
Efabless Caravel “harness” SoC

Description:

Features:

Caravel harness die (3.2mm × 5.3mm)

The efabless Caravel chip is a ready-to-use test harness for creating designs with the Google/
SkyWater 130nm open PDK. The Caravel harness comprises a small RISC-V microprocessor
based on the simple 2-cycle PicoRV32 RISC-V core implementing the RV32IMC instruction set
(see http://riscv.org/), a 32-bit wishbone bus, and an approximately 2.8 mm × 2.8 mm open area for
the placement of user IP blocks.

Core:

The processor core is the PicoRV32 design
(see http://github.com/cliffordwolf/picorv32).
The full core description is available from the
github site. The hardware implementation is
the “large” variant, incorporating options IRQ,
MUL, DIV, BARREL_SHIFTER, and
COMPRESSED_ISA (16-bit instructions).

Functions/features of the SoC include:

1 SPI flash controller
1 UART

27 shared general-purpose input/output channels
8k word (32768 bytes × 8 bits) on−board SRAM

Process:

The efabless Caravel harness chip is fabricated in SkyWater 0.13µm CMOS technology, with
process specifications and data at https://github.com/google/skywater−pdk/.

Core clock rate: (TBD) MHz maximum over all PVT
conditions (likely around 50 MHz guaranteed)

page 1

1 SPI master
2 counter-timers
1 dedicated general-purpose input/output channel

All-digital frequency-locked loop clock multiplier
128 bit logic analyzer

Repository:

License:

The Caravel chip is an open-source design,
licensed under the terms of Apache 2.0.

The complete Caravel chip design may be obtained from the git repository located at
https://github.com/efabless/caravel/.

prelim
inary

page 2

Efabless Caravel “harness” SoC
Version:

This document corresponds to version 1 of the Caravel processor
(October 2020).

Documentation revision 0 (October 14, 2020)

Revision history:

Documentation revision 1 (October 19, 2020)

Changed pinout to add four ground (bump bond) pads in the center, and to move the
user area power supply padframe pads into the user area for easier connecting.

Documentation revision 2 (October 27, 2020)

More updates corresponding to RTL-level changes in the description.

Efabless Caravel PicoRV32 SoC and User Project Harness page 3

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10

C1
C2
C3
C4

C7
C8
C9
C10

D1
D2
D3
D4

D7
D8
D9
D10

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10

mprj_io[23]
vccd2
mprj_io[25]

mprj_io[26]

mprj_io[27]

mprj_io[28]

mprj_io[29]

mprj_io[30]

mprj_io[31]
mprj_io[32]

mprj_io[33]

mprj_io[34]

mprj_io[35]

mprj_io[36]

mprj_io[22]
mprj_io[21]

mprj_io[20]
mprj_io[19]

mprj_io[18]
mprj_io[17]

mprj_io[16]

mprj_io[15]

mprj_io[14]

mprj_io[13]

mprj_io[12]

mprj_io[11]/flash2 io1

mprj_io[10]/flash2 io0

mprj_io[9]/flash2 sck

mprj_io[8]/flash2 csb

mprj_io[7]/irq

mprj_io[6]/ser_tx

mprj_io[5]/ser_rx

mprj_io[4]/SCK

mprj_io[3]/CSB

mprj_io[2]/SDI

mprj_io[1]/SDO

mprj_io[0]/JTAG

vssd2

vccd

vssa2

vdda2

resetb

mprj_io[24]

vssio/vssa/vssd

flash clk

clock
flash csb

vdda1

vssa1

vddio

flash io1
flash io0

vssd1

gpio

vccd1

vdda

Package as viewed from the bottom.

ABCDEF

1

2

3

4

5

6

7

8

9

10

Pinout (6x10 WLCSP)

C5
C6 vssio/vssa/vssd

D5
D6

vssio/vssa/vssd
vssio/vssa/vssd

mprj_io[37]

Pin Description (6x10 WLCSP)

Pin # Name Type Summary description

E9
F9
E8
F8

E3, F4
F5

C9

E7
F7

E5

SDI
CSB
SCK

SDO

flash io1:0
flash csb
flash clk

clock

ser_rx
ser_tx

irq

Ground

3.3V Power

Digital in
Digital in
Digital in

Digital out

Digital I/O
Digital out
Digital out

Digital in

Digital in
Digital in

Digital out

Housekeeping serial interface data input
Housekeeping serial interface chip select
Housekeeping serial interface clock

Housekeeping serial interface data output

Flash SPI data input/output
Flash SPI chip select
Flash SPI clock

External CMOS 3.3V clock source

UART receive channel
UART transmit channel

External interrupt

Efabless Caravel PicoRV32 SoC and User Project Harness page 4

Standard package: WLCSP (bump bond)

Bump pitch: 0.5 mm
Package size: 3.2mm × 5.3mm

F9
F8
E8
E9 spi_sdi

spi_csb
spi_sck
spi_sdo

Digital in
Digital out
Digital out
Digital out

Serial interface masterdata input
Serial interface master chip select
Serial interface master clock
Serial interface master data output

C7

B7

A10

B3
A2

C5, C6, D5, D6

D4

E6

C4

F6

E10

vccd2

vssd2

vccd

vssa2

vdda2

vssio/vssa/vssd

vdda1

vssa1

vddio

vssd1

gpio

F2

F10

vccd1

vdda

A9, B9, A8, B8,
C8, A7, A6, B6,
A5, B5, A4, B4,
A3, C3, A1, B2,
B1, C2, C1, D1,
D2, E1, F1, E2,
D3, F3, E3, F4,
E4, F5, E5, F7,
E7, F8, E8, F9,
E9, D7

Digital I/O General purpose configurable digital I/O with

General purpose configurable digital I/O with
pullup/pulldown, input or output, enable/disable,
analog output, high voltage output, slew rate
control. Shared between the user project area
and the management SoC.

mprj_io[37:0]

D8

B10 resetb Digital in SoC system reset (sense inverted)

D7 JTAG Digital I/O JTAG system access
F5 flash2 csb Digital out User area QSPI flash enable (sense inverted)
E4 flash2 sck Digital out User area QSPI flash clock
E3, F4 flash2 io1:0 Digital I/O User area QSPI flash data

Digital I/O Management GPIO/user power enable

ESD and padframe power supply
3.3V Power Management area power supply
1.8V Power Management area digital power supply

ESD, padframe, and management area ground

3.3V Power User area 1 power supply
1.8V Power User area 1 digital power supply
Ground User area 1 ground
Ground User area 1 digital ground

3.3V Power User area 2 power supply
1.8V Power User area 2 digital power supply
Ground User area 2 ground
Ground User area 2 digital ground

Functional Description

GPIO (pin E10)General Purpose I/O

The basic function of the GPIO is illustrated below. All writes to reg_gpio_data are registered.
All reads from reg_gpio_data are immediate.

