{"cells":[{"metadata":{},"cell_type":"markdown","source":"<p  style=\"text-align: center;\"><font size=\"12\"><b>PIMA INDIANS & DIABETES</b></font></p>\n<p  style=\"text-align: center;\"><font size=\"4\"><b>AN EXPLORATORY DATA ANALYSIS</b></font></p>\n\n### ABOUT THE DATASET\nThe datasets consists of several medical predictor variables and one target variable, **Outcome**. Predictor variables includes the number of pregnancies the patient has had, their **BMI**, **insulin level**, **age**, and so on.\n\n### CONTEXT\nThis dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to  predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. All patients here are females at least 21 years old of Pima Indian heritage.\n\n"},{"metadata":{},"cell_type":"markdown","source":"<h3 class=\"list-group-item list-group-item-action active\" data-toggle=\"list\"  role=\"tab\" aria-controls=\"home\">Table of Contents</h3>\n\n* <a href='#1'>I. LOAD LIBRARIES & PACKAGES</a>\n\n* <a href='#2'>II. DATA OVERVIEW & INSIGHTS</a>\n\n* <a href='#3'>III. MISSING DATA & UNIVARIATE ANALYSIS</a>\n    \n* <a href='#4'>IV. EXPLORATORY DATA ANALYSIS</a>\n    * <a href='#4a'>IVa. Define Plot Functions</a> \n    * <a href='#4b'>IVb. Bivariate Exploration</a> "},{"metadata":{},"cell_type":"markdown","source":"# <a id='1'>I. LOAD PACKAGES & LIBRARIES</a>"},{"metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","trusted":true},"cell_type":"code","source":"# This Python 3 environment comes with many helpful analytics libraries installed\n# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n# For example, here's several helpful packages to load\n\n!pip install seaborn==0.11.0\n\nimport numpy as np # linear algebra\nimport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\nimport seaborn as sns\nimport matplotlib.pyplot as plt\nimport plotly.offline as py\nimport plotly.express as px\nimport missingno as msno\nimport plotly.graph_objects as go\nimport plotly.figure_factory as ff\nfrom plotly.subplots import make_subplots\n\n# Input data files are available in the read-only \"../input/\" directory\n# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n\nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n    for filename in filenames:\n        print(os.path.join(dirname, filename))\n\n# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session","execution_count":1,"outputs":[{"output_type":"stream","text":"Collecting seaborn==0.11.0\n  Downloading seaborn-0.11.0-py3-none-any.whl (283 kB)\n\u001b[K     |████████████████████████████████| 283 kB 413 kB/s eta 0:00:01\n\u001b[?25hRequirement already satisfied: pandas>=0.23 in /opt/conda/lib/python3.7/site-packages (from seaborn==0.11.0) (1.1.5)\nRequirement already satisfied: matplotlib>=2.2 in /opt/conda/lib/python3.7/site-packages (from seaborn==0.11.0) (3.2.1)\nRequirement already satisfied: numpy>=1.15 in /opt/conda/lib/python3.7/site-packages (from seaborn==0.11.0) (1.18.5)\nRequirement already satisfied: scipy>=1.0 in /opt/conda/lib/python3.7/site-packages (from seaborn==0.11.0) (1.4.1)\nRequirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (2.8.1)\nRequirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (2.4.7)\nRequirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (0.10.0)\nRequirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (1.2.0)\nRequirement already satisfied: numpy>=1.15 in /opt/conda/lib/python3.7/site-packages (from seaborn==0.11.0) (1.18.5)\nRequirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from cycler>=0.10->matplotlib>=2.2->seaborn==0.11.0) (1.14.0)\nRequirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (2.8.1)\nRequirement already satisfied: pytz>=2017.2 in /opt/conda/lib/python3.7/site-packages (from pandas>=0.23->seaborn==0.11.0) (2019.3)\nRequirement already satisfied: numpy>=1.15 in /opt/conda/lib/python3.7/site-packages (from seaborn==0.11.0) (1.18.5)\nRequirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from cycler>=0.10->matplotlib>=2.2->seaborn==0.11.0) (1.14.0)\nRequirement already satisfied: numpy>=1.15 in /opt/conda/lib/python3.7/site-packages (from seaborn==0.11.0) (1.18.5)\nInstalling collected packages: seaborn\n  Attempting uninstall: seaborn\n    Found existing installation: seaborn 0.10.0\n    Uninstalling seaborn-0.10.0:\n      Successfully uninstalled seaborn-0.10.0\nSuccessfully installed seaborn-0.11.0\n\u001b[33mWARNING: You are using pip version 20.3.1; however, version 21.0.1 is available.\nYou should consider upgrading via the '/opt/conda/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n/kaggle/input/pima-indians-diabetes-database/diabetes.csv\n","name":"stdout"}]},{"metadata":{},"cell_type":"markdown","source":"# <a id='2'>II. DATA OVERVIEW & INITIAL INSIGHTS</a>"},{"metadata":{"trusted":true},"cell_type":"code","source":"df = pd.read_csv('../input/pima-indians-diabetes-database/diabetes.csv')\ndf.head()","execution_count":2,"outputs":[{"output_type":"execute_result","execution_count":2,"data":{"text/plain":"   Pregnancies  Glucose  BloodPressure  SkinThickness  Insulin   BMI  \\\n0            6      148             72             35        0  33.6   \n1            1       85             66             29        0  26.6   \n2            8      183             64              0        0  23.3   \n3            1       89             66             23       94  28.1   \n4            0      137             40             35      168  43.1   \n\n   DiabetesPedigreeFunction  Age  Outcome  \n0                     0.627   50        1  \n1                     0.351   31        0  \n2                     0.672   32        1  \n3                     0.167   21        0  \n4                     2.288   33        1  ","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Pregnancies</th>\n      <th>Glucose</th>\n      <th>BloodPressure</th>\n      <th>SkinThickness</th>\n      <th>Insulin</th>\n      <th>BMI</th>\n      <th>DiabetesPedigreeFunction</th>\n      <th>Age</th>\n      <th>Outcome</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>6</td>\n      <td>148</td>\n      <td>72</td>\n      <td>35</td>\n      <td>0</td>\n      <td>33.6</td>\n      <td>0.627</td>\n      <td>50</td>\n      <td>1</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>85</td>\n      <td>66</td>\n      <td>29</td>\n      <td>0</td>\n      <td>26.6</td>\n      <td>0.351</td>\n      <td>31</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>8</td>\n      <td>183</td>\n      <td>64</td>\n      <td>0</td>\n      <td>0</td>\n      <td>23.3</td>\n      <td>0.672</td>\n      <td>32</td>\n      <td>1</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>1</td>\n      <td>89</td>\n      <td>66</td>\n      <td>23</td>\n      <td>94</td>\n      <td>28.1</td>\n      <td>0.167</td>\n      <td>21</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>0</td>\n      <td>137</td>\n      <td>40</td>\n      <td>35</td>\n      <td>168</td>\n      <td>43.1</td>\n      <td>2.288</td>\n      <td>33</td>\n      <td>1</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.columns","execution_count":3,"outputs":[{"output_type":"execute_result","execution_count":3,"data":{"text/plain":"Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',\n       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],\n      dtype='object')"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.shape","execution_count":4,"outputs":[{"output_type":"execute_result","execution_count":4,"data":{"text/plain":"(768, 9)"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.reset_index(inplace=True)\ndf.rename(columns={'index':'id'}, inplace=True)\ndf.head()","execution_count":5,"outputs":[{"output_type":"execute_result","execution_count":5,"data":{"text/plain":"   id  Pregnancies  Glucose  BloodPressure  SkinThickness  Insulin   BMI  \\\n0   0            6      148             72             35        0  33.6   \n1   1            1       85             66             29        0  26.6   \n2   2            8      183             64              0        0  23.3   \n3   3            1       89             66             23       94  28.1   \n4   4            0      137             40             35      168  43.1   \n\n   DiabetesPedigreeFunction  Age  Outcome  \n0                     0.627   50        1  \n1                     0.351   31        0  \n2                     0.672   32        1  \n3                     0.167   21        0  \n4                     2.288   33        1  ","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>id</th>\n      <th>Pregnancies</th>\n      <th>Glucose</th>\n      <th>BloodPressure</th>\n      <th>SkinThickness</th>\n      <th>Insulin</th>\n      <th>BMI</th>\n      <th>DiabetesPedigreeFunction</th>\n      <th>Age</th>\n      <th>Outcome</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>6</td>\n      <td>148</td>\n      <td>72</td>\n      <td>35</td>\n      <td>0</td>\n      <td>33.6</td>\n      <td>0.627</td>\n      <td>50</td>\n      <td>1</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>1</td>\n      <td>85</td>\n      <td>66</td>\n      <td>29</td>\n      <td>0</td>\n      <td>26.6</td>\n      <td>0.351</td>\n      <td>31</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>2</td>\n      <td>8</td>\n      <td>183</td>\n      <td>64</td>\n      <td>0</td>\n      <td>0</td>\n      <td>23.3</td>\n      <td>0.672</td>\n      <td>32</td>\n      <td>1</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>3</td>\n      <td>1</td>\n      <td>89</td>\n      <td>66</td>\n      <td>23</td>\n      <td>94</td>\n      <td>28.1</td>\n      <td>0.167</td>\n      <td>21</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>4</td>\n      <td>0</td>\n      <td>137</td>\n      <td>40</td>\n      <td>35</td>\n      <td>168</td>\n      <td>43.1</td>\n      <td>2.288</td>\n      <td>33</td>\n      <td>1</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"for col in df.columns:\n    df.rename(columns={col:col.lower()}, inplace=True)\n\ndf.rename(columns={'bloodpressure':'blood_pressure','skinthickness':'skin_thickness',\n                  'diabetespedigreefunction':'diabetes_pedigree_function'}, inplace=True)","execution_count":6,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.describe()","execution_count":7,"outputs":[{"output_type":"execute_result","execution_count":7,"data":{"text/plain":"               id  pregnancies     glucose  blood_pressure  skin_thickness  \\\ncount  768.000000   768.000000  768.000000      768.000000      768.000000   \nmean   383.500000     3.845052  120.894531       69.105469       20.536458   \nstd    221.846794     3.369578   31.972618       19.355807       15.952218   \nmin      0.000000     0.000000    0.000000        0.000000        0.000000   \n25%    191.750000     1.000000   99.000000       62.000000        0.000000   \n50%    383.500000     3.000000  117.000000       72.000000       23.000000   \n75%    575.250000     6.000000  140.250000       80.000000       32.000000   \nmax    767.000000    17.000000  199.000000      122.000000       99.000000   \n\n          insulin         bmi  diabetes_pedigree_function         age  \\\ncount  768.000000  768.000000                  768.000000  768.000000   \nmean    79.799479   31.992578                    0.471876   33.240885   \nstd    115.244002    7.884160                    0.331329   11.760232   \nmin      0.000000    0.000000                    0.078000   21.000000   \n25%      0.000000   27.300000                    0.243750   24.000000   \n50%     30.500000   32.000000                    0.372500   29.000000   \n75%    127.250000   36.600000                    0.626250   41.000000   \nmax    846.000000   67.100000                    2.420000   81.000000   \n\n          outcome  \ncount  768.000000  \nmean     0.348958  \nstd      0.476951  \nmin      0.000000  \n25%      0.000000  \n50%      0.000000  \n75%      1.000000  \nmax      1.000000  ","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>id</th>\n      <th>pregnancies</th>\n      <th>glucose</th>\n      <th>blood_pressure</th>\n      <th>skin_thickness</th>\n      <th>insulin</th>\n      <th>bmi</th>\n      <th>diabetes_pedigree_function</th>\n      <th>age</th>\n      <th>outcome</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>count</th>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n      <td>768.000000</td>\n    </tr>\n    <tr>\n      <th>mean</th>\n      <td>383.500000</td>\n      <td>3.845052</td>\n      <td>120.894531</td>\n      <td>69.105469</td>\n      <td>20.536458</td>\n      <td>79.799479</td>\n      <td>31.992578</td>\n      <td>0.471876</td>\n      <td>33.240885</td>\n      <td>0.348958</td>\n    </tr>\n    <tr>\n      <th>std</th>\n      <td>221.846794</td>\n      <td>3.369578</td>\n      <td>31.972618</td>\n      <td>19.355807</td>\n      <td>15.952218</td>\n      <td>115.244002</td>\n      <td>7.884160</td>\n      <td>0.331329</td>\n      <td>11.760232</td>\n      <td>0.476951</td>\n    </tr>\n    <tr>\n      <th>min</th>\n      <td>0.000000</td>\n      <td>0.000000</td>\n      <td>0.000000</td>\n      <td>0.000000</td>\n      <td>0.000000</td>\n      <td>0.000000</td>\n      <td>0.000000</td>\n      <td>0.078000</td>\n      <td>21.000000</td>\n      <td>0.000000</td>\n    </tr>\n    <tr>\n      <th>25%</th>\n      <td>191.750000</td>\n      <td>1.000000</td>\n      <td>99.000000</td>\n      <td>62.000000</td>\n      <td>0.000000</td>\n      <td>0.000000</td>\n      <td>27.300000</td>\n      <td>0.243750</td>\n      <td>24.000000</td>\n      <td>0.000000</td>\n    </tr>\n    <tr>\n      <th>50%</th>\n      <td>383.500000</td>\n      <td>3.000000</td>\n      <td>117.000000</td>\n      <td>72.000000</td>\n      <td>23.000000</td>\n      <td>30.500000</td>\n      <td>32.000000</td>\n      <td>0.372500</td>\n      <td>29.000000</td>\n      <td>0.000000</td>\n    </tr>\n    <tr>\n      <th>75%</th>\n      <td>575.250000</td>\n      <td>6.000000</td>\n      <td>140.250000</td>\n      <td>80.000000</td>\n      <td>32.000000</td>\n      <td>127.250000</td>\n      <td>36.600000</td>\n      <td>0.626250</td>\n      <td>41.000000</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>max</th>\n      <td>767.000000</td>\n      <td>17.000000</td>\n      <td>199.000000</td>\n      <td>122.000000</td>\n      <td>99.000000</td>\n      <td>846.000000</td>\n      <td>67.100000</td>\n      <td>2.420000</td>\n      <td>81.000000</td>\n      <td>1.000000</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df_healthy = df.loc[df['outcome'] == 0]\ndf_diabetic = df.loc[df['outcome'] == 1]","execution_count":8,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"# <a id='3'>III. MISSING VALUES & UNIVARIATE EXPLORATION</a>"},{"metadata":{"trusted":true},"cell_type":"code","source":"total = df.isnull().sum().sort_values(ascending=False)\npercent = ((df.isnull().sum())*100)/df.isnull().count().sort_values(ascending=False)\nmissing_data = pd.concat([total, percent], axis=1, keys=['Total','Percent'], sort=False).sort_values('Total', ascending=False)\nmissing_data.head(40)","execution_count":9,"outputs":[{"output_type":"execute_result","execution_count":9,"data":{"text/plain":"                            Total  Percent\noutcome                         0      0.0\nage                             0      0.0\ndiabetes_pedigree_function      0      0.0\nbmi                             0      0.0\ninsulin                         0      0.0\nskin_thickness                  0      0.0\nblood_pressure                  0      0.0\nglucose                         0      0.0\npregnancies                     0      0.0\nid                              0      0.0","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Total</th>\n      <th>Percent</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>outcome</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>age</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>diabetes_pedigree_function</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>bmi</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>insulin</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>skin_thickness</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>blood_pressure</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>glucose</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>pregnancies</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>id</th>\n      <td>0</td>\n      <td>0.0</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"According to this dataframe there are no missing values, however some features contain a 0 value which doesn't make sense for features such as BMI. So let's replace 0 with NaN for features that should not contain 0 values. "},{"metadata":{"trusted":true},"cell_type":"code","source":"# REPLACE 0 VALUES WITH 'NAN'\ndf[['glucose','blood_pressure','skin_thickness','insulin','bmi']] = df[['glucose','blood_pressure','skin_thickness','insulin','bmi']].replace(0,np.NaN)","execution_count":10,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"# totals = df.isnull().sum().sort_values(ascending=False)\ntotals = pd.DataFrame((len(df['id']) - df.isnull().sum()), columns = ['count'])\npercent = ((df.isnull().sum())*100)/df.isnull().count().sort_values(ascending=False)\nmissing_data = pd.concat([total, percent], axis=1, keys=['total','percent'], sort=False).sort_values('total', ascending=False)\ntotals","execution_count":11,"outputs":[{"output_type":"execute_result","execution_count":11,"data":{"text/plain":"                            count\nid                            768\npregnancies                   768\nglucose                       763\nblood_pressure                733\nskin_thickness                541\ninsulin                       394\nbmi                           757\ndiabetes_pedigree_function    768\nage                           768\noutcome                       768","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>count</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>id</th>\n      <td>768</td>\n    </tr>\n    <tr>\n      <th>pregnancies</th>\n      <td>768</td>\n    </tr>\n    <tr>\n      <th>glucose</th>\n      <td>763</td>\n    </tr>\n    <tr>\n      <th>blood_pressure</th>\n      <td>733</td>\n    </tr>\n    <tr>\n      <th>skin_thickness</th>\n      <td>541</td>\n    </tr>\n    <tr>\n      <th>insulin</th>\n      <td>394</td>\n    </tr>\n    <tr>\n      <th>bmi</th>\n      <td>757</td>\n    </tr>\n    <tr>\n      <th>diabetes_pedigree_function</th>\n      <td>768</td>\n    </tr>\n    <tr>\n      <th>age</th>\n      <td>768</td>\n    </tr>\n    <tr>\n      <th>outcome</th>\n      <td>768</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"# VISUALIZE MISSING DATA PERCENTAGES\n\ndef missing_plot(dataset, feature):\n    totals = pd.DataFrame((len(df['id']) - df.isnull().sum()), columns = ['count'])\n    missing_percent = ((df.isnull().sum())*100)/df.isnull().count().sort_values(ascending=False)\n    df_missing = pd.concat([total, missing_percent], axis=1, keys=['total','percent'], sort=False).sort_values('total', ascending=False)\n    df_missing = df_missing.round(2)\n    \n    trace = go.Bar(x = totals.index, \n                   y = totals['count'],\n                   opacity = 0.8, \n                   text = df_missing['percent'],  \n                   textposition = 'auto',\n                   marker=dict(color = '#41d9b3', line=dict(color='#000000',width=1.5)))\n\n    layout = dict(title =  \"Missing Value Count & Percentage\")\n\n    fig = dict(data = [trace], layout=layout)\n    py.iplot(fig)","execution_count":12,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"missing_plot(df, 'id')","execution_count":13,"outputs":[{"output_type":"display_data","data":{"text/html":"        <script type=\"text/javascript\">\n        window.PlotlyConfig = {MathJaxConfig: 'local'};\n        if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n        if (typeof require !