Oscar T., 2022, SMART HOME TECHNOLOG, P79. Palma JA, 2014, NEUROLOGY, V83, P261, DOI 10.1212/WNL.0000000000000605. Peper E., 2007, BIOFEEDBACK SELF-REG. Perez P, 2021, CELL REP, V36, DOI 10.1016/j.celrep.2021.109692. Perlis ML, 2001, SLEEP MED REV, V5, P365, DOI 10.1053/smrv.2001.0151. Perna G, 2018, PSYCHOL MED, V48, P705, DOI 10.1017/S0033291717002859. Pfurtscheller G, 2000, IEEE T REHABIL ENG, V8, P216, DOI 10.1109/86.847821. Pfurtscheller G., 1997, CLIN NEUROPHYSIOL, V1, P26, DOI DOI 10.1016/S0013-4694(97)88021-6. Picard R.W., 2000, AFFECTIVE COMPUTING. Picard RW, 2003, INT J HUM-COMPUT ST, V59, P55, DOI 10.1016/S1071-5819(03)00052-1. Picard RW, 2001, IEEE T PATTERN ANAL, V23, P1175, DOI 10.1109/34.954607. Rebsamen B, 2010, IEEE T NEUR SYS REH, V18, P590, DOI 10.1109/TNSRE.2010.2049862. Regalia G, 2019, EPILEPSY RES, V153, P79, DOI 10.1016/j.eplepsyres.2019.02.007. Riva G, 2022, CYBERPSYCH BEH SOC N, V25, P169, DOI 10.1089/cyber.2022.0035. Riva G, 2019, ANN REV CYBERTHERAPY, V17, P3. RUSSELL JA, 1980, J PERS SOC PSYCHOL, V39, P1161, DOI 10.1037/h0077714. Rutledge RB, 2019, CURR OPIN NEUROBIOL, V55, P152, DOI 10.1016/j.conb.2019.02.006. Saha S, 2021, FRONT SYST NEUROSCI, V15, DOI 10.3389/fnsys.2021.578875. Schalk G, 2004, IEEE T BIO-MED ENG, V51, P1034, DOI 10.1109/TBME.2004.827072. Schiller MJ, 2019, FRONT PSYCHIATRY, V9, DOI 10.3389/fpsyt.2018.00779. Schmaus BJ, 2008, INT J PSYCHOPHYSIOL, V69, P101, DOI 10.1016/j.ijpsycho.2008.03.006. Schmidt P, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19194079. Shaffer F, 2017, FRONT PUBLIC HEALTH, V5, DOI 10.3389/fpubh.2017.00258. Shalev-Shwartz S., 2014, UNDERSTANDING MACHIN. Shan YH, 2020, INT J MACH LEARN CYB, V11, P1825, DOI 10.1007/s13042-020-01074-x. Shoeb A, 2009, INT J NEURAL SYST, V19, P157, DOI 10.1142/S0129065709001938. SOININEN H, 1982, ACTA NEUROL SCAND, V65, P59, DOI 10.1111/j.1600-0404.1982.tb03062.x. Soleymani M, 2012, IEEE T AFFECT COMPUT, V3, P211, DOI 10.1109/T-AFFC.2011.37. Sroubek A, 2013, NEUROSCI BULL, V29, P103, DOI 10.1007/s12264-012-1295-6. Stuart T, 2021, BIOSENS BIOELECTRON, V178, DOI 10.1016/j.bios.2021.113007. Sturm I, 2016, J NEUROSCI METH, V274, P141, DOI 10.1016/j.jneumeth.2016.10.008. Sur Shravani, 2009, Ind Psychiatry J, V18, P70, DOI 10.4103/0972-6748.57865. Thabtah F, 2018, INT J MED INFORM, V117, P112, DOI 10.1016/j.ijmedinf.2018.06.009. Thomas RM, 2020, MACH LEARN, P249, DOI DOI 10.1016/B978-0-12-815739-8.00014-6. Tsamados A, 2022, AI SOC, V37, P215, DOI 10.1007/s00146-021-01154-8. Tuena C., 2020, P5 EHEALTH AGENDA HL, P71, DOI {[}10.1007/978-3-030-27994-3\_5, DOI 10.1007/978-3-030-27994-3\_5]. Tuena C., 2022, REFERENCE MODULE NEU. Tzimourta K.D., 2017, PRECISION MED POWERE, P165, DOI 10.1007/978- 981-10-7419-6\_28. Ulate-Campos A, 2016, SEIZURE-EUR J EPILEP, V40, P88, DOI 10.1016/j.seizure.2016.06.008. Vanravenswaaijarts CMA, 1993, ANN INTERN MED, V118, P436, DOI 10.7326/0003-4819-118-6-199303150-00008. Vaughan TM, 2006, IEEE T NEUR SYS REH, V14, P229, DOI 10.1109/TNSRE.2006.875577. Vayena E, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002689. Vellido A, 2020, NEURAL COMPUT APPL, V32, P18069, DOI 10.1007/s00521-019-04051-w. Vinkers CH, 2013, STRESS, V16, P520, DOI 10.3109/10253890.2013.807243. Welch V, 2022, J MED INTERNET RES, V24, DOI 10.2196/33560. Wolpaw JR, 2002, CLIN NEUROPHYSIOL, V113, P767, DOI 10.1016/S1388-2457(02)00057-3. Wong TT, 2015, PATTERN RECOGN, V48, P2839, DOI 10.1016/j.patcog.2015.03.009. Yucha CB., 2008, EVIDENCE BASED PRACT. Zhang GQ, 2009, AGEING RES REV, V8, P52, DOI 10.1016/j.arr.2008.10.001. Zheng WL, 2015, IEEE T AUTON MENT DE, V7, P162, DOI 10.1109/TAMD.2015.2431497. Zhou LN, 2017, NEUROCOMPUTING, V237, P350, DOI 10.1016/j.neucom.2017.01.026.}, Number-of-Cited-References = {154}, Times-Cited = {0}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {14}, Journal-ISO = {Front. Psychol.}, Doc-Delivery-Number = {8D8EH}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000918519500001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000632740900001, Author = {Taranto-Vera, Gilda and Galindo-Villardon, Purificacion and Merchan-Sanchez-Jara, Javier and Salazar-Pozo, Julio and Moreno-Salazar, Alex and Salazar-Villalva, Vanessa}, Title = {Algorithms and software for data mining and machine learning: a critical comparative view from a systematic review of the literature}, Journal = {JOURNAL OF SUPERCOMPUTING}, Year = {2021}, Volume = {77}, Number = {10}, Pages = {11481-11513}, Month = {OCT}, Abstract = {Today, a greater generation of information is produced as a consequence of the technological development of society. The Internet has facilitated the access and extraction of this information, thus pursuing the automatic discovery of the knowledge contained within. In this context, data mining aims to discover patterns, profiles and trends of a large volume of data, for which multiple learning techniques are available. The selection of which technique to use depends on the type of result desired to obtain and the data that are available, considering that the algorithms for these tasks date mostly from the early twentieth century and are now the basis of these new technologies. The aim of this study is to show the development of these techniques in the field of scientific research and to present the evolution of algorithms and software for data mining in recent years. To this end, the systematic literature review methodology was applied, as it is considered a systematic process that identifies, evaluates, and interprets the work of researchers in a chosen field. As a result, we present a comparative analysis of the most outstanding software: Alteryx, TIBCO Data Science, RapidMiner and WEKA, their capacities for data mining processes and a description of the algorithms and techniques of machine learning that are currently on the rise.}, Publisher = {SPRINGER}, Address = {VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Taranto-Vera, G (Corresponding Author), Univ Salamanca, Salamanca, Spain. Taranto-Vera, Gilda; Galindo-Villardon, Purificacion; Merchan-Sanchez-Jara, Javier; Salazar-Pozo, Julio; Moreno-Salazar, Alex; Salazar-Villalva, Vanessa, Univ Salamanca, Salamanca, Spain. Moreno-Salazar, Alex; Salazar-Villalva, Vanessa, Escuela Super Politecn Litoral, Guayaquil, Ecuador.}, DOI = {10.1007/s11227-021-03708-5}, EarlyAccessDate = {MAR 2021}, ISSN = {0920-8542}, EISSN = {1573-0484}, Keywords = {Data mining; Machine learning techniques; Algorithms; Systematic literature review; Software tools; Performance evaluation}, Research-Areas = {Computer Science; Engineering}, Web-of-Science-Categories = {Computer Science, Hardware \& Architecture; Computer Science, Theory \& Methods; Engineering, Electrical \& Electronic}, Author-Email = {gilda.taranto@usal.es pgalindo@usal.es javiermerchan@usal.es julio\_salazar@usal.es amorenos@usal.es vanessa.salazar@usal.es}, Affiliations = {University of Salamanca; Escuela Superior Politecnica del Litoral}, ORCID-Numbers = {Taranto-Vera, Gilda/0000-0002-6012-7818}, Cited-References = {Abd El-Jawad MH, 2018, INT COMPUT ENG CONF, P174, DOI 10.1109/ICENCO.2018.8636124. Alcala R, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1239. Azevedo A., 2008, IADS DM. Babi C, MINING FREQUENT PATT. Bermudez JAG, 2010, THESIS U TECNOLOGICA. Bezerra CG, 2016, IEEE CONF EVOL ADAPT, P162. Blei D. M., 2006, P 23 INT C MACH LEAR, P113. Bottou L., 2007, LARGE SCALE KERNEL M, P321. Bucheli H, 2014, INS AN 2014 C. Chen SA, 2020, MACH LEARN, V109, P1699, DOI 10.1007/s10994-019-05849-4. Ciresan D., 2011, P 22 INT JOINT C ART, P1237. Deeva, 2017, INT C BUS PROC MAN, P243. Deshpande S, 2017, 2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, P414. Eiben A. E., 2003, INTRO EVOLUTIONARY C, V53. Fayyad U, 1996, COMMUN ACM, V39, P27, DOI 10.1145/240455.240464. Fernandez-Gavilanes M, 2016, EXPERT SYST APPL, V58, P57, DOI 10.1016/j.eswa.2016.03.031. Garcia AM, 2016, R J, V8, P307. Garcia-Penalvo FJ, 2017, REV EDUCACION DISTAN. Gauthier JP, 2014, CONF P INDIUM PHOSPH. Viera AFG, 2017, INVESTIG BIBLIOTECOL, V31, P103, DOI 10.22201/iibi.0187358xp.2017.71.57812. Gonzalez FJG, 2013, APLICACION TECNICAS. Han J., 2012, MOR KAUF D, V3rd ed., P585. Haque MR, 2018, 2018 INT C COMPUTER, P1, DOI 10.1109/IC4ME2.2018.8465658. Hidasi B., 2015, ARXIV151106939. Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301. KDNuggets, 2019, KDNUGGETS. Khan K, 2014, 2014 FIFTH INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES (ICADIWT), P232, DOI 10.1109/ICADIWT.2014.6814687. Li YJ, 2018, INT J EMERG TECHNOL, V13, P108, DOI 10.3991/ijet.v13i10.9456. Li Y, 2018, 2016 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), P64. Lipton Z. C., 2015, COMPUTER SCI. Lopez VD., 2005, REV IBEROAMERICANA I, V9, P77. Molina B., 2015, REV ONTARE, V3, P33, DOI {[}10.21158/23823399.v3.n2.2015.1440, DOI 10.21158/23823399.V3.N2.2015.1440]. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Norvig, 2010, INTELLIGENCE ARTIFIC. Peralta FC., 2014, REV LATINOAMERICANA, V2, P273, DOI {[}10.18294/relais.2014.273-306, DOI 10.18294/RELAIS.2014.273-306]. PerezLopez C, 2007, TECNICAS HERRAMIENTA, V808. Petticrew M, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P1, DOI 10.1002/9780470754887. RapidMiner, 2014, RAPIDMINER STUDIO MA. Rbigui H., 2017, INT J BUSINESS PROCE, V8, P285. Sarala R, SPATIO TEMPORAL PATT. Shah V., 2018, TECH INNOV MODERN EN, V7, P2018. Sharma A, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/1564516. Sharma N., 2018, PROCEDIA COMPUT SCI, V132, P377, DOI {[}10.1016/j.procs.2018.05.198, DOI 10.1016/J.PROCS.2018.05.198]. Shi YQ, 2017, CHIN CONTR CONF, P11161, DOI 10.23919/ChiCC.2017.8029138. Simoudis E, 1996, IEEE EXPERT, V11, P26, DOI 10.1109/64.539014. Sumalatha V, 2018, IEEE I C COMP INT CO, P156. Suo YN, 2019, IEEE ACCESS, V7, P2947, DOI 10.1109/ACCESS.2018.2886425. Sutton RS, 1998, INTRO REINFORCEMENT, V5, P21. Tan YK, 2016, P 1 WORKSH DEEP LEAR, P17, DOI DOI 10.1145/2988450.2988452. TIBCO, 2017, PROD DOC, V74, P84. Vaidyanathan SG, 2018, 2018 INT C INV RES C, P366. Venugopal N, 2019, SENS IMAGING, V20, DOI 10.1007/s11220-019-0252-0. Wang KF, 2017, IEEE-CAA J AUTOMATIC, V4, P588, DOI 10.1109/JAS.2017.7510583. WEKA, 2019, WEK 3 MACH LEARN SOF. Xu ZL, 2010, IEEE T NEURAL NETWOR, V21, P1033, DOI 10.1109/TNN.2010.2047114. Yao GL, 2019, PATTERN RECOGN LETT, V118, P14, DOI 10.1016/j.patrec.2018.05.018. Zhang LM, 2019, MACH LEARN, V108, P1851, DOI 10.1007/s10994-018-05777-9. Zou L, 2019, COMPUT MATH METHOD M, V2019, DOI 10.1155/2019/6509357.}, Number-of-Cited-References = {58}, Times-Cited = {6}, Usage-Count-Last-180-days = {6}, Usage-Count-Since-2013 = {27}, Journal-ISO = {J. Supercomput.}, Doc-Delivery-Number = {UP8WV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000632740900001}, DA = {2023-04-22}, } @article{ WOS:000855653500001, Author = {Pucheanu, Florin and Colesca, Sofia-Elena and Pacesila, Mihaela and Burcea, Gabriel}, Title = {INDUSTRY 4.0, SUSTAINABILITY AND INNOVATION AT THE CROSSROAD: A REVIEW ANALISYS}, Journal = {MANAGEMENT RESEARCH AND PRACTICE}, Year = {2022}, Volume = {14}, Number = {3}, Pages = {47-69}, Month = {SEP}, Abstract = {The present article has the goal to provide an overview on the most relevant research publications placed at the intersection between the study of the Industry 4.0 and the concepts of innovation and sustainability. A review of the literature has been carried out and the most cited 80 publications identified in Scopus have been analyzed. The investigation pointed out that there is an exponential growth of the research activity in this field in recent years and that Europe is ahead of China and the United States as regards the number of scientific publications. The fundamental contribution of this article consists in highlighting the most important aspects related to the Industry 4.0 and the concepts of innovation and sustainability, by systematizing the findings of the publications studied.}, Publisher = {RESEARCH CENTER PUBLIC ADM \& PUBLIC SERVICE}, Address = {CALEA SERBAN VODA 22-24, BUCHAREST, 040211, ROMANIA}, Type = {Review}, Language = {English}, Affiliation = {Pucheanu, F (Corresponding Author), Bucharest Univ Econ Studies, Management Doctoral Sch, Bucharest, Romania. Pucheanu, Florin, Bucharest Univ Econ Studies, Management Doctoral Sch, Bucharest, Romania. Colesca, Sofia-Elena; Pacesila, Mihaela; Burcea, Gabriel, Bucharest Univ Econ Studies, Bucharest, Romania.}, ISSN = {2067-2462}, Keywords = {Industry 4; sustainalility; innovation}, Keywords-Plus = {BUSINESS MODEL INNOVATION; ARTIFICIAL-INTELLIGENCE; DIGITAL SERVITIZATION; SHARING ECONOMY; GIG ECONOMY; BIG DATA; VERTICAL INTEGRATION; SECURITY CHALLENGES; TRUST MANAGEMENT; RESEARCH AGENDA}, Research-Areas = {Business \& Economics}, Web-of-Science-Categories = {Management}, Author-Email = {Florin\_pucheanu@yahoo.com sofia.colesca@man.ase.ro mihaela.pacesila@man.ase.ro stefan.burcea@amp.ase.ro}, Affiliations = {Bucharest University of Economic Studies; Bucharest University of Economic Studies}, Funding-Acknowledgement = {Bucharest University of Economic Studies}, Funding-Text = {The paper was supported by the grant {''}Urban planning analysis of Bucharest Municipality from the perspective of sustainable development goals/Analiza planificarii urbane la nivelul Municipiului Bucuresti din perspectiva obiectivelor de dezvoltare durabila (APUDD){''}, funded by Bucharest University of Economic Studies.}, Cited-References = {Alami D, 2021, J MANUF SYST, V59, P81, DOI 10.1016/j.jmsy.2021.01.014. Amjad MS, 2021, SUSTAIN PROD CONSUMP, V26, P859, DOI 10.1016/j.spc.2021.01.001. {[}Anonymous], 1986, OVERVIEW INNOVATION. {[}Anonymous], 2022, ANELIS PLUS. Aversa P, 2021, LONG RANGE PLANN, V54, DOI 10.1016/j.lrp.2020.101985. Baker L, 2021, GEOFORUM, V118, P93, DOI 10.1016/j.geoforum.2020.12.006. Ballestar MT, 2021, J INNOV KNOWL, V6, P177, DOI 10.1016/j.jik.2020.10.006. Basl J, 2017, MANAG PROD ENG REV, V8, P3, DOI 10.1515/mper-2017-0012. Beaulieu M, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120717. Berg A, 2018, J MONETARY ECON, V97, P117, DOI 10.1016/j.jmoneco.2018.05.014. Beuren FH, 2013, J CLEAN PROD, V47, P222, DOI 10.1016/j.jclepro.2012.12.028. Biancini S, 2017, INT J IND ORGAN, V53, P99, DOI 10.1016/j.ijindorg.2017.05.001. Bock S, 2020, EUR J OPER RES, V283, P863, DOI 10.1016/j.ejor.2019.11.058. Bonilla SH, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10103740. Braun A. T., 2021, PROCEDIA CIRP, V99, P698, DOI {[}10.1016/j.procir.2021.03.093, DOI 10.1016/J.PROCIR.2021.03.093]. Brecher C, 2019, IFAC PAPERSONLINE, V52, P1803, DOI 10.1016/j.ifacol.2019.11.463. Brito RP, 2017, J SUPPLY CHAIN MANAG, V53, P61, DOI 10.1111/jscm.12134. Bruggemann Holger, 2020, Procedia Manufacturing, V45, P140, DOI 10.1016/j.promfg.2020.04.085. Burger A, 2020, FUTURE GENER COMP SY, V113, P607, DOI 10.1016/j.future.2020.07.035. Carboni M., 2016, RICHMOND J LAW TECHN, V22, P11. Casino F, 2019, IFAC PAPERSONLINE, V52, P2728, DOI 10.1016/j.ifacol.2019.11.620. Cheng Y, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120398. Chiacchio F, 2020, PROCEDIA MANUF, V42, P362, DOI 10.1016/j.promfg.2020.02.063. Cimini C, 2021, CIRP J MANUF SCI TEC, V32, P447, DOI 10.1016/j.cirpj.2020.12.005. Ciulli F, 2019, J CLEAN PROD, V214, P995, DOI 10.1016/j.jclepro.2018.12.295. Crittenden VL, 2019, J BUS RES, V98, P191, DOI 10.1016/j.jbusres.2019.01.045. Curtis SK, 2021, SUSTAIN PROD CONSUMP, V27, P1650, DOI 10.1016/j.spc.2021.04.009. de Oliveira GF, 2019, INT J PROJ MANAG, V37, P131, DOI 10.1016/j.ijproman.2018.11.001. De Villiers C, 2021, J BUS RES, V131, P598, DOI 10.1016/j.jbusres.2020.11.066. DESTEFANO V, 2015, COMP LABOR LAW POLIC, V0037. Dittes S, 2019, BUS HORIZONS, V62, P649, DOI 10.1016/j.bushor.2019.05.004. Enrique DV, 2021, PROCEDIA COMPUT SCI, V181, P347, DOI 10.1016/j.procs.2021.01.177. Enyoghasi C, 2021, RESOUR CONSERV RECY, V166, DOI 10.1016/j.resconrec.2020.105362. Erol S, 2016, PROC CIRP, V54, P13, DOI 10.1016/j.procir.2016.03.162. Fisher O, 2018, J MANUF SYST, V47, P53, DOI 10.1016/j.jmsy.2018.03.005. Frankenberger K, 2013, IND MARKET MANAG, V42, P671, DOI 10.1016/j.indmarman.2013.05.004. Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019. Fromhold-Eisebith M, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120620. Ge CP, 2020, J PARALLEL DISTR COM, V141, P1, DOI 10.1016/j.jpdc.2020.03.005. Geels FW, 2007, RES POLICY, V36, P399, DOI 10.1016/j.respol.2007.01.003. Geissdoerfer M, 2018, PROCEDIA MANUF, V21, P165, DOI 10.1016/j.promfg.2018.02.107. Ghobakhloo M, 2021, J CLEAN PROD, V295, DOI 10.1016/j.jclepro.2021.126427. Ghobakhloo M, 2018, J MANUF TECHNOL MANA, V29, P910, DOI 10.1108/JMTM-02-2018-0057. Givehchi O, 2014, PROCEEDINGS OF 2014 10TH IEEE WORKSHOP ON FACTORY COMMUNICATION SYSTEMS (WFCS 2014). Gleim MR, 2019, J BUS RES, V98, P142, DOI 10.1016/j.jbusres.2019.01.041. Gligor DM, 2021, J BUS RES, V133, P79, DOI 10.1016/j.jbusres.2021.04.043. Glova J, 2014, PROC ECON FINANC, V15, P1122, DOI 10.1016/S2212-5671(14)00566-8. Gonzalez R, 2020, WASTE MANAGE, V118, P99, DOI 10.1016/j.wasman.2020.08.020. Gonzalez-Padron TL, 2017, J MARK CHANNELS, V24, P84, DOI 10.1080/1046669X.2017.1347005. Grassi A, 2020, IFAC PAPERSONLINE, V53, P10714, DOI 10.1016/j.ifacol.2020.12.2850. Grimpe C, 2016, RES POLICY, V45, P2036, DOI 10.1016/j.respol.2016.07.007. Guedria M, 2016, TRANSP RES PROC, V12, P413, DOI 10.1016/j.trpro.2016.02.076. Guo AF, 2015, TECHNOL SOC, V43, P183, DOI 10.1016/j.techsoc.2015.07.003. Hansen EB, 2021, J MANUF SYST, V58, P362, DOI 10.1016/j.jmsy.2020.08.009. Hardeman AN, 2020, J NATL MED ASSOC, V112, P289, DOI 10.1016/j.jnma.2020.03.003. Hartono M, 2021, INT J IND ERGONOM, V82, DOI 10.1016/j.ergon.2021.103100. Herrmann C, 2014, INT J PR ENG MAN-GT, V1, P283, DOI 10.1007/s40684-014-0034-z. Hiteva R, 2017, ENERG POLICY, V107, P631, DOI 10.1016/j.enpol.2017.03.056. Hoisl K, 2015, RES POLICY, V44, P522, DOI 10.1016/j.respol.2014.10.004. Horstink L, 2020, ENERGIES, V13, DOI 10.3390/en13020421. Horvat D, 2019, PROCEDIA MANUF, V39, P886, DOI 10.1016/j.promfg.2020.01.401. Horvath D, 2019, TECHNOL FORECAST SOC, V146, P119, DOI 10.1016/j.techfore.2019.05.021. Hu J, 2019, INT J PROD ECON, V207, P1, DOI 10.1016/j.ijpe.2018.10.002. Hwang J, 2017, ENRGY PROCED, V141, P194, DOI 10.1016/j.egypro.2017.11.037. Jeske T, 2021, PROCEDIA COMPUT SCI, V180, P371, DOI 10.1016/j.procs.2021.01.358. Kamble SS, 2018, COMPUT IND, V101, P107, DOI 10.1016/j.compind.2018.06.004. Kautish P, 2019, J CLEAN PROD, V228, P1425, DOI 10.1016/j.jclepro.2019.04.389. Kelly JM, 2020, J RURAL STUD, V75, P229, DOI 10.1016/j.jrurstud.2020.02.004. Khalate SA, 2018, SOL ENERGY, V169, P616, DOI 10.1016/j.solener.2018.05.036. Khan MA, 2018, FUTURE GENER COMP SY, V82, P395, DOI 10.1016/j.future.2017.11.022. Kiel D, 2017, TECHNOVATION, V68, P4, DOI 10.1016/j.technovation.2017.09.003. Kim S, 2017, PROCEDIA COMPUT SCI, V122, P518, DOI 10.1016/j.procs.2017.11.401. Kimani K, 2019, INT J CRIT INFR PROT, V25, P36, DOI 10.1016/j.ijcip.2019.01.001. Knudsen ES, 2021, J BUS RES, V128, P360, DOI 10.1016/j.jbusres.2021.02.008. Kochovski P, 2019, FUTURE GENER COMP SY, V101, P747, DOI 10.1016/j.future.2019.07.030. Koen PA, 2011, RES TECHNOL MANAGE, V54, P52, DOI 10.5437/08953608X5403009. Kohtamaki M, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2019.119804. Kumari A, 2020, J PARALLEL DISTR COM, V143, P148, DOI 10.1016/j.jpdc.2020.05.004. Lawal MA, 2021, PROCEDIA COMPUT SCI, V182, P13, DOI 10.1016/j.procs.2021.02.003. Lee JY, 2019, BUS HORIZONS, V62, P773, DOI 10.1016/j.bushor.2019.08.003. Lejarza F, 2020, IFAC PAPERSONLINE, V53, P11458, DOI 10.1016/j.ifacol.2020.12.584. Lenz J, 2020, J MANUF SYST, V57, P274, DOI 10.1016/j.jmsy.2020.10.001. Li D, 2017, CLUSTER COMPUT, V20, P1855, DOI 10.1007/s10586-017-0852-1. Liao YX, 2017, INT J PROD RES, V55, P3609, DOI 10.1080/00207543.2017.1308576. Lin PMC, 2020, INT J HOSP MANAG, V91, DOI 10.1016/j.ijhm.2020.102686. Liu A, 2021, MANUF LETT, V27, P18, DOI 10.1016/j.mfglet.2020.12.001. Liu HX, 2018, ENERG POLICY, V121, P175, DOI 10.1016/j.enpol.2018.06.024. Liu XY, 2016, INT J IND ORGAN, V47, P88, DOI 10.1016/j.ijindorg.2016.02.002. Lone AH, 2021, COMPUT SCI REV, V39, DOI 10.1016/j.cosrev.2020.100360. Manseur F, 2020, EUR J OPER RES, V285, P159, DOI 10.1016/j.ejor.2018.10.053. Marshall GR, 2013, ECOL ECON, V88, P185, DOI 10.1016/j.ecolecon.2012.12.030. Martin CJ, 2016, ECOL ECON, V121, P149, DOI 10.1016/j.ecolecon.2015.11.027. Matarazzo M, 2021, J BUS RES, V123, P642, DOI 10.1016/j.jbusres.2020.10.033. Min H, 2019, BUS HORIZONS, V62, P35, DOI 10.1016/j.bushor.2018.08.012. Mo CC, 2020, COMPUT COMMUN, V159, P1, DOI 10.1016/j.comcom.2020.05.015. Moktadir MA, 2018, J CLEAN PROD, V174, P1366, DOI 10.1016/j.jclepro.2017.11.063. Morgan J, 2021, J MANUF SYST, V59, P481, DOI 10.1016/j.jmsy.2021.03.001. Moura R, 2019, ENERG POLICY, V132, P820, DOI 10.1016/j.enpol.2019.06.053. Mourtzis D, 2018, J MANUF SYST, V47, P179, DOI 10.1016/j.jmsy.2018.05.008. Mubarak MF, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120332. Mubarak MF, 2019, ENG TECHNOL APPL SCI, V9, P5056. Muller E, 2020, INT J RES MARK, V37, P43, DOI 10.1016/j.ijresmar.2019.10.004. Mullick S, 2021, IND MARKET MANAG, V93, P533, DOI 10.1016/j.indmarman.2020.09.021. Murillo D, 2017, TECHNOL FORECAST SOC, V125, P66, DOI 10.1016/j.techfore.2017.05.024. Nabeel MM, 2020, MATER TODAY-PROC, V22, P2359. Nam T, 2019, FUTURES, V109, P39, DOI 10.1016/j.futures.2019.04.005. Narang N, 2021, COMPUT COMMUN, V171, P61, DOI 10.1016/j.comcom.2021.02.015. Novak P, 2020, IFAC PAPERSONLINE, V53, P10803, DOI 10.1016/j.ifacol.2020.12.2865. Nuvolari A, 2019, ENVIRON INNOV SOC TR, V32, P33, DOI 10.1016/j.eist.2018.11.002. Omar IA, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120786. Orlandi LB, 2020, J BUS RES, V112, P385, DOI 10.1016/j.jbusres.2019.10.070. Paiola M, 2020, IND MARKET MANAG, V89, P245, DOI 10.1016/j.indmarman.2020.03.009. Pan YH, 2021, J MANUF SYST, V58, P246, DOI 10.1016/j.jmsy.2020.10.015. Papazoglou MP, 2020, CIRP J MANUF SCI TEC, V29, P205, DOI 10.1016/j.cirpj.2018.08.003. Pereira T, 2017, PROCEDIA MANUF, V13, P1253, DOI 10.1016/j.promfg.2017.09.047. Pouri MJ, 2021, RESOUR CONSERV RECY, V168, DOI 10.1016/j.resconrec.2021.105434. Qian YF, 2018, COMPUT ELECTR ENG, V72, P266, DOI 10.1016/j.compeleceng.2018.08.021. Raynor M, 2016, ENTERPRISE RISK MANA, P219. Ren S, 2019, J CLEAN PROD, V210, P1343, DOI 10.1016/j.jclepro.2018.11.025. Ribeiro J, 2021, PROCEDIA COMPUT SCI, V181, P51, DOI 10.1016/j.procs.2021.01.104. Rifkin J, 2014, SOC COSTE MARGINAL C. Rifkin J, 2016, 2016 WORLD EC FORUM. Rossit D., 2018, MANUF LETT, V15, P111, DOI {[}10.1016/j.mfglet.2017.12.005, DOI 10.1016/J.MFGLET.2017.12.005]. Rymaszewska A, 2017, INT J PROD ECON, V192, P92, DOI 10.1016/j.ijpe.2017.02.016. Saidi F, 2017, COMPUT SECUR, V66, P66, DOI 10.1016/j.cose.2016.12.017. Salampasis D, 2019, TECHNOL ANAL STRATEG, V31, P1327, DOI 10.1080/09537325.2019.1613520. Salonen A, 2017, J SERV MANAGE, V28, P662, DOI 10.1108/JOSM-05-2016-0121. Sangwan RS, 2020, PROCEDIA COMPUT SCI, V168, P265, DOI 10.1016/j.procs.2020.02.252. Saurabh N, 2021, BLOCKCHAIN-RES APPL, V2, DOI 10.1016/j.bcra.2021.100013. Schepis D, 2021, IND MARKET MANAG, V93, P270, DOI 10.1016/j.indmarman.2021.01.015. Schor J., 2016, OURS HACK OWN RISE P, V4, P7, DOI 10.22381/JSME4320161. Schulz J, 2020, PROCEDIA MANUF, V43, P40, DOI 10.1016/j.promfg.2020.02.105. Schwab Klaus., 2017, 4 IND REVOLUTION. Shahin M, 2020, PROCEDIA MANUF, V51, P1184, DOI 10.1016/j.promfg.2020.10.166. Siano P, 2016, APPL ENERG, V161, P533, DOI 10.1016/j.apenergy.2015.10.017. Silvestri L, 2021, PROCEDIA COMPUT SCI, V180, P381, DOI 10.1016/j.procs.2021.01.359. Simeone Alessandro, 2020, Procedia CIRP, V88, P387, DOI 10.1016/j.procir.2020.05.067. Sjodin D, 2020, J BUS RES, V112, P478, DOI 10.1016/j.jbusres.2020.01.009. Stahl DO, 2013, J ECON BEHAV ORGAN, V94, P116, DOI 10.1016/j.jebo.2013.08.014. Stewart A, 2017, ECON LABOUR RELAT RE, V28, P420, DOI 10.1177/1035304617722461. Stock T, 2018, PROCESS SAF ENVIRON, V118, P254, DOI 10.1016/j.psep.2018.06.026. Strozzi F, 2017, INT J PROD RES, V55, P6572, DOI 10.1080/00207543.2017.1326643. Suarez FF, 2005, IND CORP CHANGE, V14, P1017, DOI 10.1093/icc/dth078. Sydow J, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2018.07.036. Taylor SA, 2020, IND MARKET MANAG, V87, P256, DOI 10.1016/j.indmarman.2019.10.004. Teece DJ, 2018, LONG RANGE PLANN, V51, P40, DOI 10.1016/j.lrp.2017.06.007. Terziyan V, 2018, J MANUF SYST, V48, P204, DOI 10.1016/j.jmsy.2018.04.019. Oesterreich TD, 2016, COMPUT IND, V83, P121, DOI 10.1016/j.compind.2016.09.006. Tran M, 2017, J OCCUP ENVIRON MED, V59, pE63, DOI 10.1097/JOM.0000000000000977. Tukker A, 2015, J CLEAN PROD, V97, P76, DOI 10.1016/j.jclepro.2013.11.049. Tykkylainen S, 2021, J BUS RES, V125, P684, DOI 10.1016/j.jbusres.2020.01.045. Usman Muhammad, 2020, Procedia Computer Science, V174, P321, DOI 10.1016/j.procs.2020.06.093. Visnjic Kastalli I, 2013, J OPER MANAG, V31, P169, DOI 10.1016/j.jom.2013.02.001. Wilkinson S, 2020, ENERGY RES SOC SCI, V66, DOI 10.1016/j.erss.2020.101500. Yang C, 2017, CLUSTER COMPUT, V20, P1717, DOI 10.1007/s10586-017-0767-x. Yeo SF, 2021, INT J PROD ECON, V234, DOI 10.1016/j.ijpe.2021.108063. Yu BY, 2017, APPL ENERG, V191, P141, DOI 10.1016/j.apenergy.2017.01.052. Yu HY, 2015, RELIAB ENG SYST SAFE, V139, P82, DOI 10.1016/j.ress.2015.02.011. Yu T, 2019, COMPUT LAW SECUR REV, V35, P42, DOI 10.1016/j.clsr.2018.10.001. Zenisek J, 2021, PROCEDIA COMPUT SCI, V180, P507, DOI 10.1016/j.procs.2021.01.269. Zhong L, 2019, COMPUT SECUR, V84, P349, DOI 10.1016/j.cose.2019.04.007. Zhou W, 2018, INFORM TECHNOL MANAG, V19, P141, DOI 10.1007/s10799-017-0279-7. Ziman J., 2003, TECHNOLOGICAL INNOVA.}, Number-of-Cited-References = {163}, Times-Cited = {1}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Manag. Res. Pract.}, Doc-Delivery-Number = {4P8PX}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000855653500001}, DA = {2023-04-22}, } @article{ WOS:000862705400001, Author = {Akhtar, Nadeem and Khan, Nohman and Qayyum, Shazia and Qureshi, Muhammad Imran and Hishan, Snail S.}, Title = {Efficacy and pitfalls of digital technologies in healthcare services: A systematic review of two decades}, Journal = {FRONTIERS IN PUBLIC HEALTH}, Year = {2022}, Volume = {10}, Month = {SEP 16}, Abstract = {The use of technology in the healthcare sector and its medical practices, from patient record maintenance to diagnostics, has significantly improved the health care emergency management system. At that backdrop, it is crucial to explore the role and challenges of these technologies in the healthcare sector. Therefore, this study provides a systematic review of the literature on technological developments in the healthcare sector and deduces its pros and cons. We curate the published studies from the Web of Science and Scopus databases by using PRISMA 2015 guidelines. After mining the data, we selected only 55 studies for the systematic literature review and bibliometric analysis. The study explores four significant classifications of technological development in healthcare: (a) digital technologies, (b) artificial intelligence, (c) blockchain, and (d) the Internet of Things. The novel contribution of current study indicate that digital technologies have significantly influenced the healthcare services such as the beginning of electronic health record, a new era of digital healthcare, while robotic surgeries and machine learning algorithms may replace practitioners as future technologies. However, a considerable number of studies have criticized these technologies in the health sector based on trust, security, privacy, and accuracy. The study suggests that future studies, on technological development in healthcare services, may take into account these issues for sustainable development of the healthcare sector.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Qureshi, MI (Corresponding Author), Teesside Univ, Int Business Sch, Middlesbrough, England. Akhtar, Nadeem, South China Normal Univ, Sch Urban Culture, Foshan, Peoples R China. Khan, Nohman, Univ Kuala Lumpur, UniKL Business Sch, Kuala Lumpur, Malaysia. Qayyum, Shazia, Univ Punjab, Inst Appl Psychol, Lahore, Pakistan. Qureshi, Muhammad Imran, Teesside Univ, Int Business Sch, Middlesbrough, England. Hishan, Snail S., Univ Teknol, Azman Hashim Int Business Sch, Kuala Lumpur, Malaysia. Hishan, Snail S., THR Project, Brisbane, Qld, Australia.}, DOI = {10.3389/fpubh.2022.869793}, Article-Number = {869793}, EISSN = {2296-2565}, Keywords = {healthcare; digital technologies; artificial intelligence; IoT; blockchain; SLR-M}, Keywords-Plus = {INTERNET}, Research-Areas = {Public, Environmental \& Occupational Health}, Web-of-Science-Categories = {Public, Environmental \& Occupational Health}, Author-Email = {m.qureshi@tees.ac.uk}, Affiliations = {South China Normal University; University of Kuala Lumpur; University of Punjab; University of Teesside; Universiti Teknologi Malaysia}, ResearcherID-Numbers = {Qureshi, Muhammad Imran/I-4390-2016 }, ORCID-Numbers = {Qureshi, Muhammad Imran/0000-0001-8861-0628 AKHTAR, NADEEM/0000-0002-8283-4353}, Funding-Acknowledgement = {Guangdong Social Science Project; {[}GD21CSH07]}, Funding-Text = {This work was supported by the Guangdong Social Science Project (Grant No. GD21CSH07).}, Cited-References = {Abdelgawad A, 2017, L N INST COMP SCI SO, V195, P11, DOI 10.1007/978-3-319-61949-1\_2. Agarwal Y., 2020, GLOBAL BUSINESS ORG, V39, P20, DOI DOI 10.1002/JOE.21981. Al-Mashhadani AES, 2021, ENERGIES, V14, DOI 10.3390/en14102945. Arfaoui A, 2020, COMPUT SECUR, V88, DOI 10.1016/j.cose.2019.03.017. Arunkumar B., 2020, Intelligent Systems, Technologies and Applications. Proceedings of Fifth ISTA 2019, India. Advances in Intelligent Systems and Computing (AISC 1148), P273, DOI 10.1007/978-981-15-3914-5\_21. Basatneh Rami, 2018, J Diabetes Sci Technol, V12, P577, DOI 10.1177/1932296818768618. Basholli A, 2018, HEALTHCARE PROFESSIO, DOI {[}10.1109/HealthCom.2018.8531090, DOI 10.1109/HEALTHCOM.2018.8531090]. Chen LX, 2019, FUTURE GENER COMP SY, V95, P420, DOI 10.1016/j.future.2019.01.018. Christo Mary Subaja, 2019, 2019 International Conference on Communication and Signal Processing (ICCSP), P0606, DOI 10.1109/ICCSP.2019.8698058. Crigger Elliott, 2019, AMA J Ethics, V21, pE188, DOI 10.1001/amajethics.2019.188. Davenport Thomas, 2019, Future Healthc J, V6, P94, DOI 10.7861/futurehosp.6-2-94. Garbuio M, 2019, CALIF MANAGE REV, V61, P59, DOI 10.1177/0008125618811931. Habeeb RAA, 2019, INT J INFORM MANAGE, V45, P289, DOI 10.1016/j.ijinfomgt.2018.08.006. Henkenjohann R, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18189553. Javed F, 2018, IEEE COMMUN SURV TUT, V20, P2062, DOI 10.1109/COMST.2018.2817685. Jeong YS, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11247214. Jia XY, 2022, IEEE INTERNET THINGS, V9, P21838, DOI 10.1109/JIOT.2022.3181609. Joyce K, 2019, SOCIOL HEALTH ILL, V41, P147, DOI 10.1111/1467-9566.12871. Kapoor A, 2020, INDIAN HEART J, V72, P61, DOI 10.1016/j.ihj.2020.04.001. Kumari Rani, 2019, 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), P144, DOI 10.1109/ICCCIS48478.2019.8974478. Lai MC, 2020, J TRANSL MED, V18, DOI 10.1186/s12967-019-02204-y. Lee TC, 2019, ANN SURG, V270, P564, DOI 10.1097/SLA.0000000000003425. Li Y, 2020, INT J PROD ECON, V229, DOI 10.1016/j.ijpe.2020.107777. Maksimovic Mirjana, 2017, HDB LARGE SCALE DIST, P241, DOI {[}10.1007/978-3-319-58280-1\_10, DOI 10.1007/978-3-319-58280-1\_10]. MALLICK P. K., 2018, PROCEDIA COMPUTER SC, V132, P1815, DOI {[}10.1016/j.procs.2018.05.140, DOI 10.1016/J.PROCS.2018.05.140]. Marent B, 2018, SOC SCI MED, V215, P133, DOI 10.1016/j.socscimed.2018.09.003. Moher D., 2009, PLOS MED, V6, DOI {[}DOI 10.1371/JOURNAL.PMED.1000097, 10.1371/journal.pmed.1000097]. Murugan A., 2020, INT J ELECT COMPUT E, V10, P421, DOI {[}10.11591/ijece.v10i1.pp421-426, DOI 10.11591/IJECE.V10I1.PP421-426]. Neubeck L, 2016, INT J MED INFORM, V96, P24, DOI 10.1016/j.ijmedinf.2016.01.009. Parimi S., 2020, INT J SCI TECHNOL RE, V9, P1107. Petersen A, 2019, HEALTH-LONDON, V23, P367, DOI 10.1177/1363459319847505. Petrakaki D, 2018, SOC SCI MED, V213, P146, DOI 10.1016/j.socscimed.2018.07.043. Pirhonen J, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101287. Qashlan Amjad, 2020, Smart Systems and IoT: Innovations in Computing. Proceeding of SSIC 2019. Smart Innovation, Systems and Technologies (SIST 141), P313, DOI 10.1007/978-981-13-8406-6\_31. Rathee G, 2020, MULTIMED TOOLS APPL, V79, P9711, DOI 10.1007/s11042-019-07835-3. Rojas G, 2019, FRONT PUBLIC HEALTH, V7, DOI 10.3389/fpubh.2019.00391. Ryhta I, 2020, NURS EDUC TODAY, V92, DOI 10.1016/j.nedt.2020.104521. Samuel O, 2022, IEEE SYST J, DOI 10.1109/JSYST.2022.3170406. Sangeetha D., 2020, Proceedings of 6th International Conference on Big Data and Cloud Computing Challenges. ICBCC 2019. Smart Innovation, Systems and Technologies (SIST 164), P19, DOI 10.1007/978-981-32-9889-7\_2. Sheetz KH, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2019.18911. Shobana G., 2019, PROC 3 INT C I SMAC, P531, DOI {[}10.1109/1-SMAC47947.2019.9032472, DOI 10.1109/1-SMAC47947.2019.9032472]. Siyal AA, 2019, CRYPTOGRAPHY-BASEL, V3, DOI 10.3390/cryptography3010003. Sullivan Hannah R, 2019, AMA J Ethics, V21, pE160, DOI 10.1001/amajethics.2019.160. Tang A, 2018, CAN ASSOC RADIOL J, V69, P120, DOI 10.1016/j.carj.2018.02.002. Tortorella GL, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120048. Wartman Steven A, 2019, AMA J Ethics, V21, pE146, DOI 10.1001/amajethics.2019.146. Wunderlich P, 2019, MIS QUART, V43, P673, DOI 10.25300/MISQ/2019/12112. Yang GZ, 2020, SCI ROBOT, V5, DOI 10.1126/scirobotics.abb5589. Zimmermann BM, 2021, J MED INTERNET RES, V23, DOI 10.2196/25525.}, Number-of-Cited-References = {49}, Times-Cited = {1}, Usage-Count-Last-180-days = {16}, Usage-Count-Since-2013 = {18}, Journal-ISO = {Front. Public Health}, Doc-Delivery-Number = {5A2EN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000862705400001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000659058000003, Author = {Contreras-Bravo, Leonardo-Emiro and Tarazona-Bermudez, Giovanny-Mauricio and Rodriguez-Molano, Jose-Ignacio}, Title = {Technology and Learning Analytics: A Literature Review}, Journal = {REVISTA CIENTIFICA}, Year = {2021}, Volume = {41}, Number = {2}, Pages = {150-168}, Month = {MAY-AUG}, Abstract = {A study concerning learning analytics is presented. This area consists of the collection and analysis of data generated by students and their iterations with the purpose of understanding and optimizing learning. By using databases, a referential review of the last five years is proposed to identify aspects related to the growth of this approach and its fields of application in higher education. The volume of related research is increasing due to the need to investigate more accurate predictive models and new algorithms in the field of data science.}, Publisher = {UNIV DISTRITAL FRANCISCO JOSE DE CALDAS, CENTRO INVEST \& DESARROLLO CIENT}, Address = {CARRERA 7 NO 40-53, BOGOTA, 00000, COLOMBIA}, Type = {Review}, Language = {Spanish}, Affiliation = {Contreras-Bravo, LE (Corresponding Author), Univ Dist Francisco Jose de Caldas, Bogota, Colombia. Contreras-Bravo, Leonardo-Emiro; Tarazona-Bermudez, Giovanny-Mauricio; Rodriguez-Molano, Jose-Ignacio, Univ Dist Francisco Jose de Caldas, Bogota, Colombia.}, DOI = {10.14483/23448350.17547}, ISSN = {0124-2253}, EISSN = {2344-8350}, Keywords = {analytics; educational research; engineering education; learning analytics; machine learning}, Keywords-Plus = {HIGHER-EDUCATION; LOG DATA; STUDENT; MOTIVATION; PERFORMANCE; FRAMEWORK; PREDICT; MODEL}, Research-Areas = {Education \& Educational Research}, Web-of-Science-Categories = {Education, Scientific Disciplines}, Author-Email = {lecontrerasb@udistrital.edu.co gtarazona@udistrital.edu.co jirodriguezm@udistrital.edu.co}, Affiliations = {Universidad Distrital Francisco Jose de Caldas}, ORCID-Numbers = {contreras bravo, leonardo emiro/0000-0003-4625-8835 RODRIGUEZ MOLANO, JOSE IGNACIO/0000-0003-2581-277X}, Cited-References = {Abdullah Aziman, 2020, IOP Conference Series: Materials Science and Engineering, V769, DOI 10.1088/1757-899X/769/1/012026. Adekitan AI, 2019, EDUC INF TECHNOL, V24, P1527, DOI 10.1007/s10639-018-9839-7. Agudo-Peregrina AF, 2014, COMPUT HUM BEHAV, V31, P542, DOI 10.1016/j.chb.2013.05.031. Akcapinar G, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0172-z. Al-araibi AAM, 2019, EDUC INF TECHNOL, V24, P1395, DOI 10.1007/s10639-018-9837-9. Al-araibi AAM, 2019, EDUC INF TECHNOL, V24, P567, DOI 10.1007/s10639-018-9780-9. Al-Barrak Mashael A., 2016, International Journal of Information and Education Technology, V6, P528, DOI 10.7763/IJIET.2016.V6.745. Almaiah MA, 2020, EDUC INF TECHNOL, V25, P5261, DOI 10.1007/s10639-020-10219-y. Alves P, 2017, PROC EUR CONF ELEARN, P25. Azcona D, 2019, USER MODEL USER-ADAP, V29, P759, DOI 10.1007/s11257-019-09234-7. Azzi I, 2020, EDUC INF TECHNOL, V25, P437, DOI 10.1007/s10639-019-09956-6. Back DA, 2015, BMC MED EDUC, V15, DOI 10.1186/s12909-015-0420-4. Brown Malcolm, 2011, EDUCAUSE Review, V46, P1. Campbell J., 2007, EDUCAUSE, V42. Castrillón Omar D., 2020, Form. Univ., V13, P93. Chen HJ, 2020, EDUC INF TECHNOL, V25, P5873, DOI 10.1007/s10639-020-10249-6. Chen L., 2019, RES PRACT TECH ENHAN, V14, P24, DOI {[}10.1186/s41039-019, DOI 10.1186/S41039-019]. Contreras L., 2021, REV BOL REDIPE, V10, P137, DOI {[}10.36260/rbr.v10i3.1225.4,5, DOI 10.36260/RBR.V10I3.1225.4,5]. Contreras Leonardo E., 2020, Form. Univ., V13, P233. Covadonga M., 2019, REV IBEROAM EDUC, V80, P9. Daniel B, 2015, BRIT J EDUC TECHNOL, V46, P904, DOI 10.1111/bjet.12230. De Arco-Paternina L. K., 2017, REV ACAD VIRTUALIDAD, V10, P7, DOI 10.18359/ravi.2706. Ellis RA, 2017, EDUC TECHNOL SOC, V20, P158. Er E, 2019, INTERACT LEARN ENVIR, V27, P685, DOI 10.1080/10494820.2019.1610455. Estrada J., 2015, BAJO RENDIMIENTO ACA. Eze SC, 2018, INT J EDUC TECHNOL H, V15, DOI 10.1186/s41239-018-0116-z. Ferguson R, 2012, INT J TECHNOL ENHANC, V4, P304, DOI 10.1504/IJTEL.2012.051816. Lasarte OF, 2020, PSICOTHEMA, V32, P100, DOI 10.7334/psicothema2019.125. Garcia Tinisaray D. K., 2016, CONSTRUCCION MODELO. Giannakos MN, 2015, INT REV RES OPEN DIS, V16, P260. Gibson D, 2016, TECHNOL KNOWL LEARN, V21, P5, DOI 10.1007/s10758-015-9249-5. González-Lerma Lucy, 2020, Prax. Saber, V11, P227, DOI 10.19053/22160159.v11.n25.2020.9075. Gonzalez-Yebra O, 2018, EDUC XX1, V21, P417, DOI 10.5944/educXX1.16204. Gottipati S, 2018, EDUC INF TECHNOL, V23, P41, DOI 10.1007/s10639-017-9584-3. Greller W, 2012, EDUC TECHNOL SOC, V15, P42. Guillen-Guerrero G., 2019, REV IBERICA SISTEMAS, V21, P166. Hackeling G., 2014, MASTERING MACHINE LE. Hasan R, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10113894. Jivet I, 2020, INTERNET HIGH EDUC, V47, DOI 10.1016/j.iheduc.2020.100758. Jo IH, 2015, EDUC TECHNOL SOC, V18, P214. Johnson L., 2015, NMC HORIZON REPORT E. Kauffman CA, 2019, ADV PHYSIOL EDUC, V43, P512, DOI 10.1152/advan.00082.2019. Kew SN, 2018, EDUC INF TECHNOL, V23, P2947, DOI 10.1007/s10639-018-9753-z. Khalil M., 2015, P WORLD C ED MULTIME, P1326. Kim HJ, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0152-3. Kim J, 2016, ASIA PAC EDUC REV, V17, P13, DOI 10.1007/s12564-015-9403-8. Kitchenham B., 2004, PROCEDURES PERFORMIN. Kitchenham B.A., 2007, 23 EBSE. Kitchenham B, 2009, INFORM SOFTWARE TECH, V51, P7, DOI 10.1016/j.infsof.2008.09.009. Klein C, 2019, J COMPUT HIGH EDUC, V31, P604, DOI 10.1007/s12528-019-09210-5. Kuliya M, 2021, EDUC INF TECHNOL, V26, P1787, DOI 10.1007/s10639-020-10325-x. Li S, 2020, COMPUT EDUC, V153, DOI 10.1016/j.compedu.2020.103899. Long Phil, 2011, EDUCAUSE Review, V46, P31. Long P.D., 2011, P 1 INT C LEARN AN K. Lonn S, 2015, COMPUT HUM BEHAV, V47, P90, DOI 10.1016/j.chb.2014.07.013. Luo L, 2017, BMC MED EDUC, V17, DOI 10.1186/s12909-017-1009-x. Mamcenko J, 2017, PROC EUR CONF ELEARN, P353. Martin F, 2016, TECHNOL KNOWL LEARN, V21, P59, DOI 10.1007/s10758-015-9261-9. Medina E. C., 2020, 15 IB C INF SYST TEC, DOI {[}10.23919/cisti49556.2020.9141095, DOI 10.23919/CISTI49556.2020.9141095]. Mirabolghasemi M, 2019, EDUC INF TECHNOL, V24, P3555, DOI 10.1007/s10639-019-09945-9. Muljana PS, 2021, J COMPUT HIGH EDUC, V33, P206, DOI 10.1007/s12528-020-09262-y. Murnion P., 2013, UK AC INF SYST C P. Ngan SC, 2015, ASIA-PAC EDUC RES, V24, P705, DOI 10.1007/s40299-014-0223-0. Nguyen Q., 2016, Q REV DISTANCE ED, V17, P13. Norris DM, 2011, RES LEARN TECHNOL, V19, P61, DOI 10.1080/09687769.2010.549205. Núñez-Barriopedro Estela, 2019, Alteridad, V14, P26, DOI 10.17163/alt.v14n1.2019.02. Olsen JK, 2020, BRIT J EDUC TECHNOL, V51, P1527, DOI 10.1111/bjet.12982. Pérez Montero Eilen Lorena, 2015, Tecnura, V19, P15, DOI 10.14483/udistrital.jour.tecnura.2015.SE1.a01. Pham L, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0136-3. Hoyos JEP, 2016, PROFILE-BOGOTA, V18, P97, DOI 10.15446/profile.v18n1.44269. Qi Y., 2018, P219. Queiroga EM, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10113998. Rajak ANHA, 2018, EDUC INF TECHNOL, V23, P2341, DOI 10.1007/s10639-018-9720-8. Salajegheh A, 2016, BMC MED EDUC, V16, DOI 10.1186/s12909-016-0569-5. Schroeder U, 2009, LECT NOTES COMPUT SC, V5686, P25, DOI 10.1007/978-3-642-03426-8\_3. Seoane A., 2014, THESIS U SALAMANCA, DOI {[}10.14201/gredos.123342, DOI 10.14201/GREDOS.123342]. Stewart C., 2017, J EMPOWERING TEACHIN, V1, P95. Tahir R, 2020, ELECTRON J E-LEARN, V18, P69, DOI 10.34190/EJEL.20.18.1.006. Tenpipat W., 2020, INT C BIG DAT AN PRA. Teo TSH, 2020, INFORM SYST FRONT, V22, P511, DOI 10.1007/s10796-018-9874-3. Tomasevic N, 2020, COMPUT EDUC, V143, DOI 10.1016/j.compedu.2019.103676. Urteaga I, 2020, RIED-REV IBEROAM EDU, V23, P147, DOI 10.5944/ried.23.2.26356. Vesin Boban, 2018, Smart Learning Environments, V5, DOI 10.1186/s40561-018-0071-0. Viberg O, 2018, COMPUT HUM BEHAV, V89, P98, DOI 10.1016/j.chb.2018.07.027. Wen CT, 2018, INSTR SCI, V46, P847, DOI 10.1007/s11251-018-9461-5. Yen CH, 2015, EDUC TECHNOL SOC, V18, P141. Yilmaz FGK, 2020, TECHNOL KNOWL LEARN, V25, P753, DOI 10.1007/s10758-020-09460-8. Zacharias D., 2020, INT J INNOVATION EC, V6, P36, DOI {[}10.18775/ijied.1849-7551-7020.2015.63.2004, DOI 10.18775/IJIED.1849-7551-7020.2015.63.2004].}, Number-of-Cited-References = {88}, Times-Cited = {0}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {16}, Journal-ISO = {Rev. Cient.}, Doc-Delivery-Number = {SO6CN}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000659058000003}, OA = {Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000569219300007, Author = {Velmurugan, Devadasan and Pachaiappan, R. and Ramakrishnan, Chandrasekaran}, Title = {Recent Trends in Drug Design and Discovery}, Journal = {CURRENT TOPICS IN MEDICINAL CHEMISTRY}, Year = {2020}, Volume = {20}, Number = {19}, Pages = {1761-1770}, Abstract = {Introduction: Structure-based drug design is a wide area of identification of selective inhibitors of a target of interest. From the time of the availability of three dimensional structure of the drug targets, mostly the proteins, many computational methods had emerged to address the challenges associated with drug design process. Particularly, drug-likeness, druggability of the target protein, specificity, off-target binding, etc., are the important factors to determine the efficacy of new chemical inhibitors. Objective: The aim of the present research was to improve the drug design strategies in field of design of novel inhibitors with respect to specific target protein in disease pathology. Recent statistical machine learning methods applied for structural and chemical data analysis had been elaborated in current drug design field. Methods: As the size of the biological data shows a continuous growth, new computational algorithms and analytical methods are being developed with different objectives. It covers a wide area, from protein structure prediction to drug toxicity prediction. Moreover, the computational methods are available to analyze the structural data of varying types and sizes of which, most of the semi-empirical force field and quantum mechanics based molecular modeling methods showed a proven accuracy towards analysing small structural data sets while statistics based methods such as machine learning, QSAR and other specific data analytics methods are robust for large scale data analysis. Results: In this present study, the background has been reviewed for new drug lead development with respect specific drug targets of interest. Overall approach of both the extreme methods were also used to demonstrate with the plausible outcome. Conclusion: In this chapter, we focus on the recent developments in the structure-based drug design using advanced molecular modeling techniques in conjunction with machine learning and other data analytics methods. Natural products based drug discovery is also discussed.}, Publisher = {BENTHAM SCIENCE PUBL LTD}, Address = {EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES}, Type = {Review}, Language = {English}, Affiliation = {Velmurugan, D (Corresponding Author), Univ Madras, CAS Crystallog \& Biophys, Guindy Campus, Chennai 600025, Tamil Nadu, India. Ramakrishnan, C (Corresponding Author), Indian Inst Technol IIT Madras, Bhupat \& Jyoti Mehta Sch Biosci, Dept Biotechnol, Prot Bioinformat Lab, Chennai 600036, Tamil Nadu, India. Velmurugan, Devadasan, Univ Madras, CAS Crystallog \& Biophys, Guindy Campus, Chennai 600025, Tamil Nadu, India. Pachaiappan, R., SRM Inst Sci \& Technol, Dept Biotechnol, Kattankulathur 603203, Tamil Nadu, India. Ramakrishnan, Chandrasekaran, Indian Inst Technol IIT Madras, Bhupat \& Jyoti Mehta Sch Biosci, Dept Biotechnol, Chennai 600036, Tamil Nadu, India.}, DOI = {10.2174/1568026620666200622150003}, ISSN = {1568-0266}, EISSN = {1873-5294}, Keywords = {Structure-based drug design; SBDD; Machine learning; QSAR; Data analytics; Data science}, Keywords-Plus = {GROMOS FORCE-FIELD; MOLECULAR-DYNAMICS; CONFORMATIONAL ENERGIES; SCORING FUNCTIONS; SIMULATION; PROTEINS; FANGCHINOLINE; LIGANDS; SYSTEMS; FOLD}, Research-Areas = {Pharmacology \& Pharmacy}, Web-of-Science-Categories = {Chemistry, Medicinal}, Author-Email = {shirai2011@gmail.com ramki.rpcr@gmail.com}, Affiliations = {University of Madras; SRM Institute of Science \& Technology Chennai; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Madras}, ResearcherID-Numbers = {BIOTECH, SRMITE/AAW-8572-2020 Chandrasekaran, Ramakrishnan/AAP-6328-2021 }, ORCID-Numbers = {Chandrasekaran, Ramakrishnan/0000-0003-4622-2496 Raman, Pachaiappan/0000-0003-2739-4882}, Cited-References = {ALDER BJ, 1957, J CHEM PHYS, V27, P1208, DOI 10.1063/1.1743957. ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209. BAYLY CI, 1993, J PHYS CHEM-US, V97, P10269, DOI 10.1021/j100142a004. BOWIE JU, 1991, SCIENCE, V253, P164, DOI 10.1126/science.1853201. Brooks BR, 2009, J COMPUT CHEM, V30, P1545, DOI 10.1002/jcc.21287. BROOKS BR, 1995, J COMPUT CHEM, V16, P1522, DOI 10.1002/jcc.540161209. Case DA, 2005, J COMPUT CHEM, V26, P1668, DOI 10.1002/jcc.20290. Chiba S, 2015, SCI REP-UK, V5, DOI 10.1038/srep17209. Cieplak P, 2001, J COMPUT CHEM, V22, P1048, DOI 10.1002/jcc.1065. CONNOLLY ML, 1983, J APPL CRYSTALLOGR, V16, P548, DOI 10.1107/S0021889883010985. CORNELL WD, 1993, J AM CHEM SOC, V115, P9620, DOI 10.1021/ja00074a030. CORNELL WD, 1995, J AM CHEM SOC, V117, P5179, DOI 10.1021/ja00124a002. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Delavan B, 2018, DRUG DISCOV TODAY, V23, P382, DOI 10.1016/j.drudis.2017.10.009. Dickson CJ, 2014, J CHEM THEORY COMPUT, V10, P865, DOI 10.1021/ct4010307. Duan Y, 2003, J COMPUT CHEM, V24, P1999, DOI 10.1002/jcc.10349. Eastman P, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005659. Eichenberger AP, 2015, J CHEM THEORY COMPUT, V11, P2925, DOI 10.1021/acs.jctc.5b00295. Eldridge MD, 1997, J COMPUT AID MOL DES, V11, P425, DOI 10.1023/A:1007996124545. Englebienne P, 2009, J CHEM INF MODEL, V49, P1568, DOI 10.1021/ci8004308. Fox T, 1998, J PHYS CHEM B, V102, P8070, DOI 10.1021/jp9717655. Gayatri S, 2016, PHARMACOGN RES, V8, P61, DOI 10.4103/0974-8490.171101. Huang J, 2013, J COMPUT CHEM, V34, P2135, DOI 10.1002/jcc.23354. JONES DT, 1992, NATURE, V358, P86, DOI 10.1038/358086a0. Jorgensen WL, 1996, J AM CHEM SOC, V118, P11225, DOI 10.1021/ja9621760. JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657, DOI 10.1021/ja00214a001. Karplus M, 2002, NAT STRUCT BIOL, V9, P646, DOI 10.1038/nsb0902-646. Lengauer T, 1996, CURR OPIN STRUC BIOL, V6, P402, DOI 10.1016/S0959-440X(96)80061-3. Li J, 2016, BRIEF BIOINFORM, V17, P2, DOI 10.1093/bib/bbv020. Lin ZX, 2013, J COMPUT CHEM, V34, P2796, DOI 10.1002/jcc.23459. Mackerell AD, 2004, J COMPUT CHEM, V25, P1400, DOI 10.1002/jcc.20065. MacKerell AD, 2001, BIOPOLYMERS, V56, P257. MacKerell AD, 1998, J PHYS CHEM B, V102, P3586, DOI 10.1021/jp973084f. Marzuoli I, 2019, J CHEM THEORY COMPUT, V15, P5175, DOI 10.1021/acs.jctc.9b00509. MCCAMMON JA, 1977, NATURE, V267, P585, DOI 10.1038/267585a0. Mohan K., 2018, RJLBPS, V4, P485. Mohan K, 2018, RES J LIFE SCI BIOIN, V4, P335. Mohan K, 2018, RES J LIFE SCI BOINF, V4, P612. Morris Garrett M., 2008, V443, P365, DOI 10.1007/978-1-59745-177-2\_19. Newman DJ, 2016, J NAT PROD, V79, P629, DOI 10.1021/acs.jnatprod.5b01055. Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289. Ramakrishnan C, 2018, J BIOMOL STRUCT DYN, V36, P1566, DOI 10.1080/07391102.2017.1329098. Schmid N, 2011, EUR BIOPHYS J BIOPHY, V40, P843, DOI 10.1007/s00249-011-0700-9. Stocker U, 2000, PROTEINS, V40, P145, DOI 10.1002/(SICI)1097-0134(20000701)40:1<145::AID-PROT160>3.0.CO;2-Y. Strobl C, 2009, PSYCHOL METHODS, V14, P323, DOI 10.1037/a0016973. Subasri S., 2016, CLIN PROTEOMICS BIOI, V2, DOI {[}10.15761/CPB.1000117, DOI 10.15761/CPB.1000117]. Suhitha S., 2014, P 62 ASMS C MASS SPE. Suhitha S, 2015, CURR TOP MED CHEM, V15, P21, DOI 10.2174/1568026615666150112104344. Sun YF, 2014, PHYTOMEDICINE, V21, P1110, DOI 10.1016/j.phymed.2014.04.029. Van der Spoel D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291. Wang JM, 2000, J COMPUT CHEM, V21, P1049, DOI 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. Wang JM, 2004, J COMPUT CHEM, V25, P1157, DOI 10.1002/jcc.20035. WEINER SJ, 1986, J COMPUT CHEM, V7, P230, DOI 10.1002/jcc.540070216. WEINER SJ, 1984, J AM CHEM SOC, V106, P765, DOI 10.1021/ja00315a051. Xing ZB, 2013, PHYTOTHER RES, V27, P1790, DOI 10.1002/ptr.4936.}, Number-of-Cited-References = {55}, Times-Cited = {10}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {34}, Journal-ISO = {Curr. Top. Med. Chem.}, Doc-Delivery-Number = {NO1BB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000569219300007}, DA = {2023-04-22}, } @article{ WOS:000685394200001, Author = {Subrahmanya, Sri Venkat Gunturi and Shetty, Dasharathraj K. and Patil, Vathsala and Hameed, B. M. Zeeshan and Paul, Rahul and Smriti, Komal and Naik, Nithesh and Somani, Bhaskar K.}, Title = {The role of data science in healthcare advancements: applications, benefits, and future prospects}, Journal = {IRISH JOURNAL OF MEDICAL SCIENCE}, Year = {2022}, Volume = {191}, Number = {4}, Pages = {1473-1483}, Month = {AUG}, Abstract = {Data science is an interdisciplinary field that extracts knowledge and insights from many structural and unstructured data, using scientific methods, data mining techniques, machine-learning algorithms, and big data. The healthcare industry generates large datasets of useful information on patient demography, treatment plans, results of medical examinations, insurance, etc. The data collected from the Internet of Things (IoT) devices attract the attention of data scientists. Data science provides aid to process, manage, analyze, and assimilate the large quantities of fragmented, structured, and unstructured data created by healthcare systems. This data requires effective management and analysis to acquire factual results. The process of data cleansing, data mining, data preparation, and data analysis used in healthcare applications is reviewed and discussed in the article. The article provides an insight into the status and prospects of big data analytics in healthcare, highlights the advantages, describes the frameworks and techniques used, briefs about the challenges faced currently, and discusses viable solutions. Data science and big data analytics can provide practical insights and aid in the decision-making of strategic decisions concerning the health system. It helps build a comprehensive view of patients, consumers, and clinicians. Data-driven decision-making opens up new possibilities to boost healthcare quality.}, Publisher = {SPRINGER LONDON LTD}, Address = {236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Patil, V (Corresponding Author), Manipal Acad Higher Educ, Manipal Coll Dent Sci, Dept Oral Med \& Radiol, Manipal, Karnataka, India. Subrahmanya, Sri Venkat Gunturi, Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect \& Elect Engn, Manipal, Karnataka, India. Shetty, Dasharathraj K., Manipal Acad Higher Educ, Manipal Inst Technol, Dept Humanities \& Management, Manipal, Karnataka, India. Patil, Vathsala; Smriti, Komal, Manipal Acad Higher Educ, Manipal Coll Dent Sci, Dept Oral Med \& Radiol, Manipal, Karnataka, India. Hameed, B. M. Zeeshan, Father Muller Med Coll, Dept Urol, Mangalore, Karnataka, India. Paul, Rahul, Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA. Naik, Nithesh, Manipal Acad Higher Educ, Manipal Inst Technol, Dept Mech \& Mfg Engn, Manipal, Karnataka, India. Somani, Bhaskar K., Univ Hosp Southampton NHS Trust, Dept Urol, Southampton, Hants, England.}, DOI = {10.1007/s11845-021-02730-z}, EarlyAccessDate = {AUG 2021}, ISSN = {0021-1265}, EISSN = {1863-4362}, Keywords = {Big data; Data analytics; Data mining; Healthcare; Healthcare informatics}, Keywords-Plus = {BIG DATA; MENTAL-DISORDERS; PLATFORMS; FRAMEWORK; SERVICES; RECORDS; SECURE}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {drvathsala19@gmail.com}, Affiliations = {Manipal Academy of Higher Education (MAHE); Manipal Academy of Higher Education (MAHE); Manipal Academy of Higher Education (MAHE); Father Muller Medical College; Harvard University; Massachusetts General Hospital; Manipal Academy of Higher Education (MAHE)}, ResearcherID-Numbers = {Naik, Nithesh/W-5086-2019 SHETTY, DASHARATHRAJ KODU/AAV-3291-2020 }, ORCID-Numbers = {Naik, Nithesh/0000-0003-0356-7697 SHETTY, DASHARATHRAJ KODU/0000-0002-5021-4029 Somani, Bhaskar/0000-0002-6248-6478 Hameed, BM Zeeshan/0000-0002-2904-351X}, Funding-Acknowledgement = {Manipal Academy of Higher Education, Manipal}, Funding-Text = {Open access funding provided by Manipal Academy of Higher Education, Manipal.}, Cited-References = {Adomavicius G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P217, DOI 10.1007/978-0-387-85820-3\_7. Akay A, 2015, IEEE J BIOMED HEALTH, V19, P210, DOI 10.1109/JBHI.2014.2336251. {[}Anonymous], 2013, P 6 INT JOINT C NATU. {[}Anonymous], 2014, INT J AMBIENT SYSTEM, DOI DOI 10.5121/IJASA.2014.2201. Atasoy H, 2019, ANNU REV PUBL HEALTH, V40, P487, DOI 10.1146/annurev-publhealth-040218-044206. Bihan K, 2020, THERAPIE, V75, P591, DOI 10.1016/j.therap.2020.02.022. Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007. BURGHARD C., 2012, IDC HLTH INSIGHTS, P1. Cai TR, 2016, RADIOGRAPHICS, V36, P176, DOI 10.1148/rg.2016150080. Castiglione A, 2015, FUTURE GENER COMP SY, V43-44, P120, DOI 10.1016/j.future.2014.07.001. Chen HY, 2011, EXPERT SYST APPL, V38, P5384, DOI 10.1016/j.eswa.2010.10.017. Chong SA, 2012, ANN ACAD MED SINGAP, V41, P49. Daggy J, 2010, HEALTH INFORM J, V16, P246, DOI 10.1177/1460458210380521. De Mauro A, 2016, LIBR REV, V65, P122, DOI 10.1108/LR-06-2015-0061. Doyle-Lindrud S, 2015, CLIN J ONCOL NURS, V19, P153, DOI 10.1188/15.CJON.153-154. Elshazly H, 2013, 2013 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P343, DOI 10.1109/ICACCI.2013.6637195. Eriksson R, 2014, DRUG SAFETY, V37, P237, DOI 10.1007/s40264-014-0145-z. Gopalani S, 2015, INT J COMP APPL, V113. Greaves F, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.2721. Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010. Harpaz R, 2013, J AM MED INFORM ASSN, V20, P413, DOI 10.1136/amiajnl-2012-000930. Harpaz R, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-S9-S7. IBM Corporation, 2013, DAT DRIV HEALTHC ORG. Issa NT, 2014, EXPERT REV CLIN PHAR, V7, P293, DOI 10.1586/17512433.2014.905201. Jiang JL, 2020, JMIR MED INF, V8, DOI 10.2196/16765. Cubillas JJ, 2014, J MED SYST, V38, DOI 10.1007/s10916-014-0089-y. Joudaki H., 2014, GLOB J HLTH SCI, V7, P194, DOI {[}DOI 10.5539/GJHS.V7N1P194, DOI 10.5539/gjhs.v7n1p194]. Kadoyama K, 2011, J EXP CLIN CANC RES, V30, DOI 10.1186/1756-9966-30-93. Koskela TH, 2010, SCAND J PRIM HEALTH, V28, P55, DOI 10.3109/02813431003690596. KOSTKOVA P, 2013, J MED INT RES, V15. KUEHN BM, 2013, JAMA-J AM MED ASSOC, V310, P787. Li F, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-433. Mohammed N, 2010, ACM T KNOWL DISCOV D, V4, DOI 10.1145/1857947.1857950. Muni Kumar N., 2014, INT J COMPUTER SCI I, V5, P7172. Panagiotakopoulos TC, 2010, IEEE T INF TECHNOL B, V14, P567, DOI 10.1109/TITB.2009.2038905. Raghupathi W, 2014, HEALTH INF SCI SYST, V2, DOI 10.1186/2047-2501-2-3. Rathore MM, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0647-6. Reisman Miriam, 2017, P T, V42, P572. Ren Y, 2010, IEEE WIREL COMMUN, V17, P59, DOI 10.1109/MWC.2010.5416351. Sengupta PP, 2013, JACC-CARDIOVASC IMAG, V6, P1206, DOI 10.1016/j.jcmg.2013.09.003. Seshadri DR, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0150-9. Shvachko K, 2010, IEEE S MASS STOR SYS. Skourletopoulos G., 2017, ADV MOBILE CLOUD COM, V22. Ventola C Lee, 2018, P T, V43, P340. Walker ER, 2017, PSYCHOL HEALTH MED, V22, P727, DOI 10.1080/13548506.2016.1227855. Wang C, 2016, ASIA CCS'16: PROCEEDINGS OF THE 11TH ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P189, DOI 10.1145/2897845.2897847. Wang H, 2016, INFORM SCIENCES, V367, P747, DOI 10.1016/j.ins.2016.07.007. Yang JJ, 2015, COMPUT IND, V69, P3, DOI 10.1016/j.compind.2015.01.012. Yang WS, 2006, EXPERT SYST APPL, V31, P56, DOI 10.1016/j.eswa.2005.09.003. Yin ZK, 2017, COMPUT STRUCT BIOTEC, V15, P403, DOI 10.1016/j.csbj.2017.07.004. Zhou XZ, 2010, ARTIF INTELL MED, V48, P139, DOI 10.1016/j.artmed.2009.07.012. Zhuang ZY, 2013, DECIS SUPPORT SYST, V55, P476, DOI 10.1016/j.dss.2012.10.006.}, Number-of-Cited-References = {52}, Times-Cited = {6}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {37}, Journal-ISO = {Irish J. Med. Sci.}, Doc-Delivery-Number = {3E5LQ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000685394200001}, OA = {hybrid, Green Published}, DA = {2023-04-22}, } @article{ WOS:000481516700001, Author = {Emmert-Streib, Frank and Moutari, Salisou and Dehmer, Matthias}, Title = {A comprehensive survey of error measures for evaluating binary decision making in data science}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY}, Year = {2019}, Volume = {9}, Number = {5}, Month = {SEP-OCT}, Abstract = {Binary decision making is a topic of great interest for many fields, including biomedical science, economics, management, politics, medicine, natural science and social science, and much effort has been spent for developing novel computational methods to address problems arising in the aforementioned fields. However, in order to evaluate the effectiveness of any prediction method for binary decision making, the choice of the most appropriate error measures is of paramount importance. Due to the variety of error measures available, the evaluation process of binary decision making can be a complex task. The main objective of this study is to provide a comprehensive survey of error measures for evaluating the outcome of binary decision making applicable to many data-driven fields. This article is categorized under: Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining Technologies > Prediction Algorithmic Development > Statistics}, Publisher = {WILEY PERIODICALS, INC}, Address = {ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA}, Type = {Review}, Language = {English}, Affiliation = {Emmert-Streib, F (Corresponding Author), Tampere Univ, Fac Informat Technol \& Commun Sci, Predict Soc \& Data Analyt Lab, Tampere, Finland. Emmert-Streib, Frank, Tampere Univ, Fac Informat Technol \& Commun Sci, Predict Soc \& Data Analyt Lab, Tampere, Finland. Moutari, Salisou, Queens Univ Belfast, Sch Math \& Phys, Math Sci Res Ctr, Belfast, Antrim, North Ireland. Dehmer, Matthias, Univ Appl Sci Upper Austria, Fac Management, Inst Intelligent Prod, Steyr Campus, Wels, Austria. Dehmer, Matthias, UMIT Hlth \& Life Sci Univ, Dept Biomed Comp Sci \& Mechatron, Hall In Tirol, Austria. Dehmer, Matthias, Nankai Univ, Coll Comp \& Control Engn, Tianjin, Peoples R China.}, DOI = {10.1002/widm.1303}, Article-Number = {e1303}, ISSN = {1942-4787}, EISSN = {1942-4795}, Keywords = {classification; data science; decision making; error measures; machine learning; statistics}, Keywords-Plus = {SECONDARY STRUCTURE; PREDICTION; PERFORMANCE; AGREEMENT; AREA}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Theory \& Methods}, Author-Email = {frank.emmert-streib@tut.fi}, Affiliations = {Tampere University; Queens University Belfast; Nankai University}, ResearcherID-Numbers = {Emmert-Streib, Frank/AAF-2878-2020}, ORCID-Numbers = {Emmert-Streib, Frank/0000-0003-0745-5641}, Funding-Acknowledgement = {Austrian Science Funds {[}P30031]}, Funding-Text = {Austrian Science Funds, Grant/Award Number: P30031}, Cited-References = {{[}Anonymous], 2005, TESTING STAT HYPOTHE. {[}Anonymous], 2011, J MACH LEARN TECHNOL. {[}Anonymous], 2012, MACHINE LEARNING ART, DOI DOI 10.1017/CBO9780511973000. Baldi P, 2000, BIOINFORMATICS, V16, P412, DOI 10.1093/bioinformatics/16.5.412. Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Clarke B, 2009, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-98135-2. COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104. EFRON B, 1981, BIOMETRIKA, V68, P589, DOI 10.1093/biomet/68.3.589. Emmert-Streib F, 2016, FRONT GENET, V7, DOI 10.3389/fgene.2016.00012. Farcomeni A, 2008, STAT METHODS MED RES, V17, P347, DOI 10.1177/0962280206079046. Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010. Ferri C, 2009, PATTERN RECOGN LETT, V30, P27, DOI 10.1016/j.patrec.2008.08.010. Fielding AH, 1997, ENVIRON CONSERV, V24, P38, DOI 10.1017/S0376892997000088. Genovese CR, 2006, J AM STAT ASSOC, V101, P1408, DOI 10.1198/016214506000000339. Han J, 2012, MOR KAUF D, P1. HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747. Hardin J, 2015, AM STAT, V69, P343, DOI 10.1080/00031305.2015.1077729. Hu Bao-Gang, 2008, Acta Automatica Sinica, V34, P1396, DOI 10.3724/SP.J.1004.2008.01396. Kleinbaum D.G., 2005, SURVIVAL ANAL, V2. MATTHEWS BW, 1975, BIOCHIM BIOPHYS ACTA, V405, P442, DOI 10.1016/0005-2795(75)90109-9. Molinaro AM, 2005, BIOINFORMATICS, V21, P3301, DOI 10.1093/bioinformatics/bti499. Parker C, 2013, KNOWL INF SYST, V35, P131, DOI 10.1007/s10115-012-0558-x. Peters J, 2017, ADAPT COMPUT MACH LE. Principe JC, 2000, J VLSI SIG PROCESS S, V26, P61, DOI 10.1023/A:1008143417156. ROST B, 1993, J MOL BIOL, V232, P584, DOI 10.1006/jmbi.1993.1413. Saczynski JS, 2012, PHARMACOEPIDEM DR S, V21, P129, DOI 10.1002/pds.2313. Schumacher M, 1997, STAT MED, V16, P2813, DOI 10.1002/(SICI)1097-0258(19971230)16:24<2813::AID-SIM701>3.0.CO;2-Z. Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002. Sridhar DV, 1998, COMPUT CHEM ENG, V22, P613, DOI 10.1016/S0098-1354(97)00227-5. UMESH UN, 1989, EDUC PSYCHOL MEAS, V49, P835, DOI 10.1177/001316448904900407. Wallach H., 2006, TECHNICAL REPORT. YOUDEN WJ, 1950, CANCER-AM CANCER SOC, V3, P32, DOI 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3.}, Number-of-Cited-References = {33}, Times-Cited = {19}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Wiley Interdiscip. Rev.-Data Mining Knowl. Discov.}, Doc-Delivery-Number = {IR5YY}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000481516700001}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000618081800008, Author = {Shi, Yao and Prieto, Paloma L. and Zepel, Tara and Grunert, Shad and Hein, Jason E.}, Title = {Automated Experimentation Powers Data Science in Chemistry}, Journal = {ACCOUNTS OF CHEMICAL RESEARCH}, Year = {2021}, Volume = {54}, Number = {3}, Pages = {546-555}, Month = {FEB 2}, Abstract = {Data science has revolutionized chemical research and continues to break down barriers with new interdisciplinary studies. The introduction of computational models and machine learning (ML) algorithms in combination with automation and traditional experimental techniques has enabled scientific advancement across nearly every discipline of chemistry, from materials discovery, to process optimization, to synthesis planning. However, predictive tools powered by data science are only as good as their data sets and, currently, many of the data sets used to train models suffer from several limitations, including being sparse, limited in scope and requiring human curation. Likewise, computational data faces limitations in terms of accurate modeling of nonideal systems and can suffer from low translation fidelity from simulation to real conditions. The lack of diverse data and the need to be able to test it experimentally reduces both the accuracy and scope of the predictive models derived from data science. This Account contextualizes the need for more complex and diverse experimental data and highlights how the seamless integration of robotics, machine learning, and data-rich monitoring techniques can be used to access it with minimal human labor. We propose three broad categories of data in chemistry: data on fundamental properties, data on reaction outcomes, and data on reaction mechanics. We highlight flexible, automated platforms that can be deployed to acquire and leverage these data. The first platform combines solid- and liquid-dosing modules with computer vision to automate solubility screening, thereby gathering fundamental data that are necessary for almost every experimental design. Using computer vision offers the additional benefit of creating a visual record, which can be referenced and used to further interrogate and gain insight on the data collected. The second platform iteratively tests reaction variables proposed by a ML algorithm in a closed-loop fashion. Experimental data related to reaction outcomes are fed back into the algorithm to drive the discovery and optimization of new materials and chemical processes. The third platform uses automated process analytical technology to gather real-time data related to reaction kinetics. This system allows the researcher to directly interrogate the reaction mechanisms in granular detail to determine exactly how and why a reaction proceeds, thereby enabling reaction optimization and deployment.}, Publisher = {AMER CHEMICAL SOC}, Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA}, Type = {Review}, Language = {English}, Affiliation = {Hein, JE (Corresponding Author), Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z3, Canada. Shi, Yao; Prieto, Paloma L.; Zepel, Tara; Grunert, Shad; Hein, Jason E., Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z3, Canada.}, DOI = {10.1021/acs.accounts.0c00736}, EarlyAccessDate = {JAN 2021}, ISSN = {0001-4842}, EISSN = {1520-4898}, Keywords-Plus = {HIGH-THROUGHPUT EXPERIMENTATION; ORGANIC-SYNTHESIS; PHYSICOCHEMICAL PROPERTIES; ORGANOMETALLIC CHEMISTRY; DISCOVERY; PREDICTION; OPTIMIZATION; INTELLIGENCE; REACTIVITY; PROGRESS}, Research-Areas = {Chemistry}, Web-of-Science-Categories = {Chemistry, Multidisciplinary}, Author-Email = {jhein@chem.ubc.ca}, Affiliations = {University of British Columbia}, ORCID-Numbers = {Hein, Jason/0000-0002-4345-3005 Prieto, Paloma/0000-0002-7700-2085 SHI, YAO/0000-0002-1471-961X}, Funding-Acknowledgement = {Merck Co.; Canada Foundation for Innovation {[}CFI-35883]; Natural Sciences and Engineering Research Council of Canada {[}RGPIN-2016-24613]; Natural Resources Canada {[}EIP-MAT-001]; Defense Advanced Research Project Agency (DARPA) {[}HR0011920027]}, Funding-Text = {The authors gratefully acknowledge Mettler-Toledo Autochem for the generous donation of process analytical equipment enabling these studies (EasyMax). This research was further supported by Merck \& Co., the Canada Foundation for Innovation (CFI-35883), the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-24613), and Natural Resources Canada (EIP-MAT-001). The authors are also grateful to the Defense Advanced Research Project Agency (DARPA) for financial support under the Accelerated Molecular Discovery Program (Cooperative Agreement No. HR0011920027). The views, opinions, and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.}, Cited-References = {Ahneman DT, 2018, SCIENCE, V360, P186, DOI 10.1126/science.aar5169. Alsenz J, 2007, ADV DRUG DELIVER REV, V59, P546, DOI 10.1016/j.addr.2007.05.007. Amar Y, 2019, CHEM SCI, V10, P6697, DOI 10.1039/c9sc01844a. {[}Anonymous], OP REACT DAT OP REAC. {[}Anonymous], MAYRS DATABASE REACT. {[}Anonymous], 2020, ORGANIC REACTIONS, V1. Aspuru-Guzik A, 2018, MISSION INNOVATION C, V6. Blackmond DG, 2015, J AM CHEM SOC, V137, P10852, DOI 10.1021/jacs.5b05841. Burger B, 2020, NATURE, V583, P237, DOI 10.1038/s41586-020-2442-2. Chung R, 2017, TOP CATAL, V60, P594, DOI 10.1007/s11244-017-0737-9. Dahan A, 2016, ADV DRUG DELIVER REV, V101, P99, DOI 10.1016/j.addr.2016.04.018. Daponte JA, 2019, ACS CATAL, V9, P11484, DOI 10.1021/acscatal.9b03953. Denmark SE, 2011, J ORG CHEM, V76, P4337, DOI 10.1021/jo2005457. Ehresmann B, 2003, J MOL MODEL, V9, P342, DOI 10.1007/s00894-003-0153-x. Everson DA, 2014, J ORG CHEM, V79, P4793, DOI 10.1021/jo500507s. Geballe MT, 2010, J COMPUT AID MOL DES, V24, P259, DOI 10.1007/s10822-010-9350-8. Gimadiev T, 2019, MOL INFORM, V38, DOI 10.1002/minf.201800104. Gopalaswamy V, 2019, NATURE, V565, P581, DOI 10.1038/s41586-019-0877-0. Granda JM, 2018, NATURE, V559, P377, DOI 10.1038/s41586-018-0307-8. Guo ZL, 2020, J CHEM INF MODEL, V60, P4474, DOI 10.1021/acs.jcim.0c00320. Hart T, 2016, EXPERT OPIN DRUG DIS, V11, P241, DOI 10.1517/17460441.2016.1135126. Hase F, 2018, ACS CENTRAL SCI, V4, P1134, DOI 10.1021/acscentsci.8b00307. Hawash Z, 2018, ADV MATER INTERFACES, V5, DOI 10.1002/admi.201700623. Hey T, 2009, 4 PARADIGM DATA INTE. Himanen L, 2019, ADV SCI, V6, DOI 10.1002/advs.201900808. Houben C, 2015, CURR OPIN CHEM ENG, V9, P1, DOI 10.1016/j.coche.2015.07.001. Jin XL, 2015, BIG DATA RES, V2, P59, DOI 10.1016/j.bdr.2015.01.006. Kalidindi SR, 2015, ANNU REV MATER RES, V45, P171, DOI 10.1146/annurev-matsci-070214-020844. Kitson PJ, 2018, SCIENCE, V359, P314, DOI 10.1126/science.aao3466. Koelewijn JM, 2016, ACS CATAL, V6, P3418, DOI 10.1021/acscatal.6b00297. Kujawski J., 2012, CMST, V18, P81, DOI {[}DOI 10.12921/CMST.2012.18.02.81-88, 10.12921/cmst.2012.18.02.81-88.16L, DOI 10.12921/CMST.2012.18.02.81-88.16L]. Ley SV, 2015, ANGEW CHEM INT EDIT, V54, P3449, DOI 10.1002/anie.201410744. Lommerse JPM, 2000, ACTA CRYSTALLOGR B, V56, P697, DOI 10.1107/S0108768100004584. Madzhidov TI, 2015, J STRUCT CHEM+, V56, P1227, DOI 10.1134/S002247661507001X. Malig TC, 2017, REACT CHEM ENG, V2, P309, DOI 10.1039/c7re00026j. Mansouri K, 2018, J CHEMINFORMATICS, V10, DOI 10.1186/s13321-018-0263-1. McCullough K, 2020, PHYS CHEM CHEM PHYS, V22, P11174, DOI 10.1039/d0cp00972e. McNally A, 2011, SCIENCE, V334, P1114, DOI 10.1126/science.1213920. Milo A, 2015, SCIENCE, V347, P737, DOI 10.1126/science.1261043. Milo A, 2014, NATURE, V507, P210, DOI 10.1038/nature13019. Monfette S, 2011, ORGANOMETALLICS, V30, P36, DOI 10.1021/om1010319. O'Shea R, 2008, J MED CHEM, V51, P2871, DOI 10.1021/jm700967e. Qiu J, 2018, ORG PROCESS RES DEV, V22, P829, DOI 10.1021/acs.oprd.8b00117. Raccuglia P, 2016, NATURE, V533, P73, DOI 10.1038/nature17439. Ramakrishnan R, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.22. Ravasco JMJM, 2020, J AM CHEM SOC, V142, P4235, DOI 10.1021/jacs.9b11948. Reid JP, 2019, NATURE, V571, P343, DOI 10.1038/s41586-019-1384-z. Roch LM, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229862. Ruddigkeit L, 2012, J CHEM INF MODEL, V52, P2864, DOI 10.1021/ci300415d. Sans V, 2016, CHEM SOC REV, V45, P2032, DOI 10.1039/c5cs00793c. Sans V, 2015, CHEM SCI, V6, P1258, DOI 10.1039/c4sc03075c. Selekman JA, 2016, ORG PROCESS RES DEV, V20, P70, DOI 10.1021/acs.oprd.5b00346. Shevlin M, 2017, ACS MED CHEM LETT, V8, P601, DOI 10.1021/acsmedchemlett.7b00165. Shevlin M, 2016, J AM CHEM SOC, V138, P3562, DOI 10.1021/jacs.6b00519. Shiri P., 2020, AUTOMATED SOLUBILITY, DOI {[}10.26434/chemrxiv.13198688.v1, DOI 10.26434/CHEMRXIV.13198688.V1]. Sigman MS, 2016, ACCOUNTS CHEM RES, V49, P1292, DOI 10.1021/acs.accounts.6b00194. Silva JD, 2020, CHEM SCI, V11, P6717, DOI 10.1039/d0sc02594a. Smith A, 2020, APPL CATAL B-ENVIRON, V263, DOI 10.1016/j.apcatb.2019.118257. Smith JS, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.193. Sparkes Andrew, 2010, Autom Exp, V2, P1, DOI 10.1186/1759-4499-2-1. Sugimoto A, 2009, TETRAHEDRON LETT, V50, P6364, DOI 10.1016/j.tetlet.2009.08.089. Szymanska E, 2018, ANAL CHIM ACTA, V1028, P1, DOI 10.1016/j.aca.2018.05.038. Trobe M, 2018, ANGEW CHEM INT EDIT, V57, P4192, DOI 10.1002/anie.201710482. Tsai CC, 2020, ANGEW CHEM INT EDIT, V59, P14647, DOI 10.1002/anie.202006237. Wang C-C, 2020, BRIEF BIOINFORM, DOI {[}10.1093/bib/bbaa061, DOI 10.1093/BIB/BBAA061]. Wang JM, 2011, COMB CHEM HIGH T SCR, V14, P328, DOI 10.2174/138620711795508331. Wang SL, 2019, ORG LETT, V21, P3187, DOI 10.1021/acs.orglett.9b00906. Wei JN, 2016, ACS CENTRAL SCI, V2, P725, DOI 10.1021/acscentsci.6b00219. Young D, 2008, QSAR COMB SCI, V27, P1337, DOI 10.1002/qsar.200810084. Zang Q, 2017, J CHEM INF MODEL, V57, P36, DOI 10.1021/acs.jcim.6b00625. Zepel T., 2020, CHEM ENG IND CHEM, P1. Zhang L, 2017, DRUG DISCOV TODAY, V22, P1680, DOI 10.1016/j.drudis.2017.08.010.}, Number-of-Cited-References = {72}, Times-Cited = {26}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {55}, Journal-ISO = {Accounts Chem. Res.}, Doc-Delivery-Number = {QH2BN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000618081800008}, DA = {2023-04-22}, } @article{ WOS:000833423300009, Author = {Lopez-Vargas, Ascension and Ledezma-Espino, Agapito and Sanchis-de-Miguel, Araceli}, Title = {Methods, data sources and applications of the Artificial Intelligence in the Energy Poverty context: A review}, Journal = {ENERGY AND BUILDINGS}, Year = {2022}, Volume = {268}, Month = {AUG 1}, Abstract = {Energy Poverty (EP) is a widespread problem in Europe. EP detection is hampered by a lack of data and global metrics. Recently, innovative approaches using Artificial Intelligent (AI) techniques have been increasingly applied for the EP alleviation. In this work, studies focused on the application of AI on EP were studied. It was identified that there is not a high number of works that apply AI to fight against EP (considering this problem as a multidimensional phenomenon). Artificial Neural Networks-based algorithms and Decision Trees were the most used algorithms in the reviewed literature focused on EP alleviation. However, several AI applications focused on partial aspects of the EP or on areas intimately related to EP (low-income, high-energy price and low-energy efficiency of buildings) that allow the characterization of the problem in an efficient way have been published in recent years; the last 7 years published literature have been reviewed in this work. It was found that Neural Networks algorithms were the most used models for low-income, energy price and poor energy efficiency characterizations. Support Vector Machines-based algorithms were the most popular AI method applied on energy consumption related problems. Deep learning was the most popular technique for detecting energy billing irregularities and unpaid energy bills. (C) 2022 Elsevier B.V. All rights reserved.}, Publisher = {ELSEVIER SCIENCE SA}, Address = {PO BOX 564, 1001 LAUSANNE, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Lopez-Vargas, A (Corresponding Author), Univ Carlos III Madrid, Comp Sci \& Engn Dept, Control Learning \& Optimizat Grp, Madrid, Spain. Lopez-Vargas, Ascension; Ledezma-Espino, Agapito; Sanchis-de-Miguel, Araceli, Univ Carlos III Madrid, Comp Sci \& Engn Dept, Control Learning \& Optimizat Grp, Madrid, Spain.}, DOI = {10.1016/j.enbuild.2022.112233}, EarlyAccessDate = {JUN 2022}, Article-Number = {112233}, ISSN = {0378-7788}, EISSN = {1872-6178}, Keywords = {Energy poverty; Fuel poverty; Artificial intelligence}, Keywords-Plus = {SUPPORT VECTOR REGRESSION; NATURAL-GAS CONSUMPTION; NEURAL-NETWORK; ELECTRICITY PRICE; THERMAL COMFORT; LOAD PROFILES; HYBRID MODEL; DATA-DRIVEN; PREDICTION; ALGORITHM}, Research-Areas = {Construction \& Building Technology; Energy \& Fuels; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Energy \& Fuels; Engineering, Civil}, Affiliations = {Universidad Carlos III de Madrid}, Funding-Acknowledgement = {European Commission {[}UIA04-212]; Agencia Estatal de Investigacion (AEI) {[}RTI2018-096036-B-C22, PID2019-104793RB-C31]; PEAVAUTO-CM-UC3M (Government of Spain); Region of Madrid's Excellence Program {[}EPUC3M17]}, Funding-Text = {The authors acknowledge funding from the European Commission through Urban Innovative Actions of the EPIU Getafe Project under Grant UIA04-212. Agapito Ledezma Espino acknowledges funding from the Agencia Estatal de Investigacion (AEI) under Grant RTI2018-096036-B-C22/AEI/10.13039/501100011033. Araceli Sanchis acknowledges funding from the Agencia Estatal de Investigacion (AEI) under Grant PID2019-104793RB-C31/AEI/10.1 3039/501100011033. The work of Araceli Sanchis de Miguel was supported by PEAVAUTO-CM-UC3M (Government of Spain) and EPUC3M17 (Region of Madrid's Excellence Program).}, Cited-References = {Abedinia O, 2015, ENERG CONVERS MANAGE, V105, P642, DOI 10.1016/j.enconman.2015.08.025. Agrawal RK, 2019, APPL ENERG, V250, P540, DOI 10.1016/j.apenergy.2019.05.062. Ahmad T, 2018, ENERG BUILDINGS, V165, P301, DOI 10.1016/j.enbuild.2018.01.017. Aletras N, 2018, HT'18: PROCEEDINGS OF THE 29TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA, P20, DOI 10.1145/3209542.3209577. Almaatouq Abdullah, 2016, Social Informatics. 8th International Conference, SocInfo 2016. Proceedings: LNCS 10046, P407, DOI 10.1007/978-3-319-47880-7\_25. Amber KP, 2018, ENERGY, V157, P886, DOI 10.1016/j.energy.2018.05.155. {[}Anonymous], THERMAL COMFORT PRED. {[}Anonymous], EUROPEAN COMISSION W. {[}Anonymous], OPEN ENERGY INFORM R. {[}Anonymous], DATACHILE WEBSITE. {[}Anonymous], CHEM HETEROCYCL COM+, DOI {[}10.1007/978-3-319-62410-5\_16, DOI 10.1007/BF00471845]. {[}Anonymous], OPEN DATA I WEBSITE. {[}Anonymous], PJM WEBSITE. {[}Anonymous], AUSTR ENERGY MARKET. {[}Anonymous], ANAL CORRELATION ACT. {[}Anonymous], ENERGY CONNECTS WEBS. {[}Anonymous], EUROSTAT WEBSITE. {[}Anonymous], USING MACHINE LEARNI. {[}Anonymous], ENERGY POVERTY ADVIS. {[}Anonymous], NEW YORK ISO WEBSITE. {[}Anonymous], IRISH SOCIAL SCI DAT. {[}Anonymous], ENERGY PRICES COSTS. {[}Anonymous], URBAN INNOVATION ACT. {[}Anonymous], {*}{*}DATA OBJECT{*}{*}. Ascione Fabrizio, 2017, CASA COST OPTIMAL AN. Ashouri M, 2019, ENERG BUILDINGS, V183, P659, DOI 10.1016/j.enbuild.2018.11.050. Auffenberg F, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P2547. Azadeh A, 2015, J PETROL SCI ENG, V133, P716, DOI 10.1016/j.petrol.2015.07.002. Bai Y, 2016, ENERG BUILDINGS, V127, P571, DOI 10.1016/j.enbuild.2016.06.020. BEIS, 2017, ANNEX MACH LEARN FUE. Bhat RR, 2016, 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), P272, DOI {[}10.1109/ICMLA.2016.107, 10.1109/ICMLA.2016.0052]. Bhattacharya A, 2019, EUR J OPER RES, V274, P1112, DOI 10.1016/j.ejor.2018.10.047. Bianchi FM, 2015, IEEE ACCESS, V3, P1931, DOI 10.1109/ACCESS.2015.2485943. Bienvenido-Huertas D, 2019, ENERG BUILDINGS, V198, P38, DOI 10.1016/j.enbuild.2019.05.063. Blazakis Konstantinos, 2019, INTERNAT J ARTIF INT, V10, DOI {[}10.5121/ijaia.2019.1, DOI 10.5121/IJAIA.2019.1]. Blazakis KV, 2020, ENERGIES, V13, DOI 10.3390/en13123110. Burger EM, 2015, ENERG BUILDINGS, V109, P23, DOI 10.1016/j.enbuild.2015.10.019. Cao GH, 2016, ENERGY, V115, P734, DOI 10.1016/j.energy.2016.09.065. Ceperic E, 2017, ENERGY, V140, P893, DOI 10.1016/j.energy.2017.09.026. Chae YT, 2016, ENERG BUILDINGS, V111, P184, DOI 10.1016/j.enbuild.2015.11.045. Chakrabarty Navoneel, 2018, 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). Proceedings, P207, DOI 10.1109/ICACCCN.2018.8748528. Chaudhuri T, 2018, ENERG BUILDINGS, V166, P391, DOI 10.1016/j.enbuild.2018.02.035. Chaudhuri T, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC), P72, DOI 10.1109/ICSGSC.2017.8038552. Chen KL, 2018, ENERGY, V150, P49, DOI 10.1016/j.energy.2018.02.028. Chockalingam V., 2017, INCOME CLASSIFICATIO. Coma-Puig B, 2019, ENERGIES, V12, DOI 10.3390/en12091748. Das Sayan, 2020, P IND INTERACTIVE IN. Vieira JRD, 2019, APPL SOFT COMPUT, V83, DOI 10.1016/j.asoc.2019.105640. Deloitte, 2020, BETTER USE DATA ADV. Ding S., 2019, 2019 28 INT C COMPUT, P1. do Carmo CMR, 2016, ENERG BUILDINGS, V125, P171, DOI 10.1016/j.enbuild.2016.04.079. Dudek G, 2016, INT J FORECASTING, V32, P1057, DOI 10.1016/j.ijforecast.2015.11.009. EAPN Website, CAUS POV IN. European Comission, EPAH ATLAS WEBS. European Commission, 2021, 837754 STRATEGY CCUS. Eurostat, 2020, ARR UT BILLS. Farhan AA, 2015, IEEE INT CON AUTO SC, P708, DOI 10.1109/CoASE.2015.7294164. Feldmeyer D, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9090498. Fergus P, 2020, Arxiv. Ghahramani A, 2015, BUILD ENVIRON, V92, P86, DOI 10.1016/j.buildenv.2015.04.017. Ghasemi A, 2016, APPL ENERG, V177, P40, DOI 10.1016/j.apenergy.2016.05.083. Ghasemi AA, 2018, INT J ELEC POWER, V99, P363, DOI 10.1016/j.ijepes.2018.01.036. Ghoddusi H, 2019, ENERG ECON, V81, P709, DOI 10.1016/j.eneco.2019.05.006. Rodriguez RG, 2020, ENERGIES, V13, DOI 10.3390/en13092393. Granell R, 2015, ENERG CONVERS MANAGE, V92, P507, DOI 10.1016/j.enconman.2014.12.080. Gupta A, 2017, IEEE REGION 10 SYMP. Hasan MN, 2019, ENERGIES, V12, DOI 10.3390/en12173310. Hasanuzzaman M, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2, P659, DOI 10.18653/v1/P17-2104. Hassani H, 2019, BIG DATA COGN COMPUT, V3, DOI 10.3390/bdcc3040050. He W, 2017, PROCEDIA COMPUT SCI, V122, P308, DOI 10.1016/j.procs.2017.11.374. Hu XY, 2019, IOP CONF SER-MAT SCI, V563, DOI 10.1088/1757-899X/563/2/022037. Hurst William, 2020, IMMS 2020: Proceedings of the 2020 3rd International Conference on Information Management and Management Science, P23, DOI 10.1145/3416028.3416034. Jiang L, 2016, BUILD ENVIRON, V99, P98, DOI 10.1016/j.buildenv.2016.01.022. Jindal A, 2016, IEEE T IND INFORM, V12, P1005, DOI 10.1109/TII.2016.2543145. Jokar P, 2016, IEEE T SMART GRID, V7, P216, DOI 10.1109/TSG.2015.2425222. Jovanovic RZ, 2015, ENERG BUILDINGS, V94, P189, DOI 10.1016/j.enbuild.2015.02.052. Jurado S, 2015, ENERGY, V86, P276, DOI 10.1016/j.energy.2015.04.039. Karathanasopoulos A., 2015, COMPUT ECON, V47, P1. Kaynar O, 2011, ENER EDUC SCI TECH-A, V26, P221. Keles D, 2016, APPL ENERG, V162, P218, DOI 10.1016/j.apenergy.2015.09.087. Kim J, 2019, ENERG BUILDINGS, V194, P328, DOI 10.1016/j.enbuild.2019.04.034. Kong XY, 2021, INT J ELEC POWER, V125, DOI 10.1016/j.ijepes.2020.106544. Kouziokas Georgios, 2017, OPERAT RES BUSINESS, P1. Kuo CFJ, 2018, ENERG BUILDINGS, V168, P120, DOI 10.1016/j.enbuild.2018.03.021. Kuo PH, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10041280. Lago J, 2018, APPL ENERG, V221, P386, DOI 10.1016/j.apenergy.2018.02.069. Lawi A., 2019, J PHYS C SERIES, V1341. Lawi A, 2017, 2017 3RD INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH), P552. Li D, 2017, BUILD ENVIRON, V126, P304, DOI 10.1016/j.buildenv.2017.10.004. Li KJ, 2015, ENERG BUILDINGS, V108, P106, DOI 10.1016/j.enbuild.2015.09.002. Li L, 2019, SUSTAIN CITIES SOC, V45, P588, DOI 10.1016/j.scs.2018.12.025. Li S, 2019, J ELECTR COMPUT ENG, V2019, DOI 10.1155/2019/4136874. Lirong Hu, 2019, MONITORING HOUSING R. Liu LY, 2019, MOBICOM'19: PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, DOI 10.1145/3300061.3300116. Livieris I.E., 2020, ADV DEEP LEARNING MO, DOI DOI 10.1007/978-3-030-49190-1\_15. Lopez Vargas Ascension, 2021, FUZZY LOGIC APPROACH. Lu SL, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9091768. Madhure R. U., 2020, 2020 11 INT C COMPUT, P1, DOI {[}10.1109/ICCC, DOI 10.1109/ICCCNT49239.2020.9225572]. Marino DL, 2016, IEEE IND ELEC, P7046, DOI 10.1109/IECON.2016.7793413. Massaferro P., 2018, P IEEE POW EN SOC GE, P1. Matz SC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214369. Mba L, 2016, ENERG BUILDINGS, V121, P32, DOI 10.1016/j.enbuild.2016.03.046. Megri AC, 2016, INDOOR BUILT ENVIRON, V25, P6, DOI 10.1177/1420326X14539693. Buzau MM, 2019, IEEE T SMART GRID, V10, P2661, DOI 10.1109/TSG.2018.2807925. Montanez CAC, 2020, IEEE ACCESS, V8, P22525, DOI 10.1109/ACCESS.2020.2969468. Moon JW, 2016, ENERG BUILDINGS, V127, P859, DOI 10.1016/j.enbuild.2016.06.046. Moon JW, 2015, APPL THERM ENG, V78, P150, DOI 10.1016/j.applthermaleng.2014.12.058. Na H, 2019, BUILD ENVIRON, V160, DOI 10.1016/j.buildenv.2019.106216. Nabil M, 2018, INT C PATT RECOG, P740, DOI 10.1109/ICPR.2018.8545748. Ngarambe J, 2020, ENERG BUILDINGS, V211, DOI 10.1016/j.enbuild.2020.109807. Ngarambe J, 2019, ENERG BUILDINGS, V202, DOI 10.1016/j.enbuild.2019.109402. Nouvel Romain, 2015, ENERGY. Kosut JP, 2015, 2015 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES LATIN AMERICA (ISGT LATAM), P887, DOI 10.1109/ISGT-LA.2015.7381272. Pachauri S, 2011, ENERG POLICY, V39, P7497, DOI 10.1016/j.enpol.2011.07.008. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI {[}10.1136/bmj.n71, 10.1371/journal.pmed.1003583, 10.1016/j.ijsu.2021.105906]. Panapakidis IP, 2016, APPL ENERG, V172, P132, DOI 10.1016/j.apenergy.2016.03.089. Pino-Mejias R, 2018, ENERGY, V164, P627, DOI 10.1016/j.energy.2018.09.056. Preotiuc-Pietro D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138717. Protic Milan, 2015, APPRAISAL SOFT COMPU. Pye S., 2015, ENERGY POVERTY VULNE. Rajic MN, 2020, ENERG ENVIRON-UK, V31, P1448, DOI 10.1177/0958305X20907087. Reades J, 2019, URBAN STUD, V56, P922, DOI 10.1177/0042098018789054. Rysanek A, 2021, BUILD ENVIRON, V190, DOI 10.1016/j.buildenv.2020.107522. Saeed Muhammad, 2020, DETECTION NONTECHNIC. Saeed MS, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8080860. Sanchez CSG, 2017, BUILD ENVIRON, V114, P344, DOI 10.1016/j.buildenv.2016.12.029. Shamshirband S, 2015, RENEW SUST ENERG REV, V48, P760, DOI 10.1016/j.rser.2015.04.020. Shan X, 2020, ENERG BUILDINGS, V225, DOI 10.1016/j.enbuild.2020.110305. Sharma DD, 2017, J MOD POWER SYST CLE, V5, P465, DOI 10.1007/s40565-017-0268-1. Shayeghi H, 2015, ENERG CONVERS MANAGE, V95, P371, DOI 10.1016/j.enconman.2015.02.023. Shine P, 2018, COMPUT ELECTRON AGR, V150, P74, DOI 10.1016/j.compag.2018.03.023. Sideratos G, 2020, ELECTR POW SYST RES, V178, DOI 10.1016/j.epsr.2019.106025. Singh N, 2017, ENERGY, V125, P127, DOI 10.1016/j.energy.2017.02.094. Spiric JV, 2018, INT J ELEC POWER, V95, P635, DOI 10.1016/j.ijepes.2017.09.019. Su MT, 2019, ENERGIES, V12, DOI 10.3390/en12061094. Sujjaviriyasup T, 2017, APPL SOFT COMPUT, V54, P150, DOI 10.1016/j.asoc.2017.01.022. Sundsoy P, 2016, ADV INTEL SYS RES, V127. Terciyanli E, 2017, 2017 5TH INTERNATIONAL ISTANBUL SMART GRID AND CITIES CONGRESS AND FAIR (ICSG), P180, DOI 10.1109/SGCF.2017.7947629. Thackway William, 2021, BUILDING PREDICTIVE, DOI {[}10.31235/osf.io/hkc96, DOI 10.31235/OSF.IO/HKC96]. Thakur A, 2015, 2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), P735, DOI 10.1109/NGCT.2015.7375218. The World Bank, URBAN POPULATION DAT. Toma R. N., 2019 1 INT C ADV SCI. Umar H. A., 2019, 2019 15 INT C EL COM, P1, DOI {[}10.1109/ICECCO48375.2019.9043, DOI 10.1109/ICECCO48375.2019.9043]. UN Habitat, SLUM ALM 2015 2016 T. UN Habitat, NEW URB AG. Uniejewski B, 2019, INT J FORECASTING, V35, P1533, DOI 10.1016/j.ijforecast.2019.02.001. Uniejewski B, 2019, ENERG ECON, V79, P171, DOI 10.1016/j.eneco.2018.02.007. United Nations Website, SUSTAINABLE DEV GOAL. Vargas A. L., PAPEL INTELIGENCIA A. Viegas, 2017, 2017 IEEE INT C FUZZ, P1, DOI DOI 10.1109/FUZZ-IEEE.2017.8015546. Viegas JL, 2018, INT J ELEC POWER, V101, P301, DOI 10.1016/j.ijepes.2018.03.031. Viegas JL, 2017, RENEW SUST ENERG REV, V80, P1256, DOI 10.1016/j.rser.2017.05.193. Villar-Rodriguez E, 2017, ENERGY, V137, P118, DOI 10.1016/j.energy.2017.07.008. Wang HC, 2019, J CENT SOUTH UNIV, V26, P2175, DOI 10.1007/s11771-019-4164-x. Wang Z, 2019, BUILD ENVIRON, V161, DOI 10.1016/j.buildenv.2019.106231. Wei N, 2019, J PETROL SCI ENG, V181, DOI 10.1016/j.petrol.2019.106187. Wei N, 2019, J ENERG RESOUR-ASME, V141, DOI 10.1115/1.4041413. Weron R, 2014, INT J FORECASTING, V30, P1030, DOI 10.1016/j.ijforecast.2014.08.008. Wu P., 2019, ADV REM SENS, V08, P89, DOI {[}10.4236/ars.2019.84006, DOI 10.4236/ARS.2019.84006]. Wu YH, 2018, J COMPUT APPL MATH, V338, P212, DOI 10.1016/j.cam.2018.01.033. Yabiao Yang, 2020, 2020 IEEE/IAS Industrial and Commercial Power System Asia (I\&CPS Asia), P1461, DOI 10.1109/ICPSAsia48933.2020.9208474. Yan K, 2019, IEEE ACCESS, V7, P157633, DOI 10.1109/ACCESS.2019.2949065. Yan Z., 2020, IEEE T INSTRUM MEAS, P1. Yang Y, 2016, APPL SOFT COMPUT, V49, P663, DOI 10.1016/j.asoc.2016.07.053. Yang Z, 2017, APPL ENERG, V190, P291, DOI 10.1016/j.apenergy.2016.12.130. Yi JH, 2014, SCI WORLD J, DOI 10.1155/2014/878262. Yu JL, 2020, 2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), P212, DOI 10.1109/ACPEE48638.2020.9136420. Zhang C, 2018, SUSTAIN CITIES SOC, V39, P508, DOI 10.1016/j.scs.2018.02.016. Zhang F, 2016, ENERG BUILDINGS, V126, P94, DOI 10.1016/j.enbuild.2016.05.028. Zhang W, 2020, IEEE ACCESS, V8, P55483, DOI 10.1109/ACCESS.2020.2980079. Zheng ZB, 2018, IEEE T IND INFORM, V14, P1606, DOI 10.1109/TII.2017.2785963. Zhong BT, 2019, ADV ENG INFORM, V40, P46, DOI 10.1016/j.aei.2019.02.009. Zhu BZ, 2016, J FORECASTING, V35, P633, DOI 10.1002/for.2395.}, Number-of-Cited-References = {173}, Times-Cited = {0}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {13}, Journal-ISO = {Energy Build.}, Doc-Delivery-Number = {3J5GM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000833423300009}, DA = {2023-04-22}, } @article{ WOS:000559363400001, Author = {Smith, Daniel G. A. and Altarawy, Doaa and Burns, Lori A. and Welborn, Matthew and Naden, Levi N. and Ward, Logan and Ellis, Sam and Pritchard, Benjamin P. and Crawford, T. Daniel}, Title = {TheMolSSIQCArchiveproject: An open-source platform to compute, organize, and share quantum chemistry data}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2021}, Volume = {11}, Number = {2}, Month = {MAR}, Abstract = {The Molecular Sciences Software Institute's (MolSSI) Quantum Chemistry Archive (QCArchive) project is an umbrella name that covers both a central server hosted by MolSSI for community data and the Python-based software infrastructure that powers automated computation and storage of quantum chemistry (QC) results. The MolSSI-hosted central server provides the computational molecular sciences community a location to freely access tens of millions of QC computations for machine learning, methodology assessment, force-field fitting, and more through a Python interface. Facile, user-friendly mining of the centrally archived quantum chemical data also can be achieved through web applications found at . The software infrastructure can be used as a standalone platform to compute, structure, and distribute hundreds of millions of QC computations for individuals or groups of researchers at any scale. The QCArchiveInfrastructureis open-source (BSD-3C), code repositories can be found at , and releases can be downloaded via PyPI and Conda. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry Data Science > Computer Algorithms and Programming}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Smith, DGA (Corresponding Author), Mol Sci Software Inst, Blacksburg, VA 24060 USA. Smith, Daniel G. A.; Altarawy, Doaa; Welborn, Matthew; Naden, Levi N.; Ellis, Sam; Pritchard, Benjamin P.; Crawford, T. Daniel, Mol Sci Software Inst, Blacksburg, VA 24060 USA. Altarawy, Doaa, Alexandria Univ, Dept Comp \& Syst Engn, Alexandria, Egypt. Burns, Lori A., Georgia Inst Technol, Sch Chem \& Biochem, Ctr Computat Mol Sci \& Technol, Atlanta, GA 30332 USA. Ward, Logan, Argonne Natl Lab, Data Sci \& Learning Div, Lemont, IL USA. Crawford, T. Daniel, Virginia Tech, Dept Chem, Blacksburg, VA USA.}, DOI = {10.1002/wcms.1491}, EarlyAccessDate = {JUL 2020}, Article-Number = {e1491}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {databases; density functional theory; machine learning; high-throughput computing; quantum chemistry}, Keywords-Plus = {BENCHMARK DATABASE; FORCE-FIELD}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {dgasmith@vt.edu}, Affiliations = {Egyptian Knowledge Bank (EKB); Alexandria University; University System of Georgia; Georgia Institute of Technology; United States Department of Energy (DOE); Argonne National Laboratory; Virginia Polytechnic Institute \& State University}, ResearcherID-Numbers = {Ward, Logan/HRA-8888-2023 Ward, Logan/I-9526-2019 Crawford, Thomas/A-9271-2017}, ORCID-Numbers = {Ward, Logan/0000-0002-1323-5939 Crawford, Thomas/0000-0002-7961-7016}, Funding-Acknowledgement = {Division of Advanced Cyberinfrastructure {[}1449723, 1547580]; Office of Science {[}17-SC-20-SC]; Open Force Field Consortium}, Funding-Text = {Division of Advanced Cyberinfrastructure, Grant/Award Numbers: 1449723, 1547580; Office of Science, Grant/Award Number: 17-SC-20-SC; Open Force Field Consortium}, Cited-References = {{[}Anonymous], 2019, NATURE, V566, P425, DOI 10.1038/d41586-019-00660-6. {[}Anonymous], 2018, NAT COMMUN, V9, P2817, DOI {[}DOI 10.1038/S41467-018-05227-Z, 10.1038/s41467-018-06932-5]. {[}Anonymous], SEC BUILD SHAR APPL. {[}Anonymous], COL COL SHORT ALL YO. {[}Anonymous], RES SHAR CURR VERS. {[}Anonymous], 2020, FIND INST PUBL PYTH. {[}Anonymous], 2020, PACK DEP ENV MAN AN. Apra E, 2020, J CHEM PHYS, V152, DOI 10.1063/5.0004997. Babuji Y, 2019, HPDC'19: PROCEEDINGS OF THE 28TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, P25, DOI 10.1145/3307681.3325400. Barca GMJ, 2020, J CHEM PHYS, V152, DOI 10.1063/5.0005188. BECKE AD, 1993, J CHEM PHYS, V98, P5648, DOI 10.1063/1.464913. Burns LA, 2017, J CHEM PHYS, V147, DOI 10.1063/1.5001028. Developers Q, QCFRACTAL EAMPLES QC. Draxl C, 2018, MRS BULL, V43, P676, DOI 10.1557/mrs.2018.208. Eastman P, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005659. Faver JC, 2011, J CHEM THEORY COMPUT, V7, P790, DOI 10.1021/ct100563b. Furche F, 2014, WIRES COMPUT MOL SCI, V4, P91, DOI 10.1002/wcms.1162. Gao X., TORCHANI ACCURATE NE. Glavatskikh M, 2019, J CHEMINFORMATICS, V11, DOI 10.1186/s13321-019-0391-2. Greenwell C., MP2D PROGRAM CALCULA. Grimme S., DFTD3 DISPERSION COR. Grimme S, 2010, J CHEM PHYS, V132, DOI 10.1063/1.3382344. Gruzman D, 2009, J PHYS CHEM A, V113, P11974, DOI 10.1021/jp903640h. Nguyen H, 2018, BIOINFORMATICS, V34, P1241, DOI 10.1093/bioinformatics/btx789. Halgren TA, 1996, J COMPUT CHEM, V17, P490, DOI {[}10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P, 10.1002/(SICI)1096-987X(199604)17:5/6<616::AID-JCC5>3.0.CO;2-X]. Hermann J., PYBERNY MOL STRUCTUR. Jain A, 2015, CONCURR COMP-PRACT E, V27, P5037, DOI 10.1002/cpe.3505. Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323. Johnson R. D., NIST COMPUTATIONAL C. Jupyter Project, 2018, P 17 PYTH SCI C, P113. Jurecka P, 2006, PHYS CHEM CHEM PHYS, V8, P1985, DOI 10.1039/b600027d. Kim S, 2019, NUCLEIC ACIDS RES, V47, pD1102, DOI 10.1093/nar/gky1033. Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87. Landrum G., 2013, RDKIT CHEMINFORMATIC. LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785. Manby F, 2019, ENTOS QUANTUM MOLECU. Marshall MS, 2011, J CHEM PHYS, V135, DOI 10.1063/1.3659142. McKinney W., 2010, P 9 PYTH SCI C, P51, DOI {[}10.25080/majora-92bf1922-00a, DOI 10.25080/MAJORA-92BF1922-00A]. Mobley D, 2018, OPEN FORCE FIELD CON, P286542. Morgante P, 2019, J COMPUT CHEM, V40, P839, DOI 10.1002/jcc.25761. Nakata M, 2017, J CHEM INF MODEL, V57, P1300, DOI 10.1021/acs.jcim.7b00083. National Academies of Sciences Engineering and Medicine, 2019, REPRODUCIBILITY REPL. Parrish RM, 2017, J CHEM THEORY COMPUT, V13, P3185, DOI 10.1021/acs.jctc.7b00174. PostgreSQL, WORLDS MOST ADV OP S. Qiu Y, DRIVING TORSION SCAN, DOI 10.1063/5.0009232. Ramakrishnan R, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.22. Rezac J, 2018, J CHEM THEORY COMPUT, V14, P4711, DOI 10.1021/acs.jctc.8b00548. Rocklin M., 2015, P 14 PYTH SCI C, P126, DOI DOI 10.25080/MAJORA-7B98E3ED-013. Schutt KT, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms13890. Schutt K., 2017, ADV NEURAL INFORM PR, V30, P991. Shao YH, 2015, MOL PHYS, V113, P184, DOI 10.1080/00268976.2014.952696. Smith DGA, 2020, J CHEM PHYS, V152, DOI 10.1063/5.0006002. Smith JS, 2017, CHEM SCI, V8, P3192, DOI 10.1039/c6sc05720a. Smith JS, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5023802. Smith JS, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.193. Stanton J. F., CFOUR COUPLED CLUSTE. Stewart J.J.P., MOPAC SEMIEMPIRICAL. Thygesen KS, 2016, SCIENCE, V354, P180, DOI 10.1126/science.aah4776. Toher C., HDB MAT MODELING, P1, DOI {[}10.1007/ 978-3-319-42913-7\_63-1, DOI 10.1007/978-3-319-42913-7\_63-1]. Turilli M, 2018, 2018 18TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), P348, DOI 10.1109/CCGRID.2018.00051. Ufimtsev IS, 2009, J CHEM THEORY COMPUT, V5, P2619, DOI 10.1021/ct9003004. Wang L.-P., GEOMETRIC GEOMETRY O. Wang LP, 2016, J CHEM PHYS, V144, DOI 10.1063/1.4952956. Weigend F, 2005, PHYS CHEM CHEM PHYS, V7, P3297, DOI 10.1039/b508541a. Werner H.-J., MOLPRO VERSION 2019. Werner HJ, 2012, WIRES COMPUT MOL SCI, V2, P242, DOI 10.1002/wcms.82. Widener A, 2019, CHEM ENG NEWS, V97, P19. Wilkins-Diehr N, 2018, SCI GATEWAYS COMMUNI. Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18. Yoo AB, 2003, LECT NOTES COMPUT SC, V2862, P44. Yuan YN, 2014, J PHYS CHEM A, V118, P7876, DOI 10.1021/jp503460m. Zhao Y, 2005, J PHYS CHEM A, V109, P2012, DOI 10.1021/jp045141s.}, Number-of-Cited-References = {72}, Times-Cited = {32}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {22}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {QL6HO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000559363400001}, OA = {Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000534727600001, Author = {Outeiral, Carlos and Strahm, Martin and Shi, Jiye and Morris, Garrett M. and Benjamin, Simon C. and Deane, Charlotte M.}, Title = {The prospects of quantum computing in computational molecular biology}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2021}, Volume = {11}, Number = {1}, Month = {JAN}, Abstract = {Quantum computers can in principle solve certain problems exponentially more quickly than their classical counterparts. We have not yet reached the advent of useful quantum computation, but when we do, it will affect nearly all scientific disciplines. In this review, we examine how current quantum algorithms could revolutionize computational biology and bioinformatics. There are potential benefits across the entire field, from the ability to process vast amounts of information and run machine learning algorithms far more efficiently, to algorithms for quantum simulation that are poised to improve computational calculations in drug discovery, to quantum algorithms for optimization that may advance fields from protein structure prediction to network analysis. However, these exciting prospects are susceptible to ``hype,{''} and it is also important to recognize the caveats and challenges in this new technology. Our aim is to introduce the promise and limitations of emerging quantum computing technologies in the areas of computational molecular biology and bioinformatics. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Data Science > Computer Algorithms and Programming Electronic Structure Theory > Ab Initio Electronic Structure Methods}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Deane, CM (Corresponding Author), Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England. Outeiral, Carlos; Morris, Garrett M.; Deane, Charlotte M., Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England. Outeiral, Carlos; Benjamin, Simon C., Univ Oxford, Dept Mat, Oxford, England. Strahm, Martin, F Hoffmann La Roche, Pharma Res \& Early Dev, Basel, Switzerland. Shi, Jiye, UCB Pharma, Comp Aided Drug Design, Slough, Berks, England.}, DOI = {10.1002/wcms.1481}, EarlyAccessDate = {MAY 2020}, Article-Number = {e1481}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {ab initio simulations; machine learning; optimization; protein folding; quantum computing}, Keywords-Plus = {PROTEIN-STRUCTURE PREDICTION; HP MODEL; SIMULATION; ALGORITHM; DESIGN; APPROXIMATION; INFORMATION; GENERATION; CHEMISTRY; ALIGNMENT}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {deane@stats.ox.ac.uk}, Affiliations = {University of Oxford; University of Oxford; Roche Holding; UCB Pharma SA}, ResearcherID-Numbers = {Morris, Garrett Matthew/F-2465-2019 Shi, Jiye/G-2745-2012 Benjamin, Simon/A-8673-2008 Outeiral Rubiera, Carlos/L-3025-2018}, ORCID-Numbers = {Morris, Garrett Matthew/0000-0003-1731-8405 Shi, Jiye/0000-0002-9628-8680 Deane, Charlotte/0000-0003-1388-2252 Benjamin, Simon/0000-0002-7766-5348 Outeiral Rubiera, Carlos/0000-0003-1408-5554}, Funding-Acknowledgement = {Engineering and Physical Sciences Research Council {[}EP/L016044/1, EP/M013243/1, EP/S024093/1, EP/T001062/1]; EPSRC {[}EP/T001062/1, EP/M013243/1] Funding Source: UKRI}, Funding-Text = {Engineering and Physical Sciences Research Council, Grant/Award Numbers: EP/L016044/1, EP/M013243/1, EP/S024093/1, EP/T001062/1}, Cited-References = {Aaronson S., 2005, ACM SIGACT NEWS, V36, P30, DOI DOI 10.1145/1052796.1052804. Aaronson S, 2015, NAT PHYS, V11, P291, DOI 10.1038/nphys3272. Abrams DS, 1997, PHYS REV LETT, V79, P2586, DOI 10.1103/PhysRevLett.79.2586. Aharonov D, 1999, QUANTPH9906129 ARXIV. Aharonov D, 2008, SIAM REV, V50, P755, DOI 10.1137/080734479. Albash T, 2018, PHYS REV X, V8, DOI 10.1103/PhysRevX.8.031016. Albash T, 2018, REV MOD PHYS, V90, DOI 10.1103/RevModPhys.90.015002. Alexandru CM, 2020, ARXIV200406521. Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999. Amin MH, 2018, PHYS REV X, V8, DOI 10.1103/PhysRevX.8.021050. {[}Anonymous], 2018, QUANT INF COMPUT. {[}Anonymous], ARXIV190109756. Anschuetz ER, 2019, ARXIV190301359. Arunachalam Srinivasan, 2017, ACM SIGACT News, V48, P41, DOI 10.1145/3106700.3106710. Arunachalam S, 2020, PR MACH LEARN RES, V119. Arute F, 2019, NATURE, V574, P505, DOI 10.1038/s41586-019-1666-5. Aspuru-Guzik A, 2005, SCIENCE, V309, P1704, DOI 10.1126/science.1113479. Aspuru-Guzik A, 2018, ACS CENTRAL SCI, V4, P144, DOI 10.1021/acscentsci.7b00550. Babbush R., 2012, ARXIV12113422. Babej T., 2018, ARXIV181100713. Ballance CJ, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.060504. BARENCO A, 1995, PHYS REV A, V52, P3457, DOI 10.1103/PhysRevA.52.3457. BARTLETT RJ, 1989, CHEM PHYS LETT, V155, P133, DOI 10.1016/S0009-2614(89)87372-5. Bauer B, 2020, CHEM REV, V120, P12685, DOI 10.1021/acs.chemrev.9b00829. BECKE AD, 1993, J CHEM PHYS, V98, P5648, DOI 10.1063/1.464913. BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098. Ben Reichardt W., 2004, P THIRTYSIXTH ANN AC, P502. Benedetti M, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.041052. Benedetti M, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.022308. Berger B, 1998, J COMPUT BIOL, V5, P27, DOI 10.1089/cmb.1998.5.27. Berry DW, 2019, QUANTUM-AUSTRIA, V3, DOI 10.22331/q-2019-12-02-208. Berry DW, 2018, NPJ QUANTUM INFORM, V4, DOI 10.1038/s41534-018-0071-5. Bi-Xue W., 2018, NPJ QUANTUM INFORM, V4, P1. Biamonte J, 2019, ARXIV190304500. Biamonte J, 2017, NATURE, V549, P195, DOI 10.1038/nature23474. Bishop C. M., 2006, PATTERN RECOGNITION. Booth GH, 2009, J CHEM PHYS, V131, DOI 10.1063/1.3193710. Born M, 1928, Z PHYS, V51, P165, DOI 10.1007/BF01343193. Bravyi SB, 2002, ANN PHYS-NEW YORK, V298, P210, DOI 10.1006/aphy.2002.6254. Burbidge R, 2001, COMPUT CHEM, V26, P5, DOI 10.1016/S0097-8485(01)00094-8. Cao Y, 2018, IBM J RES DEV, V62, DOI 10.1147/JRD.2018.2888987. Cao Y., 2017, ARXIV171111240. Cao YD, 2019, CHEM REV, V119, P10856, DOI 10.1021/acs.chemrev.8b00803. CHA Y, 1989, SCIENCE, V243, P1325, DOI 10.1126/science.2646716. Chatterjee, 2016, ARXIV161203713. Childs A. M., 2020, HIGH PRECISION QUANT. Childs AM, 2020, COMMUN MATH PHYS, V375, P1427, DOI 10.1007/s00220-020-03699-z. Ching T, 2018, J R SOC INTERFACE, V15, DOI 10.1098/rsif.2017.0387. Chowdhury A N, 2020, ARXIV PREPRINT ARXIV. Ciliberto C, 2018, P ROY SOC A-MATH PHY, V474, DOI 10.1098/rspa.2017.0551. Claussen JC, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005361. Cohen AJ, 2008, SCIENCE, V321, P792, DOI 10.1126/science.1158722. Colless JI, 2018, PHYS REV X, V8, DOI 10.1103/PhysRevX.8.011021. Cong I, 2019, NAT PHYS, V15, P1273, DOI 10.1038/s41567-019-0648-8. D-Wave Systems Inc, 2019, TECHN DESCR D WAV QU. D-Wave Systems Inc, 2019, D WAV PROBL SOLV HDB. Dallaire-Demers PL, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.012324. Denil Misha, 2011, NIPS 2011 DEEP LEARN. Devoret MH, 2013, SCIENCE, V339, P1169, DOI 10.1126/science.1231930. DILL KA, 1985, BIOCHEMISTRY-US, V24, P1501, DOI 10.1021/bi00327a032. DILL KA, 1995, PROTEIN SCI, V4, P561. Dill KA, 2012, SCIENCE, V338, P1042, DOI 10.1126/science.1219021. Dumoulin V., 2014, P AAAI C ART INT. Dunjko V, 2018, REP PROG PHYS, V81, DOI 10.1088/1361-6633/aab406. Dunjko V, 2017, IEEE SYS MAN CYBERN, P282. Dunjko V, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.130501. Durbin R., 1998, BIOL SEQUENCE ANAL P. Dutta S, 2018, ARXIV181101726. Einstein A, 1935, PHYS REV, V47, P0777, DOI 10.1103/PhysRev.47.777. Elfving V E, 2020, ARXIV200200035. Emani PS, 2019, ARXIV191107127. Evans R, NOVO STRUCTURE PREDI. Farhi E, 2001, SCIENCE, V292, P472, DOI 10.1126/science.1057726. Farhi E., 2000, ARXIVQUANTPH0001106. Farhi E., 2014, ARXIV14114028. Fatima M., 2017, J INTELL LEARN SYST, V9, P1, DOI DOI 10.4236/JILSA.2017.91001. FEYNMAN RP, 1982, INT J THEOR PHYS, V21, P467, DOI 10.1007/BF02650179. Fingerhuth M., 2018, ARXIV181013411. Fowler AG, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.032324. Gao X., 2017, ARXIV171102038. Giovannetti V, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.160501. Giovannetti V, 2008, PHYS REV A, V78, DOI 10.1103/PhysRevA.78.052310. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Google AI Quantum and Collaborators, 2020, ARXIV200404197. Google AI Quantum and Collaborators, 2020, ARXIV200404174. Gottesman D, 1998, GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, P32. Gottesman D., 1997, THESIS. Hadfield S, 2017, PROCEEDINGS OF 2ND INTERNATIONAL WORKSHOP ON POST MOORE'S ERA SUPERCOMPUTING (PMES 2017), P15, DOI 10.1145/3149526.3149530. Hadfield S, 2019, ALGORITHMS, V12, DOI 10.3390/a12020034. Harrow AW, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.150502. Hart WE, 1997, J COMPUT BIOL, V4, P1, DOI 10.1089/cmb.1997.4.1. Harty TP, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.220501. Hase F, 2019, TRENDS CHEM, V1, P282, DOI 10.1016/j.trechm.2019.02.007. Helgaker T., 2013, MOL ELECT STRUCTURE. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRevB.7.1912. Holm L, 2010, NUCLEIC ACIDS RES, V38, pW545, DOI 10.1093/nar/gkq366. Hong FY, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.010306. Hoque T, 2009, J COMPUT BIOL, V16, P85, DOI 10.1089/cmb.2008.0082. Horak D, 2009, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2009/03/P03034. Izaac JA, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.032318. Jozsa R, 2003, P ROY SOC A-MATH PHY, V459, P2011, DOI 10.1098/rspa.2002.1097. Kak, 1995, ADV IMAG ELECT PHYS, V94, P259, DOI DOI 10.1016/S1076-5670(08)70147-2. Kandala A, 2017, NATURE, V549, P242, DOI 10.1038/nature23879. Kassal I, 2008, P NATL ACAD SCI USA, V105, P18681, DOI 10.1073/pnas.0808245105. Kerenidis I., 2019, ADV NEURAL INFORM PR, V32, P4136. Kerenidis I, 2019, ARXIV190806657. Khoshaman A, 2019, QUANTUM SCI TECHNOL, V4, DOI 10.1088/2058-9565/aada1f. Kieferova M, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.062327. Kitaev A.Y., 1995, QUANTPH9511026 ARXIV. Kitaev A.Yu, 1997, USP MAT NAUK, V52, P53. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kolb B, 2017, J PHYS CHEM A, V121, P2552, DOI 10.1021/acs.jpca.7b01182. LAU KF, 1989, MACROMOLECULES, V22, P3986, DOI 10.1021/ma00200a030. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785. Li G, 2019, ARXIV190706949. Li Y, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.021050. Libbrecht MW, 2015, NAT REV GENET, V16, P321, DOI 10.1038/nrg3920. Lidar DA, 1999, PHYS REV E, V59, P2429, DOI 10.1103/PhysRevE.59.2429. Lippard S.J., 1994, PRINCIPLES BIOINORGA, V70. Lloyd S, 1996, SCIENCE, V273, P1073, DOI 10.1126/science.273.5278.1073. Lloyd S., 2013, ARXIV13070411, P1. Lloyd S., 2020, ARXIV200402036. Lloyd S, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.040502. Lloyd S, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10138. Lloyd S, 2014, NAT PHYS, V10, P631, DOI {[}10.1038/nphys3029, 10.1038/NPHYS3029]. Low GH, 2019, QUANTUM-AUSTRIA, V3, DOI 10.22331/q-2019-07-12-163. Low GH, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.010501. Low GH, 2014, PHYS REV A, V89, DOI 10.1103/PhysRevA.89.062315. LOWDIN PO, 1963, REV MOD PHYS, V35, P724, DOI 10.1103/RevModPhys.35.724. Lu SF, 2014, QUANTUM INF PROCESS, V13, P757, DOI 10.1007/s11128-013-0687-5. Manin Yuri, 1980, COMPUTABLE UNCOMPUTA, V128. Marchand DJJ, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47298-y. McArdle S, 2020, REV MOD PHYS, V92, DOI 10.1103/RevModPhys.92.015003. McArdle S, 2019, NPJ QUANTUM INFORM, V5, DOI 10.1038/s41534-019-0187-2. McArdle S, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.180501. McClean JR, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07090-4. McClean JR, 2016, NEW J PHYS, V18, DOI 10.1088/1367-2630/18/2/023023. McClean JR, 2014, J PHYS CHEM LETT, V5, P4368, DOI 10.1021/jz501649m. Messiah A., 2000, QUANTUM MECH. Miyahara H, 2019, ARXIV190806655. MIYAZAWA S, 1985, MACROMOLECULES, V18, P534, DOI 10.1021/ma00145a039. Montanaro A, 2017, ALGORITHMICA, V77, P16, DOI 10.1007/s00453-015-0060-4. Mulligan VK., 2019, DESIGNING PEPTIDES Q, V752485. Newman M., 2018, NETWORKS, DOI {[}10.1093/acprof:oso/9780199206650.001.0001, DOI 10.1093/ACPROF:OSO/9780199206650.001.0001]. Nielsen M.A., 2002, QUANTUM COMPUTATION. O'Brien JL, 2007, SCIENCE, V318, P1567, DOI 10.1126/science.1142892. O'Malley PJJ, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.031007. Obrezanova O, 2007, J CHEM INF MODEL, V47, P1847, DOI 10.1021/ci7000633. Otwinowski Z, 1997, METHOD ENZYMOL, V276, P307, DOI 10.1016/S0076-6879(97)76066-X. Outeiral C., 2020, ARXIV200401118. Paparo GD, 2012, SCI REP-UK, V2, DOI 10.1038/srep00444. Park DK, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40439-3. Pednault E., 2019, LEVERAGING SECONDARY. Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865. Perdomo A, 2008, PHYS REV A, V78, DOI 10.1103/PhysRevA.78.012320. Perdomo-Ortiz A, 2012, SCI REP-UK, V2, DOI 10.1038/srep00571. Peruzzo A, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5213. Preskill J., 1998, INTRO QUANTUM COMPUT, P213, DOI DOI 10.1142/9789812385253\_0008. Preskill J, 2018, QUANTUM-AUSTRIA, V2, DOI 10.22331/q-2018-08-06-79. Rebentrost P, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.130503. Reiher M, 2017, P NATL ACAD SCI USA, V114, P7555, DOI 10.1073/pnas.1619152114. Ringner M, 2008, NAT BIOTECHNOL, V26, P303, DOI 10.1038/nbt0308-303. Robert S, 2019, ARXIV190802163. Rohl CA, 2004, METHOD ENZYMOL, V383, P66. Ronnow TF, 2014, SCIENCE, V345, P420, DOI 10.1126/science.1252319. SAITOU N, 1987, MOL BIOL EVOL, V4, P406, DOI 10.1093/oxfordjournals.molbev.a040454. Sanchez-Lengeling B., 2017, OPTIMIZING DISTRIBUT, DOI {[}DOI 10.26434/CHEMRXIV.5309668.V3, 10.26434/chemrxiv.5309668.v3]. Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663. Schrodinger E, 1935, NATURWISSENSCHAFTEN, V23, P807, DOI 10.1007/BF01491891. Schuld M, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.040504. Schuld M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20403-3. Schuld M, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.022342. Seeley JT, 2012, J CHEM PHYS, V137, DOI 10.1063/1.4768229. Shahriari B, 2016, P IEEE, V104, P148, DOI 10.1109/JPROC.2015.2494218. Sheldrick GM, 2015, ACTA CRYSTALLOGR C, V71, P3, DOI {[}10.1107/S2053229614024218, 10.1107/S0108767307043930]. Shen YC, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.020501. SHOR PW, 1994, AN S FDN CO, P124. Skolnick J, 2001, PROTEINS, P149. Smith JS, 2017, CHEM SCI, V8, P3192, DOI 10.1039/c6sc05720a. Srinivasan S, 2017, ARXIV171009016. Steane A, 1997, APPL PHYS B-LASERS O, V64, P623, DOI 10.1007/s003400050225. Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021. Szabo A., 2012, MODERN QUANTUM CHEM. Temme K, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.180509. THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673. Topaz CM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126383. Trotter H F., 1959, P AM MATH SOC, V10, P545, DOI {[}10.1090/S0002-9939-1959-0108732-6, DOI 10.1090/S0002-9939-1959-0108732-6]. Tubman N. M., 2018, ARXIV180905523. Ushijima-Mwesigwa H, 2017, PROCEEDINGS OF 2ND INTERNATIONAL WORKSHOP ON POST MOORE'S ERA SUPERCOMPUTING (PMES 2017), P22, DOI 10.1145/3149526.3149531. van Dam W, 2001, ANN IEEE SYMP FOUND, P279, DOI 10.1109/SFCS.2001.959902. van Dam W, 2001, LIMITS QUANTUM UNPUB. van der Kamp MW, 2013, BIOCHEMISTRY-US, V52, P2708, DOI 10.1021/bi400215w. Van Noorden R, 2014, NATURE, V514, P550, DOI 10.1038/514550a. Veis L, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.030304. Wan KH, 2017, NPJ QUANTUM INFORM, V3, DOI 10.1038/s41534-017-0032-4. Wang GM, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.012335. Wang S, 2016, SCI REP-UK, V6, DOI 10.1038/srep18962. Wang X, 2019, ARXIV190200869. Whitfield JD, 2011, MOL PHYS, V109, P735, DOI 10.1080/00268976.2011.552441. Wiebe B, 2015, ARXIV151203145. Wiebe N., 2014, QUANTUM DEEP LEARNIN. Wiesner K, 2010, HIDDEN QUANTUM MARKO. Wojcikowski M, 2017, SCI REP-UK, V7, DOI 10.1038/srep46710. Yao K, 2018, CHEM SCI, V9, P2261, DOI 10.1039/c7sc04934j. Zak M, 1998, INT J THEOR PHYS, V37, P651, DOI 10.1023/A:1026656110699. Zhang LX, 2017, BASIC APPL ECOL, V22, P11, DOI 10.1016/j.baae.2017.06.004. Zhao Z, 2019, QUANT MACH INTELL, V1, P41, DOI 10.1007/s42484-019-00004-7. Zhao ZK, 2019, PHYS REV A, V100, DOI 10.1103/PhysRevA.100.012304. Zhao ZK, 2019, PHYS REV A, V99, DOI 10.1103/PhysRevA.99.052331.}, Number-of-Cited-References = {211}, Times-Cited = {48}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {58}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {PH1WP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000534727600001}, OA = {hybrid, Green Submitted, Green Published}, DA = {2023-04-22}, } @article{ WOS:000945122100001, Author = {Guarda, Fernando G. K. and Hammerschmitt, Bruno K. and Capeletti, Marcelo B. and Neto, Nelson K. and dos Santos, Laura L. C. and Prade, Lucio R. and Abaide, Alzenira}, Title = {Non-Hardware-Based Non-Technical Losses Detection Methods: A Review}, Journal = {ENERGIES}, Year = {2023}, Volume = {16}, Number = {4}, Month = {FEB}, Abstract = {Non-Technical Losses (NTL) represent a serious concern for electric companies. These losses are responsible for revenue losses, as well as reduced system reliability. Part of the revenue loss is charged to legal consumers, thus, causing social imbalance. NTL methods have been developed in order to reduce the impact in physical distribution systems and legal consumers. These methods can be classified as hardware-based and non-hardware-based. Hardware-based methods need an entirely new system infrastructure to be implemented, resulting in high investment and increased cost for energy companies, thus hampering implementation in poorer nations. With this in mind, this paper performs a review of non-hardware-based NTL detection methods. These methods use distribution systems and consumers' data to detect abnormal energy consumption. They can be classified as network-based, which use network technical parameters to search for energy losses, data-based methods, which use data science and machine learning, and hybrid methods, which combine both. This paper focuses on reviewing non-hardware-based NTL detection methods, presenting a NTL detection methods overview and a literature search and analysis.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Neto, NK (Corresponding Author), Univ Fed Santa Maria, Acad Coordinat, BR-96503205 Cachoeira do Sul, Brazil. Guarda, Fernando G. K.; Abaide, Alzenira, Univ Fed Santa Maria, Santa Maria Tech \& Ind Sch, BR-97105900 Santa Maria, Brazil. Hammerschmitt, Bruno K.; Capeletti, Marcelo B., Univ Fed Santa Maria, Grad Program Elect Engn, BR-97105900 Santa Maria, Brazil. Neto, Nelson K.; dos Santos, Laura L. C., Univ Fed Santa Maria, Acad Coordinat, BR-96503205 Cachoeira do Sul, Brazil. Prade, Lucio R., Univ Vale Sinos, Polytech Sch, BR-93022750 Sao Leopoldo, Brazil.}, DOI = {10.3390/en16042054}, Article-Number = {2054}, EISSN = {1996-1073}, Keywords = {Non-Technical Losses; machine learning; non-hardware-based methods; distribution systems; artificial intelligence}, Keywords-Plus = {ENERGY THEFT; POWER DISTRIBUTION; ELECTRICITY THEFT; SMART GRIDS; ALGORITHM; METERS}, Research-Areas = {Energy \& Fuels}, Web-of-Science-Categories = {Energy \& Fuels}, Author-Email = {nelson.knak@ufsm.br}, Affiliations = {Universidade Federal de Santa Maria (UFSM); Universidade Federal de Santa Maria (UFSM); Universidade Federal de Santa Maria (UFSM)}, Funding-Acknowledgement = {State Electric Energy Company; Equatorial Energia Group (ANEEL R\&D Program through the CEEE/EQUATORIAL/UFSM) {[}5000003849]; National Institute of Science and Technology in Distributed Generation Systems (INCTGD); National Council for Scientific and Technological Development (CNPq) {[}465640/2014-1]; Coordination for the Improvement of Higher Education Personnel (CAPES) {[}23038.000776/2017-54]; Research Support Foundation of the State of Rio Grande do South (FAPERGS) {[}17/2551-0000517-1]; Federal University of Santa Maria (UFSM)}, Funding-Text = {This research was funded by the State Electric Energy Company and the Equatorial Energia Group (ANEEL R\&D Program through the CEEE/EQUATORIAL/UFSM project no. 5000003849), National Institute of Science and Technology in Distributed Generation Systems (INCTGD), National Council for Scientific and Technological Development (CNPq-no. 465640/2014-1), Coordination for the Improvement of Higher Education Personnel (CAPES-no. 23038.000776/2017-54), Research Support Foundation of the State of Rio Grande do South (FAPERGS-no. 17/2551-0000517-1) and Federal University of Santa Maria (UFSM), Brazilian Institutions. The APC was funded by State Electric Energy Company and the Equatorial Energia Group (ANEEL R\&D Program through the CEEE/EQUATORIAL/UFSM project no. 5000003849).}, Cited-References = {Anas M., 2012, 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2012), P176, DOI 10.1109/3PGCIC.2012.42. Asif M, 2022, IEEE ACCESS, V10, P27467, DOI 10.1109/ACCESS.2022.3150047. Aslam M, 2020, J KING SAUD UNIV SCI, V32, P2696, DOI 10.1016/j.jksus.2020.06.003. Axelsson S., 2000, ACM Transactions on Information and Systems Security, V3, P186, DOI 10.1145/357830.357849. Bandim CJ, 2003, 2003 IEEE PES TRANSMISSION AND DISTRIBUTION CONFERENCE \& EXPOSITION, VOLS 1-3, CONFERENCE PROCEEDINGS, P163, DOI 10.1109/TDC.2003.1335175. Barros RMR, 2022, IEEE T POWER SYST, V37, P1634, DOI 10.1109/TPWRS.2021.3107602. Bretas A., 2021, CYBER PHYS POWER SYS, P259, DOI {[}10.1016/B978-0-323-90033-1.00003-2, DOI 10.1016/B978-0-323-90033-1.00003-2]. Buzau MM, 2020, IEEE T POWER SYST, V35, P1254, DOI 10.1109/TPWRS.2019.2943115. Capeletti MB, 2022, ENERGIES, V15, DOI 10.3390/en15238794. Carr D, 2022, ENERGIES, V15, DOI 10.3390/en15062218. Chebrolu S, 2005, COMPUT SECUR, V24, P295, DOI 10.1016/j.cose.2004.09.008. Cody C, 2015, 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P1175, DOI 10.1109/ICMLA.2015.80. Costa B.C., 2013, INT J ARTIF INTELL A, V4, P17, DOI 10.5121/ijaia.2013.4602. Depuru SSSR, 2011, IEEE POW ENER SOC GE. dos Angelos EWS, 2011, IEEE T POWER DELIVER, V26, P2436, DOI 10.1109/TPWRD.2011.2161621. Soares LD, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11050693. Elsayad A.M., 2013, INT J COMPUT APPL, V83, P19, DOI {[}10.5120/14445-2604, DOI 10.5120/14445-2604]. Fenza G, 2019, IEEE ACCESS, V7, P9645, DOI 10.1109/ACCESS.2019.2891315. Ferreira TSD, 2020, IEEE T POWER SYST, V35, P3671, DOI 10.1109/TPWRS.2020.2981826. Ghori KM, 2021, IEEE ACCESS, V9, P98928, DOI 10.1109/ACCESS.2021.3095145. Guerreiro J., 2016, IEEE T POWER SYST, V32, P1209. Guo YH, 2014, IEEE T POWER SYST, V29, P550, DOI 10.1109/TPWRS.2013.2282931. Han SY, 2016, IET GENER TRANSM DIS, V10, P3010, DOI 10.1049/iet-gtd.2016.0048. Hancock J, 2021, 2021 IEEE 22ND INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2021), P348, DOI 10.1109/IRI51335.2021.00054. Henriques HO, 2014, MEASUREMENT, V56, P1, DOI 10.1016/j.measurement.2014.06.015. Huang J, 2005, IEEE T KNOWL DATA EN, V17, P299, DOI 10.1109/TKDE.2005.50. Huang SC, 2013, IEEE T POWER SYST, V28, P2959, DOI 10.1109/TPWRS.2012.2224891. Iglesias F, 2013, ENERGIES, V6, P579, DOI 10.3390/en6020579. Jindal A, 2016, IEEE T IND INFORM, V12, P1005, DOI 10.1109/TII.2016.2543145. Jokar P, 2016, IEEE T SMART GRID, V7, P216, DOI 10.1109/TSG.2015.2425222. Kabir B, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142215001. Karimi Zandian Z., 2019, J AI DATA MIN, V7, P213, DOI {[}10.22044/jadm.2018.6311.1746, DOI 10.22044/JADM.2018.6311.1746]. Lee J, 2022, IEEE ACCESS, V10, P27084, DOI 10.1109/ACCESS.2022.3156948. Leon C, 2011, EXPERT SYST APPL, V38, P10274, DOI 10.1016/j.eswa.2011.02.062. Lin CL, 2019, J ASIAN ARCHIT BUILD, V18, P539, DOI 10.1080/13467581.2019.1696203. Lydia M, 2019, INT CONF ADVAN COMPU, P995, DOI 10.1109/ICACCS.2019.8728396. Massaferro P, 2020, IEEE T POWER SYST, V35, P703, DOI 10.1109/TPWRS.2019.2928276. Buzau MM, 2019, IEEE T SMART GRID, V10, P2661, DOI 10.1109/TSG.2018.2807925. Monedero I, 2012, INT J ELEC POWER, V34, P90, DOI 10.1016/j.ijepes.2011.09.009. Nagi J, 2008, 2008 IEEE 2ND INTERNATIONAL POWER AND ENERGY CONFERENCE: PECON, VOLS 1-3, P907, DOI 10.1109/PECON.2008.4762604. Nagi J, 2011, IEEE T POWER DELIVER, V26, P1284, DOI 10.1109/TPWRD.2010.2055670. Nagi J, 2010, IEEE T POWER DELIVER, V25, P1162, DOI 10.1109/TPWRD.2009.2030890. Nikovski Daniel Nikolaev, 2013, Machine Learning and Data Mining in Pattern Recognition. 9th International Conference, MLDM 2013. Proceedings: LNCS 7988, P379, DOI 10.1007/978-3-642-39712-7\_29. Nizar A. H., 2007, P IEEE POW ENG SOC G, P1, DOI DOI 10.1109/PES.2007.385883. Ramos CCO, 2012, IEEE T POWER DELIVER, V27, P140, DOI 10.1109/TPWRD.2011.2170182. Ramos CCO, 2011, IEEE T POWER SYST, V26, P181, DOI 10.1109/TPWRS.2010.2051823. Oo MCM, 2019, 2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), P125, DOI 10.1109/CCOMS.2019.8821752. Otuoze A.O., 2019, INDONES J ELECT ENG, V15, P758. Pamir, 2022, IEEE ACCESS, V10, P121886, DOI 10.1109/ACCESS.2022.3222883. Passos LA, 2016, ELECTR POW SYST RES, V140, P413, DOI 10.1016/j.epsr.2016.05.036. Pereira J, 2020, IEEE C EVOL COMPUTAT. Pulz Jonatas, 2017, CIRED - Open Access Proceedings Journal, V2017, P2300, DOI 10.1049/oap-cired.2017.1258. Qi RB, 2022, IEEE T INSTRUM MEAS, V71, DOI 10.1109/TIM.2022.3189748. Quinlan J. R., 1992, Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. AI `92, P343. Ramos CCO, 2018, IEEE T SMART GRID, V9, P676, DOI 10.1109/TSG.2016.2560801. Ramos CCO, 2011, COMPUT ELECTR ENG, V37, P886, DOI 10.1016/j.compeleceng.2011.09.013. Saeed MS, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8080860. Salinas S, 2013, IEEE J SEL AREA COMM, V31, P257, DOI 10.1109/JSAC.2013.SUP.0513023. Spiric JV, 2016, INT J ELEC POWER, V83, P402, DOI 10.1016/j.ijepes.2016.04.035. Trevisan Riccardo, 2015, 2015 IEEE MTT-S International Microwave Symposium (IMS2015), P1, DOI 10.1109/MWSYM.2015.7166727. Ullah A, 2022, IEEE ACCESS, V10, P133244, DOI 10.1109/ACCESS.2022.3230952. Nguyen V, 2019, 2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), P302, DOI 10.1109/AIKE.2019.00060. Wang DG, 2018, 2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), P312, DOI 10.1109/ICNISC.2018.00069. Yip SC, 2018, INT J ELEC POWER, V101, P189, DOI 10.1016/j.ijepes.2018.03.025. Yip SC, 2017, 2017 1ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2017 17TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I\&CPS EUROPE). Yip SC, 2017, INT J ELEC POWER, V91, P230, DOI 10.1016/j.ijepes.2017.04.005. Yurtseven C, 2015, UTIL POLICY, V37, P70, DOI 10.1016/j.jup.2015.06.008. Zheng ZB, 2018, IEEE T IND INFORM, V14, P1606, DOI 10.1109/TII.2017.2785963.}, Number-of-Cited-References = {68}, Times-Cited = {0}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {0}, Journal-ISO = {Energies}, Doc-Delivery-Number = {9Q7EE}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000945122100001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000728484000001, Author = {Lee, Stuart and Cook, Dianne and da Silva, Natalia and Laa, Ursula and Spyrison, Nicholas and Wang, Earo and Zhang, H. Sherry}, Title = {The state-of-the-art on tours for dynamic visualization of high-dimensional data}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS}, Year = {2022}, Volume = {14}, Number = {4}, Month = {JUL}, Abstract = {This article discusses a high-dimensional visualization technique called the tour, which can be used to view data in more than three dimensions. We review the theory and history behind the technique, as well as modern software developments and applications of the tour that are being found across the sciences and machine learning. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data Statistical and Graphical Methods of Data Analysis > Statistical Graphics and Visualization Statistical Learning and Exploratory Methods of the Data Sciences > Exploratory Data Analysis}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Cook, D (Corresponding Author), Monash Univ, Dept Econometr \& Business Stat, Melbourne, Vic, Australia. Lee, Stuart; Cook, Dianne; Zhang, H. Sherry, Monash Univ, Dept Econometr \& Business Stat, Melbourne, Vic, Australia. da Silva, Natalia, Univ Republica, Inst Estadist IESTA, Montevideo, Uruguay. Laa, Ursula, Univ Nat Resources \& Life Sci, Inst Stat, Vienna, Austria. Spyrison, Nicholas, Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia. Wang, Earo, Univ Auckland, Dept Stat, Auckland, New Zealand.}, DOI = {10.1002/wics.1573}, EarlyAccessDate = {DEC 2021}, Article-Number = {e1573}, ISSN = {1939-0068}, Keywords = {data science; data visualization; exploratory data analysis; high-dimensional data; tours}, Keywords-Plus = {PROJECTION PURSUIT; GRAND-TOUR; XGOBI; MULTIVARIATE; ALGORITHM; GGOBI}, Research-Areas = {Mathematics}, Web-of-Science-Categories = {Statistics \& Probability}, Author-Email = {dicook@monash.edu}, Affiliations = {Monash University; Universidad de la Republica, Uruguay; University of Natural Resources \& Life Sciences, Vienna; Monash University; University of Auckland}, ORCID-Numbers = {Spyrison, Nicholas/0000-0002-8417-0212 Lee, Stuart/0000-0003-1179-8436 da Silva, Natalia/0000-0002-6031-7451 Zhang, H. Sherry/0000-0002-7122-1463 Cook, Dianne/0000-0002-3813-7155 Laa, Ursula/0000-0002-0249-6439}, Funding-Acknowledgement = {Australian Research Council}, Funding-Text = {The authors gratefully acknowledge the support of the Australian Research Council. The paper was written in rmarkdown (Xie et al., 2018) using knitr (Xie, 2017). The source material for this paper is available at https://github.com/dicook/wiley-isghdd}, Cited-References = {Abdi H, 2010, WIRES COMPUT STAT, V2, P433, DOI 10.1002/wics.101. ANDREWS DF, 1972, BIOMETRICS, V28, P125, DOI 10.2307/2528964. ASA Statistical Graphics Section, 2021, VID LIB. Asimov, 1986, P 17 S INT COMP SCI, DOI 10.5555/26036.26046. ASIMOV D, 1985, SIAM J SCI STAT COMP, V6, P128, DOI 10.1137/0906011. BECKER RA, 1987, TECHNOMETRICS, V29, P127, DOI 10.2307/1269768. Buja A, 2005, HANDB STAT, V24, P391, DOI 10.1016/S0169-7161(04)24014-7. Buja A., 1994, J COMPUTATIONAL GRAP, V3, P323, DOI {[}10.1080/10618600.1994.10474649, DOI 10.2307/1390897, DOI 10.1080/10618600.1994.10474649.3]. CAMPBELL NA, 1974, AUST J ZOOL, V22, P417, DOI 10.1071/ZO9740417. Coleman D., 1986, GEOMETRIC FEATURES P. Cook D, 1997, J COMPUT GRAPH STAT, V6, P464, DOI 10.2307/1390747. Cook D., 2020, J DATA SCI STAT VISU. Cook D., 2020, LIMINAL MULTIVARIATE. COOK D., 1995, J COMPUTATIONAL GRAP, V4, P155, DOI DOI 10.1080/10618600.1995.10474674]. Cook D, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-6205-2. Cook D, 2007, USE R, P1. Cruz-Neira, 1997, COMPUTING SCI STAT, V29, P41. DIACONIS P, 1984, ANN STAT, V12, P793, DOI 10.1214/aos/1176346703. Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x. Forbes J, 2020, AUST NZ J STAT, V62, P168, DOI 10.1111/anzs.12292. FRIEDMAN JH, 1974, IEEE T COMPUT, VC 23, P881, DOI 10.1109/T-C.1974.224051. Gorman K.B, 2020, PALMERPENGUINS PALME. Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325. Huber P, 1990, PJH901 MIT DEP MATH. Huh MY, 2002, J APPL STAT, V29, P721, DOI 10.1080/02664760120098784. Hurley CB, 2011, COMPUTATION STAT, V26, P613, DOI 10.1007/s00180-011-0229-5. Inselberg A, 1985, VISUAL COMPUT, V1, P69, DOI 10.1007/BF01898350. Jee JR, 2009, WILEY INTERDISCIP RE, V1, P208, DOI 10.1002/wics.23. Jolliffe IT, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2015.0202. Koschat MA, 1996, J BUS ECON STAT, V14, P113, DOI 10.2307/1392104. KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P1, DOI 10.1007/BF02289565. Laa U., 2020, ARXIV200413327. Laa U, 2022, J COMPUT GRAPH STAT, V31, P40, DOI 10.1080/10618600.2021.1963264. Laa U, 2020, J COMPUT GRAPH STAT, V29, P681, DOI 10.1080/10618600.2020.1777140. Lawrence M, 2009, COMPUTATION STAT, V24, P195, DOI 10.1007/s00180-008-0115-y. Lee EK, 2005, J COMPUT GRAPH STAT, V14, P831, DOI 10.1198/106186005X77702. Lee EK, 2018, J STAT SOFTW, V83, P1, DOI 10.18637/jss.v083.i08. LePage R., 1992, COMPUTING SCI STAT. Macedo M, 2000, DATA MIN KNOWL DISC, V4, P69, DOI 10.1023/A:1009880716855. Martinez WL, 2013, WIRES COMPUT STAT, V5, P198, DOI 10.1002/wics.1253. McDonald, 1982, THESIS STANFORD U. McDonald, 1986, COMPUTING SCI STAT. McInnes Leland, 2020, Arxiv, DOI DOI 10.21105/JOSS.00861. Men├ndez P., 2021, ARXIV210403448. Moustafa RE, 2009, WILEY INTERDISCIP RE, V1, P245, DOI 10.1002/wics.30. Moustafa RE, 2010, WILEY INTERDISCIP RE, V2, P711, DOI 10.1002/wics.133. Nelson L, 1999, COMPUTATION STAT, V14, P39, DOI 10.1007/PL00022704. Newell MA, 2013, ANN APPL STAT, V7, P1898, DOI 10.1214/13-AOAS671. Nguyen W., 2020, IMPLEMENTATION TOUR. Nicholson W.L., 1984, PNLSA12095. O'Connell M, 2017, J STAT SOFTW, V81, P1, DOI 10.18637/jss.v081.i05. Rauber, 2009, MULTICHALLENGE DATA. Sachser R., 1983, COMPUTER SCI STAT. Scheidegger, 2020, COMP DNNS UMAP TOUR. Scheidegger C., 2020, VISUALIZING NEURAL N, DOI 10.23915/distill.00025. Schloerke B, 2016, R J, V8, P243. Scott D, 1997, STAT GRAPHICS COMPUT. Sievert C., 2020, INTERACTIVE WEB BASE, DOI DOI 10.1201/9780429447273. Spyrison N, 2020, R J, V12, P243. Sutherland P, 2000, J COMPUT GRAPH STAT, V9, P509, DOI 10.2307/1390943. Swayne DF, 2003, COMPUT STAT DATA AN, V43, P423, DOI 10.1016/S0167-9473(02)00286-4. Swayne DF, 1998, J COMPUT GRAPH STAT, V7, P113, DOI 10.2307/1390772. Symanzik J., 2002, COMPUTING SCI STAT, V34, P500. Team RC., 2017, R LANGUAGE ENV STAT, DOI DOI 10.1007/978-3-540-74686-7. TIERNEY L, 1991, LISPSTAT OBJECT ORIE. Tukey P.A., 1983, GRAPHICAL METHODS DA, P129, DOI {[}10.1201/9781351072304-5, DOI 10.1201/9781351072304-5]. TUKEY PA, 1981, INTERPRETING MULTIVA, P189. van der Maaten L, 2008, J MACH LEARN RES, V9, P2579. WEGMAN EJ, 1990, J AM STAT ASSOC, V85, P664, DOI 10.2307/2290001. Wegman EJ, 1998, P SOC PHOTO-OPT INS, V3371, P286, DOI 10.1117/12.323848. WEGMAN EJ, 2002, INDIAN J STAT A, V64, P429, DOI DOI 10.2307/25051404. Wickham H, 2015, STAT ANAL DATA MIN, V8, P203, DOI 10.1002/sam.11271. Wickham H, 2011, J STAT SOFTW, V40, P1, DOI 10.18637/jss.v040.i01. Wilkinson L, 2009, AM STAT, V63, P179, DOI 10.1198/tas.2009.0033. Xiao H., 2017, ARXIV170807747. Xie, 2017, DYNAMIC DOCUMENTS R, DOI 10.1201/9781315382487. Xie Y., 2018, R MARKDOWN DEFINITIV. Xie YH, 2014, STAT SCI, V29, P201, DOI 10.1214/14-STS477. You K, 2020, ARXIV200511107.}, Number-of-Cited-References = {79}, Times-Cited = {0}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {9}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Stat.}, Doc-Delivery-Number = {2R9SO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000728484000001}, OA = {Bronze}, DA = {2023-04-22}, } @article{ WOS:000675381100001, Author = {Cordeiro, Joao V.}, Title = {Digital Technologies and Data Science as Health Enablers: An Outline of Appealing Promises and Compelling Ethical, Legal, and Social Challenges}, Journal = {FRONTIERS IN MEDICINE}, Year = {2021}, Volume = {8}, Month = {JUL 8}, Abstract = {Digital technologies and data science have laid down the promise to revolutionize healthcare by transforming the way health and disease are analyzed and managed in the future. Digital health applications in healthcare include telemedicine, electronic health records, wearable, implantable, injectable and ingestible digital medical devices, health mobile apps as well as the application of artificial intelligence and machine learning algorithms to medical and public health prognosis and decision-making. As is often the case with technological advancement, progress in digital health raises compelling ethical, legal, and social implications (ELSI). This article aims to succinctly map relevant ELSI of the digital health field. The issues of patient autonomy; assessment, value attribution, and validation of health innovation; equity and trustworthiness in healthcare; professional roles and skills and data protection and security are highlighted against the backdrop of the risks of dehumanization of care, the limitations of machine learning-based decision-making and, ultimately, the future contours of human interaction in medicine and public health. The running theme to this article is the underlying tension between the promises of digital health and its many challenges, which is heightened by the contrasting pace of scientific progress and the timed responses provided by law and ethics. Digital applications can prove to be valuable allies for human skills in medicine and public health. Similarly, ethics and the law can be interpreted and perceived as more than obstacles, but also promoters of fairness, inclusiveness, creativity and innovation in health.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Cordeiro, JV (Corresponding Author), Univ Nova Lisboa, NOVA Natl Sch Publ Hlth, Publ Hlth Res Ctr, Lisbon, Portugal. Cordeiro, JV (Corresponding Author), Univ Nova Lisboa, Comprehens Hlth Res Ctr, Lisbon, Portugal. Cordeiro, JV (Corresponding Author), Ctr Interdisciplinar Ciencias Sociais, Lisbon, Portugal. Cordeiro, Joao V., Univ Nova Lisboa, NOVA Natl Sch Publ Hlth, Publ Hlth Res Ctr, Lisbon, Portugal. Cordeiro, Joao V., Univ Nova Lisboa, Comprehens Hlth Res Ctr, Lisbon, Portugal. Cordeiro, Joao V., Ctr Interdisciplinar Ciencias Sociais, Lisbon, Portugal.}, DOI = {10.3389/fmed.2021.647897}, Article-Number = {647897}, EISSN = {2296-858X}, Keywords = {digital health; ethics; law; artificial intelligence; telemedicine; big data; patient-doctor relationship}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; BIG DATA; MEDICINE; CARE; PHYSICIAN; QUALITY; JUSTICE; ACCESS; ROBOT; STOP}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {joao.cordeiro@ensp.unl.pt}, Affiliations = {Universidade Nova de Lisboa; Universidade Nova de Lisboa}, ResearcherID-Numbers = {Cordeiro, Joao/M-6122-2013}, ORCID-Numbers = {Cordeiro, Joao/0000-0003-4605-1615}, Funding-Acknowledgement = {Fundacao Ciencia e Tecnologia, IP national support through CHRC {[}UIDP/04923/2020]}, Funding-Text = {This present publication was funded by Fundacao Ciencia e Tecnologia, IP national support through CHRC (UIDP/04923/2020).}, Cited-References = {Abdolkhani R, 2019, JAMIA OPEN, V2, P471, DOI 10.1093/jamiaopen/ooz036. Abnousi F, 2019, JAMA-J AM MED ASSOC, V321, P247, DOI 10.1001/jama.2018.19763. Adamson AS, 2018, JAMA DERMATOL, V154, P1247, DOI 10.1001/jamadermatol.2018.2348. Adjekum A, 2018, J MED INTERNET RES, V20, DOI 10.2196/11254. Aicardi C, 2016, CROAT MED J, V57, P207, DOI 10.3325/cmj.2016.57.207. Ajana B, 2017, DIGIT HEALTH, V3, DOI 10.1177/2055207616689509. American Medical Association, 2020, DIG HLTH IMPL PLAYB. Anderson M, 2010, SCI AM, V303, P72, DOI 10.1038/scientificamerican1010-72. Annas GJ., 2010, WORST CASE BIOETHICS, P235. {[}Anonymous], 2019, NATURE, V572, P5, DOI 10.1038/d41586-019-02322-z. Anthes E, 2017, NATURE, V550, P316, DOI 10.1038/550316a. Atasoy H, 2019, ANNU REV PUBL HEALTH, V40, P487, DOI 10.1146/annurev-publhealth-040218-044206. Atkinson K, 2020, ARTIF INTELL, V289, DOI 10.1016/j.artint.2020.103387. Aungst TD, 2020, J MED EDUC CURRIC DE, V7, DOI 10.1177/2382120519901275. Babic B, 2021, NAT MACH INTELL, V3, P283, DOI 10.1038/s42256-021-00331-0. Baker DB, 2016, EGEMS, V4, P7, DOI 10.13063/2327-9214.1207. Baron RJ, 2019, NEW ENGL J MED, V381, P182, DOI 10.1056/NEJMms1813043. Beauchamp TL., 2019, PRINCIPLES BIOMEDICA, V8th. Benjamens S, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-00324-0. Bitterman DS, 2020, LANCET DIGIT HEALTH, V2, pE447, DOI 10.1016/S2589-7500(20)30187-4. Bjerring JC., 2020, PHILOS TECHNOL, DOI {[}10.1007/s13347-019-00391-6, DOI 10.1007/S13347-019-00391-6]. Bollmeier Suzanne G, 2020, Mo Med, V117, P303. Borgesius F. Z., 2018, DISCRIMINATION ARTIF. Botrugno C, 2019, NURS ETHICS, V26, P357, DOI 10.1177/0969733017705004. Brall C, 2019, EUR J PUBLIC HEALTH, V29, P18, DOI 10.1093/eurpub/ckz167. Brody JE., 2020, NEW YORK TIMES. Brouillette M., 2017, MIT TECHNOL REV. Buchner B., 2017, EUROPEAN HLTH LAW, P273. Burdick A, 2017, NEW YORKER. Buttarelli G, 2016, INT DATA PRIV LAW, V6, P77, DOI 10.1093/idpl/ipw006. Carreyrou J., 2018, BAD BLOOD SECRETS LI. Castelvecchi D, 2021, NATURE, V589, P12, DOI 10.1038/d41586-020-03611-8. Castelvecchi D, 2020, NATURE, V587, P347, DOI 10.1038/d41586-020-03186-4. CBS News, 2019, CBS NEWS. Cervantes JA, 2020, SCI ENG ETHICS, V26, P501, DOI 10.1007/s11948-019-00151-x. Chesser A, 2016, INFORM HEALTH SOC CA, V41, P1, DOI 10.3109/17538157.2014.948171. Cohen IG, 2020, LANCET DIGIT HEALTH, V2, pE376, DOI 10.1016/S2589-7500(20)30112-6. Cook-Deegan R, 2017, ANNU REV GENOM HUM G, V18, P389, DOI 10.1146/annurev-genom-083115-022515. Cordeiro João V., 2014, Rev. Port. Sau. Pub., V32, P164, DOI 10.1016/j.rpsp.2014.10.002. Costello RA, 2020, EUR PAP J LAW INTEGR, V2020, P1045. Courtland R, 2018, NATURE, V558, P357, DOI 10.1038/d41586-018-05469-3. Davenport Thomas, 2019, Future Healthc J, V6, P94, DOI 10.7861/futurehosp.6-2-94. de Faria PL., 2014, ROUTLEDGE HDB MED LA, P381. Digital EconomyTaskForce., 2020, G20 DIAL OECD. Donabedian A, 2005, MILBANK Q, V83, P691, DOI 10.1111/j.1468-0009.2005.00397.x. Elenko E, 2015, NAT BIOTECHNOL, V33, P456, DOI 10.1038/nbt.3222. Elliott T, 2019, CURR ALLERGY ASTHM R, V19, DOI 10.1007/s11882-019-0837-7. EMC EducationServices., 2015, DATA SCI BIG DATA AN. Etzioni A., 2017, J ETHICS, V21, P403, DOI DOI 10.1007/S10892-017-9252-2. EU High -Level Expert Group on Artificial Intelligence, 2020, ASS LIST TRUSTW ART, P7. European Commission, 2020, EU LAW LIVE. European Commission, 2018, COM2018233 EUR COMM. Faria Paula Lobato, 2014, Rev. Port. Sau. Pub., V32, P121. Faria Paula Lobato de, 2014, Rev. Port. Sau. Pub., V32, P123, DOI 10.1016/j.rpsp.2014.10.001. Food and Drug Administration (FDA), 2020, MED DEVICE CYBERSECU. Fuster Gloria Gonzalez, 2014, EMERGENCE PERSONAL D. Garell C, 2016, JMIR MED INF, V4, P47, DOI 10.2196/medinform.5401. Gasser U, 2020, LANCET DIGIT HEALTH, V2, pE425, DOI 10.1016/S2589-7500(20)30137-0. Ghassemi M, 2019, LANCET DIGIT HEALTH, V1, pE157, DOI 10.1016/S2589-7500(19)30084-6. Gibney E, 2020, NATURE, V577, P609, DOI 10.1038/d41586-020-00160-y. Gigerenzer Gerd, 2007, Psychol Sci Public Interest, V8, P53, DOI 10.1111/j.1539-6053.2008.00033.x. Gillum J, 2019, ANYONE CAN TAKE PEEK. Global Alliance for Genomics and Health, 2020, GA4GH GDPR BRIEF TRA. Godlee F, 2016, BMJ-BRIT MED J, V354, DOI 10.1136/bmj.i3907. Golinelli D, 2020, J MED INTERNET RES, V22, DOI 10.2196/22280. Gornick Michele C, 2019, AMA J Ethics, V21, pE906, DOI 10.1001/amajethics.2019.906. Grady C, 2017, NEW ENGL J MED, V376, P856, DOI 10.1056/NEJMra1603773. Grady C, 2015, NEW ENGL J MED, V372, P855, DOI 10.1056/NEJMra1411250. Guibas JT., 2018, ARXIV170901872. High CommissionerforHumanRights, 2018, RIGHT PRIV DIG AG. High-Level ExpertGrouponAI., 2019, ETHICS GUIDELINES TR. Ho A, 2018, BMC MED ETHICS, V19, DOI 10.1186/s12910-018-0255-8. Ho D, 2020, TRENDS BIOTECHNOL, V38, P497, DOI 10.1016/j.tibtech.2019.12.021. Intelligence Unit., 2017, THE ECONOMIST. Jain SH, 2015, NAT BIOTECHNOL, V33, P462, DOI 10.1038/nbt.3223. Kabat GC, 2017, EMBO REP, V18, P1052, DOI 10.15252/embr.201744294. Kaplan B, 2020, INT J MED INFORM, V143, DOI 10.1016/j.ijmedinf.2020.104239. Keenan AJ, 2021, J MED INTERNET RES, V23, DOI 10.2196/25698. Khoury MJ, 2018, GENET MED, V20, P574, DOI 10.1038/gim.2017.211. Khoury MJ, 2016, AM J PREV MED, V50, P398, DOI 10.1016/j.amepre.2015.08.031. Kirchner L., 2016, MACHINE BIAS. Kish LJ, 2015, NAT BIOTECHNOL, V33, P921, DOI 10.1038/nbt.3340. Knight W, 2017, TECHNOL REV, V120, P54. Kosinski M, 2013, P NATL ACAD SCI USA, V110, P5802, DOI 10.1073/pnas.1218772110. Kosseim P, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0430-2. Kramer ADI, 2014, P NATL ACAD SCI USA, V111, P8788, DOI 10.1073/pnas.1320040111. Kruse CS, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0628-9. Lamanna Camillo, 2018, AMA J Ethics, V20, pE902, DOI 10.1001/amajethics.2018.902. Land MK, 2020, ANNU REV LAW SOC SCI, V16, P223, DOI 10.1146/annurev-lawsocsci-060220-081955. Lima MR, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.618866. Lordon RJ, 2020, HEALTH INFORM J, V26, P2689, DOI 10.1177/1460458220928184. Lorentz A., 2018, WIRED. Lupton Deborah., 2017, DIGITAL HLTH CRITICA. Mann SP, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0130. Martinez-Martin Nicole, 2019, AMA J Ethics, V21, pE180, DOI 10.1001/amajethics.2019.180. McAuley A, 2014, PUBLIC HEALTH, V128, P1118, DOI 10.1016/j.puhe.2014.10.008. McDermott Y, 2017, BIG DATA SOC, V4, P1, DOI 10.1177/2053951716686994. Miller A. P., 2018, HARVARD BUS REV, V26. Murdoch TB, 2013, JAMA-J AM MED ASSOC, V309, P1351, DOI 10.1001/jama.2013.393. Nedelkoska L., 2018, OECD SOCIAL EMPLOYME, V202. Neves AL, 2020, BMJ QUAL SAF, V29, P1019, DOI 10.1136/bmjqs-2019-010581. Nissim K, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2017.0358. Nittari G, 2020, TELEMED E-HEALTH, V26, P1427, DOI 10.1089/tmj.2019.0158. Obermeyer Z., 2019, HEALTH AFFAIR. Obermeyer Z, 2016, NEW ENGL J MED, V375, P1216, DOI 10.1056/NEJMp1606181. Papernot N., 2017, ARXIV161005755. Perakslis E, 2021, JAMA-J AM MED ASSOC, V325, P127, DOI 10.1001/jama.2020.22919. Pilgrim D., 2011, EXAMINING TRUST HEAL. Powles J, 2017, HEALTH TECHNOL-GER, V7, P351, DOI 10.1007/s12553-017-0179-1. Raposo Vera Lucia, 2016, GMS Health Technol Assess, V12, pDoc03, DOI 10.3205/hta000126. Rasiah S, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2018-028061. Rasmussen SA, 2020, JAMA-J AM MED ASSOC, V324, P933, DOI 10.1001/jama.2020.14992. Rezaeibagha F, 2015, HEALTH INF MANAG J, V44, P23, DOI 10.1177/183335831504400304. Rigby M, 2016, STUD HEALTH TECHNOL, V222, P3, DOI 10.3233/978-1-61499-635-4-3. Rocher L, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10933-3. Rodriguez-Villa E, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1447-x. Ross Casey, 2018, STAT. Rothstein MA., 2015, ROUTLEDGE HDB MED LA, P52. Rubeis G, 2018, SCI ENG ETHICS, V24, P93, DOI 10.1007/s11948-017-9885-3. Ruckenstein M, 2017, ANNU REV ANTHROPOL, V46, P261, DOI 10.1146/annurev-anthro-102116-041244. Schmietow B, 2019, MED HEALTH CARE PHIL, V22, P623, DOI 10.1007/s11019-019-09900-y. Schneble CO, 2020, J MED INTERNET RES, V22, DOI 10.2196/16879. Schulke DF, 2013, BOSTON U LAW REV, V93, P1699. Schwartz Suzanne, 2018, Biomed Instrum Technol, V52, P103, DOI 10.2345/0899-8205-52.2.103. Several authors., 2012, THE ECONOMIST. Sharon T., 2016, PHILOS TECHNOLOGY, V30, P93, DOI {[}10.1007/s13347-016-0215-5, DOI 10.1007/S13347-016-0215-5]. Shi SY, 2020, COMPUT SECUR, V97, DOI 10.1016/j.cose.2020.101966. SIEGLER M, 1982, NEW ENGL J MED, V307, P1518, DOI 10.1056/NEJM198212093072411. Simonite T., 2018, WIRED MAGAZINE. Singletary B, 2017, JAMA SURG, V152, P1169, DOI 10.1001/jamasurg.2017.3851. Sousa-Duarte F, 2020, SOCIOL COMPASS, V14, DOI 10.1111/soc4.12828. Sunstein CR, 2015, YALE J REGUL, V32, P413. Thierer AD., 2015, SSRN ELECT J, DOI {[}10.2139/ssrn.2494382, DOI 10.2139/SSRN.2494382]. Thomas R., 2018, FASTAI. Topol E., 2019, TOPOL REV INDEPENDEN. Topol E., 2019, DEEP MED ARTIFICIAL, Vfirst. Topol EJ, 2019, SCI TRANSL MED, V11, DOI 10.1126/scitranslmed.aaw7610. Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7. Topol EJ, 2014, CELL, V157, P241, DOI 10.1016/j.cell.2014.02.012. UN, 2000, EC1220004 UN CESCR. van der Vaart Rosalie, 2017, J Med Internet Res, V19, pe27, DOI 10.2196/jmir.6709. Van Noorden R, 2020, NATURE, V587, P354, DOI 10.1038/d41586-020-03187-3. Vaughan A., 2019, NEW SCI. Vayena E, 2017, J BIOETHIC INQ, V14, P501, DOI 10.1007/s11673-017-9809-6. Veliz C., 2020, PRIVACY IS POWER WHY. Verghese A, 2018, NEW YORK TIMES MAGAZ. Volpp KG., 2017, NEJM CATALYST. Wensing M, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1322-9. Whear R, 2020, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010763.pub2. White Ryen W, 2009, AMIA Annu Symp Proc, V2009, P696. Wilbanks JT, 2016, NATURE, V535, P345, DOI 10.1038/535345a. Williams PAH, 2015, MED DEVICES-EVID RES, V8, P305, DOI 10.2147/MDER.S50048. Woolley JP, 2016, BMC MED ETHICS, V17, DOI 10.1186/s12910-016-0117-1. World Health Organisation, 2016, MON EV DIG HLTH INT. World Medical Association, 2018, WMA STAT ETH TEL. Yang Y, 2020, P NATL ACAD SCI USA, V117, P10762, DOI 10.1073/pnas.1909046117. ZANER RM, 1991, ETHICS, TRUST, AND THE PROFESSIONS, P45. Zou J, 2018, NATURE, V559, P324, DOI 10.1038/d41586-018-05707-8.}, Number-of-Cited-References = {158}, Times-Cited = {9}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {48}, Journal-ISO = {Front. Med.