0x21000000 GPIO input/output (low bit)

0x21000004 GPIO output enable (0 = output, 1 = input)

0x21000008 GPIO pullup enable (1 = pullup, 0 = none)

0x2100000c GPIO pulldown enable (1 = pulldown, 0 = none)

reg_gpio_data

reg_gpio_ena

reg_gpio_pu

reg_gpio_pd

GPIO memory address map:

Pin

Vdd

reg_gpio_pu

reg_gpio_pd

reg_gpio_data

reg_gpio_ena

0x2f000000 PLL clock output destination (low bit)

0x2f000004 Trap output destination (low bit)

0x2f000008 IRQ 7 input source (low bit)

GPIO output readback (16th bit)

I/O pad

reg_pll_out_dest

reg_trap_out_dest

reg_irq7_source

address descriptionC header name

function data bit

function data enable

0

1

register

IRQ select

0

IRQ channel

reg_gpio_data
(read, 16th bit)

(read, low bit)
reg_gpio_data

0

other IRQ sources

Figure 1. GPIO channel structure

page 5

(see Tables TBD)

(see Table TBD)

The GPI pin is a single assignable general-purpose digital input or output that is available only to
the management SoC and cannot be assigned to the user project area. On the test board provided
with the completed user projects, this pin is used to enable the voltage regulators generating the
user area power supplies.

Functional Description (cont.)

GPIO description, continued.

reg_gpio_data

012345678910111213141516171819202122232425262728293031 bit

0x210000000x210000010x210000020x21000003 address

valueGPIO output readback GPIO input/output

012345678910111213141516171819202122232425262728293031 bit

0x210000040x210000050x210000060x21000007 address

value(undefined, reads zero) GPIO output enable

Writing to the address low bit always sets the registered value at the GPIO.
Writing to address bit 16 has no effect.
Reading from the address low bit reads the value at the chip pin.
Reading from address bit 16 reads the value at the multiplexer output (see diagram).

Bit 0 corresponds to the GPIO channel enable.

reg_gpio_ena

In the memory-mapped register descriptions below, each register is shown as 32 bits corresponding
to the data bus width of the wishbone bus. Addresses, however, are in bytes. Depending on the
instruction and data type, the entire 32-bit register can be read in one instruction, or one 16-bit word,
or one 8-bit byte.

Bit value 1 indicates an output channel; 0 indicates an input.

012345678910111213141516171819202122232425262728293031 bit

0x210000080x210000090x2100000a0x2100000b address

value(undefined, reads zero) GPIO pin pull-up

Bit value 1 indicates pullup is active; 0 indicates pullup inactive.

reg_gpio_pu

012345678910111213141516171819202122232425262728293031 bit

0x2100000c0x2100000d0x2100000e0x2100000f address

value(undefined, reads zero) GPIO pin pull-down (inverted)

reg_gpio_pd

Bit value 1 indicates pullup is active; 0 indicates pulldown is inactive.

Table 1

Table 2

Table 3

Table 4

page 6

Bit 0 corresponds to the GPIO channel pull-up state.

Bit 0 corresponds to the GPIO channel pull-down state.

Functional Description (cont.)

GPIO description, continued.

012345678910111213141516171819202122232425262728293031 bit

0x2f0000000x2f0000010x2f0000020x2f000003 address

value(undefined, reads zero)

reg_pll_out_dest

PLL clock dest.

The low bit of this register directs the output of the core clock to the GPIO channel,
according to the following table:

Register byte 0x2f000000 value Clock output directed to this channel

0
1

(none)0
1

012345678910111213141516171819202122232425262728293031 bit

0x2f0000040x2f0000050x2f0000060x2f000007 address

value(undefined, reads zero)

reg_trap_out_dest

trap signal dest.

The low bit of this register directs the output of the processor trap signal to the GPIO
channel, according to the following table:

Register byte 0x2f000004 value Trap signal output directed to this channel

0
1 GPIO

(none)0
1

Table 5

Table 6

page 7

Note that a high rate core clock (e.g., 80MHz) may be unable to generate a full swing on the
GPIO output.

Core PLL clock to GPIO out

012345678910111213141516171819202122232425262728293031 bit

0x2f0000080x2f0000090x2f00000a0x2f00000b address

value(undefined, reads zero)

reg_irq7_source

IRQ 7 source

The low bit of this register directs the input of the GPIO to the processor's IRQ7 channel,
according to the following table:

Register byte 0x2f000008 value This channel directed to IRQ channel 7

00
01 GPIO

(none)0
1

Table 7

Functional Description (cont.)

Housekeeping SPI SDI (pin F9), CSB (pin E8), SCK (pin F8), and SDO (pin E9)

SPI protocol definition

00000000 No operation
10000000
01000000

Write in streaming mode
Read in streaming mode
Simultaneous Read/Write in streaming mode11000000

10nnn000

All input is in groups of 8 bits. Each byte is input msb first.

The first transferred byte is the command word, interpreted according to Table 8 below.

CSB pin must be low to enable an SPI transmission. Data are clocked by pin SCK, with data valid
on the rising edge of SCK. Output data are received on the SDO line. SDO is held high-impedance
when CSB is high and at all times other than the transfer of data bits on a read command. SDO
outputs become active on the falling edge of SCK, such that data are written and read on the same
SCK rising edge.

After CSB is set low, the SPI is always in the "command" state, awaiting a new command.

Addresses are read in sequence from lower values to higher values.

Therefore groups of bits larger than 8 should be grouped such that the lowest bits are at the
highest address. Any bits additional to an 8-bit boundary should be at the lowest address.

Data are captured from the register map in bytes on the falling edge of the last SCK before a data
byte transfer. Multi-byte transfers should ensure that data do not change between byte reads.

01nnn000
11nnn000

Write in n-byte mode (up to 7 bytes).
Read in n-byte mode (up to 7 bytes).
Simultaneous Read/Write in n-byte mode (up to 7 bytes).

Every command sequence requires one command word (8 bits) followed by one address word
(8 bits) followed by one or more data words (8 bits each), according to the data transfer modes
defined below.

The “housekeeping” SPI is an SPI slave that can be accessed from a remote host through a
standard 4-pin serial interface. The SPI implementation is mode 0, with new data on SDI captured
on the SCK rising edge, and output data presented on the falling edge of SCK (to be sampled on
the next SCK rising edge). The SPI pins are shared with user area general-purpose I/O.