== 'undefined') {\n        require.undef(\"plotly\");\n        requirejs.config({\n            paths: {\n                'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n            }\n        });\n        require(['plotly'], function(Plotly) {\n            window._Plotly = Plotly;\n        });\n        }\n        </script>\n        "},"metadata":{}},{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"4d0da85a-85ab-4e2e-9974-2524a846a6fb\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"4d0da85a-85ab-4e2e-9974-2524a846a6fb\")) {                    Plotly.newPlot(                        \"4d0da85a-85ab-4e2e-9974-2524a846a6fb\",                        [{\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1.5}}, \"opacity\": 0.8, \"text\": [0.0, 0.0, 0.0, 1.43, 48.7, 29.56, 4.56, 0.65, 0.0, 0.0], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [\"id\", \"pregnancies\", \"glucose\", \"blood_pressure\", \"skin_thickness\", \"insulin\", \"bmi\", \"diabetes_pedigree_function\", \"age\", \"outcome\"], \"y\": [768, 768, 763, 733, 541, 394, 757, 768, 768, 768]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Missing Value Count & Percentage\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('4d0da85a-85ab-4e2e-9974-2524a846a6fb');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### GET MEAN VALUES FOR EACH FEAUTRE WITH NAN VALUES"},{"metadata":{"trusted":true},"cell_type":"code","source":"def get_mean(feat):\n    temp = df[df[feat].notnull()]\n    temp = temp[[feat,'outcome']].groupby(['outcome'])[[feat]].mean().reset_index()\n    temp = temp.round(2)\n    return temp\n","execution_count":14,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"def plot_dist(feature, binsize):\n    # 2 datasets\n    df_healthy = df.loc[df['outcome'] == 0]\n    healthy = df[feature]\n    \n    df_diabetic = df.loc[df['outcome'] == 1]\n    diabetic = df_diabetic[feature]\n    \n    hist_data = [healthy, diabetic]\n    \n    group_labels = ['healthy', 'diabetic']\n    colors = ['#41d9b3', '#c73062']\n\n    fig = ff.create_distplot(hist_data, group_labels, colors = colors, show_hist = True, bin_size = binsize, curve_type='kde')\n    \n    fig['layout'].update(title = feature.upper())\n\n    py.iplot(fig, filename = 'Density plot')","execution_count":15,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### INSULIN"},{"metadata":{"trusted":true},"cell_type":"code","source":"get_mean('insulin')","execution_count":16,"outputs":[{"output_type":"execute_result","execution_count":16,"data":{"text/plain":"   outcome  insulin\n0        0   130.29\n1        1   206.85","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>outcome</th>\n      <th>insulin</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>130.29</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>206.85</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"# REPLACE NAN VALUES WITH MEAN \n\ndf.loc[(df['outcome'] == 0) & (df['insulin'].isnull()), 'insulin'] = 130.29\ndf.loc[(df['outcome'] == 1) & (df['insulin'].isnull()), 'insulin'] = 206.85","execution_count":17,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_dist('insulin', 0)","execution_count":18,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"2218a02b-65dd-4aaf-a10e-86706fa03074\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"2218a02b-65dd-4aaf-a10e-86706fa03074\")) {                    Plotly.newPlot(                        \"2218a02b-65dd-4aaf-a10e-86706fa03074\",                        [{\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"name\": \"healthy\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [206.85, 130.29, 206.85, 94.0, 168.0, 130.29, 88.0, 130.29, 543.0, 206.85, 130.29, 206.85, 130.29, 846.0, 175.0, 206.85, 230.0, 206.85, 83.0, 96.0, 235.0, 130.29, 206.85, 206.85, 146.0, 115.0, 206.85, 140.0, 110.0, 130.29, 130.29, 245.0, 54.0, 130.29, 130.29, 192.0, 130.29, 206.85, 206.85, 207.0, 70.0, 130.29, 130.29, 240.0, 130.29, 206.85, 130.29, 130.29, 206.85, 130.29, 82.0, 36.0, 23.0, 300.0, 342.0, 130.29, 304.0, 110.0, 130.29, 142.0, 130.29, 206.85, 130.29, 128.0, 206.85, 130.29, 206.85, 130.29, 38.0, 100.0, 90.0, 140.0, 206.85, 270.0, 130.29, 130.29, 130.29, 130.29, 206.85, 130.29, 130.29, 130.29, 71.0, 130.29, 206.85, 125.0, 130.29, 71.0, 110.0, 130.29, 130.29, 176.0, 48.0, 206.85, 64.0, 228.0, 130.29, 76.0, 64.0, 220.0, 206.85, 130.29, 130.29, 40.0, 130.29, 152.0, 130.29, 140.0, 18.0, 36.0, 135.0, 495.0, 37.0, 130.29, 175.0, 206.85, 206.85, 130.29, 130.29, 51.0, 100.0, 130.29, 100.0, 130.29, 206.85, 99.0, 135.0, 94.0, 145.0, 206.85, 168.0, 206.85, 225.0, 130.29, 49.0, 140.0, 50.0, 92.0, 130.29, 325.0, 130.29, 130.29, 63.0, 206.85, 284.0, 130.29, 130.29, 119.0, 130.29, 130.29, 204.0, 130.29, 155.0, 485.0, 206.85, 206.85, 94.0, 135.0, 53.0, 114.0, 130.29, 105.0, 285.0, 130.29, 206.85, 156.0, 130.29, 130.29, 130.29, 78.0, 206.85, 130.0, 130.29, 48.0, 55.0, 130.0, 130.29, 130.0, 130.29, 206.85, 130.29, 92.0, 23.0, 130.29, 130.29, 206.85, 495.0, 58.0, 114.0, 160.0, 130.29, 94.0, 206.85, 206.85, 130.29, 210.0, 130.29, 48.0, 99.0, 318.0, 130.29, 130.29, 130.29, 44.0, 190.0, 130.29, 280.0, 206.85, 87.0, 206.85, 130.29, 130.29, 130.29, 130.0, 175.0, 271.0, 129.0, 120.0, 206.85, 206.85, 478.0, 206.85, 130.29, 190.0, 56.0, 32.0, 130.29, 206.85, 744.0, 53.0, 206.85, 370.0, 37.0, 130.29, 45.0, 206.85, 192.0, 206.85, 206.85, 130.29, 130.29, 88.0, 206.85, 176.0, 194.0, 206.85, 130.29, 680.0, 402.0, 130.29, 130.29, 130.29, 55.0, 130.29, 258.0, 206.85, 130.29, 130.29, 375.0, 150.0, 130.0, 206.85, 130.29, 130.29, 206.85, 67.0, 206.85, 130.29, 130.29, 206.85, 206.85, 56.0, 130.29, 45.0, 130.29, 57.0, 206.85, 116.0, 130.29, 278.0, 206.85, 122.0, 155.0, 206.85, 206.85, 135.0, 545.0, 220.0, 49.0, 75.0, 40.0, 74.0, 182.0, 194.0, 130.29, 120.0, 360.0, 215.0, 184.0, 130.29, 206.85, 135.0, 42.0, 206.85, 130.29, 105.0, 132.0, 148.0, 180.0, 205.0, 130.29, 148.0, 96.0, 85.0, 206.85, 94.0, 64.0, 206.85, 140.0, 206.85, 231.0, 206.85, 206.85, 29.0, 130.29, 168.0, 156.0, 130.29, 120.0, 68.0, 130.29, 52.0, 206.85, 130.29, 58.0, 255.0, 130.29, 206.85, 171.0, 206.85, 105.0, 73.0, 130.29, 130.29, 130.29, 108.0, 83.0, 130.29, 74.0, 206.85, 130.29, 130.29, 130.29, 43.0, 130.29, 206.85, 167.0, 206.85, 54.0, 249.0, 325.0, 130.29, 130.29, 206.85, 293.0, 83.0, 206.85, 130.29, 66.0, 140.0, 465.0, 89.0, 66.0, 94.0, 158.0, 325.0, 84.0, 75.0, 206.85, 72.0, 82.0, 130.29, 182.0, 59.0, 110.0, 50.0, 206.85, 206.85, 285.0, 81.0, 196.0, 206.85, 415.0, 87.0, 206.85, 275.0, 115.0, 206.85, 130.29, 206.85, 206.85, 130.29, 88.0, 130.29, 206.85, 165.0, 206.85, 130.29, 206.85, 579.0, 130.29, 176.0, 310.0, 61.0, 167.0, 474.0, 130.29, 206.85, 130.29, 115.0, 170.0, 76.0, 78.0, 130.29, 210.0, 277.0, 130.29, 180.0, 145.0, 180.0, 130.29, 85.0, 60.0, 130.29, 130.29, 206.85, 130.29, 130.29, 130.29, 130.29, 206.85, 50.0, 120.0, 206.85, 206.85, 14.0, 70.0, 92.0, 64.0, 63.0, 95.0, 206.85, 210.0, 130.29, 105.0, 206.85, 130.29, 71.0, 237.0, 60.0, 56.0, 130.29, 49.0, 130.29, 130.29, 105.0, 36.0, 100.0, 206.85, 140.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 191.0, 110.0, 75.0, 130.29, 328.0, 130.29, 49.0, 125.0, 206.85, 250.0, 480.0, 265.0, 130.29, 130.29, 66.0, 130.29, 130.29, 122.0, 130.29, 130.29, 130.29, 76.0, 145.0, 193.0, 71.0, 130.29, 206.85, 79.0, 130.29, 130.29, 90.0, 170.0, 76.0, 130.29, 206.85, 210.0, 130.29, 130.29, 86.0, 105.0, 165.0, 130.29, 130.29, 326.0, 66.0, 130.0, 130.29, 206.85, 130.29, 130.29, 82.0, 105.0, 188.0, 130.29, 106.0, 130.29, 65.0, 130.29, 56.0, 206.85, 130.29, 130.29, 210.0, 155.0, 215.0, 190.0, 206.85, 56.0, 76.0, 225.0, 207.0, 166.0, 67.0, 130.29, 130.29, 106.0, 130.29, 44.0, 115.0, 215.0, 130.29, 130.29, 130.29, 130.29, 206.85, 274.0, 77.0, 54.0, 130.29, 88.0, 18.0, 126.0, 126.0, 165.0, 130.29, 130.29, 44.0, 120.0, 330.0, 63.0, 130.0, 206.85, 130.29, 206.85, 206.85, 130.29, 130.29, 130.29, 600.0, 130.29, 206.85, 130.29, 156.0, 130.29, 206.85, 140.0, 206.85, 115.0, 230.0, 185.0, 130.29, 25.0, 206.85, 120.0, 130.29, 130.29, 130.29, 126.0, 206.85, 130.29, 293.0, 41.0, 272.0, 182.0, 158.0, 194.0, 321.0, 130.29, 144.0, 130.29, 130.29, 15.0, 206.85, 206.85, 160.0, 130.29, 130.29, 115.0, 130.29, 54.0, 130.29, 130.29, 130.29, 130.29, 206.85, 90.0, 130.29, 183.0, 130.29, 206.85, 130.29, 66.0, 91.0, 46.0, 105.0, 130.29, 206.85, 130.29, 152.0, 440.0, 144.0, 159.0, 130.0, 130.29, 100.0, 106.0, 77.0, 130.29, 135.0, 540.0, 90.0, 200.0, 130.29, 70.0, 130.29, 206.85, 231.0, 130.0, 206.85, 132.0, 206.85, 206.85, 190.0, 100.0, 168.0, 130.29, 49.0, 240.0, 130.29, 206.85, 206.85, 130.29, 206.85, 265.0, 45.0, 206.85, 105.0, 206.85, 130.29, 205.0, 130.29, 130.29, 180.0, 180.0, 130.29, 206.85, 95.0, 125.0, 130.29, 480.0, 125.0, 130.29, 155.0, 130.29, 200.0, 206.85, 206.85, 130.29, 100.0, 130.29, 206.85, 335.0, 206.85, 160.0, 387.0, 22.0, 206.85, 291.0, 130.29, 392.0, 185.0, 130.29, 178.0, 206.85, 130.29, 200.0, 127.0, 105.0, 130.29, 130.29, 180.0, 130.29, 130.29, 130.29, 79.0, 206.85, 120.0, 165.0, 130.29, 130.29, 120.0, 130.29, 160.0, 206.85, 150.0, 94.0, 116.0, 206.85, 140.0, 105.0, 206.85, 57.0, 200.0, 206.85, 206.85, 74.0, 130.29, 510.0, 206.85, 110.0, 130.29, 206.85, 130.29, 206.85, 16.0, 206.85, 130.29, 180.0, 130.29, 112.0, 206.85, 130.29], \"xaxis\": \"x\", \"xbins\": {\"end\": 846.0, \"size\": 0, \"start\": 14.0}, \"yaxis\": \"y\"}, {\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"name\": \"diabetic\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [206.85, 206.85, 168.0, 88.0, 543.0, 206.85, 206.85, 846.0, 175.0, 206.85, 230.0, 206.85, 96.0, 206.85, 206.85, 146.0, 115.0, 206.85, 245.0, 206.85, 206.85, 207.0, 240.0, 206.85, 206.85, 300.0, 304.0, 206.85, 206.85, 206.85, 90.0, 206.85, 206.85, 206.85, 110.0, 206.85, 220.0, 206.85, 36.0, 135.0, 495.0, 175.0, 206.85, 206.85, 100.0, 206.85, 99.0, 145.0, 206.85, 168.0, 206.85, 225.0, 206.85, 155.0, 206.85, 206.85, 114.0, 206.85, 156.0, 206.85, 130.0, 130.0, 130.0, 206.85, 206.85, 495.0, 58.0, 114.0, 160.0, 206.85, 206.85, 210.0, 48.0, 99.0, 318.0, 280.0, 206.85, 206.85, 130.0, 175.0, 271.0, 129.0, 206.85, 206.85, 478.0, 206.85, 206.85, 206.85, 370.0, 206.85, 192.0, 206.85, 206.85, 206.85, 176.0, 206.85, 258.0, 206.85, 150.