}, Doc-Delivery-Number = {TM2KT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000675381100001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000897358000001, Author = {Sethi, Yashendra and Patel, Neil and Kaka, Nirja and Desai, Ami and Kaiwan, Oroshay and Sheth, Mili and Sharma, Rupal and Huang, Helen and Chopra, Hitesh and Khandaker, Mayeen Uddin and Lashin, Maha M. A. and Hamd, Zuhal Y. Y. and Bin Emran, Talha}, Title = {Artificial Intelligence in Pediatric Cardiology: A Scoping Review}, Journal = {JOURNAL OF CLINICAL MEDICINE}, Year = {2022}, Volume = {11}, Number = {23}, Month = {DEC}, Abstract = {The evolution of AI and data science has aided in mechanizing several aspects of medical care requiring critical thinking: diagnosis, risk stratification, and management, thus mitigating the burden of physicians and reducing the likelihood of human error. AI modalities have expanded feet to the specialty of pediatric cardiology as well. We conducted a scoping review searching the Scopus, Embase, and PubMed databases covering the recent literature between 2002-2022. We found that the use of neural networks and machine learning has significantly improved the diagnostic value of cardiac magnetic resonance imaging, echocardiograms, computer tomography scans, and electrocardiographs, thus augmenting the clinicians' diagnostic accuracy of pediatric heart diseases. The use of AI-based prediction algorithms in pediatric cardiac surgeries improves postoperative outcomes and prognosis to a great extent. Risk stratification and the prediction of treatment outcomes are feasible using the key clinical findings of each CHD with appropriate computational algorithms. Notably, AI can revolutionize prenatal prediction as well as the diagnosis of CHD using the EMR (electronic medical records) data on maternal risk factors. The use of AI in the diagnostics, risk stratification, and management of CHD in the near future is a promising possibility with current advancements in machine learning and neural networks. However, the challenges posed by the dearth of appropriate algorithms and their nascent nature, limited physician training, fear of over-mechanization, and apprehension of missing the `human touch' limit the acceptability. Still, AI proposes to aid the clinician tomorrow with precision cardiology, paving a way for extremely efficient human-error-free health care.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Kaiwan, O (Corresponding Author), PearResearch, Dehra Dun 248001, India. Kaiwan, O (Corresponding Author), Northeast Ohio Med Univ, Dept Med, Rootstown, OH 44272 USA. Hamd, ZY (Corresponding Author), Princess Nourah bint Abdulrahman Univ, Coll Hlth \& Rehabil Sci, Dept Radiol Sci, PO 84428, Riyadh 11671, Saudi Arabia. Bin Emran, T (Corresponding Author), BGC Trust Univ Bangladesh, Dept Pharm, Chittagong 4381, Bangladesh. Bin Emran, T (Corresponding Author), Daffodil Int Univ, Fac Allied Hlth Sci, Dept Pharm, Dhaka 1207, Bangladesh. Sethi, Yashendra; Patel, Neil; Kaka, Nirja; Kaiwan, Oroshay, PearResearch, Dehra Dun 248001, India. Sethi, Yashendra, Govt Doon Med Coll, Dept Med, Dehra Dun 248001, India. Patel, Neil; Kaka, Nirja, GMERS Med Coll, Dept Med, Himmatnagar 383001, India. Desai, Ami, SMIMER Med Coll, Dept Med, Surat 395010, India. Kaiwan, Oroshay, Northeast Ohio Med Univ, Dept Med, Rootstown, OH 44272 USA. Sheth, Mili, GMERS Gandhinagar, Dept Med, Gandhinagar 382012, India. Sharma, Rupal, Govt Med Coll, Dept Med, Nagpur 440003, India. Huang, Helen, Royal Coll Surgeons Ireland, Fac Med \& Hlth Sci, Dublin D02Y N77, Ireland. Chopra, Hitesh, Chitkara Univ, Chitkara Coll Pharm, Rajpura 140401, India. Khandaker, Mayeen Uddin, Sunway Univ, Ctr Appl Phys \& Radiat Technol, Sch Engn \& Technol, Bandar Sunway 47500, Malaysia. Lashin, Maha M. A., Princess Nourah bint Abdulrahman Univ, Coll Engn, Dept Biomed Engn, PO 84428, Riyadh 11671, Saudi Arabia. Hamd, Zuhal Y. Y., Princess Nourah bint Abdulrahman Univ, Coll Hlth \& Rehabil Sci, Dept Radiol Sci, PO 84428, Riyadh 11671, Saudi Arabia. Bin Emran, Talha, BGC Trust Univ Bangladesh, Dept Pharm, Chittagong 4381, Bangladesh. Bin Emran, Talha, Daffodil Int Univ, Fac Allied Hlth Sci, Dept Pharm, Dhaka 1207, Bangladesh.}, DOI = {10.3390/jcm11237072}, Article-Number = {7072}, EISSN = {2077-0383}, Keywords = {artificial intelligence; pediatric cardiology; pediatric cardiac surgery; machine learning; congenital heart diseases}, Keywords-Plus = {HEART MURMURS; SOUND; ECHOCARDIOGRAPHY; CLASSIFICATION; NAVIGATION; CHILDREN; BURDEN}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {okaiwan@neomed.edu zyhamd@pnu.edu.sa talhabmb@bgctub.ac.bd}, Affiliations = {Northeast Ohio Medical University (NEOMED); Royal College of Surgeons - Ireland; Chitkara University, Punjab; Sunway University; Princess Nourah bint Abdulrahman University; Princess Nourah bint Abdulrahman University; Daffodil International University}, ResearcherID-Numbers = {Emran, Talha Bin/P-9184-2016 Huang, Helen/HTO-4807-2023 Hamd, Zuhal/HLH-6448-2023 Chopra, Hitesh/AAA-6925-2021 Khandaker, Mayeen Uddin/F-5376-2011 }, ORCID-Numbers = {Emran, Talha Bin/0000-0003-3188-2272 Chopra, Hitesh/0000-0001-8867-7603 Khandaker, Mayeen Uddin/0000-0003-3772-294X Hamd, Zuhal/0000-0003-2895-2284 Kaka, Nirja/0000-0003-4379-9265 Sheth, Mili/0000-0002-1946-5364 Sethi, Yashendra/0000-0003-0345-3876}, Funding-Acknowledgement = {Princess Nourah bint Abdulrahman University}, Funding-Text = {This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.}, Cited-References = {Ahmad MS, 2019, AUSTRALAS PHYS ENG S, V42, P733, DOI 10.1007/s13246-019-00778-x. Ali F, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-044070. Amisha, 2019, J FAM MED PRIM CARE, V8, P2328, DOI 10.4103/jfmpc.jfmpc\_440\_19. Andrisevic N, 2005, J BIOMECH ENG-T ASME, V127, P899, DOI 10.1115/1.2049327. Arafati A, 2019, CARDIOVASC DIAGN THE, V9, pS310, DOI 10.21037/cdt.2019.06.09. Arnaout R, 2018, Arxiv. Arnaout R, 2021, NAT MED, V27, P882, DOI 10.1038/s41591-021-01342-5. Aro AL, 2021, INT J CARDIOL, V344, P111, DOI 10.1016/j.ijcard.2021.09.048. Asmare MH, 2020, IEEE ENG MED BIO, P168, DOI 10.1109/EMBC44109.2020.9176544. Aufiero S, 2022, BMC MED, V20, DOI 10.1186/s12916-022-02350-z. Basu K, 2020, INDIAN J DERMATOL, V65, P365, DOI 10.4103/ijd.IJD\_421\_20. Bayers S, 2013, J AM ACAD DERMATOL, V69, DOI 10.1016/j.jaad.2013.06.040. Begic E, 2021, PSYCHIAT DANUB, V33, pS236. Benke K, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122796. Benovoy M, 2022, PEDIATR CARDIOL, V43, P807, DOI 10.1007/s00246-021-02790-z. Bertsimas D, 2021, WORLD J PEDIATR CONG, V12, P453, DOI 10.1177/21501351211007106. Blue GM, 2012, MED J AUSTRALIA, V197, P155, DOI 10.5694/mja12.10811. Bodenhofer U, 2021, EUR J CARDIO-THORAC, V60, P1378, DOI 10.1093/ejcts/ezab219. Bozkurt B, 2018, COMPUT BIOL MED, V100, P132, DOI 10.1016/j.compbiomed.2018.06.026. Chang AC, 2019, ANN PEDIAT CARDIOL, V12, P191, DOI 10.4103/apc.APC\_55\_19. Chang J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0238199. Chen C, 2020, FRONT CARDIOVASC MED, V7, DOI 10.3389/fcvm.2020.00025. Chou FS, 2021, PEDIATR RES, V90, P427, DOI 10.1038/s41390-020-01268-7. Davies R, 2020, HEART, V106, P960, DOI 10.1136/heartjnl-2019-316496. Decourt C, 2020, COMPUT BIOL MED, V123, DOI 10.1016/j.compbiomed.2020.103884. DeGroff CG, 2001, CIRCULATION, V103, P2711. Dias RD, 2020, MINERVA CARDIOANGIOL, V68, P532, DOI 10.23736/S0026-4725.20.05235-4. Diller GP, 2020, HEART, V106, P1007, DOI 10.1136/heartjnl-2019-315962. Diller GP, 2019, INT J CARDIOVAS IMAG, V35, P2189, DOI 10.1007/s10554-019-01671-0. Diller GP, 2019, EUR HEART J, V40, P1069, DOI 10.1093/eurheartj/ehy915. Diller GP, 2019, EUR HEART J-CARD IMG, V20, P925, DOI 10.1093/ehjci/jey211. Ding YC, 2021, IEEE T BIO-MED ENG, V68, P225, DOI 10.1109/TBME.2020.2991754. Dozen A, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10111526. El-Segaier M, 2005, ANN BIOMED ENG, V33, P937, DOI 10.1007/s10439-005-4053-3. Ernst S, 2012, CIRC-ARRHYTHMIA ELEC, V5, P131, DOI 10.1161/CIRCEP.111.962993. Ferguson EC, 2007, RADIOGRAPHICS, V27, DOI 10.1148/rg.275065148. Gaffar S, 2020, PEDIATR CLIN N AM, V67, P995, DOI 10.1016/j.pcl.2020.06.010. Gampala S, 2020, CUREUS, V12, DOI 10.7759/cureus.11137. Gandhi S, 2018, ECHOCARDIOGR-J CARD, V35, P1402, DOI 10.1111/echo.14086. Garcia-Canadilla P, 2022, FRONT PEDIATR, V10, DOI 10.3389/fped.2022.930913. Garcia-Canadilla P, 2020, FETAL DIAGN THER, V47, P363, DOI 10.1159/000505021. Gerke S., 2020, ARTIF INTELL, P295. Ghosh P, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-30357-w. Gilboa SM, 2016, CIRCULATION, V134, P101, DOI 10.1161/CIRCULATIONAHA.115.019307. Hauptmann A, 2019, MAGN RESON MED, V81, P1143, DOI 10.1002/mrm.27480. Helman SM, 2021, CARDIOL YOUNG, V31, P1770, DOI 10.1017/S1047951121004212. Higashi H, 2015, ARCH DIS CHILD, V100, P233, DOI 10.1136/archdischild-2014-306175. Hong SD, 2020, COMPUT BIOL MED, V122, DOI 10.1016/j.compbiomed.2020.103801. Huang L, 2020, EUR RADIOL, V30, P1369, DOI 10.1007/s00330-019-06502-3. Johnson KW, 2018, J AM COLL CARDIOL, V71, P2668, DOI 10.1016/j.jacc.2018.03.521. Kang S, 2017, IEEE T BIO-MED ENG, V64, P1326, DOI 10.1109/TBME.2016.2603787. Karimi-Bidhendi S, 2020, J CARDIOVASC MAGN R, V22, DOI 10.1186/s12968-020-00678-0. Khurshid S, 2021, CIRC-CARDIOVASC IMAG, V14, P485, DOI 10.1161/CIRCIMAGING.120.012281. Ko WY, 2020, J AM COLL CARDIOL, V75, P722, DOI 10.1016/j.jacc.2019.12.030. Kokol P., 2017, PEDIAT DIMENS, V2, P1, DOI {[}10.15761/PD.1000155, DOI 10.15761/PD.1000155]. Lakhe Aparna, 2016, Journal of Medical Engineering \& Technology, V40, P20, DOI 10.3109/03091902.2015.1116633. Lemaire LB, 1999, CAN MED ASSOC J, V161, P725. Leng S, 2015, BIOMED ENG ONLINE, V14, DOI 10.1186/s12938-015-0056-y. Li HX, 2017, MEDICINE, V96, DOI 10.1097/MD.0000000000006090. Liu J, 2022, INT J CARDIOL, V348, P58, DOI 10.1016/j.ijcard.2021.12.012. Liu YJ, 2019, INT J EPIDEMIOL, V48, P455, DOI 10.1093/ije/dyz009. Lo Muzio FP, 2021, J CLIN MED, V10, DOI 10.3390/jcm10225330. Lv Jingjing, 2021, Eur Heart J Digit Health, V2, P119, DOI 10.1093/ehjdh/ztaa017. Lytzen R, 2018, JAMA CARDIOL, V3, P829, DOI 10.1001/jamacardio.2018.2009. Ma MM, 2020, INT J CARDIOVAS IMAG, V36, P2165, DOI 10.1007/s10554-020-01932-3. Ma XJ, 2018, WORLD J PEDIATR, V14, P313, DOI 10.1007/s12519-018-0174-2. Mahayni AA, 2021, MAYO CLIN PROC, V96, P3062, DOI 10.1016/j.mayocp.2021.06.024. Martins JFBS, 2021, J AM MED INFORM ASSN, V28, P1834, DOI 10.1093/jamia/ocab061. Mathur P, 2020, CLIN MED INSIGHTS-CA, V14, DOI 10.1177/1179546820927404. McCall B, 2020, LANCET DIGIT HEALTH, V2, pE166, DOI 10.1016/S2589-7500(20)30054-6. Mcleod G, 2018, PROG CARDIOVASC DIS, V61, P468, DOI 10.1016/j.pcad.2018.11.004. Mollura DJ, 2020, RADIOLOGY, V297, P513, DOI 10.1148/radiol.2020201434. Montalt-Tordera J, 2021, J MAGN RESON IMAGING, V54, P795, DOI 10.1002/jmri.27573. Mori H, 2021, PEDIATR CARDIOL, V42, P1379, DOI 10.1007/s00246-021-02622-0. Morris SA, 2021, NAT MED, V27, P764, DOI 10.1038/s41591-021-01354-1. Na JY, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-01640-5. Narula S, 2016, J AM COLL CARDIOL, V68, P2287, DOI 10.1016/j.jacc.2016.08.062. Nascimento BR, 2021, HEART, V107, P1772, DOI 10.1136/heartjnl-2021-319945. Newburger JW, 2016, J AM COLL CARDIOL, V67, P1738, DOI 10.1016/j.jacc.2015.12.073. Nishimori M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-87631-y. Noonan JA, 2004, PEDIATR RES, V56, P298, DOI 10.1203/01.PDR.0000132662.73362.96. Nurmaini S, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21238007. Papoutsidakis N, 2018, CIRC-CARDIOVASC QUAL, V11, DOI 10.1161/CIRCOUTCOMES.118.004835. Pyles L, 2017, PEDIATR CARDIOL, V38, P656, DOI 10.1007/s00246-016-1563-8. Ren ZP, 2018, SCI TOTAL ENVIRON, V630, P1, DOI 10.1016/j.scitotenv.2018.02.181. Roth GA, 2020, J AM COLL CARDIOL, V76, P2982, DOI 10.1016/j.jacc.2020.11.010. Ruiz-Fernandez D, 2016, COMPUT METH PROG BIO, V126, P118, DOI 10.1016/j.cmpb.2015.12.021. Samad MD, 2018, EUR HEART J-CARD IMG, V19, P730, DOI 10.1093/ehjci/jey003. Santosh KC, 2020, J MED SYST, V44, DOI 10.1007/s10916-020-01562-1. Sepehri AA, 2008, COMPUT METH PROG BIO, V92, P186, DOI 10.1016/j.cmpb.2008.06.015. Sepehri AA, 2010, COMPUT METH PROG BIO, V99, P43, DOI 10.1016/j.cmpb.2009.10.006. Shi H, 2022, CLIN NUTR, V41, P202, DOI 10.1016/j.clnu.2021.11.006. Siontis CK, 2021, INT J CARDIOL, V340, P42, DOI 10.1016/j.ijcard.2021.08.026. Sreedhar C M, 2005, Med J Armed Forces India, V61, P57, DOI 10.1016/S0377-1237(05)80122-4. Sweatt AJ, 2019, CIRC RES, V124, P904, DOI 10.1161/CIRCRESAHA.118.313911. Tan Zhaowen, 2019, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, V36, P728, DOI 10.7507/1001-5515.201806031. Tandon A, 2021, PEDIATR CARDIOL, V42, P578, DOI 10.1007/s00246-020-02518-5. Thompson WR, 2019, PEDIATR CARDIOL, V40, P623, DOI 10.1007/s00246-018-2036-z. van den Eynde J, 2021, FRONT CARDIOVASC MED, V8, DOI 10.3389/fcvm.2021.798215. Van den Eynde J, 2022, CURR OPIN CARDIOL, V37, P130, DOI 10.1097/HCO.0000000000000927. van der Bom T, 2011, NAT REV CARDIOL, V8, P50, DOI 10.1038/nrcardio.2010.166. van der Linde D, 2011, J AM COLL CARDIOL, V58, P2241, DOI 10.1016/j.jacc.2011.08.025. Wang T, 2021, BIOMED RES INT-UK, V2021, DOI 10.1155/2021/6618918. Wang TY, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0237321. Wilhelm D, 2020, CHIRURG, V91, P181, DOI 10.1007/s00104-019-01090-w. Xu WZ, 2022, ARTIF INTELL MED, V126, DOI 10.1016/j.artmed.2022.102257. Xu XW, 2021, COMMUN ACM, V64, P66, DOI 10.1145/3450409. Yao SH, 2019, BMC PEDIATR, V19, DOI 10.1186/s12887-019-1895-7. Yeo L, 2013, ULTRASOUND OBST GYN, V42, P268, DOI 10.1002/uog.12563. Zeng X, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-96721-w. Zhang GM, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.613330. Zuercher M, 2022, J CARDIOTHOR VASC AN, V36, P3610, DOI 10.1053/j.jvca.2022.05.004.}, Number-of-Cited-References = {112}, Times-Cited = {1}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {2}, Journal-ISO = {J. Clin. Med.}, Doc-Delivery-Number = {6Y8SL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000897358000001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000548338000001, Author = {Ghahramani, Ali and Galicia, Parson and Lehrer, David and Varghese, Zubin and Wang, Zhe and Pandit, Yogesh}, Title = {Artificial Intelligence for Efficient Thermal Comfort Systems: Requirements, Current Applications and Future Directions}, Journal = {FRONTIERS IN BUILT ENVIRONMENT}, Year = {2020}, Volume = {6}, Month = {APR 28}, Abstract = {In buildings, one or a combination of systems (e.g., central HVAC system, ceiling fan, desk fan, personal heater, and foot warmer) are often responsible for providing thermal comfort to the occupants. While thermal comfort has been shown to differ from person to person and vary over time, these systems are often operated based on prefixed setpoints and schedule of operations or at the request/routine of each individual. This leads to occupants' discomfort and energy wastes. To enable the improvements in both comfort and energy efficiency autonomously, in this paper, we describe the necessity of an integrated system of sensors (e.g., wearable sensors/infrared sensors), infrastructure for enabling system interoperability, learning and control algorithms, and actuators (e.g., HVAC system setpoints, ceiling fans) to work under a governing central intelligent system. To assist readers with little to no exposure to artificial intelligence (AI), we describe the fundamentals of an intelligent entity (rational agent) and components of its problem-solving process (i.e., search algorithms, logic inference, and machine learning) and provide examples from the literature. We then discuss the current application of intelligent personal thermal comfort systems in buildings based on a comprehensive review of the literature. We finally describe future directions for enabling application of fully automated systems to provide comfort in an efficient manner. It is apparent that improvements in all aspects of an intelligent system are be needed to better ascertain the correct combination of systems to activate and for how long to increase the overall efficiency of the system and improve comfort.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Ghahramani, A (Corresponding Author), Natl Univ Singapore, Dept Bldg, Singapore, Singapore. Ghahramani, A (Corresponding Author), Univ Calif Berkeley, Ctr Built Environm, Berkeley, CA 94720 USA. Ghahramani, Ali, Natl Univ Singapore, Dept Bldg, Singapore, Singapore. Ghahramani, Ali; Galicia, Parson; Lehrer, David, Univ Calif Berkeley, Ctr Built Environm, Berkeley, CA 94720 USA. Varghese, Zubin; Pandit, Yogesh, Ingersoll Rand Engn \& Technol Ctr, Bengaluru, India. Wang, Zhe, Lawrence Berkeley Natl Lab, Bldg Technol \& Urban Syst Div, Berkeley, CA USA.}, DOI = {10.3389/fbuil.2020.00049}, EISSN = {2297-3362}, Keywords = {machine learning; personal thermal comfort; data mining; human building interactions; buildings energy efficiency; intelligent personal comfort systems}, Keywords-Plus = {ENERGY-USE BEHAVIORS; OFFICE ENVIRONMENT; HVAC OPERATIONS; TEMPERATURE; MANAGEMENT; BUILDINGS; ADAPTATION; OCCUPANTS; BODY; SKIN}, Research-Areas = {Construction \& Building Technology; Engineering}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil}, Author-Email = {ghahramani@nus.edu.sg}, Affiliations = {National University of Singapore; University of California System; University of California Berkeley; United States Department of Energy (DOE); Lawrence Berkeley National Laboratory}, ORCID-Numbers = {Ghahramani, Ali/0000-0003-2043-7261 Wang, Zhe/0000-0002-2231-1606}, Funding-Acknowledgement = {Ingersoll rand Inc.}, Funding-Text = {This material is based upon work supported by the Ingersoll rand Inc. There was no specific award number for this industry/academic effort.}, Cited-References = {Al horr Yousef, 2016, International Journal of Sustainable Built Environment, V5, P1, DOI 10.1016/j.ijsbe.2016.03.006. {[}Anonymous], 2010, 622001 ASHRAE. Bedford T, 1939, J HYG-CAMBRIDGE, V39, P498, DOI 10.1017/S0022172400012146. Brager GS, 1998, ENERG BUILDINGS, V27, P83, DOI 10.1016/S0378-7788(97)00053-4. Brizzi P., 2016, P 2016 INT MULT C CO. Charatsis K., 2005, FLEXIBIL REUSABIL, V4, P1441. Chen YJ, 2018, ENERG BUILDINGS, V169, P195, DOI 10.1016/j.enbuild.2018.03.051. Corry E, 2015, AUTOMAT CONSTR, V57, P249, DOI 10.1016/j.autcon.2015.05.002. Cosma AC, 2019, BUILD ENVIRON, V160, DOI 10.1016/j.buildenv.2019.106163. Dalamagkidis K, 2007, BUILD ENVIRON, V42, P2686, DOI 10.1016/j.buildenv.2006.07.010. de Dear RJ, 2013, INDOOR AIR, V23, P442, DOI 10.1111/ina.12046. De Dear RJ., 1998, ASHRAE T, V104, P1, DOI 10.1007/s10669-007-9018-7. Doukas H, 2007, BUILD ENVIRON, V42, P3562, DOI 10.1016/j.buildenv.2006.10.024. Dounis AI, 2009, RENEW SUST ENERG REV, V13, P1246, DOI 10.1016/j.rser.2008.09.015. Dounis AI, 2010, ADV BUILD ENERGY RES, V4, P267, DOI 10.3763/aber.2009.0408. Frontczak M, 2011, BUILD ENVIRON, V46, P922, DOI 10.1016/j.buildenv.2010.10.021. Ghahramani A, 2019, IEEE SENS J, V19, P8136, DOI 10.1109/JSEN.2019.2920648. Ghahramani A, 2019, J BUILD ENG, V22, P295, DOI 10.1016/j.jobe.2018.11.015. Ghahramani A, 2018, J BUILD ENG, V19, P584, DOI 10.1016/j.jobe.2018.06.012. Ghahramani A, 2018, APPL ENERG, V211, P41, DOI 10.1016/j.apenergy.2017.11.021. Ghahramani A, 2017, ENERG BUILDINGS, V152, P149, DOI 10.1016/j.enbuild.2017.07.053. Ghahramani A, 2016, BUILD ENVIRON, V109, P1, DOI 10.1016/j.buildenv.2016.09.005. Ghahramani A, 2015, SUSTAINABLE HUMAN-BUILDING ECOSYSTEMS, P99. Ghahramani A, 2016, APPL ENERG, V165, P930, DOI 10.1016/j.apenergy.2015.12.115. Ghahramani A, 2015, WINT SIMUL C PROC, P1000, DOI 10.1109/WSC.2015.7408228. Ghahramani A, 2015, BUILD ENVIRON, V92, P86, DOI 10.1016/j.buildenv.2015.04.017. Ghahramani A, 2014, ENERG BUILDINGS, V85, P536, DOI 10.1016/j.enbuild.2014.09.055. Han J, 2011, INT PROC COMPUT SCI, V5, P295. Huizenga C, 2004, J THERM BIOL, V29, P549, DOI 10.1016/j.jtherbio.2004.08.024. Ismail KAR, 2001, APPL THERM ENG, V21, P1909, DOI 10.1016/S1359-4311(01)00058-8. Jazizadeh F, 2016, BUILDSYS'16: PROCEEDINGS OF THE 3RD ACM CONFERENCE ON SYSTEMS FOR ENERGY-EFFCIENT BUILT ENVIRONMENTS, P95, DOI 10.1145/2993422.2993571. Jazizadeh F, 2014, ENERG BUILDINGS, V70, P398, DOI 10.1016/j.enbuild.2013.11.066. Jazizadeh F, 2014, J COMPUT CIVIL ENG, V28, P2, DOI 10.1061/(ASCE)CP.1943-5487.0000300. Jendritzky Gerd, 2009, V1, P9, DOI 10.1007/978-1-4020-8921-3\_2. Jung W, 2019, APPL ENERG, V239, P1471, DOI 10.1016/j.apenergy.2019.01.070. Karjalainen S, 2012, INDOOR AIR, V22, P96, DOI 10.1111/j.1600-0668.2011.00747.x. Kates L., 2008, MOTORIZED WINDOW SHA. Kim J, 2018, BUILD ENVIRON, V129, P96, DOI 10.1016/j.buildenv.2017.12.011. Klepeis NE, 2001, J EXPO ANAL ENV EPID, V11, P231, DOI 10.1038/sj.jea.7500165. Kolokotsa D, 2011, SOL ENERGY, V85, P3067, DOI 10.1016/j.solener.2010.09.001. Kolokotsa D, 2002, ENG APPL ARTIF INTEL, V15, P417, DOI 10.1016/S0952-1976(02)00090-8. Korf R. E, 2010, ARTIFICIAL INTELLIGE. Lan L, 2010, APPL ERGON, V42, P29, DOI 10.1016/j.apergo.2010.04.003. Lee S, 2017, BUILD ENVIRON, V118, P323, DOI 10.1016/j.buildenv.2017.03.009. Li D, 2019, APPL ENERG, V251, DOI 10.1016/j.apenergy.2019.113336. Li D, 2017, COMPUTING IN CIVIL ENGINEERING 2017: SENSING, SIMULATION, AND VISUALIZATION, P82. Liu H, 2014, BUILD ENVIRON, V73, P232, DOI 10.1016/j.buildenv.2013.12.007. Luo MH, 2020, BUILD ENVIRON, V167, DOI 10.1016/j.buildenv.2019.106435. Luo MH, 2018, BUILD ENVIRON, V143, P206, DOI 10.1016/j.buildenv.2018.07.008. Marche C., 2017, P 2017 GLOB INT THIN. Masoso OT, 2010, ENERG BUILDINGS, V42, P173, DOI 10.1016/j.enbuild.2009.08.009. Miller C, 2018, RENEW SUST ENERG REV, V81, P1365, DOI 10.1016/j.rser.2017.05.124. Mishra AK, 2013, BUILD ENVIRON, V64, P94, DOI 10.1016/j.buildenv.2013.02.015. Murakami Y, 2007, BUILD ENVIRON, V42, P4022, DOI 10.1016/j.buildenv.2006.05.012. Newell A., 1972, HUMAN PROBLEM SOLVIN, V104. Ning HR, 2016, APPL ENERG, V183, P22, DOI 10.1016/j.apenergy.2016.08.157. Pasupathy A, 2008, RENEW SUST ENERG REV, V12, P39, DOI 10.1016/j.rser.2006.05.010. Pasut W, 2015, BUILD ENVIRON, V84, P10, DOI 10.1016/j.buildenv.2014.10.026. Pasut W, 2013, HVAC\&R RES, V19, P574, DOI 10.1080/10789669.2013.781371. Perez-Lombard L, 2008, ENERG BUILDINGS, V40, P394, DOI 10.1016/j.enbuild.2007.03.007. Pienta W. T, 2014, U.S. Patent, Patent No. {[}8,870,087, 8870087]. PROVINS KA, 1966, AUST J PSYCHOL, V18, P118, DOI 10.1080/00049536608255722. Quinlan J. R., 1996, P 13 NAT C ART INT N. Rafsanjani HN, 2020, J BUILD ENG, V27, DOI 10.1016/j.jobe.2019.100948. Rafsanjani HN, 2019, J BUILD ENG, V26, DOI 10.1016/j.jobe.2019.100864. Rafsanjani HN, 2016, PROCEDIA ENGINEER, V145, P532, DOI 10.1016/j.proeng.2016.04.041. Rafsanjani HN, 2015, ENERGIES, V8, P10996, DOI 10.3390/en81010996. Ranjan Juhi, 2016, P 2016 ACM INT JOINT. Rantanen J., 2000, P 4 INT S WEAR COMP. Ray PP., 2016, ENERGY BUILD, V1, P1. Roth K. W., 2002, ENERGY CONSUMPTION C, Vlii. Russell S., 1995, MODERN APPROACH. Schellen L, 2010, INDOOR AIR, V20, P273, DOI 10.1111/j.1600-0668.2010.00657.x. Song WF, 2016, SCI REP-UK, V6, DOI 10.1038/srep19326. Soori PK, 2013, ENERG BUILDINGS, V66, P329, DOI 10.1016/j.enbuild.2013.07.039. Sutton R. S., 1998, INTRO REINFORCEMENT, V2, DOI DOI 10.1109/TNN.1998.712192. Takada S, 2013, BUILD ENVIRON, V68, P123, DOI 10.1016/j.buildenv.2013.06.004. Tsuzuki K., 2013, ENSEMBLE, V15, P250. Ugursal A, 2013, APPL ENERG, V111, P64, DOI 10.1016/j.apenergy.2013.04.014. Vakiloroaya V, 2014, ENERG CONVERS MANAGE, V77, P738, DOI 10.1016/j.enconman.2013.10.023. Wang JY, 2018, ENERG BUILDINGS, V181, P38, DOI 10.1016/j.enbuild.2018.09.041. Wang Z, 2018, BUILD ENVIRON, V138, P181, DOI 10.1016/j.buildenv.2018.04.040. Weng T, 2012, IEEE DES TEST COMPUT, V29, P36, DOI 10.1109/MDT.2012.2211855. WYON DP, 1979, SCAND J WORK ENV HEA, V5, P352, DOI 10.5271/sjweh.2646. Xiao F, 2014, ENERG BUILDINGS, V75, P109, DOI 10.1016/j.enbuild.2014.02.005. Yang IH, 2003, ENERG CONVERS MANAGE, V44, P2791, DOI 10.1016/S0196-8904(03)00044-X. Yang LF, 2009, 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 2, P261, DOI 10.1109/ICICISYS.2009.5357958. Yang R, 2013, ENERG BUILDINGS, V56, P1, DOI 10.1016/j.enbuild.2012.10.025. Zagreus L, 2004, INDOOR AIR, V14, P65, DOI 10.1111/j.1600-0668.2004.00301.x. Zhang H, 2015, ENERG BUILDINGS, V104, P233, DOI 10.1016/j.enbuild.2015.06.086. Zhang H, 2015, BUILD ENVIRON, V91, P15, DOI 10.1016/j.buildenv.2015.03.013. Zhang Wei, 2018, IEEE INTERNET THINGS, V6, P2540. Zhao QC, 2014, BUILD ENVIRON, V72, P309, DOI 10.1016/j.buildenv.2013.11.008.}, Number-of-Cited-References = {93}, Times-Cited = {19}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {33}, Journal-ISO = {Front. Built Environ.}, Doc-Delivery-Number = {MJ8KX}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000548338000001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000811565100001, Author = {Grzybowski, Bartosz A. and Badowski, Tomasz and Molga, Karol and Szymkuc, Sara}, Title = {Network search algorithms and scoring functions for advanced-level computerized synthesis planning}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2023}, Volume = {13}, Number = {1}, Month = {JAN}, Abstract = {In 2020, a ``hybrid{''} expert-AI computer program called Chematica (a.k.a. Synthia) was shown to autonomously plan multistep syntheses of complex natural products, which remain outside the reach of purely data-driven AI programs. The ability to plan at this level of chemical sophistication has been attributed mainly to the superior quality of Chematica's reactions rules. However, rules alone are not sufficient for advanced synthetic planning which also requires appropriately crafted algorithms with which to intelligently navigate the enormous networks of synthetic possibilities, score the synthetic positions encountered, and rank the pathways identified. Chematica's algorithms are distinct from pret-a-porter algorithmic solutions and are product of multiple rounds of improvements, against target structures of increasing complexity. Since descriptions of these improvements have been scattered among several of our prior publications, the aim of the current Review is to narrate the development process in a more comprehensive manner. This article is categorized under: Data Science > Computer Algorithms and Programming Data Science > Artificial Intelligence/Machine Learning Quantum Computing > Algorithms}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Grzybowski, BA (Corresponding Author), Ulsan Natl Inst Sci \& Technol UNIST, Dept Chem, 50 UNIST Gil, Ulsan 44919, South Korea. Grzybowski, Bartosz A.; Badowski, Tomasz; Molga, Karol; Szymkuc, Sara, Polish Acad Sci, Inst Organ Chem, Warsaw, Poland. Grzybowski, Bartosz A., Inst Basic Sci IBS, Ctr Soft \& Living Matter, Ulsan, South Korea. Grzybowski, Bartosz A., Ulsan Natl Inst Sci \& Technol UNIST, Dept Chem, 50 UNIST Gil, Ulsan 44919, South Korea.}, DOI = {10.1002/wcms.1630}, EarlyAccessDate = {JUN 2022}, Article-Number = {e1630}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {artificial intelligence; Chematica; expert systems; networks; synthesis}, Keywords-Plus = {MACHINE; DESIGN; DISCOVERY; PATHWAYS}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {nanogrzybowski@gmail.com}, Affiliations = {Polish Academy of Sciences; Institute of Organic Chemistry of the Polish Academy of Sciences; Institute for Basic Science - Korea (IBS); Ulsan National Institute of Science \& Technology (UNIST)}, Funding-Acknowledgement = {US DARPA under the Make-It Award {[}69461-CH-DRP \#W911NF1610384]; Institute for Basic Science Korea {[}IBSR020-D1]}, Funding-Text = {Development of Chematica was partly supported by US DARPA under the Make-It Award, 69461-CH-DRP \#W911NF1610384. B.A.G. acknowledges personal support from the Institute for Basic Science Korea, project code IBSR020-D1.}, Cited-References = {{[}Anonymous], LOGIC CHEM SYNTHESIS. {[}Anonymous], 2021, CAS SCIFINDERN. {[}Anonymous], 2021, REAXYS SYNTHESIS PLA. ASKCOS, 2021, SOFTW TOOLS ORG SYNT. Badowski T, 2020, ANGEW CHEM INT EDIT, V59, P725, DOI 10.1002/anie.201912083. Badowski T, 2019, CHEM SCI, V10, P4640, DOI 10.1039/c8sc05611k. Barto A., 1991, REAL TIME LEARNING C, P1991. Beker W, 2019, ANGEW CHEM INT EDIT, V58, P4515, DOI 10.1002/anie.201806920. Bergstein B., 2020, MIT TECHNOL REV. Bishop KJM, 2006, ANGEW CHEM INT EDIT, V45, P5348, DOI 10.1002/anie.200600881. Blank N, 2011, J ORG CHEM, V76, P9777, DOI 10.1021/jo201871c. Coley CW, 2019, SCIENCE, V365, P557, DOI 10.1126/science.aax1566. Coley CW, 2018, ACCOUNTS CHEM RES, V51, P1281, DOI 10.1021/acs.accounts.8b00087. COREY EJ, 1972, J AM CHEM SOC, V94, P421, DOI 10.1021/ja00757a020. COREY EJ, 1985, SCIENCE, V228, P408, DOI 10.1126/science.3838594. COREY EJ, 1969, SCIENCE, V166, P178, DOI 10.1126/science.166.3902.178. Cormen T.H., 2009, INTRO ALGORITHMS, P655. Dijkstra E., 1959, NUMER MATH, V1, P269, DOI 10.1007/BF01386390. Emami FS, 2015, ANGEW CHEM INT EDIT, V54, P10797, DOI 10.1002/anie.201503890. Fialkowski M, 2005, ANGEW CHEM INT EDIT, V44, P7263, DOI 10.1002/anie.200502272. Fuller PE, 2012, ANGEW CHEM INT EDIT, V51, P7933, DOI 10.1002/anie.201202210. Fuller PH, 2007, ORG LETT, V9, P5477, DOI 10.1021/ol702401w. Gajewska EP, 2020, CHEM-US, V6, P280, DOI 10.1016/j.chempr.2019.11.016. GELERNTER HL, 1977, SCIENCE, V197, P1041, DOI 10.1126/science.197.4308.1041. Genheden S., 2022, CHEMRXIV, DOI {[}10.26434/chemrxiv-2022-wk8c3, DOI 10.26434/CHEMRXIV-2022-WK8C3]. Genheden S, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00472-1. Gothard CM, 2012, ANGEW CHEM INT EDIT, V51, P7922, DOI 10.1002/anie.201202155. Grzybowski BA, 2009, NAT CHEM, V1, P31, DOI {[}10.1038/NCHEM.136, 10.1038/nchem.136]. HANESSIAN S, 1990, PURE APPL CHEM, V62, P1887, DOI 10.1351/pac199062101887. Hardy MA, 2022, TETRAHEDRON, V104, DOI 10.1016/j.tet.2021.132584. HART PE, 1968, IEEE T SYST SCI CYB, VSSC4, P100, DOI 10.1109/TSSC.1968.300136. HENDRICKSON JB, 1977, J AM CHEM SOC, V99, P5439, DOI 10.1021/ja00458a035. Job A, 2002, TETRAHEDRON, V58, P2253, DOI 10.1016/S0040-4020(02)00080-7. Judson P, 2009, THEORETICAL COMPUTAT, DOI DOI 10.1039/9781847559807. Klucznik T, 2018, CHEM-US, V4, P522, DOI 10.1016/j.chempr.2018.02.002. Kocsis L, 2006, LECT NOTES COMPUT SC, V4212, P282, DOI 10.1007/11871842\_29. Kowalczyk B, 2009, J PHYS ORG CHEM, V22, P897, DOI 10.1002/poc.1535. Kowalik M, 2012, ANGEW CHEM INT EDIT, V51, P7928, DOI 10.1002/anie.201202209. Lee AA, 2019, CHEM COMMUN, V55, P12152, DOI 10.1039/c9cc05122h. Lelais G, 2004, HELV CHIM ACTA, V87, P1545, DOI 10.1002/hlca.200490142. Lin YF, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-27547-3. Matsubara S, 2021, CHEM LETT, V50, P475, DOI 10.1246/cl.200802. Mikulak-Klucznik B, 2020, NATURE, V588, P83, DOI 10.1038/s41586-020-2855-y. Molga K, 2021, ACCOUNTS CHEM RES, V54, P1094, DOI 10.1021/acs.accounts.0c00714. Molga K, 2019, CHEM SCI, V10, P9219, DOI 10.1039/c9sc02678a. Molga K, 2019, REACT CHEM ENG, V4, P1506, DOI 10.1039/c9re00076c. Molga K, 2019, CHEM-US, V5, P460, DOI 10.1016/j.chempr.2018.12.004. Moskal M, 2021, ANGEW CHEM INT EDIT, V60, P15230, DOI 10.1002/anie.202101986. Piers E, 2001, ORG LETT, V3, P3245, DOI 10.1021/ol016288u. Sammut C., 2017, ENCY MACHINE LEARNIN, DOI DOI 10.1007/978-1-4899-7687-1\_68. Schwaller P, 2021, MACH LEARN-SCI TECHN, V2, DOI 10.1088/2632-2153/abc81d. Schwaller P, 2020, CHEM SCI, V11, P3316, DOI 10.1039/c9sc05704h. Segler MHS, 2018, NATURE, V555, P604, DOI 10.1038/nature25978. Serratosa F, 1996, ORGANIC CHEM ACTION. Shen YN, 2021, NAT REV METHOD PRIME, V1, DOI 10.1038/s43586-021-00022-5. Skoraczynski G, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02303-0. Soh S, 2012, CHEM SCI, V3, P1497, DOI 10.1039/c2sc00011c. Szymkuc S, 2021, ANGEW CHEM INT EDIT, V60, P26226, DOI 10.1002/anie.202111540. Szymkuc S, 2016, ANGEW CHEM INT EDIT, V55, P5904, DOI 10.1002/anie.201506101. Tanaka A, 2006, TETRAHEDRON LETT, V47, P6733, DOI 10.1016/j.tetlet.2006.07.100. UGI I, 1993, ANGEW CHEM INT EDIT, V32, P201, DOI 10.1002/anie.199302011. van Rozendaal ELM., 1994, SOME APPROACHES SYNT. VANROZENDAAL ELM, 1994, RECL TRAV CHIM PAY B, V113, P297. Williams CM, 2021, AUST J CHEM, V74, P291, DOI 10.1071/CH20371. WIPKE WT, 1978, ARTIF INTELL, V11, P173, DOI 10.1016/0004-3702(78)90016-4. Yi K., 2019, ARXIV191001442. Young IS, 2009, NAT CHEM, V1, P193, DOI {[}10.1038/nchem.216, 10.1038/NCHEM.216].}, Number-of-Cited-References = {67}, Times-Cited = {2}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {15}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {8A9TB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000811565100001}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000544821500001, Author = {Wei, Jingwei and Jiang, Hanyu and Gu, Dongsheng and Niu, Meng and Fu, Fangfang and Han, Yuqi and Song, Bin and Tian, Jie}, Title = {Radiomics in liver diseases: Current progress and future opportunities}, Journal = {LIVER INTERNATIONAL}, Year = {2020}, Volume = {40}, Number = {9}, Pages = {2050-2063}, Month = {SEP}, Abstract = {Liver diseases, a wide spectrum of pathologies from inflammation to neoplasm, have become an increasingly significant health problem worldwide. Noninvasive imaging plays a critical role in the clinical workflow of liver diseases, but conventional imaging assessment may provide limited information. Accurate detection, characterization and monitoring remain challenging. With progress in quantitative imaging analysis techniques, radiomics emerged as an efficient tool that shows promise to aid in personalized diagnosis and treatment decision-making. Radiomics could reflect the heterogeneity of liver lesions via extracting high-throughput and high-dimensional features from multi-modality imaging. Machine learning algorithms are then used to construct clinical target-oriented imaging biomarkers to assist disease management. Here, we review the methodological process in liver disease radiomics studies in a stepwise fashion from data acquisition and curation, region of interest segmentation, liver-specific feature extraction, to task-oriented modelling. Furthermore, the applications of radiomics in liver diseases are outlined in aspects of diagnosis and staging, evaluation of liver tumour biological behaviours, and prognosis according to different disease type. Finally, we discuss the current limitations of radiomics in liver disease studies and explore its future opportunities.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Tian, J (Corresponding Author), Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China. Wei, Jingwei; Gu, Dongsheng; Han, Yuqi; Tian, Jie, Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China. Wei, Jingwei; Gu, Dongsheng; Han, Yuqi; Tian, Jie, Beijing Key Lab Mol Imaging, Beijing, Peoples R China. Jiang, Hanyu; Song, Bin, Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China. Niu, Meng, China Med Univ, Affiliated Hosp 1, Dept Intervent Radiol, Shenyang, Peoples R China. Fu, Fangfang, Henan Prov Peoples Hosp, Dept Med Imaging, Zhengzhou, Henan, Peoples R China. Fu, Fangfang, Zhengzhou Univ, Peoples Hosp, Dept Med Imaging, Zhengzhou, Henan, Peoples R China. Tian, Jie, Beihang Univ, Sch Med, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China. Tian, Jie, Xidian Univ, Sch Life Sci \& Technol, Minist Educ, Engn Res Ctr Mol \& Neuro Imaging, Xian, Shaanxi, Peoples R China.}, DOI = {10.1111/liv.14555}, EarlyAccessDate = {JUL 2020}, ISSN = {1478-3223}, EISSN = {1478-3231}, Keywords = {data science; liver diseases; machine learning; precision medicine; radiologic technology}, Keywords-Plus = {HEPATOCELLULAR-CARCINOMA; PREOPERATIVE PREDICTION; TEXTURE ANALYSIS; EARLY RECURRENCE; MICROVASCULAR INVASION; COMPUTED-TOMOGRAPHY; CT; NOMOGRAM; FEATURES; MRI}, Research-Areas = {Gastroenterology \& Hepatology}, Web-of-Science-Categories = {Gastroenterology \& Hepatology}, Author-Email = {tian@ieee.org}, Affiliations = {Chinese Academy of Sciences; Institute of Automation, CAS; Sichuan University; China Medical University; Zhengzhou University; Zhengzhou University; Beihang University; Xidian University}, ResearcherID-Numbers = {Song, Bin/AAD-3670-2020 wei, jing/GXA-1455-2022 Han, Yu/GZA-9220-2022 }, ORCID-Numbers = {Jiang, Hanyu/0000-0002-7726-1618 Song, Bin/0000-0002-7269-2101}, Funding-Acknowledgement = {Beijing Municipal Science \& Technology Commission {[}171100000117023, Z161100002616022]; National Natural Science Foundation of China {[}881930053, 1227901, 81527805]; Ministry of Science and Technology of China {[}2017YFA0205200]; Chinese Academy of Sciences {[}GJJSTD20170004, QYZDJ-SSW-JSC005]}, Funding-Text = {Beijing Municipal Science \& Technology Commission, Grant/Award Number: 171100000117023 and Z161100002616022; National Natural Science Foundation of China, Grant/Award Number: 881930053, 1227901 and 81527805; Ministry of Science and Technology of China, Grant/Award Number: 2017YFA0205200; Chinese Academy of Sciences, Grant/Award Number: GJJSTD20170004 and QYZDJ-SSW-JSC005}, Cited-References = {Akai H, 2018, DIAGN INTERV IMAG, V99, P643, DOI 10.1016/j.diii.2018.05.008. Bagci U, 2010, PATTERN RECOGN LETT, V31, P315, DOI 10.1016/j.patrec.2009.09.010. Bakr S, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.4.041303. Beckers RCJ, 2018, EUR J RADIOL, V102, P15, DOI 10.1016/j.ejrad.2018.02.031. Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P37, DOI 10.1007/978-3-642-00296-0\_5. Cai W, 2019, SURG ONCOL, V28, P78, DOI 10.1016/j.suronc.2018.11.013. Canellas R, 2016, AM J ROENTGENOL, V207, pW81, DOI 10.2214/AJR.15.15928. Chaudharyl K, 2018, CLIN CANCER RES, V24, P1248, DOI 10.1158/1078-0432.CCR-17-0853. Chen SL, 2019, EUR RADIOL, V29, P4177, DOI 10.1007/s00330-018-5986-x. Chen ST, 2017, EUR J RADIOL, V90, P198, DOI 10.1016/j.ejrad.2017.02.035. Chernyak V, 2018, RADIOLOGY, V289, P816, DOI 10.1148/radiol.2018181494. Choi JY, 2014, RADIOLOGY, V273, P30, DOI 10.1148/radiol.14132362. Choi KJ, 2018, RADIOLOGY, V289, P688, DOI 10.1148/radiol.2018180763. Cozzi L, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3847-7. Dou TY, 2018, INT C PATT RECOG, P3832, DOI 10.1109/ICPR.2018.8545806. European Assoc Study Liver, 2018, J HEPATOL, V69, P182, DOI 10.1016/j.jhep.2018.03.019. Fu SR, 2019, CLIN TRANSL GASTROEN, V10, DOI 10.14309/ctg.0000000000000070. Gao LM, 1996, RADIOLOGY, V201, P359, DOI 10.1148/radiology.201.2.8888223. Greenwood PE, 1996, GUIDE CHI SQUARED TE, V280. Guglielmi A, 2009, WORLD J SURG, V33, P1247, DOI 10.1007/s00268-009-9970-0. Guo DH, 2019, EUR J RADIOL, V117, P33, DOI 10.1016/j.ejrad.2019.05.010. Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616. Hame Y, 2012, MED IMAGE ANAL, V16, P140, DOI 10.1016/j.media.2011.06.006. Hectors SJ, 2020, EUR RADIOL, V30, P3759, DOI 10.1007/s00330-020-06675-2. Hope TA, 2014, RADIOL CLIN N AM, V52, P709, DOI 10.1016/j.rcl.2014.02.016. Hou Z, 2018, IET GENER TRANSM DIS, V12, P1, DOI 10.1049/iet-gtd.2016.1097. Hu HT, 2019, EUR RADIOL, V29, P2890, DOI 10.1007/s00330-018-5797-0. Huang XL, 2019, J CANCER RES CLIN, V145, P2995, DOI 10.1007/s00432-019-03062-3. Huang YQ, 2016, J CLIN ONCOL, V34, P2157, DOI 10.1200/JCO.2015.65.9128. Hui TCH, 2018, CLIN RADIOL, V73, DOI 10.1016/j.crad.2018.07.109. Imajo K, 2016, GASTROENTEROLOGY, V150, P626, DOI 10.1053/j.gastro.2015.11.048. Ippolito D, 2018, WORLD J GASTROENTERO, V24, P2413, DOI 10.3748/wjg.v24.i23.2413. Ji GW, 2019, EUR RADIOL, V29, P3725, DOI 10.1007/s00330-019-06142-7. Ji GW, 2019, RADIOLOGY, V290, P90, DOI 10.1148/radiol.2018181408. Jiang HY, 2018, WORLD J GASTROENTERO, V24, P2348, DOI 10.3748/wjg.v24.i22.2348. Jiang HY, 2019, CANCER IMAGING, V19, DOI 10.1186/s40644-019-0266-9. Joo I, 2018, RADIOLOGY, V288, P7, DOI 10.1148/radiol.2018171187. Kim J, 2018, AM J ROENTGENOL, V211, P1026, DOI 10.2214/AJR.18.19507. Kiryu S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12688-7. Klaassen R, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207362. Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141. Lee SJ, 2018, EUR RADIOL, V28, P1520, DOI 10.1007/s00330-017-5111-6. Lehmann T, 2013, BILDVERARBEITUNG MED. Lehmann TM, 1999, IEEE T MED IMAGING, V18, P1049, DOI 10.1109/42.816070. Li M, 2016, ONCOTARGET, V7, P13248, DOI 10.18632/oncotarget.7467. Li W, 2019, EUR RADIOL, V29, P1496, DOI 10.1007/s00330-018-5680-z. Li ZJ, 2017, BMC MED IMAGING, V17, DOI 10.1186/s12880-017-0212-x. Liang WJ, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00360. Liao HT, 2019, ANN SURG ONCOL, V26, P4537, DOI 10.1245/s10434-019-07815-9. Limkin EJ, 2017, ANN ONCOL, V28, P1191, DOI 10.1093/annonc/mdx034. Lin SL, 2019, ELECTROMAGN BIOL MED, V38, P131, DOI 10.1080/15368378.2019.1591439. Liu FQ, 2018, EBIOMEDICINE, V36, P151, DOI 10.1016/j.ebiom.2018.09.023. Liu ZY, 2019, CLIN CANCER RES, V25, P3538, DOI 10.1158/1078-0432.CCR-18-3190. Lubner MG, 2015, ABDOM IMAGING, V40, P2331, DOI 10.1007/s00261-015-0438-4. Ma X, 2019, EUR RADIOL, P1. Marrero JA, 2018, HEPATOLOGY, V68, P723, DOI 10.1002/hep.29913. Massoptier L, 2008, EUR RADIOL, V18, P1658, DOI 10.1007/s00330-008-0924-y. Moltz JH, 2009, IEEE J-STSP, V3, P122, DOI 10.1109/JSTSP.2008.2011107. Motosugi U, 2015, J MAGN RESON IMAGING, V41, P251, DOI 10.1002/jmri.24712. Mule S, 2018, RADIOLOGY, V288, P445, DOI 10.1148/radiol.2018171320. Naganawa S, 2018, EUR RADIOL, V28, P3050, DOI 10.1007/s00330-017-5270-5. NG IOL, 1995, CANCER, V76, P2443, DOI 10.1002/1097-0142(19951215)76:12<2443::AID-CNCR2820761207>3.0.CO;2-F. Ni M, 2019, CANCER IMAGING, V19, DOI 10.1186/s40644-019-0249-x. Nyul LG, 2000, IEEE T MED IMAGING, V19, P143, DOI 10.1109/42.836373. Okusaka T, 2002, CANCER-AM CANCER SOC, V95, P1931, DOI 10.1002/cncr.10892. Park HJ, 2019, RADIOLOGY, V290, P380, DOI 10.1148/radiol.2018181197. Peng J, 2018, TRANSL CANCER RES, V7, P936, DOI 10.21037/tcr.2018.06.18. Peng J, 2018, DIAGN INTERV RADIOL, V24, P121, DOI 10.5152/dir.2018.17467. Potretzke TA, 2016, AM J ROENTGENOL, V207, P25, DOI 10.2214/AJR.15.14997. Pulli B, 2017, RADIOLOGY, V284, P390, DOI 10.1148/radiol.2017160588. Rahmim A, 2019, EUR J RADIOL, V113, P101, DOI 10.1016/j.ejrad.2019.02.006. Reimer RP, 2018, CARDIOVASC INTER RAD, V41, P1545, DOI 10.1007/s00270-018-2004-2. Ricke J, 2016, J HEPATOL, V65, P1081, DOI 10.1016/j.jhep.2016.10.004. Ruxton GD, 2006, BEHAV ECOL, V17, P688, DOI 10.1093/beheco/ark016. Schoniger-Hekele M, 2001, GUT, V48, P103, DOI 10.1136/gut.48.1.103. Segal E, 2007, NAT BIOTECHNOL, V25, P675, DOI 10.1038/nbt1306. Shan QY, 2019, CANCER IMAGING, V19, DOI 10.1186/s40644-019-0197-5. Shu ZY, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-39651-y. Shur J, 2020, J SURG ONCOL, V121, P357, DOI 10.1002/jso.25783. Suh SW, 2014, J HEPATOL, V60, P1219, DOI 10.1016/j.jhep.2014.01.027. Sun R, 2018, LANCET ONCOL, V19, P1180, DOI 10.1016/S1470-2045(18)30413-3. Tang A, 2019, EUR RADIOL, V29, P2175, DOI 10.1007/s00330-018-5915-z. Taouli B, 2010, RADIOLOGY, V254, P47, DOI 10.1148/radiol.09090021. Tibshirani R, 1996, J ROY STAT SOC B MET, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x. Trivizakis E, 2019, IEEE J BIOMED HEALTH, V23, P923, DOI 10.1109/JBHI.2018.2886276. Tseng Y, 2020, EUR J RADIOL, V126, DOI 10.1016/j.ejrad.2020.108927. Tyson GL, 2011, HEPATOLOGY, V54, P173, DOI 10.1002/hep.24351. van Griethuysen JJM, 2017, CANCER RES, V77, pE104, DOI 10.1158/0008-5472.CAN-17-0339. Wang K, 2019, GUT, V68, P729, DOI 10.1136/gutjnl-2018-316204. Wang QY, 2017, IEEE IMAGE PROC, P4162. Wang S, 2019, EUR RESPIR J, V53, DOI 10.1183/13993003.00986-2018. Witjes CDM, 2012, J MAGN RESON IMAGING, V36, P641, DOI 10.1002/jmri.23681. Wu JJ, 2019, BMC MED IMAGING, V19, DOI 10.1186/s12880-019-0321-9. Wu MH, 2019, EUR RADIOL, V29, P2802, DOI 10.1007/s00330-018-5787-2. Xu X, 2019, J HEPATOL, V70, P1133, DOI 10.1016/j.jhep.2019.02.023. Yang L, 2019, LIVER CANCER, V8, P373, DOI 10.1159/000494099. Yao Z, 2018, BMC CANCER, V18, DOI 10.1186/s12885-018-5003-4. Ye Z, 2019, CHINESE J CANCER RES, V31, P806, DOI 10.21147/j.issn.1000-9604.2019.05.10. Yuan CW, 2019, CANCER IMAGING, V19, DOI 10.1186/s40644-019-0207-7. Zhang YZN, 2018, BRIT J RADIOL, V91, DOI 10.1259/bjr.20170959. Zhang Z, 2019, CANCER IMAGING, V19, DOI 10.1186/s40644-019-0209-5. Zhao L, 2019, CANCER IMAGING, V19, DOI 10.1186/s40644-019-0234-4. Zheng BH, 2018, BMC CANCER, V18, DOI 10.1186/s12885-018-5024-z. Zhou W, 2017, J MAGN RESON IMAGING, V45, P1476, DOI 10.1002/jmri.25454. Zhou Y, 2017, ABDOM RADIOL, V42, P1695, DOI 10.1007/s00261-017-1072-0.}, Number-of-Cited-References = {105}, Times-Cited = {40}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {28}, Journal-ISO = {Liver Int.}, Doc-Delivery-Number = {NG4WC}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000544821500001}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000601904100001, Author = {Tonkovic, Petar and Kalajdziski, Slobodan and Zdravevski, Eftim and Lameski, Petre and Corizzo, Roberto and Pires, Ivan Miguel and Garcia, Nuno M. and Loncar-Turukalo, Tatjana and Trajkovik, Vladimir}, Title = {Literature on Applied Machine Learning in Metagenomic Classification: A Scoping Review}, Journal = {BIOLOGY-BASEL}, Year = {2020}, Volume = {9}, Number = {12}, Month = {DEC}, Abstract = {Simple Summary Technological advancements have led to modern DNA sequencing methods, capable of generating large amounts of data describing the microorganisms that live in samples taken from the environment. Metagenomics, the field that studies the different genomes within these samples, is becoming increasingly popular, as it has many real-world applications, such as the discovery of new antibiotics, personalized medicine, forensics, and many more. From a computer science point of view, it is interesting to see how these large volumes of data can be processed efficiently to accurately identify (classify) the microorganisms from the input DNA data. This scoping review aims to give an insight into the existing state of the art computational methods for processing metagenomic data through the prism of machine learning, data science, and big data. We provide an overview of the state of the art metagenomic classification methods, as well as the challenges researchers face when tackling this complex problem. The end goal of this review is to help researchers be up to date with current trends, as well as identify opportunities for further research and improvements. Applied machine learning in bioinformatics is growing as computer science slowly invades all research spheres. With the arrival of modern next-generation DNA sequencing algorithms, metagenomics is becoming an increasingly interesting research field as it finds countless practical applications exploiting the vast amounts of generated data. This study aims to scope the scientific literature in the field of metagenomic classification in the time interval 2008-2019 and provide an evolutionary timeline of data processing and machine learning in this field. This study follows the scoping review methodology and PRISMA guidelines to identify and process the available literature. Natural Language Processing (NLP) is deployed to ensure efficient and exhaustive search of the literary corpus of three large digital libraries: IEEE, PubMed, and Springer. The search is based on keywords and properties looked up using the digital libraries' search engines. The scoping review results reveal an increasing number of research papers related to metagenomic classification over the past decade. The research is mainly focused on metagenomic classifiers, identifying scope specific metrics for model evaluation, data set sanitization, and dimensionality reduction. Out of all of these subproblems, data preprocessing is the least researched with considerable potential for improvement.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Tonkovic, P (Corresponding Author), St Cyril \& Methodius Univ, Fac Comp Sci \& Engn, Skopje 1000, North Macedonia. Tonkovic, Petar; Kalajdziski, Slobodan; Zdravevski, Eftim; Lameski, Petre; Trajkovik, Vladimir, St Cyril \& Methodius Univ, Fac Comp Sci \& Engn, Skopje 1000, North Macedonia. Corizzo, Roberto, Amer Univ, Dept Comp Sci, Washington, DC 20016 USA. Pires, Ivan Miguel; Garcia, Nuno M., Univ Beira Interior, Inst Telecomunicacoes, P-6200001 Covilha, Portugal. Pires, Ivan Miguel, Polytech Inst Viseu, Comp Sci Dept, P-3504510 Viseu, Portugal. Pires, Ivan Miguel, Polytech Inst Viseu, Sch Hlth, Hlth Sci Res Unit Nursing, P-3504510 Viseu, Portugal. Loncar-Turukalo, Tatjana, Univ Novi Sad, Fac Tech Sci, Novi Sad 21102, Serbia.}, DOI = {10.3390/biology9120453}, Article-Number = {453}, EISSN = {2079-7737}, Keywords = {metagenomics; scoping review; classification; data preprocessing}, Research-Areas = {Life Sciences \& Biomedicine - Other Topics}, Web-of-Science-Categories = {Biology}, Author-Email = {petar.tonkovikj@students.finki.ukim.mk slobodan.kalajdziski@finki.ukim.mk eftim.zdravevski@finki.ukim.mk petre.lameski@finki.ukim.mk rcorizzo@american.edu impires@it.ubi.pt ngarcia@di.ubi.pt turukalo@uns.ac.rs vladimir.trajkovik@finki.ukim.mk}, Affiliations = {Saints Cyril \& Methodius University of Skopje; American University; Universidade da Beira Interior; Instituto Politecnico de Viseu; Instituto Politecnico de Viseu; University of Novi Sad}, ResearcherID-Numbers = {Zdravevski, Eftim/K-5276-2014 Pires, Ivan/V-3573-2017 Lameski, Petre/P-8389-2014 }, ORCID-Numbers = {Zdravevski, Eftim/0000-0001-7664-0168 Pires, Ivan/0000-0002-3394-6762 Garcia, Nuno/0000-0002-3195-3168 Kalajdziski, Slobodan/0000-0003-3373-8637 Corizzo, Roberto/0000-0001-8366-6059 TONKOVIC, PETAR/0000-0002-4593-219X Loncar-Turukalo, Tatjana/0000-0002-3582-8073 Trajkovik, Vladimir/0000-0001-8103-8059}, Funding-Acknowledgement = {FCT/MEC; FEDER-PT2020 partnership agreement {[}UIDB/50008/2020]; National Funds through the FCT-Foundation for Science and Technology, I.P. {[}UIDB/00742/2020]}, Funding-Text = {This work was partially funded by FCT/MEC through national funds and co-funded by the FEDER-PT2020 partnership agreement under the project UIDB/50008/2020 (Este trabalho e financiado pela FCT/MEC atraves de fundos nacionais e cofinanciado pelo FEDER, no ambito do Acordo de Parceria PT2020 no ambito do projeto UIDB/50008/2020). This work was partially funded by National Funds through the FCT-Foundation for Science and Technology, I.P., within the scope of the project UIDB/00742/2020.}, Cited-References = {Al-Ajlan A, 2018, BIODATA MIN, V11, DOI 10.1186/s13040-018-0170-z. Ames SK, 2013, BIOINFORMATICS, V29, P2253, DOI 10.1093/bioinformatics/btt389. Garrido-Cardenas JA, 2017, CURR GENET, V63, P819, DOI 10.1007/s00294-017-0693-8. Asakawa S, 1997, GENE, V191, P69, DOI 10.1016/S0378-1119(97)00044-9. Barracchia EP, 2020, BMC BIOINFORMATICS, V21, DOI 10.1186/s12859-020-3392-2. Bossert S, 2018, METHODS ECOL EVOL, V9, P1453, DOI 10.1111/2041-210X.12988. Breitwieser FP, 2018, GENOME BIOL, V19, DOI 10.1186/s13059-018-1568-0. Cai Y, 2017, MICROBIOME, V5, DOI 10.1186/s40168-017-0323-1. Ceci M, 2020, IEEE ACCESS, V8, P156053, DOI 10.1109/ACCESS.2020.3019095. Cerulo L, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-228. Chernomoretz A, 2016, MICROBIOME, V4, DOI 10.1186/s40168-016-0168-z. Chiu CY, 2019, NAT REV GENET, V20, P341, DOI 10.1038/s41576-019-0113-7. Darling AE, 2014, PEERJ, V2, DOI 10.7717/peerj.243. Ehrlich SD, 2011, METAGENOMICS OF THE HUMAN BODY, P307, DOI 10.1007/978-1-4419-7089-3\_15. Freitas RL, 2015, EMERGENCY DEPARTMENT LEADERSHIP AND MANAGEMENT: BEST PRINCIPLES AND PRACTICE, P1. Garmendia L, 2012, CLIN MICROBIOL INFEC, V18, P27, DOI 10.1111/j.1469-0691.2012.03868.x. Goelet P., 1999, U.S. Patent, Patent No. 5888819. Greninger AL, 2019, J APPL LAB MED, V3, P643, DOI 10.1373/jalm.2018.026120. Gu W, 2019, ANNU REV PATHOL-MECH, V14, P319, DOI 10.1146/annurev-pathmechdis-012418-012751. Guerrini Veronica, 2019, Algorithms for Computational Biology. 6th International Conference, AlCoB 2019. Proceedings: Lecture Notes in Bioinformatics (LNBI 11488), P112, DOI 10.1007/978-3-030-18174-1\_8. Hagberg A.A., 2008, PROC PYTHON SCI C, P11, DOI DOI 10.25080/ISSN.2575-9752. Harris ZN, 2019, BIOL DIRECT, V14, DOI 10.1186/s13062-019-0242-0. Hold GL, 2002, FEMS MICROBIOL ECOL, V39, P33, DOI 10.1111/j.1574-6941.2002.tb00904.x. Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55. Huson DH, 2007, GENOME RES, V17, P377, DOI 10.1101/gr.5969107. Kaufmann Jonathan, 2020, Discovery Science. 23rd International Conference, DS 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12323), P340, DOI 10.1007/978-3-030-61527-7\_23. Kim M, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-0932-x. Korf I., 2003, BLAST. Kreil D.P., 2013, SYST BIOMED, V1, DOI {[}10.4161/sysb.28947, DOI 10.4161/SYSB.28947]. Le HS, 2013, NUCLEIC ACIDS RES, V41, DOI 10.1093/nar/gkt215. Levac D, 2010, IMPLEMENT SCI, V5, DOI 10.1186/1748-5908-5-69. Lo C, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-2833-2. Loncar-Turukalo T, 2019, J MED INTERNET RES, V21, DOI 10.2196/14017. Mani D, 2014, INT J ENVIRON SCI TE, V11, P843, DOI 10.1007/s13762-013-0299-8. Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010. McIntyre ABR, 2017, GENOME BIOL, V18, DOI 10.1186/s13059-017-1299-7. Mignone P, 2020, BIOINFORMATICS, V36, P1553, DOI 10.1093/bioinformatics/btz781. Mignone P, 2018, LECT NOTES COMPUT SC, V11177, P13, DOI 10.1007/978-3-030-01851-1\_2. Min B, 2017, BIOINFORMATICS, V33, P2936, DOI 10.1093/bioinformatics/btx353. Moher D., 2015, SYST REV-LONDON, V4, P1. Nasko DJ, 2018, GENOME BIOL, V19, DOI 10.1186/s13059-018-1554-6. Ounit R, 2016, BIOINFORMATICS, V32, P3823, DOI 10.1093/bioinformatics/btw542. Ounit R, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1419-2. Pan WH, 2015, INTERDISCIP SCI, V7, P405, DOI 10.1007/s12539-015-0281-x. Pechal JL, 2014, INT J LEGAL MED, V128, P193, DOI 10.1007/s00414-013-0872-1. Pires I., 2020, ACTA SCI-AGRON, V4, P12. Pires IM, 2020, J PERS MED, V10, DOI 10.3390/jpm10010011. Qiao YY, 2018, BIOL DIRECT, V13, DOI 10.1186/s13062-018-0220-y. Ryan FJ, 2019, BIOL DIRECT, V14, DOI 10.1186/s13062-019-0245-x. Saghir Helal, 2015, 2015 IEEE International Symposium on Technologies for Homeland Security (HST), P1, DOI 10.1109/THS.2015.7225313. Saghir H, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY (HST), P171, DOI 10.1109/THS.2013.6698995. Saghir H, 2013, IEEE INT CONF COMP, P191, DOI 10.1109/CIVEMSA.2013.6617419. SAIKI RK, 1988, SCIENCE, V239, P487, DOI 10.1126/science.2448875. Sangiovanni M, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-2684-x. Segata N, 2012, NAT METHODS, V9, P811, DOI {[}10.1038/NMETH.2066, 10.1038/nmeth.2066]. Seppey M, 2019, METHODS MOL BIOL, V1962, P227, DOI 10.1007/978-1-4939-9173-0\_14. Sobih A, 2016, LECT NOTES COMPUTER, P111, DOI DOI 10.1007/978-3-319-31957-5\_8. Sonnhammer ELL, 1997, PROTEINS, V28, P405, DOI 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L. Steele HL, 2009, J MOL MICROB BIOTECH, V16, P25, DOI 10.1159/000142892. Tausch SH, 2018, BIOINFORMATICS, V34, P3750, DOI 10.1093/bioinformatics/bty433. Tonkovic P., 2020, ZENODO, DOI {[}10.5281/zenodo.4289228, DOI 10.5281/ZENODO.4289228]. Turnbaugh PJ, 2007, NATURE, V449, P804, DOI 10.1038/nature06244. Venter JC, 1998, SCIENCE, V280, P1540, DOI 10.1126/science.280.5369.1540. Villasana MV, 2020, J PERS MED, V10, DOI 10.3390/jpm10010012. Virgin HW, 2011, CELL, V147, P44, DOI 10.1016/j.cell.2011.09.009. Walker AR, 2018, BIOL DIRECT, V13, DOI 10.1186/s13062-018-0215-8. Wang WL, 2015, WORLD J GASTROENTERO, V21, P803, DOI 10.3748/wjg.v21.i3.803. Wood DE, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-3-r46. Zdravevski E, 2020, APPL SOFT COMPUT, V90, DOI 10.1016/j.asoc.2020.106164. Zdravevski E, 2019, LECT NOTES COMPUT SC, V11369, P1, DOI 10.1007/978-3-030-10752-9\_1. Zdravevski E, 2017, IEEE ACCESS, V5, P5262, DOI 10.1109/ACCESS.2017.2684913. Zdravevski E, 2015, IEEE TRUST BIG, P186, DOI 10.1109/Trustcom.2015.580. Zhu CS, 2019, BIOL DIRECT, V14, DOI 10.1186/s13062-019-0252-y. Zhu Q, 2018, IEEE INT C BIOINFORM, P279, DOI 10.1109/BIBM.2018.8621463.}, Number-of-Cited-References = {74}, Times-Cited = {9}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {15}, Journal-ISO = {Biology-Basel}, Doc-Delivery-Number = {PJ6WB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000601904100001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000711970600033, Author = {Rabbani, A. and Fernando, A. M. and Shams, R. and Singh, A. and Mostaghimi, P. and Babaei, M.}, Title = {Review of Data Science Trends and Issues in Porous Media Research With a Focus on Image-Based Techniques}, Journal = {WATER RESOURCES RESEARCH}, Year = {2021}, Volume = {57}, Number = {10}, Month = {OCT}, Abstract = {Data science as a flourishing interdisciplinary domain of computer and mathematical sciences is playing an important role in guiding the porous material research streams. In the present narrative review, we have examined recent trends and issues in data-driven methods used in the image-based porous material research studies relevant to water resources researchers and scientists. Initially, the recent trends in porous material data-related issues have been investigated through search engine queries in terms of data source, data storage hub, programing languages, and software packages. Subsequent to a diligent analysis of the existing trends, a review of the common concepts of porous material research and data science are presented through six categories comprising big data, data regression, classification, image segmentation, geometry reconstruction, and image data resolution. We provide: (a) a focus on image-based and pore scale methods which has not been presented previously, (b) a detailed search engine research for trend investigation, and (c) practical examples and comparison of data storage in porous media image-based research. By reading this review article, an overall image of the active and popular interdisciplinary research domains can be obtained. Readers will also be informed of the latest data-driven efforts and recommended research directions for tackling the image-based porous material problems relevant to water resources research. We concluded that porous material image reconstruction and resolution improvement techniques are unique means to reveal unprecedented details of micro-structures that may have been missed in a medium quality tomography image.}, Publisher = {AMER GEOPHYSICAL UNION}, Address = {2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA}, Type = {Review}, Language = {English}, Affiliation = {Babaei, M (Corresponding Author), Univ Manchester, Dept Chem Engn \& Analyt Sci, Manchester, Lancs, England. Rabbani, A.; Babaei, M., Univ Manchester, Dept Chem Engn \& Analyt Sci, Manchester, Lancs, England. Fernando, A. M., Monash Univ, Sch Engn, Discipline Chem Engn, Subang Jaya, Selangor, Malaysia. Shams, R., Sharif Univ Technol, Chem \& Petr Engn Dept, Tehran, Iran. Singh, A.; Mostaghimi, P., Univ New South Wales, Sch Minerals \& Energy Resources Engn, Sydney, NSW, Australia.}, DOI = {10.1029/2020WR029472}, Article-Number = {e2020WR029472}, ISSN = {0043-1397}, EISSN = {1944-7973}, Keywords = {data science; porous materials; machine learning; neural networks}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; PORE-SPACE RECONSTRUCTION; SUPPORT-VECTOR REGRESSION; RAY COMPUTED-TOMOGRAPHY; 2-PHASE FLOW; UNCERTAINTY QUANTIFICATION; HETEROGENEOUS RESERVOIR; PERMEABILITY PREDICTION; DIFFUSION-COEFFICIENT; EFFICIENT ALGORITHMS}, Research-Areas = {Environmental Sciences \& Ecology; Marine \& Freshwater Biology; Water Resources}, Web-of-Science-Categories = {Environmental Sciences; Limnology; Water Resources}, Author-Email = {masoud.babaei@manchester.ac.uk}, Affiliations = {University of Manchester; Monash University; Monash University Sunway; Sharif University of Technology; University of New South Wales Sydney}, ResearcherID-Numbers = {Fernando, Ashane/I-1691-2019 Shams, Reza/V-2230-2018 }, ORCID-Numbers = {Fernando, Ashane/0000-0002-4659-7207 Shams, Reza/0000-0003-1565-806X Singh, Ankita/0000-0003-2768-5559 Babaei, Masoud/0000-0002-4201-3489 Rabbani, Arash/0000-0001-5181-7318}, Funding-Acknowledgement = {University of Manchester; Royal Society {[}IEC\textbackslash{}NSFC\textbackslash{}170002]}, Funding-Text = {We thank the University of Manchester for the President's Doctoral Scholarship Award 2018 granted to Arash Rabbani to carry out part of this research. Also Masoud Babaei acknowledges Royal Society grant no. IEC\textbackslash{}NSFC\textbackslash{}170002 for partially supporting this research.}, Cited-References = {Abdurahman S, 2018, IEEE T MED IMAGING, V37, P2266, DOI 10.1109/TMI.2018.2840343. Abramoff M. D., 2005, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100. Adams A.E., 2017, ATLAS SEDIMENTARY RO. Aguilo-Aguayo N, 2020, ELECTROCHEM COMMUN, V111, DOI 10.1016/j.elecom.2019.106650. Ahmadi Mohammad Ali, 2019, Petroleum, V5, P271, DOI 10.1016/j.petlm.2018.06.002. Ahmadi MA, 2013, GEOPHYS PROSPECT, V61, P582, DOI 10.1111/j.1365-2478.2012.01080.x. Akande K.O., 2014, IOSR J COMPUT ENG, V16, P88, DOI {[}10.9790/0661-16518894, DOI 10.9790/0661-16518894]. Akande KO, 2015, J NAT GAS SCI ENG, V22, P515, DOI 10.1016/j.jngse.2015.01.007. Akratos CS, 2009, BIOSYST ENG, V102, P190, DOI 10.1016/j.biosystemseng.2008.10.010. Al-Anazi A, 2010, SPE RESERV EVAL ENG, V13, P485, DOI 10.2118/126339-PA. Al-Anazi AF, 2012, COMPUT GEOSCI-UK, V39, P64, DOI 10.1016/j.cageo.2011.06.011. Al-Juboori M., 2019, LIFE CYCLE REL SAF E, V8, P65, DOI 10.1007/s41872-018-00072-x. Aloysius N, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P588. Alqahtani N., 2018, SPE ASIA PACIFIC OIL, DOI {[}10.2118/191906-MS, DOI 10.2118/191906-MS]. Alqahtani N, 2020, J PETROL SCI ENG, V184, DOI 10.1016/j.petrol.2019.106514. An WP, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP). Andra H, 2013, COMPUT GEOSCI-UK, V50, P25, DOI 10.1016/j.cageo.2012.09.005. Andrew M., 2019, VACA MUERTA FIB SEM. Andrew M, 2018, COMPUTAT GEOSCI, V22, P1503, DOI 10.1007/s10596-018-9768-y. Anifowose F, 2011, J NAT GAS SCI ENG, V3, P505, DOI 10.1016/j.jngse.2011.05.002. {[}Anonymous], 2009, PATTERN RECOGNIT INF, DOI DOI 10.1142/S0218001413570024. {[}Anonymous], 2012, MACHINE LEARNING HAC. Antonietti PF, 2016, ESAIM-MATH MODEL NUM, V50, P809, DOI 10.1051/m2an/2015087. Salva JA, 2016, ENERGY, V101, P100, DOI 10.1016/j.energy.2016.02.006. Araya SN, 2019, WATER RESOUR RES, V55, P5715, DOI 10.1029/2018WR024357. Armstrong RT, 2019, TRANSPORT POROUS MED, V130, P305, DOI 10.1007/s11242-018-1201-4. Asamoah D., 2015, PRE ICIS BUS AN C C. Assuncao MD, 2015, J PARALLEL DISTR COM, V79-80, P3, DOI 10.1016/j.jpdc.2014.08.003. Atwood RC, 2015, PHILOS T R SOC A, V373, DOI 10.1098/rsta.2014.0398. Babaei M, 2019, APPL ENERG, V253, DOI 10.1016/j.apenergy.2019.113569. Badrinarayanan V, 2017, IEEE T PATTERN ANAL, V39, P2481, DOI 10.1109/TPAMI.2016.2644615. Bakhshian S, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-39741-x. Banerjee B, 2017, INT CONF ACOUST SPEE, P2637, DOI 10.1109/ICASSP.2017.7952634. Bansal S, 2012, CHEM ENG J, V207, P822, DOI 10.1016/j.cej.2012.07.081. Baraboshkin EE, 2020, COMPUT GEOSCI-UK, V135, DOI 10.1016/j.cageo.2019.104330. Baratchi F, 2019, OCEAN ENG, V193, DOI 10.1016/j.oceaneng.2019.106586. Baratchi F, 2017, INT J MAR ENERGY, V19, P235, DOI 10.1016/j.ijome.2017.08.003. Barr KC, 2006, ACM T COMPUT SYST, V24, P250, DOI 10.1145/1151690.1151692. Bauer M., 2011, P 2011 INT C HIGH PE. Baychev TG, 2019, TRANSPORT POROUS MED, V128, P271, DOI 10.1007/s11242-019-01244-8. Berg S., 2018, LEAD EDGE, V37, P412, DOI {[}10.1190/tle37060412.1, DOI 10.1190/TLE37060412.1]. Berg S, 2013, P NATL ACAD SCI USA, V110, P3755, DOI 10.1073/pnas.1221373110. Bevilacqua M, 2012, PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, DOI 10.5244/C.26.135. Bilbao I., 2007, OVERFITTING PROBLEM, P173. Bilke L, 2019, TRANSPORT POROUS MED, V130, P337, DOI 10.1007/s11242-019-01310-1. Bird MB, 2014, COMPUT GEOSCI-UK, V73, P6, DOI 10.1016/j.cageo.2014.08.009. Blunt M.J., 2017, MULTIPHASE FLOW PERM, DOI DOI 10.1017/9781316145098. Blunt MJ, 2013, ADV WATER RESOUR, V51, P197, DOI 10.1016/j.advwatres.2012.03.003. Bock FE, 2019, FRONT MATER, V6, DOI 10.3389/fmats.2019.00110. Bouguettaya A, 2015, EXPERT SYST APPL, V42, P2785, DOI 10.1016/j.eswa.2014.09.054. Brennan CM, 2019, BIOMED MATER, V14, DOI 10.1088/1748-605X/ab49f2. Bultreys T, 2015, ADV WATER RESOUR, V78, P36, DOI 10.1016/j.advwatres.2015.02.003. Cai M, 2013, 2013 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), P291, DOI 10.1109/ASRU.2013.6707745. Carlson A, 2019, IEEE ROBOT AUTOM LET, V4, P2431, DOI 10.1109/LRA.2019.2896470. Chatterjee S, 2013, APPL INTELL, V39, P14, DOI 10.1007/s10489-012-0391-7. Chauhan S, 2016, COMPUT GEOSCI-UK, V86, P120, DOI 10.1016/j.cageo.2015.10.013. Chen XY, 2016, WATER RESOUR MANAG, V30, P2179, DOI 10.1007/s11269-016-1281-2. Chen YZ, 2018, COORDIN CHEM REV, V362, P1, DOI 10.1016/j.ccr.2018.02.008. Chen ZW, 2015, ACTA MATER, V89, P268, DOI 10.1016/j.actamat.2015.02.014. Cherian A, 2017, IEEE WINT CONF APPL, P130, DOI 10.1109/WACV.2017.22. Chiroma H., 2014, RECENT ADV SOFT COMP, P273, DOI 10.1007/978-3-319-07692-8\_26. Chung T, 2019, SPE J, V24, P1154, DOI 10.2118/191379-PA. Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8\_49. Cnudde V, 2013, EARTH-SCI REV, V123, P1, DOI 10.1016/j.earscirev.2013.04.003. Cnudde V, 2011, GEOSPHERE, V7, P54, DOI 10.1130/GES00563.1. Collette A., 2013, PYTHON HDF5 UNLOCKIN. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. Cortina-Januchs MG, 2011, BIOGEOSCIENCES, V8, P279, DOI 10.5194/bg-8-279-2011. Crevillen-Garcia D, 2017, ADV WATER RESOUR, V99, P1, DOI 10.1016/j.advwatres.2016.11.006. Da Silva I. N, 2017, ARTIFICIAL NEURAL NE, V39. Da Wang Y., 2020, PHYS ACCURACY DEEP N. Da Wang Y, 2020, WATER RESOUR RES, V56, DOI 10.1029/2019WR026052. Das DB, 2015, ENVIRON PROCESS, V2, P1, DOI 10.1007/s40710-014-0045-3. David PA, 2008, INF ECON POLICY, V20, P364, DOI 10.1016/j.infoecopol.2008.10.001. Davidson I, 2005, LECT NOTES ARTIF INT, V3721, P59. DAY WHE, 1984, J CLASSIF, V1, P7, DOI 10.1007/BF01890115. De Boever W, 2016, SCI TOTAL ENVIRON, V554, P102, DOI 10.1016/j.scitotenv.2016.02.195. Delaunay X, 2019, GEOSCI MODEL DEV, V12, P4099, DOI 10.5194/gmd-12-4099-2019. Dhar V, 2013, COMMUN ACM, V56, P64, DOI 10.1145/2500499. Diaz-Viera M., 2008, COMSOL C 2008. Dierolf M, 2010, NATURE, V467, P436, DOI 10.1038/nature09419. Dobre C, 2014, FUTURE GENER COMP SY, V37, P267, DOI 10.1016/j.future.2013.07.014. Dong H, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.036307. Dramsch JS, 2020, ADV GEOPHYS, V61, P1, DOI 10.1016/bs.agph.2020.08.002. Elangovan M, 2011, EXPERT SYST APPL, V38, P15202, DOI 10.1016/j.eswa.2011.05.081. Erofeev A, 2019, TRANSPORT POROUS MED, V128, P677, DOI 10.1007/s11242-019-01265-3. Eshghinejadfard A, 2016, INT J HEAT FLUID FL, V62, P93, DOI 10.1016/j.ijheatfluidflow.2016.05.010. Esmaeili S, 2019, FUEL, V236, P264, DOI 10.1016/j.fuel.2018.08.109. Farnstrom F., 2000, SIGKDD EXPLORATIONS, V2, P51, DOI DOI 10.1145/360402.360419. Feng JX, 2019, PHYS REV E, V100, DOI 10.1103/PhysRevE.100.033308. Feng JX, 2018, ACTA MATER, V159, P296, DOI 10.1016/j.actamat.2018.08.026. Fernando WAM, 2020, MINER ENG, V151, DOI 10.1016/j.mineng.2020.106334. Filo S, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11319-1. Floriello D., 2019, OFFSH MED C EXH RAV. Fokina D, 2020, PHYS REV E, V101, DOI 10.1103/PhysRevE.101.043308. Freire-Gormaly M, 2015, MICROPOR MESOPOR MAT, V207, P84, DOI 10.1016/j.micromeso.2015.01.002. Frid-Adar M, 2018, NEUROCOMPUTING, V321, P321, DOI 10.1016/j.neucom.2018.09.013. Gandomi AH, 2012, COMMUN NONLINEAR SCI, V17, P4831, DOI 10.1016/j.cnsns.2012.05.010. Ganji D.D., 2015, APPL NONLINEAR SYSTE. Gao ML, 2015, PHYS REV E, V91, DOI 10.1103/PhysRevE.91.013308. Garfi G, 2020, GEOPHYS RES LETT, V47, DOI 10.1029/2019GL086380. Gerber AG, 2013, PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 7. Goldberg E, 2015, ENVIRON SCI-NANO, V2, P352, DOI 10.1039/c5en00050e. Golsanami N, 2014, J PETROL SCI ENG, V114, P38, DOI 10.1016/j.petrol.2013.12.003. Gomes JLMA, 2017, INT J NUMER METH FL, V83, P431, DOI 10.1002/fld.4275. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Gostick JT, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.023307. Gramatica P, 2007, QSAR COMB SCI, V26, P694, DOI 10.1002/qsar.200610151. Gray J., 2008, QUEUE, V6, P18. GUENOCHE A, 1991, J CLASSIF, V8, P5, DOI 10.1007/BF02616245. Gupta I., 2017, SPWLA 58 ANN LOGG S. Haider M., 2015, GETTING STARTED DATA. Hajizadeh A, 2012, TRANSPORT POROUS MED, V94, P859, DOI 10.1007/s11242-012-0028-7. Hall-Beyer M., 2017, GLCM TEXTURE TUTORIA. Hall-Beyer M, 2017, INT J REMOTE SENS, V38, P1312, DOI 10.1080/01431161.2016.1278314. Hamerly G, 2004, ADV NEUR IN, V16, P281. Han Y., 2016, DEEP RESIDUAL LEARNI. Hanspal NS, 2013, J HYDROINFORM, V15, P540, DOI 10.2166/hydro.2012.119. HARALICK RM, 1973, IEEE T GEOSCI REMOTE, VGE11, P171, DOI 10.1109/TGE.1973.294312. HARALICK RM, 1979, P IEEE, V67, P786, DOI 10.1109/PROC.1979.11328. HARALICK RM, 1973, IEEE T SYST MAN CYB, VSMC3, P610, DOI 10.1109/TSMC.1973.4309314. Hassoun M H, 1995, FUNDAMENTALS ARTIFIC. Hassouna MS, 2007, IEEE T PATTERN ANAL, V29, P1563, DOI 10.1109/TPAMI.2007.1154. Havens TC, 2013, 2013 IEEE EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING, P396, DOI 10.1109/ISSNIP.2013.6529823. He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90. Helaleh AH, 2016, J NAT GAS SCI ENG, V30, P388, DOI 10.1016/j.jngse.2016.02.019. Hennigh O., 2017, ARXIV170509036STATML. Higuera P, 2014, COAST ENG, V83, P243, DOI 10.1016/j.coastaleng.2013.08.010. Holland O, 2016, 2016 23RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), DOI 10.1109/ICT.2016.7500442. Hommel J, 2018, TRANSPORT POROUS MED, V124, P589, DOI 10.1007/s11242-018-1086-2. Howard R, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1007372. Hussain M., 2011, Proceedings of the 2011 Eighth International Conference on Computer Graphics, Imaging and Visualization (CGIV 2011), P145, DOI 10.1109/CGIV.2011.31. Iassonov P, 2009, WATER RESOUR RES, V45, DOI 10.1029/2009WR008087. Isola P, 2017, PROC CVPR IEEE, P5967, DOI 10.1109/CVPR.2017.632. Itza Balam R, 2018, PURE APPL GEOPHYS, V175, P2975, DOI 10.1007/s00024-018-1806-0. Izadmehr M, 2016, J NAT GAS SCI ENG, V30, P364, DOI 10.1016/j.jngse.2016.02.026. Jaafar SFB, 2005, 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research, Proceedings, P135. Jablonka KM, 2020, CHEM REV, V120, P8066, DOI 10.1021/acs.chemrev.0c00004. Jagadish HV, 2014, COMMUN ACM, V57, P86, DOI 10.1145/2611567. Janssens N, 2020, MATERIALS, V13, DOI 10.3390/ma13061397. Johnson Justin, 2016, Computer Vision - ECCV 2016. 14th European Conference. Proceedings: LNCS 9906, P694, DOI 10.1007/978-3-319-46475-6\_43. Kamrava S, 2020, TRANSPORT POROUS MED, V131, P427, DOI 10.1007/s11242-019-01352-5. Kamrava S, 2019, NEURAL NETWORKS, V118, P310, DOI 10.1016/j.neunet.2019.07.009. Karimpouli S, 2019, COMPUT GEOSCI-UK, V126, P142, DOI 10.1016/j.cageo.2019.02.003. Karras T, 2019, PROC CVPR IEEE, P4396, DOI 10.1109/CVPR.2019.00453. Karsanina MV, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.265501. Karsanina MV, 2018, GEODERMA, V314, P138, DOI 10.1016/j.geoderma.2017.10.055. KEYS RG, 1981, IEEE T ACOUST SPEECH, V29, P1153, DOI 10.1109/TASSP.1981.1163711. Khan F, 2016, SOLID EARTH, V7, P481, DOI 10.5194/se-7-481-2016. Kim J, 2016, PROC CVPR IEEE, P1646, DOI 10.1109/CVPR.2016.182. King C, 2011, DIGIT INVEST, V8, pS111, DOI 10.1016/j.diin.2011.05.013. Kingma D. P, 2013, ARXIV13126114. Kodinariya T.M., 2013, INT J ADV RES COMPUT, V1, P90, DOI DOI 10.3724/SP.J.1087.2010.01995. Koestel J, 2018, VADOSE ZONE J, V17, DOI 10.2136/vzj2017.03.0062. KOHONEN T, 1990, P IEEE, V78, P1464, DOI 10.1109/5.58325. Kolditz O, 2012, ENVIRON EARTH SCI, V67, P589, DOI 10.1007/s12665-012-1546-x. Kulikowski J.L., 2019, RES DEV MAT SCI, V11, DOI {[}10.31031/rdms.2019.11.000769, DOI 10.31031/RDMS.2019.11.000769]. Langfelder P, 2008, BIOINFORMATICS, V24, P719, DOI 10.1093/bioinformatics/btm563. Langone R, 2015, ENG APPL ARTIF INTEL, V37, P268, DOI 10.1016/j.engappai.2014.09.008. Lawrence S, 1997, IEEE T NEURAL NETWOR, V8, P98, DOI 10.1109/72.554195. Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791. Lee J., 2002, P 16 INT PAR DISTR P. Leu L, 2014, TRANSPORT POROUS MED, V105, P451, DOI 10.1007/s11242-014-0378-4. Li BH, 2017, J PETROL SCI ENG, V153, P88, DOI 10.1016/j.petrol.2017.03.037. Li H, 2017, IEEE GEOSCI REMOTE S, V14, P2395, DOI 10.1109/LGRS.2017.2766130. Li T, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09427-z. Li Y, 2019, J PETROL SCI ENG, V174, P968, DOI 10.1016/j.petrol.2018.12.004. Li YT, 2017, ADV NEUR IN, V30. Li ZJ, 2017, J APPL GEOPHYS, V144, P69, DOI 10.1016/j.jappgeo.2017.04.013. Liang YT, 2019, POWDER TECHNOL, V343, P512, DOI 10.1016/j.powtec.2018.11.061. Lie K. A., 2019, INTRO RESERVOIR SIMU. Lippmann-Pipke J, 2017, COMPUT GEOSCI-UK, V101, P21, DOI 10.1016/j.cageo.2017.01.002. Liu PS, 2020, MATER DESIGN, V188, DOI 10.1016/j.matdes.2019.108413. Liu SY, 2019, ENRGY PROCED, V158, P6164, DOI 10.1016/j.egypro.2019.01.493. Livni R, 2014, ADV NEUR IN, V27. MacQueen J., 1967, PROC 15 BERKELEY S M, P281, DOI DOI 10.1007/S11665-016-2173-6. Manjon JV, 2010, MED IMAGE ANAL, V14, P784, DOI 10.1016/j.media.2010.05.010. Marques V.G., 2019, INT C SYST SIGN IM P, DOI {[}10.1109/iwssip.2019.8787327, DOI 10.1109/IWSSIP.2019.8787327]. Massara E.P., 2019, INT MIN AN IMA ROCK. Meng J, 2018, WATER RESOUR RES, V54, P7733, DOI 10.1029/2018WR022676. Metzner R, 2015, PLANT METHODS, V11, DOI 10.1186/s13007-015-0060-z. Michler C, 2013, INT J NUMER METH BIO, V29, P217, DOI 10.1002/cnm.2520. MILLIGAN GW, 1979, PSYCHOMETRIKA, V44, P343, DOI 10.1007/BF02294699. Mishra P, 2019, TENCON IEEE REGION, P2087, DOI 10.1109/TENCON.2019.8929465. Moeskops P, 2016, IEEE T MED IMAGING, V35, P1252, DOI 10.1109/TMI.2016.2548501. Mohammadi AH, 2012, IND ENG CHEM RES, V51, P1062, DOI 10.1021/ie201904r. Mollajan A., 2013, 47 US ROCK MECH GEOM. Mondal A, 2010, ADV WATER RESOUR, V33, P241, DOI 10.1016/j.advwatres.2009.10.010. Moradi M, 2019, CARBONATE EVAPORITE, V34, P335, DOI 10.1007/s13146-017-0388-8. Morii F, 2006, INT C PATT RECOG, P198. Mosser L., 2018, STAT DATA SCI, V125, DOI {[}10.1007/s11242-018-1039-9, DOI 10.1007/S11242-018-1039-9]. Mosser L, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.043309. Mu DQ, 2007, J POROUS MAT, V14, P49, DOI 10.1007/s10934-006-9007-0. MURTAGH F, 1984, DISCRETE APPL MATH, V7, P191, DOI 10.1016/0166-218X(84)90066-0. Murtagh F, 2012, WIRES DATA MIN KNOWL, V2, P86, DOI 10.1002/widm.53. Naldi M, 2016, EUR J INFORM SYST, V25, P16, DOI 10.1057/ejis.2014.34. Napoleon D, 2011, INT J COMPUTER APPL, V13, P41, DOI DOI 10.5120/1789-2471. Nekouei M, 2019, P INT COMP SOFTW APP, P80, DOI 10.1109/COMPSAC.2019.10187. Ni H., 2020, USING UNSUPERVISED M, DOI {[}10.1029/2020wr027473, DOI 10.1029/2020WR027473]. Nicklow J, 2010, J WATER RES PLAN MAN, V136, P412, DOI 10.1061/(ASCE)WR.1943-5452.0000053. Nielsen F., 2016, HIERARCHICAL CLUSTER, P195, DOI {[}DOI 10.1007/978-3-319-21903-5\_8, 10.1007/978-3-319-21903-5\_8]. Nishiyama N, 2017, J GEOPHYS RES-SOL EA, V122, P6955, DOI 10.1002/2016JB013793. Niu YF, 2020, WATER RESOUR RES, V56, DOI 10.1029/2019WR026597. Njikam ANS, 2016, APPL INTELL, V45, P75, DOI 10.1007/s10489-015-0744-0. Okabe H, 2005, J PETROL SCI ENG, V46, P121, DOI 10.1016/j.petrol.2004.08.002. Oswald SE, 2015, PHYSCS PROC, V69, P237, DOI 10.1016/j.phpro.2015.07.033. OTSU N, 1979, IEEE T SYST MAN CYB, V9, P62, DOI 10.1109/TSMC.1979.4310076. Pascanu R., 2013, P ICML. Prodanovic M., 2015, DIGITAL ROCKS PORTAL. Prodanovic M., 2015, DIGITAL ROCKS PORTAL, DOI {[}10.17612/P7CC7K, DOI 10.17612/P7CC7K]. Rabbani A, 2020, ADV WATER RESOUR, V146, DOI 10.1016/j.advwatres.2020.103787. Rabbani A, 2019, ADV WATER RESOUR, V126, P116, DOI 10.1016/j.advwatres.2019.02.012. Rabbani A, 2019, ADV WATER RESOUR, V123, P70, DOI 10.1016/j.advwatres.2018.11.003. Rabbani A, 2017, J NAT GAS SCI ENG, V42, P85, DOI 10.1016/j.jngse.2017.02.045. Rabbani A, 2014, J PETROL SCI ENG, V123, P164, DOI 10.1016/j.petrol.2014.08.020. Rashidi S, 2018, RENEW SUST ENERG REV, V91, P229, DOI 10.1016/j.rser.2018.03.092. Rasmussen AF, 2021, COMPUT MATH APPL, V81, P159, DOI 10.1016/j.camwa.2020.05.014. Raykov YP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162259. Rew R., 1997, NETCDF USERS GUIDE, V1, P997. Riasi MS, 2016, TRANSPORT POROUS MED, V115, P519, DOI 10.1007/s11242-016-0720-0. Rokhforouz MR, 2016, SPEC TOP REV POROUS, V7, P149, DOI 10.1615/SpecialTopicsRevPorousMedia.2016017291. Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4\_28. Rousseeuw P.J., 2005, ROBUST REGRESSION OU, V589. Ruboczki ES, 2015, INTERDISCIP DESCR CO, V13, P9, DOI 10.7906/indecs.13.1.2. Ruder S., ARXIV160904747. Runchal A.K., 2020, 50 YEARS CFD ENG SCI, P779, DOI {[}10.1007/978-981-15-2670-1\_22, DOI 10.1007/978-981-15-2670-1\_22]. Sahoo S, 2017, WATER RESOUR RES, V53, P3878, DOI 10.1002/2016WR019933. Salehinejad H, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P3016. Salimans T., 2017, CORR. Sander R, 2017, J NAT GAS SCI ENG, V37, P248, DOI 10.1016/j.jngse.2016.11.041. Santos J.E., 2019, ACTIVE LEARNING UPSC. Santos JE, 2020, ADV WATER RESOUR, V138, DOI 10.1016/j.advwatres.2020.103539. Saputelli L., 2019, SPE RES CHAR SIM C E, DOI {[}10.2118/196704-ms, DOI 10.2118/196704-MS]. Sathya R., 2013, International Journal of Advanced Research in Artificial Intelligence, V2, P34. SCHAFER A, 1987, SEDIMENT GEOL, V52, P251, DOI 10.1016/0037-0738(87)90064-9. Scherer D, 2010, LECT NOTES COMPUT SC, V6354, P92, DOI 10.1007/978-3-642-15825-4\_10. Schneider M, 2017, INT J NUMER METH FL, V84, P352, DOI 10.1002/fld.4352. Sessions V., 2006, EFFECTS DATA QUALITY, V6, P485. Settles B, 2009, COMPUTER SCI TECHNIC. Shah A., 2019, EAI ENDORSED T CONTE, V6, DOI {[}10.4108/eai.1-10-2019.160599, DOI 10.4108/EAI.1-10-2019.160599]. Shams R, 2020, J PETROL SCI ENG, V186, DOI 10.1016/j.petrol.2019.106794. Sharma S, 2019, FOUND COMPUT DECIS S, V44, P303, DOI 10.2478/fcds-2019-0016. Shen CP, 2018, WATER RESOUR RES, V54, P8558, DOI 10.1029/2018WR022643. Shen ZT, 2019, IEEE T NUCL SCI, V66, P2017, DOI 10.1109/TNS.2019.2925840. Sheppard AP, 2004, PHYSICA A, V339, P145, DOI 10.1016/j.physa.2004.03.057. Sheskin D.J, 2020, HDB PARAMETRIC NONPA. Shokrollahi A, 2015, J PETROL SCI ENG, V130, P26, DOI 10.1016/j.petrol.2015.03.013. Shorten C, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0197-0. Singh A, 2020, GEOPHYS RES LETT, V47, DOI 10.1029/2020GL088594. Singh A, 2019, WATER RESOUR RES, V55, P1912, DOI 10.1029/2018WR023342. Singh R, 2011, BUILD ENVIRON, V46, P2603, DOI 10.1016/j.buildenv.2011.06.019. Srinivasan S, 2019, COMPUTAT GEOSCI, V23, P617, DOI 10.1007/s10596-019-9811-7. Stibel J.M., 2006, US Patent, Patent No. 7089236. Sun JB, 2019, CONSTR BUILD MATER, V207, P440, DOI 10.1016/j.conbuildmat.2019.02.117. Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742. Syarif I, 2016, TELKOMNIKA, V14, P1502, DOI {[}10.12928/telkomnika.v14i4.3956, DOI 10.12928/TELKOMNIKA.V14I4.3956]. Tahmasebi P, 2020, ADV WATER RESOUR, V142, DOI 10.1016/j.advwatres.2020.103619. Tahmasebi P, 2016, WATER RESOUR RES, V52, P2074, DOI 10.1002/2015WR017806. Tahmasebi P, 2016, WATER RESOUR RES, V52, P2099, DOI 10.1002/2015WR017807. Tahmasebi P, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.078002. Tahmasebi P, 2012, PHYS REV E, V85, DOI 10.1103/PhysRevE.85.066709. Takbiri-Borujeni A, 2020, COMPUT FLUIDS, V201, DOI 10.1016/j.compfluid.2020.104475. Thibault G, 2014, IEEE T BIO-MED ENG, V61, P630, DOI 10.1109/TBME.2013.2284600. Thomson P.-R., 2017, FALL M AM GEOPH UN. Tibshirani R, 2001, J ROY STAT SOC B, V63, P411, DOI 10.1111/1467-9868.00293. Trichakis IC, 2011, WATER RESOUR MANAG, V25, P1143, DOI 10.1007/s11269-010-9628-6. Tzanakou E.M., 2017, SUPERVISED UNSUPERVI. Valavi H, 2018, SYMP VLSI CIRCUITS, P141. van der Aalst W. M. P, 2016, PROCESS MINING DATA, V2nd, DOI DOI 10.1007/978-3-662-49851-4. van der Linden JH, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.022904. Vandewalle P., 2019, WIC IEEE SP S INF TH. Varfolomeev I, 2019, COMPUTERS, V8, DOI 10.3390/computers8040072. VINCENT L, 1991, IEEE T PATTERN ANAL, V13, P583, DOI 10.1109/34.87344. Wan L., 2013, P 30 INT C MACHINE L, P1058, DOI DOI 10.5555/3042817.3043055. Wang FQ, 2014, ENERG CONVERS MANAGE, V83, P159, DOI 10.1016/j.enconman.2014.03.068. Wang L, 2020, J POROUS MEDIA, V23, P731, DOI 10.1615/JPorMedia.2020033000. Wang X., 2011, INT C WEB INF SYST M, DOI {[}10.1007/978-3-642-23982-3\_23, DOI 10.1007/978-3-642-23982-3\_23]. Wang Y.D., 2019, DIVERSE SUPER RESOLU, DOI {[}10.17612/s3m9-e024, DOI 10.17612/S3M9-E024]. Wang Y.D., 2019, SUPER RESOLUTION DAT, DOI {[}10.17612/P7D38H, DOI 10.17612/P7D38H]. Wang YD, 2019, J PETROL SCI ENG, V182, DOI 10.1016/j.petrol.2019.106261. Wang YD, 2019, ADV WATER RESOUR, V126, P1, DOI 10.1016/j.advwatres.2019.02.002. Wang YK, 2019, COMPUT GEOSCI-UK, V133, DOI 10.1016/j.cageo.2019.104314. Wang YZ, 2018, MATH GEOSCI, V50, P781, DOI 10.1007/s11004-018-9743-0. Wang Z, 2004, IEEE T IMAGE PROCESS, V13, P600, DOI 10.1109/TIP.2003.819861. Ward AR, 2020, CURR OPIN STRUC BIOL, V60, P85, DOI 10.1016/j.sbi.2019.12.008. WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967. Weber AZ, 2011, J APPL ELECTROCHEM, V41, P1137, DOI 10.1007/s10800-011-0348-2. Wiegmann A., 2005, AFS ANN M. Wildenschild D, 2002, J HYDROL, V267, P285, DOI 10.1016/S0022-1694(02)00157-9. Wildenschild D, 2013, ADV WATER RESOUR, V51, P217, DOI 10.1016/j.advwatres.2012.07.018. Wong K.W., 2005, INT C COMP INT MOD C. Wu HY, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-56309-x. Wu JL, 2018, SCI BULL, V63, P1215, DOI 10.1016/j.scib.2018.08.006. Yan JB, 2019, WATER RESOUR RES, V55, P632, DOI {[}10.1029/2018WR023044, 10.1029/2018wr023044]. Yang G, 2015, PLASMA SCI TECHNOL, V17, P656, DOI 10.1088/1009-0630/17/8/08. Yang QH, 2020, J PETROL SCI ENG, V192, DOI 10.1016/j.petrol.2020.107238. Yang XS, 2014, NATURE-INSPIRED OPTIMIZATION ALGORITHMS, P1. Yao W, 2019, BIOINFORMATICS, V35, P4181, DOI 10.1093/bioinformatics/btz186. Yassin MR, 2014, J DISPER SCI TECHNOL, V35, P1407, DOI 10.1080/01932691.2013.844074. Yin HJ, 2008, NEURAL NETWORKS, V21, P160, DOI 10.1016/j.neunet.2007.12.027. Yin X, 2019, CHEM ENG SCI, V195, P820, DOI 10.1016/j.ces.2018.10.029. Yu DJ, 2014, LECT NOTES ARTIF INT, V8818, P364, DOI 10.1007/978-3-319-11740-9\_34. Zabihi R, 2011, J PETROL SCI ENG, V78, P575, DOI 10.1016/j.petrol.2011.08.007. Zahasky C, 2018, ADV WATER RESOUR, V115, P1, DOI 10.1016/j.advwatres.2018.03.002. Zeynelgil HL, 2002, INT J ELEC POWER, V24, P345, DOI 10.1016/S0142-0615(01)00049-7. Zhang T.R., 2018, J ZHEJIANG U ENG SCI, V52. Zhang W, 2012, LECT NOTES COMPUT SC, V7572, P428, DOI 10.1007/978-3-642-33718-5\_31. Zhang YL, 2019, J MICROSC-OXFORD, V275, P82, DOI 10.1111/jmi.12805. Zhao DF, 2014, IEEE INT CONF BIG DA, P231, DOI 10.1109/BigData.2014.7004238. Zhao Y., 2017, ABU DHABI INT PETROL, DOI 10.2118/188228-ms. Zhou N, 2010, FLOW MEAS INSTRUM, V21, P262, DOI 10.1016/j.flowmeasinst.2010.05.002. Zhu HL, 2009, IEEE T COMMUN, V57, P2734, DOI 10.1109/TCOMM.2009.09.080067.}, Number-of-Cited-References = {313}, Times-Cited = {5}, Usage-Count-Last-180-days = {13}, Usage-Count-Since-2013 = {43}, Journal-ISO = {Water Resour. Res.}, Doc-Delivery-Number = {WN7TP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000711970600033}, DA = {2023-04-22}, } @article{ WOS:000592240100001, Author = {Ward, Owen G. and Huang, Zhen and Davison, Andrew and Zheng, Tian}, Title = {Next waves in veridical network embedding}, Journal = {STATISTICAL ANALYSIS AND DATA MINING}, Year = {2021}, Volume = {14}, Number = {1}, Pages = {5-17}, Month = {FEB}, Abstract = {Embedding nodes of a large network into a metric (e.g., Euclidean) space has become an area of active research in statistical machine learning, which has found applications in natural and social sciences. Generally, a representation of a network object is learned in a Euclidean geometry and is then used for subsequent tasks regarding the nodes and/or edges of the network, such as community detection, node classification and link prediction. Network embedding algorithms have been proposed in multiple disciplines, often with domain-specific notations and details. In addition, different measures and tools have been adopted to evaluate and compare the methods proposed under different settings, often dependent of the downstream tasks. As a result, it is challenging to study these algorithms in the literature systematically. Motivated by the recently proposed PCS framework for Veridical Data Science, we propose a framework for network embedding algorithms and discuss how the principles of predictability, computability, and stability (PCS) apply in this context. The utilization of this framework in network embedding holds the potential to motivate and point to new directions for future research.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Zheng, T (Corresponding Author), Columbia Univ, Dept Stat, New York, NY 10027 USA. Ward, Owen G.; Huang, Zhen; Davison, Andrew; Zheng, Tian, Columbia Univ, Dept Stat, New York, NY 10027 USA. Zheng, Tian, Columbia Univ, Data Sci Inst, New York, NY USA.}, DOI = {10.1002/sam.11486}, EarlyAccessDate = {NOV 2020}, ISSN = {1932-1864}, EISSN = {1932-1872}, Keywords = {feature engineering; latent variable models; network embedding; representational learning; veridical data science}, Keywords-Plus = {PREDICTION; MODELS; CONSISTENCY; INFERENCE; GRAPHS}, Research-Areas = {Computer Science; Mathematics}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Statistics \& Probability}, Author-Email = {tian.zheng@columbia.edu}, Affiliations = {Columbia University; Columbia University}, ORCID-Numbers = {Zheng, Tian/0000-0003-4889-0391 Ward, Owen G./0000-0002-9678-3542}, Funding-Acknowledgement = {National Science Foundation Division of Computing and Communication Foundations {[}1740833]; Division of Information and Intelligent Systems {[}1741191]}, Funding-Text = {National Science Foundation Division of Computing and Communication Foundations, Grant/Award Number: 1740833; Division of Information and Intelligent Systems, Grant/Award Number: 1741191}, Cited-References = {Ahmed A, 2013, P 22 INT C WORLD WID, P37. {[}Anonymous], 2011, PROC ACM INT C WEB S. {[}Anonymous], 1991, P NEURO NIMES. Backstrom L., 2006, ACM INT C KNOWLEDGE, P44, DOI DOI 10.1145/1150402.1150412. Belkin M, 2003, NEURAL COMPUT, V15, P1373, DOI 10.1162/089976603321780317. Borgs C, 2019, ANN PROBAB, V47, P2754, DOI 10.1214/18-AOP1320. Borgs C, 2018, J MACH LEARN RES, V18, P1. Cai TT, 2015, ANN STAT, V43, P1027, DOI 10.1214/14-AOS1290. Caron F, 2017, J ROY STAT SOC B, V79, P1295, DOI 10.1111/rssb.12233. Crane H, 2018, J AM STAT ASSOC, V113, P1311, DOI 10.1080/01621459.2017.1341413. Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727. Du L, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2086. Gilmer J, 2017, PR MACH LEARN RES, V70. Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754. Hamilton WL, 2017, ADV NEUR IN, V30. Handcock MS, 2007, J ROY STAT SOC A STA, V170, P301, DOI 10.1111/j.1467-985X.2007.00471.x. Hoff PD, 2002, J AM STAT ASSOC, V97, P1090, DOI 10.1198/016214502388618906. Kipf T. N., 2017, P INT C LEARN REPR. Klikauer T, 2016, TRIPLEC-COMMUN CAPIT, V14, P260. Knyazev AV, 2001, SIAM J SCI COMPUT, V23, P517, DOI 10.1137/S1064827500366124. Kossinets G, 2006, SCIENCE, V311, P88, DOI 10.1126/science.1116869. Lecun, 2014, ABS13126203 CORR, P1, DOI DOI 10.48550/ARXIV.1312.6203. Lei J, 2015, ANN STAT, V43, P215, DOI 10.1214/14-AOS1274. Li T., 2016, ARXIV161204717. Li Y., 2015, INT C LEARN REPR. Liang B, 2015, INT CONF SOFTW ENG, P894, DOI 10.1109/ICSESS.2015.7339198. Lovasz L., 2012, LARGE NETWORKS GRAPH, V60, DOI 10.1090/coll/060. Lu LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027. McCormick TH, 2015, J AM STAT ASSOC, V110, P1684, DOI 10.1080/01621459.2014.991395. Mikolov T., 2013, P NAACL 2013, P2292, DOI DOI 10.3109/10826089109058901. Mikolov T, 2013, ARXIV PREPRINT ARXIV. Mikolov T., 2013, ADV NEURAL INFORM PR, V26, P3111, DOI DOI 10.1162/JMLR.2003.3.4-5.951. Mitchell M, 2019, FAT{*}'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P220, DOI 10.1145/3287560.3287596. Morin F., 2005, INT WORKSHOP ARTIFIC, P246. Nguyen GH, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P969, DOI 10.1145/3184558.3191526. Nowicki K, 2001, J AM STAT ASSOC, V96, P1077, DOI 10.1198/016214501753208735. Orbanz P., 2017, ARXIV PREPRINT ARXIV. Perozzi B, 2014, KDD, V20, P701, DOI DOI 10.1145/2623330.2623732. Qiu JZ, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P459, DOI 10.1145/3159652.3159706. Raftery AE, 2012, J COMPUT GRAPH STAT, V21, P901, DOI 10.1080/10618600.2012.679240. Recht Benjamin, 2011, ADV NEURAL INFORM PR, V24, P693. Rubin-Delanchy P, 2017, STAT INTERPRETATION. Salter-Townshend M, 2013, COMPUT STAT DATA AN, V57, P661, DOI 10.1016/j.csda.2012.08.004. Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605. Smith AL, 2019, STAT SCI, V34, P428, DOI {[}10.1214/19-STS702, 10.1214/19-sts702]. Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093. Tu W., 2016, PROC INT JOINT C ART, P3889. Vazquez A, 2003, NAT BIOTECHNOL, V21, P697, DOI 10.1038/nbt825. Veitch V., 2015, ARXIV151203099. Veitch V, 2019, ANN STAT, V47, P3274, DOI 10.1214/18-AOS1778. Velikovi P., 2018, P INT C LEARN REPR. von Luxburg U, 2008, ANN STAT, V36, P555, DOI 10.1214/009053607000000640. Wang DX, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1225, DOI 10.1145/2939672.2939753. Yang C, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P2111. Yu B, 2020, P NATL ACAD SCI USA, V117, P3920, DOI 10.1073/pnas.1901326117. Zhang Ziwei, 2018, ARXIV PREPRINT ARXIV. Zhou LK, 2018, AAAI CONF ARTIF INTE, P571.}, Number-of-Cited-References = {57}, Times-Cited = {1}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {5}, Journal-ISO = {Stat. Anal. Data Min.}, Doc-Delivery-Number = {PT8YJ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000592240100001}, OA = {Green Submitted, Bronze}, DA = {2023-04-22}, } @article{ WOS:000659467900001, Author = {Scala, Enrico and Vallati, Mauro}, Title = {Effective grounding for hybrid planning problems represented in PDDL}, Journal = {KNOWLEDGE ENGINEERING REVIEW}, Year = {2021}, Volume = {36}, Month = {JUN 10}, Abstract = {Automated planning is the field of Artificial Intelligence (AI) that focuses on identifying sequences of actions allowing to reach a goal state from a given initial state. The need of using such techniques in real-world applications has brought popular languages for expressing automated planning problems to provide direct support for continuous and discrete state variables, along with changes that can be either instantaneous or durative. PDDL+ (Planning Domain Definition Language +) models support the encoding of such representations, but the resulting planning problems are notoriously difficult for AI planners to cope with due to non-linear dependencies arising from the variables and infinite search spaces. This difficulty is exacerbated by the potentially huge fully ground representations used by modern planners in order to effectively explore the search space, which can make some problems impossible to tackle. This paper investigates two grounding techniques for PDDL+ problems, both aimed at reducing the size of the full ground representation by reasoning over the lifted, more abstract problem structure. The first method extends the simple mechanism of invariant analysis to limit the groundings of operators upfront. The second method proposes to tackle the grounding process through a PDDL+ to classical planning abstraction; this allows us to leverage the amount of research done in the classical planning area. Our empirical analysis studies the effect of these novel approaches over both real-world hybrid applications and synthetic PDDL+ problems took from standard benchmarks of the planning community; our results reveal that not only the techniques improve the running time of previous grounding mechanisms but also let the planner extend the reach to problems that were not solvable before.}, Publisher = {CAMBRIDGE UNIV PRESS}, Address = {32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA}, Type = {Review}, Language = {English}, Affiliation = {Scala, E (Corresponding Author), Univ Brescia, Dept Informat Engn, Via Branze 38, I-25123 Brescia, Italy. Scala, Enrico, Univ Brescia, Dept Informat Engn, Via Branze 38, I-25123 Brescia, Italy. Vallati, Mauro, Univ Huddersfield, Sch Comp \& Engn, Huddersfield HD1 3DH, W Yorkshire, England.}, DOI = {10.1017/S0269888921000072}, Article-Number = {e9}, ISSN = {0269-8889}, EISSN = {1469-8005}, Keywords-Plus = {URBAN TRAFFIC MANAGEMENT; COMPETITION; DOMAINS}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence}, Author-Email = {enricos83@gmail.com m.vallati@hud.ac.uk}, Affiliations = {University of Brescia; University of Huddersfield}, ResearcherID-Numbers = {Scala, Enrico/AAF-5974-2019 }, ORCID-Numbers = {Scala, Enrico/0000-0003-2274-875X Vallati, Mauro/0000-0002-8429-3570}, Funding-Acknowledgement = {UKRI Future Leaders Fellowship {[}MR/T041196/1]; UKRI {[}MR/T041196/1] Funding Source: UKRI}, Funding-Text = {Mauro Vallati was supported by a UKRI Future Leaders Fellowship {[}grant number MR/T041196/1].}, Cited-References = {Antoniou G, 2019, TRANSPORT RES C-EMER, V98, P284, DOI 10.1016/j.trc.2018.12.005. Areces C, 2014, P I C AUTOMAT PLAN S, P11. Balduccini M, 2017, THEOR PRACT LOG PROG, V17, P591, DOI 10.1017/S1471068417000187. Barrett C., 2018, HDB MODEL CHECKING, P305, DOI DOI 10.1007/978-3-319-10575-8\_11. Bertolucci R, 2019, LECT NOTES COMPUT SC, V11946, P135, DOI 10.1007/978-3-030-35166-3\_10. Bit-Monnot A, 2018, LECT NOTES COMPUT SC, V11008, P30, DOI 10.1007/978-3-319-98334-9\_3. Biundo S., 2003, PLANET ROADMAP. Bofill M, 2016, P I C AUTOMAT PLAN S, P56. Bryce D, 2015, AAAI CONF ARTIF INTE, P3247. Cashmore M, 2020, J ARTIF INTELL RES, V67, P235. Chrpa L., 2015, P SOCS. Chrpa L, 2018, J EXP THEOR ARTIF IN, V30, P831, DOI 10.1080/0952813X.2018.1509377. Coles A., 2010, ICAPS 2010 P 20 INT. Coles A., 2011, P INT C AUT PLANN SC. Della Penna G., 2009, ICAPS. Fox M., 2018, uS Patent App, Patent No. {[}15/541,381, 15541381]. Fox M, 2006, J ARTIF INTELL RES, V27, P235, DOI 10.1613/jair.2044. Franco S, 2019, LECT NOTES COMPUT SC, V11540, P491, DOI 10.1007/978-3-030-22750-0\_42. Garrido A., 2012, P 22 INT C AUT PLANN. Ghallab M., 2004, AUTOMATED PLANNING T. Gnad D, 2019, AAAI CONF ARTIF INTE, P7602. Helmert M, 2009, ARTIF INTELL, V173, P503, DOI 10.1016/j.artint.2008.10.013. Henzinger TA, 1996, IEEE S LOG, P278, DOI 10.1109/LICS.1996.561342. Hoffmann J, 2001, J ARTIF INTELL RES, V14, P253, DOI 10.1613/jair.855. Hoffmann J, 2003, J ARTIF INTELL RES, V20, P291, DOI 10.1613/jair.1144. Kaufmann B, 2016, AI MAG, V37, P25, DOI 10.1609/aimag.v37i3.2672. Kiam J.J., 2020, ICAPS, P412. Koehler J., 2000, PUK. Lifschitz V., 2008, AAAI, P1594. Long D, 2003, J ARTIF INTELL RES, V20, P1. McCluskey T. L., 2017, P KNOWL CAPT C K CAP. McCluskey TL, 2017, P I C AUTOMAT PLAN S, P391. McDermott D. V., 2003, Proceedings, Thirteenth International Conference on Automated Planning and Scheduling, P143. Newton M A Hakim, 2007, P ICAPS. Parkinson S, 2014, ENG APPL ARTIF INTEL, V30, P63, DOI 10.1016/j.engappai.2014.02.002. Petrick R. P. A., 2013, P 23 INT C AUT PLANN. Piotrowski W, 2016, AAAI CONF ARTIF INTE, P4254. Pommerening F., 2020, P 30 INT C AUT PLANN, P80. Ramirez M, 2018, PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), P1318. Ridder B., 2014, P 24 INT C AUT PLANN. Riddle P.J., 2015, P INT S COMB SEARCH. Robinson N., 2008, P INT C AUT PLANN SC, P296. Scala E., 2020, P ICTAI. Scala E., 2016, PROC IJCAI, P3228. Scala E., 2020, ICAPS, P226. Scala E, 2020, J ARTIF INTELL RES, V68, P691. Scala E, 2016, FRONT ARTIF INTEL AP, V285, P655, DOI 10.3233/978-1-61499-672-9-655. Shin JA, 2005, ARTIF INTELL, V166, P194, DOI 10.1016/j.artint.2005.04.001. Slaney J, 2013, P INT JOINT C ART IN. Stuckey P. J., 2014, P INT C AUT PLANN SC. Vallati M., 2020, ARXIV PREPRINT ARXIV. Vallati M, 2019, PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP `19), P197, DOI 10.1145/3360901.3364416. Vallati M, 2016, AAAI CONF ARTIF INTE, P3188. Vallati M, 2018, KNOWL ENG REV, V33, DOI 10.1017/S0269888918000012. Vallati M, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P1704. Younes HLS, 2003, J ARTIF INTELL RES, V20, P405.}, Number-of-Cited-References = {56}, Times-Cited = {1}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {2}, Journal-ISO = {Knowl. Eng. Rev.}, Doc-Delivery-Number = {SP1XY}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000659467900001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000701260600016, Author = {Parkinson, C. and Matthams, C. and Foley, K. and Spezi, E.}, Title = {Artificial intelligence in radiation oncology: A review of its current status and potential application for the radiotherapy workforce}, Journal = {RADIOGRAPHY}, Year = {2021}, Volume = {27}, Number = {S1, S1}, Pages = {S63-S68}, Abstract = {Objective: Radiation oncology is a continually evolving speciality. With the development of new imaging modalities and advanced imaging processing techniques, there is an increasing amount of data available to practitioners. In this narrative review, Artificial Intelligence (AI) is used as a reference to machine learning, and its potential, along with current problems in the field of radiation oncology, are considered from a technical position. Key Findings: AI has the potential to harness the availability of data for improving patient outcomes, reducing toxicity, and easing clinical burdens. However, problems including the requirement of complexity of data, undefined core outcomes and limited generalisability are apparent. Conclusion: This original review highlights considerations for the radiotherapy workforce, particularly therapeutic radiographers, as there will be an increasing requirement for their familiarity with AI due to their unique position as the interface between imaging technology and patients. Implications for practice: Collaboration between AI experts and the radiotherapy workforce are required to overcome current issues before clinical adoption. The development of educational resources and standardised reporting of AI studies may help facilitate this. (C) 2021 Published by Elsevier Ltd on behalf of The College of Radiographers.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Parkinson, C (Corresponding Author), 10 Min Y Nant, Pencoed CF35 6YP, Wales. Parkinson, C.; Spezi, E., Cardiff Univ, Sch Engn, Cardiff, Wales. Matthams, C.; Foley, K., Velindre Canc Ctr, Cardiff, Wales.}, DOI = {10.1016/j.radi.2021.07.012}, EarlyAccessDate = {SEP 2021}, ISSN = {1078-8174}, EISSN = {1532-2831}, Keywords = {Artificial intelligence; Advanced image processing; Radiation oncology; Radiography; Machine learning; Data science}, Keywords-Plus = {TARGET VOLUME DELINEATION; ADAPTIVE RADIOTHERAPY; LEARNING ALGORITHM; ONE CYCLE; PET; SEGMENTATION; VALIDATION; TOXICITY; IMAGES; ORGANS}, Research-Areas = {Radiology, Nuclear Medicine \& Medical Imaging}, Web-of-Science-Categories = {Radiology, Nuclear Medicine \& Medical Imaging}, Author-Email = {catherine.matthams@wales.nhs.uk}, Affiliations = {Cardiff University; Velindre Cancer Centre}, ResearcherID-Numbers = {Spezi, Emiliano/A-8917-2008 }, ORCID-Numbers = {Spezi, Emiliano/0000-0002-1452-8813 Foley, Kieran/0000-0002-1299-1759}, Funding-Acknowledgement = {Cancer Research Wales}, Funding-Text = {This work was funded by Cancer Research Wales.}, Cited-References = {Al-qazzaz S, 2021, MULTIMED TOOLS APPL, V80, P993, DOI 10.1007/s11042-020-09661-4. Antico M, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0213002. Bakas S., 2018, SCI DATA. BBC, BBC. Berthon B, 2017, RADIOTHER ONCOL, V122, P242, DOI 10.1016/j.radonc.2016.12.008. Berthon B, 2016, PHYS MED BIOL, V61, P4855, DOI 10.1088/0031-9155/61/13/4855. Brock KK, 2019, SEMIN RADIAT ONCOL, V29, P181, DOI 10.1016/j.semradonc.2019.02.011. Burkov A., 2019, 100 PAGE MACHINE LEA, V1. C. Trials, PEARL PET BAS ADP RA. Cancer Research UK, CANC INC ALL CANC CO. Chou LS, 2020, INT J RADIAT ONCOL, V108, pE335. Clunie D., 2018, SIIM C MACH INT MED. Deist TM, 2020, RADIOTHER ONCOL, V144, P189, DOI 10.1016/j.radonc.2019.11.019. Deist TM, 2018, MED PHYS, V45, P3449, DOI 10.1002/mp.12967. Depeursinge A, 2020, ARXIV200605470. Doran SJ, 2012, RADIOGRAPHICS, V32, P2135, DOI 10.1148/rg.327115138. Downing M, 2020, BARTS HLTH USING PRI. Foley KG, 2018, EUR RADIOL, V28, P428, DOI 10.1007/s00330-017-4973-y. Gillies RJ, 2016, RADIOLOGY, V278, P563, DOI 10.1148/radiol.2015151169. Gooding MJ, 2018, MED PHYS, V45, P5105, DOI 10.1002/mp.13200. Gooding MJ., 2017, ASSESSMENT THORACIC. Han C, 2018, I S BIOMED IMAGING, P734. Hargreaves S, 2019, CLIN ONCOL-UK, V31, P669, DOI 10.1016/j.clon.2019.05.005. Hart JP, 2008, INT J RADIAT ONCOL, V71, P967, DOI 10.1016/j.ijrobp.2008.04.002. Hatt M, 2018, MED IMAGE ANAL, V44, P177, DOI 10.1016/j.media.2017.12.007. Hatt M, 2017, MED PHYS, V44, pE1, DOI 10.1002/mp.12124. Hatt M, 2009, IEEE T MED IMAGING, V28, P881, DOI 10.1109/TMI.2008.2012036. Herz C, 2017, CANCER RES, V77, pE87, DOI 10.1158/0008-5472.CAN-17-0336. Hosny A, 2018, NAT REV CANCER, V18, P500, DOI 10.1038/s41568-018-0016-5. Huber NR, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020200036. Isaksson LJ, 2020, MACHINE LEARNING BAS, V10. Isensee F, 2019, 190408128 ARXIV. Kazeminia S, 2020, ARTIF INTELL MED, V109, DOI 10.1016/j.artmed.2020.101938. Kazmierska J, 2020, RADIOTHER ONCOL, V153, P43, DOI 10.1016/j.radonc.2020.09.054. Kelleher JD, 2019, MIT PRESS ESSENT, P1. Kiljunen T, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10110959. Kitchen A., 2017, DEEP GENERATIVE ADVE. Kratzke L, DIRECTORGANS 2 0. Langlotz CP, 2019, RADIOL-ARTIF INTELL, V1, DOI 10.1148/ryai.2019190058. Liu ZK, 2020, RADIOTHER ONCOL, V153, P172, DOI 10.1016/j.radonc.2020.09.060. Lustberg T, 2017, BRIT J RADIOL, V90, DOI 10.1259/bjr.20160689. Maier-Hein L, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07619-7. Mali SB, 2016, J MAXILLOFAC ORAL SU, V15, P549, DOI 10.1007/s12663-016-0881-y. Menze BH, 2015, IEEE T MED IMAGING, V34, P1993, DOI 10.1109/TMI.2014.2377694. Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007. Mongan J, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020190111. Mongan J, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020200029. Netherton TJ, 2021, ONCOLOGY-BASEL, V99, P124, DOI 10.1159/000512172. O'Connor SD, 2021, RADIOL-ARTIF INTELL, V3, DOI 10.1148/ryai.2021210009. O'Neill TJ, 2021, RADIOL-ARTIF INTELL, V3, DOI 10.1148/ryai.2020200024. Parkinson C, 2018, RADIOTHER ONCOL, V127, pS634, DOI 10.1016/S0167-8140(18)31436-1. Parkinson C, 2019, PHYS MEDICA, V61, P85, DOI 10.1016/j.ejmp.2019.04.020. Pfeifer R, 2001, UNDERSTANDING INTELL. Raschka S., 2019, PYTHON MACHINE LEARN. Reddy J, 2018, INT J RADIAT ONCOL, V102, pS59, DOI 10.1016/j.ijrobp.2018.06.167. Saednia K, 2020, INT J RADIAT ONCOL, V106, P1071, DOI 10.1016/j.ijrobp.2019.12.032. Skripcak T, 2014, RADIOTHER ONCOL, V113, P303, DOI 10.1016/j.radonc.2014.10.001. Spezi E, 2020, EUR J NUCL MED MOL I, V47, pS481. Tang H, 2019, NAT MACH INTELL, V1, P480, DOI 10.1038/s42256-019-0099-z. Topol E., 2019, INDEPENDENT REPORT B, P102. Turing AM., 1950, MIND, VLIX, P433, DOI {[}10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]. van Soest J, 2018, STUD HEALTH TECHNOL, V247, P581, DOI 10.3233/978-1-61499-852-5-581. Vanderhoek M, 2012, J NUCL MED, V53, P4, DOI 10.2967/jnumed.111.093443. Vinod SK, 2016, J MED IMAG RADIAT ON, V60, P393, DOI 10.1111/1754-9485.12462. Wang FF, 2020, LECT NOTES COMPUT SC, V11992, P131, DOI 10.1007/978-3-030-46640-4\_13. Wang TH, 2021, J APPL CLIN MED PHYS, V22, P11, DOI 10.1002/acm2.13121. Wang TH, 2020, PHYS MEDICA, V76, P294, DOI 10.1016/j.ejmp.2020.07.028. Wheeler PA, 2019, PHYS IMAG RADIAT ONC, V10, P41, DOI 10.1016/j.phro.2019.04.005. Wheeler PA, 2019, RADIOTHER ONCOL, V141, P220, DOI 10.1016/j.radonc.2019.08.001. Yogananda CGB, 2020, TOMOGRAPHY, V6, P186, DOI 10.18383/j.tom.2019.00026. Zaidi H, 2010, EUR J NUCL MED MOL I, V37, P2165, DOI 10.1007/s00259-010-1423-3. Zhong ZS, 2018, I S BIOMED IMAGING, P228, DOI 10.1109/ISBI.2018.8363561. Zwanenburg A, 2018, RADIOTHER ONCOL, V127, pS543, DOI 10.1016/S0167-8140(18)31291-X. Zwanenburg A, 2020, RADIOLOGY, V295, P328, DOI 10.1148/radiol.2020191145.}, Number-of-Cited-References = {74}, Times-Cited = {6}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {8}, Journal-ISO = {Radiography}, Doc-Delivery-Number = {UY0ZC}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000701260600016}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000861490200001, Author = {Bradley, William and Kim, Jinhyeun and Kilwein, Zachary and Blakely, Logan and Eydenberg, Michael and Jalvin, Jordan and Laird, Carl and Boukouvala, Fani}, Title = {Perspectives on the integration between first-principles and data-driven modeling}, Journal = {COMPUTERS \& CHEMICAL ENGINEERING}, Year = {2022}, Volume = {166}, Month = {OCT}, Abstract = {Efficiently embedding and/or integrating mechanistic information with data-driven models is essential if it is desired to simultaneously take advantage of both engineering principles and data-science. The opportunity for hybridization occurs in many scenarios, such as the development of a faster model of an accurate high-fidelity computer model; the correction of a mechanistic model that does not fully-capture the physical phenomena of the system; or the integration of a data-driven component approximating an unknown correlation within a mechanistic model. At the same time, different techniques have been proposed and applied in different litera-tures to achieve this hybridization, such as hybrid modeling, physics-informed Machine Learning (ML) and model calibration. In this paper we review the methods, challenges, applications and algorithms of these three research areas and discuss them in the context of the different hybridization scenarios. Moreover, we provide a comprehensive comparison of the hybridization techniques with respect to their differences and similarities, as well as advantages and limitations and future perspectives. Finally, we apply and illustrate hybrid modeling, physics-informed ML and model calibration via a chemical reactor case study.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Boukouvala, F (Corresponding Author), Georgia Inst Technol, Sch Chem \& Biomol Eng, Atlanta, GA 30332 USA. Bradley, William; Kim, Jinhyeun; Kilwein, Zachary; Boukouvala, Fani, Georgia Inst Technol, Sch Chem \& Biomol Eng, Atlanta, GA 30332 USA. Blakely, Logan; Eydenberg, Michael; Jalvin, Jordan; Laird, Carl, Sandia Natl Labs, Albuquerque, NM 87185 USA.}, DOI = {10.1016/j.compchemeng.2022.107898}, EarlyAccessDate = {SEP 2022}, Article-Number = {107898}, ISSN = {0098-1354}, EISSN = {1873-4375}, Keywords = {Hybrid modeling; Model calibration; Physics -informed machine learning; Dynamical systems; Process systems design; operations}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORKS; COMBINING 1ST PRINCIPLES; GAUSSIAN PROCESS; BAYESIAN CALIBRATION; VARIABLE SELECTION; HYBRID MODELS; DEVELOPMENT STRATEGY; CHEMICAL-PROCESSES; INVERSE PROBLEMS; CO2 ADSORPTION}, Research-Areas = {Computer Science; Engineering}, Web-of-Science-Categories = {Computer Science, Interdisciplinary Applications; Engineering, Chemical}, Author-Email = {fani.boukouvala@chbe.gatech.edu}, Affiliations = {University System of Georgia; Georgia Institute of Technology; United States Department of Energy (DOE); Sandia National Laboratories}, Funding-Acknowledgement = {Georgia Tech start-up grant; RAPID/NNMI Grant {[}GR10002225]; NSF CBET {[}1336386, 1944678]}, Funding-Text = {The authors gratefully acknowledge funding received from RAPID/NNMI Grant \#GR10002225, Georgia Tech start-up grant and NSF CBET grants (1336386 and 1944678).}, Cited-References = {Abadi M, 2016, ARXIV, DOI DOI 10.48550/ARXIV.1603.04467. Abbas M, 2016, INT J UNCERTAIN QUAN, V6, P467, DOI 10.1615/Int.J.UncertaintyQuantification.2016016645. Abonyi J, 2002, SOFT COMPUTING AND INDUSTRY, P111. Agarwal M, 1997, INT J SYST SCI, V28, P65, DOI 10.1080/00207729708929364. Aguiar HC, 2001, CHEM ENG SCI, V56, P565, DOI 10.1016/S0009-2509(00)00261-X. Arendt PD, 2012, J MECH DESIGN, V134, DOI 10.1115/1.4007390. Arnold F, 2021, ENG APPL ARTIF INTEL, V101, DOI 10.1016/j.engappai.2021.104195. Bae J, 2020, IND ENG CHEM RES, V59, P16380, DOI 10.1021/acs.iecr.0c02720. Bangi MSF, 2022, CHEM ENG RES DES, V179, P415, DOI 10.1016/j.cherd.2022.01.041. Bangi MSF, 2020, COMPUT CHEM ENG, V134, DOI 10.1016/j.compchemeng.2019.106696. Bayarri MJ, 2007, TECHNOMETRICS, V49, P138, DOI 10.1198/004017007000000092. Baydin AG, 2018, J MACH LEARN RES, V18. Bengio Y., 2005, CURSE HIGHLY VARIABL. Berg J., 2017, MACH LEARN. Bhat KS, 2017, J AM STAT ASSOC, V112, P1453, DOI 10.1080/01621459.2017.1295863. Bhosekar A, 2018, COMPUT CHEM ENG, V108, P250, DOI 10.1016/j.compchemeng.2017.09.017. Bishop Christopher M., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119. Bollas GM, 2003, CHEM ENG PROCESS, V42, P697, DOI 10.1016/S0255-2701(02)00206-4. Braake HABT, 1998, ENG APPL ARTIF INTEL, V11, P507, DOI 10.1016/S0952-1976(98)00011-6. Bradley W., 2021, IND ENG CHEM RES. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Cai G., 2017, MODEL CALIBRATION BI. Carmassi M., 2018, CALICO R PACKAGE BAY. Chen LB, 2004, CONTROL ENG PRACT, V12, P819, DOI 10.1016/j.conengprac.2003.09.006. Chen LQ, 2018, PR MACH LEARN RES, V84. Chen R., 2018, ARXIV. Chen W, 2008, J MECH DESIGN, V130, DOI 10.1115/1.2809439. Chen YJ, 2020, AICHE J, V66, DOI 10.1002/aic.16996. Chen ZX, 2018, NEUROCOMPUTING, V275, P1702, DOI 10.1016/j.neucom.2017.10.028. Cozad A, 2014, AICHE J, V60, P2211, DOI 10.1002/aic.14418. Czarnecki W.M., 2017, ADV NEURAL INF PROCE, V30. de Azevedo CR, 2015, ENG APPL ARTIF INTEL, V38, P24, DOI 10.1016/j.engappai.2014.10.014. Dean J, 2008, COMMUN ACM, V51, P107, DOI 10.1145/1327452.1327492. Deb C, 2017, RENEW SUST ENERG REV, V74, P902, DOI 10.1016/j.rser.2017.02.085. Dhillon A, 2020, PROG ARTIF INTELL, V9, P85, DOI 10.1007/s13748-019-00203-0. Diaconis P, 2009, B AM MATH SOC, V46, P179. DISSANAYAKE MWMG, 1994, COMMUN NUMER METH EN, V10, P195, DOI 10.1002/cnm.1640100303. Dong G, 2018, FEATURE ENG MACHINE. Duarte B, 2004, INT J CHEM REACT ENG, V2, DOI 10.2202/1542-6580.1128. Duvenaud D., 2011, ADDITIVE GAUSSIAN PR. Fabrizio E, 2015, ENERGIES, V8, P2548, DOI 10.3390/en8042548. Fiedler B, 2008, IMA J APPL MATH, V73, P449, DOI 10.1093/imamat/hxn011. Fioretto F., 2020, ARXIV. Fioretto F, 2020, AAAI CONF ARTIF INTE, V34, P630. Fogler H.S, 1999, ELEMENTS CHEM REACTI, Vsecond. Fraces C.G., 2020, ARXIV. Francis-Xavier F., 2021, PROCESSES, V9. Freund R.M., 2004, APPL LAGRANGE DUALIT. Gattiker J., 2015, GAUSSIAN PROCESS BAS. Georgieva P, 2003, CHEM ENG SCI, V58, P3699, DOI 10.1016/S0009-2509(03)00260-4. Gibert K, 2016, AI COMMUN, V29, P627, DOI 10.3233/AIC-160710. Glassey J, 2018, HYBRID MODELING IN PROCESS INDUSTRIES, P1, DOI 10.1201/9781351184373. Goebel R, 2009, IEEE CONTR SYST MAG, V29, P28, DOI 10.1109/MCS.2008.931718. Goldberg Yoav, 2017, SYNTHESIS LECT HUMAN, DOI {[}10.2200/S00762ED1V01Y201703HLT037, DOI 10.2200/S00762ED1V01Y201703HLT037]. Gorbach NS, 2017, LECT NOTES COMPUT SC, V10496, P306, DOI 10.1007/978-3-319-66709-6\_25. Wilson AG, 2013, Arxiv. Gramacy RB, 2015, J COMPUT GRAPH STAT, V24, P561, DOI 10.1080/10618600.2014.914442. GROSSBERG S, 1988, NEURAL NETWORKS, V1, P17, DOI 10.1016/0893-6080(88)90021-4. GU M., 2018, ROBUST CALIBRATION I. Gusmao GS, 2020, Arxiv. Haghighat E., 2020, ARXIV. Haghighat E., 2020, ARXIV. Hajirahimi Z, 2022, NEURAL PROCESS LETT, V54, P3619, DOI 10.1007/s11063-020-10294-9. Hankin RKS, 2005, J STAT SOFTW, V14. Hart W.E., 2017, PYOMO OPTIMIZATION M, DOI {[}10.1007/978-1-4614-3226-5, DOI 10.1007/978-1-4614-3226-5]. He QZ, 2020, ADV WATER RESOUR, V141, DOI 10.1016/j.advwatres.2020.103610. Higdon D, 2004, SIAM J SCI COMPUT, V26, P448, DOI 10.1137/S1064827503426693. Hochreiter S, 1998, INT J UNCERTAIN FUZZ, V6, P107, DOI 10.1142/S0218488598000094. Hong-Te Su, 1993, Dynamics and Control of Chemical Reactors Distillation Columns and Batch Processes (DYCORD+'92). Selected Papers from the 3rd IFAC Symposium, P327. Huang CF, 2021, OPTIM ENG, V22, P2553, DOI 10.1007/s11081-021-09677-1. Jagtap AD, 2020, COMMUN COMPUT PHYS, V28, P2002, DOI 10.4208/cicp.OA-2020-0164. Jagtap AD, 2020, COMPUT METHOD APPL M, V365, DOI 10.1016/j.cma.2020.113028. Jagtap AD, 2020, J COMPUT PHYS, V404, DOI 10.1016/j.jcp.2019.109136. Jia X., 2020, ARXIV. Jidling C., 2017, LINEARLY CONSTRAINED. Jin R., 2002, SEQUENTIAL SAMPLING. Joseph VR, 2015, TECHNOMETRICS, V57, P257, DOI 10.1080/00401706.2014.902773. Joseph VR, 2009, J QUAL TECHNOL, V41, P362, DOI 10.1080/00224065.2009.11917791. Kadeethum T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232683. Kahrs O, 2008, COMPUT CHEM ENG, V32, P694, DOI 10.1016/j.compchemeng.2007.02.014. Kahrs O, 2007, CHEM ENG PROCESS, V46, P1054, DOI 10.1016/j.cep.2007.02.031. Kalyanaraman J, 2016, AICHE J, V62, P3352, DOI 10.1002/aic.15381. Kalyanaraman J, 2015, COMPUT CHEM ENG, V81, P376, DOI 10.1016/j.compchemeng.2015.04.028. Karniadakis GE, 2021, NAT REV PHYS, V3, P422, DOI 10.1038/s42254-021-00314-5. Karpatne A, 2017, IEEE T KNOWL DATA EN, V29, P2318, DOI 10.1109/TKDE.2017.2720168. Kennedy M., 2006, SUPPLEMENTARY DETAIL. Kennedy MC, 2001, J R STAT SOC B, V63, P425, DOI 10.1111/1467-9868.00294. Keskitalo J., 2015, ARTIFICIAL NEURAL NE, P683. Kim JongMok, 2020, ARXIV. Kim YJ, 2016, ENERG BUILDINGS, V133, P455, DOI 10.1016/j.enbuild.2016.10.009. Kim Y, 2020, Arxiv. Kissas G, 2020, COMPUT METHOD APPL M, V358, DOI 10.1016/j.cma.2019.112623. Krogh A, 2008, NAT BIOTECHNOL, V26, P195, DOI 10.1038/nbt1386. L'Heureux A, 2017, IEEE ACCESS, V5, P7776, DOI 10.1109/ACCESS.2017.2696365. Lagaris IE, 1998, IEEE T NEURAL NETWOR, V9, P987, DOI 10.1109/72.712178. Lange-Hegermann M., 2020, ARXIV. Lee D, 2020, PLOS COMPUT BIOL, V16, DOI 10.1371/journal.pcbi.1008472. Lee DS, 2005, J BIOTECHNOL, V115, P317, DOI 10.1016/j.jbiotec.2004.09.001. Lee DS, 2002, BIOTECHNOL BIOENG, V78, P670, DOI 10.1002/bit.10247. Lee G, 2019, STRUCT MULTIDISCIP O, V60, P1619, DOI 10.1007/s00158-019-02270-2. Lee JH, 2018, COMPUT CHEM ENG, V114, P111, DOI 10.1016/j.compchemeng.2017.10.008. Lee K, 2019, STRUCT MULTIDISCIP O, V59, P1439, DOI 10.1007/s00158-018-2137-6. Lee S, 2019, INTERFACE FOCUS, V9, DOI 10.1098/rsfs.2018.0083. Li KJ, 2017, REACT CHEM ENG, V2, P550, DOI 10.1039/c7re00040e. Lin LH, 2020, TECHNOMETRICS, V62, P525, DOI 10.1080/00401706.2019.1665592. Ling Y, 2014, J COMPUT PHYS, V276, P665, DOI 10.1016/j.jcp.2014.08.005. Linkletter C, 2006, TECHNOMETRICS, V48, P478, DOI 10.1198/004017006000000228. Liu F, 2009, BAYESIAN ANAL, V4, P119, DOI 10.1214/09-BA404. Liu H., 2018, GAUSSIAN PROCESS MEE. Lopez PC, 2020, BIOFUEL BIOPROD BIOR, V14, P1046, DOI 10.1002/bbb.2108. Lu JD, 2009, AICHE J, V55, P2318, DOI 10.1002/aic.11822. Lunderman S, 2021, TELLUS A, V73, P1, DOI 10.1080/16000870.2021.1924952. Luo LK, 2015, IFAC PAPERSONLINE, V48, P112, DOI 10.1016/j.ifacol.2015.08.166. Lutter M, 2019, Arxiv. Ma YB, 2021, Arxiv. MacKay David JC, 2003, INFORM THEORY INFERE. Maddu SM, 2021, MACH LEARN-SCI TECHN. Manfren M, 2013, APPL ENERG, V103, P627, DOI 10.1016/j.apenergy.2012.10.031. Matsunawa T, 2016, J MICRO-NANOLITH MEM, V15, DOI 10.1117/1.JMM.15.2.021009. McBride K, 2020, CHEM-ING-TECH, V92, P842, DOI 10.1002/cite.202000025. McBride K, 2019, CHEM-ING-TECH, V91, P228, DOI 10.1002/cite.201800091. McCann MT, 2017, IEEE SIGNAL PROC MAG, V34, P85, DOI 10.1109/MSP.2017.2739299. McIntire M., 2016, P UAI. Meng XH, 2020, J COMPUT PHYS, V401, DOI 10.1016/j.jcp.2019.109020. Meng YM, 2019, J FOOD ENG, V257, P44, DOI 10.1016/j.jfoodeng.2019.03.026. Misyris G.S., 2019, ARXIV. Mitusch SK, 2021, Arxiv. Mowlavi S, 2021, Arxiv. Narayanan H, 2019, BIOTECHNOL BIOENG, V116, P2540, DOI 10.1002/bit.27097. Oliveira R, 2004, COMPUT CHEM ENG, V28, P755, DOI 10.1016/j.compchemeng.2004.02.014. Olofsson S., 2018, COMPUTER AIDED CHEM. Pakravan S, 2020, Arxiv. Palomo J, 2015, J STAT SOFTW, V64, P1. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Pang G., 2020, EMERGING FRONTIERS N, P323. Pang GF, 2019, SIAM J SCI COMPUT, V41, pA2603, DOI 10.1137/18M1229845. Paszke A, 2019, Arxiv, DOI DOI 10.48550/ARXIV.1912.01703. Peherstorfer B, 2018, SIAM REV, V60, P550, DOI 10.1137/16M1082469. Perdikaris P, 2015, P ROY SOC A-MATH PHY, V471, DOI 10.1098/rspa.2015.0018. Perdikaris P, 2016, SIAM J SCI COMPUT, V38, pB521, DOI 10.1137/15M1055164. Piironen J., 2016, 2016 IEEE 26 INT WOR, P1, DOI DOI 10.1109/MLSP.2016.7738829. Pinto J, 2019, BIOPROC BIOSYST ENG, V42, P1853, DOI 10.1007/s00449-019-02181-y. Plumlee M, 2017, J AM STAT ASSOC, V112, P1274, DOI 10.1080/01621459.2016.1211016. Potharst R., 2002, CLASSIFICATION TREES, V4, P1. PSICHOGIOS DC, 1992, AICHE J, V38, P1499, DOI 10.1002/aic.690381003. Qin SJ, 2019, COMPUT CHEM ENG, V126, P465, DOI 10.1016/j.compchemeng.2019.04.003. Quaghebeur W, 2022, WATER RES, V213, DOI 10.1016/j.watres.2022.118166. Quaghebeur W, 2021, IEEE ACCESS, V9, P22014, DOI 10.1109/ACCESS.2021.3055353. Rackauckas C., 2020, SCIMLDIFFERENTIALEQU. Rackauckas C, 2020, Arxiv, DOI DOI 10.48550/ARXIV.2001.04385. Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045. Raissi M., 2019, PHYS INFORM NEURAL N. Raissi M, 2017, J COMPUT PHYS, V348, P683, DOI 10.1016/j.jcp.2017.07.050. Raissi M, 2017, J COMPUT PHYS, V335, P736, DOI 10.1016/j.jcp.2017.01.060. Rasmussen Carl Edward, 1997, THESIS. Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1. RICOMARTINEZ R, 1992, CHEM ENG COMMUN, V118, P25, DOI 10.1080/00986449208936084. Ruden L., 2019, MACH LEARN. Salvatier J, 2016, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.55. Sansana J, 2021, COMPUT CHEM ENG, V151, DOI 10.1016/j.compchemeng.2021.107365. Santner TJ, 2018, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4939-8847-1. Sargsyan K, 2015, INT J CHEM KINET, V47, P246, DOI 10.1002/kin.20906. Sarkka S, 2011, LECT NOTES COMPUT SC, V6792, P151, DOI 10.1007/978-3-642-21738-8\_20. Savitsky T, 2011, STAT SCI, V26, P130, DOI 10.1214/11-STS354. Schafer P, 2020, CHEM-ING-TECH, V92, P1910, DOI 10.1002/cite.202000048. Schafer P, 2019, J PROCESS CONTR, V84, P171, DOI 10.1016/j.jprocont.2019.10.008. SCHUBERT J, 1994, J BIOTECHNOL, V35, P51, DOI 10.1016/0168-1656(94)90189-9. Schulz E, 2018, J MATH PSYCHOL, V85, P1, DOI 10.1016/j.jmp.2018.03.001. Schweidtmann AM, 2022, OPTIM ENG, V23, P855, DOI 10.1007/s11081-021-09608-0. Simutis R., 1995, COMPUTER APPL BIOTEC. Sirignano J, 2018, J COMPUT PHYS, V375, P1339, DOI 10.1016/j.jcp.2018.08.029. Snelson E., 2005, SPARSE GAUSSIAN PROC. Snyder JD, 1994, CHEM ENG SCI, V49, P5585, DOI 10.1016/0009-2509(94)00287-8. STEIN A, 1991, BIOMETRICS, V47, P575, DOI 10.2307/2532147. Sun B, 2020, J PROCESS CONTR, V86, P30, DOI 10.1016/j.jprocont.2019.11.012. Mohan AT, 2020, Arxiv. Tagade P, 2016, J POWER SOURCES, V320, P296, DOI 10.1016/j.jpowsour.2016.04.106. Tagade PM, 2013, BUILD ENVIRON, V70, P232, DOI 10.1016/j.buildenv.2013.08.023. Tascikaraoglu A, 2014, RENEW SUST ENERG REV, V34, P243, DOI 10.1016/j.rser.2014.03.033. Teixeira A, 2005, J BIOTECHNOL, V118, P290, DOI 10.1016/j.jbiotec.2005.04.024. THOMPSON ML, 1994, AICHE J, V40, P1328, DOI 10.1002/aic.690400806. Tipireddy R., 2018, PHYS INFORM MACHINE. Tsay C, 2021, COMPUT CHEM ENG, V153, DOI 10.1016/j.compchemeng.2021.107419. Tuckerman LS, 2020, EMERGING FRONTIERS N, P249. van Can HJL, 1998, AICHE J, V44, P1071, DOI 10.1002/aic.690440507. van Can HJL, 1999, BIOTECHNOL BIOENG, V62, P666. vanCan HJL, 1996, AICHE J, V42, P3403, DOI 10.1002/aic.690421211. vanCan HJL, 1997, BIOTECHNOL BIOENG, V54, P549. Venkatasubramanian V, 2019, AICHE J, V65, P466, DOI 10.1002/aic.16489. Vincent P., 2008, P 25 INT C MACHINE L, P1096, DOI {[}10.1145/1390156.1390294, DOI 10.1145/1390156.1390294]. von Stosch M, 2014, BIOTECHNOL J, V9, P719, DOI 10.1002/biot.201300385. von Stosch M, 2014, COMPUT CHEM ENG, V60, P86, DOI 10.1016/j.compchemeng.2013.08.008. von Stosch M, 2012, J PROCESS CONTR, V22, P1171, DOI 10.1016/j.jprocont.2012.05.004. Wahlstrom N, 2013, INT CONF ACOUST SPEE, P3522, DOI 10.1109/ICASSP.2013.6638313. Wang R, 2020, ARXIV. Wang S., 2020, ARXIV200104536. Wang SF, 2022, J COMPUT PHYS, V449, DOI 10.1016/j.jcp.2021.110768. Wang XF, 2010, CHEM ENG RES DES, V88, P415, DOI 10.1016/j.cherd.2009.08.010. Wang Y., 2019, EFFECTIVE MODEL CALI. Willard J., 2020, ARXIV. Willis MJ, 2017, COMPUT CHEM ENG, V104, P366, DOI 10.1016/j.compchemeng.2017.05.005. Wilson AG, 2013, ARXIV13024245. Wilson ZT, 2017, COMPUT CHEM ENG, V106, P785, DOI 10.1016/j.compchemeng.2017.02.010. Wipf D., 2007, NEW VIEW AUTOMATIC R. Wu TF, 2012, IEEE INT C INT ROBOT, P725, DOI 10.1109/IROS.2012.6385977. Wu Z, 2020, J PROCESS CONTR, V89, P74, DOI 10.1016/j.jprocont.2020.03.013. Xia YS, 2008, IEEE T NEURAL NETWOR, V19, P1340, DOI 10.1109/TNN.2008.2000273. Xiong Y, 2009, COMPUT METHOD APPL M, V198, P1327, DOI 10.1016/j.cma.2008.11.023. Yan F., 2010, P ICML. Yang AD, 2011, COMPUT CHEM ENG, V35, P63, DOI 10.1016/j.compchemeng.2010.05.002. Yang SH, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2020397118. Yang S, 2020, COMPUT CHEM ENG, V140, DOI 10.1016/j.compchemeng.2020.106874. Yang X., 2018, ARXIV180903461. Yang YB, 2018, Arxiv. Yi G, 2011, BIOMETRICS, V67, P1285, DOI 10.1111/j.1541-0420.2011.01576.x. Zendehboudi S, 2018, APPL ENERG, V228, P2539, DOI 10.1016/j.apenergy.2018.06.051. Zhang L, 2018, NEURAL COMPUT APPL, V29, P413, DOI 10.1007/s00521-016-2455-9.}, Number-of-Cited-References = {217}, Times-Cited = {3}, Usage-Count-Last-180-days = {25}, Usage-Count-Since-2013 = {28}, Journal-ISO = {Comput. Chem. Eng.}, Doc-Delivery-Number = {4Y4IE}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000861490200001}, DA = {2023-04-22}, } @article{ WOS:000793846600001, Author = {Islam, Muhammad Nazrul and Mustafina, Sumaiya Nuha and Mahmud, Tahasin and Khan, Nafiz Imtiaz}, Title = {Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda}, Journal = {BMC PREGNANCY AND CHILDBIRTH}, Year = {2022}, Volume = {22}, Number = {1}, Month = {APR 22}, Abstract = {Machine Learning (ML) has been widely used in predicting the mode of childbirth and assessing the potential maternal risks during pregnancy. The primary aim of this review study is to explore current research and development perspectives that utilizes the ML techniques to predict the optimal mode of childbirth and to detect various complications during childbirth. A total of 26 articles (published between 2000 and 2020) from an initial set of 241 articles were selected and reviewed following a Systematic Literature Review (SLR) approach. As outcomes, this review study highlighted the objectives or focuses of the recent studies conducted on pregnancy outcomes using ML; explored the adopted ML algorithms along with their performances; and provided a synthesized view of features used, types of features, data sources and its characteristics. Besides, the review investigated and depicted how the objectives of the prior studies have changed with time being; and the association among the objectives of the studies, uses of algorithms, and the features. The study also delineated future research opportunities to facilitate the existing initiatives for reducing maternal complacent and mortality rates, such as: utilizing unsupervised and deep learning algorithms for prediction, revealing the unknown reasons of maternal complications, developing usable and useful ML-based clinical decision support systems to be used by the expecting mothers and health professionals, enhancing dataset and its accessibility, and exploring the potentiality of surgical robotic tools. Finally, the findings of this review study contributed to the development of a conceptual framework for advancing the ML-based maternal healthcare system. All together, this review will provide a state-of-the-art paradigm of ML-based maternal healthcare that will aid in clinical decision-making, anticipating pregnancy problems and delivery mode, and medical diagnosis and treatment.}, Publisher = {BMC}, Address = {CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Islam, MN (Corresponding Author), Mil Inst Sci \& Technol, Dept Comp Sci \& Engn, Dhaka 1216, Bangladesh. Islam, Muhammad Nazrul; Mustafina, Sumaiya Nuha; Mahmud, Tahasin; Khan, Nafiz Imtiaz, Mil Inst Sci \& Technol, Dept Comp Sci \& Engn, Dhaka 1216, Bangladesh.}, DOI = {10.1186/s12884-022-04594-2}, Article-Number = {348}, EISSN = {1471-2393}, Keywords = {Machine learning; Literature review; Pregnancy; Childbirth; Data science; Neural network; Supervised learning}, Keywords-Plus = {CESAREAN-SECTION; PRETERM BIRTH; DELIVERY; RISK; MORTALITY}, Research-Areas = {Obstetrics \& Gynecology}, Web-of-Science-Categories = {Obstetrics \& Gynecology}, Author-Email = {nazrul@cse.mist.ac.bd}, Cited-References = {Agrawal P, 2015, B WORLD HEALTH ORGAN, V93, P135, DOI 10.2471/BLT.14.148627. Aishwarja AI, 2020, INT C INTELLIGENT CO, P54658. Alam MS, 2019, BIG DATA COGN COMPUT, V3, DOI 10.3390/bdcc3020027. {[}Anonymous], 2010, MAPANA J SCI, DOI DOI 10.12723/MJS.16.3. Ayodele T.O., 2010, NEW ADV MACH LEARN, V2, P9. Birara M, 2013, BMC PREGNANCY CHILDB, V13, DOI 10.1186/1471-2393-13-31. Budny JA, 2015, INT J TOXICOL, V34, P366, DOI 10.1177/1091581815586498. Burrow GN, 2004, MED COMPLICATIONS PR. Camarillo DB, 2004, AM J SURG, V188, p2S, DOI 10.1016/j.amjsung.2004.08.025. Chen HY, 2011, EXPERT SYST APPL, V38, P5384, DOI 10.1016/j.eswa.2010.10.017. Clark SL, 2008, AM J OBSTET GYNECOL, V199, pE7, DOI 10.1016/j.ajog.2008.05.010. Dehingia N, 2020, BMC PREGNANCY CHILDB, V20, DOI 10.1186/s12884-020-2848-8. Despotovic D, 2018, I S INTELL SYST INFO, P265. Ding Z, 2020, INDEEP REINFORCEMENT, P47123. Gao C, 2019, J BIOMED INFORM, V100, DOI 10.1016/j.jbi.2019.103334. Gestational diabetes mellitus (GDM), JOHNS HOPKINS MED. Ghaderighahfarokhi S., 2018, J BASIC RES MED SCI, V5, P1, DOI {[}10.29252/jbrms.5.3.1, DOI 10.29252/JBRMS.5.3.1]. Goodwin L, 2000, P 2000 ACM S APPL CO, V1, P4651. Grobman WA, 2008, AM J OBSTET GYNECOL, V199, DOI 10.1016/j.ajog.2008.03.039. Guan P, 2020, J INVEST MED, V68, P799, DOI 10.1136/jim-2019-001175. Hassan MR, 2020, NEURAL COMPUT APPL, V32, P2283, DOI 10.1007/s00521-018-3693-9. Heimerl F, 2014, 2014 47 HAWAII INT C. Islam MN, 2021, IEEE ACCESS, V9, P1680, DOI 10.1109/ACCESS.2020.3045469. Islam MN, 2020, IEEE ACCESS, V8, P114078, DOI 10.1109/ACCESS.2020.3002445. Jennewein L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0202760. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Khazardoost S, 2016, BMC PREGNANCY CHILDB, V16, DOI 10.1186/s12884-016-1090-x. Kitchenham B, 2009, INFORM SOFTWARE TECH, V51, P7, DOI 10.1016/j.infsof.2008.09.009. Kotsiantis SB, 2007, INFORM-J COMPUT INFO, V31, P249. Lakshmi BN, 2016, PROC TECH, V24, P1542, DOI 10.1016/j.protcy.2016.05.128. Li YX, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-027807. Lipschuetz M, 2020, AM J OBSTET GYNECOL, V222, DOI 10.1016/j.ajog.2019.12.267. Liu L, 2016, LANCET, V388, P3027, DOI 10.1016/S0140-6736(16)31593-8. Liu LJ, 2020, COMPUT METH PROG BIO, V196, DOI 10.1016/j.cmpb.2020.105624. Liu XX, 2019, LANCET DIGIT HEALTH, V1, pE271, DOI 10.1016/S2589-7500(19)30123-2. Loring Z, 2019, EUROPACE, V21, P1284, DOI 10.1093/europace/euz130. Machado JM, 2015, SCITEPRESS. MALEA A-G, 2010, DEV APPL SYST, P86. Pallasmaa N, 2008, ACTA OBSTET GYN SCAN, V87, P662, DOI 10.1080/00016340802108763. Patel RR, 2004, BMJ-BRIT MED J, V328, P1302, DOI 10.1136/bmj.328.7451.1302. Pereira S, 2015, PROCEDIA COMPUT SCI, V64, P601, DOI 10.1016/j.procs.2015.08.573. Peters BS, 2018, SURG ENDOSC, V32, P1636, DOI 10.1007/s00464-018-6079-2. Prema NS, 2019, LECT NOTES ELECTR EN, V545, P581, DOI 10.1007/978-981-13-5802-9\_52. Qiu JH, 2019, J TRANSL MED, V17, DOI 10.1186/s12967-019-2062-5. Ramanathan G, 2003, ULTRASOUND OBST GYN, V22, P598, DOI 10.1002/uog.913. Rawashdeh H, 2020, COMPUT BIOL CHEM, V85, DOI 10.1016/j.compbiolchem.2020.107233. Riffenburgh R.H., 2020, STAT MED, V4th. Ross MG, OBSTET GYNECOL. Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x. Say Lale, 2014, Lancet Glob Health, V2, pe323, DOI 10.1016/S2214-109X(14)70227-X. Senthilkumar D, 2015, P 2015 INT C IND ENG, P18694. SHEARER EL, 1993, SOC SCI MED, V37, P1223, DOI 10.1016/0277-9536(93)90334-Z. Smith GCS, 2002, JAMA-J AM MED ASSOC, V287, P2684, DOI 10.1001/jama.287.20.2684. Tang PC, 2006, BIOMEDICAL INFORM, P44775. Tesfaye B, 2017, COMPUT METH PROG BIO, V140, P45, DOI 10.1016/j.cmpb.2016.11.013. Tessmer-Tuck JA, 2014, GYNECOL OBSTET INVES, V77, P121, DOI 10.1159/000357757. Van Der Maaten L., 2009, J MACH LEARN RES, V10, P13, DOI DOI 10.1080/13506280444000102. Vijayarani S., 2015, INT J COMPUT BUS RES, V6, P1. Witt WP, 2014, AM J PUBLIC HEALTH, V104, pS73, DOI 10.2105/AJPH.2013.301688. www.cdc.gov, RECENT TRENDS VAGINA. www.globalcitizen.org, MAT MORT. www.unfpa.org, TRENDS MATERNAL MORT. www.who.int, MATERNAL DEATHS DECL. www.who.int, 2018, PRETERM BIRTH. www.who.int, MAT MORT. Xu D., 2015, ANN DATA SCI, V2, P165, DOI {[}DOI 10.1007/S40745-015-0040-1, 10.1007/s40745-015-0040-1]. Zou Q, 2018, FRONT GENET, V9, DOI 10.3389/fgene.2018.00515.}, Number-of-Cited-References = {67}, Times-Cited = {4}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {3}, Journal-ISO = {BMC Pregnancy Childbirth}, Doc-Delivery-Number = {1D5NH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000793846600001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000782571900008, Author = {Weisser, Jana and Pohl, Teresa and Heinzinger, Michael and Ivleva, Natalia P. and Hofmann, Thomas and Glas, Karl}, Title = {The identification of microplastics based on vibrational spectroscopy data- A critical review of data analysis routines}, Journal = {TRAC-TRENDS IN ANALYTICAL CHEMISTRY}, Year = {2022}, Volume = {148}, Month = {MAR}, Abstract = {With worldwide aims to monitor microplastics (MP) in the environment, food and drinking water, there is a growing need for fast, reliable and high-throughput analysis methods. While on the instrumental side, spectroscopic techniques are used widely as they proved suitable for identifying even micron-range plastic particles, there is a gap to fill on the data analysis side. Vibrational spectra of MP are highly complex, and often, large data sets need to be evaluated. Methods range from classical library search to complex artificial intelligence models, each of which has its strengths and weaknesses. This critical review discusses the accuracy, robustness and expenditure of data analysis routines proposed for identification of MP using vibrational spectra. Programs provided by the scientific community dedicated to MP analysis are introduced. Thereby, this review aims to provide guidance for everyone who wants to set up or enhance a data analysis routine for vibrational spectra of MP.(c) 2022 Elsevier B.V. All rights reserved.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Weisser, J (Corresponding Author), Tech Univ Munich, Chair Food Chem \& Mol Sensory Sci, Lise Meitner Str 34, D-85354 Freising Weihenstephan, Germany. Weisser, Jana; Pohl, Teresa; Hofmann, Thomas; Glas, Karl, Tech Univ Munich, Chair Food Chem \& Mol Sensory Sci, Lise Meitner Str 34, D-85354 Freising Weihenstephan, Germany. Heinzinger, Michael, Tech Univ Munich, Chair Bioinformat, Boltzmannstr 3, D-85748 Garching, Germany. Ivleva, Natalia P., Tech Univ Munich, Chair Analyt Chem \& Water Chem, Elisabeth Winterhalter Weg 6, D-81377 Munich, Germany. Pohl, Teresa, Johann-Strauss-Str 8, Unterhaching, Germany.}, DOI = {10.1016/j.trac.2022.116535}, EarlyAccessDate = {FEB 2022}, Article-Number = {116535}, ISSN = {0165-9936}, EISSN = {1879-3142}, Keywords = {Microplastics; Fourier-transform Infrared spectroscopy; Raman spectroscopy; Hyperspectral imaging; Chemometrics; Machine learning; Database; Library}, Keywords-Plus = {PLASTIC PARTICLES; SPECTRAL LIBRARIES; FTIR; MICROSPECTROSCOPY; MICROSCOPY; SYSTEM; URBAN; TOOL}, Research-Areas = {Chemistry}, Web-of-Science-Categories = {Chemistry, Analytical}, Author-Email = {jana.weisser@tum.de pohl.teresa@gmail.com michael.heinzinger@tum.de natalia.ivleva@tum.de thomas.hofmann@tum.de karl.glas@tum.de}, Affiliations = {Technical University of Munich; Technical University of Munich; Technical University of Munich}, ResearcherID-Numbers = {Ivleva, Natalia P./AAQ-9987-2020 Hofmann, Thomas/O-3346-2015 }, ORCID-Numbers = {Ivleva, Natalia P./0000-0002-7685-5166 Hofmann, Thomas/0000-0003-4057-7165 Weisser, Jana/0000-0001-6997-1452 Heinzinger, Michael/0000-0002-9601-3580}, Funding-Acknowledgement = {Bayerische Forschungsstiftung {[}AZ-1258-16]}, Funding-Text = {This work is part of the research project MiPAq (Microparticles in the aquatic environment and in foodstuffs) which was funded by Bayerische Forschungsstiftung (Grant number AZ-1258-16) . The authors wish to thank Hans Lohninger (Technical University of Vienna) and Benedikt Hufnagl (Purency GmbH) for fruitful dis-cussions. The delighting youtube channel StatQuest with Josh Starmer is recommended to all readers of this article who want to learn about machine learning.}, Cited-References = {Andrade JM, 2020, MAR POLLUT BULL, V154, DOI 10.1016/j.marpolbul.2020.111035. Anger PM, 2018, TRAC-TREND ANAL CHEM, V109, P214, DOI 10.1016/j.trac.2018.10.010. {[}Anonymous], MACH LEARN. Back HD, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.131903. Ballabio D, 2018, CHEMOMETR INTELL LAB, V174, P33, DOI 10.1016/j.chemolab.2017.12.004. Bender Emily M., 2021, FAccT `21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, P610, DOI 10.1145/3442188.3445922. Brandt J., 2021, ANAL CHEM, P40. Brandt J, 2020, APPL SPECTROSC, V74, P1185, DOI 10.1177/0003702820932926. Cabernard L, 2018, ENVIRON SCI TECHNOL, V52, P13279, DOI 10.1021/acs.est.8b03438. Campello RJGB, 2015, ACM T KNOWL DISCOV D, V10, DOI 10.1145/2733381. Chabuka BK, 2020, APPL SPECTROSC, V74, P1167, DOI 10.1177/0003702820923993. Chen X, 2021, IEEE ACCESS, V9, P47615, DOI 10.1109/ACCESS.2021.3063293. Comnea-Stancu IR, 2017, APPL SPECTROSC, V71, P939, DOI 10.1177/0003702816660725. Corradini F, 2021, SOFTWAREX, V16, DOI 10.1016/j.softx.2021.100857. Cowger W, 2021, ANAL CHEM, V93, P7543, DOI 10.1021/acs.analchem.1c00123. Cowger W, 2020, APPL SPECTROSC, V74, P989, DOI 10.1177/0003702820929064. Cowger W, 2020, APPL SPECTROSC, V74, P1066, DOI 10.1177/0003702820930292. Cozzolino D, 2019, FOOD ANAL METHOD, V12, P2469, DOI 10.1007/s12161-019-01605-5. Cozzolino D, 2011, FOOD RES INT, V44, P1888, DOI 10.1016/j.foodres.2011.01.041. da Silva VH, 2020, ANAL CHEM, V92, P13724, DOI 10.1021/acs.analchem.0c01324. Dabrowska A, 2021, MAR ENVIRON RES, V168, DOI 10.1016/j.marenvres.2021.105313. Datta A., 2018, ADV PRINCIPAL COMPON, P19. De Frond H, 2021, ANAL CHEM, V93, P15878, DOI 10.1021/acs.analchem.1c02549. De Luca S, 2018, ENVIRON SCI POLLUT R, V25, P28748, DOI 10.1007/s11356-018-1379-6. Eriksson C, 2003, AMBIO, V32, P380, DOI 10.1639/0044-7447(2003)032{[}0380:OABAOS]2.0.CO;2. Ertel W., 2017, NEURAL NETWORKS INTR, P245. Ertel W., 2017, MACHINE LEARNING DAT, P175. Ester M., 1996, KDD 96, V96, P226, DOI DOI 10.5555/3001460.3001507. European Commission, 2020, CIRC EC ACT PLAN EUR. Evd Esch, 2020, PLOS ONE, V15. Ferri C, 2009, PATTERN RECOGN LETT, V30, P27, DOI 10.1016/j.patrec.2008.08.010. Gautam R, 2015, EPJ TECH INSTRUM, V2, DOI 10.1140/epjti/s40485-015-0018-6. Greener JG, 2022, NAT REV MOL CELL BIO, V23, P40, DOI 10.1038/s41580-021-00407-0. Gromski PS, 2015, ANAL CHIM ACTA, V879, P10, DOI 10.1016/j.aca.2015.02.012. Hahn A, 2019, SCI TOTAL ENVIRON, V689, P341, DOI 10.1016/j.scitotenv.2019.06.227. Hildebrandt L., 2021, FAST AUTOMATED MICRO. Huang H, 2021, B ENVIRON CONTAM TOX, V107, P754, DOI 10.1007/s00128-020-02902-0. Huang YC, 2020, FOOD CONTROL, V113, DOI 10.1016/j.foodcont.2020.107187. Hufnagl B, 2021, COMPUTER ASSISTED AN. Hufnagl B, 2020, ANAL CHIM ACTA, V1097, P37, DOI 10.1016/j.aca.2019.10.071. Hufnagl B, 2019, ANAL METHODS-UK, V11, P2277, DOI {[}10.1039/C9AY00252A, 10.1039/c9ay00252a]. Huppertsberg S, 2020, METHODSX, V7, DOI 10.1016/j.mex.2020.100874. Ivleva NP, 2021, CHEM REV, V121, P11886, DOI 10.1021/acs.chemrev.1c00178. Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2. Kappler A, 2016, ANAL BIOANAL CHEM, V408, P8377, DOI 10.1007/s00216-016-9956-3. Kaoungku Nuntawut, 2018, International Journal of Machine Learning and Computing, V8, P69, DOI 10.18178/ijmlc.2018.8.1.665. Karlsson TM, 2016, J NEAR INFRARED SPEC, V24, P141, DOI 10.1255/jnirs.1212. Kedzierski M, 2019, CHEMOSPHERE, V234, P242, DOI 10.1016/j.chemosphere.2019.05.113. Koelmans AA, 2019, WATER RES, V155, P410, DOI 10.1016/j.watres.2019.02.054. Kong X., 2017, PRINCIPAL COMPONENT, P1, DOI DOI 10.1007/978-981-10-2915-8. KRUSE FA, 1993, REMOTE SENS ENVIRON, V44, P145, DOI 10.1016/0034-4257(93)90013-N. Kumar BNV, 2021, ENVIRON POLLUT, V269, DOI 10.1016/j.envpol.2020.116147. Lee LC, 2018, ANALYST, V143, P3526, DOI 10.1039/c8an00599k. Lenz R, 2015, MAR POLLUT BULL, V100, P82, DOI 10.1016/j.marpolbul.2015.09.026. Levin IW, 2005, ANNU REV PHYS CHEM, V56, P429, DOI 10.1146/annurev.physchem.56.092503.141205. Li CR, 2020, SCI TOTAL ENVIRON, V707, DOI 10.1016/j.scitotenv.2019.135578. Liu F, 2019, SCI TOTAL ENVIRON, V671, P992, DOI 10.1016/j.scitotenv.2019.03.416. Loder MGJ, 2015, ENVIRON CHEM, V12, P563, DOI 10.1071/EN14205. Lorenz C, 2019, ENVIRON POLLUT, V252, P1719, DOI 10.1016/j.envpol.2019.06.093. Lussier F, 2020, TRAC-TREND ANAL CHEM, V124, DOI 10.1016/j.trac.2019.115796. Mecozzi M, 2016, MAR POLLUT BULL, V106, P155, DOI 10.1016/j.marpolbul.2016.03.012. Michel APM, 2020, ENVIRON SCI TECHNOL, V54, P10630, DOI 10.1021/acs.est.0c02099. Morgado V, 2021, TALANTA, V224, DOI 10.1016/j.talanta.2020.121814. Munno K, 2020, ANAL CHEM, V92, P2443, DOI 10.1021/acs.analchem.9b03626. Ng W, 2020, SCI TOTAL ENVIRON, V702, DOI 10.1016/j.scitotenv.2019.134723. Ossmann BE, 2018, WATER RES, V141, P307, DOI 10.1016/j.watres.2018.05.027. Owen S, 2021, SPECTROCHIM ACTA A, V260, DOI 10.1016/j.saa.2021.119985. Patle A, 2013, 2013 INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY AND ENGINEERING (ICATE). Paul A, 2019, ENVIRON SCI POLLUT R, V26, P7364, DOI 10.1007/s11356-018-2180-2. Peeken I, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03825-5. Post C., SENSORS-BASEL, V21. Primpke S, 2019, ANAL METHODS-UK, V11, P2138, DOI 10.1039/c9ay00126c. Primpke S, 2017, ANAL METHODS-UK, V9, P1499, DOI 10.1039/c6ay02476a. Primpke S., 2020, RAPID IDENTIFICATION. Primpke S, 2020, APPL SPECTROSC, V74, P1127, DOI 10.1177/0003702820917760. Primpke S, 2018, ANAL BIOANAL CHEM, V410, P5131, DOI 10.1007/s00216-018-1156-x. Primpke S, 2017, CHEM UNSERER ZEIT, V51, P402, DOI 10.1002/ciuz.201700821. Provencher JF, 2020, SCI TOTAL ENVIRON, V748, DOI 10.1016/j.scitotenv.2020.141426. Renner G, 2020, METHODSX, V7, DOI 10.1016/j.mex.2019.11.015. Renner G, 2019, ANAL CHEM, V91, P9656, DOI 10.1021/acs.analchem.9b01095. Renner G, 2019, TRAC-TREND ANAL CHEM, V111, P229, DOI 10.1016/j.trac.2018.12.004. Renner Gerrit, 2018, Current Opinion in Environmental Science \& Health, V1, P55, DOI 10.1016/j.coesh.2017.11.001. Renner G, 2017, ANAL CHEM, V89, P12045, DOI 10.1021/acs.analchem.7b02472. Roch S, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60630-1. Rochman CM, 2015, SCI REP-UK, V5, DOI 10.1038/srep14340. Schmidt LK, 2018, ENVIRON POLLUT, V239, P579, DOI 10.1016/j.envpol.2018.03.097. Schubert E, 2017, ACM T DATABASE SYST, V42, DOI 10.1145/3068335. Schymanski D, 2021, ANAL BIOANAL CHEM, V413, P5969, DOI 10.1007/s00216-021-03498-y. Serranti S, 2018, WASTE MANAGE, V76, P117, DOI 10.1016/j.wasman.2018.03.003. Shan JJ, 2019, ANAL CHIM ACTA, V1050, P161, DOI 10.1016/j.aca.2018.11.008. Shan JJ, 2018, ENVIRON POLLUT, V238, P121, DOI 10.1016/j.envpol.2018.03.026. Shim WJ, 2017, ANAL METHODS-UK, V9, P1384, DOI 10.1039/c6ay02558g. Skansi S., 2018, MACHINE LEARNING BAS, P51. Stuart B., 2004, INFRARED SPECTROSCOP, DOI {[}https://doi.org/10.1002/0470011149, DOI 10.1002/0470011149]. Torti F, 2012, COMPUT STAT DATA AN, V56, P2501, DOI 10.1016/j.csda.2012.02.003. Veerasingam S, 2020, TRAC-TREND ANAL CHEM, V133, DOI 10.1016/j.trac.2020.116071. Veerasingam S, 2021, CRIT REV ENV SCI TEC, V51, P2681, DOI 10.1080/10643389.2020.1807450. Vidal C, 2021, ENVIRON POLLUT, V285, DOI 10.1016/j.envpol.2021.117251. Wander L, 2020, ANAL METHODS-UK, V12, P781, DOI 10.1039/c9ay02483b. Weisser J, 2021, WATER-SUI, V13, DOI 10.3390/w13060841. Wold S, 2001, CHEMOMETR INTELL LAB, V58, P109, DOI 10.1016/S0169-7439(01)00155-1. Xu J.-L., 2020, HDB MICROPLASTICS EN, P1. Xu JL, 2019, TRAC-TREND ANAL CHEM, V119, DOI 10.1016/j.trac.2019.115629. Xu QS, 2001, CHEMOMETR INTELL LAB, V56, P1, DOI 10.1016/S0169-7439(00)00122-2. Xu R., 2008, CLUSTERING, P15. Yang L, 2021, SCI TOTAL ENVIRON, V780, DOI 10.1016/j.scitotenv.2021.146546. Zhang YT, 2019, ENVIRON SCI TECHNOL, V53, P5151, DOI 10.1021/acs.est.8b07321. Zhu CM, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114296.}, Number-of-Cited-References = {108}, Times-Cited = {2}, Usage-Count-Last-180-days = {17}, Usage-Count-Since-2013 = {38}, Journal-ISO = {Trac-Trends Anal. Chem.}, Doc-Delivery-Number = {0N0XS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000782571900008}, DA = {2023-04-22}, } @article{ WOS:000791258600004, Author = {Lim, Hooi Ren and Khoo, Kuan Shiong and Chia, Wen Yi and Chew, Kit Wayne and Ho, Shih-Hsin and Show, Pau Loke}, Title = {Smart microalgae farming with internet-of-things for sustainable agriculture}, Journal = {BIOTECHNOLOGY ADVANCES}, Year = {2022}, Volume = {57}, Month = {JUL-AUG}, Abstract = {Agriculture farms such as crop, aquaculture and livestock have begun the implementation of Internet of Things (IoT) and artificial intelligence (AI) technology in improving their productivity and product quality. However, microalgae farming which requires precise monitoring, controlling and predicting the growth of microalgae biomass has yet to incorporate with IoT and AI technology, as it is still in its infancy phase. Particularly, the cultivation stage of microalgae involves many essential parameters (i.e. biomass concentration, pH, light intensity, temperature and tank level) which require precise monitoring as these parameters are important to ensure an effective biomass productivity in the microalgae farming. Besides, the conventional practices in the current process equipment are still powered by electricity, thus further development by integrating IoT into these processes can ease the production process. Further to that, many researchers has studied the machine learning approach for the identification and classification of microalgae. However, there are still limited studies reported on applying machine learning for the application of microalgae industry such as optimising microalgae cultivation for higher biomass productivity. Therefore, the implementation of IoT and AI in microalgae farming can contribute to the development of the global microalgae industry. The purpose of this current review paper focuses on the overview microalgae biomass production process along with the implementation of IoT toward the future of smart farming. To bridge the gap between the conventional and microalgae smart farming, this paper also highlights the insights on the implementation phases of microalgae smart farming starting from the infant stage that involves the installation and programming of IoT hardware. Then, it is followed by the application of machine learning to predict and auto-optimise the microalgae smart farming process. Furthermore, the process setup and detailed overview of microalgae farming with the integration of IoT have been discussed critically. This review paper would provide a new vision of microalgae farming for microalgae researchers and bioprocessing industries into the digitalisation industrial era.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Ho, SH (Corresponding Author), Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource \& Environm, Harbin 150090, Peoples R China. Show, PL (Corresponding Author), Univ Nottingham Malaysia, Fac Sci \& Engn, Dept Chem \& Environm Engn, Semenyih 43500, Selangor, Malaysia. Khoo, KS (Corresponding Author), UCSI Univ, Fac Appl Sci, UCSI Hts, Kuala Lumpur 56000, Malaysia. Lim, Hooi Ren; Ho, Shih-Hsin, Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource \& Environm, Harbin 150090, Peoples R China. Lim, Hooi Ren; Chia, Wen Yi; Show, Pau Loke, Univ Nottingham Malaysia, Fac Sci \& Engn, Dept Chem \& Environm Engn, Semenyih 43500, Selangor, Malaysia. Khoo, Kuan Shiong, UCSI Univ, Fac Appl Sci, UCSI Hts, Kuala Lumpur 56000, Malaysia. Chew, Kit Wayne, Xiamen Univ Malaysia, Sch Energy \& Chem Engn, Sepang 43900, Selangor, Malaysia. Chew, Kit Wayne, Xiamen Univ, Coll Chem \& Chem Engn, Xiamen 361005, Fujian, Peoples R China.}, DOI = {10.1016/j.biotechadv.2022.107931}, EarlyAccessDate = {MAR 2022}, Article-Number = {107931}, ISSN = {0734-9750}, EISSN = {1873-1899}, Keywords = {Internet of things; Machine learning; Artificial intelligence; Microalgae; Smart farming}, Keywords-Plus = {LIPID EXTRACTION; SPIRULINA-PLATENSIS; OPTICAL-PROPERTIES; REMOTE ESTIMATION; WASTE-WATER; BIOMASS; GROWTH; CULTIVATION; IOT; OPTIMIZATION}, Research-Areas = {Biotechnology \& Applied Microbiology}, Web-of-Science-Categories = {Biotechnology \& Applied Microbiology}, Author-Email = {kuanshiong.khoo@ucsiuniversity.edu.my kitwayne.chew@xmu.edu.my stephen6949@hit.edu.cn PauLoke.Show@nottingham.edu.my}, Affiliations = {Harbin Institute of Technology; University of Nottingham Malaysia; UCSI University; Xiamen University Malaysia Campus; Xiamen University}, ResearcherID-Numbers = {Khoo, Kuan Shiong/AAT-4901-2020 Chew, Kit Wayne/R-2427-2019 Lim, Hooi Ren/HNS-0014-2023 Pau Loke, Show/A-7953-2015 Ho, Shih-Hsin/D-6187-2013}, ORCID-Numbers = {Khoo, Kuan Shiong/0000-0002-5369-2675 Chew, Kit Wayne/0000-0003-2622-6916 Lim, Hooi Ren/0000-0002-9104-7925 Pau Loke, Show/0000-0002-0913-5409 Ho, Shih-Hsin/0000-0002-9884-1080}, Funding-Acknowledgement = {Fundamental Research Grant Scheme, Malaysia {[}FRGS/1/2019/STG05/UNIM/02/2]; MyPAIR-PHC-Hibiscus Grant {[}MyPAIR/1/2020/STG05/UNIM/1]; UCSI University Research and Innovation Grant {[}REIG-FAS-2020/028]}, Funding-Text = {This work was supported by the Fundamental Research Grant Scheme, Malaysia {[}FRGS/1/2019/STG05/UNIM/02/2] and MyPAIR-PHC-Hibiscus Grant {[}MyPAIR/1/2020/STG05/UNIM/1] . This work was also supported by the UCSI University Research and Innovation Grant under project code {[}REIG-FAS-2020/028] .