CSB

SCK

SDI

SDO

All other words are reserved and act as no-operation if not defined by the SPI slave module.

additional data bytescommand address data

msb

msb lsb

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7
high impedence

data must be valid on SCK rising edge data valid on SCK falling edge

capture data on SCK rising edge

Table 8 Housekeeping SPI command word definition

Figure 2. Housekeeping SPI signaling

page 8

11000100 Pass-through (management) Read/Write in streaming mode
11000110 Pass-through (user) Read/Write in streaming mode

Functional Description (cont.)

The two basic modes of operation are "streaming mode" and "n-byte mode". In "streaming mode"
operation, data are sent or received continuously, one byte at a time, with the internal address
incrementing for each byte. Streaming mode operation continues until CSB is raised to end the
transfer.

In "n-byte mode" operation, the number of bytes to be read and/or written is encoded in the
command word, and may have a value from 1 to 7 (note that a value of zero implies streaming
mode). After n bytes have been read and/or written, the SPI returns to waiting for the next
command. No toggling of CSB is required to end the command or to initiate the following
command.

SPI protocol definition (continued)

Under normal working conditions, the SPI should not need to be accessed unless it is to adjust the
clock speed of the CPU. All other functions are purely for test and debug.

manufacturer_ID
The 12-bit manufacturer ID for efabless is 0x456

Housekeeping SPI registers

register address 0x01 low 4 bits and register address 0x02

page 9

Pass-thru mode

The pass-thru mode puts the CPU into immediate reset, then sets FLASH_CSB low to initiate a data
transfer to the QSPI flash. After the pass-thru command byte has been issued, all subsequent SPI
signaling on SDI and SCK are applied directly to the QSPI flash (pins FLASH_IO0 and FLASH_CLK,
respectively), and the QSPI flash data output (pin FLASH_IO1) is applied directly to SDO, until the
CSB pin is raised. When CSB is raised, the FLASH_CSB is also raised, terminating the data
transfer to the QSPI flash. The CPU is brought out of reset, and starts executing instructions at the
program start address.

This mode allows the QSPI flash to be programmed from the same SPI communication channel as
the housekeeping SPI, without the need for additional wiring to the QSPI flash chip.

There are two pass-thru modes. The first one corresponds to the primary SPI flash used by the
management SoC. The second one corresponds to a secondary optional SPI flash that can be
defined in the user project. The pass-thru mode allows a communications chip external to the
Caravel chip program either SPI flash chip from a host computer without requiring separate
external access to the SPI flash. Both pass-thru modes only connect to I/O pins 0 and 1 of the SPI
flash chips, and so must operate only in the 4-pin SPI mode. The user project may elect to operate
the SPI flash in quad mode using a 6-pin interface.

The purpose of the housekeeping SPI is to give access to certain system values and controls
independently of the CPU. The housekeeping SPI can be accessed even when the CPU is in full
reset. Some control registers in the housekeeping SPI affect the behavior of the CPU in a way that
potentially can be detrimental to the CPU operation, such as adjusting the trim value of the digital
frequency-locked loop generating the CPU core clock.

The housekeeping SPI can be accessed by the CPU from a running program by enabling the SPI
master, and enabling the bit that connects the internal SPI master directly to the housekeeping SPI.
This configuration then allows a program to read, for example, the user project ID of the chip. See
the SPI master description for details.

product_ID
The product ID for the Caravel harness chip is 0x10

register address 0x03

Functional Description (cont.)

Housekeeping SPI registers (continued)

CPU reset

CPU trap

The CPU reset bit puts the entire CPU into a reset state. This bit is not self-resetting and
must be set back to zero manually to clear the reset state.

If the CPU has stopped after encountering an error, it will raise the trap signal. The trap signal
can be configured to be read from a GPIO pin, but as the GPIO state is potentially unknowable,
the housekeeping SPI can be used to determine the true trap state.

CPU IRQ
This is a dedicated manual interrupt driving the CPU IRQ channel 6. The bit is not self-
resetting, so while the rising edge will trigger an interrupt, the signal must be manually set to
zero before it can trigger another interrupt.

PLL bypass
When enabled, the PLL bypass switches the clock source of the CPU from the PLL output to
the external CMOS clock (pin C9). The default value is 0x1 (CPU clock source is the external
CMOS clock).

register address 0x09 bit 0

register address 0x0A bit 0

register address 0x0B bit 0

register address 0x0C bit 0

page 10

PLL DCO enable

PLL enable

PLL trim

The 26-bit trim value can adjust the DCO frequency over a factor of about two from the slowest
(trim value 0x3ffffff) to the fastest (trim value 0x0). Default value is 0x3ffefff (slow trim, -1).
Note that this is a thermometer-code trim, where each bit provides an additional
(approximately) 250 ps delay (on top of a fixed delay of 4.67 ns). The fastest output frequency
is approximately 215 MHz while the slowest output frequency is approximately 90 MHz.

register address 0x08 bit 1

register address 0x08 bit 0

register addresses 0x0D (all bits) to 0x10 (lower 2 bits)

The 4-byte (32 bit) user project ID is metal-mask programmed on each project before tapeout,
with a unique number given to each user project.

register addresses 0x04 to 0x07user project ID

PLL output divider (2) register address 0x11 bit 5–3

This bit enables the digital frequency-locked-loop clock multiplier. The enable should be
applied prior to turning off the PLL bypass to allow the PLL time to stabilize before using it to
drive the CPU clock.

The PLL can be run in DCO mode, in which the feedback loop to the driving clock is removed,
and the system operates in free-running mode, driven by the ring oscillator which can be tuned
between approximately 90 to 200 MHz by setting the trim bits (see below).

PLL output divider register address 0x11 bits 2–0

The PLL output can be divided down by an integer divider to provide the core clock frequency.
This 3-bit divider can generate a clock divided by 2 to 7. Values 0 and 1 both pass the
undivided PLL clock directly to the core (and should not be used, as the processor does not
operate at these frequencies).

The PLL 90-degree phase output is passed through an independent 3-bit integer clock divider
and provided to the user project space as a secondary clock. Values 0 and 1 both pass the
undivided PLL clock, while values 2 to 7 pass the clock divided by 2 to 7, respectively.

Functional Description (cont.)