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 220.0, 74.0, 182.0, 194.0, 360.0, 184.0, 206.85, 135.0, 206.85, 132.0, 180.0, 205.0, 96.0, 206.85, 206.85, 206.85, 206.85, 206.85, 29.0, 156.0, 120.0, 206.85, 206.85, 171.0, 206.85, 206.85, 206.85, 167.0, 206.85, 249.0, 325.0, 206.85, 206.85, 140.0, 465.0, 325.0, 206.85, 206.85, 206.85, 285.0, 206.85, 206.85, 206.85, 206.85, 206.85, 88.0, 206.85, 206.85, 206.85, 579.0, 167.0, 474.0, 206.85, 115.0, 210.0, 277.0, 180.0, 180.0, 206.85, 206.85, 206.85, 206.85, 14.0, 64.0, 206.85, 206.85, 237.0, 206.85, 191.0, 328.0, 206.85, 250.0, 122.0, 145.0, 206.85, 90.0, 206.85, 105.0, 165.0, 206.85, 206.85, 155.0, 215.0, 190.0, 206.85, 225.0, 207.0, 206.85, 274.0, 165.0, 206.85, 206.85, 206.85, 600.0, 206.85, 156.0, 206.85, 206.85, 185.0, 206.85, 126.0, 206.85, 293.0, 194.0, 321.0, 144.0, 206.85, 206.85, 206.85, 206.85, 91.0, 206.85, 144.0, 159.0, 130.0, 540.0, 70.0, 206.85, 231.0, 130.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 180.0, 206.85, 125.0, 480.0, 125.0, 206.85, 206.85, 206.85, 206.85, 160.0, 206.85, 392.0, 185.0, 206.85, 127.0, 79.0, 206.85, 120.0, 206.85, 150.0, 206.85, 206.85, 200.0, 206.85, 206.85, 510.0, 206.85, 110.0, 206.85, 206.85, 206.85, 206.85], \"xaxis\": \"x\", \"xbins\": {\"end\": 846.0, \"size\": 0, \"start\": 14.0}, \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"mode\": \"lines\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [14.0, 15.664, 17.328, 18.992, 20.656, 22.32, 23.984, 25.648, 27.311999999999998, 28.976, 30.64, 32.304, 33.968, 35.632000000000005, 37.296, 38.96, 40.623999999999995, 42.288, 43.952, 45.616, 47.28, 48.944, 50.608, 52.272, 53.936, 55.6, 57.264, 58.928, 60.592, 62.256, 63.92, 65.584, 67.24799999999999, 68.912, 70.576, 72.24000000000001, 73.904, 75.568, 77.232, 78.896, 80.56, 82.224, 83.888, 85.552, 87.216, 88.88, 90.544, 92.208, 93.872, 95.536, 97.2, 98.864, 100.528, 102.192, 103.856, 105.52, 107.184, 108.848, 110.512, 112.176, 113.84, 115.504, 117.168, 118.832, 120.496, 122.16, 123.824, 125.488, 127.152, 128.816, 130.48000000000002, 132.144, 133.808, 135.47199999999998, 137.136, 138.8, 140.464, 142.128, 143.792, 145.456, 147.12, 148.784, 150.448, 152.112, 153.776, 155.44, 157.104, 158.768, 160.432, 162.096, 163.76, 165.424, 167.088, 168.752, 170.416, 172.08, 173.744, 175.408, 177.072, 178.736, 180.4, 182.064, 183.728, 185.392, 187.056, 188.72, 190.384, 192.048, 193.712, 195.376, 197.04, 198.704, 200.368, 202.032, 203.696, 205.36, 207.024, 208.688, 210.352, 212.016, 213.68, 215.344, 217.008, 218.672, 220.336, 222.0, 223.664, 225.328, 226.992, 228.656, 230.32, 231.984, 233.648, 235.312, 236.976, 238.64, 240.304, 241.968, 243.632, 245.296, 246.96, 248.624, 250.288, 251.952, 253.616, 255.28, 256.94399999999996, 258.608, 260.272, 261.93600000000004, 263.6, 265.264, 266.928, 268.592, 270.256, 271.92, 273.584, 275.248, 276.912, 278.576, 280.24, 281.904, 283.568, 285.232, 286.896, 288.56, 290.224, 291.888, 293.552, 295.216, 296.88, 298.544, 300.208, 301.872, 303.536, 305.2, 306.864, 308.528, 310.192, 311.856, 313.52, 315.184, 316.848, 318.512, 320.176, 321.84, 323.504, 325.168, 326.832, 328.496, 330.16, 331.824, 333.488, 335.152, 336.816, 338.48, 340.144, 341.808, 343.472, 345.136, 346.8, 348.464, 350.128, 351.792, 353.456, 355.12, 356.784, 358.448, 360.112, 361.776, 363.44, 365.104, 366.768, 368.432, 370.096, 371.76, 373.424, 375.088, 376.752, 378.416, 380.08, 381.744, 383.408, 385.072, 386.736, 388.4, 390.064, 391.728, 393.392, 395.056, 396.72, 398.384, 400.048, 401.712, 403.376, 405.04, 406.704, 408.368, 410.032, 411.696, 413.36, 415.024, 416.688, 418.352, 420.016, 421.68, 423.344, 425.008, 426.672, 428.336, 430.0, 431.664, 433.328, 434.992, 436.656, 438.32, 439.984, 441.648, 443.312, 444.976, 446.64, 448.304, 449.968, 451.632, 453.296, 454.96, 456.624, 458.288, 459.952, 461.616, 463.28, 464.944, 466.608, 468.272, 469.936, 471.6, 473.264, 474.928, 476.592, 478.256, 479.92, 481.584, 483.248, 484.912, 486.576, 488.24, 489.904, 491.568, 493.232, 494.896, 496.56, 498.224, 499.888, 501.552, 503.216, 504.88, 506.544, 508.208, 509.872, 511.536, 513.2, 514.864, 516.528, 518.192, 519.856, 521.52, 523.184, 524.848, 526.512, 528.176, 529.84, 531.504, 533.168, 534.832, 536.496, 538.16, 539.824, 541.488, 543.152, 544.816, 546.48, 548.144, 549.808, 551.472, 553.136, 554.8, 556.464, 558.128, 559.792, 561.456, 563.12, 564.784, 566.448, 568.112, 569.776, 571.44, 573.104, 574.768, 576.432, 578.096, 579.76, 581.424, 583.088, 584.752, 586.416, 588.08, 589.744, 591.408, 593.072, 594.736, 596.4, 598.064, 599.728, 601.392, 603.056, 604.72, 606.384, 608.048, 609.712, 611.376, 613.04, 614.704, 616.368, 618.032, 619.696, 621.36, 623.024, 624.688, 626.352, 628.016, 629.68, 631.344, 633.008, 634.672, 636.336, 638.0, 639.664, 641.328, 642.992, 644.656, 646.32, 647.984, 649.648, 651.312, 652.976, 654.64, 656.304, 657.968, 659.632, 661.296, 662.96, 664.624, 666.288, 667.952, 669.616, 671.28, 672.944, 674.608, 676.272, 677.936, 679.6, 681.264, 682.928, 684.592, 686.256, 687.92, 689.584, 691.248, 692.912, 694.576, 696.24, 697.904, 699.568, 701.232, 702.896, 704.56, 706.224, 707.888, 709.552, 711.216, 712.88, 714.544, 716.208, 717.872, 719.536, 721.2, 722.864, 724.528, 726.192, 727.856, 729.52, 731.184, 732.848, 734.512, 736.176, 737.84, 739.504, 741.168, 742.832, 744.496, 746.16, 747.824, 749.488, 751.152, 752.816, 754.48, 756.144, 757.808, 759.472, 761.136, 762.8, 764.464, 766.128, 767.792, 769.456, 771.12, 772.784, 774.448, 776.112, 777.776, 779.44, 781.104, 782.768, 784.432, 786.096, 787.76, 789.424, 791.088, 792.752, 794.416, 796.08, 797.744, 799.408, 801.072, 802.736, 804.4, 806.064, 807.728, 809.392, 811.056, 812.72, 814.384, 816.048, 817.712, 819.376, 821.04, 822.704, 824.368, 826.032, 827.696, 829.36, 831.024, 832.688, 834.352, 836.016, 837.68, 839.344, 841.008, 842.672, 844.336], \"xaxis\": \"x\", \"y\": [0.0006798793664395455, 0.0007342604821383291, 0.0007909940471152407, 0.0008499855487177955, 0.0009111187154397115, 0.0009742554041563278, 0.0010392358714996853, 0.0011058794744065914, 0.0011739858387486849, 0.0012433365268864783, 0.0013136972251845058, 0.0013848204612841599, 0.0014564488486362235, 0.0015283188428832951, 0.0016001649816143712, 0.0016717245662418712, 0.001742742732683207, 0.0018129778464957504, 0.0018822071483423723, 0.0019502325672570557, 0.002016886612105266, 0.002082038245730175, 0.0021455986412677493, 0.002207526715641131, 0.0022678343309058915, 0.0023265910495215716, 0.002383928324450897, 0.002440042999048681, 0.0024951999850033003, 0.0025497339793862117, 0.002604050074685462, 0.0026586231093881792, 0.0027139956023767937, 0.00277077411352562, 0.0028296238770493206, 0.002891261565101904, 0.0029564460585935234, 0.003025967131780849, 0.0031006319981939706, 0.0031812497187240643, 0.0032686135384220336, 0.003363481296192136, 0.0034665541396679145, 0.003578453873741956, 0.0036996993721326657, 0.0038306825827430138, 0.003971644754339067, 0.004122653598593602, 0.004283582171812239, 0.004454090308686617, 0.004633609460560058, 0.004821331778057699, 0.0050162042287832664, 0.005216928452891332, 0.005421966932304801, 0.005629555884815498, 0.005837725096108582, 0.006044324676885597, 0.006247058486746931, 0.006443523711090104, 0.006631255823061165, 0.0068077779214183575, 0.006970653219041288, 0.007117539277233736, 0.007246242448200792, 0.007354770910544456, 0.007441384666292237, 0.007504640915943081, 0.0075434333402027934, 0.007557023990130101, 0.007545066714787081, 0.007507621327761657, 0.007445158019278314, 0.007358551845441566, 0.007249067455858463, 0.007118334540665987, 0.006968314773702025, 0.0068012612875076595, 0.00661967192748927, 0.00642623768907092, 0.0062237878383014636, 0.00601523325170199, 0.0058035094869608944, 0.005591521017248005, 0.0053820879358767665, 0.005177896274288145, 0.004981452885717373, 0.004795045640913099, 0.0046207094722618925, 0.004460198599153619, 0.004314965079486869, 0.004186143667012228, 0.004074542816645877, 0.003980641572450637, 0.003904591995792112, 0.0038462267421627335, 0.0038050713704133547, 0.0037803609623419266, 0.0037710606376165816, 0.003775889562436467, 0.0037933480640304647, 0.0038217474717418326, 0.003859242304964814, 0.0039038644160594833, 0.0039535586717775306, 0.004006219720653779, 0.004059729348879855, 0.004111993877411842, 0.004160981003563363, 0.004204755446807932, 0.004241512726801217, 0.004269610387215477, 0.004287595986503649, 0.004294231209593556, 0.004288511514616082, 0.004269680816209541, 0.004237240820008989, 0.0041909547581590765, 0.0041308454280457076, 0.004057187599617866, 0.003970495023475883, 0.0038715024347105325, 0.0037611430987034376, 0.003640522577666479, 0.0035108895044672172, 0.0033736042284180597, 0.0032301062429265738, 0.003081881315672238, 0.002930429218529008, 0.0027772328987482006, 0.002623729848451776, 0.0024712863210515673, 0.002321174916558682, 0.002174555919230811, 0.002032462627191266, 0.0018957907709546565, 0.0017652919821296114, 0.0016415711500811425, 0.0015250873971730352, 0.0014161583153896257, 0.001314967040478104, 0.0012215716948999133, 0.0011359167073803126, 0.00105784551329005, 0.00098711415429851, 0.0009234053249510123, 0.0008663424549386655, 0.0008155034655995525, 