}, Cited-References = {Acien FG, 2014, BIOFUELS FROM ALGAE, P313. Ahmed N, 2018, IEEE INTERNET THINGS, V5, P4890, DOI 10.1109/JIOT.2018.2879579. Akhigbe BI, 2021, BIG DATA COGN COMPUT, V5, DOI 10.3390/bdcc5010010. Al Nabulsi Ahmad, 2019, J ELECT SCI TECHNOL, V17, DOI 10.1016/J.JNLEST.2020.100017. Amicucci L., 2019, IOT BASED PREDICTIVE. Amorim ML, 2021, CRIT REV FOOD SCI, V61, P1976, DOI 10.1080/10408398.2020.1768046. Anusha k., 2018, INT J ENG MANUF SCI, V8, P55. Ariawan E, 2018, PROCEEDINGS OF 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), P587. Baladehi MH, 2021, ANAL CHEM, V93, P8872, DOI 10.1021/acs.analchem.1c01015. Barbosa RC, 2020, COMPUT ELECTRON AGR, V176, DOI 10.1016/j.compag.2020.105641. Barros AI, 2015, RENEW SUST ENERG REV, V41, P1489, DOI 10.1016/j.rser.2014.09.037. BBVA API\_Market, 2015, BEST ALT ARD DO IT Y. Becker EW, 1994, MICROALGAE BIOTECHNO. Benavides M, 2015, SENSORS-BASEL, V15, P4766, DOI 10.3390/s150304766. Bers MU, 2019, COMPUT EDUC, V138, P130, DOI 10.1016/j.compedu.2019.04.013. Bi XL, 2019, OPTIK, V176, P191, DOI 10.1016/j.ijleo.2018.09.077. Bilad MR, 2018, J ENVIRON MANAGE, V223, P23, DOI 10.1016/j.jenvman.2018.06.007. Boursianis AD, 2022, INTERNET THINGS-NETH, V18, DOI 10.1016/j.iot.2020.100187. Broom D., 2020, CORONAVIRUS HAS EXPO. Brown SL, 2020, HARDWAREX, V8, DOI 10.1016/j.ohx.2020.e00136. Chavan Sayali, 2018, INT J RECENT INNOV T, V6, P159. Chew KW, 2019, BIORESOURCE TECHNOL, V288, DOI 10.1016/j.biortech.2019.121519. Chew KW, 2018, J TAIWAN INST CHEM E, V91, P332, DOI 10.1016/j.jtice.2018.05.039. Chia SR, 2020, CHEM ENG J, V398, DOI 10.1016/j.cej.2020.125613. Chiang L, 2017, ANNU REV CHEM BIOMOL, V8, P63, DOI 10.1146/annurev-chembioeng-060816-101555. Cogne G, 2001, BIOTECHNOL LETT, V23, P1309, DOI 10.1023/A:1010521406607. Colares R. G., 2013, J BRAZILIAN COMPUTER, V19, P411, DOI {[}10.1007/s13173-013-0121-y, DOI 10.1007/S13173-013-0121-Y]. CompareHero.my, 2020, TOP 5 JOBS ART INT A. Correa I, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P20, DOI 10.1109/ICMLA.2017.0-183. Darvehei P, 2018, RENEW SUST ENERG REV, V97, P233, DOI 10.1016/j.rser.2018.08.027. Deuskar P., 2021, INTERNET WORLD. Devianto LA, 2018, IOP C SER EARTH ENV, V131, DOI 10.1088/1755-1315/131/1/012042. Duever TA, 2019, PROCESSES, V7, DOI 10.3390/pr7110830. El Naqa I., 2015, MACHINE LEARNING RAD, P3, DOI 10.1007/978-3-319-18305-3\_1. Elersek T, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.00443. Eze VC, 2018, ALGAL RES, V32, P131, DOI 10.1016/j.algal.2018.03.015. Fabris M, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00279. Farooq MS, 2019, IEEE ACCESS, V7, P156237, DOI 10.1109/ACCESS.2019.2949703. Federico G., 2008, FEEDING WORLD EC HIS. Fortune Business Insights, ARTIF INTELL. Giannino F, 2018, CONCURR COMP-PRACT E, V30, DOI 10.1002/cpe.4476. GITELSON AA, 1995, J PHYCOL, V31, P828, DOI 10.1111/j.0022-3646.1995.00828.x. Gitelson AA, 2000, BIOTECHNOL BIOENG, V69, P516, DOI 10.1002/1097-0290(20000905)69:5<516::AID-BIT6>3.0.CO;2-I. Gotovtsev P.M., 2019, 2019 INT C SENS INST. Harmon J, 2020, OSA CONTINUUM, V3, P430, DOI 10.1364/OSAC.387523. He SX, 2018, SPECTROCHIM ACTA A, V204, P287, DOI 10.1016/j.saa.2018.06.060. Hermadi I., 2021, IOP C SER EARTH ENV, V749. Hong WJ, 2021, ENVIRONMENTS, V8, DOI 10.3390/environments8010006. Ibrahim S.N., 2018, INT J ELECT COMPUT E, V8. Jia F, 2015, SENSORS-BASEL, V15, P22234, DOI 10.3390/s150922234. Kamilaris A, 2017, COMPUT ELECTRON AGR, V143, P23, DOI 10.1016/j.compag.2017.09.037. Khoo K.S., BIORESOURCE TECHNOL, V304. Khoo KS, 2021, CHEM ENG J, V411, DOI 10.1016/j.cej.2021.128510. Khoo KS, 2021, SEP PURIF TECHNOL, V256, DOI 10.1016/j.seppur.2020.117471. Khoo KS, 2021, BIORESOURCE TECHNOL, V322, DOI 10.1016/j.biortech.2020.124520. Khoo KS, 2020, ULTRASON SONOCHEM, V67, DOI 10.1016/j.ultsonch.2020.105052. Kim MM, 2017, PHYS MED BIOL, V62, pR1, DOI 10.1088/1361-6560/62/5/R1. Korkmaz S., 2017, INT J EC FINANCE, V9, P71, DOI DOI 10.5539/IJEF.V9N5P71. Koyande AK, 2020, BIOCHEM ENG J, V157, DOI 10.1016/j.bej.2020.107532. Koyande AK, 2019, FOOD SCI HUM WELL, V8, P16, DOI 10.1016/j.fshw.2019.03.001. Lee E, 2015, ALGAL RES, V12, P497, DOI 10.1016/j.algal.2015.10.004. Liakos KG, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082674. Lim HR, 2021, ENVIRON POLLUT, V284, DOI 10.1016/j.envpol.2021.117492. Lu L, 2017, INDIAN J GEO-MAR SCI, V46, P2265. Madhumathi R., 2020, P 2020 11 INT C COMP, DOI {[}10.1109/icccnt49239.2020.9225547, DOI 10.1109/ICCCNT49239.2020.9225547]. Manyika J., 2015, INTERNET THINGS MAPP. Mayol AP, 2020, IOP C SER EARTH ENV, V463, DOI 10.1088/1755-1315/463/1/012011. Menn J., 2019, APPLE OFFERS 1M RES. Meola A., 2021, SMART FARMING 2020 I. Meyer D., 2016, HERES MUCH GOOGLE PA. MIDDELHOEK S, 1980, IEEE SPECTRUM, V17, P42, DOI 10.1109/MSPEC.1980.6330262. Milic M, 2023, BIOMASS CONVERS BIOR, V13, P3179, DOI 10.1007/s13399-021-01314-2. Monteiro AF, 2021, EDUC SCI, V11, DOI 10.3390/educsci11050198. Najjar YSH, 2020, ALGAL RES, V51, DOI 10.1016/j.algal.2020.102046. Nayak M, 2018, J CLEAN PROD, V201, P1092, DOI 10.1016/j.jclepro.2018.08.048. Ndikubwimana T, 2015, BIOCHEM ENG J, V101, P160, DOI 10.1016/j.bej.2015.05.010. Nguyen BT, 2018, ALGAL RES, V32, P101, DOI 10.1016/j.algal.2018.03.013. Onumaegbu C, 2019, RENEW ENERG, V132, P1323, DOI 10.1016/j.renene.2018.09.008. Otalora P., ALGAL RES, V55, P2021. Pallavi S, 2017, 2017 INTERNATIONAL CONFERENCE ON BIG DATA, IOT AND DATA SCIENCE (BID), P44, DOI 10.1109/BID.2017.8336571. Panahi B, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00752. Pattanaik A., 2019, BIOMED J SCI TECH RE, V13, P1. Patterson D., 2018, WHY MICROSOFT SPENDS. Pozzobon V, 2020, J APPL PHYCOL, V32, P2967, DOI 10.1007/s10811-020-02180-7. Rahmat A., 2020, OMNIAKUATIKA, V16, P53. Reimann R, 2020, ALGAL RES, V48, DOI 10.1016/j.algal.2020.101908. Roettgers J., 2019, VARIETY. Roser M., 2013, EMPLOYMENT AGR. Roser M, 2019, ACCESS ENERGY, P11. Salam A., 2019, INTERNET THINGS SUST. Salam S, 2019, ENERG CONVERS MANAGE, V180, P496, DOI 10.1016/j.enconman.2018.11.014. Sandnes JM, 2006, J BIOTECHNOL, V122, P209, DOI 10.1016/j.jbiotec.2005.08.034. Sarrafzadeh MH, 2015, J BIOTECHNOL, V216, P90, DOI 10.1016/j.jbiotec.2015.10.010. Sausalito C, 2019, GLOBAL CYBERSECURITY. Serikul P, 2018, INT CONF ICT KNOWL, P70. Shamayleh A, 2020, J MED SYST, V44, DOI 10.1007/s10916-020-1534-8. Shamsudheen S., 2019, INT J MC SQUARE SCI, V11, P25. Singh D, 2018, BIOCHEM SOC T, V46, P483, DOI 10.1042/BST20170262. Sorensen MK, 2015, ANAL CHEM, V87, P6446, DOI 10.1021/acs.analchem.5b01924. Sostaric M, 2012, NEW BIOTECHNOL, V29, P325, DOI 10.1016/j.nbt.2011.12.002. Taghavijeloudar M, 2019, BIORESOURCE TECHNOL, V273, P565, DOI 10.1016/j.biortech.2018.11.062. Tan CH, 2021, INDIAN J MICROBIOL, V61, P279, DOI 10.1007/s12088-021-00930-w. Tan JS, 2020, BIOENGINEERED, V11, P116, DOI 10.1080/21655979.2020.1711626. Vineela T., 2018, INT RES J ENG TECHNO, V5, P1417. Vuppaladadiyam AK, 2018, BIOFUEL BIOPROD BIOR, V12, P304, DOI 10.1002/bbb.1864. Wang YY, 2021, MAR POLLUT BULL, V163, DOI 10.1016/j.marpolbul.2020.111927. Wibisono Radityo Putro, 2020, 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), P433, DOI 10.1109/ISRITI51436.2020.9315417. Xu ZP, 2020, OPT EXPRESS, V28, P30686, DOI 10.1364/OE.406036. Yehuda Y., 2020, TOP 7 CLOUD DATABASE. Yew GY, 2020, CHEM ENG J, V402, DOI 10.1016/j.cej.2020.126230. Zambon I, 2019, PROCESSES, V7, DOI 10.3390/pr7010036. Zhong NB, 2019, ANAL CHEM, V91, P15155, DOI 10.1021/acs.analchem.9b03923. Zhu JY, 2013, CHINESE J CATAL, V34, P80, DOI 10.1016/S1872-2067(11)60497-X. Zhu LD, 2020, BIOMASS BIOENERG, V132, DOI 10.1016/j.biombioe.2019.105433.}, Number-of-Cited-References = {114}, Times-Cited = {20}, Usage-Count-Last-180-days = {35}, Usage-Count-Since-2013 = {79}, Journal-ISO = {Biotechnol. Adv.}, Doc-Delivery-Number = {0Z7MT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000791258600004}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000776158500001, Author = {Mallow, G. Michael and Hornung, Alexander and Barajas, Juan Nicolas and Rudisill, Samuel S. and An, Howard S. and Samartzis, Dino}, Title = {Quantum Computing: The Future of Big Data and Artificial Intelligence in Spine}, Journal = {SPINE SURGERY AND RELATED RESEARCH}, Year = {2022}, Volume = {6}, Number = {2}, Pages = {93-98}, Abstract = {With the emergence of big data and more personalized approaches to spine care and predictive modeling, data science and deep analytics are taking center-stage. Although current techniques in machine learning and artificial intelligence have gained attention, their applications remain limited by their reliance on traditional analytic platforms. Quantum computing has the ability to circumvent such constraints by attending to the various complexities of big data while minimizing space and time dimensions within computational algorithms. In doing so, quantum computing may one day address research and clinical objectives that currently cannot be tackled. Understanding quantum computing and its potential to improve patient management and outcomes is therefore imperative to drive further advancements in the spine field for the next several decades.}, Publisher = {JAPANESE SOC SPINE SURGERY \& RELATED RESEARCH}, Address = {1-1-1, HITOTSUBASHI, CHIYODA-KU, PALACE SIDE BLDG, TOKYO, 100-0003, JAPAN}, Type = {Review}, Language = {English}, Affiliation = {Samartzis, D (Corresponding Author), Rush Univ, Med Ctr, Dept Orthopaed Surg, Div Spine Surg, Chicago, IL 60612 USA. Samartzis, Dino, Rush Univ, Med Ctr, Dept Orthopaed Surg, Div Spine Surg, Chicago, IL 60612 USA. Rush Univ, Med Ctr, Int Spine Res \& Innovat Initiat, Chicago, IL 60612 USA.}, DOI = {10.22603/ssrr.2021-0251}, ISSN = {2432-261X}, Keywords = {quantum; computing; spine; disc degeneration; pain; artificial intelligence; big data}, Keywords-Plus = {DISK DEGENERATION; MODEL; CARE; ERA}, Research-Areas = {Surgery}, Web-of-Science-Categories = {Surgery}, Author-Email = {dino\_samartzis@rush.edu}, Affiliations = {Rush University; Rush University}, ResearcherID-Numbers = {Hornung, Al/GQH-4667-2022 Rudisill, Samuel S/AGE-4530-2022 }, ORCID-Numbers = {Hornung, Al/0000-0001-7041-3319 Rudisill, Samuel S/0000-0003-1325-4395 Samartzis, Dino/0000-0002-7473-1311}, Cited-References = {Aebi M, 2004, EUR SPINE J, V13, P661, DOI 10.1007/s00586-004-0868-0. Alexandrov M, 1997, INT J MOD PHYS A, V12, P1405, DOI 10.1142/S0217751X97001031. Andersen RA, 2004, CURR OPIN NEUROBIOL, V14, P720, DOI 10.1016/j.conb.2004.10.005. Back Pain Consortium, BACPAC RES PROGR. BENIOFF P, 1980, J STAT PHYS, V22, P563, DOI 10.1007/BF01011339. Bova F, 2021, EPJ QUANTUM TECHNOL, V8, DOI 10.1140/epjqt/s40507-021-00091-1. Breakwell LM, 2015, BONE JOINT J, V97B, P871, DOI 10.1302/0301-620X.97B7.35391. Briegel HJ, 2009, NAT PHYS, V5, P19, DOI {[}10.1038/NPHYS1157, 10.1038/nphys1157]. Cheng HP, 2020, FRONT CHEM, V8, DOI 10.3389/fchem.2020.587143. Cheung JPY, 2018, J ORTHOP RES, V36, P1262, DOI 10.1002/jor.23746. DEUTSCH D, 1992, P ROY SOC LOND A MAT, V439, P553, DOI 10.1098/rspa.1992.0167. DEUTSCH D, 1985, P ROY SOC LOND A MAT, V400, P97, DOI 10.1098/rspa.1985.0070. Dilsizian SE, 2014, CURR CARDIOL REP, V16, DOI 10.1007/s11886-013-0441-8. Elizabeth K, 2017, C EN GLOBAL ENTERP, V95, P29. Eskola PJ, 2014, SPINE J, V14, P479, DOI 10.1016/j.spinee.2013.07.437. FEYNMAN RP, 1982, INT J THEOR PHYS, V21, P467, DOI 10.1007/BF02650179. Freidin MB, 2019, PAIN, V160, P1361, DOI 10.1097/j.pain.0000000000001514. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216. Hagar A., 2019, STANFORD ENCY PHILOS. Harada GK, 2020, SPINE SURG RELAT RES, V4, P99, DOI 10.22603/ssrr.2020-0011. Hochberg LR, 2012, NATURE, V485, P372, DOI 10.1038/nature11076. Holevo A S., 1973, PROBL PEREDA INF, V9, P177. Kabeerdoss J, 2016, RHEUMATOL INT, V36, P457, DOI 10.1007/s00296-015-3414-y. Kao PYP, 2011, ORTHOP CLIN N AM, V42, P479, DOI 10.1016/j.ocl.2011.07.011. Koebbe Christopher J, 2002, Neurosurg Focus, V13, pE3. Mallow GM, 2021, GLOB SPINE J, V11, P135, DOI 10.1177/2192568220973984. Mulliken GH, 2008, P NATL ACAD SCI USA, V105, P8170, DOI 10.1073/pnas.0802602105. Mulliken GH, 2008, J NEUROSCI, V28, P12913, DOI 10.1523/JNEUROSCI.1463-08.2008. Newsroom A, APPLE UNLEASHES M1. Outeiral C, 2021, WIRES COMPUT MOL SCI, V11, DOI 10.1002/wcms.1481. Rajasekaran S, 2020, EUR SPINE J, V29, P1621, DOI 10.1007/s00586-020-06446-z. Raudaschl A, 2017, QUANTUM COMPUTING HE. Raussendorf R, 2003, PHYS REV A, V68, DOI 10.1103/PhysRevA.68.022312. Rebentrost P, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.022321. RIVEST RL, 1978, COMMUN ACM, V21, P120, DOI 10.1145/357980.358017. Samartzis D, 2018, GLOB SPINE J, V8, P321, DOI 10.1177/2192568218774044. Samartzis D, 2015, SPINE J, V15, P1919, DOI 10.1016/j.spinee.2014.09.010. Samartzis D, 2013, GLOB SPINE J, V3, P133, DOI 10.1055/s-0033-1350054. Shor PW, 1997, SIAM J COMPUT, V26, P1484, DOI 10.1137/S0036144598347011. Simon DR, 1997, SIAM J COMPUT, V26, P1474, DOI 10.1137/S0097539796298637. Smith L, NATL QUANTUM INITIAT. Stromqvist B, 2009, EUR SPINE J, V18, pS294, DOI 10.1007/s00586-009-1043-4. Surgeons ACo, ACS NAT SURG QUAL IM. WITTEN E, 1988, COMMUN MATH PHYS, V117, P353, DOI 10.1007/BF01223371. Wong AYL, 2017, SCOLIOSIS SPINAL DIS, V12, DOI 10.1186/s13013-017-0121-3.}, Number-of-Cited-References = {45}, Times-Cited = {0}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {14}, Journal-ISO = {Spine Surg. Relat. Res.}, Doc-Delivery-Number = {0D7GE}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000776158500001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000919918500001, Author = {Iqbal, Umair and Bin Riaz, Muhammad Zain and Barthelemy, Johan and Perez, Pascal and Idrees, Muhammad Bilal}, Title = {The last two decades of computer vision technologies in water resource management: A bibliometric analysis}, Journal = {WATER AND ENVIRONMENT JOURNAL}, Abstract = {Efficient management of water resources is an important task given the significance of water in daily lives and economic growth. Water resource management is a specific field of study which deals with the efficient management of water resources towards fulfilling the needs of society and preventing from water-related disasters. Many activities within this domain are getting benefitted with the recent technological advancements. Within many others, computer vision-based solutions have emerged as disruptive technologies to address complex real-world problems within the water resource management domain (e.g., flood detection and mapping, satellite-based water bodies monitoring, monitoring and inspection of hydraulic structures, blockage detection and assessment, drainage inspection and sewer monitoring). However, there are still many aspects within the water resource management domain which can be explored using computer vision technologies. Therefore, it is important to investigate the trends in current research related to these technologies to inform the new researchers in this domain. In this context, this paper presents the bibliometric analysis of the literature from the last two decades where computer vision technologies have been used for addressing problems within the water resource management domain. The analysis is presented in two categories: (a) performance analysis demonstrating highlighted trends in the number of publications, number of citations, top contributing countries, top publishing journals, top contributing institutions and top publishers and (b) science mapping to demonstrate the relation between the bibliographic records based on the co-occurrence of keywords, co-authorship analysis, co-citation analysis and bibliographic coupling analysis. Bibliographic records (i.e., 1059) are exported from the Web of Science (WoS) core collection database using a comprehensive query of keywords. VOSviewer opensource tool is used to generate the network and overlay maps for the science mapping of bibliographic records. Results highlighted important trends and valuable insights related to the use of computer vision technologies in water resource management. An increasing trend in the number of publications and focus on deep learning/artificial intelligence (AI)-based approaches has been reported from the analysis. Further, flood mapping, crack/fracture detection, coastal flood detection, blockage detection and drainage inspections are highlighted as active areas of research.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review; Early Access}, Language = {English}, Affiliation = {Iqbal, U (Corresponding Author), Univ Wollongong, SMART Infrastruct Facil, Wollongong, NSW, Australia. Iqbal, Umair, Univ Wollongong, SMART Infrastruct Facil, Wollongong, NSW, Australia. Barthelemy, Johan, NVIDIA, Santa Clara, CA USA. Perez, Pascal, Univ Melbourne, Australian Urban Res Infrastruct Network AURIN, Melbourne, Vic, Australia. Idrees, Muhammad Bilal, Natl Univ Sci \& Technol, Mil Coll Engn MCE, Islamabad, Pakistan.}, DOI = {10.1111/wej.12845}, EarlyAccessDate = {JAN 2023}, ISSN = {1747-6585}, EISSN = {1747-6593}, Keywords = {artificial intelligence; bibliometric analysis; computer vision; deep learning; remote sensing; water resources}, Research-Areas = {Environmental Sciences \& Ecology; Marine \& Freshwater Biology; Water Resources}, Web-of-Science-Categories = {Environmental Sciences; Limnology; Water Resources}, Author-Email = {umair@uow.edu.au}, Affiliations = {University of Wollongong; Nvidia Corporation; University of Melbourne; National University of Sciences \& Technology - Pakistan}, ORCID-Numbers = {Idrees, Muhammad Bilal/0000-0002-0917-5478}, Cited-References = {Adikari KE, 2021, ENVIRON MODELL SOFTW, V144, DOI 10.1016/j.envsoft.2021.105136. Ancey C, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.011302. Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007. Baker HK, 2021, J FUTURES MARKETS, V41, P1027, DOI 10.1002/fut.22211. Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317. Chin D.A., 2000, WATER RESOURCES ENG, V12. Cobby DM, 2001, ISPRS J PHOTOGRAMM, V56, P121, DOI 10.1016/S0924-2716(01)00039-9. Cosgrove WJ, 2015, WATER RESOUR RES, V51, P4823, DOI 10.1002/2014WR016869. Cui F, 2022, J HYDROL, V606, DOI 10.1016/j.jhydrol.2021.127384. Dabral PP, 2008, WATER RESOUR MANAG, V22, P1783, DOI 10.1007/s11269-008-9253-9. Danvila-del-Valle I, 2019, J BUS RES, V101, P627, DOI 10.1016/j.jbusres.2019.02.026. Datt B, 2003, IEEE T GEOSCI REMOTE, V41, P1246, DOI 10.1109/TGRS.2003.813206. Diodato V., 2013, DICT BIBLIOMETRICS. Dong SJ, 2022, ENVIRON PLAN B-URBAN, V49, P1838, DOI 10.1177/23998083211069140. Donthu N, 2021, INT J RES MARK, V38, P232, DOI 10.1016/j.ijresmar.2020.10.006. Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070. Du BG, 2021, EXPERT SYST APPL, V171, DOI 10.1016/j.eswa.2021.114571. Ghorpade P, 2021, 2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), P32, DOI 10.1109/ICSCC51209.2021.9528099. Giustarini L, 2013, IEEE T GEOSCI REMOTE, V51, P2417, DOI 10.1109/TGRS.2012.2210901. Halfawy MR, 2014, AUTOMAT CONSTR, V38, P1, DOI 10.1016/j.autcon.2013.10.012. Haurum JB, 2021, PROC CVPR IEEE, P13451, DOI 10.1109/CVPR46437.2021.01325. Heyman J, 2016, J GEOPHYS RES-EARTH, V121, DOI 10.1002/2015JF003672. Hu X, 2021, J CLEAN PROD, V278, DOI 10.1016/j.jclepro.2020.123611. Iqbal U, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11167561. Iqbal U, 2021, INT J DISAST RISK RE, V53, DOI 10.1016/j.ijdrr.2020.102030. Isidoro JMGP, 2021, MEASUREMENT, V180, DOI 10.1016/j.measurement.2021.109477. Jafari NH, 2021, COMPUT GEOSCI-UK, V147, DOI 10.1016/j.cageo.2020.104642. James MR, 2012, J GEOPHYS RES-EARTH, V117, DOI 10.1029/2011JF002289. Javemick L, 2014, GEOMORPHOLOGY, V213, P166, DOI 10.1016/j.geomorph.2014.01.006. Konapala G, 2021, ISPRS J PHOTOGRAMM, V180, P163, DOI 10.1016/j.isprsjprs.2021.08.016. Lin YB, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21144942. Loucks DP, 2000, WATER INT, V25, P3, DOI 10.1080/02508060008686793. Martinis S, 2009, NAT HAZARD EARTH SYS, V9, P303, DOI 10.5194/nhess-9-303-2009. Mason DC, 2010, IEEE T GEOSCI REMOTE, V48, P882, DOI 10.1109/TGRS.2009.2029236. Matgen P, 2007, INT J APPL EARTH OBS, V9, P247, DOI 10.1016/j.jag.2006.03.003. Mays L.W., 2010, WATER RESOURCES ENG. Melvin LMJ, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-01170-0. Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123. Mumbi AW, 2022, MAR FRESHWATER RES, V73, P292, DOI 10.1071/MF21118. Muthugala MAVJ, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21175742. Myrans J, 2019, J HYDROINFORM, V21, P153, DOI 10.2166/hydro.2018.073. Panda SS, 2010, REMOTE SENS-BASEL, V2, P673, DOI 10.3390/rs2030673. Park S, 2021, J COMPUT CIVIL ENG, V35, DOI 10.1061/(ASCE)CP.1943-5487.0000956. Persson O., 2009, CELEBRATING SCHOLARL, V9. Poursaeid M, 2022, WATER RESOUR MANAG, V36, P1499, DOI 10.1007/s11269-022-03070-y. Ranasinghe R, 2004, MAR GEOL, V204, P273, DOI 10.1016/S0025-3227(04)00002-7. Ravichandran T, 2021, J HYDROINFORM, V23, P307, DOI 10.2166/hydro.2021.093. Salloom T, 2021, J HYDROL, V599, DOI 10.1016/j.jhydrol.2021.126353. Samadi M, 2021, SOFT COMPUT, V25, P3873, DOI 10.1007/s00500-020-05413-6. Townsend PA, 2009, REMOTE SENS ENVIRON, V113, P62, DOI 10.1016/j.rse.2008.08.012. van Beek, 2017, WATER RESOURCE SYSTE, DOI {[}10.1007/978-3-319-44234-1\_2, DOI 10.1007/978-3-319-44234-1, 10.1007/978-3-319-44234-1]. Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299. van Nunen K, 2018, SAFETY SCI, V108, P248, DOI 10.1016/j.ssci.2017.08.011. Wang R.-Q., 2021, EARTH OBSERVATION FL, P295, DOI {[}10.1016/B978-0-12-819412-6.00013-4, DOI 10.1016/B978-0-12-819412-6.00013-4]. Xie Q, 2019, IEEE T AUTOM SCI ENG, V16, P1836, DOI 10.1109/TASE.2019.2900170.}, Number-of-Cited-References = {55}, Times-Cited = {1}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {15}, Journal-ISO = {Water Environ. J.}, Doc-Delivery-Number = {8F8PM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000919918500001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000620925900011, Author = {Pollice, Robert and Gomes, Gabriel dos Passos and Aldeghi, Matteo and Hickman, Riley J. and Krenn, Mario and Lavigne, Cyrille and Lindner-D'Addario, Michael and Nigam, AkshatKumar and Ser, Cher Tian and Yao, Zhenpeng and Aspuru-Guzik, Alan}, Title = {Data-Driven Strategies for Accelerated Materials Design}, Journal = {ACCOUNTS OF CHEMICAL RESEARCH}, Year = {2021}, Volume = {54}, Number = {4}, Pages = {849-860}, Month = {FEB 16}, Abstract = {The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanopartides with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.}, Publisher = {AMER CHEMICAL SOC}, Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA}, Type = {Review}, Language = {English}, Affiliation = {Aspuru-Guzik, A (Corresponding Author), Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada. Aspuru-Guzik, A (Corresponding Author), Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3H6, Canada. Aspuru-Guzik, A (Corresponding Author), Vector Inst Artificial Intelligence, Toronto, ON M5G 1M1, Canada. Aspuru-Guzik, A (Corresponding Author), Canadian Inst Adv Res CIFAR, Toronto, ON M5G, Canada. Pollice, Robert; Gomes, Gabriel dos Passos; Aldeghi, Matteo; Hickman, Riley J.; Krenn, Mario; Lavigne, Cyrille; Lindner-D'Addario, Michael; Nigam, AkshatKumar; Ser, Cher Tian; Yao, Zhenpeng; Aspuru-Guzik, Alan, Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada. Pollice, Robert; Gomes, Gabriel dos Passos; Aldeghi, Matteo; Hickman, Riley J.; Krenn, Mario; Lavigne, Cyrille; Lindner-D'Addario, Michael; Nigam, AkshatKumar; Ser, Cher Tian; Yao, Zhenpeng; Aspuru-Guzik, Alan, Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3H6, Canada. Aldeghi, Matteo; Krenn, Mario; Aspuru-Guzik, Alan, Vector Inst Artificial Intelligence, Toronto, ON M5G 1M1, Canada. Aspuru-Guzik, Alan, Canadian Inst Adv Res CIFAR, Toronto, ON M5G, Canada.}, DOI = {10.1021/acs.accounts.0c00785}, EarlyAccessDate = {FEB 2021}, ISSN = {0001-4842}, EISSN = {1520-4898}, Keywords-Plus = {LIGHT-EMITTING-DIODES; CLEAN ENERGY PROJECT; ORGANIC PHOTOVOLTAICS; COMPUTATIONAL DISCOVERY; SELECTION BIAS; MICROARRAY; CANDIDATES; BATTERIES}, Research-Areas = {Chemistry}, Web-of-Science-Categories = {Chemistry, Multidisciplinary}, Author-Email = {aspuru@utoronto.ca}, Affiliations = {University of Toronto; University of Toronto; Canadian Institute for Advanced Research (CIFAR)}, ResearcherID-Numbers = {Pollice, Robert/W-1747-2019 , Gabriel Gomes/HSE-2721-2023 }, ORCID-Numbers = {Pollice, Robert/0000-0001-8836-6266 dos Passos Gomes, Gabriel/0000-0002-8235-5969 Aldeghi, Matteo/0000-0003-0019-8806 Yao, Zhenpeng/0000-0001-8286-8257}, Funding-Acknowledgement = {Swiss National Science Foundation (SNSF) {[}191127]; Natural Sciences and Engineering Research Council of Canada (NSERC); NSERC {[}PGSD3-534584-2019]; Austrian Science Fund (FWF) through the Erwin Schrodinger fellowship {[}J4309]; Fonds de Recherche Quebec Nature et Technologies (FRQNT); Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST); US Department of Energy, Office of Science, Office of Basic Energy Sciences {[}DE-FG0217ER16362]; US Department of Energy, Office of Science-Chicago {[}DESC0019300]; Defense Advanced Research Projects Agency (DARPA) under the Accelerated Molecular Discovery Program {[}HR00111920027]; Natural Resources Canada; Canada 150 Research Chairs program; Department of Navy award {[}N00014-191-2134]; Office of Naval Research; United States Government}, Funding-Text = {We thank all our co-workers and collaborators who contributed to the projects highlighted in this account. R.P. acknowledges funding through a Postdoc.Mobility fellowship by the Swiss National Science Foundation (SNSF, Project No. 191127). G.P.G gratefully acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for the Banting Postdoctoral Fellowship. R.J.H. gratefully acknowledges NSERC for provision of the Postgraduate Scholarships-Doctoral Program (PGSD3-534584-2019). M.K. acknowledges support from the Austrian Science Fund (FWF) through the Erwin Schrodinger fellowship No. J4309. M.L.-D. gratefully acknowledges the Fonds de Recherche Quebec Nature et Technologies (FRQNT) for the B1X Master's Scholarship. M.L.-D. also acknowledges support from the Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST). Z.Y. was supported as part of the Nanoporous Materials Genome Center by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-FG0217ER16362. Z.Y. was also supported by the US Department of Energy, Office of Science-Chicago under Award Number DESC0019300. We acknowledge the Defense Advanced Research Projects Agency (DARPA) under the Accelerated Molecular Discovery Program under Cooperative Agreement No. HR00111920027 dated August 1, 2019. The content of the information presented in this work does not necessarily reflect the position or the policy of the Government. A.A.-G. thanks Anders G. Froseth for his generous support. A.A.-G. also acknowledges the generous support of Natural Resources Canada and the Canada 150 Research Chairs program. We also acknowledge the Department of Navy award (N00014-191-2134) issued by the Office of Naval Research. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Office of Naval Research.}, Cited-References = {Ambroise C, 2002, P NATL ACAD SCI USA, V99, P6562, DOI 10.1073/pnas.102102699. {[}Anonymous], 2020, ASPURU GUZIK GROUPSE. Aspuru-Guzik, INT C LEARN REPR, P2020. Aspuru-Guzik A., 2018, ARXIV MACHINE LEARNI. Aspuru-Guzik A., 2020, ARXIV MACHINE LEARNI. Aspuru-Guzik A., 2020, ARXIV MACHINE LEARNI. Aspuru-Guzik A., 2020, ARXIV MACHINE LEARNI, P12127. Aspuru-Guzik A, 2018, ACS CENTRAL SCI, V4, P144, DOI 10.1021/acscentsci.7b00550. Belsky A, 2002, ACTA CRYSTALLOGR B, V58, P364, DOI 10.1107/S0108768102006948. Bucior BJ, 2019, CRYST GROWTH DES, V19, P6682, DOI 10.1021/acs.cgd.9b01050. Burger B, 2020, NATURE, V583, P237, DOI 10.1038/s41586-020-2442-2. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Cawley GC, 2010, J MACH LEARN RES, V11, P2079. Ceder G, 1998, NATURE, V392, P694, DOI 10.1038/33647. Chen JB, 2020, PHYS CHEM CHEM PHYS, V22, P3855, DOI 10.1039/c9cp06792b. Christensen M., 2020, CHEMRXIV, DOI {[}10.26434/chemrxiv.13146404.v1, DOI 10.26434/CHEMRXIV.13146404.V1]. Chung YG, 2014, CHEM MATER, V26, P6185, DOI 10.1021/cm502594j. Coley CW, 2019, SCIENCE, V365, P557, DOI 10.1126/science.aax1566. de Silva P, 2019, J PHYS CHEM LETT, V10, P5674, DOI 10.1021/acs.jpclett.9b02333. Dupuy A, 2007, JNCI-J NATL CANCER I, V99, P147, DOI 10.1093/jnci/djk018. Duvenaud D. K., 2015, ADV NEURAL INFORM PR, P2224, DOI DOI 10.1021/ACS.JCIM.5B00572. Ehrmaier J, 2019, J PHYS CHEM A, V123, P8099, DOI 10.1021/acs.jpca.9b06215. Arroyo-de Dompablo ME, 2020, CHEM REV, V120, P6331, DOI 10.1021/acs.chemrev.9b00339. Er S, 2015, CHEM SCI, V6, P885, DOI 10.1039/c4sc03030c. Flam-Shepherd D., 2020, ARXIV MACHINE LEARNI. Flores-Leonar MM, 2020, CURR OPIN GREEN SUST, V25, DOI 10.1016/j.cogsc.2020.100370. Friederich P, 2020, CHEM SCI, V11, P4584, DOI 10.1039/d0sc00445f. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Gomez-Bombarelli R, 2016, NAT MATER, V15, P1120, DOI {[}10.1038/NMAT4717, 10.1038/nmat4717]. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Goulet MA, 2019, J AM CHEM SOC, V141, P8014, DOI 10.1021/jacs.8b13295. Hachmann J, 2014, ENERG ENVIRON SCI, V7, P698, DOI 10.1039/c3ee42756k. Hachmann J, 2011, J PHYS CHEM LETT, V2, P2241, DOI 10.1021/jz200866s. Hase F, 2019, TRENDS CHEM, V1, P282, DOI 10.1016/j.trechm.2019.02.007. Hase F, 2018, CHEM SCI, V9, P7642, DOI 10.1039/c8sc02239a. Hase F, 2018, ACS CENTRAL SCI, V4, P1134, DOI 10.1021/acscentsci.8b00307. Hedley GJ, 2017, CHEM REV, V117, P796, DOI 10.1021/acs.chemrev.6b00215. Hey T., 2009, 4 PARADIGM DATA INTE. Hoober-Burkhardt L, 2017, J ELECTROCHEM SOC, V164, pA600, DOI 10.1149/2.0351704jes. Krenn M, 2020, MACH LEARN-SCI TECHN, V1, DOI 10.1088/2632-2153/aba947. KUHN TS, 1962, SCIENCE, V136, P760, DOI 10.1126/science.136.3518.760. Kwabi DG, 2018, JOULE, V2, P1894, DOI 10.1016/j.joule.2018.07.005. Langner S, 2020, ADV MATER, V32, DOI 10.1002/adma.201907801. Lavigne C., 2020, CHEMRXIV, DOI {[}10.26434/chemrxiv.13008500.v1, DOI 10.26434/CHEMRXIV.13008500.V1]. Lin KX, 2016, NAT ENERGY, V1, DOI {[}10.1038/nenergy.2016.102, 10.1038/NENERGY.2016.102]. Liu QS, 2020, SCI BULL, V65, P272, DOI 10.1016/j.scib.2020.01.001. Lopez SA, 2017, JOULE, V1, P857, DOI 10.1016/j.joule.2017.10.006. Luo JA, 2019, ACS ENERGY LETT, V4, P2220, DOI 10.1021/acsenergylett.9b01332. Lyu H, 2020, CHEM-US, V6, P2219, DOI 10.1016/j.chempr.2020.08.008. MacLeod BP, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aaz8867. MARCH ST, 1995, DECIS SUPPORT SYST, V15, P251, DOI 10.1016/0167-9236(94)00041-2. Olivares-Amaya R, 2011, ENERG ENVIRON SCI, V4, P4849, DOI 10.1039/c1ee02056k. Ostroverkhova O, 2016, CHEM REV, V116, P13279, DOI 10.1021/acs.chemrev.6b00127. Pollice R., 2020, CHEMRXIV, DOI {[}10.26434/CHEMRXIV.13087319.V1, DOI 10.26434/CHEMRXIV.13087319.V1]. Ponrouch A, 2016, NAT MATER, V15, P169, DOI {[}10.1038/NMAT4462, 10.1038/nmat4462]. Pyzer-Knapp EO, 2015, ADV FUNCT MATER, V25, P6495, DOI 10.1002/adfm.201501919. Pyzer-Knapp EO, 2015, ANNU REV MATER RES, V45, P195, DOI 10.1146/annurev-matsci-070214-020823. Roch LM, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229862. Roch LM, 2018, SCI ROBOT, V3, DOI 10.1126/scirobotics.aat5559. Roelofs R, 2019, ADV NEUR IN, V32. Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663. Schapira M, 2003, P NATL ACAD SCI USA, V100, P7354, DOI 10.1073/pnas.1131854100. Schindler, 2015, ERGO-ANN ARBOR, V2, P123. Shahriari B, 2016, P IEEE, V104, P148, DOI 10.1109/JPROC.2015.2494218. Shi LM, 2010, NAT BIOTECHNOL, V28, P827, DOI 10.1038/nbt.1665. Sokolov AN, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1451. Steiner S, 2019, SCIENCE, V363, P144, DOI 10.1126/science.aav2211. Tabor DP, 2019, J MATER CHEM A, V7, P12833, DOI 10.1039/c9ta03219c. Wang M, 2018, NAT CHEM, V10, P667, DOI 10.1038/s41557-018-0045-4. WEININGER D, 1988, J CHEM INF COMP SCI, V28, P31, DOI 10.1021/ci00057a005. Yang ZJ, 2018, ADV ENERGY MATER, V8, DOI 10.1002/aenm.201702056. Yao ZP, 2021, NAT MACH INTELL, V3, P76, DOI 10.1038/s42256-020-00271-1. Yao ZP, 2019, ADV ENERGY MATER, V9, DOI 10.1002/aenm.201802994. Zou SJ, 2020, MATER CHEM FRONT, V4, P788, DOI 10.1039/c9qm00716d.}, Number-of-Cited-References = {74}, Times-Cited = {93}, Usage-Count-Last-180-days = {58}, Usage-Count-Since-2013 = {205}, Journal-ISO = {Accounts Chem. Res.}, Doc-Delivery-Number = {QL2QK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000620925900011}, OA = {Green Published, Green Submitted}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000907887000003, Author = {Herfort, Jonas Dreyoe and Tamborg, Andreas Lindenskov and Meier, Florian and Allsopp, Benjamin Brink and Misfeldt, Morten}, Title = {Twenty years of research on technology in mathematics education at CERME: a literature review based on a data science approach}, Journal = {EDUCATIONAL STUDIES IN MATHEMATICS}, Year = {2023}, Volume = {112}, Number = {2}, Pages = {309-336}, Month = {FEB}, Abstract = {Mathematics education is like many scientific disciplines witnessing an increase in scientific output. Examining and reviewing every paper in an area in detail are time-consuming, making comprehensive reviews a challenging task. Unsupervised machine learning algorithms like topic models have become increasingly popular in recent years. Their ability to summarize large amounts of unstructured text into coherent themes or topics allows researchers in any field to keep an overview of state of the art by creating automated literature reviews. In this article, we apply topic modeling in the context of mathematics education and showcase the use of this data science approach for creating literature reviews by training a model of all papers (n = 336) that have been presented in Thematic Working Groups related to technology in the first eleven Congresses of the European Society for Research in Mathematics Education (CERME). We guide the reader through the stepwise process of training a model and give recommendations for best practices and decisions that are decisive for the success of such an approach to a literature review. We find that research in this period revolved around 25 distinct topics that can be grouped into four clusters: digital tools, teachers and their resources, technology experimentation, and a diverse cluster with a strong focus on student activity. Finally, a temporal analysis of these topics reveals a correlation between technology trends and research focus, allowing for reflection on future research in the field.}, Publisher = {SPRINGER}, Address = {VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Herfort, JD (Corresponding Author), Univ Copenhagen, Copenhagen, Denmark. Herfort, Jonas Dreyoe; Tamborg, Andreas Lindenskov; Misfeldt, Morten, Univ Copenhagen, Copenhagen, Denmark. Meier, Florian; Allsopp, Benjamin Brink, Aalborg Univ, Copenhagen, Denmark.}, DOI = {10.1007/s10649-022-10202-z}, EarlyAccessDate = {JAN 2023}, ISSN = {0013-1954}, EISSN = {1573-0816}, Keywords = {Topic modeling; Digital technology; Literature review; Educational data science}, Keywords-Plus = {TOPIC MODELS}, Research-Areas = {Education \& Educational Research}, Web-of-Science-Categories = {Education \& Educational Research}, Author-Email = {jonasd@ind.ku.dk}, Affiliations = {University of Copenhagen; Aalborg University}, ORCID-Numbers = {Misfeldt, Morten/0000-0002-6481-4121 Herfort, Jonas Dreyoe/0000-0002-2359-8442}, Cited-References = {{[}Anonymous], 2017, P 15 C EUROPEAN CHAP, DOI DOI 10.18653/V1/E17-2069. {[}Anonymous], 2002, MALLET MACHINE LEARN. Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7. Assude T., 2007, P 5 C EUROPEAN SOC R, P1339. Bastian M, 2009, GEPHI OPEN SOURCE SO, DOI {[}DOI 10.13140/2.1.1341.1520, DOI 10.1609/ICWSM.V3I1.13937]. Bikner-Ahsbahs A., 2014, NETWORKING THEORIES, DOI {[}10.1007/978-3-319-05389-9, DOI 10.1007/978-3-319-05389-9\_14]. Biton Y, 2015, PROCEEDINGS OF THE NINTH CONFERENCE OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME9), P2473. Bittermann A, 2018, Z PSYCHOL, V226, P3, DOI 10.1027/2151-2604/a000318. Blair SJ, 2020, APPL INTELL, V50, P138, DOI 10.1007/s10489-019-01438-z. Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114. Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826. Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993. Borba M. C., 2017, P 13 INT C MATH ED I, P221, DOI {[}10.1007/978-3-319-62597-3\_14, DOI 10.1007/978-3-319-62597-3\_14]. Boyd-Graber J, 2017, FOUND TRENDS INF RET, V11, P144. Bray A, 2016, MATH EDUC RES J, V28, P173, DOI 10.1007/s13394-015-0158-7. Buteau C., 2019, P 11 C EUROPEAN SOC, P2796. Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855. Daniel R., 2009, ADV NEURAL INFORM PR, P1. Denny MJ, 2018, POLIT ANAL, V26, P168, DOI 10.1017/pan.2017.44. Emprin F., 2007, EUROPEAN RES MATH ED, P1399. Erren TC, 2009, MED HYPOTHESES, V73, P278, DOI 10.1016/j.mehy.2009.05.002. Fabian K., 2019, P 11 C EUROPEAN SOC, P2815. Foster C, 2019, INT J SCI MATH EDUC, V17, P1627, DOI 10.1007/s10763-018-9937-4. Fowler S, 2022, MATH EDUC RES J, V34, P887, DOI 10.1007/s13394-021-00368-9. Fuglestad A. B., 2005, EUROPEAN RES MATH ED, P1000. Fuglestad A. B., 2007, P 5 C EUR SOC RES MA, P1409. Graham S., 2012, PROGRAMMING HIST, V1, DOI {[}10.46430/phen0017, DOI 10.46430/PHEN0017]. Grant MJ, 2009, HEALTH INFO LIBR J, V26, P91, DOI 10.1111/j.1471-1842.2009.00848.x. Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101. Herfort, DATA CATALYST UNPUB. Herfort J. D., 2022, TOPIC MODEL CERME VE, DOI {[}10.5281/zenodo.7351992, DOI 10.5281/ZENODO.7351992]. Hoyles C., 2003, 2 INT HDB MATH ED, P323. Inglis M, 2018, J RES MATH EDUC, V49, P462. Johnstone W., 1990, THESIS E COWAN U. Jones K., 2002, EUROPEAN RES MATH ED, P125. Khoo CSG, 2011, ONLINE INFORM REV, V35, P255, DOI 10.1108/14684521111128032. Kissane B., 2015, REV USE TECHNOLOGY M. Kolovou A, 2017, PROCEEDINGS OF THE TENTH CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME10), P2422. Kristinsdottir B., 2019, P 11 C EUROPEAN SOC, P2709. Laborde C., 1995, Integrating Information Technology into Education, P95. Lagrange J.-B., 2003, 2 INT HDB MATH ED, P237, DOI DOI 10.1007/978-94-010-0273-8\_9. Lau Jey Han, 2014, P 14 C EUROPEAN CHAP, P530, DOI {[}10.3115/v1/E14-1056, DOI 10.3115/V1/E14-1056]. Lavicza Z, 2015, PROCEEDINGS OF THE NINTH CONFERENCE OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME9), P2430. Lim K.W., 2014, P 23 ACM INT C C INF, P1319, DOI DOI 10.1145/2661829.2662005. Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754. Maier Daniel., 2020, COMPUTATIONAL COMMUN, V2, P139, DOI {[}https://doi.org/10.5117/CCR2020.2.001.MAIE, DOI 10.5117/CCR2020.2.001.MAIE]. Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187. Marks R, 2021, RES MATH EDUCAT, V23, P39, DOI 10.1080/14794802.2020.1725612. McCallum A., 2011, P C EMP METH NAT LAN, P262, DOI DOI 10.5555/2145432.2145462. Mimno D., 2012, ACM J COMPUT CULT HE, V5, P1. Papadopoulos I, 2017, PROCEEDINGS OF THE TENTH CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME10), P2619. Papert, 1982, MINDSTORMS, DOI {[}10.1007/978-3-0348-5357-6, DOI 10.1007/978-3-0348-5357-6]. Paul M., 2009, P INT C RANLP 2009, P337. Quinn KM, 2010, AM J POLIT SCI, V54, P209, DOI 10.1111/j.1540-5907.2009.00427.x. Roberts D. L., 2012, 3 INT HDB MATH ED, P525, DOI {[}10.1007/978-1-4614-4684-2\_17, DOI 10.1007/978-1-4614-4684-2\_17]. Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103. Ronau RN, 2014, AM EDUC RES J, V51, P974, DOI 10.3102/0002831214531813. Routitsky A., 2001, EUROPEAN RES MATH ED, P227. Schofield A., 2016, T ASSOC COMPUT LING, V4, P287, DOI {[}10.1162/tacl\_a\_00099, DOI 10.1162/TACL\_A\_00099]. Schofield Alexandra Laure, 2017, P 2017 C EMPIRICAL M, P2737. Sievert C., 2014, P WORKSHOP INTERACTI, P63, DOI 10.3115/v1/W14-3110. Srivastava N, 2014, J MACH LEARN RES, V15, P1929. Tapan S., 2003, EUROPEAN RES MATH ED, P1. Trgalova J., 2018, DEVELOPING RES MATH, DOI {[}10.4324/9781315113562, DOI 10.4324/9781315113562]. Trgalova J, 2011, PROCEEDINGS OF THE SEVENTH CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME 7), P2144. Ulm V, 2010, CERME 6 - PROCEEDINGS OF THE 6TH CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION, P1280. Vega-Carrasco M., 2020, ARXIV, DOI DOI 10.48550/ARXIV.2005.10125. Wallach Hanna M., 2009, P 26 ANN INT C MACH, P1105, DOI DOI 10.1145/1553374.1553515. Williams J., 2012, 3 INT HDB MATH ED, P549, DOI {[}10.1007/978-1-4614-4684-2\_18, DOI 10.1007/978-1-4614-4684-2\_18]. Worler J. F., 2019, P 11 C EUROPEAN SOC, P2757. Zbiek R., 2007, 2 HDB RES MATH TEACH, P1169.}, Number-of-Cited-References = {71}, Times-Cited = {1}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {5}, Journal-ISO = {Educ. Stud. Math.}, Doc-Delivery-Number = {8F1XG}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000907887000003}, DA = {2023-04-22}, } @article{ WOS:000577675600001, Author = {Yang, Su-Qing and Ye, Qing and Ding, Jun-Jie and Ming-Zhu Yin and Lu, Ai-Ping and Chen, Xiang and Hou, Ting-Jun and Cao, Dong-Sheng}, Title = {Current advances in ligand-based target prediction}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE}, Year = {2021}, Volume = {11}, Number = {3}, Month = {MAY}, Abstract = {Target identification for bioactive molecules augments modern drug discovery efforts in a range of applications, from the elaboration of mode-of-action of drugs to the drug repurposing to even the knowledge of side-effects and further optimization. However, the traditional labor-intensive and time-consuming experiment methods obstructed the development. Driven by massive bioactivity data deposited in chemogenomic databases, computational alternatives have been proposed and widely developed to expedite the validation process. By screening a compound against a protein database, it is possible to identify potential target candidates that fit with this specific compound for subsequent experimental validation. In particular, ligand-based target prediction methods have made tremendous progress in the past decade due to their flexibility, relatively low computational cost, and remarkable predictive performance, and are still moving forward. In this review, we present a comprehensive overview of ligand-based target prediction methods including similarity searching, machine learning and algorithm stacking, and the strategies to validate these methods. We also discuss the strength and weakness of the existing data sources for model development and outline the challenges and prospects of ligand-based target prediction. It is expected that the topic discussed in this review should guide the development and application of ligand-based target prediction and be of interest to the audiences for wider scientific community. This article is categorized under: Data Science > Chemoinformatics}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Cao, DS (Corresponding Author), Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410013, Hunan, Peoples R China. Hou, TJ (Corresponding Author), Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China. Chen, X (Corresponding Author), Cent South Univ, Hunan Engn Res Ctr Skin Hlth \& Dis, Hunan Key Lab Skin Canc \& Psoriasis, Dept Dermatol,Xiangya Hosp, Changsha 410008, Hunan, Peoples R China. Cao, DS (Corresponding Author), Hong Kong Baptist Univ, Sch Chinese Med, Inst Adv Translat Med Bone \& Joint Dis, Hong Kong, Peoples R China. Yang, Su-Qing; Cao, Dong-Sheng, Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410013, Hunan, Peoples R China. Ye, Qing; Hou, Ting-Jun, Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China. Ding, Jun-Jie, Beijing Inst Pharmaceut Chem, Beijing, Peoples R China. Ming-Zhu Yin; Chen, Xiang, Cent South Univ, Hunan Engn Res Ctr Skin Hlth \& Dis, Hunan Key Lab Skin Canc \& Psoriasis, Dept Dermatol,Xiangya Hosp, Changsha 410008, Hunan, Peoples R China. Lu, Ai-Ping; Cao, Dong-Sheng, Hong Kong Baptist Univ, Sch Chinese Med, Inst Adv Translat Med Bone \& Joint Dis, Hong Kong, Peoples R China.}, DOI = {10.1002/wcms.1504}, EarlyAccessDate = {OCT 2020}, Article-Number = {e1504}, ISSN = {1759-0876}, EISSN = {1759-0884}, Keywords = {algorithm stacking; machine learning; proteochemometrics; similarity searching; target prediction}, Keywords-Plus = {LARGE-SCALE PREDICTION; FINGERPRINT SIMILARITY SEARCH; WEB SERVER; DRUG DISCOVERY; MACROMOLECULAR TARGETS; PROTEIN SEQUENCES; MULTITARGET-QSAR; NATURAL-PRODUCTS; IDENTIFICATION; DATABASE}, Research-Areas = {Chemistry; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Mathematical \& Computational Biology}, Author-Email = {chenxiangck@126.com tingjunhou@zju.edu.cn oriental-cds@163.com}, Affiliations = {Central South University; Zhejiang University; Central South University; Hong Kong Baptist University}, ResearcherID-Numbers = {Hou, Tingjun/C-7492-2011 }, ORCID-Numbers = {Hou, Tingjun/0000-0001-7227-2580 Ye, Qing/0000-0003-3927-1919}, Funding-Acknowledgement = {Key R\&D Program of Zhejiang Province {[}2020C03010]; National Science Foundation of China {[}81773632]; Zhejiang Provincial Natural Science Foundation of China {[}LZ19H300001]; HKBU Strategic Development Fund project {[}SDF19-0402-P02]}, Funding-Text = {This work was supported by Key R\&D Program of Zhejiang Province (2020C03010), National Science Foundation of China (81773632), Zhejiang Provincial Natural Science Foundation of China (LZ19H300001), and HKBU Strategic Development Fund project (SDF19-0402-P02). The studies meet with the approval of the university's review board.}, Cited-References = {AbdulHameed MDM, 2012, J CHEM INF MODEL, V52, P492, DOI 10.1021/ci2003544. Alberga D, 2019, J CHEM INF MODEL, V59, P586, DOI 10.1021/acs.jcim.8b00698. Tanabe Mao, 2012, Curr Protoc Bioinformatics, VChapter 1, DOI {[}10.1002/0471250953.bi0112s11, 10.1002/0471250953.bi0112s38]. Ashburn TT, 2004, NAT REV DRUG DISCOV, V3, P673, DOI 10.1038/nrd1468. Awale M, 2019, WEB BASED TOOLS POLY, P255. Awale M, 2019, J CHEM INF MODEL, V59, P10, DOI 10.1021/acs.jcim.8b00524. Awale M, 2017, J CHEMINFORMATICS, V9, DOI 10.1186/s13321-017-0199-x. Bajorath J, 2017, METHODS MOL BIOL, V1526, P231, DOI 10.1007/978-1-4939-6613-4\_13. Bantscheff M, 2009, DRUG DISCOV TODAY, V14, P1021, DOI 10.1016/j.drudis.2009.07.001. BODKIN JA, 1995, J CLIN PSYCHOPHARM, V15, P49, DOI 10.1097/00004714-199502000-00008. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Burbidge R, 2001, COMPUT CHEM, V26, P5, DOI 10.1016/S0097-8485(01)00094-8. Burke MD, 2004, ANGEW CHEM INT EDIT, V43, P46, DOI 10.1002/anie.200300626. Byrne R., 2019, SILICO TARGET PREDIC, P273, DOI {[}10.1007/978-1-4939-8891-4, DOI 10.1007/978-1-4939-8891-4]. Cao DS, 2015, BIOINFORMATICS, V31, P279, DOI 10.1093/bioinformatics/btu624. Cao DS, 2014, MOL INFORM, V33, P669, DOI 10.1002/minf.201400009. Cao DS, 2013, J CHEM INF MODEL, V53, P3086, DOI 10.1021/ci400127q. Cao DS, 2013, ANAL CHIM ACTA, V792, P10, DOI 10.1016/j.aca.2013.07.003. Cao DS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057680. Cao DS, 2013, BIOINFORMATICS, V29, P960, DOI 10.1093/bioinformatics/btt072. Cao DS, 2012, ANAL CHIM ACTA, V752, P1, DOI 10.1016/j.aca.2012.09.021. Cereto-Massague A, 2015, METHODS, V71, P98, DOI 10.1016/j.ymeth.2014.09.006. Cereto-Massague A, 2015, METHODS, V71, P58, DOI 10.1016/j.ymeth.2014.08.005. Chen HM, 2018, DRUG DISCOV TODAY, V23, P1241, DOI 10.1016/j.drudis.2018.01.039. Chen X, 2017, PROTEOMICS, V17, DOI 10.1002/pmic.201600212. Chen YZ, 2001, PROTEINS, V43, P217, DOI 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G. Cheng FX, 2012, MOL BIOSYST, V8, P2373, DOI 10.1039/c2mb25110h. Cockroft NT, 2019, J CHEM INF MODEL, V59, P4906, DOI 10.1021/acs.jcim.9b00489. Cortes-Ciriano I, 2014, J CHEMINFORMATICS, V6, DOI 10.1186/1758-2946-6-35. Czodrowski P, 2016, J CHEM INF MODEL, V56, P2013, DOI 10.1021/acs.jcim.6b00067. Dahl G. E., 2014, ARXIV14061231. Daina A, 2019, NUCLEIC ACIDS RES, V47, pW357, DOI 10.1093/nar/gkz382. Davidson MH, 1999, ARCH INTERN MED, V159, P1893, DOI 10.1001/archinte.159.16.1893. Dong J, 2019, BRIEF BIOINFORM. Dong J, 2018, J CHEMINFORMATICS, V10, DOI 10.1186/s13321-018-0270-2. Dong J, 2016, J CHEMINFORMATICS, V8, DOI 10.1186/s13321-016-0146-2. EDEN RJ, 1991, PHARMACOL BIOCHEM BE, V38, P147, DOI 10.1016/0091-3057(91)90603-Y. El-Wakil MH, 2017, BIOORG CHEM, V73, P154, DOI 10.1016/j.bioorg.2017.06.009. Fan C, 2020, J CHEM INF MODEL, V60, P400, DOI 10.1021/acs.jcim.9b00717. Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074. Gfeller D, 2014, NUCLEIC ACIDS RES, V42, pW32, DOI 10.1093/nar/gku293. Gfeller D, 2013, BIOINFORMATICS, V29, P3073, DOI 10.1093/bioinformatics/btt540. Gilson MK, 2016, NUCLEIC ACIDS RES, V44, pD1045, DOI 10.1093/nar/gkv1072. Goede A, 2005, BIOINFORMATICS, V21, P1751, DOI 10.1093/bioinformatics/bti295. Gong JY, 2013, BIOINFORMATICS, V29, P1827, DOI 10.1093/bioinformatics/btt270. Gregori-Puigjane E, 2012, P NATL ACAD SCI USA, V109, P11178, DOI 10.1073/pnas.1204524109. Gunther S, 2008, NUCLEIC ACIDS RES, V36, pD919, DOI 10.1093/nar/gkm862. Hamad S, 2019, BIOINFORMATICS, V35, P1239, DOI 10.1093/bioinformatics/bty759. Hert J, 2008, J CHEM INF MODEL, V48, P755, DOI 10.1021/ci8000259. Houle D, 2010, NAT REV GENET, V11, P855, DOI 10.1038/nrg2897. Houslay MD, 2016, TRENDS CANCER, V2, P163, DOI 10.1016/j.trecan.2016.02.007. Huang HB, 2018, FRONT CHEM, V6, DOI 10.3389/fchem.2018.00138. Huang RL, 2011, SCI TRANSL MED, V3, DOI 10.1126/scitranslmed.3001862. Huang T, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1586-z. Inglese J, 2007, NAT CHEM BIOL, V3, P466, DOI 10.1038/nchembio.2007.17. Jacob L, 2008, BIOINFORMATICS, V24, P2149, DOI 10.1093/bioinformatics/btn409. Jacob L, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-363. Jenkins J.L., 2006, DRUG DISCOV TODAY, V3, P413, DOI DOI 10.1016/J.DDTEC.2006.12.008. Johnson M. A., 1990, CONCEPTS APPL MOL SI. Kanehisa M, 2017, NUCLEIC ACIDS RES, V45, pD353, DOI 10.1093/nar/gkw1092. Kawai K, 2008, J CHEM INF MODEL, V48, P1152, DOI 10.1021/ci7004753. Keiser MJ, 2007, NAT BIOTECHNOL, V25, P197, DOI 10.1038/nbt1284. Keiser MJ, 2009, NATURE, V462, P175, DOI 10.1038/nature08506. Kinnings SL, 2011, J CHEM INF MODEL, V51, P624, DOI 10.1021/ci1003174. Klekota J, 2006, BIOINFORMATICS, V22, P1670, DOI 10.1093/bioinformatics/btl155. Koscielny G, 2017, NUCLEIC ACIDS RES, V45, pD985, DOI 10.1093/nar/gkw1055. Koutsoukas A, 2013, J CHEM INF MODEL, V53, P1957, DOI 10.1021/ci300435j. Koutsoukas A, 2011, J PROTEOMICS, V74, P2554, DOI 10.1016/j.jprot.2011.05.011. Kringelum J, 2016, DATABASE-OXFORD, DOI 10.1093/database/bav123. Kumar R, 2013, SCI REP-UK, V3, DOI 10.1038/srep01445. Lapinsh M, 2001, BBA-GEN SUBJECTS, V1525, P180, DOI 10.1016/S0304-4165(00)00187-2. Lavecchia A, 2016, DRUG DISCOV TODAY, V21, P288, DOI 10.1016/j.drudis.2015.12.007. Lavecchia A, 2015, DRUG DISCOV TODAY, V20, P318, DOI 10.1016/j.drudis.2014.10.012. Lee K, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1960-x. Leelananda SP, 2016, BEILSTEIN J ORG CHEM, V12, P2694, DOI 10.3762/bjoc.12.267. Li HL, 2006, NUCLEIC ACIDS RES, V34, pW219, DOI 10.1093/nar/gkl114. Li JWH, 2009, SCIENCE, V325, P161, DOI 10.1126/science.1168243. Li YH, 2018, NUCLEIC ACIDS RES, V46, pD1121, DOI 10.1093/nar/gkx1076. Lima AN, 2016, EXPERT OPIN DRUG DIS, V11, P225, DOI 10.1517/17460441.2016.1146250. Lionta E, 2014, CURR TOP MED CHEM, V14, P1923, DOI 10.2174/1568026614666140929124445. Liu TQ, 2007, NUCLEIC ACIDS RES, V35, pD198, DOI 10.1093/nar/gkl999. Liu X, 2015, BIOINFORMATICS, V31, P2049, DOI 10.1093/bioinformatics/btv099. Liu X, 2014, J CHEMINFORMATICS, V6, DOI 10.1186/1758-2946-6-33. Liu XF, 2010, NUCLEIC ACIDS RES, V38, pW609, DOI 10.1093/nar/gkq300. Liu XP, 2013, BIOINFORMATICS, V29, P1910, DOI 10.1093/bioinformatics/btt303. Liu ZH, 2015, BIOINFORMATICS, V31, P405, DOI 10.1093/bioinformatics/btu626. Lo YC, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004153. Lomenick B, 2011, ACS CHEM BIOL, V6, P34, DOI 10.1021/cb100294v. Lounkine E, 2012, NATURE, V486, P361, DOI 10.1038/nature11159. Lu WQ, 2011, J MED CHEM, V54, P3564, DOI 10.1021/jm200139j. Lusci A, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0110-6. Mathai N, 2020, BRIEF BIOINFORM, V21, P791, DOI 10.1093/bib/bbz026. Mayr A, 2018, CHEM SCI, V9, P5441, DOI 10.1039/c8sc00148k. Mitchell JBO, 2014, WIRES COMPUT MOL SCI, V4, P468, DOI 10.1002/wcms.1183. Moffat JG, 2014, NAT REV DRUG DISCOV, V13, P588, DOI 10.1038/nrd4366. Muegge I, 2016, EXPERT OPIN DRUG DIS, V11, P137, DOI 10.1517/17460441.2016.1117070. Mugumbate G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121492. Nettles JH, 2006, J MED CHEM, V49, P6802, DOI 10.1021/jm060902w. Newman DJ, 2007, J NAT PROD, V70, P461, DOI 10.1021/np068054v. Nickel J, 2014, NUCLEIC ACIDS RES, V42, pW26, DOI 10.1093/nar/gku477. Nidhi, 2006, J CHEM INF MODEL, V46, P1124, DOI 10.1021/ci060003g. Nigsch F, 2008, J CHEM INF MODEL, V48, P2313, DOI 10.1021/ci800079x. Papadatos G, 2015, J COMPUT AID MOL DES, V29, P885, DOI 10.1007/s10822-015-9860-5. Peon A, 2019, CHEM BIOL DRUG DES, V94, P1390, DOI 10.1111/cbdd.13516. Peon A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04264-w. Peon A, 2016, FRONT CHEM, V4, DOI 10.3389/fchem.2016.00015. Plewczynski D, 2007, COMB CHEM HIGH T SCR, V10, P189, DOI 10.2174/138620707780126705. Rao HB, 2011, NUCLEIC ACIDS RES, V39, pW385, DOI 10.1093/nar/gkr284. Reisberg B., 2003, NEW ENGL J MED, V348, P1333, DOI {[}10.1056/NEJMoa013128, DOI 10.1056/NEJMOA013128]. Reker D, 2014, NAT CHEM, V6, P1072, DOI {[}10.1038/NCHEM.2095, 10.1038/nchem.2095]. Reker D, 2014, P NATL ACAD SCI USA, V111, P4067, DOI 10.1073/pnas.1320001111. Rix U, 2009, NAT CHEM BIOL, V5, P616, DOI 10.1038/nchembio.216. Rodrigues T, 2015, ANGEW CHEM INT EDIT, V54, P10516, DOI 10.1002/anie.201504241. Rognan D, 2013, MOL INFORM, V32, P1029, DOI 10.1002/minf.201300054. Roth B., 2011, PDSP KI DATABASE PSY. Roth BL, 2000, NEUROSCIENTIST, V6, P252, DOI 10.1177/107385840000600408. Rush TS, 2005, J MED CHEM, V48, P1489, DOI 10.1021/jm040163o. Sam E, 2019, BRIEF BIOINFORM, V20, P299, DOI 10.1093/bib/bbx125. Sandberg M, 1998, J MED CHEM, V41, P2481, DOI 10.1021/jm9700575. Schneider G, 2009, FUTURE MED CHEM, V1, P213, DOI 10.4155/FMC.09.11. Schrodinger L., 2011, SCHROD SOFTW SUIT, P670. Schuffenhauer A, 2003, J CHEM INF COMP SCI, V43, P391, DOI 10.1021/ci025569t. Speck-Planche A, 2015, CURR TOP MED CHEM, V15, P1801, DOI 10.2174/1568026615666150506144814. Sterling T, 2015, J CHEM INF MODEL, V55, P2324, DOI 10.1021/acs.jcim.5b00559. Sussman JL, 1998, ACTA CRYSTALLOGR D, V54, P1078, DOI 10.1107/S0907444998009378. Swamidass SJ, 2009, J CHEM INF MODEL, V49, P756, DOI 10.1021/ci8004379. Sydow D, 2019, J CHEM INF MODEL, V59, P1728, DOI 10.1021/acs.jcim.8b00832. Szardenings Katrin, 2004, Drug Discov Today Technol, V1, P9, DOI 10.1016/j.ddtec.2004.08.009. Szklarczyk D, 2016, NUCLEIC ACIDS RES, V44, pD380, DOI 10.1093/nar/gkv1277. Tawa GJ, 2009, J COMPUT AID MOL DES, V23, P853, DOI 10.1007/s10822-009-9302-3. Terstappen GC, 2007, NAT REV DRUG DISCOV, V6, P891, DOI 10.1038/nrd2410. Tomasulo Patricia, 2002, Med Ref Serv Q, V21, P53, DOI 10.1300/J115v21n01\_04. Tompson DJ, 2007, CLIN THER, V29, P2654, DOI 10.1016/j.clinthera.2007.12.010. Tsoumakas G., 2007, INT J DATA WAREHOUSI, V3, P1, DOI {[}10.4018/jdwm.2007070101, DOI 10.4018/JDWM.2007070101]. Tym JE, 2016, NUCLEIC ACIDS RES, V44, pD938, DOI 10.1093/nar/gkv1030. Unterthiner T, 2014, MULTITASK DEEP NETWO, P1. Ursu O, 2017, NUCLEIC ACIDS RES, V45, pD932, DOI 10.1093/nar/gkw993. van der Horst E, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-316. van Westen GJP, 2011, MEDCHEMCOMM, V2, P16, DOI 10.1039/c0md00165a. van Westen GJP, 2013, J CHEMINFORMATICS, V5, DOI 10.1186/1758-2946-5-42. von Eichborn J, 2011, NUCLEIC ACIDS RES, V39, pD1060, DOI 10.1093/nar/gkq1037. Wale N, 2009, J CHEM INF MODEL, V49, P2190, DOI 10.1021/ci9000376. Wang JC, 2012, NUCLEIC ACIDS RES, V40, pW393, DOI 10.1093/nar/gks496. Wang L, 2013, AAPS J, V15, P53, DOI 10.1208/s12248-012-9413-y. Wang X, 2016, J CHEM INF MODEL, V56, P1175, DOI 10.1021/acs.jcim.5b00690. Wang YL, 2017, NUCLEIC ACIDS RES, V45, pD955, DOI 10.1093/nar/gkw1118. Wang YL, 2010, NUCLEIC ACIDS RES, V38, pD255, DOI 10.1093/nar/gkp965. Wang ZH, 2016, J CHEMINFORMATICS, V8, DOI 10.1186/s13321-016-0130-x. Wen M, 2017, J PROTEOME RES, V16, P1401, DOI 10.1021/acs.jproteome.6b00618. Wikberg JE, 2004, CHEMOGENOMICS DRUG D, P289, DOI DOI 10.1002/3527603948.CH10. Willett P, 2006, DRUG DISCOV TODAY, V11, P1046, DOI 10.1016/j.drudis.2006.10.005. Wishart DS, 2018, NUCLEIC ACIDS RES, V46, pD1074, DOI 10.1093/nar/gkx1037. Wolber G, 2005, J CHEM INF MODEL, V45, P160, DOI 10.1021/ci049885e. Xia XY, 2004, J MED CHEM, V47, P4463, DOI 10.1021/jm0303195. Xiao N, 2015, BIOINFORMATICS, V31, P1857, DOI 10.1093/bioinformatics/btv042. Yan QN., 2014, J CHEM PHARM RES, V6, P1991. Yao ZJ, 2016, J COMPUT AID MOL DES, V30, P413, DOI 10.1007/s10822-016-9915-2. Yu H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037608. Yuan QJ, 2016, BIOINFORMATICS, V32, P18, DOI 10.1093/bioinformatics/btw244. Ziegler S, 2013, ANGEW CHEM INT EDIT, V52, P2744, DOI 10.1002/anie.201208749. Zoete V, 2016, J CHEM INF MODEL, V56, P1399, DOI 10.1021/acs.jcim.6b00174.}, Number-of-Cited-References = {161}, Times-Cited = {10}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {39}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Mol. Sci.}, Doc-Delivery-Number = {RI2SX}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000577675600001}, DA = {2023-04-22}, } @article{ WOS:000426838500001, Author = {Ramprasad, Rampi and Batra, Rohit and Pilania, Ghanshyam and Mannodi-Kanakkithodi, Arun and Kim, Chiho}, Title = {Machine learning in materials informatics: recent applications and prospects}, Journal = {NPJ COMPUTATIONAL MATERIALS}, Year = {2017}, Volume = {3}, Month = {DEC 13}, Abstract = {Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methodsdue to the cost, time or effort involved-but for which reliable data either already exists or can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as ``descriptors{''}, may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative-extending into new materials spaces-provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven ``materials informatics{''} strategies undertaken in the last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the community is facing and those that should be overcome in the near future.}, Publisher = {NATURE PORTFOLIO}, Address = {HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY}, Type = {Review}, Language = {English}, Affiliation = {Ramprasad, R (Corresponding Author), Univ Connecticut, Dept Mat Sci \& Engn, 97 North Eagleville Rd,Unit 3136, Storrs, CT 06269 USA. Ramprasad, R (Corresponding Author), Univ Connecticut, Inst Mat Sci, 97 North Eagleville Rd,Unit 3136, Storrs, CT 06269 USA. Ramprasad, Rampi; Batra, Rohit; Mannodi-Kanakkithodi, Arun; Kim, Chiho, Univ Connecticut, Dept Mat Sci \& Engn, 97 North Eagleville Rd,Unit 3136, Storrs, CT 06269 USA. Ramprasad, Rampi; Batra, Rohit; Mannodi-Kanakkithodi, Arun; Kim, Chiho, Univ Connecticut, Inst Mat Sci, 97 North Eagleville Rd,Unit 3136, Storrs, CT 06269 USA. Pilania, Ghanshyam, Fritz Haber Inst Max Planck Gesell, Faradayweg 4-6, D-14195 Berlin, Germany. Pilania, Ghanshyam, Los Alamos Natl Lab, Mat Sci \& Technol Div, Los Alamos, NM 87545 USA. Mannodi-Kanakkithodi, Arun, Lamont Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA.}, DOI = {10.1038/s41524-017-0056-5}, Article-Number = {54}, EISSN = {2057-3960}, Keywords-Plus = {DATA SCIENCE; ACCELERATED SEARCH; KNOWLEDGE SYSTEMS; DESIGN; FRAMEWORK; PREDICTIONS; POTENTIALS; INFERENCE; LINKAGES; STRENGTH}, Research-Areas = {Chemistry; Materials Science}, Web-of-Science-Categories = {Chemistry, Physical; Materials Science, Multidisciplinary}, Author-Email = {rampi.ramprasad@uconn.edu}, Affiliations = {University of Connecticut; University of Connecticut; Max Planck Society; Fritz Haber Institute of the Max Planck Society; United States Department of Energy (DOE); Los Alamos National Laboratory}, ResearcherID-Numbers = {Kanakkithodi, Arun Kumar Mannodi/I-8528-2019 Ramprasad, Rampi/ABE-7556-2020 Batra, Rohit/ABB-9972-2020}, ORCID-Numbers = {Kanakkithodi, Arun Kumar Mannodi/0000-0003-0780-1583 Ramprasad, Rampi/0000-0003-4630-1565 Batra, Rohit/0000-0002-1098-7035}, Funding-Acknowledgement = {Alexander von Humboldt Foundation; Office of Naval Research {[}N00014-14-1-0098, N00014-16-1-2580, N00014-10-1-0944]}, Funding-Text = {We acknowledge financial support from several grants from the Office of Naval Research that allowed them to explore many applications of machine learning within materials science, including N00014-14-1-0098, N00014-16-1-2580, and N00014-10-1-0944. Several engaging discussions with Kenny Lipkowitz, Huan Tran, and Venkatesh Botu are gratefully acknowledged. GP acknowledges the Alexander von Humboldt Foundation.}, Cited-References = {ADAMSON GW, 1974, NATURE, V248, P406, DOI 10.1038/248406a0. ADAMSON GW, 1974, J CHEM DOC, V14, P44, DOI 10.1021/c160052a011. Alvarez M. A., 2012, KERNELS VECTOR VALUE. {[}Anonymous], 2008, CHOICE REV ONLINE, V45. Aryal S, 2014, PHYS STATUS SOLIDI B, V251, P1480, DOI 10.1002/pssb.201451226. Ashton M, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.054116. Bartok AP, 2015, INT J QUANTUM CHEM, V115, P1051, DOI 10.1002/qua.24927. Bartok AP, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.184115. Bartok AP, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136403. Behler J, 2014, J PHYS-CONDENS MAT, V26, DOI 10.1088/0953-8984/26/18/183001. Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401. Behler J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.185501. Bialon AF, 2016, CHEM MATER, V28, P2550, DOI 10.1021/acs.chemmater.5b04299. Bianchini F, 2016, MODEL SIMUL MATER SC, V24, DOI 10.1088/0965-0393/24/4/045012. Bishop C. M., 2006, PATTERN RECOGNITION. Botu V, 2017, COMP MATER SCI, V129, P332, DOI 10.1016/j.commatsci.2016.12.007. Botu V, 2017, J PHYS CHEM C, V121, P511, DOI 10.1021/acs.jpcc.6b10908. Botu V, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.094306. Botu V, 2015, INT J QUANTUM CHEM, V115, P1074, DOI 10.1002/qua.24836. Brough DB, 2017, INTEGR MATER MANUF I, V6, P147, DOI 10.1007/s40192-017-0093-4. Brough DB, 2017, CURR OPIN SOLID ST M, V21, P129, DOI 10.1016/j.cossms.2016.05.002. Brough DB, 2017, INTEGR MATER MANUF I, V6, P36, DOI 10.1007/s40192-017-0089-0. Bunn JK, 2016, JOM-US, V68, P2116, DOI 10.1007/s11837-016-2033-8. Chatterjee S, 2007, MATER SCI TECH-LOND, V23, P819, DOI 10.1179/174328407X179746. Chmiela S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603015. Cockayne E, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.012104. de Jong M, 2016, SCI REP-UK, V6, DOI 10.1038/srep34256. De S, 2016, PHYS CHEM CHEM PHYS, V18, P13754, DOI 10.1039/c6cp00415f. deFontaine D, 1994, SOLID STATE PHYS, V47, P33. Deml AM, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.085142. Deringer VL, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.094203. Dey P, 2014, COMP MATER SCI, V83, P185, DOI 10.1016/j.commatsci.2013.10.016. Dudiy SV, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.046401. Emery AA, 2016, CHEM MATER, V28, P5621, DOI 10.1021/acs.chemmater.6b01182. ERCOLESSI F, 1994, EUROPHYS LETT, V26, P583, DOI 10.1209/0295-5075/26/8/005. Faber FA, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.135502. Fancher CM, 2016, SCI REP-UK, V6, DOI 10.1038/srep31625. Felsenstein J., 2008, SPRINGER SERIES STAT, P336. Fernandez M, 2014, J PHYS CHEM LETT, V5, P3056, DOI 10.1021/jz501331m. Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340. Forrester AIJ, 2007, P R SOC A, V463, P3251, DOI 10.1098/rspa.2007.1900. Ghiringhelli LM, 2017, NEW J PHYS, V19, DOI 10.1088/1367-2630/aa57bf. Ghiringhelli LM, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.105503. Glielmo A, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.214302. Goldsmith BR, 2017, NEW J PHYS, V19, DOI 10.1088/1367-2630/aa57c2. Gopnik A, 2017, SCI AM, V316, P60, DOI 10.1038/scientificamerican0617-60. Green ML, 2017, APPL PHYS REV, V4, DOI 10.1063/1.4977487. Gupta A, 2015, ACTA MATER, V91, P239, DOI 10.1016/j.actamat.2015.02.045. HALL EO, 1951, P PHYS SOC LOND B, V64, P747, DOI 10.1088/0370-1301/64/9/303. Hastie T., 2009, ELEMENTS STAT LEARNI, DOI {[}DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-84858-7]. Hattrick-Simpers JR, 2016, APL MATER, V4, DOI 10.1063/1.4950995. Hautier G, 2010, CHEM MATER, V22, P3762, DOI 10.1021/cm100795d. Hong WT, 2016, J PHYS CHEM C, V120, P78, DOI 10.1021/acs.jpcc.5b10071. Hume-Rothery W., 1961, J LESS-COMMON MET, V3, P264. Jindal S, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4983392. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Judson P., 2009, KNOWLEDGE BASED EXPE. Kalidindi S., 2012, ISRN MAT SCI, V2012, P1. Kalidindi SR, 2016, MRS BULL, V41, P596, DOI 10.1557/mrs.2016.164. Kalidindi SR, 2015, NANOTECHNOLOGY, V26, DOI 10.1088/0957-4484/26/34/344006. Kim C, 2016, J PHYS CHEM C, V120, P14575, DOI 10.1021/acs.jpcc.6b05068. Kim C, 2016, CHEM MATER, V28, P1304, DOI 10.1021/acs.chemmater.5b04109. Kusne AG, 2015, NANOTECHNOLOGY, V26, DOI 10.1088/0957-4484/26/44/444002. Kusne AG, 2014, SCI REP-UK, V4, DOI 10.1038/srep06367. LAKS DB, 1992, PHYS REV B, V46, P12587, DOI 10.1103/PhysRevB.46.12587. Lance N. J., 2015, PHYS REV B, V87, P24. Lee J, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.115104. Legrain F, 2017, CHEM MATER, V29, P6220, DOI 10.1021/acs.chemmater.7b00789. Li Z, 2017, CATAL TODAY, V280, P232, DOI 10.1016/j.cattod.2016.04.013. Li ZW, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.096405. Liu CS, 2012, J PHYS CHEM A, V116, P9347, DOI 10.1021/jp3005844. Lookman T., 2015, INFORM SCI MAT DISCO. Lookman T, 2017, CURR OPIN SOLID ST M, V21, P121, DOI 10.1016/j.cossms.2016.10.002. Lorenzini RG, 2013, POLYMER, V54, P3529, DOI 10.1016/j.polymer.2013.05.003. Mannodi-Kanakkithodi A, 2017, CHEM MATER, V29, P9001, DOI 10.1021/acs.chemmater.7b02027. Mannodi-Kanakkithodi A, 2016, ADV MATER, V28, P6277, DOI 10.1002/adma.201600377. Mannodi-Kanakkithodi A, 2016, SCI REP-UK, V6, DOI 10.1038/srep20952. Medasani B, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/s41524-016-0001-z. Meredig B, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.094104. Micchelli CA, 2005, NEURAL COMPUT, V17, P177, DOI 10.1162/0899766052530802. Mueller T, 2016, REV COMP CH, V29, P186. Mueller T, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.184107. Mueller T, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.024103. Oliynyk AO, 2016, CHEM MATER, V28, P7324, DOI 10.1021/acs.chemmater.6b02724. Panchal JH, 2013, COMPUT AIDED DESIGN, V45, P4, DOI 10.1016/j.cad.2012.06.006. Perdikaris P, 2015, P ROY SOC A-MATH PHY, V471, DOI 10.1098/rspa.2015.0018. PETCH NJ, 1986, ACTA METALL MATER, V34, P1387, DOI 10.1016/0001-6160(86)90026-X. Pilania G, 2017, COMP MATER SCI, V129, P156, DOI 10.1016/j.commatsci.2016.12.004. Pilania G, 2016, SCI REP-UK, V6, DOI 10.1038/srep19375. Pilania G, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.214302. Pilania G, 2017, CHEM MATER, V29, P2574, DOI 10.1021/acs.chemmater.6b04666. Pilania G, 2016, FRONT MATER, V3, DOI 10.3389/fmats.2016.00019. Pilania G, 2013, SCI REP-UK, V3, DOI 10.1038/srep02810. Powell WB, 2010, KNOWLEDGE GRADIENT O. Powell WB, 2012, OPTIMAL LEARNING, DOI DOI 10.1002/9781118309858. Rupp M, 2015, INT J QUANTUM CHEM, V115, P1058, DOI 10.1002/qua.24954. Rupp M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.058301. Ryzhov IO, 2012, OPER RES, V60, P180, DOI 10.1287/opre.1110.0999. SANCHEZ JM, 1984, PHYSICA A, V128, P334, DOI 10.1016/0378-4371(84)90096-7. Sanders J. N., 2013, ACS CENTRAL SCI, V1. Schmidt M, 2009, SCIENCE, V324, P81, DOI 10.1126/science.1165893. Seko A, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.205901. Seko A, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.054303. Seko A, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.165122. Sharma V, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5845. Snyder JC, 2015, INT J QUANTUM CHEM, V115, P1102, DOI 10.1002/qua.24937. Snyder JC, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4834075. Snyder JC, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.253002. Srinivasan S., 2004, INDIAS LEGENDARY WOO. Szlachta WJ, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.104108. Theodoridis S., 2015, MACHINE LEARNING BAY, P161. Thompson AP, 2015, J COMPUT PHYS, V285, P316, DOI 10.1016/j.jcp.2014.12.018. Huan TD, 2016, PROG MATER SCI, V83, P236, DOI 10.1016/j.pmatsci.2016.05.001. Huan TD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.12. Huan TD, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.014106. Treich GM, 2017, IEEE T DIELECT EL IN, V24, P732, DOI 10.1109/TDEI.2017.006329. van de Walle A, 2002, J PHASE EQUILIB, V23, P348, DOI 10.1361/105497102770331596. Van Krevelen DW, 2009, PROPERTIES OF POLYMERS: THEIR CORRELATION WITH CHEMICAL STRUCTURE; THEIR NUMERICAL ESTIMATION AND PREDICTION FROM ADDITIVE GROUP CONTRIBUTIONS, P3, DOI 10.1016/B978-0-08-054819-7.00001-7. Ward Gerald W.R., 2008, GROVE ENCY MAT TECHN. Ward L, 2017, CURR OPIN SOLID ST M, V21, P167, DOI 10.1016/j.cossms.2016.07.002. Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28. Xue DZ, 2016, P NATL ACAD SCI USA, V113, P13301, DOI 10.1073/pnas.1607412113. Xue DZ, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11241. Zunger A., 1994, NATO ADV STUDY I B, V319.}, Number-of-Cited-References = {124}, Times-Cited = {750}, Usage-Count-Last-180-days = {85}, Usage-Count-Since-2013 = {595}, Journal-ISO = {npj Comput. Mater.}, Doc-Delivery-Number = {FY5AM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000426838500001}, OA = {Green Published, Green Submitted, gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000499607100001, Author = {Thompson, Matthew P. and Wei, Yu and Calkin, David E. and O'Connor, Christopher D. and Dunn, Christopher J. and Anderson, Nathaniel M. and Hogland, John S.}, Title = {Risk Management and Analytics in Wildfire Response}, Journal = {CURRENT FORESTRY REPORTS}, Year = {2019}, Volume = {5}, Number = {4}, Pages = {226-239}, Month = {DEC}, Abstract = {Purpose of Review The objectives of this paper are to briefly review basic risk management and analytics concepts, describe their nexus in relation to wildfire response, demonstrate real-world application of analytics to support response decisions and organizational learning, and outline an analytics strategy for the future. Recent Findings Analytics can improve decision-making and organizational performance across a variety of areas from sports to business to real-time emergency response. A lack of robust descriptive analytics on wildfire incident response effectiveness is a bottleneck for developing operationally relevant and empirically credible predictive and prescriptive analytics to inform and guide strategic response decisions. Capitalizing on technology such as automated resource tracking and machine learning algorithms can help bridge gaps between monitoring, learning, and data-driven decision-making. By investing in better collection, documentation, archiving, and analysis of operational data on response effectiveness, fire management organizations can promote systematic learning and provide a better evidence base to support response decisions. We describe an analytics management framework that can provide structure to help deploy analytics within organizations, and provide real-world examples of advanced fire analytics applied in the USA. To fully capitalize on the potential of analytics, organizations may need to catalyze cultural shifts that cultivate stronger appreciation for data-driven decision processes, and develop informed skeptics that effectively balance both judgment and analysis in decision-making.}, Publisher = {SPRINGER INTERNATIONAL PUBLISHING AG}, Address = {GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Thompson, MP (Corresponding Author), US Forest Serv, Human Dimens Program, Rocky Mt Res Stn, USDA, Ft Collins, CO 80526 USA. Thompson, Matthew P., US Forest Serv, Human Dimens Program, Rocky Mt Res Stn, USDA, Ft Collins, CO 80526 USA. Wei, Yu, Colorado State Univ, Dept Forest \& Rangeland Stewardship, Warner Coll Nat Resources, Ft Collins, CO 80523 USA. Calkin, David E.; O'Connor, Christopher D.; Anderson, Nathaniel M.; Hogland, John S., US Forest Serv, Human Dimens Program, Rocky Mt Res Stn, USDA, Missoula, MT USA. Dunn, Christopher J., Oregon State Univ, Coll Forestry, Dept Forest Engn Resources \& Management, Corvallis, OR 97331 USA.}, DOI = {10.1007/s40725-019-00101-7}, EarlyAccessDate = {NOV 2019}, ISSN = {2198-6436}, Keywords = {Decision-making; Data science; Operations research; Suppression effectiveness}, Keywords-Plus = {DECISION-SUPPORT-SYSTEMS; MACHINE-LEARNING-METHODS; FIRE MANAGEMENT; BIG DATA; SUPPRESSION EFFECTIVENESS; DISASTER MANAGEMENT; RESEARCH AGENDA; INITIAL ATTACK; FOREST; CONTAINMENT}, Research-Areas = {Forestry}, Web-of-Science-Categories = {Forestry}, Author-Email = {matthew.p.thompson@usda.gov yu.wei@colostate.edu david.e.calkin@usda.gov christopher.d.oconnor@usda.gov chris.dunn@oregonstate.edu nathaniel.m.anderson@usda.gov john.s.hogland@usda.gov}, Affiliations = {United States Department of Agriculture (USDA); United States Forest Service; Colorado State University; United States Department of Agriculture (USDA); United States Forest Service; Oregon State University}, ResearcherID-Numbers = {Hogland, John/AAJ-8051-2021}, Funding-Acknowledgement = {USDA Forest Service through Joint Venture Agreements}, Funding-Text = {Dr. Wei and Dr. Dunn received funding from the USDA Forest Service through Joint Venture Agreements.}, Cited-References = {Adams T, 2017, INT J WILDLAND FIRE, V26, P107, DOI 10.1071/WF16147. Ager AA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172867. Akter S, 2019, ANN OPER RES, V283, P939, DOI 10.1007/s10479-017-2584-2. Anderson KE, 2018, ECOL INDIC, V84, P793, DOI 10.1016/j.ecolind.2017.09.034. Arca B, 2019, INT J WILDLAND FIRE, V28, P99, DOI 10.1071/WF18078. Barends E., 2014, EVIDENCE BASED MANAG. Beaver A, 2015, P 13 ANN WILDL FIR S, P92. Belval EJ, 2018, INT J WILDLAND FIRE, V27, P569, DOI {[}10.1071/WF17163, 10.1071/wf17163]. Belval EJ, 2017, INT J WILDLAND FIRE, V26, P642, DOI 10.1071/WF16162. Belval EJ, 2016, CAN J FOREST RES, V46, P234, DOI 10.1139/cjfr-2015-0289. Beverly JL, 2017, INT J WILDLAND FIRE, V26, P919, DOI 10.1071/WF17051. Blenko MW, 2010, HARVARD BUS REV, V88, P53. Booz Allen Hamilton, 2015, 2014 QUADR FIR REV. Calkin DE, 2014, INT J WILDLAND FIRE, V23, P259, DOI 10.1071/WF13031. Calkin DE, 2014, P NATL ACAD SCI USA, V111, P746, DOI 10.1073/pnas.1315088111. Calkin DE, 2013, INT J WILDLAND FIRE, V22, P212, DOI 10.1071/WF11075. Campbell MJ, 2019, FIRE-BASEL, V2, DOI 10.3390/fire2030040. Campbell MJ, 2019, APPL GEOGR, V106, P93, DOI 10.1016/j.apgeog.2019.03.008. Campbell MJ, 2017, INT J WILDLAND FIRE, V26, P884, DOI {[}10.1071/WF17031, 10.1071/wf17031]. Campbell MJ, 2017, INT J GEOGR INF SCI, V31, P1448, DOI 10.1080/13658816.2016.1270453. Cardil A, 2019, CAN J FOREST RES, V49, P531, DOI 10.1139/cjfr-2018-0272. Chow JYJ, 2011, INFOR, V49, P31, DOI 10.3138/infor.49.1.031. Chung W, 2015, CURR FOR REP, V1, P44, DOI 10.1007/s40725-015-0005-9. Collins KM, 2018, J ENVIRON MANAGE, V228, P373, DOI 10.1016/j.jenvman.2018.09.031. Cruz MG, 2018, ENVIRON MODELL SOFTW, V105, P54, DOI 10.1016/j.envsoft.2018.03.027. Davenport TH, 2006, HARVARD BUS REV, V84, P98. de Bem PP, 2019, INT J WILDLAND FIRE, V28, P35, DOI 10.1071/WF18018. Donovan GH, 2011, SOC NATUR RESOUR, V24, P785, DOI 10.1080/08941921003649482. Duff TJ, 2018, FORESTS, V9, DOI 10.3390/f9040189. Duff TJ, 2015, INT J WILDLAND FIRE, V24, P735, DOI 10.1071/WF15018. Dunn CJ, 2019, FOREST ECOL MANAG, V441, P202, DOI 10.1016/j.foreco.2019.03.035. Dunn CJ, 2017, FOREST ECOL MANAG, V404, P184, DOI 10.1016/j.foreco.2017.08.039. Fernandes PM, 2016, EUR J FOREST RES, V135, P253, DOI 10.1007/s10342-015-0933-8. Filkov AI, 2018, FORESTS, V9, DOI 10.3390/f9020081. Finney M, 2009, FOREST SCI, V55, P249. Fischer AP, 2016, FRONT ECOL ENVIRON, V14, P277, DOI 10.1002/fee.1283. Galindo G, 2013, EUR J OPER RES, V230, P201, DOI 10.1016/j.ejor.2013.01.039. Garvin DA, 2008, HARVARD BUS REV, V86, P109. Gibert K, 2018, ENVIRON MODELL SOFTW, V106, P4, DOI 10.1016/j.envsoft.2018.04.005. Gingras JF, 2017, FP INNOVATIONS FORES. Hallema DW, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03735-6. Hand M, 2017, INT J WILDLAND FIRE, V26, P615, DOI 10.1071/WF16126. Hand MS, 2015, RISK ANAL, V35, P1876, DOI 10.1111/risa.12457. Hesseln H, 2018, CURR FOR REP, V4, P178, DOI 10.1007/s40725-018-0083-6. Holmes TP, 2013, INT J WILDLAND FIRE, V22, P246, DOI 10.1071/WF11098. Hong M, 2019, MACHINE LEARNING PAR, P351. ISO Standard, 2018, 310002018 ISO. Jolly WM, 2017, INT J WILDLAND FIRE, V26, P574, DOI 10.1071/WF16153. Kahneman D, 2009, AM PSYCHOL, V64, P515, DOI 10.1037/a0016755. Kalabokidis K, 2016, NAT HAZARD EARTH SYS, V16, P643, DOI 10.5194/nhess-16-643-2016. Katuwal H, 2017, INT J WILDLAND FIRE, V26, P604, DOI 10.1071/WF17054. Katuwal H, 2016, J ENVIRON MANAGE, V166, P227, DOI 10.1016/j.jenvman.2015.10.030. Kern AN, 2017, MATH GEOSCI, V49, P717, DOI 10.1007/s11004-017-9681-2. Lavalle S, 2011, MIT SLOAN MANAGE REV, V52, P21. Leuenberger M, 2018, ENVIRON MODELL SOFTW, V101, P194, DOI 10.1016/j.envsoft.2017.12.019. Lewis Michael, 2003, MONEYBALL ART WINNIN. Liu ZL, 2018, ENVIRON REV, V26, P339, DOI 10.1139/er-2018-0034. Lu Y, 2017, J IND INF INTEGR, V6, P1, DOI 10.1016/j.jii.2017.04.005. Marcot BG, 2012, FOREST ECOL MANAG, V285, P123, DOI 10.1016/j.foreco.2012.08.024. Martell D, 2017, WILDL FIR MAN RISK M, V5-10, P2017. Martell DL, 2015, CURR FOR REP, V1, P128, DOI 10.1007/s40725-015-0011-y. Mavsar R, 2013, FOREST POLICY ECON, V29, P45, DOI 10.1016/j.forpol.2012.11.009. McAfee A, 2012, HARVARD BUS REV, V90, P60. McCaffrey S, 2015, CURR FOR REP, V1, P81, DOI 10.1007/s40725-015-0015-7. McLennan Jim, 2006, J CONTIN CRISIS MANA, V14, P27, DOI {[}DOI 10.1111/J.1468-5973.2006.00478.X, 10.1111/j.1468-5973.2006.00478.x]. Mikalef P, 2018, INF SYST E-BUS MANAG, V16, P547, DOI 10.1007/s10257-017-0362-y. Mohamed N, 2014, 2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING \& SIMULATION (HPCS), P305, DOI 10.1109/HPCSim.2014.6903700. Monedero S, 2019, ECOL MODEL, V392, P103, DOI 10.1016/j.ecolmodel.2018.11.016. Mortenson MJ, 2015, EUR J OPER RES, V241, P583, DOI 10.1016/j.ejor.2014.08.029. Muller F, 2019, COMPUT ELECTRON AGR, V162, P206, DOI 10.1016/j.compag.2019.04.002. National Interagency Fire Center, 2019, INT STAND FIR FIR AV. Nowell B, 2018, AM REV PUBLIC ADM, V48, P699, DOI 10.1177/0275074017724225. O'Connor C.D., 2019, WILDFIRE, V28.1, P14. O'Connor CD, 2017, INT J WILDLAND FIRE, V26, P587, DOI 10.1071/WF16135. O'Connor CD, 2016, GEOSCIENCES, V6, DOI 10.3390/geosciences6030035. Olden JD, 2008, Q REV BIOL, V83, P171, DOI 10.1086/587826. Sayad YO, 2019, FIRE SAFETY J, V104, P130, DOI 10.1016/j.firesaf.2019.01.006. Pacheco AP, 2015, FOREST ECOL MANAG, V347, P1, DOI 10.1016/j.foreco.2015.02.033. Penney G, 2019, FIRE-BASEL, V2, DOI 10.3390/fire2020021. Pfeffer J, 2006, HARVARD BUS REV, V84, P62. Plucinski MP, 2012, INT J WILDLAND FIRE, V21, P219, DOI 10.1071/WF11063. Plucinski MP, 2019, CURR FOR REP, V5, P1, DOI 10.1007/s40725-019-00084-5. Plucinski MP, 2019, CURR FOR REP, V5, P20, DOI 10.1007/s40725-019-00085-4. Plucinski MP, 2017, ENVIRON MODELL SOFTW, V91, P1, DOI 10.1016/j.envsoft.2017.01.019. Plucinski MP, 2013, INT J WILDLAND FIRE, V22, P1144, DOI 10.1071/WF13040. Plucinski MP, 2013, INT J WILDLAND FIRE, V22, P459, DOI 10.1071/WF12019. Qadir J., 2016, J INT HUMANITARIAN A, V1, P12, DOI DOI 10.1186/S41018-016-0013-9. Molina JR, 2018, SCI TOTAL ENVIRON, V619, P1557, DOI 10.1016/j.scitotenv.2017.11.233. Reid CE, 2015, ENVIRON SCI TECHNOL, V49, P3887, DOI 10.1021/es505846r. Rein Irving, 2014, SPORTS STRATEGIST DE. Riley K, 2017, GEOPHYS MONOGR SER, V223, P193. Riley KL, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1472. Roberts PS, 2019, AM REV PUBLIC ADM, V49, P292, DOI 10.1177/0275074018799490. Rodrigues M, 2019, SCI TOTAL ENVIRON, V666, P915, DOI 10.1016/j.scitotenv.2019.02.323. Rodrigues M, 2014, ENVIRON MODELL SOFTW, V57, P192, DOI 10.1016/j.envsoft.2014.03.003. Silva FRY, 2016, J FOREST ECON, V25, P149, DOI 10.1016/j.jfe.2016.10.002. Silva FRY, 2014, INT J WILDLAND FIRE, V23, P544, DOI 10.1071/WF13063. Sa ACL, 2017, REMOTE SENS ENVIRON, V190, P302, DOI 10.1016/j.rse.2016.12.023. Shah S, 2012, HARVARD BUS REV, V90, P23. Shah SA, 2019, IEEE ACCESS, V7, P54595, DOI 10.1109/ACCESS.2019.2913340. SHANTEAU J, 1992, ORGAN BEHAV HUM DEC, V53, P252, DOI 10.1016/0749-5978(92)90064-E. Sharma R, 2014, EUR J INFORM SYST, V23, P433, DOI 10.1057/ejis.2014.17. Shields B, 2019, MARCH, V19-20, P2019. Spetzler C., 2016, DECISION QUALITY VAL. Steelman T, 2019, INT J WILDLAND FIRE, V28, P267, DOI 10.1071/WF18136. Steelman TA, 2013, NAT HAZARDS, V65, P683, DOI 10.1007/s11069-012-0386-z. Stonesifer CS, 2016, INT J WILDLAND FIRE, V25, P520, DOI 10.1071/WF15149. Stonesifer CS, 2014, J FOREST, V112, P581, DOI 10.5849/jof.13-096. Subramanian S.G., 2018, FRONT ICT, V5, P6, DOI {[}10.3389/fict.2018.00006., DOI 10.3389/FICT.2018.00006]. Thekdi S, 2016, RELIAB ENG SYST SAFE, V156, P277, DOI 10.1016/j.ress.2016.07.010. Thompson M, 2018, FIRE-BASEL, V1, DOI 10.3390/fire1020021. Thompson MP, 2018, J FOREST, V116, P382, DOI 10.1093/jofore/fvy020. Thompson MP, 2016, FORESTS, V7, DOI 10.3390/f7030064. Thompson MP, 2016, INT J WILDLAND FIRE, V25, P167, DOI 10.1071/WF14216. Thompson MP, 2016, RMRSGTR350 USDA FOR. Tremblay PO, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189860. van der Merwe M, 2015, CAN J FOREST RES, V45, P444, DOI 10.1139/cjfr-2014-0239. Vidgen R, 2017, EUR J OPER RES, V261, P626, DOI 10.1016/j.ejor.2017.02.023. Wang XL, 2017, ECOL PROCESS, V6, DOI 10.1186/s13717-017-0070-z. Wei Y, 2019, FORESTS, V10, DOI 10.3390/f10040311. Wei Y, 2018, CAN J FOREST RES, V48, P480, DOI 10.1139/cjfr-2017-0271. Wernstedt K, 2019, DISASTERS, V43, P88, DOI 10.1111/disa.12293. Wibbenmeyer MJ, 2013, RISK ANAL, V33, P1021, DOI 10.1111/j.1539-6924.2012.01894.x. Wilson RS, 2011, RISK ANAL, V31, P805, DOI 10.1111/j.1539-6924.2010.01534.x. Wyngaard J, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11151797.}, Number-of-Cited-References = {125}, Times-Cited = {30}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {27}, Journal-ISO = {Curr. For. Rep.}, Doc-Delivery-Number = {KJ0EP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000499607100001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000338810900030, Author = {Behnia, Arash and Chai, Hwa Kian and Shiotani, Tomoki}, Title = {Advanced structural health monitoring of concrete structures with the aid of acoustic emission}, Journal = {CONSTRUCTION AND BUILDING MATERIALS}, Year = {2014}, Volume = {65}, Pages = {282-302}, Month = {AUG 29}, Abstract = {This article gives a comprehensive review of the acoustic emission (AE) technique for its applications in concrete structure health monitoring. Basic and established condition assessment methods for concrete structures are reviewed to configure a firm perception of AE application for enhanced performance and reliability. The AE approaches of focus are the parametric and signal analysis which can be used to develop damage evaluation criteria. Other than recent localization and source discrimination methods, applications of pivotal AE parameters such as b-value, Ib-value, AE energy, and hit are discussed herein, with highlights on the limitation of the individual parameter-based approaches when adopted on site. In addition, the introduction of new parameters such as sifted b-value, minimum b-value, and Q value is discussed as well, followed by a novel recent strategy for AE application in conjunction with tomography method to facilitate infrastructure assessment. Moreover, the key role of application of artificial intelligence methods towards damage mode identification has been highlighted. (C) 2014 Elsevier Ltd. All rights reserved.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Chai, HK (Corresponding Author), Univ Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia. Behnia, Arash; Chai, Hwa Kian, Univ Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia. Shiotani, Tomoki, Kyoto Univ, Grad Sch Engn, Dept Urban Management, Kyoto, Japan.}, DOI = {10.1016/j.conbuildmat.2014.04.103}, ISSN = {0950-0618}, EISSN = {1879-0526}, Keywords = {Acoustic emission technique; Concrete structures assessment; Damage detection; Structural health monitoring}, Keywords-Plus = {MOMENT TENSOR ANALYSIS; HIGH-PERFORMANCE CONCRETE; B-VALUE ANALYSIS; REINFORCED-CONCRETE; PRESTRESSED CONCRETE; DAMAGE ASSESSMENT; NONDESTRUCTIVE EVALUATION; CORROSION MECHANISMS; FRACTURE-MECHANICS; STRENGTH CONCRETE}, Research-Areas = {Construction \& Building Technology; Engineering; Materials Science}, Web-of-Science-Categories = {Construction \& Building Technology; Engineering, Civil; Materials Science, Multidisciplinary}, Author-Email = {hkchai@um.edu.my}, Affiliations = {Universiti Malaya; Kyoto University}, ResearcherID-Numbers = {Chai, Hwa Kian/AAW-5514-2020}, Funding-Acknowledgement = {Ministry of Higher Education (Malaysia) {[}UM.C/HIR/MOHE/ENG/54]}, Funding-Text = {The Authors would like to acknowledge the Ministry of Higher Education (Malaysia) for providing the financial support for this project under Grant No. UM.C/HIR/MOHE/ENG/54.}, Cited-References = {Aggelis DG, 2013, CONSTR BUILD MATER, V48, P1255, DOI 10.1016/j.conbuildmat.2012.06.066. Aggelis DG, 2012, STRUCT HEALTH MONIT, V11, P359, DOI 10.1177/1475921711419992. Aggelis DG, 2012, CEMENT CONCRETE COMP, V34, P62, DOI 10.1016/j.cemconcomp.2011.07.003. Aggelis DG, 2011, CONSTR BUILD MATER, V25, P4126, DOI 10.1016/j.conbuildmat.2011.04.049. Aggelis DG, 2010, J ACOUST SOC AM, V127, pEL246, DOI 10.1121/1.3425752. Aggelis DG, SONGS HDB CONCRETE D, P331. AGGELIS DG, 2008, PROG AE, V14, P287. Aggelis DG, 2011, MECH RES COMMUN, V38, P153, DOI 10.1016/j.mechrescom.2011.03.007. Aid K, 1980, QUANTITATIVE SEISMOL. Aldahdooh MAA, 2013, CONSTR BUILD MATER, V44, P812, DOI 10.1016/j.conbuildmat.2012.11.099. {[}Anonymous], 2002, PRINCIPAL COMPONENTE. {[}Anonymous], 1989, AECM 3 INT S ACOUSTI. {[}Anonymous], PATTERN RECOGN. Antonaci P, 2011, KEY ENG MATER, V465, P370, DOI 10.4028/www.scientific.net/KEM.465.370. BAER M, 1987, B SEISMOL SOC AM, V77, P1437. Beck P, 2003, KEY ENG MAT, V245-2, P443, DOI 10.4028/www.scientific.net/KEM.245-246.443. Behnia A, 2014, CONSTR BUIL IN PRESS. Benavent A, 2010, CONSTR BUILD MATER, V24, P1830, DOI 10.1016/j.conbuildmat.2010.04.021. Benavent-Climent A, 2009, STRUCT HEALTH MONIT, V8, P175, DOI 10.1177/1475921709102143. Calabrese L, 2013, CORROS SCI, V73, P161, DOI 10.1016/j.corsci.2013.03.032. Calabrese L, 2012, CONSTR BUILD MATER, V34, P362, DOI 10.1016/j.conbuildmat.2012.02.046. Calabrese L, 2013, USE ACOUSTIC EMISSIO, V6, P329. Carpinteri A, 2007, ENG STRUCT, V29, P1569, DOI 10.1016/j.engstruct.2006.08.008. Carpinteri A, 2007, MATER STRUCT, V40, P553, DOI 10.1617/s11527-006-9162-4. Carpinteri A, 2011, STRUCT CONTROL HLTH, V18, P660, DOI 10.1002/stc.393. Carpinteri A, 2006, KEY ENG MATER, V312, P305, DOI 10.4028/www.scientific.net/KEM.312.305. Chang PC, 2003, J MATER CIVIL ENG, V15, P298, DOI 10.1061/(ASCE)0899-1561(2003)15:3(298). Chen B, 2008, CONSTR BUILD MATER, V22, P2196, DOI 10.1016/j.conbuildmat.2007.08.004. Chen B, 2007, CONSTR BUILD MATER, V21, P1696, DOI 10.1016/j.conbuildmat.2006.05.030. Colombo IS, 2003, J MATER CIVIL ENG, V15, P280, DOI 10.1061/(ASCE)0899-1561(2003)15:3(280). Colombo S, 2005, CONSTR BUILD MATER, V19, P746, DOI 10.1016/j.conbuildmat.2005.06.004. Dai QL, 2012, CONSTR BUILD MATER, V31, P231, DOI 10.1016/j.conbuildmat.2011.12.080. Degala S, 2009, CONSTR BUILD MATER, V23, P2016, DOI 10.1016/j.conbuildmat.2008.08.026. Ding Y, 2004, NDT\&E INT, V37, P279, DOI 10.1016/j.ndteint.2003.10.006. Drouillard T, 1990, ANECDOTAL HIST ACOUS. ElBatanouny M, 2012, EXP MECH, P1. Elfergani HA, 2013, CONSTR BUILD MATER, V40, P925, DOI 10.1016/j.conbuildmat.2012.11.071. Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226. Farhidzadeh A, 2013, J STRUCT ENG, V139, DOI 10.1061/(ASCE)ST.1943-541X.0000781. Farhidzadeh A, 2013, J INTEL MAT SYST STR, V24, P1722, DOI 10.1177/1045389X13484101. Farhidzadeh A, 2013, STRUCT HEALTH MONIT, V12, P3, DOI 10.1177/1475921712461162. Finck F, 2004, OTTO GRAF J, V15, P121. Finck F., 2002, OTTO GRAF J, V13, P83. Fowler T. J., 1986, P 8 INT ACOUSTIC EMI, P150. Godin N, 2004, NDT\&E INT, V37, P253, DOI 10.1016/j.ndteint.2003.09.010. Golaski L, 2002, J ACOUST EMISSION, V20, P83. Grosse C., 2008, ACOUSTIC EMISSION TE. Grosse CU, 2006, CEMENT CONCRETE COMP, V28, P330, DOI 10.1016/j.cemconcomp.2006.02.006. Haneef TK, 2013, CONSTR BUILD MATER, V44, P342, DOI 10.1016/j.conbuildmat.2013.03.041. Holford K, 1999, 2 INT C ID ENG SYST, P392. Johnson M, 2002, NDT\&E INT, V35, P367, DOI 10.1016/S0963-8695(02)00004-X. Jost M. L., 1989, Seismological Research Letters, V60, P37. JOSWIG M, 1990, B SEISMOL SOC AM, V80, P170. Kaiser J., 1953, ARCH EISENHUTTENWES, V24, P43. Kawasaki Y, 2013, CONSTR BUILD MATER, V48, P1240, DOI 10.1016/j.conbuildmat.2013.02.020. KOHONEN T, 1990, P IEEE, V78, P1464, DOI 10.1109/5.58325. KOPPEL S, 2000, P 15 WORLD C NOND TE. Kurz J.H, 2006, VERIFIKATION BRUCHPR. Kurz JH, 2005, ULTRASONICS, V43, P538, DOI 10.1016/j.ultras.2004.12.005. Labuz JF, 2001, CONSTR BUILD MATER, V15, P225, DOI 10.1016/S0950-0618(00)00072-6. LABUZ JF, 1988, ROCK MECH ROCK ENG, V21, P139, DOI 10.1007/BF01043118. Leonard M, 2000, B SEISMOL SOC AM, V90, P1384, DOI 10.1785/0120000026. Likas A, 2003, PATTERN RECOGN, V36, P451, DOI 10.1016/S0031-3203(02)00060-2. Liu Z., 2007, EVALUATION REINFORCE. Lovejoy S., 2006, THESIS OREGON STATE. Luo X., 2002, P STRUCT ENG WORLD C, VT9-1. Mangual J, 2013, ACI MATER J, V110, P88. Manson G, 2001, J INTEL MAT SYST STR, V12, P529, DOI 10.1106/UD4L-UPGC-WG29-A34L. MCDAD P, 2004, P 2 INT WORKSH STRUC. Miller RK, 1987, NONDESTRUCTIVE TESTI, V5, P603. Minemura O, 1998, CONSTR BUILD MATER, V12, P385, DOI 10.1016/S0950-0618(97)00082-2. Mogi K, 1963, MAGNITUDE FREQUENCY. Momokl S, 2009, J ACOUST EMISSION, V27, P186. Mustapha F, 2005, STRAIN, V41, P117, DOI 10.1111/j.1475-1305.2005.00207.x. Nair A, 2010, ENG STRUCT, V32, P1704, DOI 10.1016/j.engstruct.2010.02.020. Obert L, 1977, 1 C ACOUSTIC EMISSIO, P11. Obert L, 1945, MICROSEISMIC METHOD. Ohno K, 2010, CONSTR BUILD MATER, V24, P2339, DOI 10.1016/j.conbuildmat.2010.05.004. Ohtsu M, 2011, STRAIN, V47, P179, DOI 10.1111/j.1475-1305.2010.00754.x. Ohtsu M, 1999, CONSTR BUILD MATER, V13, P57, DOI 10.1016/S0950-0618(99)00008-2. Ohtsu M, 2002, ACI STRUCT J, V99, P411. OHTSU M, 1991, J GEOPHYS RES-SOLID, V96, P6211, DOI 10.1029/90JB02689. Ohtsu M, 2001, CONSTR BUILD MATER, V15, P217, DOI 10.1016/S0950-0618(00)00071-4. Ohtsu M, 1996, MAG CONCRETE RES, V48, P321, DOI 10.1680/macr.1996.48.177.321. Ohtsu M, 1998, ACI STRUCT J, V95, P87. Ohtsu M., 2000, P 15 INT AC EM S, P263. Ohtsu M, 1989, J ACOUST EMISSION, V8, P93. Ozawa M, 2012, CONSTR BUILD MATER, V37, P621, DOI 10.1016/j.conbuildmat.2012.06.070. Philippidis TP, 1998, NDT\&E INT, V31, P329, DOI 10.1016/S0963-8695(98)00015-2. Pollock A. A., 1981, International advances in nondestructive testing. Vol.7, P215. Pullin R, 1999, P 2 INT C ID ENG SYS, P401. Pullin R., 2008, J ACOUST EMISS, V26, P172. Rao M.V.M.S., 2009, P NAT SEM EXH NOND P, V11, P323. Rao MVMS, 2005, CURR SCI INDIA, V89, P1577. Ridge AR, 2006, ACI STRUCT J, V103, P832. ROSSI P, 1990, ENG FRACT MECH, V35, P751, DOI 10.1016/0013-7944(90)90158-D. Rossi P, 2012, CEMENT CONCRETE RES, V42, P61, DOI 10.1016/j.cemconres.2011.07.011. Sagar RV, DAMAGE ASSESSMENT RE. Salinas V, 2010, PHYSCS PROC, V3, P863, DOI 10.1016/j.phpro.2010.01.111. Schofield B.H., 1958, ACOUSTIC EMISSION AP. SCHOLZ CH, 1968, B SEISMOL SOC AM, V58, P399. Schumacher T, 2011, STRUCT HEALTH MONIT, V10, P17, DOI 10.1177/1475921710365424. Schweitzer J., 2002, MANUAL SEISMOLOGICAL. Seto M, 1992, P 11 INT S AC EM JAP, P159. Shah SG, 2012, ENG FRACT MECH, V87, P36, DOI 10.1016/j.engfracmech.2012.03.001. Shah SG, 2010, ENG FRACT MECH, V77, P908, DOI 10.1016/j.engfracmech.2010.01.018. Shahidan S, 2013, CONSTR BUILD MATER, V45, P78, DOI 10.1016/j.conbuildmat.2013.03.095. Sharma S., 1995, APPL MULTIVARIATE TE. Shearer P. M., 1999, INTRO SEISMOLOGY. Shigeishi M, 2001, CONSTR BUILD MATER, V15, P311, DOI 10.1016/S0950-0618(00)00079-9. Shiotani T, 2006, ADV MAT RES, V13-14, P175, DOI 10.4028/www.scientific.net/AMR.13-14.175. Shiotani T, 2006, NDT\&E INT, V39, P217, DOI 10.1016/j.ndteint.2005.07.005. Shiotani T, 1999, CONSTR BUILD MATER, V13, P73, DOI 10.1016/S0950-0618(99)00010-0. Shiotani T, 2003, ENG FRACT MECH, V70, P1509, DOI 10.1016/S0013-7944(02)00150-9. Shiotani T, 2009, MATER STRUCT, V42, P377, DOI 10.1617/s11527-008-9388-4. Shiotani T, 2001, CONSTR BUILD MATER, V15, P235, DOI 10.1016/S0950-0618(00)00073-8. Shiotani T, 1999, AM SOC TEST MATER, V1353, P156, DOI 10.1520/STP15787S. Shiotani T, 2000, NON-DESTRUCTIVE TESTING IN CIVIL ENGINEERING 2000, P293, DOI 10.1016/B978-008043717-0/50031-3. Shiotani T., 2001, J ACOUST EMISSION, V19, P118. Shiotani T, 2012, 30 EUR C AC EM TEST. Shiotani T, 2009, J BRIDGE ENG, V14, P188, DOI 10.1061/(ASCE)1084-0702(2009)14:3(188). Sleeman R, 1999, PHYS EARTH PLANET IN, V113, P265, DOI 10.1016/S0031-9201(99)00007-2. Soulioti D, 2009, CONSTR BUILD MATER, V23, P3532, DOI 10.1016/j.conbuildmat.2009.06.042. Uddin FAKM, 2006, MECCANICA, V41, P425, DOI 10.1007/s11012-006-0004-9. Uppal A, 2002, USING ACOUSTIC EMISS. Wang C, 2011, J MATER CIVIL ENG, V23, P953, DOI 10.1061/(ASCE)MT.1943-5533.0000257. Warnemuende K, 2004, CEMENT CONCRETE RES, V34, P563, DOI 10.1016/j.cemconres.2003.09.008. Yoon DJ, 2000, J ENG MECH-ASCE, V126, P273, DOI 10.1061/(ASCE)0733-9399(2000)126:3(273). Yuyama S, 2007, CONSTR BUILD MATER, V21, P491, DOI 10.1016/j.conbuildmat.2006.04.010. Yuyama S, 1999, CONSTR BUILD MATER, V13, P87, DOI 10.1016/S0950-0618(99)00011-2. Yuyama S, 1999, AM SOC TEST MATER, V1353, P25, DOI 10.1520/STP15778S. Yuyama S, 2001, NDT\&E INT, V34, P381, DOI 10.1016/S0963-8695(01)00004-4. YUYAMA S, 1995, MATER EVAL, V53, P409. Zhang HJ, 2003, B SEISMOL SOC AM, V93, P1904, DOI 10.1785/0120020241. Ziehl P, 2003, PCI J, V48, P125. Ziehl P., 2003, MONITORING BONNET CA. Ziehl PH, 2008, 15 INT S SMART STRUC.}, Number-of-Cited-References = {137}, Times-Cited = {214}, Usage-Count-Last-180-days = {22}, Usage-Count-Since-2013 = {263}, Journal-ISO = {Constr. Build. Mater.}, Doc-Delivery-Number = {AL0IP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000338810900030}, DA = {2023-04-22}, } @article{ WOS:000946283700004, Author = {Gui, Jie and Sun, Zhenan and Wen, Yonggang and Tao, Dacheng and Ye, Jieping}, Title = {A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications}, Journal = {IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING}, Year = {2023}, Volume = {35}, Number = {4}, Pages = {3313-3332}, Month = {APR 1}, Abstract = {Generative adversarial networks (GANs) have recently become a hot research topic; however, they have been studied since 2014, and a large number of algorithms have been proposed. Nevertheless, few comprehensive studies explain the connections among different GAN variants and how they have evolved. In this paper, we attempt to provide a review of the various GAN methods from the perspectives of algorithms, theory, and applications. First, the motivations, mathematical representations, and structures of most GAN algorithms are introduced in detail, and we compare their commonalities and differences. Second, theoretical issues related to GANs are investigated. Finally, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, the medical field, and data science are discussed.}, Publisher = {IEEE COMPUTER SOC}, Address = {10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA}, Type = {Review}, Language = {English}, Affiliation = {Gui, J (Corresponding Author), Southeast Univ, Sch Cyber Sci \& Engn, Nanjing 211100, Jiangsu, Peoples R China. Gui, Jie, Southeast Univ, Sch Cyber Sci \& Engn, Nanjing 211100, Jiangsu, Peoples R China. Gui, Jie, Purple Mt Labs, Nanjing 210000, Peoples R China. Gui, Jie, Univ Michigan, Dept Computat Med \& Bioinformat, Ann Arbor, MI USA. Sun, Zhenan, Chinese Acad Sci, Ctr Res Intelligent Percept \& Comp, Beijing 100190, Peoples R China. Wen, Yonggang, Nanyang Technol Univ, Sch Comp Sci \& Engn, Singapore 639798, Singapore. Tao, Dacheng, JD Explore Acad, Beijing, Peoples R China. Tao, Dacheng, Univ Sydney, Sch Comp Sci, Camperdown, Australia. Ye, Jieping, Beike, Beijing 100085, Peoples R China. Ye, Jieping, Univ Michigan, Ann Arbor, MI 48109 USA.}, DOI = {10.1109/TKDE.2021.3130191}, ISSN = {1041-4347}, EISSN = {1558-2191}, Keywords = {Generators; Generative adversarial networks; Data models; Linear programming; Natural language processing; Machine learning algorithms; Inference algorithms; Deep learning; generative adversarial networks; algorithm; theory; applications}, Keywords-Plus = {LEARNING ALGORITHM; IMAGE SYNTHESIS; GAN; MANIPULATION; DISTANCE}, Research-Areas = {Computer Science; Engineering}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical \& Electronic}, Author-Email = {guijie@seu.edu.cn znsun@nlpr.ia.ac.cn ygwen@ntu.edu.sg dacheng.tao@gmail.com jieping@gmail.com}, Affiliations = {Southeast University - China; University of Michigan System; University of Michigan; Chinese Academy of Sciences; Nanyang Technological University \& National Institute of Education (NIE) Singapore; Nanyang Technological University; University of Sydney; University of Michigan System; University of Michigan}, Funding-Acknowledgement = {National Science Foundation of China {[}62172090, 62172089]; National Key R\&D Project of China {[}2021QY2102]; CAAI-Huawei MindSpore Open Fund; Alibaba Group through Alibaba Innovative Research Program; Fundamental Research Funds for the Central Universities {[}2242022R10071]; Grant of the Singapore National Research Foundation (NRF); Jiangsu Provincial Double-Innovation Doctor Program {[}JSSCBS20210075]}, Funding-Text = {This work was supported in part by the National Science Foundation of China underGrants 62172090 and 62172089, in part by the National Key R \& D Project of China under Grant 2021QY2102, in part by CAAI-Huawei MindSpore Open Fund, in partby Alibaba Group through Alibaba Innovative Research Program, in part by the Fundamental Research Funds for the Central Universities under Grant 2242022R10071,in part by the Grant of the Singapore National Research Foundation (NRF) underSustainable Tropical Data Center Testbed (STDCT) Project, and in part by Jiangsu Provincial Double-Innovation Doctor Program under Grant JSSCBS20210075.}, Cited-References = {Rusu AA, 2016, Arxiv, DOI DOI 10.48550/ARXIV.1606.04671. Abadi M., 2016, LEARNING PROTECT COM. ACKLEY DH, 1985, COGNITIVE SCI, V9, P147. Adler J, 2018, ADV NEUR IN, V31. Aghakhani H, 2018, 2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), P89, DOI 10.1109/SPW.2018.00022. Akhtar N, 2018, IEEE ACCESS, V6, P14410, DOI 10.1109/ACCESS.2018.2807385. Nguyen A, 2017, PROC CVPR IEEE, P3510, DOI 10.1109/CVPR.2017.374. Nguyen A, 2016, ADV NEUR IN, V29. {[}Anonymous], 2018, ARXIV180710088. {[}Anonymous], 2011, PROC 4 ACM WKSP SECU. Antipov G, 2017, IEEE IMAGE PROC, P2089. Arbel Michael, 2018, ADV NEURAL INFORM PR. Arjovsky M., 2017, 5 INT C LEARN REPR. Arjovsky M, 2017, PR MACH LEARN RES, V70. Arora S., 2018, PROC INT C LEARN REP, P1. Arora S, 2017, PR MACH LEARN RES, V70. Athalye A, 2018, PR MACH LEARN RES, V80. Athey S., 2021, J ECONOMETRICS, DOI DOI 10.1016/J.JECONOM.2020.09.013. Babu KK, 2021, EXPERT SYST APPL, V169, DOI 10.1016/j.eswa.2020.114431. Bai YC, 2018, LECT NOTES COMPUT SC, V11217, P210, DOI 10.1007/978-3-030-01261-8\_13. Bai Yunren, 2019, PROC INT C LEARNING, P1. Bansal A, 2018, LECT NOTES COMPUT SC, V11209, P122, DOI 10.1007/978-3-030-01228-1\_8. Bao JM, 2017, IEEE I CONF COMP VIS, P2764, DOI 10.1109/ICCV.2017.299. Bau D., 2019, PROC INT C LEARN REP. Bau D, 2019, IEEE I CONF COMP VIS, P4501, DOI 10.1109/ICCV.2019.00460. Beaulieu-Jones B. K., 2019, CIRC-CARDIOVASC QUAL, V12, P1. Bellemare MG, 2017, Arxiv. Bengio Y., 2013, P 26 INT C NEURAL IN, P899. Bengio Y, 2014, PR MACH LEARN RES, V32, P226. Benhenda M, 2017, Arxiv. Bergmann U, 2017, PR MACH LEARN RES, V70. Berthelot D, 2017, Arxiv. Bińkowski M, 2021, Arxiv. Bishop, 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119.ARNING. Blau Y, 2019, LECT NOTES COMPUT SC, V11133, P334, DOI 10.1007/978-3-030-11021-5\_21. Borgwardt KM, 2006, BIOINFORMATICS, V22, pE49, DOI 10.1093/bioinformatics/btl242. Brock A., 2017, ARXIV170805344. Brock Andrew, 2019, LARGE SCALE GAN TRAI. Cai L., 2018, PROC ANN C N AM CHAP, P1. Cao J, 2019, IEEE T INF FOREN SEC, V14, P2028, DOI 10.1109/TIFS.2019.2891116. Cao J, 2018, ADV NEUR IN, V31. Chan C, 2019, IEEE I CONF COMP VIS, P5932, DOI 10.1109/ICCV.2019.00603. Chang B, 2018, IEEE WINT CONF APPL, P199, DOI 10.1109/WACV.2018.00028. Chang HW, 2018, PROC CVPR IEEE, P40, DOI 10.1109/CVPR.2018.00012. Che T., 2017, INT C LEARN REPR ICL. Chellappa R., 2018, ARXIV180506605. Chen TH, 2017, IEEE I CONF COMP VIS, P521, DOI 10.1109/ICCV.2017.64. Chen X, 2016, ADV NEUR IN, V29. Chen Y, 2018, PROC CVPR IEEE, P9465, DOI 10.1109/CVPR.2018.00986. Chen YS, 2018, PROC CVPR IEEE, P6306, DOI 10.1109/CVPR.2018.00660. Choi E., 2017, GENERATING MULTILABE. Chrysos G. G., 2019, INT C LEARN REPR ICL. Chu C., 2017, ARXIV171202950. Creswell Antonia, 2016, Computer Vision - ECCV 2016. 14th European Conference: Workshops. Proceedings: LNCS 9913, P798, DOI 10.1007/978-3-319-46604-0\_55. Creswell A, 2018, IEEE SIGNAL PROC MAG, V35, P53, DOI 10.1109/MSP.2017.2765202. Csiszar I., 2004, Foundations and Trends in Communications and Information Theory, V1, P1, DOI 10.1561/0100000004. d'Autume CD, 2019, ADV NEUR IN, V32. Dai B, 2017, IEEE I CONF COMP VIS, P2989, DOI 10.1109/ICCV.2017.323. Dai W, 2018, PROC DEEP LEARN MED, P1. Dash A, 2017, Arxiv. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Denton E.L., 2017, ADV NEUR IN, V1, P4414. Denton EL, 2015, ADV NEURAL INFORM PR, P1486, DOI DOI 10.5555/2969239.2969405. Ding Z., 2019, PROC INT WORKSHOP HU, P2019. Dolhansky B, 2018, PROC CVPR IEEE, P7902, DOI 10.1109/CVPR.2018.00824. Donahue, 2017, ICLR, P1. Donahue C., 2019, INT C LEARN REPR. Donahue C., 2018, PROC INT C LEARN REP, P1. Donahue C, 2019, Arxiv. Donahue C, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P5024. Donahue J, 2016, ARXIV160509782. Dong H, 2017, IEEE I CONF COMP VIS, pCP1, DOI 10.1109/ICCV.2017.608. Dong YP, 2018, PROC CVPR IEEE, P9185, DOI 10.1109/CVPR.2018.00957. Duarte A, 2019, INT CONF ACOUST SPEE, P8633, DOI 10.1109/ICASSP.2019.8682970. Durugkar I., 2017, PROC INT C LEARN REP, P1. Dziugaite GK, 2015, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P258. Ehsani K, 2018, PROC CVPR IEEE, P6144, DOI 10.1109/CVPR.2018.00643. El-Nouby A, 2019, IEEE I CONF COMP VIS, P10303, DOI 10.1109/ICCV.2019.01040. Elsayed GF, 2018, ADV NEUR IN, V31. Engin D, 2018, IEEE COMPUT SOC CONF, P938, DOI 10.1109/CVPRW.2018.00127. Esteban C, 2017, Arxiv, DOI DOI 10.48550/ARXIV.1706.02633. Eykholt K, 2018, PROC CVPR IEEE, P1625, DOI 10.1109/CVPR.2018.00175. Fang FM, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P5279. Farnia F, 2018, ADV NEUR IN, V31. Fedus William, 2018, PROC INT CONFE LEARN, P1. Feizi S., 2020, IEEE J SEL AREAS INF, V1, P304, DOI DOI 10.1109/JSAIT.2020.2991375. Frey BJ, 1996, ADV NEUR IN, V8, P661. Frey BJ, 1998, ADAP COMP MACH LEARN. Frid-Adar M, 2018, NEUROCOMPUTING, V321, P321, DOI 10.1016/j.neucom.2018.09.013. Fu CY, 2019, ADV NEUR IN, V32. Gao HC, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1308, DOI 10.1145/3292500.3330866. Garbacea C, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3968. Gauthier J., 2014, CLASS PROJECT STANFO, V2014, P2. Gecer B, 2019, PROC CVPR IEEE, P1155, DOI 10.1109/CVPR.2019.00125. Geiger, 2017, ADV NEURAL INFORM PR, P1825, DOI DOI 10.5555/3294771.3294945. Ghosh A, 2018, PROC CVPR IEEE, P8513, DOI 10.1109/CVPR.2018.00888. Gidel G., 2019, PROC INT C LEARN REP. Gomez A.N., 2018, ARXIV180104883. Gong MM, 2019, ADV NEUR IN, V32. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Goodfellow I, 2017, Arxiv. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Hartmann KG, 2018, Arxiv. Gretton A, 2012, J MACH LEARN RES, V13, P723. Guan JW, 2019, Arxiv. Guimaraes GL, 2018, Arxiv, DOI DOI 10.48550/ARXIV.1705.10843. Gupta A, 2018, PROC CVPR IEEE, P2255, DOI 10.1109/CVPR.2018.00240. Gupta A, 2019, NAT MACH INTELL, V1, P105, DOI 10.1038/s42256-019-0017-4. Han Y., 2020, PATTERN RECOGN, V97, P1. Hayes J., 2017, P ADV NEUR INF PROC, P1. Heusel M, 2017, ADV NEURAL INFORM PR, P6626, DOI DOI 10.5555/3295222.3295408. Hinton G., 1984, BOLTZMANN MACHINES C. Hinton G. E, 2010, TORONTO FACE DATASET. Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527. Hoang Q., 2018, P INT C LEARN REPR I. Hong S, 2018, PROC CVPR IEEE, P7986, DOI 10.1109/CVPR.2018.00833. Hong Y, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3301282. Hsu CC, 2017, INTERSPEECH, P3364, DOI 10.21437/Interspeech.2017-63. Hu BB, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P120, DOI 10.1145/3292500.3330970. Hu WW, 2017, Arxiv. Huang HB, 2019, INT J COMPUT VISION, V127, P763, DOI 10.1007/s11263-019-01154-8. Huang R, 2017, IEEE I CONF COMP VIS, P2458, DOI 10.1109/ICCV.2017.267. Huang X, 2017, PROC CVPR IEEE, P1866, DOI 10.1109/CVPR.2017.202. Lim JH, 2017, Arxiv, DOI DOI 10.48550/ARXIV.1705.02894. Iizuka S, 2017, ACM T GRAPHIC, V36, DOI 10.1145/3072959.3073659. Im D. J., 2018, PROC INT C LEARN REP, P1. Gulrajani I, 2017, ADV NEUR IN, V30. Isola P., 2017, CVPR, DOI DOI 10.1109/CVPR.2017.632. Jahanian Ali, 2020, INT C LEARN REPR. Jetchev Nikolay, 2016, ARXIV161108207. Jia XJ, 2019, PROC CVPR IEEE, P6077, DOI 10.1109/CVPR.2019.00624. Jiang WT, 2020, PROC CVPR IEEE, P5193, DOI 10.1109/CVPR42600.2020.00524. Jiang Y, 2017, IGGRAPH ASIA 2017 TECHNICAL BRIEFS (SA'17), DOI 10.1145/3145749.3149440. Jin GQ, 2019, INT CONF ACOUST SPEE, P3842, DOI 10.1109/ICASSP.2019.8683044. Im DJ, 2016, Arxiv. Johnson J, 2016, LECT NOTES COMPUT SC, V9906, P694, DOI 10.1007/978-3-319-46475-6\_43. Jolicoeur-Martineau A., 2019, PROC INT C LEARN REP. Kahng M, 2019, IEEE T VIS COMPUT GR, V25, P310, DOI 10.1109/TVCG.2018.2864500. Kaneko T, 2017, Arxiv. Karacan L, 2016, Arxiv. Karras T, 2017, ARXIV171010196. Karras T, 2019, PROC CVPR IEEE, P4396, DOI 10.1109/CVPR.2019.00453. Killoran N., 2017, ARXIV171206148. Kim T., 2017, P 34 INT C MACH LEAR, V70, P1857, DOI {[}DOI 10.1109/WPT.2017.7953894, DOI 10.48550/ARXIV.1703.05192]. King DB, 2015, ACS SYM SER, V1214, P1. Kocaoglu M., 2018, INT C LEARN REPR ICL. Kodali N, 2017, Arxiv. Kos J, 2018, 2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), P36, DOI 10.1109/SPW.2018.00014. Krizhevsky A., 2009, TECH REP. Kurakin A., 2016, PROC INT C LEARN REP, DOI DOI 10.48550/ARXIV.1607.02533. Kurutach Thanard, 2018, ADV NEURAL INFORM PR, P8747. Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791. Ledig Christian, 2017, PROC IEEE C COMPUT V, P4681. Lee J., 2017, GENERATIVE ADVERSARI. Lee MC, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P500, DOI 10.1145/3219819.3219850. Li C., 2017, P NEUR INF PROC SYST, P5495. Li C.-L., 2017, ADV NEUR IN, P2203. Li C, 2016, LECT NOTES COMPUT SC, V9907, P702, DOI 10.1007/978-3-319-46487-9\_43. Li D, 2019, LECT NOTES COMPUT SC, V11730, P703, DOI 10.1007/978-3-030-30490-4\_56. Li J., 2017, ARXIV170106547, DOI DOI 10.18653/V1/D17-1019. Li JA, 2017, PROC CVPR IEEE, P1951, DOI 10.1109/CVPR.2017.211. Li YJ, 2015, PR MACH LEARN RES, V37, P1718. Liang Tengyuan, 2020, ARXIV. Liang XD, 2018, LECT NOTES COMPUT SC, V11217, P574, DOI 10.1007/978-3-030-01261-8\_34. Liang XD, 2017, IEEE I CONF COMP VIS, P1762, DOI 10.1109/ICCV.2017.194. Lin K, 2017, ADV NEUR IN, V30. Lin SH, 2019, PROC CVPR IEEE, P2785, DOI 10.1109/CVPR.2019.00290. Lin ZA, 2018, ADV NEUR IN, V31. Liu B, 2018, PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), P783, DOI 10.1145/3240508.3240587. Liu F, 2019, IEEE T NEUR NET LEAR, V30, P2707, DOI 10.1109/TNNLS.2018.2885799. Liu M., 2016, ADV NEURAL INFORM PR. Liu W, 2020, IEEE T IMAGE PROCESS, V29, P7819, DOI 10.1109/TIP.2020.3007844. Liu XY, 2018, IEEE IMAGE PROC, P873, DOI 10.1109/ICIP.2018.8451049. Liu YZ, 2020, IEEE T KNOWL DATA EN, V32, P1517, DOI 10.1109/TKDE.2019.2905606. Liu YF, 2019, PROC CVPR IEEE, P11869, DOI 10.1109/CVPR.2019.01215. Lu SQ, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR `19), P555, DOI 10.1145/3331184.3331218. Lu YY, 2018, LECT NOTES COMPUT SC, V11216, P293, DOI 10.1007/978-3-030-01258-8\_18. Lucic M, 2018, ADV NEUR IN, V31. Luo Y, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION \& KNOWLEDGE MANAGEMENT (CIKM `19), P1101, DOI 10.1145/3357384.3357899. Ma LQ, 2017, ADV NEUR IN, V30. Mao Q, 2019, PROC CVPR IEEE, P1429, DOI 10.1109/CVPR.2019.00152. Mao XD, 2019, IEEE T PATTERN ANAL, V41, P2947, DOI 10.1109/TPAMI.2018.2872043. Mao XD, 2017, IEEE I CONF COMP VIS, P2813, DOI 10.1109/ICCV.2017.304. Mardani M, 2019, IEEE T MED IMAGING, V38, P167, DOI 10.1109/TMI.2018.2858752. Mathieu M., 2016, PROC INT C LEARN REP, P1. Mescheder L, 2018, PR MACH LEARN RES, V80. Metz Luke, 2017, INT C LEARN REPR. Mirza M, 2014, Arxiv, DOI DOI 10.48550/ARXIV.1411.1784. Miyato T., 2018, PROC INT C LEARN REP. Miyato T., 2018, INT C LEARN REPR ICL, p{[}2, 3]. Mogren O, 2016, PROC NEURAL INF PROC, P1. Mohamed S, 2017, Arxiv. Mroueh Y., 2018, INT C LEARN REPR, P1. Nagarajan V., 2018, ICOPEV INT C PROJ EC, P1. Nowozin S, 2016, ADV NEUR IN, V29. Odena A, 2017, PR MACH LEARN RES, V70. Pan JT, 2018, Arxiv. Pan ZQ, 2019, IEEE ACCESS, V7, P36322, DOI 10.1109/ACCESS.2019.2905015. Park T, 2019, PROC CVPR IEEE, P2332, DOI 10.1109/CVPR.2019.00244. Pascual S, 2017, INTERSPEECH, P3642, DOI 10.21437/Interspeech.2017-1428. Perarnau G, 2016, PROC C NEURAL INF PR. Petzka H., 2018, PROC INT C LEARN REP, P1. Pumarola A, 2018, LECT NOTES COMPUT SC, V11214, P835, DOI 10.1007/978-3-030-01249-6\_50. Qi GJ, 2020, INT J COMPUT VISION, V128, P1118, DOI 10.1007/s11263-019-01265-2. Qi GJ, 2018, PROC CVPR IEEE, P1517, DOI 10.1109/CVPR.2018.00164. Qiao TT, 2019, PROC CVPR IEEE, P1505, DOI 10.1109/CVPR.2019.00160. Qin PD, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P496. Radford A., ICLR. Rao S, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P143. Ratliff LJ, 2013, ANN ALLERTON CONF, P917, DOI 10.1109/Allerton.2013.6736623. Ratzlaff N., 2019, INT C MACH LEARN, P5361. Reed S. E., 2016, PROC NEURAL INF PROC, P217. Reed S, 2016, PR MACH LEARN RES, V48. Rezende DJ, 2014, PR MACH LEARN RES, V32, P1278. Roth K, 2017, ADV NEUR IN, V30. Saito M, 2017, IEEE I CONF COMP VIS, P2849, DOI 10.1109/ICCV.2017.308. Saito Y, 2018, IEEE-ACM T AUDIO SPE, V26, P84, DOI 10.1109/TASLP.2017.2761547. Salimans T., 2017, CORR. Salimans T, 2016, ADV NEUR IN, V29. Sanjabi M, 2018, ADV NEUR IN, V31. Santana E, 2016, Arxiv. Schlegl T, 2017, LECT NOTES COMPUT SC, V10265, P146, DOI 10.1007/978-3-319-59050-9\_12. SCHMIDHUBER J, 1991, FROM ANIMALS TO ANIMATS, P222. SCHMIDHUBER J, 1992, NEURAL COMPUT, V4, P863, DOI 10.1162/neco.1992.4.6.863. Schmidhuber J, 1990, FKI126 TU MUN I COMP. Schmidhuber J., 2009, EDIZIONI, P98. Schmidhuber J, 2020, Arxiv. Shaham TR, 2019, IEEE I CONF COMP VIS, P4569, DOI 10.1109/ICCV.2019.00467. Shetty R, 2017, IEEE I CONF COMP VIS, P4155, DOI 10.1109/ICCV.2017.445. Shi HC, 2018, LECT NOTES COMPUT SC, V10735, P534, DOI 10.1007/978-3-319-77380-3\_51. Shu H, 2019, IEEE I CONF COMP VIS, P3234, DOI 10.1109/ICCV.2019.00333. Shu ZX, 2018, LECT NOTES COMPUT SC, V11214, P664, DOI 10.1007/978-3-030-01249-6\_40. Shu ZX, 2017, PROC CVPR IEEE, P5444, DOI 10.1109/CVPR.2017.578. Siarohin A, 2018, PROC CVPR IEEE, P3408, DOI 10.1109/CVPR.2018.00359. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. Singh S, 2018, ADV NEUR IN, V31. Sixt L, 2018, FRONT ROBOT AI, V5, DOI 10.3389/frobt.2018.00066. Sonderby C. K., 2017, ICLR. Song YB, 2018, PROC CVPR IEEE, P8990, DOI 10.1109/CVPR.2018.00937. Souly N, 2017, IEEE I CONF COMP VIS, P5689, DOI 10.1109/ICCV.2017.606. Springenberg J.T, 2015, PROC INT C LEARN REP. Spurr A, 2017, LECT NOTES ARTIF INT, V10534, P119, DOI 10.1007/978-3-319-71249-9\_8. Sricharan K, 2017, Arxiv. Sriperumbudur BK, 2010, J MACH LEARN RES, V11, P1517. St-Yves G, 2018, IEEE SYS MAN CYBERN, P1054, DOI 10.1109/SMC.2018.00187. Sutherland DJ, 2016, Arxiv. Sutton Charles, 2017, ADV NEUR IN, P3308. Szegedy C., 2014, PROC INT C LEARN REP. Szegedy C., 2014, 3 INT C LEARN REPR I. Takuhiro K., 2017, PROC IEEE INT C ACOU, P4910. Tang H, 2019, PROC CVPR IEEE, P2412, DOI 10.1109/CVPR.2019.00252. Thekumparampil KK, 2018, ADV NEUR IN, V31. Tian B, 2019, LECT NOTES COMPUT SC, V11448, P444, DOI 10.1007/978-3-030-18590-9\_63. Tiao L. C., 2018, PROC INT C MACH LEAR, P1. Torres-Reyes N., 2019, INT J COMPUT APPL, V182, P27. Tran D, 2017, ADV NEUR IN, V30. Tran L, 2019, IEEE T PATTERN ANAL, V41, P3007, DOI 10.1109/TPAMI.2018.2868350. Tran L, 2017, PROC CVPR IEEE, P1283, DOI 10.1109/CVPR.2017.141. Quan TM, 2018, IEEE T MED IMAGING, V37, P1488, DOI 10.1109/TMI.2018.2820120. Nguyen TD, 2017, ADV NEUR IN, V30. Tulyakov S, 2018, PROC CVPR IEEE, P1526, DOI 10.1109/CVPR.2018.00165. Turkoglu MO, 2019, AAAI CONF ARTIF INTE, P8901. Uehara M., 2016, ARXIV161002920. Ulyanov D, 2018, AAAI CONF ARTIF INTE, P1250. Uppal Ananya, 2019, ADV NEURAL INFORM PR, P9086. Villani C, 2009, GRUNDLEHR MATH WISS, V338, P5. Villegas R, 2018, PROC CVPR IEEE, P8639, DOI 10.1109/CVPR.2018.00901. Villegas Ruben, 2017, PROC INT C LEARN REP. Volkhonskiy D., 2016, PROC SPIE, P1. Vondrick C, 2016, ADV NEURAL INFORM PR, P613, DOI DOI 10.13016/M26GIH-TNYZ. Walker J, 2017, IEEE I CONF COMP VIS, P3352, DOI 10.1109/ICCV.2017.361. Wang CY, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2901. Wang HW, 2021, IEEE T KNOWL DATA EN, V33, P3090, DOI 10.1109/TKDE.2019.2961882. Wang J, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P515, DOI 10.1145/3077136.3080786. Wang KF, 2017, IEEE-CAA J AUTOMATIC, V4, P588, DOI 10.1109/JAS.2017.7510583. Wang PY, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P130, DOI 10.1145/3292500.3330869. Wang QY, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P548, DOI 10.1145/3292500.3330873. Wang T.-C., 2018, ADV NEURAL INFORM PR, p{[}1, 4]. Wang TC, 2018, PROC CVPR IEEE, P8798, DOI 10.1109/CVPR.2018.00917. Wang W, 2019, PHYS REP, V820, P1, DOI 10.1016/j.physrep.2019.07.001. Wang XL, 2017, PROC CVPR IEEE, P3039, DOI 10.1109/CVPR.2017.324. Wang X, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P899. Wang XT, 2019, LECT NOTES COMPUT SC, V11133, P63, DOI 10.1007/978-3-030-11021-5\_5. Wang XT, 2018, PROC CVPR IEEE, P606, DOI 10.1109/CVPR.2018.00070. Wang ZW, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3439723. Wolterink JM., 2017, INT WORKSH SIM SYNTH, P1055714, DOI {[}DOI 10.1007/978-3-319-68127-6\_2, DOI 10.1007/978-3-319-68127-6\_2.LNCS]. Wu HK, 2019, PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), P2487, DOI 10.1145/3343031.3350944. Wu JJ, 2016, ADV NEUR IN, V29. Wu JQ, 2018, LECT NOTES COMPUT SC, V11209, P673, DOI 10.1007/978-3-030-01228-1\_40. Wu P, 2023, IEEE T KNOWL DATA EN, V35, P45, DOI 10.1109/TKDE.2021.3076766. Wu X, 2017, TSINGHUA SCI TECHNOL, V22, P660, DOI 10.23919/TST.2017.8195348. Wu Y, 2020, Arxiv. Xu DP, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1452. Xu DP, 2018, IEEE INT CONF BIG DA, P570, DOI 10.1109/BigData.2018.8622525. Xu T, 2018, PROC CVPR IEEE, P1316, DOI 10.1109/CVPR.2018.00143. Xue Y, 2018, NEUROINFORMATICS, V16, P383, DOI 10.1007/s12021-018-9377-x. Yadav A, 2018, 2018 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE \& COMMUNICATION TECHNOLOGY (CICT). Yang QS, 2018, IEEE T MED IMAGING, V37, P1348, DOI 10.1109/TMI.2018.2827462. Yang S, 2019, AAAI CONF ARTIF INTE, P1238. Yang X, 2019, AAAI CONF ARTIF INTE, P395. Yang XT, 2018, AAAI CONF ARTIF INTE, P7485. Yao SY, 2018, ADV NEUR IN, V31. Yeh RA, 2017, PROC CVPR IEEE, P6882, DOI 10.1109/CVPR.2017.728. Yi R, 2019, PROC CVPR IEEE, P10735, DOI 10.1109/CVPR.2019.01100. Yi ZL, 2017, IEEE I CONF COMP VIS, P2868, DOI 10.1109/ICCV.2017.310. Yu JH, 2018, PROC CVPR IEEE, P5505, DOI 10.1109/CVPR.2018.00577. Yu LT, 2017, AAAI CONF ARTIF INTE, P2852. Yu X, 2016, LECT NOTES COMPUT SC, V9909, P318, DOI 10.1007/978-3-319-46454-1\_20. Yu ZW, 2022, IEEE T KNOWL DATA EN, V34, P3267, DOI 10.1109/TKDE.2020.3025301. Yuan Y, 2018, IEEE COMPUT SOC CONF, P814, DOI 10.1109/CVPRW.2018.00113. Zamorski M, 2019, LECT NOTES ARTIF INT, V11508, P248, DOI 10.1007/978-3-030-20912-4\_24. Zhang H, 2019, PR MACH LEARN RES, V97. Zhang H, 2019, IEEE T PATTERN ANAL, V41, P1947, DOI 10.1109/TPAMI.2018.2856256. Zhang H, 2017, IEEE I CONF COMP VIS, P5908, DOI 10.1109/ICCV.2017.629. Zhang MM, 2019, IEEE T PATTERN ANAL, V41, P1783, DOI 10.1109/TPAMI.2018.2871688. Zhang MM, 2017, PROC CVPR IEEE, P3539, DOI 10.1109/CVPR.2017.377. Zhang WL, 2019, IEEE I CONF COMP VIS, P3096, DOI 10.1109/ICCV.2019.00319. Zhang Yizhe, 2016, PROC C NEURAL INF PR. Zhang YC, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1700, DOI 10.1145/3292500.3330972. Zhao H, 2018, ADV NEUR IN, V31. Zhao J, 2018, PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), P792, DOI 10.1145/3240508.3240509. Zhao JJ, 2018, IEEE T CIRC SYST VID, V28, P2679, DOI 10.1109/TCSVT.2017.2710120. Zhao S, 2022, PATHOG GLOB HEALTH, V116, P137, DOI 10.1080/20477724.2021.2014236. Zhao YR, 2018, LECT NOTES COMPUT SC, V11213, P508, DOI 10.1007/978-3-030-01240-3\_31. Zheng ZD, 2017, IEEE I CONF COMP VIS, P3774, DOI 10.1109/ICCV.2017.405. Zhou R, 2021, NEUROCOMPUTING, V451, P316, DOI 10.1016/j.neucom.2021.04.069. Zhou Shuchang, 2017, ARXIV170504932. Zhu BH, 2020, IEEE T INFORM THEORY, V66, P7155, DOI 10.1109/TIT.2020.2983698. Zhu H, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2362. Zhu JY, 2017, IEEE I CONF COMP VIS, P2242, DOI 10.1109/ICCV.2017.244. Zhu JY, 2016, LECT NOTES COMPUT SC, V9909, P597, DOI 10.1007/978-3-319-46454-1\_36. Zugner D, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P2847, DOI 10.1145/3219819.3220078.}, Number-of-Cited-References = {332}, Times-Cited = {154}, Usage-Count-Last-180-days = {28}, Usage-Count-Since-2013 = {28}, Journal-ISO = {IEEE Trans. Knowl. Data Eng.}, Doc-Delivery-Number = {9S4AB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000946283700004}, OA = {Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000793595700005, Author = {Serov, Nikita and Vinogradov, Vladimir}, Title = {Artificial intelligence to bring nanomedicine to life}, Journal = {ADVANCED DRUG DELIVERY REVIEWS}, Year = {2022}, Volume = {184}, Month = {MAY}, Abstract = {The technology of drug delivery systems (DDSs) has demonstrated an outstanding performance and effectiveness in production of pharmaceuticals, as it is proved by many FDA-approved nanomedicines that have an enhanced selectivity, manageable drug release kinetics and synergistic therapeutic actions. Nonetheless, to date, the rational design and high-throughput development of nanomaterial-based DDSs for specific purposes is far from a routine practice and is still in its infancy, mainly due to the limitations in scientists' capabilities to effectively acquire, analyze, manage, and comprehend complex and evergrowing sets of experimental data, which is vital to develop DDSs with a set of desired functionalities. At the same time, this task is feasible for the data-driven approaches, high throughput experimentation techniques, process automatization, artificial intelligence (AI) technology, and machine learning (ML) approaches, which is referred to as The Fourth Paradigm of scientific research. Therefore, an integration of these approaches with nanomedicine and nanotechnology can potentially accelerate the rational design and high-throughput development of highly efficient nanoformulated drugs and smart materials with pre-defined functionalities. In this Review, we survey the important results and milestones achieved to date in the application of data science, high throughput, as well as automatization approaches, combined with AI and ML to design and optimize DDSs and related nanomaterials. This manuscript mission is not only to reflect the state-of-art in data-driven nanomedicine, but also show how recent findings in the related fields can transform the nanomedicine's image. We discuss how all these results can be used to boost nanomedicine translation to the clinic, as well as highlight the future directions for the development, data-driven, high throughput experimentation-, and AI-assisted design, as well as the production of nanoformulated drugs and smart materials with pre-defined properties and behavior. This Review will be of high interest to the chemists involved in materials science, nanotechnology, and DDSs development for biomedical applications, although the general nature of the presented approaches enables knowledge translation to many other fields of science.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Vinogradov, V (Corresponding Author), ITMO Univ, Int Inst Solut Chem Adv Mat \& Technol, St Petersburg 191002, Russia. Serov, Nikita; Vinogradov, Vladimir, ITMO Univ, Int Inst Solut Chem Adv Mat \& Technol, St Petersburg 191002, Russia.}, DOI = {10.1016/j.addr.2022.114194}, EarlyAccessDate = {MAR 2022}, Article-Number = {114194}, ISSN = {0169-409X}, EISSN = {1872-8294}, Keywords = {Nanomedicine; Materials science; Artificial intelligence; Machine learning; Data science; Fourth paradigm}, Keywords-Plus = {HIGH-THROUGHPUT SYNTHESIS; GENETIC ALGORITHM; MICROFLUIDIC PLATFORM; LIPID NANOPARTICLES; OXIDE NANOPARTICLES; DRUG-RELEASE; COMBINATORIAL; PREDICTION; DESIGN; DISCOVERY}, Research-Areas = {Pharmacology \& Pharmacy}, Web-of-Science-Categories = {Pharmacology \& Pharmacy}, Author-Email = {vinogradov@scamt-itmo.ru}, Affiliations = {ITMO University}, Funding-Acknowledgement = {Russian Science Foundation {[}21-73-10150]; Priority 2030 Federal Academic Leadership Program}, Funding-Text = {The work of Vladimir Vinogradov was supported by Russian Science Foundation no 21-73-10150. The research was supported by Priority 2030 Federal Academic Leadership Program. We especially thank Olga Kononova for her kind help with the review concept as well as the useful advice.}, Cited-References = {Aggarwal C.C., 2020, LINEAR ALGEBRA OPTIM, DOI {[}10.1007/978-3-030-40344-7, DOI 10.1007/978-3-030-40344-7, 10.1007/978-3-030-40344-7\_4, DOI 10.1007/978-3-030-40344-7\_4]. Alafeef M, 2020, ACS SENSORS, V5, P1689, DOI 10.1021/acssensors.0c00329. Amasya G, 2016, EUR J PHARM SCI, V84, P92, DOI 10.1016/j.ejps.2016.01.003. Andreas S.G., 2016, INTRO MACHINE LEARNI. Artrith N, 2021, NAT CHEM, V13, P505, DOI 10.1038/s41557-021-00716-z. Asche S, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-23828-z. Baalousha M, 2013, NAT NANOTECHNOL, V8, P308, DOI 10.1038/nnano.2013.78. Ban Z, 2020, P NATL ACAD SCI USA, V117, P10492, DOI 10.1073/pnas.1919755117. Banerjee R, 2008, SCIENCE, V319, P939, DOI 10.1126/science.1152516. Bartk A.P., 2013, PHYS REV B, V87, DOI {[}10.1103/PhysRevB.87.184115184115, DOI 10.1103/PHYSREVB.87.184115184115]. Bartok AP, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136403. Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401. Bell D.R, 2020, PROGRAMMING STEP BY, V2nd. Berisha V, 2021, NPJ DIGIT MED, V4, DOI 10.1038/s41746-021-00521-5. Bhadra CM, 2018, NANO-MICRO LETT, V10, DOI 10.1007/s40820-017-0186-9. Bian YM, 2019, MOL PHARMACEUT, V16, P4451, DOI 10.1021/acs.molpharmaceut.9b00500. Bibikova O, 2015, J BIOMED OPT, V20, DOI 10.1117/1.JBO.20.7.076017. Boso DP, 2011, INT J NANOMED, V6, P1517, DOI 10.2147/IJN.S20283. Braams BJ, 2009, INT REV PHYS CHEM, V28, P577, DOI 10.1080/01442350903234923. Bracken MB, 2009, J ROY SOC MED, V102, P120, DOI 10.1258/jrsm.2008.08k033. Buonansegna E, 2014, R\&D MANAGE, V44, P189, DOI 10.1111/radm.12053. Burger B, 2020, NATURE, V583, P237, DOI 10.1038/s41586-020-2442-2. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Campbell A, DATA SCI, V2021. Cartwright H., 2013, NEURO EVOLUTIONARY T, V52, P12673, DOI {[}10.1021/ie4000954, DOI 10.1021/IE4000954]. Cartwright H.M., 2020, MACHINE LEARNING CHE, DOI 10.1039/9781839160233. Champion K, 2019, P NATL ACAD SCI USA, V116, P22445, DOI 10.1073/pnas.1906995116. Chan EM, 2015, CHEM SOC REV, V44, P1653, DOI 10.1039/c4cs00205a. Chan EM, 2010, NANO LETT, V10, P1874, DOI 10.1021/nl100669s. Chan WCW, 2017, ACCOUNTS CHEM RES, V50, P627, DOI 10.1021/acs.accounts.6b00629. Chen C, 2022, ADV DRUG DELIVER REV, V183, DOI 10.1016/j.addr.2022.114172. Cheng Y., 2021, ARTIF INTELL. Cho DH, 2021, ACS NANO, V15, P4066, DOI 10.1021/acsnano.0c07961. Collins AR, 2017, WIRES NANOMED NANOBI, V9, DOI 10.1002/wnan.1413. Cortes-Ciriano I, 2015, J CHEM INF MODEL, V55, P2682, DOI 10.1021/acs.jcim.5b00570. Cronin L., 2022, CHEMRXIV. Curteanu S, 2011, J CHEMOMETR, V25, P527, DOI 10.1002/cem.1401. Damoiseaux R, 2011, NANOSCALE, V3, P1345, DOI 10.1039/c0nr00618a. Dan YB, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00352-0. David L, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00460-5. Dehne Eva-Maria, 2019, Current Opinion in Toxicology, V17, P18, DOI 10.1016/j.cotox.2019.09.008. Derenzo SE, 2008, IEEE T NUCL SCI, V55, P1458, DOI 10.1109/TNS.2008.921932. Ding YZ, 2015, ANAL CHEM, V87, P10166, DOI 10.1021/acs.analchem.5b00826. Elbadawi M, 2021, TRENDS PHARMACOL SCI, V42, P745, DOI 10.1016/j.tips.2021.06.002. Epa VC, 2012, NANO LETT, V12, P5808, DOI 10.1021/nl303144k. Epps RW, 2020, ADV MATER, V32, DOI 10.1002/adma.202001626. Feng QY, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19628-z. de Almeida AF, 2019, NAT REV CHEM, V3, P589, DOI 10.1038/s41570-019-0124-0. Fraikin JL, 2011, NAT NANOTECHNOL, V6, P308, DOI 10.1038/NNANO.2011.24. Fuhrmann J, 2010, J COMPUT CHEM, V31, P1911, DOI 10.1002/jcc.21478. Gao CC, 2022, ADV FUNCT MATER, V32, DOI 10.1002/adfm.202108044. Gao K, 2021, RSC MED CHEM, V12, P809, DOI 10.1039/d1md00087j. Gao WH, 2020, J CHEM INF MODEL, V60, P5714, DOI 10.1021/acs.jcim.0c00174. Garcia S, 2015, INTEL SYST REF LIBR, V72, P1, DOI 10.1007/978-3-319-10247-4. George S, 2011, ACS NANO, V5, P1805, DOI 10.1021/nn102734s. Gerloff K, 2012, CHEM RES TOXICOL, V25, P646, DOI 10.1021/tx200334k. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Gressling T, 2020, DATA SCI CHEM DEGRUY, DOI {[}10.1515/9783110629453-202, DOI 10.1515/9783110629453-202]. Grisoni F, 2020, J CHEM INF MODEL, V60, P1175, DOI 10.1021/acs.jcim.9b00943. Guo HX, 2017, EXPERT SYST APPL, V73, P220, DOI 10.1016/j.eswa.2016.12.035. Hathout RM, 2016, EUR J PHARM BIOPHARM, V108, P262, DOI 10.1016/j.ejpb.2016.07.019. He J, 2019, NANOSCALE, V11, P17444, DOI 10.1039/c9nr03450a. Hetland M.L, 2017, BEGINNING PYTHON, DOI {[}10.1007/978-1-4842-0028-5, DOI 10.1007/978-1-4842-0028-5]. Hiller J, 2012, IEEE T ROBOT, V28, P457, DOI 10.1109/TRO.2011.2172702. Huang Z, 2019, NANOSCALE, V11, P21748, DOI 10.1039/c9nr06127d. Huang ZL, 2020, J MECH PHYS SOLIDS, V137, DOI 10.1016/j.jmps.2020.103871. Isozaki A, 2020, LAB CHIP, V20, P3074, DOI 10.1039/d0lc00521e. Jain A, 2016, J MATER RES, V31, P977, DOI 10.1557/jmr.2016.80. Jensen F., 2013, INTRO COMPUTATIONAL. Jensen JH, 2019, CHEM SCI, V10, P3567, DOI 10.1039/c8sc05372c. Jinnouchi R, 2017, J PHYS CHEM LETT, V8, P4279, DOI 10.1021/acs.jpclett.7b02010. Kamath C., 2013, INFORMATICS MAT SCI, P17, DOI {[}10.1016/B978-0-12-394399-6.00002-3, DOI 10.1016/B978-0-12-394399-6.00002-3]. Kaminskas LM, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-51789-3. Kim B, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aax9324. Kim E, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0055-6. Kim E, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.127. Kim J, 2021, ACS MATER LETT, V3, P1151, DOI 10.1021/acsmaterialslett.1c00204. Kim J, 2021, CHEM-ASIAN J, V16, P2610, DOI 10.1002/asia.202100789. Kim K, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0128-1. Kingston BR, 2019, P NATL ACAD SCI USA, V116, P14937, DOI 10.1073/pnas.1907646116. Kinsley D.K. Harrison, NEURAL NETWORKS SCRA. Kladko DV, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22105266. Kosugi Y, 2020, MOL PHARMACEUT, V17, P2299, DOI 10.1021/acs.molpharmaceut.9b01294. Krawczyk B, 2016, PROG ARTIF INTELL, V5, P221, DOI 10.1007/s13748-016-0094-0. Lacey N, 2019, SQLITE PYTHON EXAMPL, DOI {[}10.1017/9781108591942, DOI 10.1017/9781108591942.021]. Laramy CR, 2015, ACS NANO, V9, P12488, DOI 10.1021/acsnano.5b05968. Lewinski NA, 2015, BEILSTEIN J NANOTECH, V6, P1439, DOI 10.3762/bjnano.6.149. Li F, 2019, P NATL ACAD SCI USA, V116, P11259, DOI 10.1073/pnas.1903376116. Lin JY, 2019, ARTIF INTELL MED, V98, P35, DOI 10.1016/j.artmed.2019.07.005. Lin SJ, 2013, SMALL, V9, P1776, DOI 10.1002/smll.201202128. Linzey A, 2012, PALG MAC ANIM ETHICS, P132. Liu DF, 2015, ADV MATER, V27, P2298, DOI 10.1002/adma.201405408. Liu R, 2015, NANOSCALE, V7, P9664, DOI 10.1039/c5nr01537e. Liu XY, 2021, ANGEW CHEM INT EDIT, V60, P12319, DOI 10.1002/anie.202101293. Liu ZC, 2018, NANO LETT, V18, P6570, DOI 10.1021/acs.nanolett.8b03171. Long AW, 2014, J PHYS CHEM B, V118, P4228, DOI 10.1021/jp500350b. Long T, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00526-4. Ludwig A, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0205-0. Lusch B, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07210-0. Ma BY, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00392-6. Maltarollo VG, 2015, EXPERT OPIN DRUG MET, V11, P259, DOI 10.1517/17425255.2015.980814. Mekki-Berrada F, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00520-w. Mendez-Lucio O, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-13807-w. Metwally AA, 2015, MOL PHARMACEUT, V12, P2800, DOI 10.1021/mp500740d. Mills K, 2020, J PHYS CHEM C, V124, P23158, DOI 10.1021/acs.jpcc.0c06673. Mishra P, 2022, PRACTICAL EXPLAINABL, DOI {[}10.1007/978-1-4842-7158-2, DOI 10.1007/978-1-4842-7158-2]. Misra SK, 2016, ADV FUNCT MATER, V26, P8031, DOI 10.1002/adfm.201602966. Mohammadinejad R, 2019, AUTOPHAGY, V15, P4, DOI 10.1080/15548627.2018.1509171. Molina M, 2015, CHEM SOC REV, V44, P6161, DOI 10.1039/c5cs00199d. Moosavi SM, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08483-9. Moussa HG, 2017, IEEE T NANOBIOSCI, V16, P149, DOI 10.1109/TNB.2017.2661322. Mullis AS, 2019, MOL PHARMACEUT, V16, P1917, DOI 10.1021/acs.molpharmaceut.8b01272. Castro BM, 2021, J CONTROL RELEASE, V337, P530, DOI 10.1016/j.jconrel.2021.07.046. Na GS, 2020, PHYS CHEM CHEM PHYS, V22, P18526, DOI 10.1039/d0cp02709j. Nield T., 2022, ESSENTIAL MATH DATA. Nursam NM, 2015, ACS COMB SCI, V17, P548, DOI 10.1021/acscombsci.5b00049. Oddo A, 2021, NANOSCALE ADV, V3, P682, DOI 10.1039/d0na00857e. Ogata H, 1999, NUCLEIC ACIDS RES, V27, P29, DOI 10.1093/nar/27.1.29. Olivetti EA, 2020, APPL PHYS REV, V7, DOI 10.1063/5.0021106. Oviedo F, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0196-x. Park J, 2020, PLOS COMPUT BIOL, V16, DOI 10.1371/journal.pcbi.1008099. Park K, 2019, J CONTROL RELEASE, V305, P221, DOI 10.1016/j.jconrel.2019.05.044. Pfister N, 2019, P NATL ACAD SCI USA, V116, P25405, DOI 10.1073/pnas.1905688116. Pilania G, 2021, COMP MATER SCI, V193, DOI 10.1016/j.commatsci.2021.110360. Pires DEV, 2015, J MED CHEM, V58, P4066, DOI 10.1021/acs.jmedchem.5b00104. Pires DEV, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-S4-S12. Potyrailo R, 2011, ACS COMB SCI, V13, P579, DOI 10.1021/co200007w. Prykhodko O, 2019, J CHEMINFORMATICS, V11, DOI 10.1186/s13321-019-0397-9. Puri M, 2016, ARTIFICIAL NEURAL NETWORK FOR DRUG DESIGN, DELIVERY AND DISPOSITION, P3, DOI 10.1016/B978-0-12-801559-9.00001-6. Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259. Razlivina J, 2022, SMALL, V18, DOI 10.1002/smll.202105673. Reker D, 2021, NAT NANOTECHNOL, V16, P725, DOI 10.1038/s41565-021-00870-y. Ren HR, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aaz4261. Ronald T., 2022, MATH DEEP LEARNING. Rupp M., 2012, PHYS REV LETT, V108, DOI {[}10.1103/PhysRevLett.108.058301058301, DOI 10.1103/PHYSREVLETT.108.058301058301]. Sadauskas Evaldas, 2007, Part Fibre Toxicol, V4, P10, DOI 10.1186/1743-8977-4-10. Salley D, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16501-4. Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663. Santana R, 2019, NANOSCALE, V11, P21811, DOI 10.1039/c9nr05070a. Santanilla AB, 2015, SCIENCE, V347, P49, DOI 10.1126/science.1259203. Savory N, 2010, BIOSENS BIOELECTRON, V26, P1386, DOI 10.1016/j.bios.2010.07.057. Schmidt J, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0221-0. Schneckener S, 2019, J CHEM INF MODEL, V59, P4893, DOI 10.1021/acs.jcim.9b00460. Schutt KT, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.205118. Schuster B, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19058-4. Schwarzer M, 2019, COMP MATER SCI, V162, P322, DOI 10.1016/j.commatsci.2019.02.046. Sesen M, 2017, LAB CHIP, V17, P2372, DOI 10.1039/c7lc00005g. Sikalo N, 2014, INT J CHEM KINET, V46, P41, DOI 10.1002/kin.20826. Spiegel JO, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00429-4. Stillman NR, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00614-5. Strieth-Kalthoff F, 2020, CHEM SOC REV, V49, P6154, DOI 10.1039/c9cs00786e. Stuart Russell P.N., 2021, ARTIF INTELL, V4th. Sun SJ, 2019, JOULE, V3, P1437, DOI 10.1016/j.joule.2019.05.014. Sundnes J, 2020, INTRO SCI PROGRAMMIN. Sweigart A, 2020, AUTOMATE BORING STUF. Sweigart A.l, 2021, BASIC STUFF PYTHON B. Tang YX, 2021, J CONTROL RELEASE, V336, P336, DOI 10.1016/j.jconrel.2021.06.039. Tao HC, 2021, NAT REV MATER, V6, P701, DOI 10.1038/s41578-021-00337-5. Tu KH, 2020, ADV MATER, V32, DOI 10.1002/adma.202005713. Ulrich N, 2021, COMMUN CHEM, V4, DOI 10.1038/s42004-021-00528-9. Upadhya R, 2021, ADV DRUG DELIVER REV, V171, P1, DOI 10.1016/j.addr.2020.11.009. Vasilev I., 2019, PYTHON DEEP LEARNING. Vecchio G, 2014, SMALL, V10, P2721, DOI 10.1002/smll.201303359. Vilanova O, 2016, ACS NANO, V10, P10842, DOI 10.1021/acsnano.6b04858. Wan C, 2020, NAT MACH INTELL, V2, P540, DOI 10.1038/s42256-020-0222-1. Wang AYT, 2020, CHEM MATER, V32, P4954, DOI 10.1021/acs.chemmater.0c01907. Wang LR, 2022, DRUG DISCOV TODAY, V27, P678, DOI 10.1016/j.drudis.2021.10.017. Wang YC, 2019, J CHEM INF MODEL, V59, P3968, DOI 10.1021/acs.jcim.9b00300. Ward L, 2018, COMP MATER SCI, V152, P60, DOI 10.1016/j.commatsci.2018.05.018. WASHINGTON C, 1990, INT J PHARM, V58, P1, DOI 10.1016/0378-5173(90)90280-H. Watanabe K, 2012, CHEM ENG SCI, V75, P292, DOI 10.1016/j.ces.2012.03.006. Weyl H., 1997, CLASSICAL GROUPS THE. Whitehead KA, 2011, MOL THER, V19, P1688, DOI 10.1038/mt.2011.141. Wishart DS, 2018, NUCLEIC ACIDS RES, V46, pD1074, DOI 10.1093/nar/gkx1037. Yamankurt G, 2019, NAT BIOMED ENG, V3, P318, DOI 10.1038/s41551-019-0351-1. Yang YSS, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14069. Ye ZYF, 2019, MOL PHARMACEUT, V16, P533, DOI 10.1021/acs.molpharmaceut.8b00816. Yoshida M, 2018, CHEM-US, V4, P533, DOI 10.1016/j.chempr.2018.01.005. Yu FB, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abf4130. Zakharzhevskii MA, 2021, J MATER CHEM B, V9, P4941, DOI 10.1039/d1tb00783a. Zeiss CJ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0226176. Zhang BY, 2018, NAT REV MATER, V3, P257, DOI 10.1038/s41578-018-0034-7. Zheng FY, 2016, SMALL, V12, P2253, DOI 10.1002/smll.201503208.}, Number-of-Cited-References = {183}, Times-Cited = {8}, Usage-Count-Last-180-days = {18}, Usage-Count-Since-2013 = {38}, Journal-ISO = {Adv. Drug Deliv. Rev.}, Doc-Delivery-Number = {1D1VN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000793595700005}, DA = {2023-04-22}, } @article{ WOS:000451736300043, Author = {Mosavi, Amir and Ozturk, Pinar and Chau, Kwok-wing}, Title = {Flood Prediction Using Machine Learning Models: Literature Review}, Journal = {WATER}, Year = {2018}, Volume = {10}, Number = {11}, Month = {NOV}, Abstract = {Floods are among the most destructive natural disasters, which are highly complex to model. The research on the advancement of flood prediction models contributed to risk reduction, policy suggestion, minimization of the loss of human life, and reduction of the property damage associated with floods. To mimic the complex mathematical expressions of physical processes of floods, during the past two decades, machine learning (ML) methods contributed highly in the advancement of prediction systems providing better performance and cost-effective solutions. Due to the vast benefits and potential of ML, its popularity dramatically increased among hydrologists. Researchers through introducing novel ML methods and hybridizing of the existing ones aim at discovering more accurate and efficient prediction models. The main contribution of this paper is to demonstrate the state of the art of ML models in flood prediction and to give insight into the most suitable models. In this paper, the literature where ML models were benchmarked through a qualitative analysis of robustness, accuracy, effectiveness, and speed are particularly investigated to provide an extensive overview on the various ML algorithms used in the field. The performance comparison of ML models presents an in-depth understanding of the different techniques within the framework of a comprehensive evaluation and discussion. As a result, this paper introduces the most promising prediction methods for both long-term and short-term floods. Furthermore, the major trends in improving the quality of the flood prediction models are investigated. Among them, hybridization, data decomposition, algorithm ensemble, and model optimization are reported as the most effective strategies for the improvement of ML methods. This survey can be used as a guideline for hydrologists as well as climate scientists in choosing the proper ML method according to the prediction task.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Mosavi, A; Ozturk, P (Corresponding Author), Norwegian Univ Sci \& Technol NTNU, Dept Comp Sci IDI, NO-7491 Trondheim, Norway. Mosavi, Amir; Ozturk, Pinar, Norwegian Univ Sci \& Technol NTNU, Dept Comp Sci IDI, NO-7491 Trondheim, Norway. Chau, Kwok-wing, Hong Kong Polytech Univ, Dept Civil \& Environm Engn, Hong Kong, Hong Kong, Peoples R China.}, DOI = {10.3390/w10111536}, Article-Number = {1536}, EISSN = {2073-4441}, Keywords = {flood prediction; flood forecasting; hydrologic model; rainfall-runoff; hybrid \& ensemble machine learning; artificial neural network; support vector machine; natural hazards \& disasters; adaptive neuro-fuzzy inference system (ANFIS); decision tree; survey; classification and regression trees (CART), data science; big data; artificial intelligence; soft computing; extreme event management; time series prediction}, Keywords-Plus = {ARTIFICIAL NEURAL-NETWORK; SUPPORT VECTOR MACHINE; FUZZY INFERENCE SYSTEM; SHALLOW-WATER EQUATIONS; MONTHLY STREAMFLOW PREDICTION; RAINFALL-RUNOFF; SHORT-TERM; FREQUENCY-ANALYSIS; INPUT SELECTION; FLASH-FLOOD}, Research-Areas = {Environmental Sciences \& Ecology; Water Resources}, Web-of-Science-Categories = {Environmental Sciences; Water Resources}, Author-Email = {amir.mosavi@ntnu.no pinar@ntnu.no dr.kwok-wing.chau@polyu.edu.hk}, Affiliations = {Norwegian University of Science \& Technology (NTNU); Hong Kong Polytechnic University}, ResearcherID-Numbers = {Chau, Kwok-wing/E-5235-2011 Mosavi, Amir/I-7440-2018}, ORCID-Numbers = {Chau, Kwok-wing/0000-0001-6457-161X Mosavi, Amir/0000-0003-4842-0613}, Funding-Acknowledgement = {Norwegian University of Science and Technology AI Lab; European Research Consortium for Informatics and Mathematics (ERCIM)}, Funding-Text = {This research was funded by the Norwegian University of Science and Technology AI Lab and the European Research Consortium for Informatics and Mathematics (ERCIM).}, Cited-References = {Abbot J, 2014, ATMOS RES, V138, P166, DOI 10.1016/j.atmosres.2013.11.002. Adamowski J, 2012, WATER RESOUR RES, V48, DOI 10.1029/2010WR009945. Adarnowski JF, 2008, J HYDROL, V353, P247, DOI 10.1016/j.jhydrol.2008.02.013. Ahmad S, 2005, J HYDROL, V315, P236, DOI 10.1016/j.jhydrol.2005.03.032. Ahmad S, 2010, ADV WATER RESOUR, V33, P69, DOI 10.1016/j.advwatres.2009.10.008. Aichouri I, 2015, ENRGY PROCED, V74, P1007, DOI 10.1016/j.egypro.2015.07.832. AL-Musaylh MS, 2018, APPL ENERG, V217, P422, DOI 10.1016/j.apenergy.2018.02.140. Altunkaynak A, 2015, J HYDROL, V529, P287, DOI 10.1016/j.jhydrol.2015.07.046. Araghinejad S, 2011, J HYDROL, V407, P94, DOI 10.1016/j.jhydrol.2011.07.011. Ardabili SF, 2018, ENERGIES, V11, DOI 10.3390/en11112889. Ashrafi M, 2017, J HYDROL, V545, P424, DOI 10.1016/j.jhydrol.2016.11.057. Aziz K, 2014, STOCH ENV RES RISK A, V28, P541, DOI 10.1007/s00477-013-0771-5. Badrzadeh H, 2016, RIVER RES APPL, V32, P245, DOI 10.1002/rra.2865. Badrzadeh H, 2015, J HYDROL, V529, P1633, DOI 10.1016/j.jhydrol.2015.07.057. Badrzadeh H, 2013, J HYDROL, V507, P75, DOI 10.1016/j.jhydrol.2013.10.017. Bao YK, 2014, NEUROCOMPUTING, V129, P482, DOI 10.1016/j.neucom.2013.09.010. Bass B, 2018, J HYDROL, V558, P159, DOI 10.1016/j.jhydrol.2018.01.014. Bellos V, 2016, J HYDROL, V540, P331, DOI 10.1016/j.jhydrol.2016.06.040. Bhattacharya B, 2005, NEUROCOMPUTING, V63, P381, DOI 10.1016/j.neucom.2004.04.016. Bogardi I, 2003, RISK-BASED DECISIONMAKING IN WATER RESOURCES X, P12. Borah DK, 2011, HYDROL PROCESS, V25, P3472, DOI 10.1002/hyp.8075. Bout B, 2018, J HYDROL, V556, P674, DOI 10.1016/j.jhydrol.2017.11.033. Bray M, 2004, J HYDROINFORM, V6, P265, DOI 10.2166/hydro.2004.0020. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324. Bruen M, 2005, ADV WATER RESOUR, V28, P899, DOI 10.1016/j.advwatres.2005.03.001. Burnash R.J., 1973, GEN STREAMFLOW SIMUL. Campolo M, 1999, WATER RESOUR RES, V35, P1191, DOI 10.1029/1998WR900086. Cannas B., 2005, GEOPH RES ABSTR, V7, P8651. Castillo E, 1998, NEURAL PROCESS LETT, V7, P151, DOI 10.1023/A:1009656525752. Caviedes-Voullieme D, 2012, J HYDROL, V448, P39, DOI 10.1016/j.jhydrol.2012.04.006. Cea L, 2010, J HYDROL, V382, P88, DOI 10.1016/j.jhydrol.2009.12.020. Chang FJ, 2014, J HYDROL, V517, P836, DOI 10.1016/j.jhydrol.2014.06.013. Chang FJ, 2006, ADV WATER RESOUR, V29, P1, DOI 10.1016/j.advwatres.2005.04.015. Chang LC, 2014, J HYDROL, V519, P476, DOI 10.1016/j.jhydrol.2014.07.036. Chiang YM, 2007, J HYDROL, V334, P250, DOI 10.1016/j.jhydrol.2006.10.021. Choubin B., 2016, IMPACTS LARGE SCALE. Choubin B, 2019, SCI TOTAL ENVIRON, V651, P2087, DOI 10.1016/j.scitotenv.2018.10.064. Choubin B, 2018, ENVIRON EARTH SCI, V77, DOI 10.1007/s12665-018-7498-z. Choubin B, 2018, SCI TOTAL ENVIRON, V615, P272, DOI 10.1016/j.scitotenv.2017.09.293. Choubin B, 2016, HYDROLOG SCI J, V61, P1001, DOI 10.1080/02626667.2014.966721. Choubin B, 2014, J MT SCI-ENGL, V11, P1593, DOI 10.1007/s11629-014-3020-6. Chow VT, 1988, MAYS, P149. Collier CG, 2007, Q J ROY METEOR SOC, V133, P3, DOI 10.1002/qj.29. Costabile P, 2012, J HYDROINFORM, V14, P122, DOI 10.2166/hydro.2011.077. Costabile P, 2015, NAT HAZARDS, V77, P181, DOI 10.1007/s11069-015-1606-0. Costabile P, 2015, ENVIRON MODELL SOFTW, V67, P89, DOI 10.1016/j.envsoft.2015.01.009. Costabile P, 2013, HYDROL PROCESS, V27, P554, DOI 10.1002/hyp.9237. Coulibaly P, 2005, J HYDROMETEOROL, V6, P483, DOI 10.1175/JHM409.1. Cunningham SC, 2018, LAND DEGRAD DEV, V29, P127, DOI 10.1002/ldr.2845. Dandagala S., 2017, ARTIF INTELL SYST MA, V9, P182. Danso-Amoako E, 2012, COMPUT ENVIRON URBAN, V36, P423, DOI 10.1016/j.compenvurbsys.2012.02.003. De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.1890/0012-9658(2000)081{[}3178:CARTAP]2.0.CO;2. Dehghani M, 2017, ARAB J GEOSCI, V10, DOI 10.1007/s12517-017-2990-4. Dehghani M, 2014, INT J CLIMATOL, V34, P1169, DOI 10.1002/joc.3754. Deo RC, 2015, ATMOS RES, V161, P65, DOI 10.1016/j.atmosres.2015.03.018. Dibike YB, 2001, J COMPUT CIVIL ENG, V15, P208, DOI 10.1061/(ASCE)0887-3801(2001)15:3(208). Dietterich TG, 2000, LECT NOTES COMPUT SC, V1857, P1, DOI 10.1007/3-540-45014-9\_1. Bui DT, 2016, LANDSLIDES, V13, P361, DOI 10.1007/s10346-015-0557-6. Dineva Adrienn, 2015, Advanced Materials Research, V1117, P269, DOI 10.4028/www.scientific.net/AMR.1117.269. Dineva A, 2014, IEEE INT CONF INTELL, P163, DOI 10.1109/INES.2014.6909361. Doycheva K, 2017, ADV ENG INFORM, V33, P427, DOI 10.1016/j.aei.2016.11.001. Dubossarsky E, 2016, STAT COMPUT, V26, P93, DOI 10.1007/s11222-014-9474-0. Elsafi SH, 2014, ALEX ENG J, V53, P655, DOI 10.1016/j.aej.2014.06.010. Etemad-Shahidi A, 2009, OCEAN ENG, V36, P1175, DOI 10.1016/j.oceaneng.2009.08.008. Fawcett RJB, 2010, AUST METEOROL OCEAN, V60, P15. Fernandez-Pato J, 2016, J HYDROL, V536, P496, DOI 10.1016/j.jhydrol.2016.03.021. Fleming SW, 2015, J AM WATER RESOUR AS, V51, P502, DOI 10.1111/jawr.12259. Fotovatikhah F, 2018, ENG APPL COMP FLUID, V12, P411, DOI 10.1080/19942060.2018.1448896. Fox NI, 2005, WEATHER FORECAST, V20, P264, DOI 10.1175/WAF845.1. French J, 2017, PROC IUTAM, V25, P28, DOI 10.1016/j.piutam.2017.09.005. Gazendam E, 2016, J HYDROL, V536, P339, DOI 10.1016/j.jhydrol.2016.02.057. Ghazvinei PT, 2018, ENG APPL COMP FLUID, V12, P738, DOI 10.1080/19942060.2018.1526119. Ghose DK., 2018, MEASURING DISCHARGE, P591. Gizaw MS, 2016, J HYDROL, V538, P387, DOI 10.1016/j.jhydrol.2016.04.041. Gong YC, 2016, WATER RESOUR MANAG, V30, P375, DOI 10.1007/s11269-015-1167-8. Granata F, 2016, WATER-SUI, V8, DOI 10.3390/w8030069. Grecu M, 2000, J HYDROL, V239, P69, DOI 10.1016/S0022-1694(00)00360-7. Santos CAG, 2014, HYDROLOG SCI J, V59, P312, DOI 10.1080/02626667.2013.800944. Haddad K, 2012, J HYDROL, V430, P142, DOI 10.1016/j.jhydrol.2012.02.012. Han SS, 2017, J HYDROL, V551, P340, DOI 10.1016/j.jhydrol.2017.06.004. Hassan Z, 2015, ENVIRON EARTH SCI, V74, P463, DOI 10.1007/s12665-015-4054-y. Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428. Heiser M, 2015, GEOMORPHOLOGY, V232, P239, DOI 10.1016/j.geomorph.2015.01.007. Hong WC, 2008, APPL MATH COMPUT, V200, P41, DOI 10.1016/j.amc.2007.10.046. Hoverstad BA, 2015, IEEE T SMART GRID, V6, P1904, DOI 10.1109/TSG.2015.2395822. Hsu MH, 2010, J HYDROL, V388, P426, DOI 10.1016/j.jhydrol.2010.05.028. Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126. Huang SZ, 2014, J HYDROL, V511, P764, DOI 10.1016/j.jhydrol.2014.01.062. Jain A, 2004, J HYDROL ENG, V9, P551, DOI 10.1061/(ASCE)1084-0699(2004)9:6(551). Jajarmizadeh M, 2015, KSCE J CIV ENG, V19, P345, DOI 10.1007/s12205-014-0060-y. Jimeno-Saez P, 2017, WATER-SUI, V9, DOI 10.3390/w9050347. Ju Q, 2009, NEUROCOMPUTING, V72, P2873, DOI 10.1016/j.neucom.2008.12.032. Kar Anil Kumar, 2010, Journal of Water Resource and Protection, V2, P880, DOI 10.4236/jwarp.2010.210105. Kasiviswanathan KS, 2016, J HYDROL, V536, P161, DOI 10.1016/j.jhydrol.2016.02.044. Kerkhoven E, 2006, ADV WATER RESOUR, V29, P808, DOI 10.1016/j.advwatres.2005.07.016. Khosravi K, 2018, SCI TOTAL ENVIRON, V627, P744, DOI 10.1016/j.scitotenv.2018.01.266. Kim B, 2015, J HYDROL, V523, P680, DOI 10.1016/j.jhydrol.2015.01.059. Kim G, 2001, J HYDROL, V246, P45, DOI 10.1016/S0022-1694(01)00353-5. Kim S, 2016, OCEAN ENG, V122, P44, DOI 10.1016/j.oceaneng.2016.06.017. Kim S, 2013, J AM WATER RESOUR AS, V49, P1421, DOI 10.1111/jawr.12093. Kisi O, 2007, J HYDROL ENG, V12, P532, DOI 10.1061/(ASCE)1084-0699(2007)12:5(532). Kisi O, 2016, J HYDROL, V534, P104, DOI 10.1016/j.jhydrol.2015.12.014. Kisi O, 2015, INT J CLIMATOL, V35, P4139, DOI 10.1002/joc.4273. Kisi O, 2012, WATER RESOUR MANAG, V26, P457, DOI 10.1007/s11269-011-9926-7. Kourgialas NN, 2015, J ENVIRON MANAGE, V154, P86, DOI 10.1016/j.jenvman.2015.02.034. Kroll CN, 2002, J HYDROL ENG, V7, P137, DOI 10.1061/(ASCE)1084-0699(2002)7:2(137). Kumar ARS, 2005, HYDROL PROCESS, V19, P1277, DOI 10.1002/hyp.5581. Kumar S, 2015, WATER RESOUR MANAG, V29, P4863, DOI 10.1007/s11269-015-1095-7. Lafdani E.K., 2013, WATER AIR SOIL POLL, V1, P32. Leahy P, 2008, J HYDROL, V355, P192, DOI 10.1016/j.jhydrol.2008.03.017. Lee TH, 1996, WATER RESOUR RES, V32, P987, DOI 10.1029/95WR03814. Li CQ, 2009, J HYDROL, V378, P137, DOI 10.1016/j.jhydrol.2009.09.017. Li LH, 2010, WATER RESOUR MANAG, V24, P83, DOI 10.1007/s11269-009-9438-x. Li SJ, 2016, IEEE C EVOL COMPUTAT, P1343, DOI 10.1109/CEC.2016.7743944. Liang X, 1994, J GEOPHYS RES-ATMOS, V99, P14415, DOI 10.1029/94JD00483. Liang ZM, 2018, THEOR APPL CLIMATOL, V133, P137, DOI 10.1007/s00704-017-2186-6. Lima AR, 2016, J HYDROL, V537, P431, DOI 10.1016/j.jhydrol.2016.03.017. Lin JY, 2006, HYDROLOG SCI J, V51, P599, DOI 10.1623/hysj.51.4.599. Liong SY, 2002, J AM WATER RESOUR AS, V38, P173, DOI 10.1111/j.1752-1688.2002.tb01544.x. Lohani AK, 2012, J HYDROL, V442, P23, DOI 10.1016/j.jhydrol.2012.03.031. Lohani AK, 2014, J HYDROL, V509, P25, DOI 10.1016/j.jhydrol.2013.11.021. Mackey BP, 2001, WEATHER FORECAST, V16, P399, DOI 10.1175/1520-0434(2001)016<0399:EFOATF>2.0.CO;2. Maddox RA, 2002, WEATHER FORECAST, V17, P927, DOI 10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2. Maier HR, 2010, ENVIRON MODELL SOFTW, V25, P891, DOI 10.1016/j.envsoft.2010.02.003. Mekanik F, 2016, CLIM DYNAM, V46, P3097, DOI 10.1007/s00382-015-2755-2. Mekanik F, 2013, J HYDROL, V503, P11, DOI 10.1016/j.jhydrol.2013.08.035. Merz B, 2010, NAT HAZARD EARTH SYS, V10, P509, DOI 10.5194/nhess-10-509-2010. Mohammadzadeh SD, 2016, ENVIRON EARTH SCI, V75, DOI 10.1007/s12665-015-4889-2. Moore KJ, 2018, MECH SYST SIGNAL PR, V99, P14, DOI 10.1016/j.ymssp.2017.06.005. Mosavi A., 2017, INT C GLOBAL RES ED, P50. Mosavi A., 2017, P INT C GLOB RES ED, P341. Mosavi A., 2018, INT C GLOB RES ED, P235. Mosavi A., 2017, RECENT ADV TECHNOLOG, P225, DOI DOI 10.1007/978-3-319-67459-9\_29. Mosavi A, 2017, LECT NOTES COMPUT SC, V10556, P358, DOI 10.1007/978-3-319-69404-7\_31. Najafi B, 2018, ENERGIES, V11, DOI 10.3390/en11040860. Nanda T, 2016, J HYDROL, V539, P57, DOI 10.1016/j.jhydrol.2016.05.014. Nayak M, 2013, THEOR APPL CLIMATOL, V114, P583, DOI 10.1007/s00704-013-0867-3. Nayak PC, 2005, WATER RESOUR RES, V41, DOI 10.1029/2004WR003562. Noori R, 2009, ENVIRON ENG SCI, V26, P1503, DOI 10.1089/ees.2008.0360. Nosratabadi S., 2018, SUSTAINABLE BUSINESS, DOI 10.20944/preprints201810.0378.v1. Nourani V, 2014, J HYDROL, V514, P358, DOI 10.1016/j.jhydrol.2014.03.057. Ortiz-Garcia EG, 2014, ATMOS RES, V139, P128, DOI 10.1016/j.atmosres.2014.01.012. Ouyang Q, 2016, WATER RESOUR MANAG, V30, P2311, DOI 10.1007/s11269-016-1288-8. Pan HX, 2010, COMPUT ENG SCI, V2, P37. Pan TY, 2013, J HYDROL, V506, P90, DOI 10.1016/j.jhydrol.2013.08.018. Panagoulia D, 2017, GLOBAL NEST J, V19, P49. Panagoulia D, 2006, HYDROLOG SCI J, V51, P563, DOI 10.1623/hysj.51.4.563. Panda RK, 2010, COMPUT GEOSCI-UK, V36, P735, DOI 10.1016/j.cageo.2009.07.012. Pang B, 2007, J HYDROL, V333, P504, DOI 10.1016/j.jhydrol.2006.09.015. Partal T, 2017, J WATER CLIM CHANGE, V8, P48, DOI 10.2166/wcc.2016.091. Pereira AJ, 2006, J HYDROL, V317, P31, DOI 10.1016/j.jhydrol.2005.05.007. Pitt M., 2008, LEARNING LESSONS 200. Prakash O, 2014, J HYDROL HYDROMECH, V62, P60, DOI 10.2478/johh-2014-0010. Prasad R, 2017, ATMOS RES, V197, P42, DOI 10.1016/j.atmosres.2017.06.014. Raghavendra NS, 2014, APPL SOFT COMPUT, V19, P372, DOI 10.1016/j.asoc.2014.02.002. Rajurkar MP, 2004, J HYDROL, V285, P96, DOI 10.1016/j.jhydrol.2003.08.011. Ramana RV, 2013, WATER RESOUR MANAG, V27, P3697, DOI 10.1007/s11269-013-0374-4. Ravansalar M, 2017, J HYDROL, V549, P461, DOI 10.1016/j.jhydrol.2017.04.018. Rezaeian-Zadeh M, 2013, ARAB J GEOSCI, V6, P2529, DOI 10.1007/s12517-011-0517-y. Rezaeianzadeh M, 2014, NEURAL COMPUT APPL, V25, P25, DOI 10.1007/s00521-013-1443-6. Riad S, 2004, MATH COMPUT MODEL, V40, P839, DOI 10.1016/j.mcm.2004.10.012. RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0. Sachindra DA, 2013, INT J CLIMATOL, V33, P1087, DOI 10.1002/joc.3493. Saghafian B, 2017, HYDROLOG SCI J, V62, P1039, DOI 10.1080/02626667.2017.1296229. Sahoo GB, 2006, J HYDROL, V327, P525, DOI 10.1016/j.jhydrol.2005.11.059. Sahoo GB, 2006, J HYDROL, V317, P63, DOI 10.1016/j.jhydrol.2005.05.008. Sajedi-Hosseini F, 2018, SCI TOTAL ENVIRON, V644, P954, DOI 10.1016/j.scitotenv.2018.07.054. SCHIFFER RA, 1983, B AM METEOROL SOC, V64, P779. Schoof JT, 2001, INT J CLIMATOL, V21, P773, DOI 10.1002/joc.655. See L, 2000, HYDROLOG SCI J, V45, P523, DOI 10.1080/02626660009492354. Seo DJ, 2002, J HYDROMETEOROL, V3, P93, DOI 10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2. Seo Y, 2015, J HYDROL, V520, P224, DOI 10.1016/j.jhydrol.2014.11.050. Shafaei M, 2017, NEURAL COMPUT APPL, V28, pS15, DOI 10.1007/s00521-016-2293-9. Shamim MA, 2016, KSCE J CIV ENG, V20, P971, DOI 10.1007/s12205-015-0298-z. Shamseldin AY, 2010, J HYDROINFORM, V12, P22, DOI 10.2166/hydro.2010.027. Shen HY, 2013, HYDROL EARTH SYST SC, V17, P935, DOI 10.5194/hess-17-935-2013. Shoaib M, 2014, J HYDROL, V515, P47, DOI 10.1016/j.jhydrol.2014.04.055. Shrestha DL, 2013, HYDROL EARTH SYST SC, V17, P1913, DOI 10.5194/hess-17-1913-2013. Shu C, 2008, J HYDROL, V349, P31, DOI 10.1016/j.jhydrol.2007.10.050. Singh P, 2013, STOCH ENV RES RISK A, V27, P1585, DOI 10.1007/s00477-013-0695-0. Singh R.M., 2011, ADV INTEL SOFTWARE C, P165. Sivapalan M, 2005, WATER RESOUR RES, V41, DOI 10.1029/2004WR003439. SMITH J, 1995, J WATER RES PL-ASCE, V121, P499, DOI 10.1061/(ASCE)0733-9496(1995)121:6(499). Solgi A, 2014, ADV CIV ENG, V2014, DOI 10.1155/2014/279368. SRIBOONLUE V, 2005, J ENV HYDROL, V13, P124. Sudhishri S, 2016, J AGR SCI TECH-IRAN, V18, P681. Sulaiman J, 2018, LECT NOTES ELECTR EN, V449, P68, DOI 10.1007/978-981-10-6451-7\_9. Supratid S, 2017, WATER RESOUR MANAG, V31, P4023, DOI 10.1007/s11269-017-1726-2. Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742. Tan QF, 2018, J HYDROL, V567, P767, DOI 10.1016/j.jhydrol.2018.01.015. Tantithamthavorn C, 2016, PROC INT CONF SOFTW, P321, DOI 10.1145/2884781.2884857. Tanty R., 2015, INT J ENG TECHNOL RE, V4, P184, DOI 10.17577/ijertv4is060247. Taormina R, 2012, ENG APPL ARTIF INTEL, V25, P1670, DOI 10.1016/j.engappai.2012.02.009. Tehrany MS, 2015, STOCH ENV RES RISK A, V29, P1149, DOI 10.1007/s00477-015-1021-9. Tehrany MS, 2015, CATENA, V125, P91, DOI 10.1016/j.catena.2014.10.017. Tehrany MS, 2014, J HYDROL, V512, P332, DOI 10.1016/j.jhydrol.2014.03.008. Tehrany MS, 2013, J HYDROL, V504, P69, DOI 10.1016/j.jhydrol.2013.09.034. Teng J, 2017, ENVIRON MODELL SOFTW, V90, P201, DOI 10.1016/j.envsoft.2017.01.006. Thirumalaiah K, 1998, J HYDROL ENG, V3, P26, DOI 10.1061/(ASCE)1084-0699(1998)3:1(26). Thompson Stephen A, 2017, HYDROLOGY WATER MANA. Tiwari MK, 2010, J HYDROL, V394, P458, DOI 10.1016/j.jhydrol.2010.10.001. Torabi M., 2018, INT C GLOB RES ED, P266. Torabi M, 2019, ENVIRON PROG SUSTAIN, V38, P66, DOI 10.1002/ep.12934. Tsai LT, 2012, EXPERT SYST APPL, V39, P10456, DOI 10.1016/j.eswa.2012.02.048. Valipour Mohammad, 2012, Journal of Mathematics and Statistics, V8, P330. Valipour M, 2013, J HYDROL, V476, P433, DOI 10.1016/j.jhydrol.2012.11.017. van den Honert RC, 2011, WATER-SUI, V3, P1149, DOI 10.3390/w3041149. Vapnik VN, 2000, ADV NEUR IN, V12, P659. Varkonyi-Koczy A.R., 2017, RECENT ADV TECHNOLOG, P217. Wang WC, 2015, WATER RESOUR MANAG, V29, P2655, DOI 10.1007/s11269-015-0962-6. Wang WC, 2009, J HYDROL, V374, P294, DOI 10.1016/j.jhydrol.2009.06.019. Wang ZL, 2015, J HYDROL, V527, P1130, DOI 10.1016/j.jhydrol.2015.06.008. Wei CC, 2013, APPL SOFT COMPUT, V13, P793, DOI 10.1016/j.asoc.2012.10.006. Wu CL, 2010, ENG APPL ARTIF INTEL, V23, P1350, DOI 10.1016/j.engappai.2010.04.003. Xia XL, 2017, WATER RESOUR RES, V53, P3730, DOI 10.1002/2016WR020055. Xie K, 2017, J INFRASTRUCT SYST, V23, DOI 10.1061/(ASCE)IS.1943-555X.0000369. Xu ZX, 2002, HYDROL PROCESS, V16, P2423, DOI 10.1002/hyp.1013. Yamazaki D, 2011, WATER RESOUR RES, V47, DOI 10.1029/2010WR009726. Yaseen ZM, 2016, J HYDROL, V542, P603, DOI 10.1016/j.jhydrol.2016.09.035. Young CC, 2017, APPL SOFT COMPUT, V53, P205, DOI 10.1016/j.asoc.2016.12.052. Yu PS, 2017, J HYDROL, V552, P92, DOI 10.1016/j.jhydrol.2017.06.020. Zadeh L.A., 1996, FUZZY SETS FUZZY LOG, P796, DOI DOI 10.1142/9789814261302\_0042. Zadeh MR, 2010, WATER RESOUR MANAG, V24, P2673, DOI 10.1007/s11269-009-9573-4. Zhang JW, 2018, J VIB CONTROL, V24, P5291, DOI 10.1177/1077546317750979. Zhang JS, 2000, CHINESE PHYS LETT, V17, P88, DOI 10.1088/0256-307X/17/2/004. Zhang JY, 2004, J HYDROL, V296, P98, DOI 10.1016/j.jhydrol.2004.03.018. Zhao M, 2009, Q J ROY METEOR SOC, V135, P337, DOI 10.1002/qj.370. Zhu S, 2016, ENVIRON EARTH SCI, V75, DOI 10.1007/s12665-016-5337-7.}, Number-of-Cited-References = {228}, Times-Cited = {500}, Usage-Count-Last-180-days = {162}, Usage-Count-Since-2013 = {584}, Journal-ISO = {Water}, Doc-Delivery-Number = {HC3XM}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000451736300043}, OA = {Green Submitted, gold}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000497555000001, Author = {Bhattacharya, Tanmoy and Brettin, Thomas and Doroshow, James H. and Evrard, Yvonne A. and Greenspan, Emily J. and Gryshuk, Amy L. and Hoang, Thuc T. and Lauzon, Carolyn B. Vea and Nissley, Dwight and Penberthy, Lynne and Stahlberg, Eric and Stevens, Rick and Streitz, Fred and Tourassi, Georgia and Xia, Fangfang and Zaki, George}, Title = {AI Meets Exascale Computing: Advancing Cancer Research With Large-Scale High Performance Computing}, Journal = {FRONTIERS IN ONCOLOGY}, Year = {2019}, Volume = {9}, Month = {OCT 2}, Abstract = {The application of data science in cancer research has been boosted by major advances in three primary areas: (1) Data: diversity, amount, and availability of biomedical data; (2) Advances in Artificial Intelligence (AI) and Machine Learning (ML) algorithms that enable learning from complex, large-scale data; and (3) Advances in computer architectures allowing unprecedented acceleration of simulation and machine learning algorithms. These advances help build in silico ML models that can provide transformative insights from data including: molecular dynamics simulations, next-generation sequencing, omics, imaging, and unstructured clinical text documents. Unique challenges persist, however, in building ML models related to cancer, including: (1) access, sharing, labeling, and integration of multimodal and multi-institutional data across different cancer types; (2) developing AI models for cancer research capable of scaling on next generation high performance computers; and (3) assessing robustness and reliability in the AI models. In this paper, we review the National Cancer Institute (NCI) -Department of Energy (DOE) collaboration, Joint Design of Advanced Computing Solutions for Cancer (JDACS4C), a multi-institution collaborative effort focused on advancing computing and data technologies to accelerate cancer research on three levels: molecular, cellular, and population. This collaboration integrates various types of generated data, pre-exascale compute resources, and advances in ML models to increase understanding of basic cancer biology, identify promising new treatment options, predict outcomes, and eventually prescribe specialized treatments for patients with cancer.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Zaki, G (Corresponding Author), Frederick Natl Lab Canc Res, Biomed Informat \& Data Sci Directorate, Frederick, MD 21701 USA. Bhattacharya, Tanmoy, Los Alamos Natl Lab, Theoret Div, Los Alamos, NM USA. Brettin, Thomas; Stevens, Rick, Argonne Natl Lab, Comp Environm \& Life Sci Directorate, Lemont, IL USA. Doroshow, James H., NCI, Div Canc Treatment \& Diag, Bethesda, MD 20892 USA. Evrard, Yvonne A., Frederick Natl Lab Canc Res, Appl Dev \& Res Directorate, Frederick, MD USA. Greenspan, Emily J., NCI, Ctr Biomed Informat \& Informat Technol, Bethesda, MD 20892 USA. Gryshuk, Amy L., Lawrence Livermore Natl Lab, Phys \& Life Sci Directorate, Livermore, CA 94550 USA. Hoang, Thuc T., US DOE, Natl Nucl Secur Adm, Adv Simulat \& Comp, Washington, DC 20585 USA. Lauzon, Carolyn B. Vea, US DOE, Off Sci, Adv Sci Comp Res, Washington, DC 20585 USA. Nissley, Dwight, Frederick Natl Lab Canc Res, NCI RAS Initiat, Canc Res Technol Program, Frederick, MD USA. Penberthy, Lynne, NCI, Div Canc Control \& Populat Sci, Bethesda, MD 20892 USA. Stahlberg, Eric; Zaki, George, Frederick Natl Lab Canc Res, Biomed Informat \& Data Sci Directorate, Frederick, MD 21701 USA. Stevens, Rick, Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. Streitz, Fred, Lawrence Livermore Natl Lab, High Performance Comp Innovat Ctr, Livermore, CA 94550 USA. Tourassi, Georgia, Oak Ridge Natl Lab, Hlth Data Sci Inst, Oak Ridge, TN USA. Xia, Fangfang, Argonne Natl Lab, Data Sci \& Learning Div, Lemont, IL USA.}, DOI = {10.3389/fonc.2019.00984}, Article-Number = {984}, ISSN = {2234-943X}, Keywords = {cancer research; high performance computing; artificial intelligence; deep learning; natural language processing; multi-scale modeling; precision medicine; uncertainty quantification}, Keywords-Plus = {RESOURCE; DISCOVERY}, Research-Areas = {Oncology}, Web-of-Science-Categories = {Oncology}, Author-Email = {george.zaki@nih.gov}, Affiliations = {United States Department of Energy (DOE); Los Alamos National Laboratory; United States Department of Energy (DOE); Argonne National Laboratory; National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI); National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI); National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI); United States Department of Energy (DOE); Lawrence Livermore National Laboratory; United States Department of Energy (DOE); United States Department of Energy (DOE); National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI); National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI); National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI); University of Chicago; United States Department of Energy (DOE); Lawrence Livermore National Laboratory; United States Department of Energy (DOE); Oak Ridge National Laboratory; United States Department of Energy (DOE); Argonne National Laboratory}, ResearcherID-Numbers = {Bhattacharya, Tanmoy/J-8956-2013}, ORCID-Numbers = {Jain, Rajeev/0000-0002-1235-918X Bhattacharya, Tanmoy/0000-0002-1060-652X}, Funding-Acknowledgement = {Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) program by the U.S. Department of Energy (DOE); National Cancer Institute (NCI) of the National Institutes of Health; U.S. Department of Energy by Argonne National Laboratory {[}DE-AC02-06-CH11357]; U.S. Department of Energy by Lawrence Livermore National Laboratory {[}DE-AC52-07NA27344, LLNL-JRNL-773355]; U.S. Department of Energy by Los Alamos National Laboratory {[}DE-AC52-06NA25396]; NCI, NIH {[}HHSN261200800001E]; Exascale Computing Project {[}17-SC-20-SC]; DOE National Nuclear Security Administration's Advanced Simulation and Computing (ASC) Program; U.S. Department of Energy {[}DE-AC05-00OR22725]; Department of Energy; DOE Office of Science User Facility {[}DE-AC05-00OR22725]}, Funding-Text = {This work has been supported in part by the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) program established by the U.S. Department of Energy (DOE) and the National Cancer Institute (NCI) of the National Institutes of Health. This work was performed under the auspices of the U.S. Department of Energy by Argonne National Laboratory under Contract DE-AC02-06-CH11357. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-773355. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396. Computing support for this work came in part from the Lawrence Livermore National Laboratory Institutional Computing Grand Challenge program. This project was funded in part with federal funds from the NCI, NIH, under contract no. HHSN261200800001E. This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. This research used resources of the Argonne Leadership Computing Facility and the Oak Ridge Leadership Computing Facility, which are DOE Office of Science User Facilities. This research used resources of the Lawrence Livermore Computing Facility and the Los Alamos National Laboratory supported by the DOE National Nuclear Security Administration's Advanced Simulation and Computing (ASC) Program. This manuscript has been authored in part by UTBattelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paidup, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan).This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.}, Cited-References = {Alawad M, 2018, AACR SPEC C CONV ART. Alawad M, 2018, P 2018 IEEE EMBS INT, P218, DOI DOI 10.1109/BHI.2018.8333408. Alawad M, 2018, IEEE INT CONF BIG DA, P2838, DOI 10.1109/BigData.2018.8621999. Barretina J, 2012, NATURE, V483, P603, DOI 10.1038/nature11003. Basu A, 2013, CELL, V154, P1151, DOI 10.1016/j.cell.2013.08.003. Begoli E, 2019, NAT MACH INTELL, V1, P20, DOI 10.1038/s42256-018-0004-1. Carpenter TS, 2018, J CHEM THEORY COMPUT, V14, P6050, DOI 10.1021/acs.jctc.8b00496. Chen YF, 2016, BIOINFORMATICS, V32, P1832, DOI 10.1093/bioinformatics/btw074. Dragon, 2019, SOFTW MOL DESCR CALC. Gao S, 2018, J AM MED INFORM ASSN, V25, P321, DOI 10.1093/jamia/ocx131. Hengartner N, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2503-9. Holbeck SL, 2017, CANCER RES, V77, P3564, DOI 10.1158/0008-5472.CAN-17-0489. Ingolfsson HI, 2017, BIOPHYS J, V113, P2271, DOI 10.1016/j.bpj.2017.10.017. Klijn C, 2015, NAT BIOTECHNOL, V33, P306, DOI 10.1038/nbt.3080. Natale FD, 2019, SUPERCOMPUTING 19. Neale C, 2018, J PHYS CHEM B, V122, P10086, DOI 10.1021/acs.jpcb.8b07919. Qiu JX, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2511-9. Qiu JX, 2018, IEEE J BIOMED HEALTH, V22, P244, DOI 10.1109/JBHI.2017.2700722. Simanshu DK, 2017, CELL, V170, P17, DOI 10.1016/j.cell.2017.06.009. Smith SC, 2010, CANCER RES, V70, P1753, DOI 10.1158/0008-5472.CAN-09-3562. Subramanian A, 2017, CELL, V171, P1437, DOI 10.1016/j.cell.2017.10.049. Sun DD, 2019, IEEE ACM T COMPUT BI, V16, P841, DOI 10.1109/TCBB.2018.2806438. Thulasidasan S, 2019, 36 INT C MACH LEARN. Torrey L., 2009, HDB RES MACHINE LEAR, P242. Travers T, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26832-4. Wozniak JM, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2508-4. Xia FX, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2509-3. Xie LW, 2018, BMC GENOMICS, V19, DOI 10.1186/s12864-018-5031-0. Yang WJ, 2013, NUCLEIC ACIDS RES, V41, pD955, DOI 10.1093/nar/gks1111. Yoon H, 2018, 2018 IEEE EMBS INT C, P345. Yoon H-J, 2018, COMP APPR CANC WORKS. Zaki GF, 2018, PROCEEDINGS OF 2018 IEEE/ACM 4TH INTERNATIONAL WORKSHOP ON EXTREME SCALE PROGRAMMING MODELS AND MIDDLEWARE (ESPM2 2018), P54, DOI 10.1109/ESPM2.2018.00011.}, Number-of-Cited-References = {32}, Times-Cited = {9}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {10}, Journal-ISO = {Front. Oncol.}, Doc-Delivery-Number = {JO4MZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000497555000001}, OA = {Green Published, Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000526398000006, Author = {Cole, Jacqueline M.}, Title = {A Design-to-Device Pipeline for Data-Driven Materials Discovery}, Journal = {ACCOUNTS OF CHEMICAL RESEARCH}, Year = {2020}, Volume = {53}, Number = {3}, Pages = {599-610}, Month = {MAR}, Abstract = {CONSPECTUS: The world needs new materials to stimulate the chemical industry in key sectors of our economy: environment and sustainability, information storage, optical telecommunications, and catalysis. Yet, nearly all functional materials are still discovered by ``trial-and-error{''}, of which the lack of predictability affords a major materials bottleneck to technological innovation. The average ``molecule-to-market{''} lead time for materials discovery is currently 20 years. This is far too long for industrial needs, as highlighted by the Materials Genome Initiative, which has ambitious targets of up to 4-fold reductions in average molecule-to-market lead times. Such a large step change in progress can only be realistically achieved if one adopts an entirely new approach to materials discovery. Fortunately, a fundamentally new approach to materials discovery has been emerging, whereby data science with artificial intelligence offers a prospective solution to speed up these average molecule-to-market lead times. This approach is known as data-driven materials discovery. Its broad prospects have only recently become a reality, given the timely and major advances in ``big data{''}, artificial intelligence, and high-performance computing (HPC). Access to massive data sets has been stimulated by government-regulated open-access requirements for data and literature. Natural-language processing (NLP) and machine-learning (ML) tools that can mine data and find patterns therein are becoming mainstream. Exascale HPC capabilities that can aid data mining and pattern recognition and also generate their own data from calculations are now within our grasp. These timely advances present an ideal opportunity to develop data-driven materials-discovery strategies to systematically design and predict new chemicals for a given device application. This Account shows how data science can afford materials discovery via a four-step ``design-to-device{''} pipeline that entails (1) data extraction, (2) data enrichment, (3) material prediction, and (4) experimental validation. Massive databases of cognate chemical and property information are first forged from ``chemistry-aware{''} natural-language-processing tools, such as ChemDataExtractor, and enriched using machine-learning methods and high-throughput quantum-chemical calculations. New materials for a bespoke application can then be predicted by mining these databases with algorithmic encodings of relationships between chemical structures and physical properties that are known to deliver functional materials. These may take the form of classification, enumeration, or machine-learning algorithms. A data-mining workflow short-lists these predictions to a handful of lead candidate materials that go forward to experimental validation. This design-to-device approach is being developed to offer a roadmap for the accelerated discovery of new chemicals for functional applications. Case studies presented demonstrate its utility for photovoltaic, optical, and catalytic applications. While this Account is focused on applications in the physical sciences, the generic pipeline discussed is readily transferable to other scientific disciplines such as biology and medicine.}, Publisher = {AMER CHEMICAL SOC}, Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA}, Type = {Review}, Language = {English}, Affiliation = {Cole, JM (Corresponding Author), Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England. Cole, JM (Corresponding Author), Univ Cambridge, Dept Chem Engn \& Biotechnol, Cambridge CB3 0HE, England. Cole, JM (Corresponding Author), STFC Rutherford Appleton Lab, ISIS Neutron \& Muon Source, Didcot OX11 0QX, Oxon, England. Cole, JM (Corresponding Author), Univ Oxford, Math Inst, Oxford OX2 6GG, England. Cole, Jacqueline M., Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England. Cole, Jacqueline M., Univ Cambridge, Dept Chem Engn \& Biotechnol, Cambridge CB3 0HE, England. Cole, Jacqueline M., STFC Rutherford Appleton Lab, ISIS Neutron \& Muon Source, Didcot OX11 0QX, Oxon, England. Cole, Jacqueline M., Univ Oxford, Math Inst, Oxford OX2 6GG, England.}, DOI = {10.1021/acs.accounts.9b00470}, ISSN = {0001-4842}, EISSN = {1520-4898}, Research-Areas = {Chemistry}, Web-of-Science-Categories = {Chemistry, Multidisciplinary}, Author-Email = {jmc61@cam.ac.uk}, Affiliations = {University of Cambridge; University of Cambridge; UK Research \& Innovation (UKRI); Science \& Technology Facilities Council (STFC); STFC Rutherford Appleton Laboratory; University of Oxford}, ResearcherID-Numbers = {Cole, Jacqueline/C-5991-2008}, Funding-Acknowledgement = {STFC via the ISIS Neutron and Muon Facility}, Funding-Text = {J.M.C. is grateful for the BASF/Royal Academy of Engineering Research Chair in Data-Driven Molecular Engineering of Functional Materials, which is partly supported by the STFC via the ISIS Neutron and Muon Facility.}, Cited-References = {Agichtein E., 2000, P 5 ACM C DIG LIB SA. Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894. Alberi K, 2019, J PHYS D APPL PHYS, V52, DOI 10.1088/1361-6463/aad926. Anderson E., 1987, EPA600M87021 ENV RES. {[}Anonymous], 2011, MAT GEN IN GLOB COMP. Ashcroft CM, 2019, WOODH PUB SER ELECT, P139, DOI 10.1016/B978-0-08-102284-9.00005-X. Beard EJ, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0306-0. Bernstein N, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0236-6. Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2. Cole JM, 2019, CHEM REV, V119, P7279, DOI 10.1021/acs.chemrev.8b00632. Cole JM, 2019, J PHYS CHEM A, V123, P702, DOI 10.1021/acs.jpca.8b11687. Cole JM, 2014, PHYS CHEM CHEM PHYS, V16, P26684, DOI 10.1039/c4cp02645d. Cole JM, 2010, ADV MATER RES-SWITZ, V123-125, P959, DOI 10.4028/www.scientific.net/AMR.123-125.959. Cooper CB, 2019, ADV ENERGY MATER, V9, DOI 10.1002/aenm.201802820. Court CJ, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.111. Curtarolo S, 2013, NAT MATER, V12, P191, DOI {[}10.1038/NMAT3568, 10.1038/nmat3568]. de Pablo JJ, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0173-4. Gomez-Bombarelli R, 2016, NAT MATER, V15, P1120, DOI {[}10.1038/NMAT4717, 10.1038/nmat4717]. GORMAN CB, 1993, P NATL ACAD SCI USA, V90, P11297, DOI 10.1073/pnas.90.23.11297. Grimme S, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4811331. Groom CR, 2016, ACTA CRYSTALLOGR B, V72, P171, DOI 10.1107/S2052520616003954. Hachmann J, 2014, ENERG ENVIRON SCI, V7, P698, DOI 10.1039/c3ee42756k. Hammett LP, 1937, J AM CHEM SOC, V59, P96, DOI 10.1021/ja01280a022. Hawizy L, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-17. Himanen L, 2019, ADV SCI, V6, DOI 10.1002/advs.201900808. Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323. Kanal IY, 2013, J PHYS CHEM LETT, V4, P1613, DOI 10.1021/jz400215j. Kearsey RJ, 2019, CHEM SCI, V10, P9454, DOI 10.1039/c9sc03316e. Kim E, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0055-6. Kim E, 2017, CHEM MATER, V29, P9436, DOI 10.1021/acs.chemmater.7b03500. Kim E, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.127. Kranz JJ, 2018, J CHEM THEORY COMPUT, V14, P2341, DOI 10.1021/acs.jctc.7b00933. Li H, 2017, CATALYSTS, V7, DOI 10.3390/catal7100306. Li Z., 2019, ROBOT ACCELERATED PE. Lowe DM, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/1758-2946-7-S1-S5. MacLeod B.P., 2019, ARXIV190605398. Marcus M., 1993, COMPUT LINGUIST, V19, P313, DOI DOI 10.21236/ADA273556. MARDER SR, 1994, SCIENCE, V265, P632, DOI 10.1126/science.265.5172.632. Mintz M., 2009, P 47 ANN M ACL 4 IJC. Montavon G, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/9/095003. MORGAN HL, 1965, J CHEM DOC, V5, P107, DOI 10.1021/c160017a018. Nikolaev P, 2014, ACS NANO, V8, P10214, DOI 10.1021/nn503347a. Sedgewick R., 2002, ALGORITHMS C 5. Swain MC, 2016, J CHEM INF MODEL, V56, P1894, DOI 10.1021/acs.jcim.6b00207. Tshitoyan V, 2019, NATURE, V571, P95, DOI 10.1038/s41586-019-1335-8. Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28. Wu S, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0203-2. Xu Y., 2015, P 2015 C EMP METH NA.}, Number-of-Cited-References = {48}, Times-Cited = {43}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {79}, Journal-ISO = {Accounts Chem. Res.}, Doc-Delivery-Number = {LE0EP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000526398000006}, DA = {2023-04-22}, } @article{ WOS:000447126900001, Author = {Kadiyala, Akhil and Kumar, Ashok}, Title = {Applications of python to evaluate the performance of bagging methods}, Journal = {ENVIRONMENTAL PROGRESS \& SUSTAINABLE ENERGY}, Year = {2018}, Volume = {37}, Number = {5}, Pages = {1555-1559}, Month = {SEP-OCT}, Abstract = {The use of ensemble methods for obtaining scalable solutions on complex multi-dimensional datasets has increased manifold in the field of advanced machine learning and analytics owing to the ensemble method's capabilities of combining multiple base estimators to generate a more robust estimator than any single estimator with a given algorithm. Bagging and boosting are the two widely used ensemble methods. This paper presents a step-by-step approach to the applications of python in evaluating the performance of three bagging ensemble methods, namely, bagging, random forest, and extremely randomized trees for predicting the in-bus carbon dioxide concentrations. The bagging ensemble model evaluation results from this study were compared with the results obtained from a prior study that evaluated the performance of four boosting (gradient boosting machine, light gradient boosting machine, extreme gradient boosting, adaptive boosting) ensemble methods utilizing the same in-bus database. Among the seven ensemble methods, the random forest ensemble method provided better results on the basis of predictive model evaluation with operational performance measures. The readers may adopt the bagging ensemble methods (inclusive of the python coding) discussed in this article to successfully address their own data science problems. (c) 2018 American Institute of Chemical Engineers Environ Prog, 37: 1555-1559, 2018}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Kumar, A (Corresponding Author), Univ Toledo, Dept Civil \& Environm Engn, Toledo, OH 43606 USA. Kadiyala, Akhil; Kumar, Ashok, Univ Toledo, Dept Civil \& Environm Engn, Toledo, OH 43606 USA.}, DOI = {10.1002/ep.13018}, ISSN = {1944-7442}, EISSN = {1944-7450}, Keywords = {anaconda; python; spyder; scikit-learn; bagging; random forests; extremely randomized trees; data science; indoor air quality; biodiesel; public transportation buses}, Keywords-Plus = {PUBLIC TRANSPORTATION BUS; AIR-QUALITY; AVAILABLE SOFTWARE}, Research-Areas = {Science \& Technology - Other Topics; Engineering; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Engineering, Environmental; Engineering, Chemical; Environmental Sciences}, Author-Email = {akumar@utnet.utoledo.edu}, Affiliations = {University System of Ohio; University of Toledo}, ResearcherID-Numbers = {Kumar, Ashok/AAK-6073-2020}, Funding-Acknowledgement = {United States Department of Transportation and Toledo Area Regional Transit Authority (TARTA)}, Funding-Text = {The authors thank the United States Department of Transportation and Toledo Area Regional Transit Authority (TARTA) for the alternate fuel grant awarded to the Intermodal Transportation Institute of The University of Toledo. The authors express their sincere gratitude to the TARTA management and the employees for their interest and involvement in this project during data collection. The authors do not have any financial relationships with the software (anaconda, spyder) and the python machine learning packages (scikit-learn, numpy) used in this paper. The views expressed in this paper are those of the authors and do not represent the views of the funding organizations.}, Cited-References = {Kadiyala A., 2011, Open Environmental \& Biological Monitoring Journal, V4, P1, DOI 10.2174/1875040001104010001. Kadiyala A., 2012, GUIDELINES OPERATION. Kadiyala A., 2013, EM, P4. Kadiyala A., 2017, ENV PROGR SUSTAINABL, V37, P618. Kadiyala A., 2010, OPEN ENV ENG J, V3, P55. Kadiyala A, 2008, ENVIRON PROG, V27, P160, DOI 10.1002/ep.10292. Kadiyala A, 2017, ENVIRON PROG SUSTAIN, V36, P1580, DOI 10.1002/ep.12786. Kadiyala A, 2017, ENVIRON PROG SUSTAIN, V36, P1358, DOI 10.1002/ep.12676. Kadiyala A, 2017, ENVIRON PROG SUSTAIN, V36, P4, DOI 10.1002/ep.12523. Kadiyala A, 2016, ENVIRON PROG SUSTAIN, V35, P931, DOI 10.1002/ep.12387. Kadiyala A, 2016, ENVIRON PROG SUSTAIN, V35, P320, DOI 10.1002/ep.12349. Kadiyala A, 2016, ENVIRON PROG SUSTAIN, V35, P7, DOI 10.1002/ep.12273. Kadiyala A, 2015, ENVIRON PROG SUSTAIN, V34, P1259, DOI 10.1002/ep.12199. Kadiyala A, 2015, ENVIRON PROG SUSTAIN, V34, P319, DOI 10.1002/ep.12119. Kadiyala A, 2014, ENVIRON PROG SUSTAIN, V33, P1069, DOI 10.1002/ep.12021. Kadiyala A, 2014, ENVIRON PROG SUSTAIN, V33, P337, DOI 10.1002/ep.11959. Kadiyala A, 2013, J AIR WASTE MANAGE, V63, P205, DOI 10.1080/10962247.2012.741054. Kadiyala A, 2013, AIR QUAL ATMOS HLTH, V6, P215, DOI 10.1007/s11869-011-0163-2. Kadiyala A, 2012, ENVIRON PROG SUSTAIN, V31, P494, DOI 10.1002/ep.11708. Kadiyala A, 2012, ATMOSPHERE-BASEL, V3, P266, DOI 10.3390/atmos3020266. Kadiyala A, 2012, ENVIRON PROG SUSTAIN, V31, P170, DOI 10.1002/ep.11642. Kadiyala A, 2012, J HAZARD MATER, V213, P140, DOI 10.1016/j.jhazmat.2012.01.072. Kadiyala A, 2010, ENVIRON PROG SUSTAIN, V29, P398, DOI 10.1002/ep.10527. Scikit-learn, ENS METH. {[}No title captured]. {[}No title captured].}, Number-of-Cited-References = {26}, Times-Cited = {12}, Usage-Count-Last-180-days = {10}, Usage-Count-Since-2013 = {44}, Journal-ISO = {Environ. Prog. Sustain. Energy}, Doc-Delivery-Number = {GW7DQ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000447126900001}, DA = {2023-04-22}, } @article{ WOS:000412322500002, Author = {Bzdok, Danilo}, Title = {Classical Statistics and Statistical Learning in Imaging Neuroscience}, Journal = {FRONTIERS IN NEUROSCIENCE}, Year = {2017}, Volume = {11}, Month = {OCT 6}, Abstract = {Brain-imaging research has predominantly generated insight by means of classical statistics, including regression-type analyses and null-hypothesis testing using t-test and ANOVA. Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions. The present considerations should help reduce current confusion between model-driven classical hypothesis testing and data-driven learning algorithms for investigating the brain with imaging techniques.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Bzdok, D (Corresponding Author), Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy \& Psychosomat, Med Fac, Aachen, Germany. Bzdok, D (Corresponding Author), JARA, Translat Brain Med, Aachen, Germany. Bzdok, D (Corresponding Author), INRIA, Parietal Team, Gif Sur Yvette, France. Bzdok, Danilo, Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy \& Psychosomat, Med Fac, Aachen, Germany. Bzdok, Danilo, JARA, Translat Brain Med, Aachen, Germany. Bzdok, Danilo, INRIA, Parietal Team, Gif Sur Yvette, France.}, DOI = {10.3389/fnins.2017.00543}, Article-Number = {543}, EISSN = {1662-453X}, Keywords = {neuroimaging; data science; epistemology; statistical inference; machine learning; p-value; Rosetta Stone}, Keywords-Plus = {GENOME-WIDE ASSOCIATION; OBJECT RECOGNITION; VARIABLE SELECTION; PERMUTATION TESTS; CIRCULAR ANALYSIS; PATTERN-ANALYSIS; NEURAL-NETWORKS; FMRI; INFORMATION; INFERENCE}, Research-Areas = {Neurosciences \& Neurology}, Web-of-Science-Categories = {Neurosciences}, Author-Email = {danilo.bzdok@rwth-aachen.de}, Affiliations = {RWTH Aachen University; Inria}, Funding-Acknowledgement = {Deutsche Forschungsgemeinschaft (DFG) {[}BZ2/2-1, BZ2/3-1, BZ2/4-1]; Amazon AWS; German National Merit Foundation; Faculty of Medicine, RWTH Aachen; Deutsche Forschungsgemeinschaft (International Research Training Group) {[}IRTG2150]}, Funding-Text = {This work was supported by the Deutsche Forschungsgemeinschaft (DFG, BZ2/2-1, BZ2/3-1, and BZ2/4-1; International Research Training Group IRTG2150), Amazon AWS Research Grant (2016 and 2017), the German National Merit Foundation, and the START-Program of the Faculty of Medicine, RWTH Aachen.}, Cited-References = {ALTMAN DG, 1994, BRIT MED J, V309, P102, DOI 10.1136/bmj.309.6947.102. Amunts K, 2013, SCIENCE, V340, P1472, DOI 10.1126/science.1235381. Anderson DR, 2000, J WILDLIFE MANAGE, V64, P912, DOI 10.2307/3803199. Anderson ML, 2010, BEHAV BRAIN SCI, V33, P245, DOI 10.1017/S0140525X10000853. {[}Anonymous], 2012, LEARNING FROM DATA. {[}Anonymous], 1987, COGNITION INTUITIVE. {[}Anonymous], 2016, TECHNICAL REPORT. {[}Anonymous], 2015, PYMVPA MANUEL. {[}Anonymous], 2013, BIG DATA BRAIN DRAIN. {[}Anonymous], 2011, J MACH LEARN TECHNOL. {[}Anonymous], LOGIK FORSCHUNG. {[}Anonymous], 2016, BIG DAT DIL. {[}Anonymous], 2013, ADV NEURAL INFORM PR. Arbabshirani MR, 2017, NEUROIMAGE, V145, P137, DOI 10.1016/j.neuroimage.2016.02.079. Averbeck BB, 2006, NAT REV NEUROSCI, V7, P358, DOI 10.1038/nrn1888. Bach Francis, 2014, ARXIV14128690. Behrens TEJ, 2003, NAT NEUROSCI, V6, P750, DOI 10.1038/nn1075. Bellec P, 2010, NEUROIMAGE, V51, P1126, DOI 10.1016/j.neuroimage.2010.02.082. Bellman R. E., 1961, ADAPTIVE CONTROL PRO, DOI 10.1515/9781400874668. Bengio Y., 2014, GROWING ADAPTIVE MAC, P109, DOI DOI 10.1007/978-3-642-55337-0\_3. Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50. Berk R, 2013, ANN STAT, V41, P802, DOI 10.1214/12-AOS1077. Berkson J, 1938, J AM STAT ASSOC, V33, P526, DOI 10.2307/2279690. Bishop C.M., 2007, BAYESIAN STAT, V8, P3. Bishop C. M., 2006, PATTERN RECOGNITION. Blei DM, 2017, P NATL ACAD SCI USA, V114, P8689, DOI 10.1073/pnas.1702076114. BOX GEP, 1976, J AM STAT ASSOC, V71, P791, DOI 10.2307/2286841. Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726. Brodersen K. H., 2009, DECODING MENTAL ACTI, V4. Brodersen KH, 2013, NEUROIMAGE, V76, P345, DOI 10.1016/j.neuroimage.2013.03.008. Brodersen KH, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1002079. Brodersen KH, 2011, NEUROIMAGE, V56, P601, DOI 10.1016/j.neuroimage.2010.04.036. Buhlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9. Burnham KP, 2014, ECOLOGY, V95, P627, DOI 10.1890/13-1066.1. Bzdok D., 2017, INT C INF PROC MED I. Bzdok D, 2015, ADV NEUR IN, V28. Bzdok D, 2017, NEUROIMAGE, V155, P549, DOI 10.1016/j.neuroimage.2017.04.061. Bzdok D, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1004994. Casella G., 2002, STAT INFERENCE, V2nd ed. Chamberlin TC, 1890, SCIENCE, V15, P92, DOI DOI 10.1126/SCIENCE.NS-15.366.92. CHAMBERS JM, 1993, STAT COMPUT, V3, P182, DOI 10.1007/BF00141776. Choi Y., 2014, ARXIV14108260. Chow SL, 1998, BEHAV BRAIN SCI, V21, P169, DOI 10.1017/S0140525X98001162. Christoff K, 2016, NAT REV NEUROSCI, V17, P718, DOI 10.1038/nrn.2016.113. Chumbley JR, 2009, NEUROIMAGE, V44, P62, DOI 10.1016/j.neuroimage.2008.05.021. Cleveland WS, 2001, INT STAT REV, V69, P21, DOI 10.2307/1403527. Coase R. H., 1982, SHOULD EC CHOOSE GW. COHEN J, 1990, AM PSYCHOL, V45, P1304, DOI 10.1037/0003-066X.45.12.1304. COHEN J, 1994, AM PSYCHOL, V49, P997, DOI 10.1037/0003-066X.50.12.1103. COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155. Cohen J., 1988, STAT POWER ANAL BEHA, DOI DOI 10.4324/9780203771587. Committee on the Analysis of Massive Data; Committee on Applied and Theoretical Statistics; Board on Mathematical Sciences and Their Applications, 2013, FRONT MASS DAT AN. COWLES M, 1982, AM PSYCHOL, V37, P553, DOI 10.1037/0003-066X.37.5.553. Cox DD, 2014, CURR BIOL, V24, pR921, DOI 10.1016/j.cub.2014.08.026. Cox DD, 2003, NEUROIMAGE, V19, P261, DOI 10.1016/S1053-8119(03)00049-1. COX DR, 1975, BIOMETRIKA, V62, P441, DOI 10.1093/biomet/62.2.441. Cumming G, 2009, STAT MED, V28, P205, DOI 10.1002/sim.3471. Davatzikos C, 2004, NEUROIMAGE, V23, P17, DOI 10.1016/j.neuroimage.2004.05.010. de Brebisson A., 2015, ARXIV150202445. de-Wit L, 2016, PSYCHON B REV, V23, P1415, DOI 10.3758/s13423-016-1002-0. Demsar J, 2006, J MACH LEARN RES, V7, P1. Derrfuss J, 2009, NEUROIMAGE, V48, P1, DOI 10.1016/j.neuroimage.2009.01.053. Domingos P, 2012, COMMUN ACM, V55, P78, DOI 10.1145/2347736.2347755. Donoho D., 2015, BAS PRES TUK CENT WO. Efron B, 2016, INST MATH STAT MG, P1, DOI 10.1017/CBO9781316576533. EFRON B, 1979, ANN STAT, V7, P1, DOI 10.1214/aos/1176344552. EFRON B, 1991, SCIENCE, V253, P390, DOI 10.1126/science.253.5018.390. Efron B., 2012, LARGE SCALE INFERENC. Eickhoff S, 2016, NEUROIMAGE, V124, P1065, DOI 10.1016/j.neuroimage.2015.10.079. Eickhoff SB, 2015, HUM BRAIN MAPP, V36, P4771, DOI 10.1002/hbm.22933. Eickhoff SB, 2011, NEUROIMAGE, V57, P938, DOI 10.1016/j.neuroimage.2011.05.021. Estes WK, 1997, PSYCHON B REV, V4, P330, DOI 10.3758/BF03210790. Eulenburg PZ, 2012, NEUROIMAGE, V60, P162, DOI 10.1016/j.neuroimage.2011.12.032. EVERITT BS, 1979, BIOMETRICS, V35, P169, DOI 10.2307/2529943. Ferguson CJ, 2009, PROF PSYCHOL-RES PR, V40, P532, DOI 10.1037/a0015808. Feyerabend P.K., 1975, METHOD OUTLINE ANARC. Fisher R. A., 1946, Statistical methods for research workers.. FISHER R. A., 1935, The design of experiments.. Fisher RA, 1923, J AGR SCI, V13, P311, DOI 10.1017/S0021859600003592. FITHIAN W., 2014, OPTIMAL INFERENCE MO. Fleck L., 1980, ENTSTEHUNG ENTWICKLU. Fox PT, 2014, ANNU REV NEUROSCI, V37, P409, DOI 10.1146/annurev-neuro-062012-170320. Frackowiak R, 2015, PHILOS T R SOC B, V370, P20, DOI 10.1098/rstb.2014.0171. FREEDMAN DA, 1983, AM STAT, V37, P152, DOI 10.2307/2685877. Friedman JH, 2001, INT STAT REV, V69, P5, DOI 10.1111/j.1751-5823.2001.tb00474.x. Friedman JH, 1997, COMP SCI STAT, V29, P3. Friman O, 2001, MAGNET RESON MED, V45, P323, DOI 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-\#. Friston K, 2012, NEUROIMAGE, V61, P1300, DOI 10.1016/j.neuroimage.2012.04.018. Friston KJ, 2008, NEUROIMAGE, V39, P181, DOI 10.1016/j.neuroimage.2007.08.013. Friston KJ, 2009, SCIENCE, V326, P399, DOI 10.1126/science.1174521. Friston KJ, 1996, NEUROIMAGE, V4, P97, DOI 10.1006/nimg.1996.0033. FRISTON KJ, 1992, BRAIN, V115, P367, DOI 10.1093/brain/115.2.367. Friston KJ, 1994, HUMAN BRAIN MAPPING, V2, P189, DOI {[}DOI 10.1002/HBM.460020402, 10.1002/hbm.460020402]. Friston KJ, 2006, STAT PARAMETRIC MAPP. Gabrieli JDE, 2015, NEURON, V85, P11, DOI 10.1016/j.neuron.2014.10.047. Genovese CR, 2002, NEUROIMAGE, V15, P870, DOI 10.1006/nimg.2001.1037. Ghahramani Z, 2004, LECT NOTES ARTIF INT, V3176, P72. Ghahramani Z, 2015, NATURE, V521, P452, DOI 10.1038/nature14541. Gigerenzer G., 1993, HDB DATA ANAL BEHAV, P311, DOI DOI 10.1093/ACPROF:OSO/9780195153729.003.0013. Gigerenzer G., 2004, J SOCIO-ECON, V33, P587, DOI {[}DOI 10.1016/J.SOCEC.2004.09.033, 10.1016/j.socec.2004.09.033]. Giraud C, 2014, INTRO HIGH DIMENSION, DOI DOI 10.1201/B17895. Glascher J, 2012, P NATL ACAD SCI USA, V109, P14681, DOI 10.1073/pnas.1206608109. Goadrich, 2006, P 23 INT C MACH LEAR, P233, DOI DOI 10.1145/1143844.1143874. Golland P, 2003, LECT NOTES COMPUT SC, V2732, P330. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Goodman SN, 1999, ANN INTERN MED, V130, P995, DOI 10.7326/0003-4819-130-12-199906150-00008. Grady C L, 1990, J Neuropsychiatry Clin Neurosci, V2, P373. Greenwald AG, 2012, PERSPECT PSYCHOL SCI, V7, P99, DOI 10.1177/1745691611434210. Guclu U, 2015, J NEUROSCI, V35, P10005, DOI 10.1523/JNEUROSCI.5023-14.2015. Guyon I, 2002, MACH LEARN, V46, P389, DOI 10.1023/A:1012487302797. Guyon I., 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616. Halkidi M, 2001, J INTELL INF SYST, V17, P107, DOI 10.1023/A:1012801612483. Hall E. T., 1976, CULTURE. Handl J, 2005, BIOINFORMATICS, V21, P3201, DOI 10.1093/bioinformatics/bti517. Hanke M, 2009, NEUROINFORMATICS, V7, P37, DOI 10.1007/s12021-008-9041-y. Hanson SJ, 2004, NEUROIMAGE, V23, P156, DOI 10.1016/j.neuroimage.2004.05.020. Hanson SJ, 2008, NEURAL COMPUT, V20, P486, DOI 10.1162/neco.2007.09-06-340. Hastie T., 2015, STAT LEARNING SPARSI, DOI 10.1201/b18401. Hastie T., 2009, ELEMENTS STAT LEARNI, DOI {[}DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-84858-7]. Haxby JV, 2012, NEUROIMAGE, V62, P852, DOI 10.1016/j.neuroimage.2012.03.016. Haxby JV, 2001, SCIENCE, V293, P2425, DOI 10.1126/science.1063736. Haynes JD, 2005, NAT NEUROSCI, V8, P686, DOI 10.1038/nn1445. Haynes JD, 2006, NAT REV NEUROSCI, V7, P523, DOI 10.1038/nrn1931. Haynes JD, 2015, NEURON, V87, P257, DOI 10.1016/j.neuron.2015.05.025. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Ioannidis JPA, 2005, PLOS MED, V2, P696, DOI 10.1371/journal.pmed.0020124. Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504. Jamalabadi H, 2016, HUM BRAIN MAPP, V37, P1842, DOI 10.1002/hbm.23140. James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7\_1. Jenatton R, 2011, J MACH LEARN RES, V12, P2777. Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415. Kamitani Y, 2005, NAT NEUROSCI, V8, P679, DOI 10.1038/nn1444. Kamitani Y, 2010, NEUROIMAGE, V49, P1949, DOI 10.1016/j.neuroimage.2009.06.040. Kandel ER, 2013, NAT REV NEUROSCI, V14, P659, DOI 10.1038/nrn3578. Kelley K, 2012, PSYCHOL METHODS, V17, P137, DOI 10.1037/a0028086. King JR, 2014, TRENDS COGN SCI, V18, P203, DOI 10.1016/j.tics.2014.01.002. Knops A, 2009, SCIENCE, V324, P1583, DOI 10.1126/science.1171599. Kriegeskorte N, 2006, P NATL ACAD SCI USA, V103, P3863, DOI 10.1073/pnas.0600244103. Kriegeskorte N, 2011, NEUROIMAGE, V56, P411, DOI 10.1016/j.neuroimage.2011.01.061. Kriegeskorte N, 2010, J CEREBR BLOOD F MET, V30, P1551, DOI 10.1038/jcbfm.2010.86. Kriegeskorte N, 2009, NAT NEUROSCI, V12, P535, DOI 10.1038/nn.2303. Kurzweil R., 2005, SINGULARITY IS NEAR. Lake BM, 2015, SCIENCE, V350, P1332, DOI 10.1126/science.aab3050. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Lemm S, 2011, NEUROIMAGE, V56, P387, DOI 10.1016/j.neuroimage.2010.11.004. Lieberman MD, 2009, PERSPECT PSYCHOL SCI, V4, P299, DOI 10.1111/j.1745-6924.2009.01128.x. Lo A, 2015, P NATL ACAD SCI USA, V112, P13892, DOI 10.1073/pnas.1518285112. Loftus J.R., 2015, ARXIV151108866. Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005. Manyika J., 2011, BIG DATA NEXT FRONTI. Markram H, 2012, SCI AM, V306, P50, DOI 10.1038/scientificamerican0612-50. Mars RB, 2012, CEREB CORTEX, V22, P1894, DOI 10.1093/cercor/bhr268. Miller KL, 2016, NAT NEUROSCI, V19, P1523, DOI 10.1038/nn.4393. Misaki M, 2010, NEUROIMAGE, V53, P103, DOI 10.1016/j.neuroimage.2010.05.051. MOELLER JR, 1987, J CEREBR BLOOD F MET, V7, P649, DOI 10.1038/jcbfm.1987.118. Mur M, 2009, SOC COGN AFFECT NEUR, V4, P101, DOI 10.1093/scan/nsn044. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Naselaris T, 2011, NEUROIMAGE, V56, P400, DOI 10.1016/j.neuroimage.2010.07.073. Neyman J, 1933, PHILOS T R SOC LOND, V231, P289, DOI 10.1098/rsta.1933.0009. Nichols T, 2003, STAT METHODS MED RES, V12, P419, DOI 10.1191/0962280203sm341ra. Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058. Nichols TE, 2012, NEUROIMAGE, V62, P811, DOI 10.1016/j.neuroimage.2012.04.014. Nickerson RS, 2000, PSYCHOL METHODS, V5, P241, DOI 10.1037//1082-989X.5.2.241. Noirhomme Q, 2014, NEUROIMAGE-CLIN, V4, P687, DOI 10.1016/j.nicl.2014.04.004. Norman KA, 2006, TRENDS COGN SCI, V10, P424, DOI 10.1016/j.tics.2006.07.005. Nuzzo R, 2014, NATURE, V506, P150, DOI 10.1038/506150a. Oakes M.W., 1986, EPIDEMIOLOGY RESOUR. Passingham RE, 2002, NAT REV NEUROSCI, V3, P606, DOI 10.1038/nrn893. Pedregosa F, 2015, NEUROIMAGE, V104, P209, DOI 10.1016/j.neuroimage.2014.09.060. Pereira F, 2011, NEUROIMAGE, V56, P476, DOI 10.1016/j.neuroimage.2010.05.026. Pereira Francisco, 2009, Neuroimage, V45, pS199, DOI 10.1016/j.neuroimage.2008.11.007. Pernet CR, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/831409. PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347. Plis SM, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00229. Poldrack RA, 2006, TRENDS COGN SCI, V10, P59, DOI 10.1016/j.tics.2005.12.004. Poldrack RA, 2017, NAT REV NEUROSCI, V18, P115, DOI 10.1038/nrn.2016.167. Poldrack RA, 2014, NAT NEUROSCI, V17, P1510, DOI 10.1038/nn.3818. Poline JB, 2012, NEUROIMAGE, V62, P871, DOI 10.1016/j.neuroimage.2012.01.133. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. ROSNOW RL, 1989, AM PSYCHOL, V44, P1276, DOI 10.1037/0003-066X.44.10.1276. Russell S. J., 2016, ARTIFICIAL INTELLIGE. SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206. Saygin ZM, 2012, NAT NEUROSCI, V15, P321, DOI 10.1038/nn.3001. Scheffe H., 1999, ANAL VARIANCE. Schmidt FL, 1996, PSYCHOL METHODS, V1, P115, DOI 10.1037/1082-989X.1.2.115. Shalev-Shwartz S., 2014, UNDERSTANDING MACHIN. Shmueli G, 2010, STAT SCI, V25, P289, DOI 10.1214/10-STS330. Sladek R, 2007, NATURE, V445, P881, DOI 10.1038/nature05616. Smith S. M., 2001, FUNCTIONAL MRI INTRO. Smith SM, 2013, NEUROIMAGE, V80, P144, DOI 10.1016/j.neuroimage.2013.05.039. Smith SM, 2009, NEUROIMAGE, V44, P83, DOI 10.1016/j.neuroimage.2008.03.061. Stark CEL, 2001, P NATL ACAD SCI USA, V98, P12760, DOI 10.1073/pnas.221462998. Taylor J, 2015, P NATL ACAD SCI USA, V112, P7629, DOI 10.1073/pnas.1507583112. Taylor Jonathan, 2014, ARXIV14013889. Tenenbaum JB, 2011, SCIENCE, V331, P1279, DOI 10.1126/science.1192788. Thirion B, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00167. Tibshirani R, 1996, J ROY STAT SOC B MET, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x. Tibshirani RJ, 1994, INTRO BOOTSTRAP. TUKEY JW, 1962, ANN MATH STAT, V33, P1, DOI 10.1214/aoms/1177704711. Van Essen DC, 2012, NEUROIMAGE, V62, P2222, DOI 10.1016/j.neuroimage.2012.02.018. Van Horn JD, 2014, BRAIN IMAGING BEHAV, V8, P323, DOI 10.1007/s11682-013-9255-y. Vapnik V., 2013, NATURE STAT LEARNING. Vapnik V., 1982, ESTIMATION DEPENDENC. Vapnik V.N., 1989, STAT LEARNING THEORY. Varoquaux G, 2014, GIGASCIENCE, V3, DOI 10.1186/2047-217X-3-28. Vogelstein JT, 2014, SCIENCE, V344, P386, DOI 10.1126/science.1250298. Vul E, 2009, PERSPECT PSYCHOL SCI, V4, P274, DOI 10.1111/j.1745-6924.2009.01125.x. Wainwright MJ, 2014, ANNU REV STAT APPL, V1, P233, DOI 10.1146/annurev-statistics-022513-115643. Wasserman L, 2009, ANN STAT, V37, P2178, DOI 10.1214/08-AOS646. Wasserstein RL, 2016, AM STAT, V70, P129. Wolpert DH, 1996, NEURAL COMPUT, V8, P1341, DOI 10.1162/neco.1996.8.7.1341. WORSLEY KJ, 1992, J CEREBR BLOOD F MET, V12, P900, DOI 10.1038/jcbfm.1992.127. Worsley KJ, 1997, NEUROIMAGE, V6, P305, DOI 10.1006/nimg.1997.0294. Wu TT, 2009, BIOINFORMATICS, V25, P714, DOI 10.1093/bioinformatics/btp041. Yamins DLK, 2016, NAT NEUROSCI, V19, P356, DOI 10.1038/nn.4244. Yarkoni T, 2017, PERSPECT PSYCHOL SCI, V12, P1100, DOI 10.1177/1745691617693393. Yarkoni T, 2011, NAT METHODS, V8, P665, DOI {[}10.1038/NMETH.1635, 10.1038/nmeth.1635]. Yarkoni T, 2010, SPRINGER SER HUM EXC, P87, DOI 10.1007/978-1-4419-1210-7\_6. Yeo BTT, 2014, NEUROIMAGE, V88, P212, DOI 10.1016/j.neuroimage.2013.10.046. Yeo BTT, 2011, J NEUROPHYSIOL, V106, P1125, DOI 10.1152/jn.00338.2011. Yuste R, 2015, NAT REV NEUROSCI, V16, P487, DOI 10.1038/nrn3962. Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x.}, Number-of-Cited-References = {222}, Times-Cited = {64}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {35}, Journal-ISO = {Front. Neurosci.}, Doc-Delivery-Number = {FI9JH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000412322500002}, OA = {Green Published, Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000508190300008, Author = {Alexander, Francis and Almgren, Ann and Bell, John and Bhattacharjee, Amitava and Chen, Jacqueline and Colella, Phil and Daniel, David and DeSlippe, Jack and Diachin, Lori and Draeger, Erik and Dubey, Anshu and Dunning, Thom and Evans, Thomas and Foster, Ian and Francois, Marianne and Germann, Tim and Gordon, Mark and Habib, Salman and Halappanavar, Mahantesh and Hamilton, Steven and Hart, William and Huang, Zhenyu (Henry) and Hungerford, Aimee and Kasen, Daniel and Kent, Paul R. C. and Kolev, Tzanio and Kothe, Douglas B. and Kronfeld, Andreas and Luo, Ye and Mackenzie, Paul and McCallen, David and Messer, Bronson and Mniszewski, Sue and Oehmen, Chris and Perazzo, Amedeo and Perez, Danny and Richards, David and Rider, William J. and Rieben, Rob and Roche, Kenneth and Siegel, Andrew and Sprague, Michael and Steefel, Carl and Stevens, Rick and Syamlal, Madhava and Taylor, Mark and Turner, John and Vay, Jean-Luc and Voter, Artur F. and Windus, Theresa L. and Yelick, Katherine}, Title = {Exascale applications: skin in the game}, Journal = {PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES}, Year = {2020}, Volume = {378}, Number = {2166, SI}, Month = {MAR 6}, Abstract = {As noted in Wikipedia, skin in the game refers to having `incurred risk by being involved in achieving a goal', where `skin is a synecdoche for the person involved, and game is the metaphor for actions on the field of play under discussion'. For exascale applications under development in the US Department of Energy Exascale Computing Project, nothing could be more apt, with the skin being exascale applications and the game being delivering comprehensive science-based computational applications that effectively exploit exascale high-performance computing technologies to provide breakthrough modelling and simulation and data science solutions. These solutions will yield high-confidence insights and answers to the most critical problems and challenges for the USA in scientific discovery, national security, energy assurance, economic competitiveness and advanced healthcare. This article is part of a discussion meeting issue `Numerical algorithms for high-performance computational science'.}, Publisher = {ROYAL SOC}, Address = {6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Kothe, DB (Corresponding Author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. Alexander, Francis, Brookhaven Natl Lab, Upton, NY 11973 USA. Almgren, Ann; Bell, John; Colella, Phil; DeSlippe, Jack; Kasen, Daniel; McCallen, David; Steefel, Carl; Vay, Jean-Luc; Yelick, Katherine, Lawrence Berkeley Natl Lab, Berkeley, CA USA. Bhattacharjee, Amitava, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. Chen, Jacqueline; Hart, William; Rider, William J.; Taylor, Mark, Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. Daniel, David; Francois, Marianne; Germann, Tim; Hungerford, Aimee; Mniszewski, Sue; Perez, Danny; Voter, Artur F., Los Alamos Natl Lab, Los Alamos, NM USA. Diachin, Lori; Draeger, Erik; Kolev, Tzanio; Richards, David; Rieben, Rob, Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Dubey, Anshu; Foster, Ian; Habib, Salman; Luo, Ye; Siegel, Andrew; Stevens, Rick, Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. Dunning, Thom; Halappanavar, Mahantesh; Huang, Zhenyu (Henry); Oehmen, Chris; Roche, Kenneth, Pacific Northwest Natl Lab, Richland, WA 99352 USA. Evans, Thomas; Hamilton, Steven; Kent, Paul R. C.; Kothe, Douglas B.; Messer, Bronson; Turner, John, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. Gordon, Mark; Windus, Theresa L., Ames Lab, Ames, IA USA. Kronfeld, Andreas; Mackenzie, Paul, Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. Perazzo, Amedeo, SLAC Natl Accelerator Lab, Menlo Pk, CA USA. Sprague, Michael, Natl Renewable Energy Lab, Golden, CO USA. Syamlal, Madhava, Natl Energy Technol Lab, Morgantown, WV USA.}, DOI = {10.1098/rsta.2019.0056}, Article-Number = {20190056}, ISSN = {1364-503X}, EISSN = {1471-2962}, Keywords = {exascale; high-performance computing; computational science applications; numerical algorithms; machine learning; modelling and simulation}, Keywords-Plus = {SIMULATIONS; SOLIDIFICATION; IMPLEMENTATION; DYNAMICS; MODEL}, Research-Areas = {Science \& Technology - Other Topics}, Web-of-Science-Categories = {Multidisciplinary Sciences}, Author-Email = {kothe@ornl.gov}, Affiliations = {United States Department of Energy (DOE); Brookhaven National Laboratory; United States Department of Energy (DOE); Lawrence Berkeley National Laboratory; Princeton University; United States Department of Energy (DOE); Princeton Plasma Physics Laboratory; United States Department of Energy (DOE); Sandia National Laboratories; United States Department of Energy (DOE); Los Alamos National Laboratory; United States Department of Energy (DOE); Lawrence Livermore National Laboratory; United States Department of Energy (DOE); Argonne National Laboratory; United States Department of Energy (DOE); Pacific Northwest National Laboratory; United States Department of Energy (DOE); Oak Ridge National Laboratory; United States Department of Energy (DOE); Ames National Laboratory; United States Department of Energy (DOE); University of Chicago; Fermi National Accelerator Laboratory; Stanford University; United States Department of Energy (DOE); SLAC National Accelerator Laboratory; United States Department of Energy (DOE); National Renewable Energy Laboratory - USA; United States Department of Energy (DOE); National Energy Technology Laboratory - USA}, ResearcherID-Numbers = {Steefel, Carl I/B-7758-2010 Kent, Paul R C/A-6756-2008 Perez, Danny/AEQ-0157-2022 Foster, Ian/GNH-1877-2022 Mniszewski, Susan/AAX-2025-2020 Germann, Timothy C./ABF-5034-2021 Messer, Bronson/G-1848-2012 Evans, Thomas/B-4405-2018 Turner, John/B-7159-2018 }, ORCID-Numbers = {Kent, Paul R C/0000-0001-5539-4017 Perez, Danny/0000-0003-3028-5249 Foster, Ian/0000-0003-2129-5269 Germann, Timothy C./0000-0002-6813-238X Bell, John/0000-0002-5749-334X Messer, Bronson/0000-0002-5358-5415 Kronfeld, Andreas/0000-0003-2716-1149 Syamlal, Madhava/0000-0002-9450-0609 Vay, Jean-Luc/0000-0002-0040-799X Evans, Thomas/0000-0001-5743-3788 Roche, Kenneth/0000-0002-5675-9265 Turner, John/0000-0003-2521-4091 Hamilton, Steven/0000-0003-3542-114X Windus, Theresa/0000-0001-6065-3167 Daniel, David/0000-0002-4873-6856 Almgren, Ann/0000-0003-2103-312X Luo, Ye/0000-0002-5117-2385}, Funding-Acknowledgement = {Office of Science of the US Department of Energy {[}DE-AC05-00OR22725]; DOE Office of Science User Facility {[}DE-AC02-06CH11357]; National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility {[}DE-AC02-05CH11231]; Exascale Computing Project {[}17-SC-20-SC]}, Funding-Text = {This research was supported by the Exascale Computing Project (grant no. 17-SC-20-SC), a collaborative effort of two US DOE organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware technology R\&D, and integration of these technologies onto DOE HPC systems, in support of the nation's exascale computing imperative. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.}, Cited-References = {Almgren AS, 2013, ASTROPHYS J, V765, DOI 10.1088/0004-637X/765/1/39. Anderson RW, 2018, SIAM J SCI COMPUT, V40, pB32, DOI 10.1137/17M1116453. Aprahamian A, 2015, REACHING HORIZON 201. Asanovic K, 2016, UCBEECS2006183. Barton NR, 2013, J MECH PHYS SOLIDS, V61, P341, DOI 10.1016/j.jmps.2012.10.009. Bazavov A, 2019, HOT DENSE LATTICE QC. Bergen BK, 2018, SIAM PARALLEL PROCES. Bettencourt MT, 2017, SAND20178471C SAND N. Brower RC, 2019, LATTICE GAUGE THEORY. Cirigliano V, 2019, ROLE LATTICE QCD SEA. Cros B., 2019, ALEGRO INPUT 2020 UP. DebRoy T, 2018, PROG MATER SCI, V92, P112, DOI 10.1016/j.pmatsci.2017.10.001. Detmold W, 2019, HADRONS NUCL. Dominski J, 2018, PHYS PLASMAS, V25, DOI 10.1063/1.5044707. Edwards HC, 2014, J PARALLEL DISTR COM, V74, P3202, DOI 10.1016/j.jpdc.2014.07.003. Fischer P, INT J HIGH PERFORM C. Fischer PF, 1997, J COMPUT PHYS, V133, P84, DOI 10.1006/jcph.1997.5651. Foster H, 2017, OCTOBER, P3, DOI 10.1162/OCTO\_a\_00277. Frazier WE, 2014, J MATER ENG PERFORM, V23, P1917, DOI 10.1007/s11665-014-0958-z. Garimella R, 2017, SIAM COMPUTATIONAL S. Gordon MS, 2005, THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY: THE FIRST FORTY YEARS, P1167, DOI 10.1016/B978-044451719-7/50084-6. Habib S, 2016, NEW ASTRON, V42, P49, DOI 10.1016/j.newast.2015.06.003. Halappanavar M, 2015, COMPUTER, V48, P46, DOI 10.1109/MC.2015.215. Harrison RJ, CHEM REV UNPUB. Heroux MA, 2012, SCI PROGRAMMING-NETH, V20, P83, DOI {[}10.1155/2012/408130, 10.3233/SPR-2012-0355]. Hodge NE, 2014, COMPUT MECH, V54, P33, DOI 10.1007/s00466-014-1024-2. Horsfall Jim, 2019, Naturalist (Sheffield), V144, P32. Hungerford AL, 2018, EX COMP PROJ 2 ANN M. Johansen H, 2017, COMPUT SCI ENG, V19, P27, DOI 10.1109/MCSE.2017.3421558. Joo B, 2019, STATUS FUTURE PERSPE. Kim J, 2018, J PHYS-CONDENS MAT, V30, DOI 10.1088/1361-648X/aab9c3. Kothe D, 2019, COMPUT SCI ENG, V21, P17, DOI 10.1109/MCSE.2018.2875366. Kronfeld AS, 2019, ARXIV190409931. Lee YS, 2018, ADDIT MANUF, V22, P516, DOI 10.1016/j.addma.2018.04.038. Lehe R, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.053305. Lehner C, 2019, OPPORTUNITIES LATTIC. Menon A, 2017, MON NOT R ASTRON SOC, V469, P4649, DOI 10.1093/mnras/stx818. Molins S, 2012, WATER RESOUR RES, V48, DOI 10.1029/2011WR011404. Naumann U, 2012, CH CRC COMP SCI SER, P1. Pandya TM, 2016, J COMPUT PHYS, V308, P239, DOI 10.1016/j.jcp.2015.12.037. Perez D, 2016, J CHEM THEORY COMPUT, V12, P18, DOI 10.1021/acs.jctc.5b00916. PLIMPTON S, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/jcph.1995.1039. Pruitt SR, 2016, J CHEM THEORY COMPUT, V12, P1423, DOI 10.1021/acs.jctc.5b01208. Radhakrishnan B, 2016, METALL MATER TRANS A, V47A, P6577, DOI 10.1007/s11661-016-3746-6. Radhakrishnan B, 2019, METALS-BASEL, V9, DOI 10.3390/met9010014. Raghavan N, 2017, ACTA MATER, V140, P375, DOI 10.1016/j.actamat.2017.08.038. Ray J., 2019, AIAA SCIT 2019 FOR, DOI {[}10.2514/6.2019-2279, DOI 10.2514/6.2019-2279]. Rodgers A.J., 2019, B SEISMOL SOC AM, V109, P1265, DOI 10.1785/0120180290. Rolchigo MR, 2019, COMP MATER SCI, V163, P148, DOI 10.1016/j.commatsci.2019.03.012. Romano PK, 2013, ANN NUCL ENERGY, V51, P274, DOI 10.1016/j.anucene.2012.06.040. Settgast RR, 2017, INT J NUMER ANAL MET, V41, P627, DOI 10.1002/nag.2557. Sprague M, 2020, J PHYS C SERIES. Sprague M.A., 2015, P OPP CHALL WORKSH W, P2017. Steefel CI, 2015, COMPUTAT GEOSCI, V19, P445, DOI 10.1007/s10596-014-9443-x. Sukhbold T, 2018, ASTROPHYS J, V860, DOI 10.3847/1538-4357/aac2da. Trebotich D, 2014, COMPUT SCI ENG, V16, P22, DOI 10.1109/MCSE.2014.77. Trott Christian R., 2014, Supercomputing. 29th International Conference, ISC 2014. Proceedings: LNCS 8488, P19, DOI 10.1007/978-3-319-07518-1\_2. Valiev M, 2010, COMPUT PHYS COMMUN, V181, P1477, DOI 10.1016/j.cpc.2010.04.018. Vay JL, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.130405. Vay J.-L, 2012, Computational Science and Discovery, V5, DOI 10.1088/1749-4699/5/1/014019. Vay JL, 2013, J COMPUT PHYS, V243, P260, DOI 10.1016/j.jcp.2013.03.010. Zhang W., 2019, J OPEN SOUR SOFTW, V4, P1370, DOI {[}/10.21105/joss.01370, DOI 10.21105/JOSS.01370].}, Number-of-Cited-References = {62}, Times-Cited = {40}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {19}, Journal-ISO = {Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.}, Doc-Delivery-Number = {KD9OI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000508190300008}, OA = {Green Submitted, hybrid, Green Published}, DA = {2023-04-22}, } @article{ WOS:000619158000001, Author = {Johansen, Thomas Haugland and Mollersen, Kajsa and Ortega, Samuel and Fabelo, Himar and Garcia, Aday and Callico, Gustavo M. and Godtliebsen, Fred}, Title = {Recent advances in hyperspectral imaging for melanoma detection}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS}, Year = {2020}, Volume = {12}, Number = {1}, Month = {JAN-FEB}, Abstract = {Skin cancer is one of the most common types of cancer. Skin cancers are classified as nonmelanoma and melanoma, with the first type being the most frequent and the second type being the most deadly. The key to effective treatment of skin cancer is early detection. With the recent increase of computational power, the number of algorithms to detect and classify skin lesions has increased. The overall verdict on systems based on clinical and dermoscopic images captured with conventional RGB (red, green, and blue) cameras is that they do not outperform dermatologists. Computer-based systems based on conventional RGB images seem to have reached an upper limit in their performance, while emerging technologies such as hyperspectral and multispectral imaging might possibly improve the results. These types of images can explore spectral regions beyond the human eye capabilities. Feature selection and dimensionality reduction are crucial parts of extracting salient information from this type of data. It is necessary to extend current classification methodologies to use all of the spatiospectral information, and deep learning models should be explored since they are capable of learning robust feature detectors from data. There is a lack of large, high-quality datasets of hyperspectral skin lesion images, and there is a need for tools that can aid with monitoring the evolution of skin lesions over time. To understand the rich information contained in hyperspectral images, further research using data science and statistical methodologies, such as functional data analysis, scale-space theory, machine learning, and so on, are essential. This article is categorized under: Applications of Computational Statistics > Health and Medical Data/Informatics}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Johansen, TH (Corresponding Author), UiT Arctic Univ Norway, Dept Math \& Stat, Tromso, Norway. Johansen, Thomas Haugland; Godtliebsen, Fred, UiT Arctic Univ Norway, Dept Math \& Stat, Tromso, Norway. Mollersen, Kajsa, UiT Arctic Univ Norway, Dept Community Med, Tromso, Norway. Ortega, Samuel; Fabelo, Himar; Garcia, Aday; Callico, Gustavo M., Univ Las Palmas Gran Canaria, Inst Appl Microelect, Las Palmas Gran Canaria, Spain.}, DOI = {10.1002/wics.1465}, Article-Number = {e1465}, ISSN = {1939-0068}, Keywords = {hyperspectral; machine learning; melanoma; skin cancer}, Keywords-Plus = {NEURAL-NETWORK; ABCD RULE; SKIN; DIAGNOSIS; CLASSIFICATION; SYSTEM; INDEX; DERMATOSCOPY; SPECIFICITY; SENSITIVITY}, Research-Areas = {Mathematics}, Web-of-Science-Categories = {Statistics \& Probability}, Author-Email = {thomas.h.johansen@uit.no}, Affiliations = {UiT The Arctic University of Tromso; UiT The Arctic University of Tromso; Universidad de Las Palmas de Gran Canaria}, ResearcherID-Numbers = {Callico, Gustavo Marrero/L-6036-2014 Ortega, Samuel/C-3864-2018 Fabelo, Himar/S-1009-2019 }, ORCID-Numbers = {Callico, Gustavo Marrero/0000-0002-3784-5504 Ortega, Samuel/0000-0002-7519-954X Fabelo, Himar/0000-0002-9794-490X Johansen, Thomas/0000-0003-3572-4706}, Funding-Acknowledgement = {Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion (ACIISI) {[}ProID2017010164]; Spanish Government; European Union (FEDER funds) {[}TEC2017-86722-C4-1-R]; European Social Fund (FSE); Tromso Forskningsstiftelse {[}A33020]}, Funding-Text = {Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion (ACIISI), Grant/Award Number: ProID2017010164; Spanish Government and European Union (FEDER funds), Grant/Award Number: TEC2017-86722-C4-1-R; European Social Fund (FSE) and Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion (ACIISI), Grant/Award Number: POC 2014-2020, Eje 3 Tema Prioritario 74(85\%); Tromso Forskningsstiftelse, Grant/Award Number: A33020}, Cited-References = {Abbasi NR, 2004, JAMA-J AM MED ASSOC, V292, P2771, DOI 10.1001/jama.292.22.2771. Ahnlide I, 2016, ACTA DERM-VENEREOL, V96, P367, DOI 10.2340/00015555-2239. American Cancer Society, 2018, CANC FACTS FIGURES 2. Annessi G, 2007, J AM ACAD DERMATOL, V56, P759, DOI 10.1016/j.jaad.2007.01.014. {[}Anonymous], 2011, P INT C MACH LERAN 2. Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50. Bray Freddie, 2018, CA Cancer J Clin, V68, P394, DOI 10.3322/caac.21492. Carrara M, 2007, PHYS MED BIOL, V52, P2599, DOI 10.1088/0031-9155/52/9/018. Chaudhuri P, 2000, ANN STAT, V28, P408, DOI 10.1214/aos/1016218224. Chaudhuri P, 1999, J AM STAT ASSOC, V94, P807, DOI 10.2307/2669996. Chen YS, 2015, IEEE J-STARS, V8, P2381, DOI 10.1109/JSTARS.2015.2388577. Codella NCF, 2018, I S BIOMED IMAGING, P168. Dai Q, 2015, CRIT REV FOOD SCI, V55, P1368, DOI 10.1080/10408398.2013.871692. Donoho D, 2017, J COMPUT GRAPH STAT, V26, P745, DOI 10.1080/10618600.2017.1384734. Elbaum M, 2001, J AM ACAD DERMATOL, V44, P207, DOI 10.1067/mjd.2001.110395. ElMasry G, 2009, POSTHARVEST BIOL TEC, V52, P1, DOI 10.1016/j.postharvbio.2008.11.008. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056. Ferlay J., 2013, GLOBOCAN 2012 V10 CA. Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647. Jet Propulsion Laboratory California Institute of Technology, AIRB VIS INFRARED IM. Kazianka H, 2008, STUD CLASS DATA ANAL, P245, DOI 10.1007/978-3-540-78246-9\_29. Korotkov K, 2012, ARTIF INTELL MED, V56, P69, DOI 10.1016/j.artmed.2012.08.002. Krizhevsky Alex, 2017, Communications of the ACM, V60, P84, DOI 10.1145/3065386. Kupetsky Erine A, 2013, Expert Opin Med Diagn, V7, P405, DOI 10.1517/17530059.2013.785520. Lachenal G, 1999, MACROMOL SYMP, V141, P283, DOI 10.1002/masy.19991410123. Lawrence KC, 2003, T ASAE, V46, P513, DOI 10.13031/2013.12940. Lee KS, 2004, REMOTE SENS ENVIRON, V91, P508, DOI 10.1016/j.rse.2004.04.010. Li QL, 2015, APPL SPECTROSC, V69, P1372, DOI 10.1366/14-07766. Li QL, 2013, J BIOMED OPT, V18, DOI 10.1117/1.JBO.18.10.100901. Lihacova I, 2018, PROC SPIE, V10685, DOI 10.1117/12.2306203. Lorencs A, 2016, ELEKTRON ELEKTROTECH, V22, P66, DOI 10.5755/j01.eie.22.2.12173. Lu GL, 2014, J BIOMED OPT, V19, DOI 10.1117/1.JBO.19.1.010901. MacKinnon N, 2014, PROC SPIE, V8947, DOI 10.1117/12.2041818. Makantasis K, 2015, INT GEOSCI REMOTE SE, P4959, DOI 10.1109/IGARSS.2015.7326945. Mollersen K, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0190112. Mollersen K, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/579282. Moncrieff M, 2002, BRIT J DERMATOL, V146, P448, DOI 10.1046/j.1365-2133.2002.04569.x. Monheit G, 2011, ARCH DERMATOL, V147, P188, DOI 10.1001/archdermatol.2010.302. Mughees A, 2017, IEEE IMAGE PROC, P375. NACHBAR F, 1994, J AM ACAD DERMATOL, V30, P551, DOI 10.1016/S0190-9622(94)70061-3. Nagaoka T, 2015, SKIN RES TECHNOL, V21, P278, DOI 10.1111/srt.12188. Nagaoka T, 2012, IEEE ENG MED BIO, P3728, DOI 10.1109/EMBC.2012.6346777. Nagaoka T, 2013, SKIN RES TECHNOL, V19, pE290, DOI 10.1111/j.1600-0846.2012.00642.x. Nagaoka T, 2012, SKIN RES TECHNOL, V18, P301, DOI 10.1111/j.1600-0846.2011.00571.x. Nakariyakul S, 2007, PATTERN RECOGN LETT, V28, P1415, DOI 10.1016/j.patrec.2007.02.015. Oliveira RB, 2018, NEURAL COMPUT APPL, V29, P613, DOI 10.1007/s00521-016-2482-6. Ortega S, 2018, BIOMED OPT EXPRESS, V9, P818, DOI 10.1364/BOE.9.000818. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Patwardhan SV, 2004, P ANN INT IEEE EMBS, V26, P503. Patwardhan SV, 2005, IEEE T BIO-MED ENG, V52, P1227, DOI 10.1109/TBME.2005.847546. Qi X, 2011, PROC SPIE, V7963, DOI 10.1117/12.878325. Quinzan I, 2013, BIOMED OPT EXPRESS, V4, P514, DOI 10.1364/BOE.4.000514. Quinzan Suarez Ianisse, 2012, Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods. ICPRAM 2012, P386. Rey-Barroso L, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18051441. Rosado B, 2003, ARCH DERMATOL, V139, P361, DOI 10.1001/archderm.139.3.361. Rubins U, 2014, LATV J PHYS TECH SCI, V51, P65, DOI 10.2478/lpts-2014-0031. SHAHSHAHANI BM, 1994, IEEE T GEOSCI REMOTE, V32, P1087, DOI 10.1109/36.312897. Smialowski P, 2010, BIOINFORMATICS, V26, P440, DOI 10.1093/bioinformatics/btp621. Smith R. B., 2012, INTRO HYPERSPECTRAL. Song E, 2016, J AM ACAD DERMATOL, V75, P1187, DOI 10.1016/j.jaad.2016.07.022. Stamnes JJ, 2017, BIOMED OPT EXPRESS, V8, P2946, DOI 10.1364/BOE.8.002946. Switonski A, 2010, LECT NOTES COMPUT SC, V6375, P325, DOI 10.1007/978-3-642-15907-7\_40. Taghizadeh M, 2011, BIOSYST ENG, V108, P191, DOI 10.1016/j.biosystemseng.2010.10.005. Tomatis S, 2005, PHYS MED BIOL, V50, P1675, DOI 10.1088/0031-9155/50/8/004. Tomatis S, 2003, MED PHYS, V30, P212, DOI 10.1118/1.1538230. Tuia D, 2011, IEEE J-STSP, V5, P606, DOI 10.1109/JSTSP.2011.2139193. Unlu E, 2014, J DERMATOL, V41, P598, DOI 10.1111/1346-8138.12491. Vasefi F, 2016, J BIOMED OPT, V21, DOI 10.1117/1.JBO.21.11.114001. Vestergaard ME, 2008, SEMIN CUTAN MED SURG, V27, P32, DOI 10.1016/j.sder.2008.01.001. Wang Q, 2017, BIOMED OPT EXPRESS, V8, P3017, DOI 10.1364/BOE.8.003017. Wang WL, 2012, COMPUT ELECTRON AGR, V80, P135, DOI 10.1016/j.compag.2011.09.003. Wu D, 2013, TALANTA, V116, P266, DOI 10.1016/j.talanta.2013.05.030. Xing J, 2005, BIOSYST ENG, V90, P27, DOI 10.1016/j.biosystemseng.2004.08.002. Yamal JM, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.4.047002. Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1\_53. Zheludev V, 2015, BIOMED SIGNAL PROCES, V16, P48, DOI 10.1016/j.bspc.2014.10.010. Zherdeva LA, 2017, PROC SPIE, V0024, DOI 10.1117/12.2246433.}, Number-of-Cited-References = {77}, Times-Cited = {27}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {21}, Journal-ISO = {Wiley Interdiscip. Rev.-Comput. Stat.}, Doc-Delivery-Number = {QI7JG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000619158000001}, OA = {Green Accepted}, DA = {2023-04-22}, } @article{ WOS:000709352300003, Author = {Santos, Jessica S. and Bernardini, Flavia and Paes, Aline}, Title = {A survey on the use of data and opinion mining in social media to political electoral outcomes prediction}, Journal = {SOCIAL NETWORK ANALYSIS AND MINING}, Year = {2021}, Volume = {11}, Number = {1}, Month = {DEC}, Abstract = {Election polls are the de facto mechanisms to predict political outcomes. Traditionally, they are conducted with personal interviews and questionnaires. This process is costly and time consuming, demanding the development of alternative approaches faster and less expensive. On the other hand, social media emerge as important tools for people to express their opinions about candidates in electoral scenarios. In this context, there is an increasing number of election prediction approaches using social media and opinion mining, modeling this problem in different ways. In this work, we present a survey on approaches to election predictions and discuss many possibilities of decisions in the general process of constructing solutions to this end, including the quantity of collected data, the specific social media used, the collection period, the algorithms and prediction approaches adopted, among others aspects. Our overview allowed us to identify the main factors that should be considered when predicting elections outcomes supported by social media content, as well as the main open issues and limitations of the approaches found in the literature for data science communities. In brief, the main challenges that we have found include but are not limited to: labeling data reliably during the short period of electoral campaigns, absence of a robust methodology to collect and analyze data, non-availability of domain (labeled) datasets, a lack of a pattern to evaluate the obtained results and exploration of new machine learning algorithms and methods for tackling the peculiarities of this scenario.}, Publisher = {SPRINGER WIEN}, Address = {SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA}, Type = {Review}, Language = {English}, Affiliation = {Santos, JS (Corresponding Author), Univ Fed Fluminense, Inst Comp, Rio De Janeiro, Brazil. Santos, Jessica S.; Bernardini, Flavia; Paes, Aline, Univ Fed Fluminense, Inst Comp, Rio De Janeiro, Brazil.}, DOI = {10.1007/s13278-021-00813-4}, Article-Number = {103}, ISSN = {1869-5450}, EISSN = {1869-5469}, Keywords = {Election prediction; Election forecast; Election outcomes; Social media; Sentiment analysis; Machine learning for opinion mining}, Keywords-Plus = {140 CHARACTERS; ELECTION; TWITTER; SENTIMENT; POLLS}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Information Systems}, Author-Email = {jessicasoares@id.uff.br fcbernardini@ic.uff.br alinepaes@ic.uff.br}, Affiliations = {Universidade Federal Fluminense}, Funding-Acknowledgement = {Brazilian Research CNPq APQ Universal {[}421608/2018-8]; FAPERJ {[}E26/202.914/2019 (247109)]; Microsoft Research Grant; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil (CAPES); CNPq {[}311275/2020-6]}, Funding-Text = {This research was supported by the Brazilian Research CNPq APQ Universal (Grant 421608/2018-8), CNPq Research Grant 311275/2020-6, FAPERJ Research Grant E26/202.914/2019 (247109), Microsoft Research Grant and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil (CAPES).}, Cited-References = {Ajito M, 2017, IEEE INT CONF BIG DA, P4722. Asur S., 2010, Proceedings 2010 IEEE/ACM International Conference on Web Intelligence-Intelligent Agent Technology (WI-IAT), P492, DOI 10.1109/WI-IAT.2010.63. Awais M, 2019, J AMB INTEL HUM COMP, P1. Bachhuber J, 2016, DESIGNING NETWORKS I, P55. Bansal Barkha, 2019, International Journal of Web Based Communities, V15, P85. Bansal B., 2018, P COMPUT SCI, V135, P346, DOI {[}10.1016/j.procs.2018.08.183, DOI 10.1016/J.PROCS.2018.08.183]. Bastos M, 2018, INFORM COMMUN SOC, V21, P921, DOI 10.1080/1369118X.2018.1433224. Garcia ACB, 2018, PROCEEDINGS OF THE 19TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH (DGO 2018): GOVERNANCE IN THE DATA AGE, P586, DOI 10.1145/3209281.3209295. Bifet A., 2018, MACHINE LEARNING DAT. Bilal M, 2018, 2018 12TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS). Bovet A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26951-y. Breur T, 2016, US ELECTIONS COULD P. Brito KDS, 2020, IEEE IJCNN. Budiharto W, 2018, J BIG DATA-GER, V5, DOI 10.1186/s40537-018-0164-1. Burnap P, 2016, ELECT STUD, V41, P230, DOI 10.1016/j.electstud.2015.11.017. Calais Guerra P.H., 2011, P 17 ACM SIGKDD INT, P150, DOI DOI 10.1145/2020408.2020438. Caldarelli G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095809. Campanale M, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P861. Castelvecchi D, 2017, NAT NEWS. Castro R, 2017, INT CONF DAT MIN WOR, P866, DOI 10.1109/ICDMW.2017.118. Chauhan P, 2021, J AMB INTEL HUM COMP, V12, P2601, DOI 10.1007/s12652-020-02423-y. Choi J.D., 2017, INT C SOC INF, P201. Cornfield M, 2008, MEDIA POLIT. Devlin J., 2018, ARXIV, P4171, DOI DOI 10.18653/V1/N19-1423. Di Giovanni M, 2018, IEEE INT CONF BIG DA, P4321, DOI 10.1109/BigData.2018.8622040. Dokoohaki N, 2015, PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), P1269, DOI 10.1145/2808797.2808915. Dong Nguyen, 2014, P COLING 2014 25 INT, P62. dos SantosBrito K, 2021, IEEE T COMPUT SOC SY. Duarte L, 2019, LECT NOTES ARTIF INT, V11805, P719, DOI 10.1007/978-3-030-30244-3\_59. DwiPrasetyo N, 2015, P 26 ACM C HYP SOC M, pPP149. Esuli A., 2007, EVALUATION, P1. Fano S., 2017, INT C PRACT APPL AG, P191. FORSYTHE R, 1993, SOC CHOICE WELFARE, V10, P223. Gao L, 2017, P 8 INT JOINT C NAT, V1, pPP774. Gayo-Avello D, 2012, IEEE INTERNET COMPUT, V16, P91, DOI 10.1109/MIC.2012.137. Gayo-Avello D, 2011, COMMUN ACM, V54, P121, DOI 10.1145/2001269.2001297. GELMAN A, 1993, BRIT J POLIT SCI, V23, P409, DOI 10.1017/S0007123400006682. Graefe A, 2014, PUBLIC OPIN QUART, V78, P204, DOI 10.1093/poq/nfu008. Heredia B, 2018, SOC NETW ANAL MIN, V8, DOI 10.1007/s13278-018-0525-y. Heredia B, 2017, 2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), P283, DOI 10.1109/CIC.2017.00045. Hinch J, 2017, MAKEAMERICASPOLLSGRE. Howard J, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P328. Huang JY, 2017, ASLIB J INFORM MANAG, V69, P688, DOI 10.1108/AJIM-02-2017-0035. Hwang Bryant, 2019, Proceedings of the International Conferences. Big Data Analytics, Data Mining and Computational Intelligence 2019. Theory and Practice in Modern Computing 2019, P204. Ibrahim M, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P1348, DOI 10.1109/ICDMW.2015.113. Idan L, 2019, PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019), P816, DOI 10.1145/3341161.3343676. Janssen M, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101493. Jose R, 2016, PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), P64, DOI 10.1109/SAPIENCE.2016.7684133. Joseph FJJ, 2019, PROCEEDINGS OF THE 2019 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (INCIT), P50, DOI 10.1109/INCIT.2019.8911975. Jungherr A, 2012, SOC SCI COMPUT REV, V30, P229, DOI 10.1177/0894439311404119. Kagan V, 2015, IEEE INTELL SYST, V30, P2, DOI 10.1109/MIS.2015.16. Kalampokis E, 2017, J UNIVERS COMPUT SCI, V23, P280. Kassraie P, 2017, PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, TECHNOLOGY AND APPLICATIONS (DATA), P363, DOI 10.5220/0006484303630370. Katz RS, 1997, DEMOCRACY ELECTIONS. Khatua A, 2015, P ANN HICSS, P1676, DOI 10.1109/HICSS.2015.202. Koli AM, 2019, INT J RECENT TECHNOL. Kristiyanti DA, 2019, PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON NEW MEDIA STUDIES (CONMEDIA 2019), P36, DOI 10.1109/CONMEDIA46929.2019.8981823. Li BY, 2017, 2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), P329. Liu B., 2020, SENTIMENT ANAL MININ, DOI {[}10.1017/9781108639286, DOI 10.1017/9781108639286]. Lopardo A, 2018, IEEE INT CONF BIG DA, P5389, DOI 10.1109/BigData.2018.8622441. Mahendiran A, 2014, 2014 INT C BEH EC SO, pPP1. Maldonado M, 2015, CAN SOCIAL MEDIA PRE. Ming-Hung Wang, 2016, 2016 13th IEEE Annual Consumer Communications \& Networking Conference (CCNC), P348, DOI 10.1109/CCNC.2016.7444805. Miranda R, 2015, PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), P1254, DOI 10.1145/2808797.2809328. Mitchell V. W., 1992, MARKET INTELLIGENCE, V10, P4, DOI DOI 10.1108/02634509210012069. Naiknaware Bharat R., 2018, 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), P660, DOI 10.1109/I-SMAC.2018.8653602. Ohman E, 2018, P 9 WORKSHOP COMPUTA, P24. Okeowo Alexis, 2016, NEW YORKER. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Paula W, 2017, DG.O 2017: THE PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH: INNOVATIONS AND TRANSFORMATIONS IN GOVERNMENT, P120, DOI 10.1148/3085228.3085230. Pennebaker J. W., 2001, LINGUISTIC INQUIRY W, V71, P2001, DOI DOI 10.1192/APT.11.5.338. Peters M. E, 2018, IMPROVING LANGUAGE U. Praciano BJG, 2018, INT CONF DAT MIN WOR, P1355, DOI 10.1109/ICDMW.2018.00192. Ramzan M, 2017, INT CONF CONTEMP, P146. Rothschild D, 2014, RES POLITICS, V1, DOI 10.1177/2053168014547667. Sagiroglu S, 2013, PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS (CTS), P42. Sanders E, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P6158. Sanders E, 2016, LECT NOTES COMPUT SC, V10047, P259, DOI 10.1007/978-3-319-47874-6\_18. Santos Jessica S., 2019, 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). Proceedings, P455, DOI 10.1109/BRACIS.2019.00086. Santos JS, 2021, BRAZ WORKSH SOC NETW. Sharma P, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P1966, DOI 10.1109/BigData.2016.7840818. Singh P, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2019.101444. Singh P, 2018, ADV INTELL SYST, V564, P665, DOI 10.1007/978-981-10-6875-1\_65. Singh P, 2017, COMM COM INF SC, V712, P73, DOI 10.1007/978-981-10-5780-9\_7. Skoric MM, 2020, INFORMATION, V11, DOI 10.3390/info11040187. Sokolova K, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P1021. Srivastava R, 2015, 6TH INTERNATIONAL CONFERENCE ON COMPUTER \& COMMUNICATION TECHNOLOGY (ICCCT-2015), P78, DOI 10.1145/2818567.2818582. Sturgis P, 2018, J ROY STAT SOC A, V181, P757, DOI 10.1111/rssa.12329. Taboada M, 2016, ANNU REV LINGUIST, V2, P325, DOI 10.1146/annurev-linguistics-011415-040518. Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI\_a\_00049. Tong S, 2002, J MACH LEARN RES, V2, P45, DOI 10.1162/153244302760185243. Tsakalidis A, 2015, IEEE INTELL SYST, V30, P10, DOI 10.1109/MIS.2015.17. Tumasjan A, 2010, ICWSM, V10, P178, DOI DOI 10.1074/JBC.M501708200. Tung KC, 2016, LECT NOTES COMPUT SC, V9728, P266, DOI 10.1007/978-3-319-41561-1\_20. Unankard S, 2014, LECT NOTES COMPUT SC, V8787, P1, DOI 10.1007/978-3-319-11746-1\_1. Vania, 2014, INT J COMPUT LINGUIS, V5, P59. Vepsalainen T, 2017, GOV INFORM Q, V34, P524, DOI 10.1016/j.giq.2017.05.004. Wang L, 2018, COMPUT SCI ELECTR, P231. Wang L, 2017, COMPUT SCI ELECTR. Wang W, 2015, INT J FORECASTING, V31, P980, DOI 10.1016/j.ijforecast.2014.06.001. White K, 2016, LECT NOTES ARTIF INT, V9673, P186, DOI 10.1007/978-3-319-34111-8\_24. Wicaksono AJ, 2016, PROCEEDINGS OF 2016 2ND INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH) - INFORMATION SCIENCE FOR GREEN SOCIETY AND ENVIRONMENT, P276, DOI 10.1109/ICSITech.2016.7852647. Woolley Samuel C., 2016, First Monday, V21, DOI 10.5210/fm.v21i4.6161. You QZ, 2015, IEEE T MULTIMEDIA, V17, P2271, DOI 10.1109/TMM.2015.2487863. Zeedan R, 2019, J MULTIDISCIPL SCI J, V2, P84. Zheng Xie, 2016, 2016 13th International Conference on Service Systems and Service Management (ICSSSM), P1, DOI 10.1109/ICSSSM.2016.7538625.}, Number-of-Cited-References = {106}, Times-Cited = {0}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {13}, Journal-ISO = {Soc. Netw. Anal. Min.}, Doc-Delivery-Number = {WJ9JJ}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000709352300003}, DA = {2023-04-22}, } @article{ WOS:000595541100011, Author = {Jain, Piyush and Coogan, Sean C. P. and Subramanian, Sriram Ganapathi and Crowley, Mark and Taylor, Steve and Flannigan, Mike D.}, Title = {A review of machine learning applications in wildfire science and management}, Journal = {ENVIRONMENTAL REVIEWS}, Year = {2020}, Volume = {28}, Number = {4}, Pages = {478-505}, Month = {DEC}, Abstract = {Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then, the field has rapidly progressed congruently with the wide adoption of machine learning (ML) methods in the environmental sciences. Here, we present a scoping review of ML applications in wildfire science and management. Our overall objective is to improve awareness of ML methods among wildfire researchers and managers, as well as illustrate the diverse and challenging range of problems in wildfire science available to ML data scientists. To that end, we first present an overview of popular ML approaches used in wildfire science to date and then review the use of ML in wildfire science as broadly categorized into six problem domains, including (i) fuels characterization, fire detection, and mapping; (ii) fire weather and climate change; (iii) fire occurrence, susceptibility, and risk; (iv) fire behavior prediction; (v) fire effects; and (vi) fire management. Furthermore, we discuss the advantages and limitations of various ML approaches relating to data size, computational requirements, generalizability, and interpretability, as well as identify opportunities for future advances in the science and management of wildfires within a data science context. In total, to the end of 2019, we identified 300 relevant publications in which the most frequently used ML methods across problem domains included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. As such, there exists opportunities to apply more current ML methods - including deep learning and agent-based learning - in the wildfire sciences, especially in instances involving very large multivariate datasets. We must recognize, however, that despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods such as deep learning requires a dedicated and sophisticated knowledge of their application. Finally, we stress that the wildfire research and management communities play an active role in providing relevant, high-quality, and freely available wildfire data for use by practitioners of ML methods.}, Publisher = {CANADIAN SCIENCE PUBLISHING}, Address = {65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA}, Type = {Review}, Language = {English}, Affiliation = {Jain, P (Corresponding Author), Nat Resources Canada, Canadian Forest Serv, Northern Forestry Ctr, Edmonton, AB T6H 3S5, Canada. Jain, P (Corresponding Author), Univ Alberta, Renewable Resources, Canadian Partnership Wildland Fire Sci, Edmonton, AB T6G 2H1, Canada. Jain, Piyush, Nat Resources Canada, Canadian Forest Serv, Northern Forestry Ctr, Edmonton, AB T6H 3S5, Canada. Jain, Piyush; Coogan, Sean C. P.; Flannigan, Mike D., Univ Alberta, Renewable Resources, Canadian Partnership Wildland Fire Sci, Edmonton, AB T6G 2H1, Canada. Subramanian, Sriram Ganapathi; Crowley, Mark, Univ Waterloo, Elect \& Comp Engn, Waterloo, ON N2L 3G1, Canada. Taylor, Steve, Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC V8Z 1M5, Canada.}, DOI = {10.1139/er-2020-0019}, ISSN = {1208-6053}, EISSN = {1181-8700}, Keywords = {machine learning; wildfire science; fire management; wildland fire; support vector machine; artificial neural network; decision trees; Bayesian networks; reinforcement learning; deep learning}, Keywords-Plus = {FOREST-FIRE SUSCEPTIBILITY; ARTIFICIAL NEURAL-NETWORK; SUPPORT VECTOR REGRESSION; BURN SEVERITY ASSESSMENT; LOGISTIC-REGRESSION; POSTFIRE REGENERATION; SPATIAL PREDICTION; GENETIC ALGORITHM; FEATURE-SELECTION; ADAPTIVE PREDICTION}, Research-Areas = {Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Environmental Sciences}, Author-Email = {piyush.jain@canada.ca}, Affiliations = {Natural Resources Canada; Canadian Forest Service; University of Alberta; University of Waterloo; Natural Resources Canada; Canadian Forest Service}, ResearcherID-Numbers = {Flannigan, Michael/G-6996-2015}, ORCID-Numbers = {Crowley, Mark/0000-0003-3921-4762 Flannigan, Michael/0000-0002-9970-5363}, Funding-Acknowledgement = {Intact Insurance; Western Partnership for Wildland Fire Science}, Funding-Text = {The motivation for this paper arose from the ``Not the New Normal{''} B.C. AI Wildfire Symposium held in Vancouver, B.C., on 12 October 2018. The authors would also like to thank Intact Insurance and the Western Partnership for Wildland Fire Science for their support.}, Cited-References = {Abdalhaq B, 2005, FUTURE GENER COMP SY, V21, P61, DOI 10.1016/j.future.2004.09.013. Adab H, 2017, NAT HAZARDS, V87, P1807, DOI 10.1007/s11069-017-2850-2. Akhloufi MA, 2018, PROC SPIE, V10649, DOI 10.1117/12.2304936. Al-Janabi Samaher, 2018, Applied Computing and Informatics, V14, P214, DOI 10.1016/j.aci.2017.09.006. Al-Rawi KR, 2002, INT J REMOTE SENS, V23, P1967, DOI 10.1080/01431160110069809. Al-Rawi KR, 2001, INT J REMOTE SENS, V22, P2015, DOI 10.1080/01431160152043685. Alberg D., 2015, INT J COMPUTER APPL, V132, P17, DOI DOI 10.5120/IJCA2015907398. Aldersley A, 2011, SCI TOTAL ENVIRON, V409, P3472, DOI 10.1016/j.scitotenv.2011.05.032. Alexandrov D, 2019, PROC CONF OPEN INNOV, P3, DOI 10.23919/FRUCT.2019.8711917. Alonso-Benito A., 2008, IGARSS 2008 2008 IEE, DOI {[}10.1109/IGARSS.2008.4779477., DOI 10.1109/IGARSS.2008.4779477]. Alonso-Betanzos A, 2003, EXPERT SYST APPL, V25, P545, DOI 10.1016/S0957-4174(03)00095-2. Alonso-Betanzos A., 2002, P 15 EUR C ART INT E. ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209. Amatulli G., 2007, P 4 INT WILDF C SEV, P1. Amatulli G, 2006, J GEOPHYS RES-BIOGEO, V111, DOI 10.1029/2005JG000133. Amatulli G, 2013, SCI TOTAL ENVIRON, V450, P209, DOI 10.1016/j.scitotenv.2013.02.014. Angayarkkani K., 2011, 2011 3rd International Conference on Electronics Computer Technology (ICECT 2011), P24, DOI 10.1109/ICECTECH.2011.5941794. Angayarkkani K., 2010, INTELLIGENT SYSTEM E. Arca B, 2015, J COMPUT SCI-NETH, V11, P258, DOI 10.1016/j.jocs.2015.08.009. Archibald S, 2009, GLOBAL CHANGE BIOL, V15, P613, DOI 10.1111/j.1365-2486.2008.01754.x. Arksey H, 2005, INT J SOC RES METHOD, V8, P19, DOI {[}10.1080/1364557032000119616, DOI 10.1080/1364557032000119616]. Arnold JD, 2014, FIRE ECOL, V10, P64, DOI 10.4996/fireecology.1002064. Arrue BC, 2000, IEEE INTELL SYST APP, V15, P64, DOI 10.1109/5254.846287. Artes T, 2017, CONCURR COMP-PRACT E, V29, DOI 10.1002/cpe.3837. Artes T, 2016, INT J GEOGR INF SCI, V30, P594, DOI 10.1080/13658816.2015.1085052. Artes T, 2014, LECT NOTES COMPUT SC, V8385, P151, DOI 10.1007/978-3-642-55195-6\_14. Ascoli D, 2015, INT J WILDLAND FIRE, V24, P317, DOI 10.1071/WF14097. Ba R, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11141702. Bao ST, 2015, FIRE SAFETY J, V71, P100, DOI 10.1016/j.firesaf.2014.11.016. Barmpoutis P, 2019, INT CONF ACOUST SPEE, P8301, DOI 10.1109/ICASSP.2019.8682647. Barrett K, 2011, ECOL APPL, V21, P2380, DOI 10.1890/10-0896.1. Barto A. G., 1998, INTRO REINFORCEMENT, V135. BASHARI H, 2016, ENVIRON MONIT ASSESS, V188, DOI DOI 10.1007/510661-016-5532-8. Bates BC, 2017, J APPL METEOROL CLIM, V56, P1921, DOI 10.1175/JAMC-D-16-0271.1. Batllori E, 2013, GLOBAL ECOL BIOGEOGR, V22, P1118, DOI 10.1111/geb.12065. Bauer P, 2015, NATURE, V525, P47, DOI 10.1038/nature14956. Belayneh A, 2014, J HYDROL, V508, P418, DOI 10.1016/j.jhydrol.2013.10.052. Bisquert M, 2012, INT J WILDLAND FIRE, V21, P1025, DOI 10.1071/WF11105. Blouin KD, 2016, INT J WILDLAND FIRE, V25, P421, DOI 10.1071/WF15111. Bond WJ, 2005, TRENDS ECOL EVOL, V20, P387, DOI 10.1016/j.tree.2005.04.025. Boulanger Y, 2018, INT J WILDLAND FIRE, V27, P164, DOI 10.1071/WF17123. Bradley CM, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1492. Branham J., 2017, IDAHO C UND RES. Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726. Breiman L, 1984, CLASSIFICATION REGRE, DOI {[}DOI 10.1201/9781315139470, 10.1002/widm.8, DOI 10.1002/WIDM.8]. Brenowitz ND, 2018, GEOPHYS RES LETT, V45, P6289, DOI 10.1029/2018GL078510. Brumby SP, 2001, P SOC PHOTO-OPT INS, V4381, P236, DOI 10.1117/12.437013. Buckland CE, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40429-5. Butler D, 2017, NATURE, V546, P196, DOI 10.1038/546196a. Cai WH, 2013, FOREST ECOL MANAG, V307, P20, DOI 10.1016/j.foreco.2013.06.056. Cao X, 2009, INT J REMOTE SENS, V30, P577, DOI 10.1080/01431160802220219. Cao YC, 2019, IEEE ACCESS, V7, P154732, DOI 10.1109/ACCESS.2019.2946712. Cao YX, 2017, INT J DISAST RISK SC, V8, P164, DOI 10.1007/s13753-017-0129-6. Cardil A, 2019, J ENVIRON MANAGE, V235, P342, DOI 10.1016/j.jenvman.2019.01.077. Carrillo C, 2016, PROCEDIA COMPUT SCI, V80, P418, DOI 10.1016/j.procs.2016.05.342. Castelli M, 2015, FIRE ECOL, V11, P106, DOI 10.4996/fireecology.1101106. Celik T, 2010, IEEE GEOSCI REMOTE S, V7, P386, DOI 10.1109/LGRS.2009.2037024. Cencerrado A, 2014, ENVIRON MODELL SOFTW, V54, P153, DOI 10.1016/j.envsoft.2014.01.008. Cencerrado A, 2013, SCI WORLD J, DOI 10.1155/2013/728414. Cencerrado A, 2012, PROCEDIA COMPUT SCI, V9, P312, DOI 10.1016/j.procs.2012.04.033. Chapin F.S., 2014, FIRE EFFECTS SEEDLIN. Chen F, 2015, FORESTS, V6, P1422, DOI 10.3390/f6051422. Cheng Tao, 2008, Transactions in GIS, V12, P591, DOI 10.1111/j.1467-9671.2008.01117.x. Chetehouna K, 2015, PROCESS SAF ENVIRON, V98, P50, DOI 10.1016/j.psep.2015.06.010. Chingono T.T., 2015, P WORLD C ENG COMP S. Chirici G, 2013, INT J APPL EARTH OBS, V25, P87, DOI 10.1016/j.jag.2013.04.006. Coen J, 2018, FIRE-BASEL, V1, DOI 10.3390/fire1010006. Coffield Shane R, 2019, Int J Wildland Fire, V28, P861, DOI 10.1071/wf19023. Cohen J, 2019, WIRES CLIM CHANGE, V10, DOI 10.1002/wcc.567. Collins L, 2018, REMOTE SENS ENVIRON, V216, P374, DOI 10.1016/j.rse.2018.07.005. Coogan SCP, 2019, CAN J FOREST RES, V49, P1015, DOI 10.1139/cjfr-2019-0094. Cordoba A, 2004, OPT LASER TECHNOL, V36, P393, DOI 10.1016/j.optlastec.2003.10.010. Cortez P., 2007, ASSOCIAC A O PORTUGU. Costafreda-Aumedes S, 2016, IFOREST, V9, P138, DOI 10.3832/ifor1329-008. Crimmins MA, 2006, INT J CLIMATOL, V26, P1001, DOI 10.1002/joc.1300. Crowley MA, 2019, REMOTE SENS LETT, V10, P302, DOI 10.1080/2150704X.2018.1536300. Curt T, 2016, INT J WILDLAND FIRE, V25, P785, DOI 10.1071/WF15205. Curt T, 2015, FOREST ECOL MANAG, V337, P48, DOI 10.1016/j.foreco.2014.10.032. DAVIS JR, 1989, ECOL MODEL, V46, P73, DOI 10.1016/0304-3800(89)90070-7. DAVIS JR, 1986, J ENVIRON MANAGE, V22, P215. Davis R, 2017, FOREST ECOL MANAG, V390, P173, DOI 10.1016/j.foreco.2017.01.027. De Angelis A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116875. de Bem PP, 2019, INT J WILDLAND FIRE, V28, P35, DOI 10.1071/WF18018. de Vasconcelos MJP, 2001, PHOTOGRAMM ENG REM S, V67, P73. Debouk H, 2013, PHOTOGRAMM ENG REM S, V79, P1121, DOI 10.14358/PERS.79.12.1121. Delgado R., 2018, FOREST FIRE, DOI {[}10.5772/intechopen.72615., DOI 10.5772/INTECHOPEN.72615]. Denham M, 2018, J COMPUT SCI-NETH, V25, P76, DOI 10.1016/j.jocs.2018.02.007. Denham M, 2012, J COMPUT SCI-NETH, V3, P398, DOI 10.1016/j.jocs.2012.06.002. Bui DT, 2017, AGR FOREST METEOROL, V233, P32, DOI 10.1016/j.agrformet.2016.11.002. Diggle PJ, 2010, J ROY STAT SOC C, V59, P191, DOI 10.1111/j.1467-9876.2009.00701.x. Divya TL, 2016, ADV INTELL SYST, V410, P121, DOI 10.1007/978-81-322-2734-2\_13. Dlamini WM, 2011, GEOJOURNAL, V76, P283, DOI 10.1007/s10708-010-9362-x. Dragozi E., 2011, P 8 INT EARSEL FF SI. Dragozi E, 2014, REMOTE SENS-BASEL, V6, P12005, DOI 10.3390/rs61212005. Duane A, 2015, INT J WILDLAND FIRE, V24, P407, DOI 10.1071/WF14040. Dutta R, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.150241. Dutta R, 2013, SCI REP-UK, V3, DOI 10.1038/srep03188. Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x. Elith J, 2011, DIVERS DISTRIB, V17, P43, DOI 10.1111/j.1472-4642.2010.00725.x. Fairman TA, 2017, J VEG SCI, V28, P1151, DOI 10.1111/jvs.12575. Fernandes AM, 2004, PATTERN RECOGN, V37, P2039, DOI 10.1016/j.patcog.2004.04.002. Fernandes AM, 2004, NEURAL PROCESS LETT, V19, P175, DOI 10.1023/B:NEPL.0000035598.19042.42. Fernandes PM, 2016, ECOSYSTEMS, V19, P1362, DOI 10.1007/s10021-016-0010-2. Finney M. A., 1998, Research Paper - Rocky Mountain Research Station, USDA Forest Service. Finney MA, 2005, FOREST ECOL MANAG, V211, P97, DOI 10.1016/j.foreco.2005.02.010. Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504. Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451. Fuentes S, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19153335. Garcia M, 2011, REMOTE SENS ENVIRON, V115, P1369, DOI 10.1016/j.rse.2011.01.017. Geman S., 1992, Neural Computation, V4, P1, DOI 10.1162/neco.1992.4.1.1. Gensler A, 2016, IEEE SYS MAN CYBERN, P2858, DOI 10.1109/SMC.2016.7844673. Ghorbanzadeh O, 2019, FIRE-BASEL, V2, DOI 10.3390/fire2030050. Ghorbanzadeh O, 2019, FIRE-BASEL, V2, DOI 10.3390/fire2030043. Giglio L, 2018, REMOTE SENS ENVIRON, V217, P72, DOI 10.1016/j.rse.2018.08.005. Gigovic L, 2019, FORESTS, V10, DOI 10.3390/f10050408. Goldarag YJ, 2016, J INDIAN SOC REMOTE, V44, P885, DOI 10.1007/s12524-016-0557-6. Gomes C., 2009, BRIDGE, V39, P5. Gomez I, 2011, INT J APPL EARTH OBS, V13, P741, DOI 10.1016/j.jag.2011.05.002. Gorelick N, 2017, REMOTE SENS ENVIRON, V202, P18, DOI 10.1016/j.rse.2017.06.031. Guo FT, 2016, FORESTS, V7, DOI 10.3390/f7110250. Guo FT, 2016, INT J WILDLAND FIRE, V25, P505, DOI 10.1071/WF15121. Hamilton D., 2017, SIGNAL IMAGE PROCESS, V8, P1, DOI {[}10.5121/sipij.2017.8501., DOI 10.5121/SIPIJ.2017.8501]. Han J, 2015, FOREST ECOL MANAG, V356, P31, DOI 10.1016/j.foreco.2015.06.016. Harris L, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.2019. Hastie T., 2009, ELEMENTS STAT LEARNI, DOI {[}DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-84858-7]. Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428. Hecht-Nielsen R., 1988, NEURAL NETWORKS PERC, V1, P445, DOI {[}DOI 10.1016/0893-6080(88)90469-8, DOI 10.1016/B978-0-12-741252-8.50010-8]. Heikkinen RK, 2012, ECOGRAPHY, V35, P276, DOI 10.1111/j.1600-0587.2011.06999.x. Hermosilla T, 2015, REMOTE SENS ENVIRON, V170, P121, DOI 10.1016/j.rse.2015.09.004. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. Hodges JL, 2019, FIRE TECHNOL, V55, P2115, DOI 10.1007/s10694-019-00846-4. Hoffman CM, 2016, FIRE TECHNOL, V52, P221, DOI 10.1007/s10694-015-0500-3. Holden ZA, 2009, FOREST ECOL MANAG, V258, P2399, DOI 10.1016/j.foreco.2009.08.017. HomChaudhuri B, 2010, PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2009, PTS A AND B, P111. Hong HY, 2018, SCI TOTAL ENVIRON, V630, P1044, DOI 10.1016/j.scitotenv.2018.02.278. Hradsky BA, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1926. Hultquist C, 2014, REMOTE SENS LETT, V5, P723, DOI 10.1080/2150704X.2014.963733. Iliadis LS, 2005, ENVIRON MODELL SOFTW, V20, P613, DOI 10.1016/j.envsoft.2004.03.006. Jaafari A, 2019, SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES, P607, DOI 10.1016/B978-0-12-815226-3.00028-4. Jaafari A, 2019, AGR FOREST METEOROL, V266, P198, DOI 10.1016/j.agrformet.2018.12.015. Jaafari A, 2018, ECOL INFORM, V43, P200, DOI 10.1016/j.ecoinf.2017.12.006. Jakubowski J, 2019, PROC SPIE, V11055, DOI 10.1117/12.2524560. JANG JSR, 1993, IEEE T SYST MAN CYB, V23, P665, DOI 10.1109/21.256541. Jie Yuan, 2018, Pattern Recognition and Image Analysis, V28, P805, DOI 10.1134/S1054661818040168. Joao T, 2018, ECOL INDIC, V89, P199, DOI 10.1016/j.ecolind.2018.02.008. Johnstone JF, 2010, GLOBAL CHANGE BIOL, V16, P1281, DOI 10.1111/j.1365-2486.2009.02051.x. Julian K.D., 2018, 2018 AIAA GUID NAV C, DOI {[}10.2514/6.2018-1589., DOI 10.2514/6.2018-1589]. Jung M, 2013, PROCEDIA COMPUT SCI, V18, P2386, DOI 10.1016/j.procs.2013.05.410. Kane VR, 2015, FOREST ECOL MANAG, V358, P62, DOI 10.1016/j.foreco.2015.09.001. Karpatne A., 2017, MACHINE LEARNING GEO. Keane RE, 2004, ECOL MODEL, V179, P3, DOI 10.1016/j.ecolmodel.2004.03.015. Khakzad N, 2019, RELIAB ENG SYST SAFE, V189, P165, DOI 10.1016/j.ress.2019.04.006. Kim S., 2017, DEEPRAIN CONVLSTM NE. Kim SJ, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11010086. Ko B, 2010, FIRE SAFETY J, V45, P262, DOI 10.1016/j.firesaf.2010.04.001. Korotcov A, 2017, MOL PHARMACEUT, V14, P4462, DOI 10.1021/acs.molpharmaceut.7b00578. KOURTZ P, 1990, CAN J FOREST RES, V20, P428, DOI 10.1139/x90-060. Kourtz P.H., 1993, P IUFRO M STAT METH, P48. Kozik VI, 2014, OPTOELECTRON INSTRUM, V50, P395, DOI 10.3103/S8756699014040116. Kozik VI, 2013, OPTOELECTRON INSTRUM, V49, P250, DOI 10.3103/S8756699013030060. Kuhn M., 2013, APPL PREDICTIVE MODE, DOI {[}DOI 10.1007/978-1-4614-6849-3, 10.1007/978-1-4614-6849-3]. Kukaka J., 2017, ARXIV171010686, P1. Kussul N, 2017, IEEE GEOSCI REMOTE S, V14, P778, DOI 10.1109/LGRS.2017.2681128. Lagerquist R, 2017, CAN J FOREST RES, V47, P1175, DOI 10.1139/cjfr-2017-0063. Langford ZL, 2018, INT CONF DAT MIN WOR, P770, DOI 10.1109/ICDMW.2018.00116. Lary DJ, 2016, GEOSCI FRONT, V7, P3, DOI 10.1016/j.gsf.2015.07.003. Latham D.L., 1987, P S WILDL FIR 2000, P136. Lauer CJ, 2017, FOREST POLICY ECON, V83, P107, DOI 10.1016/j.forpol.2017.07.006. Levac D, 2010, IMPLEMENT SCI, V5, DOI 10.1186/1748-5908-5-69. Leys BA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176445. Li HC, 2018, INT CONF ADV CLOUD B, P298, DOI 10.1109/CBD.2018.00060. Li J, 2011, ENVIRON MODELL SOFTW, V26, P1647, DOI 10.1016/j.envsoft.2011.07.004. Li LM, 2009, INT J WILDLAND FIRE, V18, P640, DOI 10.1071/WF07136. Li SF, 2017, PALAEOGEOGR PALAEOCL, V465, P168, DOI 10.1016/j.palaeo.2016.10.028. Li TT, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8101131. Li XL, 2015, REMOTE SENS-BASEL, V7, P4473, DOI 10.3390/rs70404473. Li XQ, 2020, IEEE T CIRC SYST VID, V30, P89, DOI 10.1109/TCSVT.2018.2889193. Liang H, 2019, IEEE ACCESS, V7, P176746, DOI 10.1109/ACCESS.2019.2957837. Linn R, 2002, INT J WILDLAND FIRE, V11, P233, DOI 10.1071/WF02007. LIU Y, 2015, ZTE COMMUN, V12, P12, DOI DOI 10.3969/J.ISSN.1673-5188.2015.02.003. Liu ZL, 2018, ENVIRON REV, V26, P339, DOI 10.1139/er-2018-0034. Liu ZH, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00372.1. Liu ZY, 2013, PLOS ONE, V8, DOI {[}10.1371/journal.pone.0066666, 10.1371/journal.pone.0060190]. Lopez-Serrano PM, 2016, CAN J REMOTE SENS, V42, P690, DOI 10.1080/07038992.2016.1217485. Lozano FJ, 2008, REMOTE SENS ENVIRON, V112, P708, DOI 10.1016/j.rse.2007.06.006. Lozhkin V, 2016, IOP CONF SER-MAT SCI, V158, DOI 10.1088/1757-899X/158/1/012063. Lu Y, 2018, PSYCHOL MED, V48, P1201, DOI 10.1017/S0033291717002665. Luo GL, 2017, INT CONF SYST INFORM, P1471. LUO RS, 2013, LIFE SCI J, V10, P15. Lutes D.C., 2006, RMRSGTR164CD USDA FO, DOI {[}10.2737/RMRS-GTR-164., DOI 10.2737/RMRS-GTR-164, 10.2737/RMRS-GTR-164]. Lydersen JM, 2017, ECOL APPL, V27, P2013, DOI 10.1002/eap.1586. Lydersen JM, 2014, FOREST ECOL MANAG, V328, P326, DOI 10.1016/j.foreco.2014.06.005. MacQueen J., 1967, PROC 15 BERKELEY S M, P281, DOI DOI 10.1007/S11665-016-2173-6. Magadzire N, 2019, DIVERS DISTRIB, V25, P1012, DOI 10.1111/ddi.12921. Mallinis G, 2009, GISCI REMOTE SENS, V46, P388, DOI 10.2747/1548-1603.46.4.388. Mansuy N, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/ab1bc5. Markuzon N., 2009, 2009 IEEE APPL IM PA, P1, DOI {[}10.1109/AIPR.2009.5466309., DOI 10.1109/AIPR.2009.5466309]. Martell DL, 2015, CURR FOR REP, V1, P128, DOI 10.1007/s40725-015-0011-y. Martin Y, 2019, GEOMAT NAT HAZ RISK, V10, P385, DOI 10.1080/19475705.2018.1526219. Martin-Alcon S, 2016, FOREST ECOL MANAG, V361, P13, DOI 10.1016/j.foreco.2015.11.006. Masrur A, 2018, ENVIRON RES LETT, V13, DOI 10.1088/1748-9326/aa9a76. Mavsar R, 2013, FOREST POLICY ECON, V29, P45, DOI 10.1016/j.forpol.2012.11.009. Mayr MJ, 2018, ECOL INDIC, V91, P324, DOI 10.1016/j.ecolind.2018.04.022. McCormick R.J., 1999, P JOINT FIR SCI C WO. McGovern A, 2019, B AM METEOROL SOC, V100, P2175, DOI 10.1175/BAMS-D-18-0195.1. McGovern A, 2017, B AM METEOROL SOC, V98, P2073, DOI 10.1175/BAMS-D-16-0123.1. McGregor S., 2016, P 4 INT C COMP SUST, P5. McGregor S., 2017, FAST OPTIMIZATION WI. Minas JP, 2012, INT J WILDLAND FIRE, V21, P189, DOI 10.1071/WF10129. Mitchell, 1996, INTRO GENETIC ALGORI. MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417. Mithal V, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10010069. Mitrakis NE, 2012, INT J IMAGE DATA FUS, V3, P299, DOI 10.1080/19479832.2011.635604. Mitsopoulos I, 2017, NAT HAZARDS, V88, P1591, DOI 10.1007/s11069-017-2934-z. Molina JR, 2019, FOREST ECOL MANAG, V444, P163, DOI 10.1016/j.foreco.2019.04.034. Moritz MA, 2012, ECOSPHERE, V3, DOI 10.1890/ES11-00345.1. Mosavi A, 2018, WATER-SUI, V10, DOI 10.3390/w10111536. Muhammad K, 2018, NEUROCOMPUTING, V288, P30, DOI 10.1016/j.neucom.2017.04.083. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Nadeem K, 2020, INT J WILDLAND FIRE, V29, P11, DOI 10.1071/WF19058. Nauslar NJ, 2019, INT J CLIMATOL, V39, P1539, DOI 10.1002/joc.5899. Nelson T.A., 2017, MAPPING FOREST LANDS, P187, DOI {[}10.1007/978-1-4939- 7331-6\_5., DOI 10.1007/978-1-4939-7331-6\_5]. Nguyen NT, 2018, ECOL INFORM, V46, P74, DOI 10.1016/j.ecoinf.2018.05.009. O'Connor CD, 2017, INT J WILDLAND FIRE, V26, P587, DOI 10.1071/WF16135. Olden JD, 2008, Q REV BIOL, V83, P171, DOI 10.1086/587826. Oliveira S, 2012, FOREST ECOL MANAG, V275, P117, DOI 10.1016/j.foreco.2012.03.003. Sayad YO, 2019, FIRE SAFETY J, V104, P130, DOI 10.1016/j.firesaf.2019.01.006. Ozbayoglu AM, 2012, PROCEDIA COMPUT SCI, V12, P282, DOI 10.1016/j.procs.2012.09.070. Papakosta P, 2017, INT J WILDLAND FIRE, V26, P10, DOI 10.1071/WF15113. Parisien MA, 2014, ECOL APPL, V24, P1341, DOI 10.1890/13-1477.1. Parks SA, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/3/035002. Parks SA, 2018, ENVIRON RES LETT, V13, DOI 10.1088/1748-9326/aab791. Pearl J., 1988, PROBABILISTIC REASON. Penman TD, 2015, ENVIRON MODELL SOFTW, V67, P12, DOI 10.1016/j.envsoft.2014.12.020. Penman TD, 2014, ENVIRON MODELL SOFTW, V52, P166, DOI 10.1016/j.envsoft.2013.09.030. Penman TD, 2011, INT J WILDLAND FIRE, V20, P909, DOI 10.1071/WF10076. Pereira AA, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9111161. Peters MP, 2017, INT J WILDLAND FIRE, V26, P393, DOI {[}10.1071/WF16130, 10.1071/wf16130]. Peters MP, 2013, INT J WILDLAND FIRE, V22, P567, DOI 10.1071/WF12177. Petropoulos GP, 2010, NAT HAZARD EARTH SYS, V10, P305, DOI 10.5194/nhess-10-305-2010. Petropoulos GP, 2011, INT J APPL EARTH OBS, V13, P70, DOI 10.1016/j.jag.2010.06.008. Pham MT, 2014, RES SYNTH METHODS, V5, P371, DOI 10.1002/jrsm.1123. Phan T.C., 2019, TECHNICAL REPORT. Phillips S. B., 2006, International Journal of Global Environmental Issues, V6, P231, DOI 10.1504/IJGENVI.2006.010156. Pierce AD, 2012, FOREST ECOL MANAG, V279, P77, DOI 10.1016/j.foreco.2012.05.010. Poole D., 2017, ARTIF INTELL. Poon PK, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10111728. Pourtaghi ZS, 2016, ECOL INDIC, V64, P72, DOI 10.1016/j.ecolind.2015.12.030. Pu RL, 2004, PHOTOGRAMM ENG REM S, V70, P841, DOI 10.14358/PERS.70.7.841. Quintano C, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11151832. Quintero N, 2019, FORESTS, V10, DOI 10.3390/f10060518. Radke D, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4575. Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045. Raissi M, 2018, J COMPUT PHYS, V357, P125, DOI 10.1016/j.jcp.2017.11.039. Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1. Rasp S, 2018, MON WEATHER REV, V146, P3885, DOI 10.1175/MWR-D-18-0187.1. Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1. Reid CE, 2015, ENVIRON SCI TECHNOL, V49, P3887, DOI 10.1021/es505846r. Reside AE, 2012, DIVERS DISTRIB, V18, P213, DOI 10.1111/j.1472-4642.2011.00818.x. Riano D, 2005, LECT NOTES COMPUT SC, V3562, P489. Ribeiro M.T., 2016, ARXIV PREPRINT ARXIV. Riley K.L., 2014, UTILIZING RANDOM FOR, DOI {[}10.14195/978-989-26-0884-6\_67., DOI 10.14195/978-989-26-0884-6\_67]. Roberts DR, 2017, ECOGRAPHY, V40, P913, DOI 10.1111/ecog.02881. Rodrigues M, 2019, SCI TOTAL ENVIRON, V666, P915, DOI 10.1016/j.scitotenv.2019.02.323. Rodrigues M, 2014, ENVIRON MODELL SOFTW, V57, P192, DOI 10.1016/j.envsoft.2014.03.003. Rodriguez R, 2008, CSE 2008:11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, PROCEEDINGS, P275, DOI 10.1109/CSE.2008.15. Rodriguez R, 2009, LECT NOTES COMPUT SC, V5545, P489, DOI 10.1007/978-3-642-01973-9\_55. Roh Y, 2021, IEEE T KNOWL DATA EN, V33, P1328, DOI 10.1109/TKDE.2019.2946162. Rolnick D., 2019, ARXIV190605433. Ruffault J, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00182.1. Runge J, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10105-3. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Sa ACL, 2003, INT J REMOTE SENS, V24, P1783, DOI 10.1080/01431160210144750. Sachdeva S, 2018, NAT HAZARDS, V92, P1399, DOI 10.1007/s11069-018-3256-5. Safi Y., 2013, APPL MATH SCI, V7, P271, DOI {[}DOI 10.12988/AMS.2013.13025, 10.12988/ams.2013.13025]. Sakr G. E., 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2010), P1311, DOI 10.1109/AIM.2010.5695809. Sakr GE, 2011, ENG APPL ARTIF INTEL, V24, P888, DOI 10.1016/j.engappai.2011.02.017. Salzberg S.L., 1994, C4 5 PROGRAMS MACHIN, V16, P235, DOI 10.1007/BF00993309. San-Miguel-Ayanz J, 2012, APPROACHES TO MANAGING DISASTER - ASSESSING HAZARDS, EMERGENCIES AND DISASTER IMPACTS, P87. Sanabria LA, 2013, ENVIRON MODELL SOFTW, V50, P37, DOI 10.1016/j.envsoft.2013.08.012. Schmoldt D.L., 2001, RISK ANAL FOREST MAN, P49, DOI {[}10.1007/978-94-017-2905-5\_3., DOI 10.1007/978-94-017-2905-5\_3]. Schoenberg FP, 2016, STAT SINICA, V26, P861, DOI 10.5705/ss.2014.150. Shaddick G., 2014, SPATIAL STAT, V9, P951, DOI DOI 10.1016/J.SPASTA.2014.03.008. Shen CP, 2018, WATER RESOUR RES, V54, P8558, DOI 10.1029/2018WR022643. Sherrill KR, 2012, FIRE ECOL, V8, P38, DOI 10.4996/fireecology.0802038. Shi MY, 2016, INT GEOSCI REMOTE SE, P701, DOI 10.1109/IGARSS.2016.7729176. Shidik GF, 2014, LECT NOTES COMPUT SC, V8407, P316, DOI 10.1007/978-3-642-55032-4\_31. Simard S. J., 1991, International Journal of Wildland Fire, V1, P23, DOI 10.1071/WF9910023. Skific N., 2012, SELF ORGANIZING MAPS, P251, DOI {[}10.5772/54299, DOI 10.5772/54299]. Soliman H, 2010, IEEE SENSOR, P1900, DOI 10.1109/ICSENS.2010.5690033. Song C, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9050819. Sousa MJ, 2020, EXPERT SYST APPL, V142, DOI 10.1016/j.eswa.2019.112975. Srinivasa K., 2008, IJCSNS INT J COMPUTE, V8. Stocks BJ, 2016, FOREST CHRON, V92, P298, DOI 10.5558/tfc2016-056. Stojanova D, 2012, DATA MIN KNOWL DISC, V24, P411, DOI 10.1007/s10618-011-0213-2. Stojanova Daniela, 2006, C DAT MIN DAT WAR SI, P255. Storer J, 2016, IEEE IJCNN, P676, DOI 10.1109/IJCNN.2016.7727265. Stralberg D, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2156. Strobl C, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-25. Stroh ED, 2018, FIRE ECOL, V14, DOI 10.4996/fireecology.140110612. Subramanian S.G., 2017, 3 C REINF LEARN DEC. Subramanian S.G., 2018, FRONT ICT, V5, P6, DOI {[}10.3389/fict.2018.00006., DOI 10.3389/FICT.2018.00006]. Sullivan AL, 2009, INT J WILDLAND FIRE, V18, P387, DOI 10.1071/WF06144. Sullivan AL, 2009, INT J WILDLAND FIRE, V18, P349, DOI 10.1071/WF06143. Sullivan AL, 2009, INT J WILDLAND FIRE, V18, P369, DOI 10.1071/WF06142. Sullivan BL, 2014, BIOL CONSERV, V169, P31, DOI 10.1016/j.biocon.2013.11.003. Sun AY, 2019, ENVIRON RES LETT, V14, DOI 10.1088/1748-9326/ab1b7d. Sunar F, 2001, INT J REMOTE SENS, V22, P2265, DOI 10.1080/014311601300229818. Sutton RS, 2018, ADAPT COMPUT MACH LE, P1. Syphard AD, 2016, ECOL SOC, V21, DOI 10.5751/ES-08410-210302. Taylor SW, 2020, FRONT ENV SCI-SWITZ, V8, DOI 10.3389/fenvs.2020.527278. Taylor SW, 2013, STAT SCI, V28, P586, DOI 10.1214/13-STS451. Tehrany MS, 2019, THEOR APPL CLIMATOL, V137, P637, DOI 10.1007/s00704-018-2628-9. Thompson JR, 2010, LANDSCAPE ECOL, V25, P775, DOI 10.1007/s10980-010-9456-3. Thompson MP, 2011, J ENVIRON MANAGE, V92, P1895, DOI 10.1016/j.jenvman.2011.03.015. Toujania A, 2018, APPL ARTIF INTELL, V32, P882, DOI 10.1080/08839514.2018.1514808. Tracy JL, 2018, ECOL MODEL, V383, P52, DOI 10.1016/j.ecolmodel.2018.05.019. Tymstra C., 2019, PROG DISASTER SCI, V5, DOI {[}10.1016/j.pdisas.2019.100045., DOI 10.1016/J.PDISAS.2019.100045.]. Utkin A.B., 2002, FOREST FIRE RES WILD, V58, DOI 10.1.1.706.492\&rep=rep1\&type=pdf.. Vacchiano G, 2018, NAT HAZARD EARTH SYS, V18, P935, DOI 10.5194/nhess-18-935-2018. Vakalis D, 2004, APPL MATH MODEL, V28, P389, DOI 10.1016/j.apm.2003.10.005. Van Beusekom AE, 2018, CLIMATIC CHANGE, V146, P117, DOI 10.1007/s10584-017-2045-6. van Breugel P, 2016, ECOSYSTEMS, V19, P369, DOI 10.1007/s10021-015-9938-x. Vandal T, 2019, THEOR APPL CLIMATOL, V137, P557, DOI 10.1007/s00704-018-2613-3. Vasilakos C, 2007, INT J WILDLAND FIRE, V16, P306, DOI 10.1071/WF05091. Vasilakos C, 2009, NAT HAZARDS, V50, P125, DOI 10.1007/s11069-008-9326-3. Vecin-Arias D, 2016, AGR FOREST METEOROL, V225, P36, DOI 10.1016/j.agrformet.2016.05.003. Vega-Garcia C, 1996, AI APPLICATIONS, V10, P9. Viedma O, 2015, ECOSYSTEMS, V18, P237, DOI 10.1007/s10021-014-9824-y. Vijayakumar DBIP, 2016, FOREST ECOL MANAG, V360, P170, DOI 10.1016/j.foreco.2015.10.035. Vilar L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161344. Wagner C. E. van, 1987, Forestry Technical Report - Canadian Forestry Service. Wang Y, 2011, EXPERT SYST APPL, V38, P9580, DOI 10.1016/j.eswa.2011.01.163. Wang YB, 2019, J ALGORITHMS COMPUT, V13, DOI 10.1177/1748302619887689. Watson GL, 2019, ENVIRON POLLUT, V254, DOI 10.1016/j.envpol.2019.06.088. Wolpert DH, 1996, NEURAL COMPUT, V8, P1341, DOI 10.1162/neco.1996.8.7.1341. Wu ZW, 2015, SCI TOTAL ENVIRON, V518, P106, DOI 10.1016/j.scitotenv.2015.02.063. Xi DXDZ, 2019, ANNU REV STAT APPL, V6, P197, DOI {[}10.1146/annurev-statistics-031017100450, 10.1146/annurev-statistics-031017-100450]. Xie DW, 2014, APPL MECH MATER, V513-517, P4084, DOI 10.4028/www.scientific.net/AMM.513-517.4084. Xie Y, 2019, NEURAL COMPUT APPL, V31, P4541, DOI 10.1007/s00521-018-3515-0. Yao JY, 2018, ENVIRON SCI TECHNOL, V52, P13239, DOI 10.1021/acs.est.8b01921. Yao JY, 2018, REMOTE SENS ENVIRON, V206, P98, DOI 10.1016/j.rse.2017.12.027. Ying LX, 2018, FOREST ECOL MANAG, V424, P345, DOI 10.1016/j.foreco.2018.05.020. Young AM, 2017, ECOGRAPHY, V40, P606, DOI 10.1111/ecog.02205. Yu B, 2017, PHOTOGRAMM ENG REM S, V83, P19, DOI {[}10.14358/PERS.83.1.19, 10.14358/pers.83.1.19]. Yu Y. P., 2011, J COMPUT BIOL, V3, P47, DOI DOI 10.5897/JCBBR.9000013. Zadrozny B, 2004, P 21 INT C MACH LEAR, P114, DOI DOI 10.1145/1015330.1015425. Zald HSJ, 2018, ECOL APPL, V28, P1068, DOI 10.1002/eap.1710. Zammit O., 2006, FOR ECOL MANAG, V234, pS240, DOI {[}DOI 10.1016/j.foreco.2006.08.269, 10.1016/j.foreco.2006.08.269]. Zhang B, 2018, PROC SPIE, V10806, DOI 10.1117/12.2502974. Zhang GL, 2019, INT J DISAST RISK SC, V10, P386, DOI 10.1007/s13753-019-00233-1. Zhang Q., 2018, PROCEDIA ENG, V211, P441, DOI DOI 10.1016/J.PROENG.2017.12.034. Zhang Q., 2016, DEEP CONVOLUTIONAL N, DOI {[}10.2991/ifmeita-16.2016.105., DOI 10.2991/IFMEITA-16.2016.105]. Zhao F, 2015, IEEE GEOSCI REMOTE S, V12, P1650, DOI 10.1109/LGRS.2015.2418159. Zhao JH, 2011, COMPUT SCI INF SYST, V8, P821, DOI 10.2298/CSIS101012030Z. Zhao Y, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18030712. Zheng Z, 2017, ECOL MODEL, V348, P33, DOI 10.1016/j.ecolmodel.2016.12.022. Zou YF, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16122137. Zwirglmaier K., 2013, P 11 INT C STRUCT SA.}, Number-of-Cited-References = {359}, Times-Cited = {149}, Usage-Count-Last-180-days = {91}, Usage-Count-Since-2013 = {197}, Journal-ISO = {Environ. Rev.}, Doc-Delivery-Number = {PA3LZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000595541100011}, OA = {Green Submitted, hybrid}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000705663500007, Author = {Masood, Adil and Ahmad, Kafeel}, Title = {A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance}, Journal = {JOURNAL OF CLEANER PRODUCTION}, Year = {2021}, Volume = {322}, Month = {NOV 1}, Abstract = {Accurate air quality forecasting is critical for systematic pollution control as well as public health and wellness. Most of the traditional forecasting techniques have shown inconsistent predictive accuracy due to the non-linear, dynamic and complex nature of air pollutants. In the past few years, artificial intelligence (AI)-based methods have become the most powerful and forward-looking approaches for air pollution forecasting because of their specific features such as organic learning, high precision, superior generalization, strong fault tolerance, and ease of working with high-dimensional data. This study presents a comprehensive overview of the most widely used AI-based techniques for air pollution forecasting namely Artificial Neural Networks (ANN), Deep Neural Network (DNN), Support vector machine (SVM) and Fuzzy logic through a systematic literature review (SLR). In total 90 papers were selected which were distributed between 2003 and 2021. The SLR aims to classify the literature on AI-based air pollution forecasting from various perspectives, such as input parameters, relative frequency of application of AI techniques, performance, year of publication, journal and geographic distribution and also addresses the corresponding research questions related to this domain. The results showed that the number of citations and publications have been increasing in recent years. The most frequently applied input parameter is the air quality and the best performing AI-based technique is the DNN. On the other hand, Fuzzy logic, DNN and SVM are the three commonly used AI-based techniques for air pollution forecasting. In addition, some technological gaps in the literature and the pros and cons associated with the different AI techniques, were identified and discussed. This review article shows that AI-based techniques have triggered a resurgence of interest in air pollution forecasting and offer great potential to fundamentally change the way air pollution is forecasted in the near future.}, Publisher = {ELSEVIER SCI LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Masood, A (Corresponding Author), Jamia Millia Islamia, Dept Civil Engn, New Delhi 110025, India. Masood, Adil; Ahmad, Kafeel, Jamia Millia Islamia, Dept Civil Engn, New Delhi 110025, India.}, DOI = {10.1016/j.jclepro.2021.129072}, EarlyAccessDate = {SEP 2021}, Article-Number = {129072}, ISSN = {0959-6526}, EISSN = {1879-1786}, Keywords = {Air pollution; Artificial neural networks; Deep neural networks; Relative frequency; Fuzzy logic; Support vector machine; Systematic literature review}, Keywords-Plus = {NEURAL-NETWORK MODEL; EARLY-WARNING SYSTEM; SUPPORT VECTOR MACHINE; FUZZY TIME-SERIES; OZONE CONCENTRATION; URBAN AREA; PM2.5 CONCENTRATION; ENSEMBLE MODEL; SO2 CONCENTRATIONS; REGRESSION-MODELS}, Research-Areas = {Science \& Technology - Other Topics; Engineering; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Engineering, Environmental; Environmental Sciences}, Author-Email = {adil.engg.cvl@gmail.com kahmad2@jmi.ac.in}, Affiliations = {Jamia Millia Islamia}, ResearcherID-Numbers = {Ahmad, Kafeel/ABD-9190-2021}, Cited-References = {Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938. Agbulut U, 2020, J CLEAN PROD, V268, DOI 10.1016/j.jclepro.2020.122269. Agirre-Basurko E, 2006, ENVIRON MODELL SOFTW, V21, P430, DOI 10.1016/j.envsoft.2004.07.008. Akhtar A, 2018, DATA ENG INTELLIGENT, P563, DOI DOI 10.1007/978-981-10-3223-3\_54. Akkoyunlu A, 2010, INT J ENVIRON POLLUT, V40, P301, DOI 10.1504/IJEP.2010.031752. Al-Shammari ET, 2013, ENV SYSTEMS RES, V2, P2, DOI DOI 10.1186/2193-2697-2-2. Alimissis A, 2018, ATMOS ENVIRON, V191, P205, DOI 10.1016/j.atmosenv.2018.07.058. Aljerf L., 2016, SCI J KING FAISAL U, V17, P1. Olvera-Garcia MA, 2016, ECOL INFORM, V33, P57, DOI 10.1016/j.ecoinf.2016.04.005. Araujo LN, 2020, ENVIRON MODELL SOFTW, V123, DOI 10.1016/j.envsoft.2019.104567. Arbabsiar MH, 2020, RUD-GEOL-NAFT ZB, V35, P1, DOI 10.17794/rgn.2020.2.1. Arena P, 1995, LARGE SCALE SYSTEMS: THEORY AND APPLICATIONS 1995, VOLS 1 AND 2, P787. Awad M, 2015, EFFICIENT LEARNING M, P127, DOI {[}10.1007/978-1-4302-5990-9\_7, DOI 10.1007/978-1-4302-5990-9\_4]. Bai L, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040780. Behal V, 2021, J EXP THEOR ARTIF IN, V33, P425, DOI 10.1080/0952813X.2020.1744197. Bojadziev G., 2007, FUZZY LOGIC BUSINESS, V23, DOI {[}10.1142/6451, DOI 10.1142/6451]. Bougoudis I, 2018, NEURAL COMPUT APPL, V29, P375, DOI 10.1007/s00521-017-3125-2. Bougoudis I, 2016, COMM COM INF SC, V629, P51, DOI 10.1007/978-3-319-44188-7\_4. Bougoudis I, 2016, NEURAL COMPUT APPL, V27, P1191, DOI 10.1007/s00521-015-1927-7. Bougoudis I, 2014, COMM COM INF SC, V459, P1. Bozdag A, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114635. Brereton P, 2007, J SYST SOFTWARE, V80, P571, DOI 10.1016/j.jss.2006.07.009. Bublitz FM, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16203847. Cabaneros SM, 2019, ENVIRON MODELL SOFTW, V119, P285, DOI 10.1016/j.envsoft.2019.06.014. Chaloulakou A, 2003, SCI TOTAL ENVIRON, V313, P1, DOI 10.1016/S0048-9697(03)00335-8. Chatterjee SP, 2016, ARTIFICIAL NEURAL NETWORK FOR DRUG DESIGN, DELIVERY AND DISPOSITION, P243, DOI 10.1016/B978-0-12-801559-9.00012-0. Chaudhuri A, 2017, BANKRUPTCY PREDICTIO, DOI {[}10.1007/978-981-10-6683-2, DOI 10.1007/978-981-10-6683-2]. Chen J, 2019, ENVIRON INT, V130, DOI 10.1016/j.envint.2019.104934. Cheng CH, 2011, COMPUT MATH APPL, V62, P2016, DOI 10.1016/j.camwa.2011.06.044. Cheng Y, 2019, ATMOS ENVIRON, V200, P264, DOI 10.1016/j.atmosenv.2018.12.025. Choi H, 2018, NUCL MED MOLEC IMAG, V52, P109, DOI 10.1007/s13139-017-0504-7. Da Silva, 2017, ARTIFICIAL NEURAL NE, P21, DOI {[}DOI 10.1007/978-3-319-43162-8\_2, 10.1007/978-3-319-43162-8\_2]. Fernandez JD, 2013, J ARTIF INTELL RES, V48, P513, DOI 10.1613/jair.3908. Djuris J., 2013, COMPUTER AIDED APPL, P91, DOI DOI 10.1533/9781908818324.91. Dorohoi D.O., 2017, ELECTROMAGNETIC RAD, P41. Du SD, 2021, IEEE T KNOWL DATA EN, V33, P2412, DOI 10.1109/TKDE.2019.2954510. Dutta A, 2021, ASIAN J ATMOS ENVIRO, V15, DOI 10.5572/ajae.2020.131. Elangasinghe MA, 2014, ATMOS POLLUT RES, V5, P696, DOI 10.5094/APR.2014.079. Erdik T, 2009, EXPERT SYST APPL, V36, P4162, DOI 10.1016/j.eswa.2008.06.012. Esfandani MA., 2016, J AI DATA MIN, V4, P49, DOI 10.5829/idosi.jaidm.2016.04.01.06. Eslami E, 2020, NEURAL COMPUT APPL, V32, P7563, DOI 10.1007/s00521-019-04287-6. {[}范竣翔 Fan Junxiang], 2017, {[}测绘科学, Science of Surveying and Mapping], V42, P76. Feng X, 2015, ATMOS ENVIRON, V107, P118, DOI 10.1016/j.atmosenv.2015.02.030. Feng Y, 2011, ATMOS ENVIRON, V45, P1979, DOI 10.1016/j.atmosenv.2011.01.022. Fernando HJS, 2012, ENVIRON POLLUT, V163, P62, DOI 10.1016/j.envpol.2011.12.018. Freeman BS, 2018, J AIR WASTE MANAGE, V68, P866, DOI 10.1080/10962247.2018.1459956. Ganapathy Nagarajan, 2018, Yearb Med Inform, V27, P98, DOI 10.1055/s-0038-1667083. Gao M, 2018, ATMOS ENVIRON, V184, P129, DOI 10.1016/j.atmosenv.2018.03.027. Nieto PJG, 2018, SCI TOTAL ENVIRON, V621, P753, DOI 10.1016/j.scitotenv.2017.11.291. Nieto PJG, 2013, APPL MATH COMPUT, V219, P8923, DOI 10.1016/j.amc.2013.03.018. Ghasemi A, 2019, AIR QUAL ATMOS HLTH, V12, P59, DOI 10.1007/s11869-018-0630-0. Ghritlahre HK, 2018, RENEW SUST ENERG REV, V84, P75, DOI 10.1016/j.rser.2018.01.001. Grivas G, 2006, ATMOS ENVIRON, V40, P1216, DOI 10.1016/j.atmosenv.2005.10.036. Heuvelmans MA, 2021, LUNG CANCER, V154, P1, DOI 10.1016/j.lungcan.2021.01.027. Hoshyaripour G, 2016, ATMOS ENVIRON, V145, P365, DOI 10.1016/j.atmosenv.2016.09.061. Ibarra-Berastegi G, 2008, ENVIRON MODELL SOFTW, V23, P622, DOI 10.1016/j.envsoft.2007.09.003. Jain S, 2010, AIR QUAL ATMOS HLTH, V3, P203, DOI 10.1007/s11869-010-0073-8. Jerrett M, 2005, J EXPO ANAL ENV EPID, V15, P185, DOI 10.1038/sj.jea.7500388. Jiang AH, 2015, I C INTELL COMPUT TE, P722, DOI 10.1109/ICICTA.2015.183. Carbajal-Hernandez JJ, 2012, ATMOS ENVIRON, V60, P37, DOI 10.1016/j.atmosenv.2012.06.004. Kadri C.T., 2013, INT J COMPUT SCI, V10, P129. Kandya A., 2013, J CIV ENV ENG, V01, P1, DOI 10.4172/2165-784x.s1-006. Karatzas KD, 2007, SIMUL MODEL PRACT TH, V15, P1310, DOI 10.1016/j.simpat.2007.09.005. Kim K, 2018, IEEE ACCESS, V6, P75216, DOI 10.1109/ACCESS.2018.2884827. Kisi O, 2017, AIR QUAL ATMOS HLTH, V10, P873, DOI 10.1007/s11869-017-0477-9. Kitcharoen K., 2004, ABAC J, V24, P20. Kouziokas GN, 2020, APPL SOFT COMPUT, V93, DOI 10.1016/j.asoc.2020.106410. Krishan M, 2019, AIR QUAL ATMOS HLTH, V12, P899, DOI 10.1007/s11869-019-00696-7. Lamaazi H, 2018, J NETW COMPUT APPL, V117, P42, DOI 10.1016/j.jnca.2018.05.015. Li JG, 2019, J CONTROL SCI ENG, V2019, DOI 10.1155/2019/5304535. Li SZ, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10061953. Li X, 2017, ENVIRON POLLUT, V231, P997, DOI 10.1016/j.envpol.2017.08.114. Li Z., 2006, INTEGRATION FUZZY LO, DOI {[}10.1007/3-540-32502-6, DOI 10.1007/3-540-32502-6]. Lin YQ, 2007, ATMOS ENVIRON, V41, P3502, DOI 10.1016/j.atmosenv.2006.11.060. Liu H, 2019, ATMOS POLLUT RES, V10, P1588, DOI 10.1016/j.apr.2019.05.007. Luna AS, 2014, ATMOS ENVIRON, V98, P98, DOI 10.1016/j.atmosenv.2014.08.060. Luo Y, 2019, SCI TOTAL ENVIRON, V696, DOI 10.1016/j.scitotenv.2019.133983. Ma J, 2020, SCI TOTAL ENVIRON, V705, DOI 10.1016/j.scitotenv.2019.135771. Masood A, 2020, PROCEDIA COMPUT SCI, V167, P2101, DOI 10.1016/j.procs.2020.03.258. Masood S, 2020, ARAB J SCI ENG, V45, P2901, DOI 10.1007/s13369-019-04200-2. McKendry IG, 2002, J AIR WASTE MANAGE, V52, P1096, DOI 10.1080/10473289.2002.10470836. Menghi R, 2019, J CLEAN PROD, V240, DOI 10.1016/j.jclepro.2019.118276. Ministry of Energy, 2019, ENERGY SUSTAINABLE D. Mintz R, 2005, COMPUT CHEM ENG, V29, P2049, DOI 10.1016/j.compchemeng.2005.01.008. Mishra D, 2016, ENVIRON TECHNOL INNO, V5, P83, DOI 10.1016/j.eti.2016.01.001. Mishra D, 2015, ATMOS POLLUT RES, V6, P99, DOI 10.5094/APR.2015.012. Mishra D, 2015, ATMOS ENVIRON, V102, P239, DOI 10.1016/j.atmosenv.2014.11.050. MLAKAR P, 1994, NATO-CHAL M, V18, P659. Mo XY, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16193505. Moazami S, 2016, ATMOS POLLUT RES, V7, P412, DOI 10.1016/j.apr.2015.10.022. Moisan S, 2018, INT J FORECASTING, V34, P566, DOI 10.1016/j.ijforecast.2018.03.007. Morio J, 2015, ESTIMATION RARE EVEN. Murillo-Escobar J, 2019, URBAN CLIM, V29, DOI 10.1016/j.uclim.2019.100473. Nagendra SMS, 2008, ENVIRON MONIT ASSESS, V139, P247, DOI 10.1007/s10661-007-9831-y. Nagendra SMS, 2006, ECOL MODEL, V190, P99, DOI 10.1016/j.ecolmodel.2005.01.062. Navares R, 2020, ECOL INFORM, V55, DOI 10.1016/j.ecoinf.2019.101019. Nilashi M, 2020, INT J FUZZY SYST, V22, P1376, DOI 10.1007/s40815-020-00828-7. Noori R, 2010, ATMOS ENVIRON, V44, P476, DOI 10.1016/j.atmosenv.2009.11.005. Olivieri A.C, 2019, CHEMOMETRICS STAT NE, DOI {[}10.1016/B978-0-12-409547-2.13966-6, DOI 10.1016/B978-0-12-409547-2.13966-6]. Park S, 2018, J HAZARD MATER, V341, P75, DOI 10.1016/j.jhazmat.2017.07.050. Paschalidou AK, 2011, ENVIRON SCI POLLUT R, V18, P316, DOI 10.1007/s11356-010-0375-2. Pastor-Barcenasa O, 2005, ECOL MODEL, V182, P149, DOI 10.1016/j.ecolmodel.2004.07.015. Pisoni E, 2009, ENG APPL ARTIF INTEL, V22, P593, DOI 10.1016/j.engappai.2009.04.002. Polat K, 2012, NEURAL COMPUT APPL, V21, P2153, DOI 10.1007/s00521-011-0661-z. Qi YL, 2019, SCI TOTAL ENVIRON, V664, P1, DOI 10.1016/j.scitotenv.2019.01.333. Rahimi A, 2017, ECOL PROCESS, V6, DOI 10.1186/s13717-016-0069-x. Rahman MM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12104045. Razeghi A., 2014, INT J RENEWABLE ENER. Roy K., 2015, NEWER QSAR TECHNIQUE. Sahiner B, 2019, MED PHYS, V46, pe1, DOI 10.1002/mp.13264. Salas R, 2021, TRANSPORT RES D-TR E, V91, DOI 10.1016/j.trd.2020.102689. Sapra R., 2015, CURR MED RES PRACT, V5, P119, DOI {[}10.1016/j.cmrp.2015.05.007, DOI 10.1016/J.CMRP.2015.05.007]. Schlink U, 2003, ATMOS ENVIRON, V37, P3237, DOI 10.1016/S1352-2310(03)00330-3. Sergeev A., 2018, ARXIV180205799. Shakerkhatibi M, 2015, ENV HEALTH ENG MANAG, V2, P117. Shang ZG, 2018, CHIN AUTOM CONGR, P2341, DOI 10.1109/CAC.2018.8623175. Slini T, 2003, INT J ENVIRON POLLUT, V20, P218, DOI 10.1504/IJEP.2003.004279. Soh PW, 2018, IEEE ACCESS, V6, P38186, DOI 10.1109/ACCESS.2018.2849820. Sohn SH, 1999, KOREAN J CHEM ENG, V16, P382, DOI 10.1007/BF02707129. Song YL, 2015, ATMOS ENVIRON, V118, P58, DOI 10.1016/j.atmosenv.2015.06.032. Subramanyam V, 2008, EVOLUTION ARTIFICIAL. Suleiman A, 2016, ENVIRON MODEL ASSESS, V21, P731, DOI 10.1007/s10666-016-9507-5. Sun Q, 2019, CRIT REV FOOD SCI, V59, P2258, DOI 10.1080/10408398.2018.1446900. Sun W, 2020, ATMOS POLLUT RES, V11, P110, DOI 10.1016/j.apr.2020.02.022. Tamas Wani, 2014, Mathematical Modelling in Civil Engineering, V10, P29, DOI 10.2478/mmce-2014-0004. Thanki R, 2019, MACHINE LEARNING IN BIO-SIGNAL ANALYSIS AND DIAGNOSTIC IMAGING, P273, DOI 10.1016/B978-0-12-816086-2.00011-4. Thompson JA, 2012, HYDROPEDOLOGY: SYNERGISTIC INTEGRATION OF SOIL SCIENCE AND HYDROLOGY, P665, DOI 10.1016/B978-0-12-386941-8.00021-6. Turias IJ, 2008, ENVIRON MONIT ASSESS, V143, P131, DOI 10.1007/s10661-007-9963-0. Turksen I.B., 1999, HDB FUZZ SET SER, P479. Valput D, 2020, NEURAL COMPUT APPL, V32, P9331, DOI 10.1007/s00521-019-04442-z. Vieira S, 2017, NEUROSCI BIOBEHAV R, V74, P58, DOI 10.1016/j.neubiorev.2017.01.002. Wang JZ, 2019, J CLEAN PROD, V234, P54, DOI 10.1016/j.jclepro.2019.06.201. Wang JZ, 2018, APPL SOFT COMPUT, V71, P783, DOI 10.1016/j.asoc.2018.07.030. Wang JZ, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14030249. Wang JS, 2018, NEUROCOMPUTING, V314, P198, DOI 10.1016/j.neucom.2018.06.049. Wang P, 2017, ATMOS POLLUT RES, V8, P850, DOI 10.1016/j.apr.2017.01.003. Wang P, 2015, SCI TOTAL ENVIRON, V505, P1202, DOI 10.1016/j.scitotenv.2014.10.078. Wardah W, 2019, COMPUT BIOL CHEM, V81, P1, DOI 10.1016/j.compbiolchem.2019.107093. World Health Organization, 2017, INH SUST WORLD ATL C. Xayasouk T., 2018, WIT T ECOL ENV, V230, P71, DOI {[}10.2495/AIR180071, DOI 10.2495/AIR180071]. Xu YZ, 2017, ENVIRON POLLUT, V223, P435, DOI 10.1016/j.envpol.2017.01.043. Xu YZ, 2017, ATMOS ENVIRON, V148, P239, DOI 10.1016/j.atmosenv.2016.10.046. Yasaka K, 2018, JPN J RADIOL, V36, P257, DOI 10.1007/s11604-018-0726-3. Yeganeh B, 2012, ATMOS ENVIRON, V55, P357, DOI 10.1016/j.atmosenv.2012.02.092. Yeganeh B, 2017, ENVIRON MODELL SOFTW, V88, P84, DOI 10.1016/j.envsoft.2016.11.017. Yetilmezsoy K, 2012, AEROSOL AIR QUAL RES, V12, P1217, DOI 10.4209/aaqr.2012.07.0163. Yi JS, 1996, ENVIRON POLLUT, V92, P349, DOI 10.1016/0269-7491(95)00078-X. Yildirim Y, 2006, CHEMOSPHERE, V63, P1575, DOI 10.1016/j.chemosphere.2005.08.070. Zhai BX, 2018, SCI TOTAL ENVIRON, V635, P644, DOI 10.1016/j.scitotenv.2018.04.040. Zhang B, 2020, ENVIRON MODELL SOFTW, V124, DOI 10.1016/j.envsoft.2019.104600. Zhang C, 2016, MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, P297, DOI 10.1145/2964284.2967230. Zhang H, 2013, J AIR WASTE MANAGE, V63, P755, DOI 10.1080/10962247.2012.755940. Zhang XD, 2020, IEEE ACCESS, V8, P82187, DOI 10.1109/ACCESS.2020.2991538. Zhou YL, 2019, J CLEAN PROD, V209, P134, DOI 10.1016/j.jclepro.2018.10.243.}, Number-of-Cited-References = {154}, Times-Cited = {30}, Usage-Count-Last-180-days = {25}, Usage-Count-Since-2013 = {93}, Journal-ISO = {J. Clean Prod.}, Doc-Delivery-Number = {WE5KD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000705663500007}, DA = {2023-04-22}, } @article{ WOS:000836510100013, Author = {Mora, Javier}, Title = {Projections of data science in cardiac surgery}, Journal = {REVISTA MEDICA CLINICA LAS CONDES}, Year = {2022}, Volume = {33}, Number = {3}, Pages = {294-306}, Month = {MAY-JUN}, Abstract = {Artificial Intelligence (AI) has the current impact that electricity had; and data, its raw material, is the new oil of the modern age. Finding the value of it in the context of its clinical utility is the link that brings computer science closer to health science. Decision-making based on proprietary data supported by computational algorithms that ``learn{''} to solve a problem with large amounts of data is leading personalized and precision medicine to play an increasingly relevant role. Surgery is no exception. With technologies that seem to be futuristic and distant, and sometimes confusing, it is a duty of popular science to publish the state of the art of a reality with which we live daily. Knowing the bases of the computer since from publications of Alan Turing in 1937, allows us to better understand why we are witnessing today a historical moment in which a large volume of data converges with a great computational power, which has led to the current development of these techniques, that today we see transversally in all industries, such as in health. That is why this review aims to gather and clarify the most relevant concepts of data science in general, linked to its applications and development in medicine and cardiac surgery. With this, it is intended to achieve an approach, at least theoretical, to the full potential that modern techniques in data computation allow.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {Spanish}, Affiliation = {Mora, J (Corresponding Author), Clin Las Condes, Ciencia Datos Clin, Cirugia Cardiovasc ECMO, Santiago, Chile. Mora, Javier, Clin Las Condes, Ciencia Datos Clin, Cirugia Cardiovasc ECMO, Santiago, Chile.}, DOI = {10.1016/j.rmclc.2022.05.007}, EarlyAccessDate = {JUN 2022}, EISSN = {0716-8640}, Keywords = {Data Sciences; Machine Learning; Artificial Intelligence; Deep Learning; Clinical Decision Support Systems; Cardiac Surgery; Data}, Keywords-Plus = {SUPPORT}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {jmorap@clinicalascondes.cl}, Affiliations = {Clinica Las Condes}, Cited-References = {Allyn J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169772. {[}Anonymous], 2016, NAT METHODS, DOI {[}DOI 10.1038/nature14539, DOI 10.1038/nmeth.3707]. Arney D, 2018, LECT NOTES COMPUT SC, V11041, P39, DOI 10.1007/978-3-030-01201-4\_5. Avrunin GS, 2018, 2018 IEEE/ACM INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING IN HEALTHCARE SYSTEMS (SEHS), P2, DOI 10.1145/3194696.3194705. Azari DP, 2019, ANN SURG, V269, P574, DOI 10.1097/SLA.0000000000002478. BLACKSTONE EH, 1986, J AM STAT ASSOC, V81, P615, DOI 10.2307/2288989. BLACKSTONE EH, 1976, J THORAC CARDIOV SUR, V72, P661. Blackstone EH, 2018, J AM COLL CARDIOL, V72, P650, DOI 10.1016/j.jacc.2018.05.045. Bouget D, 2017, MED IMAGE ANAL, V35, P633, DOI 10.1016/j.media.2016.09.003. CODD EF, 1970, COMMUN ACM, V13, P377, DOI {[}10.1145/362384.362685, 10.1145/357980.358007]. Dalianis H., 2018, CLIN TEXT MINING SEC, DOI {[}10.1007/978-3-319-78503-5, DOI 10.1007/978-3-319-78503-5]. Dias RD, 2020, MINERVA CARDIOANGIOL, V68, P532, DOI 10.23736/S0026-4725.20.05235-4. Dias RD, 2018, LECT NOTES COMPUT SC, V11041, P62, DOI 10.1007/978-3-030-01201-4\_8. Dias RD, 2019, ACAD MED, V94, P427, DOI 10.1097/ACM.0000000000002414. Dosis A, 2005, ARCH SURG-CHICAGO, V140, P293, DOI 10.1001/archsurg.140.3.293. Fayyad U, 1996, AI MAG, V17, P37. Fecso AB, 2018, BRIT J SURG, V105, P1044, DOI 10.1002/bjs.10811. Fierro C, 2020, WORKSHOP PAPER AI4AH. Fierro C., 2019, DISENO DESARROLLO MO. Forestier G, 2012, J BIOMED INFORM, V45, P255, DOI 10.1016/j.jbi.2011.11.002. Gleichgerrcht E, 2018, EPILEPSIA, V59, P1643, DOI 10.1111/epi.14528. Goldenberg MG, 2017, JAMA SURG, V152, P972, DOI 10.1001/jamasurg.2017.2888. Hammerman Robin, 2015, ADAS LEGACY CULTURES. Hashimoto DA, 2018, ANN SURG, V268, P70, DOI 10.1097/SLA.0000000000002693. Hazlehurst B, 2007, J BIOMED INFORM, V40, P539, DOI 10.1016/j.jbi.2007.02.001. Jannin P, 2002, IEEE T MED IMAGING, V21, P1445, DOI 10.1109/TMI.2002.806568. Joshi AV, 2020, MACHINE LEARNING ART, P9. Jung JJ, 2020, ANN SURG, V271, P122, DOI 10.1097/SLA.0000000000002863. Kenngott HG, 2017, INNOV SURG SCI, V2, P139, DOI 10.1515/iss-2017-0012. Kilic A, 2020, ANN THORAC SURG, V109, P1323, DOI 10.1016/j.athoracsur.2019.09.042. Kirklin JK, 2018, J AM COLL CARDIOL, V72, P660, DOI 10.1016/j.jacc.2018.06.007. Kirklin JK, 2014, J HEART LUNG TRANSPL, V33, P12, DOI 10.1016/j.healun.2013.11.001. Lee HC, 2018, J CLIN MED, V7, DOI 10.3390/jcm7100322. Loftus TJ, 2019, JAMA SURG, V154, P791, DOI 10.1001/jamasurg.2019.1510. Maier-Hein L, 2017, NAT BIOMED ENG, V1, P691, DOI 10.1038/s41551-017-0132-7. Miotto R, 2018, BRIEF BIOINFORM, V19, P1236, DOI 10.1093/bib/bbx044. Mitchell T, 2017, MCGRAW HILL SERIES C. Nagy DA, 2017, 2017 IEEE 30TH NEUMANN COLLOQUIUM (NC), P59. Obermeyer Z, 2016, NEW ENGL J MED, V375, P1216, DOI 10.1056/NEJMp1606181. Padoy N, 2019, MINIM INVASIV THER, V28, P82, DOI 10.1080/13645706.2019.1584116. Rajkomar A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0029-1. Rance Geoffrey, 2019, J Extra Corpor Technol, V51, P38. Rosenblatt F., 1957, 854601 CORN AER LAB. Shademan A, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aad9398. Shen H, 2018, INT J MED ROBOT COMP, V14, DOI 10.1002/rcs.1943. Shickel B, 2018, IEEE J BIOMED HEALTH, V22, P1589, DOI 10.1109/JBHI.2017.2767063. Turing A.M., 1948, INTELLIGENT MACHINER. Turing AM, 1937, P LOND MATH SOC, V42, P230, DOI 10.1112/plms/s2-42.1.230. Turing AM, 1969, MACH INTELL, V5, P3. Turing AM., 1950, MIND, VLIX, P433, DOI {[}10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]. Unhelkar VV, 2018, IEEE ROBOT AUTOM LET, V3, P2394, DOI 10.1109/LRA.2018.2812906. Vaswani A, 2017, ADV NEUR IN, V30. Vercauteren T, 2020, P IEEE, V108, P198, DOI 10.1109/JPROC.2019.2946993. Wahr JA, 2013, CIRCULATION, V128, P1139, DOI 10.1161/CIR.0b013e3182a38efa. Wojnarski CM, 2018, J THORAC CARDIOV SUR, V155, P461, DOI 10.1016/j.jtcvs.2017.08.123. Yoon DY, 2010, J THORAC CARDIOV SUR, V139, P283, DOI 10.1016/j.jtcvs.2009.08.055. Zenati MA, 2020, SEMIN THORAC CARDIOV, V32, P1, DOI 10.1053/j.semtcvs.2019.10.011. Zenati MA, 2019, SEMIN THORAC CARDIOV, V31, P394, DOI 10.1053/j.semtcvs.2018.12.003. Zhao J, 2018, SURG LAPARO ENDO PER, V28, pE1, DOI 10.1097/SLE.0000000000000498.}, Number-of-Cited-References = {59}, Times-Cited = {1}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {4}, Journal-ISO = {Rev. Med. Clin. Condes}, Doc-Delivery-Number = {3O0CL}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000836510100013}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000642903600001, Author = {Xia, Jun and Li, Zhe and Zeng, Sidong and Zou, Lei and She, Dunxian and Cheng, Dandong}, Title = {Perspectives on eco-water security and sustainable development in the Yangtze River Basin}, Journal = {GEOSCIENCE LETTERS}, Year = {2021}, Volume = {8}, Number = {1}, Month = {APR 23}, Abstract = {The Yangtze River, the largest river in China, has been facing major challenges in massive flooding and eco-environmental health over the past decades. Sustainable socioeconomic development in the Yangtze River Basin depends on water and ecosystem security. This overview addresses eco-water security under the changing environment of the Yangtze River Basin. Looking forward to a healthy Yangtze River in the future, there are still uncertainties regarding how to assess and wisely manage the Yangtze River through a systematic, integrated approach applied to multiple dimensions, water, biodiversity, ecological services, and resilience, for the sustainable development of ecosystems and human beings. The Yangtze Simulator, an integrated river basin model powered by artificial intelligence and interdisciplinary science, is introduced and discussed, and it will serve as a robust tool for good governance of the Yangtze River Basin.}, Publisher = {SPRINGER}, Address = {ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES}, Type = {Review}, Language = {English}, Affiliation = {Xia, J (Corresponding Author), Wuhan Univ, State Key Lab Water Resources \& Hydro Power Engn, Wuhan 430072, Peoples R China. Xia, J (Corresponding Author), Chinese Acad Sci, Inst Geog Sci \& Nat Resources Res, Beijing 100101, Peoples R China. Xia, Jun; She, Dunxian, Wuhan Univ, State Key Lab Water Resources \& Hydro Power Engn, Wuhan 430072, Peoples R China. Xia, Jun; Zou, Lei, Chinese Acad Sci, Inst Geog Sci \& Nat Resources Res, Beijing 100101, Peoples R China. Li, Zhe; Zeng, Sidong, Chinese Acad Sci, Chongqing Inst Green \& Lntelligent Technol, Chongqing 400714, Peoples R China. Cheng, Dandong, Northwest Univ, Coll Urban \& Environm Sci, Xian 710127, Peoples R China.}, DOI = {10.1186/s40562-021-00187-7}, Article-Number = {18}, ISSN = {2196-4092}, Keywords = {Eco-water security; Environmental change; Sustainable development; Yangtze Simulator; Integrated management}, Research-Areas = {Geology; Meteorology \& Atmospheric Sciences}, Web-of-Science-Categories = {Geosciences, Multidisciplinary; Meteorology \& Atmospheric Sciences}, Author-Email = {xiajun666@whu.edu.cn}, Affiliations = {Wuhan University; Chinese Academy of Sciences; Institute of Geographic Sciences \& Natural Resources Research, CAS; Chinese Academy of Sciences; Northwest University Xi'an}, ResearcherID-Numbers = {Li, Zhe/J-4626-2016}, ORCID-Numbers = {Li, Zhe/0000-0003-1743-7906}, Funding-Acknowledgement = {Strategic Priority Research Program of the Chinese Academy of Sciences {[}XDA23040304]; National Natural Science Foundation of China {[}41890823]}, Funding-Text = {This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDA23040304), National Natural Science Foundation of China (No. 41890823).}, Cited-References = {Akhtar MK, 2013, ENVIRON MODELL SOFTW, V49, P1, DOI 10.1016/j.envsoft.2013.07.006. Akhtar MK, 2019, INT J GLOBAL WARM, V17, P59. Allan C, 2013, CURR OPIN ENV SUST, V5, P625, DOI 10.1016/j.cosust.2013.09.004. Best J, 2019, NAT GEOSCI, V12, P7, DOI 10.1038/s41561-018-0262-x. Betts HW., 2006, YANGTZE RIVER FLOOD. Bigas H., 2013, WATER SECURITY GLOBA, P47. Braga B, 2014, WATER FUTURE HUMANIT. Castello L, 2016, GLOBAL CHANGE BIOL, V22, P990, DOI 10.1111/gcb.13173. Chai Y, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41583-6. Chen DQ, 2009, ENVIRON BIOL FISH, V85, P337, DOI 10.1007/s10641-009-9517-0. Chen J, 2016, RENEW SUST ENERG REV, V56, P18, DOI 10.1016/j.rser.2015.11.043. Cherry W.A., 1995, PEACE RES, V27, P87. Daily C, 2016, CHONGQING. Davies EGR., 2010, INTERDISCIP ENV REV, V11, P127, DOI {[}10.1504/IER.2010.037903, DOI 10.1504/IER.2010.037903]. Davies EGR, 2011, ADV WATER RESOUR, V34, P684, DOI 10.1016/j.advwatres.2011.02.010. de Grenade R, 2016, CURR OPIN ENV SUST, V21, P15, DOI 10.1016/j.cosust.2016.10.009. Denman KL, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P499. Di ZZ, 2019, WATER-SUI, V11, DOI 10.3390/w11020339. Feng LH, 2011, DISASTER ADV, V4, P59. Floehr T, 2013, ENVIRON SCI POLLUT R, V20, P6934, DOI 10.1007/s11356-013-1666-1. Gu CL, 2011, HABITAT INT, V35, P544, DOI 10.1016/j.habitatint.2011.03.002. Guerry AD, 2015, P NATL ACAD SCI USA, V112, P7348, DOI 10.1073/pnas.1503751112. Han J, 2017, J CLEAN PROD, V141, P1040, DOI 10.1016/j.jclepro.2016.09.177. Han XX, 2018, REMOTE SENS ENVIRON, V204, P799, DOI 10.1016/j.rse.2017.09.023. Hough P, 2017, RETHINKING SECURITY, P183, DOI {[}10.1057/978-1-137-52542-0\_13, DOI 10.1057/978-1-137-52542-0\_13]. IIASA, 1989, THREATS GLOBAL SECUR, P20. Kruger T, 2012, MICROB ECOL, V63, P199, DOI 10.1007/s00248-011-9899-3. Le C, 2010, ENVIRON MANAGE, V45, P662, DOI 10.1007/s00267-010-9440-3. Li W., 2020, YANGTZE RIVER, V51, P49. Li Z, 2019, ECOHYDROL HYDROBIOL, V19, P317, DOI 10.1016/j.ecohyd.2018.08.005. Liu WW, 2020, ECOL INDIC, V113, DOI 10.1016/j.ecolind.2020.106184. Morgan K, 2013, YANGTZE RIVER GEOGRA, P65. Qi WD, 2014, SCI TOTAL ENVIRON, V472, P789, DOI 10.1016/j.scitotenv.2013.11.019. Ramachandra TV, 2020, CURR SCI INDIA, V118, P1379, DOI 10.18520/cs/v118/i9/1379-1393. Ramachandra TV, 2018, YALE J BIOL MED, V91, P431. Shi HY, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102965. Simonovic SP, 2020, WATER-SUI, V12, DOI 10.3390/w12123349. Sun CC, 2013, ENVIRON SCI POLLUT R, V20, P8871, DOI 10.1007/s11356-013-1859-7. Wang Luhai, 2020, Hupo Kexue, V32, P924. Wang PL, 2012, MICROB ECOL, V63, P369, DOI 10.1007/s00248-011-9917-5. Wen SS, 2020, CLIMATIC CHANGE, V163, P1207, DOI 10.1007/s10584-020-02929-6. Xia J, 2012, WATER INT, V37, P509, DOI 10.1080/02508060.2012.729176. Xia WT, 2020, ECOHYDROLOGY, V13, DOI 10.1002/eco.2235. Xu H, 2010, LIMNOL OCEANOGR, V55, P420, DOI 10.4319/lo.2010.55.1.0420. Xu P, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11195300. Xu XB, 2018, LAND USE POLICY, V79, P447, DOI 10.1016/j.landusepol.2018.08.037. Yang RongJin, 2020, Research of Environmental Sciences, V33, P1091, DOI 10.13198/j.issn.1001-6929.2020.04.20. Yang XK, 2016, GEOFORUM, V69, P1, DOI 10.1016/j.geoforum.2015.11.019. Ye XC, 2020, WATER-SUI, V12, DOI 10.3390/w12061809. Zalewski M, 2002, HYDROLOG SCI J, V47, P823, DOI 10.1080/02626660209492986. Zalewski M, 2018, ECOHYDROL HYDROBIOL, V18, P309, DOI 10.1016/j.ecohyd.2018.12.001. Zalewski M, 2018, ECOHYDROL HYDROBIOL, V18, P93, DOI 10.1016/j.ecohyd.2018.03.001. Zalewski M, 2015, J HYDROL ENG, V20, DOI 10.1061/(ASCE)HE.1943-5584.0000999. Zalewski Maciej, 2013, Ecohydrology \& Hydrobiology, V13, P97, DOI 10.1016/j.ecohyd.2013.06.001. Zalewskia M, 2016, ECOHYDROL HYDROBIOL, V16, P1, DOI 10.1016/j.ecohyd.2016.01.001.}, Number-of-Cited-References = {55}, Times-Cited = {9}, Usage-Count-Last-180-days = {45}, Usage-Count-Since-2013 = {112}, Journal-ISO = {Geosci. Lett.}, Doc-Delivery-Number = {RR1YX}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000642903600001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000484387600025, Author = {Parselia, Elisavet and Kontoes, Charalampos and Tsouni, Alexia and Hadjichristodoulou, Christos and Kioutsioukis, Ioannis and Magiorkinis, Gkikas and Stilianakis, I, Nikolaos}, Title = {Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review}, Journal = {REMOTE SENSING}, Year = {2019}, Volume = {11}, Number = {16}, Month = {AUG}, Abstract = {Earth Observation (EO) data can be leveraged to estimate environmental variables that influence the transmission cycle of the pathogens that lead to mosquito-borne diseases (MBDs). The aim of this scoping review is to examine the state-of-the-art and identify knowledge gaps on the latest methods that used satellite EO data in their epidemiological models focusing on malaria, dengue and West Nile Virus (WNV). In total, 43 scientific papers met the inclusion criteria and were considered in this review. Researchers have examined a wide variety of methodologies ranging from statistical to machine learning algorithms. A number of studies used models and EO data that seemed promising and claimed to be easily replicated in different geographic contexts, enabling the realization of systems on regional and national scales. The need has emerged to leverage furthermore new powerful modeling approaches, like artificial intelligence and ensemble modeling and explore new and enhanced EO sensors towards the analysis of big satellite data, in order to develop accurate epidemiological models and contribute to the reduction of the burden of MBDs.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Parselia, E (Corresponding Author), Natl Observ Athens, Inst Space Applicat \& Remote Sensing, Athens 15236, Greece. Parselia, Elisavet; Kontoes, Charalampos; Tsouni, Alexia, Natl Observ Athens, Inst Space Applicat \& Remote Sensing, Athens 15236, Greece. Hadjichristodoulou, Christos, Univ Thessaly, Fac Med, Dept Hyg \& Epidemiol, Larisa 41500, Greece. Kioutsioukis, Ioannis, Univ Patras, Dept Phys, Rion 26504, Greece. Magiorkinis, Gkikas, Univ Athens, Med Sch, Dept Hyg Epidemiol \& Med Stat, Athens 11527, Greece. Stilianakis, Nikolaos, I, European Commiss, Joint Res Ctr, I-21027 Ispra, VA, Italy. Stilianakis, Nikolaos, I, Univ Erlangen Nurnberg, Dept Biometry \& Epidemiol, D-91054 Erlangen, Germany.