Housekeeping SPI registers (continued)

msb lsb

manufacturer_ID[7:0] (= 0x56)

Register
Address

product_ID (= 0x10)

0x00

0x01

7 6 5 4 3 2 1 0 comments

0x02

manufacturer_ID[11:8] (= 0x4)

0x03

0x08

0x09

0x0A

0x0B

0x0C

0x12

SPI status and control

read-only

read-only

read-only

unused/
undefined

read-onlyunused

PLL
DCO

enable
default 0x02

PLL
bypass default 0x01

CPU
IRQ

CPU
reset

CPU
trap

unused

unused

unused

default 0x00

default 0x00

Table 9 Housekeeping SPI register map

0x0D–
0x10

0x11

unused PLL
enable

unused default 0x12

default
0x3ffefff

page 11

PLL feedback divider register address 0x12 bits 4–0
The PLL operates by comparing the input clock (pin C9) rate to the rate of the PLL clock
divided by the feedback divider value (when running in PLL mode, not DCO mode). The
feedback divider must be set such that the external clock rate multiplied by the feedback
divider value falls between 90 and 214 MHz (preferably centered on this range, or
approximately 150 MHz). For example, when using an 8 MHz external clock, the divider should
be set to 19 (19 * 8 = 152). The DCO range and the number of bits of the feedback divider
implies that the external clock should be no slower than around 4 to 5 MHz.

0x04–
0x07

unused

user_project_ID (unique value per project) read-only

unused default 0x04PLL feedback divider

PLL output dividerPLL output divider 2

DCO trim (26 bits) (= 0x3ffefff)

Functional Description (cont.)

QSPI Flash interface flash io0–1 (pins D10 to D9), flash csb (pin C10), and
flash clk (pin D8)

The QSPI flash controller is automatically enabled on power-up, and will immediately initiate a read
sequence in single-bit mode with pin "flash io0" acting as SDI (data from flash to CPU) and pin
"flash io1" acting as SDO (data from CPU to flash). Protocol is according to, e.g., Cypress
S25FL256L.

012345678910111213141516171819202122232425262728293031 bit

0x2d0000000x2d0000010x2d0000020x2d000003 address

value

reg_spictrl

(see below)

mask bit description

31

(unused) (unused)

22–20
19–16
11–8
5
4
3–0

default

1 QSPI flash interface enable
0 Access mode (see table below)
8 Dummy clock cycle count

Bit-bang OE FLASH_IO3–FLASH_IO0
Bit-bang FLASH_CSB
Bit-bang FLASH_CLK
Bit-bang value FLASH_IO3–FLASH_IO0

0
0
0
0

0xFF
0xAB

Mode bit reset
Release from deep power-down

0x03 Read w/3 byte address
0x00
0x00
0x00

Program start address (0x10000000) (3 bytes) (upper byte is ignored)

The initial SPI instruction sequence is as follows:

The QSPI flash continues to read bytes, either sequentially on the same command, or issuing a new
read command to read from a new address.

The behavior of the QSPI flash controller can be modified by changing values in the register below:

Access mode bit selection (bits 22–20):

0
1

000
001

Single bit per clock
Single bit per clock (same as 0)

The SPI flash can be accessed by bit banging when the enable is off. To do this from the CPU, the
entire routine to access the SPI flash must be read into SRAM and executed from the SRAM.

Table 10

page 12

(see below)

All additional modes (QSPI dual and quad modes) cannot be used, as the management SoC only
has pins for data lines 0 and 1.

Interrupt IRQ (pin E5)

The interrupt pin triggers the CPU interrupt channel 5.

Functional Description (cont.)

External clock

UART ser tx (pin F7) and ser rx (pin E7)

clock (pin C9)

The UART is a standard 2-pin serial interface that can communicate with most similar interfaces
at a fixed baud rate. Although the UART operates independently of the CPU, data transfers are
blocking operations which will generate CPU wait states until the data transfer is completed.

012345678910111213141516171819202122232425262728293031 bit

0x200000000x200000010x200000020x20000003 address

value

reg_uart_clkdiv

The behavior of the UART can be modified by changing values in the registers below:

Table 11

012345678910111213141516171819202122232425262728293031 bit

0x200000040x200000050x200000060x20000007 address

value

reg_uart_data

(unused, value is 0x0)

Table 12

UART clock divider

The entire 32 bit word encodes the number of CPU core cycles to divide down to get the UART
data bit rate (baud rate). The default value is 1.

Example: If the external crystal is 12.5MHz, then the core CPU clock runs at 100MHz.
To get 9600 baud, 100E6 / 9600 = 10417 (hex value 0x28b1).

Writing a value to this register will immediately start a data transfer on the SER_TX pin. If a
UART write operation is pending, then the CPU will be blocked with wait states until the transfer
is complete before starting the new write operation. This makes the UART transmit a relatively
expensive operation on the CPU, but avoids the necessity of buffering data and checking for
buffer overflow. Reading a value from this register returns 255 (0xff) if no valid data byte is in
the receive buffer, and returns the value of the receive buffer otherwise, and clears the receive
buffer for additional reads. Note that there is no FIFO associated with the UART.

page 13

The external clock functions as the source clock for the entire processor. On start-up, the processor
runs at the same rate as the external clock. The processor program may access the housekeeping
SPI to set the processor into PLL mode or DCO free-running mode. In PLL mode, the external
clock is multiplied up by the feedback divider value to obtain the core clock. In DCO mode, the
processor is driven by a trimmed free-running ring oscillator.

012345678910111213141516171819202122232425262728293031 bit

0x200000080x200000090x2000000a0x2000000b address

value

reg_uart_enable

(unused, value is 0x0)

Table 13

The UART must be enabled to run (default disabled)

Functional Description (cont.)

SPI Master

012345678910111213141516171819202122232425262728293031 bit

0x240000000x240000010x240000020x24000003 address

value(undefined, reads zero)

reg_spi_config

SPI master configuration

Table 14

012345678910111213141516171819202122232425262728293031 bit

0x240000040x240000050x240000060x24000007 address

value(undefined, reads zero)

reg_spi_data

SPI data

Table 15

spi sdi (pin E9), spi csb (pin E8), spi sck (pin F8), and spi sdo (pin F9)

The byte at 0x24000004 holds the SPI data (either read or write)

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bits 7–0

SPI interrupt enable

SPI system enable

stream

mode

invert SCK

invert CSB

MLB

prescaler

0 = apply/release CSB separately for each byte
1 = apply CSB until stream bit is cleared (manually)
0 = read and change data on opposite SCK edges
1 = read and change data on the same SCK edge
0 = normal SCK
1= inverted SCK
0 = normal CSB (low is active)
1 = inverted CSB (high is active)

count (in master clock cycles) of 1/2 SCK cycle

0 = msb first
1 = lsb first

0 = SPI disabled
1 = SPI enabled

0 = interrupt disabled
1 = interrupt enabled

(default value 2)

Configuration bit defintions

All configuration bits other than the prescaler default to value zero.