0.0007704338944173283, 0.0007306591389837422, 0.0006956956294245773, 0.0006650607934456648, 0.0006382817292127112, 0.0006149025470075318, 0.0005944903802541095, 0.0005766400997625043, 0.0005609777919461207, 0.0005471630826672043, 0.0005348904038037438, 0.0005238893102828648, 0.000513923961920111, 0.0005047918876609596, 0.0004963221504029908, 0.0004883730290549231, 0.00048082933132135176, 0.00047359944623151225, 0.00046661223988805157, 0.0004598138914338394, 0.0004531647588850754, 0.00044663635627487244, 0.0004402085144917828, 0.0004338667882881835, 0.0004276001612092492, 0.0004213990887364781, 0.0004152539078902868, 0.0004091536290962474, 0.00040308511355125, 0.0003970326269427615, 0.00039097774852741435, 0.00038489960363463275, 0.0003787753779956158, 0.00037258106425266843, 0.00036629238487821984, 0.00035988583176118277, 0.00035333976105321956, 0.00034663548256772447, 0.0003397582860480166, 0.00033269835182476196, 0.00032545150052545825, 0.0003180197452540433, 0.00031041161962839706, 0.0003026422657985384, 0.000294733277590567, 0.0002867123047480799, 0.00027861243441042817, 0.0002704713750546733, 0.0002623304757767425, 0.00025423361971727086, 0.00024622603445979276, 0.00023835306425110234, 0.00023065894892165313, 0.00022318565251722063, 0.0002159717810755087, 0.00020905162394736104, 0.000202454346880406, 0.0001962033580971313, 0.00019031586116912547, 0.0001848026009704726, 0.00017966780172048617, 0.0001749092893967086, 0.0001705187848617345, 0.00016648234909250905, 0.0001627809580562168, 0.0001593911821071495, 0.00015628594328757404, 0.00015343532355108135, 0.00015080739759081732, 0.0001483690655121422, 0.00014608686287854574, 0.00014392772850526243, 0.00014185971359718306, 0.00013985261925215443, 0.00013787855281710565, 0.00013591239695200487, 0.0001339321884089603, 0.0001319194063806275, 0.00012985917274997239, 0.00012774036864420825, 0.00012555567334404308, 0.00012330153282923086, 0.00012097806607211382, 0.00011858891765285386, 0.00011614106540111725, 0.00011364459161061125, 0.00011111242596763308, 0.0001085600677243008, 0.00010600529387094982, 0.0001034678591574111, 0.00010096919281455291, 9.853209576916969e-05, 9.61804410603415e-05, 9.393887908770429e-05, 9.1832548287174e-05, 8.98867908749406e-05, 8.812687246522248e-05, 8.657770369148125e-05, 8.52635614841914e-05, 8.420780741776618e-05, 8.343260056645575e-05, 8.295860262721519e-05, 8.280467368856217e-05, 8.298755794595042e-05, 8.352155986725694e-05, 8.441821275961135e-05, 8.56859433254075e-05, 8.732973754754458e-05, 8.935081502265472e-05, 9.174632056494937e-05, 9.450904342347281e-05, 9.762717568129852e-05, 0.00010108412223052023, 0.00010485837504722546, 0.00010892346424959957, 0.0001132479975577531, 0.00011779579826299854, 0.00012252614966715646, 0.00012739415121382642, 0.00013235118828250984, 0.0001373455139642563, 0.00014232293722286817, 0.00014722760782877903, 0.00015200288450713842, 0.00015659226904568235, 0.00016094038583523042, 0.00016499398362574352, 0.00016870293431078552, 0.00017202120240994803, 0.00017490775867356966, 0.00017732741191875585, 0.00017925153481124608, 0.0001806586617850076, 0.00018153494055444383, 0.00018187442260456823, 0.00018167918249847222, 0.00018095926065683833, 0.0001797324292688649, 0.00017802378601345932, 0.00017586518513502858, 0.00017329451997285923, 0.00017035487514761424, 0.00016709357014502157, 0.00016356111891148597, 0.00015981013222016687, 0.0001558941909349466, 0.00015186671887310358, 0.00014777988374665733, 0.0001436835536679932, 0.0001396243349754802, 0.00013564471472249772, 0.00013178232814514617, 0.00012806936785861604, 0.0001245321475196255, 0.0001211908283329509, 0.00011805931218431748, 0.00011514530046935458, 0.00011245051298654533, 0.00010997105670466089, 0.00010769792993894709, 0.00010561764361167971, 0.0001037129379629639, 0.00010196357043768634, 0.00010034714860888696, 9.883998098882578e-05, 9.74179184810373e-05, 9.605716006137684e-05, 9.473499802885448e-05, 9.343048078517974e-05, 9.212497449469973e-05, 9.080260901744526e-05, 8.945059803981113e-05, 8.80594281679913e-05, 8.662291670038698e-05, 8.513814265190718e-05, 8.360526016405332e-05, 8.202720751248325e-05, 8.040932835450504e-05, 7.875892451071437e-05, 7.708476135434016e-05, 7.539654773824256e-05, 7.370441231704488e-05, 7.201839715859596e-05, 7.034798776357874e-05, 6.870169613845029e-05, 6.70867105367982e-05, 6.550862205869463e-05, 6.3971234647859e-05, 6.247646132427895e-05, 6.102430589917493e-05, 5.9612926087737825e-05, 5.823877098861411e-05, 5.689678343646427e-05, 5.558065582424098e-05, 5.428312667370421e-05, 5.299630451491873e-05, 5.1712005499464655e-05, 5.042209157530038e-05, 4.9118796931637604e-05, 4.7795031703181136e-05, 4.644465351842045e-05, 4.5062699295434625e-05, 4.3645571639730316e-05, 4.219117619450491e-05, 4.069900825379904e-05, 3.9170188801965665e-05, 3.760745182848932e-05, 3.601508623729193e-05, 3.4398836888700326e-05, 3.2765770257254364e-05, 3.112411084870713e-05, 2.9483054895605408e-05, 2.7852567953986772e-05, 2.6243172874655088e-05, 2.4665734250037593e-05, 2.3131244877354982e-05, 2.1650619071507674e-05, 2.0234496851014998e-05, 1.8893062153559772e-05, 1.763587736014831e-05, 1.647173556251588e-05, 1.5408531237231667e-05, 1.4453149326365057e-05, 1.3611372195673115e-05, 1.2887803565578072e-05, 1.2285808296714346e-05, 1.1807466859496461e-05, 1.1453543414918038e-05, 1.1223466661129348e-05, 1.1115322928378904e-05, 1.1125861398070504e-05, 1.1250511739767256e-05, 1.148341486055736e-05, 1.1817467802316309e-05, 1.2244384065239593e-05, 1.2754770747512175e-05, 1.3338223846137278e-05, 1.3983442847742672e-05, 1.46783653468814e-05, 1.541032187114461e-05, 1.616621038733581e-05, 1.693268914203338e-05, 1.7696385593510522e-05, 1.844411826779301e-05, 1.9163127471668437e-05, 1.984130997316643e-05, 2.046745206699126e-05, 2.1031454925209475e-05, 2.1524545830863427e-05, 2.1939468832462925e-05, 2.2270648556736628e-05, 2.2514321378638e-05, 2.2668628860998872e-05, 2.273366931814507e-05, 2.27115044934584e-05, 2.260611962602543e-05, 2.242333656494393e-05, 2.2170681016281555e-05, 2.1857206420750455e-05, 2.149327830539286e-05, 2.1090324180006623e-05, 2.0660555115456388e-05, 2.021666601160967e-05, 1.9771522212032756e-05, 1.9337840535239475e-05, 1.892787296226215e-05, 1.8553101150512455e-05, 1.8223949644920133e-05, 1.7949525146054748e-05, 1.7737388492983192e-05, 1.75933651509161e-05, 1.752139898715786e-05, 1.7523453001350364e-05, 1.759945947557987e-05, 1.774732075451967e-05, 1.796296058306131e-05, 1.8240424646331965e-05, 1.8572027702154414e-05, 1.8948543496702374e-05, 1.9359432538548383e-05, 1.9793101802961347e-05, 2.0237189575526507e-05, 2.0678867949391105e-05, 2.110515498923167e-05, 2.1503228289706567e-05, 2.1860731604288707e-05, 2.2166066413304063e-05, 2.2408660741374096e-05, 2.257920821904115e-05, 2.266987129624308e-05, 2.267444363166043e-05, 2.2588467967321104e-05, 2.2409307209088286e-05, 2.2136167920548146e-05, 2.1770076945140275e-05, 2.1313813341475977e-05, 2.0771799192375914e-05, 2.014995407521309e-05, 1.9455519011713624e-05, 1.8696856510076776e-05, 1.788323384235153e-05, 1.702459694874444e-05, 1.613134232400287e-05, 1.5214093928133543e-05, 1.4283491595490434e-05, 1.3349996624481518e-05, 1.2423719255474098e-05, 1.1514271634114458e-05, 1.0630648662486983e-05, 9.781137913940122e-06, 8.973258580513562e-06, 8.21372828280395e-06, 7.508455543514708e-06, 6.862554843689562e-06, 6.280380472662927e-06, 5.7655748685207485e-06, 5.32112683623916e-06, 4.949434928239489e-06, 4.652371371749992e-06, 4.431342217110174e-06, 4.287339843070381e-06, 4.2209845663991076e-06, 4.2325528369731896e-06, 4.321990326281431e-06, 4.488909105122122e-06, 4.732569022114992e-06, 5.051844304808224e-06, 5.445177276102489e-06, 5.910521877745952e-06, 6.445280388680885e-06, 7.046237290376999e-06, 7.709494638620758e-06, 8.43041353051394e-06, 9.203566290959783e-06, 1.0022703835316052e-05, 1.088074229208336e-05, 1.1769772397405059e-05, 1.2681094416259919e-05, 1.360528042668953e-05, 1.4532264754781176e-05, 1.545146220866148e-05, 1.6351912575094905e-05, 1.722244866272452e-05, 1.805188405440403e-05, 1.882921572026457e-05, 1.95438357933126e-05, 2.0185746165173242e-05, 2.0745769157720553e-05, 2.1215747393051808e-05, 2.15887261336277e-05, 2.1859111797049776e-05, 2.2022801052636594e-05], \"yaxis\": \"y\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"mode\": \"lines\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [14.0, 15.664, 17.328, 18.992, 20.656, 22.32, 23.984, 25.648, 27.311999999999998, 28.976, 30.64, 32.304, 33.968, 35.632000000000005, 37.296, 38.96, 40.623999999999995, 42.288, 43.952, 45.616, 47.28, 48.944, 50.608, 52.272, 53.936, 55.6, 57.264, 58.928, 60.592, 62.256, 63.92, 65.584, 67.24799999999999, 68.912, 70.576, 72.24000000000001, 73.904, 75.568, 77.232, 78.896, 80.56, 82.224, 83.888, 85.552, 87.216, 88.88, 90.544, 92.208, 93.872, 95.536, 97.2, 98.864, 100.528, 102.192, 103.856, 105.52, 107.184, 108.848, 110.512, 112.176, 113.84, 115.504, 117.168, 118.832, 120.496, 122.16, 123.824, 125.488, 127.152, 128.816, 130.48000000000002, 132.144, 133.808, 135.47199999999998, 137.136, 138.8, 140.464, 142.128, 143.792, 145.456, 147.12, 148.784, 150.448, 152.112, 153.776, 155.44, 157.104, 158.768, 160.432, 162.096, 163.76, 165.424, 167.088, 168.752, 170.416, 172.08, 173.744, 175.408, 177.072, 178.736, 180.4, 182.064, 183.728, 185.392, 187.056, 188.72, 190.384, 192.048, 193.712, 195.376, 197.04, 198.704, 200.368, 202.032, 203.696, 205.36, 207.024, 208.688, 210.352, 212.016, 213.68, 215.344, 217.008, 218.672, 220.336, 222.0, 223.664, 225.328, 226.992, 228.656, 230.32, 231.984, 233.648, 235.312, 236.976, 238.64, 240.304, 241.968, 243.632, 245.296, 246.96, 248.624, 250.288, 251.952, 253.616, 255.28, 256.94399999999996, 258.608, 260.272, 261.93600000000004, 263.6, 265.264, 266.928, 268.592, 270.256, 271.92, 273.584, 275.248, 276.912, 278.576, 280.24, 