}, DOI = {10.3390/rs11161862}, Article-Number = {1862}, EISSN = {2072-4292}, Keywords = {mosquito-borne infectious diseases; Satellite Earth Observation data; epidemiological modeling; entomological data; vector-borne diseases; Earth Observation for health; malaria; dengue; West Nile Virus; scoping review}, Keywords-Plus = {VEGETATION INDEX; AEDES-AEGYPTI; FEVER RISK; TEMPERATURE; EVAPOTRANSPIRATION; TRANSMISSION; DYNAMICS; DISTRICT; IMAGERY; URBAN}, Research-Areas = {Environmental Sciences \& Ecology; Geology; Remote Sensing; Imaging Science \& Photographic Technology}, Web-of-Science-Categories = {Environmental Sciences; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science \& Photographic Technology}, Author-Email = {eparselia@noa.gr}, Affiliations = {National Observatory of Athens; University of Thessaly; University of Patras; National \& Kapodistrian University of Athens; European Commission Joint Research Centre; EC JRC ISPRA Site; University of Erlangen Nuremberg}, ResearcherID-Numbers = {KONTOES, Charalampos/L-5514-2013 Kioutsioukis, Ioannis/B-6866-2016 }, ORCID-Numbers = {Hadjichristodoulou, Christos/0000-0002-4769-8376 Tsouni, Alexia/0000-0003-2223-1697 Parselia, Elisavet/0000-0002-2852-1882 Kioutsioukis, Ioannis/0000-0002-4653-8442}, Cited-References = {Adde A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0164685. Adimi F, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-125. Albergel C, 2015, J GEOPHYS RES-ATMOS, V120, P1361, DOI 10.1002/2014JD022505. Amadi JA, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199357. Amek N, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-86. Tran A, 2014, INT J HEALTH GEOGR, V13, DOI 10.1186/1476-072X-13-26. Arboleda S, 2012, J VECTOR ECOL, V37, P37, DOI 10.1111/j.1948-7134.2012.00198.x. Arksey H., 2005, INT J SOC RES METHOD, V8, P19, DOI {[}DOI 10.1080/1364557032000119616, 10.1080/1364557032000119616]. Ashby J, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9040328. Atieli HE, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-241. Ayala RG, 2014, ASSESSING EFFECTS CL. Barbazan P, 2010, MED VET ENTOMOL, V24, P66, DOI 10.1111/j.1365-2915.2009.00848.x. Bauwens I, 2012, INT GEOSCI REMOTE SE, P7252, DOI 10.1109/IGARSS.2012.6351988. Benali A, 2014, REMOTE SENS ENVIRON, V145, P116, DOI 10.1016/j.rse.2014.01.014. Benedum CM, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006935. Bertolotti L, 2008, VIROLOGY, V374, P381, DOI 10.1016/j.virol.2007.12.040. Bhatt S, 2013, NATURE, V496, P504, DOI 10.1038/nature12060. Buczak AL, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-124. Cao GL, 2014, HYDROL PROCESS, V28, P1797, DOI 10.1002/hyp.9732. Catry T., 2016, P 2016 EUR SPAC AG L. Catry T, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15030468. Chabot-Couture G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094741. Chuang TW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046882. Conley AK, 2014, PARASITE VECTOR, V7, DOI 10.1186/1756-3305-7-289. de Oliveira EC, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-420. Diboulo E, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0679-7. Dohm DJ, 2002, J MED ENTOMOL, V39, P221, DOI 10.1603/0022-2585-39.1.221. Ford TE, 2009, EMERG INFECT DIS, V15, P1341, DOI 10.3201/eid1509.081334. Freitas SC, 2013, INT J REMOTE SENS, V34, P3051, DOI 10.1080/01431161.2012.716925. German A., 2018, Remote Sensing Applications: Society and Environment, V11, P231, DOI 10.1016/j.rsase.2018.07.006. Giardina F, 2015, GEOSPATIAL HEALTH, V10, P232, DOI 10.4081/gh.2015.333. Gubler Duane J, 2011, Trop Med Health, V39, P3, DOI 10.2149/tmh.2011-S05. Hay SI, 1997, INT J REMOTE SENS, V18, P2899, DOI 10.1080/014311697217125. Hii YL, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001908. Homan T, 2016, MALARIA J, V15, DOI 10.1186/s12936-015-1044-1. Huete A, 2002, REMOTE SENS ENVIRON, V83, P195, DOI 10.1016/S0034-4257(02)00096-2. Ibarra AMS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078263. Kabaria CW, 2016, INT J HEALTH GEOGR, V15, DOI 10.1186/s12942-016-0051-y. Kalluri S, 2007, PLOS PATHOG, V3, P1361, DOI 10.1371/journal.ppat.0030116. Kanyangarara M, 2016, AM J TROP MED HYG, V95, P141, DOI 10.4269/ajtmh.15-0865. Kanyangarara M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151971. Kazansky Y, 2016, ACTA ASTRONAUT, V121, P292, DOI 10.1016/j.actaastro.2015.09.021. Khameneh N. Jafarpour, 2014, THESIS. Laureano-Rosario AE, 2017, ACTA TROP, V172, P50, DOI 10.1016/j.actatropica.2017.04.017. Lessler Justin, 2016, Curr Epidemiol Rep, V3, P212, DOI 10.1007/s40471-016-0078-4. Levac D, 2010, IMPLEMENT SCI, V5, DOI 10.1186/1748-5908-5-69. Li ZC, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8040319. Liu J, 2006, BIOMED ENVIRON SCI, V19, P130. Lowe R, 2013, STAT MED, V32, P864, DOI 10.1002/sim.5549. Ma Y, 2015, FUTURE GENER COMP SY, V51, P47, DOI 10.1016/j.future.2014.10.029. Machault V, 2014, ISPRS INT J GEO-INF, V3, P1352, DOI 10.3390/ijgi3041352. Malahlela OE, 2018, ECOHEALTH, V15, P23, DOI 10.1007/s10393-017-1307-0. Marcantonio M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121158. Mendez-Lazaro P, 2014, INT J ENV RES PUB HE, V11, P9409, DOI 10.3390/ijerph110909409. Merkord CL, 2017, MALARIA J, V16, DOI 10.1186/s12936-017-1735-x. Midekisa A, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-165. Mokraoui Lyes, 2018, IOP Conference Series: Earth and Environmental Science, V169, DOI 10.1088/1755-1315/169/1/012058. Monroe A, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0543-4. Mosquito-Borne Diseases,, 2018, MOSQ BORN DIS, P27. Munn Z, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0611-x. Nizamuddin M., 2013, INT J REMOTE SENSING, V3, P108. Nmor JC, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-14. Paaijmans KP, 2009, P NATL ACAD SCI USA, V106, P13844, DOI 10.1073/pnas.0903423106. Paaijmans KP, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001146. Parham PE, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2013.0551. Pettorelli N, 2011, CLIM RES, V46, P15, DOI 10.3354/cr00936. Pixalytics Ltd, 2018, MAN EARTH OBS SAT AR. Pontes RJS, 2000, AM J TROP MED HYG, V62, P378, DOI 10.4269/ajtmh.2000.62.378. Bui QT, 2019, GEOCARTO INT, V34, P1300, DOI 10.1080/10106049.2018.1478890. Quintero J, 2014, BMC INFECT DIS, V14, DOI 10.1186/1471-2334-14-38. Quintero J, 2009, CAD SAUDE PUBLICA, V25, pS93, DOI 10.1590/S0102-311X2009001300009. Reisen WK, 2013, VIRUSES-BASEL, V5, P2079, DOI 10.3390/v5092079. Rogers DJ, 2002, NATURE, V415, P710, DOI 10.1038/415710a. Rosa R, 2014, PARASITE VECTOR, V7, DOI 10.1186/1756-3305-7-269. Ruangudomsakul Chanintorn, 2018, International Journal of Machine Learning and Computing, V8, P394, DOI 10.18178/ijmlc.2018.8.4.718. Sadoine ML, 2018, MALARIA J, V17, DOI 10.1186/s12936-018-2220-x. Santosh T, 2019, CLIN EPIDEMIOL GLOB, V7, P121, DOI 10.1016/j.cegh.2018.03.001. Sarfraz MS, 2014, GEOSPATIAL HEALTH, V8, pS685, DOI 10.4081/gh.2014.297. Sarfraz MS, 2014, INT J DIGIT EARTH, V7, P916, DOI 10.1080/17538947.2013.786144. Scavuzzo JM, 2018, ACTA TROP, V185, P167, DOI 10.1016/j.actatropica.2018.05.003. Sewe MO, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02560-z. Sewe MO, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154204. Shaukat AM, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-122. Shumway RH, 2011, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-1-4419-7865-3. Ssempiira Julius, 2018, Parasite Epidemiol Control, V3, pe00070, DOI 10.1016/j.parepi.2018.e00070. Stilianakis NI, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161510. Tsouni A, 2008, SENSORS-BASEL, V8, P3586, DOI 10.3390/s8063586. Valiakos G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096935. Viana J, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9121225. Wang SW, 2013, MATH COMPUT MODEL, V58, P677, DOI 10.1016/j.mcm.2011.10.034. Watts AG, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178211. Weiss DJ, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-171. Whitehorn J, 2011, VACCINE, V29, P7221, DOI 10.1016/j.vaccine.2011.07.022. WHO, 2019, MALARIA. WHO, 2017, WHAT IS DENG. WHO (World Health Organization), 2016, EL MAL. World Health Organization, 2018, W NIL VIR. Young SG, 2013, APPL GEOGR, V45, P241, DOI 10.1016/j.apgeog.2013.09.022. Yue YJ, 2018, INT J INFECT DIS, V75, P39, DOI 10.1016/j.ijid.2018.07.023. Zinszer K, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0758-4. Zinszer K, 2012, BMJ OPEN, V2, DOI 10.1136/bmjopen-2012-001992.}, Number-of-Cited-References = {101}, Times-Cited = {35}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {17}, Journal-ISO = {Remote Sens.}, Doc-Delivery-Number = {IV6OL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000484387600025}, OA = {Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000684736000001, Author = {McLean, Scott and Read, Gemma J. M. and Thompson, Jason and Baber, Chris and Stanton, Neville A. and Salmon, Paul M.}, Title = {The risks associated with Artificial General Intelligence: A systematic review}, Journal = {JOURNAL OF EXPERIMENTAL \& THEORETICAL ARTIFICIAL INTELLIGENCE}, Abstract = {Artificial General intelligence (AGI) offers enormous benefits for humanity, yet it also poses great risk. The aim of this systematic review was to summarise the peer reviewed literature on the risks associated with AGI. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Sixteen articles were deemed eligible for inclusion. Article types included in the review were classified as philosophical discussions, applications of modelling techniques, and assessment of current frameworks and processes in relation to AGI. The review identified a range of risks associated with AGI, including AGI removing itself from the control of human owners/managers, being given or developing unsafe goals, development of unsafe AGI, AGIs with poor ethics, morals and values; inadequate management of AGI, and existential risks. Several limitations of the AGI literature base were also identified, including a limited number of peer reviewed articles and modelling techniques focused on AGI risk, a lack of specific risk research in which domains that AGI may be implemented, a lack of specific definitions of the AGI functionality, and a lack of standardised AGI terminology. Recommendations to address the identified issues with AGI risk research are required to guide AGI design, implementation, and management.}, Publisher = {TAYLOR \& FRANCIS LTD}, Address = {2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND}, Type = {Review; Early Access}, Language = {English}, Affiliation = {McLean, S (Corresponding Author), Univ Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Qld 4556, Australia. McLean, Scott; Read, Gemma J. M.; Thompson, Jason; Stanton, Neville A.; Salmon, Paul M., Univ Sunshine Coast, Ctr Human Factors \& Sociotech Syst, Sippy Downs, Qld, Australia. Thompson, Jason, Univ Melbourne, Melbourne Sch Design, Transport Hlth \& Urban Design Thud Res Lab, Parkville, Vic, Australia. Baber, Chris, Univ Birmingham, Sch Comp Sci, Birmingham, England.}, DOI = {10.1080/0952813X.2021.1964003}, EarlyAccessDate = {AUG 2021}, ISSN = {0952-813X}, EISSN = {1362-3079}, Keywords = {Artificial General Intelligence; artificial intelligence; risk; existential threat; safety}, Keywords-Plus = {SOCIOTECHNICAL SYSTEMS}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence}, Author-Email = {smclean@usc.edu.au}, Affiliations = {University of the Sunshine Coast; University of Melbourne; University of Birmingham}, ResearcherID-Numbers = {Stanton, Neville/ABD-8671-2021 }, ORCID-Numbers = {McLean, Scott/0000-0002-7269-5847 Baber, Chris/0000-0002-1830-2272}, Funding-Acknowledgement = {Australian Research Council {[}DP200100399]; Australian Research Council {[}DP200100399] Funding Source: Australian Research Council}, Funding-Text = {This work was supported by the Australian Research Council {[}DP200100399].}, Cited-References = {Alberts B, 2008, SCIENCE, V321, P15, DOI 10.1126/science.1162115. {[}Anonymous], 2009, SCI FICTION PHILOS T. Armstrong S, 2012, MIND MACH, V22, P299, DOI 10.1007/s11023-012-9282-2. Barrett AM, 2017, J EXP THEOR ARTIF IN, V29, P397, DOI 10.1080/0952813X.2016.1186228. Baum S., 2017, GLOBAL CATASTROPHIC. Baum SD, 2017, INFORM-J COMPUT INFO, V41, P419. Baum SD, 2011, TECHNOL FORECAST SOC, V78, P185, DOI 10.1016/j.techfore.2010.09.006. Bentley P., 2018, 3 LAWS ARTIFICIAL IN. Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112. Bostrom Nick., 2002, J EVOLUTION TECHNOLO, V9. Bostrom Nick, 2014, SUPERINTELLIGENCE PA. Boyles RJM, 2018, KRITIKE, V12, P182, DOI 10.25138/12.1.a9. Bradley P, 2020, AI SOC, V35, P319, DOI 10.1007/s00146-019-00890-2. Bringsjord S., 2012, BELIEF SINGULARITY I, P395. Brundage M, 2014, J EXP THEOR ARTIF IN, V26, P355, DOI 10.1080/0952813X.2014.895108. Chen SY, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216133. Cronin Blaise, 2005, HAND SCI ACAD WRITIN. Dallat C, 2018, THEOR ISS ERGON SCI, V19, P456, DOI 10.1080/1463922X.2017.1381197. Dallat C, 2019, SAFETY SCI, V119, P266, DOI 10.1016/j.ssci.2017.03.012. Firt E., 2020, MISSING G, P1. Garis H.D., 2005, ARTILECT WAR COSMIST. Goertzel Ben, 2014, Journal of Artificial General Intelligence, V5, P1, DOI 10.2478/jagi-2014-0001. Goertzel B., 2007, ARTIFICIAL GEN INTEL, V2. Goertzel B., 2006, HIDDEN PATTERN. Holmes D, 2006, INT J EVID-BASED HEA, V4, P180, DOI 10.1111/j.1479-6988.2006.00041.x. Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004. Kurzweil R., 2005, SINGULARITY IS NEAR. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Legg S., 2006, GALLERIA. Leveson NG, 2011, SAFETY SCI, V49, P55, DOI 10.1016/j.ssci.2009.12.021. Linstone H.A., 1975, THE DELPHI METHOD. Miller JD, 2019, FORESIGHT, V21, P130, DOI 10.1108/FS-04-2018-0038. Moher D, 2009, J CLIN EPIDEMIOL, V62, P1006, DOI 10.1016/j.jclinepi.2009.06.005. Muller VC, 2016, SYNTH LIBR, V376, P553, DOI 10.1007/978-3-319-26485-1\_33. Narain K, 2019, J ADV MANAG RES, V16, P698, DOI 10.1108/JAMR-01-2019-0006. Naude W, 2020, AI SOC, V35, P367, DOI 10.1007/s00146-019-00887-x. Nindler R, 2019, INT COMMUNITY LAW RE, V21, P5, DOI 10.1163/18719732-12341388. Pitt J., 2014, INTELLIGENCE UNBOUND, P61, DOI DOI 10.1002/9781118736302.CH4/SUMRNARY. Pueyo S, 2018, J CLEAN PROD, V197, P1731, DOI 10.1016/j.jclepro.2016.12.138. Salmon PM, 2021, HUM FACTOR ERGON MAN, V31, P223, DOI 10.1002/hfm.20883. Salmon PM, 2020, SAFETY SCI, V126, DOI 10.1016/j.ssci.2020.104650. Salmon PM, 2020, ERGONOMICS, V63, P965, DOI 10.1080/00140139.2020.1745268. Sotala K, 2017, INFORM-J COMPUT INFO, V41, P389. Sotala K, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/1/018001. Stanton N., 2013, HUMAN FACTORS METHOD, V2nd ed, P300. Stanton NA, 2020, HUM FACTOR ERGON MAN, V30, P418, DOI 10.1002/hfm.20864. Stanton NA, 2017, ERGONOMICS, V60, P221, DOI 10.1080/00140139.2016.1232841. Tegmark M., 2017, BEING HUMAN AGE ARTI. Torres P, 2019, B ATOM SCI, V75, P105, DOI 10.1080/00963402.2019.1604873. Yampolskiy RV, 2012, J CONSCIOUSNESS STUD, V19, P194. Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z.}, Number-of-Cited-References = {51}, Times-Cited = {7}, Usage-Count-Last-180-days = {22}, Usage-Count-Since-2013 = {56}, Journal-ISO = {J. Exp. Theor. Artif. Intell.}, Doc-Delivery-Number = {TZ8QZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000684736000001}, OA = {Green Published, hybrid}, DA = {2023-04-22}, } @article{ WOS:000632598600007, Author = {Guerra-Montenegro, Juan and Sanchez-Medina, Javier and Lana, Ibai and Sanchez-Rodriguez, David and Alonso-Gonzalez, Itziar and Del Ser, Javier}, Title = {Computational Intelligence in the hospitality industry: A systematic literature review and a prospect of challenges}, Journal = {APPLIED SOFT COMPUTING}, Year = {2021}, Volume = {102}, Month = {APR}, Abstract = {This research work presents a detailed survey about Computational Intelligence (CI) applied to various Hotel and Travel Industry areas. Currently, the hospitality industry's interest in data science is growing exponentially because of their expected margin of profit growth. In order to provide precise state of the art content, this survey analyzes more than 160 research works from which a detailed categorization and taxonomy have been produced. We have studied the different approaches on the various forecasting methods and subareas where CI is currently being used. This research work also shows an actual distribution of these research efforts in order to enhance the understanding of the reader about this topic and to highlight unexploited research niches. A set of guidelines and recommendations for future research areas and promising applications are also presented in a final section. (C) 2021 Elsevier B.V. All rights reserved.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Guerra-Montenegro, J (Corresponding Author), ULPGC, Innovat Ctr Informat Soc CICEI, Las Palmas Gran Canaria, Spain. Guerra-Montenegro, Juan; Sanchez-Medina, Javier, ULPGC, Innovat Ctr Informat Soc CICEI, Las Palmas Gran Canaria, Spain. Sanchez-Rodriguez, David; Alonso-Gonzalez, Itziar, ULPGC, Inst Technol Dev \& Innovat Commun IDeTIC, Las Palmas Gran Canaria, Spain. Lana, Ibai; Del Ser, Javier, TECNALIA, Derio 48160, Bizkaia, Spain. Del Ser, Javier, Univ Basque Country, UPV EHU, Bilbao 48013, Spain.}, DOI = {10.1016/j.asoc.2021.107082}, EarlyAccessDate = {JAN 2021}, Article-Number = {107082}, ISSN = {1568-4946}, EISSN = {1872-9681}, Keywords = {Computational Intelligence; Machine Learning; Travel industry; Hospitality and tourism management; Predictive analysis; Hotel industry}, Keywords-Plus = {SUPPORT VECTOR REGRESSION; ARTIFICIAL NEURAL-NETWORK; FORECASTING TOURISM DEMAND; ONLINE REVIEWS; SENTIMENT CLASSIFICATION; RECOMMENDATION SYSTEM; GENETIC ALGORITHMS; TIME-SERIES; BIG DATA; MACHINE}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications}, Author-Email = {juanantonio.montenegro@ulpgc.es}, Affiliations = {Universidad de Las Palmas de Gran Canaria; Universidad de Las Palmas de Gran Canaria; University of Basque Country}, ResearcherID-Numbers = {Sanchez-Rodriguez, David/Q-9484-2019 Alonso-Gonzalez, Itziar/L-9174-2014 Del Ser, Javier/J-2187-2014}, ORCID-Numbers = {Sanchez-Rodriguez, David/0000-0003-2700-1591 Guerra-Montenegro, Juan/0000-0002-2309-9993 Lana, Ibai/0000-0002-2682-6199 Alonso-Gonzalez, Itziar/0000-0001-8487-2559 Del Ser, Javier/0000-0002-1260-9775}, Funding-Acknowledgement = {Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion (ACIISI) de la Consejeria de Economia, Industria, Comercio y Conocimiento, Spain; Fondo Social Europeo (FSE) Programa Operativo Integrado de Canarias 2014-2020, Spain; Programa de Cooperacion Territorial INTERREG V A Spain-Portugal, MAC 2014-2020, Spain {[}MAC/3.5b/065]; Basque Government, Spain through the EMAITEK funding program, Basque Government, Spain; Basque Government, Spain through the ELKARTEK funding program, Basque Government, Spain; Consolidated Research Group MATHMODE, Spain by the Department of Education of the Basque Government {[}IT1294-19]}, Funding-Text = {Research work co-funded by Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion (ACIISI) de la Consejeria de Economia, Industria, Comercio y Conocimiento, Spain and by Fondo Social Europeo (FSE) Programa Operativo Integrado de Canarias 2014-2020, Spain, Eje 3 Tema Prioritario 74 (85\%). This paper was developed under project ``Sistema de vigilancia meteorologica para el seguimiento de riesgos medioambientales'', VIMetRi-MAC (ref. MAC/3.5b/065), funded by Programa de Cooperacion Territorial INTERREG V A Spain-Portugal, MAC 2014-2020, Spain. Ibai Lana and Javier Del Ser also acknowledge funding support from the Basque Government, Spain through the EMAITEK and ELKARTEK funding programs, Basque Government, Spain. Javier Del Ser receives funding support from the Consolidated Research Group MATHMODE, Spain (IT1294-19) granted by the Department of Education of the Basque Government.}, Cited-References = {Adeli H., COMPUTATIONAL INTELL. Afzaal M, 2016, ADV FUZZY SYST, V2016, DOI 10.1155/2016/6965725. AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759. Akin M, 2015, TOURISM MANAGE, V48, P64, DOI 10.1016/j.tourman.2014.11.004. Al Shehhi M, 2020, J HOSP TOUR MANAG, V42, P40, DOI 10.1016/j.jhtm.2019.11.003. Ali R, 2017, IOP C SER MAT SCI EN, V226. Ani S., 2017, SCIREA J MATH, V1, P210. Antonio N, 2017, TOUR MANAG STUD, V13, P25, DOI 10.18089/tms.2017.13203. Arruza M, 2016, AUTOMATED TRAVEL AGE. Athanasiou V, 2016, IFIP ADV INF COMM TE, V475, P481, DOI 10.1007/978-3-319-44944-9\_42. Atsalakis GS, 2018, EUR J OPER RES, V268, P716, DOI 10.1016/j.ejor.2018.01.044. Banerjee S, 2015, 2015 6TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), P12. Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012. Belmonte-Fernandez O, 2018, EXPERT SYST APPL, V105, P89, DOI 10.1016/j.eswa.2018.03.054. Bermingham L, 2014, PROCEDIA COMPUT SCI, V29, P379, DOI 10.1016/j.procs.2014.05.034. Biuk-Aghai RP, 2008, 2008 2ND INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA SERVICES ARCHITECTURE AND APPLICATION (IMSAA), P144. Braess Dietrich., 1968, UNTERNEHMENSFORSCHUN, V12, P258, DOI DOI 10.1007/BF01918335. Brakerski Z., 2014, ACM T COMPUT THEORY, V6, P1. Brida JG, 2018, TOURISM MANAGE, V69, P62, DOI 10.1016/j.tourman.2018.05.006. Bugarski V, 2017, I S INTELL SYST INFO, P71, DOI 10.1109/SISY.2017.8080528. Cai ZJ, 2009, 2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 5, P144, DOI 10.1109/ICCSIT.2009.5234447. Cankurt S, 2015, BALKAN J ELECT COMPU, V3. Cankurt S, 2016, 2016 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), P702, DOI 10.1109/IS.2016.7737388. Cankurt S, 2016, TURK J ELECTR ENG CO, V24, P3388, DOI 10.3906/elk-1311-134. Cao GH, 2016, ENERGY, V115, P734, DOI 10.1016/j.energy.2016.09.065. Casteleiro-Roca JL, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19112485. Chang YW, 2017, 2017 31ST IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (IEEE WAINA 2017), P259, DOI 10.1109/WAINA.2017.125. Chang YC, 2020, TOURISM MANAGE, V80, DOI 10.1016/j.tourman.2020.104129. Chen CF, 2012, KNOWL-BASED SYST, V26, P281, DOI 10.1016/j.knosys.2011.09.002. Chen JH, 2013, INT CONF E BUS ENG, P156, DOI 10.1109/ICEBE.2013.24. Chen KY, 2007, TOURISM MANAGE, V28, P215, DOI 10.1016/j.tourman.2005.12.018. Chen MS, 2010, EXPERT SYST APPL, V37, P1185, DOI 10.1016/j.eswa.2009.06.032. Chen R, 2015, APPL SOFT COMPUT, V26, P435, DOI 10.1016/j.asoc.2014.10.022. Chen YB, 2017, ENRGY PROCED, V105, P2101, DOI 10.1016/j.egypro.2017.03.590. Chen YB, 2017, ENERG BUILDINGS, V148, P228, DOI 10.1016/j.enbuild.2017.05.003. Cheng XS, 2019, TOURISM MANAGE, V71, P366, DOI 10.1016/j.tourman.2018.10.020. Chiu C, 2015, CURR ISSUES TOUR, V18, P477, DOI 10.1080/13683500.2013.841656. Cho V., 2002, Journal of Quality Assurance in Hospitality \& Tourism, V3, P109, DOI 10.1300/J162v03n03\_07. Chou JS, 2013, J COMPUT CIVIL ENG, V27, P51, DOI 10.1061/(ASCE)CP.1943-5487.0000197. Claster W. B., 2010, 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC 2011), P158, DOI 10.1109/NABIC.2010.5716370. Claveria O, 2016, SERIES-J SPAN ECON, V7, P341, DOI 10.1007/s13209-016-0144-7. Claveria O, 2016, APPL ECON LETT, V23, P428, DOI 10.1080/13504851.2015.1078441. Claveria O, 2015, INT J TOUR RES, V17, P492, DOI 10.1002/jtr.2016. Corazza M, 2014, PROC ECON FINANC, V15, P45, DOI 10.1016/S2212-5671(14)00444-4. Deng N, 2018, TOURISM MANAGE, V65, P267, DOI 10.1016/j.tourman.2017.09.010. Dickinger A, 2015, TOUR RECREAT RES, V40, P353, DOI 10.1080/02508281.2015.1079964. Drucker P., 2012, MANAGING NEXT SOC. Du JP, 2008, 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, P183, DOI 10.1109/WCICA.2008.4592921. Duan WJ, 2013, P ANN HICSS, P3119, DOI 10.1109/HICSS.2013.400. Ebadi A, 2016, THESIS CONCORDIA U. Eiben A. E., 2003, INTRO EVOLUTIONARY C, V53. El-Shishiny H., 2008, INT J ARTIF INTELL M, V8. Emel G, 2005, OP RES P, V2005, P653. Fan Junfeng, 2012, IACR CRYPTOLOGY EPRI, V2012, P144. Folgieri R, 2017, TOUR S E EUROPE, V4, P169, DOI 10.20867/tosee.04.10. Garcia-Barriocanal E, 2010, MCIS 2010 P. Gavalas D, 2011, PERS UBIQUIT COMPUT, V15, P759, DOI 10.1007/s00779-011-0389-x. GAWLIK E, 2011, PREDICTING TOURISM T. Gentry C., 2009, FULLY HOMOMORPHIC EN, V20. Gerstner W., 2002, SPIKING NEURON MODEL. Geyer R.C., 2017, ARXIV171207557. Gokaraju B, 2011, IEEE J-STARS, V4, P710, DOI 10.1109/JSTARS.2010.2103927. Gunning D, 2019, AI MAG, V40, P44, DOI 10.1609/aimag.v40i2.2850. Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009. Ha SH, 1998, EXPERT SYST APPL, V15, P1, DOI 10.1016/S0957-4174(98)00008-6. Hadavandi E, 2011, TOURISM MANAGE, V32, P1196, DOI 10.1016/j.tourman.2010.09.015. Han SM, 2017, COMM COM INF SC, V727, P573, DOI 10.1007/978-981-10-6385-5\_48. Han-Chen Huang, 2013, Przeglad Elektrotechniczny, V89, P178. Han-Xiao Shi, 2011, Proceedings of the 2011 International Conference on Machine Learning and Cybernetics (ICMLC 2011), P950, DOI 10.1109/ICMLC.2011.6016866. Haruechaiyasak C, 2010, P 8 WORKSH AS LANG R, P64. Hong WC, 2013, INT J ELEC POWER, V44, P604, DOI 10.1016/j.ijepes.2012.08.010. Hong WC, 2011, APPL SOFT COMPUT, V11, P1881, DOI 10.1016/j.asoc.2010.06.003. Hsieh H., 2014, P 2014 IEEE 6 INT C, P1. Hsu C. C., 2006, P 39 ANN HAW INT C S, V2, p30c, DOI DOI 10.1109/HICSS.2006.132. Hsu CI, 2009, EXPERT SYST APPL, V36, P11760, DOI 10.1016/j.eswa.2009.04.010. Hsu FM, 2012, EXPERT SYST APPL, V39, P3257, DOI 10.1016/j.eswa.2011.09.013. Vu HQ, 2015, TOURISM MANAGE, V46, P222, DOI 10.1016/j.tourman.2014.07.003. Irigoyen E., 2017, ADV INTELLIGENT SYST. Jiang K, 2013, NEUROCOMPUTING, V119, P17, DOI 10.1016/j.neucom.2012.02.049. Jing Sun, 2016, International Journal of Applied Decision Sciences, V9, P320. Kai Jiang, 2011, Proceedings of the Sixth International Conference on Image and Graphics (ICIG 2011), P931, DOI 10.1109/ICIG.2011.48. Kamel N., 2018, ICGST INT J ARTIF IN, V8, P1. Kampouropoulos K, 2014, ADV ELECTR COMPUT EN, V14, P9, DOI 10.4316/AECE.2014.01002. Kanellopoulos D., 2005, GESTS INT T COMPUT S, V32, P71. Kasper W, 2012, P COMP LING APPL C, V4, P45. Kbaier MEB, 2017, I C COMP SYST APPLIC, P244, DOI 10.1109/AICCSA.2017.12. Kebede G, 2010, INT J INFORM MANAGE, V30, P416, DOI 10.1016/j.ijinfomgt.2010.02.004. Kim SY, 2011, SERV IND J, V31, P441, DOI 10.1080/02642060802712848. King MA, 2014, EXPERT SYST APPL, V41, P1176, DOI 10.1016/j.eswa.2013.08.002. Kokkinos K., 2016, DAILY MULTIVARIATE F. Konen J., 2016, NIPS WORKSH PRIV MUL. Krawczyk B, 2017, INFORM FUSION, V37, P132, DOI 10.1016/j.inffus.2017.02.004. Lei WS, 2015, J HOSP TOUR MANAG, V22, P1, DOI 10.1016/j.jhtm.2014.12.003. Li G, 2015, TOURISM MANAGE, V46, P311, DOI 10.1016/j.tourman.2014.06.015. Li H, 2012, TOURISM MANAGE, V33, P622, DOI 10.1016/j.tourman.2011.07.004. Li QS, 2016, J VISUAL-JAPAN, V19, P489, DOI 10.1007/s12650-015-0330-x. Li WQ, 2009, I C SERV SYST SERV M, P84. Liang CY, 2017, 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), P921, DOI 10.1109/ICBDA.2017.8078773. Liao SH, 2010, EXPERT SYST APPL, V37, P4212, DOI 10.1016/j.eswa.2009.11.081. Lin C.-j, 2010, COMPUT LINGUIST CHIN, V15. Lin CT, 2009, EXPERT SYST APPL, V36, P2513, DOI 10.1016/j.eswa.2008.01.074. Lin KP, 2013, INFORM SCIENCES, V220, P196, DOI 10.1016/j.ins.2011.09.003. Lin ST, 2014, 2014 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA), P769, DOI 10.1109/ICICTA.2014.186. Lin Y., 2018, ISPRS INT ARCH PHOTO, V42, P2297. Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3\_11. Liu SW, 2013, INT J HOSP MANAG, V34, P359, DOI 10.1016/j.ijhm.2012.11.011. Liu SS, 2017, J TRANSP ENG A-SYST, V143, DOI 10.1061/JTEPBS.0000010. Lobo JL, 2020, NEURAL NETWORKS, V121, P88, DOI 10.1016/j.neunet.2019.09.004. Lu J, 2017, ARXIV170507205CS. Lu Q, 2012, INT C MANAGE SCI ENG, P3, DOI 10.1109/ICMSE.2012.6414153. Lucas JP, 2013, EXPERT SYST APPL, V40, P3532, DOI 10.1016/j.eswa.2012.12.061. Luo JQ, 2021, J HOSP MARKET MANAG, V30, P71, DOI 10.1080/19368623.2020.1772163. Ma YF, 2018, INT J HOSP MANAG, V71, P120, DOI 10.1016/j.ijhm.2017.12.008. Marr B, 2016, BIG DATA ANAL CHANGI. Martin-Fuentes E, 2018, INT J HOSP MANAG, V69, P75, DOI 10.1016/j.ijhm.2017.10.016. Martinez-Torres MR, 2019, TOURISM MANAGE, V75, P393, DOI 10.1016/j.tourman.2019.06.003. Miah SJ, 2017, INFORM MANAGE-AMSTER, V54, P771, DOI 10.1016/j.im.2016.11.011. Min H., 2002, International Journal of Contemporary Hospitality Management, V14, P274, DOI 10.1108/09596110210436814. Mitchell T, 1997, MACH LEARN, V7, P2. Mitchell TM, 1999, COMMUN ACM, V42, P30, DOI 10.1145/319382.319388. Monte E., 2016, REV ECON APL-SPAIN, VXXIV. Morales DR, 2010, EUR J OPER RES, V202, P554, DOI 10.1016/j.ejor.2009.06.006. Moreno J.J.M., 2014, METHODOL EUR J RES M, V11, P35. Nakamura S, 2015, 2015 International Conference on Computer Application Technologies (CCATS), P94, DOI 10.1109/CCATS.2015.32. Nilashi M, 2019, INT J FUZZY SYST, V21, P1367, DOI 10.1007/s40815-019-00630-0. Nilashi M, 2019, J CLEAN PROD, V215, P767, DOI 10.1016/j.jclepro.2019.01.012. Nilashi M, 2017, COMPUT IND ENG, V109, P357, DOI 10.1016/j.cie.2017.05.016. Noersasongko E., 2016, INDIAN J SCI TECHNOL, V9, P1. Nunes L., 2016, HDB RES HOLISTIC OPT, P140. Okumus F, 2013, J HOSP TOUR TECHNOL, V4, P64, DOI 10.1108/17579881311302356. Omran MGH, 2007, INTELL DATA ANAL, V11, P583, DOI 10.3233/IDA-2007-11602. Opitz D., 1999, J ARTIF INTELL RES, V11, P169, DOI DOI 10.1613/JAIR.614. Orr M. J. L., 1996, INTRO RADIAL BASIS F. Pai PF, 2005, LECT NOTES ARTIF INT, V3801, P512. Pai PF, 2014, EXPERT SYST APPL, V41, P3691, DOI 10.1016/j.eswa.2013.12.007. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Panawong N., RECENT ADV INFORM CO. Pedrycz W, 1997, 1997 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS I AND II, P253, DOI 10.1109/CCECE.1997.614837. Peng X, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6070216. Phillips P, 2015, TOURISM MANAGE, V50, P130, DOI 10.1016/j.tourman.2015.01.028. Phillips-Wren G, 2014, FRONT ARTIF INTEL AP, V261, P401, DOI 10.3233/978-1-61499-399-5-401. Pitman A, 2010, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2010, P393, DOI 10.1007/978-3-211-99407-8\_33. Regev O, 2010, ANN IEEE CONF COMPUT, P191, DOI 10.1109/CCC.2010.26. Ren G, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9101765. Rivest R.L., 1978, FOUND SECURE COMPUT, V4, P169. Romanowski C.J., 2016, PREDICTING HOTEL RAT. Sakhuja S, 2016, IND MANAGE DATA SYST, V116, P483, DOI 10.1108/IMDS-05-2015-0165. Sanchez-Franco MJ, 2019, INTERNET RES, V29, P478, DOI 10.1108/IntR-12-2017-0531. Sanchez-Franco MJ, 2019, J BUS RES, V101, P499, DOI 10.1016/j.jbusres.2018.12.051. Sanchez-Medina JJ, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19102388. Saputro Khurniawan Eko, 2016, 2016 2nd International Conference on Science and Technology - Computer (ICST). Proceedings, P124, DOI 10.1109/ICSTC.2016.7877360. Shahrabi J, 2013, KNOWL-BASED SYST, V43, P112, DOI 10.1016/j.knosys.2013.01.014. Sharma A, 2012, APPL COMPUT REV, V12, P67, DOI 10.1145/2432546.2432552. Shi Y, 2012, INT J INF TECH DECIS, V11, P1, DOI 10.1142/S0219622012010018. Shimada K., 2011, Proceedings of the 2011 First ACIS International Symposium on Software and Network Engineering (SSNE 2011), P61, DOI 10.1109/SSNE.2011.27. Silverman B., 1989, INT STATIST REV REV, V1951. Sixto J, NATURAL LANGUAGE PRO. Sun SL, 2017, IEEE INT CONF BIG DA, P4165. Sun YR, 2015, COMPUT ENVIRON URBAN, V53, P110, DOI 10.1016/j.compenvurbsys.2013.07.006. Taecharungroj V, 2019, TOURISM MANAGE, V75, P550, DOI 10.1016/j.tourman.2019.06.020. Tammet T., WIMS 12. Tokuhisa M., 2012, 2012 IIAI International Conference on Advanced Applied Informatics (IIAIAAI 2012), P103, DOI 10.1109/IIAI-AAI.2012.29. Torra S., 2945556 SSRN. van de Schoot R, 2014, CHILD DEV, V85, P842, DOI 10.1111/cdev.12169. Versichele M, 2014, TOURISM MANAGE, V44, P67, DOI {[}10.1016/j.tourman.2014.02.009, 10.1016/j.tourman.2014.]. Vihikan W.O., 2017, TELKOMNIKA TELECOMMU, V15, P1257. Wang GC, 2016, RENEW ENERG, V96, P469, DOI 10.1016/j.renene.2016.04.089. Wang JZ, 2014, MATH PROBL ENG, V2014, DOI 10.1155/2014/712417. WANG SC, 2003, KLUWER INT SER ENG C, P3. Wang XQ, 2015, INT CONF MEAS, P326, DOI 10.1109/ICMTMA.2015.84. Wang YY, 2012, 2012 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS (WI-IAT WORKSHOPS 2012), VOL 3, P97, DOI 10.1109/WI-IAT.2012.133. Wei C, 2013, I C SERV SYST SERV M, P674, DOI 10.1109/ICSSSM.2013.6602591. Weichselbraun A, 2010, J INFORM DATA MANAGE, V1, P329. Widmer G, 1996, MACH LEARN, V23, P69, DOI 10.1007/BF00116900. Wu LJ, 2016, KNOWL-BASED SYST, V110, P157, DOI 10.1016/j.knosys.2016.07.023. Wu Q, 2012, EXPERT SYST APPL, V39, P4769, DOI 10.1016/j.eswa.2011.09.159. Xia H, 2009, SVM BASED COMMENTS C. Xiang Z, 2017, TOURISM MANAGE, V58, P51, DOI 10.1016/j.tourman.2016.10.001. Xiao F, 2012, ADV MATER RES-SWITZ, V446-449, P3037, DOI 10.4028/www.scientific.net/AMR.446-449.3037. Xu X, 2016, CAAI T INTELL TECHNO, V1, P30, DOI 10.1016/j.trit.2016.03.004. Xu X, 2009, INT J COMPUT INT SYS, V2, P17. Xue-Bo, 2014, 2014 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA), P348, DOI 10.1109/ICICTA.2014.91. Yang Y, 2016, TOURISM MANAGE, V56, P40, DOI 10.1016/j.tourman.2016.03.021. Yang Y, 2015, INT J HOSP MANAG, V47, P14, DOI 10.1016/j.ijhm.2015.02.008. Yao JN, 2011, COMM COM INF SC, V201, P315. Ye Q, 2009, EXPERT SYST APPL, V36, P6527, DOI 10.1016/j.eswa.2008.07.035. Yi-Chung H, 2017, SUSTAIN BASEL, V9. Yingxu Wang, 2009, International Journal of Software Science and Computational Intelligence, V1, P1, DOI 10.4018/jssci.2009010101. Yordanova S., 2017, INT J COMPUTER APPL, V158, DOI {[}10.5120/ijca2017912806, DOI 10.5120/IJCA2017912806]. Yuan YF, 2016, INT CONF CLOUD COMPU, P447, DOI 10.1109/CCIS.2016.7790300. ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X. Zhang BR, 2017, ASIA PAC J TOUR RES, V22, P245, DOI 10.1080/10941665.2016.1232742. Zhang C, 2011, LECT NOTES COMPUTER, P483. Zhang C, 2014, CURR ISSUES TOUR, V17, P592, DOI 10.1080/13683500.2013.768606. Zhang QC, 2018, INFORM FUSION, V42, P146, DOI 10.1016/j.inffus.2017.10.006. Zhang YS, 2020, IEEE T MULTIMEDIA, V22, P2844, DOI 10.1109/TMM.2020.2966887. Zhang ZQ, 2011, EXPERT SYST APPL, V38, P7674, DOI 10.1016/j.eswa.2010.12.147. Zhao H., 2012, USING DEEP LINGUISTI. Zhao Y., 2015, INT J SMART HOME, V9, P23. Zheng WY, 2009, 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 3, PROCEEDINGS, P335, DOI 10.1109/IITA.2009.457. Zliobaite I, 2014, IEEE T NEUR NET LEAR, V25, P27, DOI 10.1109/TNNLS.2012.2236570. Zou GX, 2009, 2009 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY, VOL III, PROCEEDINGS,, P689, DOI 10.1109/ESIAT.2009.193.}, Number-of-Cited-References = {203}, Times-Cited = {9}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {39}, Journal-ISO = {Appl. Soft. Comput.}, Doc-Delivery-Number = {RC1XN}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000632598600007}, OA = {Green Published}, DA = {2023-04-22}, } @article{ WOS:000867831000001, Author = {Ahmadi, Najia and Peng, Yuan and Wolfien, Markus and Zoch, Michele and Sedlmayr, Martin}, Title = {OMOP CDM Can Facilitate Data-Driven Studies for Cancer Prediction: A Systematic Review}, Journal = {INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES}, Year = {2022}, Volume = {23}, Number = {19}, Month = {OCT}, Abstract = {The current generation of sequencing technologies has led to significant advances in identifying novel disease-associated mutations and generated large amounts of data in a high-throughput manner. Such data in conjunction with clinical routine data are proven to be highly useful in deriving population-level and patient-level predictions, especially in the field of cancer precision medicine. However, data harmonization across multiple national and international clinical sites is an essential step for the assessment of events and outcomes associated with patients, which is currently not adequately addressed. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an internationally established research data repository introduced by the Observational Health Data Science and Informatics (OHDSI) community to overcome this issue. To address the needs of cancer research, the genomic vocabulary extension was introduced in 2020 to support the standardization of subsequent data analysis. In this review, we evaluate the current potential of the OMOP CDM to be applicable in cancer prediction and how comprehensively the genomic vocabulary extension of the OMOP can serve current needs of AI-based predictions. For this, we systematically screened the literature for articles that use the OMOP CDM in predictive analyses in cancer and investigated the underlying predictive models/tools. Interestingly, we found 248 articles, of which most use the OMOP for harmonizing their data, but only 5 make use of predictive algorithms on OMOP-based data and fulfill our criteria. The studies present multicentric investigations, in which the OMOP played an essential role in discovering and optimizing machine learning (ML)-based models. Ultimately, the use of the OMOP CDM leads to standardized data-driven studies for multiple clinical sites and enables a more solid basis utilizing, e.g., ML models that can be reused and combined in early prediction, diagnosis, and improvement of personalized cancer care and biomarker discovery.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Ahmadi, N (Corresponding Author), Tech Univ Dresden, Carl Gustav Carus Fac Med, Inst Med Informat \& Biometry, Fetscherstr 74, D-01307 Dresden, Germany. Ahmadi, Najia; Peng, Yuan; Wolfien, Markus; Zoch, Michele; Sedlmayr, Martin, Tech Univ Dresden, Carl Gustav Carus Fac Med, Inst Med Informat \& Biometry, Fetscherstr 74, D-01307 Dresden, Germany.}, DOI = {10.3390/ijms231911834}, Article-Number = {11834}, EISSN = {1422-0067}, Keywords = {OHDSI; OMOP CDM; EHR; PLP; prediction; machine learning}, Keywords-Plus = {COMMON DATA MODEL; SNOMED CT; DIAGNOSIS}, Research-Areas = {Biochemistry \& Molecular Biology; Chemistry}, Web-of-Science-Categories = {Biochemistry \& Molecular Biology; Chemistry, Multidisciplinary}, Author-Email = {najia.ahmadi@tu-dresden.de}, Affiliations = {Technische Universitat Dresden}, ResearcherID-Numbers = {Wolfien, Markus/AAD-2809-2020 }, ORCID-Numbers = {Wolfien, Markus/0000-0002-1887-4772 Ahmadi, Najia/0000-0001-9769-5109 Peng, Yuan/0000-0002-6163-9532 Zoch, Michele/0000-0002-5577-7760}, Funding-Acknowledgement = {Federal Ministry of Health (BMG) {[}FKZ: ZMI1-2520DAT02C]; German Federal Ministry of Education and Research (BMBF) within the Medical Informatics Initiative; MIRACUM Consortium {[}FKZ: 01lZZ1801L]}, Funding-Text = {This work is accomplished as part of the SATURN project funded by the FederalMinistry of Health (BMG), FKZ: ZMI1-2520DAT02C, and the German FederalMinistry of Education and Research (BMBF) within the Medical Informatics Initiative; MIRACUM Consortium, FKZ: 01lZZ1801L (Dresden).}, Cited-References = {Anatomical Therapeutic Chemical (ATC), CLASSIFICATION. {[}Anonymous], IT FUTURE CANC. {[}Anonymous], EMA DATA ANAL REAL W. {[}Anonymous], ONCOKBTM MSKS PRECIS. {[}Anonymous], RXNORM. {[}Anonymous], ICD. {[}Anonymous], CIVIC CLIN INTERPRET. {[}Anonymous], 2008, 20082010 CMS. {[}Anonymous], ATLAS A UNIFIED INTE. {[}Anonymous], CLINVAR. {[}Anonymous], HEMONCORG A HEMATOLO. {[}Anonymous], PION EUR NETW EXC BI. {[}Anonymous], DARWIN EU INITIATIVE. athena, US. Bathelt F, 2022, NUTRIENTS, V14, DOI 10.3390/nu14102016. Belenkaya R, 2021, JCO CLIN CANCER INFO, V5, P12, DOI 10.1200/CCI.20.00079. Boehm KM, 2022, NAT REV CANCER, V22, P114, DOI 10.1038/s41568-021-00408-3. Briganti G, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.00027. Campbell WS, 2014, J AM MED INFORM ASSN, V21, P885, DOI 10.1136/amiajnl-2013-002456. Choi S, 2019, INT CONF UBIQ FUTUR, P520, DOI 10.1109/ICUFN.2019.8806190. Chowdhury Rafiqul I., 2022, Informatics in Medicine Unlocked, DOI 10.1016/j.imu.2022.100847. Cirillo D, 2019, CURR OPIN BIOTECH, V58, P161, DOI 10.1016/j.copbio.2019.03.004. Clarke Christina L, 2016, EGEMS (Wash DC), V4, P1209, DOI 10.13063/2327-9214.1209. Edmondson MJ, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99078-2. Felmeister AS, 2020, IEEE INT C BIOINFORM, P1943, DOI 10.1109/BIBM49941.2020.9313388. Felmeister AS, 2017, IEEE INT C BIOINFORM, P2098. Garza M, 2016, J BIOMED INFORM, V64, P333, DOI 10.1016/j.jbi.2016.10.016. Hardin J, 2021, BMC MED RES METHODOL, V21, DOI 10.1186/s12874-021-01370-2. Hripcsak G, 2015, STUD HEALTH TECHNOL, V216, P574, DOI 10.3233/978-1-61499-564-7-574. Jeon H, 2021, JMIR MED INF, V9, DOI 10.2196/25035. Kaduk D., 2020, P 2020 OHDSI GLOBAL. Kim C, 2021, J AM MED INFORM ASSN, V28, P1098, DOI 10.1093/jamia/ocaa277. Lee SH, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-97989-8. Li J, 2021, ARTIF INTELL MED, V113, DOI 10.1016/j.artmed.2021.102024. Li J, 2020, ARTIF INTELL MED, V103, DOI 10.1016/j.artmed.2020.101814. Liu H, 2021, J BIOMED INFORM, V117, DOI 10.1016/j.jbi.2021.103771. Meystre SM, 2019, INT J MED INFORM, V129, P13, DOI 10.1016/j.ijmedinf.2019.05.018. Millar J, 2016, STUD HEALTH TECHNOL, V225, P683, DOI 10.3233/978-1-61499-658-3-683. NAACCR, US. NCI Thesaurus, US. Omar MI, 2020, NAT REV UROL, V17, P351, DOI 10.1038/s41585-020-0324-x. Park C, 2022, YONSEI MED J, V63, pS74, DOI 10.3349/ymj.2022.63.S74. Percy C., 1976, INT CLASSIFICATION D. Povey S, 2001, HUM GENET, V109, P678, DOI 10.1007/s00439-001-0615-0. Rehm Heidi L, 2021, Cell Genom, V1, DOI 10.1016/j.xgen.2021.100029. Renshaw AA, 2018, JCO CLIN CANCER INFO, V2, DOI 10.1200/CCI.17.00088. Reps JM, 2018, J AM MED INFORM ASSN, V25, P969, DOI 10.1093/jamia/ocy032. Rijnbeek P., 2021, BOOK OHDSI. Schuemie MJ, 2021, REGUL TOXICOL PHARM, V120, DOI 10.1016/j.yrtph.2021.104866. Seneviratne Martin G, 2018, AMIA Annu Symp Proc, V2018, P1498. Shin SJ, 2019, J MED INTERNET RES, V21, DOI 10.2196/13249. Sobas M, 2021, BLOOD, V138, DOI 10.1182/blood-2021-149521. Tian Y, 2018, J BIOMED INFORM, V86, P1, DOI 10.1016/j.jbi.2018.08.008. Tricco AC, 2018, ANN INTERN MED, V169, P467, DOI 10.7326/M18-0850. Tsopra R, 2021, BMC MED INFORM DECIS, V21, DOI 10.1186/s12911-021-01634-3. Unberath P, 2020, APPL CLIN INFORM, V11, P399, DOI 10.1055/s-0040-1710393. Voss EA, 2015, J AM MED INFORM ASSN, V22, P553, DOI 10.1093/jamia/ocu023. Warner JL, 2019, J BIOMED INFORM, V96, DOI 10.1016/j.jbi.2019.103239. Weissler EH, 2021, TRIALS, V22, DOI 10.1186/s13063-021-05489-x. Wood WA, 2021, BLOOD ADV, V5, P5429, DOI 10.1182/bloodadvances.2021005902. Yoo S, 2022, APPL CLIN INFORM, V13, P521, DOI 10.1055/s-0042-1748144. Zotero, YOUR PERS RES ASS.}, Number-of-Cited-References = {62}, Times-Cited = {0}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {12}, Journal-ISO = {Int. J. Mol. Sci.}, Doc-Delivery-Number = {5H7BT}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000867831000001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000528826400001, Author = {Miller, D. Douglas}, Title = {Machine Intelligence in Cardiovascular Medicine}, Journal = {CARDIOLOGY IN REVIEW}, Year = {2020}, Volume = {28}, Number = {2}, Pages = {53-64}, Month = {MAR-APR}, Abstract = {The computer science technology trend called artificial intelligence (AI) is not new. Both machine learning and deep learning AI applications have recently begun to impact cardiovascular medicine. Scientists working in the AI domain have long recognized the importance of data quality and provenance to AI algorithm efficiency and accuracy. A diverse array of cardiovascular raw data sources of variable quality-electronic medical records, radiological picture archiving and communication systems, laboratory results, omics, etc.-are available to train AI algorithms for predictive modeling of clinical outcomes (in-hospital mortality, acute coronary syndrome risk stratification, etc.), accelerated image interpretation (edge detection, tissue characterization, etc.) and enhanced phenotyping of heterogeneous conditions (heart failure with preserved ejection fraction, hypertension, etc.). A number of software as medical device narrow AI products for cardiac arrhythmia characterization and advanced image deconvolution are now Food and Drug Administration approved, and many others are in the pipeline. Present and future health professionals using AI-infused analytics and wearable devices have 3 critical roles to play in their informed development and ethical application in practice: (1) medical domain experts providing clinical context to computer and data scientists, (2) data stewards assuring the quality, relevance and provenance of data inputs, and (3) real-time and post-hoc interpreters of AI black box solutions and recommendations to patients. The next wave of so-called contextual adaption AI technologies will more closely approximate human decision-making, potentially augmenting cardiologists' real-time performance in emergency rooms, catheterization laboratories, imaging suites, and clinics. However, before such higher order AI technologies are adopted in the clinical setting and by healthcare systems, regulatory agencies, and industry must jointly develop robust AI standards of practice and transparent technology insertion rule sets.}, Publisher = {LIPPINCOTT WILLIAMS \& WILKINS}, Address = {TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA}, Type = {Review}, Language = {English}, Affiliation = {Miller, DD (Corresponding Author), Med Coll Georgia GB 3330, 1120 15th St, Augusta, GA 30912 USA. Miller, D. Douglas, Med Coll Georgia, Dept Med Radiol \& Populat Hlth Sci, Augusta, GA USA.}, DOI = {10.1097/CRD.0000000000000294}, ISSN = {1061-5377}, EISSN = {1538-4683}, Keywords = {artificial intelligence; machine learning; artificial neural networks; algorithms; data science}, Keywords-Plus = {MYOCARDIAL-PERFUSION SPECT; CORONARY-ARTERY-DISEASE; ARTIFICIAL-INTELLIGENCE; HEART-FAILURE; HEALTH-CARE; PREDICTION; ISCHEMIA; ETHICS; PCA}, Research-Areas = {Cardiovascular System \& Cardiology}, Web-of-Science-Categories = {Cardiac \& Cardiovascular Systems}, Author-Email = {ddmiller@augusta.edu}, Affiliations = {University System of Georgia; Augusta University}, Cited-References = {Al'Aref SJ, 2019, J AM HEART ASSOC, V8, DOI 10.1161/JAHA.118.011160. Allen B, 2019, J AM COLL RADIOL, V16, P1179, DOI 10.1016/j.jacr.2019.04.014. {[}Anonymous], JASONJSR16TASK003. Arsanjani R, 2015, J NUCL CARDIOL, V22, P877, DOI 10.1007/s12350-014-0027-x. Arsanjani R, 2013, J NUCL CARDIOL, V20, P553, DOI 10.1007/s12350-013-9706-2. Bansod P, 2008, P 1 INT C BIOINSP SI. Baxt WG, 2002, ANN EMERG MED, V40, P575, DOI 10.1067/mem.2002.129171. Berikol GB, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0432-6. Betancur J, 2018, JACC-CARDIOVASC IMAG, V11, P1000, DOI 10.1016/j.jcmg.2017.07.024. Betancur J, 2018, JACC-CARDIOVASC IMAG, V11, P1654, DOI 10.1016/j.jcmg.2018.01.020. Bonnefon JF, 2019, P IEEE, V107, P502, DOI 10.1109/JPROC.2019.2897447. Bouwmans T, 2018, P IEEE, V106, P1427, DOI 10.1109/JPROC.2018.2853589. Castellanos S, 2019, THE WALL STREET J. Char DS, 2018, NEW ENGL J MED, V378, P981, DOI 10.1056/NEJMp1714229. Clarke P., 2012, EE TIMES. Commandeur F, 2018, IEEE T MED IMAGING, V37, P1835, DOI 10.1109/TMI.2018.2804799. Costabal FS, 2019, MACHINE LEARNING DRU, DOI {[}10.1101/545863, DOI 10.1101/545863]. Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593. Dey D, 2019, J AM COLL CARDIOL, V73, P1317, DOI 10.1016/j.jacc.2018.12.054. Dey D, 2018, EUR RADIOL, V28, P2655, DOI 10.1007/s00330-017-5223-z. Dey D, 2015, CIRC-CARDIOVASC IMAG, V8, DOI 10.1161/CIRCIMAGING.115.003255. Díaz John Jaime Sprockel, 2017, Rev. Colomb. Cardiol., V24, P255, DOI 10.1016/j.rccar.2016.11.010. Emanuel EJ, 2019, JAMA-J AM MED ASSOC, V321, P2281, DOI 10.1001/jama.2019.4914. Ernande L, 2017, J AM COLL CARDIOL, V70, P1704, DOI 10.1016/j.jacc.2017.07.792. Fleming N, 2018, NATURE, V557, pS55, DOI 10.1038/d41586-018-05267-x. Goodfellow I., 2014, PROCESSING ADV NEURA. Goodfellow I, DEEP LEARNING 2016. Green M, 2005 INT C COMP INT, P182. Harrison RF, 2005, ANN EMERG MED, V46, P431, DOI 10.1016/j.annemergmed.2004.09.012. Harvey H, GET CLIN TECH APPROV. Horiuchi Y, 2018, INT J CARDIOL, V262, P57, DOI 10.1016/j.ijcard.2018.03.098. Itchhaporia D, 2018, CARDIOLOGY TODAY, V21, P10. Johnson KW, 2018, J AM COLL CARDIOL, V71, P2668, DOI 10.1016/j.jacc.2018.03.521. Johnstone IM, 2018, P IEEE, V106, P1277, DOI 10.1109/JPROC.2018.2846730. Kalinin AA, 2018, PHARMACOGENOMICS, V19, P629, DOI 10.2217/pgs-2018-0008. Katz DH, 2017, J CARDIOVASC TRANSL, V10, P275, DOI 10.1007/s12265-017-9739-z. Kelm BM, 2011, LECT NOTES COMPUT SC, V6893, P25, DOI 10.1007/978-3-642-23626-6\_4. Kerr CIV, 2008, P I MECH ENG B-J ENG, V222, P1009, DOI 10.1243/09544054JEM1080. Kidder T., 1981, SOUL NEW MACHINE. Krittanawong C, 2017, J AM COLL CARDIOL, V69, P2657, DOI 10.1016/j.jacc.2017.03.571. Lancaster MC, 2019, JACC-CARDIOVASC IMAG, V12, P1149, DOI 10.1016/j.jcmg.2018.02.005. Launchbury J., 2017, DARPA PERSPECTIVE AR. Lundervold AS, 2019, Z MED PHYS, V29, P102, DOI 10.1016/j.zemedi.2018.11.002. Masino AJ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212665. Mesko B., 2019, MED FUTURIST. Miller DD, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0138-5. Miller DD, 2019, AM J ROENTGENOL, V212, P9, DOI 10.2214/AJR.18.19914. Miller DD, 2018, AM J MED, V131, P129, DOI 10.1016/j.amjmed.2017.10.035. Miller D, 2018, AM J MED, V131, P1272, DOI 10.1016/j.amjmed.2018.05.038. Mortazavi BJ, 2016, CIRC-CARDIOVASC QUAL, V9, P629, DOI 10.1161/CIRCOUTCOMES.116.003039. Motwani M, 2017, EUR HEART J, V38, P500, DOI 10.1093/eurheartj/ehw188. Omar AMS, 2017, JACC-CARDIOVASC IMAG, V10, P1291, DOI 10.1016/j.jcmg.2016.10.012. Pandya J, IS FUTURE ARTIFICIAL. Poplin R, 2018, NAT BIOMED ENG, V2, P158, DOI 10.1038/s41551-018-0195-0. Prive F, 2018, BIOINFORMATICS, V34, P2781, DOI 10.1093/bioinformatics/bty185. Putin E, 2018, J CHEM INF MODEL, V58, P1194, DOI 10.1021/acs.jcim.7b00690. Rajkomar A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0029-1. Rajpurkar P, 2017, ARXIV170701836V1CSCV. Rosier A, 2016, EUROPACE, V18, P347, DOI 10.1093/europace/euv234. Sanchez-Martinez S, 2018, CIRC-CARDIOVASC IMAG, V11, DOI 10.1161/CIRCIMAGING.117.007138. Savoji H, 2019, BIOMATERIALS, V198, P3, DOI 10.1016/j.biomaterials.2018.09.036. Shah SJ, 2015, CIRCULATION, V131, P269, DOI 10.1161/CIRCULATIONAHA.114.010637. Shameer K, 2018, HEART, V104, P1156, DOI 10.1136/heartjnl-2017-311198. Shickel B, 2018, IEEE J BIOMED HEALTH, V22, P1589, DOI 10.1109/JBHI.2017.2767063. Sugrue LP, 2019, JAMA-J AM MED ASSOC, V321, P1820, DOI 10.1001/jama.2019.3893. Tesche C, 2018, RADIOLOGY, V288, P64, DOI 10.1148/radiol.2018171291. Pham T, 2017, J BIOMED INFORM, V69, P218, DOI 10.1016/j.jbi.2017.04.001. VanHouten Jacob P, 2014, AMIA Annu Symp Proc, V2014, P1940. Vranas KC, 2017, CRIT CARE MED, V45, P1607, DOI 10.1097/CCM.0000000000002548. Winfield AF, 2019, P IEEE, V107, P509, DOI 10.1109/JPROC.2019.2900622.}, Number-of-Cited-References = {70}, Times-Cited = {18}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {40}, Journal-ISO = {Cardiol. Rev.}, Doc-Delivery-Number = {LH5LL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000528826400001}, DA = {2023-04-22}, } @article{ WOS:000482134500120, Author = {Dresp-Langley, Birgitta and Ekseth, Ole Kristian and Fesl, Jan and Gohshi, Seiichi and Kurz, Marc and Sehring, Hans-Werner}, Title = {Occam's Razor for Big Data? On Detecting Quality in Large Unstructured Datasets}, Journal = {APPLIED SCIENCES-BASEL}, Year = {2019}, Volume = {9}, Number = {15}, Month = {AUG 1}, Abstract = {Detecting quality in large unstructured datasets requires capacities far beyond the limits of human perception and communicability and, as a result, there is an emerging trend towards increasingly complex analytic solutions in data science to cope with this problem. This new trend towards analytic complexity represents a severe challenge for the principle of parsimony (Occam's razor) in science. This review article combines insight from various domains such as physics, computational science, data engineering, and cognitive science to review the specific properties of big data. Problems for detecting data quality without losing the principle of parsimony are then highlighted on the basis of specific examples. Computational building block approaches for data clustering can help to deal with large unstructured datasets in minimized computation time, and meaning can be extracted rapidly from large sets of unstructured image or video data parsimoniously through relatively simple unsupervised machine learning algorithms. Why we still massively lack in expertise for exploiting big data wisely to extract relevant information for specific tasks, recognize patterns and generate new information, or simply store and further process large amounts of sensor data is then reviewed, and examples illustrating why we need subjective views and pragmatic methods to analyze big data contents are brought forward. The review concludes on how cultural differences between East and West are likely to affect the course of big data analytics, and the development of increasingly autonomous artificial intelligence (AI) aimed at coping with the big data deluge in the near future.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Ekseth, OK (Corresponding Author), NTNU Trondheim, N-7491 Trondheim, Norway. Sehring, HW (Corresponding Author), Namics, D-20357 Hamburg, Germany. Dresp-Langley, Birgitta, Strasbourg Univ, CNRS, UMR 7357, ICube Lab, F-67200 Strasbourg, France. Ekseth, Ole Kristian, NTNU Trondheim, N-7491 Trondheim, Norway. Fesl, Jan, Univ South Bohemia Czech Republ, Fac Sci, Inst Appl Informat, Ceske Budejovice 37005, Czech Republic. Gohshi, Seiichi, Kogakkan Univ, Dept Informat, Ise, Mie 5160016, Japan. Kurz, Marc, Univ Appl Sci Upper Austria, Dept Mobil \& Energy, A-4232 Hagenberg, Austria. Sehring, Hans-Werner, Namics, D-20357 Hamburg, Germany.}, DOI = {10.3390/app9153065}, Article-Number = {3065}, EISSN = {2076-3417}, Keywords = {big data; non-dimensionality; applied data science; paradigm shift; artificial intelligence; principle of parsimony (Occam's razor)}, Keywords-Plus = {RECEPTIVE-FIELDS; ALGORITHM; MODEL; CHALLENGES; RANGE; SEGMENTATION; PREDICTION; CLUSTERS}, Research-Areas = {Chemistry; Engineering; Materials Science; Physics}, Web-of-Science-Categories = {Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied}, Author-Email = {oekseth@gmail.com hans-werner.sehring@namics.com}, Affiliations = {Centre National de la Recherche Scientifique (CNRS); CNRS - Institute for Engineering \& Systems Sciences (INSIS); UDICE-French Research Universities; Universites de Strasbourg Etablissements Associes; Universite de Strasbourg}, ResearcherID-Numbers = {Dresp-Langley, Birgitta/F-8243-2013}, ORCID-Numbers = {Dresp-Langley, Birgitta/0000-0002-2860-6472}, Cited-References = {Abdel-Basset M, 2018, SYMMETRY-BASEL, V10, DOI 10.3390/sym10040106. Ahmed MN, 2002, IEEE T MED IMAGING, V21, P193, DOI 10.1109/42.996338. Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0. Anderson Chris, 2008, WIRED MAGAZINE, V16. {[}Anonymous], 2019, BIORXIV, DOI DOI 10.1101/538652. {[}Anonymous], 2004, LEGACY DOCUMENTATION. {[}Anonymous], 2018, CISCO GLOBAL CLOUD I. Arthur D, 2007, P 18 ANN ACM SIAM S, DOI {[}10.1145/1283383.1283494, DOI 10.1145/1283383.1283494]. Bashivan P, 2019, SCIENCE, V364, P453, DOI 10.1126/science.aav9436. Ben-Hur A., 2003, FUNCT GENOM METHODS, V159, P182. Bergman M., A FOUNDATIONAL MINDS. Bezdek JC, 1998, IEEE T SYST MAN CY B, V28, P301, DOI 10.1109/3477.678624. Binder H., 2017, ARTIF INTELL, DOI {[}10.4018/978-1-5225-1759-7.ch019, DOI 10.4018/978-1-5225-1759-7.CH019]. Bishop C. M., 2006, PATTERN RECOGNITION. Cai L., 2015, J DATA SCI, V14, P2, DOI {[}DOI 10.5334/DSJ-2015-002, 10.5334/dsj-2015-002]. Carandini M, 2005, J NEUROSCI, V25, P10577, DOI 10.1523/JNEUROSCI.3726-05.2005. Cassirer E., 2001, DIE SPRACHE BAND 11, V11. Cassirer E., 2002, PHANOMENOLOGIE DER E, V13. Cassirer E., 2002, DAS MYTHISCHE DENKEN, V12. Chacko A. M., 2015, PROCEEDINGS OF THE I. Charrad M, 2014, J STAT SOFTW, V61, P1. Clauset A, 2008, NATURE, V453, P98, DOI 10.1038/nature06830. Cowgill MC, 1999, COMPUT MATH APPL, V37, P99, DOI 10.1016/S0898-1221(99)00090-5. David J. A. S., 1966, SIGNAL DETECTION THE. de Hoon MJL, 2004, BIOINFORMATICS, V20, P1453, DOI 10.1093/bioinformatics/bth078. Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE `04), P137. Deroos D., 2012, UNDERSTANDING BIG DA. Diogo M, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11020043. Dresp B, 1997, VISION RES, V37, P913, DOI 10.1016/S0042-6989(96)00227-1. Dresp B, 1998, SPATIAL VISION, V11, P315, DOI 10.1163/156856898X00059. Dresp B, 2001, PERCEPT PSYCHOPHYS, V63, P1262, DOI 10.3758/BF03194539. Dresp B, 2000, SPATIAL VISION, V13, P343, DOI 10.1163/156856800741243. Dresp-Langley B., 2018, ISTE OPENSCIENCE COL. Dresp-Langley B, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01565. Ekseth O. K., 2019, PROCEEDINGS OF THE I, P321. Ekseth O. K., 2019, DISP FCA HANDBOOK. Ekseth O. K., 2018, PROCEEDINGS OF THE P, P6. Ester M., 1996, KDD 96, V96, P226, DOI DOI 10.5555/3001460.3001507. Feldman D., 2018, ARXIV 1807 04518V1. Feng Changyong, 2014, Shanghai Arch Psychiatry, V26, P105, DOI 10.3969/j.issn.1002-0829.2014.02.009. Fischer S, 2000, LECT NOTES COMPUT SC, V1811, P336. Frangi AF, 2018, IEEE T MED IMAGING, V37, P673, DOI 10.1109/TMI.2018.2800298. Frey C., THE FUTURE OF EMPLOY. Gasch AP, 2002, GENOME BIOL, V3. Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010. Gunther WA, 2017, J STRATEGIC INF SYST, V26, P191, DOI 10.1016/j.jsis.2017.07.003. Guo MZ, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004575. Gurcan F., 2018, PROCEEDINGS OF THE 2. Hakrabarti D., 2006, PROCEEDINGS OF THE 1. Han J, 2012, MOR KAUF D, P1. Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002. Hedjazi M. A., 2018, PROCEEDINGS OF THE 2. Helbing, 2019, DIGITAL ENLIGHTENMEN, P73, DOI DOI 10.1007/978-3-319-90869-4\_7. Hennig C, 2007, COMPUT STAT DATA AN, V52, P258, DOI 10.1016/j.csda.2006.11.025. Holder LB, 2017, EPIGENETICS-US, V12, P505, DOI 10.1080/15592294.2017.1329068. Hua C, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11060744. HUBEL DH, 1968, J PHYSIOL-LONDON, V195, P215, DOI 10.1113/jphysiol.1968.sp008455. HUBEL DH, 1963, J OPT SOC AM, V53, P58, DOI 10.1364/JOSA.53.000058. HUBEL DH, 1965, J NEUROPHYSIOL, V28, P229, DOI 10.1152/jn.1965.28.2.229. HUBEL DH, 1959, J PHYSIOL-LONDON, V148, P574, DOI 10.1113/jphysiol.1959.sp006308. Hulsen T, 2019, FRONT MED-LAUSANNE, V6, DOI 10.3389/fmed.2019.00034. Jain A K, 1988, ALGORITHMS CLUSTERIN. Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011. Kanungo T, 2002, IEEE T PATTERN ANAL, V24, P881, DOI 10.1109/TPAMI.2002.1017616. Kapadia MK, 2000, J NEUROPHYSIOL, V84, P2048, DOI 10.1152/jn.2000.84.4.2048. Kapil S., 2016, PROCEEDINGS OF THE F. KENDALL M. G., 1948, Rank correlation methods.. Kerekes JP, 2002, IEEE T GEOSCI REMOTE, V40, P1088, DOI 10.1109/TGRS.2002.1010896. Kim KJ, 2008, EXPERT SYST APPL, V34, P1200, DOI 10.1016/j.eswa.2006.12.025. Kim KJ, 2017, INT J PROD RES, V55, P5037, DOI 10.1080/00207543.2017.1287443. Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481. Klikauer T, 2016, TRIPLEC-COMMUN CAPIT, V14, P260. Kockara S, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-S6-S26. Kohonen, 2014, MATLAB IMPLEMENTATIO. KOHONEN T, 1982, BIOL CYBERN, V44, P135, DOI 10.1007/BF00317973. KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007/BF00337288. Kohonen T., 1981, PROC 2 SCAND C IM AN, P214. Kohonen T, 2001, SELF ORG MAPS, Vthird. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Kurz M., 2010, EUROPEAN CONFERENCE. Lawson D. J., 2012, SIMILARITY MATRICES. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Li D., 2017, ARTIF INTELL, V2nd, DOI {[}10.1201/9781315366951, DOI 10.1201/9781315366951]. Liu WX, 2012, IEEE VIRTUAL REALITY CONFERENCE 2012 PROCEEDINGS, P3, DOI 10.1109/VR.2012.6180866. LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489. Lv QJ, 2017, IEEE T VEH TECHNOL, V66, P5204, DOI 10.1109/TVT.2016.2611654. Lv YS, 2015, IEEE T INTELL TRANSP, V16, P865, DOI 10.1109/TITS.2014.2345663. Mallick P. K., 2016, ADVANCES IN THE INTE, P323. Marung U, 2016, SYMMETRY-BASEL, V8, DOI 10.3390/sym8070054. Marx V, 2013, NATURE, V496, P253, DOI 10.1038/498255a. Mayer-Schoenberger V., 2014, BIG DATA. Mazandu GK, 2017, BRIEF BIOINFORM, V18, P886, DOI 10.1093/bib/bbw067. Narain A, 2014, T I MEAS CONTROL, V36, P992, DOI 10.1177/0142331214528968. Nereu J., 2017, PROCEEDINGS OF THE I. Ockham W., 1974, THEORY OF TERMS PART. Ohno N, 2016, MICROSCOPY-JPN, V65, P97, DOI 10.1093/jmicro/dfv371. Orr DW, 2005, CONSERV BIOL, V19, P290, DOI 10.1111/j.1523-1739.2005.s04\_1.x. Otair M., 2013, INT J DATABASE MANAG, V5, P97, DOI {[}10.5121/ijdms.2013.5108, DOI 10.5121/IJDMS.2013.5108]. Patra BK, 2011, PATTERN RECOGN, V44, P2862, DOI 10.1016/j.patcog.2011.04.027. Peirce C.S., 1931, COLLECTED PAPERS CS, V7-8. Pelleg D., 2000, ICML, P727, DOI DOI 10.1007/3. Pelleg D., 1999, P 5 ACM SIGKDD INT C, P277, DOI {[}10.1145/312129.312248, DOI 10.1145/312129.312248]. Qiu X, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-124. ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7. Sabharwal S., 2016, PROCEEDINGS OF THE I. Sakthi M., 2011, KERNEL PCA, V2, P955. Sarkar D., 2016, PROCEEDINGS OF THE F. Schaller RR, 1997, IEEE SPECTRUM, V34, P52, DOI 10.1109/6.591665. Schmidt J. W., 2002, ARCHIVPROZESSE DIE K, P238. Schmidt JW, 2003, LECT NOTES COMPUT SC, V2890, P469. Schmitz-Rigal C., 2002, DIE KUNST OFFENEN WI, V7. Sehring H.-W., 2011, PROCEEDINGS OF THE T, P18. Sehring H.-W., 2018, INT J ADV SOFTW, V11, P311. Sehring HW, 2004, LECT NOTES COMPUT SC, V3255, P99. Sehring W., 2019, PROCEEDINGS OF THE 1. Seni G, 2010, ENSEMBLE METHODS IN. SHELLEY MW, FRANKENSTEIN. SIBSON R, 1973, COMPUT J, V16, P30, DOI 10.1093/comjnl/16.1.30. Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001. SPARC Relational Database Task Group, 1982, ACM SIGMOD RECORD, V12, P1. Spillmann L, 2015, J VISION, V15, DOI 10.1167/15.9.7. Srinivasulu A., 2014, PROCEEDINGS OF THE I. Sutton R. S., 1998, INTRO REINFORCEMENT. Thanh T. D., 2008, PROCEEDINGS OF THE F. Tukey J. W., 1977, EXPLORATORY DATA ANA, DOI DOI 10.1007/978-1-4419-7976-6. Tzvetanov T, 2002, VISION RES, V42, P2493, DOI 10.1016/S0042-6989(02)00198-0. Valafar F, 2002, ANN NY ACAD SCI, V980, P41, DOI 10.1111/j.1749-6632.2002.tb04888.x. Varoquaux G., 2015, GETMOBILE, V19, P29, DOI {[}DOI 10.1145/2786984.2786995, 10.1145/2786984.2786995]. Vendramin L., 2019, P SIAM INT C DAT MIN, P733. Wandeto John Mwangi, 2017, Informatics in Medicine Unlocked, V7, P39, DOI 10.1016/j.imu.2017.03.001. Wandeto J. M., 2017, PROCEEDINGS OF THE E. Wandeto J. M., 2019, PROCEEDINGS OF THE 7. Wandeto J. M., 2019, NEURAL NETW. Webb GI, 2010, ENCY MACHINE LEARNIN, V2010, P600. Weiser M, 1999, IBM SYST J, V38, P693, DOI 10.1147/sj.384.0693. WEISER M, 1991, SCI AM, V265, P94, DOI 10.1038/scientificamerican0991-94. Wenliang LK, 2018, J NEUROSCI, V38, P6028, DOI 10.1523/JNEUROSCI.1620-17.2018. Wu JJ, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P877. Yang Y, 2009, OPT APPL, V39, P135. Yeung KY, 2001, BIOINFORMATICS, V17, P309, DOI 10.1093/bioinformatics/17.4.309. Yeung KY, 2001, BIOINFORMATICS, V17, P763, DOI 10.1093/bioinformatics/17.9.763. Zhang S., 2019, DEEP LEARNING REPRES, DOI {[}10.1101/574723, DOI 10.1101/574723]. Zurauskiene J, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-0984-y.}, Number-of-Cited-References = {143}, Times-Cited = {6}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Appl. Sci.-Basel}, Doc-Delivery-Number = {IS4PB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000482134500120}, OA = {Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000795550100001, Author = {Ozdemir, Vural and Springer, Simon}, Title = {Decolonizing Knowledge Upstream: New Ways to Deconstruct and Fight Disinformation in an Era of COVID-19, Extreme Digital Transformation, and Climate Emergency}, Journal = {OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY}, Year = {2022}, Volume = {26}, Number = {5}, Pages = {247-269}, Month = {MAY 1}, Abstract = {Lies and disinformation have always existed throughout human history. However, disinformation has become a ``pandemic within a pandemic{''} with convergence of COVID-19 and digital transformation of health care, climate emergency, and pervasive human-computer interaction in all facets of life. We are living through an era of post-truth. New approaches to fight disinformation are urgently needed and of paramount importance for systems science and planetary health. In this study, we discuss the ways in which extractive and entrenched epistemologies such as technocracy and neoliberalism co-produce disinformation. We draw from the works of David Collingridge in technology entrenchment and the literature on digital health, international affairs, climate emergency, degrowth, and decolonializing methodologies. We expand the vocabulary on and interventions against disinformation, and propose the following: (1) rapid epistemic disobedience as a critical governance tool to resist the cultural hegemony of neoliberalism and its master narrative infinite growth that is damaging the planetary ecosystems, while creating echo chambers overflowing with disinformation, and (2) a two-tiered taxonomy of reflexivity, a state of self-cognizance by knowledge actors, for example, scientists, engineers, and physicians (type 1 reflexivity), as well as by chroniclers of former actors, for example, civil society organizations, journalists, social sciences, and humanities scholars (type 2 reflexivity). This article takes seriously the role of master narratives in quotidian life in production of disinformation and ecological breakdown. The infinite growth narrative does not ask critical questions such as ``growth in what, at what costs to society and environment?,{''} and is a dangerous game of brinkmanship that has been testing the planetary ecological boundaries and putting at risk the veracity of knowledge. There is a need for scholars and systems scientists who break ranks with entrenched narratives that pose existential threats to planetary sustainability and are harmful to knowledge veracity. Scholars who resist the obvious recklessness and juggernaut of the pursuit of neoliberal infinite growth would be rooting for living responsibly and in solidarity on a planet with finite resources. The interventions proposed in this study, rapid epistemic disobedience and the expanded reflexivity taxonomy, can advance progressive policies for a good life for all within planetary boundaries, and decolonize knowledge from disinformation in ways that are necessarily upstream, radical, rapid, and emancipatory.}, Publisher = {MARY ANN LIEBERT, INC}, Address = {140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA}, Type = {Review}, Language = {English}, Affiliation = {Ozdemir, V (Corresponding Author), OMICS Journal Integrat Biol, New Rochelle, NY 10801 USA. Springer, S (Corresponding Author), Univ Newcastle, Fac Sci, Ctr Urban, Sch Environm \& Life Sci,Discipline Geog \& Environm, Callaghan, NSW 2308, Australia. Ozdemir, Vural, OMICS Journal Integrat Biol, New Rochelle, NY USA. Springer, Simon, Univ Newcastle, Fac Sci, Ctr Urban \& Reg Studies, Sch Environm \& Life Sci,Discipline Geog \& Environm, Callaghan, NSW, Australia. Ozdemir, Vural, OMICS Journal Integrat Biol, New Rochelle, NY 10801 USA. Springer, Simon, Univ Newcastle, Fac Sci, Ctr Urban, Sch Environm \& Life Sci,Discipline Geog \& Environm, Callaghan, NSW 2308, Australia.}, DOI = {10.1089/omi.2022.0041}, ISSN = {1536-2310}, EISSN = {1557-8100}, Keywords = {COVID-19; critical studies of disinformation; neoliberalism; epistemic decolonization; prefigurative politics; radical democracy; infinite growth master narrative; degrowth; cyber-physical systems}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; EPISTEMIC DISOBEDIENCE; HEALTH; NEOLIBERALISM; INTERNET; SCIENCE; THINGS; CRISIS}, Research-Areas = {Biotechnology \& Applied Microbiology; Genetics \& Heredity}, Web-of-Science-Categories = {Biotechnology \& Applied Microbiology; Genetics \& Heredity}, Author-Email = {OJIB@liebertpub.com simonspringer@gmail.com}, Affiliations = {University of Newcastle; University of Newcastle}, ORCID-Numbers = {Springer, Simon/0000-0002-0064-7440}, Cited-References = {Akar I, 2020, OMICS, V24, P515, DOI 10.1089/omi.2020.0111. Anderson Benedict., 2016, IMAGINED COMMUNITIES. {[}Anonymous], 2017, BBC NEWSNIGHT. Attiah K., 2021, WASH POST. Axsater S, 2015, INVENTORY CONTROL, V225. Barad K, 2011, SOC STUD SCI, V41, P443, DOI 10.1177/0306312711406317. Bargu B., 2017, FEMINISM CAPITALISM. Barnes DE, 1998, JAMA-J AM MED ASSOC, V279, P1566, DOI 10.1001/jama.279.19.1566. Birch Kean, 2019, EPHEMERA, V19, P467. Bollen J, 2018, NATURE, V560, P143, DOI 10.1038/d41586-018-05887-3. Boschele M, 2021, OMICS, V25, P279, DOI 10.1089/omi.2021.0038. Brabazon H., 2021, ACAD MATTERS. Breines W., 1982, GREAT REFUSAL COMMUN. Bush Vannevar, 1945, SCI ENDLESS FRONTIER. Buxton N., 2021, GLOBAL POLITICAL EC. Cameron CS., 1956, ATLANTIC. Carr EH., 1939, 20 YEARS CRISIS 1919. Collingridge D., 1982, SOCIAL CONTROL TECHN. DAlisa G., 2014, DEGROWTH. DAVIDSON RA, 1986, J GEN INTERN MED, V1, P155, DOI 10.1007/BF02602327. DeVega Chauncy, 2020, SALON. Dominguez M, 2021, J TEACH EDUC, V72, P551, DOI 10.1177/0022487120978152. Doshi P., 2022, NOW BMJ, V376, po102. Ehrenreich B., 2021, NEW REPUBLIC. Emre Merve, 2021, NEW YORKER. Fabbri A, 2018, AM J PUBLIC HEALTH, V108, pE9, DOI 10.2105/AJPH.2018.304677. Fabbri A, 2018, PUBLIC HEALTH NUTR, V21, P3422, DOI 10.1017/S1368980018002100. Farber S., 2014, INT SOCIALIST REV. Feyerabend Paul K, 2011, TYRANNY SCI. Food and Drug Administration, 2020, WHAT IS DIG HLTH. Giordani RCF, 2021, CIENC SAUDE COLETIVA, V26, P2863, DOI 10.1590/1413-81232021267.05892021. Foucault M, 2008, MICHEL FOUCAULT-LECT, P1, DOI 10.1057/9780230594180. Foucault Michel, 1984, POWER KNOWLEDGE SELE, P340. Friedman Uri, 2020, ATLANTIC. Frodeman R., 2020, DALLAS MORNING NEWS. Frodeman R, 2020, ISSUES SCI TECHNOL, V36, P28. Furr-Holden D, 2020, HEALTH EQUITY, V4, P150, DOI 10.1089/heq.2020.29001.rtl2. Garbee J., 2016, FUTURE TENSE. Garvey SC, 2021, INTERDISCIPL SCI REV, V46, P1, DOI 10.1080/03080188.2020.1840820. Geiselberger H., 2017, THE GREAT REGRESSION. Genus A, 2018, RES POLICY, V47, P61, DOI 10.1016/j.respol.2017.09.012. Granda A, 2017, FRUTICULTURE ADDS R. Guston D., 2019, LEGACIES APOLLO 11. Guston DH, 2009, SCIENCE, V323, P582, DOI 10.1126/science.323.5914.582b. Guston DH., 2004, ISSUES SCI TECHNOL, V21. Halffman W, 2015, MINERVA, V53, P165, DOI 10.1007/s11024-015-9270-9. Harvey F., 2022, THE GUARDIAN. Herbert DL, 2013, NATURE, V495, P314, DOI 10.1038/495314d. Hickel J., 2020, LESS IS MORE DEGROWT. Hickel J., 2019, REAL WORLD EC REV, V87, P54. Hickel J, 2021, NAT ENERGY, V6, P766, DOI 10.1038/s41560-021-00884-9. Honest Marijuana Co, 2019, THC O AC WHAT IT IS. Horton R, 2020, LANCET, V396, P1383, DOI 10.1016/S0140-6736(20)32262-5. IPCC, 2021, CLIM CHANG 2021 PHYS. Jimenez A., 2019, INFORM COMMUNICATION. Jureidini J, 2022, BMJ-BRIT MED J, V376, DOI 10.1136/bmj.o702. Kagermann H., 2013, TECH REP, P1. Kallis G., 2017, OPINIONS MINIFESTOS. Kallis G., 2019, LIMITS WHY MALTHUS W, DOI DOI 10.1515/9781503611566. Kickbusch I, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1336. Kickbusch I, 2016, INT J HEALTH POLICY, V5, P201, DOI 10.15171/ijhpm.2015.209. Klein Naomi, 2020, THE INTERCEPT. Lakoff G., 2020, FUTURE HINDSIGHT. Leftwich A., 2009, POLITICS HUMAN AGENC. Levitsky S, 2002, J DEMOCR, V13, P51, DOI 10.1353/jod.2002.0026. Lopez JJ, 2012, SCI CULT-UK, V21, P77, DOI 10.1080/09505431.2011.576240. Lundh A, 2018, INTENS CARE MED, V44, P1603, DOI 10.1007/s00134-018-5293-7. Manahan MA., 2021, GREAT TAKEOVER MAPPI. Mazzucato M., 2022, WHAT OUR EC VALUED W. McDonald SM., 2019, CURRENT AFFAIRS. Mignolo WD, 2011, POSTCOLONIAL STUD-UK, V14, P273, DOI 10.1080/13688790.2011.613105. Mignolo WD, 2009, THEOR CULT SOC, V26, P159, DOI 10.1177/0263276409349275. Monticelli L, 2021, THESIS ELEV, V167, P99, DOI 10.1177/07255136211056992. National Academy of Sciences, 1986, ENV TOB SMOK MEAS EX. Nirmal P, 2019, ENVIRON PLAN E-NAT, V2, P465, DOI 10.1177/2514848618819478. O'Neill DW, 2018, NAT SUSTAIN, V1, P88, DOI 10.1038/s41893-018-0021-4. Ozdemir V., 2019, INT HDB RESPONSIBLE, P70, DOI {[}DOI 10.4337/9781784718862.00011, https://doi.org/10.4337/9781784718862.00011]. Ozdemir V., 2020, SMIRK ITS POLITICS. Ozdemir V., 2020, MEET NEW MINORITY TR. Ozdemir V, 2021, OMICS, V25, P249, DOI 10.1089/omi.2021.0020. Ozdemir V, 2020, OMICS, V24, P451, DOI 10.1089/omi.2020.0088. Ozdemir V, 2020, TRANSL APPL GENOM, P275, DOI 10.1016/B978-0-12-813695-9.00015-7. Ozdemir V, 2018, OMICS, V22, P184, DOI 10.1089/omi.2018.0002. Ozdemir V, 2019, OMICS, V23, P308, DOI 10.1089/omi.2019.0069. Ozdemir V, 2019, OMICS, V23, P67, DOI 10.1089/omi.2019.0003. Ozdemir V, 2018, OMICS, V22, P65, DOI 10.1089/omi.2017.0194. PA Media, 2021, THE GUARDIAN. Pariser E., 2011, FILTER BUBBLE WHAT I. Proctor RN, 2012, TOB CONTROL, V21, P87, DOI 10.1136/tobaccocontrol-2011-050338. Ramirez CC, 2021, EDUC SCI, V11, DOI 10.3390/educsci11090477. Rankin R., 2020, THE GUARDIAN. ROCHON PA, 1994, ARCH INTERN MED, V154, P157, DOI 10.1001/archinte.154.2.157. Roy Arundhati., 2020, FINANC TIMES, V3, P45. San Francisco Declaration on Research Assessment, 2012, DORA. Sarewitz D., 2016, NEW ATLANTIS, V49, P4, DOI 10.1002/hast.639. Schadt P., 2021, JACOBIN MAGAZINE. Schiffrin A., 2021, MEDIA CAPTURE MONEY. Schwab Klaus., 2017, 4 IND REVOLUTION. Sclove R, 2020, J DGOV, V5, P1. SCLOVE RE, 1989, SCI TECHNOL HUM VAL, V14, P163, DOI 10.1177/016224398901400203. Somay B., 2021, END TRUTH 5 ESSAYS D. Springer S., 2014, DIALOGUES HUM GEOGR, V4, P249, DOI {[}10.1177/2043820614540851, DOI 10.1177/2043820614540851]. Springer S, 2022, OMICS, DOI 10.1089/omi.2021.0220. Springer S, 2020, DIALOGUES HUM GEOGR, V10, P112, DOI 10.1177/2043820620931277. Springer S, 2012, CRIT DISCOURSE STUD, V9, P133, DOI 10.1080/17405904.2012.656375. Springer S, 2012, AREA, V44, P136, DOI 10.1111/j.1475-4762.2012.01084.x. Springer S, 2011, ANTIPODE, V43, P525, DOI 10.1111/j.1467-8330.2010.00827.x. Springer Simon, 2016, DISCOURSE NEOLIBERAL. Steinberger J., 2019, POSTMORTEM SURVIVAL. Stingl Alexander I., 2015, DIGITAL COLONIALITY. Tansel CB., 2017, STATES DISCIPLINE AU. The WHO Council on the Economics of Health for All, 2020, MANIFESTO. Nguyen CT, 2020, EPISTEME-J INDIV SOC, V17, P141, DOI 10.1017/epi.2018.32. Thomas Y., 1940, AM LAST CHANCE. Thoreau Henry David, 1963, DUTY CIVIL DISOBEDIE. Thorp HH, 2020, SCIENCE, V369, P227, DOI 10.1126/science.abd7628. Torreele E., 2020, DESIGNING VACCINES P. U.S. Department of Health and Human Services, 1986, HLTH CONSEQUENCES IN. UN, 2008, RIGHT HLTH. Unigwe C., 2019, THE GUARDIAN. Ursula K., 2014, OREGONLIVE. US National Science Foundation, 2019, CPS, P1. Viner K., 2020, GUARDIAN 0713. Von Schomberg R, 2020, OMICS, V24, P509, DOI 10.1089/omi.2020.0118. Watts J., 2019, THE GUARDIAN. White AJ., 2018, NEW ATLANTIS, V55, P3. Wood Ellen Meiksins, 2002, ORIGIN CAPITALISM LO. Yamin AE, 2019, J HUM RIGHTS PRACT, V11, P357, DOI 10.1093/jhuman/huz026. Zaitchik Alexander, 2020, NEW REPUBLIC.}, Number-of-Cited-References = {129}, Times-Cited = {4}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {24}, Journal-ISO = {OMICS}, Doc-Delivery-Number = {1G0LZ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000795550100001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000914960100001, Author = {Iqbal, Umair and Riaz, Muhammad Zain Bin and Zhao, Jiahong and Barthelemy, Johan and Perez, Pascal}, Title = {Drones for Flood Monitoring, Mapping and Detection: A Bibliometric Review}, Journal = {DRONES}, Year = {2023}, Volume = {7}, Number = {1}, Month = {JAN}, Abstract = {Floods are one of the most often occurring and damaging natural hazards. They impact the society on a massive scale and result in significant damages. To reduce the impact of floods, society needs to keep benefiting from the latest technological innovations. Drones equipped with sensors and latest algorithms (e.g., computer vision and deep learning) have emerged as a potential platform which may be useful for flood monitoring, mapping and detection activities in a more efficient way than current practice. To better understand the scope and recent trends in the domain of drones for flood management, we performed a detailed bibliometric analysis. The intent of performing the bibliometric analysis waws to highlight the important research trends, co-occurrence relationships and patterns to inform the new researchers in this domain. The bibliometric analysis was performed in terms of performance analysis (i.e., publication statistics, citations statistics, top publishing countries, top publishing journals, top publishing institutions, top publishers and top Web of Science (WoS) categories) and science mapping (i.e., citations by country, citations by journals, keyword co-occurrences, co-authorship, co-citations and bibliographic coupling) for a total of 569 records extracted from WoS for the duration 2000-2022. The VOSviewer open source tool has been used for generating the bibliographic network maps. Subjective discussions of the results explain the obtained trends from the bibliometric analysis. In the end, a detailed review of top 28 most recent publications was performed and subjected to process-driven analysis in the context of flood management. The potential active areas of research were also identified for future research in regard to the use of drones for flood monitoring, mapping and detection activities.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Iqbal, U (Corresponding Author), Univ Wollongong, SMART Infrastructure Facil, Wollongong, NSW 2500, Australia. Iqbal, Umair; Zhao, Jiahong, Univ Wollongong, SMART Infrastructure Facil, Wollongong, NSW 2500, Australia. Barthelemy, Johan, NVIDIA, Santa Clara, CA 95051 USA. Perez, Pascal, Univ Melbourne, Australian Urban Res Infrastructure Network AURIN, Melbourne, Vic 3000, Australia.}, DOI = {10.3390/drones7010032}, Article-Number = {32}, EISSN = {2504-446X}, Keywords = {bibliometric analysis; drones; unmanned aerial vehicle (UAV); remote sensing; artificial intelligence (AI); floods; computer vision; deep learning}, Keywords-Plus = {DAMAGE; UAV; INFORMATION}, Research-Areas = {Remote Sensing}, Web-of-Science-Categories = {Remote Sensing}, Author-Email = {umair@uow.edu.au}, Affiliations = {University of Wollongong; Nvidia Corporation; University of Melbourne}, ResearcherID-Numbers = {Iqbal, Umair/S-6797-2019 }, ORCID-Numbers = {Iqbal, Umair/0000-0003-0894-0489 Zhao, Jiahong/0000-0003-4243-2277}, Cited-References = {Abdel-Mooty MN, 2021, INT J DISAST RISK RE, V61, DOI 10.1016/j.ijdrr.2021.102349. Akay SS, 2022, ENG SCI TECHNOL, V27, DOI 10.1016/j.jestch.2021.05.020. Alberico I, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14102459. Alfonso-Torreno A, 2022, CATENA, V214, DOI 10.1016/j.catena.2022.106259. AlRyalat SAS, 2019, JOVE-J VIS EXP, DOI 10.3791/58494. Alsamhi SH, 2022, DRONES-BASEL, V6, DOI 10.3390/drones6070154. Amphawan A, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11142257. Anghelache D., 2021, Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series, V51, P146. Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007. Arshad B, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19225012. Barthelemy J, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19092048. Belcore E, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155622. Bilasco S, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14102481. Brahmanand P.S., 2022, INDIAN J FERTIL, V18, P372. Butcher PA, 2021, DRONES-BASEL, V5, DOI 10.3390/drones5010008. Casana J, 2021, J ARCHAEOL SCI-REP, V39, DOI 10.1016/j.jasrep.2021.103133. Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317. Da Fonseca-Soares D, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142113956. Danvila-del-Valle I, 2019, J BUS RES, V101, P627, DOI 10.1016/j.jbusres.2019.02.026. Daud SMSM, 2022, SCI JUSTICE, V62, P30, DOI 10.1016/j.scijus.2021.11.002. Diodato V., 2013, DICT BIBLIOMETRICS. Donthu N, 2021, INT J RES MARK, V38, P232, DOI 10.1016/j.ijresmar.2020.10.006. Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070. Ecke S, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14133205. Erdelj M, 2017, IEEE PERVAS COMPUT, V16, P24, DOI 10.1109/MPRV.2017.11. Feng QL, 2015, WATER-SUI, V7, P1437, DOI 10.3390/w7041437. Garrigos-Simon FJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10061976. Gebrehiwot A, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19071486. Gebrehiwot AA, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10030144. Giannitsopoulos ML, 2022, AQUA-UK, V71, P879, DOI 10.2166/aqua.2022.101. Giulietti N, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22145319. Gizzi FT, 2020, GEOSCIENCES, V10, DOI 10.3390/geosciences10120482. Goerlandt F, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17093255. Gorraiz J, 2008, J INF SCI, V34, P715, DOI 10.1177/0165551507086991. Guo W, 2022, MINERALS-BASEL, V12, DOI 10.3390/min12060739. Hafeez A., 2021, P 2021 INT C CONTROL, P1. Hagge-Kubat T, 2022, GEOSCIENCES, V12, DOI 10.3390/geosciences12060245. Hemamalini RR, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104077. Hernandez D, 2022, IEEE INTERNET THINGS, V9, P7286, DOI 10.1109/JIOT.2021.3098379. Hidayah E, 2022, J APPL WATER ENG RES, DOI 10.1080/23249676.2022.2114025. Higgisson W, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14081868. Iqbal U., 2022, NANOTECHNOLOGY BASED, P281. Iqbal U, 2023, URBAN WATER J, V20, P26, DOI 10.1080/1573062X.2022.2134041. Iqbal U, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22207821. Iqbal U, 2022, WATER-SUI, V14, DOI 10.3390/w14172605. Iqbal U, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e08405. Iqbal U, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11167561. Iqbal U, 2021, INT J DISAST RISK RE, V53, DOI 10.1016/j.ijdrr.2020.102030. Ivanova S, 2022, FIRE-BASEL, V5, DOI 10.3390/fire5030060. Jiang WW, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-14578-z. Jimenez-Jimenez SI, 2020, GEOMAT NAT HAZ RISK, V11, P906, DOI 10.1080/19475705.2020.1760360. Karamuz E, 2020, J FLOOD RISK MANAG, V13, DOI 10.1111/jfr3.12622. Khan A, 2022, J FIELD ROBOT, V39, P905, DOI 10.1002/rob.22075. Klemas VV, 2015, J COASTAL RES, V31, P1260, DOI 10.2112/JCOASTRES-D-15-00005.1. Kundu S, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14061450. Lei TJ, 2022, WATER-SUI, V14, DOI 10.3390/w14142207. Liu P, 2014, SMART STRUCT SYST, V13, P1065, DOI 10.12989/sss.2014.13.6.1065. Loli M, 2022, SCI TOTAL ENVIRON, V822, DOI 10.1016/j.scitotenv.2022.153661. McCabe MF, 2017, HYDROL EARTH SYST SC, V21, P3879, DOI 10.5194/hess-21-3879-2017. McDonald W, 2019, URBAN WATER J, V16, P505, DOI 10.1080/1573062X.2019.1687745. Mohsan SAH, 2022, DRONES-BASEL, V6, DOI 10.3390/drones6060147. Mondal MSH, 2019, JAMBA-J DISASTER RIS, V11, DOI 10.4102/jamba.v11i1.535. Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123. Moral-Munoz JA, 2019, SPRINGER HBK, P159, DOI 10.1007/978-3-030-02511-3\_7. Muhamat AA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14095440. Munawar HS, 2022, FIRE-BASEL, V5, DOI 10.3390/fire5040122. Munawar HS, 2022, DRONES-BASEL, V6, DOI 10.3390/drones6040096. Munawar HS, 2021, AUTOMAT CONSTR, V132, DOI 10.1016/j.autcon.2021.103916. Nath ND, 2022, ADV ENG INFORM, V51, DOI 10.1016/j.aei.2021.101450. Nofal OM, 2021, INT J DISAST RISK RE, V62, DOI 10.1016/j.ijdrr.2021.102429. Papaioannou G, 2022, WATER-SUI, V14, DOI 10.3390/w14071076. Pereira FD, 2015, PROCEDIA COMPUT SCI, V55, P298, DOI 10.1016/j.procs.2015.07.052. Persson O., 2009, CELEBRATING SCHOLARL, V9. Popescu D, 2015, 2015 19TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), P753, DOI 10.1109/ICSTCC.2015.7321384. Prabhu BVB, 2022, MODEL EARTH SYST ENV, V8, P4509, DOI 10.1007/s40808-022-01414-6. Roiha J, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13102010. Romagnoli C, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14132960. Sibanda M, 2021, DRONES-BASEL, V5, DOI 10.3390/drones5030084. Singh AD, 2020, INT CONF UNMAN AIRCR, P1792, DOI 10.1109/ICUAS48674.2020.9213927. Song Y, 2022, WATER-SUI, V14, DOI 10.3390/w14071117. Stone Z., 2022, NOTORNIS, V69, P25. Su HZ, 2022, INFRARED PHYS TECHN, V122, DOI 10.1016/j.infrared.2022.104105. Supriya C., 2021, AGR FOOD SCI, V33, P137, DOI {[}10.9734/ijpss/2021/v33i2130665, DOI 10.9734/IJPSS/2021/V33I2130665]. Taddia Y, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13071364. Trepekli K, 2022, NAT HAZARDS, V113, P423, DOI 10.1007/s11069-022-05308-9. Tuna G, 2014, J NETW COMPUT APPL, V41, P27, DOI 10.1016/j.jnca.2013.10.002. Van Eck N. J., 2013, VOSVIEWER MANUAL MAN, V1, P1. Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299. van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3. van Nunen K, 2018, SAFETY SCI, V108, P248, DOI 10.1016/j.ssci.2017.08.011. Wang EL, 2022, WATER-SUI, V14, DOI 10.3390/w14121957. Wasko C, 2021, J HYDROL, V603, DOI 10.1016/j.jhydrol.2021.126994. Yang CM, 2022, LANDSLIDES, V19, P1807, DOI 10.1007/s10346-022-01888-6. Ye S, 2022, GEOMORPHOLOGY, V403, DOI 10.1016/j.geomorph.2022.108138. Zelenakova M, 2011, WIT T ECOL ENV, V146, P61.}, Number-of-Cited-References = {95}, Times-Cited = {0}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {12}, Journal-ISO = {Drones-Basel}, Doc-Delivery-Number = {7Y6AQ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000914960100001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000647943500002, Author = {Liu, Ruixue and Dobriban, Edgar and Hou, Zhichao and Qian, Kun}, Title = {Dynamic Load Identification for Mechanical Systems: A Review}, Journal = {ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING}, Year = {2022}, Volume = {29}, Number = {2}, Pages = {831-863}, Month = {MAR}, Abstract = {Due to the great challenges of measuring forces directly, identifying dynamic loads based on accessible responses is a crucial problem in engineering, helping ensure integrity and reliability of mechanical structures. Dynamic load identification is a difficult inverse problem due to matrix ill-posedness, noise-sensitivity and computational scale, especially in uncertain structures. Unexpected inaccurate or non-unique solutions may be found if these problems are not well addressed. During the past decades, many methods have been proposed to deal with these problems. This paper tries to provide a comprehensive review of techniques for dynamic load identification, including under ill-posedness and uncertain parameter processing; with an emphasis on the statistical, data science, machine learning, and artificial intelligence aspects. Classical physics-based dynamic load identification theories in frequency and time domain are also introduced. Research challenges and prospects of dynamic load identification in mechanical systems are discussed finally. This review may offer guidelines for dynamic load identification in practical complex structures, as well as possibilities for further researches. Some methods could have broader applicability to other inverse problems.}, Publisher = {SPRINGER}, Address = {VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Hou, ZC (Corresponding Author), Tsinghua Univ, State Key Lab Automot Safety \& Energy, Beijing 100084, Peoples R China. Liu, Ruixue; Hou, Zhichao; Qian, Kun, Tsinghua Univ, State Key Lab Automot Safety \& Energy, Beijing 100084, Peoples R China. Dobriban, Edgar, Univ Penn, Dept Stat, Philadelphia, PA 19104 USA.}, DOI = {10.1007/s11831-021-09594-7}, EarlyAccessDate = {MAY 2021}, ISSN = {1134-3060}, EISSN = {1886-1784}, Keywords-Plus = {IMPACT FORCE IDENTIFICATION; VALUE DECOMPOSITION ALGORITHM; CONJUGATE-GRADIENT METHOD; FAST BAYESIAN-APPROACH; FREE-VIBRATION DATA; ILL-POSED PROBLEM; STRUCTURAL RESPONSE; SPARSE REGULARIZATION; STATE ESTIMATION; INVERSE METHOD}, Research-Areas = {Computer Science; Engineering; Mathematics}, Web-of-Science-Categories = {Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications}, Author-Email = {liuruixue0218@163.com dobriban@wharton.upenn.edu houzc@mail.tsinghua.edu.cn qiankun\_nvh@163.com}, Affiliations = {Tsinghua University; University of Pennsylvania}, ResearcherID-Numbers = {Qian, Kun/Z-1427-2018}, ORCID-Numbers = {Qian, Kun/0000-0002-5830-765X}, Funding-Acknowledgement = {National Natural Science foundation of China {[}51975312]}, Funding-Text = {The authors gratefully acknowledge the support of National Natural Science foundation of China (Grant No. 51975312).}, Cited-References = {Acosta M, 2018, NEURAL COMPUT APPL, V30, P3445, DOI 10.1007/s00521-017-2932-9. Allison TC, 2008, J VIB ACOUST, V130, DOI 10.1115/1.2890387. Alpaydin E, 2014, ADAPT COMPUT MACH LE, P1. Amiri AK, 2017, J WIND ENG IND AEROD, V167, P75, DOI 10.1016/j.jweia.2017.04.009. Anderson Theodore W., 2003, INTRO MULTIVARIATE S, V3rd. Anil BM, 2005, DYNAMICS STRUCTURES. Antoni J, 2012, J ACOUST SOC AM, V131, P2873, DOI 10.1121/1.3685484. Aucejo M, 2019, MECH SYST SIGNAL PR, V126, P98, DOI 10.1016/j.ymssp.2019.02.021. Aucejo M, 2019, MECH SYST SIGNAL PR, V118, P549, DOI 10.1016/j.ymssp.2018.09.002. Aucejo M, 2018, MECH SYST SIGNAL PR, V104, P36, DOI 10.1016/j.ymssp.2017.10.023. Aucejo M, 2018, MECH SYST SIGNAL PR, V104, P1, DOI 10.1016/j.ymssp.2017.10.027. Aucejo M, 2017, MECH SYST SIGNAL PR, V85, P730, DOI 10.1016/j.ymssp.2016.09.011. Aucejo M, 2016, MECH SYST SIGNAL PR, V66-67, P120, DOI 10.1016/j.ymssp.2015.05.004. Aucejo M, 2014, J SOUND VIB, V333, P5693, DOI 10.1016/j.jsv.2014.06.027. Azam SE, 2017, J VIB CONTROL, V23, P2494, DOI 10.1177/1077546315617672. Azam SE, 2015, MECH SYST SIGNAL PR, V60-61, P866, DOI 10.1016/j.ymssp.2015.02.001. Baake M, 2011, P STEKLOV I MATH+, V275, P155, DOI 10.1134/S0081543811080098. Bangji Z, 2017, J SOC SCI, V44. Beck A, 2009, SIAM J IMAGING SCI, V2, P183, DOI 10.1137/080716542. Benaroya H., 2017, MECH VIBRATION ANAL, DOI {[}10.1201/9781315118369, DOI 10.1201/9781315118369]. Bishop Christopher M., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119. Body CY, 2014, SAE TECHNICAL PAPER, DOI {[}10.4271/2014-01-2044, DOI 10.4271/2014-01-2044]. Brooks S, 2011, CH CRC HANDB MOD STA, P1, DOI 10.1201/b10905. Bruckstein AM, 2009, SIAM REV, V51, P34, DOI 10.1137/060657704. Buhlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9. Callier F., 2012, LINEAR SYSTEM THEORY. Candes EJ, 2008, CR MATH, V346, P589, DOI 10.1016/j.crma.2008.03.014. Cao X, 1998, COMPUT STRUCT, V69, P63, DOI 10.1016/S0045-7949(98)00085-6. Casella G., 2002, STAT INFERENCE, V2nd ed. Chang XT, 2019, J SOUND VIB, V440, P186, DOI 10.1016/j.jsv.2018.10.017. Chatzi EN, 2009, STRUCT CONTROL HLTH, V16, P99, DOI 10.1002/stc.290. Chen Z, 2019, ADV STRUCT ENG, V22, P2687, DOI 10.1177/1369433219849817. Chen Z, 2018, J SOUND VIB, V423, P100, DOI 10.1016/j.jsv.2017.11.034. Chen Z, 2017, J SOUND VIB, V401, P297, DOI 10.1016/j.jsv.2017.05.004. Cheng WY, 2019, OPTIM METHOD SOFTW, V34, P1277, DOI 10.1080/10556788.2018.1496433. Ching JY, 2006, J ENG MECH, V132, P396, DOI 10.1061/(ASCE)0733-9399(2006)132:4(396). Ching JY, 2006, PROBABILIST ENG MECH, V21, P81, DOI 10.1016/j.probengmech.2005.08.003. Cumbo R, 2019, MECH SYST SIGNAL PR, V117, P771, DOI 10.1016/j.ymssp.2018.08.045. Dacunha JJ, 2005, J DIFFER EQU APPL, V11, P1245, DOI 10.1080/10236190500272798. Daubechies I, 2004, COMMUN PUR APPL MATH, V57, P1413, DOI 10.1002/cpa.20042. Den Hartog JP, 1985, MECH VIBRATIONS, V5th. DOBSON BJ, 1990, P I MECH ENG C-J MEC, V204, P69, DOI 10.1243/PIME\_PROC\_1990\_204\_080\_02. Donoho DL, 2006, COMMUN PUR APPL MATH, V59, P797, DOI 10.1002/cpa.20132. Donoho DL, 2006, IEEE T INFORM THEORY, V52, P1289, DOI 10.1109/TIT.2006.871582. Dykes L, 2014, J COMPUT APPL MATH, V255, P15, DOI 10.1016/j.cam.2013.04.019. Ertveldt J, 2016, AIAA J, V54, P3265, DOI 10.2514/1.J054773. Ewins D., 1984, P IMAC. Faure C, 2017, MECH SYST SIGNAL PR, V94, P180, DOI 10.1016/j.ymssp.2017.02.023. Figueiredo MAT, 2007, IEEE J-STSP, V1, P586, DOI 10.1109/JSTSP.2007.910281. Flannelly WG, 1979, J AM HELICOPTER SOC, V24, P10, DOI DOI 10.4050/JAHS.24.2.10. Fu M, 2020, ENG COMPUT-GERMANY, P1. Gelman A., 2014, TEXTS STAT SCI, DOI DOI 10.1201/B16018. Ghajari M, 2013, SMART MATER STRUCT, V22, DOI 10.1088/0964-1726/22/8/085014. Gonzalez A, 2008, INT J NUMER METH ENG, V75, P335, DOI 10.1002/nme.2262. Gunawan FE, 2006, J SOUND VIB, V297, P200, DOI 10.1016/j.jsv.2006.03.036. Gunawan FE, 2012, J SOUND VIB, V331, P5424, DOI 10.1016/j.jsv.2012.07.025. Guo LN, 2018, MECH SYST SIGNAL PR, V101, P254, DOI 10.1016/j.ymssp.2017.07.047. Gupta DK, 2013, MECH SYST SIGNAL PR, V40, P556, DOI 10.1016/j.ymssp.2013.06.011. Han J, 2012, MOR KAUF D, P1. HANKE M, 1995, NUMER MATH, V72, P21, DOI 10.1007/s002110050158. Hansen P.C., 2005, UPBRINGING SCHOOLCHI, V4th ed. HANSEN PC, 1990, SIAM J SCI STAT COMP, V11, P503, DOI 10.1137/0911028. HANSEN PC, 1989, BIT, V29, P491, DOI 10.1007/BF02219234. Hansen PC, 1996, NUMER LINEAR ALGEBR, V3, P513, DOI 10.1002/(SICI)1099-1506(199611/12)3:6<513::AID-NLA93>3.0.CO;2-4. Hansen PC, 2007, NUMER ALGORITHMS, V46, P189, DOI 10.1007/s11075-007-9136-9. Hansen PC, 2007, J COMPUT APPL MATH, V198, P483, DOI 10.1016/j.cam.2005.09.026. Hastie T, 2001, ELEMENTS STAT LEARNI, V1, DOI 10.1007/978-0-387-84858-7. Haykin S., 2010, NEURAL NETWORKS LEAR. He ZC, 2020, J SOUND VIB, V471, DOI 10.1016/j.jsv.2020.115188. He ZC, 2019, APPL ACOUST, V148, P223, DOI 10.1016/j.apacoust.2018.12.034. He ZC, 2019, MECH SYST SIGNAL PR, V119, P266, DOI 10.1016/j.ymssp.2018.09.021. Hildebrand F.B., 1987, INTRO NUMERICAL ANAL. Hochstenbach ME, 2015, J COMPUT APPL MATH, V273, P132, DOI 10.1016/j.cam.2014.06.004. HOLLANDSWORTH PE, 1989, INT J IMPACT ENG, V8, P315, DOI 10.1016/0734-743X(89)90020-1. Hollkamp JJ, 2008, J SOUND VIB, V318, P1139, DOI 10.1016/j.jsv.2008.04.035. HOLZDEPPE D, 1988, J WIND ENG IND AEROD, V28, P231, DOI 10.1016/0167-6105(88)90119-5. Hou Z, 2020, 2020010865 SAE. Hu N, 2007, INT J IMPACT ENG, V34, P1258, DOI 10.1016/j.ijimpeng.2006.05.004. Hwang JS, 2009, J SOUND VIB, V326, P522, DOI 10.1016/j.jsv.2009.05.003. INOUE H, 1995, JSME INT J A-MECH M, V38, P84, DOI 10.1299/jsmea1993.38.1\_84. Inoue H., 2001, APPL MECH REV, V54, P503, DOI DOI 10.1115/1.1420194. Jacquelin E, 2003, J SOUND VIB, V265, P81, DOI 10.1016/S0022-460X(02)01441-4. Jang TS, 2013, COMPUT STRUCT, V120, P77, DOI 10.1016/j.compstruc.2013.02.008. Jang TS, 2011, MECH SYST SIGNAL PR, V25, P2219, DOI 10.1016/j.ymssp.2011.01.012. Jang TS, 2010, MECH SYST SIGNAL PR, V24, P1665, DOI 10.1016/j.ymssp.2010.01.003. Jia Y, 2015, J SOUND VIB, V358, P111, DOI 10.1016/j.jsv.2015.07.035. Jia Y, 2015, J SOUND VIB, V342, P113, DOI 10.1016/j.jsv.2014.12.010. Jiang WS, 2018, MECH SYST SIGNAL PR, V101, P405, DOI 10.1016/j.ymssp.2017.09.001. Jr JH., 2019, FUNDAMENTALS APPL DY. Kay S. M., 1993, FUNDAMENTALS STAT SI. Khoo SY, 2014, INT J IMPACT ENG, V63, P52, DOI 10.1016/j.ijimpeng.2013.08.005. Kilmer ME, 2007, SIAM J SCI COMPUT, V29, P315, DOI 10.1137/050645592. Koh KM, 2007, J MACH LEARN RES, V8, P1519. Kozukue W, 2007, INT J VEHICLE DES, V43, P173, DOI 10.1504/IJVD.2007.012302. Lage YE, 2013, J SOUND VIB, V332, P1674, DOI 10.1016/j.jsv.2012.10.034. Lai T, 2017, INT J STRUCT STAB DY, V17, DOI 10.1142/S0219455417501206. Lai T, 2016, J SOUND VIB, V377, P76, DOI 10.1016/j.jsv.2016.05.013. Lalanne C., 2002, MECH VIBRATION SHOCK, V2. Law SS, 2005, ENG STRUCT, V27, P1586, DOI 10.1016/j.engstruct.2005.05.007. Lee D, 2018, J SOUND VIB, V436, P32, DOI 10.1016/j.jsv.2018.08.051. Lehmann E.L., 2006, THEORY POINT ESTIMAT. Lei Y, 2012, INT J NONLIN MECH, V47, P1141, DOI 10.1016/j.ijnonlinmec.2011.09.004. Li L, 2007, J COMPUT APPL MATH, V206, P341, DOI 10.1016/j.cam.2006.07.022. Li QF, 2019, INT J NUMER METH ENG, V118, P411, DOI 10.1002/nme.6019. Li QF, 2018, J SOUND VIB, V421, P190, DOI 10.1016/j.jsv.2018.01.052. Li XW, 2018, INVERSE PROBL SCI EN, V26, P1612, DOI 10.1080/17415977.2017.1417407. Li Y, 2020, STRUCT CONTROL HLTH, V27, DOI 10.1002/stc.2464. Li Z, 2014, J SOUND VIB, V333, P381, DOI 10.1016/j.jsv.2013.09.026. Lin JH, 2011, PROCEDIA ENGINEER, V14, DOI 10.1016/j.proeng.2011.07.308. Lin JH, 2001, COMPUT STRUCT, V79, P375, DOI 10.1016/S0045-7949(00)00154-1. Liu J, 2011, INT J COMP METH-SING, V8, P667, DOI 10.1142/S0219876211002757. Liu J, 2018, COMPUT METHOD APPL M, V342, P287, DOI 10.1016/j.cma.2018.07.035. Liu J, 2018, J MECH SCI TECHNOL, V32, P3581, DOI 10.1007/s12206-018-0709-4. Liu J, 2017, MECH SYST SIGNAL PR, V95, P273, DOI 10.1016/j.ymssp.2017.03.039. Liu J, 2016, INT J MECH MATER DES, V12, P375, DOI 10.1007/s10999-015-9304-3. Liu J, 2016, INT J NUMER METH ENG, V105, P620, DOI 10.1002/nme.4991. Liu J, 2015, J SOUND VIB, V357, P74, DOI 10.1016/j.jsv.2015.07.022. Liu J, 2015, MECH SYST SIGNAL PR, V56-57, P35, DOI 10.1016/j.ymssp.2014.10.008. Liu J, 2014, COMPUT STRUCT, V144, P127, DOI 10.1016/j.compstruc.2014.08.002. Liu JJ, 2000, COMPUT METHOD APPL M, V190, P1309, DOI 10.1016/S0045-7825(99)00465-X. Liu Y, 2005, J SOUND VIB, V282, P37, DOI 10.1016/j.jsv.2004.02.041. Lourens E, 2012, MECH SYST SIGNAL PR, V29, P310, DOI 10.1016/j.ymssp.2012.01.011. Lourens E, 2012, MECH SYST SIGNAL PR, V27, P446, DOI 10.1016/j.ymssp.2011.09.025. Lu K, 2019, MECH SYST SIGNAL PR, V123, P264, DOI 10.1016/j.ymssp.2019.01.018. Lu ZR, 2007, MECH SYST SIGNAL PR, V21, P2099, DOI 10.1016/j.ymssp.2006.11.004. Lu ZS, 2018, MATH OPER RES, V43, P275, DOI 10.1287/moor.2017.0865. Ma CK, 2004, J SOUND VIB, V275, P953, DOI 10.1016/S0022-460X(03)00797-1. Maes K, 2017, PROCEDIA ENGINEER, V199, P2154, DOI 10.1016/j.proeng.2017.09.158. Mao YM, 2010, J SOUND VIB, V329, P3008, DOI 10.1016/j.jsv.2010.02.012. Meirovitch L., 1986, ELEMENTS VIBRATION A. Meriam JL, 2012, ENG MECH DYNAMICS. Moller J., 2013, SPATIAL STAT COMPUTA. Morigi S, 2006, NUMER ALGORITHMS, V43, P197, DOI 10.1007/s11075-006-9053-3. Nadarajah S, 2005, J APPL STAT, V32, P685, DOI 10.1080/02664760500079464. Naets F, 2015, MECH SYST SIGNAL PR, V50-51, P235, DOI 10.1016/j.ymssp.2014.05.042. Nakamura T, 2012, AEROSP SCI TECHNOL, V23, P75, DOI 10.1016/j.ast.2011.06.012. Newland D., 2013, MECH VIBRATION ANAL. Ni YC, 2016, MECH SYST SIGNAL PR, V70-71, P221, DOI 10.1016/j.ymssp.2015.06.009. Nikolova M, 2004, J MATH IMAGING VIS, V20, P99, DOI 10.1023/B:JMIV.0000011920.58935.9c. Nordberg TP, 2006, COMPUT METHOD APPL M, V195, P5891, DOI 10.1016/j.cma.2005.06.028. Noschese S, 2016, LINEAR ALGEBRA APPL, V502, P366, DOI 10.1016/j.laa.2015.04.008. Pan CD, 2018, MECH SYST SIGNAL PR, V98, P32, DOI 10.1016/j.ymssp.2017.04.032. Pan CD, 2019, ADV STRUCT ENG, V22, P3161, DOI 10.1177/1369433219859479. Park Y, 2018, J COMPUT APPL MATH, V343, P12, DOI 10.1016/j.cam.2018.04.049. Platt J., 2020, SEQUENTIAL MINIMAL O. Prawin J, 2018, MECH SYST SIGNAL PR, V99, P516, DOI 10.1016/j.ymssp.2017.06.031. Qiao BJ, 2019, MECH SYST SIGNAL PR, V126, P341, DOI 10.1016/j.ymssp.2019.02.039. Qiao BJ, 2019, J SOUND VIB, V445, P44, DOI 10.1016/j.jsv.2019.01.004. Qiao BJ, 2017, MECH SYST SIGNAL PR, V83, P93, DOI 10.1016/j.ymssp.2016.05.046. Qiao BJ, 2016, J SOUND VIB, V376, P72, DOI 10.1016/j.jsv.2016.04.040. Qiao BJ, 2016, J SOUND VIB, V368, P71, DOI 10.1016/j.jsv.2016.01.030. Qiao BJ, 2015, MECH SYST SIGNAL PR, V64-65, P413, DOI 10.1016/j.ymssp.2015.04.009. Qiu BB, 2020, INT J MECH SCI, V166, DOI 10.1016/j.ijmecsci.2019.105231. Qiu BB, 2019, MECH SYST SIGNAL PR, V128, P429, DOI 10.1016/j.ymssp.2019.04.015. Radhika B, 2013, EARTHQ STRUCT, V5, P359, DOI 10.12989/eas.2013.5.3.359. Reichel L, 2008, J COMPUT APPL MATH, V219, P493, DOI 10.1016/j.cam.2007.01.025. Reichel L, 2013, NUMER ALGORITHMS, V63, P65, DOI 10.1007/s11075-012-9612-8. Rezayat A, 2016, MECH SYST SIGNAL PR, V70-71, P756, DOI 10.1016/j.ymssp.2015.09.015. Risaliti E., 2016, INT C NOISE VIBRATIO. Roseiro L, 2013, COMPUTATIONAL INTELL, P469. Samagassi S, 2015, J SOUND VIB, V359, P56, DOI 10.1016/j.jsv.2015.08.014. Sanchez J, 2014, J SOUND VIB, V333, P2999, DOI 10.1016/j.jsv.2014.02.025. Sekula K, 2013, SHOCK VIB, V20, P123, DOI 10.3233/SAV-2012-0732. Staszewski WJ, 2000, SMART MATER STRUCT, V9, P298, DOI 10.1088/0964-1726/9/3/308. Strang G., LINEAR ALGEBRA LEARN. Sun RJ, 2014, FINITE ELEM ANAL DES, V81, P38, DOI 10.1016/j.finel.2013.11.008. Sun Xingsheng, 2014, Journal of Mechanical Engineering, V50, P148, DOI 10.3901/JME.2014.13.148. Tran H, 2018, ASEAN ENG J, V8, P53, DOI {[}10.11113/aej.v8.15498, DOI 10.11113/AEJ.V8.15498]. Trivailo PM, 2006, INVERSE PROBL SCI EN, V14, P379, DOI 10.1080/17415970600573692. Tropp JA, 2010, P IEEE, V98, P948, DOI 10.1109/JPROC.2010.2044010. Turco E, 2005, INT J NUMER METH ENG, V64, P1483, DOI 10.1002/nme.1418. Uhl T, 2007, ARCH APPL MECH, V77, P325, DOI 10.1007/s00419-006-0086-9. Vigso M, 2019, EVALUATING EFFECT MO. Wambacq J, 2019, MECH SYST SIGNAL PR, V115, P593, DOI 10.1016/j.ymssp.2018.06.006. Wang J, 2013, MECH SYST SIGNAL PR, V41, P254, DOI 10.1016/j.ymssp.2013.07.004. Wang J., 2015, J COMPUT INFORM SYST, V11, P8165. Wang L, 2020, STRUCT MULTIDISCIP O, V61, P1929, DOI 10.1007/s00158-019-02448-8. Wang L, 2019, ADV ENG SOFTW, V131, P77, DOI 10.1016/j.advengsoft.2019.02.003. Wang L, 2020, J SOUND VIB, V464, DOI 10.1016/j.jsv.2019.114988. Wang LJ, 2019, ADV MECH ENG, V11, DOI 10.1177/1687814018822360. Wang LJ, 2019, ENG COMPUT-GERMANY, V35, P127, DOI 10.1007/s00366-018-0588-4. Wang LJ, 2018, COMPUT MATH APPL, V76, P741, DOI 10.1016/j.camwa.2018.05.013. Wang LJ, 2015, INT J COMPUT METH EN, V16, P292, DOI 10.1080/15502287.2015.1080318. Wang LJ, 2015, J COMPUT SCI-NETH, V8, P101, DOI 10.1016/j.jocs.2015.03.008. Wang LJ, 2013, INT J MECH MATER DES, V9, P191, DOI 10.1007/s10999-012-9208-4. Wang T, 2015, COMPUT STRUCT, V157, P132, DOI 10.1016/j.compstruc.2015.05.015. Wang W, 2009, J COMPUT APPL MATH, V230, P607, DOI 10.1016/j.cam.2008.12.016. Wei YM, 2016, SIAM J MATRIX ANAL A, V37, P649, DOI 10.1137/15M1030200. Wei ZX, 2006, APPL MATH COMPUT, V183, P1341, DOI 10.1016/j.amc.2006.05.150. Wellesley MA., WELLESLEY. Wipf D, 2010, IEEE J-STSP, V4, P317, DOI 10.1109/JSTSP.2010.2042413. Wright SJ, 2009, IEEE T SIGNAL PROCES, V57, P2479, DOI 10.1109/TSP.2009.2016892. Wu ML, 2008, INT J NONLIN MECH, V43, P822, DOI 10.1016/j.ijnonlinmec.2008.05.010. Wu SQ, 2011, ENG STRUCT, V33, P591, DOI 10.1016/j.engstruct.2010.11.017. Xu MH, 2020, COMPUT METHOD APPL M, V360, DOI 10.1016/j.cma.2019.112718. Xu MH, 2019, MECH SYST SIGNAL PR, V128, P617, DOI 10.1016/j.ymssp.2019.04.006. Xu PL, 1998, GEOPHYS J INT, V135, P505, DOI 10.1046/j.1365-246X.1998.00652.x. Yan G, 2009, J SOUND VIB, V319, P869, DOI 10.1016/j.jsv.2008.06.051. Yang JN, 2004, INT J NONLIN MECH, V39, P1481, DOI 10.1016/j.ijnonlinmec.2004.02.010. Yann L., 2015, NATURE, V521, P436, DOI {[}10.1038/nature14539, DOI 10.1038/NATURE14539]. Yu L, 2003, J SOUND VIB, V261, P329, DOI 10.1016/S0022-460X(02)00991-4. Zhang CD, 2016, J SOUND VIB, V360, P112, DOI 10.1016/j.jsv.2015.09.018. Zhang E, 2012, J SOUND VIB, V331, P798, DOI 10.1016/j.jsv.2011.10.021. Zhang FL, 2016, MECH SYST SIGNAL PR, V70-71, P209, DOI 10.1016/j.ymssp.2015.05.031. Zhang GL, 2015, APPL MATH COMPUT, V258, P12, DOI 10.1016/j.amc.2015.01.115. Zheng SF, 2011, MECH SYST SIGNAL PR, V25, P2229, DOI 10.1016/j.ymssp.2011.01.015. Zhou JM, 2019, MECH SYST SIGNAL PR, V133, DOI 10.1016/j.ymssp.2019.106292. Zhou KB, 2019, J PETROL SCI ENG, V183, DOI 10.1016/j.petrol.2019.106368. Zhu T, 2014, APPL MATH COMPUT, V235, P226, DOI 10.1016/j.amc.2014.03.008.}, Number-of-Cited-References = {209}, Times-Cited = {17}, Usage-Count-Last-180-days = {31}, Usage-Count-Since-2013 = {127}, Journal-ISO = {Arch. Comput. Method Eng.}, Doc-Delivery-Number = {ZB5NE}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000647943500002}, DA = {2023-04-22}, } @article{ WOS:000585196500001, Author = {Mosavi, Amirhosein and Faghan, Yaser and Ghamisi, Pedram and Puhong Duan and Ardabili, Sina Faizollahzadeh and Salwana, Ely and Band, Shahab S.}, Title = {Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics}, Journal = {MATHEMATICS}, Year = {2020}, Volume = {8}, Number = {10}, Month = {OCT}, Abstract = {The popularity of deep reinforcement learning (DRL) applications in economics has increased exponentially. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated dynamic economics systems. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this paper, we initially consider a brief review of DL, RL, and deep RL methods in diverse applications in economics, providing an in-depth insight into the state-of-the-art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher efficiency as compared to the traditional algorithms while facing real economic problems in the presence of risk parameters and the ever-increasing uncertainties.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Mosavi, A (Corresponding Author), Ton Duc Thang Univ, Environm Qual Atmospher Sci \& Climate Change Res, Ho Chi Minh City, Vietnam. Mosavi, A (Corresponding Author), Ton Duc Thang Univ, Fac Environm \& Labour Safety, Ho Chi Minh City, Vietnam. Band, SS (Corresponding Author), Duy Tan Univ, Inst Res \& Dev, Da Nang 550000, Vietnam. Band, SS (Corresponding Author), Natl Yunlin Univ Sci \& Technol, Coll Future, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan. Mosavi, Amirhosein, Ton Duc Thang Univ, Environm Qual Atmospher Sci \& Climate Change Res, Ho Chi Minh City, Vietnam. Mosavi, Amirhosein, Ton Duc Thang Univ, Fac Environm \& Labour Safety, Ho Chi Minh City, Vietnam. Faghan, Yaser, Univ Lisbon, Inst Super Econ \& Gestao, P-1200781 Lisbon, Portugal. Ghamisi, Pedram, Helmholtz Zentrum Dresden Rossendorf, Chemnitzer Str 40, D-09599 Freiberg, Germany. Ghamisi, Pedram, Univ Antwerp, Fac Sci, Dept Phys, Univ Pl 1, B-2610 Antwerp, Belgium. Puhong Duan, Hunan Univ, Coll Elect \& Informat Engn, Changsha 410082, Hunan, Peoples R China. Ardabili, Sina Faizollahzadeh, Univ Mohaghegh Ardabili, Dept Biosyst Engn, Ardebil 5619911367, Iran. Salwana, Ely, Univ Kebangsaan Malaysia, Inst IR4 0, Bangi 43600, Malaysia. Band, Shahab S., Duy Tan Univ, Inst Res \& Dev, Da Nang 550000, Vietnam. Band, Shahab S., Natl Yunlin Univ Sci \& Technol, Coll Future, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan.}, DOI = {10.3390/math8101640}, Article-Number = {1640}, EISSN = {2227-7390}, Keywords = {economics; deep reinforcement learning; deep learning; machine learning; mathematics; applied informatics; big data; survey; literature review; explainable artificial intelligence; ensemble; anomaly detection; 5G; fraud detection; COVID-19; Prisma; data science; supervised learning}, Keywords-Plus = {NEURAL-NETWORKS; MODEL; PRICE; CLASSIFICATION; FINANCE; STOCK}, Research-Areas = {Mathematics}, Web-of-Science-Categories = {Mathematics}, Author-Email = {amirhosein.mosavi@tdtu.edu.vn yaser.kord@yahoo.com pedram.ghamisi@uantwerpen.be puhong\_duan@hnu.edu.cn Sina.faiz@uma.ac.ir elysalwana@ukm.edu.my shamshirbandshahaboddin@duytan.edu.vn}, Affiliations = {Ton Duc Thang University; Ton Duc Thang University; Universidade de Lisboa; Helmholtz Association; Helmholtz-Zentrum Dresden-Rossendorf (HZDR); University of Antwerp; Hunan University; University of Mohaghegh Ardabili; Universiti Kebangsaan Malaysia; Duy Tan University; National Yunlin University Science \& Technology}, ResearcherID-Numbers = {S.Band, Shahab/AAD-3311-2021 Mosavi, Amir/I-7440-2018 Ardabili, Sina Faizollahzadeh/X-8072-2019 S. Band, Shahab/ABB-2469-2020 S.Band, Shahab/ABI-7388-2020 Ghamisi, Pedram/ABD-5419-2021 Ardabili, Sina/ABE-9690-2021 }, ORCID-Numbers = {Mosavi, Amir/0000-0003-4842-0613 Ardabili, Sina Faizollahzadeh/0000-0002-7744-7906 S. Band, Shahab/0000-0001-6109-1311 S.Band, Shahab/0000-0002-8963-731X Ardabili, Sina/0000-0002-7744-7906 Ghamisi, Pedram/0000-0003-1203-741X}, Funding-Acknowledgement = {Hungarian State; European Union {[}EFOP-3.6.1-16-2016-00010, 2017-1.3.1-VKE-2017-00025]; New Szechenyi Plan {[}EFOP-3.6.2-16-2017-00016]; European Social Fund}, Funding-Text = {We acknowledge the financial support of this work by the Hungarian State and the European Union under the EFOP-3.6.1-16-2016-00010 project and the 2017-1.3.1-VKE-2017-00025 project. The research presented in this paper was carried out as part of the EFOP-3.6.2-16-2017-00016 project in the framework of the New Szechenyi Plan. The completion of this project is funded by the European Union and co-financed by the European Social Fund. We acknowledge the financial support of this work by the Hungarian State and the European Union under the EFOP-3.6.1-16-2016-00010 project.}, Cited-References = {Addo PM, 2018, RISKS, V6, DOI 10.3390/risks6020038. Aggarwal S., 2017, INT J COMPUTER APPL, V162, P40, DOI {[}10.5120/ijca2017913283, DOI 10.5120/IJCA2017913283]. Al-Shabi M. A., 2019, J ADV MATH COMPUT SC, V33, P1, DOI DOI 10.9734/JAMCS/2019/V33I530192. {[}Anonymous], ARXIV151105440. Arulkumaran K, 2017, IEEE SIGNAL PROC MAG, V34, P26, DOI 10.1109/MSP.2017.2743240. Azhikodan Akhil Raj, 2019, Innovations in Computer Science and Engineering. Proceedings of the Fifth ICICSE 2017. Lecture Notes in Networks and Systems (LNNS 32), P41, DOI 10.1007/978-981-10-8201-6\_5. Bekiros SD, 2010, J ECON DYN CONTROL, V34, P1153, DOI 10.1016/j.jedc.2010.01.015. Bellemare MG, 2017, PR MACH LEARN RES, V70. Bellman RE, 1962, APPL DYNAMIC PROGRAM. BENGIO Y, 1994, IEEE T NEURAL NETWOR, V5, P157, DOI 10.1109/72.279181. Bodaghi A., 2018, ARXIV180509741. Cai Y, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P459. Chakravorty G., 2018, SSRN ELECT J, P3242432, DOI {[}10.2139/ssrn.3242432, DOI 10.2139/SSRN.3242432]. Chen YS, 2015, IEEE J-STARS, V8, P2381, DOI 10.1109/JSTARS.2015.2388577. Chen YS, 2014, IEEE J-STARS, V7, P2094, DOI 10.1109/JSTARS.2014.2329330. Chung J., 2014, NIPS 2014 WORKSHOP D, DOI DOI 10.48550/ARXIV.1412.3555. Cook T.R., 2017, MACROECONOMIC INDICA, DOI {[}10.18651/RWP2017-11, DOI 10.18651/RWP2017-11]. Cruz E, 2019, VIRTUAL REAL-LONDON, V23, P281, DOI 10.1007/s10055-018-0338-3. Culkin R, 2017, J INVEST MANAG, V15, P92. Dabney W, 2018, AAAI CONF ARTIF INTE, P2892. Deisenroth M, 2011, P 28 INT C MACH LEAR, P465. Dempster MAH, 2001, IEEE T NEURAL NETWOR, V12, P744, DOI 10.1109/72.935088. Ding X., 2015, P 24 INT JOINT C ART. Dong J, 2017, J MATER CHEM C, V5, P10023, DOI 10.1039/c7tc03343e. Dutting P, 2017, P C NEUR INF PROC SY. Dutting P., 2017, ARXIV170603459. Erhan D., 2009, U MONTREAL. ESTRELLA A, 1991, J FINANC, V46, P555, DOI 10.2307/2328836. Evermann J, 2017, DECIS SUPPORT SYST, V100, P129, DOI 10.1016/j.dss.2017.04.003. Fang YJ, 2019, ALGORITHMS, V12, DOI 10.3390/a12020035. Feng L., 2018, ARXIV181012027. Feng Z, 2018, PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), P354. Finn C., 2016, ADV NEURAL INFORM PR, P64. Fombellida J, 2020, NEURAL COMPUT APPL, V32, P13195, DOI 10.1007/s00521-018-3377-5. Fox R, 2015, ARXIV151208562. Francois-Lavet V, 2018, FOUND TRENDS MACH LE, V11, P219, DOI 10.1561/2200000071. Go Y.H., 2019, INT J RECENT TECHNOL, V8, P31, DOI {[}10.35940/ijrte.B1007.0782S619, DOI 10.35940/IJRTE.B1007.0782S619]. Gruslys A., 2017, ARXIV170404651. Gu S., 2013, P INT C MACH LEARN I, P2829. Gueant O, 2011, LECT NOTES MATH, V2003, P205, DOI 10.1007/978-3-642-14660-2\_3. Guo Y, 2018, ROBUST LOG OPTIMAL S. Ha V.-S., 2018, P MATEC WEB C BEIJ C. Haarnoja T, 2017, PR MACH LEARN RES, V70. Hafner R, 2011, MACH LEARN, V84, P137, DOI 10.1007/s10994-011-5235-x. Haider A., 2009, PAK EC SOC REV, P123. Han J., 2018, P ACL 2018 SYST DEM. Hasselt H., 2010, ADV NEURAL INFORM PR, V23, P2613, DOI DOI 10.5555/2997046.2997187. Heaton JB, 2017, APPL STOCH MODEL BUS, V33, P3, DOI 10.1002/asmb.2209. Heess N, 2015, ADV NEUR IN, V28. Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI {[}10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]. HUTCHINSON JM, 1994, J FINANC, V49, P851, DOI 10.2307/2329209. Huynh H.D., 2016, P 8 INT S INF COMM T, P57. Jaderberg M, 2018, ARXIV180701281. Jaderberg M, 2016, ARXIV161105397. Jiang Z., 2017, ARXIV170610059. Jiang ZY, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P905. Kansky K, 2017, PR MACH LEARN RES, V70. Kearns M, 2013, HIGH FREQUENCY TRADI, P1. Kim Y, 2017, APPL SOFT COMPUT, V55, P127, DOI 10.1016/j.asoc.2017.02.006. Kompan M., 2015, P INT C EL COMM WEB, P61. Konda VR, 2000, ADV NEUR IN, V12, P1008. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Levine S., 2013, INT C MACHINE LEARNI, P1. Li X., 2019, ARXIV190701503. Li Y., 2019, COMPUT SCI EC, DOI {[}10.5220/0007722000520058, DOI 10.5220/0007722000520058]. Liang Z., 2018, ARXIV180809940. Lillicrap T.P., 2016, CONTINUOUS CONTROL D. LIN LJ, 1992, MACH LEARN, V8, P293, DOI 10.1007/BF00992699. Liu J., 2019, ARXIV191202572. Loureiro ALD, 2018, DECIS SUPPORT SYST, V114, P81, DOI 10.1016/j.dss.2018.08.010. Ludwig A.S, 2017, DISTILL. Luong N., 2018, 2018 IEEE INT C COMM, P1, DOI {[}10.1109/ICC.2018.8422743, DOI 10.1109/ICC.2018.8422743]. Manelli AM, 2006, J ECON THEORY, V127, P1, DOI 10.1016/j.jet.2005.08.007. Minh DL, 2018, IEEE ACCESS, V6, P55392, DOI 10.1109/ACCESS.2018.2868970. Mishra S., 2019, INT J INNOV TECHNOL, V8, P2358, DOI {[}10.35940/ijitee.B2453.0881019, DOI 10.35940/IJITEE.B2453.0881019]. Mnih V., 2016, P 12 INT C MLDM 2016, V9729. Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236. Moody J, 1998, J FORECASTING, V17, P441, DOI 10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-\#. MYERSON RB, 1981, MATH OPER RES, V6, P58, DOI 10.1287/moor.6.1.58. Nagabandi A, 2018, IEEE INT CONF ROBOT, P7579. Nogueira V, 2019, SIBGRAPI, P155, DOI 10.1109/SIBGRAPI.2019.00029. Nolle T, 2018, LECT NOTES COMPUT SC, V11080, P271, DOI 10.1007/978-3-319-98648-7\_16. Nosratabadi S., 2020, ARXIV200313422. O'Donoghue B, 2016, ARXIV161101626. Oh J., 2015, ADV NEURAL INFORM PR, P2863. Pacelli Vincenzo, 2011, J INTELLIGENT LEARNI, V3, P103. Pascanu R, 2017, ARXIV170706170. Patel J, 2015, EXPERT SYST APPL, V42, P259, DOI 10.1016/j.eswa.2014.07.040. Pavlov G, 2011, BE J THEOR ECON, V11. Peng Y, 2008, DECIS SUPPORT SYST, V44, P1016, DOI 10.1016/j.dss.2007.12.001. Pumsirirat A, 2018, INT J ADV COMPUT SC, V9, P18. Qiu MY, 2016, PROCEEDINGS OF 2016 10TH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS), P219, DOI 10.1109/CISIS.2016.115. Ribeiro H, 2018, EC SOC DEVELOP, P1. Rowland M., 2018, ARXIV180208163. Roy A., 2018, 2018 SYSTEMS INFORM, P129, DOI {[}DOI 10.1109/SIEDS.2018.8374722, 10.1109/SIEDS.2018.8374722]. Sakurai Y, 2018, A U-ARCHIT URBAN, P12. Salimans T., 2017, ARXIV170303864. Schulman J., 2017, ARXIV170406440. Serrano W., 2019, P IFIP INT C ART INT, P297. Siaminamini M., 2012, P AUSTR C INF SYST G. Silver D., 2014, P 31 INT C INT C MAC. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. Singh V., 2018, COMPLEX SYSTEMS SOLU, P269. Sirignano J., 2016, DEEP LEARNING MORTGA, DOI DOI 10.2139/SSRN.2799443. Song Y, 2019, APPL INTELL, V49, P897, DOI 10.1007/s10489-018-1308-x. Srivastava N, 2014, J MACH LEARN RES, V15, P1929. Sutton RS, 1996, ADV NEUR IN, V8, P1038. Tanaka T., 2010, P 27 INT C MACH LEAR, P799. Tieleman T., 2012, COURSERA NEURAL NETW. Vasiliadis A., 2019, ARXIV190701411. Wahlstrom N., 2015, ARXIV150202251. Wang YB, 2018, DECIS SUPPORT SYST, V105, P87, DOI 10.1016/j.dss.2017.11.001. Wang Z., 2016, ARXIV161101224. WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698. Weng B, 2018, APPL SOFT COMPUT, V71, P685, DOI 10.1016/j.asoc.2018.07.024. West D, 2000, COMPUT OPER RES, V27, P1131, DOI 10.1016/S0305-0548(99)00149-5. WILLIAMS RJ, 1992, MACH LEARN, V8, P229, DOI 10.1007/BF00992696. Williams RJ, 1989, NEURAL COMPUT, V1, P270, DOI 10.1162/neco.1989.1.2.270. Xiong Z., 2018, ARXIV181107522. Yu P, 2019, ARXIV190108740. Zhao J, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P1021, DOI 10.1145/3219819.3219918. Zheng GJ, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P167, DOI 10.1145/3178876.3185994.}, Number-of-Cited-References = {122}, Times-Cited = {46}, Usage-Count-Last-180-days = {9}, Usage-Count-Since-2013 = {82}, Journal-ISO = {Mathematics}, Doc-Delivery-Number = {OL2UD}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000585196500001}, OA = {Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000543117100001, Author = {Dekker, Izaak and De Jong, Elisabeth M. and Schippers, Michaela C. and De Bruijn-Smolders, Monique and Alexiou, Andreas and Giesbers, Bas}, Title = {Optimizing Students' Mental Health and Academic Performance: AI-Enhanced Life Crafting}, Journal = {FRONTIERS IN PSYCHOLOGY}, Year = {2020}, Volume = {11}, Month = {JUN 3}, Abstract = {One in three university students experiences mental health problems during their study. A similar percentage leaves higher education without obtaining the degree for which they enrolled. Research suggests that both mental health problems and academic underperformance could be caused by students lacking control and purpose while they are adjusting to tertiary education. Currently, universities are not designed to cater to all the personal needs and mental health problems of large numbers of students at the start of their studies. Within the literature aimed at preventing mental health problems among students (e.g., anxiety or depression), digital forms of therapy recently have been suggested as potentially scalable solutions to address these problems. Integrative psychological artificial intelligence (AI) in the form of a chatbot, for example, shows great potential as an evidence-based solution. At the same time, within the literature aimed at improving academic performance, the online life-crafting intervention in which students write about values and passions, goals, and goal-attainment plans has shown to improve the academic performance and retention rates of students. Because the life-crafting intervention is delivered through the curriculum and doesn't bear the stigma that is associated with therapy, it can reach larger populations of students. But life-crafting lacks the means for follow-up or the interactiveness that online AI-guided therapy can offer. In this narrative review, we propose to integrate the current literature on chatbot interventions aimed at the mental health of students with research about a life-crafting intervention that uses an inclusive curriculum-wide approach. When a chatbot asks students to prioritize both academic as well as social and health-related goals and provides personalized follow-up coaching, this can prevent -often interrelated- academic and mental health problems. Right on-time delivery, and personalized follow-up questions enhance the effects of both -originally separated- intervention types. Research on this new combination of interventions should use design principles that increase user-friendliness and monitor the technology acceptance of its participants.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Dekker, I (Corresponding Author), Erasmus Univ, Rotterdam Sch Management, Dept Technol \& Operat Management, Rotterdam, Netherlands. Dekker, I (Corresponding Author), Rotterdam Univ Appl Sci, Res Ctr Urban Talent, Rotterdam, Netherlands. Dekker, Izaak; De Jong, Elisabeth M.; Schippers, Michaela C.; De Bruijn-Smolders, Monique; Alexiou, Andreas, Erasmus Univ, Rotterdam Sch Management, Dept Technol \& Operat Management, Rotterdam, Netherlands. Dekker, Izaak; De Bruijn-Smolders, Monique, Rotterdam Univ Appl Sci, Res Ctr Urban Talent, Rotterdam, Netherlands. Alexiou, Andreas, Tilburg Univ, Tilburg Sch Econ \& Management, Dept Management, Tilburg, Netherlands. Giesbers, Bas, Erasmus Univ, Rotterdam Sch Management, Informat Management \& Consulting, Rotterdam, Netherlands.}, DOI = {10.3389/fpsyg.2020.01063}, Article-Number = {1063}, ISSN = {1664-1078}, Keywords = {life crafting; chatbot; mental health; academic performance; academic success; academic achievement; goal setting; well-being}, Keywords-Plus = {COGNITIVE-BEHAVIOR THERAPY; IMPLEMENTATION INTENTIONS; TECHNOLOGY ACCEPTANCE; COLLEGE-STUDENTS; SOMATIC DISORDERS; HIGHER-EDUCATION; USER ACCEPTANCE; PERSONAL GOALS; SELF-EFFICACY; PROCRASTINATION}, Research-Areas = {Psychology}, Web-of-Science-Categories = {Psychology, Multidisciplinary}, Author-Email = {dekker@rsm.nl}, Affiliations = {Erasmus University Rotterdam; Tilburg University; Erasmus University Rotterdam}, ResearcherID-Numbers = {Alexiou, Andreas/I-4314-2014 }, ORCID-Numbers = {Alexiou, Andreas/0000-0002-8425-0132 Giesbers, Bas/0000-0002-8077-9039 Dekker, Izaak/0000-0002-6858-4001}, Funding-Acknowledgement = {Dutch Ministry of Education, Culture and Science; Erasmus University}, Funding-Text = {Research funded with a Senior Comenius Fellowship Grant awarded to MS by the Dutch Ministry of Education, Culture and Science. Publishing costs funded by the Erasmus University Open Access fund.}, Cited-References = {Abd-alrazaq AA, 2019, INT J MED INFORM, V132, DOI 10.1016/j.ijmedinf.2019.103978. Abdul-Kader SA, 2015, INT J ADV COMPUT SC, V6, P72. Ajzen I, 1980, UNDERSTANDING ATTITU, DOI DOI 10.1007/978-3-642-69746-3\_2. Andersson G, 2014, WORLD PSYCHIATRY, V13, P288, DOI 10.1002/wps.20151. Anic P., 2013, PSIHOLOGIJSKE TEME, V22, P135. Arnett J. J., 2006, AMERICA, P85. Auerbach RP, 2016, PSYCHOL MED, V46, P2955, DOI 10.1017/S0033291716001665. Auerbach RP, 2018, J ABNORM PSYCHOL, V127, P623, DOI 10.1037/abn0000362. Ayyagari R, 2011, MIS QUART, V35, P831. Bassett C, 2019, AI SOC, V34, P803, DOI 10.1007/s00146-018-0825-9. Baumeister RF, 2013, J POSIT PSYCHOL, V8, P505, DOI 10.1080/17439760.2013.830764. Baumel A, 2019, J MED INTERNET RES, V21, DOI 10.2196/14567. Bendig E, 2019, VERHALTENSTHERAPIE, P1, DOI DOI 10.1159/000501812. Bickmore T, 2005, PATIENT EDUC COUNS, V59, P21, DOI 10.1016/j.pec.2004.09.008. Braun D, 2019, PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, P496, DOI 10.5220/0007772704960501. Bruffaerts R, 2018, J AFFECT DISORDERS, V225, P97, DOI 10.1016/j.jad.2017.07.044. Burris JL, 2009, J AM COLL HEALTH, V57, P536, DOI 10.3200/JACH.57.5.536-544. Cant S, 2018, SOC THEOR HEALTH, V16, P311, DOI 10.1057/s41285-017-0057-y. Carlbring P, 2018, COGN BEHAV THERAPY, V47, P1, DOI 10.1080/16506073.2017.1401115. Carroll JM, 1997, ANNU REV PSYCHOL, V48, P61, DOI 10.1146/annurev.psych.48.1.61. Centre for Education Statistics and Evaluation, 2015, STUD WELLB. Chau PYK, 2002, J MANAGE INFORM SYST, V18, P191, DOI 10.1080/07421222.2002.11045699. Cheung R, 2017, HEALTH PROMOT CHRON, V37, P137, DOI 10.24095/hpcdp.37.5.02. Choi A., 2018, EMOTIONAL WELL BEING, DOI {[}10.1787/41576fb2-en, DOI 10.1787/41576FB2-EN]. Clark D, 2020, REV ECON STAT, V102, P648, DOI 10.1162/rest\_a\_00864. Clement S, 2015, PSYCHOL MED, V45, P11, DOI 10.1017/S0033291714000129. Compton WC, 1996, J PERS SOC PSYCHOL, V71, P406, DOI 10.1037/0022-3514.71.2.406. Curran T, 2015, MOTIV EMOTION, V39, P631, DOI 10.1007/s11031-015-9503-0. Davies EB, 2014, J MED INTERNET RES, V16, P18, DOI 10.2196/jmir.3142. DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008. de Bruijn-Smolders M, 2016, STUD HIGH EDUC, V41, P139, DOI 10.1080/03075079.2014.915302. de Girolamo G, 2012, EPIDEMIOL PSYCH SCI, V21, P47, DOI 10.1017/S2045796011000746. De Luca SM, 2016, COMMUNITY MENT HLT J, V52, P534, DOI 10.1007/s10597-016-9987-4. Derksen F, 2013, BRIT J GEN PRACT, V63, DOI {[}10.3399/bjgp13X660814, 10.3399/bjgpbjgp13X660814]. Diefenbach S., 2015, P MENSCH COMP, P391, DOI {[}10.1515/9783110443929-060, DOI 10.1515/9783110443929-060]. Dobronyi CR, 2019, J RES EDUC EFF, V12, P38, DOI 10.1080/19345747.2018.1517849. Ebert DD, 2018, EUR PSYCHOL, V23, P167, DOI 10.1027/1016-9040/a000318. Evans N.J., 2009, STUDENT DEV COLL THE, V2nd. Fishbein M., 1975, BELIEF ATTITUDE INTE. Fitzpatrick KK, 2017, JMIR MENT HEALTH, V4, DOI 10.2196/mental.7785. Freund AM, 2002, J PERS SOC PSYCHOL, V82, P642, DOI 10.1037//0022-3514.82.4.642. Fulmer R, 2019, THEOR PSYCHOL, V29, P807, DOI 10.1177/0959354319853045. Fulmer R, 2018, JMIR MENT HEALTH, V5, DOI 10.2196/mental.9782. Gateshill G, 2011, PSYCHIATR BULL, V35, P101, DOI 10.1192/pb.bp.110.029900. Gettinger M, 2002, SCHOOL PSYCHOL REV, V31, P350. Gollwitzer PM, 2006, ADV EXP SOC PSYCHOL, V38, P69, DOI 10.1016/S0065-2601(06)38002-1. Gollwitzer Peter M., 1993, EUR REV SOC PSYCHOL, V4, P141, DOI {[}DOI 10.1080/14792779343000059, 10.1080/14792779343000059]. Gollwitzer PM, 1999, AM PSYCHOL, V54, P493, DOI 10.1037//0003-066X.54.7.493. Gollwitzer PM, 1997, J PERS SOC PSYCHOL, V73, P186, DOI 10.1037/0022-3514.73.1.186. Graybiel AM, 2014, SCI AM, V310, P38, DOI 10.1038/scientificamerican0614-38. Harrer M, 2019, INT J METH PSYCH RES, V28, DOI 10.1002/mpr.1759. Hartley MT, 2010, AM J PSYCHIATR REHAB, V13, P295, DOI 10.1080/15487768.2010.523372. Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1. Hedges L.V., 2014, STAT METHODS METAANA. Henderson Harry, 2007, ARTIFICIAL INTELLIGE. Holland RW, 2006, J EXP SOC PSYCHOL, V42, P776, DOI 10.1016/j.jesp.2005.11.006. Honicke T, 2016, EDUC RES REV-NETH, V17, P63, DOI 10.1016/j.edurev.2015.11.002. Hunt J, 2010, J ADOLESCENT HEALTH, V46, P3, DOI 10.1016/j.jadohealth.2009.08.008. Ibrahim AK, 2013, J PSYCHIATR RES, V47, P391, DOI 10.1016/j.jpsychires.2012.11.015. Jacques R, 2019, CHI EA `19 EXTENDED ABSTRACTS: EXTENDED ABSTRACTS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290607.3299034. Kahneman D., 1999, WELL BEING FDN HEDON. Kamita T, 2019, MOB INF SYST, V2019, DOI 10.1155/2019/9517321. KESSLER RC, 1995, AM J PSYCHIAT, V152, P1026. Kim KR, 2015, PERS INDIV DIFFER, V82, P26, DOI 10.1016/j.paid.2015.02.038. Klinger E., 1977, MEANING VOID INNER E. Klug HJP, 2015, J HAPPINESS STUD, V16, P37, DOI 10.1007/s10902-013-9493-0. Kvillemo P, 2016, JMIR MENT HEALTH, V3, DOI 10.2196/mental.5457. Lambert M., 2018, CHATBOT DECISION TRE. Lane J, 2004, SOC BEHAV PERSONAL, V32, P247, DOI 10.2224/sbp.2004.32.3.247. Lattie EG, 2019, J MED INTERNET RES, V21, DOI 10.2196/12869. Locke EA, 2002, AM PSYCHOL, V57, P705, DOI 10.1037//0003-066X.57.9.705. Lucas GM, 2017, FRONT ROBOT AI, V4, DOI 10.3389/frobt.2017.00051. Lucas GM, 2014, COMPUT HUM BEHAV, V37, P94, DOI 10.1016/j.chb.2014.04.043. Meurk C, 2016, J MED INTERNET RES, V18, DOI 10.2196/jmir.4827. Moon JW, 2001, INFORM MANAGE, V38, P217, DOI 10.1016/S0378-7206(00)00061-6. Morisano D, 2010, J APPL PSYCHOL, V95, P255, DOI 10.1037/a0018478. Morris RR, 2018, J MED INTERNET RES, V20, DOI 10.2196/10148. Mortier P, 2015, J AFFECT DISORDERS, V186, P254, DOI 10.1016/j.jad.2015.07.030. OECD, 2019, ED GLANC 2019. OECD, 2013, GOV GLANC 2013, DOI DOI 10.1787/GOV\_GLANCE-2013-EN. Oettingen G, 2000, SOC COGNITION, V18, P101, DOI 10.1521/soco.2000.18.2.101. Oettingen G, 2018, PSYCHOLOGY OF THINKING ABOUT THE FUTURE, P127. Oettingen G, 2012, EUR REV SOC PSYCHOL, V23, P1, DOI 10.1080/10463283.2011.643698. Oettingen G, 2010, J PERS PSYCHOL, V9, P138, DOI 10.1027/1866-5888/a000018. Organization for Economic Cooperation and Development (OECD), 2010, ED A GLANCE 2010 OEC, DOI DOI 10.1787/EAG-2010-EN. Parasuraman A., 2000, J SERV RES-US, V2, P307, DOI DOI 10.1177/109467050024001. Park M., 2018, INT J MANAGEMENT INF, V14, P3338, DOI 10.24297/ijmit.v14i0.7921. Pennebaker JW, 2004, CLIN PSYCHOL-SCI PR, V11, P138, DOI 10.1093/clipsy/bph063. PENNEBAKER JW, 1990, J PERS SOC PSYCHOL, V58, P528, DOI 10.1037/0022-3514.58.3.528. Perry R. P., 1991, HIGHER ED HDB THEORY, V7, P1. Plant EA, 2005, CONTEMP EDUC PSYCHOL, V30, P96, DOI 10.1016/j.cedpsych.2004.06.001. Powers TA, 2005, PERS SOC PSYCHOL B, V31, P902, DOI 10.1177/0146167204272311. Provoost S, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.6553. Radziwill N, 2017, EVALUATING QUALITY C. Richardson M, 2012, PSYCHOL BULL, V138, P353, DOI 10.1037/a0026838. Robbins SB, 2004, PSYCHOL BULL, V130, P261, DOI 10.1037/0033-2909.130.2.261. Royal College of Psychiatrists, 2017, MENT HLTH STUD HIGH. Ryan RM, 2001, ANNU REV PSYCHOL, V52, P141, DOI 10.1146/annurev.psych.52.1.141. Ryff CD, 2008, J HAPPINESS STUD, V9, P13, DOI 10.1007/s10902-006-9019-0. Ryff CD, 2004, PHILOS T R SOC B, V359, P1383, DOI 10.1098/rstb.2004.1521. SADDLER CD, 1993, PSYCHOL REP, V73, P863, DOI 10.2466/pr0.1993.73.3.863. Schippers MC, 2020, CONTEMP EDUC PSYCHOL, V60, DOI 10.1016/j.cedpsych.2019.101823. Schippers MC, 2015, PALGR COMMUN, V1, DOI 10.1057/palcomms.2015.14. Schippers MC, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02778. Schmidt HG, 2010, HIGH EDUC, V60, P287, DOI 10.1007/s10734-009-9300-3. Sheldon K. M., 2002, HDB SELF DETERMINATI, P65, DOI DOI 10.1177/0022022103262245. Sheldon KM, 2001, J PERS SOC PSYCHOL, V80, P152, DOI 10.1037//0022-3514.80.1.152. Sheldon KM, 1998, PERS SOC PSYCHOL B, V24, P1319, DOI 10.1177/01461672982412006. Shum HY, 2018, FRONT INFORM TECH EL, V19, P10, DOI 10.1631/FITEE.1700826. Sitzmann T, 2011, PSYCHOL BULL, V137, P421, DOI 10.1037/a0022777. Sone T, 2008, PSYCHOSOM MED, V70, P709, DOI 10.1097/PSY.0b013e31817e7e64. Spitzer RL, 2006, ARCH INTERN MED, V166, P1092, DOI 10.1001/archinte.166.10.1092. Steel P, 2001, PERS INDIV DIFFER, V30, P95, DOI 10.1016/S0191-8869(00)00013-1. Steger MF, 2008, J PERS, V76, P199, DOI 10.1111/j.1467-6494.2007.00484.x. Stewart G, 2019, J AFFECT DISORDERS, V257, P271, DOI 10.1016/j.jad.2019.07.058. Taherdoost H, 2018, PROCEDIA MANUF, V22, P960, DOI 10.1016/j.promfg.2018.03.137. Tinto V, 1998, REV HIGH EDUC, V21, P167. TINTO V, 1975, REV EDUC RES, V45, P89, DOI 10.3102/00346543045001089. Tinto V, 2000, NACADA J, V19, P5, DOI DOI 10.12930/0271-9517-19.2.5. Travers CJ, 2015, BRIT J EDUC PSYCHOL, V85, P224, DOI 10.1111/bjep.12059. Vaidyam AN, 2019, CAN J PSYCHIAT, V64, P456, DOI 10.1177/0706743719828977. van der Heijden H, 2004, MIS QUART, V28, P695, DOI 10.2307/25148660. van Eerde W, 2018, EDUC RES REV-NETH, V25, P73, DOI 10.1016/j.edurev.2018.09.002. Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926. Walton GM, 2014, CURR DIR PSYCHOL SCI, V23, P73, DOI 10.1177/0963721413512856. Warwick K, 2014, IEEE T COMP INTEL AI, V6, P289, DOI 10.1109/TCIAIG.2013.2283538. WATERMAN AS, 1993, J PERS SOC PSYCHOL, V64, P678, DOI 10.1037/0022-3514.64.4.678. Weidauer A., 2018, CONVERSATIONAL AI YO. WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991. Winkler R., 2018, P ACAD MANAGEMENT AN. Zarouali B, 2018, CYBERPSYCH BEH SOC N, V21, P491, DOI 10.1089/cyber.2017.0518. Zivin K, 2009, J AFFECT DISORDERS, V117, P180, DOI 10.1016/j.jad.2009.01.001.}, Number-of-Cited-References = {132}, Times-Cited = {28}, Usage-Count-Last-180-days = {24}, Usage-Count-Since-2013 = {111}, Journal-ISO = {Front. Psychol.}, Doc-Delivery-Number = {MC2IJ}, Web-of-Science-Index = {Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000543117100001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000676162500001, Author = {Al-Saman, Ahmed and Cheffena, Michael and Elijah, Olakunle and Al-Gumaei, Yousef A. and Abdul Rahim, Sharul Kamal and Al-Hadhrami, Tawfik}, Title = {Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments}, Journal = {ELECTRONICS}, Year = {2021}, Volume = {10}, Number = {14}, Month = {JUL}, Abstract = {The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Al-Saman, A (Corresponding Author), Norwegian Univ Sci \& Technol NTNU, Dept Mfg \& Civil Engn, Fac Engn, N-2815 Gjovik, Norway. Al-Saman, Ahmed; Cheffena, Michael, Norwegian Univ Sci \& Technol NTNU, Dept Mfg \& Civil Engn, Fac Engn, N-2815 Gjovik, Norway. Elijah, Olakunle; Abdul Rahim, Sharul Kamal, Univ Teknol Malaysia, Fac Engn, Sch Elect Engn, Wireless Commun Ctr, Johor Baharu 81310, Johor, Malaysia. Al-Gumaei, Yousef A., Northumbria Univ Newcastle, Fac Engn \& Enviourement, Dept Comp \& Informat Sci, Newcastle Upon Tyne NE1 8ST, Tyne \& Wear, England. Al-Hadhrami, Tawfik, Nottingham Trent Univ, Sch Sci \& Technol, Nottingham NG11 8NS, England.}, DOI = {10.3390/electronics10141653}, Article-Number = {1653}, EISSN = {2079-9292}, Keywords = {millimeter-wave propagation; radio channel; indoor environment; 28 GHz; 38 GHz; 40 GHz; 60 GHz; 70 GHz; wideband channel; 5G; 6G}, Keywords-Plus = {PATH-LOSS; CHANNEL MODEL; 60 GHZ; RADIO CHANNEL; WIRELESS COMMUNICATIONS; DELAY-SPREAD; URBAN ENVIRONMENTS; MIMO; COMMUNICATION; SOUNDER}, Research-Areas = {Computer Science; Engineering; Physics}, Web-of-Science-Categories = {Computer Science, Information Systems; Engineering, Electrical \& Electronic; Physics, Applied}, Author-Email = {ahmed.al-saman@ntnu.no michael.cheffena@ntnu.no elij\_olak@yahoo.com yousef.al-gumaei@northumbria.ac.uk sharulkamal@utm.my tawfik.al-hadhrami@ntu.ac.uk}, Affiliations = {Norwegian University of Science \& Technology (NTNU); Universiti Teknologi Malaysia; Northumbria University; Nottingham Trent University}, ResearcherID-Numbers = {AL-GUMAEI, YOUSEF/B-4394-2017 M. AL-SAMMAN, AHMED/S-5101-2017}, ORCID-Numbers = {AL-GUMAEI, YOUSEF/0000-0001-9920-3091 Elijah, Olakunle/0000-0002-6498-5780 Cheffena, Michael/0000-0003-2086-8627 Al-Hadhrami, Tawfik/0000-0001-7441-604X M. AL-SAMMAN, AHMED/0000-0001-5183-7810}, Funding-Acknowledgement = {Manu Lab, NTNU, Gjovik}, Funding-Text = {This work was supported by Manu Lab, NTNU, Gjovik.}, Cited-References = {Aborahama M, 2020, TELECOMMUN SYST, V74, P185, DOI 10.1007/s11235-019-00649-6. Al-Falahy N, 2019, PHYS COMMUN-AMST, V32, P120, DOI 10.1016/j.phycom.2018.11.003. Al-Saman A, 2020, INT J ANTENN PROPAG, V2020, DOI 10.1155/2020/6634050. Al-Samman AM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163034. Al-Samman AM, 2018, 2018 IEEE 14TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING \& ITS APPLICATIONS (CSPA 2018), P7. Al-Samman AM, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/6369517. Al-Samman AM, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8010044. Al-Samman AM, 2018, TURK J ELECTR ENG CO, V26, P3024, DOI 10.3906/elk-1710-248. Al-Samman AM, 2018, MEASUREMENT, V130, P71, DOI 10.1016/j.measurement.2018.07.073. Aldhaibani AO, 2020, PHYS COMMUN-AMST, V38, DOI 10.1016/j.phycom.2019.100955. Alloulah M, 2019, COMPUTER, V52, P16, DOI 10.1109/MC.2019.2914018. Almers P, 2007, EURASIP J WIREL COMM, DOI 10.1155/2007/19070. Anderson CR, 2002, IEEE VTS VEH TECHNOL, P97. Anderson CR, 2004, IEEE T WIREL COMMUN, V3, P922, DOI 10.1109/TWC.2004.826328. {[}Anonymous], 2010, MOBILE BROADBAND MUL. {[}Anonymous], 2015, STUDIES FREQUENCY RE, P424. Beauvarlet D., 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), P244, DOI 10.1109/APS.2002.1016294. Beauvarlet D, 2002, IEEE ANTENN WIREL PR, V1, P87, DOI 10.1109/LAWP.2002.802553. Bjornson E, 2020, IEEE COMMUN MAG, V58, P90, DOI 10.1109/MCOM.001.2000407. Burr AG, 2003, IEEE J SEL AREA COMM, V21, P812, DOI 10.1109/JSAC.2003.810291. Busari SA, 2018, IEEE COMMUN SURV TUT, V20, P836, DOI 10.1109/COMST.2017.2787460. Cheffena M, 2016, IEEE COMMUN MAG, V54, P66, DOI 10.1109/MCOM.2016.7565190. Chen X., 2016, PROC IEEE 84 VEH TEC, P1. Cheng CL, 2017, PROC EUR CONF ANTENN, P716, DOI 10.23919/EuCAP.2017.7928124. Cheng H, 2021, IEEE ACCESS, V9, P62867, DOI 10.1109/ACCESS.2021.3070711. Chizhik D, 2020, IEEE T ANTENN PROPAG, V68, P4820, DOI 10.1109/TAP.2020.2972609. Chuah CN, 1998, GLOBECOM 98: IEEE GLOBECOM 1998 - CONFERENCE RECORD, VOLS 1-6, P1894, DOI 10.1109/GLOCOM.1998.775873. Collonge S, 2004, IEEE T WIREL COMMUN, V3, P2396, DOI 10.1109/TWC.2004.837276. Csurgai-Horvath L., 2018, 2018 11 INT S COMMUN, P1. David K, 2018, IEEE VEH TECHNOL MAG, V13, P72, DOI 10.1109/MVT.2018.2848498. Debbah W, 2005, IEEE T INFORM THEORY, V51, P1667, DOI 10.1109/TIT.2005.846388. Di Renzo M, 2020, IEEE OPEN J COMM SOC, V1, P798, DOI 10.1109/OJCOMS.2020.3002955. Dou J., 2016, CHIN J ENG, V2016, DOI {[}10.1155/2016/7124267, DOI 10.1155/2016/7124267]. Dupleich D., 2014, P 31 URSI GEN ASS SC, P1, DOI DOI 10.1109/URSIGASS.2014.6929648. Dupleich D, 2015, 2015 IEEE 26TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), P2234, DOI 10.1109/PIMRC.2015.7343669. Duplyakin D, 2019, PROCEEDINGS OF THE 2019 USENIX ANNUAL TECHNICAL CONFERENCE, P1. Elhabchi M., 2019, INT S ADV ELECT COMM, P1. Ellingson S.W., 2019, ARXIV. Erden F, 2020, IEEE RADIO WIRELESS, P52, DOI 10.1109/RWS45077.2020.9050106. Fan W, 2016, EURASIP J WIREL COMM, DOI 10.1186/s13638-016-0548-x. Feng LF, 2018, IEEE WIREL COMMUN, V25, P70, DOI 10.1109/MWC.2018.1600341. Fryziel M, 2002, MICROW OPT TECHN LET, V34, P158, DOI 10.1002/mop.10402. Geng S.D., 2017, P 28 AUSTRALASIAN C, P1. Giordani M, 2016, IEEE COMMUN MAG, V54, P40, DOI 10.1109/MCOM.2016.1600193CM. Golmohamadi M, 2018, IEEE ANTENNAS PROP, P767, DOI 10.1109/APUSNCURSINRSM.2018.8608625. Guerra A, 2017, IEEE T ANTENN PROPAG, V65, P4935, DOI 10.1109/TAP.2017.2728088. Guo BL, 2016, 2016 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), P60. Gustafson C., 2011, P IEEE 73 VEH TECHN, P1. Hafner S., 2015, PROC 9 EUR C ANTENNA, P1. Haibing Yang, 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 05TH8889), P579. Hajj M. E., 2019, PROC IEEE INT C WIRE, P121. Haneda K, 2016, IEEE INT CONF COMM, P694, DOI 10.1109/ICCW.2016.7503868. Haneda K, 2015, IEEE T ANTENN PROPAG, V63, P2694, DOI 10.1109/TAP.2015.2412147. Haneda K, 2014, PROC EUR CONF ANTENN, P634, DOI 10.1109/EuCAP.2014.6901839. Harrington R. F, 1968, IEEE PRESS SERIES EL. HASHEMI H, 1994, IEEE T VEH TECHNOL, V43, P110, DOI 10.1109/25.282271. Hemadeh IA, 2018, IEEE COMMUN SURV TUT, V20, P870, DOI 10.1109/COMST.2017.2783541. Huang F, 2016, IEEE ICC, DOI 10.1109/ICC.2016.7511015. Huang J, 2019, IEEE COMMUN MAG, V57, P138, DOI 10.1109/MCOM.2018.1701263. Jo HS, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20071927. Johnson JE, 2019, IEEE T BIOMED CIRC S, V13, P1525, DOI 10.1109/TBCAS.2019.2948581. Karstensen A., 2016, P52613 ITUR, P1. Khalily M, 2018, T EMERG TELECOMMUN T, V29, DOI 10.1002/ett.3311. Kim MD, 2016, 2016 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), P64. Kim MD, 2015, INT CONF ADV COMMUN, P535, DOI 10.1109/ICACT.2015.7224852. Kim SC, 1999, IEEE T VEH TECHNOL, V48, P931, DOI 10.1109/25.765022. Kivinen J, 2001, IEEE T ANTENN PROPAG, V49, P1192, DOI 10.1109/8.943314. Klaina H., 2018, PROCEEDINGS, V2, P110. Ko J, 2017, IEEE T WIREL COMMUN, V16, P5853, DOI 10.1109/TWC.2017.2716924. Ko J, 2016, J ELECTROMAGNET WAVE, V30, P2039, DOI 10.1080/09205071.2016.1239552. Kyro M, 2011, IEEE T WIREL COMMUN, V10, P2423, DOI 10.1109/TWC.2011.062211.101601. Lee J, 2015, 2015 IEEE 26TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), P2204, DOI 10.1109/PIMRC.2015.7343663. Li S., 2017, P 2017 6 AS PAC C AN P 2017 6 AS PAC C AN, P1. Li SD, 2017, PROC 9 TH INT C WIRE, P1, DOI {[}10.1109/WCSP.2017.8170925, DOI 10.1109/WCSP.2017.8170925]. Li XR, 2017, INFORMATION, V8, DOI 10.3390/info8020050. Lim CP, 2007, EURASIP J WIREL COMM, DOI 10.1155/2007/73928. Lim YG, 2020, IEEE WIREL COMMUN, V27, P54, DOI 10.1109/MWC.001.1900315. Liu P, 2018, IEEE T COMMUN, V66, P133, DOI 10.1109/TCOMM.2017.2754280. MacCartney GR, 2015, IEEE ACCESS, V3, P2388, DOI 10.1109/ACCESS.2015.2486778. Malko A, 2008, PROCEEDINGS OF 2008 INTERNATIONAL STUDENTS AND YOUNG SCIENTIST WORKSHOP PHOTONICS AND MICROSYSTEMS, P47. Maltsev A, 2010, IEEE ANTENN WIREL PR, V9, P413, DOI 10.1109/LAWP.2010.2048410. Maltsev A, 2009, IEEE J SEL AREA COMM, V27, P1488, DOI 10.1109/JSAC.2009.091018. Martinez M., 2019, 2019 IEEE RAD C RADA, P1. Matolak D.W., 2019, P 13 EUR C ANT PROP, P1. Maxwell J.C., 1865, PHILOS T R SOC LONDO, V155, P459. Mohsen M., 2018, P 2018 WIR TEL S WTS P 2018 WIR TEL S WTS, P1. Molisch AF, 2003, IEEE WIREL COMMUN, V10, P14, DOI 10.1109/MWC.2003.1265848. Moon-Soon Choi, 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 05TH8889), P599. Moraitis N, 2006, IEEE T WIREL COMMUN, V5, P880, DOI {[}10.1109/TWC.2006.1618937, 10.1109/TWC.2006.04022]. Moraitis N, 2004, IEEE T ANTENN PROPAG, V52, P3180, DOI 10.1109/TAP.2004.836422. Mucchi L, 2009, IEEE T WIREL COMMUN, V8, P1597, DOI 10.1109/TWC.2009.070318. Muqaibel A, 2006, IEEE T WIREL COMMUN, V5, P550, DOI 10.1109/TWC.2006.03012. Nie S, 2013, 2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), P2429, DOI 10.1109/PIMRC.2013.6666553. Niu Y, 2015, WIREL NETW, V21, P2657, DOI 10.1007/s11276-015-0942-z. Ohkubo F, 2005, IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, Vols 1 and 2, P245. Ozdogan O, 2020, IEEE WIREL COMMUN LE, V9, P581, DOI 10.1109/LWC.2019.2960779. PASCUALGARCIA J, 2019, P 2019 INT S ANTENNA, P1. Peter M., 2012, Proceedings of the 2012 6th European Conference on Antennas and Propagation (EuCAP), P468, DOI 10.1109/EuCAP.2012.6206013. Peter W., 2007, P 2 EUR C ANT PROP E P 2 EUR C ANT PROP E. Piesiewicz R., 2008, P 2008 IEEE ANT PROP P 2008 IEEE ANT PROP, P1. Pimienta-del-Valle D, 2019, P 13 EUR C ANT PROP, P1. Pirkl RJ, 2008, IEEE T WIREL COMMUN, V7, P3488, DOI 10.1109/TWC.2008.070278. Pizzo A., 2021, ARXIV. Pizzo A., 2020, ARXIV. Rappaport T. S., 2014, MILLIMETER WAVE WIRE. Rappaport T.S., 2002, PRENTICE HALL COMMUN, V2nd. Ryan J, 2017, IEEE INT CONF COMM, P228, DOI 10.1109/ICCW.2017.7962662. SALEH AAM, 1987, IEEE J SEL AREA COMM, V5, P128, DOI 10.1109/JSAC.1987.1146527. Salous S., 2016, P 10 EUR C ANT PROP, P1. Samimi MK, 2016, IEEE T MICROW THEORY, V64, P2207, DOI 10.1109/TMTT.2016.2574851. Sasaki M, 2016, 2016 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), P66. Sayeed AM, 2002, IEEE T SIGNAL PROCES, V50, P2563, DOI 10.1109/TSP.2002.803324. Shiu DS, 2000, IEEE T COMMUN, V48, P502, DOI 10.1109/26.837052. Siamarou AG, 2010, IEEE T INSTRUM MEAS, V59, P519, DOI 10.1109/TIM.2009.2023105. Solomitckii D, 2020, IEEE T VEH TECHNOL, V69, P1227, DOI 10.1109/TVT.2019.2959127. Solovev Denis B., 2021, Proceeding of the International Science and Technology Conference FarEastCon 2020. Smart Innovation, Systems and Technologies (SIST 227), P1, DOI 10.1007/978-981-16-0953-4\_1. Solovev DB, 2018, AEBMR ADV ECON, V47, P1. Nguyen S, 2019, EVOL COMPUT, V27, P467, DOI 10.1162/evco\_a\_00230. Talbi L., 1994, P CAN C EL COMP ENG P CAN C EL COMP ENG, V2, P681. Tang P, 2018, P 88 VEH TECHN C VTC, P1. Tang WK, 2021, IEEE T WIREL COMMUN, V20, P421, DOI 10.1109/TWC.2020.3024887. Uwaechia AN, 2020, IEEE ACCESS, V8, P62367, DOI 10.1109/ACCESS.2020.2984204. Va V, 2015, FOUND TRENDS NETW, V10, P1, DOI 10.1561/1300000054. Venugopal K, 2016, IEEE ACCESS, V4, P1205, DOI 10.1109/ACCESS.2016.2542478. Wang X, 2018, IEEE COMMUN SURV TUT, V20, P1616, DOI 10.1109/COMST.2018.2844322. Weichselberger W, 2006, IEEE T WIREL COMMUN, V5, P90, DOI 10.1109/TWC.2005.858030. Wu XY, 2017, IEEE T ANTENN PROPAG, V65, P1912, DOI 10.1109/TAP.2017.2669721. Xiao M, 2017, IEEE J SEL AREA COMM, V35, P1909, DOI 10.1109/JSAC.2017.2719924. Xing Y., 2018, IEEE GLOB COMM CONF, P1, DOI DOI 10.1109/GLOCOM.2018.8647921. Xu H, 2002, IEEE J SEL AREA COMM, V20, P620, DOI 10.1109/49.995521. Yang GS, 2019, IET MICROW ANTENNA P, V13, P1113, DOI 10.1049/iet-map.2018.6187. Yang HB, 2005, IEEE ANTENN WIREL PR, V4, P300, DOI 10.1109/LAWP.2005.855635. Yang P, 2019, IEEE NETWORK, V33, P70, DOI 10.1109/MNET.2019.1800418. YEE KS, 1966, IEEE T ANTENN PROPAG, VAP14, P302. Yin XF, 2015, IEEE ACCESS, V3, P3138, DOI 10.1109/ACCESS.2016.2517400. Ying X., 2020, ARXIV. You XH, 2021, SCI CHINA INFORM SCI, V64, DOI 10.1007/s11432-020-2955-6. Yue GR, 2019, IEEE ACCESS, V7, P85066, DOI 10.1109/ACCESS.2019.2924510. Yusuf M, 2019, IEEE ANTENN WIREL PR, V18, P2175, DOI 10.1109/LAWP.2019.2939662. Zhang G. H., 2019, PROC 22 INT C ELECT, P1. Zhang GJ, 2018, IEEE ACCESS, V6, P76516, DOI 10.1109/ACCESS.2018.2882644. Zhang X., 2019, 2019 11 INT C WIR CO, P1. Zhang Y, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/8489326. Zhou L, 2017, SCI CHINA INFORM SCI, V60, DOI 10.1007/s11432-017-9127-6. Zhu J, 2015, IEEE ANTENN WIREL PR, V14, P735, DOI 10.1109/LAWP.2014.2377952. Zhu Y, 2015, 2015 IEEE 6TH INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION, AND EMC TECHNOLOGIES (MAPE), P234, DOI 10.1109/MAPE.2015.7510306. Zwick T, 2005, IEEE T VEH TECHNOL, V54, P1266, DOI 10.1109/TVT.2005.851354.}, Number-of-Cited-References = {147}, Times-Cited = {15}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {33}, Journal-ISO = {Electronics}, Doc-Delivery-Number = {TN3UB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000676162500001}, OA = {Green Accepted, gold}, DA = {2023-04-22}, } @article{ WOS:000885231700001, Author = {Sousa, A. S. and Serra, J. and Estevens, C. and Costa, R. and Ribeiro, A. J.}, Title = {A quality by design approach in oral extended release drug delivery systems: where we are and where we are going?}, Journal = {JOURNAL OF PHARMACEUTICAL INVESTIGATION}, Year = {2023}, Volume = {53}, Number = {2}, Pages = {269-306}, Month = {MAR}, Abstract = {Background Oral extended release (ER) delivery systems have quickly gained increasing importance because of their ability to maintain drug levels in the blood more consistently, reducing side effects and improving patient compliance. The complexity of ER formulation leads to additional development challenges in the fulfilment of quality-related regulatory requirements. Despite their challenging properties, the potential of ER system formulation and process development can be better exploited by applying quality by design (QbD) approaches and advanced modeling techniques such as machine learning (ML). Area covered This review provides a comprehensive overview of QbD concepts applied to oral ER delivery systems, clarifying the impact of raw materials and process variables on critical quality attributes (CQAs). Moreover, data science coupled with ML algorithms is also elucidated in this article as a potential tool for predicting and optimizing ER formulation design and manufacturing processes. Expert opinion QbD, as a scientific and risk-based approach, provides a comprehensive understanding of oral ER drug delivery systems improving product quality and reducing postapproval changes. Enabling QbD with ML-driven pharmaceutical development can provide an opportunity to move toward risk mitigation for efficient ER tablet formulation and process development. However, there are some barriers to overcome in the way of adopting QbD concepts. The key issues are the lack of understanding and the gap between industries and regulatory authorities concerning the scientific principles and terms beyond QbD, which can create an obstacle during the approval process. Furthermore, it is generally believed that the resources and time invested in applying QbD tools are not cost-effective during constant and continuous improvement. Today, it is time to realize that a multidisciplinary understanding of the formulation and manufacturing process is as important as achieving the final result.}, Publisher = {SPRINGERNATURE}, Address = {CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Ribeiro, AJ (Corresponding Author), Univ Coimbra, Fac Farm, P-3000148 Coimbra, Portugal. Ribeiro, AJ (Corresponding Author), IBMC, I3S, Rua Alfredo Allen, P-4200135 Porto, Portugal. Sousa, A. S.; Ribeiro, A. J., Univ Coimbra, Fac Farm, P-3000148 Coimbra, Portugal. Sousa, A. S.; Serra, J.; Estevens, C.; Costa, R., Quinta Cerca, Tecnimede Grp, Pharmaceut Dev, P-2565187 Caixaria, Dois Portos, Portugal. Ribeiro, A. J., IBMC, I3S, Rua Alfredo Allen, P-4200135 Porto, Portugal.}, DOI = {10.1007/s40005-022-00603-w}, EarlyAccessDate = {NOV 2022}, ISSN = {2093-5552}, EISSN = {2093-6214}, Keywords = {Design of experiments; Extended release; Machine learning; Multivariate data analysis; Process analytical technology; Quality by design}, Keywords-Plus = {NEAR-INFRARED SPECTROSCOPY; CONTINUOUS DIRECT COMPRESSION; ARTIFICIAL NEURAL-NETWORK; MATRIX TABLETS; QBD APPROACH; BY-DESIGN; IN-VITRO; QUANTITATIVE CHARACTERIZATION; PHARMACEUTICAL DEVELOPMENT; EXCIPIENT VARIABILITY}, Research-Areas = {Pharmacology \& Pharmacy}, Web-of-Science-Categories = {Pharmacology \& Pharmacy}, Author-Email = {aribeiro@ff.uc.pt}, Affiliations = {Universidade de Coimbra; Universidade do Porto; i3S - Instituto de Investigacao e Inovacao em Saude, Universidade do Porto}, ResearcherID-Numbers = {Ribeiro, Antonio/K-4072-2013 }, ORCID-Numbers = {Ribeiro, Antonio/0000-0002-1399-8944 Costa, Ricardo/0000-0001-8731-4819}, Funding-Acknowledgement = {Drugs R\&D Doctoral Program by FCT (Fundacao para a Ciencia e Tecnologia), Portugal; Tecnimede Group {[}PD/BDE/150736/2020]}, Funding-Text = {This work was financially supported by the Drugs R\&D Doctoral Program assigned by FCT (Fundacao para a Ciencia e Tecnologia), Portugal and Tecnimede Group {[}grant PD/BDE/150736/2020].