Reading to and writing from the SPI master is simply a matter of setting the required values
in the configuration register, and writing values to or reading from reg_spi_data. The protocol
is similar to the UART. A write operation will stall the CPU if an incomplete SPI transmission is
still in progress. Reading from the SPI will also stall the CPU if an incomplete SPI transmission
is still in progress. There is no FIFO buffer for data. Therefore SPI reads and writes are
relatively expensive operations that tie up the CPU, but will not lose or overwrite data. Note that
there is no FIFO associated with the SPI master.

page 14

Bit 15 Housekeeping 0 = SPI master connected to external pins
1 = SPI master connected directly to housekeeping SPI

Functional Description (cont.) page 15

Counter-Timer 0

012345678910111213141516171819202122232425262728293031 bit

0x220000000x220000010x220000020x22000003 address

value(undefined, reads zero)

reg_timer0_config

Timer config

Table 16

012345678910111213141516171819202122232425262728293031 bit

0x22000004 address

value

reg_timer0_valueTable 17

012345678910111213141516171819202122232425262728293031 bit

0x220000080x220000090x2200000a0x2200000b address

value

reg_timer0_dataTable 18

Timer value

0x220000050x220000060x22000007

Timer data

Timer configuration bit definitions

Bit 3

Bit 2

Bit 1

Bit 0

Counter/timer enable 1 = counter/timer enabled
0 = counter/timer disabled

Oneshot mode 1 = oneshot mode
0 = continuous mode

Updown 1 = count up
0 = count down

Interrupt enable 1 = interrupt enabled
0 = interrupt disabled

The counter/timer is a general-purpose 32-bit adder and subtractor that can be configured for a
variety of timing functions including one-shot counts, continuous timing, and interval interrupts. At a
core clock rate of 80MHz, the longest single time interval is 26.84 seconds.

The value in this register is the current value of the counter. Value is 32 bits. The
register is read-write and can be used to reset the timer.

The value in this register is the reset value for the comparator.

Note: When the counter/timer is disabled, the reg_timer_value remains unchanged, which puts the
timer in a hold state. When re-enabled, counting resumes. To reset the timer, write zero to the
reg_timer_value register.

When enabled, the counter counts up or down from the value set in reg_timer_value at the time
the counter is enabled. If counting up, the count continues until the counter reaches reg_timer_data.
If counting down, the count continues until the counter reaches zero.

In one-shot mode, the counter triggers an interrupt (IRQ channel 10; see next page) when it
reaches the value of reg_timer_data (up count) or zero (down count), and stops.

In continuous mode, the counter resets to zero if counting up, and resets to the value in
reg_timer_data if counting down, and the count continues immediately. If the interrupt is enabled,
the counter will generate an interrupt on every cycle.

page 16

Counter-Timer 1

012345678910111213141516171819202122232425262728293031 bit

0x230000000x230000010x230000020x23000003 address

value(undefined, reads zero)

reg_timer1_config

Timer config

Table 19

012345678910111213141516171819202122232425262728293031 bit

0x23000004 address

value

reg_timer1_valueTable 20

012345678910111213141516171819202122232425262728293031 bit

0x230000080x230000090x2300000a0x2300000b address

value

reg_timer1_dataTable 21

Timer value

0x230000050x230000060x23000007

Timer data

Timer configuration bit definitions

Bit 3

Bit 2

Bit 1

Bit 0

Counter/timer enable 1 = counter/timer enabled
0 = counter/timer disabled

Oneshot mode 1 = oneshot mode
0 = continuous mode

Updown 1 = count up
0 = count down

Interrupt enable 1 = interrupt enabled
0 = interrupt disabled

The value in this register is the current value of the counter. Value is 32 bits. The
register is read-write and can be used to reset the timer.

The value in this register is the reset value for the comparator.

Note: When the counter/timer is disabled, the reg_timer_value remains unchanged, which puts the
timer in a hold state. When re-enabled, counting resumes. To reset the timer, write zero to the
reg_timer_value register.

When enabled, the counter counts up or down from the value set in reg_timer_value at the time
the counter is enabled. If counting up, the count continues until the counter reaches reg_timer_data.
If counting down, the count continues until the counter reaches zero.

In one-shot mode, the counter triggers an interrupt (IRQ channel 11; see next page) when it
reaches the value of reg_timer_data (up count) or zero (down count), and stops.

In continuous mode, the counter resets to zero if counting up, and resets to the value in
reg_timer_data if counting down, and the count continues immediately. If the interrupt is enabled,
the counter will generate an interrupt on every cycle.

Functional Description (cont.)

The second counter/timer is functionally identical to the first, with different memory mapped
addresses for the controls, as shown in the tables below.

Functional Description (cont.)

Interrupts (IRQ)

The interrupt vector is set to memory addres 0 (bottom of SRAM). The program counter switches to
this location when an interrupt is received. To enable interrupts, it is necessary to copy an interrupt
handler to memory location 0. The PicoRV32 defines 32 IRQ channels, of which the Caravel chip
uses only a handful, as described in the table below. All IRQ channels not in the list below always
have value zero.

Table 19 CPU IRQ channel definitions

IRQ channel description

5
6
7

The Caravel PicoRV32 implementation does not enable IRQ QREGS (see PicoRV32 description).

The handling of interrupts is beyond the scope of this document (see RISC-V instruction set
description). All interrupts are masked and must be enabled in software.

IRQ external pin (pin E5)
Housekeeping SPI IRQ
Assignable interrupt (see Table 7)

4 UART data available

9 SPI master data available, when enabled (see Table 14)
10 Timer 0 expired, when enabled (see Table 16)

page 17

11 Timer 1 expired, when enabled (see Table 19)

Management area SRAM

The Caravel chip has an on-board memory of 256 words of width 32 bits. The memory is located
at address 0 (zero). There are additional blocks of memory above this area, size and location TBD.

Storage area SRAM

The Caravel chip has a “storage area” SRAM block that is auxiliary space that can be used by
either the management SoC or the user project, through the wishbone bus interface. The storage
area is connected into the user area 2 power supply, and so is nominally considered to be part of
the user area.

The storage area may be used as an experimentation area for OpenRAM, so for any user project
making use of this space, the user should notify efabless of their requirement for the size and
configuration of the SRAM block.

Functional Description (cont.) page 18

Logic Analyzer

User area wishbone base

Functional Description (cont.)