281.904, 283.568, 285.232, 286.896, 288.56, 290.224, 291.888, 293.552, 295.216, 296.88, 298.544, 300.208, 301.872, 303.536, 305.2, 306.864, 308.528, 310.192, 311.856, 313.52, 315.184, 316.848, 318.512, 320.176, 321.84, 323.504, 325.168, 326.832, 328.496, 330.16, 331.824, 333.488, 335.152, 336.816, 338.48, 340.144, 341.808, 343.472, 345.136, 346.8, 348.464, 350.128, 351.792, 353.456, 355.12, 356.784, 358.448, 360.112, 361.776, 363.44, 365.104, 366.768, 368.432, 370.096, 371.76, 373.424, 375.088, 376.752, 378.416, 380.08, 381.744, 383.408, 385.072, 386.736, 388.4, 390.064, 391.728, 393.392, 395.056, 396.72, 398.384, 400.048, 401.712, 403.376, 405.04, 406.704, 408.368, 410.032, 411.696, 413.36, 415.024, 416.688, 418.352, 420.016, 421.68, 423.344, 425.008, 426.672, 428.336, 430.0, 431.664, 433.328, 434.992, 436.656, 438.32, 439.984, 441.648, 443.312, 444.976, 446.64, 448.304, 449.968, 451.632, 453.296, 454.96, 456.624, 458.288, 459.952, 461.616, 463.28, 464.944, 466.608, 468.272, 469.936, 471.6, 473.264, 474.928, 476.592, 478.256, 479.92, 481.584, 483.248, 484.912, 486.576, 488.24, 489.904, 491.568, 493.232, 494.896, 496.56, 498.224, 499.888, 501.552, 503.216, 504.88, 506.544, 508.208, 509.872, 511.536, 513.2, 514.864, 516.528, 518.192, 519.856, 521.52, 523.184, 524.848, 526.512, 528.176, 529.84, 531.504, 533.168, 534.832, 536.496, 538.16, 539.824, 541.488, 543.152, 544.816, 546.48, 548.144, 549.808, 551.472, 553.136, 554.8, 556.464, 558.128, 559.792, 561.456, 563.12, 564.784, 566.448, 568.112, 569.776, 571.44, 573.104, 574.768, 576.432, 578.096, 579.76, 581.424, 583.088, 584.752, 586.416, 588.08, 589.744, 591.408, 593.072, 594.736, 596.4, 598.064, 599.728, 601.392, 603.056, 604.72, 606.384, 608.048, 609.712, 611.376, 613.04, 614.704, 616.368, 618.032, 619.696, 621.36, 623.024, 624.688, 626.352, 628.016, 629.68, 631.344, 633.008, 634.672, 636.336, 638.0, 639.664, 641.328, 642.992, 644.656, 646.32, 647.984, 649.648, 651.312, 652.976, 654.64, 656.304, 657.968, 659.632, 661.296, 662.96, 664.624, 666.288, 667.952, 669.616, 671.28, 672.944, 674.608, 676.272, 677.936, 679.6, 681.264, 682.928, 684.592, 686.256, 687.92, 689.584, 691.248, 692.912, 694.576, 696.24, 697.904, 699.568, 701.232, 702.896, 704.56, 706.224, 707.888, 709.552, 711.216, 712.88, 714.544, 716.208, 717.872, 719.536, 721.2, 722.864, 724.528, 726.192, 727.856, 729.52, 731.184, 732.848, 734.512, 736.176, 737.84, 739.504, 741.168, 742.832, 744.496, 746.16, 747.824, 749.488, 751.152, 752.816, 754.48, 756.144, 757.808, 759.472, 761.136, 762.8, 764.464, 766.128, 767.792, 769.456, 771.12, 772.784, 774.448, 776.112, 777.776, 779.44, 781.104, 782.768, 784.432, 786.096, 787.76, 789.424, 791.088, 792.752, 794.416, 796.08, 797.744, 799.408, 801.072, 802.736, 804.4, 806.064, 807.728, 809.392, 811.056, 812.72, 814.384, 816.048, 817.712, 819.376, 821.04, 822.704, 824.368, 826.032, 827.696, 829.36, 831.024, 832.688, 834.352, 836.016, 837.68, 839.344, 841.008, 842.672, 844.336], \"xaxis\": \"x\", \"y\": [0.0002256422264614165, 0.00023771269598927696, 0.0002501823019674055, 0.00026306475441055933, 0.0002763757476660611, 0.00029013301224127465, 0.00030435633248791235, 0.00031906752774392546, 0.0003342903951076112, 0.00035005061264616467, 0.00036637560251001535, 0.0003832943541209799, 0.0004008372083120419, 0.00041903560400465803, 0.00043792178970049073, 0.0004575285027243987, 0.00047788861977005585, 0.0004990347828568494, 0.0005209990052954664, 0.0005438122626715451, 0.0005675040741850421, 0.0005921020799240088, 0.0006176316198039886, 0.0006441153199697378, 0.0006715726924389218, 0.0007000197536746213, 0.0007294686676141762, 0.0007599274184676933, 0.0007913995183427571, 0.000823883754467104, 0.0008573739804822388, 0.000891858955982486, 0.0009273222381894098, 0.0009637421293920542, 0.0010010916835593903, 0.0010393387753484804, 0.00107844623459368, 0.0011183720492681068, 0.0011590696398524382, 0.0012004882080193261, 0.0012425731625288732, 0.0012852666252135066, 0.0013285080198855775, 0.0013722347469018155, 0.0014163829459345322, 0.0014608883491986657, 0.0015056872269321752, 0.0015507174262911778, 0.0015959195039671635, 0.0016412379517313155, 0.0016866225127326708, 0.0017320295846997111, 0.0017774237042045766, 0.0018227791038348434, 0.001868081331482315, 0.001913328918012008, 0.0019585350763395245, 0.0020037294114585084, 0.0020489596172685726, 0.0020942931322235, 0.0021398187219266725, 0.0021856479529393253, 0.0022319165183457596, 0.002278785372160429, 0.0023264416266009745, 0.0023750991637362657, 0.0024249989112048, 0.0024764087307511595, 0.0025296228684091953, 0.002584960916433741, 0.0026427662397033, 0.0027034038234218572, 0.002767257504662487, 0.002834726557705706, 0.0029062216122903535, 0.0029821598948243785, 0.003062959795259375, 0.0031490347766202106, 0.0032407866599392064, 0.003338598334350172, 0.0034428259600527682, 0.0035537907504005635, 0.003671770438065164, 0.003796990548595, 0.0039296156221755975, 0.004069740540429916, 0.0042173821290636656, 0.004372471218450284, 0.004534845352263026, 0.004704242338435607, 0.004880294836565124, 0.005062526170940292, 0.005250347548372295, 0.005443056844739166, 0.005639839103588487, 0.005839768864398286, 0.006041814407468378, 0.006244843967370712, 0.006447633928072183, 0.006648878971061138, 0.006847204104023236, 0.00704117845289785, 0.007229330655694701, 0.0074101656535005295, 0.0075821826339344004, 0.007743893846166626, 0.007893843975700657, 0.008030629742512846, 0.008152919368799418, 0.008259471553250663, 0.008349153588000084, 0.008420958262479518, 0.0084740192153844, 0.008507624421581567, 0.008521227534570169, 0.008514456846267372, 0.008487121673433582, 0.008439216032759761, 0.00837091952313336, 0.008282595392360629, 0.008174785825069936, 0.008048204547034182, 0.007903726897151409, 0.007742377570302169, 0.00756531628089538, 0.007373821636919259, 0.0071692735467500796, 0.006953134505097944, 0.006726930119804332, 0.006492229247549719, 0.006250624103943104, 0.006003710702284311, 0.0057530699560890625, 0.005500249754039619, 0.0052467482833502355, 0.004993998839742299, 0.004743356320533897, 0.0044960855530530195, 0.00425335156497804, 0.004016211857571644, 0.0037856106983053615, 0.003562375407173027, 0.0033472145720346196, 0.0031407180934277246, 0.0029433589290787624, 0.0027554963832994613, 0.0025773807668490883, 0.0024091592387815723, 0.0022508826332117387, 0.002102513070611309, 0.0019639321548302765, 0.001834949563069101, 0.001715311845954549, 0.0016047112680820995, 0.0015027945352329584, 0.001409171272288836, 0.0013234221349987972, 0.0012451064585706044, 0.0011737693659817608, 0.0011089482784059572, 0.0010501787887717213, 0.0009969998768276577, 0.0009489584598773087, 0.0009056132873404571, 0.0008665381993457301, 0.0008313247795857658, 0.0007995844406590929, 0.0007709499861314448, 0.0007450766976718824, 0.0007216429979969237, 0.0007003507411608487, 0.0006809251811596444, 0.0006631146680792028, 0.0006466901183330687, 0.000631444302117204, 0.0006171909872676671, 0.0006037639744379977, 0.0005910160540962279, 0.0005788179114348574, 0.0005670570010281195, 0.0005556364090709076, 0.000544473717381059, 0.0005334998801047105, 0.0005226581212729569, 0.000511902859036287, 0.0005011986605491611, 0.0004905192300726611, 0.00047984643187536314, 0.00046916934889630537, 0.00045848337783622675, 0.00044778936130460817, 0.0004370927578084397, 0.00042640285066189725, 0.0004157319972638541, 0.00040509492057687406, 0.00039450804499723707, 0.0003839888790888273, 0.0003735554478303983, 0.00036322577707226185, 0.00035301743279907936, 0.0003429471175450915, 0.0003330303259094865, 0.0003232810605835236, 0.0003137116096451522, 0.00030433238512442566, 0.000295151822020893, 0.0002861763360925364, 0.0002774103378654592, 0.0002688562994650914, 0.00026051487007232766, 0.00025238503508797597, 0.00024446431346891295, 0.00023674898719733416, 0.00022923435647402863, 0.0002219150139953854, 0.00021478513158496392, 0.00020783875250150388, 0.0002010700829295899, 0.0001944737764659092, 0.00018804520582891627, 0.00018178071652609002, 0.00017567785779217074, 0.00016973558674461097, 0.00016395444236931307, 0.00015833668663182708, 0.000152886410689212, 0.00014760960483998446, 0.0001425141914809888, 0.0001376100209300205, 0.00013290883051385235, 0.00012842416780813737, 0.00012417127934628944, 0.00012016696648925334, 0.00011642941046974801, 0.00011297796889739032, 0.0001098329462410932, 0.00010701534099884775, 0.00010454657242973036, 0.00010244818986575238, 0.00010074156774855711, 9.944758965367163e-05, 9.858632467726403e-05, 9.817669967005468e-05, 9.823617091109802e-05, 9.878039891982239e-05, 9.98229302052094e-05, 0.000101374889841902, 0.00010344468883810871, 0.00010603775031209448, 0.00010915625851420695, 0.00011279893471071389, 0.00011696084387494904, 0.00012163323600129554, 0.00012680342566025058, 0.0001324547131411313, 0.00013856635017776026, 0.00014511355281846924, 0.0001520675634844242, 0.00015939576366155462, 0.00016706183799642174, 0.0001750259898229367, 0.00018324520734605722, 0.00019167357886407777, 0.00020026265453898442, 0.00020896185134330094, 0.0002177188969415726, 0.0002264803074267816, 0.00023519189304795876, 0.0002437992853570697, 0.0002522484785914422, 0.000260486377612197, 0.0002684613443564831, 0.00027612373454630255, 0.0002834264163406533, 0.00029032526272803347, 0.00029677960973653454, 0.0003027526729878973, 0.0003082119157347419, 0.000313129362287031, 0.0003174818516408466, 0.00032125122715188985, 0.00032442445922645577, 0.0003269936992096131, 0.0003289562639071897, 0.00033031455145646503, 0.0003310758905307301, 0.0003312523260954776, 0.0003308603460998481, 0.00032992055455843475, 0.00032845729743008495, 0.0003264982485092524, 0.00032407396319251823, 0.0003212174084529451, 0.0003179634776372209, 0.0003143484987891931, 0.00031040974509746326, 0.00030618495576837296, 0.0003017118751480856, 0.0002970278172724794, 