}, Cited-References = {Abu Fara D, 2019, PHARMACEUTICS, V11, DOI 10.3390/pharmaceutics11110603. Aguilar-De-Leyva A, 2017, J DRUG DELIV SCI TEC, V42, P134, DOI 10.1016/j.jddst.2017.06.004. Akhtar MF, 2022, J COAT TECHNOL RES, V19, P497, DOI 10.1007/s11998-021-00536-3. Akseli I, 2017, J PHARM SCI-US, V106, P234, DOI 10.1016/j.xphs.2016.08.026. Aktas E, 2013, DRUG DEV IND PHARM, V39, P1207, DOI 10.3109/03639045.2012.705291. Al-Zoubi N, 2015, INT J PHARMACEUT, V494, P296, DOI 10.1016/j.ijpharm.2015.08.021. Al-Zoubi N, 2011, DRUG DEV IND PHARM, V37, P80, DOI 10.3109/03639045.2010.492396. {[}Anonymous], 2012, INT C HARMONISATION. {[}Anonymous], 2011, INT C HARMONISATION. {[}Anonymous], 2008, INT C HARMONISATION. {[}Anonymous], 2010, INT C HARMONISATION. {[}Anonymous], 2019, INT C HARMONISATION. Arden S, 2021, INT J PHARMACEUT, V602, DOI 10.1016/j.ijpharm.2021.120554. Ashenden SK., 2021, ERA ARTIFICIAL INTEL, P15. Banner M, 2021, CURR OPIN CHEM ENG, V34, DOI 10.1016/j.coche.2021.100758. Bannigan P, 2021, ADV DRUG DELIVER REV, V175, DOI 10.1016/j.addr.2021.05.016. Barenji RV, 2019, INT J PHARMACEUT, V567, DOI 10.1016/j.ijpharm.2019.06.036. Barmpalexis P, 2018, INT J PHARMACEUT, V540, P1, DOI 10.1016/j.ijpharm.2018.01.052. Barmpalexis P, 2010, EUR J PHARM BIOPHARM, V74, P316, DOI 10.1016/j.ejpb.2009.09.011. Benedetti A, 2019, INT J PHARMACEUT, V563, P122, DOI 10.1016/j.ijpharm.2019.04.002. Bermejo M, 2020, EXPERT OPIN DRUG DEL, V17, P791, DOI 10.1080/17425247.2020.1750593. Bruschi ML, 2015, STRATEGIES MODIFY DR, DOI DOI 10.1016/B978-0-08-100092-2.00005-9. Caccavo D, 2015, MOL PHARMACEUT, V12, P474, DOI 10.1021/mp500563n. Chakraborty S, 2009, ACTA PHARMACEUT, V59, P313, DOI 10.2478/v10007-009-0025-8. Chappidi SR, 2019, ADV PHARM BULL, V9, P281, DOI 10.15171/apb.2019.032. Chudiwal VS, 2018, DRUG DEV IND PHARM, V44, P787, DOI 10.1080/03639045.2017.1413111. Colombo, 2000, Pharm Sci Technol Today, V3, P198, DOI 10.1016/S1461-5347(00)00269-8. Costa P, 2001, EUR J PHARM SCI, V13, P123, DOI 10.1016/S0928-0987(01)00095-1. Crowley MM, 2004, INT J PHARMACEUT, V269, P509, DOI 10.1016/j.ijpharm.2003.09.037. Dave VS, 2015, J PHARM SCI-US, V104, P906, DOI 10.1002/jps.24299. Davis B., 2018, PHARM QUALITY DESIGN, P1. Demchenko Y, 2013, PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS (CTS), P48. Desai N, 2017, AAPS PHARMSCITECH, V18, P2626, DOI 10.1208/s12249-017-0731-3. Diab S, 2022, J PHARM INNOV, V17, P892, DOI 10.1007/s12247-021-09570-5. Ding H., 2016, APPL BIOPHARMACEUTIC. Djuris J, 2021, PHARMACEUTICS, V13, DOI 10.3390/pharmaceutics13050663. EMA, 2014, GUID QUAL OR MOD REL. European Medicines Agency, 2012, GUID REAL TIM REL TE. Farooqi S, 2020, DRUG DES DEV THER, V14, P5217, DOI 10.2147/DDDT.S278918. Flores AE, 2011, CERTIFICATION AND SECURITY IN HEALTH-RELATED WEB APPLICATIONS: CONCEPTS AND SOLUTIONS, P1, DOI 10.4018/978-1-61692-895-7.ch001. Food and Drug Administration, 2004, PAT A FRAM INN PHARM. Food and Drug Administration, 1997, EXT REL OR DOS FORMS. Food and Drug Administration, 1997, SUPAC MR MOD REL SOL. Ford JL., 2014, HYDROPHILIC MATRIX T, P17, DOI DOI 10.1007/978-1-4939-1519-4\_2. Frenning G, 2011, INT J PHARMACEUT, V418, P88, DOI 10.1016/j.ijpharm.2010.11.030. Galata DL, 2021, INT J PHARMACEUT, V597, DOI 10.1016/j.ijpharm.2021.120338. Galata DL, 2019, PHARMACEUTICS, V11, DOI 10.3390/pharmaceutics11080400. Gavan A, 2022, J MOL STRUCT, V1247, DOI 10.1016/j.molstruc.2021.131326. Gavan A, 2017, ACTA PHARMACEUT, V67, P53, DOI 10.1515/acph-2017-0009. Gendre C, 2011, INT J PHARMACEUT, V421, P237, DOI 10.1016/j.ijpharm.2011.09.036. Gibson M., 2018, PHARM QUALITY DESIGN, P117. Goodwin DJ, 2018, INT J PHARMACEUT, V537, P183, DOI 10.1016/j.ijpharm.2017.12.011. Gowthami B, 2021, J DRUG DELIV SCI TEC, V63, DOI 10.1016/j.jddst.2021.102398. Grangeia HB, 2020, EUR J PHARM BIOPHARM, V147, P19, DOI 10.1016/j.ejpb.2019.12.007. Guler GK, 2017, J DRUG DELIV SCI TEC, V39, P385, DOI 10.1016/j.jddst.2017.04.029. Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925. Hayashi Y, 2021, INT J PHARMACEUT, V609, DOI 10.1016/j.ijpharm.2021.121158. Hayashi Y, 2019, INT J PHARMACEUT, V558, P351, DOI 10.1016/j.ijpharm.2018.12.087. Heiman J, 2015, AAPS PHARMSCITECH, V16, P267, DOI 10.1208/s12249-014-0219-3. Heng PWS, 2001, J CONTROL RELEASE, V76, P39, DOI 10.1016/S0168-3659(01)00410-2. Hiremath P, 2008, AAPS PHARMSCITECH, V9, P1171, DOI 10.1208/s12249-008-9159-0. Hoffman AS, 2008, J CONTROL RELEASE, V132, P153, DOI 10.1016/j.jconrel.2008.08.012. Hu MY, 2020, AAPS PHARMSCITECH, V21, DOI 10.1208/s12249-020-1628-0. Huang J, 2009, INT J PHARMACEUT, V382, P23, DOI 10.1016/j.ijpharm.2009.07.031. Ibric S, 2007, J PHARM PHARMACOL, V59, P745, DOI 10.1211/jpp.59.5.0017. ICH Harmonised Tripartite Guideline, 2014, INT C HARMONISATION. Ilic M, 2014, EUR J PHARM SCI, V62, P212, DOI 10.1016/j.ejps.2014.05.030. Ilyes K, 2021, FARMACIA, V69, P481, DOI 10.31925/farmacia.2021.3.11. International Conference on Harmonisation, 2009, ICH GUID Q8 R2 PHARM. Islam MT, 2014, DRUG DELIV TRANSL RE, V4, P377, DOI 10.1007/s13346-014-0197-8. Iurian S, 2017, DRUG DES DEV THER, V11, P733, DOI 10.2147/DDDT.S125323. Ivic B, 2010, ARCH PHARM RES, V33, P103, DOI 10.1007/s12272-010-2232-8. Jang EH, 2021, POWDER TECHNOL, V382, P23, DOI 10.1016/j.powtec.2020.12.044. Kanwal U, 2021, DRUG DES DEV THER, V15, P2193, DOI 10.2147/DDDT.S240506. Khan AM, 2020, DRUG DES DEV THER, V14, P2435, DOI 10.2147/DDDT.S244016. Kim CJ, 1998, DRUG DEV IND PHARM, V24, P645, DOI 10.3109/03639049809082366. Kosir D, 2018, PHARM DEV TECHNOL, V23, P865, DOI 10.1080/10837450.2016.1264417. Kovacs B, 2021, ACTA PHARMACEUT, V71, P497, DOI 10.2478/acph-2021-0039. Kushner J, 2020, EUR J PHARM SCI, V147, DOI 10.1016/j.ejps.2019.105200. Lakio S, 2016, INT J PHARMACEUT, V511, P659, DOI 10.1016/j.ijpharm.2016.07.052. Lee PI., 2010, ORAL CONTROLLED RELE, P21. Lefnaoui S., 2018, INT C APPL SMART SYS. Li HT, 2008, AAPS PHARMSCITECH, V9, P437, DOI 10.1208/s12249-008-9060-x. Lin W, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0264457. Liu LL, 2021, J MOL STRUCT, V1230, DOI 10.1016/j.molstruc.2021.129872. Liu LX, 2008, INT J PHARM, V352, P225, DOI 10.1016/j.ijpharm.2007.10.047. Lopes JA, 2018, MULTIVARIATE ANALYSIS IN THE PHARMACEUTICAL INDUSTRY, P35, DOI 10.1016/B978-0-12-811065-2.00002-3. Lou H, 2021, J PHARM SCI-US, V110, P3150, DOI 10.1016/j.xphs.2021.04.013. Lou H, 2019, INT J PHARMACEUT, V555, P368, DOI 10.1016/j.ijpharm.2018.11.039. Lundsberg-Nielsen L., 2018, PHARM QUALITY DESIGN, P227. Maderuelo C, 2011, J CONTROL RELEASE, V154, P2, DOI 10.1016/j.jconrel.2011.04.002. Maki-Lohiluoma E, 2021, INT J PHARMACEUT, V609, DOI 10.1016/j.ijpharm.2021.121146. Malaterre V, 2009, INT J PHARMACEUT, V376, P56, DOI 10.1016/j.ijpharm.2009.04.015. Markl D, 2020, INT J PHARMACEUT, V582, DOI 10.1016/j.ijpharm.2020.119353. Mirani AG, 2016, DRUG DELIV TRANSL RE, V6, P579, DOI 10.1007/s13346-016-0315-x. Missaghi S, 2014, AAPS PHARMSCITECH, V15, P149, DOI 10.1208/s12249-013-0040-4. Mohamed MI, 2020, DRUG DEV IND PHARM, V46, P814, DOI 10.1080/03639045.2020.1757696. Momin MM, 2015, FRONT PHARMACOL, V6, DOI 10.3389/fphar.2015.00144. Muller J, 2012, EUR J PHARM BIOPHARM, V80, P690, DOI 10.1016/j.ejpb.2011.12.003. Muntean DM, 2017, J SPECTROSC, V2017, DOI 10.1155/2017/7160675. Nagy B, 2019, INT J PHARMACEUT, V567, DOI 10.1016/j.ijpharm.2019.118464. Nokhodchi A, 2012, BIOIMPACTS, V2, P175, DOI 10.5681/bi.2012.027. Obeidat WM, 2015, AAPS PHARMSCITECH, V16, P1169, DOI 10.1208/s12249-015-0301-5. Owen M., 2018, PHARM QUALITY DESIGN, P157. Parmar C, 2018, J DRUG DELIV SCI TEC, V44, P388, DOI 10.1016/j.jddst.2018.01.008. Paul D, 2020, DRUG DISCOV TODAY, V26, P80, DOI 10.1016/j.drudis.2020.10.010. Paul S, 2021, INT J PHARMACEUT, V599, DOI 10.1016/j.ijpharm.2021.120439. Pawar P, 2016, INT J PHARMACEUT, V512, P96, DOI 10.1016/j.ijpharm.2016.08.033. Peppas NA, 2014, J CONTROL RELEASE, V190, P75, DOI 10.1016/j.jconrel.2014.06.041. Petrovic J, 2012, INT J PHARMACEUT, V428, P57, DOI 10.1016/j.ijpharm.2012.02.031. Pishnamazi M, 2019, CELLULOSE, V26, P6165, DOI 10.1007/s10570-019-02522-w. Politis SN, 2017, DRUG DEV IND PHARM, V43, P889, DOI 10.1080/03639045.2017.1291672. Porfire A, 2017, J PHARMACEUT BIOMED, V138, P1, DOI 10.1016/j.jpba.2017.01.030. Qazi F, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-71751-y. Qiu Y, 2017, DEVELOPING SOLID ORAL DOSAGE FORMS: PHARMACEUTICAL THEORY AND PRACTICE, 2ND EDITION, P519, DOI 10.1016/B978-0-12-802447-8.00019-4. Rajalahti T, 2011, INT J PHARMACEUT, V417, P280, DOI 10.1016/j.ijpharm.2011.02.019. Reda C, 2020, COMPUT STRUCT BIOTEC, V18, P241, DOI 10.1016/j.csbj.2019.12.006. Reinhardt IC, 2020, J IND INF INTEGR, V18, DOI 10.1016/j.jii.2020.100131. Reynolds TD, 2002, DRUG DEV IND PHARM, V28, P457, DOI 10.1081/DDC-120003007. Rus LL, 2020, FARMACIA, V68, P728, DOI 10.31925/farmacia.2020.4.20. Sacher S, 2022, INT J PHARMACEUT, V613, DOI 10.1016/j.ijpharm.2021.121408. Sanoufi MR, 2020, PHARM DEV TECHNOL, V25, P187, DOI 10.1080/10837450.2019.1684519. Saracoglu OK, 2020, BRAZ J PHARM SCI, V56, DOI 10.1590/s2175-97902019000418540. Saydam M, 2018, DRUG DEV IND PHARM, V44, P1905, DOI 10.1080/03639045.2018.1496450. Schmitt S., 2018, PHARM QUALITY DESIGN, P47. Sethi S, 2018, INT J BIOL MACROMOL, V117, P350, DOI 10.1016/j.ijbiomac.2018.05.178. Shah V, 2022, AAPS PHARMSCITECH, V23, DOI 10.1208/s12249-022-02225-9. Shi GL, 2021, RSC ADV, V11, P8323, DOI 10.1039/d0ra08030f. Siegel RA, 2012, ADV DEL SCI TECHNOL, P19, DOI 10.1007/978-1-4614-0881-9\_2. Siepmann J, 2000, INT J PHARM, V201, P151, DOI 10.1016/S0378-5173(00)00390-2. Siepmann J, 2012, ADV DEL SCI TECHNOL, P127, DOI 10.1007/978-1-4614-0881-9\_6. Siepmann J, 2012, ADV DEL SCI TECHNOL, P153, DOI 10.1007/978-1-4614-0881-9\_7. Simoes MF, 2020, EUR J PHARM BIOPHARM, V152, P282, DOI 10.1016/j.ejpb.2020.05.012. Singh SK, 2010, ORAL CONTROLLED RELE, P279, DOI DOI 10.1002/9780470640487.CH17. Sirbu C, 2014, FARMACIA, V62, P48. Steinwandter V, 2019, DRUG DISCOV TODAY, V24, P1795, DOI 10.1016/j.drudis.2019.06.005. Than YM, 2021, J PHARM INVEST, V51, P715, DOI 10.1007/s40005-021-00542-y. Thapa P, 2018, PHARMACEUTICS, V10, DOI 10.3390/pharmaceutics10030161. THEEUWES F, 1975, J PHARM SCI, V64, P1987, DOI 10.1002/jps.2600641218. Thomas S, 2021, INT J PHARMACEUT, V592, DOI 10.1016/j.ijpharm.2020.120049. Timmins P, 2016, THER DELIV, V7, P553, DOI 10.4155/tde-2016-0026. Tiwari SB., 2011, CONTROLLED RELEASE O, P131. Vamathevan J, 2019, NAT REV DRUG DISCOV, V18, P463, DOI 10.1038/s41573-019-0024-5. Van Hauwermeiren D, 2020, PHARMACEUTICS, V12, DOI 10.3390/pharmaceutics12030271. Van Snick B, 2017, INT J PHARMACEUT, V519, P390, DOI 10.1016/j.ijpharm.2017.01.010. Vanhoorne V, 2016, INT J PHARMACEUT, V505, P61, DOI 10.1016/j.ijpharm.2016.03.058. Vanza JD., 2020, PHARM DEV TECHNOL, V25, P1. Verma RK, 2002, J CONTROL RELEASE, V79, P7, DOI 10.1016/S0168-3659(01)00550-8. Viriden A, 2011, EUR J PHARM BIOPHARM, V78, P470, DOI 10.1016/j.ejpb.2011.02.003. Viriden A, 2010, INT J PHARMACEUT, V389, P147, DOI 10.1016/j.ijpharm.2010.01.029. Viriden A, 2009, EUR J PHARM SCI, V36, P392, DOI 10.1016/j.ejps.2008.11.003. Vora Chintan, 2015, Journal of Pharmaceutical Investigation, V45, P249, DOI 10.1007/s40005-014-0170-z. Walker RB., 2008, MODIFIED RELEASE DRU, P131. Wang S, 2022, PHARMACEUTICS, V14, DOI 10.3390/pharmaceutics14010183. Wang W, 2021, J CONTROL RELEASE, V338, P119, DOI 10.1016/j.jconrel.2021.08.030. Wen H., 2010, ORAL CONTROLLED RELE, P1, DOI DOI 10.1002/9780470640487.CH1. Wirges M, 2013, J PHARM SCI-US, V102, P556, DOI 10.1002/jps.23383. Won DH, 2021, INT J PHARMACEUT, V605, DOI 10.1016/j.ijpharm.2021.120838. Wu HQ, 2015, IND ENG CHEM RES, V54, P6012, DOI 10.1021/ie504680m. Yang YL, 2019, ACTA PHARM SIN B, V9, P177, DOI 10.1016/j.apsb.2018.09.010. Yang Y, 2016, INT J PHARMACEUT, V506, P340, DOI 10.1016/j.ijpharm.2016.04.061. Yoo S, 2022, PHARMACEUTICS, V14, DOI 10.3390/pharmaceutics14020467. Yu JJ, 2021, EUR J PHARM BIOPHARM, V163, P102, DOI 10.1016/j.ejpb.2021.03.014. Yu LX, 2008, PHARM RES, V25, P781, DOI 10.1007/s11095-007-9511-1. Yu LX, 2014, AAPS J, V16, P771, DOI 10.1208/s12248-014-9598-3. Zaborenko N, 2019, AAPS J, V21, DOI 10.1208/s12248-019-0297-y. Zarmpi P, 2017, EUR J PHARM BIOPHARM, V111, P1, DOI 10.1016/j.ejpb.2016.11.004. Zhou DL, 2014, J PHARM SCI-US, V103, P1664, DOI 10.1002/jps.23953.}, Number-of-Cited-References = {168}, Times-Cited = {1}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {8}, Journal-ISO = {J. Pharm. Investig.}, Doc-Delivery-Number = {9M0XP}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000885231700001}, DA = {2023-04-22}, } @article{ WOS:000745223400001, Author = {Park, Youngmok and Lee, Chanho and Jung, Ji Ye}, Title = {Digital Healthcare for Airway Diseases from Personal Environmental Exposure}, Journal = {YONSEI MEDICAL JOURNAL}, Year = {2022}, Volume = {63}, Number = {S}, Pages = {S1-S13}, Month = {JAN}, Abstract = {Digital technologies have emerged in various dimensions of human life, ranging from education to professional services to wellbeing. In particular, health products and services have expanded by the use and development of artificial intelligence, mobile health applications, and wearable electronic devices. Such advancements have enabled accurate and updated tracking and modeling of health conditions. For instance, digital health technologies are capable of measuring environmental pollution and predicting its adverse health effects. Several health conditions, including chronic airway diseases such as asthma and chronic obstructive pulmonary disease, can be exacerbated by pollution. These diseases impose substantial health burdens with high morbidity and mortality. Recently, efforts have been made to develop digital technologies to alleviate such conditions. Moreover, the COVID-19 pandemic has facilitated the application of telemedicine and telemonitoring for patients with chronic airway diseases. This article reviews current trends and studies in digital technology utilization for investigating and managing environmental exposure and chronic airway diseases. First, we discussed the recent progression of digital technologies in general environmental healthcare. Then, we summarized the capacity of digital technologies in predicting exacerbation and self-management of airway diseases. Concluding these reviews, we provided suggestions to improve digital health technologies' abilities to reduce the adverse effects of environmental exposure in chronic airway diseases, based on personal exposure-response modeling.}, Publisher = {YONSEI UNIV COLL MEDICINE}, Address = {50-1 YONSEI-RO, SEODAEMUN-GU, SEOUL 120-752, SOUTH KOREA}, Type = {Review}, Language = {English}, Affiliation = {Jung, JY (Corresponding Author), Yonsei Univ, Severance Hosp, Dept Internal Med, Div Pulm \& Crit Care Med,Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea. Park, Youngmok; Jung, Ji Ye, Yonsei Univ, Severance Hosp, Dept Internal Med, Div Pulm \& Crit Care Med,Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea. Lee, Chanho, Yonsei Univ, Severance Biomed Sci Inst, Yonsei Biomed Res Inst, Coll Med, Seoul, South Korea.}, DOI = {10.3349/ymj.2022.63.S1}, ISSN = {0513-5796}, EISSN = {1976-2437}, Keywords = {Asthma; digital technology; chronic obstructive pulmonary disease; environment; wearable electronic devices}, Keywords-Plus = {OBSTRUCTIVE PULMONARY-DISEASE; PARTICULATE MATTER; RESPIRATORY-DISEASES; HOSPITAL ADMISSION; NATIONAL-HEALTH; CITIZEN SCIENCE; SHORT-TERM; POLLUTION; ASTHMA; URBAN}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {stopyes@yuhs.ac}, Affiliations = {Yonsei University; Yonsei University Health System; Yonsei University; Yonsei University Health System}, ORCID-Numbers = {Park, Youngmok/0000-0002-5669-1491 Jung, Ji Ye/0000-0003-1589-4142 Lee, Chanho/0000-0003-2065-7379}, Funding-Acknowledgement = {Korea Environment Industry \& Technology Institute (KEITI) through the Digital Infrastructure Building Project for Monitoring, Surveying and Evaluating the Environmental Health - Korean Ministry of Environment (MOE) {[}2021003340002]}, Funding-Text = {This work was supported by the Korea Environment Industry \& Technology Institute (KEITI) through the Digital Infrastructure Building Project for Monitoring, Surveying and Evaluating the Environmental Health, funded by Korean Ministry of Environment (MOE) (2021003340002). The authors also thank Medical Illustration \& Design, part of the Medical Research Support Services of Yonsei University College of Medicine, for all of the artistic support related to this work.}, Cited-References = {{[}Anonymous], 2017, PNEUMOLOGIE, V71, P9. Arku RE, 2018, ENVIRON INT, V114, P307, DOI 10.1016/j.envint.2018.02.033. Bae S, 2019, YONSEI MED J, V60, P243, DOI 10.3349/ymj.2019.60.3.243. Barbosa MT, 2020, COPD, V17, P601, DOI 10.1080/15412555.2020.1815182. Barkjohn KK, 2021, ATMOS MEAS TECH, V14, P4617, DOI 10.5194/amt-14-4617-2021. Barnes PJ, 2013, J ALLERGY CLIN IMMUN, V131, P636, DOI 10.1016/j.jaci.2012.12.1564. Berlinski A, 2018, J ALLER CL IMM-PRACT, V6, P1042, DOI 10.1016/j.jaip.2018.01.032. Bhogal SK, 2012, ANN EMERG MED, V60, P84, DOI 10.1016/j.annemergmed.2011.12.027. Brandt EB, 2013, J ALLERGY CLIN IMMUN, V132, P1194, DOI 10.1016/j.jaci.2013.06.048. Brooks D, 1995, PHYS THER, V75, P1082, DOI 10.1093/ptj/75.12.1082. Burnett RT, 1997, ENVIRON RES, V72, P24, DOI 10.1006/enrs.1996.3685. Chan YFY, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.96. Chan YFY, 2017, NAT BIOTECHNOL, V35, P354, DOI 10.1038/nbt.3826. Chojer H, 2020, SCI TOTAL ENVIRON, V727, DOI 10.1016/j.scitotenv.2020.138385. Danaher BG, 2019, J MED INTERNET RES, V21, DOI 10.2196/13290. Das T, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05167. De Craemer S, 2020, ENVIRON SCI TECHNOL, V54, P11070, DOI 10.1021/acs.est.0c02436. Di Q, 2019, ENVIRON INT, V130, DOI 10.1016/j.envint.2019.104909. Dieffenderfer J, 2016, IEEE J BIOMED HEALTH, V20, DOI 10.1109/JBHI.2016.2573286. du Plessis E, 2019, SAMJ S AFR MED J, V109, P219, DOI {[}10.7196/SAMJ.2019.v109i4.13845, 10.7196/samj.2019.v109i4.13845]. Evangelopoulos D, 2021, EUR RESPIR J, V58, DOI 10.1183/13993003.03432-2020. Faustini A, 2012, EPIDEMIOLOGY, V23, P861, DOI 10.1097/EDE.0b013e31826767c2. Feinberg SN, 2019, ATMOS ENVIRON, V213, P579, DOI 10.1016/j.atmosenv.2019.06.026. Fleming L, 2018, CURR OPIN ALLERGY CL, V18, P117, DOI 10.1097/ACI.0000000000000428. Forouzanfar MH, 2016, LANCET, V388, P1659, DOI 10.1016/S0140-6736(16)31679-8. George M, 2018, RESP CARE, V63, P818, DOI 10.4187/respcare.05905. Global Initiative for Asthma, 2021 GINA MAIN REP. Gonzalez MC, 2008, NATURE, V453, P779, DOI 10.1038/nature06958. Grand View Research Inc, MHEALTH APPS MARK SI. Guerra B, 2017, EUR RESPIR REV, V26, DOI 10.1183/16000617.0061-2016. Han YQ, 2020, ATMOS CHEM PHYS, V20, P15775, DOI 10.5194/acp-20-15775-2020. Hansel NN, 2013, AM J RESP CRIT CARE, V187, P1085, DOI 10.1164/rccm.201211-1987OC. Helbig C, 2021, CURR POLLUT REP, V7, P417, DOI 10.1007/s40726-021-00186-4. Huang CH, 2021, ENVIRON SCI TECHNOL, V55, P2152, DOI 10.1021/acs.est.0c05815. Hurst JR, 2010, BMC PULM MED, V10, DOI 10.1186/1471-2466-10-52. Jacquemin B, 2015, ENVIRON HEALTH PERSP, V123, P613, DOI 10.1289/ehp.1408206. Jacquemin B, 2012, J EPIDEMIOL COMMUN H, V66, P796, DOI 10.1136/jech.2010.130229. Jerrett M, 2017, ENVIRON RES, V158, P286, DOI 10.1016/j.envres.2017.04.023. Kamei T, 2022, J TELEMED TELECARE, V28, P342, DOI 10.1177/1357633X20937573. Karagulian F, 2019, REV SENSORS AIR QUAL. Kevat A, 2020, RESP RES, V21, DOI 10.1186/s12931-020-01523-9. Khreis H, 2017, ENVIRON INT, V100, P1, DOI 10.1016/j.envint.2016.11.012. Khusial RJ, 2020, J ALLER CL IMM-PRACT, V8, P1972, DOI 10.1016/j.jaip.2020.02.018. Kim C, 2019, TUBERC RESPIR DIS, V82, P27, DOI 10.4046/trd.2018.0035. Kupczyk M, 2021, J ASTHMA, V58, P505, DOI 10.1080/02770903.2019.1709864. Larkin A, 2017, Curr Environ Health Rep, V4, P463, DOI 10.1007/s40572-017-0163-y. Lewis A, 2016, NATURE, V535, P29, DOI 10.1038/535029a. Linder P, ERICSSON MOBILITY RE. Loymans RJB, 2018, J ALLER CL IMM-PRACT, V6, P1942, DOI 10.1016/j.jaip.2018.02.004. Luscher J, 2019, BMC PUBLIC HEALTH, V19, DOI 10.1186/s12889-019-7723-z. Ma J, 2020, ANN AM ASSOC GEOGR, V110, P434, DOI 10.1080/24694452.2019.1653752. MacKinnon GE, 2020, CHEST, V157, P654, DOI 10.1016/j.chest.2019.10.015. Mallires KR, 2019, IEEE SENS J, V19, P8252, DOI {[}10.1109/JSEN.2019.2917435, 10.1109/jsen.2019.2917435]. Marcolino MS, 2018, JMIR MHEALTH UHEALTH, V6, DOI 10.2196/mhealth.8873. Masaki K, 2019, JMIR MHEALTH UHEALTH, V7, DOI 10.2196/12694. Mehdipour A, 2021, COPD, V18, P469, DOI 10.1080/15412555.2021.1945021. Merry K, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0219890. Mila C, 2018, ENVIRON SCI TECHNOL, V52, P13481, DOI 10.1021/acs.est.8b03075. Moore E, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2016-011330. Mosnaim GS, 2021, J ALLER CL IMM-PRACT, V9, P1586, DOI 10.1016/j.jaip.2020.10.064. Nguyen E, 2021, J ALLER CL IMM-PRACT, V9, P844, DOI 10.1016/j.jaip.2020.08.049. O'Byrne PM, 2009, AM J RESP CRIT CARE, V179, P19, DOI 10.1164/rccm.200807-1126OC. Ozkaynak H, 2013, J EXPO SCI ENV EPID, V23, P566, DOI 10.1038/jes.2013.15. Peng JF, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60042-1. Perello J, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.147750. Persaud YK, 2021, J ALLER CL IMM-PRACT, V9, P13, DOI 10.1016/j.jaip.2020.10.005. Pfeffer PE, 2021, CHEST, V159, P1346, DOI 10.1016/j.chest.2020.10.053. Rage E, 2009, OCCUP ENVIRON MED, V66, P182, DOI 10.1136/oem.2007.038349. Ramsey RR, 2021, J ALLER CL IMM-PRACT, V9, P3821, DOI 10.1016/j.jaip.2021.06.005. Ritter S., 2015, J CLIN TRIALS, V5, pe120, DOI 10.4172/2167-0870.1000e120.. Rodriguez-Urrego D, 2020, ENVIRON POLLUT, V266, DOI 10.1016/j.envpol.2020.115042. Saini J, 2021, ENVIRON MONIT ASSESS, V193, DOI 10.1007/s10661-020-08781-6. Salmon M, 2018, ENVIRON INT, V117, P300, DOI 10.1016/j.envint.2018.05.021. Schikowski T, 2005, RESP RES, V6, DOI 10.1186/1465-9921-6-152. Sills MR, 2021, INT J MED INFORM, V151, DOI 10.1016/j.ijmedinf.2021.104468. Silven AV, 2020, J MED INTERNET RES, V22, DOI 10.2196/20953. Snik F, 2014, GEOPHYS RES LETT, V41, P7351, DOI 10.1002/2014GL061462. Song DJ, 2019, YONSEI MED J, V60, P952, DOI 10.3349/ymj.2019.60.10.952. Song QK, 2014, INT J ENV RES PUB HE, V11, P11822, DOI 10.3390/ijerph111111822. Soriano JB, 2017, LANCET RESP MED, V5, P691, DOI 10.1016/S2213-2600(17)30293-X. Steinhubl SR, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aaa3487. Taylor-Pashow KML, 2019, SOLVENT EXTR ION EXC, V37, P1, DOI 10.1080/07366299.2019.1592924. Ueberham M, 2018, ENVIRON INT, V121, P130, DOI 10.1016/j.envint.2018.08.057. Van Brussel S, 2019, J ENVIRON PLANN MAN, V62, P534, DOI 10.1080/09640568.2018.1428183. van Donkelaar A, 2015, ENVIRON HEALTH PERSP, V123, P135, DOI 10.1289/ehp.1408646. Vimercati L, 2015, INT J ENV RES PUB HE, V12, P12977, DOI 10.3390/ijerph121012977. Volckens J, 2017, INDOOR AIR, V27, P409, DOI 10.1111/ina.12318. Vorrink SNW, 2016, EUR RESPIR J, V48, P1019, DOI 10.1183/13993003.00083-2016. Wedzicha JA, 2007, LANCET, V370, P786, DOI 10.1016/S0140-6736(07)61382-8. Weir CH, 2013, RESP MED, V107, P1763, DOI 10.1016/j.rmed.2013.08.010. Whittaker R, 2019, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006611.pub5. Wild CP, 2012, INT J EPIDEMIOL, V41, P24, DOI 10.1093/ije/dyr236. World Air Quality Index Project, AIR POLL WORLD REAL. World Health Organization (WHO), 2019, WHORHR198. Wu CT, 2021, JMIR MHEALTH UHEALTH, V9, DOI 10.2196/22591. Yatkin S, 2020, ATMOS POLLUT RES, V11, P225, DOI 10.1016/j.apr.2019.10.004. Yilmaz G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20185124. Zein JG, 2021, CHEST, V159, P1747, DOI 10.1016/j.chest.2020.12.051. Zhang ZX, 2021, CITIES, V109, DOI 10.1016/j.cities.2020.103006. Zhu RX, 2013, COPD, V10, P307, DOI 10.3109/15412555.2012.744962.}, Number-of-Cited-References = {100}, Times-Cited = {1}, Usage-Count-Last-180-days = {4}, Usage-Count-Since-2013 = {32}, Journal-ISO = {Yonsei Med. J.}, Doc-Delivery-Number = {YK4ZS}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000745223400001}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000499066900088, Author = {Li, Lei and Wang, Yang and Zhang, Wenjun and Yu, Shuili and Wang, Xianyun and Gao, Naiyun}, Title = {New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review}, Journal = {CHEMICAL ENGINEERING JOURNAL}, Year = {2020}, Volume = {381}, Month = {FEB 1}, Abstract = {Fluorescence technology has been increasingly applied in dissolved organic matter (DOM) characterization due to its remarkable sensitivity and selectivity. Interest in using fluorescence technology to investigate drinking water treatment with a focus on coagulation, adsorption, membrane filtration and disinfection is growing. Fluorescence excitation-emission matrix (EEM) spectroscopy, also known as three-dimensional fluorescence (3D-EEM) or fluorescence fingerprinting, is one of the most predominant approaches because of the massive amount of data, visual maps and multidimensional information it provides. Various EEM map interpretation methods have been developed. This paper reviews current predominant 3D-EEM interpretation methods (ranging from basic methods, peak picking and fluorescence regional integration (FRI) to chemometric methods) and summarizes the latest findings and problems related to practical applications. The correlations between optical and physicochemical properties, such as molecular weight and hydrophilic-hydrophobic properties, are investigated. Novel findings on drinking water trains obtained with the assistance of these interpretation methods are discussed and broadly classified as follows: a) evaluating water treatment performance, b) observing DOM behavior, c) monitoring and predicting micropollutants and disinfection byproducts (DBPs). The importance of using artificial intelligence in fluorescence technology and developing advanced real-time sensors, the weaknesses of fluorescence spectroscopy and the need for combination with other technologies (e.g., fractionation techniques) are highlighted.}, Publisher = {ELSEVIER SCIENCE SA}, Address = {PO BOX 564, 1001 LAUSANNE, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Yu, SL (Corresponding Author), 308 Mingjing Bldg,1239 Siping Rd, Shanghai 200092, Peoples R China. Li, Lei; Wang, Yang; Zhang, Wenjun; Yu, Shuili; Gao, Naiyun, Tongji Univ, State Key Lab Pollut Control \& Resource Reuse, Shanghai 200092, Peoples R China. Li, Lei; Yu, Shuili, Shanghai Inst Pollut Control \& Ecol Secur, Shanghai 200092, Peoples R China. Wang, Xianyun, Nation Engn Res Ctr Urban Water Resources, Shanghai 200082, Peoples R China.}, DOI = {10.1016/j.cej.2019.122676}, Article-Number = {122676}, ISSN = {1385-8947}, EISSN = {1873-3212}, Keywords = {Dissolved organic matter; EEM; Characterization; Monitoring; Drinking water treatment}, Keywords-Plus = {PARALLEL FACTOR-ANALYSIS; DISINFECTION BY-PRODUCT; REGIONAL-INTEGRATION ANALYSIS; ACTIVATED CARBON ADSORPTION; MICROCYSTIS-AERUGINOSA; PARAFAC COMPONENTS; EEM-PARAFAC; EMERGING CONTAMINANTS; MONITORING TOOL; UV ABSORBENCY}, Research-Areas = {Engineering}, Web-of-Science-Categories = {Engineering, Environmental; Engineering, Chemical}, Author-Email = {ysl@tongji.edu.cn}, Affiliations = {Tongji University}, ResearcherID-Numbers = {LI, LI/GVS-5344-2022 Li, Li/AEM-3636-2022 li, li/HII-4157-2022 }, ORCID-Numbers = {Li, Lei/0000-0003-4368-8637}, Funding-Acknowledgement = {National Natural Science Foundation of China {[}51678420]; national major science and technology project of China {[}2017ZX07201005, 2017ZX07502003-03]; Fundamental Research Funds for the Central Universities; Shanghai City Youth Science and Technology Star Project {[}19QC1400100]}, Funding-Text = {This work was supported by the National Natural Science Foundation of China (51678420), the national major science and technology project of China (2017ZX07201005, 2017ZX07502003-03), the Fundamental Research Funds for the Central Universities and Shanghai City Youth Science and Technology Star Project (No. 19QC1400100).}, Cited-References = {An Y, 2009, CHEM ENG J, V155, P709, DOI 10.1016/j.cej.2009.09.003. {[}Anonymous], 1973, FORMATION HALOFORMS. {[}Anonymous], 2006 WQTC WAT QUAL T. {[}Anonymous], TECHNOMETRICS. {[}Anonymous], NATURWISSENSCHAFTEN. Anumol T, 2015, WATER RES, V76, P76, DOI 10.1016/j.watres.2015.02.019. Astel A, 2007, WATER RES, V41, P4566, DOI 10.1016/j.watres.2007.06.030. Ateia M, 2017, ENVIRON SCI TECHNOL, V51, P7101, DOI 10.1021/acs.est.7b01279. Baker A, 2008, CHEMOSPHERE, V73, P1765, DOI 10.1016/j.chemosphere.2008.09.018. Baker A, 2015, SCI TOTAL ENVIRON, V532, P14, DOI 10.1016/j.scitotenv.2015.05.114. Bertone E, 2018, WATER RES, V141, P152, DOI 10.1016/j.watres.2018.05.001. Bieroza M, 2012, ADV ENG SOFTW, V44, P126, DOI 10.1016/j.advengsoft.2011.05.031. Bieroza M, 2012, EDUC CHEM ENG, V7, pE22, DOI 10.1016/j.ece.2011.10.002. Bieroza M, 2009, J GEOPHYS RES-BIOGEO, V114, DOI 10.1029/2009JG000940. Bridgeman J, 2011, REV ENVIRON SCI BIO, V10, P277, DOI 10.1007/s11157-011-9243-x. Bro R, 1997, CHEMOMETR INTELL LAB, V38, P149, DOI 10.1016/S0169-7439(97)00032-4. Bro R, 2011, CHEMOMETR INTELL LAB, V106, P86, DOI 10.1016/j.chemolab.2010.06.005. Cai WW, 2018, CHEMOSPHERE, V193, P295, DOI 10.1016/j.chemosphere.2017.11.032. Carstea EM, 2016, WATER RES, V95, P205, DOI 10.1016/j.watres.2016.03.021. Chen F, 2014, WATER RES, V48, P508, DOI 10.1016/j.watres.2013.10.007. Chen ML, 2010, APPL GEOCHEM, V25, P872, DOI 10.1016/j.apgeochem.2010.03.005. Chen W, 2003, ENVIRON SCI TECHNOL, V37, P5701, DOI 10.1021/es034354c. Chu WH, 2010, ENVIRON SCI TECHNOL, V44, P3908, DOI 10.1021/es100397x. Coble PG, 1996, MAR CHEM, V51, P325, DOI 10.1016/0304-4203(95)00062-3. Cuss CW, 2016, CHEMOSPHERE, V155, P283, DOI 10.1016/j.chemosphere.2016.04.061. Cuss CW, 2016, ANAL METHODS-UK, V8, P716, DOI 10.1039/c5ay02549d. Cuss CW, 2016, APPL SPECTROSC, V70, P334, DOI 10.1177/0003702815620546. Phong DD, 2018, ENVIRON SCI TECHNOL, V52, P427, DOI 10.1021/acs.est.7b04311. Ding SK, 2019, WATER RES, V160, P313, DOI 10.1016/j.watres.2019.05.024. Einax JW, 1998, MICROCHEM J, V58, P315, DOI 10.1006/mchj.1997.1560. Engelen S, 2009, J CHEMOMETR, V23, P124, DOI 10.1002/cem.1208. Fan LH, 2011, WATER RES, V45, P3933, DOI 10.1016/j.watres.2011.04.050. Filloux E, 2012, BIORESOURCE TECHNOL, V118, P460, DOI 10.1016/j.biortech.2012.05.081. Finocchiaro R, 2017, LECT NOTES CIVIL ENG, V4, P172, DOI 10.1007/978-3-319-58421-8\_26. Gao ZC, 2019, WATER RES, V154, P199, DOI 10.1016/j.watres.2019.02.004. Gone DL, 2009, J HAZARD MATER, V172, P693, DOI 10.1016/j.jhazmat.2009.07.052. He XS, 2013, CHEMOSPHERE, V93, P2208, DOI 10.1016/j.chemosphere.2013.04.039. He XS, 2011, J HAZARD MATER, V190, P293, DOI 10.1016/j.jhazmat.2011.03.047. Henderson RK, 2009, WATER RES, V43, P863, DOI 10.1016/j.watres.2008.11.027. Hudson N, 2007, RIVER RES APPL, V23, P631, DOI 10.1002/rra.1005. Inamdar S, 2012, BIOGEOCHEMISTRY, V108, P55, DOI 10.1007/s10533-011-9572-4. Kalteh AM, 2008, ENVIRON MODELL SOFTW, V23, P835, DOI 10.1016/j.envsoft.2007.10.001. Kohonen T, 2001, ENG INTELL SYST ELEC, V9, P179. Kowalczuk P, 2009, MAR CHEM, V113, P182, DOI 10.1016/j.marchem.2009.01.015. Lee BM, 2016, ENVIRON SCI TECHNOL, V50, P7364, DOI 10.1021/acs.est.6b01286. Lee BM, 2015, WATER RES, V73, P242, DOI 10.1016/j.watres.2015.01.020. Leenheer JA, 2003, ENVIRON SCI TECHNOL, V37, p18A, DOI 10.1021/es032333c. Li L, 2018, WATER RES, V147, P422, DOI 10.1016/j.watres.2018.10.023. Li L, 2015, CHEM ENG J, V281, P265, DOI 10.1016/j.cej.2015.06.091. Li L, 2014, ENVIRON SCI TECHNOL, V48, P14549, DOI 10.1021/es5035365. Li L, 2012, WATER RES, V46, P1233, DOI 10.1016/j.watres.2011.12.026. Li WT, 2013, WATER RES, V47, P1246, DOI 10.1016/j.watres.2012.11.040. Luo YL, 2014, SCI TOTAL ENVIRON, V473, P619, DOI 10.1016/j.scitotenv.2013.12.065. Lyon BA, 2014, J HAZARD MATER, V264, P411, DOI 10.1016/j.jhazmat.2013.10.065. Ma CX, 2018, SCI TOTAL ENVIRON, V640, P609, DOI 10.1016/j.scitotenv.2018.05.369. Ma DF, 2016, CHEM ENG J, V291, P55, DOI 10.1016/j.cej.2016.01.091. Meng FG, 2011, WATER RES, V45, P4661, DOI 10.1016/j.watres.2011.06.026. Murphy KR, 2014, CAMB ENV CH, P339. Murphy KR, 2013, ANAL METHODS-UK, V5, P6557, DOI 10.1039/c3ay41160e. Oloibiri V, 2017, CHEMOSPHERE, V186, P873, DOI 10.1016/j.chemosphere.2017.08.035. Peiris RH, 2013, WATER RES, V47, P3364, DOI 10.1016/j.watres.2013.03.015. Peiris RH, 2010, WATER RES, V44, P185, DOI 10.1016/j.watres.2009.09.036. Peldszus S, 2011, WATER RES, V45, P5161, DOI 10.1016/j.watres.2011.07.022. Peleato NM, 2018, WATER RES, V136, P84, DOI 10.1016/j.watres.2018.02.052. Pereira JC, 2018, SPECTROCHIM ACTA A, V205, P320, DOI 10.1016/j.saa.2018.07.025. Persson T, 2001, ANAL CHIM ACTA, V434, P179, DOI 10.1016/S0003-2670(01)00812-1. Pifer AD, 2014, J WATER SUPPLY RES T, V63, P200, DOI 10.2166/aqua.2013.122. Qu FS, 2014, J MEMBRANE SCI, V449, P58, DOI 10.1016/j.memsci.2013.07.070. RICHARDS LE, 1988, J MARKETING RES, V25, P410, DOI 10.2307/3172953. Rodriguez FJ, 2014, SCI TOTAL ENVIRON, V476, P731, DOI 10.1016/j.scitotenv.2013.11.149. Romera-Castillo C, 2014, WATER RES, V55, P40, DOI 10.1016/j.watres.2014.02.017. Sanchez NP, 2014, ENVIRON SCI TECHNOL, V48, P1582, DOI 10.1021/es4049384. Sanchez NP, 2013, WATER RES, V47, P1679, DOI 10.1016/j.watres.2012.12.032. Sgroi M, 2018, WATER RES, V145, P667, DOI 10.1016/j.watres.2018.09.018. Sgroi M, 2017, J HAZARD MATER, V323, P367, DOI 10.1016/j.jhazmat.2016.05.035. Shimabuku KK, 2017, ENVIRON SCI TECHNOL, V51, P2676, DOI 10.1021/acs.est.6b04911. Shimizu Y, 2018, CHEMOSPHERE, V203, P345, DOI 10.1016/j.chemosphere.2018.03.197. Sorensen JPR, 2018, WATER RES, V137, P301, DOI 10.1016/j.watres.2018.03.001. Spencer RGM, 2007, WATER RES, V41, P2941, DOI 10.1016/j.watres.2007.04.012. Stedmon CA, 2008, LIMNOL OCEANOGR-METH, V6, P572, DOI 10.4319/lom.2008.6.572. Swietlik J, 2004, WATER RES, V38, P3791, DOI 10.1016/j.watres.2004.06.010. Vera M, 2017, CHEM ENG J, V317, P961, DOI 10.1016/j.cej.2017.02.081. Vera M, 2017, SCI TOTAL ENVIRON, V584, P1212, DOI 10.1016/j.scitotenv.2017.01.184. Quang VL, 2016, CHEMOSPHERE, V165, P126, DOI 10.1016/j.chemosphere.2016.09.029. Wang S, 2017, CHEMOSPHERE, V189, P309, DOI 10.1016/j.chemosphere.2017.09.065. Wang ZW, 2009, WATER RES, V43, P1533, DOI 10.1016/j.watres.2008.12.033. Wasswa J, 2019, ENVIRON SCI-WAT RES, V5, P370, DOI {[}10.1039/c8ew00472b, 10.1039/C8EW00472B]. Watson K, 2018, SCI TOTAL ENVIRON, V640, P31, DOI 10.1016/j.scitotenv.2018.05.280. Weinrich LA, 2010, WATER RES, V44, P5367, DOI 10.1016/j.watres.2010.06.035. WOLD S, 1987, CHEMOMETR INTELL LAB, V2, P37, DOI 10.1016/0169-7439(87)80084-9. Wunsch UJ, 2017, ENVIRON SCI TECHNOL, V51, P11900, DOI 10.1021/acs.est.7b03260. Xiao K, 2018, ENVIRON SCI TECHNOL, V52, P11251, DOI 10.1021/acs.est.8b02684. Xiao K, 2016, RSC ADV, V6, P24050, DOI 10.1039/c5ra23167a. Xiao P, 2012, SEP PURIF TECHNOL, V95, P109, DOI 10.1016/j.seppur.2012.04.028. Yan CX, 2018, SCI TOTAL ENVIRON, V637, P1311, DOI 10.1016/j.scitotenv.2018.05.099. Yang LY, 2015, ENVIRON SCI POLLUT R, V22, P6500, DOI 10.1007/s11356-015-4214-3. Yang LY, 2015, CHEMOSPHERE, V121, P84, DOI 10.1016/j.chemosphere.2014.11.033. Yang X, 2008, WATER RES, V42, P2329, DOI 10.1016/j.watres.2007.12.021. Yang YZ, 2019, ENVIRON SCI-WAT RES, V5, P315, DOI {[}10.1039/c8ew00821c, 10.1039/C8EW00821C]. Yao X, 2011, CHEMOSPHERE, V82, P145, DOI 10.1016/j.chemosphere.2010.10.049. Yu HB, 2014, CHEMOSPHERE, V113, P79, DOI 10.1016/j.chemosphere.2014.04.020.}, Number-of-Cited-References = {101}, Times-Cited = {107}, Usage-Count-Last-180-days = {150}, Usage-Count-Since-2013 = {790}, Journal-ISO = {Chem. Eng. J.}, Doc-Delivery-Number = {JQ6QF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000499066900088}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000752493100007, Author = {Athavale, Harsh Arvind and Athavale, Sunita Arvind and Pathak, Amey Subodh and Pathak, Tanmay Subodh}, Title = {How Data is Helping to Fight COVID-19 Pandemic}, Journal = {JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH}, Year = {2021}, Volume = {15}, Number = {9}, Pages = {LE01-LE05}, Month = {SEP}, Abstract = {Early in 2020, the COVID-19 pandemic emerged as a global public health concern requiring urgent attention, concerted efforts and intervention to avoid catastrophe. This necessitated optimal use of fast-emerging data to be analysed to draw out inferences that would shape our response. World Health Organisation (WHO) called this pandemic an infodemic where data played a crucial role. This paper reviews how data from varied sources and different types helped delay the outbreak, limit the spread, initiate social and public health measures, decide treatment regimes, optimise healthcare infrastructure and human resources and helped to initiate a multipronged strategy with emerging evidence for further course correction as the world progressed through the pandemic. The classical mathematical tools, i.e., Susceptible-Infected-Recovered (SIR) model and its variants, were the primary analytical techniques utilised to analyse such data. However, newer data analytical techniques utilising artificial intelligence and machine learning, were also extensively used. These techniques have the capability to handle large quantities of data and develop prediction models of various emerging situations that offer foreknowledge for policymakers and provide solutions. Data Science has witnessed a leap in the past few years, and the way it helped shape our response to this pandemic is a testimony to the promise that it holds for humankind.}, Publisher = {PREMCHAND SHANTIDEVI RESEARCH FOUNDATION}, Address = {71 JAIN COLONY, VEER NAGAR, DELHI, 110 007, INDIA}, Type = {Review}, Language = {English}, Affiliation = {Pathak, TS (Corresponding Author), Int Inst Informat Technol, Dept Elect \& Commun Engn, Hyderabad, Telangana, India. Athavale, Harsh Arvind, Manipal Univ, Dept Comp Sci Engn, Jaipur, Rajasthan, India. Athavale, Sunita Arvind, All India Inst Med Sci, Dept Anat, Bhopal, Madhya Pradesh, India. Pathak, Amey Subodh, RUHS Med Coll, Dept Med, Jaipur, Rajasthan, India. Pathak, Tanmay Subodh, Int Inst Informat Technol, Dept Elect \& Commun Engn, Hyderabad, Telangana, India.}, DOI = {10.7860/JCDR/2021/49455.15406}, ISSN = {2249-782X}, EISSN = {0973-709X}, Keywords = {Algorithms; Artificial intelligence; Data analytics; Privacy}, Keywords-Plus = {CHINA}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {tanmay.pathak@students.iiit.ac.in}, Affiliations = {Manipal University Jaipur; All India Institute of Medical Sciences (AIIMS) Bhopal; International Institute of Information Technology Hyderabad}, Cited-References = {{[}Anonymous], 2021, CORONAVIRUS UPDATE L. {[}Anonymous], WHO DIRECTOR GEN OPE. {[}Anonymous], DHIS2 COVID 19 VACCI. {[}Anonymous], THERAPEUTICS COVID19. {[}Anonymous], 2021, DEEP MIND. {[}Anonymous], 2021, GLOBAL EC OUTL DUR C. {[}Anonymous], COVID 19 LIV DATA. Ayyoubzadeh SM, 2020, JMIR PUBLIC HLTH SUR, V6, P192, DOI 10.2196/18828. Barkur G, 2020, ASIAN J PSYCHIATR, V51, DOI 10.1016/j.ajp.2020.102089. Bonaccorsi G, 2020, P NATL ACAD SCI USA, V117, P15530, DOI 10.1073/pnas.2007658117. Palamim CVC, 2020, ANN GLOB HEALTH, V86, DOI 10.5334/aogh.3025. Chen J, 2020, SCI REP-UK, V10, DOI {[}10.1038/s41598-020-76282-0, 10.1038/s41598-020-62884-1]. de Wolff T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0243692. Ekong I, 2020, JMIR MHEALTH UHEALTH, V8, DOI 10.2196/19139. Fahey RA, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102181. Fong SJ, 2020, APPL SOFT COMPUT, V93, DOI 10.1016/j.asoc.2020.106282. Gozes O, 2020, ARXIV200305037. Gupta E, 2020, BIORXIV PREPRINT, DOI {[}10.1101/2020.04.13.039198v1, DOI 10.1101/2020.04.13.039198V1]. Hidayat Alfin, 2020, 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE), P443, DOI 10.1109/IC2IE50715.2020.9274663. Hua JL, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072309. Kanters S, 2016, B WORLD HEALTH ORGAN, V94, P782, DOI 10.2471/BLT.16.174326. Kermack WO, 1927, P R SOC LOND A-CONTA, V115, P700, DOI 10.1098/rspa.1927.0118. Kim MJ, 2020, WASHINGTON POST. Krumholz HM, 2014, HEALTH AFFAIR, V33, P1163, DOI 10.1377/hlthaff.2014.0053. Kumar A, 2021, FUTURE GENER COMP SY, V115, P1, DOI 10.1016/j.future.2020.08.046. Lai S., 2020, MEDRXIV PREPRINT, DOI 10.1101/2020.02.04.20020479. Latif S., 2020, IEEE T ARTIF INTELL, V1, P85, DOI DOI 10.1109/TAI.2020.3020521. Li Q, 2020, NEW ENGL J MED, V382, P1199, DOI 10.1056/NEJMoa2001316. Li Ruoran, 2020, medRxiv, DOI 10.1101/2020.03.09.20033241. Liu P, 2020, COVID 19 PROGRESSION, DOI {[}10.1101/2020.03.17.20037770v1, DOI 10.1101/2020.03.17.20037770V1]. Mahalmani VM, 2020, INDIAN J PHARMACOL, V52, P117, DOI 10.4103/ijp.IJP\_310\_20. Malki Z, 2020, CHAOS SOLITON FRACT, V138, DOI 10.1016/j.chaos.2020.110137. Martini M, 2019, J Prev Med Hyg, V60, pE64, DOI 10.15167/2421-4248/jpmh2019.60.1.1205. Moris D, 2020, IN VIVO, V34, P1695, DOI 10.21873/invivo.11963. Ong E, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01581. Raghupathi W, 2014, HEALTH INF SCI SYST, V2, DOI 10.1186/2047-2501-2-3. Rendana M, 2020, URBAN CLIM, V34, DOI 10.1016/j.uclim.2020.100680. SARS-{[}LaiC S, 2020, INT J INFECT DIS, V101, P314. Sebastian M., 2021, HUFF POST. Taubenberger JK, 2019, SCI TRANSL MED, V11, DOI 10.1126/scitranslmed.aau5485. Wang RR, 2020, P INT COMP SOFTW APP, P1261, DOI 10.1109/COMPSAC48688.2020.00-83. Wang TY, 2020, IEEE ACCESS, V8, P138162, DOI 10.1109/ACCESS.2020.3012595. Wang XS, 2017, PROC CVPR IEEE, P3462, DOI 10.1109/CVPR.2017.369. Wu JT, 2020, LANCET, V395, P689, DOI 10.1016/S0140-6736(20)30260-9. Xu XW, 2020, ENGINEERING-PRC, V6, P1122, DOI 10.1016/j.eng.2020.04.010. YanL ZhangH, 2020, AMACHINE BASED MODEL, DOI {[}10.1101/2020.02.27.20028027v3, DOI 10.1101/2020.02.27.20028027V3]. Zhao S, 2020, INT J INFECT DIS, V92, P214, DOI 10.1016/j.ijid.2020.01.050.}, Number-of-Cited-References = {47}, Times-Cited = {0}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {5}, Journal-ISO = {J. Clin. Diagn. Res.}, Doc-Delivery-Number = {YV1KZ}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000752493100007}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000446517900002, Author = {Yang DianGe and Jiang Kun and Zhao Ding and Yu ChunLei and Cao Zhong and Xie ShiChao and Xiao ZhongYang and Jiao XinYu and Wang SiJia and Zhang Kai}, Title = {Intelligent and connected vehicles: Current status and future perspectives}, Journal = {SCIENCE CHINA-TECHNOLOGICAL SCIENCES}, Year = {2018}, Volume = {61}, Number = {10}, Pages = {1446-1471}, Month = {OCT}, Abstract = {Intelligent connected vehicles (ICVs) are believed to change people's life in the near future by making the transportation safer, cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level ICVs.}, Publisher = {SCIENCE PRESS}, Address = {16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Yang, DG; Jiang, K (Corresponding Author), Tsinghua Univ, Dept Automot Engn, Collaborat Innovat Ctr Intelligent New Energy Veh, State Key Lab Automot Safety \& Energy, Beijing 100084, Peoples R China. Zhao, D (Corresponding Author), Univ Michigan, Transportat Res Inst, Ann Arbor, MI 48109 USA. Yang DianGe; Jiang Kun; Yu ChunLei; Cao Zhong; Xie ShiChao; Xiao ZhongYang; Jiao XinYu; Wang SiJia; Zhang Kai, Tsinghua Univ, Dept Automot Engn, Collaborat Innovat Ctr Intelligent New Energy Veh, State Key Lab Automot Safety \& Energy, Beijing 100084, Peoples R China. Zhao Ding, Univ Michigan, Transportat Res Inst, Ann Arbor, MI 48109 USA.}, DOI = {10.1007/s11431-017-9338-1}, ISSN = {1674-7321}, EISSN = {1869-1900}, Keywords = {intelligent connected vehicle (ICV); autonomous driving; artificial intelligence; advanced driver assistance systems (ADAS); electrical; electronic architecture (EEA); environmental perception; decision-making; ICV computation platform}, Keywords-Plus = {OF-THE-ART; URBAN ENVIRONMENTS; LEARNING ALGORITHM; ROAD; SYSTEM; GENERATION; ENTRY; ARCHITECTURE; NETWORKS; TRACKING}, Research-Areas = {Engineering; Materials Science}, Web-of-Science-Categories = {Engineering, Multidisciplinary; Materials Science, Multidisciplinary}, Author-Email = {ydg@tsinghua.edu.cn jiangkun@tsinghua.edu.cn zhaoding@umich.edu}, Affiliations = {Tsinghua University; University of Michigan System; University of Michigan}, ORCID-Numbers = {Zhao, Ding/0000-0002-9400-8446}, Funding-Acknowledgement = {International Science and Technology Cooperation Program of China {[}2016YFE0102200]; National Natural Science Foundation of China {[}61773234]; National Key R\&D Program of China {[}2108YFB0105004]; Beijing Municipal Science and Technology Commission {[}D171100005117001, D171100005117002]}, Funding-Text = {This work was supported by the International Science and Technology Cooperation Program of China (Grant No. 2016YFE0102200), the National Natural Science Foundation of China (Grant No. 61773234), the National Key R\&D Program of China(Grant No. 2108YFB0105004), and Beijing Municipal Science and Technology Commission (Grant Nos. D171100005117001 \& D171100005117002).}, Cited-References = {Abeysiriwardhana W. A. Shanaka P., 2014, 7th International Conference on Information and Automation for Sustainability (ICIAfS), P1, DOI 10.1109/ICIAFS.2014.7069563. ACKLEY DH, 1985, COGNITIVE SCI, V9, P147. Afsin M E, 2017, 12 IEEE INT S IND EM, P1. Agussurja L, 2011, LECT NOTES ARTIF INT, V7094, P415, DOI 10.1007/978-3-642-25324-9\_36. Aly S, 2017, 2017011617 SAE. Amato C, 2014, INT C AUT AG MULT SY, P331. {[}Anonymous], 2009, Process Automation Instrumentation, V30, P11. {[}Anonymous], 2013, IJCAI 2013. {[}Anonymous], 2012, CAN FLEX DAT RAT SPE. {*}ANSI IEEE, 1999, 80211 ANSIIEEE. Arulampalam MS, 2002, IEEE T SIGNAL PROCES, V50, P174, DOI 10.1109/78.978374. Bacha A, 2008, J FIELD ROBOT, V25, P467, DOI 10.1002/rob.20248. Barabba V, 2002, INTERFACES, V32, P20, DOI 10.1287/inte.32.1.20.18. Benet G, 2002, ROBOT AUTON SYST, V40, P255, DOI 10.1016/S0921-8890(02)00271-3. Bertozzi M, 2000, ROBOT AUTON SYST, V32, P1, DOI 10.1016/S0921-8890(99)00125-6. Bertozzi M., 1998, TECNICHE INTELLIGENZ, P35. Betaille D, 2010, IEEE T INTELL TRANSP, V11, P786, DOI 10.1109/TITS.2010.2050689. Bila C, 2017, IEEE T INTELL TRANSP, V18, P1046, DOI 10.1109/TITS.2016.2600300. Billah M, 2017, 2017 IEEE INT VEH S. Bohren J, 2009, SPRINGER TRAC ADV RO, V56, P231. Bojarski Mariusz, 2016, arXiv. Bojarski M., 2017, EXPLAINING DEEP NEUR. Brechtel S, 2014, 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P392, DOI 10.1109/ITSC.2014.6957722. Broggi A, 2000, REAL-TIME IMAGING, V6, P313, DOI 10.1006/rtim.1999.0191. Brown N., 2006, J GLOBAL POSITIONING, V5, P135, DOI DOI 10.5081/JGPS.5.1.135. Brscic D, 2013, IEEE T HUM-MACH SYST, V43, P522, DOI 10.1109/THMS.2013.2283945. Buehler M, 2010, TRACTS ADV ROBOTICS. Campbell M, 2010, PHILOS T R SOC A, V368, P4649, DOI 10.1098/rsta.2010.0110. Cetin AE, 2009, IEEE ASME INT C ADV, P636, DOI 10.1109/AIM.2009.5229939. Chae HC, 2018, INFORM MANAGE-AMSTER, V55, P525, DOI 10.1016/j.im.2017.10.001. Chen CY, 2015, IEEE I CONF COMP VIS, P2722, DOI 10.1109/ICCV.2015.312. Chen M, 2005, ITCC 2005: International Conference on Information Technology: Coding and Computing, Vol 2, P129. Chen YL, 2008, J FIELD ROBOT, V25, P841, DOI 10.1002/rob.20267. Chen Z., 2003, STATISTICS-ABINGDON, V182, P1. Chevitarese DS, 2016, IEEE INT SYM MULTIM, P667, DOI {[}10.1109/ISM.2016.111, 10.1109/ISM.2016.0142]. COHEN MD, 1994, ORGAN SCI, V5, P554, DOI 10.1287/orsc.5.4.554. Cordts M, 2016, PROC CVPR IEEE, P3213, DOI 10.1109/CVPR.2016.350. Crane C D, 2007, SPRINGER TRACTS ADV, P1. Cremean L B, 2007, SPRINGER TRACTS ADV, V36, P777. Dagan E, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P37. Dan N V, 2007, 2006 SICE ICASE INT, P6023. de Charette R, 2009, IEEE INT VEH SYM, P358, DOI 10.1109/IVS.2009.5164304. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848. Deng L, 2014, APSIPA TRANS SIGNAL, V3, DOI 10.1017/atsip.2013.9. DhilipKumar V, 2013, INT C 3D IM IC3D LIE, P1. Dieter Dickmanns E., 1988, Machine Vision and Applications, V1, P223, DOI 10.1007/BF01212361. Dolgov D, 2010, INT J ROBOT RES, V29, P485, DOI 10.1177/0278364909359210. Dong YC, 2011, IEEE T INTELL TRANSP, V12, P596, DOI 10.1109/TITS.2010.2092770. Du N, 2007, PROCEEDINGS OF THE IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, P100, DOI 10.1109/WI.2007.36. Eichenbaum H, 2000, NAT REV NEUROSCI, V1, P41, DOI 10.1038/35036213. Eilers M, 2011, INT C APPL HUM FACT, P436. Eilers M, 2013, TRANSPORT RES F-TRAF, V21, P295, DOI 10.1016/j.trf.2013.09.021. Emerson E. A., 1990, HDB THEORETICAL CO B, V995, P1072. Engelmann B, 2010, 11 MOST INT C SEOUL, P1. Eskandarian A, 2012, HANDBOOK OF INTELLIGENT VEHICLES, VOLS 1 AND 2, P1, DOI 10.1007/978-0-85729-085-4\_1. Ess A, 2008, PROC CVPR IEEE, P1857. Everingham M, 2015, INT J COMPUT VISION, V111, P98, DOI 10.1007/s11263-014-0733-5. Fahimi F, 2013, VEHICLE SYST DYN, V51, P360, DOI 10.1080/00423114.2012.743668. Ferguson D, 2008, J FIELD ROBOT, V25, P939, DOI 10.1002/rob.20265. FlexRay Consortium, 2010, FLEXRAY COMM SYST PR. Forbes J., 1995, IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, P1878. Fraichard T, 2004, IEEE T ROBOTIC AUTOM, V20, P1025, DOI 10.1109/TRO.2004.833789. Friedman N, 1997, MACH LEARN, V29, P131, DOI 10.1023/A:1007465528199. Gan H, 2004, AUTOMOB TECHNOL, V11, P9. Geiger A., 2012, C COMP VIS PATT REC. Geiger A, 2012, IEEE T INTELL TRANSP, V13, P1008, DOI 10.1109/TITS.2012.2189882. Ghods A, 2016, IEEE INT VEH SYM, P5, DOI 10.1109/IVS.2016.7535355. Gohring D, ADV INTELLIGENT SYST, V12, P393. Gonzalez D, 2016, IEEE T INTELL TRANSP, V17, P1135, DOI 10.1109/TITS.2015.2498841. Griffin G, 2007, CALTECH 256 OBJECT C. GRIMES DM, 1974, P IEEE, V62, P804, DOI 10.1109/PROC.1974.9520. Grisleri P., 2010, IFAC P, V43, P497, DOI DOI 10.3182/20100906-3-IT-2019.00086. Grzemba Ing Andreas, 2011, MOST AUTOMOTIVE MULT. Guan HY, 2014, ISPRS J PHOTOGRAMM, V87, P93, DOI 10.1016/j.isprsjprs.2013.11.005. Guettier C, 2016, LECT N MOBIL, P57, DOI 10.1007/978-3-319-19818-7\_7. Gwon GP, 2017, IEEE T VEH TECHNOL, V66, P4517, DOI 10.1109/TVT.2016.2535210. Haas W., 2016, P 16 INT STUTTG S, P1619. Hamlet A J, 2015, ARXIV150400060. Han S, 2016, 35 CHIN CONTR C CHEN. Hank P., 2012, ADV MICROSYSTEMS AUT, P79, DOI DOI 10.1007/978-3-642-29673-4\_8. Hartwich F, 2012, P ICC, P1. {[}何磊 He Lei], 2015, {[}汽车工程, Automotive Engineering], V37, P327. He L, 2013, ADV MATER RES-SWITZ, V694-697, P2738, DOI 10.4028/www.scientific.net/AMR.694-697.2738. Himmelsbach M, 2010, IEEE INT VEH SYM, P560, DOI 10.1109/IVS.2010.5548059. Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527. Hirano Y, 2012, PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), P2335, DOI 10.1109/WCICA.2012.6358264. Hodge K E, 1996, NASACP3256 DRYD FLIG, V1. Hofmann U, 2012, 2012 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), P150, DOI 10.1109/OMEMS.2012.6318847. Hoskins S R, 2012, USA Patent, Patent No. {[}US8164327, 8164327]. Hwang S, 2016, INT CONF UBIQ ROBOT, P234, DOI 10.1109/URAI.2016.7625744. Isele D, 2018, ARXIV170501196. Janbakhsh AA, 2013, P I MECH ENG D-J AUT, V227, P345, DOI 10.1177/0954407012453240. Jin X U, 2014, AUTO ELECT PARTS, V6, P14. Jo K, 2014, IEEE T INTELL TRANSP, V15, P925, DOI 10.1109/TITS.2013.2291395. Johnson DG, 2008, IEEE RAD CONF, P957. Joshi A, 2015, IEEE INTEL TRANSP SY, V7, P19, DOI 10.1109/MITS.2014.2364081. Jouppi NP, 2017, 44TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2017), P1, DOI 10.1145/3079856.3080246. Jung IK, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P946. Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301. Kalman RE., 1960, J BASIC ENG-T ASME, V82, P35, DOI 10.1115/1.3662552. Kammel S, 2009, SPRINGER TRAC ADV RO, V56, P359. Kang J., 2008, IFAC PROC VOL, V41, P2093, DOI {[}10.3182/20080706-5-KR-1001.00355, DOI 10.3182/20080706-5-KR-1001.00355]. Kato S, 2015, IEEE MICRO, V35, P60, DOI 10.1109/MM.2015.133. Katrakazas C, 2015, TRANSPORT RES C-EMER, V60, P416, DOI 10.1016/j.trc.2015.09.011. Kesting A, 2008, TRANSPORT RES C-EMER, V16, P668, DOI 10.1016/j.trc.2007.12.004. Khodayari Alireza, 2010, 2010 2nd International Conference on Mechanical and Electrical Technology (ICMET), P421, DOI 10.1109/ICMET.2010.5598396. Kim SW, 2015, IEEE T INTELL TRANSP, V16, P663, DOI 10.1109/TITS.2014.2337316. Kisacanin B, 2017, INT SYM MVL, P142, DOI 10.1109/ISMVL.2017.49. Klette R, 2011, IEEE T VEH TECHNOL, V60, P2012, DOI 10.1109/TVT.2011.2148134. Kloetzer M, 2008, IEEE T AUTOMAT CONTR, V53, P287, DOI 10.1109/TAC.2007.914952. Koenig S, 1998, ARTIFICIAL INTELLIGENCE AND MOBILE ROBOTS, P91. Kogan D., 2006, C DEC CONTR CDC 06, P6. Koutnik J, 2014, LECT NOTES ARTIF INT, V8575, P260, DOI 10.1007/978-3-319-08864-8\_25. Krizhevsky A., 2012, ADV NEURAL INFORM PR, P1097, DOI {[}DOI 10.1145/3065386, 10.1145/3065386]. Rethinagiri SK, 2014, IEEE SYM EMBED SYST, P118, DOI 10.1109/ESTIMedia.2014.6962352. Kurzweil R., 1990, AGE INTELLIGENT MACH. Kuwata Y, 2008, 2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, P1681, DOI 10.1109/IROS.2008.4651075. Landau H., 2002, J GLOB POSITION SYST, V1, P137, DOI {[}DOI 10.5081/JGPS.1.2.137, 10.5081/jgps.1.2.137]. Lavalle S.M., 1998, RES REPORT. Lee JH, 2006, 2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, P2936, DOI 10.1109/IROS.2006.282147. Lefevre S., 2014, ROBOMECH J, V1, P1, DOI 10.1186/s40648-014-0001-z. Leighty R D, 1986, ETLR085. Leitner A, 2017, AUTOMATED DRIVING: SAFER AND MORE EFFICIENT FUTURE DRIVING, P353, DOI 10.1007/978-3-319-31895-0\_14. Leonard J, 2008, J FIELD ROBOT, V25, P727, DOI 10.1002/rob.20262. Leung KYK, 2012, J INTELL ROBOT SYST, V66, P321, DOI 10.1007/s10846-011-9620-2. Levinson J., 2007, P ROB SCI SYST RSS. Levinson J, 2011, IEEE INT VEH SYM, P163, DOI 10.1109/IVS.2011.5940562. Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1\_48. Lindholm E, 2008, IEEE MICRO, V28, P39, DOI 10.1109/MM.2008.31. Liu B L, 2002, ACTA ARMAMENTARLL VO, V2, P61. Liu H, 2012, PRZ ELEKTROTECHNICZN, V88, P122. Liu J., 2014, P 17 INT C HYBRID SY, P293, DOI DOI 10.1145/2562059.2562137. Liu W, 2015, IEEE INT VEH SYM, P1126, DOI 10.1109/IVS.2015.7225835. Liu W, 2014, 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), P424, DOI 10.1109/ITSC.2014.6957727. Liu Weiqiang, 2017, IEEE T INTELL TRANSP, V99, P1. Lowrie J. W., 1985, Proceedings of the SPIE - The International Society for Optical Engineering, V579, P336, DOI 10.1117/12.950819. Luthardt S, INT VEH S 4 LOS ANG. Maddern W, 2017, INT J ROBOT RES, V36, P3, DOI 10.1177/0278364916679498. Marek J, 2003, SENSORS AUTOMOTIVE T. Matheus K, 2015, AUTOMOTIVE ETHERNET, P1. Maurer M., 1996, Proceedings of the 13th International Conference on Pattern Recognition, P313, DOI 10.1109/ICPR.1996.546962. McManamon PF, 2009, P IEEE, V97, P1078, DOI 10.1109/JPROC.2009.2017218. McNaughton Matthew, 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P4889, DOI 10.1109/ICRA.2011.5980223. Merrill G P, 1924, 1 100 YEARS AM GEOLO. Misener JA, 2011, COMPUT NETW, V55, P3120, DOI 10.1016/j.comnet.2011.04.003. Mitchell T M, 1997, MACH LEARN, P870. Mobus C, 2009, LECT NOTES COMPUT SC, V5620, P413, DOI 10.1007/978-3-642-02809-0\_44. Montemerlo M, 2006, P AAAI NAT C ART INT, P982. Montemerlo M, 2008, J FIELD ROBOT, V25, P569, DOI 10.1002/rob.20258. Moravec H, 1989, SENSOR DEVICES AND S, P61, DOI DOI 10.1007/978-3-642-74567-6\_19. Nalpantidis L, 2008, INT J OPTOMECHATRONI, V2, P435, DOI 10.1080/15599610802438680. Noh S, 2018, IEEE T INTELL TRANSP, V19, P58, DOI 10.1109/TITS.2017.2691346. Noyer U, 2008, IEEE INT VEH SYM, P411. Obst M, 2014, IEEE VEHIC NETW CONF, DOI 10.1109/VNC.2014.7013333. Ontanon S, 2013, LECT NOTES COMPUT SC, V8109, P373, DOI 10.1007/978-3-642-40643-0\_38. Pacejka HB, 2012, TIRE AND VEHICLE DYNAMICS, 3RD EDITION, P1. Park J, 2011, IEEE I CONF COMP VIS, P1623, DOI 10.1109/ICCV.2011.6126423. Park KY, 2014, SCI WORLD J, DOI 10.1155/2014/923632. Pathak K, 2010, J FIELD ROBOT, V27, P52, DOI 10.1002/rob.20322. Patsakis Constantinos, 2012, Proceedings of the 7th International Conference on Security and Cryptography. SECRYPT 2012, P221. Patsakis C, 2014, COMPUT SECUR, V40, P60, DOI 10.1016/j.cose.2013.11.003. Pei X, 2016, 23 INT C MECH MACH V, P1. Perumal D G, 2014, P 2 INT C EM RES COM, P243. Petrov P, 2014, IEEE T INTELL TRANSP, V15, P1643, DOI 10.1109/TITS.2014.2303995. Pisu P, 2006, J DYN SYST-T ASME, V128, P428, DOI 10.1115/1.2199859. Rastelli JP, 2014, IEEE INT VEH SYM, P510, DOI 10.1109/IVS.2014.6856526. REEDS JA, 1990, PAC J MATH, V145, P367, DOI 10.2140/pjm.1990.145.367. Risack R, 2000, P IEEE INT VEH S DEA. Rohani M, 2015, IEEE INTEL TRANSP SY, V7, P85, DOI 10.1109/MITS.2015.2408171. ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. S. O.-R. A. V. S. Committee, 2014, SAE STANDARD J, V3016, P1. Sadigh D, 2014, IEEE DECIS CONTR P, P1091, DOI 10.1109/CDC.2014.7039527. Sagstetter F, 2013, DES AUT TEST EUROPE, P458. SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206. SANTANA E., 2016, ARXIV160801230. Sawant N R, 2010, THESIS. Schwarz B., 2010, NATURE PHOTONICS, V4, P429, DOI {[}10.1038/nphoton.2010.148, 10.1038/nphoton.2010.14]. Seong-Woo Kim, 2015, IEEE Intelligent Transportation Systems Magazine, V7, P39, DOI 10.1109/MITS.2015.2409883. Shapiro D, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P415, DOI 10.1145/2939672.2945360. Shenjiang L D W, 2010, FOREIGN ELECT MEAS T, P60. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. Sivaraman S, 2013, IEEE T INTELL TRANSP, V14, P1773, DOI 10.1109/TITS.2013.2266661. Smith S, 2016, J INTELL TRANSPORT S, V20, P66, DOI 10.1080/15472450.2014.889941. Song SY, 2014, PROC CVPR IEEE, P1566, DOI 10.1109/CVPR.2014.203. Song Y, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17010011. Souissi O, 2013, PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), P849. Stahlmann R., 2011, P 18 ITS WORLD C EXH, P1. Stjarne K, 2014, THESIS. Sugimoto S, 2004, INT C PATT RECOG, P342, DOI 10.1109/ICPR.2004.1334537. Sutton R.S., 2005, REINFORCEMENT LEARNI. Takagi K, 2006, 2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P124. Tawari A, 2014, IEEE INT VEH SYM, P115, DOI 10.1109/IVS.2014.6856600. Thrun S, 2006, J FIELD ROBOT, V23, P661, DOI 10.1002/rob.20147. Thurston D.L., 1991, RES ENG DES, V3, P105, DOI DOI 10.1007/BF01581343. Tianyu Gu, 2012, Intelligent Robotics and Applications. Proceedings of the 5th International Conference, ICIRA 2012, P588, DOI 10.1007/978-3-642-33503-7\_57. Tippetts B, 2016, J REAL-TIME IMAGE PR, V11, P5, DOI 10.1007/s11554-012-0313-2. Toulminet G, 2008, PROCEEDINGS OF THE 11TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, P809, DOI 10.1109/ITSC.2008.4732652. Traub M, 2017, IEEE SOFTWARE, V34, P27, DOI 10.1109/MS.2017.69. TSUGAWA S, 1994, IEEE T IND ELECTRON, V41, P398, DOI 10.1109/41.303790. TURK MA, 1988, IEEE T PATTERN ANAL, V10, P342, DOI 10.1109/34.3899. Ulrich L, 2014, IEEE SPECTRUM, V51, P38, DOI 10.1109/MSPEC.2014.6776304. Urmson C, 2008, J FIELD ROBOT, V25, P425, DOI 10.1002/rob.20255. Urmson C, 2006, J FIELD ROBOT, V23, P467, DOI 10.1002/rob.20126. van Nunen E, 2016, INT TRANSP SYST WORL, P306. Vanholme B, 2013, IEEE T INTELL TRANSP, V14, P333, DOI 10.1109/TITS.2012.2225104. VARAIYA P, 1993, IEEE T AUTOMAT CONTR, V38, P195, DOI 10.1109/9.250509. Veres SM, 2011, P I MECH ENG I-J SYS, V225, P155, DOI 10.1177/2041304110394727. Vu A, 2012, IEEE T INTELL TRANSP, V13, P899, DOI 10.1109/TITS.2012.2187641. Wang J., 2016, ARXIV161200147. Wanninger L, 1995, PROCEEDINGS OF ION GPS-95 - THE 8TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION, PTS 1 AND 2, P55. Wei JQ, 2014, IEEE INT VEH SYM, P458, DOI 10.1109/IVS.2014.6856582. Weiss C, 2011, COMPUT NETW, V55, P3103, DOI 10.1016/j.comnet.2011.03.016. Weng JY, 2001, SCIENCE, V291, P599, DOI 10.1126/science.291.5504.599. Wilwert C, 2003, ETFA 2003: IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOL 1, PROCEEDINGS, P193. Wolcott RW, 2014, IEEE INT C INT ROBOT, P176, DOI 10.1109/IROS.2014.6942558. Wongpiromsarn T, 2010, THESIS. Wubbena G, 1998, S GEOD GEOT STRUCT E, P139. Xia W, 2016, INT SYM COMPUT INTEL, P198, DOI {[}10.1109/ISCID.2016.2054, 10.1109/ISCID.2016.159]. Xiong L, 2016, INT J AUTO TECH-KOR, V17, P651, DOI 10.1007/s12239-016-0064-3. Xu HZ, 2017, PROC CVPR IEEE, P3530, DOI 10.1109/CVPR.2017.376. Xu YQ, 2017, IEEE INT VEH SYM, P487, DOI 10.1109/IVS.2017.7995765. Yang DG, 2016, CHIN J MECH ENG-EN, V29, P781, DOI 10.3901/CJME.2016.0401.044. Yang S, 2017, IEEE INT VEH SYM, P1033, DOI 10.1109/IVS.2017.7995850. Ye LC, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17030521. Yin G.D., 2016, J CHONGQING U TECHNO, V30, P13. Yoo BW, 2013, OPT EXPRESS, V21, P12238, DOI 10.1364/OE.21.012238. Yu J Q, 2007, MICROCOMP INF, P266. Yu X, 2011, MICROCOMPUTE ITS APP, V30, P47. Zeeb E, 2001, ECOC'01: 27TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, VOLS 1-6, P70, DOI 10.1109/ECOC.2001.989436. Zeng W, 2009, INT J GEOGR INF SCI, V23, P531, DOI 10.1080/13658810801949850. Zeng W, 2017, IEEE COMMUNICATIONS, P1552. Zhang J., 2014, ROBOT SCI SYST, V2. Zhang Jiakai, 2016, ARXIV160506450. Zhang ZT, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16060848. Zhong YX, 2018, SAE INT J PASSENG CA, V11, P46, DOI 10.4271/07-11-01-0005. Ziegler J, 2014, IEEE INTEL TRANSP SY, V6, P8, DOI 10.1109/MITS.2014.2306552.}, Number-of-Cited-References = {237}, Times-Cited = {66}, Usage-Count-Last-180-days = {30}, Usage-Count-Since-2013 = {262}, Journal-ISO = {Sci. China-Technol. Sci.}, Doc-Delivery-Number = {GV9YL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000446517900002}, DA = {2023-04-22}, } @article{ WOS:000925162900002, Author = {Kocak, Burak and Cuocolo, Renato and dos Santos, Daniel Pinto and Stanzione, Arnaldo and Ugga, Lorenzo}, Title = {Must-have Qualities of Clinical Research on Artificial Intelligence and Machine Learning}, Journal = {BALKAN MEDICAL JOURNAL}, Year = {2023}, Volume = {40}, Number = {1}, Pages = {3-12}, Month = {JAN}, Abstract = {In the field of computer science, known as artificial intelligence, algorithms imitate reasoning tasks that are typically performed by humans. The techniques that allow machines to learn and get better at tasks such as recognition and prediction, which form the basis of clinical practice, are referred to as machine learning, which is a subfield of artificial intelligence. The number of artificial intelligence -and machine learnings-related publications in clinical journals has grown exponentially, driven by recent developments in computation and the accessibility of simple tools. However, clinicians are often not included in data science teams, which may limit the clinical relevance, explanability, workflow compatibility, and quality improvement of artificial intelligence solutions. Thus, this results in the language barrier between clinicians and artificial intelligence developers. Healthcare practitioners sometimes lack a basic understanding of artificial intelligence research because the approach is difficult for non-specialists to understand. Furthermore, many editors and reviewers of medical publications might not be familiar with the fundamental ideas behind these technologies, which may prevent journals from publishing high-quality artificial intelligence studies or, worse still, could allow for the publication of low-quality works. In this review, we aim to improve readers' artificial intelligence literacy and critical thinking. As a result, we concentrated on what we consider the 10 most important qualities of artificial intelligence research: valid scientific purpose, high-quality data set, robust reference standard, robust input, no information leakage, optimal bias-variance tradeoff, proper model evaluation, proven clinical utility, transparent reporting, and open science. Before designing a study, one should have defined a sound scientific purpose. Then, it should be backed by a high-quality data set, robust input, and a solid reference standard. The artificial intelligence development pipeline should prevent information leakage. For the models, optimal bias-variance tradeoff should be achieved, and generalizability assessment must be adequately performed. The clinical value of the final models must also be established. After the study, thought should be given to transparency in publishing the process and results as well as open science for sharing data, code, and models. We hope this work may improve the artificial intelligence literacy and mindset of the readers.}, Publisher = {GALENOS PUBL HOUSE}, Address = {Kacamak Sokak 21/1, ISTANBUL, Findikzade, TURKEY}, Type = {Review}, Language = {English}, Affiliation = {Kocak, B (Corresponding Author), Univ Hlth Sci Turkey, Basaksehir Cam \& Sakura City Hosp, Clin Radiol, Istanbul, Turkiye. Kocak, Burak, Univ Hlth Sci Turkey, Basaksehir Cam \& Sakura City Hosp, Clin Radiol, Istanbul, Turkiye. Cuocolo, Renato, Univ Salerno, Dept Med Surg \& Dent, Baronissi, Italy. dos Santos, Daniel Pinto, Univ Hosp Cologne, Dept Radiol, Cologne, Germany. dos Santos, Daniel Pinto, Univ Hosp Frankfurt, Dept Radiol, Frankfurt, Germany. Stanzione, Arnaldo; Ugga, Lorenzo, Univ Naples Federico II, Dept Adv Biomed Sci, Naples, Italy.}, DOI = {10.4274/balkanmedj.galenos.2022.2022-11-51}, ISSN = {2146-3123}, EISSN = {2146-3131}, Keywords-Plus = {CT TEXTURE ANALYSIS; RADIOMICS; AI; STANDARDIZATION; VARIABILITY; MEDICINE; FEATURES; QUESTION; PATIENT; SYSTEM}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {drburakkocak@gmail.com}, Affiliations = {University of Salerno; University of Cologne; Goethe University Frankfurt; Goethe University Frankfurt Hospital; University of Naples Federico II}, ResearcherID-Numbers = {Cuocolo, Renato/G-3147-2018 Kocak, Burak/A-4749-2012}, ORCID-Numbers = {Cuocolo, Renato/0000-0002-1452-1574 Kocak, Burak/0000-0002-7307-396X}, Cited-References = {Al-Zaiti Salah S, 2022, Eur Heart J Digit Health, V3, P125, DOI 10.1093/ehjdh/ztac016. Allen R, 2020, ERA FORUM, P20. An C, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0256152. {[}Anonymous], 2020, NAT CANCER, V1, P1025, DOI 10.1038/s43018-020-00151-y. {[}Anonymous], 2022, REGULATORY DIVERGENC. {[}Anonymous], 2009, ELEMENTS STAT LEARNI. Aristidou A, 2022, LANCET, V399, P620, DOI 10.1016/S0140-6736(22)00235-5. Bai HX, 2020, RADIOLOGY, V296, pE156, DOI 10.1148/radiol.2020201491. Belkin M, 2019, P NATL ACAD SCI USA, V116, P15849, DOI 10.1073/pnas.1903070116. Bluemke DA, 2020, RADIOLOGY, V294, P487, DOI 10.1148/radiol.2019192515. Cascini F, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.949377. Chilamkurthy S, 2018, LANCET, V392, P2388, DOI 10.1016/S0140-6736(18)31645-3. Choy G, 2018, RADIOLOGY, V288, P318, DOI 10.1148/radiol.2018171820. Clark K, 2013, J DIGIT IMAGING, V26, P1045, DOI 10.1007/s10278-013-9622-7. Cuocolo R, 2021, EUR J RADIOL, V138, DOI 10.1016/j.ejrad.2021.109647. D'souza RN, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-57866-2. Deng JW, 2022, FRONT SURG, V9, DOI 10.3389/fsurg.2022.891984. Dinsdale NK, 2021, NEUROIMAGE, V228, DOI 10.1016/j.neuroimage.2020.117689. Duron L, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0213459. Elmore JG, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.19345. Extance A, 2018, NATURE, V561, P273, DOI 10.1038/d41586-018-06617-5. Fandino W, 2019, INDIAN J ANAESTH, V63, P611, DOI 10.4103/ija.IJA\_198\_19. Fang YT, 2021, PHYS MED BIOL, V66, DOI 10.1088/1361-6560/ac2206. Fedorov A, 2021, CANCER RES, V81, P4188, DOI 10.1158/0008-5472.CAN-21-0950. Fetty L, 2020, Z MED PHYS, V30, P305, DOI 10.1016/j.zemedi.2020.05.001. Fortin JP, 2017, NEUROIMAGE, V161, P149, DOI 10.1016/j.neuroimage.2017.08.047. GEMAN S, 1992, NEURAL COMPUT, V4, P1, DOI 10.1162/neco.1992.4.1.1. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Grossman RL, 2016, NEW ENGL J MED, V375, P1109, DOI 10.1056/NEJMp1607591. Haga A, 2019, J MED INVESTIG, V66, P35, DOI 10.2152/jmi.66.35. Handelman GS, 2019, AM J ROENTGENOL, V212, P38, DOI 10.2214/AJR.18.20224. Harrer S, 2019, TRENDS PHARMACOL SCI, V40, P577, DOI 10.1016/j.tips.2019.05.005. Helman S, 2022, INT J MED INFORM, V159, DOI 10.1016/j.ijmedinf.2021.104643. Hendrix N, 2022, VALUE HEALTH, V25, P331, DOI 10.1016/j.jval.2021.08.015. Hirano H, 2021, BMC MED IMAGING, V21, DOI 10.1186/s12880-020-00530-y. Hu GJ, 2023, J COMPUT ASSIST TOMO, V47, P129, DOI 10.1097/RCT.0000000000001386. Hullman J., 2022, P 2022 AAAIACM C ETH, P335, DOI 10.1145/3514094.3534196. Hutson M, 2022, NATURE, V611, P192, DOI 10.1038/d41586-022-03479-w. Jamthikar AD, 2021, INT J CARDIOVAS IMAG, V37, P1171, DOI 10.1007/s10554-020-02099-7. Jin K, 2022, SCI DATA, V9, DOI 10.1038/s41597-022-01564-3. Johri AM, 2022, COMPUT BIOL MED, V150, DOI 10.1016/j.compbiomed.2022.106018. KAHN CR, 1994, NEW ENGL J MED, V330, P1530, DOI 10.1056/NEJM199405263302113. Karekar Sonali Rajiv, 2021, Perspect Clin Res, V12, P48, DOI 10.4103/picr.PICR\_25\_20. Kocak B, 2019, AM J ROENTGENOL, V213, P377, DOI 10.2214/AJR.19.21212. Kocak B, 2019, EUR RADIOL, V29, P4765, DOI 10.1007/s00330-019-6003-8. Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141. Lee H, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-51779-5. Lee S, 2022, RADIOL ARTIF INTELL, V4. Lever J, 2016, NAT METHODS, V13, P703, DOI 10.1038/nmeth.3968. Lewandowsky S, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14203-0. Li TH, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.984750. Ma XJ, 2021, PATTERN RECOGN, V110, DOI 10.1016/j.patcog.2020.107332. Mackin D, 2015, INVEST RADIOL, V50, P757, DOI 10.1097/RLI.0000000000000180. Mali SA, 2021, J PERS MED, V11, DOI 10.3390/jpm11090842. Mascalzoni D, 2019, ANN INTERN MED, V170, P332, DOI 10.7326/M18-2854. Masson I, 2021, MED PHYS, V48, P4099, DOI 10.1002/mp.14948. McKinney SM, 2020, NATURE, V577, P89, DOI 10.1038/s41586-019-1799-6. Meyer M, 2019, RADIOLOGY, V293, P583, DOI 10.1148/radiol.2019190928. Miller DD, 2018, AM J MED, V131, P129, DOI 10.1016/j.amjmed.2017.10.035. Modanwal G, 2020, PROC SPIE, V11314, DOI 10.1117/12.2551301. Mongan J, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020200029. Mottaghy FM, 2021, METHODS, V188, P1, DOI 10.1016/j.ymeth.2021.02.011. Murdoch TB, 2013, JAMA-J AM MED ASSOC, V309, P1351, DOI 10.1001/jama.2013.393. Nakaura T, 2020, DIAGN INTERV IMAG, V101, P765, DOI 10.1016/j.diii.2020.10.001. Nuzzo R, 2015, NATURE, V526, P182, DOI 10.1038/526182a. Oakden-Rayner L., 2018, CHEXNET IN DEPTH REV. Oakden-Rayner L., 2017, EXPLORING CHESTXRAY1. Oakden-Rayner L, 2020, ACAD RADIOL, V27, P106, DOI 10.1016/j.acra.2019.10.006. Panch T, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0155-4. Pandiyan S, 2022, COMPUT BIOL MED, V150, DOI 10.1016/j.compbiomed.2022.106140. Papernot N, 2016, P IEEE S SECUR PRIV, P582, DOI 10.1109/SP.2016.41. Parliament E, 2022, EUROPEAN PARLIAMENT, DOI {[}10.2861/568473, DOI 10.2861/568473]. Parmar C, 2018, CLIN CANCER RES, V24, P3492, DOI 10.1158/1078-0432.CCR-18-0385. Penzkofer T, 2021, EUR RADIOL, V31, P9567, DOI 10.1007/s00330-021-08021-6. Pickhardt PJ, 2022, RADIOL ARTIF INTELL, V4. Pineau J, 2021, J MACH LEARN RES, V22. dos Santos DP, 2021, EUR RADIOL, V31, P1, DOI 10.1007/s00330-020-07108-w. Plana D, 2022, JAMA NETW OPEN, V5, DOI 10.1001/jamanetworkopen.2022.33946. Plesser HE, 2018, FRONT NEUROINFORM, V11, DOI 10.3389/fninf.2017.00076. Rajpurkar P, 2022, NAT MED, V28, P31, DOI 10.1038/s41591-021-01614-0. Research C for DE, 2020, CLIN TRIAL IM ENDP P. Roberts N, 2017, WERE YOU CONCERNED N. Rodriguez D, 2022, BMC MED INFORM DECIS, V22, DOI 10.1186/s12911-022-01891-w. Romeo V, 2018, J MAGN RESON IMAGING, V48, P198, DOI 10.1002/jmri.25954. Sachs PB, 2017, J DIGIT IMAGING, V30, P11, DOI 10.1007/s10278-016-9895-8. Sanford TH, 2020, AM J ROENTGENOL, V215, P1403, DOI 10.2214/AJR.19.22347. Scott I, 2021, BMJ HEALTH CARE INFO, V28, DOI 10.1136/bmjhci-2020-100251. Secinaro S, 2021, BMC MED INFORM DECIS, V21, DOI 10.1186/s12911-021-01488-9. Sengupta PP, 2020, JACC-CARDIOVASC IMAG, V13, P2017, DOI 10.1016/j.jcmg.2020.07.015. Shafiq-ul-Hassan M, 2017, MED PHYS, V44, P1050, DOI 10.1002/mp.12123. Sim Y, 2020, RADIOLOGY, V294, P199, DOI 10.1148/radiol.2019182465. Smith JA, 2022, PLOS BIOL, V20, DOI 10.1371/journal.pbio.3001600. Spadarella G, 2023, EUR RADIOL, V33, P1884, DOI 10.1007/s00330-022-09187-3. Stanzione A, 2022, CANCERS, V14, DOI 10.3390/cancers14194871. Staunton C, 2021, HIST PHIL LIFE SCI, V43, DOI 10.1007/s40656-021-00468-6. Sunoqrot MRS, 2022, EUR RADIOL EXP, V6, DOI 10.1186/s41747-022-00288-8. Tan TE, 2020, CURR OPIN OPHTHALMOL, V31, P351, DOI 10.1097/ICU.0000000000000695. Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7. van de Sande D, 2022, BMJ HEALTH CARE INFO, V29, DOI 10.1136/bmjhci-2021-100495. van Leeuwen KG, 2021, EUR RADIOL, V31, P3797, DOI 10.1007/s00330-021-07892-z. van Timmeren JE, 2016, TOMOGRAPHY, V2, P361, DOI 10.18383/j.tom.2016.00208. Vandenbroucke JP, 2018, CLIN EPIDEMIOL, V10, P252, DOI 10.2147/CLEP.S142940. Vasey B, 2021, NAT MED, V27, P186, DOI 10.1038/s41591-021-01229-5. Vollmer S, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.l6927. Wang HR, 2022, EUR J RADIOL, V156, DOI 10.1016/j.ejrad.2022.110527. Wang XM, 2019, J PARALLEL DISTR COM, V130, P12, DOI 10.1016/j.jpdc.2019.03.003. Wang XS, 2017, PROC CVPR IEEE, P3462, DOI 10.1109/CVPR.2017.369. Weissler EH, 2021, TRIALS, V22, DOI 10.1186/s13063-021-05489-x. Wikipedia, LEAK MACH LEARN. Xu WL, 2018, 25TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2018), DOI 10.14722/ndss.2018.23198. Zaki G, 2020, CYTOM PART A, V97, P1248, DOI 10.1002/cyto.a.24257. Zhang Kuan, 2022, Radiol Artif Intell, V4, pe220010, DOI 10.1148/ryai.220010. Zhu FP, 2021, CNS NEUROSCI THER, V27, P92, DOI 10.1111/cns.13509. Zou J, 2021, EBIOMEDICINE, V67, DOI 10.1016/j.ebiom.2021.103358. Zwanenburg A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36938-4.}, Number-of-Cited-References = {115}, Times-Cited = {2}, Usage-Count-Last-180-days = {7}, Usage-Count-Since-2013 = {7}, Journal-ISO = {Balk. Med. J.}, Doc-Delivery-Number = {8N5BK}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000925162900002}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000596522700001, Author = {Wadoux, Alexandre M. J. -C. and Roman-Dobarco, Mercedes and McBratney, Alex B.}, Title = {Perspectives on data-driven soil research}, Journal = {EUROPEAN JOURNAL OF SOIL SCIENCE}, Year = {2021}, Volume = {72}, Number = {4}, Pages = {1675-1689}, Month = {JUL}, Abstract = {Soil is a complex system in which biological, chemical and physical interactions take place. The behaviour of these interactions changes in spatial scale from the atomic to the global, and in time. To understand how this system works, soil scientists usually rely on incremental improvements in the knowledge by refinement of theories through hypothesis testing and development using carefully designed experiments. In the last two decades, the primacy of this knowledge construction process has been challenged by the development of large soil databases and algorithms such as machine learning. The data-driven research approach to soil science, the inference of soil knowledge directly from data by using computational tools and modelling techniques, is becoming more popular. Despite the wide adoption of a data-driven research approach to soil science, there has been little discussion on how a research driven by data instead of hypotheses affects scientific progress. In this paper, we provide an introductory perspective on data-driven soil research by discussing some of the issues and opportunities of knowledge discovery from soil data. We show that while data-driven soil research may seem revolutionary for some, soil science has a long history of exploratory efforts to generate knowledge from data. Empirical and factual soil classifications, for example, were data driven. We further discuss, with examples, (i) data, databases and the logic of data storage for data-driven soil research, (ii) the issues of extreme empiricist claims that arise corollary to the increase in the use of computational tools, and (iii) the challenge of formulating a scientific explanation based on patterns observed in the data and data analysis tools. By considering the epistemic challenges of the data-driven scientific research in the light of the historical literature, we found that there is a continuity of practices, some being certainly amplified by recent technological changes, but that the core methods of scientific enquiry from data remain essentially unchanged. Highlights Historical account of data-driven soil science research. Describe data to be used for data-driven soil science. Discuss conceptual issues and opportunities for data-driven soil science. Investigate the challenge of formulating an explanation from soil data.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Wadoux, AMJC (Corresponding Author), Univ Sydney, Sydney Inst Agr, Sydney, NSW, Australia. Wadoux, AMJC (Corresponding Author), Univ Sydney, Sch Life \& Environm Sci, Sydney, NSW, Australia. Wadoux, Alexandre M. J. -C.; Roman-Dobarco, Mercedes; McBratney, Alex B., Univ Sydney, Sydney Inst Agr, Sydney, NSW, Australia. Wadoux, Alexandre M. J. -C.; Roman-Dobarco, Mercedes; McBratney, Alex B., Univ Sydney, Sch Life \& Environm Sci, Sydney, NSW, Australia.}, DOI = {10.1111/ejss.13071}, EarlyAccessDate = {DEC 2020}, ISSN = {1351-0754}, EISSN = {1365-2389}, Keywords = {data science; epistemology; knowledge discovery; machine learning; pedology; pedometrics; soil science}, Keywords-Plus = {ORGANIC-CARBON; SCIENCE; HISTORY; MODELS; CLASSIFICATION; INFORMATION; REGRESSION; PARADIGM; TRENDS; FIELD}, Research-Areas = {Agriculture}, Web-of-Science-Categories = {Soil Science}, Author-Email = {alexandre.wadoux@sydney.edu.au}, Affiliations = {University of Sydney; University of Sydney}, ResearcherID-Numbers = {Dobarco, Mercedes Román/N-7174-2014 Wadoux, Alexandre/ABB-8559-2020 }, ORCID-Numbers = {Dobarco, Mercedes Román/0000-0001-8078-8616 Wadoux, Alexandre/0000-0001-7325-9716 McBratney, Alex/0000-0003-0913-2643}, Cited-References = {Anderson Chris, 2008, WIRED MAGAZINE, V16. Angelini M. E., 2018, THESIS. Basher R, 1997, AUST J SOIL RES, V35, P979, DOI 10.1071/S96110. Batjes NH, 2020, EARTH SYST SCI DATA, V12, P299, DOI 10.5194/essd-12-299-2020. Behrens T, 2014, GEODERMA, V213, P578, DOI 10.1016/j.geoderma.2013.07.031. Beriro D. J., 2014, GEOCOMPUTATION, P188. Bone J, 2012, ENVIRON SCI TECHNOL, V46, P3687, DOI 10.1021/es203880p. Brase J, 2009, FOURTH INTERNATIONAL CONFERENCE ON COOPERATION AND PROMOTION OF INFORMATION RESOURCES IN SCIENCE AND TECHNOLOGY (COINFO 2009), P257, DOI 10.1109/COINFO.2009.66. Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726. Bui E, 2009, GLOBAL BIOGEOCHEM CY, V23, DOI 10.1029/2009GB003506. Bui EN, 2016, SCI TOTAL ENVIRON, V568, P587, DOI 10.1016/j.scitotenv.2016.01.202. Calude CS, 2017, FOUND SCI, V22, P595, DOI 10.1007/s10699-016-9489-4. CLINE MARLIN G., 1963, SOIL SCI, V96, P17, DOI 10.1097/00010694-196307000-00004. DIJKERMAN JC, 1974, GEODERMA, V11, P73, DOI 10.1016/0016-7061(74)90009-3. Dokuchaev VV, 1883, RUSSIAN CHERNOZEM RE. Domingos P., 2015, MASTER ALGORITHM QUE. DUCHAUFOUR P, 1963, J SOIL SCI, V14, P149, DOI 10.1111/j.1365-2389.1963.tb00940.x. Elragal Ahmed, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0079-2. Ettinger AK, 2019, ECOL LETT, V22, P748, DOI 10.1111/ele.13223. Ferreira C., 2001, Complex Systems, V13, P87. Furey J, 2019, GEODERMA, V334, P49, DOI 10.1016/j.geoderma.2018.07.050. Gauch H.G., 2003, SCI METHOD PRACTICE. GERASIMOV IP, 1984, SOV GEOGR, V25, P1. Gohau G., 1992, ASTER, V14, P9. Grunwald S, 2009, GEODERMA, V152, P195, DOI 10.1016/j.geoderma.2009.06.003. Haring T, 2012, GEODERMA, V185, P37, DOI 10.1016/j.geoderma.2012.04.001. Harden JW, 2018, GLOBAL CHANGE BIOL, V24, pe705, DOI 10.1111/gcb.13896. Hartemink Alfred E., 2015, Geoderma Regional, V5, P127, DOI 10.1016/j.geodrs.2015.05.002. Hartemink AE, 2001, GEODERMA, V100, P217, DOI 10.1016/S0016-7061(01)00024-6. Hempel CG, 1965, ASPECTS SCI EXPLANAT. Hengl T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105992. Heuvelink GBM, 2021, EUR J SOIL SCI, V72, P1607, DOI 10.1111/ejss.12998. Heuvelink GBM, 2007, DEV SOIL SCI, V31, P97. Hochachka WM, 2007, J WILDLIFE MANAGE, V71, P2427, DOI 10.2193/2006-503. HUDSON BD, 1992, SOIL SCI SOC AM J, V56, P836, DOI 10.2136/sssaj1992.03615995005600030027x. Hughes PA, 2014, GEODERMA, V226, P365, DOI 10.1016/j.geoderma.2014.03.010. ISBELL RF, 1992, AUST J SOIL RES, V30, P825, DOI 10.1071/SR9920825. Jenny H, 1934, SOIL SCI, V38, P363, DOI 10.1097/00010694-193411000-00004. Jenny H., 1941, FACTORS SOIL FORMATI, V52, P415, DOI 10.1097/00010694-194111000-00009. JOHNSTON AE, 1994, LONG-TERM EXPERIMENTS IN AGRICULTURAL AND ECOLOGICAL SCIENCES, P9. Jorda H, 2015, EUR J SOIL SCI, V66, P744, DOI 10.1111/ejss.12249. Kelling S, 2009, BIOSCIENCE, V59, P613, DOI 10.1525/bio.2009.59.7.12. Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481. Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8. Kornelsen KC, 2014, WATER RESOUR RES, V50, P2946, DOI 10.1002/2013WR014127. Krasilnikov P., 2010, P 19 WORLD C SOIL SC, P19. Krasilnikov Pavel, 2009, HDB SOIL TERMINOLOGY. Lark RM, 2001, SOIL TILL RES, V58, P99, DOI 10.1016/S0167-1987(00)00161-6. Leenaars J. G. B., 2013, TECH REP. Leonelli S, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714534395. Leonelli S, 2012, STUD HIST PHI PART C, V43, P29, DOI 10.1016/j.shpsc.2011.10.003. McBratney AB, 1997, GEODERMA, V77, P85, DOI 10.1016/S0016-7061(97)00017-7. McBratney AB, 2003, GEODERMA, V117, P3, DOI 10.1016/S0016-7061(03)00223-4. McCain K., 2016, NATURE SCI KNOWLEDGE. McDonald Peter, 1994, LIT SOIL SCI. Miller HJ, 2015, GEOJOURNAL, V80, P449, DOI 10.1007/s10708-014-9602-6. Miller HJ, 2010, J REGIONAL SCI, V50, P181, DOI 10.1111/j.1467-9787.2009.00641.x. Minasny B., 2013, PEDOMETRON, V33, P10. Moon D, 2005, T ROY HIST SOC, V15, P149, DOI 10.1017/S0080440105000320. Moore A. W., 1983, SOILS AUSTR VIEWPOIN. Morellos A, 2016, BIOSYST ENG, V152, P104, DOI 10.1016/j.biosystemseng.2016.04.018. Northcote KH, 1971, FACTUAL KEY RECOGNIT, V3rd. ORESKES N, 1994, SCIENCE, V263, P641, DOI 10.1126/science.263.5147.641. Padarian J, 2019, ENVIRON MODELL SOFTW, V122, DOI 10.1016/j.envsoft.2019.104548. Pennock DJ, 2004, CAN J SOIL SCI, V84, P1, DOI 10.4141/S03-039. PHILIP JR, 1991, SOIL SCI, V151, P91, DOI 10.1097/00010694-199101000-00011. Rasmussen C, 2018, BIOGEOCHEMISTRY, V137, P297, DOI 10.1007/s10533-018-0424-3. Rossiter DG, 2018, GEODERMA, V324, P131, DOI 10.1016/j.geoderma.2018.03.009. Rossiter DG, 2015, GEODERMA, V259, P71, DOI 10.1016/j.geoderma.2015.05.006. Roudier P, 2015, IOP C SER EARTH ENV, V25, DOI 10.1088/1755-1315/25/1/012023. Sepkoski D, 2018, HIST STUD NAT SCI, V48, P581, DOI 10.1525/hsns.2018.48.5.581. Sober E, 1990, EXPLANATION ITS LIMI, V27, P73, DOI DOI 10.1017/S1358246100005051. Strasser BJ, 2017, OSIRIS, V32, P328, DOI 10.1086/694223. Strasser BJ, 2012, OSIRIS, V27, P303, DOI 10.1086/667832. Strasser BJ, 2012, STUD HIST PHI PART C, V43, P85, DOI 10.1016/j.shpsc.2011.10.009. Vos C, 2019, EUR J SOIL SCI, V70, P550, DOI 10.1111/ejss.12787. Wadoux AMJC, 2020, EUR J SOIL SCI, V71, P133, DOI 10.1111/ejss.12909. Walter C, 2007, DEV SOIL SCI, V31, P281. Wang DS, 2019, J INTEGR AGR, V18, P328, DOI 10.1016/S2095-3119(18)62071-4. Warkentin B. P., 1994, The literature of soil science., P1. Webster R, 1997, EUR J SOIL SCI, V48, P557, DOI 10.1046/j.1365-2389.1997.00099.x. Webster R, 2000, GEODERMA, V97, P149, DOI 10.1016/S0016-7061(00)00036-7. YAALON DH, 1975, GEODERMA, V14, P189, DOI 10.1016/0016-7061(75)90001-4.}, Number-of-Cited-References = {83}, Times-Cited = {20}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {26}, Journal-ISO = {Eur. J. Soil Sci.}, Doc-Delivery-Number = {TC8EI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000596522700001}, DA = {2023-04-22}, } @article{ WOS:000535696600012, Author = {Tamiminia, Haifa and Salehi, Bahram and Mahdianpari, Masoud and Quackenbush, Lindi and Adeli, Sarina and Brisco, Brian}, Title = {Google Earth Engine for geo-big data applications: A meta-analysis and systematic review}, Journal = {ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING}, Year = {2020}, Volume = {164}, Pages = {152-170}, Month = {JUN}, Abstract = {Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google's computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the ``big picture{''} of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90\% of studies while 10\% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27\% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Mahdianpari, M (Corresponding Author), Mem Univ Newfoundland, C CORE, St John, NF A1B 3X5, Canada. Mahdianpari, M (Corresponding Author), Mem Univ Newfoundland, Dept Elect \& Comp Engn, St John, NF A1B 3X5, Canada. Tamiminia, Haifa; Salehi, Bahram; Quackenbush, Lindi; Adeli, Sarina, SUNY Coll Environm Sci \& Forestry ESF, Dept Environm Resources Engn, Syracuse, NY 13210 USA. Mahdianpari, Masoud, Mem Univ Newfoundland, C CORE, St John, NF A1B 3X5, Canada. Mahdianpari, Masoud, Mem Univ Newfoundland, Dept Elect \& Comp Engn, St John, NF A1B 3X5, Canada. Brisco, Brian, Canada Ctr Mapping \& Earth Observat, Ottawa, ON K1S 5K2, Canada.}, DOI = {10.1016/j.isprsjprs.2020.04.001}, ISSN = {0924-2716}, EISSN = {1872-8235}, Keywords = {Google Earth Engine; Geo-big data; Cloud-based platform; Remote sensing; Planetary-scale; Geospatial; Machine learning; Environmental monitoring}, Keywords-Plus = {LANDSAT TIME-SERIES; RANDOM FOREST; SAR DATA; SEMANTIC SEGMENTATION; CROPLAND EXTENT; NEURAL-NETWORKS; CLASSIFICATION; IMAGERY; SATELLITE; COVER}, Research-Areas = {Physical Geography; Geology; Remote Sensing; Imaging Science \& Photographic Technology}, Web-of-Science-Categories = {Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science \& Photographic Technology}, Author-Email = {m.mahdianpari@mun.ca}, Affiliations = {State University of New York (SUNY) System; State University of New York (SUNY) College of Environmental Science \& Forestry; Memorial University Newfoundland; Memorial University Newfoundland; Natural Resources Canada; Strategic Policy \& Results Sector - Natural Resources Canada; Canada Centre for Mapping \& Earth Observation (CCMEO)}, ResearcherID-Numbers = {Quackenbush, Lindi J./AAZ-4209-2021 Tamiminia, Haifa/GWC-1337-2022 Tamiminia, Haifa/ABI-3508-2020 }, ORCID-Numbers = {Salehi, Bahram/0000-0002-7742-5475 Mahdianpari, Masoud/0000-0002-7234-959X}, Cited-References = {Amazon, 2021, AMAZON WEB SERVICES. Belgiu M, 2016, ISPRS J PHOTOGRAMM, V114, P24, DOI 10.1016/j.isprsjprs.2016.01.011. BENEDIKTSSON JA, 1993, INT J REMOTE SENS, V14, P2883, DOI 10.1080/01431169308904316. BISCHOF H, 1992, IEEE T GEOSCI REMOTE, V30, P482, DOI 10.1109/36.142926. Bittencourt HR, 2003, INT GEOSCI REMOTE SE, P3751. Blanzieri E, 2008, IEEE T GEOSCI REMOTE, V46, P1804, DOI 10.1109/TGRS.2008.916090. Callaghan CT, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2347. Carrasco-Escobar G, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007105. Castelli G, 2019, SCI TOTAL ENVIRON, V690, P226, DOI 10.1016/j.scitotenv.2019.06.514. Chen BQ, 2017, ISPRS J PHOTOGRAMM, V131, P104, DOI 10.1016/j.isprsjprs.2017.07.011. Chen B, 2019, ISPRS J PHOTOGRAMM, V151, P176, DOI 10.1016/j.isprsjprs.2019.03.012. Chen F, 2017, IEEE J-STARS, V10, P4002, DOI 10.1109/JSTARS.2017.2705718. Cheng BW, 2005, 2005 2ND IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, P105. Chi MM, 2016, P IEEE, V104, P2207, DOI 10.1109/JPROC.2016.2598228. Choi H, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11101184. Chrysoulakis N, 2019, THEOR APPL CLIMATOL, V137, P1171, DOI 10.1007/s00704-018-2663-6. CLEMENT MA, 2018, J FLOOD RISK MANAG, V11, P152, DOI DOI 10.1111/JFR3.12303. de Oliveira S.S.T., 2016, GEOINFO, P128. DeLancey ER, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010002. Drusch M, 2012, REMOTE SENS ENVIRON, V120, P25, DOI 10.1016/j.rse.2011.11.026. Engel-Cox JA, 2004, ATMOS ENVIRON, V38, P2495, DOI 10.1016/j.atmosenv.2004.01.039. Fang Y, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11121467. Forkuor G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170478. Gorelick N, 2017, REMOTE SENS ENVIRON, V202, P18, DOI 10.1016/j.rse.2017.06.031. Hagenaars G, 2018, COAST ENG, V133, P113, DOI 10.1016/j.coastaleng.2017.12.011. Hanson MA, 2012, SCIENCE, V335, P851, DOI {[}10.1126/science.1244693, 10.1126/science.1215904]. Hird JN, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9121315. Holloway J, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10091365. Hu YF, 2018, ISPRS J PHOTOGRAMM, V146, P347, DOI 10.1016/j.isprsjprs.2018.10.008. Huang XQ, 1997, PHOTOGRAMM ENG REM S, V63, P1185. Karnieli A, 2010, J CLIMATE, V23, P618, DOI 10.1175/2009JCLI2900.1. Kennedy RE, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10050691. Kim DJ, 2007, IEEE GEOSCI REMOTE S, V4, P269, DOI 10.1109/LGRS.2006.888843. Kong DD, 2019, ISPRS J PHOTOGRAMM, V155, P13, DOI 10.1016/j.isprsjprs.2019.06.014. Koskinen J, 2019, ISPRS J PHOTOGRAMM, V148, P63, DOI 10.1016/j.isprsjprs.2018.12.011. Krishnan S., 2015, BUILDING YOUR NEXT B. KUMAR L, 2018, REMOTE SENS-BASEL, V10, DOI {[}DOI 10.3390/RS10101509, 10.3390/rs10101509]. Laney D., 2001, 3D DATA MANAGEMENT C, V6. Lee JS, 2009, OPT SCI ENG-CRC, P1. Lee JS, 2001, IEEE T GEOSCI REMOTE, V39, P2343, DOI 10.1109/36.964970. Lee WH, 2009, INT MICRO PACK ASS, P100. Li SN, 2016, ISPRS J PHOTOGRAMM, V115, P119, DOI 10.1016/j.isprsjprs.2015.10.012. Liu DD, 2020, ISPRS J PHOTOGRAMM, V159, P337, DOI 10.1016/j.isprsjprs.2019.11.021. Liu P, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00045. Liu XP, 2018, REMOTE SENS ENVIRON, V209, P227, DOI 10.1016/j.rse.2018.02.055. Lobo FD, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10081178. Ma Y, 2015, FUTURE GENER COMP SY, V51, P47, DOI 10.1016/j.future.2014.10.029. Maggiori E, 2017, IEEE T GEOSCI REMOTE, V55, P645, DOI 10.1109/TGRS.2016.2612821. Mahdianpari M., 2020, CAN J REMOTE SENS, P1, DOI DOI 10.1080/07038992.2019.1711366. Mahdianpari M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11131582. Mahdianpari M, 2019, ADV SPACE RES, V64, P64, DOI 10.1016/j.asr.2019.03.013. Mahdianpari M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11010043. Mahdianpari M, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10071119. Mahdianpari M, 2017, CAN J REMOTE SENS, V43, P468, DOI 10.1080/07038992.2017.1381550. Mahdianpari M, 2017, CAN J REMOTE SENS, V43, P485, DOI 10.1080/07038992.2017.1381549. Mandianpari M, 2017, ISPRS J PHOTOGRAMM, V130, P13, DOI 10.1016/j.isprsjprs.2017.05.010. Marghany M, 2011, ENVIRON EARTH SCI, V64, P1177, DOI 10.1007/s12665-011-0934-y. Mateo-Garcia G, 2017, INT GEOSCI REMOTE SE, P1942, DOI 10.1109/IGARSS.2017.8127359. McNairn H, 2004, CAN J REMOTE SENS, V30, P517, DOI 10.5589/m03-068. McNairn H, 2016, REMOTE SENS DIGIT IM, V20, P317, DOI 10.1007/978-3-319-47037-5\_15. McNairn H, 2009, ISPRS J PHOTOGRAMM, V64, P434, DOI 10.1016/j.isprsjprs.2008.07.006. Moed H., 2012, EVOLUTION BIG DATA R. Mohammadimanesh F, 2019, ISPRS J PHOTOGRAMM, V151, P223, DOI 10.1016/j.isprsjprs.2019.03.015. Mohammadimanesh F, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11050516. Mohammadimanesh F, 2019, GISCI REMOTE SENS, V56, P485, DOI 10.1080/15481603.2018.1513444. Mohammadimanesh F, 2018, CAN J REMOTE SENS, V44, P247, DOI 10.1080/07038992.2018.1477680. Mohammadimanesh F, 2018, INT J APPL EARTH OBS, V73, P450, DOI 10.1016/j.jag.2018.06.005. Mohammadimanesh F, 2018, ISPRS J PHOTOGRAMM, V142, P78, DOI 10.1016/j.isprsjprs.2018.05.009. Moher D, 2009, ANN INTERN MED, V151, P264, DOI 10.7326/0003-4819-151-4-200908180-00135. Momm H., 2011, FEATURE EXTRACTION H. Mountrakis G, 2011, ISPRS J PHOTOGRAMM, V66, P247, DOI 10.1016/j.isprsjprs.2010.11.001. Nguyen UNT, 2019, ENVIRON MONIT ASSESS, V191, DOI 10.1007/s10661-019-7355-x. Nogueira K, 2017, PATTERN RECOGN, V61, P539, DOI 10.1016/j.patcog.2016.07.001. Parks SA, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11141735. Plaza AJ, 2008, CH CRC COMP INFO SCI, P1. Quintero N, 2019, FORESTS, V10, DOI 10.3390/f10060518. Ravanelli R, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10091488. Rembold F, 2019, AGR SYST, V168, P247, DOI 10.1016/j.agsy.2018.07.002. Rezaee M, 2018, IEEE J-STARS, V11, P3030, DOI 10.1109/JSTARS.2018.2846178. Saah D, 2019, ENVIRON MODELL SOFTW, V118, P166, DOI 10.1016/j.envsoft.2019.05.004. SADER SA, 1992, INT J REMOTE SENS, V13, P3055, DOI 10.1080/01431169208904102. Scherler D, 2018, GEOPHYS RES LETT, V45, P11798, DOI 10.1029/2018GL080158. Schulz K, 2018, PROC SPIE, V10790, DOI 10.1117/12.2503653. Sidhu N, 2018, EUR J REMOTE SENS, V51, P486, DOI 10.1080/22797254.2018.1451782. Silva WF, 2009, ISPRS J PHOTOGRAMM, V64, P458, DOI 10.1016/j.isprsjprs.2008.07.005. Snapir B, 2019, INT J APPL EARTH OBS, V74, P222, DOI 10.1016/j.jag.2018.09.011. Steinberg D, 2009, CH CRC DATA MIN KNOW, P179, DOI 10.1201/9781420089653.ch10. Stroppiana D, 2015, REMOTE SENS-BASEL, V7, P1320, DOI 10.3390/rs70201320. Sun WW, 2018, IEEE GEOSCI REMOTE S, V15, P474, DOI 10.1109/LGRS.2018.2795531. Teluguntla P, 2018, ISPRS J PHOTOGRAMM, V144, P325, DOI 10.1016/j.isprsjprs.2018.07.017. Tomer SK, 2015, REMOTE SENS-BASEL, V7, P8128, DOI 10.3390/rs70608128. Torres R, 2012, REMOTE SENS ENVIRON, V120, P9, DOI 10.1016/j.rse.2011.05.028. Uddin K, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11131581. Voight C, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11070823. Walker E, 2019, REMOTE SENS LETT, V10, P929, DOI 10.1080/2150704X.2019.1633487. Waller EK, 2018, INT J APPL EARTH OBS, V73, P407, DOI 10.1016/j.jag.2018.07.008. Wang C, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10101635. Weissmann H, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189058. Wilder B., 2012, REMOTE SENS ENVIRON, V233. Workie TG, 2018, GLOB ECOL CONSERV, V13, DOI 10.1016/j.gecco.2017.e00366. Wulder MA, 2019, REMOTE SENS ENVIRON, V225, P127, DOI 10.1016/j.rse.2019.02.015. Xie YH, 2019, ISPRS J PHOTOGRAMM, V155, P136, DOI 10.1016/j.isprsjprs.2019.07.005. Xiong J, 2017, ISPRS J PHOTOGRAMM, V126, P225, DOI 10.1016/j.isprsjprs.2017.01.019. Y Li, 2009, INT S COMP NETW MULT, P1, DOI DOI 10.1016/j.apgeog.2009.11.001. Zhang C, 2018, REMOTE SENS ENVIRON, V216, P57, DOI 10.1016/j.rse.2018.06.034. Zhu XX, 2017, IEEE GEOSC REM SEN M, V5, P8, DOI 10.1109/MGRS.2017.2762307.}, Number-of-Cited-References = {106}, Times-Cited = {286}, Usage-Count-Last-180-days = {110}, Usage-Count-Since-2013 = {552}, Journal-ISO = {ISPRS-J. Photogramm. Remote Sens.}, Doc-Delivery-Number = {LR4WG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000535696600012}, ESI-Highly-Cited-Paper = {Y}, ESI-Hot-Paper = {N}, DA = {2023-04-22}, } @article{ WOS:000716864600002, Author = {Zhang, Xuemeng and Liu, Chao and Chen, Yuexi and Zheng, Guanghong and Chen, Yinguang}, Title = {Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review}, Journal = {ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY}, Year = {2022}, Volume = {24}, Number = {10}, Pages = {11471-11513}, Month = {OCT}, Abstract = {Waste sorting is an effective means of enhancing resource or energy recovery from municipal solid waste (MSW). Waste sorting management system is not limited to source separation, but also involves at least three stages, i.e., collection and transportation (C\&T), pretreatment, and resource utilization. This review focuses on the whole process of MSW management strategy based on the waste sorting perspective. Firstly, as the sources of MSW play an essential role in the means of subsequent valorization, the factors affecting the generation of MSW and its prediction methods are introduced. Secondly, a detailed comparison of approaches to source separation across countries is presented. Constructing a top-down management system and incentivizing or constraining residents' sorting behavior from the bottom up is believed to be a practical approach to promote source separation. Then, the current state of C\&T techniques and its network optimization are reviewed, facilitated by artificial intelligence (AI) and the Internet of Things technologies. Furthermore, the advances in pretreatment strategies for enhanced sorting and resource recovery are introduced briefly. Finally, appropriate methods to valorize different MSW are proposed. It is worth noting that new technologies, such as AI, show high application potential in waste management. The sharing of (intermediate) products or energy of varying processing units will inject vitality into the waste management network and achieve sustainable development. {[}GRAPHICS] .}, Publisher = {SPRINGER}, Address = {VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Zheng, GH; Chen, YG (Corresponding Author), Tongji Univ, Sch Environm Sci \& Engn, State Key Lab Pollut Control \& Resource Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China. Zhang, Xuemeng; Liu, Chao; Chen, Yuexi; Zheng, Guanghong; Chen, Yinguang, Tongji Univ, Sch Environm Sci \& Engn, State Key Lab Pollut Control \& Resource Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China.}, DOI = {10.1007/s10668-021-01932-w}, EarlyAccessDate = {NOV 2021}, ISSN = {1387-585X}, EISSN = {1573-2975}, Keywords = {Municipal solid waste (MSW); Waste sorting; Route optimization; Resource recovery; Waste management}, Keywords-Plus = {INFORMATION-SYSTEM GIS; FOOD WASTE; ANAEROBIC-DIGESTION; URBAN AREAS; ORGANIC FRACTION; GREENHOUSE-GAS; TO-ENERGY; SOCIOECONOMIC-FACTORS; THERMAL PRETREATMENT; OPERATING PARAMETERS}, Research-Areas = {Science \& Technology - Other Topics; Environmental Sciences \& Ecology}, Web-of-Science-Categories = {Green \& Sustainable Science \& Technology; Environmental Sciences}, Author-Email = {zhenggh@tongji.edu.cn yinguangchen@tongji.edu.cn}, Affiliations = {Tongji University}, ORCID-Numbers = {Zhang, Xuemeng/0000-0002-0815-5635 Liu, Chao/0000-0003-1773-3756}, Funding-Acknowledgement = {National Key Research and Development Program Project of China {[}2019YFC1906301]}, Funding-Text = {This work was supported by the National Key Research and Development Program Project of China (Grant No. 2019YFC1906301).}, Cited-References = {Abbasi M, 2016, WASTE MANAGE, V56, P13, DOI 10.1016/j.wasman.2016.05.018. Abdallah M, 2020, WASTE MANAGE, V109, P231, DOI 10.1016/j.wasman.2020.04.057. Abdullah N, 2019, ADV INTELL SYST, V843, P364, DOI 10.1007/978-3-319-99007-1\_35. Abylkhani B, 2019, WASTE MANAGE RES, V37, P1271, DOI 10.1177/0734242X19875503. Adelodun B, 2021, WASTE MANAGE, V122, P71, DOI 10.1016/j.wasman.2021.01.003. Agency U.S.E.P, 2016, MUNICIPAL SOLID WAST. Akhtar M, 2017, WASTE MANAGE, V61, P117, DOI 10.1016/j.wasman.2017.01.022. Ali SA, 2020, ENVIRON EARTH SCI, V79, DOI 10.1007/s12665-020-08970-z. Amal L, 2018, ENVIRON SCI POLLUT R, V25, P27569, DOI 10.1007/s11356-018-2826-0. Amodeo C, 2021, WASTE MANAGE, V126, P21, DOI 10.1016/j.wasman.2021.02.049. Andersson C, 2018, WASTE MANAGE, V76, P19, DOI 10.1016/j.wasman.2018.03.038. Aphale O, 2015, RESOUR CONSERV RECY, V99, P19, DOI 10.1016/j.resconrec.2015.03.008. Arabiourrutia M, 2020, RENEW SUST ENERG REV, V129, DOI 10.1016/j.rser.2020.109932. Arenas-Vivo A, 2017, MATER TODAY COMMUN, V12, P125, DOI 10.1016/j.mtcomm.2017.07.008. Ashani PN, 2020, BIORESOURCE TECHNOL, V308, DOI 10.1016/j.biortech.2020.123267. Ashkiki AR, 2019, WASTE MANAGE, V86, P36, DOI 10.1016/j.wasman.2019.01.026. Bae JS, 2019, APPL INTELL, V49, P929, DOI 10.1007/s10489-018-1300-5. Bala R, 2020, ENVIRON SCI POLLUT R, V27, P27293, DOI 10.1007/s11356-019-05695-w. Bala R, 2019, INT J HYDROGEN ENERG, V44, P164, DOI 10.1016/j.ijhydene.2018.02.072. Banu JR, 2020, INT J HYDROGEN ENERG, V45, P18211, DOI 10.1016/j.ijhydene.2019.09.176. Banyai T, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16040634. Benis KZ, 2019, INT J ENVIRON SCI TE, V16, P4863, DOI 10.1007/s13762-018-1902-9. Bilal M, 2019, FOOD RES INT, V123, P226, DOI 10.1016/j.foodres.2019.04.066. Boies A, 2009, ENVIRON SCI TECHNOL, V43, P8721, DOI 10.1021/es902019z. Borrelle SB, 2020, SCIENCE, V369, P1515, DOI 10.1126/science.aba3656. Bouroumine Y., 2020, INT J ADV RES ENG TE, V11, P318, DOI {[}10.34218/IJARET.11.5.2020.033, DOI 10.34218/IJARET.11.5.2020.033]. Brunner S, 2015, WASTE MANAGE, V38, P49, DOI 10.1016/j.wasman.2014.12.006. BSD, 2013, MUNICIPAL WASTE MANA. Bulatov NK, 2021, ENVIRON DEV SUSTAIN, V23, P2015, DOI 10.1007/s10668-020-00661-w. Calabro PS, 2020, CURR OPIN GREEN SUST, V26, DOI 10.1016/j.cogsc.2020.100375. Carrere H, 2016, BIORESOURCE TECHNOL, V199, P386, DOI 10.1016/j.biortech.2015.09.007. Cetin M, 2015, J ENVIRON PROT ECOL, V16, P385. Cetin M., 2013, ADV LANDSCAPE ARCHIT, DOI DOI 10.5772/51738. Cetin M., 2015, ENV ECOLOGY BEGINNIN, P783. Chabok M, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-08395-y. Chaerul M., 2019, ROLE WASTE COMPACTIO. Chen D, 2010, BIORESOURCE TECHNOL, V101, P5592, DOI 10.1016/j.biortech.2010.02.003. Chen SS, 2020, SCI TOTAL ENVIRON, V717, DOI 10.1016/j.scitotenv.2020.137193. Chen XD, 2010, WASTE MANAGE, V30, P716, DOI 10.1016/j.wasman.2009.10.011. CHEN Y, 2021, BIORESOURCE TECHNOL. Chester M, 2008, ENVIRON SCI TECHNOL, V42, P2142, DOI 10.1021/es0713330. Chifari R, 2017, WASTE MANAGE, V60, P32, DOI 10.1016/j.wasman.2017.01.015. Conke LS, 2018, RESOUR CONSERV RECY, V134, P129, DOI 10.1016/j.resconrec.2018.03.007. Cordova O, 2019, APPL BIOCHEM BIOTECH, V189, P787, DOI 10.1007/s12010-019-03044-8. Cui HL, 2019, EUR J OPER RES, V274, P1055, DOI 10.1016/j.ejor.2018.11.010. Dehkordi SMMN, 2020, RENEW SUST ENERG REV, V119, DOI 10.1016/j.rser.2019.109586. Ding Y, 2021, J CLEAN PROD, V293, DOI 10.1016/j.jclepro.2021.126144. Dong J, 2019, ENERG CONVERS MANAGE, V196, P497, DOI 10.1016/j.enconman.2019.06.016. Ebikade E, 2020, ACS SUSTAIN CHEM ENG, V8, P8124, DOI 10.1021/acssuschemeng.9b07479. Ebrahimian F, 2020, BIORESOURCE TECHNOL, V300, DOI 10.1016/j.biortech.2019.122656. Echegaray F, 2017, J CLEAN PROD, V142, P180, DOI 10.1016/j.jclepro.2016.05.064. El Gnaoui Y, 2020, ENERGY REP, V6, P417, DOI 10.1016/j.egyr.2019.11.096. Elkhalifa S, 2019, RESOUR CONSERV RECY, V144, P310, DOI 10.1016/j.resconrec.2019.01.024. Engelberth AS, 2020, CURR OPIN GREEN SUST, V26, DOI 10.1016/j.cogsc.2020.100385. Fan B, 2019, J CLEAN PROD, V211, P442, DOI 10.1016/j.jclepro.2018.11.168. Fang SW, 2020, ENERGY, V190, DOI 10.1016/j.energy.2019.116310. Faraca G, 2019, RESOUR CONSERV RECY, V143, P299, DOI 10.1016/j.resconrec.2019.01.014. Fauziah SH, 2012, WASTE MANAGE RES, V30, P656, DOI 10.1177/0734242X12437564. Ferronato N, 2020, WASTE MANAGE, V102, P919, DOI 10.1016/j.wasman.2019.12.010. Fiorucci P, 2003, RESOUR CONSERV RECY, V37, P301, DOI 10.1016/S0921-3449(02)00076-9. Gabbar HA, 2018, J ENERGY INST, V91, P481, DOI 10.1016/j.joei.2017.04.009. Gadaleta G, 2020, PROCESS SAF ENVIRON, V143, P248, DOI 10.1016/j.psep.2020.07.008. Gala A, 2020, WASTE MANAGE, V111, P22, DOI 10.1016/j.wasman.2020.05.019. Getahun T, 2012, ENVIRON MONIT ASSESS, V184, P6337, DOI 10.1007/s10661-011-2423-x. Ghiani G, 2014, COMPUT OPER RES, V44, P22, DOI 10.1016/j.cor.2013.10.006. Ghiani G, 2021, COMPUT IND ENG, V161, DOI 10.1016/j.cie.2021.107618. Gikas P, 2018, J ENVIRON MANAGE, V216, P96, DOI 10.1016/j.jenvman.2017.07.050. Goes G, 2020, INT J SUSTAIN TRANSP, V14, P569, DOI 10.1080/15568318.2019.1584933. Golwala H, 2021, SCI TOTAL ENVIRON, V769, DOI 10.1016/j.scitotenv.2020.144581. Greco G, 2015, J CLEAN PROD, V106, P364, DOI 10.1016/j.jclepro.2014.07.011. Gu BX, 2017, WASTE MANAGE, V61, P67, DOI 10.1016/j.wasman.2016.11.039. Gu BX, 2015, RESOUR CONSERV RECY, V98, P67, DOI 10.1016/j.resconrec.2015.03.001. Gu F, 2019, SCI TOTAL ENVIRON, V649, P172, DOI 10.1016/j.scitotenv.2018.08.298. Gu J, 2020, INT J BIOL MACROMOL, V149, P572, DOI 10.1016/j.ijbiomac.2020.01.281. Gui S, 2019, WASTE MANAGE, V84, P310, DOI 10.1016/j.wasman.2018.12.006. Gundupalli SP, 2017, WASTE MANAGE, V60, P56, DOI 10.1016/j.wasman.2016.09.015. Guo B, 2017, J CLEAN PROD, V142, P2177, DOI 10.1016/j.jclepro.2016.11.063. Hannan MA, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102393. Hansen TL, 2007, WASTE MANAGE, V27, P398, DOI 10.1016/j.wasman.2006.02.014. HASAN M, 2021, RENEW SUST ENERG REV, V145. Hassan GK, 2020, J MATER CYCLES WASTE, V22, P1218, DOI 10.1007/s10163-020-01014-5. Heidari R, 2019, SUSTAIN CITIES SOC, V47, DOI 10.1016/j.scs.2019.101457. Vu HL, 2019, WASTE MANAGE, V88, P118, DOI 10.1016/j.wasman.2019.03.037. Vu HL, 2019, WASTE MANAGE, V84, P129, DOI 10.1016/j.wasman.2018.11.038. Hoque MM, 2020, J CLEAN PROD, V256, DOI 10.1016/j.jclepro.2020.120387. Hou J, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17124539. JONES D, 2017, BIORESOURCE TECHNOL, V241, P1. Kammen DM, 2016, SCIENCE, V352, P922, DOI 10.1126/science.aad9302. Kan T, 2016, RENEW SUST ENERG REV, V57, P1126, DOI 10.1016/j.rser.2015.12.185. Karthikeyan OP, 2017, CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING: SOLID WASTE MANAGEMENT, P135, DOI 10.1016/B978-0-444-63664-5.00007-1. Kavitha S, 2017, APPL ENERG, V208, P228, DOI 10.1016/j.apenergy.2017.10.049. Kaza S., 2018, WHAT WASTE 20 GLOBAL, DOI {[}10.1596/978-1-4648-1329-0, DOI 10.1596/978-1-4648-1329-0]. Khanh NT, 2017, WASTE MANAGE, V59, P14, DOI 10.1016/j.wasman.2016.10.048. Klemes JJ, 2020, RENEW SUST ENERG REV, V127, DOI 10.1016/j.rser.2020.109883. Knickmeyer D, 2020, J CLEAN PROD, V245, DOI 10.1016/j.jclepro.2019.118605. Ko S, 2020, WASTE MANAGE, V104, P220, DOI 10.1016/j.wasman.2020.01.020. Kong X, 2016, J ENVIRON MANAGE, V166, P31, DOI 10.1016/j.jenvman.2015.10.002. Krishnan Santhana, 2019, Bioresource Technology Reports, V5, P359, DOI 10.1016/j.biteb.2018.05.003. Kumar A, 2017, WASTE MANAGE, V69, P407, DOI 10.1016/j.wasman.2017.08.046. Kumar MI, 2021, SUSTAINABLE BIOECONO, P85. Kurniawan TA, 2021, ENVIRON POLLUT, V277, DOI 10.1016/j.envpol.2021.116741. Lebreton L, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-018-0212-7. Lee DJ, 2020, BIORESOURCE TECHNOL, V318, DOI 10.1016/j.biortech.2020.123912. Lella J, 2017, SUSTAIN CITIES SOC, V35, P336, DOI 10.1016/j.scs.2017.08.023. Li LY, 2020, ENVIRON SCI TECHNOL, V54, P3900, DOI 10.1021/acs.est.9b07641. Li XR, 2019, WASTE MANAGE, V89, P313, DOI 10.1016/j.wasman.2019.04.020. Li YY, 2017, ENERGY, V118, P377, DOI 10.1016/j.energy.2016.12.041. Li ZL, 2020, WASTE MANAGE, V114, P89, DOI 10.1016/j.wasman.2020.07.005. Liang JY, 2019, BIORESOURCE TECHNOL, V286, DOI 10.1016/j.biortech.2019.121369. Liu C, 2011, WASTE MANAGE RES, V29, P371, DOI 10.1177/0734242X10380114. Liu HR, 2020, ENERG FUEL, V34, P2385, DOI 10.1021/acs.energyfuels.9b04152. Lombardi L, 2015, WASTE MANAGE, V37, P26, DOI 10.1016/j.wasman.2014.11.010. Lou CX, 2020, J ENVIRON MANAGE, V254, DOI 10.1016/j.jenvman.2019.109781. Lu HM, 2019, WASTE MANAGE, V95, P271, DOI 10.1016/j.wasman.2019.06.020. Lu JS, 2020, BIORESOURCE TECHNOL, V312, DOI 10.1016/j.biortech.2020.123615. Lu JW, 2017, WASTE MANAGE, V69, P170, DOI 10.1016/j.wasman.2017.04.014. Lv JY, 2020, WASTE MANAGE, V102, P763, DOI 10.1016/j.wasman.2019.11.041. Malav LC, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.123227. Malinauskaite J, 2017, ENERGY, V141, P2013, DOI 10.1016/j.energy.2017.11.128. Matsumoto S, 2011, RESOUR CONSERV RECY, V55, P325, DOI 10.1016/j.resconrec.2010.10.005. Melikoglu M, 2020, ENVIRON TECHNOL INNO, V19, DOI 10.1016/j.eti.2020.101040. Men JK, 2019, J CLEAN PROD, V237, DOI 10.1016/j.jclepro.2019.117754. Mi Yan, 2020, Waste Disposal \& Sustainable Energy, V2, P37, DOI 10.1007/s42768-019-00030-y. Miafodzyeva S, 2013, WASTE BIOMASS VALORI, V4, P221, DOI 10.1007/s12649-012-9144-4. Moh Y, 2017, RESOUR CONSERV RECY, V116, P1, DOI 10.1016/j.resconrec.2016.09.012. Mohammadi M, 2019, COMPUT CHEM ENG, V123, P155, DOI 10.1016/j.compchemeng.2018.12.022. Mohsenizadeh M, 2020, SUSTAIN CITIES SOC, V52, DOI 10.1016/j.scs.2019.101807. Monzambe GM., 2021, SUSTAINABLE FUTURES, V3, DOI 10.1016/j.sftr.2021.100046. Mussig S, 2019, ADV MATER TECHNOL-US, V4, DOI 10.1002/admt.201900300. Mukherjee C, 2020, RENEW SUST ENERG REV, V119, DOI 10.1016/j.rser.2019.109512. Nasiri M.M., 2017, 13 INT C IND ENG IIE. Nie YY, 2018, WASTE MANAGE, V79, P472, DOI 10.1016/j.wasman.2018.08.016. Nowakowski P, 2020, SCI TOTAL ENVIRON, V730, DOI 10.1016/j.scitotenv.2020.138726. Okonta F., 2017, COMPACTION PROPERTIE, P279. OOI JK, 2021, J CLEAN PROD, V316, DOI DOI 10.1016/J.JCLEPRO.2021.128366. Oribe-Garcia I, 2015, WASTE MANAGE, V39, P26, DOI 10.1016/j.wasman.2015.02.017. OToole M., 2019, CLASSIFICATION NONFE, P1. Owolabi Sunday, 2016, ENV TECHNOL REV, V5, P120, DOI {[}DOI 10.1080/21622515.2016.1259357, 10.1080/21622515.2016.1259357]. Owusu, 2020, MIDDLE E J APPL SCI, V3, P74. Owusu V, 2013, RESOUR CONSERV RECY, V78, P115, DOI 10.1016/j.resconrec.2013.07.002. Panigrahi S, 2019, RENEW ENERG, V143, P779, DOI 10.1016/j.renene.2019.05.040. Papageorgiou A, 2009, WASTE MANAGE RES, V27, P928, DOI 10.1177/0734242X09350787. Patsalou M, 2017, J CLEAN PROD, V166, P706, DOI 10.1016/j.jclepro.2017.08.039. Paul T, 2020, ENVIRON DEV SUSTAIN, V22, P575, DOI 10.1007/s10668-018-0235-7. Pellegrinelli S, 2019, INT J ADV MANUF TECH, V102, P3677, DOI 10.1007/s00170-019-03289-x. Peri G, 2018, J ENVIRON MANAGE, V219, P74, DOI 10.1016/j.jenvman.2018.04.098. Pluskal J, 2021, J CLEAN PROD, V278, DOI 10.1016/j.jclepro.2020.123359. Qiao QQ, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17062163. Qiu L, 2019, RENEW SUST ENERG REV, V115, DOI 10.1016/j.rser.2019.109373. Qureshi U, 2020, J THERM ANAL CALORIM, V140, P1745, DOI 10.1007/s10973-019-08934-x. Ragaert K, 2017, WASTE MANAGE, V69, P24, DOI 10.1016/j.wasman.2017.07.044. Rajasekhar M, 2015, PROC MAT SCI, V10, P513, DOI 10.1016/j.mspro.2015.06.094. Rani M, 2019, MATERIALS, V12, DOI 10.3390/ma12172740. Rathore P, 2020, ENVIRON DEV SUSTAIN, V22, P3309, DOI 10.1007/s10668-019-00347-y. Rathore P, 2019, J CLEAN PROD, V211, P44, DOI 10.1016/j.jclepro.2018.11.100. Razali F, 2020, J CLEAN PROD, V271, DOI 10.1016/j.jclepro.2020.122025. Rodrigues S, 2016, J CLEAN PROD, V113, P374, DOI 10.1016/j.jclepro.2015.09.143. Salah M.M., 2020, CONT ENV ISSUES CHAL, P245. Sanchez-Arias M, 2019, WASTE MANAGE, V85, P42, DOI 10.1016/j.wasman.2018.12.012. Schulze S, 2017, FUEL, V187, P338, DOI 10.1016/j.fuel.2016.09.048. Sebastian RM, 2020, ENVIRON DEV SUSTAIN, V22, P4821, DOI 10.1007/s10668-019-00407-3. Shah AV, 2021, J ENVIRON CHEM ENG, V9, DOI 10.1016/j.jece.2021.105717. Shahab RL, 2020, SCIENCE, V369, P1073, DOI 10.1126/science.abb1214. Shen MC, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114469. Shi Y, 2021, CHEMOSPHERE, V281, DOI 10.1016/j.chemosphere.2021.130884. Signoret C, 2020, RESOUR CONSERV RECY, V161, DOI 10.1016/j.resconrec.2020.104980. Signoret C, 2019, WASTE MANAGE, V98, P160, DOI 10.1016/j.wasman.2019.08.010. Sindhu R, 2019, J ENVIRON MANAGE, V241, P619, DOI 10.1016/j.jenvman.2019.02.053. Singh S., 2019, DEV GIS BASED OPTIMI, P319. Sipra AT, 2018, FUEL PROCESS TECHNOL, V175, P131, DOI 10.1016/j.fuproc.2018.02.012. Slavik J, 2021, WASTE MANAGE, V134, P177, DOI 10.1016/j.wasman.2021.07.018. Soto JM, 2020, PROCESS SAF ENVIRON, V139, P315, DOI 10.1016/j.psep.2020.04.044. Stoeva K, 2017, WASTE MANAGE, V68, P732, DOI 10.1016/j.wasman.2017.06.005. Tai J, 2011, WASTE MANAGE, V31, P1673, DOI 10.1016/j.wasman.2011.03.014. Takahashi W, 2020, J CLEAN PROD, V242, DOI 10.1016/j.jclepro.2019.118288. Tang YJ, 2018, BIORESOURCE TECHNOL, V249, P16, DOI 10.1016/j.biortech.2017.09.210. Taskin A, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102339. Teerioja N, 2012, WASTE MANAGE, V32, P1782, DOI 10.1016/j.wasman.2012.05.027. Tian X, 2016, ECON MODEL, V56, P50, DOI 10.1016/j.econmod.2016.02.028. Tirkolaee EB, 2020, WASTE MANAGE, V102, P340, DOI 10.1016/j.wasman.2019.10.038. Tirkolaee EB, 2019, COMPUT ELECTR ENG, V77, P457, DOI 10.1016/j.compeleceng.2018.01.040. Tong YQ, 2020, ENVIRON POLLUT, V259, DOI 10.1016/j.envpol.2019.113707. Torkashvand J, 2021, ENVIRON DEV SUSTAIN, V23, P13242, DOI 10.1007/s10668-020-01208-9. Varotto A, 2017, J ENVIRON PSYCHOL, V51, P168, DOI 10.1016/j.jenvp.2017.03.011. Vasileva E, 2014, INT J CONSUM STUD, V38, P475, DOI 10.1111/ijcs.12123. Vazquez YV, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04343. VIC Government, 2021, STAND HOUS REC VICT. Viotti P, 2003, WASTE MANAGE RES, V21, P292, DOI 10.1177/0734242X0302100402. Wagland, 2019, SUBSTITUTE NATURAL G, P37. Wang B, 2021, J CLEAN PROD, V300, DOI 10.1016/j.jclepro.2021.126773. Wang F, 2019, INT J HYDROGEN ENERG, V44, P23846, DOI 10.1016/j.ijhydene.2019.07.095. Wang H, 2013, WASTE MANAGE RES, V31, P67, DOI 10.1177/0734242X12468199. Wang K., 2021, APPL 5G WIRELESS COM, P87. Wang QL, 2020, J CLEAN PROD, V267, DOI 10.1016/j.jclepro.2020.122046. Wang Y, 2021, J ENVIRON MANAGE, V298, DOI 10.1016/j.jenvman.2021.113512. Wanli Wang, 2019, Waste Disposal \& Sustainable Energy, V1, P67, DOI 10.1007/s42768-019-00005-z. Wannapokin A, 2021, INT J HYDROGEN ENERG, V46, P11337, DOI 10.1016/j.ijhydene.2020.05.238. Woon KS, 2016, WASTE MANAGE, V47, P3, DOI 10.1016/j.wasman.2015.03.022. Wu ZZ, 2021, SCI TOTAL ENVIRON, V756, DOI 10.1016/j.scitotenv.2020.142674. Xiao SJ, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121366. Xiao SJ, 2020, ENVIRON SCI POLLUT R, V27, P29943, DOI 10.1007/s11356-020-09398-5. Xiao SJ, 2018, RESOUR CONSERV RECY, V134, P112, DOI 10.1016/j.resconrec.2018.02.032. Xiao YM, 2020, RESOUR CONSERV RECY, V155, DOI 10.1016/j.resconrec.2019.104577. Xin CL, 2022, J COMB OPTIM, V43, P953, DOI 10.1007/s10878-020-00614-z. Xiong XN, 2019, CHEM ENG J, V375, DOI 10.1016/j.cej.2019.121983. Xu AK, 2021, WASTE MANAGE, V124, P385, DOI 10.1016/j.wasman.2021.02.029. Xu JP, 2020, ENVIRON SCI POLLUT R, V27, P32637, DOI 10.1007/s11356-020-09076-6. Xu L, 2017, HABITAT INT, V63, P21, DOI 10.1016/j.habitatint.2017.03.009. Yadav V, 2020, WASTE MANAGE, V114, P80, DOI 10.1016/j.wasman.2020.05.024. Yadav V, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101937. Yousefloo A, 2020, IND ENG CHEM RES, V59, P8259, DOI 10.1021/acs.iecr.9b06876. Yu X, 2020, ENVIRON SCI TECHNOL, V54, P9757, DOI 10.1021/acs.est.0c00565. Yue LC, 2020, ENERG CONVERS MANAGE, V203, DOI 10.1016/j.enconman.2019.112225. Yukesh KR, 2020, BIORESOURCE TECHNOL, V11, DOI {[}10.1016/j.biteb.2020.100524, DOI 10.1016/J.BITEB.2020.100524]. Zaeimi MB, 2021, J ADV TRANSPORT, V2021, DOI 10.1155/2021/9994853. Zambrano-Monserrate MA, 2021, ENVIRON SCI POLLUT R, V28, P62421, DOI 10.1007/s11356-021-15167-9. Zhang B, 2019, J ENVIRON MANAGE, V233, P447, DOI 10.1016/j.jenvman.2018.12.059. Zhang H, 2017, J CLEAN PROD, V164, P444, DOI 10.1016/j.jclepro.2017.06.224. Zhang H, 2016, FRONT ENV SCI ENG, V10, DOI 10.1007/s11783-016-0852-z. Zhang H, 2014, SUSTAINABILITY-BASEL, V6, P6446, DOI 10.3390/su6096446. Zhang JX, 2020, APPL ENERG, V257, DOI 10.1016/j.apenergy.2019.113988. Zhang YN, 2020, BIORESOURCE TECHNOL, V297, DOI 10.1016/j.biortech.2019.122480. Zhang Y, 2012, J ENVIRON MANAGE, V104, P166, DOI 10.1016/j.jenvman.2012.03.043. Zhao LG, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041664. Zheng PM, 2017, J CLEAN PROD, V163, pS366, DOI 10.1016/j.jclepro.2016.03.106. Zhi ZX, 2019, BIORESOURCE TECHNOL, V279, P218, DOI 10.1016/j.biortech.2019.01.142. Zhou CB, 2017, ENVIRON SCI TECHNOL, V51, P320, DOI 10.1021/acs.est.6b05180. Zhou H, 2014, RENEW SUST ENERG REV, V36, P107, DOI 10.1016/j.rser.2014.04.024. ZHU Y, 2020, ENVIRON DEV SUSTAIN. 2016, WASTE MANAGE, V58, P81.}, Number-of-Cited-References = {230}, Times-Cited = {4}, Usage-Count-Last-180-days = {21}, Usage-Count-Since-2013 = {110}, Journal-ISO = {Environ. Dev. Sustain.}, Doc-Delivery-Number = {4N4PL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000716864600002}, OA = {Bronze, Green Published}, DA = {2023-04-22}, } @article{ WOS:000697254900003, Author = {Liu, Jingyue (Jimmy)}, Title = {Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy}, Journal = {MICROSCOPY AND MICROANALYSIS}, Year = {2021}, Volume = {27}, Number = {5}, Pages = {943-995}, Month = {OCT}, Abstract = {Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Angstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron-specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.}, Publisher = {CAMBRIDGE UNIV PRESS}, Address = {32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA}, Type = {Review}, Language = {English}, Affiliation = {Liu, JY (Corresponding Author), Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. Liu, Jingyue (Jimmy), Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.}, DOI = {10.1017/S1431927621012125}, ISSN = {1431-9276}, EISSN = {1435-8115}, Keywords = {atomic resolution; electron microscopy; imaging; materials science; nanostructure}, Keywords-Plus = {ENERGY-LOSS SPECTROSCOPY; DIFFERENTIAL PHASE-CONTRAST; THERMAL DIFFUSE-SCATTERING; MAXIMUM-LIKELIHOOD-ESTIMATION; DARK-FIELD IMAGES; SPHERICAL-ABERRATION; BRIGHT-FIELD; MICRODIFFRACTION PATTERNS; SPATIAL-RESOLUTION; LIGHT-ELEMENTS}, Research-Areas = {Materials Science; Microscopy}, Web-of-Science-Categories = {Materials Science, Multidisciplinary; Microscopy}, Author-Email = {jingyue.liu@asu.edu}, Affiliations = {Arizona State University; Arizona State University-Tempe}, Funding-Acknowledgement = {National Science Foundation {[}1955474 (CHE-1955474)]}, Funding-Text = {This work was supported by the National Science Foundation under Grant No. 1955474 (CHE-1955474). The author acknowledges use of the John M. Cowley Center for High-resolution Electron Microscopy at Arizona State University throughout his research career. The author is grateful to Professor David J. Smith of Arizona State University for careful editing of the manuscript and for providing relevant references.}, Cited-References = {Abbe E., 1873, M SCHULZES ARCHIVE M, V9, P413, DOI 10.1007/bf02956173. Aguiar JA, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aaw1949. Alania M, 2017, ULTRAMICROSCOPY, V177, P36, DOI 10.1016/j.ultramic.2016.11.002. Allen LJ, 2017, ULTRAMICROSCOPY, V180, P142, DOI 10.1016/j.ultramic.2017.03.001. Allen LJ, 2012, MRS BULL, V37, P47, DOI 10.1557/mrs.2011.331. Allen LJ, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.094104. Allen LJ, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.105503. ALLPRESS JG, 1969, ACTA CRYSTALL B-STRU, VB 25, P1156, DOI 10.1107/S0567740869003669. ALLPRESS JG, 1973, J APPL CRYSTALLOGR, V6, P165, DOI 10.1107/S0021889873008459. Almeida TP, 2020, PHYS REV MATER, V4, DOI 10.1103/PhysRevMaterials.4.034410. Altantzis T, 2019, NANO LETT, V19, P477, DOI 10.1021/acs.nanolett.8b04303. Amali A, 1997, MICROSC MICROANAL, V3, P28, DOI 10.1017/S1431927697970021. Amali A, 1997, MICRON, V28, P89, DOI 10.1016/S0968-4328(97)00001-2. ANDERSEN AH, 1984, ULTRASONIC IMAGING, V6, P81, DOI 10.1016/0161-7346(84)90008-7. ANSARI R, 1989, NUCL INSTRUM METH A, V279, P388, DOI 10.1016/0168-9002(89)91111-X. Anstis GR, 2003, ULTRAMICROSCOPY, V94, P309, DOI 10.1016/S0304-3991(02)00341-8. Aronova MA, 2012, MRS BULL, V37, P53, DOI 10.1557/mrs.2011.329. Aso R, 2014, ADV FUNCT MATER, V24, P5177, DOI 10.1002/adfm.201303521. Aso R, 2013, SCI REP-UK, V3, DOI 10.1038/srep02214. BAILEY DH, 1991, SIAM REV, V33, P389, DOI 10.1137/1033097. Bain Alexander, 1843, Patent GB, Patent No. 9745. Barcena-Gonzalez G, 2020, MICROSC MICROANAL, V26, P913, DOI 10.1017/S1431927620001774. BATSON PE, 1986, REV SCI INSTRUM, V57, P43, DOI 10.1063/1.1139116. BATSON PE, 1988, REV SCI INSTRUM, V59, P1132, DOI 10.1063/1.1139739. BATSON PE, 1993, NATURE, V366, P727, DOI 10.1038/366727a0. Batson PE, 2002, NATURE, V418, P617, DOI 10.1038/nature00972. Beaman DR., 1975, PHYSICAL ASPECTS ELE, P47. BECK V, 1975, ULTRAMICROSCOPY, V1, P137, DOI 10.1016/S0304-3991(75)80016-7. BECK VD, 1979, OPTIK, V53, P241. Berkels B, 2019, ULTRAMICROSCOPY, V198, P49, DOI 10.1016/j.ultramic.2018.12.016. Berkels B, 2014, ULTRAMICROSCOPY, V138, P46, DOI 10.1016/j.ultramic.2013.11.007. BETZIG E, 1992, SCIENCE, V257, P189, DOI 10.1126/science.257.5067.189. BETZIG E, 1995, OPT LETT, V20, P237, DOI 10.1364/OL.20.000237. BETZIG E, 1993, SCIENCE, V262, P1422, DOI 10.1126/science.262.5138.1422. Betzig E, 2006, SCIENCE, V313, P1642, DOI 10.1126/science.1127344. BLACK G, 1957, PROC R SOC LON SER-A, V239, P522, DOI 10.1098/rspa.1957.0059. Borisevich AY, 2006, P NATL ACAD SCI USA, V103, P3044, DOI 10.1073/pnas.0507105103. Bosman M, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.086102. BRADLEY SA, 1994, MICROSC RES TECHNIQ, V28, P427, DOI 10.1002/jemt.1070280509. Bradley SA, 2012, CATAL LETT, V142, P176, DOI 10.1007/s10562-011-0756-2. Braidy N, 2012, ULTRAMICROSCOPY, V118, P67, DOI 10.1016/j.ultramic.2012.04.001. Brown, 1997, MICROSC MICROANAL, V3, P1171. Brown HG, 2019, ULTRAMICROSCOPY, V197, P112, DOI 10.1016/j.ultramic.2018.12.010. Brown HG, 2017, ULTRAMICROSCOPY, V173, P76, DOI 10.1016/j.ultramic.2016.11.024. BROWNING ND, 1993, NATURE, V366, P143, DOI 10.1038/366143a0. Browning ND, 2001, J ELECTRON MICROSC, V50, P205, DOI 10.1093/jmicro/50.3.205. Burger J, 2020, ULTRAMICROSCOPY, V219, DOI 10.1016/j.ultramic.2020.113118. BURGE RE, 1976, OPTIK, V46, P229. Burger B, 2020, NATURE, V583, P237, DOI 10.1038/s41586-020-2442-2. Busch H, 1926, ANN PHYS-BERLIN, V81, P974. Butler, 1966, 6TH P INT C EL MICR, V1, P191. BUTLER JH, 1984, ULTRAMICROSCOPY, V12, P39, DOI 10.1016/0304-3991(83)90303-0. Caswell TA, 2009, ULTRAMICROSCOPY, V109, P304, DOI 10.1016/j.ultramic.2008.11.023. Chang DJ, 2020, PHYS REV B, V102, DOI 10.1103/PhysRevB.102.174101. CHAPMAN JN, 1978, ULTRAMICROSCOPY, V3, P203, DOI 10.1016/S0304-3991(78)80027-8. Chen CC, 2013, NATURE, V496, P74, DOI 10.1038/nature12009. Chen Z, 2016, ULTRAMICROSCOPY, V168, P7, DOI 10.1016/j.ultramic.2016.05.008. Chen Z, 2015, ULTRAMICROSCOPY, V157, P21, DOI 10.1016/j.ultramic.2015.05.010. Chen Z, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16688-6. CHISHOLM MF, 1991, NATURE, V351, P47, DOI 10.1038/351047a0. Chu MW, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.196101. COATES DG, 1967, PHILOS MAG, V16, P1179, DOI 10.1080/14786436708229968. COCKAYNE DJ, 1967, REV SCI INSTRUM, V38, P1097, DOI 10.1063/1.1720975. Coley CW, 2019, SCIENCE, V365, P557, DOI 10.1126/science.aax1566. COLLIEX C, 1972, PHILOS MAG, V25, P491, DOI 10.1080/14786437208226818. Colliex C, 1999, J ELECTRON MICROSC, V48, P995. COLLIEX C, 1976, ULTRAMICROSCOPY, V1, P301, DOI 10.1016/0304-3991(76)90048-6. COLLIEX C, 1994, BIOL CELL, V80, P175, DOI 10.1016/0248-4900(94)90040-X. Conchello JA, 2005, NAT METHODS, V2, P920, DOI 10.1038/NMETH815. Cosgriff EC, 2007, ULTRAMICROSCOPY, V107, P626, DOI 10.1016/j.ultramic.2006.12.004. COSSLETT VE, 1965, LAB INVEST, V14, P1009. Cowley, 1996, MICROSC MICROANAL, V2, P9. Cowley, 1990, P 12 INT C EL MICR, V4, P2940. Cowley J. M., 1984, Bulletin of Materials Science, V6, P477, DOI 10.1007/BF02744078. Cowley J. M., 1978, Scanning Electron Microscopy, 1978, P53. COWLEY JM, 1981, ULTRAMICROSCOPY, V6, P71, DOI 10.1016/S0304-3991(81)80179-9. COWLEY JM, 1995, ULTRAMICROSCOPY, V58, P18, DOI 10.1016/0304-3991(94)00174-L. COWLEY JM, 1975, J PHYS D APPL PHYS, V8, pL77, DOI 10.1088/0022-3727/8/6/001. Cowley JM, 2000, MICROSC MICROANAL, V6, P429, DOI 10.1007/s100050010049. COWLEY JM, 1973, ACTA CRYSTALLOGR A, VA 29, P537, DOI 10.1107/S0567739473001336. COWLEY JM, 1980, MICRON, V11, P229, DOI 10.1016/0047-7206(80)90002-3. COWLEY JM, 1972, Z NATURFORSCH PT A, VA 27, P445, DOI 10.1515/zna-1972-0312. COWLEY JM, 1979, ULTRAMICROSCOPY, V4, P435, DOI 10.1016/S0304-3991(79)80021-2. COWLEY JM, 1993, ULTRAMICROSCOPY, V49, P4, DOI 10.1016/0304-3991(93)90208-F. COWLEY JM, 1984, ULTRAMICROSCOPY, V14, P27, DOI 10.1016/0304-3991(84)90103-7. COWLEY JM, 1983, J MICROSC-OXFORD, V129, P253, DOI 10.1111/j.1365-2818.1983.tb04182.x. COWLEY JM, 1981, ULTRAMICROSCOPY, V7, P181, DOI 10.1016/0304-3991(81)90008-5. COWLEY JM, 1990, ULTRAMICROSCOPY, V34, P293, DOI 10.1016/0304-3991(90)90023-F. COWLEY JM, 1992, ULTRAMICROSCOPY, V40, P171, DOI 10.1016/0304-3991(92)90058-R. COWLEY JM, 1957, P PHYS SOC LOND B, V70, P486, DOI 10.1088/0370-1301/70/5/305. COWLEY JM, 1979, CHEM SCRIPTA, V14, P33. COWLEY JM, 1982, ULTRAMICROSCOPY, V9, P231, DOI 10.1016/0304-3991(82)90205-4. COWLEY JM, 1968, ACTA CRYSTALL A-CRYS, VA 24, P109, DOI 10.1107/S0567739468000148. Cowley JM, 2004, MICRON, V35, P345, DOI 10.1016/j.micron.2003.12.002. COWLEY JM, 1992, ULTRAMICROSCOPY, V41, P335, DOI 10.1016/0304-3991(92)90213-4. Cowley JM, 1997, ULTRAMICROSCOPY, V68, P135, DOI 10.1016/S0304-3991(97)00022-3. Cowley JM, 2000, PHYS REV LETT, V84, P3618, DOI 10.1103/PhysRevLett.84.3618. COWLEY JM, 1989, J ELECTRON MICR TECH, V11, P143, DOI 10.1002/jemt.1060110209. COWLEY JM, 1981, ULTRAMICROSCOPY, V7, P19, DOI 10.1016/0304-3991(81)90019-X. Cowley JM, 2001, J ELECTRON MICROSC, V50, P147, DOI 10.1093/jmicro/50.3.147. COWLEY JM, 1973, ACTA CRYSTALLOGR A, VA 29, P529, DOI 10.1107/S0567739473001324. Cowley JM, 1999, MICROSC RES TECHNIQ, V46, P75, DOI 10.1002/(SICI)1097-0029(19990715)46:2<75::AID-JEMT2>3.3.CO;2-J. COWLEY JM, 1970, J APPL CRYSTALLOGR, V3, P49, DOI 10.1107/S0021889870005642. COWLEY JM, 1974, OPTIK, V40, P42. COWLEY JM, 1993, SURF SCI, V298, P456, DOI 10.1016/0039-6028(93)90061-N. COWLEY JM, 1976, ULTRAMICROSCOPY, V2, P3, DOI 10.1016/S0304-3991(76)90161-3. COWLEY JM, 1986, J ELECTRON MICR TECH, V3, P25, DOI 10.1002/jemt.1060030105. COWLEY JM, 1979, ULTRAMICROSCOPY, V4, P413, DOI 10.1016/S0304-3991(79)80018-2. COWLEY JM, 1969, APPL PHYS LETT, V15, P58, DOI 10.1063/1.1652901. CREMER C, 1978, MICROSC ACTA, V81, P31. Crewe AV, 2009, ADV IMAG ELECT PHYS, V159, P1, DOI 10.1016/S1076-5670(09)59001-5. CREWE AV, 1970, J MOL BIOL, V48, P375, DOI 10.1016/0022-2836(70)90052-5. CREWE AV, 1970, SCIENCE, V168, P1338, DOI 10.1126/science.168.3937.1338. CREWE AV, 1979, CHEM SCRIPTA, V14, P17. CREWE AV, 1969, REV SCI INSTRUM, V40, P241, DOI 10.1063/1.1683910. CREWE AV, 1971, REV SCI INSTRUM, V42, P411, DOI 10.1063/1.1685116. Crewe AV, 2004, MICROSC MICROANAL, V10, P414, DOI 10.1017/S1431927604040085. CREWE AV, 1995, J MICROSC-OXFORD, V178, P93, DOI 10.1111/j.1365-2818.1995.tb03584.x. CREWE AV, 1968, REV SCI INSTRUM, V39, P576, DOI 10.1063/1.1683435. CREWE AV, 1982, OPTIK, V60, P271. CREWE AV, 1974, J MICROSC-OXFORD, V100, P247, DOI 10.1111/j.1365-2818.1974.tb03937.x. CREWE AV, 1966, SCIENCE, V154, P729, DOI 10.1126/science.154.3750.729. CREWE AV, 1971, NATURE, V231, P262, DOI 10.1038/231262a0. CREWE AV, 1971, PHILOS T ROY SOC B, V261, P61, DOI 10.1098/rstb.1971.0037. CREWE AV, 1983, SCIENCE, V221, P325, DOI 10.1126/science.6867711. CREWE AV, 1968, J APPL PHYS, V39, P5861, DOI 10.1063/1.1656079. Crewe AV., 1974, P ANN M EMSA, V32, P426. Crewe AV., 1980, ELECT MICROSC, V1, P36. Crewe AV., 1983, USPatent, Patent No. {[}4,389,571, 4389571]. Crewe AV., 1963, J MICROSCOPIE, V2, P369. Cueva P, 2012, MICROSC MICROANAL, V18, P667, DOI 10.1017/S1431927612000244. Cui J, 2017, ULTRAMICROSCOPY, V182, P156, DOI 10.1016/j.ultramic.2017.07.007. D'Alfonso AJ, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.100101. DABERKOW I, 1993, ULTRAMICROSCOPY, V50, P75, DOI 10.1016/0304-3991(93)90092-C. Dabov K, 2007, IEEE T IMAGE PROCESS, V16, P2080, DOI 10.1109/TIP.2007.901238. Das S, 2019, NATURE, V568, P368, DOI 10.1038/s41586-019-1092-8. DAVIDOVI.P, 1971, APPL OPTICS, V10, P1615, DOI 10.1364/AO.10.001615. DAVIDOVITS P, 1969, NATURE, V223, P831, DOI 10.1038/223831a0. Davisson C, 1927, NATURE, V119, P558, DOI 10.1038/119558a0. De Backer A, 2016, ULTRAMICROSCOPY, V171, P104, DOI 10.1016/j.ultramic.2016.08.018. De Backer A, 2015, ULTRAMICROSCOPY, V151, P56, DOI 10.1016/j.ultramic.2014.11.028. De Backer A, 2013, ULTRAMICROSCOPY, V134, P23, DOI 10.1016/j.ultramic.2013.05.003. De Broglie L, 1923, NATURE, V112, P540, DOI 10.1038/112540a0. de Broglie L, 1924, PHILOS MAG, V47, P446, DOI 10.1080/14786442408634378. de Graaf S, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aay4312. de Jonge N, 2009, P NATL ACAD SCI USA, V106, P2159, DOI 10.1073/pnas.0809567106. DEKKERS NH, 1974, OPTIK, V41, P452. Dellby N, 2011, EUR PHYS J-APPL PHYS, V54, DOI 10.1051/epjap/2011100429. Dellby N, 2001, J ELECTRON MICROSC, V50, P177, DOI 10.1093/jmicro/50.3.177. den Dekker AJ, 2013, ULTRAMICROSCOPY, V134, P34, DOI 10.1016/j.ultramic.2013.05.017. den Dekker AJ, 2005, ULTRAMICROSCOPY, V104, P83, DOI 10.1016/j.ultramic.2005.03.001. DeRocher KA, 2020, NATURE, V583, P66, DOI 10.1038/s41586-020-2433-3. DEROSIER DJ, 1968, NATURE, V217, P130, DOI 10.1038/217130a0. DERUIJTER WJ, 1995, MICRON, V26, P247, DOI 10.1016/0968-4328(95)00054-8. Dickson RM, 1997, NATURE, V388, P355, DOI 10.1038/41048. DINGES C, 1994, ULTRAMICROSCOPY, V55, P91, DOI 10.1016/0304-3991(94)90083-3. dos Reis R, 2018, APPL PHYS LETT, V112, DOI 10.1063/1.5017537. Dowell WCT., 1963, OPTIK, V20, P535. Drake S., 2003, GALILEO WORK HIS SCI. DUBOCHET J, 1988, Q REV BIOPHYS, V21, P129, DOI 10.1017/S0033583500004297. Dunn-Borkowski RE, 1999, ACTA CRYSTALLOGR A, V55, P119, DOI 10.1107/S0108767398006989. Dwyer C, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.224102. Dwyer C, 2013, ADV IMAG ELECT PHYS, V175, P145, DOI 10.1016/B978-0-12-407670-9.00003-2. Dycus JH, 2016, ULTRAMICROSCOPY, V171, P1, DOI 10.1016/j.ultramic.2016.08.013. DYKE WP, 1953, J APPL PHYS, V24, P570, DOI 10.1063/1.1721330. E H, 2013, ULTRAMICROSCOPY, V133, P109, DOI 10.1016/j.ultramic.2013.07.002. EARNEY JJ, 1971, PHILOS MAG, V23, P577, DOI 10.1080/14786437108216405. Egerton RF, 2019, MICRON, V119, P72, DOI 10.1016/j.micron.2019.01.005. Egerton RF, 2014, ULTRAMICROSCOPY, V145, P85, DOI 10.1016/j.ultramic.2013.10.019. Egerton RF, 2013, ULTRAMICROSCOPY, V127, P100, DOI 10.1016/j.ultramic.2012.07.006. Egerton RF, 2010, ULTRAMICROSCOPY, V110, P991, DOI 10.1016/j.ultramic.2009.11.003. Egerton RF, 2004, MICRON, V35, P399, DOI 10.1016/j.micron.2004.02.003. Elad N, 2017, P NATL ACAD SCI USA, V114, P11139, DOI 10.1073/pnas.1708609114. Ellisman, 2019, MICROSC MICROANAL, V25, P1060, DOI DOI 10.1017/S1431927619006032. ENGEL A, 1974, J APPL PHYS, V45, P2739, DOI 10.1063/1.1663659. Engel A, 2009, ADV IMAG ELECT PHYS, V159, P357, DOI 10.1016/S1076-5670(09)59009-X. Erni R., 2014, ABERRATION CORRECTED. Erni R, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.096101. EVERHART TE, 1960, J SCI INSTRUM, V37, P246, DOI 10.1088/0950-7671/37/7/307. FAN GY, 1993, ULTRAMICROSCOPY, V52, P21, DOI 10.1016/0304-3991(93)90019-T. Fang S, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08904-9. Fatermans J, 2020, ULTRAMICROSCOPY, V219, DOI 10.1016/j.ultramic.2020.113046. Fatermans J, 2019, ULTRAMICROSCOPY, V201, P81, DOI 10.1016/j.ultramic.2019.02.003. Fatermans J, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.056101. Feng B, 2018, ULTRAMICROSCOPY, V193, P33, DOI 10.1016/j.ultramic.2018.05.010. Fernandez-Leiro R, 2016, NATURE, V537, P339, DOI 10.1038/nature19948. FERTIG J, 1977, ULTRAMICROSCOPY, V2, P269. FERTIG J, 1979, OPTIK, V54, P165. FERTIG J, 1981, OPTIK, V59, P407. Findlay SD, 2014, ULTRAMICROSCOPY, V136, P31, DOI 10.1016/j.ultramic.2013.07.019. Findlay SD, 2013, ULTRAMICROSCOPY, V124, P52, DOI 10.1016/j.ultramic.2012.09.001. Findlay SD, 2010, ULTRAMICROSCOPY, V110, P903, DOI 10.1016/j.ultramic.2010.04.004. Findlay SD, 2009, APPL PHYS LETT, V95, DOI 10.1063/1.3265946. Findlay SD, 2010, APPL PHYS EXPRESS, V3, DOI 10.1143/APEX.3.116603. Findlay SD, 2017, MICROSCOPY-JPN, V66, P3, DOI 10.1093/jmicro/dfw041. Forbes BD, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.024108. Forbes BD, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.104103. Fowler RH, 1928, P R SOC LOND A-CONTA, V119, P173, DOI 10.1098/rspa.1928.0091. Frank J., 1992, ELECT TOMOGRAPHY 3 D, P17. Frank J, 2016, MICROSCOPY-JPN, V65, P3, DOI 10.1093/jmicro/dfv358. GAJDARDZISKAJOSIFOVSKA M, 1995, ULTRAMICROSCOPY, V58, P65, DOI 10.1016/0304-3991(94)00179-Q. Gao P, 2018, ULTRAMICROSCOPY, V184, P177, DOI 10.1016/j.ultramic.2017.09.001. Gao P, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11318. Gao WP, 2019, NATURE, V575, P480, DOI 10.1038/s41586-019-1649-6. de Abajo FJG, 2010, REV MOD PHYS, V82, P209, DOI 10.1103/RevModPhys.82.209. GEMMELL DS, 1974, REV MOD PHYS, V46, P129, DOI 10.1103/RevModPhys.46.129. GILBERT P, 1972, J THEOR BIOL, V36, P105, DOI 10.1016/0022-5193(72)90180-4. Gomer R., 1961, FIELD EMISSION FIELD. Goodge, 2020, ARXIV200709747. GORDON R, 1970, J THEOR BIOL, V29, P471, DOI 10.1016/0022-5193(70)90109-8. Grieb T, 2013, ULTRAMICROSCOPY, V129, P1, DOI 10.1016/j.ultramic.2013.02.006. Grieb T, 2012, ULTRAMICROSCOPY, V117, P15, DOI 10.1016/j.ultramic.2012.03.014. Grillo V, 2011, J PHYS CONF SER, V326, DOI 10.1088/1742-6596/326/1/012006. Grillo V, 2011, J PHYS CONF SER, V326, DOI 10.1088/1742-6596/326/1/012036. Grillo V, 2009, ULTRAMICROSCOPY, V109, P1453, DOI 10.1016/j.ultramic.2009.07.010. Gu L, 2015, ADV MATER, V27, P2134, DOI 10.1002/adma.201404620. Gu L, 2011, J AM CHEM SOC, V133, P4661, DOI 10.1021/ja109412x. Hachtel JA, 2019, SCIENCE, V363, P525, DOI 10.1126/science.aav5845. Hachtel JA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23805-5. Hage FS, 2020, PHYS REV B, V102, DOI 10.1103/PhysRevB.102.214111. Hage FS, 2020, SCIENCE, V367, P1124, DOI 10.1126/science.aba1136. Hage FS, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.016103. HAIDER M, 1994, ULTRAMICROSCOPY, V54, P41, DOI 10.1016/0304-3991(94)90091-4. Haider M, 2000, ULTRAMICROSCOPY, V81, P163, DOI 10.1016/S0304-3991(99)00194-1. HAIDER M, 1995, OPTIK, V99, P167. Haider M, 1998, NATURE, V392, P768, DOI 10.1038/33823. HAINFELD JF, 1987, SCIENCE, V236, P450, DOI 10.1126/science.3563522. HALL CR, 1965, PHILOS MAG, V12, P815, DOI 10.1080/14786436508218919. HALL CR, 1965, PROC R SOC LON SER-A, V286, P158, DOI 10.1098/rspa.1965.0136. HAMMEL M, 1995, ULTRAMICROSCOPY, V58, P403, DOI 10.1016/0304-3991(95)00007-N. Han YM, 2018, NANO LETT, V18, P3746, DOI 10.1021/acs.nanolett.8b00952. Hawkes PW, 2015, ULTRAMICROSCOPY, V156, pA1, DOI 10.1016/j.ultramic.2015.03.007. Hawkes PW, 2009, ADV IMAG ELECT PHYS, V159, P187, DOI 10.1016/S1076-5670(09)59005-2. Hawkes PW, 2009, PHILOS T R SOC A, V367, P3637, DOI 10.1098/rsta.2009.0004. Hawkes P.W., 2019, SPRINGER HDB MICROSC. Hawkes PW., 1980, ADV ELECTRON ELE A S, V13A, P45. HEGERL R, 1970, BERICH BUNSEN GESELL, V74, P1148, DOI 10.1002/bbpc.19700741112. Hegerl R, 1972, PROCEEDING 5 EUROPEA, P628. HEINEMANN K, 1972, APPL PHYS LETT, V20, P122, DOI 10.1063/1.1654073. HEINEMANN K, 1970, APPL PHYS LETT, V16, P515, DOI 10.1063/1.1653087. Hell SW, 2003, NAT BIOTECHNOL, V21, P1347, DOI 10.1038/nbt895. HELL SW, 1994, OPT LETT, V19, P780, DOI 10.1364/OL.19.000780. Hillier J, 1944, J APPL PHYS, V15, P663, DOI 10.1063/1.1707491. HILLYARD S, 1993, ULTRAMICROSCOPY, V52, P325, DOI 10.1016/0304-3991(93)90043-W. HILLYARD S, 1993, ULTRAMICROSCOPY, V49, P14, DOI 10.1016/0304-3991(93)90209-G. Hooke Robert, 1665, MICROGRAPHIA. HOWIE A, 1971, PHILOS MAG, V23, P1559, DOI 10.1080/14786437108217023. HOWIE A, 1979, J MICROSC-OXFORD, V117, P11, DOI 10.1111/j.1365-2818.1979.tb00228.x. Huang B, 2009, ANNU REV BIOCHEM, V78, P993, DOI 10.1146/annurev.biochem.77.061906.092014. HUANG K, 1947, PROC R SOC LON SER-A, V190, P102, DOI 10.1098/rspa.1947.0064. Huang R, 2014, ADV FUNCT MATER, V24, P793, DOI 10.1002/adfm.201301470. Huang R, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3551538. Hyun JK, 2008, ULTRAMICROSCOPY, V109, P1, DOI 10.1016/j.ultramic.2008.07.003. Idrobo JC, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.095901. IIJIMA S, 1971, J APPL PHYS, V42, P5891, DOI 10.1063/1.1660042. Ikuhara Y., 2016, MICROSC MICROANAL, V22, P888, DOI DOI 10.1017/S1431927616005286. Inada H, 2009, ADV IMAG ELECT PHYS, V159, P123, DOI 10.1016/S1076-5670(09)59004-0. ISAACSON M, 1979, ULTRAMICROSCOPY, V4, P101, DOI 10.1016/0304-3991(79)90013-5. ISAACSON M, 1977, P NATL ACAD SCI USA, V74, P1802, DOI 10.1073/pnas.74.5.1802. ISAACSON M, 1975, ULTRAMICROSCOPY, V1, P33, DOI 10.1016/S0304-3991(75)80006-4. ISAACSON M, 1972, J CHEM PHYS, V56, P1803, DOI 10.1063/1.1677456. Ishikawa R, 2016, APPL PHYS LETT, V109, DOI 10.1063/1.4965709. Ishikawa R, 2015, ULTRAMICROSCOPY, V151, P122, DOI 10.1016/j.ultramic.2014.11.009. Ishikawa R, 2014, NANO LETT, V14, P1903, DOI 10.1021/nl500564b. Ishikawa R, 2011, NAT MATER, V10, P278, DOI 10.1038/NMAT2957. Itakura M, 2013, JPN J APPL PHYS, V52, DOI 10.7567/JJAP.52.050201. James EM, 1998, J ELECTRON MICROSC, V47, P561, DOI 10.1093/oxfordjournals.jmicro.a023629. James EM, 1999, ULTRAMICROSCOPY, V78, P125, DOI 10.1016/S0304-3991(99)00018-2. Jeong JS, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.075501. JESSON DE, 1995, P R SOC-MATH PHYS SC, V449, P273, DOI 10.1098/rspa.1995.0044. JESSON DE, 1993, P ROY SOC LOND A MAT, V441, P261, DOI 10.1098/rspa.1993.0060. JESSON DE, 1993, PHYS REV LETT, V71, P1744, DOI 10.1103/PhysRevLett.71.1744. JESSON DE, 1993, PHYS REV LETT, V70, P2293, DOI 10.1103/PhysRevLett.70.2293. Jiang N, 2016, REP PROG PHYS, V79, DOI 10.1088/0034-4885/79/1/016501. Jiang Y, 2018, NATURE, V559, P343, DOI 10.1038/s41586-018-0298-5. Johnson JM, 2017, ULTRAMICROSCOPY, V172, P17, DOI 10.1016/j.ultramic.2016.10.007. Jones L, 2014, J MICROSC-OXFORD, V254, P47, DOI 10.1111/jmi.12117. Jones L, 2013, MICROSC MICROANAL, V19, P1050, DOI 10.1017/S1431927613001402. JOY DC, 1982, J APPL PHYS, V53, pR81, DOI 10.1063/1.331668. Kabius, 1997, OPTIK SUPPL 7, V106, pS7. Kalinin SV, 2019, MRS BULL, V44, P565, DOI 10.1557/mrs.2019.159. Kalinin SV, 2015, NAT MATER, V14, P973, DOI {[}10.1038/nmat4395, 10.1038/NMAT4395]. KAMBE K, 1974, Z NATURFORSCH A, VA 29, P1034. KAMBE K, 1982, ULTRAMICROSCOPY, V10, P223, DOI 10.1016/0304-3991(82)90042-0. Kim YJ, 2013, ACS NANO, V7, P732, DOI 10.1021/nn305029b. Kim YM, 2017, ULTRAMICROSCOPY, V181, P1, DOI 10.1016/j.ultramic.2017.04.020. Kimoto K, 2007, NATURE, V450, P702, DOI 10.1038/nature06352. Kimoto K, 2017, ULTRAMICROSCOPY, V180, P59, DOI 10.1016/j.ultramic.2017.03.021. Kimoto K, 2014, MICROSCOPY-JPN, V63, P337, DOI 10.1093/jmicro/dfu027. Kirkland EJ, 2011, ULTRAMICROSCOPY, V111, P1523, DOI 10.1016/j.ultramic.2011.09.002. KIRKLAND EJ, 1987, ULTRAMICROSCOPY, V23, P77, DOI 10.1016/0304-3991(87)90229-4. Klar TA, 2000, P NATL ACAD SCI USA, V97, P8206, DOI 10.1073/pnas.97.15.8206. Klenov DO, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.014111. Klenov DO, 2006, ULTRAMICROSCOPY, V106, P889, DOI 10.1016/j.ultramic.2006.03.007. Klenov DO, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3645632. Knoll M, 1941, PHYS Z, V42, P120. Knoll M., 1935, Z TECH PHYS, V16, P467. Kobayashi S, 2012, APPL PHYS LETT, V100, DOI 10.1063/1.4714920. KOMAKI K, 1974, PHYS LETT A, VA 49, P445, DOI 10.1016/0375-9601(74)90309-0. KOMODA T, 1966, JPN J APPL PHYS, V5, P603, DOI 10.1143/JJAP.5.603. KONNERT J, 1986, ULTRAMICROSCOPY, V19, P267, DOI 10.1016/0304-3991(86)90214-7. KONNERT J, 1989, ULTRAMICROSCOPY, V30, P371, DOI 10.1016/0304-3991(89)90068-5. Kothleitner G, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.085501. Kotula PG, 2012, MICROSC MICROANAL, V18, P691, DOI 10.1017/S1431927612001201. Kourkoutis LF, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.075485. Kourkoutis LF, 2010, PHILOS MAG, V90, P4731, DOI 10.1080/14786435.2010.518983. Kovarik L, 2016, APPL PHYS LETT, V109, DOI 10.1063/1.4965720. KREINER HJ, 1970, PHYS LETT A, VA 33, P135, DOI 10.1016/0375-9601(70)90693-6. Krivanek, 2020, RECIPIENTS 2020 KAVL. Krivanek OL, 2008, ULTRAMICROSCOPY, V108, P179, DOI 10.1016/j.ultramic.2007.07.010. Krivanek OL, 2019, ULTRAMICROSCOPY, V203, P60, DOI 10.1016/j.ultramic.2018.12.006. Krivanek OL, 1999, ULTRAMICROSCOPY, V78, P1, DOI 10.1016/S0304-3991(99)00013-3. Krivanek OL, 2003, ULTRAMICROSCOPY, V96, P229, DOI 10.1016/S0304-3991(03)00090-1. Krivanek OL, 1998, ELECTRON MICROSCOPY 1998, VOL 1, P55. Krivanek OL, 1997, INST PHYS CONF SER, P35. Krivanek OL, 2014, NATURE, V514, P209, DOI 10.1038/nature13870. Krivanek OL, 2014, J PHYS CONF SER, V522, DOI 10.1088/1742-6596/522/1/012023. Krivanek OL, 2013, MICROSCOPY-JPN, V62, P3, DOI 10.1093/jmicro/dfs089. Krivanek OL, 2010, ULTRAMICROSCOPY, V110, P935, DOI 10.1016/j.ultramic.2010.02.007. Krivanek OL, 2010, NATURE, V464, P571, DOI 10.1038/nature08879. Krivanek OL, 2009, PHILOS T R SOC A, V367, P3683, DOI 10.1098/rsta.2009.0087. KRUIT P, 1988, ULTRAMICROSCOPY, V25, P183, DOI 10.1016/0304-3991(88)90013-7. Kuhlbrandt W, 2014, SCIENCE, V343, P1443, DOI 10.1126/science.1251652. Laanait N, 2019, ARXIV190206876. Lagos MJ, 2017, NATURE, V543, P529, DOI 10.1038/nature21699. Lane N, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0344. LANGMORE JP, 1973, OPTIK, V38, P335. Lazic I, 2016, ULTRAMICROSCOPY, V160, P265, DOI 10.1016/j.ultramic.2015.10.011. Leapman RD, 2003, J MICROSC-OXFORD, V210, P5, DOI 10.1046/j.1365-2818.2003.01173.x. LEAPMAN RD, 1988, ULTRAMICROSCOPY, V24, P251, DOI 10.1016/0304-3991(88)90314-2. LEAPMAN RD, 1992, J MICROSC-OXFORD, V165, P225, DOI 10.1111/j.1365-2818.1992.tb01482.x. Leary R, 2013, ULTRAMICROSCOPY, V131, P70, DOI 10.1016/j.ultramic.2013.03.019. LeBeau JM, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.206101. LeBeau JM, 2008, ULTRAMICROSCOPY, V108, P1653, DOI 10.1016/j.ultramic.2008.07.001. LeBeau JM, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.174106. LeBeau JM, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.214110. Lee S, 2012, JPN J APPL PHYS, V51, DOI 10.1143/JJAP.51.020202. Lee S, 2013, ULTRAMICROSCOPY, V125, P43, DOI 10.1016/j.ultramic.2012.09.011. LEVINE E, 1966, J APPL PHYS, V37, P2141, DOI 10.1063/1.1708749. Li YZ, 2017, SCIENCE, V358, P506, DOI 10.1126/science.aam6014. Liberti E, 2020, ULTRAMICROSCOPY, V210, DOI 10.1016/j.ultramic.2019.112914. LILBURNE MT, 1970, J PHYS E SCI INSTRUM, V3, P936, DOI 10.1088/0022-3735/3/11/433. Lin BQ, 2020, ANGEW CHEM INT EDIT, V59, P20348, DOI 10.1002/anie.202006562. LIN JA, 1986, ULTRAMICROSCOPY, V19, P179, DOI 10.1016/0304-3991(86)90204-4. LIN JA, 1986, ULTRAMICROSCOPY, V19, P31, DOI 10.1016/0304-3991(86)90005-7. Lin YC, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.206803. Lindhard J., 1965, K DAN VIDENSK SELSK, V34, P14. Liu, 1990, P 12 INT C EL MICR, V1, P33. LIU J, 1993, ULTRAMICROSCOPY, V52, P369, DOI 10.1016/0304-3991(93)90048-3. LIU J, 1990, ULTRAMICROSCOPY, V34, P119, DOI 10.1016/0304-3991(90)90066-U. LIU J, 1993, ULTRAMICROSCOPY, V52, P335, DOI 10.1016/0304-3991(93)90044-X. LIU J, 1991, ULTRAMICROSCOPY, V37, P50, DOI 10.1016/0304-3991(91)90006-R. LIU J, 1992, SURF SCI, V262, pL111, DOI 10.1016/0039-6028(92)90118-P. Liu JY, 2017, ACS CATAL, V7, P34, DOI 10.1021/acscatal.6b01534. Liu JY, 2010, MICROSC MICROANAL, V16, P425, DOI 10.1017/S1431927610000450. Liu J, 2017, CHINESE J CATAL, V38, P1460, DOI 10.1016/S1872-2067(17)62900-0. Liu JY, 2011, CHEMCATCHEM, V3, P934, DOI 10.1002/cctc.201100090. Liu JY, 2005, J ELECTRON MICROSC, V54, P251, DOI 10.1093/jmicro/dfi034. Liu JY, 2004, MICROSC MICROANAL, V10, P55, DOI 10.1017/S1431927604040310. LOANE RF, 1991, ACTA CRYSTALLOGR A, V47, P267, DOI 10.1107/S0108767391000375. LOANE RF, 1992, ULTRAMICROSCOPY, V40, P121, DOI 10.1016/0304-3991(92)90054-N. LOANE RF, 1988, ACTA CRYSTALLOGR A, V44, P912, DOI 10.1107/S0108767388006403. Lohr M, 2016, PHYS STATUS SOLIDI B, V253, P140, DOI 10.1002/pssb.201552288. Londono-Calderon A, 2020, SMALL, V16, DOI 10.1002/smll.202005447. Lozano JG, 2018, NANO LETT, V18, P6850, DOI 10.1021/acs.nanolett.8b02718. Lu P, 2018, ULTRAMICROSCOPY, V186, P23, DOI 10.1016/j.ultramic.2017.12.003. Lu P, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4804184. LUBKIN GB, 1974, PHYS TODAY, V27, P17. Lugg NR, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.144108. Lugg NR, 2015, ULTRAMICROSCOPY, V151, P150, DOI 10.1016/j.ultramic.2014.11.029. Lugg NR, 2014, MICROSC MICROANAL, V20, P1078, DOI 10.1017/S1431927614000804. Lupini AR, 2010, ULTRAMICROSCOPY, V110, P891, DOI 10.1016/j.ultramic.2010.04.006. Lupini AR, 2008, J ELECTRON MICROSC, V57, P195, DOI 10.1093/jmicro/dfn022. LYMAN CE, 1994, J MICROSC-OXFORD, V176, P85, DOI 10.1111/j.1365-2818.1994.tb03503.x. MacArthur KE, 2014, J PHYS CONF SER, V522, DOI 10.1088/1742-6596/522/1/012018. MacArthur KE, 2017, ULTRAMICROSCOPY, V182, P264, DOI 10.1016/j.ultramic.2017.07.020. Maccagnano-Zacher SE, 2008, ULTRAMICROSCOPY, V108, P718, DOI 10.1016/j.ultramic.2007.11.003. Mahr C, 2021, ULTRAMICROSCOPY, V221, DOI 10.1016/j.ultramic.2020.113196. Maiden AM, 2009, ULTRAMICROSCOPY, V109, P1256, DOI 10.1016/j.ultramic.2009.05.012. Mao Y, 2010, IEEE T IMAGE PROCESS, V19, P1259, DOI 10.1109/TIP.2009.2039660. Marko M, 2010, MICROSC MICROANAL, V16, P366, DOI 10.1017/S143192761000019X. MARTIN EE, 1960, J APPL PHYS, V31, P782, DOI 10.1063/1.1735699. Martinez GT, 2014, MICRON, V63, P57, DOI 10.1016/j.micron.2013.12.009. Martinez GT, 2014, ULTRAMICROSCOPY, V137, P12, DOI 10.1016/j.ultramic.2013.11.001. MATHEWS WILLIS W., 1953, TRANS AMER MICROSC SOC, V72, P190, DOI 10.2307/3223521. Matsumoto T, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501280. MCCOWLEY J, 1984, ACS SYM SER, V248, P353. McMullan, 1990, P ROY MICROSC SOC, V25, P127. MCMULLAN D, 1989, J MICROSC-OXFORD, V155, P373, DOI 10.1111/j.1365-2818.1989.tb02897.x. MCMULLAN D, 1995, SCANNING, V17, P175, DOI 10.1002/sca.4950170309. McMullan G, 2014, ULTRAMICROSCOPY, V147, P156, DOI 10.1016/j.ultramic.2014.08.002. Meads, 1968, P 4 REG C EL MICR, P183. Mehrtens T, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4799382. Mendis SK, 1997, IEEE J SOLID-ST CIRC, V32, P187, DOI 10.1109/4.551910. MENTER JW, 1956, PROC R SOC LON SER-A, V236, P119, DOI 10.1098/rspa.1956.0117. Miao J, 2016, SCIENCE, V353, DOI 10.1126/science.aaf2157. Miao JW, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.052103. Midgley PA, 2003, ULTRAMICROSCOPY, V96, P413, DOI 10.1016/S0304-3991(03)00105-0. Midgley PA, 2009, NAT MATER, V8, P271, DOI 10.1038/nmat2406. Minamikawa, 1972, P 6 INT C XRAY OPT M, P483. Minor AM, 2019, MRS BULL, V44, P961, DOI 10.1557/mrs.2019.288. MINSKY M, 1988, SCANNING, V10, P128, DOI 10.1002/sca.4950100403. Minsky M, 1957, U.S. Patent, Patent No. {[}3.013.467, 3013467]. MISELL DL, 1974, J PHYS D APPL PHYS, V7, pL113, DOI 10.1088/0022-3727/7/10/103. Mitsuishi K, 2001, J ELECTRON MICROSC, V50, P157, DOI 10.1093/jmicro/50.3.157. MOERNER WE, 1989, PHYS REV LETT, V62, P2535, DOI 10.1103/PhysRevLett.62.2535. Monkman EJ, 2012, NAT MATER, V11, P855, DOI {[}10.1038/nmat3405, 10.1038/NMAT3405]. Morishita S, 2018, MICROSCOPY-JPN, V67, P46, DOI 10.1093/jmicro/dfx122. Muller-Caspary K, 2019, ULTRAMICROSCOPY, V203, P95, DOI 10.1016/j.ultramic.2018.12.018. Muller DA, 2008, SCIENCE, V319, P1073, DOI 10.1126/science.1148820. MULLER DA, 1993, NATURE, V366, P725, DOI 10.1038/366725a0. Muller DA, 2001, ULTRAMICROSCOPY, V86, P371, DOI 10.1016/S0304-3991(00)00128-5. Muller DA, 2006, ULTRAMICROSCOPY, V106, P1033, DOI 10.1016/j.ultramic.2006.04.017. Muller DA, 2009, NAT MATER, V8, P263, DOI {[}10.1038/NMAT2380, 10.1038/nmat2380]. Muller-Caspary K, 2016, SCI REP-UK, V6, DOI 10.1038/srep37146. Nakane T, 2020, NATURE, V587, P152, DOI 10.1038/s41586-020-2829-0. Nation, 2014, CELL STRUCTURE FUNCT. Nellist P.D., 2007, SCI MICROSCOPY, P65. Nellist P.D., 2011, SCANNING TRANSMISSIO, P91, DOI {[}DOI 10.1007/978-1-4419-7200-2\_2., 10.1007/978-1-4419-7200-2\_2]. Nellist PD, 1996, SCIENCE, V274, P413, DOI 10.1126/science.274.5286.413. Nellist PD, 1999, ULTRAMICROSCOPY, V78, P111, DOI 10.1016/S0304-3991(99)00017-0. Nellist PD, 2004, SCIENCE, V305, P1741, DOI 10.1126/science.1100965. NELLIST PD, 1995, NATURE, V374, P630, DOI 10.1038/374630a0. Nellist PD, 2000, ADV IMAG ELECT PHYS, V113, P147, DOI 10.1016/S1076-5670(00)80013-0. Nellist PD., 2011, SCANNING TRANSMISSIO, P117. Nellist PD, 2017, MAT SCI SEMICON PROC, V65, P18, DOI 10.1016/j.mssp.2016.09.041. Nicholls D, 2020, NANOSCALE, V12, P21248, DOI 10.1039/d0nr04589f. Nicoletti O, 2013, NATURE, V502, P80, DOI 10.1038/nature12469. NORTON DP, 1991, PHYS REV LETT, V67, P1358, DOI 10.1103/PhysRevLett.67.1358. O'Keefe MA, 2005, J ELECTRON MICROSC, V54, P169, DOI 10.1093/jmicro/dfi036. O'Keefe MA, 2004, MICROSC MICROANAL, V10, P86, DOI 10.1017/S143192760404019X. OATLEY CW, 1982, J APPL PHYS, V53, pR1, DOI 10.1063/1.331666. Oatley W., 1966, ADV ELECTRON, V21, P181, DOI DOI 10.1016/S0065-2539(08)61010-0. Ohtsuka M, 2012, ULTRAMICROSCOPY, V120, P48, DOI 10.1016/j.ultramic.2012.06.006. OKEEFE MA, 1992, ULTRAMICROSCOPY, V47, P282, DOI 10.1016/0304-3991(92)90203-V. Okunishi E, 2009, MICROSC MICROANAL, V15, P164, DOI 10.1017/S1431927609093891. Ooe K, 2021, ULTRAMICROSCOPY, V220, DOI 10.1016/j.ultramic.2020.113133. Ooe K, 2019, ULTRAMICROSCOPY, V202, P148, DOI 10.1016/j.ultramic.2019.04.011. Ophus C, 2019, MICROSC MICROANAL, V25, P563, DOI 10.1017/S1431927619000497. Ophus C, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10719. Ophus C, 2016, ULTRAMICROSCOPY, V162, P1, DOI 10.1016/j.ultramic.2015.12.002. Oshima Y, 2010, J ELECTRON MICROSC, V59, P457, DOI 10.1093/jmicro/dfq017. OTTENSMEYER FP, 1980, J ULTRA MOL STRUCT R, V72, P336, DOI 10.1016/S0022-5320(80)90069-6. Oveisi E, 2019, ULTRAMICROSCOPY, V200, P139, DOI 10.1016/j.ultramic.2019.02.004. Oxley MP, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.064303. PAN M, 1990, ULTRAMICROSCOPY, V34, P93, DOI 10.1016/0304-3991(90)90063-R. PEASE RFW, 1965, J SCI INSTRUM, V42, P81, DOI 10.1088/0950-7671/42/2/305. Pekin TC, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10416-5. Peng YP, 2008, MICROSC MICROANAL, V14, P36, DOI 10.1017/S1431927608080161. Pennycook S.J., 2011, SCANNING TRANSMISSIO. PENNYCOOK SJ, 1988, NATURE, V336, P565, DOI 10.1038/336565a0. PENNYCOOK SJ, 1989, ULTRAMICROSCOPY, V30, P58, DOI 10.1016/0304-3991(89)90173-3. PENNYCOOK SJ, 1992, ACTA METALL MATER, V40, pS149, DOI 10.1016/0956-7151(92)90275-J. PENNYCOOK SJ, 1990, PHYS REV LETT, V64, P938, DOI 10.1103/PhysRevLett.64.938. PENNYCOOK SJ, 1991, ULTRAMICROSCOPY, V37, P14, DOI 10.1016/0304-3991(91)90004-P. PENNYCOOK SJ, 1985, PHYS REV LETT, V54, P1543, DOI 10.1103/PhysRevLett.54.1543. Pennycook SJ., 1989, EMSA B, V19, P67. Pennycook SJ, 2017, ULTRAMICROSCOPY, V180, P22, DOI 10.1016/j.ultramic.2017.03.020. PEROVIC DD, 1993, PHIL MAG LETT, V67, P261, DOI 10.1080/09500839308240938. PEROVIC DD, 1993, ULTRAMICROSCOPY, V52, P353, DOI 10.1016/0304-3991(93)90046-Z. Phillips PJ, 2012, ULTRAMICROSCOPY, V116, P47, DOI 10.1016/j.ultramic.2012.03.013. Pingel TN, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05055-1. Plotkin-Swing B, 2020, ULTRAMICROSCOPY, V217, DOI 10.1016/j.ultramic.2020.113067. POGANY AP, 1968, ACTA CRYSTALL A-CRYS, VA 24, P103, DOI 10.1107/S0567739468000136. Pujals S, 2019, NAT REV CHEM, V3, P68, DOI 10.1038/s41570-018-0070-2. Qiao BT, 2011, NAT CHEM, V3, P634, DOI {[}10.1038/nchem.1095, 10.1038/NCHEM.1095]. RADON J, 1986, IEEE T MED IMAGING, V5, P170, DOI 10.1109/TMI.1986.4307775. Rafferty B, 2001, J ELECTRON MICROSC, V50, P227, DOI 10.1093/jmicro/50.3.227. Ramasse QM, 2005, ULTRAMICROSCOPY, V106, P37, DOI 10.1016/j.ultramic.2005.06.007. Ramasse QM, 2013, NANO LETT, V13, P4989, DOI 10.1021/nl304187e. Rayleigh F. R. S. Lord, 1879, PHILOS MAG, V5, P261, DOI 10.1080/14786447908639684. Rayleigh XV., 1896, LONDON EDINBURGH DUB, V42, P167, DOI {[}10.1080/14786449608620902, DOI 10.1080/14786449608620902]. Recnik A, 2005, ULTRAMICROSCOPY, V103, P285, DOI 10.1016/j.ultramic.2005.01.003. RETSKY M, 1974, OPTIK, V41, P127. REZ P, 1977, PHILOS MAG, V35, P81, DOI 10.1080/14786437708235974. Rez P, 2021, ULTRAMICROSCOPY, V220, DOI 10.1016/j.ultramic.2020.113162. RICE SB, 1990, ULTRAMICROSCOPY, V34, P108, DOI 10.1016/0304-3991(90)90065-T. RITCHIE RH, 1988, PHILOS MAG A, V58, P753, DOI 10.1080/01418618808209951. ROBINSON MT, 1963, APPL PHYS LETT, V2, P30, DOI 10.1063/1.1753757. RODENBURG JM, 1989, ULTRAMICROSCOPY, V27, P413, DOI 10.1016/0304-3991(89)90009-0. RODENBURG JM, 1993, ULTRAMICROSCOPY, V48, P304, DOI 10.1016/0304-3991(93)90105-7. RODENBURG JM, 1988, ULTRAMICROSCOPY, V25, P329, DOI 10.1016/0304-3991(88)90007-1. RODENBURG JM, 1992, PHILOS T R SOC A, V339, P521, DOI 10.1098/rsta.1992.0050. RODENBURG JM, 1985, J PHYS E SCI INSTRUM, V18, P949, DOI 10.1088/0022-3735/18/11/016. RONCHI V, 1964, APPL OPTICS, V3, P437, DOI 10.1364/AO.3.000437. ROSE H, 1974, OPTIK, V39, P416. ROSE H, 1977, ULTRAMICROSCOPY, V2, P251. ROSE H, 1976, OPTIK, V45, P139. ROSE H, 1990, OPTIK, V85, P19. Rose HH, 2008, SCI TECHNOL ADV MAT, V9, DOI 10.1088/0031-8949/9/1/014107. Rose HH, 2009, J ELECTRON MICROSC, V58, P77, DOI 10.1093/jmicro/dfp012. Saito S., 1972, P 5 ANN SCANN EL MIC, P129. Small JA., 1992, P ANN EMSA M, P1224. Spence, 2019, SPRINGER HDB MICROSC. Spence, 2019, SPRINGER HDB MICROSC. Spinnler, 1993, P 51 ANN M MICR SOC, P1058. Strojnik, 1968, ELECT MICROSCOPY 196, P71. Strojnik A., 1969, SCANNING ELECT MICRO, P13. Sussex GA., 1970, SCANNING ELECT MICRO, P13. XIMEN JY, 1985, OPTIK, V69, P141. Ardenne M. v., 1938, Z TECH PHYS, V19, P407. Cowley JM., 1990, P 12 INT C EL MICR, V4, P398. Okunishi E, 2010, JEOL NEWS, V45, P8. Rosenauer A, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.096101. Rosenauer A, 2011, ULTRAMICROSCOPY, V111, P1316, DOI 10.1016/j.ultramic.2011.04.009. Rosenauer A, 2009, ULTRAMICROSCOPY, V109, P1171, DOI 10.1016/j.ultramic.2009.05.003. Rossouw CJ, 2003, ULTRAMICROSCOPY, V96, P299, DOI 10.1016/S0304-3991(03)00095-0. Ruben G, 2012, ULTRAMICROSCOPY, V113, P131, DOI 10.1016/j.ultramic.2011.11.002. RUSKA E, 1987, REV MOD PHYS, V59, P627, DOI 10.1103/RevModPhys.59.627. Ruska E., 1931, Z TECHN PHYS, V12, P389. Rust MJ, 2006, NAT METHODS, V3, P793, DOI 10.1038/nmeth929. Sanchez AM, 2006, J MICROSC-OXFORD, V221, P1, DOI 10.1111/j.1365-2818.2006.01533.x. Sanchez M, 1998, ULTRAMICROSCOPY, V72, P213, DOI 10.1016/S0304-3991(98)00018-7. Sang XH, 2017, SCI REP-UK, V7, DOI 10.1038/srep43585. Sang XH, 2016, ADV STRUCT CHEM IMAG, V2, DOI 10.1186/s40679-016-0020-3. Sang XH, 2014, ULTRAMICROSCOPY, V138, P28, DOI 10.1016/j.ultramic.2013.12.004. Sasaki T, 2012, MICRON, V43, P551, DOI 10.1016/j.micron.2011.10.010. Sasaki T, 2010, J ELECTRON MICROSC, V59, pS7, DOI 10.1093/jmicro/dfq027. Savitzky BH, 2018, ULTRAMICROSCOPY, V191, P56, DOI 10.1016/j.ultramic.2018.04.008. Sawada H, 2008, ULTRAMICROSCOPY, V108, P1467, DOI 10.1016/j.ultramic.2008.04.095. Sawada H, 2007, JPN J APPL PHYS 2, V46, pL568, DOI 10.1143/JJAP.46.L568. Sawada H, 2015, MICROSCOPY-JPN, V64, P213, DOI 10.1093/jmicro/dfv014. Sawada H, 2009, J ELECTRON MICROSC, V58, P357, DOI 10.1093/jmicro/dfp030. SAXBERG BEH, 1981, ULTRAMICROSCOPY, V6, P85, DOI 10.1016/S0304-3991(81)80182-9. SAXTON WO, 1978, OPTIK, V49, P505. SCHERZER O, 1947, OPTIK, V2, P114. SCHERZER O, 1949, J APPL PHYS, V20, P20, DOI 10.1063/1.1698233. Scherzer O, 1936, Z PHYS, V101, P593, DOI 10.1007/BF01349606. Scott MC, 2012, NATURE, V483, P444, DOI 10.1038/nature10934. Senga R, 2019, NATURE, V573, P247, DOI 10.1038/s41586-019-1477-8. Septier A, 2017, ADV IMAG ELECT PHYS, V202, P75, DOI 10.1016/bs.aiep.2017.06.001. SHAO ZF, 1988, REV SCI INSTRUM, V59, P2429, DOI 10.1063/1.1139922. SHEPPARD CJR, 1978, OPT ACTA, V25, P315, DOI 10.1080/713819784. Shibata N, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15631. Shibata N, 2012, NAT PHYS, V8, P611, DOI {[}10.1038/NPHYS2337, 10.1038/nphys2337]. Shibata N, 2010, J ELECTRON MICROSC, V59, P473, DOI 10.1093/jmicro/dfq014. SHIN DH, 1989, APPL PHYS LETT, V55, P2456, DOI 10.1063/1.102297. Singe EH, 1932, PHILOS MAG, V13, P297. Singhal A, 1997, ULTRAMICROSCOPY, V67, P191, DOI 10.1016/S0304-3991(96)00094-0. Smirnov VV, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.064109. Smith DJ, 2008, MATER TODAY, V11, P30, DOI 10.1016/S1369-7021(09)70005-7. SMITH DJ, 1971, J APPL CRYSTALLOGR, V4, P482, DOI 10.1107/S0021889871007507. SMITH DJ, 1975, ULTRAMICROSCOPY, V1, P127, DOI 10.1016/S0304-3991(75)80015-5. So YG, 2012, J ELECTRON MICROSC, V61, P207, DOI 10.1093/jmicro/dfs045. Song JM, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40413-z. Sousa AA, 2008, J STRUCT BIOL, V162, P14, DOI 10.1016/j.jsb.2008.01.007. Sousa AA, 2012, ULTRAMICROSCOPY, V123, P38, DOI 10.1016/j.ultramic.2012.04.005. Sparrow CM, 1916, ASTROPHYS J, V44, P76, DOI 10.1086/142271. Spence J. C. H., 2013, HIGH RESOLUTION ELEC. SPENCE JCH, 1978, OPTIK, V50, P129. SPENCE JCH, 1983, J MICROSC-OXFORD, V130, P147, DOI 10.1111/j.1365-2818.1983.tb04213.x. SPENCER JP, 1972, PHILOS MAG, V26, P193, DOI 10.1080/14786437208221029. SPURGEON S, 2021, NAT MATER, V20. Spurgeon SR, 2017, MICROSC MICROANAL, V23, P513, DOI 10.1017/S1431927617000368. Steiner S, 2019, SCIENCE, V363, P144, DOI 10.1126/science.aav2211. Stevens A, 2018, APPL PHYS LETT, V112, DOI 10.1063/1.5016192. Stintzing H., 1929, German patent, Patent No. 485155. Suenaga K, 2011, EUR PHYS J-APPL PHYS, V54, DOI 10.1051/epjap/2011100414. Suenaga K, 2000, SCIENCE, V290, P2280, DOI 10.1126/science.290.5500.2280. Suenaga K, 2010, NATURE, V468, P1088, DOI 10.1038/nature09664. Suenaga K, 2009, NAT CHEM, V1, P415, DOI {[}10.1038/NCHEM.282, 10.1038/nchem.282]. Synge EH, 1928, PHILOS MAG, V6, P356. Synge EH, 1931, PHILOS MAG, V11, P65. Tanaka N., 2014, SCANNING TRANSMISSIO. Tate MW, 2016, MICROSC MICROANAL, V22, P237, DOI 10.1017/S1431927615015664. TAYLOR KA, 1974, SCIENCE, V186, P1036, DOI 10.1126/science.186.4168.1036. THOMAS D, 1994, BIOL CELL, V80, P181, DOI 10.1016/0248-4900(94)90041-8. THOMSON MGR, 1973, OPTIK, V39, P15. THON F, 1972, OPTIK, V36, P55. Tian XZ, 2020, NAT MATER, V19, P867, DOI 10.1038/s41563-020-0636-5. Toyama S, 2020, ULTRAMICROSCOPY, V216, DOI 10.1016/j.ultramic.2020.113033. Trasobares S, 2011, ANGEW CHEM INT EDIT, V50, P868, DOI 10.1002/anie.201004502. Treacy MMJ, 2011, MICROSC MICROANAL, V17, P847, DOI 10.1017/S1431927611012074. TREACY MMJ, 1982, J MICROSC SPECT ELEC, V7, P511. TREACY MMJ, 1993, ULTRAMICROSCOPY, V52, P31, DOI 10.1016/0304-3991(93)90020-X. TREACY MMJ, 1989, J MICROSC-OXFORD, V156, P211, DOI 10.1111/j.1365-2818.1989.tb02920.x. TREACY MMJ, 1980, J CATAL, V63, P265, DOI 10.1016/0021-9517(80)90079-2. TREACY MMJ, 1978, PHILOS MAG A, V38, P569, DOI 10.1080/01418617808239255. Tsuno K, 2011, NUCL INSTRUM METH A, V645, P12, DOI 10.1016/j.nima.2010.12.164. Tyukalova E, 2020, J PHYS-MATER, V3, DOI 10.1088/2515-7639/ab8a95. UGGERHOJ E, 1970, PHYS REV B, V2, P582, DOI 10.1103/PhysRevB.2.582. UNWIN PNT, 1975, J MOL BIOL, V94, P425, DOI 10.1016/0022-2836(75)90212-0. Van Aert S, 2005, ULTRAMICROSCOPY, V104, P107, DOI 10.1016/j.ultramic.2005.03.002. Van Aert S, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.064107. Van Aert S, 2012, MICRON, V43, P509, DOI 10.1016/j.micron.2011.10.019. Van Aert S, 2009, ULTRAMICROSCOPY, V109, P1236, DOI 10.1016/j.ultramic.2009.05.010. Van Aert S, 2011, NATURE, V470, P374, DOI 10.1038/nature09741. van Benthem K, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.1991989. van den Bos KHW, 2019, ULTRAMICROSCOPY, V203, P155, DOI 10.1016/j.ultramic.2018.12.004. van den Bos KHW, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.246101. Van Dyck D, 1998, MICROSC MICROANAL, V4, P428, DOI 10.1017/S1431927698980412. VanDyck D, 1996, ULTRAMICROSCOPY, V64, P99, DOI 10.1016/0304-3991(96)00008-3. VANHELDEN A, 1977, T AM PHILOS SOC, V67, P3. Varela M, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.095502. Velazco A, 2020, ULTRAMICROSCOPY, V215, DOI 10.1016/j.ultramic.2020.113021. Venables J. A., 1987, Electron Microscopy and Analysis, 1987. Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (EMAG 87), P85. Venkatraman K, 2019, NAT PHYS, V15, P1237, DOI 10.1038/s41567-019-0675-5. Vinothkumar KR, 2016, Q REV BIOPHYS, V49, P1, DOI 10.1017/S0033583516000068. von Ardenne M, 1938, Z PHYS, V109, P553, DOI 10.1007/BF01341584. von Ardenne M, 1939, Z PHYS, V112, P744, DOI 10.1007/BF01339978. von Ardenne M, 1938, Z PHYS, V108, P338, DOI 10.1007/BF01374954. von Ardenne M, 1940, Z PHYS, V116, P736, DOI 10.1007/BF01459833. von Harrach HS, 2009, ADV IMAG ELECT PHYS, V159, P287, DOI 10.1016/S1076-5670(09)59007-6. VONHARRACH HS, 1994, MICROSC MICROANAL M, V5, P153, DOI 10.1051/mmm:0199400502015300. VONHARRACH HS, 1995, ULTRAMICROSCOPY, V58, P1, DOI 10.1016/0304-3991(94)00172-J. VONHARRACH HS, 1993, INST PHYS CONF SER, P499. Voyles PM, 2017, CURR OPIN SOLID ST M, V21, P141, DOI 10.1016/j.cossms.2016.10.001. Voyles PM, 2003, ULTRAMICROSCOPY, V96, P251, DOI 10.1016/S0304-3991(03)00092-5. Voyles PM, 2002, NATURE, V416, P826, DOI 10.1038/416826a. WALL J, 1974, OPTIK, V39, P359. WALL J, 1974, P NATL ACAD SCI USA, V71, P1, DOI 10.1073/pnas.71.1.1. WALL JS, 1986, ANNU REV BIOPHYS BIO, V15, P355. Wang CY, 2020, MATTER-US, V3, P1999, DOI 10.1016/j.matt.2020.09.003. Wang JY, 2019, NAT ENERGY, V4, P664, DOI 10.1038/s41560-019-0413-3. Wang P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02778-x. Wang S, 1995, AM MINERAL, V80, P1174. WANG SY, 1995, MICROSC RES TECHNIQ, V30, P181, DOI 10.1002/jemt.1070300208. Wang XF, 2018, JOULE, V2, P2225, DOI 10.1016/j.joule.2018.10.005. Wang ZC, 2011, NATURE, V479, P380, DOI 10.1038/nature10593. WANG ZL, 1994, ULTRAMICROSCOPY, V53, P73, DOI 10.1016/0304-3991(94)90106-6. WANG ZL, 1989, ULTRAMICROSCOPY, V31, P437, DOI 10.1016/0304-3991(89)90340-9. WANG ZL, 1990, ULTRAMICROSCOPY, V32, P275, DOI 10.1016/0304-3991(90)90005-7. Wardell I. R. M., 1973, Conference on Scanning Electron Microscopy: Systems and Applications 1973, P182. Wardell IRM, 2009, ADV IMAG ELECT PHYS, V159, P221, DOI 10.1016/S1076-5670(09)59006-4. Watanabe M, 1999, ULTRAMICROSCOPY, V78, P89, DOI 10.1016/S0304-3991(99)00015-7. Wen Y, 2019, NANO LETT, V19, P6482, DOI 10.1021/acs.nanolett.9b02717. WILSON T, 1987, OPT LETT, V12, P227, DOI 10.1364/OL.12.000227. Wilson T, 2011, J MICROSC-OXFORD, V244, P113, DOI 10.1111/j.1365-2818.2011.03549.x. WONG K, 1992, ULTRAMICROSCOPY, V40, P139, DOI 10.1016/0304-3991(92)90055-O. Wu LJ, 2020, ULTRAMICROSCOPY, V219, DOI 10.1016/j.ultramic.2020.113095. Wu RJ, 2017, MICROSC MICROANAL, V23, P794, DOI 10.1017/S143192761700068X. Xin HL, 2009, J ELECTRON MICROSC, V58, P157, DOI 10.1093/jmicro/dfn029. XU PR, 1990, ULTRAMICROSCOPY, V32, P93, DOI 10.1016/0304-3991(90)90027-J. Xu R, 2015, NAT MATER, V14, P1099, DOI {[}10.1038/NMAT4426, 10.1038/nmat4426]. Xu W, 2018, ULTRAMICROSCOPY, V188, P59, DOI 10.1016/j.ultramic.2018.03.004. Yamazaki T, 2006, ULTRAMICROSCOPY, V106, P153, DOI 10.1016/j.ultramic.2005.07.001. Yamazaki T, 2002, ULTRAMICROSCOPY, V92, P181, DOI 10.1016/S0304-3991(02)00131-6. Yang H, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12532. Yang H, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8266. Yang H, 2017, ULTRAMICROSCOPY, V180, P173, DOI 10.1016/j.ultramic.2017.02.006. Yang JC, 2000, MICROSC MICROANAL, V6, P353. Yang Y, 2021, NATURE, V592, P60, DOI 10.1038/s41586-021-03354-0. Yang YS, 2017, NATURE, V542, P75, DOI 10.1038/nature21042. Yankovich AB, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5155. Yip KM, 2020, NATURE, V587, P157, DOI 10.1038/s41586-020-2833-4. Young NP, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.246103. Yu HJ, 2013, ANGEW CHEM INT EDIT, V52, P5969, DOI 10.1002/anie.201301236. Yu Z, 2008, ULTRAMICROSCOPY, V108, P494, DOI 10.1016/j.ultramic.2007.08.007. Yucelen E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20377-2. Yun HH, 2020, ULTRAMICROSCOPY, V208, DOI 10.1016/j.ultramic.2019.112863. ZACH J, 1989, OPTIK, V83, P30. ZACH J, 1995, OPTIK, V98, P112. ZACH J, 1994, ELECTRON MICROSCOPY 1994, VOL 1, P199. ZACH JC, 1995, NUCL INSTRUM METH A, V363, P316, DOI 10.1016/0168-9002(95)00056-9. Zamani RR, 2018, NANO LETT, V18, P1557, DOI 10.1021/acs.nanolett.7b03929. ZEITLER E, 1970, OPTIK, V31, P359. ZEITLER E, 1970, OPTIK, V31, P258. Zewail AH, 2010, SCIENCE, V328, P187, DOI 10.1126/science.1166135. Zhang JY, 2015, SCI REP-UK, V5, DOI 10.1038/srep12419. Zhang QH, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00121-6. Zhou D, 2016, ULTRAMICROSCOPY, V160, P110, DOI 10.1016/j.ultramic.2015.10.008. Zhou JH, 2019, NATURE, V570, P500, DOI 10.1038/s41586-019-1317-x. Zhou LQ, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16391-6. Zhou W, 2012, MICROSC MICROANAL, V18, P1342, DOI 10.1017/S1431927612013335. Zhou W, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.206803. ZHU J, 1982, ACTA CRYSTALLOGR A, V38, P718, DOI 10.1107/S0567739482001442. Ziatdinov M, 2017, ACS NANO, V11, P12742, DOI 10.1021/acsnano.7b07504. Zuo JM, 2014, ULTRAMICROSCOPY, V136, P50, DOI 10.1016/j.ultramic.2013.07.018. Zworykin, 1934, 1 C INT EL BIOL, V1, P672. Zworykin VK., 1942, ASTM B, V117, P15, DOI DOI 10.1038/SCIENTIFICAMERICAN0942-111.}, Number-of-Cited-References = {670}, Times-Cited = {4}, Usage-Count-Last-180-days = {28}, Usage-Count-Since-2013 = {117}, Journal-ISO = {Microsc. microanal.}, Doc-Delivery-Number = {US2HJ}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000697254900003}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000844331100006, Author = {Li, Jiaxin and Hong, Danfeng and Gao, Lianru and Yao, Jing and Zheng, Ke and Zhang, Bing and Chanussot, Jocelyn}, Title = {Deep learning in multimodal remote sensing data fusion: A comprehensive review}, Journal = {INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION}, Year = {2022}, Volume = {112}, Month = {AUG}, Abstract = {Liu, J., Wu, Z., Xiao, L., Wu, X.-J., 2022b. Model inspired autoencoder for unsupervised hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 60, 1-12. http://dx.doi.org/10.1109/TGRS.2022.3143156. Liu, L., Yang, Z., Li, G., Wang, K., Chen, T., Lin, L., 2022c. Aerial images meet crowdsourced trajectories: a new approach to robust road extraction. IEEE Trans. Neural Netw. Learn. Syst. http://dx.doi.org/10.1109/TNNLS.2022.3141821. Liu, Q., Zhou, H., Xu, Q., Liu, X., Wang, Y., 2020b. PSGAN: A generative adversarial network for remote sensing image pan-sharpening. IEEE Trans. Geosci. Remote Sens. 59 (12), 10227-10242. http://dx.doi.org/10.1109/TGRS.2020.3042974. Loncan, L., De Almeida, L.B., Bioucas-Dias, J.M., Briottet, X., Chanussot, J., Dobi-geon, N., Fabre, S., Liao, W., Licciardi, G.A., Simoes, M., et al., 2015. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 3 (3), 27-46. http: //dx.doi.org/10.1109/MGRS.2015.2440094. Lu, R., Chen, B., Cheng, Z., Wang, P., 2020. RAFnet: Recurrent attention fusion network of hyperspectral and multispectral images. Signal Process. 177, 107737. http://dx.doi.org/10.1016/j.sigpro.2020.107737. Lu, W., Tao, C., Li, H., Qi, J., Li, Y., 2022. A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data. Remote Sens. Environ. 270, 112830. http://dx.doi.org/10.1016/j.rse.2021.112830. Lu, X., Yang, D., Jia, F., Zhao, Y., 2021. Coupled convolutional neural network-based detail injection method for hyperspectral and multispectral image fusion. Applied Sciences 11 (1), 288. http://dx.doi.org/10.3390/app11010288. Luo, S., Zhou, S., Feng, Y., Xie, J., 2020. Pansharpening via unsupervised convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 4295-4310. http://dx.doi.org/10.1109/JSTARS.2020.3008047. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 2019. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152, 166-177. http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015. Ma, J., Yu, W., Chen, C., Liang, P., Guo, X., Jiang, J., 2020. Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion. Inf. Fusion 62, 110-120. http://dx.doi.org/10.1016/j.inffus.2020.04.006. Man, Q., Dong, P., Guo, H., Liu, G., Shi, R., 2014. Light detection and ranging and hyperspectral data for estimation of forest biomass: a review. J. Appl. Remote Sens. 8 (1), 081598. http://dx.doi.org/10.1117/1.JRS.8.081598. Mantsis, D.F., Bakratsas, M., Andreadis, S., Karsisto, P., Moumtzidou, A., Gialam-poukidis, I., Karppinen, A., Vrochidis, S., Kompatsiaris, I., 2022. Multimodal fusion of sentinel 1 images and social media data for snow depth estimation. IEEE Geosci. Remote Sens. Lett. 19, 1-5. http://dx.doi.org/10.1109/LGRS.2020.3031866. Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G., 2016. Pansharpening by convolutional neural networks. Remote Sens. 8 (7), 594. http://dx.doi.org/10.3390/rs8070594. Meng, X., Shen, H., Li, H., Zhang, L., Fu, R., 2019. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inf. Fusion 46, 102-113. http://dx.doi.org/10.1016/j. inffus.2018.05.006. Meng, X., Xiong, Y., Shao, F., Shen, H., Sun, W., Yang, G., Yuan, Q., Fu, R., Zhang, H., 2021. A large-scale benchmark data set for evaluating pansharpening performance: Overview and implementation. IEEE Geosci. Remote Sens. Mag. 9 (1), 18-52. http://dx.doi.org/10.1109/MGRS.2020.2976696. Meraner, A. , Ebel, P., Zhu, X.X., Schmitt, M., 2020. Cloud removal in sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion. ISPRS J. Photogramm. Remote Sens. 166, 333-346. http://dx.doi.org/10.1016/j.isprsjprs. 2020.05.013. Mohla, S., Pande, S., Banerjee, B., Chaudhuri, S., 2020. Fusatnet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and lidar classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 416-425. http://dx.doi.org/10.1109/CVPRW50498. 2020.00054. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.P., 2013. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 1 (1), 6-43. http://dx.doi.org/10.1109/MGRS.2013.2248301. Nie, J., Xu, Q., Pan, J., 2022. Unsupervised hyperspectral pansharpening by ratio estimation and residual attention network. IEEE Geosci. Remote Sens. Lett. 19, 1-5. http://dx.doi.org/10.1109/LGRS.2022.3149166. Ozcelik, F., Alganci, U., Sertel, E., Unal, G., 2020. Rethinking CNN-based pansharp-ening: Guided colorization of panchromatic images via GANS. IEEE Trans. Geosci. Remote Sens. 59 (4), 3486-3501. http://dx.doi.org/10.1109/TGRS.2020.3010441. Palsson, F., Sveinsson, J.R., Ulfarsson, M.O., 2017. Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network. IEEE Geosci. Remote Sens. Lett. 14 (5), 639-643. http://dx.doi.org/10.1109/LGRS.2017.2668299. Parajuli, B., Kumar, P., Mukherjee, T., Pasiliao, E., Jambawalikar, S., 2018. Fusion of aerial lidar and images for road segmentation with deep cnn. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 548-551. http://dx.doi.org/10.1145/3274895.3274993. Peng, J., Liu, L., Wang, J., Zhang, E., Zhu, X., Zhang, Y., Feng, J., Jiao, L., 2020. Psmd-net: A novel pan-sharpening method based on a multiscale dense network. IEEE Trans. Geosci. Remote Sens. 59 (6), 4957-4971. http://dx.doi.org/10.1109/ TGRS.2020.3020162. Qian, Z., Liu, X., Tao, F., Zhou, T., 2020. Identification of urban functional areas by coupling satellite images and taxi GPS trajectories. Remote Sens. 12 (15), 2449. http://dx.doi.org/10.3390/rs12152449.}, Publisher = {ELSEVIER}, Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS}, Type = {Review}, Language = {English}, Affiliation = {Gao, LR (Corresponding Author), Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China. Li, Jiaxin; Hong, Danfeng; Gao, Lianru; Yao, Jing; Zheng, Ke, Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China. Zhang, Bing; Chanussot, Jocelyn, Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China. Zhang, Bing, Univ Chinese Acad Sci, Coll Resources \& Environm, Beijing 100049, Peoples R China. Zheng, Ke, Liaocheng Univ, Coll Geog \& Environm, Liaocheng 252059, Peoples R China. Chanussot, Jocelyn, Univ Grenoble Alpes, GIPSA Lab, CNRS, Grenoble INP, F-38000 Grenoble, France.}, DOI = {10.1016/j.jag.2022.102926}, EarlyAccessDate = {JUL 2022}, Article-Number = {102926}, ISSN = {1569-8432}, EISSN = {1872-826X}, Keywords = {Artificial intelligence; Data fusion; Deep learning; Multimodal; Remote sensing}, Keywords-Plus = {HYPERSPECTRAL IMAGE FUSION; PAN-SHARPENING METHOD; NEURAL-NETWORKS; AIRBORNE LIDAR; CLOUD REMOVAL; OPTICAL-DATA; SAR; CLASSIFICATION; NET; EXTRACTION}, Research-Areas = {Remote Sensing}, Web-of-Science-Categories = {Remote Sensing}, Author-Email = {lijiaxin203@mails.ucas.ac.cn hongdf@aircas.ac.cn gaolr@aircas.ac.cn yaojing@aircas.ac.cn zhengke@lcu.edu.cn zb@radi.ac.cn jocelyn@hi.is}, Affiliations = {Chinese Academy of Sciences; Chinese Academy of Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Liaocheng University; UDICE-French Research Universities; Communaute Universite Grenoble Alpes; Institut National Polytechnique de Grenoble; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS)}, ORCID-Numbers = {li, jia xin/0000-0002-1237-542X}, Funding-Acknowledgement = {National Key Research and De-velopment Program of China {[}2021YFB3900502]; National Natural Science Foundation of China {[}42030111]; MIAI@Grenoble Alpes {[}ANR-19-P3IA-0003]; AXA Research Fund}, Funding-Text = {This work was supported by the National Key Research and De-velopment Program of China {[}2021YFB3900502] ; the National Natural Science Foundation of China {[}42030111] ; MIAI@Grenoble Alpes {[}ANR-19-P3IA-0003] ; and the AXA Research Fund.}, Cited-References = {{[}Anonymous], 2013, 2013570 U FLOR. Azarang A, 2017, 2017 3RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (IPRIA), P1, DOI 10.1109/PRIA.2017.7983017. Bandara WGC, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3139292. Bao HQ, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12071088. Belgiu M, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11070818. Bioucas-Dias JM, 2013, IEEE GEOSC REM SEN M, V1, P6, DOI 10.1109/MGRS.2013.2244672. Cao R, 2020, ISPRS J PHOTOGRAMM, V163, P82, DOI 10.1016/j.isprsjprs.2020.02.014. Cao XY, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3115501. Chen B, 2015, REMOTE SENS-BASEL, V7, P1798, DOI 10.3390/rs70201798. Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317. Chen LH, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3131228. Chen SY, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3138096. Chen YS, 2017, IEEE GEOSCI REMOTE S, V14, P1253, DOI 10.1109/LGRS.2017.2704625. Cheng LX, 2021, IEEE J-STARS, V14, P5973, DOI 10.1109/JSTARS.2021.3086139. Chi MM, 2017, P IEEE, V105, P1926, DOI 10.1109/JPROC.2017.2730585. Deng LJ, 2021, IEEE T GEOSCI REMOTE, V59, P6995, DOI 10.1109/TGRS.2020.3031366. Dian RW, 2021, INFORM FUSION, V69, P40, DOI 10.1016/j.inffus.2020.11.001. Dian RW, 2021, IEEE T NEUR NET LEAR, V32, P1124, DOI 10.1109/TNNLS.2020.2980398. Dian RW, 2018, IEEE T NEUR NET LEAR, V29, P5345, DOI 10.1109/TNNLS.2018.2798162. Diao WX, 2022, IEEE T NEUR NET LEAR, DOI 10.1109/TNNLS.2021.3137373. Dong WS, 2021, IEEE T IMAGE PROCESS, V30, P5754, DOI 10.1109/TIP.2021.3078058. Dong WQ, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3078711. Dong WQ, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3076768. Dong WQ, 2022, IEEE T NEUR NET LEAR, V33, P7303, DOI 10.1109/TNNLS.2021.3084745. Du XQ, 2021, IEEE T GEOSCI REMOTE, V59, P10062, DOI 10.1109/TGRS.2020.3047130. Emelyanova IV, 2013, REMOTE SENS ENVIRON, V133, P193, DOI 10.1016/j.rse.2013.02.007. Fan RY, 2021, IEEE J-STARS, V14, P11737, DOI 10.1109/JSTARS.2021.3127246. Fang S, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2021.3121028. Feng QL, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8010028. Fu XY, 2021, IEEE T NEUR NET LEAR, V32, P2090, DOI 10.1109/TNNLS.2020.2996498. Fu Y, 2019, PROC CVPR IEEE, P11653, DOI 10.1109/CVPR.2019.01193. Gao JH, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010191. Gastineau A, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3060958. Ge CR, 2021, IEEE J-STARS, V14, P2458, DOI 10.1109/JSTARS.2021.3054392. Ghamisi P, 2019, IEEE GEOSC REM SEN M, V7, P6, DOI 10.1109/MGRS.2018.2890023. Ghamisi P, 2017, IEEE J-STARS, V10, P3011, DOI 10.1109/JSTARS.2016.2634863. Ghassemian H, 2016, INFORM FUSION, V32, P75, DOI 10.1016/j.inffus.2016.03.003. Gomez-Chova L, 2015, P IEEE, V103, P1560, DOI 10.1109/JPROC.2015.2449668. Grohnfeldt C, 2018, INT GEOSCI REMOTE SE, P1726. Guan PY, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3114552. Han XH, 2019, IEEE INT CONF COMP V, P4330, DOI 10.1109/ICCVW.2019.00533. Han XH, 2019, 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), P266, DOI {[}10.1109/BigMM.2019.00049, 10.1109/BigMM.2019.00-13]. Han XH, 2018, IEEE IMAGE PROC, P2506, DOI 10.1109/ICIP.2018.8451142. Han XL, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11101173. Han Z, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2022.3155794. Hang RL, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2022.3188529. Hang RL, 2020, IEEE T GEOSCI REMOTE, V58, P4939, DOI 10.1109/TGRS.2020.2969024. He J, 2021, IEEE T GEOSCI REMOTE, V59, P6357, DOI 10.1109/TGRS.2020.3028622. He L, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3132997. He L, 2020, IEEE J-STARS, V13, P5898, DOI 10.1109/JSTARS.2020.3025040. He L, 2019, IEEE J-STARS, V12, P3092, DOI 10.1109/JSTARS.2019.2917584. He L, 2019, IEEE J-STARS, V12, P1188, DOI 10.1109/JSTARS.2019.2898574. Hong DF, 2021, IEEE T GEOSCI REMOTE, V59, P5966, DOI 10.1109/TGRS.2020.3015157. Hong DF, 2021, ISPRS J PHOTOGRAMM, V178, P68, DOI 10.1016/j.isprsjprs.2021.05.011. Hong DF, 2021, IEEE GEOSC REM SEN M, V9, P52, DOI 10.1109/MGRS.2021.3064051. Hong DF, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2020.3017414. Hong DF, 2021, IEEE T GEOSCI REMOTE, V59, P4340, DOI 10.1109/TGRS.2020.3016820. Hong DF, 2020, ISPRS J PHOTOGRAMM, V167, P12, DOI 10.1016/j.isprsjprs.2020.06.014. Hosseinpour H, 2022, ISPRS J PHOTOGRAMM, V184, P96, DOI 10.1016/j.isprsjprs.2021.12.007. Hu JW, 2017, AER ADV ENG RES, V126, P1. Hu JF, 2021, Arxiv. Hu JF, 2022, IEEE T NEUR NET LEAR, V33, P7251, DOI 10.1109/TNNLS.2021.3084682. Huang JF, 2019, ISPRS J PHOTOGRAMM, V151, P91, DOI 10.1016/j.isprsjprs.2019.02.019. Huang T, 2022, IEEE T COMPUT IMAG, V8, P201, DOI 10.1109/TCI.2022.3152700. Huang W, 2015, IEEE GEOSCI REMOTE S, V12, P1037, DOI 10.1109/LGRS.2014.2376034. Jia D, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3140144. Jing Yao, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12374), P208, DOI 10.1007/978-3-030-58526-6\_13. Kahraman S, 2021, ANNU REV CONTROL, V51, P236, DOI 10.1016/j.arcontrol.2021.03.003. Kong YY, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13214274. Kulkarni SC, 2020, INFORM FUSION, V59, P13, DOI 10.1016/j.inffus.2020.01.003. Kuras A, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13173393. Lahat D, 2015, P IEEE, V103, P1449, DOI 10.1109/JPROC.2015.2460697. Lefevre S, 2017, P IEEE, V105, P1884, DOI 10.1109/JPROC.2017.2684300. Lei D., IEEE T GEOSCI ELECT, V60, P1, DOI {[}10.1109/TGRS.2021.3067097, DOI 10.1109/TGRS.2021.3067097]. Li H, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10101649. Li JX, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2022.3151779. Li JB, 2022, INT J APPL EARTH OBS, V112, DOI 10.1016/j.jag.2022.102818. Li J, 2021, P IEEE, V109, P1350, DOI 10.1109/JPROC.2021.3079176. Li J, 2020, SCI CHINA INFORM SCI, V63, DOI 10.1007/s11432-019-2785-y. Li SL, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2022.3141765. Li ST, 2017, INFORM FUSION, V33, P100, DOI 10.1016/j.inffus.2016.05.004. Li W, 2022, IEEE T NEUR NET LEAR, DOI 10.1109/TNNLS.2022.3149394. Li XH, 2021, ISPRS J PHOTOGRAMM, V179, P14, DOI 10.1016/j.isprsjprs.2021.07.007. Li YF, 2020, SCI CHINA INFORM SCI, V63, DOI 10.1007/s11432-019-2805-y. Liu JJ, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2022.3143156. Liu JJ, 2022, IEEE J-STARS, V15, P1024, DOI 10.1109/JSTARS.2022.3140211. Liu J, 2015, ISPRS J PHOTOGRAMM, V105, P79, DOI 10.1016/j.isprsjprs.2014.12.018. Liu LB, 2022, IEEE T NEUR NET LEAR, DOI 10.1109/TNNLS.2022.3141821. Liu QJ, 2021, IEEE T GEOSCI REMOTE, V59, P10227, DOI 10.1109/TGRS.2020.3042974. Liu SQ, 2021, IEEE J-STARS, V14, P7373, DOI 10.1109/JSTARS.2021.3097178. Liu WB, 2017, NEUROCOMPUTING, V234, P11, DOI 10.1016/j.neucom.2016.12.038. Liu XY, 2020, INFORM FUSION, V55, P1, DOI 10.1016/j.inffus.2019.07.010. Liu X, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3079294. Liu X, 2019, IEEE T GEOSCI REMOTE, V57, P6552, DOI 10.1109/TGRS.2019.2907310. Liu Y, 2018, INFORM FUSION, V42, P158, DOI 10.1016/j.inffus.2017.10.007. Loncan L, 2015, IEEE GEOSC REM SEN M, V3, P27, DOI 10.1109/MGRS.2015.2440094. Lu RY, 2020, SIGNAL PROCESS, V177, DOI 10.1016/j.sigpro.2020.107737. Lu WP, 2022, REMOTE SENS ENVIRON, V270, DOI 10.1016/j.rse.2021.112830. Lu XC, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11010288. Luo SY, 2020, IEEE J-STARS, V13, P4295, DOI 10.1109/JSTARS.2020.3008047. Ma JY, 2020, INFORM FUSION, V62, P110, DOI 10.1016/j.inffus.2020.04.006. Ma L, 2019, ISPRS J PHOTOGRAMM, V152, P166, DOI 10.1016/j.isprsjprs.2019.04.015. Man QX, 2014, J APPL REMOTE SENS, V8, DOI 10.1117/1.JRS.8.081598. Mantsis DF, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2020.3031866. Masi G, 2016, REMOTE SENS-BASEL, V8, DOI 10.3390/rs8070594. Meng XC, 2021, IEEE GEOSC REM SEN M, V9, P18, DOI 10.1109/MGRS.2020.2976696. Meng XC, 2019, INFORM FUSION, V46, P102, DOI 10.1016/j.inffus.2018.05.006. Meraner A, 2020, ISPRS J PHOTOGRAMM, V166, P333, DOI 10.1016/j.isprsjprs.2020.05.013. Mohla S, 2020, IEEE COMPUT SOC CONF, P416, DOI 10.1109/CVPRW50498.2020.00054. Moreira A, 2013, IEEE GEOSC REM SEN M, V1, P6, DOI 10.1109/MGRS.2013.2248301. Mura MD, 2015, P IEEE, V103, P1585, DOI 10.1109/JPROC.2015.2462751. Nie JY, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2022.3149166. Ozcelik F, 2021, IEEE T GEOSCI REMOTE, V59, P3486, DOI 10.1109/TGRS.2020.3010441. Palsson F, 2017, IEEE GEOSCI REMOTE S, V14, P639, DOI 10.1109/LGRS.2017.2668299. Parajuli B, 2018, 26TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2018), P548, DOI 10.1145/3274895.3274993. Peng JY, 2021, IEEE T GEOSCI REMOTE, V59, P4957, DOI 10.1109/TGRS.2020.3020162. Qian Z, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12152449. Qu JH, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3130420. Qu JH, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3066374. Qu Y, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3079518. Qu Y, 2018, PROC CVPR IEEE, P2511, DOI 10.1109/CVPR.2018.00266. Qu Y, 2017, INT GEOSCI REMOTE SE, P6130. Ranchin T, 2003, ISPRS J PHOTOGRAMM, V58, P4, DOI 10.1016/S0924-2716(03)00013-3. Rasti B, 2020, IEEE GEOSC REM SEN M, V8, P60, DOI 10.1109/MGRS.2020.2979764. Scarpa G, 2018, IEEE T GEOSCI REMOTE, V56, P5443, DOI 10.1109/TGRS.2018.2817393. Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003. Schmitt M, 2016, IEEE GEOSC REM SEN M, V4, P6, DOI 10.1109/MGRS.2016.2561021. Seo S, 2020, IEEE ACCESS, V8, P201199, DOI 10.1109/ACCESS.2020.3035802. Shao ZF, 2018, IEEE J-STARS, V11, P1656, DOI 10.1109/JSTARS.2018.2805923. Shao ZF, 2017, IEEE J-STARS, V10, P5569, DOI 10.1109/JSTARS.2017.2748341. Shao ZM, 2020, IEEE GEOSCI REMOTE S, V17, P1573, DOI 10.1109/LGRS.2019.2949745. Shen DB, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3112181. Shen DB, 2020, IEEE J-STARS, V13, P4095, DOI 10.1109/JSTARS.2020.3009250. Shen HF, 2019, IEEE T GEOSCI REMOTE, V57, P6169, DOI 10.1109/TGRS.2019.2904659. Song HH, 2018, IEEE J-STARS, V11, P821, DOI 10.1109/JSTARS.2018.2797894. Srivastava S, 2019, REMOTE SENS ENVIRON, V228, P129, DOI 10.1016/j.rse.2019.04.014. Sun WW, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2020.3046321. Sun ZC, 2019, J INDIAN SOC REMOTE, V47, P401, DOI 10.1007/s12524-018-0917-5. Tan ZY, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3050551. Tan ZY, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11242898. Tan ZY, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10071066. Tian X, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3089868. Uezato Tatsumi, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12351), P87, DOI 10.1007/978-3-030-58539-6\_6. Vivone G, 2021, IEEE J-STARS, V14, P6102, DOI 10.1109/JSTARS.2021.3086877. Vivone G, 2021, IEEE GEOSC REM SEN M, V9, P53, DOI 10.1109/MGRS.2020.3019315. Vivone G, 2015, IEEE T GEOSCI REMOTE, V53, P2565, DOI 10.1109/TGRS.2014.2361734. Wald L, 1999, IEEE T GEOSCI REMOTE, V37, P1190, DOI 10.1109/36.763269. Wang JP, 2022, IEEE T CIRC SYST VID, V32, P5411, DOI 10.1109/TCSVT.2022.3148257. Wang JJ, 2022, IEEE T NEUR NET LEAR, DOI 10.1109/TNNLS.2022.3171572. Wang S, 2018, ISPRS J PHOTOGRAMM, V145, P148, DOI 10.1016/j.isprsjprs.2017.12.012. Wang W, 2023, IEEE T NEUR NET LEAR, V34, P1513, DOI 10.1109/TNNLS.2021.3105543. Wang W, 2019, IEEE I CONF COMP VIS, P4149, DOI 10.1109/ICCV.2019.00425. Wang XH, 2022, INFORM FUSION, V82, P1, DOI 10.1016/j.inffus.2021.12.008. Wang XH, 2022, IEEE T CIRC SYST VID, V32, P1708, DOI 10.1109/TCSVT.2021.3078559. Wang Y, 2022, ARXIV. Wei Wei, 2022, IEEE Transactions on Geoscience and Remote Sensing, V60, DOI 10.1109/TGRS.2020.3039534. Wei W, 2020, IEEE T COMPUT IMAG, V6, P1233, DOI 10.1109/TCI.2020.3014451. Wei YC, 2017, IEEE GEOSCI REMOTE S, V14, P1795, DOI 10.1109/LGRS.2017.2736020. Wele G., 2022, ARXIV. Wu X, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3124913. Wu ZC, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3066425. Xiao JJ, 2021, IEEE J-STARS, V14, P6827, DOI 10.1109/JSTARS.2021.3075727. Xie Q, 2022, IEEE T PATTERN ANAL, V44, P1457, DOI 10.1109/TPAMI.2020.3015691. Xie Q, 2019, PROC CVPR IEEE, P1585, DOI 10.1109/CVPR.2019.00168. Xie WY, 2021, IEEE T GEOSCI REMOTE, V59, P463, DOI 10.1109/TGRS.2020.2994238. Xie WY, 2020, IEEE T NEUR NET LEAR, V31, P1529, DOI 10.1109/TNNLS.2019.2920857. Xin W, 2022, IEEE GEOSC REM SEN M, V10, P91, DOI 10.1109/MGRS.2021.3115137. Xing YH, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2020.3036625. Xing YH, 2018, ISPRS J PHOTOGRAMM, V145, P165, DOI 10.1016/j.isprsjprs.2018.01.016. Xu H, 2021, IEEE T GEOSCI REMOTE, V59, P4120, DOI 10.1109/TGRS.2020.3022482. Xu SY, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12061032. Xu S, 2020, IEEE T GEOSCI REMOTE, V58, P4618, DOI 10.1109/TGRS.2020.2964777. Xu XD, 2018, IEEE T GEOSCI REMOTE, V56, P937, DOI 10.1109/TGRS.2017.2756851. Yang JX, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3080697. Yang JX, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10050800. Yang JF, 2017, IEEE I CONF COMP VIS, P1753, DOI 10.1109/ICCV.2017.193. Yang Y, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3098752. Yao Y, 2022, INT J APPL EARTH OBS, V106, DOI 10.1016/j.jag.2021.102664. Yin JD, 2021, INT J APPL EARTH OBS, V103, DOI 10.1016/j.jag.2021.102514. Yin ZX, 2021, IEEE T GEOSCI REMOTE, V59, P1808, DOI 10.1109/TGRS.2020.2999943. Yokoya N, 2017, IEEE GEOSC REM SEN M, V5, P29, DOI 10.1109/MGRS.2016.2637824. Yuan QQ, 2018, IEEE J-STARS, V11, P978, DOI 10.1109/JSTARS.2018.2794888. Zhang B, 2019, P IEEE, V107, P2294, DOI 10.1109/JPROC.2019.2948454. Zhang H, 2019, IEEE J-STARS, V12, P3028, DOI 10.1109/JSTARS.2019.2916560. Zhang H, 2021, INFORM FUSION, V76, P323, DOI 10.1016/j.inffus.2021.06.008. Zhang H, 2021, ISPRS J PHOTOGRAMM, V172, P223, DOI 10.1016/j.isprsjprs.2020.12.014. Zhang HY, 2021, IEEE T GEOSCI REMOTE, V59, P4273, DOI 10.1109/TGRS.2020.3010530. Zhang JX, 2017, INT J IMAGE DATA FUS, V8, P1, DOI 10.1080/19479832.2016.1160960. Zhang L, 2021, IEEE T NEUR NET LEAR, V32, P2388, DOI 10.1109/TNNLS.2020.3005234. Zhang L, 2020, PROC CVPR IEEE, P3070, DOI 10.1109/CVPR42600.2020.00314. Zhang LP, 2016, IEEE GEOSC REM SEN M, V4, P22, DOI 10.1109/MGRS.2016.2540798. Zhang MM, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3093334. Zhang MM, 2020, IEEE T CYBERNETICS, V50, P100, DOI 10.1109/TCYB.2018.2864670. Zhang QC, 2018, INFORM FUSION, V42, P146, DOI 10.1016/j.inffus.2017.10.006. Zhang TJ, 2022, IEEE T NEUR NET LEAR, DOI 10.1109/TNNLS.2022.3155655. Zhang XT, 2021, IEEE T GEOSCI REMOTE, V59, P5953, DOI 10.1109/TGRS.2020.3018732. Zhang YJ, 2019, IEEE T GEOSCI REMOTE, V57, P5549, DOI 10.1109/TGRS.2019.2900419. Zhao XD, 2020, IEEE T GEOSCI REMOTE, V58, P7355, DOI 10.1109/TGRS.2020.2982064. Zheng K, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3135501. Zheng K, 2021, IEEE T GEOSCI REMOTE, V59, P2487, DOI 10.1109/TGRS.2020.3006534. Zheng YX, 2020, IEEE T GEOSCI REMOTE, V58, P8059, DOI 10.1109/TGRS.2020.2986313. Zhou CS, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12142318. Zhou F, 2019, IEEE J-STARS, V12, P1549, DOI 10.1109/JSTARS.2019.2910990. Zhou HY, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2022.3166528. Zhou HY, 2021, IEEE J-STARS, V14, P6316, DOI 10.1109/JSTARS.2021.3090252. Zhou M, 2022, IEEE T GEOSCI REMOTE, V60, DOI 10.1109/TGRS.2021.3137967. Zhu XX, 2017, IEEE GEOSC REM SEN M, V5, P8, DOI 10.1109/MGRS.2017.2762307. Zhu XL, 2022, REMOTE SENS ENVIRON, V274, DOI 10.1016/j.rse.2022.113002. Zhu XL, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10040527. Zhu ZY, 2021, IEEE T IMAGE PROCESS, V30, P1423, DOI 10.1109/TIP.2020.3044214.}, Number-of-Cited-References = {210}, Times-Cited = {9}, Usage-Count-Last-180-days = {214}, Usage-Count-Since-2013 = {286}, Journal-ISO = {Int. J. Appl. Earth Obs. Geoinf.}, Doc-Delivery-Number = {3Z3QA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000844331100006}, OA = {gold, Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000635421900001, Author = {Ossewaarde, Ringo and Filatova, Tatiana and Georgiadou, Yola and Hartmann, Andreas and Ozerol, Gul and Pfeffer, Karin and Stegmaier, Peter and Torenvlied, Rene and van der Voort, Mascha and Warmink, Jord and Borsje, Bas}, Title = {Review article: Towards a context-driven research: a state-of-the-art review of resilience research on climate change}, Journal = {NATURAL HAZARDS AND EARTH SYSTEM SCIENCES}, Year = {2021}, Volume = {21}, Number = {3}, Pages = {1119-1133}, Month = {MAR 26}, Abstract = {The twofold aim of this paper is to provide an overview of the current state of resilience research with regard to climate change in the social sciences and propose a research agenda. Resilience research among social scientists is characterized by much more diversity today than a few decades ago. Different definitions and understandings of resilience appear in publications during the last 10 years. Resilience research increasingly bears the mark of social constructivism, a relative newcomer compared to the more longstanding tradition of naturalism. There are also approaches that are indebted to both ``naturalism{''} and ``constructivism{''}, which, of course, come in many varieties. Based on our overview of recent scholarship, which is far from being exhaustive, we have identified six research avenues that arguably deserve continued attention. They combine naturalist and constructivist insights and approaches so that human agency, reflexivity, and considerations of justice and equity are incorporated into systems thinking research or supplement such research. Ultimately, we believe that the overarching challenge for future research is to ensure that resilience to climate change does not compromise sustainability and considerations of justice (including environmental, climate, and energy justice).}, Publisher = {COPERNICUS GESELLSCHAFT MBH}, Address = {BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY}, Type = {Review}, Language = {English}, Affiliation = {Ossewaarde, R (Corresponding Author), Univ Twente, Dept Publ Adm, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands. Ossewaarde, Ringo; Torenvlied, Rene, Univ Twente, Dept Publ Adm, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands. Filatova, Tatiana; Ozerol, Gul, Univ Twente, Dept Governance \& Technol Sustainabil, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands. Georgiadou, Yola; Pfeffer, Karin, Univ Twente, Dept Urban \& Reg Planning \& Geoinformat Managemen, Hengelosestr 99, NL-7514 AE Enschede, Netherlands. Hartmann, Andreas, Univ Twente, Dept Construct Management \& Engn, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands. Stegmaier, Peter, Univ Twente, Dept Sci Technol \& Policy Studies, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands. van der Voort, Mascha, Univ Twente, Dept Design Prod \& Management, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands. Warmink, Jord; Borsje, Bas, Univ Twente, Dept Water Engn \& Management, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands.}, DOI = {10.5194/nhess-21-1119-2021}, ISSN = {1561-8633}, EISSN = {1684-9981}, Keywords-Plus = {ARTIFICIAL-INTELLIGENCE; POLITICAL-ECONOMY; ENERGY JUSTICE; ADAPTATION; SYSTEMS; POLICY; SUSTAINABILITY; VULNERABILITY; GOVERNANCE; THINKING}, Research-Areas = {Geology; Meteorology \& Atmospheric Sciences; Water Resources}, Web-of-Science-Categories = {Geosciences, Multidisciplinary; Meteorology \& Atmospheric Sciences; Water Resources}, Author-Email = {m.r.r.ossewaarde@utwente.nl}, Affiliations = {University of Twente; University of Twente; University of Twente; University of Twente; University of Twente; University of Twente; University of Twente}, ResearcherID-Numbers = {Pfeffer, Karin/E-1408-2017}, ORCID-Numbers = {Ossewaarde, Marinus/0000-0003-3449-1074 van der Voort, Mascha/0000-0002-4800-7557 Warmink, Jord/0000-0002-3273-5664 Pfeffer, Karin/0000-0002-6080-1323}, Cited-References = {Acosta C, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020366. Adger WN, 2011, WIRES CLIM CHANGE, V2, P757, DOI 10.1002/wcc.133. Aikin SF, 2006, HUM STUD, V29, P317, DOI 10.1007/s10746-006-9026-5. Alexander DE, 2013, NAT HAZARD EARTH SYS, V13, P2707, DOI 10.5194/nhess-13-2707-2013. Alexander D, 2021, DISASTERS, V45, P5, DOI 10.1111/disa.12432. Alexander S, 2018, J CLEAN PROD, V197, P1840, DOI 10.1016/j.jclepro.2016.09.100. Alova G, 2020, NAT ENERGY, V5, P920, DOI 10.1038/s41560-020-00686-5. Anderson B, 2015, POLITICS-OXFORD, V35, P60, DOI 10.1111/1467-9256.12079. Andler D., 2014, NEW DIRECTIONS PHILO. Angeler DG, 2016, J APPL ECOL, V53, P617, DOI 10.1111/1365-2664.12649. Bahadur A, 2014, ENVIRON URBAN, V26, P200, DOI 10.1177/0956247814522154. Beck U, 2015, CURR SOCIOL, V63, P75, DOI 10.1177/0011392114559951. Belkhir J., 2007, RACE GENDER CLASS, V14, P120. Bene C, 2018, CLIM DEV, V10, P116, DOI 10.1080/17565529.2017.1301868. Berbes-Blazquez M, 2017, CLIMATIC CHANGE, V141, P227, DOI 10.1007/s10584-017-1897-0. Berendt Bettina, 2019, Paladyn, Journal of Behavioral Robotics, V10, P44, DOI 10.1515/pjbr-2019-0004. Bergmann Z, 2020, J MULTICULT DISCOURS, V15, P267, DOI 10.1080/17447143.2020.1745211. Bergstrom J, 2018, SAFETY SCI, V110, P31, DOI 10.1016/j.ssci.2017.09.013. Berkes F, 2016, ENVIRON SCI POLICY, V61, P185, DOI 10.1016/j.envsci.2016.04.004. Bierbaum RS., 2013, MICHIGAN J SUSTAINAB, V1, DOI {[}10.3998/mjs.12333712.0001.004, DOI 10.3998/MJS.12333712.0001.004]. Bluhdorn I, 2013, ENVIRON POLIT, V22, P16, DOI 10.1080/09644016.2013.755005. Boas I, 2016, ENVIRON POLIT, V25, P613, DOI 10.1080/09644016.2016.1160479. Borsje BW, 2011, ECOL ENG, V37, P113, DOI 10.1016/j.ecoleng.2010.11.027. Bourbeau P, 2018, EUR J INT RELAT, V24, P221, DOI 10.1177/1354066117692031. Bourbeau P, 2015, INT STUD REV, V17, P374, DOI 10.1111/misr.12226. Boyd E, 2015, AMBIO, V44, pS149, DOI 10.1007/s13280-014-0604-x. Boyer J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083232. Braun BP, 2014, ENVIRON PLANN D, V32, P49, DOI 10.1068/d4313. Buschmann P, 2019, WIRES CLIM CHANGE, V10, DOI 10.1002/wcc.574. Carolan M. S., 2005, HUM ECOL REV, V12, P1. Chandler D, 2014, RESILIENCE, V2, P47, DOI 10.1080/21693293.2013.878544. Chmutina K, 2016, CITIES, V58, P70, DOI 10.1016/j.cities.2016.05.017. Clement V, 2017, ORGAN ENVIRON, V30, P346, DOI 10.1177/1086026616658333. Code L., 2005, DIALOGUE UNIVERSALIS, V15, P87. Cole A, 2016, CRIT HORIZ, V17, P260, DOI 10.1080/14409917.2016.1153896. Conte R, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00668. Cook J, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/4/048002. Cote M, 2012, PROG HUM GEOG, V36, P475, DOI 10.1177/0309132511425708. Dahlberg R., 2015, CULT UNBOUND, V7, P541, DOI DOI 10.3384/CU.2000.1525.1572541. Dahlberg R, 2015, CIV ENG ENVIRON SYST, V32, P44, DOI 10.1080/10286608.2015.1025064. Davoudi S, 2018, CITY COMMUNITY, V17, P3, DOI 10.1111/cico.12281. Derickson K.D., 2016, CITY, V20, P161, DOI {[}10.1080/13604813.2015.1125713, DOI 10.1080/13604813.2015.1125713]. Dijkman J., 1997, IAHS PUBLICATIONS SE, V239, P371. Dryzek John S., 2019, POLITICS ANTHROPOCEN. Duit A, 2016, PUBLIC ADMIN, V94, P364, DOI 10.1111/padm.12182. Estêvão Pedro, 2017, Sociologia, Problemas e Práticas, V0, P9, DOI 10.7458/SPP20178510115. Evans B, 2013, RESILIENCE, V1, P83, DOI 10.1080/21693293.2013.770703. Fainstein S, 2015, INT J URBAN REGIONAL, V39, P157, DOI 10.1111/1468-2427.12186. Farmer JD, 2009, NATURE, V460, P685, DOI 10.1038/460685a. Fazey I, 2018, CLIM DEV, V10, P197, DOI 10.1080/17565529.2017.1301864. Filatova T, 2016, ENVIRON MODELL SOFTW, V75, P333, DOI 10.1016/j.envsoft.2015.04.003. Fischer F., 2017, CLIMATE CRISIS DEMOC. Floridi L, 2017, MIND MACH, V27, P269, DOI 10.1007/s11023-017-9422-9. Folke C, 2006, GLOBAL ENVIRON CHANG, V16, P253, DOI 10.1016/j.gloenvcha.2006.04.002. Gallopin GC, 2006, GLOBAL ENVIRON CHANG, V16, P293, DOI 10.1016/j.gloenvcha.2006.02.004. Gavrilova M, 2006, COMPUTATIONAL SCI IT, V3980. Geels FW, 2014, THEOR CULT SOC, V31, P21, DOI 10.1177/0263276414531627. Gencsu I, 2020, CLIM POLICY, V20, P1010, DOI 10.1080/14693062.2020.1736978. Glaser M, 2018, FRONT MAR SCI, V5, DOI 10.3389/fmars.2018.00034. Gross M, 2014, INTERDISCIPL SCI REV, V39, P299, DOI 10.1179/0308018814Z.00000000093. Grove K, 2017, RESILIENCE-ABINGDON, V5, P79, DOI 10.1080/21693293.2016.1241476. Haasnoot M, 2013, GLOBAL ENVIRON CHANG, V23, P485, DOI 10.1016/j.gloenvcha.2012.12.006. Hamers T, 2015, ENVIRON RES, V143, P241, DOI 10.1016/j.envres.2015.10.019. Heffron RJ, 2017, ENERG POLICY, V105, P658, DOI 10.1016/j.enpol.2017.03.018. Henkel K. E., 2006, ANAL SOCIAL ISSUES P, V6, P99, DOI DOI 10.1111/J.1530-2415.2006.00106.X. Hoekstra AY, 2018, ENVIRON RES LETT, V13, DOI 10.1088/1748-9326/aadf95. Hoffmann S, 2017, TRANSPORT RES A-POL, V103, P391, DOI 10.1016/j.tra.2017.06.016. Holling C.S., 1973, Annual Rev Ecol Syst, V4, P1, DOI 10.1146/annurev.es.04.110173.000245. Holling CS, 2001, ECOSYSTEMS, V4, P390, DOI 10.1007/s10021-001-0101-5. Howell A, 2015, POLITICS-OXFORD, V35, P67, DOI 10.1111/1467-9256.12080. Huang HF, 2019, POLIT SCI RES METH, V7, P23, DOI 10.1017/psrm.2016.25. Hughes S, 2017, URBAN AFF REV, V53, P362, DOI 10.1177/1078087416649756. Indirli M, 2019, GEOGR ANTHROPOCENE, V2, P194. Jenkins K, 2016, ENERGY RES SOC SCI, V11, P174, DOI 10.1016/j.erss.2015.10.004. Jesse BJ, 2019, ENERGY SUSTAIN SOC, V9, DOI 10.1186/s13705-019-0210-7. Johnson JL, 2018, WORLD SUSTAIN SER, P3, DOI 10.1007/978-3-319-67122-2\_1. Juncos AE, 2018, CONTEMP SECUR POL, V39, P559, DOI 10.1080/13523260.2018.1491742. Juncos AE, 2017, EUR SECUR, V26, P1, DOI 10.1080/09662839.2016.1247809. Katomero J, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7110437. Khakurel J, 2018, TECHNOLOGIES, V6, DOI 10.3390/technologies6040100. KINGSTON PW, 1983, CONTEMP SOCIOL, V12, P414, DOI 10.2307/2067477. Klein RJT, 1998, GEOGR J, V164, P259, DOI 10.2307/3060615. Kohler J, 2019, ENVIRON INNOV SOC TR, V31, P1, DOI 10.1016/j.eist.2019.01.004. Kolers A, 2016, ETHICS POLICY ENV, V19, P91, DOI 10.1080/21550085.2016.1173283. Kuhlmann S, 2019, RES POLICY, V48, P1091, DOI 10.1016/j.respol.2019.01.006. Kythreotis AP, 2017, REG STUD, V51, P1530, DOI 10.1080/00343404.2016.1200719. Lockie S., 2016, ENVIRON SOCIOL, P115, DOI {[}DOI 10.1080/23251042.2016.1182308, 10.1080/23251042.2016.1182308]. Lyster R, 2017, ENVIRON POLIT, V26, P438, DOI 10.1080/09644016.2017.1287626. Martin R, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00066. McGreavy B, 2016, ENVIRON COMMUN, V10, P104, DOI 10.1080/17524032.2015.1014390. Miller F, 2010, ECOL SOC, V15. Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007. Mirchandani C, 2020, PROCEDIA COMPUT SCI, V168, P232, DOI 10.1016/j.procs.2020.02.262. Mooney HA, 2013, P NATL ACAD SCI USA, V110, P3665, DOI 10.1073/pnas.1107484110. Mummery J, 2019, LOCAL ENVIRON, V24, P919, DOI 10.1080/13549839.2019.1656180. Olsson L, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400217. Ossewaarde M, 2020, COMPUTER, V53, P53, DOI 10.1109/MC.2020.2992290. Ostrom E, 2007, P NATL ACAD SCI USA, V104, P15181, DOI 10.1073/pnas.0702288104. Ozerol G, 2018, 12 ECPR GEN C AUG. Patriarca R, 2018, SAFETY SCI, V102, P79, DOI 10.1016/j.ssci.2017.10.005. Pelling M, 2015, CLIMATIC CHANGE, V133, P113, DOI 10.1007/s10584-014-1303-0. Pfeffer K., 2018, CIT FUT, P1. Pfeffer K, 2019, ISPRS INT GEO-INF, V8, DOI 10.3390/ijgi8110516. Pizzo B, 2015, CITIES, V43, P133, DOI 10.1016/j.cities.2014.11.015. Pohl C., 2001, NAT SCI SOC, V9, P37, DOI {[}DOI 10.1016/S1240-1307(01)80047-9, 10.1016/S1240-1307(01)80047-9]. Pompe J. J., 2002, ENV CONFLICT SEARCH. Popa F, 2015, FUTURES, V65, P45, DOI 10.1016/j.futures.2014.02.002. Porter L, 2012, PLAN THEORY PRACT, V13, P329. Proctor JD, 1998, ANN ASSOC AM GEOGR, V88, P290, DOI 10.1111/1467-8306.00096. Proctor JD, 1998, ANN ASSOC AM GEOGR, V88, P352, DOI 10.1111/0004-5608.00105. Pumpuni-Lenss G, 2017, SYSTEMS ENG, V20, P158, DOI 10.1002/sys.21387. Rajan K, 2017, ARTIF INTELL, V247, P1, DOI 10.1016/j.artint.2017.03.003. Redman CL, 2014, ECOL SOC, V19, DOI 10.5751/ES-06390-190237. Ribault T, 2019, ALTERNATIVES, V44, P94, DOI 10.1177/0304375419853350. Rothe D, 2017, GLOB POLICY, V8, P40, DOI 10.1111/1758-5899.12400. Saravi S, 2019, WATER-SUI, V11, DOI 10.3390/w11050973. Schilling T, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10124593. Schlosberg D, 2017, ENVIRON POLIT, V26, P413, DOI 10.1080/09644016.2017.1287628. Schwarz S, 2018, THEOR PSYCHOL, V28, P528, DOI 10.1177/0959354318783584. Simpson A, 2013, ENVIRONMENTAL SECURITY: APPROACHES AND ISSUES, P248. Sjostedt M, 2015, ECOL SOC, V20, DOI 10.5751/ES-08034-200423. Skillington T, 2015, EUR J SOC THEORY, V18, P288, DOI 10.1177/1368431015579967. Smith A, 2010, ECOL SOC, V15. Stegemann L, 2018, ENERGY RES SOC SCI, V43, P25, DOI 10.1016/j.erss.2018.05.015. Stegmaier P., 2020, IN PRESS. Stegmaier Peter, 2014, GOVERNANCE SOCIOTECH, P111, DOI 10.4337/9781784710194.00015. Sun L, 2019, RISK ANAL, V39, P1597, DOI 10.1111/risa.13277. Szablowski D, 2019, EXTRACT IND SOC, V6, P635, DOI 10.1016/j.exis.2019.06.009. Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991. Terry G., 2009, Gender and Development, V17, P5, DOI 10.1080/13552070802696839. Thoren H, 2014, INT STUD PHILOS SCI, V28, P303, DOI 10.1080/02698595.2014.953343. Tierney K, 2015, AM BEHAV SCI, V59, P1327, DOI 10.1177/0002764215591187. UN-Habitat, 2019, UNHABITAT UNVEILS NE. Vahedifard F, 2019, SCIENCE, V363, P134, DOI 10.1126/science.aaw2236. VanderPlaat M, 2016, SCHOOL PSYCHOL INT, V37, P189, DOI 10.1177/0143034315615938. Walker J, 2011, SECUR DIALOGUE, V42, P143, DOI 10.1177/0967010611399616. Walsh-Dilley M, 2015, RESILIENCE, V3, P173, DOI 10.1080/21693293.2015.1072310. Ward P. J., 2013, KNOWLEDGE CLIMATE RE. Warmink JJ, 2017, WATER RESOUR MANAG, V31, P4587, DOI 10.1007/s11269-017-1767-6. Weichselgartner J, 2015, PROG HUM GEOG, V39, P249, DOI 10.1177/0309132513518834. Wessel R A, 2019, ROUTLEDGE HDB EU SEC, P283. Wiese F, 2016, RESOURCES-BASEL, V5, DOI 10.3390/resources5040030. Wilson EO, 1999, CONSILIENCE UNITY KN. Yanarella E.J., 2014, SUSTAINABILITY J REC, V7, P197, DOI {[}DOI 10.1089/SUS.2014.9782, 10.1089/sus.2014.9782]. Ziervogel G, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8090955.}, Number-of-Cited-References = {145}, Times-Cited = {1}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {17}, Journal-ISO = {Nat. Hazards Earth Syst. Sci.}, Doc-Delivery-Number = {RG3DA}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000635421900001}, OA = {Green Submitted, gold}, DA = {2023-04-22}, } @article{ WOS:000595872200006, Author = {Wagle, Nimisha and Acharya, Tri Dev and Lee, Dong Ha}, Title = {Comprehensive Review on Application of Machine Learning Algorithms for Water Quality Parameter Estimation Using Remote Sensing Data}, Journal = {SENSORS AND MATERIALS}, Year = {2020}, Volume = {32}, Number = {11, SI}, Pages = {3879-3892}, Abstract = {Water is an integral aspect of the world necessary for living creatures to thrive. Owing to unplanned urbanization, rapid industrialization, and uncontrollable human intervention, water quality is gradually degrading. This affects not only marine animals but also humans. Thus, the quality of water should be examined regularly. Water quality parameters should be estimated to monitor water quality. In general, water quality parameters are measured by in situ measurements. Although these measurements are accurate, they are costly and do not provide real-time spatial and temporal changes in water quality. To overcome this limitation, water quality parameters can be estimated using machine learning (ML) along with remote sensing (RS) data. A combination of ML and RS data is a powerful approach for the routine assessment of spatial and temporal variations in water quality parameters. In this paper, some articles based on this approach are reviewed. By analyzing the literature, it was found that the integrated use of RS-based geospatial data with ML helps to produce an accurate result. Most of the authors used the regression algorithm in the estimation of the water quality parameters, with a support vector machine (SVM) regression intensively used. The artificial neural network (ANN) algorithm was the most used algorithm of ML in many of the studies. The researchers used multispectral images for their study. By applying ML to RS data, water quality monitoring systems are evolving into real-time artificial intelligence (AI)-enabled models that provide valuable recommendations and insights to support farmers to make decisions and take action in aquaculture.}, Publisher = {MYU, SCIENTIFIC PUBLISHING DIVISION}, Address = {1-23-3-303 SENDAGI, TOKYO, 113-0022, JAPAN}, Type = {Review}, Language = {English}, Affiliation = {Lee, DH (Corresponding Author), Kangwon Natl Univ, Dept Civil Engn, 1 Kangdaehak Gil, Chunchon 24341, South Korea. Wagle, Nimisha, Govt Nepal, Survey Dept, Kathmandu 44600, Nepal. Acharya, Tri Dev; Lee, Dong Ha, Kangwon Natl Univ, Dept Civil Engn, 1 Kangdaehak Gil, Chunchon 24341, South Korea. Acharya, Tri Dev, Beijing Univ Civil Engn \& Architecture, Sch Geomat \& Urban Spatial Informat, 15 Yongyuan Rd, Beijing 102616, Peoples R China. Acharya, Tri Dev, Univ Calif Davis, Inst Transportat Studies, 1605 Tilia St, Davis, CA 95616 USA.}, DOI = {10.18494/SAM.2020.2953}, ISSN = {0914-4935}, Keywords = {remote sensing; water quality parameters; machine learning; estimation; review}, Keywords-Plus = {CHLOROPHYLL-A CONCENTRATION}, Research-Areas = {Instruments \& Instrumentation; Materials Science}, Web-of-Science-Categories = {Instruments \& Instrumentation; Materials Science, Multidisciplinary}, Author-Email = {nimisha.wagle@nepal.gov.np tridevacharya@kangwon.ac.kr geodesy@kangwon.ac.kr}, Affiliations = {Kangwon National University; Beijing University of Civil Engineering \& Architecture; University of California System; University of California Davis}, ResearcherID-Numbers = {Acharya, Tri Dev/N-3292-2016 Lee, Dong Ha/J-1319-2019 Wagle, Nimisha/AAV-9570-2020}, ORCID-Numbers = {Acharya, Tri Dev/0000-0003-0886-4201 Lee, Dong Ha/0000-0002-6934-1247 Wagle, Nimisha/0000-0002-5921-0382}, Funding-Acknowledgement = {National Research Foundation of Korea (NRF) - Korean government (MSIT) {[}2018R1A2B6009363]}, Funding-Text = {This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1A2B6009363).}, Cited-References = {Acharya TD, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19122769. Acharya TD, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082580. Ahmed AN, 2019, J HYDROL, V578, DOI 10.1016/j.jhydrol.2019.124084. Ahmed U, 2020, WATER SUPPLY, V20, P28, DOI 10.2166/ws.2019.144. Albawi S., 2017, 2017 INT C ENG TECHN, P1, DOI DOI 10.1109/ICENGTECHNOL.2017.8308186. Arias-Rodriguez LF, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101586. Becker RH, 2019, J GREAT LAKES RES, V45, P444, DOI 10.1016/j.jglr.2019.03.006. Biau G, 2019, MACH LEARN, V108, P971, DOI 10.1007/s10994-019-05787-1. Blix K, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10050775. Brandt M. J., 2017, CHEM STORAGE DOSING, P513, DOI DOI 10.1016/B978-0-08-100025. Breiman L, 1984, CLASSIFICATION REGRE, DOI {[}DOI 10.1201/9781315139470, 10.1002/widm.8, DOI 10.1002/WIDM.8]. Brivio PA, 2001, SCI TOTAL ENVIRON, V268, P3, DOI 10.1016/S0048-9697(00)00693-8. Campbell JB., 2002, INTRO REMOTE SENSING. Camps-Valls G, 2006, REMOTE SENS ENVIRON, V105, P23, DOI 10.1016/j.rse.2006.06.004. Canziani G, 2008, MATH BIOSCI ENG, V5, P691, DOI 10.3934/mbe.2008.5.691. Cao ZG, 2020, REMOTE SENS ENVIRON, V248, DOI 10.1016/j.rse.2020.111974. Chebud Y, 2012, WATER AIR SOIL POLL, V223, P4875, DOI 10.1007/s11270-012-1243-0. Chen YY, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19092047. CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411. COX DR, 1959, J ROY STAT SOC B, V21, P238. Decoste D, 2002, MACH LEARN, V46, P161, DOI 10.1023/A:1012454411458. DICKSON AG, 1981, DEEP-SEA RES, V28, P609, DOI 10.1016/0198-0149(81)90121-7. Futing Liao T., 2012, SAGE ENCY SOCIAL SCI, P1. Geetha S., 2017, Smart Water, V2, P1, DOI 10.1186/s40713-017-0005-y. Gholizadeh MH, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16081298. Vilas LG, 2011, REMOTE SENS ENVIRON, V115, P524, DOI 10.1016/j.rse.2010.09.021. Guan X, 2011, WATER RESOUR MANAG, V25, P2015, DOI 10.1007/s11269-011-9792-3. Hafeez S, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11060617. Han H, 2014, CANCER INFORM, V13, P145, DOI 10.4137/CIN.S13875. Han LH, 2005, INT J REMOTE SENS, V26, P5245, DOI 10.1080/01431160500219182. Jeihouni M, 2020, WATER RESOUR MANAG, V34, P139, DOI 10.1007/s11269-019-02447-w. Jensen J. R., 2006, REMOTE SENSING VEGET. Jiang DC, 2018, WATER SCI TECH-W SUP, V18, P1173, DOI 10.2166/ws.2017.189. Keller S, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15091881. Kim YH, 2014, GISCI REMOTE SENS, V51, P158, DOI 10.1080/15481603.2014.900983. Koparan C, 2018, WATER-SUI, V10, DOI 10.3390/w10030264. Langley P, 2011, MACH LEARN, V82, P275, DOI 10.1007/s10994-011-5242-y. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Leng L, 2007, J PHYS CONF SER, V78, DOI 10.1088/1742-6596/78/1/012084. Lillesand T. M., 1994, REMOTE SENS IMAGE IN, P763. Liu YS, 2003, PROG PHYS GEOG, V27, P24, DOI 10.1191/0309133303pp357ra. Maier P. M., 2019, EVOL REMOTE SENS, DOI {[}10.1109/WHISPERS.2019.8921073, DOI 10.1109/WHISPERS.2019.8921073]. Mbuh M., 2016, INTECH I, P13, DOI {[}10.5772/57353, DOI 10.5772/57353]. Mohri M., 2018, FDN MACHINE LEARNING. Mondal S., 2009, J GEOMATICS, V3, P9. Moser G., 2009, KERNEL METHODS REMOT, V47, P301, DOI {[}10.1002/9780470748992.ch13, DOI 10.1002/9780470748992.CH13]. Mountrakis G, 2011, ISPRS J PHOTOGRAMM, V66, P247, DOI 10.1016/j.isprsjprs.2010.11.001. Okun O, 2011, FEATURE SELECTION AND ENSEMBLE METHODS FOR BIOINFORMATICS: ALGORITHMIC CLASSIFICATION AND IMPLEMENTATIONS, P68, DOI 10.4018/978-1-60960-557-5.ch007. Oliver S, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16010040. Pahlevan N, 2020, REMOTE SENS ENVIRON, V240, DOI 10.1016/j.rse.2019.111604. Pentakalos O., 2019, INTRO MACHINE LEARNI. Pu FL, 2019, REMOTE SENS-BASEL, V11, DOI 10.3390/rs11141674. Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877. Reed-Andersen T, 2000, ECOSYSTEMS, V3, P561, DOI 10.1007/s100210000049. Rounds S. A., 2006, DISSOLVED OXYGEN. Schowengerdt R. A., 2007, NATURE REMOTE SENSIN. Serajuddin M., 2019, P 2 INT C WAT ENV EN, P19, DOI DOI 10.14445/22315381/IJETT-V67I9P214. Seyhan E., 1986, HYDROBIOLOGICAL B, V20, P41, DOI {[}10.1007/BF02291149, DOI 10.1007/BF02291149]. Silva HAN, 2018, PR ELECTROMAGN RES S, P458, DOI 10.23919/PIERS.2018.8597731. Singh KP, 2011, ANAL CHIM ACTA, V703, P152, DOI 10.1016/j.aca.2011.07.027. Spandana K., 2018, INT J ENG TECHNOL, V7, P259, DOI {[}10.14419/ijet.v7i3.6.14985, DOI 10.14419/IJET.V7I3.6.14985]. Strobl C, 2009, PSYCHOL METHODS, V14, P323, DOI 10.1037/a0016973. Sunil J., 2013, INT J ENG RES TECHNO, V2, P2516. Susfalk R. B., 2008, SUSPENDED SOLIDS UPP. Vijayakumar N, 2015, 2015 INTERNATIONAL CONFERENCED ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2015). Wagle N., 2019, ISPRS ANN PHOTOGRAMM, VIV, P127, DOI {[}10.5194/isprs-annals-IV-5-W2-127-2019, DOI 10.5194/ISPRS-ANNALS-IV-5-W2-127-2019]. Wagle N., 2020, ESTIMATING CHLOROPHY, P6573, DOI DOI 10.3390/ECSA-6-06573. Wang TS, 2008, 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, P540, DOI 10.1109/IITA.2008.279. Wang XL, 2010, INT GEOSCI REMOTE SE, P2757, DOI 10.1109/IGARSS.2010.5653832. Wang XQ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04963-4. World Health Organization, 1996, GUID DRINK QUAL, P520, DOI {[}DOI 10.1136/BMJ.1.1938.520-A, 10.1136/bmj.1.1938.520-a]. Watanabe FSY, 2015, INT J ENV RES PUB HE, V12, P10391, DOI 10.3390/ijerph120910391. Zell A., 1994, SIMULATION NEURAL NE. Zhang C., 2015, E P 36 IAHR WORDL C, P6. Zhang YS, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12101567. Zhang YZ, 2003, BOREAL ENVIRON RES, V8, P251.}, Number-of-Cited-References = {76}, Times-Cited = {7}, Usage-Count-Last-180-days = {12}, Usage-Count-Since-2013 = {56}, Journal-ISO = {Sens. Mater.}, Doc-Delivery-Number = {PA8ID}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000595872200006}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000709466800006, Author = {Patruno, Lucrezia and Maspero, Davide and Craighero, Francesco and Angaroni, Fabrizio and Antoniotti, Marco and Graudenzi, Alex}, Title = {A review of computational strategies for denoising and imputation of single-cell transcriptomic data}, Journal = {BRIEFINGS IN BIOINFORMATICS}, Year = {2021}, Volume = {22}, Number = {4}, Month = {JUL}, Abstract = {Motivation: The advancements of single-cell sequencing methods have paved the way for the characterization of cellular states at unprecedented resolution, revolutionizing the investigation on complex biological systems. Yet, single-cell sequencing experiments are hindered by several technical issues, which cause output data to be noisy, impacting the reliability of downstream analyses. Therefore, a growing number of data science methods has been proposed to recover lost or corrupted information from single-cell sequencing data. To date, however, no quantitative benchmarks have been proposed to evaluate such methods. Results: We present a comprehensive analysis of the state-of-the-art computational approaches for denoising and imputation of single-cell transcriptomic data, comparing their performance in different experimental scenarios. In detail, we compared 19 denoising and imputation methods, on both simulated and real-world datasets, with respect to several performance metrics related to imputation of dropout events, recovery of true expression profiles, characterization of cell similarity, identification of differentially expressed genes and computation time. The effectiveness and scalability of all methods were assessed with regard to distinct sequencing protocols, sample size and different levels of biological variability and technical noise. As a result, we identify a subset of versatile approaches exhibiting solid performances on most tests and show that certain algorithmic families prove effective on specific tasks but inefficient on others. Finally, most methods appear to benefit from the introduction of appropriate assumptions on noise distribution of biological processes.}, Publisher = {OXFORD UNIV PRESS}, Address = {GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Antoniotti, M (Corresponding Author), Univ Milano Bicocca, Dept Informat Syst \& Commun, Milan, Italy. Graudenzi, A (Corresponding Author), Consiglio Nazl Ric IBFM CNR, Inst Mol Bioimaging \& Physiol, Milan, Italy. Craighero, Francesco; Angaroni, Fabrizio; Antoniotti, Marco, Univ Milano Bicocca, Dept Informat Syst \& Commun, Milan, Italy. Patruno, Lucrezia; Maspero, Davide, Univ Milano Bicocca, Dept Informat Syst \& Commun, Comp Sci, Milan, Italy. Graudenzi, Alex, IBFM CNR, Milan, Italy.}, DOI = {10.1093/bib/bbaa222}, Article-Number = {bbaa222}, ISSN = {1467-5463}, EISSN = {1477-4054}, Keywords = {denoising; imputation; single-cell RNA-sequencing; machine learning}, Keywords-Plus = {RNA-SEQ; GENE-EXPRESSION; HETEROGENEITY; FRAMEWORK; DECOMPOSITION; MATRIX}, Research-Areas = {Biochemistry \& Molecular Biology; Mathematical \& Computational Biology}, Web-of-Science-Categories = {Biochemical Research Methods; Mathematical \& Computational Biology}, Author-Email = {marco.antoniotti@unimib.it alex.graudenzi@ibfm.cnr.it}, Affiliations = {University of Milano-Bicocca; University of Milano-Bicocca; Consiglio Nazionale delle Ricerche (CNR); Istituto di Bioimmagini e Fisiologia Molecolare (IBFM-CNR)}, ResearcherID-Numbers = {Craighero, Francesco/GSD-6810-2022 Maspero, Davide/AHE-1900-2022 Graudenzi, Alex/AAY-5241-2020 }, ORCID-Numbers = {Maspero, Davide/0000-0001-8519-4331 Graudenzi, Alex/0000-0001-5452-1918 Patruno, Lucrezia/0000-0002-3721-9984 Craighero, Francesco/0000-0001-8457-6979 Antoniotti, Marco/0000-0002-2823-6838}, Funding-Acknowledgement = {Italian node of the Elixir network; SysBioNet project, a Ministero dell'Istruzione, dell'Universita e della Ricerca initiative for the Italian Roadmap of European Strategy Forum on Research Infrastructures; Cancer Research UK; Associazione Italiana per la Ricerca sul Cancro (CRUK/AIRC) {[}22790]}, Funding-Text = {This work was supported by the Cancer Research UK and Associazione Italiana per la Ricerca sul Cancro (CRUK/AIRC) ``Accelerator Award{''} (award \#22790) `Single-cell Cancer Evolution in the Clinic'. Partial support was also provided by the Italian node of the Elixir network (https://elixir-europe.org/a bout-us/who-we-are/nodes/italy) and the SysBioNet project, aMinistero dell'Istruzione, dell'Universita e della Ricerca initiative for the Italian Roadmap of European Strategy Forum on Research Infrastructures.}, Cited-References = {Agarwal D, 2020, STAT SCI, V35, P112, DOI 10.1214/19-STS7560. AlJanahi AA, 2018, MOL THER-METH CLIN D, V10, P189, DOI 10.1016/j.omtm.2018.07.003. Amodio M, 2019, NAT METHODS, V16, P1139, DOI 10.1038/s41592-019-0576-7. Andrews Tallulah S, 2018, F1000Res, V7, P1740, DOI 10.12688/f1000research.16613.1. Aparicio L, 2020, PATTERNS, V1, DOI 10.1016/j.patter.2020.100035. Arisdakessian C, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1837-6. Azizi E, 2017, GENOMICS COMPUTATION, V3, P46, DOI DOI 10.18547/gcb.2017.vol3.iss1.e46. Badsha MB, 2020, QUANT BIOL, V8, P78, DOI 10.1007/s40484-019-0192-7. Tran B, 2019, INT CONF KNOWL SYS, P229. Butler A, 2018, NAT BIOTECHNOL, V36, P411, DOI 10.1038/nbt.4096. Candes EJ, 2009, FOUND COMPUT MATH, V9, P717, DOI 10.1007/s10208-009-9045-5. Cao JY, 2017, SCIENCE, V357, P661, DOI 10.1126/science.aam8940. Chen C, 2020, BIOINFORMATICS, V36, P3156, DOI 10.1093/bioinformatics/btaa139. Chen MJ, 2018, GENOME BIOL, V19, DOI 10.1186/s13059-018-1575-1. Coifman RR, 2006, APPL COMPUT HARMON A, V21, P5, DOI 10.1016/j.acha.2006.04.006. Dalerba P, 2011, NAT BIOTECHNOL, V29, P1120, DOI 10.1038/nbt.2038. Damiani C, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1006733. Deng Y, 2019, NAT METHODS, V16, P311, DOI 10.1038/s41592-019-0353-7. Eckart C, 1936, PSYCHOMETRIKA, V1, P211, DOI 10.1007/BF02288367. Elowitz MB, 2002, SCIENCE, V297, P1183, DOI 10.1126/science.1070919. Elyanow R, 2020, GENOME RES, V30, P195, DOI 10.1101/gr.251603.119. Eraslan G, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-07931-2. Gierahn TM, 2017, NAT METHODS, V14, P395, DOI 10.1038/nmeth.4179. Goh WWB, 2017, TRENDS BIOTECHNOL, V35, P498, DOI 10.1016/j.tibtech.2017.02.012. Gong WM, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2226-y. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1. Graudenzi A, 2020, J CELL AUTOM, V15, P75. Haque A, 2017, GENOME MED, V9, DOI 10.1186/s13073-017-0467-4. Hashimshony T, 2012, CELL REP, V2, P666, DOI 10.1016/j.celrep.2012.08.003. Ho YJ, 2018, GENOME RES, V28, P1353, DOI 10.1101/gr.234062.117. Tran HTN, 2020, GENOME BIOL, V21, DOI 10.1186/s13059-019-1850-9. Hou Wenpin, 2020, Genome Biol, V21, P218, DOI 10.1186/s13059-020-02132-x. Hsu D, 2011, IEEE T INFORM THEORY, V57, P7221, DOI 10.1109/TIT.2011.2158250. Hu Y, 2019, WEDGE RECOVERY GENE, DOI {[}10.1101/864488, DOI 10.1101/864488]. Hu ZR, 2020, NAR GENOM BIOINFORM, V2, DOI 10.1093/nargab/lqaa077. Huang M, 2018, NAT METHODS, V15, P539, DOI 10.1038/s41592-018-0033-z. Huang S, 2009, DEVELOPMENT, V136, P3853, DOI 10.1242/dev.035139. Hwang B, 2018, EXP MOL MED, V50, DOI 10.1038/s12276-018-0071-8. Islam S, 2014, NAT METHODS, V11, P163, DOI {[}10.1038/NMETH.2772, 10.1038/nmeth.2772]. Jaitin DA, 2014, SCIENCE, V343, P776, DOI 10.1126/science.1247651. Jeong H, 2020, BIOINFORMATICS, V36, P4021, DOI 10.1093/bioinformatics/btaa278. Jin K, 2020, BIOINFORMATICS, V36, P3131, DOI 10.1093/bioinformatics/btaa108. Kalisky T, 2011, ANNU REV GENET, V45, P431, DOI 10.1146/annurev-genet-102209-163607. Klein AM, 2015, CELL, V161, P1187, DOI 10.1016/j.cell.2015.04.044. Lahnemann D, 2020, GENOME BIOL, V21, DOI 10.1186/s13059-020-1926-6. Lawson DA, 2018, NAT CELL BIOL, V20, P1349, DOI 10.1038/s41556-018-0236-7. Leote AC, 2019, NETWORK BASED IMPUTA, DOI {[}10.1101/611517, DOI 10.1101/611517]. Li LH, 2010, SCIENCE, V327, P542, DOI 10.1126/science.1180794. Li WV, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03405-7. Lin PJ, 2017, GENOME BIOL, V18, DOI 10.1186/s13059-017-1188-0. Linderman G.C., 2018, ZERO PRESERVING IMPU. Livan G., 2018, INTRO RANDOM MATRICE, V26. Lopez R, 2018, NAT METHODS, V15, P1053, DOI 10.1038/s41592-018-0229-2. Luecken MD, 2019, MOL SYST BIOL, V15, DOI 10.15252/msb.20188746. Macosko EZ, 2015, CELL, V161, P1202, DOI 10.1016/j.cell.2015.05.002. Marinov GK, 2014, GENOME RES, V24, P496, DOI 10.1101/gr.161034.113. Miao Z, 2019, SCRECOVER DISCRIMINA, DOI {[}10.1101/665323, DOI 10.1101/665323]. Mongia A, 2020, J COMPUT BIOL, V27, P1011, DOI 10.1089/cmb.2019.0278. Mongia A, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00009. Moussa M, 2019, J COMPUT BIOL, V26, P822, DOI 10.1089/cmb.2018.0236. Ng AY, 2002, ADV NEUR IN, V14, P849. Peng T, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1681-8. Pierson E, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0805-z. Pollen AA, 2014, NAT BIOTECHNOL, V32, P1053, DOI 10.1038/nbt.2967. Ramazzotti D, 2020, LONGITUDINAL CANCER, DOI {[}10.1101/2020.01.14.906453v2, DOI 10.1101/2020.01.14.906453V2]. Ramskold D, 2012, NAT BIOTECHNOL, V30, P777, DOI 10.1038/nbt.2282. Rao J., 2020, IMPUTING SINGLE CELL, P935296, DOI {[}10.1101/2020.02.05.935296, DOI 10.1101/2020.02.05.935296]. Regev A, 2017, ELIFE, V6, DOI 10.7554/eLife.27041. Ronen Jonathan, 2018, F1000Res, V7, P8, DOI 10.12688/f1000research.13511.3. Rosenberg AB, 2018, SCIENCE, V360, P176, DOI 10.1126/science.aam8999. ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7. Segerstolpe A, 2016, CELL METAB, V24, P593, DOI 10.1016/j.cmet.2016.08.020. Shaffer SM, 2017, NATURE, V546, P431, DOI 10.1038/nature22794. Shalek AK, 2014, NATURE, V510, P363, DOI 10.1038/nature13437. Sheng KW, 2017, NAT METHODS, V14, P267, DOI {[}10.1038/NMETH.4145, 10.1038/nmeth.4145]. Song FD, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16905-2. Sun Y, 2017, IEEE T SIGNAL PROCES, V65, P794, DOI 10.1109/TSP.2016.2601299. Talwar D, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34688-x. Tang WH, 2020, BIOINFORMATICS, V36, P1174, DOI 10.1093/bioinformatics/btz726. Tian LY, 2019, NAT METHODS, V16, P479, DOI 10.1038/s41592-019-0425-8. Tjaernberg A, 2020, OPTIMAL TUNING WEIGH, DOI 1101/2020.02.28.970202. Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z. Tracy S, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-2977-0. Trong TN, 2020, J COMPUT BIOL, V27, P1190, DOI 10.1089/cmb.2019.0337. Tung PY, 2017, SCI REP-UK, V7, DOI 10.1038/srep39921. van der Maaten L, 2008, J MACH LEARN RES, V9, P2579. van Dijk D, 2018, CELL, V174, P716, DOI 10.1016/j.cell.2018.05.061. Vieth B, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12266-7. Wagner F, 2019, ACCURATE DENOISING S, DOI DOI 10.1101/655365. Wagner F, 2018, K NEAREST NEIGHBOR S, DOI {[}10.1101/217737, DOI 10.1101/217737]. Wang JS, 2019, NAT METHODS, V16, P875, DOI 10.1038/s41592-019-0537-1. Wang YX, 2013, IEEE T KNOWL DATA EN, V25, P1336, DOI 10.1109/TKDE.2012.51. Wolf FA, 2018, GENOME BIOL, V19, DOI 10.1186/s13059-017-1382-0. Wu AR, 2014, NAT METHODS, V11, P41, DOI 10.1038/nmeth.2694. Wu W, 2020, G2S3 GENE GRAPH BASE, DOI {[}10.1101/2020.04.01.020586, DOI 10.1101/2020.04.01.020586]. Xu JL, 2020, BIOINFORMATICS, V36, P3139, DOI 10.1093/bioinformatics/btaa109. Xu YG, 2020, NUCLEIC ACIDS RES, V48, DOI 10.1093/nar/gkaa506. Yang MQ, 2018, BMC SYST BIOL, V12, DOI 10.1186/s12918-018-0638-y. Ye PC, 2020, BIOINFORMATICS, V36, P789, DOI 10.1093/bioinformatics/btz627. Ye WB, 2019, BMC GENOMICS, V20, DOI 10.1186/s12864-019-5747-5. Zhang L., 2018, BIORXIV. Zhang LH, 2020, IEEE ACM T COMPUT BI, V17, P376, DOI 10.1109/TCBB.2018.2848633. Zhang XF, 2019, BIOINFORMATICS, V35, P4827, DOI 10.1093/bioinformatics/btz435. Zhang XW, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10500-w. Zhang Y., 2019, BIORXIV, P793463, DOI {[}10.1101/793463, DOI 10.1101/793463]. Zheng GXY, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14049. Zhou ZL, 2020, GENOME BIOL, V21, DOI 10.1186/s13059-019-1922-x. Zhu KY, 2020, BIOINFORMATICS, V36, P3588, DOI 10.1093/bioinformatics/btaa148. Zhu LX, 2018, ANN APPL STAT, V12, P609, DOI 10.1214/17-AOAS1110. Ziegenhain C, 2017, MOL CELL, V65, P631, DOI 10.1016/j.molcel.2017.01.023.}, Number-of-Cited-References = {110}, Times-Cited = {16}, Usage-Count-Last-180-days = {5}, Usage-Count-Since-2013 = {26}, Journal-ISO = {Brief. Bioinform.}, Doc-Delivery-Number = {WK1AV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000709466800006}, DA = {2023-04-22}, } @article{ WOS:000722493300001, Author = {Sharif, Muhammad Zahid and Di, Nayan and Liu, Fanglin}, Title = {Monitoring honeybees (Apis spp.) (Hymenoptera: Apidae) in climate-smart agriculture: A review}, Journal = {APPLIED ENTOMOLOGY AND ZOOLOGY}, Year = {2022}, Volume = {57}, Number = {4}, Pages = {289-303}, Month = {NOV}, Abstract = {Climate change is a major threat to agriculture production among small-scale farms worldwide. Climate-smart agriculture (CSA) is one of the technologies and strategies to sustain agriculture growth in a changing climate. Researchers are finding ways to collect big data, which are required to clarify local climate change and its impacts on agriculture to pinpoint the farming strategies for the practice of CSA. The honeybee (Hymenoptera: Apidae) hives around the world which are equipped with digital devices for continuously monitoring the status of colonies for precise beekeeping, accumulate huge amounts of data that can be used to address some questions about CSA. In this paper, we confer an overview of the big beehive data (BBD) and data science and identifies their potential applications to support CSA, as well as several challenges confronted by this approach. Here, we also outline that how can we predict the bee-plant interaction based on monitoring dynamics in honey production using novel and technological approaches. Numerous approaches including big data analytics, IoT, Wireless sensor network (WSN)-based monitoring systems, machine learning, and AI algorithms are being considered as a power source to assist in delivering novel insights and explication to the problems. We put in examples where all these approaches have been employed for monitoring and analyzing BBD. Moreover, we predict their role to aid in apiary management with the perspective of CSA.}, Publisher = {SPRINGER JAPAN KK}, Address = {SHIROYAMA TRUST TOWER 5F, 4-3-1 TORANOMON, MINATO-KU, TOKYO, 105-6005, JAPAN}, Type = {Review}, Language = {English}, Affiliation = {Liu, FL (Corresponding Author), Chinese Acad Sci, Hefei Inst Phys Sci, Anhui Inst Opt \& Fine Mech, 350 Shushanhu Rd, Hefei 230031, Anhui, Peoples R China. Sharif, Muhammad Zahid; Di, Nayan; Liu, Fanglin, Chinese Acad Sci, Hefei Inst Phys Sci, Anhui Inst Opt \& Fine Mech, 350 Shushanhu Rd, Hefei 230031, Anhui, Peoples R China. Sharif, Muhammad Zahid; Di, Nayan, Univ Sci \& Technol China, Hefei 230026, Anhui, Peoples R China.}, DOI = {10.1007/s13355-021-00765-3}, EarlyAccessDate = {NOV 2021}, ISSN = {0003-6862}, EISSN = {1347-605X}, Keywords = {Big data; Climate-smart agriculture; Honey bees; Real-time analysis; Wireless sensor networks}, Keywords-Plus = {WIRELESS SENSOR NETWORK; NECTAR PRODUCTION; INSECT POLLINATORS; BIG DATA; BEE; SECRETION; SYSTEM; BEHAVIOR; SCIENCE; STRESS}, Research-Areas = {Entomology}, Web-of-Science-Categories = {Entomology}, Author-Email = {2011ag4010@uaf.edu.pk dny\_yan@126.com flliu@ipp.ac.cn}, Affiliations = {Chinese Academy of Sciences; Anhui Institute of Optics \& Fine Mechanics (AIOFM), CAS; Hefei Institutes of Physical Science, CAS; Chinese Academy of Sciences; University of Science \& Technology of China, CAS}, ORCID-Numbers = {Di, Nayan/0000-0002-0403-2021 Sharif, Muhammad Zahid/0000-0002-8980-8713}, Funding-Acknowledgement = {Chinese Academy of Sciences (CAS); Academy of the Sciences for Developing World (TWAS)}, Funding-Text = {First author is highly thankful to the Chinese Academy of Sciences (CAS), and Academy of the Sciences for Developing World (TWAS) for providing CAS-TWAS Scholarship grant for doctoral study.}, Cited-References = {Acorn JH, 2017, CAN ENTOMOL, V149, P774, DOI 10.4039/tce.2017.48. Adams RM, 1998, CLIMATE RES, V11, P19, DOI 10.3354/cr011019. Adgaba N, 2017, SAUDI J BIOL SCI, V24, P180, DOI 10.1016/j.sjbs.2016.05.002. Alqarni AS, 2015, NEOTROP ENTOMOL, V44, P232, DOI 10.1007/s13744-015-0279-4. Appenfeller LR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0230007. Aslan CE, 2016, NAT AREA J, V36, P478, DOI 10.3375/043.036.0413. Barlow SE, 2019, J BIOL ENG, V13, DOI 10.1186/s13036-019-0143-x. Becklin KM, 2011, AM J BOT, V98, P1299, DOI 10.3732/ajb.1000450. Bencsik M, 2011, COMPUT ELECTRON AGR, V76, P44, DOI 10.1016/j.compag.2011.01.004. Berthet ETA, 2012, J SUSTAIN AGR, V36, P319, DOI 10.1080/10440046.2011.627988. BERTSCH A, 1983, OECOLOGIA, V59, P40, DOI 10.1007/BF00388069. Bloom E.H., 2020, CITIZ SCI THEORY PRA, V5, P3, DOI {[}10.5334/cstp.217, DOI 10.5334/CSTP.217]. Bromenshenk JJ, 2015, BIOSENSORS-BASEL, V5, P678, DOI 10.3390/bios5040678. BROWN R, 1989, BEE WORLD, V70, P109, DOI 10.1080/0005772X.1989.11099000. Campbell T, 2020, AGRICULTURE-BASEL, V10, DOI 10.3390/agriculture10040118. Cecchi S, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20092726. Chen C, 2012, COMPUT ELECTRON AGR, V89, P100, DOI 10.1016/j.compag.2012.08.006. Clarke D, 2018, APIDOLOGIE, V49, P386, DOI 10.1007/s13592-018-0565-3. Collison, 2016, THE MAGAZINE AM BEEK. Cox-Foster DL, 2007, SCIENCE, V318, P283, DOI 10.1126/science.1146498. Cuevas E, 2016, PLANT BIOLOGY, V18, P9, DOI 10.1111/plb.12311. Dag A, 2000, J APICULT RES, V39, P88, DOI 10.1080/00218839.2000.11101027. de Souza P, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18072124. Decourtye A, 2011, ECOTOXICOLOGY, V20, P429, DOI 10.1007/s10646-011-0594-4. DEVLIN B, 1988, ECOLOGY, V69, P1716, DOI 10.2307/1941149. Devlin B., 2012, BIG DATA ZOO TAMING. Ellis MB, 2009, THESIS U PRETORIA. Esaias W, 2008, AGU SPRING M ABSTR. Evan, 2021, SAVING BEES BIG DATA. FAO, 2009, FAOSTAT. Ferrari S, 2008, COMPUT ELECTRON AGR, V64, P72, DOI 10.1016/j.compag.2008.05.010. Food and Agriculture Organization of the United Nations (FAO), 2015, BEE PROD PROV NUTR G. Gil-Lebrero S, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17010055. Girotti S, 2020, EURO-MEDITERR J ENVI, V5, DOI 10.1007/s41207-020-00204-9. Gordo O, 2006, ECOL ENTOMOL, V31, P261, DOI 10.1111/j.1365-2311.2006.00787.x. Goulson D, 2015, SCIENCE, V347, DOI 10.1126/science.1255957. Gratzer K, 2021, ENVIRON SCI POLLUT R, V28, P37995, DOI 10.1007/s11356-021-13379-7. Gruter C, 2011, ANIM BEHAV, V81, P949, DOI 10.1016/j.anbehav.2011.01.014. Henry E, 2019, COMPUT ELECTRON AGR, V156, P138, DOI 10.1016/j.compag.2018.11.001. Islam ME., 2015, ASIAN J MED BIOL RES, V1, P359, DOI {[}10.17221/7240-VETMED, DOI 10.17221/7240-VETMED]. Jat HS, 2019, CATENA, V181, DOI 10.1016/j.catena.2019.05.005. Jiang JA, 2016, COMPUT ELECTRON AGR, V123, P304, DOI 10.1016/j.compag.2016.03.003. Johnson R., 2010, HONEY BEE COLONY COL, P7. Johnson RM, 2009, P NATL ACAD SCI USA, V106, P14790, DOI 10.1073/pnas.0906970106. Karadas K, 2017, PAK J ZOOL, V49, P1611, DOI 10.17582/journal.pjz/2017.49.5.1611.1619. Kjohl M., 2011, Potential effects of climate change on crop pollination. Klein S, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-42677-x. Kline O, 2020, AGRICULTURE-BASEL, V10, DOI 10.3390/agriculture10040115. Kulyukin V, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9183743. Kulyukin V, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8091573. Kviesis A, 2014, PROCEDIA COMPUT SCI, V43, P86, DOI 10.1016/j.procs.2014.12.012. Liao Y, 2020, SAS GLOB FOR 2020. Lipper L, 2014, NAT CLIM CHANGE, V4, P1068, DOI {[}10.1038/NCLIMATE2437, 10.1038/nclimate2437]. Liu FL, 2005, NATURWISSENSCHAFTEN, V92, P297, DOI 10.1007/s00114-005-0629-x. Machac J, 2021, INT J ENVIRON SCI TE, V18, P3, DOI 10.1007/s13762-020-02752-7. Mahan JR, 2010, COMPUT ELECTRON AGR, V71, P176, DOI 10.1016/j.compag.2010.01.005. Mahan JR, 2008, COMPUT ELECTRON AGR, V64, P262, DOI 10.1016/j.compag.2008.05.017. Marr B., 2020, FORBES. Martinello M, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11146481. Matin M.A., 2012, WIRELESS SENSOR NETW, P3, DOI 10.5772/49376. Meikle WG, 2015, APIDOLOGIE, V46, P10, DOI 10.1007/s13592-014-0298-x. MICHELSEN A, 1987, J COMP PHYSIOL A, V161, P633, DOI 10.1007/BF00605005. Mu JP, 2016, PLANT ECOL, V217, P1195, DOI 10.1007/s11258-016-0646-1. Murphy E. K., 2015, 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC). Proceedings, P1, DOI 10.1109/NEBEC.2015.7117182. Murphy FE, 2015, IEEE IMTC P, P346, DOI 10.1109/I2MTC.2015.7151292. Myers, 2020, 5WAYS MEASURE BEEHIV. Nickeson, 2021, HONEY BEE NET. Nocentini D, 2013, PLANT ECOL, V214, P799, DOI 10.1007/s11258-013-0204-z. Nolasco, 2018, P DET CLASS AC SCEN. Norton R, 2014, J CROP IMPROV, V28, P575, DOI 10.1080/15427528.2014.924331. Nunes-Silva P, 2020, APIDOLOGIE, V51, P240, DOI 10.1007/s13592-019-00706-8. Oldroyd Benjamin P., 2007, PLoS Biology, V5, pUnpaginated. Pacini Ettore, 2007, P167, DOI 10.1007/978-1-4020-5937-7\_4. Pegoraro L, 2020, EMERG TOP LIFE SCI, V4, P87, DOI 10.1042/ETLS20190074. Pesovic U., 2019, Acta Agriculturae Serbica, V24, P157, DOI 10.5937/AASer1948157P. Petanidou T, 1996, NEW PHYTOL, V133, P513, DOI 10.1111/j.1469-8137.1996.tb01919.x. Provost F, 2013, BIG DATA, V1, P51, DOI 10.1089/big.2013.1508. Qandour A, 2014, ACOUST AUST, V42, P204. Ratnayake MN., 2020, TRACKING INDIVIDUAL, DOI 10.1101/2020.09.09.289215. Reichert C, 2015, INTEL CSIRO CREATE R. RINDERER TE, 1985, J APICULT RES, V24, P161, DOI 10.1080/00218839.1985.11100666. Roberts, 2020, SAS BOOSTS HLTH BEE. Robles-Guerrero A., 2017, RES COMPUT SCI, V142, P89, DOI DOI 10.13053/RCS-142-1-9. Rogers SR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097307. Sapkota TB, 2015, J INTEGR AGR, V14, P1524, DOI 10.1016/S2095-3119(15)61093-0. Saunders, 2020, COUNTING BEESWHICH B. Scaven VL, 2013, CURR ZOOL, V59, P418, DOI 10.1093/czoolo/59.3.418. Schneider CW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030023. SEELEY TD, 1991, BEHAV ECOL SOCIOBIOL, V28, P277, DOI 10.1007/BF00175101. Sharif MZ, 2020, SOCIOBIOLOGY, V67, P566, DOI 10.13102/sociobiology.v67i4.5860. Sharif Muhammad Zahid, 2020, Uludag Aricilik Dergisi, V20, P132. Sharif MZ., 2020, J ENTOMOL ZOOL STUD, V8, P1248. Shepherd, 2019, ENTOMOLOGY TODAY. Smolla M, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0188. Stabentheiner A, 2021, J COMP PHYSIOL A, V207, P337, DOI 10.1007/s00359-021-01464-8. Stelzer RJ, 2010, J BIOL RHYTHM, V25, P257, DOI 10.1177/0748730410371750. Strob M, 2016, POST 2016 C PRAG MAY. Tabassum Shazia, 2016, 2016 17th IEEE International Conference on Mobile Data Management (MDM), P55, DOI 10.1109/MDM.2016.90. Takahashi S, 2019, INT JOINT CONF COMP, P170, DOI 10.1109/JCSSE.2019.8864160. Takkis K, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00874. Takkis K, 2015, AOB PLANTS, V7, DOI 10.1093/aobpla/plv111. Tao SC, 2011, ADV CLIM CHANG RES, V2, P203, DOI 10.3724/SP.J.1248.2011.00203. Tautz, 2005, INSECT SOUNDS COMMUN, DOI 10.1201/9781420039337.ch32. Terenzi A, 2020, VET SCI, V7, DOI 10.3390/vetsci7040168. Tu GJ, 2016, COMPUT ELECTRON AGR, V122, P10, DOI 10.1016/j.compag.2016.01.011. Vannette RL, 2018, ANN BOT-LONDON, V121, P1343, DOI 10.1093/aob/mcy032. Vannette RL, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2601. Want R, 2006, IEEE PERVAS COMPUT, V5, P25, DOI 10.1109/MPRV.2006.2. WARIO F, 2015, FRONT ECOL EVOL, V3, DOI DOI 10.3389/FEVO.2015.00103. Wario F, 2017, THESIS FREIE U BERLI. Waser NM, 2016, ECOLOGY, V97, P1400, DOI 10.1890/15-1423.1. Watson RT, 2001, CLIMATE CHANGE 2001: IMPACTS, ADAPTATION, AND VULNERABILITY, pIX. Williams, 2016, MICHIGAN NPR NEWS LE. Yang CW, 2017, INT J DIGIT EARTH, V10, P13, DOI 10.1080/17538947.2016.1239771. Zabel F, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107522. Zgank A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21030676.}, Number-of-Cited-References = {116}, Times-Cited = {1}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {2}, Journal-ISO = {Appl. Entomol. Zoolog.}, Doc-Delivery-Number = {4U2PO}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000722493300001}, DA = {2023-04-22}, } @article{ WOS:000635675300001, Author = {Alghushairy, Omar and Alsini, Raed and Soule, Terence and Ma, Xiaogang}, Title = {A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams}, Journal = {BIG DATA AND COGNITIVE COMPUTING}, Year = {2021}, Volume = {5}, Number = {1}, Month = {MAR}, Abstract = {Outlier detection is a statistical procedure that aims to find suspicious events or items that are different from the normal form of a dataset. It has drawn considerable interest in the field of data mining and machine learning. Outlier detection is important in many applications, including fraud detection in credit card transactions and network intrusion detection. There are two general types of outlier detection: global and local. Global outliers fall outside the normal range for an entire dataset, whereas local outliers may fall within the normal range for the entire dataset, but outside the normal range for the surrounding data points. This paper addresses local outlier detection. The best-known technique for local outlier detection is the Local Outlier Factor (LOF), a density-based technique. There are many LOF algorithms for a static data environment; however, these algorithms cannot be applied directly to data streams, which are an important type of big data. In general, local outlier detection algorithms for data streams are still deficient and better algorithms need to be developed that can effectively analyze the high velocity of data streams to detect local outliers. This paper presents a literature review of local outlier detection algorithms in static and stream environments, with an emphasis on LOF algorithms. It collects and categorizes existing local outlier detection algorithms and analyzes their characteristics. Furthermore, the paper discusses the advantages and limitations of those algorithms and proposes several promising directions for developing improved local outlier detection methods for data streams.}, Publisher = {MDPI}, Address = {ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Alghushairy, O; Ma, XG (Corresponding Author), Univ Idaho, Dept Comp Sci, Moscow, ID 83844 USA. Alghushairy, O (Corresponding Author), Univ Jeddah, Coll Comp Sci \& Engn, Jeddah 23890, Saudi Arabia. Alghushairy, Omar; Alsini, Raed; Soule, Terence; Ma, Xiaogang, Univ Idaho, Dept Comp Sci, Moscow, ID 83844 USA. Alghushairy, Omar, Univ Jeddah, Coll Comp Sci \& Engn, Jeddah 23890, Saudi Arabia. Alsini, Raed, King Abdulaziz Univ, Fac Comp \& Informat Technol, Jeddah 21589, Saudi Arabia.}, DOI = {10.3390/bdcc5010001}, Article-Number = {1}, EISSN = {2504-2289}, Keywords = {outlier detection; data science; local outlier factor; genetic algorithm; stream data mining}, Keywords-Plus = {NOVELTY DETECTION; EFFICIENT; CLASSIFICATION}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory \& Methods}, Author-Email = {algh5752@vandals.uidaho.edu alsi1250@vandals.uidaho.edu tsoule@uidaho.edu max@uidaho.edu}, Affiliations = {Idaho; University of Idaho; University of Jeddah; King Abdulaziz University}, ResearcherID-Numbers = {Alsini, Raed/AEG-9852-2022 Ma, Xiaogang/C-9286-2011 Alghushairy, Omar/HHC-1859-2022 }, ORCID-Numbers = {Alsini, Raed/0000-0002-3163-575X Ma, Xiaogang/0000-0002-9110-7369 Alghushairy, Omar/0000-0002-7378-5545}, Funding-Acknowledgement = {National Science Foundation {[}2019609]}, Funding-Text = {This research was partially supported by the National Science Foundation under grant No. 2019609.}, Cited-References = {Aggarwal C.C., 2015, DATA MINING, P237, DOI DOI 10.1007/978-3-319-14142-8. Alghushairy O., 2020, P 2020 4 INT C COMP, P38. Alghushairy O., 2019, ENCY BIG DATA. Alghushairy O., 2020, P 4 INT C APPL COGN. Alsini R., 2020, P 4 INT C APPL COGN. Alsini R., 2019, ENCY BIG DATA. Amer M, 2012, P 3 RAPIDMINER COMM, P1. {[}Anonymous], 1996, ELEMENTS ARTIFICIAL, DOI DOI 10.7551/MITPRESS/2687.001.0001. {[}Anonymous], 2014, C4 5 PROGRAMS MACHIN. {[}Anonymous], {*}{*}DATA OBJECT{*}{*}, DOI DOI 10.5441/002/EDBT.2019.37. Bakar Z., 2006, P 2006 IEEE C CYB IN. Balcazar J.L., 2010, MACHINE LEARNING KNO, V6321. Bansal R, 2016, 2016 6TH INTERNATIONAL CONFERENCE - CLOUD SYSTEM AND BIG DATA ENGINEERING (CONFLUENCE), P373, DOI 10.1109/CONFLUENCE.2016.7508146. Barnett V., 1978, OUTLIERS STAT DATA. Barnett V., 1994, STAT INTERPRETATION. Bolton R.J., 2011, P CRED SCOR CRED CON, P235. Boukerche A, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3381028. Boulila W, 2011, INT J APPL EARTH OBS, V13, P386, DOI 10.1016/j.jag.2011.01.008. Breunig MM, 2000, SIGMOD REC, V29, P93, DOI 10.1145/335191.335388. Cai SH, 2019, INF TECHNOL CONTROL, V48, P505, DOI 10.5755/j01.itc.48.4.22176. Cao KY, 2014, LECT NOTES COMPUT SC, V8485, P67, DOI 10.1007/978-3-319-08010-9\_9. Chauhan P., 2015, P 2015 INT C ADV COM. Chawla N. V., 2004, ACM SIGKDD EXPLORATI, V6, P1, DOI DOI 10.1145/1007730.1007733. Chen QW, 2018, IEEE T NEUR NET LEAR, V29, P1622, DOI 10.1109/TNNLS.2017.2676110. Chiu A., 2003, P 7 INT DAT ENG APPL. Cios K., 1998, DATA MINING METHODS, DOI {[}10.1007/978-1-4615-5589-6, DOI 10.1007/978-1-4615-5589-6]. Din SU, 2020, INFORM SCIENCES, V507, P404, DOI 10.1016/j.ins.2019.08.050. Domingues R, 2018, PATTERN RECOGN, V74, P406, DOI 10.1016/j.patcog.2017.09.037. Edgeworth F. Y, 1887, PHILOS MAG, V23, P364, DOI {[}DOI 10.1080/14786448708628471, 10.1080/14786448708628471]. Eskin E., 2000, P INT C MACH LEARN, P255. Fan HQ, 2009, KNOWL INF SYST, V19, P31, DOI 10.1007/s10115-008-0145-3. Fawzy A, 2013, EGYPT INFORM J, V14, P157, DOI 10.1016/j.eij.2013.06.001. Fujimaki R., 2005, P 11 ACM SIGKDD INT. Gao J, 2011, LECT NOTES ARTIF INT, V6635, P270, DOI 10.1007/978-3-642-20847-8\_23. Garcia-Teodoro P, 2009, COMPUT SECUR, V28, P18, DOI 10.1016/j.cose.2008.08.003. Gokalp E, 2008, SENSORS-BASEL, V8, P7344, DOI 10.3390/s8117344. Goldstein M., 2016, THESIS. Goldstein M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152173. Hamlet C., 2017, J CYBER SECUR TECHNO, V1, P75, DOI {[}10.1080/23742917.2016.1226651, DOI 10.1080/23742917.2016.1226651]. Han J, 2012, MOR KAUF D, P1. Hawkins D.., 1980, IDENTIFICATION OUTLI. He ZY, 2003, PATTERN RECOGN LETT, V24, P1641, DOI 10.1016/S0167-8655(03)00003-5. Hodge VJ, 2004, ARTIF INTELL REV, V22, P85, DOI 10.1023/B:AIRE.0000045502.10941.a9. Ishimtsev V., 2017, P MACHINE LEARNING R, P213. Jain A. K., 1988, ALGORITHMS CLUSTERIN. Jiadong Ren, 2009, Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2009), P259, DOI 10.1109/FSKD.2009.548. Jian Tang, 2002, Advances in Knowledge Discovery and Data Mining. 6th Pacific-Asia Conference, PAKDD 2002. Proceedings (Lecture Notes in Artificial Intelligence Vol.2336), P535. Jiang SY, 2003, 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, P157, DOI 10.1109/ICMLC.2003.1264462. Jin W., 2016, LECT NOTES COMPUTER, V3918, P577. Joshi M. V., 2002, P 8 ACM SIGKDD INT C. Joshi M.V., 2001, P 2001 ACM SIGMOD IN. Kalliantzis I., 2019, RES REPORT. Karimian S.H., 2012, P 16 CSI INT S ART I. Knorr E. M., 1998, Proceedings of the Twenty-Fourth International Conference on Very-Large Databases, P392. Kontaki M, 2016, INFORM SYST, V55, P37, DOI 10.1016/j.is.2015.07.006. Kriegel Hans-Peter, 2009, P 18 ACM C INF KNOWL. Kumar R, 2005, AAPS PHARMSCITECH, V6. Latecki LJ, 2007, LECT NOTES ARTIF INT, V4571, P61. Lin J, 2005, P 18 IEEE S COMP BAS. Lozano E., 2005, P 5 IEEE INT C DAT M. Manzoor E, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY \& DATA MINING, P1963, DOI 10.1145/3219819.3220107. Markou M, 2003, SIGNAL PROCESS, V83, P2499, DOI 10.1016/j.sigpro.2003.07.019. Markou M, 2003, SIGNAL PROCESS, V83, P2481, DOI 10.1016/j.sigpro.2003.07.018. Meng FR, 2019, ARTIF INTELL REV, V52, P2437, DOI 10.1007/s10462-018-9619-1. Momtaz R, 2013, LECT NOTES COMPUT SC, V7887, P517. Moya MM, 1996, NEURAL NETWORKS, V9, P463, DOI 10.1016/0893-6080(95)00120-4. Mu X, 2017, IEEE T KNOWL DATA EN, V29, P1605, DOI 10.1109/TKDE.2017.2691702. Munir M, 2019, IEEE ACCESS, V7, P1991, DOI 10.1109/ACCESS.2018.2886457. Na G.S., 2018, P 24 ACM SIGKDD INT. Nikolic J, 2007, ELE COM ENG, P22. Ning J, 2018, PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), P227, DOI 10.1145/3297156.3297236. Papadimitriou S, 2003, PROC INT CONF DATA, P315, DOI 10.1109/ICDE.2003.1260802. Park CM, 2015, LECT NOTES COMPUT SC, V9208, P78, DOI 10.1007/978-3-319-24474-7\_12. Park CH, 2019, J SUPERCOMPUT, V75, P6118, DOI 10.1007/s11227-018-2674-1. Patcha A, 2007, COMPUT NETW, V51, P3448, DOI 10.1016/j.comnet.2007.02.001. Pavlidou M., 2014, TOPICS NONPARAMETRIC, P241, DOI DOI 10.1007/978-1-4939-0569-0\_22. Phua C., ARXIV10096119. Pimentel MAF, 2014, SIGNAL PROCESS, V99, P215, DOI 10.1016/j.sigpro.2013.12.026. Pokrajac D, 2007, 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, P504, DOI 10.1109/CIDM.2007.368917. Portnoy L, 2000, THESIS. Prasad NR, 2009, CMC-COMPUT MATER CON, V14, P1, DOI 10.1145/1541880.1541882. Ramirez-Gallego S, 2017, NEUROCOMPUTING, V239, P39, DOI 10.1016/j.neucom.2017.01.078. Ren DM, 2004, FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P503, DOI 10.1109/ICDM.2004.10010. Reunanen N, 2020, INT J DATA SCI ANAL, V9, P285, DOI 10.1007/s41060-019-00191-3. Rousseeuw PJ, 1987, WILEY SERIES PROBABI. Safaei M, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12030328. Salehi M., 2018, DATA BRIEF, V20, P13, DOI {[}10.1145/3229329.3229332, DOI 10.1145/3229329.3229332]. Salehi M, 2015, 2015 IEEE TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING (ISSNIP). Salehi M, 2016, IEEE T KNOWL DATA EN, V28, P3246, DOI 10.1109/TKDE.2016.2597833. Samparthi V.S.K., 2010, IJCA, V5, P28, DOI {[}10.5120/924-1302, DOI 10.5120/924-1302]. Satman M., 2013, INT J STAT PROBAB, V2, P101, DOI {[}DOI 10.5539/IJSP.V2N3P101, 10.5539/ijsp.v2n3p101]. Scholkopf B, 2001, NEURAL COMPUT, V13, P1443, DOI 10.1162/089976601750264965. Sen Pratap Chandra, 2020, Emerging Technology in Modelling and Graphics. Proceedings of IEM Graph 2018. Advances in Intelligent Systems and Computing (AISC 937), P99, DOI 10.1007/978-981-13-7403-6\_11. Siffer A, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1067, DOI 10.1145/3097983.3098144. Snyder D., 2001, THESIS. Vazquez AS, 2018, CUADERNOS HISPANOAM, P17. Souiden I, 2017, ADV INTELL SYST, V557, P372, DOI 10.1007/978-3-319-53480-0\_37. Spence C., 2002, P IEEE WORKSH MATH M. Su SB, 2019, IEEE ACCESS, V7, P1006, DOI 10.1109/ACCESS.2018.2886197. Tang B, 2017, NEUROCOMPUTING, V241, P171, DOI 10.1016/j.neucom.2017.02.039. Tang X.M., 2015, INT J CONTROL AUTOM, V8, P161, DOI {[}10.14257/ijca.2015.8.8.17, DOI 10.14257/IJCA.2015.8.8.17]. Tellis V.M., 2018, P 2018 INT C CONTR P. Thiprungsri S., 2011, INT J DIGITAL ACCOUN, V11, DOI {[}10.4192/1577-8517-v11\_4, DOI 10.4192/1577-8517-V11\_4]. Wang HZ, 2019, IEEE ACCESS, V7, P107964, DOI 10.1109/ACCESS.2019.2932769. Wang ZG, 2015, NEURAL COMPUT APPL, V26, P957, DOI 10.1007/s00521-014-1750-6. Xu ZJ, 2019, INT C PAR DISTRIB SY, P9, DOI {[}10.1109/Cybconf47073.2019.9436577, 10.1109/ICPADS47876.2019.00011]. Yang B, 2019, R RES LANDSCAPE ENV, P29. Yang P, 2019, IEEE ACCESS, V7, P115914, DOI 10.1109/ACCESS.2019.2922004. Yang X., 2009, P 2009 SIAM INT C DA. Yao HQ, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8081248. Yeung DY, 2003, PATTERN RECOGN, V36, P229, DOI 10.1016/S0031-3203(02)00026-2. Zhang J, 2013, EAI ENDORSED TRANS S, V13, DOI 10.4108/trans.sis.2013.01-03.e2. Zhang LW, 2017, IEEE T SYST MAN CY-S, V47, P289, DOI 10.1109/TSMC.2016.2585566. Zhao Y, 2019, P 2019 SIAM INT C DA, P585, DOI {[}10.1137/1.9781611975673.66, DOI 10.1137/1.9781611975673.66]. Zimek A, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1280.}, Number-of-Cited-References = {115}, Times-Cited = {35}, Usage-Count-Last-180-days = {11}, Usage-Count-Since-2013 = {33}, Journal-ISO = {Big Data Cogn. Comput.}, Doc-Delivery-Number = {RG6WD}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000635675300001}, OA = {gold}, DA = {2023-04-22}, } @article{ WOS:000712877700007, Author = {Zuo, Zheming and Watson, Matthew and Budgen, David and Hall, Robert and Kennelly, Chris and Al Moubayed, Noura}, Title = {Data Anonymization for Pervasive Health Care: Systematic Literature Mapping Study}, Journal = {JMIR MEDICAL INFORMATICS}, Year = {2021}, Volume = {9}, Number = {10}, Month = {OCT}, Abstract = {Background: Data science offers an unparalleled opportunity to identify new insights into many aspects of human life with recent advances in health care. Using data science in digital health raises significant challenges regarding data privacy, transparency, and trustworthiness. Recent regulations enforce the need for a clear legal basis for collecting, processing, and sharing data, for example, the European Union's General Data Protection Regulation (2016) and the United Kingdom's Data Protection Act (2018). For health care providers, legal use of the electronic health record (EHR) is permitted only in clinical care cases. Any other use of the data requires thoughtful considerations of the legal context and direct patient consent. Identifiable personal and sensitive information must be sufficiently anonymized. Raw data are commonly anonymized to be used for research purposes, with risk assessment for reidentification and utility. Although health care organizations have internal policies defined for information governance, there is a significant lack of practical tools and intuitive guidance about the use of data for research and modeling. Off-the-shelf data anonymization tools are developed frequently, but privacy-related functionalities are often incomparable with regard to use in different problem domains. In addition, tools to support measuring the risk of the anonymized data with regard to reidentification against the usefulness of the data exist, but there are question marks over their efficacy. Objective: In this systematic literature mapping study, we aim to alleviate the aforementioned issues by reviewing the landscape of data anonymization for digital health care. Methods: We used Google Scholar, Web of Science, Elsevier Scopus, and PubMed to retrieve academic studies published in English up to June 2020. Noteworthy gray literature was also used to initialize the search. We focused on review questions covering 5 bottom-up aspects: basic anonymization operations, privacy models, reidentification risk and usability metrics, off-the-shelf anonymization tools, and the lawful basis for EHR data anonymization. Results: We identified 239 eligible studies, of which 60 were chosen for general background information; 16 were selected for 7 basic anonymization operations; 104 covered 72 conventional and machine learning-based privacy models; four and 19 papers included seven and 15 metrics, respectively, for measuring the reidentification risk and degree of usability; and 36 explored 20 data anonymization software tools. In addition, we also evaluated the practical feasibility of performing anonymization on EHR data with reference to their usability in medical decision-making. Furthermore, we summarized the lawful basis for delivering guidance on practical EHR data anonymization. Conclusions: This systematic literature mapping study indicates that anonymization of EHR data is theoretically achievable; yet, it requires more research efforts in practical implementations to balance privacy preservation and usability to ensure more reliable health care applications.}, Publisher = {JMIR PUBLICATIONS, INC}, Address = {130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA}, Type = {Review}, Language = {English}, Affiliation = {Al Moubayed, N (Corresponding Author), Univ Durham, Dept Comp Sci, South Rd, Durham DH1 3LE, England. Zuo, Zheming; Watson, Matthew; Budgen, David; Al Moubayed, Noura, Univ Durham, Dept Comp Sci, South Rd, Durham DH1 3LE, England. Hall, Robert; Kennelly, Chris, Cievert Ltd, Newcastle Upon Tyne, Tyne \& Wear, England.}, DOI = {10.2196/29871}, Article-Number = {e29871}, EISSN = {2291-9694}, Keywords = {healthcare; privacy-preserving; GDPR; DPA 2018; EHR; SLM; data science; anonymization; reidentification risk; usability}, Keywords-Plus = {K-ANONYMITY; PRESERVING PRIVACY; ALGORITHM; REIDENTIFICATION; ASSOCIATION; INFORMATION; MICRODATA; MODEL}, Research-Areas = {Medical Informatics}, Web-of-Science-Categories = {Medical Informatics}, Author-Email = {Noura.al-moubayed@durham.ac.uk}, Affiliations = {Durham University}, ResearcherID-Numbers = {Zuo, Zheming/AAT-6193-2020 }, ORCID-Numbers = {Zuo, Zheming/0000-0003-1576-0865 Al Moubayed, Noura/0000-0001-8942-355X Budgen, David/0000-0001-7143-0241 Watson, Matthew/0000-0001-6375-3905}, Funding-Acknowledgement = {UK Research and Innovation fund {[}312409]; Cievert Ltd.}, Funding-Text = {This study was sponsored by the UK Research and Innovation fund (project 312409) and Cievert Ltd.}, Cited-References = {Abadi M, 2016, CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P308, DOI 10.1145/2976749.2978318. Adams RJ, 2017, INT J MANAG REV, V19, P432, DOI 10.1111/ijmr.12102. Agrawal R, 2020, HEREDITY, V124, P525, DOI 10.1038/s41437-020-0303-2. Ahmed F, 2020, IEEE T NETW SCI ENG, V7, P892, DOI 10.1109/TNSE.2019.2901716. Al Badawi A, 2021, IEEE T EMERG TOP COM, V9, P1330, DOI 10.1109/TETC.2020.3014636. Al-Rubaie M, 2017, 2017 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING, P280, DOI 10.1109/DESEC.2017.8073817. Allen N, 2012, HEALTH POLICY TECHN, V1, P123, DOI 10.1016/j.hlpt.2012.07.003. Almutairi N, 2018, P 10 INT JOINT C KNO, DOI {[}10.5220/0006890800410050, DOI 10.5220/0006890800410050]. Almutairi N, 2020, DATA KNOWL ENG, V126, DOI 10.1016/j.datak.2019.101734. Amiri F, 2018, INFORM SCIENCES, V450, P316, DOI 10.1016/j.ins.2018.03.027. Annas GJ, 2003, NEW ENGL J MED, V348, P1486, DOI 10.1056/NEJMlim035027. {[}Anonymous], 2020, LANCET DIGIT HEALTH, V2, pE209, DOI 10.1016/S2589-7500(20)30087-X. {[}Anonymous], 2017, LANCET, V390, P2739, DOI 10.1016/S0140-6736(17)31540-4. {[}Anonymous], 2021, UK SUMM OFF UK GOV W. {[}Anonymous], 2020, NHS COVID 19 APP SUP. {[}Anonymous], 2021, DAT PROT COR ADV ORG. {[}Anonymous], 2013, ANONYMISATION STANDA. {[}Anonymous], 2021, PACKAGE SDCMICRO. {[}Anonymous], INTRO ANONIMATRON TH. {[}Anonymous], 2019, ARTIFICIAL INTELLIGE. {[}Anonymous], 2019, INF SHAR POL. {[}Anonymous], 2017, ROYAL FREE GOOGLE DE. {[}Anonymous], 2018, WAY EXCLUDE ROWS MAT. {[}Anonymous], 2019, PSEUDONYMISATION POL. {[}Anonymous], 2002, RECOMMENDATION ITU R. {[}Anonymous], AIRCLOAK HOME PAGE. {[}Anonymous], GDPR RIGHT BE INFORM. {[}Anonymous], OPENPSEUDONYMISER HO. {[}Anonymous], ANONIMATRON. {[}Anonymous], CTR REV DISSEMINATIO. {[}Anonymous], AN MAN DAT PROT RISK. {[}Anonymous], 2019, PSEUDONYMISATION ANO. {[}Anonymous], 1996, P800 METHODS SUBJECT. {[}Anonymous], 2018, MU ARGUS HOME PAGE. {[}Anonymous], 2020, AN DAT PSEUD POL PRO. {[}Anonymous], WORLD BUILDS SOFTWAR. {[}Anonymous], GDPR PERS DAT. {[}Anonymous], HEALTH TECHNOL ASSES. {[}Anonymous], 1980, RECOMMENDATION COUNC. {[}Anonymous], WHAT IS ENCRYPTION. {[}Anonymous], COVID 19 DASHBOARD C. {[}Anonymous], UT DALLAS ANONYMIZAT. {[}Anonymous], CONFIDENTIALITY DISC. {[}Anonymous], CRISESURV MICROAGGRE. {[}Anonymous], 2021, PSEUDONYMISATION POL. {[}Anonymous], 2020, COVID 19 DAT MAN SYS. {[}Anonymous], 2019, REC CM REC 2019 2 CO. {[}Anonymous], MP2893 MEDGAN. {[}Anonymous], 2021, GUID US PAT DAT. {[}Anonymous], ART 5 GDPR PRINCIPLE. {[}Anonymous], 2019, MICROSOFT SEAL. {[}Anonymous], 2015, ARX COMPREHENSIVE TO. {[}Anonymous], DOCUMENTATION. {[}Anonymous], COCHRANE DB SYST REV. {[}Anonymous], CRYPTEN RES TOOL SEC. {[}Anonymous], CORN AN TOOLK. {[}Anonymous], NLM SCRUBBER DOWNLOA. {[}Anonymous], 2020, STAT EDPB CHAIR PROC. {[}Anonymous], ARX DEIDENTIFIER ARX. {[}Anonymous], ART 9 GDPR PROC SPEC. Antal B, 2014, KNOWL-BASED SYST, V60, P20, DOI 10.1016/j.knosys.2013.12.023. Anuradha P, 2015, INT J ADV COMPUT SC, V6, P68. Ayala-Rivera V, 2014, TRANS DATA PRIV, V7, P337. Bandara P, 2020, P 2020 5 INT C INF T, DOI {[}10.1109/icitr51448.2020.9310884, DOI 10.1109/ICITR51448.2020.9310884]. Baowaly MK, 2019, J AM MED INFORM ASSN, V26, P228, DOI 10.1093/jamia/ocy142. Bayardo RJ, 2005, PROC INT CONF DATA, P217. Beaulieu-Jones BK, 2019, CIRC-CARDIOVASC QUAL, V12, DOI 10.1161/CIRCOUTCOMES.118.005122. Beigi Ghazaleh, 2020, ACM/IMS Transactions on Data Science, V1, DOI 10.1145/3343038. Beimel Amos, 2013, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Algorithms and Techniques. 16th International Workshop, APPROX 2013 and 17th International Workshop, RANDOM 2013. Proceedings: LNCS 8096, P363, DOI 10.1007/978-3-642-40328-6\_26. Bettini C, 2005, LECT NOTES COMPUT SC, V3674, P185. Bian S, 2020, 2020 IEEE CVF C COMP, P9400, DOI DOI 10.1109/CVPR42600.2020.00942. Bild R, 2018, POPETS, P67, DOI {[}DOI 10.1515/POPETS-2018-0004, 10.1515/popets-2018-0004]. Blum A, 2013, J ACM, V60, DOI 10.1145/2450142.2450148. Brand R., 2002, Inference Control in Statistical Databases. From Theory to Practice. Revised Papers from Seminar `Statistical Disclosure Control: From Theory to Practice' (Lecture Notes in Computer Science Vol.2316), P97. Brickell J., 2008, P 14 ACM SIGKDD INT, P70, DOI DOI 10.1145/1401890.1401904. Budgen D, 2020, E-INFORMATICA, V14, P7, DOI 10.37190/e-Inf200101. Cao J, 2012, PROC VLDB ENDOW, V5, P1388, DOI 10.14778/2350229.2350255. Chatzikokolakis Konstantinos, 2013, Privacy Enhancing Technologies.13th International Symposium, PETS 2013. Proceedings: LNCS 7981, P82, DOI 10.1007/978-3-642-39077-7\_5. Chaudhuri K, 2013, J MACH LEARN RES, V14, P2905. Chawla S, 2005, LECT NOTES COMPUT SC, V3378, P363. Chen CC, 2020, FRONT ARTIF INTEL AP, V325, P506, DOI 10.3233/FAIA200132. Chen CC, 2020, ACM T INTEL SYST TEC, V11, DOI 10.1145/3394138. Chen CC, 2018, AAAI CONF ARTIF INTE, P257. Chen G, 1998, J OFF STAT, V14, P79. Chen SM, 2020, LANCET, V395, P764, DOI 10.1016/S0140-6736(20)30421-9. Cheon JH, 2017, LECT NOTES COMPUT SC, V10624, P409, DOI 10.1007/978-3-319-70694-8\_15. Chevrier R, 2019, J MED INTERNET RES, V21, DOI 10.2196/13484. Chin-Cheong K, 2020, GENERATION DIFFERENT. Choi E., 2017, ARXIV170306490, P286. D'Acquisto G, 2019, CONCEPTUAL FRAMEWORK. da Silva JE, 2000, MED BIOL ENG COMPUT, V38, P26, DOI 10.1007/BF02344684. Dahl M, 2018, PRIV PRES MACH LEARN. Dai CY, 2009, PROC VLDB ENDOW, V2, P1618, DOI 10.14778/1687553.1687607. Dankar FK, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-66. Dathathri R, 2019, PROCEEDINGS OF THE 40TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI `19), P142, DOI 10.1145/3314221.3314628. Defays D., 1998, J OFF STAT, V14, P449. Doming-Ferrer J., 2001, CONFIDENTIALITY DISC, P111. Domingo-Ferrer J, 2005, DATA MIN KNOWL DISC, V11, P195, DOI 10.1007/s10618-005-0007-5. Domingo-Ferrer J, 1999, COMPUT MATH APPL, V38, P13, DOI 10.1016/S0898-1221(99)00281-3. Domingo-Ferrer J, 2006, LECT NOTES COMPUT SC, V4032, P106. Domingo-Ferrer J, 2015, KNOWL-BASED SYST, V74, P151, DOI 10.1016/j.knosys.2014.11.011. Domingo-Ferrer J, 2008, ADV DATABASE SYST, V34, P53. Dong ES, 2020, LANCET INFECT DIS, V20, P533, DOI 10.1016/S1473-3099(20)30120-1. Dowlin N, 2016, PR MACH LEARN RES, V48. Duchi John C., 2016, DERIVATIONS LINEAR A. Duggal R, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.k6. Duncan G. T., 2012, CHANCE, V17, P16, DOI DOI 10.1080/09332480.2004.10554908. Duncan G.T., 2001, CONFIDENTIALITY DISC, P135. Dwork C, 2006, LECT NOTES COMPUT SC, V4052, P1. Dwork C, 2006, LECT NOTES COMPUT SC, V4004, P486. Dwork C, 2006, LECT NOTES COMPUT SC, V3876, P265, DOI 10.1007/11681878\_14. Dwork C, 2014, STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, P11, DOI 10.1145/2591796.2591883. Dwork C, 2013, FOUND TRENDS THEOR C, V9, P211, DOI 10.1561/0400000042. El Emam K, 2015, BMJ-BRIT MED J, V350, DOI 10.1136/bmj.h1139. Elger BS, 2010, COMPUT METH PROG BIO, V99, P230, DOI 10.1016/j.cmpb.2009.12.001. Elliot M, 2018, FUTURE STAT DISCLOSU. Elliott LT, 2018, NATURE, V562, P210, DOI 10.1038/s41586-018-0571-7. Emam K, 2013, GUIDE DE IDENTIFICAT. Emam KE, 2014, ANONYMIZING HLTH DAT. Erkin Z, 2012, IEEE T INF FOREN SEC, V7, P1053, DOI 10.1109/TIFS.2012.2190726. Evans Roger, 2014, Nurs Stand, V29, P33, DOI 10.7748/ns.29.15.33.s40. Evfimievski A, 2004, INFORM SYST, V29, P343, DOI 10.1016/j.is.2003.09.001. Fan L, 2020, P 2020 AAAI WORKSH P. Feder T, 2008, ANONYMIZING GRAPHS. FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061. Ferretti L, 2020, SCIENCE, V368, P619, DOI 10.1126/science.abb6936. Fienberg S.E., 2005, J OFF STAT, V21, P309. Flaxman S, 2020, NATURE, V584, P257, DOI 10.1038/s41586-020-2405-7. Fletcher S, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3337064. Foygel R, 2012, MATRIX RECONSTRUCTIO. Francis P, 2018, DIFFIX BIRCH EXTENDI. Francis P, 2017, LECT NOTES COMPUT SC, V10518, P141, DOI 10.1007/978-3-319-67280-9\_8. Fu XY, 2020, IEEE T NEUR NET LEAR, V31, P1794, DOI 10.1109/TNNLS.2019.2926481. Fung BCM, 2010, ACM COMPUT SURV, V42, DOI 10.1145/1749603.1749605. Gao S, 2014, J NETW COMPUT APPL, V38, P125, DOI 10.1016/j.jnca.2013.03.010. Garousi V, 2020, INFORM SOFTWARE TECH, V126, DOI 10.1016/j.infsof.2020.106321. Gehrke J, 2011, P 2005 ACM SIGMOD IN, V2011, P707, DOI DOI 10.1145/1066157.1066164. Genz A., 2009, LECT NOTES STAT. Gkoulalas-Divanis A, 2016, IBM J RES DEV, V60, DOI 10.1147/JRD.2016.2576818. Gkountouna O, 2014, LECT NOTES COMPUT SC, V8744, P156, DOI 10.1007/978-3-319-11257-2\_13. Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622. Gouweleeuw J., 1998, J OFF STAT, V14, P463. Gulrajani Ishaan, 2017, ADV NEURAL INFORM PR, P5, DOI DOI 10.5555/3295222.3295327. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216. Hahn S, 2020, GRAFFL GRADIENT FREE. Han Jian-min, 2008, Acta Electronica Sinica, V36, P2021. Harder F, 2020, AAAI CONF ARTIF INTE, V34, P4083. Hawkes N, 2016, BMJ-BRIT MED J, V353, DOI 10.1136/bmj.i2573. Hay M, 2008, PROC VLDB ENDOW, V1, P102, DOI 10.14778/1453856.1453873. Heath I, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m284. Hesamifard E., 2018, P PRIV ENH TECHN POP, V2018, P123, DOI DOI 10.1515/POPETS-2018-0024. Hjelm R. D., 2017, ARXIV PREPRINT ARXIV. Holohan N, 2019, ARXIV190702444. Holohan N, 2017, DATA PRIVACY IBMRISK. Hong C, 2020, P ACM TUR CEL C CHIN, DOI {[}10.1145/3393527.3393535, DOI 10.1145/3393527.3393535]. Hopewell S, 2007, COCHRANE DB SYST REV, DOI {[}10.1002/14651858.MR000010.pub3, 10.1002/14651858.MR000001.pub2]. Hoshino N., 2001, J OFF STAT, V17, P499, DOI 10.1007/978-3-319-50272-4\_3. Hrynaszkiewicz I, 2010, BRIT MED J, V340, DOI 10.1136/bmj.c181. Hsu J, 2014, P IEEE CSFW, P398, DOI 10.1109/CSF.2014.35. Hu X., 2019, P IEEE C COMP VIS PA, P8022, DOI DOI 10.1109/CVPR.2019.00821. Huang SY, 2019, IEEE SENS J, V19, P535, DOI 10.1109/JSEN.2018.2877691. Iacobucci G, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m815. Iacobucci G, 2017, BMJ-BRIT MED J, V357, DOI 10.1136/bmj.j2439. Iyengar V.S., 2002, P 8 ACM SIGKDD INT C, P279, DOI DOI 10.1145/775047.775089. Jelasity M., 2014, P 2 ACM WORKSH INF H, P141, DOI DOI 10.1145/2600918.2600919. Jinyan Wang, 2019, 2nd International Conference on Healthcare Science and Engineering. Proceedings: Lecture Notes in Electrical Engineering (LNEE 536), P251, DOI 10.1007/978-981-13-6837-0\_18. Jordon J., 2019, INT C LEARN REPR ICL. Kaisti M, 2019, IEEE SENS J, V19, P234, DOI 10.1109/JSEN.2018.2874706. Karwatka P, 2017, GDPR QUICK WINS SOFT. Kasperbauer TJ, 2020, J MED ETHICS, V46, P768, DOI 10.1136/medethics-2019-105880. Katewa V, 2020, PRIVACY DYNAMICAL SY. Kaufman A, 2020, PROC CVPR IEEE, P5810, DOI 10.1109/CVPR42600.2020.00585. Kearns M, 2014, AM ECON REV, V104, P431, DOI 10.1257/aer.104.5.431. Keesara S, 2020, NEW ENGL J MED, V382, DOI 10.1056/NEJMp2005835. Keller M, 2018, LECT NOTES COMPUT SC, V10822, P158, DOI 10.1007/978-3-319-78372-7\_6. KELLY JP, 1992, NETWORKS, V22, P397, DOI 10.1002/net.3230220407. Kim J, 2016, PROC CVPR IEEE, P1646, DOI 10.1109/CVPR.2016.182. Korolova A, 2008, PROC INT CONF DATA, P1355, DOI 10.1109/ICDE.2008.4497554. Krehbiel Sara, 2019, Proceedings on Privacy Enhancing Technologies, V2019, P192, DOI 10.2478/popets-2019-0011. Kristen LeFevre, 2006, ICDE. KSHIRSAGAR AM, 1969, J R STAT SOC B, V31, P477. Kuhn Christiane, 2021, Online Soc Netw Media, V22, P100125, DOI 10.1016/j.osnem.2021.100125. KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694. Kumar N, 2020, P IEEE S SECUR PRIV, P336, DOI 10.1109/SP40000.2020.00092. Kung SY, 2017, IEEE SIGNAL PROC MAG, V34, P94, DOI 10.1109/MSP.2016.2616720. Kung SY, 2017, ACM T EMBED COMPUT S, V16, DOI 10.1145/2996460. Lee N, 2014, LANCET, V384, P1917, DOI 10.1016/S0140-6736(14)62267-4. Leung GM, 2020, LANCET DIGIT HEALTH, V2, pE156, DOI 10.1016/S2589-7500(20)30055-8. Li D, 2016, J INTELL INF SYST, V47, P427, DOI 10.1007/s10844-015-0373-4. Li J., 2019, DIFFERENTIALLY PRIVA. Li J., 2008, P ACM SIGMOD INT C M, P473, DOI DOI 10.1145/1376616.1376666. Li J, 2020, IET INFORM SECUR, V14, P321, DOI 10.1049/iet-ifs.2019.0255. Li N, 2007, INT CONF NANO MICRO, P692, DOI 10.1109/icde.2007.367856. Li P, 2017, NEUROCOMPUTING, V256, P82, DOI 10.1016/j.neucom.2016.08.135. Li YY, 2022, IEEE T CLOUD COMPUT, V10, P1142, DOI 10.1109/TCC.2020.2989923. Liu JQ, 2010, PROC INT CONF DATA, P213, DOI 10.1109/ICDE.2010.5447898. Liu K., 2008, P 2008 ACM SIGMOD IN, P93, DOI DOI 10.1145/1376616.1376629. Liu Y, 2020, AAAI CONF ARTIF INTE, V34, P13172. Machanavajjhala A., 2007, ACM T KNOWL DISCOV D, V1, P3, DOI 10.1145/1217299.1217302. Mahesh R, 2013, 2013 INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, INFORMATICS AND MEDICAL ENGINEERING (PRIME). Malhotra A, 2020, IEEE COMPUT SOC CONF, P120, DOI 10.1109/CVPRW50498.2020.00021. Manikandan V., 2018, ICTACT Journal on Soft Computing, V9, P1813, DOI 10.21917/ijsc.2018.0252. Mascolo C, 2019, FEDERATED PCA ADAPTI. Matatov N, 2010, INFORM SCIENCES, V180, P2696, DOI 10.1016/j.ins.2010.03.011. Maximov M, 2020, PROC CVPR IEEE, P5446, DOI 10.1109/CVPR42600.2020.00549. Meyerson Adam, 2004, SIGMOD SIGACT SIGART, P223, DOI DOI 10.1145/1055558.1055591. Mirza M., 2014, ARXIV. Moberly T, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m113. Mohassel P, 2017, P IEEE S SECUR PRIV, P19, DOI {[}10.1109/SP.2017.12, 10.1145/3132747.3132768]. Mortazavi R, 2020, EXPERT SYST APPL, V153, DOI 10.1016/j.eswa.2020.113454. Nay O, 2020, LANCET PUBLIC HEALTH, V5, pE238, DOI 10.1016/S2468-2667(20)30092-X. Nergiz M. E., 2007, P 2007 ACM SIGMOD IN, P665, DOI DOI 10.1145/1247480.1247554. Nergiz ME, 2007, DATA KNOWL ENG, V63, P622, DOI 10.1016/j.datak.2007.03.009. Nergiz ME, 2009, IEEE T KNOWL DATA EN, V21, P1104, DOI 10.1109/TKDE.2008.210. NIMMER RT, 1992, LAW CONTEMP PROBL, V55, P103, DOI 10.2307/1191865. Nin J, 2008, DATA KNOWL ENG, V64, P346, DOI 10.1016/j.datak.2007.07.006. Ninggal MIH, 2015, J NETW COMPUT APPL, V56, P137, DOI 10.1016/j.jnca.2015.05.013. Oliveira S., 2010, J INFORM DATA MANAG, V1, P37. Paez Arsenio, 2017, J Evid Based Med, V10, P233, DOI {[}10.1111/jebm.12265, 10.1111/jebm.12266]. Paillier P, 1999, LECT NOTES COMPUT SC, V1592, P223. Petersen K., 2008, P 12 INT C EV ASS SO, P68, DOI DOI 10.14236/EWIC/EASE2008.8. Petersen K, 2015, INFORM SOFTWARE TECH, V64, P1, DOI 10.1016/j.infsof.2015.03.007. Pinto AM, 2012, 2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P207, DOI 10.1109/IRI.2012.6303012. Poulis Giorgos, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P353, DOI 10.1007/978-3-642-40994-3\_23. Poulis G, 2015, MED DATA PRIVACY HDB. Prasser F, 2020, SOFTWARE PRACT EXPER, V50, P1277, DOI 10.1002/spe.2812. Prasser Fabian, 2014, AMIA Annu Symp Proc, V2014, P984. Prasser Fabian, 2015, MED DATA PRIVACY HDB, P111, DOI DOI 10.1007/978-3-319-23633-9\_6. Rastogi V., 2007, P INT C VERY LARGE D, P531. Rocher L, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10933-3. Ryffel T., 2018, ABS181104017. Saleh AA, 2014, EVID BASED LIB INF P, V9, P28, DOI 10.18438/B8DW3K. Samarati P., 1998, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS 1998, DOI 10.1145/275487.275508. Sanchez D, 2020, BIOINFORMATICS, V36, P1652, DOI 10.1093/bioinformatics/btz792. Senior AW, 2020, NATURE, V577, P706, DOI 10.1038/s41586-019-1923-7. Shah H, 2017, NATURE, V547, P259, DOI 10.1038/547259a. Sharma S., 2013, INT J COMPUT APPL, V79, P30, DOI 10.5120/13811-1871. Shen H, 2009, P 2009 INT C COMP IN, DOI {[}10.1109/cise.2009.5366163, DOI 10.1109/CISE.2009.5366163]. Shi Elaine, 2011, NDSS. Shin HC, 2018, LECT NOTES COMPUT SC, V11037, P1, DOI 10.1007/978-3-030-00536-8\_1. Skinner CJ, 1998, J OFF STAT, V14, P361. Soria-Comas J, 2016, PROC INT CONF DATA, P1464, DOI 10.1109/ICDE.2016.7498376. Speciale P, 2019, IEEE I CONF COMP VIS, P1486, DOI 10.1109/ICCV.2019.00157. Spencer T, 2020, J ATTEN DISORD, V24, P3, DOI 10.1177/1087054719859081. Stallings W, 2019, INFORM PRIVACY ENG P. Stokes K, 2012, SOFT COMPUT, V16, P1657, DOI 10.1007/s00500-012-0850-4. Sun KY, 2020, LANCET DIGIT HEALTH, V2, pE201, DOI 10.1016/S2589-7500(20)30026-1. Sweeney L, 2002, INT J UNCERTAIN FUZZ, V10, P557, DOI 10.1142/S0218488502001648. Sweeney L, 2002, INT J UNCERTAIN FUZZ, V10, P571, DOI 10.1142/S021848850200165X. Sweeney L., 2001, THESIS. Tai C H, 2011, P 17 ACM SIGKDD INT, P1262, DOI DOI 10.1145/2020408.2020599. Templ M, 2020, P GAST PSYCH I U ZUR, DOI {[}10.4414/saez.2019.17441, DOI 10.4414/SAEZ.2019.17441]. Thompson CL, 2020, B WORLD HEALTH ORGAN, V98, P293, DOI 10.2471/BLT.19.237230. Tseng BW, 2020, IEEE T INF FOREN SEC, V15, P2499, DOI 10.1109/TIFS.2020.2968188. Tucker K, 2016, BMC MED RES METHODOL, V16, DOI 10.1186/s12874-016-0169-4. Turnbull C, 2018, BMJ-BRIT MED J, V361, DOI 10.1136/bmj.k1687. Vardalachakis M, 2019, ICT4AWE 2019: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGEING WELL AND E-HEALTH, P325, DOI 10.5220/0007798603250332. Velickovic P, 2018, INT CONF PER COMP, P178, DOI 10.1145/3240925.3240937. Vijayarani S., 2011, IEEE INT C REC TREND 2011 INT C REC TREND, DOI DOI 10.1109/ICRTIT.2011.5972275. Wagner I, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3168389. Wan ZY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120592. Wang B, 2008, INT CONF SIGN PROCES, P1195. Wang GT, 2019, IEEE T PATTERN ANAL, V41, P1559, DOI 10.1109/TPAMI.2018.2840695. Wang K, 2006, PROC 12 ACM SIGKDD I, P414, DOI {[}DOI 10.1145/1150402.1150449, 10.1145/1150402.1150449]. Wang S., 2018, ABS180206739 CORR. Wang TY, 2019, PROC CVPR IEEE, P12262, DOI 10.1109/CVPR.2019.01255. Wang Z, 2004, IEEE T IMAGE PROCESS, V13, P600, DOI 10.1109/TIP.2003.819861. Wang Z., 2019, IEEE T SYST MAN CY-S, P1, DOI DOI 10.1109/TSMC.2019.2896022. Wei L, 2016, IEEE GLOB CONF SIG, P1335, DOI 10.1109/GlobalSIP.2016.7906058. Weng CH, 2012, J AM MED INFORM ASSN, V19, P684, DOI 10.1136/amiajnl-2012-000878. Winkler S, 1999, SIGNAL PROCESS, V78, P231, DOI 10.1016/S0165-1684(99)00062-6. Witti M, 2018, INT J NETW SECUR APP, V10, DOI {[}10.2139/ssrn.3319816, DOI 10.2139/SSRN.3319816]. Wohlin C., 2014, P 18 INT C EVALUATIO, DOI {[}10.1145/2601248.2601268.10, DOI 10.1145/2601248.2601268.10]. Wong R. C.-W., 2006, P 12 ACM SIGKDD INT, P754, DOI DOI 10.1145/1150402.1150499. Wu JT, 2020, LANCET, V395, P689, DOI 10.1016/S0140-6736(20)30260-9. Xiao X., 2007, PROC ACM SIGMOD INTE, P689, DOI DOI 10.1145/1247480.1247556. Xiao XK, 2009, ACM SIGMOD/PODS 2009 CONFERENCE, P1051. Xing K, 2017, IEEE T IND INFORM, V13, P2066, DOI 10.1109/TII.2017.2695487. Yang R, 2020, PROC CVPR IEEE, P6627, DOI 10.1109/CVPR42600.2020.00666. Yang WH, 2021, IEEE T PATTERN ANAL, V43, P4059, DOI 10.1109/TPAMI.2020.2995190. Yang WH, 2020, IEEE T IMAGE PROCESS, V29, P5737, DOI 10.1109/TIP.2020.2981922. Yang WH, 2020, IEEE T PATTERN ANAL, V42, P1377, DOI 10.1109/TPAMI.2019.2895793. Yao A. C., 1982, 23rd Annual Symposium on Foundations of Computer Science, P160, DOI 10.1109/SFCS.1982.38. Yoon J, 2020, IEEE J BIOMED HEALTH, V24, P2378, DOI DOI 10.1109/JBHI.2020.2980262. Zayatz L, 1991, BUREAU CENSUS STAT R. Zhang K, 2020, PROC CVPR IEEE, P3214, DOI 10.1109/CVPR42600.2020.00328. Zhang QS, 2013, PROCEEDINGS OF 2013 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT SERVICES (GSIS), P16, DOI 10.1109/GSIS.2013.6714730. Zhang Qiu-yu, 2007, Proceedings International Conference on Informatics and Control Technologies 2006, P116. Zhang YL, 2018, LECT NOTES COMPUT SC, V11211, P294, DOI 10.1007/978-3-030-01234-2\_18. Zhao S, 2020, INT J INFECT DIS, V92, P214, DOI 10.1016/j.ijid.2020.01.050. Zhe L, 2018, PROC CVPR IEEE, P8290, DOI 10.1109/CVPR.2018.00865. Zhelezniak V, 2019, INT C LEARN REPR. Zhou B, 2008, PROC INT CONF DATA, P506, DOI 10.1109/ICDE.2008.4497459. Zhu X, 2018, USING MICROSOFT BUIL. Zhu Y., 2020, P IEEE CVF C COMP VI. Zigomitros A, 2020, IEEE ACCESS, V8, P51071, DOI 10.1109/ACCESS.2020.2980235. Zou L., 2009, PROC VLDB ENDOW, V2, P946, DOI {[}10.14778/1687627.1687734, DOI 10.14778/1687627.1687734]. Zuo Z, 2019, 2019 IEEE INT C FUZZ, DOI 10.1109/ fuzz-ieee.2019.8858838. Zuo ZM, 2018, IEEE INT CONF FUZZY. Zuo ZM, 2018, IEEE ACCESS, V6, P12894, DOI 10.1109/ACCESS.2018.2808486. Zwillinger D., 2018, CRC STANDARD MATH TA, V32nd ed.}, Number-of-Cited-References = {301}, Times-Cited = {2}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {15}, Journal-ISO = {JMIR Med. Inf.}, Doc-Delivery-Number = {WP1CG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000712877700007}, OA = {gold, Green Published}, DA = {2023-04-22}, } @article{ WOS:000854961800001, Author = {Zhang, Yanli and Han, Zhiyu and Li, Xinyi and Zhang, Hongliang and Yuan, Xiangyang and Feng, Zhaozhong and Wang, Peng and Mu, Zhaobin and Song, Wei and Blake, Donald R. and Ying, Qi and George, Christian and Sheng, Guoying and Peng, Ping'an and Wang, Xinming}, Title = {Plants and related carbon cycling under elevated ground-level ozone: A mini review}, Journal = {APPLIED GEOCHEMISTRY}, Year = {2022}, Volume = {144}, Month = {SEP}, Abstract = {Plants play a crucial role in global carbon biogeochemical cycling and natural terrestrial carbon sinks. Dynamic changes in plant-related carbon cycling processes under changing climate and atmospheric compositions are hot scientific issues concerning carbon neutrality. Ozone, as a damaging oxidant, shows a rising trend near the ground where plants grow, directly and indirectly impacting forests and other types of vegetation. This review focuses on the effects of elevated atmospheric ozone levels on plant-related carbon cycling processes, including carbon dioxide (CO2) assimilation, carbon allocation to roots, volatile emissions, soil carbon sequestration and litter decomposition. Based on previous studies, we propose that field observations, especially in situ long-term observations under natural growing conditions in well-designed networks with a better representation, are needed to deeply understand the effects of elevated ozone on plants. Apart from an overwhelming concern about the influence of ozone on crop yields, studies on the effects of elevated ozone on forests, especially tropical and subtropical forests, should be strengthened in the future. Meanwhile, the interactions between ozone and plants should be considered in understanding plants' feedback to oxidants through emissions of volatiles and other trace gases. Moreover, geochemical techniques such as carbon isotopes and molecular markers, along with big data and artificial intelligence approaches, can be extensively used to decode and constrain the ozone-plant re-lationships, such as those between net primary productivity and ozone.}, Publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Zhang, YL; Wang, XM (Corresponding Author), Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Peoples R China. Zhang, YL; Wang, XM (Corresponding Author), Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm Protect \& Resources Uti, Guangzhou 510640, Peoples R China. Zhang, Yanli; Han, Zhiyu; Li, Xinyi; Mu, Zhaobin; Song, Wei; Sheng, Guoying; Peng, Ping'an; Wang, Xinming, Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Peoples R China. Zhang, Yanli; Han, Zhiyu; Li, Xinyi; Mu, Zhaobin; Song, Wei; Sheng, Guoying; Peng, Ping'an; Wang, Xinming, Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm Protect \& Resources Uti, Guangzhou 510640, Peoples R China. Zhang, Yanli; Wang, Xinming, Chinese Acad Sci, Inst Urban Environm, CAS Ctr Excellence Reg Atmospher Environm, Xiamen 361021, Peoples R China. Zhang, Hongliang, Fudan Univ, Dept Environm Sci \& Engn, Shanghai 200438, Peoples R China. Yuan, Xiangyang, Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban \& Reg Ecol, Beijing 100085, Peoples R China. Feng, Zhaozhong, Nanjing Univ Informat Sci \& Technol, Inst Ecol, Sch Appl Meteorol, Key Lab Agrometeorol Jiangsu Prov, Nanjing 210044, Peoples R China. Wang, Peng, Fudan Univ, Dept Atmospher \& Ocean Sci, Shanghai 200438, Peoples R China. Wang, Peng, Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R China. Blake, Donald R., Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. Ying, Qi, Inst Rech Catalyse \& Environm Lyon IRCELYON, CNRS, UMR5256, F-69626 Villeurbanne, TX, France. Zhang, Yanli; Li, Xinyi; Wang, Xinming, Univ Chinese Acad Sci, Beijing 100049, Peoples R China.}, DOI = {10.1016/j.apgeochem.2022.105400}, EarlyAccessDate = {AUG 2022}, Article-Number = {105400}, ISSN = {0883-2927}, EISSN = {1872-9134}, Keywords = {Ozone; Plants; CO2 sequestration; Carbon allocation; Carbon cycling}, Keywords-Plus = {VOLATILE ORGANIC-COMPOUNDS; NET PRIMARY PRODUCTIVITY; BEECH FAGUS-SYLVATICA; BOREAL PEATLAND MICROCOSMS; LEAF-LITTER DECOMPOSITION; TROPOSPHERIC OZONE; ISOPRENE EMISSION; CLIMATE-CHANGE; TREMBLING ASPEN; ROOT BIOMASS}, Research-Areas = {Geochemistry \& Geophysics}, Web-of-Science-Categories = {Geochemistry \& Geophysics}, Author-Email = {zhang\_yl86@gig.ac.cn wangxm@gig.ac.cn}, Affiliations = {Chinese Academy of Sciences; Guangzhou Institute of Geochemistry, CAS; Chinese Academy of Sciences; Guangzhou Institute of Geochemistry, CAS; Chinese Academy of Sciences; Institute of Urban Environment, CAS; Fudan University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES); Nanjing University of Information Science \& Technology; Fudan University; Fudan University; University of California System; University of California Irvine; Centre National de la Recherche Scientifique (CNRS); CNRS - Institute of Chemistry (INC); Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS}, ResearcherID-Numbers = {li, xinyi/GWZ-8941-2022 Li, xinyi/HJG-4670-2022 li, xin/HHS-9461-2022 Zhang, Yanli/A-3225-2015}, ORCID-Numbers = {Zhang, Yanli/0000-0003-0614-2096}, Funding-Acknowledgement = {National Natural Science Foundation of China {[}42022023, 41961144029]; Chinese Academy of Sciences {[}XDA23010303, XDPB1901, XDA23020301, QYZDJ-SSW-DQC032]; Youth Innovation Promotion Association of the Chinese Academy of Sciences {[}Y2021096]; Hong Kong Research Grants Council {[}T24-504/17-N]; Department of Science and Technology of Guangdong {[}2020B1111360001, 2020B1212060053]}, Funding-Text = {Acknowledgements This work was supported by the National Natural Science Foundation of China (Nos. 42022023 and 41961144029) , the Chinese Academy of Sciences (Nos. XDA23010303, XDPB1901, XDA23020301 and QYZDJ-SSW-DQC032) , the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y2021096) , the Hong Kong Research Grants Council (No. T24-504/17-N) , and the Department of Science and Technology of Guangdong (Nos. 2020B1111360001 and 2020B1212060053) .}, Cited-References = {Acton WJF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0208825. Affek HP, 2003, PLANT PHYSIOL, V131, P1727, DOI 10.1104/pp.102.012294. Agathokleous E., 2016, WATER AIR SOIL POLL, V227, P28. Agathokleous E, 2020, SCI ADV, V6, DOI 10.1126/sciadv.abc1176. Agathokleous E, 2020, SCI TOTAL ENVIRON, V703, DOI 10.1016/j.scitotenv.2019.134962. Agathokleous E, 2015, J AGRIC METEOROL, V71, P142, DOI 10.2480/agrmet.D-14-00008. Ainsworth EA, 2020, PLANT BIOLOGY, V22, P5, DOI 10.1111/plb.12973. Ainsworth EA, 2008, PLANT PHYSIOL, V147, P13, DOI 10.1104/pp.108.117101. Ainsworth EA, 2017, PLANT J, V90, P886, DOI 10.1111/tpj.13298. Ainsworth EA, 2012, ANNU REV PLANT BIOL, V63, P637, DOI 10.1146/annurev-arplant-042110-103829. Akimoto H, 2003, SCIENCE, V302, P1716, DOI 10.1126/science.1092666. Andersen CP, 2003, NEW PHYTOL, V157, P213, DOI 10.1046/j.1469-8137.2003.00674.x. {[}Anonymous], 2013, CLIMATE CHANGE 2013. Aragao LEOC, 2009, BIOGEOSCIENCES, V6, P2759, DOI 10.5194/bg-6-2759-2009. Archibald AT, 2020, ELEMENTA-SCI ANTHROP, V8, DOI 10.1525/elementa.2020.034. Ashmore MR, 2005, PLANT CELL ENVIRON, V28, P949, DOI 10.1111/j.1365-3040.2005.01341.x. Baldantoni D, 2013, ANN FOREST SCI, V70, P571, DOI 10.1007/s13595-013-0297-5. Baldantoni D, 2011, SCI TOTAL ENVIRON, V409, P979, DOI 10.1016/j.scitotenv.2010.11.022. Beer C, 2010, SCIENCE, V329, P834, DOI 10.1126/science.1184984. Behnke K, 2009, TREE PHYSIOL, V29, P725, DOI 10.1093/treephys/tpp009. Bergman ME, 2021, PLANT METHODS, V17, DOI 10.1186/s13007-021-00731-8. Bergmann E, 2017, J APPL BOT FOOD QUAL, V90, DOI 10.5073/JABFQ.2017.090.012. Betzelberger AM, 2010, PLANT CELL ENVIRON, V33, P1569, DOI 10.1111/j.1365-3040.2010.02165.x. Blande JD, 2007, GLOBAL CHANGE BIOL, V13, P2538, DOI 10.1111/j.1365-2486.2007.01453.x. Bonan GB, 2008, SCIENCE, V320, P1444, DOI 10.1126/science.1155121. Booker FL, 2005, GLOBAL CHANGE BIOL, V11, P685, DOI 10.1111/j.1365-2486.2005.00939.x. Brosche M, 2010, PLANT CELL ENVIRON, V33, P914, DOI 10.1111/j.1365-3040.2010.02116.x. Brosset A, 2020, ENVIRON SCI POLLUT R, V27, P30448, DOI 10.1007/s11356-020-09320-z. Bruggemann N, 2011, BIOGEOSCIENCES, V8, P3457, DOI 10.5194/bg-8-3457-2011. Calfapietra C, 2013, ENVIRON POLLUT, V183, P71, DOI 10.1016/j.envpol.2013.03.012. Calfapietra C, 2008, NEW PHYTOL, V179, P55, DOI 10.1111/j.1469-8137.2008.02493.x. Cappellin L, 2019, ATMOS CHEM PHYS, V19, P3125, DOI 10.5194/acp-19-3125-2019. Carriero G, 2016, ENVIRON POLLUT, V213, P988, DOI 10.1016/j.envpol.2015.12.047. CHAMEIDES WL, 1988, SCIENCE, V241, P1473, DOI 10.1126/science.3420404. CHAMEIDES WL, 1992, J GEOPHYS RES-ATMOS, V97, P6037, DOI 10.1029/91JD03014. Chapin F.S., 2014, TREATISE GEOCHEMISTR, V10, P189, DOI DOI 10.1016/B978-0-08-095975-7.00806-8. Chaudhry S, 2022, PLANT CELL REP, V41, P1, DOI 10.1007/s00299-021-02759-5. Chen LY, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13119-z. Chen XL, 2018, GLOBAL CHANGE BIOL, V24, P3462, DOI 10.1111/gcb.14147. Cho K, 2011, REV ENVIRON CONTAM T, V212, P61, DOI 10.1007/978-1-4419-8453-1\_3. Clifton OE, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/abc3f1. Cooper O. R., 2014, Elementa-Science of the Anthropocene, V2, P000029, DOI 10.12952/journal.elementa.000029. Cordovez V, 2019, ANNU REV MICROBIOL, V73, P69, DOI 10.1146/annurev-micro-090817-062524. Cornwell WK, 2008, ECOL LETT, V11, P1065, DOI 10.1111/j.1461-0248.2008.01219.x. Diaz-de-Quijano M, 2012, ENVIRON POLLUT, V169, P250, DOI 10.1016/j.envpol.2012.02.011. Fares S, 2008, PLANT BIOLOGY, V10, P44, DOI 10.1055/s-2007-965257. Fares S, 2013, GLOBAL CHANGE BIOL, V19, P2427, DOI 10.1111/gcb.12222. Felzer B, 2005, CLIMATIC CHANGE, V73, P345, DOI 10.1007/s10584-005-6776-4. Felzer BS, 2007, CR GEOSCI, V339, P784, DOI 10.1016/j.crte.2007.08.008. Feng Zhao-Zhong, 2020, Chinese Journal of Plant Ecology, V44, P526, DOI 10.17521/cjpe.2019.0144. Feng ZZ, 2022, NAT FOOD, V3, P47, DOI 10.1038/s43016-021-00422-6. Feng ZZ, 2021, ECOSYST HEALTH SUST, V7, DOI 10.1080/20964129.2021.1911602. Feng ZZ, 2019, PLANT CELL ENVIRON, V42, P1939, DOI 10.1111/pce.13535. Feng ZZ, 2018, GLOBAL CHANGE BIOL, V24, P2231, DOI 10.1111/gcb.14077. Feng ZZ, 2018, GLOBAL CHANGE BIOL, V24, P78, DOI 10.1111/gcb.13824. Feng ZZ, 2015, ENVIRON POLLUT, V199, P42, DOI 10.1016/j.envpol.2015.01.016. Feng ZZ, 2012, ENVIRON POLLUT, V164, P16, DOI 10.1016/j.envpol.2012.01.014. Fierer N, 2005, ECOLOGY, V86, P320, DOI 10.1890/04-1254. Finlayson-Pitts B.J., 1993, VOLATILE ORGANIC COM. Finlayson-Pitts B.J., 2000, CHEM UPPER LOWER ATM, V4, P86, DOI 10.1016/b978-012257060-5/50006-x. Fleming ZL, 2018, ELEMENTA-SCI ANTHROP, V6, DOI 10.1525/elementa.273. Fu W, 2018, PEERJ, V6, DOI 10.7717/peerj.4453. Fuhrer J, 2016, ECOL EVOL, V6, P8785, DOI 10.1002/ece3.2568. Gao M, 2020, ATMOS CHEM PHYS, V20, P4399, DOI 10.5194/acp-20-4399-2020. Gerosa G, 2015, ATMOS ENVIRON, V113, P41, DOI 10.1016/j.atmosenv.2015.04.066. Ghimire RP, 2017, AGR FOREST METEOROL, V242, P21, DOI 10.1016/j.agrformet.2017.04.008. Glasauer A, 2013, CURR BIOL, V23, pR100, DOI 10.1016/j.cub.2012.12.011. Gougoulias C, 2014, J SCI FOOD AGR, V94, P2362, DOI 10.1002/jsfa.6577. Goumenaki E, 2021, PLANTA, V253, DOI 10.1007/s00425-021-03580-w. Grantz DA, 2006, PLANT CELL ENVIRON, V29, P1193, DOI 10.1111/j.1365-3040.2006.01521.x. Grassmann J, 2005, VITAM HORM, V72, P505, DOI 10.1016/S0083-6729(05)72015-X. Guenther AB, 2012, GEOSCI MODEL DEV, V5, P1471, DOI 10.5194/gmd-5-1471-2012. GUENTHER AB, 1993, J GEOPHYS RES-ATMOS, V98, P12609, DOI 10.1029/93JD00527. Hacquard S, 2015, CELL HOST MICROBE, V17, P603, DOI 10.1016/j.chom.2015.04.009. Haikio E, 2007, CAN J FOREST RES, V37, P2326, DOI 10.1139/X07-084. Harper KL, 2018, ATMOS CHEM PHYS, V18, P16931, DOI 10.5194/acp-18-16931-2018. Hartikainen K, 2009, TREE PHYSIOL, V29, P1163, DOI 10.1093/treephys/tpp033. Hasanuzzaman M, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9080681. Hattenschwiler S, 2000, TRENDS ECOL EVOL, V15, P238, DOI 10.1016/S0169-5347(00)01861-9. Haverd V, 2016, BIOGEOSCIENCES, V13, P761, DOI 10.5194/bg-13-761-2016. Heiden AC, 1999, ECOL APPL, V9, P1160, DOI 10.1890/1051-0761(1999)009{[}1160:EOVOCF]2.0.CO;2. HENDREY GR, 1994, AGR FOREST METEOROL, V70, P3, DOI 10.1016/0168-1923(94)90044-2. Hobley E, 2014, SOIL RES, V52, P476, DOI 10.1071/SR13296. Hoshika Y, 2012, ENVIRON POLLUT, V166, P152, DOI 10.1016/j.envpol.2012.03.013. Hu EZ, 2018, AGR ECOSYST ENVIRON, V253, P166, DOI 10.1016/j.agee.2017.11.010. Kainulainen P, 2003, GLOBAL CHANGE BIOL, V9, P295, DOI 10.1046/j.1365-2486.2003.00555.x. Kanagendran A, 2018, ENVIRON EXP BOT, V145, P21, DOI 10.1016/j.envexpbot.2017.10.012. Kangasjarvi J, 2005, PLANT CELL ENVIRON, V28, P1021, DOI 10.1111/j.1365-3040.2005.01325.x. Karlsson PE, 2003, ENVIRON POLLUT, V124, P485, DOI 10.1016/S0269-7491(03)00010-1. Kasurinen A, 2005, GLOBAL CHANGE BIOL, V11, P1167, DOI 10.1111/j.1365-2486.2005.00970.x. Kasurinen A, 2007, PLANT SOIL, V292, P25, DOI 10.1007/s11104-007-9199-3. Kasurinen A, 2006, PLANT SOIL, V282, P261, DOI 10.1007/s11104-005-6026-6. Kasurinen A, 2017, PLANT SOIL, V414, P127, DOI 10.1007/s11104-016-3122-8. Kelting DL, 1995, FOREST ECOL MANAG, V79, P197, DOI 10.1016/0378-1127(95)03603-2. King JS, 2005, NEW PHYTOL, V168, P623, DOI 10.1111/j.1469-8137.2005.01557.x. King JS, 2001, OECOLOGIA, V128, P237, DOI 10.1007/s004420100656. Kivimaenpaa M, 2013, ENVIRON EXP BOT, V90, P32, DOI 10.1016/j.envexpbot.2012.11.004. Knorr M, 2005, ECOLOGY, V86, P3252, DOI 10.1890/05-0150. Krishna MP, 2017, ENERGY ECOL ENVIRON, V2, P236, DOI 10.1007/s40974-017-0064-9. Laothawornkitkul J, 2009, NEW PHYTOL, V183, P27, DOI 10.1111/j.1469-8137.2009.02859.x. Lefohn AS, 2018, ELEMENTA-SCI ANTHROP, V6, DOI 10.1525/elementa.279. Lehmann J, 2015, NATURE, V528, P60, DOI 10.1038/nature16069. Lelieveld J, 2008, NATURE, V452, P737, DOI 10.1038/nature06870. Levy-Booth DJ, 2014, SOIL BIOL BIOCHEM, V75, P11, DOI 10.1016/j.soilbio.2014.03.021. Li DW, 2009, B ENVIRON CONTAM TOX, V82, P473, DOI 10.1007/s00128-008-9590-7. Li K, 2019, P NATL ACAD SCI USA, V116, P422, DOI 10.1073/pnas.1812168116. Li P, 2017, PLANT CELL ENVIRON, V40, P2369, DOI 10.1111/pce.13043. Li P, 2016, TREE PHYSIOL, V36, P1105, DOI 10.1093/treephys/tpw042. Liu H, 2018, ATMOS ENVIRON, V173, P223, DOI 10.1016/j.atmosenv.2017.11.014. Liu LL, 2009, ECOSYSTEMS, V12, P401, DOI 10.1007/s10021-009-9231-y. Liu LL, 2005, TREE PHYSIOL, V25, P1511, DOI 10.1093/treephys/25.12.1511. Llusia J, 2002, ATMOS ENVIRON, V36, P3931, DOI 10.1016/S1352-2310(02)00321-7. Llusia J, 2014, ENVIRON POLLUT, V194, P69, DOI 10.1016/j.envpol.2014.06.038. Loreto F, 2001, PLANT PHYSIOL, V126, P993, DOI 10.1104/pp.126.3.993. Loreto F, 2004, TREE PHYSIOL, V24, P361, DOI 10.1093/treephys/24.4.361. Loreto F, 2001, PLANT PHYSIOL, V127, P1781, DOI 10.1104/pp.010497. Loreto F, 2007, PLANT PHYSIOL, V143, P1096, DOI 10.1104/pp.106.091892. Loya WM, 2003, NATURE, V425, P705, DOI 10.1038/nature02047. Lu X, 2018, ENVIRON SCI TECH LET, V5, P487, DOI 10.1021/acs.estlett.8b00366. Luedemann G, 2009, PLANT SOIL, V323, P47, DOI 10.1007/s11104-009-9945-9. Mainiero R, 2009, ENVIRON POLLUT, V157, P2638, DOI 10.1016/j.envpol.2009.05.006. Matyssek R, 2010, ENVIRON POLLUT, V158, P2527, DOI 10.1016/j.envpol.2010.05.009. McCrady JK, 2000, ENVIRON POLLUT, V107, P465, DOI 10.1016/S0269-7491(99)00122-0. McDuffie EE, 2020, EARTH SYST SCI DATA, V12, P3413, DOI 10.5194/essd-12-3413-2020. Meehan TD, 2010, SOIL BIOL BIOCHEM, V42, P1132, DOI 10.1016/j.soilbio.2010.03.019. Mills G, 2018, ELEMENTA-SCI ANTHROP, V6, DOI 10.1525/elementa.302. Miyama T, 2018, J AGRIC METEOROL, V74, P102, DOI 10.2480/agrmet.D-17-00043. Mochizuki T, 2017, ATMOS ENVIRON, V148, P197, DOI 10.1016/j.atmosenv.2016.10.041. Monk RJ, 1995, WATER AIR SOIL POLL, V85, P1405, DOI 10.1007/BF00477178. Monks PS, 2015, ATMOS CHEM PHYS, V15, P8889, DOI 10.5194/acp-15-8889-2015. Moore JAM, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00301.1. Morsky SK, 2008, GLOBAL CHANGE BIOL, V14, P1891, DOI 10.1111/j.1365-2486.2008.01615.x. Niinemets U, 2011, BIOGEOSCIENCES, V8, P2209, DOI 10.5194/bg-8-2209-2011. NRC, 1991, RETH OZ PROBL URB RE. Oikawa PY, 2013, TRENDS PLANT SCI, V18, P695, DOI 10.1016/j.tplants.2013.08.011. Oksanen E, 2003, PLANT CELL ENVIRON, V26, P875, DOI 10.1046/j.1365-3040.2003.01020.x. Oliver RJ, 2018, BIOGEOSCIENCES, V15, P4245, DOI 10.5194/bg-15-4245-2018. Pan YD, 2011, SCIENCE, V333, P988, DOI 10.1126/science.1201609. Parsons WFJ, 2004, GLOBAL CHANGE BIOL, V10, P1666, DOI 10.1111/j.1365-2486.2004.00851.x. Parsons WFJ, 2008, ECOSYSTEMS, V11, P505, DOI 10.1007/s10021-008-9148-x. Pellegrini E, 2018, ENVIRON SCI POLLUT R, V25, P8148, DOI 10.1007/s11356-017-8818-7. Penuelas J, 2001, BIOL PLANTARUM, V44, P481, DOI 10.1023/A:1013797129428. Penuelas J, 2003, TRENDS PLANT SCI, V8, P105, DOI 10.1016/S1360-1385(03)00008-6. Penuelas J, 1999, ENVIRON POLLUT, V105, P17, DOI 10.1016/S0269-7491(98)00214-0. Penuelas J, 2010, TRENDS PLANT SCI, V15, P133, DOI 10.1016/j.tplants.2009.12.005. Pleijel H, 2018, SCI TOTAL ENVIRON, V613, P687, DOI 10.1016/j.scitotenv.2017.09.111. Pregitzer KS, 2008, NEW PHYTOL, V180, P153, DOI 10.1111/j.1469-8137.2008.02564.x. Qiu YP, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abe9256. Ren W, 2007, ENVIRON POLLUT, V149, P327, DOI 10.1016/j.envpol.2007.05.029. Ren W, 2011, GLOBAL ECOL BIOGEOGR, V20, P391, DOI 10.1111/j.1466-8238.2010.00606.x. Rinnan R, 2005, ATMOS ENVIRON, V39, P921, DOI 10.1016/j.atmosenv.2004.09.076. Ryan A, 2009, PLANT CELL ENVIRON, V32, P31, DOI 10.1111/j.1365-3040.2008.01897.x. Ryan AC, 2014, NEW PHYTOL, V201, P205, DOI 10.1111/nph.12477. Ryan MG, 2005, BIOGEOCHEMISTRY, V73, P3, DOI 10.1007/s10533-004-5167-7. Saunier A, 2019, ENVIRON POLLUT, V255, DOI 10.1016/j.envpol.2019.113257. Schultz MG, 2017, ELEMENTA-SCI ANTHROP, V5, DOI 10.1525/elementa.244. Sicard Pierre, 2021, Current Opinion in Environmental Science \& Health, V19, P100226, DOI 10.1016/j.coesh.2020.100226. Silva SJ, 2018, J GEOPHYS RES-ATMOS, V123, P559, DOI 10.1002/2017JD027278. Sitch S, 2007, NATURE, V448, P791, DOI 10.1038/nature06059. Song X., 2022, CARBON RES, V1, P5, DOI {[}10.1007/s44246-022-00008-2, DOI 10.1007/S44246-022-00008-2]. Stoelken G, 2010, PLANT BIOSYST, V144, P537, DOI 10.1080/11263500903429346. Tani A, 2017, J AGRIC METEOROL, V73, P195, DOI 10.2480/agrmet.D-17-00022. THOMPSON AM, 1992, SCIENCE, V256, P1157, DOI 10.1126/science.256.5060.1157. Toet S, 2011, GLOBAL CHANGE BIOL, V17, P288, DOI 10.1111/j.1365-2486.2010.02267.x. Trivedi P, 2022, NEW PHYTOL, V234, P1951, DOI 10.1111/nph.18016. Ueda Y, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163178. Velikova V, 2005, TREE PHYSIOL, V25, P1523, DOI 10.1093/treephys/25.12.1523. Velikova V, 2005, NEW PHYTOL, V166, P419, DOI 10.1111/j.1469-8137.2005.01409.x. Verstraeten WW, 2015, NAT GEOSCI, V8, P690, DOI 10.1038/NGEO2493. Vingarzan R, 2004, ATMOS ENVIRON, V38, P3431, DOI 10.1016/j.atmosenv.2004.03.030. Visser AJ, 2021, ATMOS CHEM PHYS, V21, P18393, DOI 10.5194/acp-21-18393-2021. Vitale M, 2008, WATER AIR SOIL POLL, V189, P113, DOI 10.1007/s11270-007-9560-4. Vitale M, 2019, WATER AIR SOIL POLL, V230, DOI 10.1007/s11270-019-4339-y. Vollenweider S, 2000, PLANT J, V24, P467, DOI 10.1046/j.1365-313x.2000.00897.x. Wang J., 2022, J ENVIRON SCI. Wang P, 2021, ATMOS CHEM PHYS, V21, P10347, DOI 10.5194/acp-21-10347-2021. Wang T, 2019, GEOPHYS RES LETT, V46, P11463, DOI 10.1029/2019GL084459. Wang T, 2017, SCI TOTAL ENVIRON, V575, P1582, DOI 10.1016/j.scitotenv.2016.10.081. Wang XK, 2007, ENVIRON POLLUT, V148, P390, DOI 10.1016/j.envpol.2006.12.014. Wilkinson S, 2012, J EXP BOT, V63, P527, DOI 10.1093/jxb/err317. Williamson JL, 2016, ATMOS ENVIRON, V127, P133, DOI 10.1016/j.atmosenv.2015.12.004. Wittig VE, 2007, PLANT CELL ENVIRON, V30, P1150, DOI 10.1111/j.1365-3040.2007.01717.x. Xia LL, 2021, ONE EARTH, V4, P1752, DOI 10.1016/j.oneear.2021.11.009. Xu S, 2015, URBAN FOR URBAN GREE, V14, P1166, DOI 10.1016/j.ufug.2015.10.015. Xu S, 2012, B ENVIRON CONTAM TOX, V88, P443, DOI 10.1007/s00128-011-0462-1. Xu XB, 2020, ELEMENTA-SCI ANTHROP, V8, DOI 10.1525/elementa.409. Yang WZ, 2021, SCI TOTAL ENVIRON, V787, DOI 10.1016/j.scitotenv.2021.147454. Ye Zi-Piao, 2021, Chinese Journal of Plant Ecology, V45, P420, DOI 10.17521/cjpe.2020.0326. Yuan XY, 2020, SCI TOTAL ENVIRON, V734, DOI 10.1016/j.scitotenv.2020.139368. Yuan XY, 2017, PLANT CELL ENVIRON, V40, P1960, DOI 10.1111/pce.13007. Yuan XY, 2017, SCI TOTAL ENVIRON, V601, P222, DOI 10.1016/j.scitotenv.2017.05.138. Yuan XY, 2016, PLANT CELL ENVIRON, V39, P2276, DOI 10.1111/pce.12798. Yue K, 2015, J GEOPHYS RES-BIOGEO, V120, P441, DOI 10.1002/2014JG002885. Yue X, 2017, ATMOS CHEM PHYS, V17, P6073, DOI 10.5194/acp-17-6073-2017. Zeleznik P, 2007, PLANT BIOLOGY, V9, P298, DOI 10.1055/s-2006-955916. Zeng JQ, 2022, ATMOS MEAS TECH, V15, P79, DOI 10.5194/amt-15-79-2022. Zhang XX, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64814-7.}, Number-of-Cited-References = {197}, Times-Cited = {2}, Usage-Count-Last-180-days = {40}, Usage-Count-Since-2013 = {50}, Journal-ISO = {Appl. Geochem.