Caravel management SoC simplified block diagram

caravel picoRV32

GPIO
(mprj_io)

bankOE

I/O

2

27
(27 pins)

housekeeping
spi

SCK

SDI

SDO

CSB

clock

VDDIO

VCCD

VSS

clock
multiplier

PLL

pll_bypass

clk
enable trim

POR

reset

manual
reset

IRQ

SRAM

QSPI flash I/O

Tx Rx

UART

standalone SPI
controller

1k x 32

CSBCLK IO0 IO1

QSPI flash master UART

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
GPIO8
GPIO9
GPIO10
GPIO11
GPIO12

GPIO36

CSBCLK SDO SDI

SPI master

SPI master

counter/timer 0

counter/timer 1

. .
 .

serial data
serial clock

reset

caravel mgmt core

Logic analyzer Secondary SRAM

user project area

housekeeping SPI access

+ (TBD)

power control

4

pr
im

ar
y

cl
oc

k

se
co

nd
ar

y
cl

oc
k

re
se

t

Programming

Additional references

The RISC-V architecture has a gcc compiler. The best reference for getting the correct cross-
compiler version is the PicoRV32 source at

 http://github.com/cliffordwolf/picorv32.

Specifically, see the top-level README.md file section “Building a pure RV32I Toolchain.”

For programming examples specifically for the Caravel chip (assuming a correct installation of a
RISC-V gcc toolchain as described above), see

http://github.com/efabless/caravel

The directory verilog/dv contains example source code to program the Ravenna chip along with
the header file defs.h that defines the memory-mapped locations as described throughout this
text.

The verilog/dv directory contains a Makefile that compiles hex files and runs simulations of a
number of test programs that exercise various features of the chip.

Additional documentation exists on the same site for the provided demonstration circuit board and
driver software.

See http://riscv.org/
http://riscv.org/software-status/

page 19

Memory Mapped I/O summary by address

Address (bytes) Function

0x00 00 00 00 Flash SPI / overlaid SRAM (4k words) start of memory block

0x10 00 00 00 Flash SPI start of program block

0x21 00 00 00 GPIO input/output (bit 16/bit 0)
0x21 00 00 04 GPIO output enable (1 = output, 0 = input)
0x21 00 00 08 GPIO pullup enable (1 = pullup, 0 = none)
0x21 00 00 0c GPIO pulldown enable (1 = pulldown, 0 = none)

Program to run starts here on reset.

1 general-purpose digital, management area only

Efabless Caravel PicoRV32 SoC page 20

0x00 00 3f ff End of SRAM

0x1f ff ff ff Maximum SPI flash addressable space (32MB)
0x10 ff ff ff Maximum SPI flash addressable space (16MB) with QSPI 3-byte addressing

UART clock divider select (system clock freq. / baud rate)0x20 00 00 00
UART data (returns 0xffffffff if receiver buffer is empty)0x20 00 00 04
UART enable0x20 00 00 08

0x22 00 00 00 Counter/Timer 0 configuration register (lower 4 bits)

0x22 00 00 04 Counter/Timer 0 current value

0x22 00 00 08 Counter/Timer 0 reset value

bit 0 = enable (0 = hold, 1 = count)

Set or read the 32-bit current value.

Set or read the 32-bit reset (down-count) or compare (up-count) value.

bit 1 = oneshot (0 = continuous count, 1 = one-shot count)
bit 2 = updown (0 = count down, 1 = count up)
bit 3 = irq enable (0 = disabled, 1 = trigger IRQ channel 10 on timeout)

0x23 00 00 00 Counter/Timer 1 configuration register (lower 4 bits)

0x23 00 00 04 Counter/Timer 1 current value

0x23 00 00 08 Counter/Timer 1 reset value

bit 0 = enable (0 = hold, 1 = count)

Set or read the 32-bit current value.

Set or read the 32-bit reset (down-count) or compare (up-count) value.

bit 1 = oneshot (0 = continuous count, 1 = one-shot count)
bit 2 = updown (0 = count down, 1 = count up)
bit 3 = irq enable (0 = disabled, 1 = trigger IRQ channel 11 on timeout)

0x24 00 00 00 SPI master configuration register

0x24 00 00 04 SPI master data register (low 8 bits)

bits 0–7 = prescaler (core clock / (prescaler + 1) = SPI clock rate / 2) (default 2)
bit 8 = mlb (0 = msb first, 1 = lsb first) (default 0)
bit 9 = invcsb (0 = csb active low, 1 = csb active high) (default 0)
bit 10 = invsck (0 = normal sck, 1 = inverted sck) (default 0)
bit 11 = mode (0 = read/write on opposite sck edge, 1 = same edge) (default 0)
bit 12 = stream (0 = raise csb after each byte, 1 = keep csb low until stream bit cleared)
bit 13 = enable (0 = SPI master disabled, 1 = SPI master enabled)
bit 14 = irq enable (0 = disabled, 1 = SPI read valid triggers interrupt channel 9)

Write data to send to low byte or read received data from low byte.

bit 15 = housekeeping (0 = disconnected, 1 = connected)

Address (bytes) Function

Memory Mapped I/O summary by address (continued)

Efabless Caravel PicoRV32 SoC page 21

0x25 00 00 00 Logic Analyzer Data 0
0x25 00 00 04 Logic Analyzer Data 1
0x25 00 00 08 Logic Analyzer Data 2
0x25 00 00 0c Logic Analyzer Data 3

0x25 00 00 10 Logic Analyzer Enable 0
0x25 00 00 14 Logic Analyzer Enable 1
0x25 00 00 18 Logic Analyzer Enable 2
0x25 00 00 1c Logic Analyzer Enable 3

0x26 00 00 00 User project area GPIO data (L)
0x26 00 00 04 User project area GPIO data (H)
0x26 00 00 08 User project area GPIO data transfer (bit 0, auto-zeroing)
0x26 00 00 0c

0x26 00 00 a0

. . .

User project area GPIO mprj_io[0] configure

User project area GPIO mprj_io[37] configure

User project area GPIO power[0] configure0x26 00 00 a4
0x26 00 01 b4 User project area GPIO power[3] configure These are currently undefined/unused.

bits 10–12 = digital mode (see below) (default 001)

bit 0 = management control enable (0 = user control, 1 = management control) (default 1)
bit 1 = output disable (0 = output enabled, 1 = output disabled) (default 1)
bit 2 = hold override value (value = value during hold mode) (default 0)
bit 3 = input disable (0 = input enabled, 1 = input disabled) (default 0)
bit 4 = IB mode select (0 = , 1 =)
bit 5 = analog bus enable (0 = disabled, 1 = enabled)
bit 6 = analog bus select (0 = , 1 =)
bit 7 = analog bus polarity (0 = , 1 =)
bit 8 = slow slew (0 = fast slew, 1 = slow slew) (default 0)
bit 9 = input voltage trip point select (0 = , 1 =)

Digital mode bits Digital mode description

bit 12 11 10
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0x2d 00 00 00 QSPI controller config

bit 31 MEMIO enable (reset = 1) 0 = bit-bang mode
bit 22 DDR enable
bit 21 QSPI enable
bit 20 CRM enable
bits 19-16 Read latency cycles
bits 11-8 I/O output enable bits (bit bang mode)
bit 5 Chip select line (bit bang mode)
bit 4 Serial clock line (bit bang mode)
bits 3-0 Data bits (bit bang mode)

Note: These cannot be used due
to the limited number of data pins.