0.0002921692622295348, 0.00028717148979808026, 0.00028206825480469824, 0.00027689150754552696, 0.0002716711614815259, 0.0002664349092655309, 0.0002612080870279756, 0.00025601358576568875, 0.00025087180767292274, 0.0002458006643514551, 0.00024081561305948514, 0.00023592972652526878, 0.00023115379137456064, 0.00022649642990942197, 0.0002219642398330023, 0.00021756194653840247, 0.00021329256276226234, 0.00020915755073306396, 0.00020515698240350104, 0.00020128969392511515, 0.00019755343117808057, 0.00019394498388367032, 0.00019046030657444835, 0.00018709462545014275, 0.00018384253087870466, 0.0001806980559870907, 0.00017765474240208015, 0.000174705694728539, 0.00017184362577529953, 0.0001690608948459771, 0.00016634954159694927, 0.0001637013180254134, 0.0001611077210897606, 0.00015856002828962612, 0.00015604933825519445, 0.0001535666180294329, 0.00015110275829048787, 0.00014864863727425046, 0.00014619519364003123, 0.00014373350799685907, 0.00014125489229519468, 0.0001387509858087559, 0.00013621385600179757, 0.00013363610221416827, 0.00013101095981246297, 0.00012833240225996006, 0.00012559523845655804, 0.00012279520269481078, 0.00011992903466802507, 0.00011699454714642291, 0.00011399067919980366, 0.0001109175331794058, 0.0001077763940650994, 0.00010456973022230349, 0.00010130117508068587, 9.797548972793501e-05, 9.459850689084733e-05, 9.11770572375828e-05, 8.771887936512258e-05, 8.42325152223301e-05, 8.072719305101688e-05, 7.72127001966847e-05, 7.369924834117042e-05, 7.019733383769165e-05, 6.671759588361744e-05, 6.327067524890357e-05, 5.986707619188869e-05, 5.651703404436476e-05, 5.323039074153646e-05, 5.001648031795156e-05, 4.6884026097113674e-05, 4.384105098020868e-05, 4.08948018984876e-05, 3.805168914456237e-05, 3.5317240949999645e-05, 3.269607333938228e-05, 3.0191874972673897e-05, 2.7807406395510844e-05, 2.5544512856894266e-05, 2.3404149630268338e-05, 2.1386418590420553e-05, 1.9490614656860675e-05, 1.7715280614889458e-05, 1.6058268767754794e-05, 1.451680785529672e-05, 1.308757369353294e-05, 1.1766762042145805e-05, 1.0550162288600097e-05, 9.433230644006689e-06, 8.411161671932441e-06, 7.478957112164608e-06, 6.631491112026666e-06, 5.8635711335074425e-06, 5.169993960827082e-06, 4.545596386154396e-06, 3.985300297578928e-06, 3.4841520302135542e-06, 3.0373559661509206e-06, 2.640302480183448e-06, 2.288590424555182e-06, 1.978044426926877e-06, 1.7047273410669248e-06, 1.4649482398461754e-06, 1.2552663755976698e-06, 1.0724915548001035e-06, 9.136813835962468e-07, 7.761358392733724e-07, 6.573896120354054e-07, 5.55202642756866e-07, 4.6754925749484923e-07, 3.9260626986965856e-07, 3.28740389441303e-07, 2.7449523922786384e-07, 2.2857824971589899e-07, 1.8984766113236934e-07, 1.5729983125475496e-07, 1.3005701334075472e-07, 1.0735573841469189e-07, 8.85359085569139e-08, 7.303068326764092e-08, 6.035721955397294e-08, 5.010830814004443e-08, 4.194493304990664e-08, 3.558976960019981e-08, 3.082162633471735e-08, 2.74708293481744e-08, 2.5415542449155152e-08, 2.457901333498686e-08, 2.4927734001624445e-08, 2.6470502579770494e-08, 2.9258373254873706e-08, 3.338548047045628e-08, 3.8990722811395934e-08, 4.626029040523175e-08, 5.543101696951457e-08, 6.67945333981828e-08, 8.070219367642885e-08, 9.757073563715173e-08, 1.1788862836713824e-07, 1.4222304474244284e-07, 1.712273814970403e-07, 2.0564923036948168e-07, 2.463386822912828e-07, 2.9425682245279173e-07, 3.504842477084547e-07, 4.162294096018183e-07, 4.928365568854579e-07, 5.817930215200335e-07, 6.847355626493215e-07, 8.034554550059852e-07, 9.399019827859378e-07, 1.0961839785404897e-06, 1.274569030477068e-06, 1.4774799721954126e-06, 1.7074882678080265e-06, 1.967303914063089e-06, 2.2597615008870862e-06, 2.5878021039300567e-06, 2.9544507282505645e-06, 3.362789081965599e-06, 3.8159235329027935e-06, 4.316948190002559e-06, 4.868903153927302e-06, 5.474728097010956e-06, 6.1372114597356655e-06, 6.858935687179671e-06, 7.642219071578964e-06, 8.489054912975244e-06, 9.401048855044004e-06, 1.0379355393346381e-05, 1.1424614683808313e-05, 1.2536890895366095e-05, 1.371561344753239e-05, 1.4959522546297203e-05, 1.6266620475757782e-05, 1.7634130114062236e-05, 1.905846211720924e-05, 2.0535192150355217e-05, 2.2059049441893986e-05, 2.362391779021395e-05, 2.522284996745119e-05, 2.6848096240831908e-05, 2.849114747378412e-05, 3.0142792980681004e-05, 3.179319299693165e-05, 3.343196529737772e-05, 3.5048285158790726e-05, 3.663099752567751e-05, 3.816873991204196e-05, 3.9650074264913854e-05, 4.1063625737892995e-05, 4.239822608377381e-05, 4.364305918287152e-05, 4.4787806085172905e-05, 4.582278686576287e-05, 4.6739096578332064e-05, 4.752873264333627e-05, 4.818471112596957e-05, 4.87011695428936e-05, 4.907345408197086e-05, 4.9298189420460906e-05], \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [206.85, 130.29, 206.85, 94.0, 168.0, 130.29, 88.0, 130.29, 543.0, 206.85, 130.29, 206.85, 130.29, 846.0, 175.0, 206.85, 230.0, 206.85, 83.0, 96.0, 235.0, 130.29, 206.85, 206.85, 146.0, 115.0, 206.85, 140.0, 110.0, 130.29, 130.29, 245.0, 54.0, 130.29, 130.29, 192.0, 130.29, 206.85, 206.85, 207.0, 70.0, 130.29, 130.29, 240.0, 130.29, 206.85, 130.29, 130.29, 206.85, 130.29, 82.0, 36.0, 23.0, 300.0, 342.0, 130.29, 304.0, 110.0, 130.29, 142.0, 130.29, 206.85, 130.29, 128.0, 206.85, 130.29, 206.85, 130.29, 38.0, 100.0, 90.0, 140.0, 206.85, 270.0, 130.29, 130.29, 130.29, 130.29, 206.85, 130.29, 130.29, 130.29, 71.0, 130.29, 206.85, 125.0, 130.29, 71.0, 110.0, 130.29, 130.29, 176.0, 48.0, 206.85, 64.0, 228.0, 130.29, 76.0, 64.0, 220.0, 206.85, 130.29, 130.29, 40.0, 130.29, 152.0, 130.29, 140.0, 18.0, 36.0, 135.0, 495.0, 37.0, 130.29, 175.0, 206.85, 206.85, 130.29, 130.29, 51.0, 100.0, 130.29, 100.0, 130.29, 206.85, 99.0, 135.0, 94.0, 145.0, 206.85, 168.0, 206.85, 225.0, 130.29, 49.0, 140.0, 50.0, 92.0, 130.29, 325.0, 130.29, 130.29, 63.0, 206.85, 284.0, 130.29, 130.29, 119.0, 130.29, 130.29, 204.0, 130.29, 155.0, 485.0, 206.85, 206.85, 94.0, 135.0, 53.0, 114.0, 130.29, 105.0, 285.0, 130.29, 206.85, 156.0, 130.29, 130.29, 130.29, 78.0, 206.85, 130.0, 130.29, 48.0, 55.0, 130.0, 130.29, 130.0, 130.29, 206.85, 130.29, 92.0, 23.0, 130.29, 130.29, 206.85, 495.0, 58.0, 114.0, 160.0, 130.29, 94.0, 206.85, 206.85, 130.29, 210.0, 130.29, 48.0, 99.0, 318.0, 130.29, 130.29, 130.29, 44.0, 190.0, 130.29, 280.0, 206.85, 87.0, 206.85, 130.29, 130.29, 130.29, 130.0, 175.0, 271.0, 129.0, 120.0, 206.85, 206.85, 478.0, 206.85, 130.29, 190.0, 56.0, 32.0, 130.29, 206.85, 744.0, 53.0, 206.85, 370.0, 37.0, 130.29, 45.0, 206.85, 192.0, 206.85, 206.85, 130.29, 130.29, 88.0, 206.85, 176.0, 194.0, 206.85, 130.29, 680.0, 402.0, 130.29, 130.29, 130.29, 55.0, 130.29, 258.0, 206.85, 130.29, 130.29, 375.0, 150.0, 130.0, 206.85, 130.29, 130.29, 206.85, 67.0, 206.85, 130.29, 130.29, 206.85, 206.85, 56.0, 130.29, 45.0, 130.29, 57.0, 206.85, 116.0, 130.29, 278.0, 206.85, 122.0, 155.0, 206.85, 206.85, 135.0, 545.0, 220.0, 49.0, 75.0, 40.0, 74.0, 182.0, 194.0, 130.29, 120.0, 360.0, 215.0, 184.0, 130.29, 206.85, 135.0, 42.0, 206.85, 130.29, 105.0, 132.0, 148.0, 180.0, 205.0, 130.29, 148.0, 96.0, 85.0, 206.85, 94.0, 64.0, 206.85, 140.0, 206.85, 231.0, 206.85, 206.85, 29.0, 130.29, 168.0, 156.0, 130.29, 120.0, 68.0, 130.29, 52.0, 206.85, 130.29, 58.0, 255.0, 130.29, 206.85, 171.0, 206.85, 105.0, 73.0, 130.29, 130.29, 130.29, 108.0, 83.0, 130.29, 74.0, 206.85, 130.29, 130.29, 130.29, 43.0, 130.29, 206.85, 167.0, 206.85, 54.0, 249.0, 325.0, 130.29, 130.29, 206.85, 293.0, 83.0, 206.85, 130.29, 66.0, 140.0, 465.0, 89.0, 66.0, 94.0, 158.0, 325.0, 84.0, 75.0, 206.85, 72.0, 82.0, 130.29, 182.0, 59.0, 110.0, 50.0, 206.85, 206.85, 285.0, 81.0, 196.0, 206.85, 415.0, 87.0, 206.85, 275.0, 115.0, 206.85, 130.29, 206.85, 206.85, 130.29, 88.0, 130.29, 206.85, 165.0, 206.85, 130.29, 206.85, 579.0, 130.29, 176.0, 310.0, 61.0, 167.0, 474.0, 130.29, 206.85, 130.29, 115.0, 170.0, 76.0, 78.0, 130.29, 210.0, 277.0, 130.29, 180.0, 145.0, 180.0, 130.29, 85.0, 60.0, 130.29, 130.29, 206.85, 130.29, 130.29, 130.29, 130.29, 206.85, 50.0, 120.0, 206.85, 206.85, 14.0, 70.0, 92.0, 64.0, 63.0, 95.0, 206.85, 210.0, 130.29, 105.0, 206.85, 130.29, 71.0, 237.0, 60.0, 56.0, 130.29, 49.0, 130.29, 130.29, 105.0, 36.0, 100.0, 206.85, 140.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 191.0, 110.0, 75.0, 130.29, 328.0, 130.29, 49.0, 125.0, 206.85, 250.0, 480.0, 265.0, 130.29, 130.29, 66.0, 130.29, 130.29, 122.0, 130.29, 130.29, 130.29, 76.0, 145.0, 193.0, 71.0, 130.29, 206.85, 79.0, 130.29, 130.29, 90.0, 170.0, 76.0, 130.29, 206.85, 210.0, 130.29, 130.29, 86.0, 105.0, 165.0, 130.29, 130.29, 326.0, 66.0, 130.0, 130.29, 206.85, 130.29, 130.29, 82.0, 105.0, 188.0, 130.29, 106.0, 130.29, 65.0, 130.29, 56.0, 206.85, 130.29, 130.29, 210.0, 155.0, 215.0, 190.0, 206.85, 56.0, 76.0, 225.0, 207.0, 166.0, 67.0, 130.29, 130.29, 106.0, 130.29, 44.0, 115.0, 215.0, 130.29, 130.29, 130.29, 130.29, 206.85, 274.0, 77.0, 54.0, 130.29, 88.0, 18.0, 126.0, 126.0, 165.0, 130.29, 130.29, 44.0, 120.0, 330.0, 63.0, 130.0, 206.85, 130.29, 206.85, 206.85, 130.29, 130.29, 130.29, 600.0, 130.29, 206.85, 130.29, 156.0, 130.29, 206.85, 140.0, 206.85, 115.0, 230.0, 185.0, 130.29, 25.0, 206.85, 120.0, 130.29, 130.29, 130.29, 126.0, 206.85, 130.29, 293.0, 41.0, 272.0, 182.0, 158.0, 194.0, 321.0, 130.29, 144.0, 130.29, 130.29, 15.0, 206.85, 206.85, 160.0, 130.29, 130.29, 115.0, 130.29, 54.0, 130.29, 130.29, 130.29, 130.29, 206.85, 90.0, 130.29, 183.0, 130.29, 206.85, 130.29, 66.0, 91.0, 46.0, 105.0, 130.29, 206.85, 130.29, 152.0, 440.0, 144.0, 159.0, 130.0, 130.29, 100.0, 106.0, 77.0, 130.29, 135.0, 540.0, 90.0, 200.0, 130.29, 70.0, 130.29, 206.85, 231.0, 130.0, 206.85, 132.0, 206.85, 206.85, 190.0, 100.0, 168.0, 130.29, 49.0, 240.0, 130.29, 206.85, 206.85, 130.29, 206.85, 265.0, 45.0, 206.85, 105.0, 206.85, 130.29, 205.0, 130.29, 130.29, 180.0, 180.0, 130.29, 206.85, 95.0, 125.0, 130.29, 480.0, 125.0, 130.29, 155.0, 130.29, 200.0, 206.85, 206.85, 130.29, 100.0, 130.29, 206.85, 335.0, 206.85, 160.0, 387.0, 22.0, 206.85, 291.0, 130.29, 392.0, 185.0, 130.29, 178.0, 206.85, 130.29, 200.0, 127.0, 105.0, 130.29, 130.29, 180.0, 130.29, 130.29, 130.29, 79.0, 206.85, 120.0, 165.0, 130.29, 130.29, 120.0, 130.29, 160.0, 206.85, 150.0, 94.0, 116.0, 206.85, 140.0, 105.0, 206.85, 57.0, 200.0, 206.85, 206.85, 74.0, 130.29, 510.0, 206.85, 110.0, 130.29, 206.85, 130.29, 206.85, 16.0, 206.85, 130.29, 180.0, 130.29, 112.0, 206.85, 130.29], \"xaxis\": \"x\", \"y\": [\"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\"], \"yaxis\": \"y2\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [206.85, 206.85, 168.0, 88.0, 543.0, 206.85, 206.85, 846.0, 175.0, 206.85, 230.0, 206.85, 96.0, 206.85, 206.85, 146.0, 115.0, 206.85, 245.0, 206.85, 206.85, 207.0, 240.0, 206.85, 206.85, 300.0, 304.0, 206.85, 206.85, 206.85, 90.0, 206.85, 206.85, 206.85, 110.0, 206.85, 220.0, 206.85, 36.0, 135.0, 495.0, 175.0, 206.85, 206.85, 100.0, 206.85, 99.0, 145.0, 206.85, 168.0, 206.85, 225.0, 206.85, 155.0, 206.85, 206.85, 114.0, 206.85, 156.0, 206.85, 130.0, 130.0, 130.0, 206.85, 206.85, 495.0, 58.0, 114.0, 160.0, 206.85, 206.85, 210.0, 48.0, 99.0, 318.0, 280.0, 206.85, 206.85, 130.0, 175.0, 271.0, 129.0, 206.85, 206.85, 478.0, 206.85, 206.85, 206.85, 370.0, 206.85, 192.0, 206.85, 206.85, 206.85, 176.0, 206.85, 258.0, 206.85, 150.