}, Doc-Delivery-Number = {4O8RW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000854961800001}, DA = {2023-04-22}, } @article{ WOS:000637734600001, Author = {Martin-Noguerol, T. and Paulano-Godino, F. and Lopez-Ortega, R. and Gorriz, J. M. and Riascos, R. F. and Luna, A.}, Title = {Artificial intelligence in radiology: relevance of collaborative work between radiologists and engineers for building a multidisciplinary team}, Journal = {CLINICAL RADIOLOGY}, Year = {2021}, Volume = {76}, Number = {5}, Pages = {317-324}, Month = {MAY}, Abstract = {The use of artificial intelligence (AI) algorithms in the field of radiology is becoming more common. Several studies have demonstrated the potential utility of machine learning (ML) and deep learning (DL) techniques as aids for radiologists to solve specific radiological challenges. The decision-making process, the establishment of specific clinical or radiological targets, the profile of the different professionals involved in the development of AI solutions, and the relation with partnerships and stakeholders are only some of the main issues that have to be faced and solved prior to starting the development of radiological AI solutions. Among all the players in this multidisciplinary team, the communication between radiologists and data scientists is essential for a successful collaborative work. There are specific skills that are inherent to radiological and medical training that are critical for identifying anatomical or clinical targets as well as for segmenting or labelling lesions. These skills would then have to be transferred, explained, and taught to the data science experts to facilitate their comprehension and integration into ML or DL algorithms. On the other hand, there is a wide range of complex software packages, deep neural-network architectures, and data transfer processes for which radiologists need the expertise of software engineers and data scientists in order to select the optimal manner to analyse and post-process this amount of data. This paper offers a summary of the top five challenges faced by radiologists and data scientists including tips and tricks to build a successful AI team. (C) 2020 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.}, Publisher = {W B SAUNDERS CO LTD}, Address = {32 JAMESTOWN RD, LONDON NW1 7BY, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Martin-Noguerol, T (Corresponding Author), HT Med, Radiol Dept, MRI Sect, Carmelo Torres 2, Jaen 23007, Spain. Martin-Noguerol, T.; Luna, A., HT Med, Radiol Dept, MRI Unit, Jaen, Spain. Paulano-Godino, F.; Lopez-Ortega, R., HT Med, Engn Dept, Jaen, Spain. Gorriz, J. M., Univ Granada, Dept Signal Theory Telemat \& Commun, Granada, Spain. Riascos, R. F., Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Neuroradiol, Houston, TX 77030 USA.}, DOI = {10.1016/j.crad.2020.11.113}, ISSN = {0009-9260}, EISSN = {1365-229X}, Keywords-Plus = {DE-IDENTIFICATION; BLACK-BOX; FUTURE; AI}, Research-Areas = {Radiology, Nuclear Medicine \& Medical Imaging}, Web-of-Science-Categories = {Radiology, Nuclear Medicine \& Medical Imaging}, Author-Email = {t.martin.f@htime.org}, Affiliations = {University of Granada; University of Texas System; University of Texas Health Science Center Houston}, ResearcherID-Numbers = {Gorriz, Juan Manuel/C-2385-2012}, ORCID-Numbers = {Gorriz, Juan Manuel/0000-0001-7069-1714}, Cited-References = {Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052. Akkus Z, 2017, J DIGIT IMAGING, V30, P449, DOI 10.1007/s10278-017-9983-4. Alis D, 2020, CLIN RADIOL, V75, P351, DOI 10.1016/j.crad.2019.12.008. Allen B, 2019, ARTIFICIAL INTELLIGE, P291. Aryanto KYE, 2015, EUR RADIOL, V25, P3685, DOI 10.1007/s00330-015-3794-0. Ather S, 2020, CLIN RADIOL, V75, P13, DOI 10.1016/j.crad.2019.04.017. Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012. Baselli G, 2020, EUR RADIOL EXP, V4, DOI 10.1186/s41747-020-00159-0. Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8\_7. Brkljacic B, 2019, INSIGHTS IMAGING, V10, DOI 10.1186/s13244-019-0798-3. Bzdok D, 2018, POINTS SIGNIFICANCE, P1. Cao LJ, 2003, NEUROCOMPUTING, V55, P321, DOI 10.1016/S0925-2312(03)00433-8. Chartrand G, 2017, RADIOGRAPHICS, V37, P2113, DOI 10.1148/rg.2017170077. Choy G, 2018, RADIOLOGY, V288, P318, DOI 10.1148/radiol.2018171820. Di Ieva A, 2019, LANCET, V394, P1801, DOI 10.1016/S0140-6736(19)32626-1. Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002. Erickson BJ, 2019, RADIOL-ARTIF INTELL, V1, DOI 10.1148/ryai.2019190072. Eun Bae Kong, 1995, Machine Learning. Proceedings of the Twelfth International Conference on Machine Learning, P313. Friston K, 2012, NEUROIMAGE, V61, P1300, DOI 10.1016/j.neuroimage.2012.04.018. Ghesu FC, 2018, MED IMAGE ANAL, V48, P203, DOI 10.1016/j.media.2018.06.007. Gilbert FJ, 2020, CLIN RADIOL, V75, P3, DOI 10.1016/j.crad.2019.09.122. Gong H, 2019, MED PHYS, V46, P2052, DOI 10.1002/mp.13500. Handelman GS, 2019, AM J ROENTGENOL, V212, P38, DOI 10.2214/AJR.18.20224. Hohman F, 2019, IEEE T VIS COMPUT GR, V25, P2674, DOI 10.1109/TVCG.2018.2843369. Holzinger A, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1312. Hosny A, 2018, NAT REV CANCER, V18, P500, DOI 10.1038/s41568-018-0016-5. Hu PJ, 2017, INT J COMPUT ASS RAD, V12, P399, DOI 10.1007/s11548-016-1501-5. Huesch MD, 2018, J AM COLL RADIOL, V15, P554, DOI 10.1016/j.jacr.2017.12.017. Iqbal A, 2019, NAT MACH INTELL, V1, P277, DOI 10.1038/s42256-019-0058-8. Jena M., 2018, INT J ENG TECHNOLOGY, V7, P4489, DOI DOI 10.14419/IJET.V7I4.19005. Jha S, 2016, JAMA-J AM MED ASSOC, V316, P2353, DOI 10.1001/jama.2016.17438. Jungmann F, 2020, J DIGIT IMAGING, V33, P1026, DOI 10.1007/s10278-020-00342-0. Juntu J, 2005, ADV SOFT COMP, P543. Kahng M, 2018, IEEE T VIS COMPUT GR, V24, P88, DOI 10.1109/TVCG.2017.2744718. Kannampallil TG, 2013, ARTIF INTELL MED, V57, P21, DOI 10.1016/j.artmed.2012.10.002. Khedher L, 2017, INT J NEURAL SYST, V27, DOI 10.1142/S0129065716500507. Korfiatis P, 2019, CLIN RADIOL, V74, P367, DOI 10.1016/j.crad.2019.01.028. Kuo WC, 2019, P NATL ACAD SCI USA, V116, P22737, DOI 10.1073/pnas.1908021116. Langs G, 2018, RADIOLOGE, V58, P1, DOI 10.1007/s00117-018-0407-3. Liew C, 2018, EUR J RADIOL, V102, P152, DOI 10.1016/j.ejrad.2018.03.019. Liu SX, 2017, VIS INFORM, V1, P48, DOI 10.1016/j.visinf.2017.01.006. Noguerol TM, 2019, J AM COLL RADIOL, V16, P1239, DOI 10.1016/j.jacr.2019.05.047. Moore SM, 2015, RADIOGRAPHICS, V35, P727, DOI 10.1148/rg.2015140244. Morrison JJ, 2015, J DIGIT IMAGING, V28, P18, DOI 10.1007/s10278-014-9720-1. Neri E, 2019, INSIGHTS IMAGING, V10, DOI 10.1186/s13244-019-0738-2. O'Leary DE, 2014, IEEE INTELL SYST, V29, P70, DOI 10.1109/MIS.2014.82. Oakden-Rayner L, 2019, RADIOL-ARTIF INTELL, V1, DOI 10.1148/ryai.2019180089. Pons E, 2016, RADIOLOGY, V279, P329, DOI 10.1148/radiol.16142770. Prevedello LM, 2017, RADIOLOGY, V285, P923, DOI 10.1148/radiol.2017162664. Recht M, 2017, J AM COLL RADIOL, V14, P1476, DOI 10.1016/j.jacr.2017.07.007. Riddle WR, 2005, MED PHYS, V32, P1537, DOI 10.1118/1.1916183. Rockall A, 2020, CLIN RADIOL, V75, P1, DOI 10.1016/j.crad.2019.09.123. Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4\_28. Rubin DL, 2019, J AM COLL RADIOL, V16, P1309, DOI 10.1016/j.jacr.2019.05.036. Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707. Saba L, 2019, EUR J RADIOL, V114, P14, DOI 10.1016/j.ejrad.2019.02.038. Sabottke CF, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2019190015. Samala RK, 2014, PHYS MED BIOL, V59, P7457, DOI 10.1088/0031-9155/59/23/7457. Seo S, 2020, MAGN RESON MED, V84, P263, DOI 10.1002/mrm.28126. Sessions V., 2006, ICIQ, P485. Shah P, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0148-3. Simonyan K, 2014, 2 INT C LEARN REPR B, P14. Sogani J, 2020, CLIN IMAG, V59, pA3, DOI 10.1016/j.clinimag.2019.08.001. Steinkraus D, 2005, PROC INT CONF DOC, P1115, DOI 10.1109/ICDAR.2005.251. Thrall JH, 2018, J AM COLL RADIOL, V15, P504, DOI 10.1016/j.jacr.2017.12.026. van Ooijen PM, 2019, ARTIF INTELL, P247, DOI {[}10.1007/978-3-319-94878-2\_17, DOI 10.1007/978-3-319-94878-2\_17]. Wainberg M, 2018, NAT BIOTECHNOL, V36, P829, DOI 10.1038/nbt.4233. Winkel DJ, 2019, INVEST RADIOL, V54, P55, DOI 10.1097/RLI.0000000000000509. Wongsuphasawat K, 2018, IEEE T VIS COMPUT GR, V24, P1, DOI 10.1109/TVCG.2017.2744878. Wu B, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0230722. Yamashita R, 2018, INSIGHTS IMAGING, V9, P611, DOI 10.1007/s13244-018-0639-9. Yasaka K, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002707. Yasaka K, 2018, JPN J RADIOL, V36, P257, DOI 10.1007/s11604-018-0726-3. Yetisgen-Yildiz M, 2013, J BIOMED INFORM, V46, P354, DOI 10.1016/j.jbi.2012.12.005. Yeung DY, 2008, NEURAL COMPUT, V20, P2839, DOI 10.1162/neco.2008.05-07-528. Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1\_53. Zhang DQ, 2012, NEUROIMAGE, V59, P895, DOI 10.1016/j.neuroimage.2011.09.069. Zhang SC, 2003, APPL ARTIF INTELL, V17, P375, DOI {[}10.1080/713827180, 10.1080/08839510390219264].}, Number-of-Cited-References = {78}, Times-Cited = {11}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {19}, Journal-ISO = {Clin. Radiol.}, Doc-Delivery-Number = {RJ6UB}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000637734600001}, DA = {2023-04-22}, } @article{ WOS:000898610500010, Author = {Leary, Del and Basran, Parminder S. S.}, Title = {The role of artificial intelligence in veterinary radiation oncology}, Journal = {VETERINARY RADIOLOGY \& ULTRASOUND}, Year = {2022}, Volume = {63}, Number = {1}, Pages = {903-912}, Month = {DEC}, Abstract = {Veterinary radiation oncology regularly deploys sophisticated contouring, image registration, and treatment planning optimization software for patient care. Over the past decade, advances in computing power and the rapid development of neural networks, open-source software packages, and data science have been realized and resulted in new research and clinical applications of artificial intelligent (AI) systems in radiation oncology. These technologies differ from conventional software in their level of complexity and ability to learn from representative and local data. We provide clinical and research application examples of AI in human radiation oncology and their potential applications in veterinary medicine throughout the patient's care-path: from treatment simulation, deformable registration, auto-segmentation, automated treatment planning and plan selection, quality assurance, adaptive radiotherapy, and outcomes modeling. These technologies have the potential to offer significant time and cost savings in the veterinary setting; however, since the range of usefulness of these technologies have not been well studied nor understood, care must be taken if adopting AI technologies in clinical practice. Over the next several years, some practical and realizable applications of AI in veterinary radiation oncology include automated segmentation of normal tissues and tumor volumes, deformable registration, multi-criteria plan optimization, and adaptive radiotherapy. Keys in achieving success in adopting AI in veterinary radiation oncology include: establishing ``truth-data{''}; data harmonization; multi-institutional data and collaborations; standardized dose reporting and taxonomy; adopting an open access philosophy, data collection and curation; open-source algorithm development; and transparent and platform-independent code development.}, Publisher = {WILEY}, Address = {111 RIVER ST, HOBOKEN 07030-5774, NJ USA}, Type = {Review}, Language = {English}, Affiliation = {Leary, D (Corresponding Author), Colorado State Univ, Coll Vet Med \& Biomed Sci, Dept Environm \& Radiol Hlth Sci, Ft Collins, CO 80523 USA. Basran, PS (Corresponding Author), Cornell Univ, Coll Vet Med, Dept Clin Sci, Ithaca, NY 14850 USA. Leary, Del, Colorado State Univ, Coll Vet Med \& Biomed Sci, Dept Environm \& Radiol Hlth Sci, Ft Collins, CO 80523 USA. Basran, Parminder S. S., Cornell Univ, Coll Vet Med, Dept Clin Sci, Ithaca, NY 14850 USA.}, DOI = {10.1111/vru.13162}, ISSN = {1058-8183}, EISSN = {1740-8261}, Keywords = {adaptive radiotherapy; artificial intelligence; deep learning; machine learning; radiotherapy}, Keywords-Plus = {NEURAL-NETWORK; TUMOR DELINEATION; INTEROBSERVER AGREEMENT; IMAGE REGISTRATION; PROSTATE-CANCER; RADIOTHERAPY; PREDICTION; THERAPY; CT; QUALITY}, Research-Areas = {Veterinary Sciences}, Web-of-Science-Categories = {Veterinary Sciences}, Author-Email = {del.leary@colostate.edu psb92@cornell.edu}, Affiliations = {Colorado State University; Cornell University}, ResearcherID-Numbers = {Basran, Parminder/ABH-1117-2020}, ORCID-Numbers = {Basran, Parminder/0000-0002-1573-1549}, Cited-References = {{[}Anonymous], 62 ICRU. {[}Anonymous], 50 ICRU. Baker L, 2019, PHYS IMAG RADIAT ONC, V9, P83, DOI 10.1016/j.phro.2019.03.002. Bi WL, 2019, CA-CANCER J CLIN, V69, P127, DOI 10.3322/caac.21552. Bibault JE, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30657-6. Bottou Leon, 2007, ADV NEURAL INFORM PR, V20, P161. Burbach JPM, 2016, RADIOTHER ONCOL, V118, P399, DOI 10.1016/j.radonc.2015.10.030. Cao XG, 2016, 2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), P751, DOI 10.1007/978-3-319-46726-9\_1. Chen H, 2017, IEEE T MED IMAGING, V36, P2524, DOI 10.1109/TMI.2017.2715284. Cheng X, 2018, COMP M BIO BIO E-IV, V6, P248, DOI 10.1080/21681163.2015.1135299. Christensen NI, 2016, VET RADIOL ULTRASOUN, V57, P639, DOI 10.1111/vru.12398. Court LE., 2018, J VIS EXP, V11. Craft DL, 2006, MED PHYS, V33, P3399, DOI 10.1118/1.2335486. Cui SN, 2020, MED PHYS, V47, pE127, DOI 10.1002/mp.14140. Cui SN, 2019, MED PHYS, V46, P2497, DOI 10.1002/mp.13497. Cui S, 2019, IEEE T RADIAT PLASMA, V3, P242, DOI 10.1109/TRPMS.2018.2884134. de Weger V.A., BRIT J CANCER, V120. Deist TM, 2018, MED PHYS, V45, P3449, DOI 10.1002/mp.12967. Dreher C, 2020, STRAHLENTHER ONKOL, V196, P888, DOI 10.1007/s00066-020-01615-x. El Naqa I, 2016, INT J RADIAT ONCOL, V96, pS45, DOI 10.1016/j.ijrobp.2016.06.119. El Naqa I, 2017, PHYS MED BIOL, V62, pR179, DOI 10.1088/1361-6560/aa7c55. Iglesias JE, 2015, MED IMAGE ANAL, V24, P205, DOI 10.1016/j.media.2015.06.012. Evans SB, 2016, PRACT RADIAT ONCOL, V6, pE369, DOI 10.1016/j.prro.2016.08.007. Feng Y, 2016, VET RADIOL ULTRASOUN, V57, P113, DOI 10.1111/vru.12342. Gabrys D, 2011, RADIOTHER ONCOL, V100, P360, DOI 10.1016/j.radonc.2011.09.006. Giraud P, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.00174. Gjesteby L, 2017, PROC SPIE, V10132, DOI 10.1117/12.2254091. Good D, 2013, INT J RADIAT ONCOL, V87, P176, DOI 10.1016/j.ijrobp.2013.03.015. Gronberg MP, 2021, MED PHYS, V48, P5567, DOI 10.1002/mp.14827. Guerreiro F, 2021, RADIOTHER ONCOL, V156, P36, DOI 10.1016/j.radonc.2020.11.026. Health C for D and R, 2021, ARTIF INTELL. Huynh E, 2016, RADIOTHER ONCOL, V120, P258, DOI 10.1016/j.radonc.2016.05.024. Jarrett D, 2019, BRIT J RADIOL, V92, DOI 10.1259/bjr.20190001. Jochems A, 2018, ACTA ONCOL, V57, P226, DOI 10.1080/0284186X.2017.1385842. Karami E, 2019, IEEE ENG MED BIO, P1022, DOI 10.1109/EMBC.2019.8856558. Kessler ML, 2006, BRIT J RADIOL, V79, pS99, DOI 10.1259/bjr/70617164. Kierkels RGJ, 2015, RADIAT ONCOL, V10, DOI 10.1186/s13014-015-0385-9. Kraft SL, 1999, CLIN TECH SMALL AN P, V14, P112, DOI 10.1016/S1096-2867(99)80009-7. Lavely WC, 2004, MED PHYS, V31, P1083, DOI 10.1118/1.1688041. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Lee H, 2019, IEEE T RADIAT PLASMA, V3, P109, DOI 10.1109/TRPMS.2018.2867611. Levine AB, 2019, TRENDS CANCER, V5, P157, DOI 10.1016/j.trecan.2019.02.002. Liang B, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.00269. Liu RR, 2021, PHYS MED BIOL, V66, DOI 10.1088/1361-6560/abe736. Lucia F, 2021, J PERS MED, V11, DOI 10.3390/jpm11050398. Luo Yi, 2019, BJR Open, V1, P20190021, DOI 10.1259/bjro.20190021. Ma J., 2021, MED PHYS. Mao XM, 2020, INT J RADIAT ONCOL, V108, P802, DOI 10.1016/j.ijrobp.2020.04.045. Marks LB, 1999, MED PHYS, V26, P196, DOI 10.1118/1.598503. McCarthy J, 2006, AI MAG, V27, P12. McIntosh C, 2021, NAT MED, V27, P999, DOI 10.1038/s41591-021-01359-w. McIntosh C, 2017, PHYS MED BIOL, V62, P5926, DOI 10.1088/1361-6560/aa71f8. McIntosh C, 2013, IEEE T MED IMAGING, V32, P1043, DOI 10.1109/TMI.2013.2251421. Mclntosh C, 2017, PHYS MED BIOL, V62, P415, DOI 10.1088/1361-6560/62/2/415. Mongan J, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020200029. Moran A, 2017, CLIN LUNG CANCER, V18, pE425, DOI 10.1016/j.cllc.2017.05.014. Morin O, 2018, INT J RADIAT ONCOL, V102, P1074, DOI 10.1016/j.ijrobp.2018.08.032. Nguyen NP, 2011, ANTICANCER RES, V31, P4393. Njeh CF, 2008, J MED PHYS, V33, P136, DOI 10.4103/0971-6203.44472. Nomura Y, 2021, PHYS MED BIOL, V66, DOI 10.1088/1361-6560/abe956. Nomura Y, 2019, MED PHYS, V46, P3142, DOI 10.1002/mp.13583. Norgeot B, 2020, NAT MED, V26, P1320, DOI 10.1038/s41591-020-1041-y. Nwankwo O, 2015, RADIAT ONCOL, V10, DOI 10.1186/s13014-015-0416-6. Qi X, 2017, INT J RADIAT ONCOL, V99, pS167, DOI 10.1016/j.ijrobp.2017.06.384. Roques TW, 2014, CLIN ONCOL-UK, V26, P353, DOI 10.1016/j.clon.2014.02.013. Rosa C, 2020, IN VIVO, V34, P1981, DOI 10.21873/invivo.11995. Rossi L, 2018, RADIOTHER ONCOL, V129, P548, DOI 10.1016/j.radonc.2018.07.027. Sahiner B, 2019, MED PHYS, V46, pe1, DOI 10.1002/mp.13264. Sakai M, 2021, MED PHYS, V48, P991, DOI 10.1002/mp.14699. Han YS, 2016, Arxiv. Shen CY, 2020, MED PHYS, V47, P2329, DOI 10.1002/mp.14114. Shen CY, 2019, PHYS MED BIOL, V64, DOI 10.1088/1361-6560/ab18bf. Simon L., 2021, CANCERRADIOTH RAPIE. Simonovsky M, 2016, Arxiv. Thureau S, 2013, J NUCL MED, V54, P1543, DOI 10.2967/jnumed.112.118083. Tseng HH, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00266. Uh J, 2021, RADIOTHER ONCOL, V160, P250, DOI 10.1016/j.radonc.2021.05.006. Wala J, 2013, MED DOSIM, V38, P298, DOI 10.1016/j.meddos.2013.02.012. Wang RF, 2019, PHYS MED BIOL, V64, DOI 10.1088/1361-6560/ab555e. Wee CW, 2018, TECHNOL CANCER RES T, V17, P1, DOI 10.1177/1533033818787383. Wong J, 2021, RADIAT ONCOL, V16, DOI 10.1186/s13014-021-01831-4. Wu DF, 2017, IEEE T MED IMAGING, V36, P2479, DOI 10.1109/TMI.2017.2753138. Xu YW, 2019, CLIN CANCER RES, V25, P3266, DOI 10.1158/1078-0432.CCR-18-2495. Zarepisheh M, 2014, MED PHYS, V41, DOI 10.1118/1.4875700. Zhang YB, 2018, IEEE T MED IMAGING, V37, P1370, DOI 10.1109/TMI.2018.2823083. Zhang YP, 2020, MED PHYS, V47, P2735, DOI 10.1002/mp.14128.}, Number-of-Cited-References = {86}, Times-Cited = {1}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {3}, Journal-ISO = {Vet. Radiol. Ultrasound}, Doc-Delivery-Number = {7A7CX}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000898610500010}, DA = {2023-04-22}, } @article{ WOS:000663301100002, Author = {Derathe, Arthur and Reche, Fabian and Jannin, Pierre and Moreau-Gaudry, Alexandre and Gibaud, Bernard and Voros, Sandrine}, Title = {Explaining a model predicting quality of surgical practice: a first presentation to and review by clinical experts}, Journal = {INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY}, Year = {2021}, Volume = {16}, Number = {11, SI}, Pages = {2009-2019}, Month = {NOV}, Abstract = {Purpose Surgical Data Science (SDS) is an emerging research domain offering data-driven answers to challenges encountered by clinicians during training and practice. We previously developed a framework to assess quality of practice based on two aspects: exposure of the surgical scene (ESS) and the surgeon's profile of practice (SPP). Here, we wished to investigate the clinical relevance of the parameters learned by this model by (1) interpreting these parameters and identifying associated representative video samples and (2) presenting this information to surgeons in the form of a video-enhanced questionnaire. To our knowledge, this is the first approach in the field of SDS for laparoscopy linking the choices made by a machine learning model predicting surgical quality to clinical expertise. Method Spatial features and quality of practice scores extracted from labeled and segmented frames in 30 laparoscopic videos were used to predict the ESS and the SPP. The relationships between the inputs and outputs of the model were then analyzed and translated into meaningful sentences (statements, e.g., ``To optimize the ESS, it is very important to correctly handle the spleen{''}). Representative video clips illustrating these statements were semi-automatically identified. Eleven statements and video clips were used in a survey presented to six experienced digestive surgeons to gather their opinions on the algorithmic analyses. Results All but one of the surgeons agreed with the proposed questionnaire overall. On average, surgeons agreed with 7/11 statements. Conclusion This proof-of-concept study provides preliminary validation of our model which has a high potential for use to analyze and understand surgical practices.}, Publisher = {SPRINGER HEIDELBERG}, Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY}, Type = {Review}, Language = {English}, Affiliation = {Voros, S (Corresponding Author), Univ Grenoble Alpes, TIMC IMAG, Grenoble INP, CNRS, F-38000 Grenoble, France. Voros, S (Corresponding Author), INSERM, Paris, France. Derathe, Arthur; Reche, Fabian; Moreau-Gaudry, Alexandre; Voros, Sandrine, Univ Grenoble Alpes, TIMC IMAG, Grenoble INP, CNRS, F-38000 Grenoble, France. Reche, Fabian, Grenoble Univ Hosp, Dept Digest Surg, Grenoble, France. Jannin, Pierre; Gibaud, Bernard, Univ Rennes 1, LTSI, UMR S 1099, F-35000 Rennes, France. Jannin, Pierre; Gibaud, Bernard; Voros, Sandrine, INSERM, Paris, France. Moreau-Gaudry, Alexandre, CHU Grenoble, Clin Invest Ctr, Innovat Technol, Grenoble, France.}, DOI = {10.1007/s11548-021-02422-0}, EarlyAccessDate = {JUN 2021}, ISSN = {1861-6410}, EISSN = {1861-6429}, Keywords = {Surgical skills; Video-based assessment; Explainable artificial intelligence}, Keywords-Plus = {SKILL}, Research-Areas = {Engineering; Radiology, Nuclear Medicine \& Medical Imaging; Surgery}, Web-of-Science-Categories = {Engineering, Biomedical; Radiology, Nuclear Medicine \& Medical Imaging; Surgery}, Author-Email = {sandrine.voros@univ-grenoble-alpes.fr}, Affiliations = {UDICE-French Research Universities; Communaute Universite Grenoble Alpes; Institut National Polytechnique de Grenoble; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS); CHU Grenoble Alpes; Communaute Universite Grenoble Alpes; UDICE-French Research Universities; Universite Grenoble Alpes (UGA); Universite de Rennes; Institut National de la Sante et de la Recherche Medicale (Inserm); CHU Grenoble Alpes; Communaute Universite Grenoble Alpes; UDICE-French Research Universities; Universite Grenoble Alpes (UGA)}, ResearcherID-Numbers = {Voros, Sandrine/M-6138-2014 Jannin, Pierre/P-9958-2019}, ORCID-Numbers = {Voros, Sandrine/0000-0002-7418-2367 Jannin, Pierre/0000-0002-7415-071X}, Funding-Acknowledgement = {French government {[}ANR-11-LABX0004]; MIAI @ Grenoble Alpes {[}ANR-19-P3IA-0003]}, Funding-Text = {This work was supported by funding from the French government managed by the ANR as part of the Investissements d'Avenir Programme (Labex CAMI) under reference ANR-11-LABX0004. This work was partially supported by MIAI @ Grenoble Alpes, (ANR-19-P3IA-0003). The authors thank the IRT b<>com for providing the ``Surgery Workflow Toolbox {[}annotate],{''} software used in this study.}, Cited-References = {Bonjer HJ, 2005, LANCET ONCOL, V6, P477, DOI 10.1016/S1470-2045(05)70221-7. Derathe A, 2020, INT J COMPUT ASS RAD, V15, P59, DOI 10.1007/s11548-019-02072-3. El Ahmadieh TY, 2014, NEUROSURGERY, V74, pN12, DOI 10.1227/01.neu.0000450232.06740.ef. Foster JD, 2016, TECH COLOPROCTOL, V20, P361, DOI 10.1007/s10151-016-1444-4. Gagner M, 2016, SURG OBES RELAT DIS, V12, P750, DOI 10.1016/j.soard.2016.01.022. Gordon L, 2019, JAMA SURG, V154, P1064, DOI 10.1001/jamasurg.2019.2821. Huaulme A, 2020, ARTIF INTELL MED, V104, DOI 10.1016/j.artmed.2020.101837. Lundberg SM, 2018, NAT BIOMED ENG, V2, P749, DOI 10.1038/s41551-018-0304-0. Maier-Hein L, 2017, NAT BIOMED ENG, V1, P691, DOI 10.1038/s41551-017-0132-7. Malpani A, 2015, INT J COMPUT ASS RAD, V10, P1435, DOI 10.1007/s11548-015-1238-6. Mangano A, 2016, HEAD NECK-J SCI SPEC, V38, pE1568, DOI 10.1002/hed.24280. Mascagni P, 2022, ANN SURG, V275, P955, DOI 10.1097/SLA.0000000000004351. Pernek I, 2017, MED BIOL ENG COMPUT, V55, P1719, DOI 10.1007/s11517-017-1670-6. Radivojac P, 2004, LECT NOTES COMPUT SC, V3201, P334. Ratsch G, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-S1-S9. Thiele RH, 2015, J AM COLL SURGEONS, V220, P430, DOI 10.1016/j.jamcollsurg.2014.12.042. Zhang W, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.054208.}, Number-of-Cited-References = {17}, Times-Cited = {1}, Usage-Count-Last-180-days = {0}, Usage-Count-Since-2013 = {5}, Journal-ISO = {Int. J. Comput. Assist. Radiol. Surg.}, Doc-Delivery-Number = {WW6JI}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000663301100002}, OA = {Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000888226600002, Author = {Shen, Yuning and Borowski, Julia E. and Hardy, Melissa A. and Sarpong, Richmond and Doyle, Abigail G. and Cernak, Tim}, Title = {Automation and computer-assisted planning for chemical synthesis}, Journal = {NATURE REVIEWS METHODS PRIMERS}, Year = {2021}, Volume = {1}, Number = {1}, Month = {MAR 18}, Abstract = {The molecules of today - the medicines that cure diseases, the agrochemicals that protect our crops, the materials that make life convenient - are becoming increasingly sophisticated thanks to advancements in chemical synthesis. As tools for synthesis improve, molecular architects can be bold and creative in the way they design and produce molecules. Several emerging tools at the interface of chemical synthesis and data science have come to the forefront in recent years, including algorithms for retrosynthesis and reaction prediction, and robotics for autonomous or high-throughput synthesis. This Primer covers recent additions to the toolbox of the data-savvy organic chemist. There is a new movement in retrosynthetic logic, predictive models of reactivity and chemistry automata, with considerable recent engagement from contributors in diverse fields. The promise of chemical synthesis in the information age is to improve the quality of the molecules of tomorrow through data-harnessing and automation. This Primer is written for organic chemists and data scientists looking to understand the software, hardware, data sets and tactics that are commonly used as well as the capabilities and limitations of the field. The Primer is split into three main components covering retrosynthetic logic, reaction prediction and automated synthesis. The former of these topics is about distilling the strategy of multistep synthesis to a logic that can be taught to a computer. The section on reaction prediction details modern tools and models for developing reaction conditions, catalysts and even new transformations based on information-rich data sets and statistical tools such as machine learning. Finally, we cover recent advances in the use of liquid handling robotics and autonomous systems that can physically perform experiments in the chemistry laboratory.}, Publisher = {SPRINGERNATURE}, Address = {CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Cernak, T (Corresponding Author), Univ Michigan, Dept Med Chem, Ann Arbor, MI 48109 USA. Doyle, AG (Corresponding Author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. Sarpong, R (Corresponding Author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Shen, Yuning; Cernak, Tim, Univ Michigan, Dept Med Chem, Ann Arbor, MI 48109 USA. Borowski, Julia E.; Doyle, Abigail G., Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. Hardy, Melissa A.; Sarpong, Richmond, Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.}, DOI = {10.1038/s43586-021-00022-5}, Article-Number = {23}, EISSN = {2662-8449}, Keywords-Plus = {HIGH-THROUGHPUT EXPERIMENTATION; LATE-STAGE FUNCTIONALIZATION; MEDICINAL CHEMISTS TOOLBOX; TAMING HAZARDOUS CHEMISTRY; DEEP NEURAL-NETWORKS; ORGANIC-SYNTHESIS; SYNTHESIS DESIGN; CONTINUOUS-FLOW; DRUG DISCOVERY; MACHINE}, Research-Areas = {Science \& Technology - Other Topics}, Web-of-Science-Categories = {Multidisciplinary Sciences}, Author-Email = {rsarponge@berkeley.edu agdoyle@princeton.edu tcernak@med.umich.edu}, Affiliations = {University of Michigan System; University of Michigan; Princeton University; University of California System; University of California Berkeley}, ORCID-Numbers = {Doyle, Abigail/0000-0002-6641-0833 Borowski, Julia/0000-0002-3635-8720}, Funding-Acknowledgement = {National Science Foundation (NSF) under the Center for Computer Aided Synthesis {[}CHE-1925607]; NSF graduate research fellowship program {[}DGE-1752814]; University of Michigan College of Pharmacy}, Funding-Text = {A. G.D., R.S., M.A. H. and J. E. B. were supported by the National Science Foundation (NSF) under the Center for Computer Aided Synthesis (C-CAS) (CHE-1925607). M.A.H. is grateful for funding from the NSF graduate research fellowship program (DGE-1752814). Y.S. and T.C. were supported by the University of Michigan College of Pharmacy.}, Cited-References = {Ahneman DT, 2018, SCIENCE, V360, P186, DOI 10.1126/science.aar5169. Alexander DLJ, 2015, J CHEM INF MODEL, V55, P1316, DOI 10.1021/acs.jcim.5b00206. Allen CL, 2019, NAT CATAL, V2, P2, DOI 10.1038/s41929-018-0220-4. Bahr MN, 2018, ORG PROCESS RES DEV, V22, P1500, DOI 10.1021/acs.oprd.8b00259. Baranczak A, 2017, ACS MED CHEM LETT, V8, P461, DOI 10.1021/acsmedchemlett.7b00054. Baylon JL, 2019, J CHEM INF MODEL, V59, P673, DOI 10.1021/acs.jcim.8b00801. Bellomo A, 2012, ANGEW CHEM INT EDIT, V51, P6912, DOI 10.1002/anie.201201720. BERTZ SH, 1981, J AM CHEM SOC, V103, P3599, DOI 10.1021/ja00402a071. Boele MDK, 2002, J AM CHEM SOC, V124, P1586, DOI 10.1021/ja0176907. Boga SB, 2017, REACT CHEM ENG, V2, P446, DOI 10.1039/c7re00057j. Bogevig A, 2015, ORG PROCESS RES DEV, V19, P357, DOI 10.1021/op500373e. Bostrom J, 2018, NAT REV DRUG DISCOV, V17, P709, DOI 10.1038/nrd.2018.116. Brethome AV, 2019, ACS CATAL, V9, P2313, DOI 10.1021/acscatal.8b04043. Bronsted JN, 1924, Z PHYS CHEM-STOCH VE, V108, P185. Patrascu MB, 2020, NAT CATAL, V3, P574, DOI 10.1038/s41929-020-0468-3. Burger B, 2020, NATURE, V583, P237, DOI 10.1038/s41586-020-2442-2. Campbell M, 2002, ARTIF INTELL, V134, P57, DOI 10.1016/S0004-3702(01)00129-1. Casari A., 2018, FEATURE ENG MACHINE. Cernak T, 2017, J MED CHEM, V60, P3594, DOI 10.1021/acs.jmedchem.6b01543. Cernak T, 2016, CHEM SOC REV, V45, P546, DOI 10.1039/c5cs00628g. Chan, 1999, FMOC SOLID PHASE PEP, V222. Cherkasov A, 2014, J MED CHEM, V57, P4977, DOI 10.1021/jm4004285. Christ CD, 2012, J CHEM INF MODEL, V52, P1745, DOI 10.1021/ci300116p. Christensen M., 2020, DATA SCI DRIVEN AUTO, DOI {[}10.26434/chemrxiv.13146404. v2, DOI 10.26434/CHEMRXIV.13146404.V2]. Chung R, 2019, REACT CHEM ENG, V4, P1674, DOI 10.1039/c9re00057g. Clavier H, 2010, CHEM COMMUN, V46, P841, DOI 10.1039/b922984a. Coley CW, 2019, SCIENCE, V365, P557, DOI 10.1126/science.aax1566. Coley CW, 2019, CHEM SCI, V10, P370, DOI 10.1039/c8sc04228d. Coley CW, 2018, ACCOUNTS CHEM RES, V51, P1281, DOI 10.1021/acs.accounts.8b00087. Coley CW, 2018, J CHEM INF MODEL, V58, P252, DOI 10.1021/acs.jcim.7b00622. Coley CW, 2017, ACS CENTRAL SCI, V3, P1237, DOI 10.1021/acscentsci.7b00355. Coley CW, 2017, ACS CENTRAL SCI, V3, P434, DOI 10.1021/acscentsci.7b00064. Collins KD, 2015, ACCOUNTS CHEM RES, V48, P619, DOI 10.1021/ar500434f. Collins N, 2020, ORG PROCESS RES DEV, V24, P2064, DOI 10.1021/acs.oprd.0c00143. Cook A, 2012, WIRES COMPUT MOL SCI, V2, P79, DOI 10.1002/wcms.61. Corey E. J., 1991, LOGIC CHEM SYNTHESIS, DOI DOI 10.1021/es071719a. COREY EJ, 1985, SCIENCE, V228, P408, DOI 10.1126/science.3838594. COREY EJ, 1969, SCIENCE, V166, P178, DOI 10.1126/science.166.3902.178. David L, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00460-5. Deadman BJ, 2015, CHEM-EUR J, V21, P2298, DOI 10.1002/chem.201404348. DiRocco DA, 2014, ANGEW CHEM INT EDIT, V53, P4802, DOI 10.1002/anie.201402023. Doi T, 2006, CHEM-ASIAN J, V1, P370, DOI 10.1002/asia.200600156. Dreher SD, 2008, J AM CHEM SOC, V130, P9257, DOI 10.1021/ja8031423. Duvenaud D. K., 2015, ADV NEURAL INFORM PR, P2224, DOI DOI 10.1021/ACS.JCIM.5B00572. Engkvist O, 2018, DRUG DISCOV TODAY, V23, P1203, DOI 10.1016/j.drudis.2018.02.014. Evans DA, 2014, ANGEW CHEM INT EDIT, V53, P11140, DOI 10.1002/anie.201405820. de Almeida AF, 2019, NAT REV CHEM, V3, P589, DOI 10.1038/s41570-019-0124-0. Francis MB, 1999, ANGEW CHEM INT EDIT, V38, P937, DOI 10.1002/(SICI)1521-3773(19990401)38:7<937::AID-ANIE937>3.0.CO;2-O. Gao HY, 2018, ACS CENTRAL SCI, V4, P1465, DOI 10.1021/acscentsci.8b00357. Gasteiger J, 2000, PERSPECT DRUG DISCOV, V20, P245, DOI 10.1023/A:1008745509593. Genheden S, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00472-1. Geri JB, 2020, SCIENCE, V367, P1091, DOI 10.1126/science.aay4106. Gesmundo NJ, 2018, NATURE, V557, P228, DOI 10.1038/s41586-018-0056-8. Gillis EP, 2008, J AM CHEM SOC, V130, P14084, DOI 10.1021/ja8063759. Gomez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572. Granda JM, 2018, NATURE, V559, P377, DOI 10.1038/s41586-018-0307-8. Hammett, 1940, PHYS ORGANIC CHEM RE. HANESSIAN S, 1990, PURE APPL CHEM, V62, P1887, DOI 10.1351/pac199062101887. Harper KC, 2012, NAT CHEM, V4, P366, DOI {[}10.1038/nchem.1297, 10.1038/NCHEM.1297]. Henle JJ, 2020, J AM CHEM SOC, V142, P11578, DOI 10.1021/jacs.0c04715. Hillier AC, 2003, ORGANOMETALLICS, V22, P4322, DOI 10.1021/om034016k. Hoogenboom R, 2005, J COMB CHEM, V7, P10, DOI 10.1021/cc049846f. Hook AL, 2010, BIOMATERIALS, V31, P187, DOI 10.1016/j.biomaterials.2009.09.037. Hsieh HW, 2018, ORG PROCESS RES DEV, V22, P542, DOI 10.1021/acs.oprd.8b00018. Huang Q, 2011, J CHEM INF MODEL, V51, P2768, DOI 10.1021/ci100216g. Hwang YJ, 2017, CHEM COMMUN, V53, P6649, DOI 10.1039/c7cc03584e. Ihlenfeldt WD, 1995, ANGEW CHEM INT EDIT, V34, P2613. Jia XW, 2019, NATURE, V573, P251, DOI 10.1038/s41586-019-1540-5. Jiang TC, 2019, INT ARCH ALLERGY IMM, V180, P10, DOI 10.1159/000500720. Johansson Simon, 2019, Drug Discov Today Technol, V32-33, P65, DOI 10.1016/j.ddtec.2020.06.002. JOHNSON AP, 1992, RECL TRAV CHIM PAY B, V111, P310. KAPLAN BE, 1985, TRENDS BIOTECHNOL, V3, P253, DOI 10.1016/0167-7799(85)90024-1. Karpov P, 2019, LECT NOTES COMPUT SC, V11731, P817, DOI 10.1007/978-3-030-30493-5\_78. Kashani SK, 2020, ORG PROCESS RES DEV, V24, P1948, DOI 10.1021/acs.oprd.0c00018. Kearnes S, 2016, J COMPUT AID MOL DES, V30, P595, DOI 10.1007/s10822-016-9938-8. Klucznik T, 2018, CHEM-US, V4, P522, DOI 10.1016/j.chempr.2018.02.002. Kolmel DK, 2018, CHEMMEDCHEM, V13, P2159, DOI 10.1002/cmdc.201800492. Krenn M, 2020, MACH LEARN-SCI TECHN, V1, DOI 10.1088/2632-2153/aba947. Krska SW, 2017, ACCOUNTS CHEM RES, V50, P2976, DOI 10.1021/acs.accounts.7b00428. Law J, 2009, J CHEM INF MODEL, V49, P593, DOI 10.1021/ci800228y. Lee GM, 2017, CATAL SCI TECHNOL, V7, P4996, DOI 10.1039/c7cy01519d. Li JQ, 2015, ACCOUNTS CHEM RES, V48, P2297, DOI 10.1021/acs.accounts.5b00128. Li X, 2020, ANGEW CHEM INT EDIT, V59, P13253, DOI 10.1002/anie.202000959. Lin AI, 2016, J CHEM INF MODEL, V56, P2140, DOI 10.1021/acs.jcim.6b00319. Lin KJ, 2020, CHEM SCI, V11, P3355, DOI 10.1039/c9sc03666k. Lin SS, 2018, SCIENCE, V361, DOI 10.1126/science.aar6236. Liu BW, 2017, ACS CENTRAL SCI, V3, P1103, DOI 10.1021/acscentsci.7b00303. Luque Ruiz I., 2012, STAT MODELLING MOL D, P201. MacLeod BP, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aaz8867. Mahjour B, 2020, NATURE, V580, P71, DOI 10.1038/s41586-020-2142-y. Marcou G, 2015, J CHEM INF MODEL, V55, P239, DOI 10.1021/ci500698a. Marth CJ, 2015, NATURE, V528, P493, DOI 10.1038/nature16440. Martin MC, 2019, ORG PROCESS RES DEV, V23, P1900, DOI 10.1021/acs.oprd.9b00213. Martin TM, 2012, J CHEM INF MODEL, V52, P2570, DOI 10.1021/ci300338w. McMullen JP, 2010, ANGEW CHEM INT EDIT, V49, P7076, DOI 10.1002/anie.201002590. McNally A, 2011, SCIENCE, V334, P1114, DOI 10.1126/science.1213920. Mehr SHM, 2020, SCIENCE, V370, P101, DOI 10.1126/science.abc2986. Mehta G, 1998, EUR J ORG CHEM, V1998, P1409. Mennen SM, 2019, ORG PROCESS RES DEV, V23, P1213, DOI 10.1021/acs.oprd.9b00140. Merkwirth C, 2005, J CHEM INF MODEL, V45, P1159, DOI 10.1021/ci049613b. Merrifield R. B., 1966, HYPOTENSIVE PEPTIDES, V1st, P1. MERRIFIELD RB, 1966, ANAL CHEM, V38, P1905, DOI 10.1021/ac50155a057. Mikulak-Klucznik B, 2020, NATURE, V588, P83, DOI 10.1038/s41586-020-2855-y. Miro J, 2020, J AM CHEM SOC, V142, P6390, DOI 10.1021/jacs.0c01637. Mo YM, 2020, ANGEW CHEM INT EDIT, V59, P20890, DOI 10.1002/anie.202009819. Moriwaki H, 2018, J CHEMINFORMATICS, V10, DOI 10.1186/s13321-018-0258-y. Movsisyan M, 2016, CHEM SOC REV, V45, P4892, DOI 10.1039/c5cs00902b. Murray PM, 2017, CHEM INFORM, DOI {[}10.21767/2470-6973.100023, DOI 10.21767/2470-6973.100023]. Nicolaou CA, 2020, J CHEM INF MODEL, V60, P2728, DOI 10.1021/acs.jcim.9b01141. Noel T, 2011, CHEM SCI, V2, P287, DOI 10.1039/c0sc00524j. Pendleton IM, 2019, MRS COMMUN, V9, P846, DOI 10.1557/mrc.2019.72. Pensak D. A., 1977, COMPUTER ASSISTED OR, V61, P1, DOI DOI 10.1021/BK-1977-0061.CH001. Perera D, 2018, SCIENCE, V359, P429, DOI 10.1126/science.aap9112. Qiu J, 2020, ORG PROCESS RES DEV, V24, P2702, DOI 10.1021/acs.oprd.0c00364. Raccuglia P, 2016, NATURE, V533, P73, DOI 10.1038/nature17439. Ravitz Orr, 2013, Drug Discov Today Technol, V10, pe443, DOI 10.1016/j.ddtec.2013.01.005. Reid JP, 2019, NATURE, V571, P343, DOI 10.1038/s41586-019-1384-z. Reid JP, 2018, NAT REV CHEM, V2, P290, DOI 10.1038/s41570-018-0040-8. Reizman BJ, 2016, REACT CHEM ENG, V1, P658, DOI 10.1039/c6re00153j. Reker D, 2020, CELL REP PHYS SCI, V1, DOI 10.1016/j.xcrp.2020.100247. Roch LM, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229862. Rogers D, 2010, J CHEM INF MODEL, V50, P742, DOI 10.1021/ci100050t. Rong Y., 2020, NEURIPS. Rosales AR, 2019, NAT CATAL, V2, P41, DOI 10.1038/s41929-018-0193-3. Roughley SD, 2011, J MED CHEM, V54, P3451, DOI 10.1021/jm200187y. Sandfort F, 2020, CHEM-US, V6, P1379, DOI 10.1016/j.chempr.2020.02.017. Santanilla AB, 2015, SCIENCE, V347, P49, DOI 10.1126/science.1259203. Santiago CB, 2018, CHEM SCI, V9, P2398, DOI 10.1039/c7sc04679k. Schneider G, 2018, NAT REV DRUG DISCOV, V17, P97, DOI 10.1038/nrd.2017.232. Schneider N, 2016, J MED CHEM, V59, P4385, DOI 10.1021/acs.jmedchem.6b00153. Schwaller P, 2020, CHEM SCI, V11, P3316, DOI 10.1039/c9sc05704h. Schwaller P, 2019, ACS CENTRAL SCI, V5, P1572, DOI 10.1021/acscentsci.9b00576. Schwaller P, 2018, CHEM SCI, V9, P6091, DOI 10.1039/c8sc02339e. Seeberger PH, 2008, CHEM SOC REV, V37, P19, DOI 10.1039/b511197h. Segler M., 2017, ALPHACHEM CHEM SYNTH. Segler MHS, 2018, NATURE, V555, P604, DOI 10.1038/nature25978. Segler MHS, 2018, ACS CENTRAL SCI, V4, P120, DOI 10.1021/acscentsci.7b00512. Segler MHS, 2017, CHEM-EUR J, V23, P5966, DOI 10.1002/chem.201605499. Segler MHS, 2017, CHEM-EUR J, V23, P6118, DOI 10.1002/chem.201604556. Selekman JA, 2017, ANNU REV CHEM BIOMOL, V8, P525, DOI 10.1146/annurev-chembioeng-060816-101411. Shaabani S, 2019, GREEN CHEM, V21, P225, DOI {[}10.1039/c8gc03039a, 10.1039/C8GC03039A]. SHANNON CE, 1948, BELL SYST TECH J, V27, P379, DOI {[}DOI 10.1002/J.1538-7305.1948.TB01338.X, DOI 10.1002/J.1538-7305.1948.TB00917.X]. Shevlin M, 2017, ACS MED CHEM LETT, V8, P601, DOI 10.1021/acsmedchemlett.7b00165. Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961. SNIDER BB, 1987, J ORG CHEM, V52, P307, DOI 10.1021/jo00378a036. Somnath V.R., 2020, LEARNING GRAPH MODEL. Steiner S, 2019, SCIENCE, V363, P144, DOI 10.1126/science.aav2211. Strieth-Kalthoff F, 2020, CHEM SOC REV, V49, P6154, DOI 10.1039/c9cs00786e. Sun SW, 2014, ANAL CHEM, V86, P9309, DOI 10.1021/ac502542z. Szymkuc S, 2016, ANGEW CHEM INT EDIT, V55, P5904, DOI 10.1002/anie.201506101. Taylor SJ, 1998, SCIENCE, V280, P267, DOI 10.1126/science.280.5361.267. Todd MH, 2005, CHEM SOC REV, V34, P247, DOI 10.1039/b104620a. Trobe M, 2018, ANGEW CHEM INT EDIT, V57, P4192, DOI 10.1002/anie.201710482. Troshin K, 2017, SCIENCE, V357, P175, DOI 10.1126/science.aan1568. Tu NP, 2019, ANGEW CHEM INT EDIT, V58, P7987, DOI 10.1002/anie.201900536. Twilton J, 2018, ANGEW CHEM INT EDIT, V57, P5369, DOI 10.1002/anie.201800749. Uehling MR, 2019, SCIENCE, V363, P405, DOI 10.1126/science.aac6153. UGI I, 1993, ANGEW CHEM INT EDIT, V32, P201, DOI 10.1002/anie.199302011. UGI I, 1994, J CHEM INF COMP SCI, V34, P3, DOI 10.1021/ci00017a001. Vaucher AC, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17266-6. VLEDUTS GE, 1963, INFORM STORAGE RET, V1, P117, DOI 10.1016/0020-0271(63)90013-5. Walker E, 2019, J CHEM INF MODEL, V59, P3645, DOI 10.1021/acs.jcim.9b00313. Wang CY, 2009, ANGEW CHEM INT EDIT, V48, P5240, DOI 10.1002/anie.200901680. Wang YZ, 2019, ACS CENTRAL SCI, V5, P451, DOI 10.1021/acscentsci.8b00782. Wanner BM, 2020, CHIMIA, V74, P808, DOI 10.2533/chimia.2020.808. Wei JN, 2016, ACS CENTRAL SCI, V2, P725, DOI 10.1021/acscentsci.6b00219. WEININGER D, 1988, J CHEM INF COMP SCI, V28, P31, DOI 10.1021/ci00057a005. Welch CJ, 2019, REACT CHEM ENG, V4, P1895, DOI 10.1039/c9re00234k. WIPKE WT, 1984, J CHEM INF COMP SCI, V24, P71, DOI 10.1021/ci00042a005. Wong H, 2018, CURR OPIN GREEN SUST, V11, P91, DOI 10.1016/j.cogsc.2018.06.001. Woods BP, 2017, J AM CHEM SOC, V139, P5688, DOI 10.1021/jacs.7b03448. Yan YC, 2019, J AM CHEM SOC, V141, P15301, DOI 10.1021/jacs.9b07345. Yang K, 2019, J CHEM INF MODEL, V59, P3370, DOI 10.1021/acs.jcim.9b00237. Yayla HG, 2016, CHEM SCI, V7, P2066, DOI 10.1039/c5sc03350k. Zahrt AF, 2020, CHEM REV, V120, P1620, DOI 10.1021/acs.chemrev.9b00425. Zahrt AF, 2019, SCIENCE, V363, P247, DOI 10.1126/science.aau5631. Zhang JD, 2012, J AM CHEM SOC, V134, P13765, DOI 10.1021/ja3047816. Zhao SB, 2018, SCIENCE, V362, P670, DOI 10.1126/science.aat2299.}, Number-of-Cited-References = {178}, Times-Cited = {27}, Usage-Count-Last-180-days = {14}, Usage-Count-Since-2013 = {14}, Journal-ISO = {Nat. Rev. Method. Prim.}, Doc-Delivery-Number = {6L5LR}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000888226600002}, DA = {2023-04-22}, } @article{ WOS:000618346000005, Author = {Yu, Chaoran and Helwig, Ernest Johann}, Title = {Artificial intelligence in gastric cancer: a translational narrative review}, Journal = {ANNALS OF TRANSLATIONAL MEDICINE}, Year = {2021}, Volume = {9}, Number = {3}, Month = {FEB}, Abstract = {Increasing clinical contributions and novel techniques have been made by artificial intelligence (AI) during the last decade. The role of AI is increasingly recognized in cancer research and clinical application. Cancers like gastric cancer, or stomach cancer, arc ideal testing grounds to see if early undertakings of applying AI to medicine can yield valuable results. There are numerous concepts derived from AI, including machine learning (ML) and deep learning (DL). ML is defined as the ability to learn data features without being explicitly programmed. It arises at the intersection of data science and computer science and aims at the efficiency of computing algorithms. In cancer research, ML has been increasingly used in predictive prognostic models. DL is defined as a subset of ML targeting multilayer computation processes. DL is less dependent on the understanding of data features than ML. Therefore, the algorithms of DL are much more difficult to interpret than ML, even potentially impossible. This review discussed the role of AI in the diagnostic, therapeutic and prognostic advances of gastric cancer. Models like convolutional neural networks (CNNs) or artificial neural networks (ANNs) achieved significant praise in their application. There is much more to be fully covered across the clinical administration of gastric cancer. Despite growing efforts, adapting AI to improving diagnoses for gastric cancer is a worthwhile venture. The information yield can revolutionize how we approach gastric cancer problems. Though integration might be slow and labored, it can be given the ability to enhance diagnosing through visual modalities and augment treatment strategies. It can grow to become an invaluable tool for physicians. AI not only benefits diagnostic and therapeutic outcomes, but also reshapes perspectives over future medical trajectory.}, Publisher = {AME PUBLISHING COMPANY}, Address = {FLAT-RM C 16F, KINGS WING PLAZA 1, NO 3 KWAN ST, SHATIN, HONG KONG 00000, PEOPLES R CHINA}, Type = {Review}, Language = {English}, Affiliation = {Helwig, EJ (Corresponding Author), Huazhong Univ Sci \& Technol, Tongji Med Coll, Wuhan, Peoples R China. Yu, CR (Corresponding Author), Fudan Univ, Shanghai Canc Ctr, Shanghai Med Coll, Dept Oncol, Shanghai 200025, Peoples R China. Yu, Chaoran, Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R China. Yu, Chaoran, Fudan Univ, Shanghai Canc Ctr, Shanghai, Peoples R China. Helwig, Ernest Johann, Huazhong Univ Sci \& Technol, Tongji Med Coll, Wuhan, Peoples R China.}, DOI = {10.21037/atm-20-6337}, Article-Number = {269}, ISSN = {2305-5839}, EISSN = {2305-5847}, Keywords = {Artificial intelligence (AI); endoscope; convolutional neural networks (CNNs); gastric cancer; genomics}, Keywords-Plus = {NEURAL-NETWORK; SURVIVAL; CLASSIFICATION; EPIDEMIOLOGY; ENDOSCOPY; DIAGNOSIS; RESECTION}, Research-Areas = {Oncology; Research \& Experimental Medicine}, Web-of-Science-Categories = {Oncology; Medicine, Research \& Experimental}, Author-Email = {chaoran\_yu@yeah.net ernjohelwig@gmail.com}, Affiliations = {Fudan University; Fudan University; Huazhong University of Science \& Technology}, Cited-References = {Abe S, 2018, CLIN ENDOSC, V51, P253, DOI 10.5946/ce.2017.104. Acs B, 2020, J INTERN MED, V288, P62, DOI 10.1111/joim.13030. Ahuja AS, 2019, PEERJ, V7, DOI 10.7717/peerj.7702. Ali S, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-59413-5. Amiri Z, 2013, IRAN RED CRESCENT ME, V15, P42, DOI 10.5812/ircmj.4122. Andras I, 2020, WORLD J UROL, V38, P2359, DOI 10.1007/s00345-019-03037-6. {[}Anonymous], 2011, NUMBER MAGNETIC RESO. Bianco S, 2017, J IMAGING, V3, DOI 10.3390/jimaging3030033. Biglarian A, 2011, IRAN J PUBLIC HEALTH, V40, P80. Challen R, 2019, BMJ QUAL SAF, V28, P231, DOI 10.1136/bmjqs-2018-008370. Choi W, 2018, MED PHYS, V45, P1537, DOI 10.1002/mp.12820. Deng NT, 2012, GUT, V61, P673, DOI 10.1136/gutjnl-2011-301839. Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593. Eelbode T, 2020, IEEE T MED IMAGING, V39, P3679, DOI 10.1109/TMI.2020.3002417. Fard MJ, 2018, INT J MED ROBOT COMP, V14, DOI 10.1002/rcs.1850. Fu YB, 2018, MED PHYS, V45, P5129, DOI 10.1002/mp.13221. Fukushima K, 2013, NEURAL NETWORKS, V37, P103, DOI 10.1016/j.neunet.2012.09.016. Gao Y, 2019, CHINESE MED J-PEKING, V132, P2804, DOI 10.1097/CM9.0000000000000532. Hamid S., 2016, OPPORTUNITIES RISKS. Hand D, 2001, ADAP COMP MACH LEARN. Harmon SA, 2019, DIAGN INTERV RADIOL, V25, P183, DOI 10.5152/dir.2019.19125. Hashimoto DA, 2018, ANN SURG, V268, P70, DOI 10.1097/SLA.0000000000002693. Hirasawa T, 2018, GASTRIC CANCER, V21, P653, DOI 10.1007/s10120-018-0793-2. Hu QY, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-67441-4. Huang SG, 2020, CANCER LETT, V471, P61, DOI 10.1016/j.canlet.2019.12.007. Idowu BM, 2020, J GLOBAL RADIOLOGY. Jemal A, 2011, CA-CANCER J CLIN, V61, P69, DOI {[}10.3322/caac.20107, 10.3322/caac.21660, 10.3322/caac.20115, 10.3322/caac.21590]. Jiang B, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/7259097. Jin P, 2020, J CANCER RES CLIN, V146, P2339, DOI 10.1007/s00432-020-03304-9. Joo M, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20246276. Karimi P, 2014, CANCER EPIDEM BIOMAR, V23, P700, DOI 10.1158/1055-9965.EPI-13-1057. Korhani Kangi Azam, 2018, Asian Pac J Cancer Prev, V19, P487. Layke JC, 2004, AM FAM PHYSICIAN, V69, P1133. Lee HL, 2010, GASTROINTEST ENDOSC, V71, P1159, DOI 10.1016/j.gie.2010.01.011. Li L, 2020, GASTRIC CANCER, V23, P126, DOI 10.1007/s10120-019-00992-2. Li ZX, 2018, ASIA-PAC J OPHTHALMO, V7, P436, DOI 10.22608/APO.2018438. Liu MM, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0689-4. Macrae C, 2019, BMJ QUAL SAF, V28, P495, DOI 10.1136/bmjqs-2019-009484. Noguerol TM, 2019, J AM COLL RADIOL, V16, P1239, DOI 10.1016/j.jacr.2019.05.047. McClain MS, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-3. Menon S, 2014, ENDOSC INT OPEN, V2, pE46, DOI 10.1055/s-0034-1365524. Murakami D, 2020, GUT. Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1. Nagarajan N, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-12-r115. Namikawa K, 2020, EXPERT REV GASTROENT, V14, P689, DOI 10.1080/17474124.2020.1779058. Nilsaz-Dezfouli H, 2017, CANCER INFORM, V16, DOI 10.1177/1176935116686062. O'Sullivan S, 2019, INT J MED ROBOT COMP, V15, DOI 10.1002/rcs.1968. Odagiri H, 2017, ANN TRANSL MED, V5, DOI 10.21037/atm.2017.02.12. Ogawa R, 2019, J GASTROINTEST CANC, V50, P386, DOI 10.1007/s12029-018-0083-6. Oh SE, 2018, ANN SURG ONCOL, V25, P1153, DOI 10.1245/s10434-018-6343-7. Pesapane F, 2018, INSIGHTS IMAGING, V9, P745, DOI 10.1007/s13244-018-0645-y. Probst A, 2017, ENDOSCOPY, V49, P855, DOI 10.1055/s-0043-110672. Qu J, 2018, J HEALTHC ENG, V2018, DOI 10.1155/2018/8961781. Que SJ, 2019, WORLD J GASTROENTERO, V25, P6451, DOI 10.3748/wjg.v25.i43.6451. Riihimaki M, 2016, ONCOTARGET, V7, P52307, DOI 10.18632/oncotarget.10740. Ruffle JK, 2019, AM J GASTROENTEROL, V114, P422, DOI 10.1038/s41395-018-0268-4. Schwyzer M, 2018, LUNG CANCER, V126, P170, DOI 10.1016/j.lungcan.2018.11.001. Singh R, 2009, WORLD J GASTRO ENDOS, V1, P45, DOI 10.4253/wjge.v1.i1.45. Sitarz R, 2018, CANCER MANAG RES, V10, P239, DOI 10.2147/CMAR.S149619. Szeliski R, 2011, TEXTS COMPUT SCI, P1, DOI 10.1007/978-1-84882-935-0. Tanioka K., 2017, P INT IM SENS WORKSH. Taylor VM, 2014, ASIAN PAC J CANCER P, V15, P10565, DOI 10.7314/APJCP.2014.15.24.10565. Togashi K, 2019, DIGEST ENDOSC, V31, P270, DOI 10.1111/den.13354. Tulabandhula T, 2013, J MACH LEARN RES, V14, P1989. van der Sommen F, 2020, GUT, V69, P2035, DOI 10.1136/gutjnl-2019-320466. Venerito M, 2020, HELICOBACTER, V25, DOI 10.1111/hel.12740. Vollmer S, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.l6927. Wong D, 2018, NATURE, V555, P446, DOI 10.1038/d41586-018-02881-7. Yamashita H, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3135-z. Yazdani Charati Jamshid, 2018, Gastroenterol Hepatol Bed Bench, V11, P110. Yu T, 2015, WORLD J SURG ONCOL, V13, DOI 10.1186/s12957-015-0577-7. Zheng WF, 2019, CLIN TRANSL GASTROEN, V10, DOI 10.14309/ctg.0000000000000109. Zhu RS, 2015, 2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), P372, DOI 10.1109/CISP.2015.7407907. Zhu Y, 2019, GASTROINTEST ENDOSC, V89, P806, DOI 10.1016/j.gie.2018.11.011.}, Number-of-Cited-References = {74}, Times-Cited = {3}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {10}, Journal-ISO = {ANN. TRANSL. MED.}, Doc-Delivery-Number = {QH5WL}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000618346000005}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000927609900001, Author = {He, Linwei and Balaji, Divyaa and Wiers, Reinout W. and Antheunis, Marjolijn L. and Krahmer, Emiel}, Title = {Effectiveness and Acceptability of Conversational Agents for Smoking Cessation: A Systematic Review and Meta-analysis}, Journal = {NICOTINE \& TOBACCO RESEARCH}, Abstract = {Introduction: Conversational agents (CAs; computer programs that use artificial intelligence to simulate a conversation with users through natural language) have evolved considerably in recent years to support healthcare by providing autonomous, interactive, and accessible services, making them potentially useful for supporting smoking cessation. We performed a systematic review and meta-analysis to provide an overarching evaluation of their effectiveness and acceptability to inform future development and adoption. Aims and Methods: PsycInfo, Web of Science, ACM Digital Library, IEEE Xplore, Medline, EMBASE, Communication and Mass Media Complete, and CINAHL Complete were searched for studies examining the use of CAs for smoking cessation. Data from eligible studies were extracted and used for random-effects meta-analyses. Results: The search yielded 1245 publications with 13 studies eligible for systematic review (total N = 8236) and six studies for random-effects meta-analyses. All studies reported positive effects on cessation-related outcomes. A meta-analysis with randomized controlled trials reporting on abstinence yielded a sample-weighted odds ratio of 1.66 (95\% CI = 1.33\% to 2.07\%, p <.001), favoring CAs over comparison groups. A narrative synthesis of all included studies showed overall high acceptability, while some barriers were identified from user feedback. Overall, included studies were diverse in design with mixed quality, and evidence of publication bias was identified. A lack of theoretical foundations was noted, as well as a clear need for relational communication in future designs. Conclusions: The effectiveness and acceptability of CAs for smoking cessation are promising. However, standardization of reporting and designing of the agents is warranted for a more comprehensive evaluation. Implications: This is the first systematic review to provide insight into the use of CAs to support smoking cessation. Our findings demonstrated initial promise in the effectiveness and user acceptability of these agents. We also identified a lack of theoretical and methodological limitations to improve future study design and intervention delivery.}, Publisher = {OXFORD UNIV PRESS}, Address = {GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND}, Type = {Review; Early Access}, Language = {English}, Affiliation = {He, LW (Corresponding Author), Tilburg Univ, Tilburg Sch Humanities \& Digital Sci, Dept Commun \& Cognit, Warandelaan 2, NL-5037 AB Tilburg, Netherlands. He, Linwei; Antheunis, Marjolijn L.; Krahmer, Emiel, Tilburg Univ, Tilburg Sch Humanities \& Digital Sci, Dept Commun \& Cognit, Tilburg, Netherlands. Balaji, Divyaa, Univ Amsterdam, Amsterdam Sch Commun Res, Amsterdam, Netherlands. Wiers, Reinout W., Univ Amsterdam, Dept Psychol, Addict Dev \& Psychopathol ADAPT Lab, Amsterdam, Netherlands. Wiers, Reinout W., Univ Amsterdam, Ctr Urban Mental Hlth, Amsterdam, Netherlands. He, Linwei, Tilburg Univ, Tilburg Sch Humanities \& Digital Sci, Dept Commun \& Cognit, Warandelaan 2, NL-5037 AB Tilburg, Netherlands.}, DOI = {10.1093/ntr/ntac281}, EarlyAccessDate = {DEC 2022}, ISSN = {1462-2203}, EISSN = {1469-994X}, Keywords-Plus = {INTERVENTIONS; DEPENDENCE; TEXT2QUIT}, Research-Areas = {Substance Abuse; Public, Environmental \& Occupational Health}, Web-of-Science-Categories = {Substance Abuse; Public, Environmental \& Occupational Health}, Author-Email = {l.he\_1@tilburguniversity.edu}, Affiliations = {Tilburg University; University of Amsterdam; University of Amsterdam; University of Amsterdam; Tilburg University}, ORCID-Numbers = {He, Linwei/0000-0002-6593-1661}, Cited-References = {Abd-Alrazaq AA, 2021, J MED INTERNET RES, V23, DOI 10.2196/17828. Abd-alrazaq AA, 2019, INT J MED INFORM, V132, DOI 10.1016/j.ijmedinf.2019.103978. Abdullah A, 2018, J EPIDEMIOL GLOB HEA, V8, P225, DOI 10.2991/j.jegh.2018.08.104. Abroms LC, 2014, AM J PREV MED, V47, P242, DOI 10.1016/j.amepre.2014.04.010. Abroms LC, 2012, J HEALTH COMMUN, V17, P44, DOI 10.1080/10810730.2011.649159. Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7. Almusharraf F, 2020, J MED INTERNET RES, V22, DOI 10.2196/20251. {[}Anonymous], 2020, REV MAN REVMAN COMP. Babb S, 2017, MMWR-MORBID MORTAL W, V65, P1457, DOI 10.15585/mmwr.mm6552a1. Bickmore T, 2010, APPL ARTIF INTELL, V24, P648, DOI 10.1080/08839514.2010.492259. Bickmore T, 2010, HARVARD REV PSYCHIAT, V18, P119, DOI 10.3109/10673221003707538. Bickmore TW, 2010, INTERACT COMPUT, V22, P289, DOI 10.1016/j.intcom.2009.12.001. Bornstein M, 2009, INTRO METAANALYSIS. Bryant J, 2011, ADDICTION, V106, P1568, DOI 10.1111/j.1360-0443.2011.03467.x. Bui TC, 2022, AIDS CARE, V34, P430, DOI 10.1080/09540121.2021.1887443. Calvaresi D, 2019, 2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2019), P286, DOI 10.1145/3350546.3352532. Car LT, 2020, J MED INTERNET RES, V22, DOI 10.2196/17158. Chaiton M, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2016-011045. Chaix B, 2019, JMIR CANCER, V5, DOI 10.2196/12856. Chen S.-Y., 2018, ARXIV, DOI {[}DOI 10.1007/S11270-007-9372-6, 10.1002/cjs.11639, DOI 10.1002/CJS.11639]. Taylor Gemma M J, 2017, Cochrane Database Syst Rev, V9, pCD007078, DOI {[}10.1002/14651858.CD007078.pub3, 10.1002/14651858.CD007078.pub5]. Gaffney H, 2019, JMIR MENT HEALTH, V6, DOI 10.2196/14166. Gibson JE, 2010, NICOTINE TOB RES, V12, pS64, DOI 10.1093/ntr/ntq119. Gupta Sandeep K, 2011, Perspect Clin Res, V2, P109, DOI 10.4103/2229-3485.83221. Hagerman CJ, 2021, NICOTINE TOB RES, V23, P1085, DOI 10.1093/ntr/ntaa235. He LW, 2022, BMC PUBLIC HEALTH, V22, DOI 10.1186/s12889-022-13115-x. HEATHERTON TF, 1991, BRIT J ADDICT, V86, P1119. Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557. Higgins JPT, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d5928. Jiang N, 2021, JMIR MHEALTH UHEALTH, V9, DOI 10.2196/27478. Joe GW, 2001, PSYCHIATR SERV, V52, P1223, DOI 10.1176/appi.ps.52.9.1223. Kato A, 2020, JMIR MHEALTH UHEALTH, V8, DOI 10.2196/17270. Laranjo L, 2018, J AM MED INFORM ASSN, V25, P1248, DOI 10.1093/jamia/ocy072. Ma TT, 2019, CHI EA `19 EXTENDED ABSTRACTS: EXTENDED ABSTRACTS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290607.3312853. Mackert M, 2016, J MED INTERNET RES, V18, DOI 10.2196/jmir.6349. Masaki K, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0243-5. Masaki K, 2019, JMIR MHEALTH UHEALTH, V7, DOI 10.2196/12694. McTear M., 2016, CONVERSATIONAL INTER, DOI 10.1007/978-3-319-32967-3. MERMELSTEIN R, 1986, J CONSULT CLIN PSYCH, V54, P447, DOI 10.1037/0022-006X.54.4.447. Miller WR, 2015, ADDICTION, V110, P401, DOI 10.1111/add.12693. Milne-Ives M, 2020, J MED INTERNET RES, V22, DOI 10.2196/20346. Miner AS, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0280-0. Munafo MR, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0021. Mushtaq N, 2016, NICOTINE TOB RES, V18, P885, DOI 10.1093/ntr/ntv283. Oh YJ, 2021, INT J BEHAV NUTR PHY, V18, DOI 10.1186/s12966-021-01224-6. Ouzzani M, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0384-4. Perski O, 2019, DIGIT HEALTH, V5, DOI 10.1177/2055207619880676. Perski O, 2017, TRANSL BEHAV MED, V7, DOI 10.1007/s13142-016-0453-1. Reeves B., 1996, MEDIA EQUATION PEOPL, V305. Reitsma MB, 2017, LANCET, V389, P1885, DOI 10.1016/S0140-6736(17)30819-X. Safi Z, 2020, J MED INTERNET RES, V22, DOI 10.2196/19127. Shamseer L, 2015, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g7647. Smyth A, 2018, PRAVENT GESUNDHEIT, V13, P319, DOI 10.1007/s11553-018-0664-z. Stead LF, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008286.pub2. Sterne JAC, 2016, BMJ-BRIT MED J, V355, DOI 10.1136/bmj.i4919. Strecher VJ, 2008, J MED INTERNET RES, V10, DOI 10.2196/jmir.1002. Wang HL, 2018, COMPUTER, V51, P26, DOI 10.1109/MC.2018.3191249. White JS, 2020, NICOTINE TOB RES, V22, P371, DOI 10.1093/ntr/ntz047.}, Number-of-Cited-References = {58}, Times-Cited = {0}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {1}, Journal-ISO = {Nicotine Tob. Res.}, Doc-Delivery-Number = {8R0SV}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000927609900001}, OA = {hybrid}, DA = {2023-04-22}, } @article{ WOS:000721546400003, Author = {Rajgor, Amarkumar Dhirajlal and Patel, Shreena and Mcculloch, David and Obara, Boguslaw and Bacardit, Jaume and Mcqueen, Andrew and Aboagye, Eric and Ali, Tamir and O'Hara, James and Hamilton, David Winston}, Title = {The application of radiomics in laryngeal cancer}, Journal = {BRITISH JOURNAL OF RADIOLOGY}, Year = {2021}, Volume = {94}, Number = {1128}, Month = {DEC 1}, Abstract = {Objectives: Radiomics is the conversion of medical images into quantitative high-dimensional data. Laryngeal cancer, one of the most common head and neck cancers, has risen globally by 58.7\%. CT, MRI and PET are acquired during the diagnostic process providing potential data for radiomic analysis and correlation with outcomes. This review aims to examine the applications of this technique to laryngeal cancer and the future considerations for translation into clinical practice. Methods: A comprehensive systematic review-informed search of the MEDLINE and EMBASE databases was undertaken. Keywords ``laryngeal cancer{''} OR ``larynx{''} OR ``larynx cancer{''} OR ``head and neck cancer{''} were combined with ``radiomic{''} OR ``signature{''} OR `'machine learning{''} OR ``artificial intelligence{''}, Additional articles were obtained from bibliographies using the `'snowball method{''}, Results: The included studies (n = 15) demonstrated that radiomic features are significantly associated with various clinical outcomes (including stage, overall survival, treatment response, progression-free survival) and that predictive models incorporating radiomic features are superior to those that do not. Two studies demonstrated radiomics could improve laryngeal cancer staging whilst 12 studies affirmed its predictive capability for clinical outcomes, Conclusions: Radiomics has potential for improving multiple aspects of laryngeal cancer care; however, the heterogeneous cohorts and lack of data on laryngeal cancer exclusively inhibits firm conclusions. Large prospective well-designed studies in laryngeal cancer are required to progress this field. Furthermore, to implement radiomics into clinical practice, a unified research effort is required to standardise radiomics practice. Advances in knowledge: This review has highlighted the value of radiomics in enhancing laryngeal cancer care (including staging, prognosis and predicting treatment response).}, Publisher = {BRITISH INST RADIOLOGY}, Address = {48-50 ST JOHN ST, LONDON, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Rajgor, AD (Corresponding Author), Newcastle Upon Tyne Hosp NHS Fdn Trust, Otolaryngol Dept, Newcastle Upon Tyne, Tyne \& Wear, England. Rajgor, AD (Corresponding Author), Newcastle Univ, Appl Canc Therapeut \& Outcomes, Newcastle Upon Tyne, Tyne \& Wear, England. Rajgor, AD (Corresponding Author), Newcastle Univ, Natl Inst Hlth Res, Newcastle Upon Tyne, Tyne \& Wear, England. Rajgor, Amarkumar Dhirajlal; O'Hara, James; Hamilton, David Winston, Newcastle Upon Tyne Hosp NHS Fdn Trust, Otolaryngol Dept, Newcastle Upon Tyne, Tyne \& Wear, England. Rajgor, Amarkumar Dhirajlal; O'Hara, James; Hamilton, David Winston, Newcastle Univ, Appl Canc Therapeut \& Outcomes, Newcastle Upon Tyne, Tyne \& Wear, England. Rajgor, Amarkumar Dhirajlal, Newcastle Univ, Natl Inst Hlth Res, Newcastle Upon Tyne, Tyne \& Wear, England. Mcculloch, David; Mcqueen, Andrew; Ali, Tamir, Newcastle Upon Tyne Hosp NHS Fdn Trust, Radiol Dept, Newcastle Upon Tyne, Tyne \& Wear, England. Obara, Boguslaw; Bacardit, Jaume, Newcastle Univ, Sch Comp, Urban Sci Bldg, Newcastle Upon Tyne, Tyne \& Wear, England. Aboagye, Eric, Imperial Coll London, Canc Imaging Ctr, Dept Surg \& Canc, Hammersmith Hosp, London, England.}, DOI = {10.1259/bjr.20210499}, Article-Number = {20210499}, ISSN = {0007-1285}, EISSN = {1748-880X}, Keywords-Plus = {PROGNOSTIC VALUE; LOCAL-CONTROL; HEAD; PREDICTION; PET; CHEMOTHERAPY; SIGNATURE; SURVIVAL}, Research-Areas = {Radiology, Nuclear Medicine \& Medical Imaging}, Web-of-Science-Categories = {Radiology, Nuclear Medicine \& Medical Imaging}, Author-Email = {amar.rajgor@nhs.net}, Affiliations = {Newcastle Upon Tyne Hospitals NHS Foundation Trust; Newcastle University - UK; Newcastle University - UK; Newcastle Upon Tyne Hospitals NHS Foundation Trust; Newcastle University - UK; Imperial College London}, ORCID-Numbers = {Rajgor, Amarkumar D/0000-0002-9323-3107 ABOAGYE, Eric/0000-0003-2276-6771 Obara, Boguslaw/0000-0003-4084-7778}, Funding-Acknowledgement = {Medical Research Council {[}MR/V037528/1] Funding Source: Medline}, Cited-References = {Aerts HJWL, 2016, SCI REP-UK, V6, DOI 10.1038/srep33860. Agarwal JP, 2020, BRIT J RADIOL, V93, DOI 10.1259/bjr.20190857. Agnello F, 2017, NEURORADIOL J, V30, P197, DOI 10.1177/1971400916689373. Amin, 2017, AJCC CANC STAGING MA, DOI DOI 10.1007/978-3-319-40618-3. Arshad MA, 2019, EUR J NUCL MED MOL I, V46, P455, DOI 10.1007/s00259-018-4139-4. Balachandran VP, 2015, LANCET ONCOL, V16, pE173, DOI 10.1016/S1470-2045(14)71116-7. Bibault JE, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35359-7. Bogowicz M, 2017, RADIOTHER ONCOL, V125, P385, DOI 10.1016/j.radonc.2017.10.023. Bogowicz M, 2017, ACTA ONCOL, V56, P1531, DOI 10.1080/0284186X.2017.1346382. Cancer Research UK, 2020, HEAD NECK CANC INC S. Chen LY, 2020, CANCER IMAGING, V20, DOI 10.1186/s40644-020-00310-5. Contrera KJ, 2021, LARYNGOSCOPE, V131, P559, DOI 10.1002/lary.28924. Coroller TP, 2015, RADIOTHER ONCOL, V114, P345, DOI 10.1016/j.radonc.2015.02.015. Cozzi L, 2019, STRAHLENTHER ONKOL, V195, P805, DOI 10.1007/s00066-019-01483-0. Feliciani G, 2018, CONTRAST MEDIA MOL I, DOI 10.1155/2018/3574310. Fitzmaurice C, 2017, JAMA ONCOL, V3, P524, DOI 10.1001/jamaoncol.2016.5688. Forastiere AA, 2003, NEW ENGL J MED, V349, P2091, DOI 10.1056/NEJMoa031317. Fornacon-Wood I, 2020, EUR RADIOL, V30, P6241, DOI 10.1007/s00330-020-06957-9. Gatenby RA, 2013, RADIOLOGY, V269, P8, DOI 10.1148/radiol.13122697. Gevaert O, 2014, RADIOLOGY, V273, P168, DOI 10.1148/radiol.14131731. Guezennec C, 2019, HEAD NECK-J SCI SPEC, V41, P495, DOI 10.1002/hed.25433. Guo R, 2020, CANCER IMAGING, V20, DOI 10.1186/s40644-020-00359-2. Hawkins S, 2016, J THORAC ONCOL, V11, P2120, DOI 10.1016/j.jtho.2016.07.002. Hoffman HT, 2006, LARYNGOSCOPE, V116, P1, DOI 10.1097/01.mlg.0000236095.97947.26. Hosny A, 2019, LANCET DIGIT HEALTH, V1, pE106, DOI 10.1016/S2589-7500(19)30062-7. Joshi Varsha M, 2012, Indian J Radiol Imaging, V22, P209, DOI 10.4103/0971-3026.107183. Keek S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232639. Kuno H, 2017, AM J NEURORADIOL, V38, P2334, DOI 10.3174/ajnr.A5407. Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141. Lambin P, 2012, EUR J CANCER, V48, P441, DOI 10.1016/j.ejca.2011.11.036. Liu Y, 2017, CLIN CANCER RES, V23, P1442, DOI 10.1158/1078-0432.CCR-15-3102. Liu Y, 2016, RADIOLOGY, V280, P271, DOI 10.1148/radiol.2016151455. Meneghetti AR, 2021, CLIN TRANSL RAD ONCO, V26, P62, DOI 10.1016/j.ctro.2020.11.011. National Cancer Intelligence Network, 2011, HEAD NECK CANC ENGL. National Institute for Health and Care Excellence, 2021, TREATM UPP AER TRACT. Nocini R, 2020, CHINESE J CANCER RES, V32, P18, DOI 10.21147/j.issn.1000-9604.2020.01.03. Olsen KD, 2010, HEAD NECK-J SCI SPEC, V32, P1, DOI 10.1002/hed.21294. Ou D, 2017, ORAL ONCOL, V71, P150, DOI 10.1016/j.oraloncology.2017.06.015. Sollini M, 2019, EUR J NUCL MED MOL I, V46, P2656, DOI 10.1007/s00259-019-04372-x. Timmermans AJ, 2016, LARYNGOSCOPE, V126, pE60, DOI 10.1002/lary.25567. Tomasi G, 2013, J PHARMACOKINET PHAR, V40, P419, DOI 10.1007/s10928-013-9307-3. Wang F, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01064. WOLF GT, 1991, NEW ENGL J MED, V324, P1685, DOI 10.1056/nejm199106133242402. Wu L, 2018, CHINESE J CANCER RES, V30, P396, DOI 10.21147/j.issn.1000-9604.2018.04.02. Zhang HW, 2013, RADIOLOGY, V269, P801, DOI 10.1148/radiol.13130110. Zwanenburg A, 2020, RADIOLOGY, V295, P328, DOI 10.1148/radiol.2020191145.}, Number-of-Cited-References = {46}, Times-Cited = {3}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {11}, Journal-ISO = {Br. J. Radiol.}, Doc-Delivery-Number = {XB8AR}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000721546400003}, OA = {Green Published, Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000478140300001, Author = {Zimmermann, Albrecht}, Title = {Method evaluation, parameterization, and result validation in unsupervised data mining: A critical survey}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY}, Year = {2020}, Volume = {10}, Number = {2}, Month = {MAR}, Abstract = {Machine Learning (ML) and Data Mining (DM) build tools intended to help users solve data-related problems that are infeasible for ``unaugmented{''} humans. Tools need manuals, however, and in the case of ML/DM methods, this means guidance with respect to which technique to choose, how to parameterize it, and how to interpret derived results to arrive at knowledge about the phenomena underlying the data. While such information is available in the literature, it has not yet been collected in one place. We survey three types of work for clustering and pattern mining: (1) comparisons of existing techniques, (2) evaluations of different parameterization options and studies providing guidance for setting parameter values, and (3) work comparing mining results with the ground truth. We find that although interesting results exist, as a whole the body of work on these questions is too limited. In addition, we survey recent studies in the field of community detection, as a contrasting example. We argue that an objective obstacle for performing needed studies is a lack of data and survey the state of available data, pointing out certain limitations. As a solution, we propose to augment existing data by artificially generated data, review the state-of-the-art in data generation in unsupervised mining, and identify shortcomings. In more general terms, we call for the development of a true ``Data Science{''} that-based on work in other domains, results in ML, and existing tools-develops needed data generators and builds up the knowledge needed to effectively employ unsupervised mining techniques. This article is categorized under: Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining Ensemble Methods > Structure Discovery Internet > Society and Culture Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining}, Publisher = {WILEY PERIODICALS, INC}, Address = {ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA}, Type = {Review}, Language = {English}, Affiliation = {Zimmermann, A (Corresponding Author), Normandie Univ, GREYC, CNRS, UNICAEN,ENSICAEN, F-14000 Caen, France. Zimmermann, Albrecht, Normandie Univ, GREYC, CNRS, UNICAEN,ENSICAEN, F-14000 Caen, France.}, DOI = {10.1002/widm.1330}, EarlyAccessDate = {JUL 2019}, Article-Number = {e1330}, ISSN = {1942-4787}, EISSN = {1942-4795}, Keywords = {algorithmic comparison; clustering; parameter selection; pattern mining; result verification}, Keywords-Plus = {COMMUNITY DETECTION; CLUSTERING ALGORITHMS; PERFORMANCE EVALUATION; EFFICIENT ALGORITHM; FREQUENT EPISODES; DISCOVERY; NETWORK; PATTERN; NUMBER; CLASSIFICATION}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Theory \& Methods}, Author-Email = {albrecht.zimmermann@unicaen.fr}, Affiliations = {Centre National de la Recherche Scientifique (CNRS); Universite de Caen Normandie}, ORCID-Numbers = {Zimmermann, Albrecht/0000-0002-8319-7456}, Cited-References = {Ackerman M., 2009, P AISTATS 09 JMLR W, V5, P1. Ackerman M., 2016, ARXIV160206687. Ada I., 2010, KDD, P413. AGRAWAL R, 1995, PROC INT CONF DATA, P3, DOI 10.1109/ICDE.1995.380415. Agrawal R., 1994, P 20 INT C VER LARG, P487. Aliguliyev RM, 2009, INFORM SCIENCES, V179, P3583, DOI 10.1016/j.ins.2009.06.012. Anderson Chris, 2008, WIRED MAGAZINE, V16. {[}Anonymous], 10 ACM SIGKDD INT C. {[}Anonymous], ACM J EXPT ALGORITHM, DOI DOI 10.1145/1227161.1227162. {[}Anonymous], 2003, COMP SPECTRAL CLUSTE. {[}Anonymous], KDD WORKSH TEXT MIN, DOI DOI 10.1109/ICCCYB.2008.4721382. {[}Anonymous], 2009, PHYS REV E, DOI DOI 10.1103/PHYSREVE.80.056117. Arbelaitz O, 2013, PATTERN RECOGN, V46, P243, DOI 10.1016/j.patcog.2012.07.021. Asai T, 2004, IEICE T INF SYST, VE87D, P2754. Atallah M, 2004, FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P3, DOI 10.1109/ICDM.2004.10090. Ayres J., 2002, PROC 8 ACM SIGKDD IN, P429. Bader D., 2012, ENCY SOCIAL NETWORK. Bagrow JP, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/05/P05001. Bandyopadhyay S, 2001, IEEE T SYST MAN CY C, V31, P120, DOI 10.1109/5326.923275. Barrett Christopher L., 2009, Proceedings of the 2009 Winter Simulation Conference (WSC 2009), P1003, DOI 10.1109/WSC.2009.5429425. Batini C, 2016, DATA CENTRIC SYST AP, P87, DOI 10.1007/978-3-319-24106-7\_4. Besson Jeremy, 2008, 2008 IEEE International Conference on Data Mining Workshops, P77, DOI 10.1109/ICDMW.2008.118. Bisset K., 2006, TECH REP. Boley M., 2010, P SIAM INT C DAT MIN, P177, DOI DOI 10.1137/1.9781611972801.16. Boley M, 2008, IEEE DATA MINING, P43, DOI 10.1109/ICDM.2008.85. Borgelt C, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P51, DOI 10.1109/ICDM.2002.1183885. Bringmann B., 2011, MINING SETS PATTERNS. Bringmann B, 2009, KNOWL INF SYST, V18, P61, DOI 10.1007/s10115-008-0136-4. Brohee S, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-488. Carnein M, 2017, ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2017, P361, DOI 10.1145/3075564.3078887. Casas-Garriga G, 2003, LECT NOTES ARTIF INT, V2838, P83. Celebi ME, 2013, EXPERT SYST APPL, V40, P200, DOI 10.1016/j.eswa.2012.07.021. Chakrabarti D, 2006, ACM COMPUT SURV, V38, pA1, DOI 10.1145/1132952.1132954. Charrad M., 2012, J STAT SOFTW, V61, P1, DOI {[}10.18637/jss.v061.i06, DOI 10.18637/JSS.V061.I06]. Chen M., 2011, ADV NEURAL INFORM PR, P2456, DOI DOI 10.1016/B978-012545025-6/50150-7. Chi Y, 2005, FUND INFORM, V66, P161. Chi Y, 2004, LECT NOTES ARTIF INT, V3056, P63. Chouikhi H., 2015, 2015 GLOB SUMM COMP, P1, DOI 10.1109/GSCIT.2015.7353330. Coenen F, 2005, FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P597, DOI 10.1109/ICDM.2005.105. Cooper C, 2007, LECT NOTES ARTIF INT, V4702, P398. Dao V.-L., 2018, ARXIV180601386. Dau H. A., 2018, UCR TIME SERIES CLAS. De Bie T, 2011, DATA MIN KNOWL DISC, V23, P407, DOI 10.1007/s10618-010-0209-3. De Raedt L., 2007, P 7 SIAM INT C DAT M. Delling D., 2006, EVALUATE CLUSTERING. DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x. Donahue J, 2013, PROC CVPR IEEE, P668, DOI 10.1109/CVPR.2013.92. DOWNS JJ, 1993, COMPUT CHEM ENG, V17, P245, DOI 10.1016/0098-1354(93)80018-I. Dries A., 2015, P 6 INT S INF COMM T, P17. Dua D., 2017, UCI MACHINE LEARNING. Ester M., 1996, KDD 96, V96, P226, DOI DOI 10.5555/3001460.3001507. Fahad A, 2014, IEEE T EMERG TOP COM, V2, P267, DOI 10.1109/TETC.2014.2330519. Farber D, 2010, RISE AND FALL OF MODERN AMERICAN CONSERVATISM: A SHORT HISTORY, P1. Fayyad U, 1996, AI MAG, V17, P37. Fernando B, 2013, IEEE I CONF COMP VIS, P2960, DOI 10.1109/ICCV.2013.368. Flouvat F, 2010, J INTELL INF SYST, V34, P1, DOI 10.1007/s10844-008-0077-0. Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002. Frasch JV, 2011, PATTERN RECOGN LETT, V32, P1523, DOI 10.1016/j.patrec.2011.04.010. Gao X., 2010, PROC IEEE INT C DATA, P911, DOI DOI 10.1109/ICDM.2010.35. Geerts F, 2005, ACM T DATABASE SYST, V30, P333, DOI 10.1145/1071610.1071611. Gionis A., 2007, ACM T KNOWL DISCOV D, V1, P14, DOI {[}DOI 10.1145/1217299.1217303, 10.1145/1297332.1297338]. Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799. Goethals B., 2003, P ICDM 2003 WORKSH F, V90. Goethals B., 2004, FIMI 04 P IEEE ICDM. Goethals B, 2011, LECT NOTES ARTIF INT, V6913, P634, DOI 10.1007/978-3-642-23808-6\_45. Gouda K, 2005, DATA MIN KNOWL DISC, V11, P223, DOI 10.1007/s10618-005-0002-x. Guerra L, 2012, INTELL DATA ANAL, V16, P703, DOI 10.3233/IDA-2012-0545. Hamalainen J, 2017, ALGORITHMS, V10, DOI 10.3390/a10030105. Halkidi M, 2008, PATTERN RECOGN LETT, V29, P773, DOI 10.1016/j.patrec.2007.12.011. Hall N. G., 2010, EXPT METHODS ANAL OP, P73. Han J., 2005, 5 IEEE INT C DAT MIN. Hand D. J., 2002, Pattern Detection and Discovery. ESF Exploratory Workshop Proceedings (Lecture Notes in Artificial Intelligence Vol. 2447), P1. Harenberg S, 2014, WIRES COMPUT STAT, V6, P426, DOI 10.1002/wics.1319. Hassani Marwan, 2017, Vietnam Journal of Computer Science, V4, P171, DOI 10.1007/s40595-016-0086-9. He J, 2004, NETWORK THEORY APPLI, V11, P105. Heck D., 1998, TECH REP. Hric D, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.062805. Huan J, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P549. Huang A., 2008, P 6 NZ COMP SCI RES, P49. Inokuchi A, 2000, LECT NOTES COMPUT, V1910, P13. Ioannidis JPA, 2005, PLOS MED, V2, P696, DOI 10.1371/journal.pmed.0020124. Jaewon Yang, 2015, Knowledge and Information Systems, V42, P181, DOI 10.1007/s10115-013-0693-z. Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504. Jiang J., 2008, LIT SURVEY DOMAIN AD, P1. Jiawei Han, 2000, SIGMOD Record, V29, P1, DOI 10.1145/335191.335372. Jiawei Han, 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P355. Kaytoue M, 2017, MACH LEARN, V106, P1171, DOI 10.1007/s10994-016-5598-0. Klosgen W., 1996, ADV KNOWLEDGE DISCOV, P249. Knobbe AJ, 2006, LECT NOTES ARTIF INT, V4213, P577. Kohonen T., 1998, Neurocomputing, V21, P1, DOI 10.1016/S0925-2312(98)00030-7. Kovacs F., 2005, 6 INT S HUNG RES COM. Krevl, 2014, SNAP DATASETS STANFO. Kriegel HP, 2017, KNOWL INF SYST, V52, P341, DOI 10.1007/s10115-016-1004-2. Kuramochi M, 2001, 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P313, DOI 10.1109/ICDM.2001.989534. Laland K. N., 2018, DARWINS UNFINISHED S, DOI 10.2307/j.ctv39x6r5. Lam HT, 2014, STAT ANAL DATA MIN, V7, P34, DOI 10.1002/sam.11192. Lan ZY, 2015, INT C INTEL HUM MACH, DOI 10.1109/IHMSC.2015.220. Lancichinetti A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011976. Lancichinetti A, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.016118. Lancichinetti A, 2008, PHYS REV E, V78, DOI 10.1103/PhysRevE.78.046110. Laxman S, 2005, IEEE T KNOWL DATA EN, V17, P1505, DOI 10.1109/TKDE.2005.181. Lee C, 2014, J COMPLEX NETW, V2, P19, DOI 10.1093/comnet/cnt012. Lenca P, 2008, EUR J OPER RES, V184, P610, DOI 10.1016/j.ejor.2006.10.059. Leskovec Jure, 2010, P 19 INT C WORLD WID, P631. Leskovec K. J., P 17 INT C WORLD WID, P695, DOI DOI 10.1145/1367497.1367591. Lhote L, 2005, FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P713, DOI 10.1109/ICDM.2005.31. Li D, 2004, LECT NOTES ARTIF INT, V3066, P573. Liu L., 2016, 30 AAAI C ART INT. Ma L, 2015, COMPUT-AIDED CIV INF, V30, P135, DOI 10.1111/mice.12085. Mabroukeh NR, 2010, ACM COMPUT SURV, V43, DOI 10.1145/1824795.1824798. MacQueen J., 1967, PROC 15 BERKELEY S M, P281, DOI DOI 10.1007/S11665-016-2173-6. Macy MW, 2002, ANNU REV SOCIOL, V28, P143, DOI 10.1146/annurev.soc.28.110601.141117. Mampaey M, 2012, ACM T KNOWL DISCOV D, V6, DOI 10.1145/2382577.2382580. Mangiameli P, 1996, EUR J OPER RES, V93, P402, DOI 10.1016/0377-2217(96)00038-0. Mannila H, 1997, DATA MIN KNOWL DISC, V1, P259, DOI 10.1023/A:1009748302351. Mannila H., 1995, KDD-95 Proceedings. First International Conference on Knowledge Discovery and Data Mining, P210. Maulik U, 2002, IEEE T PATTERN ANAL, V24, P1650, DOI 10.1109/TPAMI.2002.1114856. Meger N, 2004, LECT NOTES ARTIF INT, V3202, P313. Meila M, 2001, MACH LEARN, V42, P9, DOI 10.1023/A:1007648401407. Melnykov V, 2012, J STAT SOFTW, V51, P1. MILLIGAN GW, 1980, PSYCHOMETRIKA, V45, P325, DOI 10.1007/BF02293907. MILLIGAN GW, 1988, J CLASSIF, V5, P181, DOI 10.1007/BF01897163. MILLIGAN GW, 1985, PSYCHOMETRIKA, V50, P159, DOI 10.1007/BF02294245. MILLIGAN GW, 1985, PSYCHOMETRIKA, V50, P123, DOI 10.1007/BF02294153. Milo R, 2002, SCIENCE, V298, P824, DOI 10.1126/science.298.5594.824. Mishra R, 2011, INT J COMPUT APPL, V22, P22. Moradi Farnaz, 2012, Experimental Algorithms. Proceedings 11th International Symposium, SEA 2012, P283, DOI 10.1007/978-3-642-30850-5\_25. MOREY LC, 1984, EDUC PSYCHOL MEAS, V44, P33, DOI 10.1177/0013164484441003. Morik K, 2005, LECT NOTES ARTIF INT, V3539, P98, DOI 10.1007/11504245\_7. Moulavi D., 2014, P 2014 SIAM INT C DA, P839, DOI DOI 10.1137/1.9781611973440.96. Muller K., 2011, ARBEITSBERICHTE VERK, V718. Mutter S., 2004, THESIS. Namazi-Rad MR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094761. Nijssen S., 2006, P WORKSH MIN LEARN G, P173. Novak PK, 2009, J MACH LEARN RES, V10, P377. Orman Gunce Keziban, 2013, International Journal of Web Based Communities, V9, P349. Orman GK, 2009, LECT NOTES ARTIF INT, V5808, P242, DOI 10.1007/978-3-642-04747-3\_20. Orman GK, 2011, COMM COM INF SC, V167, P265. Palmerini P., 2004, SAC, P515. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191. Peel L, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1602548. Pei J, 2004, IEEE T KNOWL DATA EN, V16, P1424, DOI 10.1109/TKDE.2004.77. Pei J, 2001, PROC INT CONF DATA, P215. PEI J, 2000, P 2000 ACM SIGMOD IN, P11. Pei Y., 2006, TECH REP. Pennock DM, 1996, PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, P253. Pereira CMM, 2011, COMM COM INF SC, V165, P59. Prakash BA, 2014, KNOWL INF SYST, V38, P35, DOI 10.1007/s10115-013-0671-5. Qiu WL, 2006, J CLASSIF, V23, P315, DOI 10.1007/s00357-006-0018-y. Ramesh G, 2005, 9th International Database Engineering \& Application Symposium, Proceedings, P307, DOI 10.1109/IDEAS.2005.22. Ramesh G., 2003, PODS, P284, DOI DOI 10.1145/773153.773181. RAND WM, 1971, J AM STAT ASSOC, V66, P846, DOI 10.2307/2284239. Reaves ML, 2012, SCIENCE, V337, P470, DOI 10.1126/science.1219861. Sadikin M., 2014, BINARY MATRIX SYNTHE. Shirkhorshidi AS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144059. Smets K, 2012, P 2012 SIAM INT C DA, P236, DOI DOI 10.1137/1.9781611972825.21. Srikant R., 1996, PROC INT C EXTENDING, DOI DOI 10.1007/BFB0014140. Steinhaus H., 1956, B ACAD POLONAISE SCI, V4, P801. Steinley D, 2005, J CLASSIF, V22, P221, DOI 10.1007/s00357-005-0015-6. Steinley D, 2003, PSYCHOL METHODS, V8, P294, DOI 10.1037/1082-989X.8.3.294. Steinley D, 2007, J CLASSIF, V24, P99, DOI 10.1007/s00357-007-0003-0. Strehl A., 2000, WORKSH ART INT WEB S, V58, P64. Tan P.-N., 2002, P 8 ACM SIGKDD INT C, P32, DOI DOI 10.1145/775047.775053. Tatti N., 2012, ACM SIGKDD INT C KNO, P462. Tatti N., 2012, MACH LEARN KNOWL DIS, V7523, P9, DOI {[}10.1007/978-3-642-33460-3\_6, DOI 10.1007/978-3-642-33460-3\_6]. Uno T., 2003, FIMI, V90. Uno T., 2004, FIMI, V126, DOI 10.1145/1133905.1133916. Vaillant B, 2004, LECT NOTES COMPUT SC, V3245, P290. Van Craenendonck T., 2015, AUTOML WORKSH ICML 2, P1. Van Craenendonck T, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2871. Van Craenendonck T, 2017, MACH LEARN, V106, P1497, DOI 10.1007/s10994-017-5643-7. van Leeuwen Matthijs, 2014, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2014. Proceedings: LNCS 8725, P114, DOI 10.1007/978-3-662-44851-9\_8. van Leeuwen Matthijs, 2014, Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. State-of-the-Art and Future Challenges: LNCS 8401, P169, DOI 10.1007/978-3-662-43968-5\_9. Van Mechelen I., 2018, ARXIV180910496. Vanschoren J, 2012, MACH LEARN, V87, P127, DOI 10.1007/s10994-011-5277-0. Veillon LM, 2017, LECT NOTES ARTIF INT, V10448, P202, DOI 10.1007/978-3-319-67074-4\_20. Vendramin Lucas, 2010, Statistical Analysis and Data Mining, V3, P209, DOI 10.1002/sam.10080. Vendramin L., 2009, P SIAM INT C DAT MIN, P733, DOI DOI 10.1137/1.9781611972795.63. Vilalta R, 2002, ARTIF INTELL REV, V18, P77, DOI 10.1023/A:1019956318069. Vinh-Loc Dao, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P395, DOI 10.1145/3110025.3110053. Vreeken J, 2007, IEEE DATA MINING, P685, DOI 10.1109/ICDM.2007.25. Vreeken J, 2011, DATA MIN KNOWL DISC, V23, P169, DOI 10.1007/s10618-010-0202-x. Wang F., 2017, ARXIV171201690. Wang JY, 2004, PROC INT CONF DATA, P79, DOI 10.1109/ICDE.2004.1319986. Wang M, 2015, PROC VLDB ENDOW, V8, P998, DOI 10.14778/2794367.2794370. Webb GI, 2007, MACH LEARN, V68, P1, DOI 10.1007/s10994-007-5006-x. Webb GI, 2014, ACM T KNOWL DISCOV D, V8, DOI 10.1145/2601433. Worlein M, 2005, LECT NOTES ARTIF INT, V3721, P392. Wu H, 2018, ACM T KNOWL DISCOV D, V12, DOI 10.1145/3182383. Yan XF, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P721, DOI 10.1109/ICDM.2002.1184038. Yang Z, 2016, SCI REP-UK, V6, DOI 10.1038/srep30750. Zaiane O. R., 2002, P 8 ACM SIGKDD INT C. Zaki M. J., 1999, TECH REP. Zaki M. J., 2002, SDM. Zaki M.J., 2002, P 8 ACM SIGKDD INT C, P71, DOI DOI 10.1145/775047.775058. Zaki MJ, 2000, IEEE T KNOWL DATA EN, V12, P372, DOI 10.1109/69.846291. Zaki MJ, 2001, MACH LEARN, V42, P31, DOI 10.1023/A:1007652502315. Zhang SC, 2008, LECT NOTES COMPUT SC, V4750, P128. Zhang Z, 2006, INT C PATT RECOG, P1135. Zhao Y., 2002, Proceedings of the Eleventh International Conference on Information and Knowledge Management. CIKM 2002, P515, DOI 10.1145/584792.584877. Zijian Zheng, 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P401, DOI 10.1145/502512.502572. Zimmermann A., 2015, ACM SIGKDD EXPLOR, V16, P38, DOI DOI 10.1145/2783702.2783706. Zimmermann A., 2013, J INTELL INF SYST, V45, P1. Zimmermann A, 2014, INTELL DATA ANAL, V18, P761, DOI 10.3233/IDA-140668.}, Number-of-Cited-References = {204}, Times-Cited = {9}, Usage-Count-Last-180-days = {1}, Usage-Count-Since-2013 = {20}, Journal-ISO = {Wiley Interdiscip. Rev.-Data Mining Knowl. Discov.}, Doc-Delivery-Number = {KM9DF}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000478140300001}, OA = {Green Submitted}, DA = {2023-04-22}, } @article{ WOS:000890911600001, Author = {Chen, Jimmy S. and Baxter, Sally L.}, Title = {Applications of natural language processing in ophthalmology: present and future}, Journal = {FRONTIERS IN MEDICINE}, Year = {2022}, Volume = {9}, Month = {AUG 8}, Abstract = {Advances in technology, including novel ophthalmic imaging devices and adoption of the electronic health record (EHR), have resulted in significantly increased data available for both clinical use and research in ophthalmology. While artificial intelligence (AI) algorithms have the potential to utilize these data to transform clinical care, current applications of AI in ophthalmology have focused mostly on image-based deep learning. Unstructured free-text in the EHR represents a tremendous amount of underutilized data in big data analyses and predictive AI. Natural language processing (NLP) is a type of AI involved in processing human language that can be used to develop automated algorithms using these vast quantities of available text data. The purpose of this review was to introduce ophthalmologists to NLP by (1) reviewing current applications of NLP in ophthalmology and (2) exploring potential applications of NLP. We reviewed current literature published in Pubmed and Google Scholar for articles related to NLP and ophthalmology, and used ancestor search to expand our references. Overall, we found 19 published studies of NLP in ophthalmology. The majority of these publications (16) focused on extracting specific text such as visual acuity from free-text notes for the purposes of quantitative analysis. Other applications included: domain embedding, predictive modeling, and topic modeling. Future ophthalmic applications of NLP may also focus on developing search engines for data within free-text notes, cleaning notes, automated question-answering, and translating ophthalmology notes for other specialties or for patients, especially with a growing interest in open notes. As medicine becomes more data-oriented, NLP offers increasing opportunities to augment our ability to harness free-text data and drive innovations in healthcare delivery and treatment of ophthalmic conditions.}, Publisher = {FRONTIERS MEDIA SA}, Address = {AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND}, Type = {Review}, Language = {English}, Affiliation = {Baxter, SL (Corresponding Author), Univ Calif San Diego, Viterbi Family Dept Ophthalmol, Div Ophthalmol Informat \& Data Sci, La Jolla, CA 92093 USA. Baxter, SL (Corresponding Author), Univ Calif San Diego, Shiley Eye Inst, La Jolla, CA 92093 USA. Baxter, SL (Corresponding Author), Univ Calif San Diego, Shiley Eye Inst, La Jolla, CA 92093 USA. Chen, Jimmy S.; Baxter, Sally L., Univ Calif San Diego, Viterbi Family Dept Ophthalmol, Div Ophthalmol Informat \& Data Sci, La Jolla, CA 92093 USA. Chen, Jimmy S.; Baxter, Sally L., Univ Calif San Diego, Shiley Eye Inst, La Jolla, CA 92093 USA. Chen, Jimmy S.; Baxter, Sally L., Univ Calif San Diego, Shiley Eye Inst, La Jolla, CA 92093 USA.}, DOI = {10.3389/fmed.2022.906554}, Article-Number = {906554}, EISSN = {2296-858X}, Keywords = {natural language processing; ophthalmology; artificial intelligence; machine learning; big data; informatics; data science}, Keywords-Plus = {ELECTRONIC HEALTH RECORDS; ARTIFICIAL-INTELLIGENCE; BIG DATA; TEXT; EXTRACTION; SYSTEM; VALIDATION; ALGORITHM; COVID-19; GLAUCOMA}, Research-Areas = {General \& Internal Medicine}, Web-of-Science-Categories = {Medicine, General \& Internal}, Author-Email = {S1baxter@health.ucsd.edu}, Affiliations = {University of California System; University of California San Diego; University of California System; University of California San Diego; University of California System; University of California San Diego}, Funding-Acknowledgement = {NIH {[}DP5OD029610]; Research to Prevent Blindness (New York, NY)}, Funding-Text = {This work was supported by NIH Grant DP5OD029610 (Bethesda, MD, USA) and an unrestricted departmental grant from Research to Prevent Blindness (New York, NY).}, Cited-References = {Abramoff MD, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0040-6. All Us Res Program Investigators, 2019, NEW ENGL J MED, V381, P668, DOI 10.1056/NEJMsr1809937. Alsentzer E., 2019, P 2 CLIN NAT LANG PR, P72, DOI DOI 10.18653/V1/W19-1909. Amisha, 2019, J FAM MED PRIM CARE, V8, P2328, DOI 10.4103/jfmpc.jfmpc\_440\_19. {[}Anonymous], 2020, COMM 21 CENT CUR ACT. {[}Anonymous], OPHTH ABBR LIST NOT. Ashfaq HA, 2019, JAMA OPHTHALMOL, V137, P929, DOI 10.1001/jamaophthalmol.2019.1444. Augmedix, AUT MED DOC DAT SERV. Bajaj P, 2018, Arxiv. Barrows RC, 2000, J AM MED INFORM ASSN, P51. Baughman DM, 2017, TRANSL VIS SCI TECHN, V6, DOI 10.1167/tvst.6.2.2. Baxter SL, 2021, AM J OPHTHALMOL, V227, P74, DOI 10.1016/j.ajo.2021.01.008. Baxter SL, 2021, OPHTHALMOLOGY, V128, P165, DOI 10.1016/j.ophtha.2020.06.007. Baxter SL, 2020, J MED INTERNET RES, V22, DOI 10.2196/18855. Baxter SL, 2020, APPL CLIN INFORM, V11, P130, DOI 10.1055/s-0040-1701255. Blackley SV, 2019, J AM MED INFORM ASSN, V26, P324, DOI 10.1093/jamia/ocy179. Bremond-Gignac D, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/954283. Brilliant MH, 2016, AM J MED, V129, P292, DOI 10.1016/j.amjmed.2015.10.015. Brown JM, 2018, JAMA OPHTHALMOL, V136, P803, DOI 10.1001/jamaophthalmol.2018.1934. Bui DDA, 2016, J BIOMED INFORM, V64, P265, DOI 10.1016/j.jbi.2016.10.014. Burlina PM, 2018, JAMA OPHTHALMOL, V136, P1359, DOI 10.1001/jamaophthalmol.2018.4118. Cairns Brian L, 2011, AMIA Annu Symp Proc, V2011, P171. Chan AX, 2022, ORBIT-ABINGDON, V41, P739, DOI 10.1080/01676830.2021.2012205. Chang TC, 2021, AM J OPHTHALMOL, V223, P149, DOI 10.1016/j.ajo.2020.10.004. Chen JS, 2021, OPHTHALMOL RETINA, V5, P1027, DOI 10.1016/j.oret.2020.12.013. Chen JS, 2021, J BIOMED INFORM, V117, DOI 10.1016/j.jbi.2021.103745. Chen L, 2019, J AM MED INFORM ASSN, V26, P1218, DOI 10.1093/jamia/ocz109. Chen YP, 2020, JMIR MED INF, V8, DOI 10.2196/17787. Cheng CY, 2020, ASIA-PAC J OPHTHALMO, V9, P291, DOI 10.1097/APO.0000000000000304. Chiang MF, 2018, OPHTHALMOLOGY, V125, P1143, DOI 10.1016/j.ophtha.2017.12.001. Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14. Christopher M, 2021, OPHTHALMOLOGY, V128, P1534, DOI 10.1016/j.ophtha.2021.04.022. Christopher M, 2020, OPHTHALMOLOGY, V127, P346, DOI 10.1016/j.ophtha.2019.09.036. Comendador Benilda Eleonor V., 2015, Journal of Automation and Control Engineering, V3, P137, DOI 10.12720/joace.3.2.137-140. De Croon R, 2021, J MED INTERNET RES, V23, DOI 10.2196/18035. Delavar A, 2022, JAMA OPHTHALMOL, V140, P354, DOI 10.1001/jamaophthalmol.2022.0055. DesRoches CM, 2019, ANN INTERN MED, V171, P69, DOI 10.7326/M18-3197. Devlin J., 2018, ARXIV, DOI DOI 10.48550/ARXIV.1810.04805. Dew KN, 2018, J BIOMED INFORM, V85, P56, DOI 10.1016/j.jbi.2018.07.018. Dusek HL., 2021, OPHTHALMOL SCI, V1, P1, DOI 10.1016/j.xops.2021.100088. Esch T, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-010034. Feng XY, 2019, J MED INTERNET RES, V21, DOI 10.2196/12957. Ferracane E., 2020, ARXIV. Fiorini N, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2005343. Friedman C, 2004, J AM MED INFORM ASSN, V11, P392, DOI 10.1197/jamia.M1552. Ganesan A.V., 2021, PROC 2021 C N AM CHA. Gaskin GL, 2016, EUR J OPHTHALMOL, V26, P328, DOI 10.5301/ejo.5000706. Goss FR, 2019, INT J MED INFORM, V130, DOI 10.1016/j.ijmedinf.2019.07.017. Gui HW, 2022, INT J MED INFORM, V159, DOI 10.1016/j.ijmedinf.2021.104678. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216. Gundlapalli Adi V, 2013, AMIA Annu Symp Proc, V2013, P537. Guo Y, 2020, Arxiv. Gupta A, 2021, JAMIA OPEN, V4, DOI 10.1093/jamiaopen/ooab069. Gupta V, 2021, ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, P292. Hallak JA, 2020, CURR OPIN OPHTHALMOL, V31, P447, DOI 10.1097/ICU.0000000000000685. Harpaz R, 2014, DRUG SAFETY, V37, P777, DOI 10.1007/s40264-014-0218-z. He YX, 2023, TRANSPORTMETRICA A, V19, DOI {[}10.1109/CVPR.2016.90, 10.1080/23249935.2022.2033348]. Helm JM, 2020, CURR REV MUSCULOSKE, V13, P69, DOI 10.1007/s12178-020-09600-8. Hersh W.R., 2020, INFORM RETRIEVAL BIO, V4th. HERSH WR, 1990, M D COMPUT, V7, P302. Honnibal Matthew, 2019, Zenodo, DOI 10.5281/ZENODO.3358113. Jang WD, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2024302118. Jarada TN, 2020, J CHEMINFORMATICS, V12, DOI 10.1186/s13321-020-00450-7. Acosta MJ, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18126408. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539. Lee Cecilia S, 2021, Ophthalmol Sci, V1, P100036, DOI 10.1016/j.xops.2021.100036. Lee CS, 2017, OPHTHALMOL RETINA, V1, P322, DOI 10.1016/j.oret.2016.12.009. Lee EB, 2022, OPHTHALMOLOGY, V129, P276, DOI 10.1016/j.ophtha.2021.10.018. Lee H, 2021, J MED INTERNET RES, V23, DOI 10.2196/27460. Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682. Leinonen HO, 2021, INVEST OPHTH VIS SCI, V62. Leng T, 2021, OPHTHALMOLOGY, V128, P1782, DOI 10.1016/j.ophtha.2021.06.011. Liang HY, 2019, NAT MED, V25, P433, DOI 10.1038/s41591-018-0335-9. Liang J, 2019, P 2 CLIN NAT LANG PR, P46. Lim MC, 2018, JAMA OPHTHALMOL, V136, P164, DOI 10.1001/jamaophthalmol.2017.5978. Lin WC., 2022, AMIA ANN S PROC, V2021, P773. Lin WC, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.13. Liu L, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3252-8. Liu LY, 2017, PHARMACOEPIDEM DR S, V26, P378, DOI 10.1002/pds.4149. Maganti N, 2019, OPHTHALMOLOGY, V126, P1722, DOI 10.1016/j.ophtha.2019.06.003. Mbagwu Michael, 2016, JMIR Med Inform, V4, pe14, DOI 10.2196/medinform.4732. McDermott John J 4th, 2022, Ophthalmol Sci, V2, DOI 10.1016/j.xops.2021.100099. Medeiros FA, 2019, OPHTHALMOLOGY, V126, P513, DOI 10.1016/j.ophtha.2018.12.033. Mikolov T, 2013, Arxiv, DOI DOI 10.48550/ARXIV.1301.3781. Mishra R, 2014, J BIOMED INFORM, V52, P457, DOI 10.1016/j.jbi.2014.06.009. Muchene L, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0243208. Murdoch TB, 2013, JAMA-J AM MED ASSOC, V309, P1351, DOI 10.1001/jama.2013.393. Napoli PE, 2020, J CLIN MED, V9, DOI 10.3390/jcm9082441. Neveol A, 2018, J BIOMED SEMANT, V9, DOI 10.1186/s13326-018-0179-8. Nguyen AXL, 2021, J MED INTERNET RES, V23, DOI 10.2196/20803. Norgeot B, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0258-y. Novack GD, 2021, OCUL SURF, V19, P336, DOI 10.1016/j.jtos.2020.11.012. Ochoa JGD, 2021, BMC MED INFORM DECIS, V21, DOI 10.1186/s12911-021-01553-3. Pang L, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P257, DOI 10.1145/3132847.3132914. Parke DW, 2017, OPHTHALMOLOGY, V124, P1572, DOI 10.1016/j.ophtha.2017.08.035. Patel D, 2020, Arxiv. Peissig PL, 2012, J AM MED INFORM ASSN, V19, P225, DOI 10.1136/amiajnl-2011-000456. Pershing S, 2020, OPHTHALMOLOGY, V127, P151, DOI 10.1016/j.ophtha.2019.08.026. Petersen CL, 2020, JMIR MHEALTH UHEALTH, V8, DOI 10.2196/16862. Pivovarov R, 2015, J AM MED INFORM ASSN, V22, P938, DOI 10.1093/jamia/ocv032. Prunotto Andrea, 2021, Stud Health Technol Inform, V281, P178, DOI 10.3233/SHTI210144. Quiroz JC, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0190-1. Rabiee B, 2020, SCI TRANSL MED, V12, DOI 10.1126/scitranslmed.aaz4894. Radell JE, 2022, EYE, V36, P1951, DOI 10.1038/s41433-021-01775-9. Ramesh AN, 2004, ANN ROY COLL SURG, V86, P334, DOI 10.1308/147870804290. Rao P, 2018, OPHTHALMOLOGY, V125, P522, DOI 10.1016/j.ophtha.2017.10.010. Read-Brown S, 2017, JAMA OPHTHALMOL, V135, P1250, DOI 10.1001/jamaophthalmol.2017.4187. Roberts K, 2021, J BIOMED INFORM, V121, DOI 10.1016/j.jbi.2021.103865. Rodriguez S, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-21330-0. Sarrouti M, 2020, ARTIF INTELL MED, V102, DOI 10.1016/j.artmed.2019.101767. Scott AW, 2016, JAMA OPHTHALMOL, V134, P1111, DOI 10.1001/jamaophthalmol.2016.2627. Sennaar K., CHATBOTS HEALTHCARE. Shah P, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0148-3. Sil A., 2021, P 2021 C N AM CHAPT. Smith DH, 2008, QUAL LIFE RES, V17, P1277, DOI 10.1007/s11136-008-9399-1. Soto X, 2019, J AM MED INFORM ASSN, V26, P1478, DOI 10.1093/jamia/ocz110. Stein JD, 2019, JAMA OPHTHALMOL, V137, P491, DOI 10.1001/jamaophthalmol.2018.7051. Subramanian S., 2019, ARXIV. Subramanian S, 2020, AAAI CONF ARTIF INTE, V34, P13376. Suzuki M., 2018, P 32 PACIFIC ASIA C. Tan YR, 2020, CLIN EXP OPHTHALMOL, V48, P169, DOI 10.1111/ceo.13666. Tang RP, 2020, Arxiv. Thompson DA, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.7.2. Tighe PJ, 2020, PAIN MED, V21, P3133, DOI 10.1093/pm/pnaa061. van Buchem MM, 2021, NPJ DIGIT MED, V4, DOI 10.1038/s41746-021-00432-5. Venkatesan P, 2021, LANCET RESP MED, V9, pE63, DOI 10.1016/S2213-2600(21)00270-8. Walker J, 2019, J MED INTERNET RES, V21, DOI 10.2196/13876. Wang S, 2021, INT J MED INFORM, V150, DOI 10.1016/j.ijmedinf.2021.104464. Wang SY, 2020, INT J MED INFORM, V133, DOI 10.1016/j.ijmedinf.2019.104007. Wang YS, 2018, J BIOMED INFORM, V87, P12, DOI 10.1016/j.jbi.2018.09.008. Weiner SJ, 2020, J AM MED INFORM ASSN, V27, P770, DOI 10.1093/jamia/ocaa027. Wen A, 2020, JAMIA OPEN, V3, P16, DOI 10.1093/jamiaopen/ooz072. Wu S, 2020, J AM MED INFORM ASSN, V27, P457, DOI 10.1093/jamia/ocz200. Xu H, 2015, J AM MED INFORM ASSN, V22, P179, DOI 10.1136/amiajnl-2014-002649. Xu H, 2010, J AM MED INFORM ASSN, V17, P19, DOI 10.1197/jamia.M3378. Yang LWY, 2021, CURR OPIN OPHTHALMOL, V32, P397, DOI 10.1097/ICU.0000000000000789. Yang X, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0935-4. Zand A, 2020, J MED INTERNET RES, V22, DOI 10.2196/15589. Zheng CY, 2019, CLIN EXP OPHTHALMOL, V47, P7, DOI 10.1111/ceo.13340. Zhou L, 2018, JAMA NETW OPEN, V1, DOI 10.1001/jamanetworkopen.2018.0530. Zunic A, 2020, JMIR MED INF, V8, P34, DOI 10.2196/16023.}, Number-of-Cited-References = {141}, Times-Cited = {0}, Usage-Count-Last-180-days = {3}, Usage-Count-Since-2013 = {5}, Journal-ISO = {Front. Med.}, Doc-Delivery-Number = {6P4PH}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000890911600001}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000539634600001, Author = {Bayram, Mustafa and Springer, Simon and Garvey, Colin K. and Vural, Ozdemir}, Title = {COVID-19 Digital Health Innovation Policy: A Portal to Alternative Futures in the Making}, Journal = {OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY}, Year = {2020}, Volume = {24}, Number = {8}, Pages = {460-469}, Month = {AUG 1}, Abstract = {``The pandemic is a portal.{''} In the words of the novelist scholar Arundhati Roy, the COVID-19 pandemic is not merely an epic calamity. It has opened up a new space, a portal, to rethink everything, for example, in how we live, work, produce scientific knowledge, provide health care, and relate to others, be they humans or nonhuman animals in planetary ecosystems. Meanwhile, as the intensity of the pandemic escalates, digital health tools such as the Internet of Things (IoT), biosensors, and artificial intelligence (AI) are being deployed to address the twin goals of social distancing and health care in a ``no touch{''} emergency state. Permanent integration of digital technologies into every aspect of post-pandemic civic life-health care, disease tracking, education, work, and beyond-is considered by governments and technology actors around the world. Although digital transformation of health care and industry are in the works, we ought to ensure that digital transformation does not degenerate into ``digitalism,{''} which we define here as an unchecked and misguided belief on extreme digital connectivity without considering the attendant adverse repercussions on science, human rights, and everyday practices of democracy. Indeed, the current shrinking of the critically informed public policy space amid a devastating pandemic raises principled questions on the broader and long-term impacts that digital technologies will have on democratic governance of planetary health and society. To this end, a wide range of uncertainties-technical, biological, temporal, spatial, and political-is on the COVID-19 pandemic horizon. This calls for astute and anticipatory innovation policies to steer the health sciences and services toward democratic ends. In this article, we describe new and critically informed approaches to democratize COVID-19 digital health innovation policy, especially when the facts are uncertain, the stakes are high, and decisions are urgent, as they often are in the course of a pandemic. In addition, we introduce a potential remedy to democratize pandemic innovation policy, the concept of ``epistemic competence,{''} so as to check the frames and framings of the pandemic innovation policy juggernaut and the attendant power asymmetries. We suggest that if epistemic competence, and attention to not only scientific knowledge but also its framing are broadly appreciated, they can help reduce the disparity between the enormous technical progress and investments made in digital health versus our currently inadequate understanding of the societal dimensions of emerging technologies such as AI, IoT, and extreme digital connectivity on the planet.}, Publisher = {MARY ANN LIEBERT, INC}, Address = {140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA}, Type = {Review}, Language = {English}, Affiliation = {Springer, S (Corresponding Author), Univ Newcastle, Ctr Urban \& Reg Studies, Discipline Geog \& Environm Studies, Sch Environm \& Life Sci,Fac Sci, Callaghan, NSW 2308, Australia. Ozdemir, V (Corresponding Author), OMICS, New Rochelle, NY 10801 USA. Bayram, M (Corresponding Author), Gaziantep Univ, Food Engn, Dept Food Engn, Fac Engn, TR-27300 Gaziantep, Turkey. Garvey, CK (Corresponding Author), Ctr Int Secur \& Cooperat, Stanford Inst Human Ctr AI, Palo Alto, CA 94305 USA. Bayram, Mustafa, Gaziantep Univ, Dept Food Engn, Fac Engn, Gaziantep, Turkey. Springer, Simon, Univ Newcastle, Ctr Urban \& Reg Studies, Discipline Geog \& Environm Studies, Sch Environm \& Life Sci,Fac Sci, Callaghan, NSW 2308, Australia. Garvey, Colin K., Stanford Univ, Stanford Inst Human Ctr AI, Ctr Int Secur \& Cooperat, Palo Alto, CA 94304 USA. Vural, Ozdemir, OMICS, New Rochelle, NY 10801 USA. Springer, Simon, Univ Newcastle, Discipline Geog \& Environm Studies, Sch Environm \& Life Sci, Human Geog,Fac Sci, Callaghan, NSW 2308, Australia.}, DOI = {10.1089/omi.2020.0089}, EarlyAccessDate = {JUN 2020}, ISSN = {1536-2310}, EISSN = {1557-8100}, Keywords = {COVID-19; digital health; innovation policy; digital transformation; digitalism; critical policy studies; futures; risk and uncertainty}, Keywords-Plus = {PUBLIC ENGAGEMENT; WATER-TEMPLES; SCIENCE; MANAGEMENT; DIVERSITY; ETHICS; SPACE}, Research-Areas = {Biotechnology \& Applied Microbiology; Genetics \& Heredity}, Web-of-Science-Categories = {Biotechnology \& Applied Microbiology; Genetics \& Heredity}, Author-Email = {profdrmusbay@gmail.com simonspringer@gmail.com colin.k.garvey@gmail.com ojib@liebertpub.com}, Affiliations = {Gaziantep University; University of Newcastle; Stanford University; University of Newcastle}, ResearcherID-Numbers = {Garvey, Shunryu Colin/Y-2099-2019 Garvey, Shunryu Colin/AAW-4362-2021 Boschele, Marco/AAA-6682-2021}, ORCID-Numbers = {Garvey, Shunryu Colin/0000-0002-7346-8873 Boschele, Marco/0000-0003-2498-0317}, Cited-References = {{[}Anonymous], 2020, NY TIMES 0515. {[}Anonymous], 2020, LANCET, V395, P922, DOI 10.1016/S0140-6736(20)30644-9. Arendt H., 1970, VIOLENCE. Barad K, 2011, SOC STUD SCI, V41, P443, DOI 10.1177/0306312711406317. Bayram M, 2018, OMICS, V22, P177, DOI 10.1089/omi.2017.0203. Bayram M, 2018, OMICS, V22, P696, DOI 10.1089/omi.2018.0167. Bero LA, 2020, AM J PUBLIC HEALTH, V110, P952, DOI 10.2105/AJPH.2020.305734. Boschele M, 2020, POLITICS ITS NEW DIM. Butler Judith, 2020, FORCE NONVIOLENCE ET. Centers for Disease Control and Prevention (CDC), 2020, ZOON DIS. Collingridge D., 1982, SOCIAL CONTROL TECHN. Diamond L, 2015, DEMOCRACY IN DECLINE?, P98. Diamond Larry, 2016, AUTHORITARIANISM GOE. Didier C, 2015, SCIENCE, V349, P1064, DOI 10.1126/science.349.6252.1064-c. Eglash R, 2015, SHAPE SHIFTING, P58. Eglash R, 2014, UNDERST COMPLEX SYST, P75, DOI 10.1007/978-94-017-8691-1\_5. Fabbri A, 2018, AM J PUBLIC HEALTH, V108, pE9, DOI 10.2105/AJPH.2018.304677. Fabbri A, 2018, PUBLIC HEALTH NUTR, V21, P3422, DOI 10.1017/S1368980018002100. Feyerabend Paul K, 2011, TYRANNY SCI. Fisher E, 2010, NATURE, V463, P1018, DOI 10.1038/4631018a. Flipse SM, 2018, J RESPONSIBLE INNOV, V5, P225, DOI 10.1080/23299460.2018.1465168. Forster P, 2020, P NATL ACAD SCI USA, V117, P9241, DOI 10.1073/pnas.2004999117. Friedman Uri, 2020, ATLANTIC. Frodeman R., 2020, DALLAS MORNING NEWS. Frodeman R, 2019, J RESPONSIBLE INNOV, V6, P95, DOI 10.1080/23299460.2018.1489172. Furr-Holden D, 2020, HEALTH EQUITY, V4, P150, DOI 10.1089/heq.2020.29001.rtl2. Garvey C, 2020, OMICS, V24, P286, DOI 10.1089/omi.2019.0078. Geiselberger H., 2017, THE GREAT REGRESSION. Geleris J, 2020, NEW ENGL J MED, V382, P2411, DOI 10.1056/NEJMoa2012410. Guston D, 2019, ONEZERO 0717. Guston DH, 2009, SCIENCE, V323, P582, DOI 10.1126/science.323.5914.582b. Halffman W, 2015, MINERVA, V53, P165, DOI 10.1007/s11024-015-9270-9. Harvey F, 2020, CORONAVIRUS BIBLICAL. Holst C, 2019, CONTEMP POLIT THEORY, V18, P541, DOI 10.1057/s41296-018-00299-4. Horton R, 2014, LANCET, V383, P847, DOI 10.1016/S0140-6736(14)60409-8. Horvitz E, 2020, WHITE PAPER SERIES P, V1. Ince A, 2012, ANTIPODE, V44, P1645, DOI 10.1111/j.1467-8330.2012.01029.x. IPBES, 2019, IPBES GLOB ASS SUMM. Kadoya T, 2011, AGR ECOSYST ENVIRON, V140, P20, DOI 10.1016/j.agee.2010.11.007. Katoh K, 2009, BIOL CONSERV, V142, P1930, DOI 10.1016/j.biocon.2009.02.030. Kickbusch I, 2020, THINK GLOBAL HLTH. Kickbusch I, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1336. Klein Naomi, 2020, THE INTERCEPT. LANSING JS, 1993, AM ANTHROPOL, V95, P97, DOI 10.1525/aa.1993.95.1.02a00050. LANSING JS, 1987, AM ANTHROPOL, V89, P326, DOI 10.1525/aa.1987.89.2.02a00030. Lansing S, 2000, CRIT ANTHROPOL, V20, P309, DOI 10.1177/0308275X0002000305. Lansing S, 2007, PRIESTS PROGRAMMERS. Levitsky S, 2002, J DEMOCR, V13, P51, DOI 10.1353/jod.2002.0026. Levitt, 2019, GUARDIAN. Lin BY, 2020, OMICS, V24, P231, DOI 10.1089/omi.2020.0047. Lindblom C, 1993, POLICY MAKING PROCES. Lundh A, 2018, INTENS CARE MED, V44, P1603, DOI 10.1007/s00134-018-5293-7. McNeilJr Donald G., 2019, NEW YORK TIMES. ozdemir V, 2020, EMBRACING VEGANISM A. ozdemir V, 2020, NEW ENGLAND J M 0123, VMeeting, pDavos. ozdemir V, 2020, SCI POLITICS CORONAV. Ozdemir V, 2019, OMICS, V23, P623, DOI 10.1089/omi.2019.0175. Ozdemir V, 2018, OMICS, V22, P184, DOI 10.1089/omi.2018.0002. Ozdemir V, 2018, OMICS, V22, P637, DOI 10.1089/omi.2018.0143. Ozdemir V, 2019, OMICS, V23, P67, DOI 10.1089/omi.2019.0003. Ozdemir V, 2015, AM J BIOETHICS, V15, P64, DOI 10.1080/15265161.2015.1021976. Rahman MS, 2020, HEALTH POLICY TECHN, V9, P129, DOI 10.1016/j.hlpt.2020.04.005. Rankin R, 2020, GUARDIAN. Roy Arundhati., 2020, FINANC TIMES, V3, P45. Sample I., 2020, GUARDIAN. Sarewitz D., 2016, NEW ATLANTIS, V49, P4, DOI 10.1002/hast.639. Sclove R, 2020, J DGOV, V5, P1. Singh AK, 2020, DIABETES METAB SYND, V14, P589, DOI 10.1016/j.dsx.2020.05.017. Springer S., 2021, UNDOING HUMAN SUPREM. Springer S, 2020, DIALOGUES HUM GEOGR, V10, P112, DOI 10.1177/2043820620931277. Springer S, 2011, ANTIPODE, V43, P525, DOI 10.1111/j.1467-8330.2010.00827.x. Springer Simon, 2016, DISCOURSE NEOLIBERAL. Stilgoe J, 2014, PUBLIC UNDERST SCI, V23, P4, DOI 10.1177/0963662513518154. Ting DSW, 2020, NAT MED, V26, P459, DOI 10.1038/s41591-020-0824-5. United Nations, 2008, THE RIGHT TO HLTH. Von Schomberg R, 2019, WHY RESPONSIBLE INNO. von Schomberg Rene, 2019, INT HDB RESPONSIBLE. Wade F., 2020, NATION. White AJ, 2018, NEW ATLANTIS, V55, P3. Yang T, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10040224. Yol Y, 2019, 2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), P70.}, Number-of-Cited-References = {81}, Times-Cited = {35}, Usage-Count-Last-180-days = {8}, Usage-Count-Since-2013 = {63}, Journal-ISO = {OMICS}, Doc-Delivery-Number = {MV2CR}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)}, Unique-ID = {WOS:000539634600001}, DA = {2023-04-22}, } @article{ WOS:000853973600001, Author = {Amoatey, Patrick and Al-Jabri, Khalifa and Al-Saadi, Saleh}, Title = {Influence of phase change materials on thermal comfort, greenhouse gas emissions, and potential indoor air quality issues across different climatic regions: A critical review}, Journal = {INTERNATIONAL JOURNAL OF ENERGY RESEARCH}, Year = {2022}, Volume = {46}, Number = {15}, Pages = {22386-22420}, Month = {DEC}, Abstract = {There has been growing interest in applying phase change materials (PCMs) in buildings owing to their energy conservation/latent heat storage properties and potential to improve thermal comfort. Various reviews have extensively discussed the thermophysical properties of PCMs and their energy-saving potential in buildings. However, comprehensive reviews on the indoor thermal/ personal comfort behavior of PCMs under different climates remain limited. Therefore, this study aims to present a comprehensive state-of-the-art review of the impact of PCMs on indoor thermal comfort levels in buildings located in cities within different subclimate zones and their personal cooling effect when integrated with clothing (vest). In addition, greenhouse gas (GHG) mitigation potentials and indoor air pollutant emission properties of PCM-enhanced buildings were also reviewed. Hundreds of published articles of PCMs in PubMed and Scopus databases, including a manual search approach, were utilized. The results from this state-of-the-art study have shown that incorporating PCMs in buildings satisfactorily reduced the indoor air temperature of most buildings located in hot climate (BSh, BWh) zones, but very limited studies have been performed in the cold (Dfc, BSk) environments. In general, there was an improvement in the thermal comfort levels of the PCM-enhanced buildings. However, these were mostly assessed using indices such as predicted mean vote, predicted percentage of dissatisfied, comfort index, and total discomfort change, without any comprehensive survey studies (eg, based on sensation votes) using human subjects. The majority of personal cooling studies of PCM-integrated vests/garments showed good improvement in thermal comfort, especially in terms of skin temperature and thermal sensation. However, very few studies have shown a considerable reduction in the GHG emissions of PCM-enhanced buildings, and the knowledge of the long-term carbon dioxide (CO2) reduction capabilities of PCMs is limited. The profiling of PCMs revealed the presence of volatile organic compounds. However, studies on indoor air pollutant emissions and the potential health effects of PCMintegrated buildings are still lacking. The study is crucial to motivating green building engineers, indoor environmental quality (IEQ) researchers, and epidemiologists to embark on potential future research. Innovative technologies such as machine learning, artificial intelligence, Internet of Things, uncertainty analysis, and optimization can be utilized to predict thermal comfort, IEQ, and GHG emissions in PCM-incorporated buildings.}, Publisher = {WILEY-HINDAWI}, Address = {ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND}, Type = {Review}, Language = {English}, Affiliation = {Al-Jabri, K (Corresponding Author), Sultan Qaboos Univ, Coll Engn, Dept Civil \& Architectural Engn, POB 33, Muscat 123, Oman. Amoatey, Patrick; Al-Jabri, Khalifa; Al-Saadi, Saleh, Sultan Qaboos Univ, Coll Engn, Dept Civil \& Architectural Engn, POB 33, Muscat 123, Oman. Amoatey, Patrick, Univ Queensland, Fac Med, Sch Publ Hlth, Brisbane, Qld, Australia.}, DOI = {10.1002/er.8734}, EarlyAccessDate = {SEP 2022}, ISSN = {0363-907X}, EISSN = {1099-114X}, Keywords = {energy storage; greenhouse gases; indoor air quality; indoor thermal comfort; PCMs; personal cooling}, Keywords-Plus = {ENERGY DEMAND REDUCTION; CHANGE MATERIALS PCM; COOLING VEST; OUTDOOR TEMPERATURE; ENVIRONMENTAL-QUALITY; MICROENCAPSULATED PCM; AMBIENT-TEMPERATURES; PHYSICAL-ACTIVITY; HEAT-EXCHANGER; URBAN PARK}, Research-Areas = {Energy \& Fuels; Nuclear Science \& Technology}, Web-of-Science-Categories = {Energy \& Fuels; Nuclear Science \& Technology}, Author-Email = {aljabri@squ.edu.om}, Affiliations = {Sultan Qaboos University; University of Queensland}, ResearcherID-Numbers = {Al-Saadi, Saleh/N-6364-2016}, ORCID-Numbers = {Al-Saadi, Saleh/0000-0002-9095-6983}, Funding-Acknowledgement = {Sultan Qaboos University {[}CR/ENG/CAED/18/07]}, Funding-Text = {Sultan Qaboos University, Grant/Award Number: \#CR/ENG/CAED/18/07}, Cited-References = {Adilkhanova I, 2021, ENERGY, V217, DOI 10.1016/j.energy.2020.119390. Ahangari M, 2019, SUSTAIN CITIES SOC, V44, P120, DOI 10.1016/j.scs.2018.09.008. Ahmad M, 2006, ENERG BUILDINGS, V38, P673, DOI 10.1016/j.enbuild.2005.11.002. Ali KA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187427. Akbari H, 2002, ENVIRON POLLUT, V116, pS119, DOI 10.1016/S0269-7491(01)00264-0. Akeiber H, 2016, RENEW SUST ENERG REV, V60, P1470, DOI 10.1016/j.rser.2016.03.036. Al Touma Albert, 2018, E3S Web of Conferences, V57, DOI 10.1051/e3sconf/20185704001. Al-Absi ZA, 2020, CASE STUD THERM ENG, V22, DOI 10.10106/j.csite.2020.100762. Al-Absi ZA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041294. Al-Bouwarthan M, 2019, ANN WORK EXPOS HEAL, V63, P505, DOI 10.1093/annweh/wxz033. Al-Yasiri Q, 2021, CASE STUD CONSTR MAT, V14, DOI 10.1016/j.cscm.2021.e00522. Al-Yasiri Q, 2021, J BUILD ENG, V36, DOI 10.1016/j.jobe.2020.102122. Alam M, 2017, ENERG BUILDINGS, V148, P238, DOI 10.1016/j.enbuild.2017.05.018. Alam M, 2014, ENERG BUILDINGS, V78, P192, DOI 10.1016/j.enbuild.2014.04.027. Alford KL, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18041578. Alghamdi S, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12030329. Ali IAS., 2019, IOP C SER EARTH ENV, V323. Alizadeh M, 2019, ENERG BUILDINGS, V188, P297, DOI 10.1016/j.enbuild.2019.02.020. Arar M, 2022, FRONT BUILT ENVIRON, V7, DOI 10.3389/fbuil.2021.804216. Arumugam P, 2022, ENERG BUILDINGS, V258, DOI 10.1016/j.enbuild.2022.111840. Ascione F, 2019, ENERGIES, V12, DOI 10.3390/en12193661. ASHRAE, ASHRAE TECHN FAQ 201. Asumadu-Sakyi AB, 2021, ADV BUILD ENERGY RES, V15, P548, DOI 10.1080/17512549.2019.1606732. Bai L, 2018, HEART, V104, P673, DOI 10.1136/heartjnl-2017-311821. Barreneche C, 2016, RENEW ENERG, V85, P281, DOI 10.1016/j.renene.2015.06.054. Beemkumar N, 2021, J THERM ANAL CALORIM, V143, P3039, DOI 10.1007/s10973-019-09226-0. Berko Jeffrey, 2014, Natl Health Stat Report, P1. Betancourt-Jimenez D, 2020, ACS SUSTAIN CHEM ENG, V8, P13683, DOI 10.1021/acssuschemeng.0c03626. BOOBALAKRISHNAN P, 2021, MATER TODAY-PROC 15, V47, P5052, DOI DOI 10.1016/j.matpr.2021.05.012. Brambilla A, 2017, ENERG BUILDINGS, V156, P281, DOI 10.1016/j.enbuild.2017.09.070. Buscombe A., 2013, INT J ENG-IRAN, V2, P174. Carter JM, 2007, J THERM BIOL, V32, P109, DOI 10.1016/j.jtherbio.2006.12.001. Cezard M, 2021, J PHYS CONF SER, V2042, DOI 10.1088/1742-6596/2042/1/012075. Chang AY, 2022, CURR CARDIOL REP, V24, P749, DOI 10.1007/s11886-022-01693-6. Charvat P, 2019, ENERGIES, V12, DOI 10.3390/en12061133. Chau CK, 2015, APPL ENERG, V143, P395, DOI 10.1016/j.apenergy.2015.01.023. Chen Hong, 2016, CMAJ Open, V4, pE48, DOI 10.9778/cmajo.20150111. Chen SR, 2020, BUILD SIMUL-CHINA, V13, P237, DOI 10.1007/s12273-019-0575-8. Chou C, 2008, EUR J APPL PHYSIOL, V104, P369, DOI 10.1007/s00421-007-0665-7. Ciuha U, 2021, ERGONOMICS, V64, P625, DOI 10.1080/00140139.2020.1853820. Costanzo V, 2018, BUILD SIMUL-CHINA, V11, P1145, DOI 10.1007/s12273-018-0468-2. Cui D., 1 KM GLOBAL DATASET. Cunha S, 2015, CONSTR BUILD MATER, V98, P89, DOI 10.1016/j.conbuildmat.2015.08.077. D'Amico A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010184. Davey SL, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.573521. DAWSON B, 1994, PARAPLEGIA, V32, P860, DOI 10.1038/sc.1994.132. De Giuli V, 2012, BUILD ENVIRON, V56, P335, DOI 10.1016/j.buildenv.2012.03.024. de Korte Johannus Q, 2022, Temperature (Austin), V9, P103, DOI 10.1080/23328940.2020.1868386. Derradji L., ENERGY PROCEDIA 2017. Derradji L, 2017, ENRGY PROCED, V107, P157, DOI 10.1016/j.egypro.2016.12.159. Detommaso M, 2020, 2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I\&CPS EUROPE). Dilinuer T, 2021, ADV CLIM CHANG RES, V12, P363, DOI 10.1016/j.accre.2021.05.004. Dorizas PV, 2015, SCI TOTAL ENVIRON, V502, P557, DOI 10.1016/j.scitotenv.2014.09.060. Elarem R, 2022, ALEX ENG J, V61, P7037, DOI 10.1016/j.aej.2021.12.0461110-0168. Fantozzi F, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11010090. Fantozzi F, 2019, ATMOSPHERE-BASEL, V10, DOI 10.3390/atmos10120769. Figueiredo A, 2017, APPL ENERG, V208, P1208, DOI 10.1016/j.apenergy.2017.09.032. Figueiredo A, 2016, CONSTR BUILD MATER, V112, P639, DOI 10.1016/j.conbuildmat.2016.02.225. Fonseca A, 2021, APPL THERM ENG, V182, DOI 10.1016/j.applthermaleng.2020.115769. Fonseca A, 2018, APPL THERM ENG, V133, P81, DOI 10.1016/j.applthermaleng.2018.01.028. Frigione M, 2019, MATERIALS, V12, DOI 10.3390/ma12081260. Gallardo A, 2021, APPL ENERG, V304, DOI 10.1016/j.apenergy.2021.117736. Gao C, 2012, INDOOR AIR, V22, P523, DOI 10.1111/j.1600-0668.2012.00778.x. Gao CS, 2018, INT J BIOMETEOROL, V62, P359, DOI 10.1007/s00484-017-1352-y. Gao CS, 2011, EUR J APPL PHYSIOL, V111, P1207, DOI 10.1007/s00421-010-1748-4. Ghahramani A., ARTIF INTELL. Giro-Paloma J, 2016, MATERIALS, V9, DOI 10.3390/ma9010011. Golbabaei F, 2022, INT J OCCUP SAF ERGO, V28, P223, DOI 10.1080/10803548.2020.1741251. Gong YY, 2015, SUSTAINABILITY-BASEL, V7, P16670, DOI 10.3390/su71215838. Gopalakrishnan Preethi, 2021, IOP Conference Series: Materials Science and Engineering, V1145, DOI 10.1088/1757-899X/1145/1/012037. Guo Z, 2020, ECOL MODEL, V431, DOI 10.1016/j.ecolmodel.2020.109178. Hajat S, 2014, J EPIDEMIOL COMMUN H, V68, P641, DOI 10.1136/jech-2013-202449. Hamdan H, 2016, INT J THERM SCI, V102, P154, DOI 10.1016/j.ijthermalsci.2015.12.001. Hamdani M, 2021, INT J ENERG RES, V45, P18048, DOI 10.1002/er.6951. Hany E, 2021, CONSTR BUILD MATER, V281, DOI 10.1016/j.conbuildmat.2021.122535. Hasan MI, 2018, SUSTAIN CITIES SOC, V36, P42, DOI 10.1016/j.scs.2017.10.009. Hassan A, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8101046. Heck HD, 2004, REGUL TOXICOL PHARM, V40, P92, DOI 10.1016/j.yrtph.2004.05.001. Heidarinejad M, 2018, J CLEAN PROD, V171, P491, DOI 10.1016/j.jclepro.2017.10.008. Heidenthaler D, 2021, ENERGY, V233, DOI 10.1016/j.energy.2021.121138. Hekimoglu G, 2021, POWDER TECHNOL, V394, P1017, DOI 10.1016/j.powtec.2021.09.030. Huang X, 2019, APPL THERM ENG, V147, P841, DOI 10.1016/j.applthermaleng.2018.11.007. Ismaeel WSE, 2022, BUILD ENVIRON, V214, DOI 10.1016/j.buildenv.2022.108933. Itani M, 2016, BUILD ENVIRON, V107, P29, DOI 10.1016/j.buildenv.2016.07.018. Jarnstrom H, REFERENCE VALUES BUI. Jayalath A, 2016, ENERG BUILDINGS, V121, P152, DOI 10.1016/j.enbuild.2016.04.007. Jung CC, 2020, SCI TOTAL ENVIRON, V731, DOI 10.1016/j.scitotenv.2020.138958. Kabdrakhmanova M, 2021, ENERGY, V237, DOI 10.1016/j.energy.2021.121651. Kalnaes SE, 2015, ENERG BUILDINGS, V94, P150, DOI 10.1016/j.enbuild.2015.02.023. Kamaruzzaman SN, 2019, J FACIL MANAG, V17, P90, DOI 10.1108/JFM-11-2017-0070. Kant K, 2021, SOL ENERG MAT SOL C, V231, DOI 10.1016/j.solmat.2021.111309. Keringer P, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70499-9. Khan RJ, 2020, ENERGY BUILT ENV, V1, P199, DOI {[}10.1016/j.enbenv.2020.01.002, DOI 10.1016/J.ENBENV.2020.01.002]. Kitagawa H, 2022, BUILD ENVIRON, V207, DOI 10.1016/j.buildenv.2021.108442. Kokkinakis M, 2020, TOXICOL REP, V7, P1057, DOI 10.1016/j.toxrep.2020.08.017. Koppen W., 2011, METEOROL Z, V1, P215, DOI {[}10.1127/0941-2948/2011/105, DOI 10.7717/peerj.4024]. Kumar P, 2022, MATER TODAY-PROC, V61, P356, DOI 10.1016/j.matpr.2021.10.085. Kwiecien SY, 2019, INT J SPORT PHYSIOL, V14, P1288, DOI 10.1123/ijspp.2018-0763. Lamrani B, 2021, RENEW SUST ENERG REV, V140, DOI 10.1016/j.rser.2021.110751. Lane K, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040632. Lango T, 2009, MINIM INVASIV THER, V18, DOI 10.1080/13645700802649383. Lee K, 2015, ENRGY PROCED, V78, P2851, DOI 10.1016/j.egypro.2015.11.647. Leng JP, 2019, ARCH TOXICOL, V93, P763, DOI 10.1007/s00204-019-02393-x. Li WZ, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12233973. Lin XW, 2021, INT J ENERG RES, V45, P9831, DOI 10.1002/er.6538. Ling TC, 2013, CONSTR BUILD MATER, V46, P55, DOI 10.1016/j.conbuildmat.2013.04.031. Liu JW, 2022, LANCET PLANET HEALTH, V6, pE484, DOI 10.1016/S2542-5196(22)00117-6. Liu ZX, 2021, RENEW ENERG, V173, P401, DOI 10.1016/j.renene.2021.03.106. Madad A, 2018, BUILDINGS-BASEL, V8, DOI {[}10.3390/buildings8040063, 10.3390/buildings8050063]. Madyira D., INVESTIGATING THERMA. Malbila E., IMPROVING BUILDING E. Mannan M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18063276. Mannivannan A, 2015, SADHANA-ACAD P ENG S, V40, P2381, DOI 10.1007/s12046-014-0332-8. Marin PE, 2022, INT J ENERG RES, V46, P860, DOI 10.1002/er.7209. Marshall M, CLIMATE TREND ANAL S. Martinez-Molina A, 2022, ENERG BUILDINGS, V262, DOI 10.1016/j.enbuild.2022.111997. Mathis D, 2018, ENERGIES, V11, DOI 10.3390/en11113093. McFarlin BK, 2016, ERGONOMICS, V59, P1019, DOI 10.1080/00140139.2015.1108460. McLaggan MS, 2018, FIRE TECHNOL, V54, P117, DOI 10.1007/s10694-017-0675-x. Miura K, 2017, FASH TEXT, V4, DOI {[}10.1186/S40691-017-0108-y, 10.1186/s40691-017-0108-y]. Mneimneh F, 2020, J THERM BIOL, V91, DOI 10.1016/j.jtherbio.2020.102634. Mneimneh F, 2019, J THERM BIOL, V82, P123, DOI 10.1016/j.jtherbio.2019.04.004. Mohammadian F., 2019, The Open Public Health Journal, V12, P114, DOI 10.2174/1874944501912010114. Mohd-rahim F., 2020, BUILT ENV J, V10, P15. Mohseni E, 2021, RENEW ENERG, V168, P865, DOI 10.1016/j.renene.2020.12.112. Mondloe D, 2017, INT RES J ENG TECHNO, V4, P1. Mushore TD, 2018, S AFR GEOGR J, V100, P162, DOI 10.1080/03736245.2017.1339630. Nasir RA, 2013, PROCD SOC BEHV, V105, P598, DOI 10.1016/j.sbspro.2013.11.063. Nematchoua MK, 2020, SOL ENERGY, V207, P458, DOI 10.1016/j.solener.2020.06.110. Nematchoua MK, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10072438. Nghana B, 2016, BUILD ENVIRON, V99, P221, DOI 10.1016/j.buildenv.2016.01.023. Nguyen JL, 2014, INDOOR AIR, V24, P103, DOI 10.1111/ina.12052. Ni XY, 2020, MATERIALS, V13, DOI 10.3390/ma13081801. Okamoto T, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11755-3. Okogeri O., 2021, INT J THERMOFLUIDS, V10. Omara AAM., 2018, 2018 INT C COMPUTER. Oro E, 2014, INT J REFRIG, V42, P26, DOI 10.1016/j.ijrefrig.2014.03.002. Ouahrani D, 2017, ENERG BUILDINGS, V155, P533, DOI 10.1016/j.enbuild.2017.09.057. Ouedraogo ALSN, 2022, INT J BUILD PATHOL, V40, P183, DOI 10.1108/IJBPA-02-2021-0011. Ozdenefe M, 2016, BUILD SERV ENG RES T, V37, P85, DOI 10.1177/0143624415603004. Peel MC, 2007, HYDROL EARTH SYST SC, V11, P1633, DOI 10.5194/hess-11-1633-2007. Peng GJ, 2020, ADV POLYM TECH, V2020, DOI 10.1155/2020/9490873. Phelps HL, 2019, FIRE TECHNOL, V55, P363, DOI 10.1007/s10694-018-0794-z. Pomianowski M, 2012, ENERG BUILDINGS, V53, P96, DOI 10.1016/j.enbuild.2012.07.007. Prabhakar M, 2020, ENERG BUILDINGS, V228, DOI 10.1016/j.enbuild.2020.110483. Rahimpour Z, 2017, ENRGY PROCED, V121, P102, DOI 10.1016/j.egypro.2017.07.483. Ramakrishnan S, 2017, APPL ENERG, V194, P410, DOI 10.1016/j.apenergy.2016.04.084. Ramakrishnan S, 2016, ENRGY PROCED, V88, P725, DOI 10.1016/j.egypro.2016.06.052. Rasta I., 2016, J THERMODYN, V2016. Rasta IM, 2018, J ENERGY STORAGE, V15, P368, DOI 10.1016/j.est.2017.12.014. Rathore PKS, 2021, ENERG BUILDINGS, V236, DOI 10.1016/j.enbuild.2021.110799. Ratnieks J, 2017, IOP CONF SER-MAT SCI, V251, DOI 10.1088/1757-899X/251/1/012119. Reyez-Araiza JL, 2021, MATERIALS, V14, DOI 10.3390/ma14061420. Richter M, 2021, MATERIALS, V14, DOI 10.3390/ma14010234. Rodriguez CM, 2019, URBAN CLIM, V29, DOI 10.1016/j.uclim.2019.100488. Royo P, 2019, ENERGY, V173, P1030, DOI 10.1016/j.energy.2019.02.118. Saeki K, 2014, J HUM HYPERTENS, V28, P482, DOI 10.1038/jhh.2014.4. Sage-Lauck JS, 2014, ENERG BUILDINGS, V79, P32, DOI 10.1016/j.enbuild.2014.04.028. Sajadi B., 2015, ENERGY EQUIP SYST, V3, P73. Saji Raveendran P., 2021, IOP C SERIES MAT SCI, V1084, DOI DOI 10.1088/1757-899X/1084/1/012106. Sajjadian SM, 2015, ENERG BUILDINGS, V93, P83, DOI 10.1016/j.enbuild.2015.02.029. Sarri A, 2021, SOL ENERGY, V217, P375, DOI 10.1016/j.solener.2021.02.024. Sawadogo M, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11199305. Serrano S, 2013, CONSTR BUILD MATER, V47, P872, DOI 10.1016/j.conbuildmat.2013.05.018. Shetty BSP, 2021, TOXICS, V9, DOI 10.3390/toxics9040085. Sinacka J, 2021, ENERGIES, V14, DOI 10.3390/en14217363. Song WF, 2022, ENERG BUILDINGS, V256, DOI 10.1016/j.enbuild.2021.111747. Song WF, 2016, BUILD ENVIRON, V100, P92, DOI 10.1016/j.buildenv.2016.02.009. Stabile L, 2017, SCI TOTAL ENVIRON, V595, P894, DOI 10.1016/j.scitotenv.2017.03.048. Stropnik R, 2019, SOL ENERGY, V190, P420, DOI 10.1016/j.solener.2019.08.041. Sun X., 2022, ENERGY BUILT ENV, V3, P73. Suresh C, 2022, ENERG BUILDINGS, V268, DOI 10.1016/j.enbuild.2022.112225. Tuncbilek E, 2020, APPL THERM ENG, V179, DOI 10.1016/j.applthermaleng.2020.115750. Umishio W, 2019, HYPERTENSION, V74, P756, DOI 10.1161/HYPERTENSIONAHA.119.12914. van Kasteren Y., THERMAL COMFORT PHYS. Vasu A, 2019, APPL THERM ENG, V149, P22, DOI 10.1016/j.applthermaleng.2018.12.033. Vieira S, 2022, REV PORT CARDIOL, V41, P51, DOI 10.1016/j.repc.2020.11.015. Wang H, 2022, COMPOS PART A-APPL S, V155, DOI 10.1016/j.compositesa.2022.106853. Wang ZL, 2022, APPL THERM ENG, V201, DOI 10.1016/j.applthermaleng.2021.117778. WEC, WORLD EN ISS MON 202. Wermager S, 2013, ENERGIES, V6, P6373, DOI 10.3390/en6126373. WRI, THINK INCR ADDR GLOB. Wu M., 2015, ADV MAT RES, V1062, P728. Wu PH, 2021, BUILD ENVIRON, V195, DOI 10.1016/j.buildenv.2021.107690. Xiao YQ, 2020, INDOOR BUILT ENVIRON, V29, P1336, DOI 10.1177/1420326X19876071. Xumiao Lin, 2021, ENV ADV, V6. Yi W, 2017, ANN WORK EXPOS HEAL, V61, P481, DOI 10.1093/annweh/wxx007. Yin GZ, 2022, COMPOS COMMUN, V30, DOI 10.1016/j.coco.2022.101057. Yuan S., 2021, IOP C SER EARTH ENV, V714, DOI DOI 10.1088/1755-1315/714/4/042026. Zare M, 2019, SAF HEALTH WORK-KR, V10, P219, DOI 10.1016/j.shaw.2019.01.004. Zhang N, 2017, BUILD ENVIRON, V117, P208, DOI 10.1016/j.buildenv.2017.03.006. Zhang WX, 2022, RENEW SUST ENERG REV, V167, DOI 10.1016/j.rser.2022.112704. Zhao MM, 2015, FIBER POLYM, V16, P1403, DOI 10.1007/s12221-015-1403-0. Zhao ZD, 2016, PROCEDIA ENVIRON SCI, V34, P631, DOI 10.1016/j.proenv.2016.04.055. Zheng PP, 2022, BUILD ENVIRON, V221, DOI 10.1016/j.buildenv.2022.109262. Zhou XM, 2018, MATERIALS, V11, DOI 10.3390/ma11081398. Zhou YK, 2020, RENEW SUST ENERG REV, V130, DOI 10.1016/j.rser.2020.109889. Zhou YK, 2020, ENERGY, V202, DOI 10.1016/j.energy.2020.117747. Zhou YK, 2020, ENERG BUILDINGS, V220, DOI 10.1016/j.enbuild.2020.110013. Zhou YK, 2020, BUILD ENVIRON, V174, DOI 10.1016/j.buildenv.2020.106786. Zhou YK, 2020, ENERGY, V192, DOI 10.1016/j.energy.2019.116608.}, Number-of-Cited-References = {201}, Times-Cited = {1}, Usage-Count-Last-180-days = {15}, Usage-Count-Since-2013 = {22}, Journal-ISO = {Int. J. Energy Res.}, Doc-Delivery-Number = {7T4UW}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000853973600001}, DA = {2023-04-22}, } @article{ WOS:000848700000020, Author = {Charow, Rebecca and Jeyakumar, Tharshini and Younus, Sarah and Dolatabadi, Elham and Salhia, Mohammad and Al-Mouaswas, Dalia and Anderson, Melanie and Balakumar, Sarmini and Clare, Megan and Dhalla, Azra and Gillan, Caitlin and Haghzare, Shabnam and Jackson, Ethan and Lalani, Nadim and Mattson, Jane and Peteanu, Wanda and Tripp, Tim and Waldorf, Jacqueline and Williams, Spencer and Tavares, Walter and Wiljer, David}, Title = {Artificial Intelligence Education Programs for Health Care Professionals: Scoping Review}, Journal = {JMIR MEDICAL EDUCATION}, Year = {2021}, Volume = {7}, Number = {4}, Month = {OCT-DEC}, Abstract = {Background: As the adoption of artificial intelligence (AI) in health care increases, it will become increasingly crucial to involve health care professionals (HCPs) in developing, validating, and implementing AI-enabled technologies. However, because of a lack of AI literacy, most HCPs are not adequately prepared for this revolution. This is a significant barrier to adopting and implementing AI that will affect patients. In addition, the limited existing AI education programs face barriers to development and implementation at various levels of medical education. Objective: With a view to informing future AI education programs for HCPs, this scoping review aims to provide an overview of the types of current or past AI education programs that pertains to the programs' curricular content, modes of delivery, critical implementation factors for education delivery, and outcomes used to assess the programs' effectiveness. Methods: After the creation of a search strategy and keyword searches, a 2-stage screening process was conducted by 2 independent reviewers to determine study eligibility. When consensus was not reached, the conflict was resolved by consulting a third reviewer. This process consisted of a title and abstract scan and a full-text review. The articles were included if they discussed an actual training program or educational intervention, or a potential training program or educational intervention and the desired content to be covered, focused on AI, and were designed or intended for HCPs (at any stage of their career). Results: Of the 10,094 unique citations scanned, 41 (0.41\%) studies relevant to our eligibility criteria were identified. Among the 41 included studies, 10 (24\%) described 13 unique programs and 31 (76\%) discussed recommended curricular content. The curricular content of the unique programs ranged from AI use, AI interpretation, and cultivating skills to explain results derived from AI algorithms. The curricular topics were categorized into three main domains: cognitive, psychomotor, and affective. Conclusions: This review provides an overview of the current landscape of AI in medical education and highlights the skills and competencies required by HCPs to effectively use AI in enhancing the quality of care and optimizing patient outcomes. Future education efforts should focus on the development of regulatory strategies, a multidisciplinary approach to curriculum redesign, a competency-based curriculum, and patient-clinician interaction.}, Publisher = {JMIR PUBLICATIONS, INC}, Address = {130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA}, Type = {Review}, Language = {English}, Affiliation = {Wiljer, D (Corresponding Author), Univ Hlth Network, 190 Elizabeth St,R Fraser Elliott Bldg RFE 3S-441, Toronto, ON M5G 2C4, Canada. Charow, Rebecca; Dolatabadi, Elham; Balakumar, Sarmini; Gillan, Caitlin; Tavares, Walter; Wiljer, David, Univ Toronto, Dalla Lana Sch Publ Hlth, Inst Hlth Policy Management \& Evaluat, Toronto, ON, Canada. Charow, Rebecca; Jeyakumar, Tharshini; Younus, Sarah; Anderson, Melanie; Gillan, Caitlin; Haghzare, Shabnam; Tripp, Tim; Williams, Spencer; Tavares, Walter; Wiljer, David, Univ Hlth Network, 190 Elizabeth St,R Fraser Elliott Bldg RFE 3S-441, Toronto, ON M5G 2C4, Canada. Dolatabadi, Elham; Dhalla, Azra; Haghzare, Shabnam; Jackson, Ethan; Lalani, Nadim, Vector Inst, Toronto, ON, Canada. Salhia, Mohammad; Al-Mouaswas, Dalia; Balakumar, Sarmini; Clare, Megan; Mattson, Jane; Peteanu, Wanda; Waldorf, Jacqueline, Univ Hlth Network, Michener Inst Educ, Toronto, ON, Canada. Gillan, Caitlin; Tavares, Walter; Wiljer, David, Univ Toronto, Fac Med, Toronto, ON, Canada. Haghzare, Shabnam, Univ Toronto, Inst Biomed Engn, Toronto, ON, Canada. Tavares, Walter, Wilson Ctr, Toronto, ON, Canada. Wiljer, David, Ctr Addict \& Mental Hlth CAMH, CAMH Educ, Toronto, ON, Canada.}, DOI = {10.2196/31043}, Article-Number = {e31043}, ISSN = {2369-3762}, Keywords = {machine learning; deep learning; health care providers; education; learning; patient care}, Keywords-Plus = {BIG DATA; DATA SCIENCE; CURRICULUM}, Research-Areas = {Education \& Educational Research}, Web-of-Science-Categories = {Education, Scientific Disciplines}, Author-Email = {david.wiljer@uhn.ca}, Affiliations = {University of Toronto; University of Toronto; University Health Network Toronto; University of Toronto; University Health Network Toronto; University of Toronto; University of Toronto; University of Toronto; Centre for Addiction \& Mental Health - Canada}, ResearcherID-Numbers = {Anderson, Melanie/J-1145-2016 }, ORCID-Numbers = {Anderson, Melanie/0000-0001-9786-1656 Al Mouaswas, Dalia/0000-0002-5620-0832 Charow, Rebecca/0000-0002-8553-4006 Younus, Sarah/0000-0002-0728-7628 Jeyakumar, Tharshini/0000-0002-4482-3637 Clare, Megan/0000-0002-2778-6002 Dhalla, Azra/0000-0001-9806-3664}, Funding-Acknowledgement = {Government of Canada's Future Skills Centre}, Funding-Text = {Accelerating the appropriate adoption of artificial intelligence in health care through building new knowledge, skills, and capacities in the Canadian health care professions is funded by the Government of Canada's Future Skills Centre.}, Cited-References = {{[}Anonymous], 2018, ART INT IS TRANSF WO. {[}Anonymous], 2021, GLOB STRAT DIG HLTH. Arksey H., 2005, INT J SOC RES METHOD, V8, P19, DOI {[}DOI 10.1080/1364557032000119616, 10.1080/1364557032000119616]. Balthazar P, 2020, ACAD RADIOL, V27, P136, DOI 10.1016/j.acra.2019.10.005. Barbour AB, 2019, J MED EDUC CURRIC DE, V6, DOI 10.1177/2382120519889348. Beregi JP, 2018, DIAGN INTERV IMAG, V99, P727, DOI 10.1016/j.diii.2018.10.003. Berner ES, 2010, METHOD INFORM MED, V49, P412, DOI 10.3414/ME9309. Bhavnani SP, 2016, CIRC-CARDIOVASC QUAL, V9, P683, DOI 10.1161/CIRCOUTCOMES.116.003081. Briganti G, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.00027. Brinker S., MARTECS LAW TECHNOLO. Brouillette M, 2019, NAT MED, V25, P1808, DOI 10.1038/s41591-019-0648-3. Chamunyonga C, 2020, J MED IMAGING RADIAT, V51, P214, DOI 10.1016/j.jmir.2020.01.008. Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930. Collado-Mesa F, 2018, J AM COLL RADIOL, V15, P1753, DOI 10.1016/j.jacr.2017.12.021. Colquhoun HL, 2014, J CLIN EPIDEMIOL, V67, P1291, DOI 10.1016/j.jclinepi.2014.03.013. Cox M, 2017, ROLE ACCREDITATION A. Evans J., 2016, BR J CARDIOL, P87, DOI {[}10.5837/bjc.2016.026, DOI 10.5837/BJC.2016.026]. Forney MC, 2020, SEMIN MUSCULOSKEL R, V24, P74, DOI 10.1055/s-0039-3400270. Foster M, 2020, CLIN NURSE SPEC, V34, P124, DOI 10.1097/NUR.0000000000000516. Fridsma DB, 2018, BMJ-BRIT MED J, V362, DOI 10.1136/bmj.k3043. Ghassemi M, 2019, HEALTH LAW CANADA, V40, P38. Gorman D, 2018, ACAD MED, V93, P1113, DOI 10.1097/ACM.0000000000002109. Han ER, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1891-5. He JX, 2019, NAT MED, V25, P30, DOI 10.1038/s41591-018-0307-0. Holm EA, 2019, SCIENCE, V364, P26, DOI 10.1126/science.aax0162. Hoque M., 2017, 3 DOMAINS LEARNING C. Jeffery AD, 2019, CIN-COMPUT INFORM NU, V37, P1, DOI 10.1097/CIN.0000000000000504. Kang J, 2021, PRACT RADIAT ONCOL, V11, P74, DOI 10.1016/j.prro.2020.06.001. Kang SK, 2017, J AM COLL RADIOL, V14, P534, DOI 10.1016/j.jacr.2016.10.032. Kinnear B, 2019, DIAGNOSIS, V6, P85, DOI 10.1515/dx-2018-0065. Kobayashi Y, 2019, JPN J RADIOL, V37, P9, DOI 10.1007/s11604-018-0793-5. Kolachalama VB, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0061-1. Li D, 2019, ACAD MED, V94, P623, DOI 10.1097/ACM.0000000000002661. Masters K, 2019, MED TEACH, V41, P976, DOI 10.1080/0142159X.2019.1595557. Matheny ME, 2020, JAMA-J AM MED ASSOC, V323, P509, DOI 10.1001/jama.2019.21579. Mathur P, 2019, INT ANESTHESIOL CLIN, V57, P89, DOI 10.1097/AIA.0000000000000221. Mattessich S, 2018, CLIN DERMATOL, V36, P777, DOI 10.1016/j.clindermatol.2018.06.003. McCoy LG, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0294-7. Meek RD, 2019, AM J ROENTGENOL, V213, P782, DOI 10.2214/AJR.19.21527. Moore JH, 2019, PERS MED, V16, P247, DOI 10.2217/pme-2018-0145. Nguyen GK, 2018, J AM COLL RADIOL, V15, P1320, DOI 10.1016/j.jacr.2018.05.024. O'Doherty D, 2018, BMC MED EDUC, V18, DOI 10.1186/s12909-018-1240-0. Paranjape Ketan, 2019, JMIR Med Educ, V5, pe16048, DOI 10.2196/16048. Park J. Y., 2014, MERLOT J ONLINE LEAR, V10, P299. Park SH, 2019, J EDUC EVAL HEALTH P, V16, DOI 10.3352/jeehp.2019.16.18. PRISMA, PRISMA SCOP REV. Sanchez-Mendiola M, 2015, BMC MED EDUC, V15, DOI 10.1186/s12909-015-0349-7. Sapci AH, 2020, JMIR MED EDUC, V6, DOI 10.2196/19285. Saqr M, 2019, INT J HEALTH SCI-IJH, V13, P1. Sargeant J., ASSESSMENT FEEDBACK. Schneeweiss S/, COMPETENCY BASED CPD, DOI {[}10.1177/1039856219859279, DOI 10.1177/1039856219859279]. Shen N, 2017, J CONTIN EDUC HEALTH, V37, P137, DOI 10.1097/CEH.0000000000000154. Singh RP, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.45. Sit C, 2020, INSIGHTS IMAGING, V11, DOI 10.1186/s13244-019-0830-7. Srivastava TK., 2020, NY TIMES BK REV, V14, pJI01. Strosahl K, 2005, BEHAV INTEGRATIVE CA. Sybenga A., BIG DATA BIOINFORMAT. Tajmir SH, 2018, ACAD RADIOL, V25, P747, DOI 10.1016/j.acra.2018.03.007. Tang A, 2018, CAN ASSOC RADIOL J, V69, P120, DOI 10.1016/j.carj.2018.02.002. The Medical Futurist, IMP DIG HLTH TECHN F. Thompson RF, 2018, RADIOTHER ONCOL, V129, P421, DOI 10.1016/j.radonc.2018.05.030. Topaz M, 2017, STUD HEALTH TECHNOL, V232, P165, DOI 10.3233/978-1-61499-738-2-165. Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7. Tricco AC, 2018, ANN INTERN MED, V169, P467, DOI 10.7326/M18-0850. Varghese J, 2020, VISC MED, V36, P443, DOI 10.1159/000511930. Wartman SA, 2019, ACAD MED, V94, P1412, DOI 10.1097/ACM.0000000000002866. Wartman Steven A, 2019, AMA J Ethics, V21, pE146, DOI 10.1001/amajethics.2019.146. Wartman SA, 2018, ACAD MED, V93, P1107, DOI 10.1097/ACM.0000000000002044. Westerman M., 2013, OXFORD TXB MED ED. Wiens J, 2019, NAT MED, V25, P1337, DOI 10.1038/s41591-019-0548-6. Wiljer D, 2019, J MED IMAGING RADIAT, V50, pS8, DOI 10.1016/j.jmir.2019.09.010. Wood MJ, 2019, J AM COLL RADIOL, V16, P740, DOI 10.1016/j.jacr.2018.10.008.}, Number-of-Cited-References = {72}, Times-Cited = {5}, Usage-Count-Last-180-days = {10}, Usage-Count-Since-2013 = {11}, Journal-ISO = {JMIR Med. Educ.}, Doc-Delivery-Number = {4F7OP}, Web-of-Science-Index = {Emerging Sources Citation Index (ESCI)}, Unique-ID = {WOS:000848700000020}, OA = {Green Published, gold}, DA = {2023-04-22}, } @article{ WOS:000430132800004, Author = {van der Aalst, Wil M. P.}, Title = {Process discovery from event data: Relating models and logs through abstractions}, Journal = {WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY}, Year = {2018}, Volume = {8}, Number = {3}, Month = {MAY-JUN}, Abstract = {Event data are collected in logistics, manufacturing, finance, health care, customer relationship management, e-learning, e-government, and many other domains. The events found in these domains typically refer to activities executed by resources at particular times and for a particular case (i.e., process instances). Process mining techniques are able to exploit such data. In this article, we focus on process discovery. However, process mining also includes conformance checking, performance analysis, decision mining, organizational mining, predictions, recommendations, and so on. These techniques help to diagnose problems and improve processes. All process mining techniques involve both event data and process models. Therefore, a typical first step is to automatically learn a control-flow model from the event data. This is very challenging, but in recent years, many powerful discovery techniques have been developed. It is not easy to compare these techniques since they use different representations and make different assumptions. Users often need to resort to trying different algorithms in an ad-hoc manner. Developers of new techniques are often trying to solve specific instances of a more general problem. Therefore, we aim to unify existing approaches by focusing on log and model abstractions. These abstractions link observed and modeled behavior: Concrete behaviors recorded in event logs are related to possible behaviors represented by process models. Hence, such behavioral abstractions provide an interface between both of them. We discuss four discovery approaches involving three abstractions and different types of process models (Petri nets, block-structured models, and declarative models). The goal is to provide a comprehensive understanding of process discovery and show how to develop new techniques. Examples illustrate the different approaches and pointers to software are given. The discussion on abstractions and process representations is also presented to reflect on the gap between process mining literature and commercial process mining tools. This facilitates users to select an appropriate process discovery technique. Moreover, structuring the role of internal abstractions and representations helps broaden the view and facilitates the creation of new discovery approaches. This article is categorized under: Algorithmic Development > Spatial and Temporal Data Mining Application Areas > Business and Industry Technologies > Machine Learning Application Areas > Data Mining Software Tools}, Publisher = {WILEY PERIODICALS, INC}, Address = {ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA}, Type = {Review}, Language = {English}, Affiliation = {van der Aalst, WMP (Corresponding Author), Rhein Westfal TH Aachen, Proc \& Data Sci PADS, Aachen, Germany. van der Aalst, Wil M. P., Rhein Westfal TH Aachen, Proc \& Data Sci PADS, Aachen, Germany.}, DOI = {10.1002/widm.1244}, Article-Number = {e1244}, ISSN = {1942-4787}, EISSN = {1942-4795}, Keywords = {business process management; data science; process discovery; process mining; process modeling}, Keywords-Plus = {MINING PROCESS MODELS; OF-THE-ART}, Research-Areas = {Computer Science}, Web-of-Science-Categories = {Computer Science, Artificial Intelligence; Computer Science, Theory \& Methods}, Author-Email = {wvdaalst@pads.rwth-aachen.de}, Affiliations = {RWTH Aachen University}, ResearcherID-Numbers = {van der Aalst, Wil/G-1248-2011}, ORCID-Numbers = {van der Aalst, Wil/0000-0002-0955-6940}, Cited-References = {Agrawal R, 1998, LECT NOTES COMPUT SC, V1377, P469. Agrawal R., 1996, P 5 INT C EXT DAT TE, V1057, P3. Alpaydin E., 2010, INTRO MACHINE LEARNI. ANGLUIN D, 1983, COMPUT SURV, V15, P237, DOI 10.1145/356914.356918. Augusto A, 2017, ABS170502288 CORR. Bergenthum R, 2007, LECT NOTES COMPUT SC, V4714, P375. BIERMANN AW, 1972, IEEE T COMPUT, VC 21, P592, DOI 10.1109/TC.1972.5009015. Bogarin A, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1230. Carmona J, 2010, IEEE T COMPUT, V59, P371, DOI 10.1109/TC.2009.131. Celonis, 2017, PROC MIN SUCC STOR I. Claes J., 2013, P 10 INT C BUS PROC, P187. Cook J. E., 1998, ACM Transactions on Software Engineering and Methodology, V7, P215, DOI 10.1145/287000.287001. Cortadella J, 1998, IEEE T COMPUT, V47, P859, DOI 10.1109/12.707587. Datta A, 1998, INFORM SYST RES, V9, P275, DOI 10.1287/isre.9.3.275. de Medeiros AKA, 2003, LECT NOTES COMPUT SC, V2888, P389. De Weerdt J, 2012, INFORM SYST, V37, P654, DOI 10.1016/j.is.2012.02.004. Di Ciccio C, 2013, 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), P135, DOI 10.1109/CIDM.2013.6597228. Dumas M., 2013, FUNDAMENTALS BUSINES, VVolume 1, DOI DOI 10.1007/978-3-642-33143-5. EHRENFEUCHT A, 1990, ACTA INFORM, V27, P315, DOI 10.1007/BF00264611. GOLD EM, 1967, INFORM CONTROL, V10, P447, DOI 10.1016/S0019-9958(67)91165-5. Gunther CW, 2007, LECT NOTES COMPUT SC, V4714, P328. Hand D, 2001, ADAP COMP MACH LEARN. Herbst J, 2000, LECT NOTES ARTIF INT, V1810, P183. Leemans Sander J. J., 2013, Application and Theory of Petri Nets and Concurrency. 34th International Conference, PETRI NETS 2013. Proceedings: LNCS 7927, P311, DOI 10.1007/978-3-642-38697-8\_17. Leemans S.J.J., 2015, ENTERPRISE BUSINESS, V214, P85. Leemans S. J. J., 2013, INT C BUS PROC MAN, V171, P66. Leemans SJJ, 2018, SOFTW SYST MODEL, V17, P599, DOI 10.1007/s10270-016-0545-x. Li GM, 2017, LECT NOTES BUS INF P, V288, P43, DOI 10.1007/978-3-319-59336-4\_4. Maggi Fabrizio M., 2013, Advanced Information Systems Engineering. 25th International Conference, CAiSE 2013. Proceedings: LNCS 7908, P433, DOI 10.1007/978-3-642-38709-8\_28. Maggi Fabrizio M., 2012, Advanced Information Systems Engineering. Proceedings 24th International Conference, CAiSE 2012, P270, DOI 10.1007/978-3-642-31095-9\_18. Maggi Fabrizio Maria, 2011, Business Process Management. Proceedings of the 9th International Conference (BPM 2011), P132, DOI 10.1007/978-3-642-23059-2\_13. Mannhardt F, 2017, P BPM 2017 DEM TRACK, P1. Mannila H, 1997, DATA MIN KNOWL DISC, V1, P259, DOI 10.1023/A:1009748302351. Montali M., 2010, SPECIFICATION VERIFI, V56. Montali M, 2013, ACM T INTEL SYST TEC, V5, DOI 10.1145/2542182.2542199. Nerode A., 1958, P AM MATH SOC, V9, P541, DOI DOI 10.1090/S0002-9939-1958-0135681-9. Ribeiro J, 2014, LECT NOTES COMPUT SC, V8659, P67, DOI 10.1007/978-3-319-10172-9\_5. Rozinat A., 2010, THESIS EINDHOVEN U T. Sole M, 2010, LECT NOTES COMPUT SC, V6128, P226, DOI 10.1007/978-3-642-13675-7\_14. TFPM, 2017, PROC MIN CAS STUD. Tiwari A, 2008, BUS PROCESS MANAG J, V14, P5, DOI 10.1108/14637150810849373. van der Aalst W, 2004, IEEE T KNOWL DATA EN, V16, P1128, DOI 10.1109/TKDE.2004.47. van der Aalst WMP, 2006, LECT NOTES COMPUT SC, V4184, P1. van der Aalst WMP, 2009, COMPUT SCI-RES DEV, V23, P99, DOI 10.1007/s00450-009-0057-9. van der Aalst WMP, 2010, SOFTW SYST MODEL, V9, P87, DOI 10.1007/s10270-008-0106-z. van der Aalst W. M. P., 2013, ISRN SOFTW ENG, V2013, P1, DOI DOI 10.1155/2013/507984. van der Aalst W, 2012, WIRES DATA MIN KNOWL, V2, P182, DOI 10.1002/widm.1045. van der Aalst WMP, 2017, LECT NOTES COMPUT SC, V10445, P59, DOI 10.1007/978-3-319-65000-5\_4. van der Aalst WMP, 2003, DATA KNOWL ENG, V47, P237, DOI 10.1016/S0169-023X(03)00066-1. van dersAalst W. M. P., 2016, PROCESS MINING DATA. van dersWerf J. M. E. M., 2010, FUNDAMENTA INFORM, V94, P387. Weijters A.J.M.M., 2010, BETA WORKING PAPER S, V334. Weijters AJMM, 2003, INTEGR COMPUT-AID E, V10, P151. Wen L, 2007, DATA MIN KNOWL DISC, V15, P145, DOI 10.1007/s10618-007-0065-y. Wen LJ, 2009, J INTELL INF SYST, V32, P163, DOI 10.1007/s10844-007-0052-1. Weske M., 2007, BUSINESS PROCESS MAN.}, Number-of-Cited-References = {56}, Times-Cited = {19}, Usage-Count-Last-180-days = {2}, Usage-Count-Since-2013 = {60}, Journal-ISO = {Wiley Interdiscip. Rev.-Data Mining Knowl. Discov.}, Doc-Delivery-Number = {GC9QG}, Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)}, Unique-ID = {WOS:000430132800004}, DA = {2023-04-22}, }