Address (bytes) Function

Efabless Caravel PicoRV32 SoC
Memory Mapped I/O summary by address (continued)

page 22

0x2f 00 00 00 PLL clock output destination (low bit)
0 =
1 =

0x2f 00 00 04 Trap output destination (low bit)
0 =
1 =

0x2f 00 00 08 IRQ 7 input source (low bit)
0 =
1 =

none
GPIO

none
GPIO

GPIO
none

The PLL clock (crystal oscillator clock
multiplied up by PLL) can be viewed on
the GPIO pin. The GPIO pin cannot
be used as general-purpose I/O when selected
for PLL clock output. It is unlikely that a
full-speed (100MHz) clock will be able to
toggle the GPIO at full swing, but is detectable.
The CPU fault state (trap) can be viewed at
the GPIO pin as a way to monitor the CPU
trap state externally.

The GPIO input can be used as an IRQ event
source and passed to the CPU through IRQ
channel 7. When used as an IRQ source,
the GPIO pin must be configured as an input.

0x30 00 00 00 User area base A user project may define additional wishbone slave modules starting
at this address.

0x80 00 00 00
0x90 00 00 00
0xa0 00 00 00
0xb0 00 00 00

QSPI controller
Storage area SRAM
Any slave 1
Any slave 2

Efabless Caravel PicoRV32 SoC page 23

Supplementary material (to be incorporated into the documentation text):

“Caravel” harness chip

management side user side

vccd

vccd1

vccd2

vdda

vdda1

vdda2
vddio

vcchib

power domain splits

1.8V

3.3V

3.3V

1.8V

3.3V

3.3V

1.8V
management

SoC

3.3V
reg.

1.8V
reg.

gpio

enable

enable

5V USB supply

3.3V
reg.

1.8V
reg.

suggested board-level
connections (jumpered)

ext.
1.8V

ext.
3.3V

“Caravel” harness chip

GPIO pads

Management SoC

flash
io0 gpioflash

io1
flash
clk

flash
csb

GPIO
configure

mprj
io[0]

mprj
io[1]

mprj
io[2]

mprj
io[36]

mprj
io[35]

. . .

. . .

clock
resetn

data

GPIO
I/O

…

i/o

in/out/oeb

user I/O signals (in, out, oeb)

management I/O selectable management or user I/O

Efabless Caravel PicoRV32 SoC

Supplementary material (to be incorporated into the documentation text):

page 24

Single GPIO pad structure

pad

ho
ld

 o
ve

rr
id

e
sl

ow
 s

le
w

tr
ip

 p
oi

nt
 s

el
ec

t
in

pu
t d

is
ab

le
IB

 m
od

e
se

le
ct

an
al

og
 e

na
bl

e
an

al
og

 s
el

ec
t

an
al

og
 p

ol
ar

ity
di

gi
ta

l m
od

e

ou
tp

ut
 e

nb

ou
tp

ut

in
pu

t

load clock
resetn

data in data out

outenb
output

input

shift register

. . .

. . .

ou
tp

ut
 e

nb

ou
tp

ut
in

pu
t

user
signals

management
signals

3

mgmt_ena

Used for pad 0 (JTAG) and pad 1 (SDO)

Single GPIO pad structure

pad

ho
ld

 o
ve

rr
id

e
sl

ow
 s

le
w

tr
ip

 p
oi

nt
 s

el
ec

t
in

pu
t d

is
ab

le
IB

 m
od

e
se

le
ct

an
al

og
 e

na
bl

e
an

al
og

 s
el

ec
t

an
al

og
 p

ol
ar

ity
di

gi
ta

l m
od

e

ou
tp

ut
 e

nb

ou
tp

ut

in
pu

t

load clock
resetn

data in data out

input/output

shift register

. . .

. . .

ou
tp

ut
 e

nb

ou
tp

ut

in
pu

t user
signals

management
signals

3 mgmt_ena

Used for all pads except 0 and 1

out_enb

Efabless Caravel PicoRV32 SoC

Supplementary material (to be incorporated into the documentation text):

page 25

3.2 x 5.3 mm, 62 pins (20, 20, 11, and 11)

User project space

Management SoCStorage

JTAG

SDO

SDI

CSB

SCK

ser_rx

ser_tx

irq

flash2 csb

flash2 sck

flash2 io0

flash2 io1

These pins have
a dedicated function
on startup, but can
be programmed to
any use by the user
for the user project.

All connections are
to the FTDI chip and
should be jumpered
to allow them to be
disconnected from
the FTDI and
available to the user
if needed.

These pins can be
used for a user
project that has its
own flash memory.
They can be
accessed with the
"pass-thru" mode
of the housekeeping
SPI for flash
(re)programming.

The user may
repurpose these for
general-purpose I/O.

vddio

vddio

mprj
io[36]

mprj
io[35]

vccd

mprj
io[34]

mprj
io[33]

mprj
io[32]

mprj
io[31]

mprj
io[30]

mprj
io[29]

mprj
io[28]

mprj
io[27]

mprj
io[26]

mprj
io[25]

mprj
io[24]

vccd2

vdda2

vssd2

vssa2

mprj
io[37]

mprj
io[23]

mprj
io[22]

mprj
io[21]

mprj
io[20]

mprj
io[19]

mprj
io[18]

mprj
io[17]

mprj
io[16]

mprj
io[15]vssa1vssio

mprj
io[0]

mprj
io[1]

mprj
io[2]

vssa1

mprj
io[3]

mprj
io[4]

mprj
io[5]

mprj
io[6]

mprj
io[7]

mprj
io[8]

mprj
io[9]

mprj
io[10]

mprj
io[11]

mprj
io[14]

mprj
io[13]

mprj
io[12]

vdda1

vccd1

vssd1

vdda1

flash
io0 gpioflash

io1
flash
clk

flash
csbclockresetb vddavssd vssiovssa

Efabless Caravel PicoRV32 SoC

Supplementary material (to be incorporated into the documentation text):

page 26

flash
io0 gpioflash

io1
flash
clk

flash
csbclockresetb

vddio

vddavssd

Voltage clamp arrangement

HV VDDIO->VSSIO

LV VCCD2->VSSD2

HV VDDA2->VSSA2

HV VDDA2->VSSA2

LV VCCD2->VSSD2

LV VCCD->VSSD

BB VSSD->VSSD2

LV VCCD1->VSSD1

HV VDDA1->VSSA1

HV VDDA1->VSSA1

LV VCCD1->VSSD1
BB VSSD->VSSD1

HV VDDIO->VSSIO

H
V

 V
D

D
A

->
V

S
S

A

H
V

 V
D

D
A

->
V

S
S

A

B
B

 V
S

S
D

->
V

S
S

IO

BB VSSD2->VSSIO

BB VSSD1->VSSIO

LV
 V

C
C

H
IB

->
V

S
S

IO

Clamps needed

HV VDDIO * 4
HV VDDA * 2
HV VDDA1 * 2
HV VDDA2 * 2

LV VCCD * 2
LV VCCD1 * 2
LV VCCD2 * 2
LV VCCHIB * 2

BB VSSD, VSSD1

BB VSSD, VSSD2

BB VSSD1, VSSIO

BB VSSD2, VSSIO

4 pads

10 pads
w/HV

w/LV

vssio

H
V

 V
D

D
IO

->
V

S
S

IO

H
V

 V
D

D
IO

->
V

S
S

IO

Redundant power pins:

VDDIO x2
VSSIO x2

H
V

 V
D

D
A

1-
>

V
S

S
A

1

HV VDDA1->VSSA1

(VDDIO domain powers all
output drivers)

VDDA1 x2
VSSA1 x2

(High current user applications
can use this domain)

mprj
io[23]

mprj
io[22]

mprj
io[21]

mprj
io[20]

mprj
io[19]

mprj
io[18]

mprj
io[17]

mprj
io[16]

mprj
io[15]vssa1

vddio

mprj
io[0]

mprj
io[1]

mprj
io[2]

vssa1

mprj
io[3]

mprj
io[4]

mprj
io[5]

mprj
io[6]

mprj
io[7]

mprj
io[8]

mprj
io[9]

mprj
io[10]

mprj
io[11]

mprj
io[14]

mprj
io[13]

mprj
io[12]

vdda1

vccd1

vssd1

vdda1

mprj
io[36]

mprj
io[35]

vccd

vssa

mprj
io[34]

mprj
io[33]

mprj
io[32]

mprj
io[31]

mprj
io[30]

mprj
io[29]

mprj
io[28]

mprj
io[27]

mprj
io[26]

mprj
io[25]

mprj
io[24]

vccd2

vdda2

vssd2

vssa2

vssio

mprj
io[37]

Efabless Caravel PicoRV32 SoC

Supplementary material (to be incorporated into the documentation text):

page 27

Bond plan Bumps at 0.5mm spacing, 350um diameter

45 signal pins

14 unique power pins

4 redundant power pins

59 pins

60 pad positions (6 x 10 array)

Unique power domains:

vddio
vdda
vccd

vdda1
vccd1

vdda2
vccd2

vssio
vssa
vssd

vssa1
vssd1

vssa2
vssd2

Combine these into one net
and route to center bumps

Total: 56 pins

A B C D E F

1

2

3

4

5

6

7

8

9

10

flash
io0

gpioflash
io1

flash
clk

flash
csb

mprj
io[0]

mprj
io[1]

mprj
io[2]

mprj
io[37]

mprj
io[36]

clockresetb

vddio

vdda

vssa1

vccd

vssa

mprj
io[3]

mprj
io[4]

mprj
io[5]

mprj
io[6]

mprj
io[7]

mprj
io[8]

mprj
io[9]

mprj
io[10]

mprj
io[11]

mprj
io[35]

mprj
io[33]

mprj
io[32]

mprj
io[31]

mprj
io[30]

mprj
io[29]

mprj
io[28]

mprj
io[27]

mprj
io[26]

mprj
io[25]

mprj
io[24]

mprj
io[23]

mprj
io[22]

mprj
io[21]

mprj
io[20]

mprj
io[19]

mprj
io[18]

mprj
io[17]

mprj
io[16]

mprj
io[15]

mprj
io[14]

mprj
io[13]

mprj
io[12]

vssd

vdda1

vccd1vccd2

vdda2

vssa1

vssd2

vssa2 vdda1

vddio

vssio

vssio

Pinout

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10

C1
C2
C3
C4

C7
C8
C9
C10

D1
D2
D3
D4

D7
D8
D9
D10

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10

mprj_io[23]
vccd2
mprj_io[25]

mprj_io[26]

mprj_io[27]

mprj_io[28]

mprj_io[29]

mprj_io[30]

mprj_io[31]
mprj_io[32]

mprj_io[33]

mprj_io[34]

mprj_io[35]

mprj_io[36]

mprj_io[22]
mprj_io[21]

mprj_io[20]
mprj_io[19]

mprj_io[18]
mprj_io[17]

mprj_io[16]

mprj_io[15]

mprj_io[14]

mprj_io[13]

mprj_io[12]

mprj_io[11]/flash2 io1

mprj_io[10]/flash2 io0

mprj_io[9]/flash2 sck

mprj_io[8]/flash2 csb

mprj_io[7]/irq

mprj_io[6]/ser_tx

mprj_io[5]/ser_rx

mprj_io[4]/SCK

mprj_io[3]/CSB

mprj_io[2]/SDI

mprj_io[1]/SDO

mprj_io[0]/JTAG

vccd

vssa2

vssd2

resetb

mprj_io[24]

vssio/vssa/vssd

flash clk

clock
flash csb

vdda1

vssa1

flash io1
flash io0

vssd1

gpio

vccd1

vdda

JTAG

SDO

SDI

CSB

SCK

ser_rx

ser_tx

irq

flash2 csb

flash2 sck

flash2 io0

flash2 io1

NOTE: Viewed from top

mprj
io[34]

vssd1

mprj_io[37]

vddio
C5
C6

D5
D6

vssio/vssa/vssd

vssio/vssa/vssd
vssio/vssa/vssd

vdda2

Efabless Caravel PicoRV32 SoC

Supplementary material (to be incorporated into the documentation text):

page 28

PCB example route pattern

Via in center connects center ground pads

Signal pad

Power pad

Ground pad

PCB via

Absolute maximum ratings

Supply voltage (VDDIO): 3.31.8 5.0

Core digital supply voltage
(VCCD):

1.81.62 1.98

Junction temperature: 27–40

VOH

VOL

minimum typical maximum units

°C

V

V

100

0.8 ·VDDIO

0.4

V

V

Management area power TBD mW

page 29

Storage area power TBD mW

Errata

Known errors in the efabless Caravel harness version 1:

page 30

There are no known errors in Caravel version 1 at this time.

Documentation errata:

There are no known errors in the Caravel documentation at this time.