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 220.0, 74.0, 182.0, 194.0, 360.0, 184.0, 206.85, 135.0, 206.85, 132.0, 180.0, 205.0, 96.0, 206.85, 206.85, 206.85, 206.85, 206.85, 29.0, 156.0, 120.0, 206.85, 206.85, 171.0, 206.85, 206.85, 206.85, 167.0, 206.85, 249.0, 325.0, 206.85, 206.85, 140.0, 465.0, 325.0, 206.85, 206.85, 206.85, 285.0, 206.85, 206.85, 206.85, 206.85, 206.85, 88.0, 206.85, 206.85, 206.85, 579.0, 167.0, 474.0, 206.85, 115.0, 210.0, 277.0, 180.0, 180.0, 206.85, 206.85, 206.85, 206.85, 14.0, 64.0, 206.85, 206.85, 237.0, 206.85, 191.0, 328.0, 206.85, 250.0, 122.0, 145.0, 206.85, 90.0, 206.85, 105.0, 165.0, 206.85, 206.85, 155.0, 215.0, 190.0, 206.85, 225.0, 207.0, 206.85, 274.0, 165.0, 206.85, 206.85, 206.85, 600.0, 206.85, 156.0, 206.85, 206.85, 185.0, 206.85, 126.0, 206.85, 293.0, 194.0, 321.0, 144.0, 206.85, 206.85, 206.85, 206.85, 91.0, 206.85, 144.0, 159.0, 130.0, 540.0, 70.0, 206.85, 231.0, 130.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 180.0, 206.85, 125.0, 480.0, 125.0, 206.85, 206.85, 206.85, 206.85, 160.0, 206.85, 392.0, 185.0, 206.85, 127.0, 79.0, 206.85, 120.0, 206.85, 150.0, 206.85, 206.85, 200.0, 206.85, 206.85, 510.0, 206.85, 110.0, 206.85, 206.85, 206.85, 206.85], \"xaxis\": \"x\", \"y\": [\"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\"], \"yaxis\": \"y2\"}],                        {\"barmode\": \"overlay\", \"hovermode\": \"closest\", \"legend\": {\"traceorder\": \"reversed\"}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"INSULIN\"}, \"xaxis\": {\"anchor\": \"y2\", \"domain\": [0.0, 1.0], \"zeroline\": false}, \"yaxis\": {\"anchor\": \"free\", \"domain\": [0.35, 1], \"position\": 0.0}, \"yaxis2\": {\"anchor\": \"x\", \"domain\": [0, 0.25], \"dtick\": 1, \"showticklabels\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('2218a02b-65dd-4aaf-a10e-86706fa03074');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### GLUCOSE"},{"metadata":{"trusted":true},"cell_type":"code","source":"get_mean('glucose')","execution_count":19,"outputs":[{"output_type":"execute_result","execution_count":19,"data":{"text/plain":"   outcome  glucose\n0        0   110.64\n1        1   142.32","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>outcome</th>\n      <th>glucose</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>110.64</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>142.32</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[(df['outcome'] == 0) & (df['glucose'].isnull()), 'glucose'] = 110.64\ndf.loc[(df['outcome'] == 1) & (df['glucose'].isnull()), 'glucose'] = 142.32","execution_count":20,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_dist('glucose',0)","execution_count":21,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"0a894031-cc27-4be9-ba94-f9fd25f67f69\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"0a894031-cc27-4be9-ba94-f9fd25f67f69\")) {                    Plotly.newPlot(                        \"0a894031-cc27-4be9-ba94-f9fd25f67f69\",                        [{\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"name\": \"healthy\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [148.0, 85.0, 183.0, 89.0, 137.0, 116.0, 78.0, 115.0, 197.0, 125.0, 110.0, 168.0, 139.0, 189.0, 166.0, 100.0, 118.0, 107.0, 103.0, 115.0, 126.0, 99.0, 196.0, 119.0, 143.0, 125.0, 147.0, 97.0, 145.0, 117.0, 109.0, 158.0, 88.0, 92.0, 122.0, 103.0, 138.0, 102.0, 90.0, 111.0, 180.0, 133.0, 106.0, 171.0, 159.0, 180.0, 146.0, 71.0, 103.0, 105.0, 103.0, 101.0, 88.0, 176.0, 150.0, 73.0, 187.0, 100.0, 146.0, 105.0, 84.0, 133.0, 44.0, 141.0, 114.0, 99.0, 109.0, 109.0, 95.0, 146.0, 100.0, 139.0, 126.0, 129.0, 79.0, 110.64, 62.0, 95.0, 131.0, 112.0, 113.0, 74.0, 83.0, 101.0, 137.0, 110.0, 106.0, 100.0, 136.0, 107.0, 80.0, 123.0, 81.0, 134.0, 142.0, 144.0, 92.0, 71.0, 93.0, 122.0, 163.0, 151.0, 125.0, 81.0, 85.0, 126.0, 96.0, 144.0, 83.0, 95.0, 171.0, 155.0, 89.0, 76.0, 160.0, 146.0, 124.0, 78.0, 97.0, 99.0, 162.0, 111.0, 107.0, 132.0, 113.0, 88.0, 120.0, 118.0, 117.0, 105.0, 173.0, 122.0, 170.0, 84.0, 96.0, 125.0, 100.0, 93.0, 129.0, 105.0, 128.0, 106.0, 108.0, 108.0, 154.0, 102.0, 57.0, 106.0, 147.0, 90.0, 136.0, 114.0, 156.0, 153.0, 188.0, 152.0, 99.0, 109.0, 88.0, 163.0, 151.0, 102.0, 114.0, 100.0, 131.0, 104.0, 148.0, 120.0, 110.0, 111.0, 102.0, 134.0, 87.0, 79.0, 75.0, 179.0, 85.0, 129.0, 143.0, 130.0, 87.0, 119.0, 110.64, 73.0, 141.0, 194.0, 181.0, 128.0, 109.0, 139.0, 111.0, 123.0, 159.0, 135.0, 85.0, 158.0, 105.0, 107.0, 109.0, 148.0, 113.0, 138.0, 108.0, 99.0, 103.0, 111.0, 196.0, 162.0, 96.0, 184.0, 81.0, 147.0, 179.0, 140.0, 112.0, 151.0, 109.0, 125.0, 85.0, 112.0, 177.0, 158.0, 119.0, 142.0, 100.0, 87.0, 101.0, 162.0, 197.0, 117.0, 142.0, 134.0, 79.0, 122.0, 74.0, 171.0, 181.0, 179.0, 164.0, 104.0, 91.0, 91.0, 139.0, 119.0, 146.0, 184.0, 122.0, 165.0, 124.0, 111.0, 106.0, 129.0, 90.0, 86.0, 92.0, 113.0, 111.0, 114.0, 193.0, 155.0, 191.0, 141.0, 95.0, 142.0, 123.0, 96.0, 138.0, 128.0, 102.0, 146.0, 101.0, 108.0, 122.0, 71.0, 106.0, 100.0, 106.0, 104.0, 114.0, 108.0, 146.0, 129.0, 133.0, 161.0, 108.0, 136.0, 155.0, 119.0, 96.0, 108.0, 78.0, 107.0, 128.0, 128.0, 161.0, 151.0, 146.0, 126.0, 100.0, 112.0, 167.0, 144.0, 77.0, 115.0, 150.0, 120.0, 161.0, 137.0, 128.0, 124.0, 80.0, 106.0, 155.0, 113.0, 109.0, 112.0, 99.0, 182.0, 115.0, 194.0, 129.0, 112.0, 124.0, 152.0, 112.0, 157.0, 122.0, 179.0, 102.0, 105.0, 118.0, 87.0, 180.0, 106.0, 95.0, 165.0, 117.0, 115.0, 152.0, 178.0, 130.0, 95.0, 110.64, 122.0, 95.0, 126.0, 139.0, 116.0, 99.0, 142.32, 92.0, 137.0, 61.0, 90.0, 90.0, 165.0, 125.0, 129.0, 88.0, 196.0, 189.0, 158.0, 103.0, 146.0, 147.0, 99.0, 124.0, 101.0, 81.0, 133.0, 173.0, 118.0, 84.0, 105.0, 122.0, 140.0, 98.0, 87.0, 156.0, 93.0, 107.0, 105.0, 109.0, 90.0, 125.0, 119.0, 116.0, 105.0, 144.0, 100.0, 100.0, 166.0, 131.0, 116.0, 158.0, 127.0, 96.0, 131.0, 82.0, 193.0, 95.0, 137.0, 136.0, 72.0, 168.0, 123.0, 115.0, 101.0, 197.0, 172.0, 102.0, 112.0, 143.0, 143.0, 138.0, 173.0, 97.0, 144.0, 83.0, 129.0, 119.0, 94.0, 102.0, 115.0, 151.0, 184.0, 94.0, 181.0, 135.0, 95.0, 99.0, 89.0, 80.0, 139.0, 90.0, 141.0, 140.0, 147.0, 97.0, 107.0, 189.0, 83.0, 117.0, 108.0, 117.0, 180.0, 100.0, 95.0, 104.0, 120.0, 82.0, 134.0, 91.0, 119.0, 100.0, 175.0, 135.0, 86.0, 148.0, 134.0, 120.0, 71.0, 74.0, 88.0, 115.0, 124.0, 74.0, 97.0, 120.0, 154.0, 144.0, 137.0, 119.0, 136.0, 114.0, 137.0, 105.0, 114.0, 126.0, 132.0, 158.0, 123.0, 85.0, 84.0, 145.0, 135.0, 139.0, 173.0, 99.0, 194.0, 83.0, 89.0, 99.0, 125.0, 80.0, 166.0, 110.0, 81.0, 195.0, 154.0, 117.0, 84.0, 142.32, 94.0, 96.0, 75.0, 180.0, 130.0, 84.0, 120.0, 84.0, 139.0, 91.0, 91.0, 99.0, 163.0, 145.0, 125.0, 76.0, 129.0, 68.0, 124.0, 114.0, 130.0, 125.0, 87.0, 97.0, 116.0, 117.0, 111.0, 122.0, 107.0, 86.0, 91.0, 77.0, 132.0, 105.0, 57.0, 127.0, 129.0, 100.0, 128.0, 90.0, 84.0, 88.0, 186.0, 187.0, 131.0, 164.0, 189.0, 116.0, 84.0, 114.0, 88.0, 84.0, 124.0, 97.0, 110.0, 103.0, 85.0, 125.0, 198.0, 87.0, 99.0, 91.0, 95.0, 99.0, 92.0, 154.0, 121.0, 78.0, 130.0, 111.0, 98.0, 143.0, 119.0, 108.0, 118.0, 133.0, 197.0, 151.0, 109.0, 121.0, 100.0, 124.0, 93.0, 143.0, 103.0, 176.0, 73.0, 111.0, 112.0, 132.0, 82.0, 123.0, 188.0, 67.0, 89.0, 173.0, 109.0, 108.0, 96.0, 124.0, 150.0, 183.0, 124.0, 181.0, 92.0, 152.0, 111.0, 106.0, 174.0, 168.0, 105.0, 138.0, 106.0, 117.0, 68.0, 112.0, 119.0, 112.0, 92.0, 183.0, 94.0, 108.0, 90.0, 125.0, 132.0, 128.0, 94.0, 114.0, 102.0, 111.0, 128.0, 92.0, 104.0, 104.0, 94.0, 97.0, 100.0, 102.0, 128.0, 147.0, 90.0, 103.0, 157.0, 167.0, 179.0, 136.0, 107.0, 91.0, 117.0, 123.0, 120.0, 106.0, 155.0, 101.0, 120.0, 127.0, 80.0, 162.0, 199.0, 167.0, 145.0, 115.0, 112.0, 145.0, 111.0, 98.0, 154.0, 165.0, 99.0, 68.0, 123.0, 91.0, 195.0, 156.0, 93.0, 121.0, 101.0, 56.0, 162.0, 95.0, 125.0, 136.0, 129.0, 130.0, 107.0, 140.0, 144.0, 107.0, 158.0, 121.0, 129.0, 90.0, 142.0, 169.0, 99.0, 127.0, 118.0, 122.0, 125.0, 168.0, 129.0, 110.0, 80.0, 115.0, 127.0, 164.0, 93.0, 158.0, 126.0, 129.0, 134.0, 102.0, 187.0, 173.0, 94.0, 108.0, 97.0, 83.0, 114.0, 149.0, 117.0, 111.0, 112.0, 116.0, 141.0, 175.0, 92.0, 130.0, 120.0, 174.0, 106.0, 105.0, 95.0, 126.0, 65.0, 99.0, 102.0, 120.0, 102.0, 109.0, 140.0, 153.0, 100.0, 147.0, 81.0, 187.0, 162.0, 136.0, 121.0, 108.0, 181.0, 154.0, 128.0, 137.0, 123.0, 106.0, 190.0, 88.0, 170.0, 89.0, 101.0, 122.0, 121.0, 126.0, 93.0], \"xaxis\": \"x\", \"xbins\": {\"end\": 199.0, \"size\": 0, \"start\": 44.0}, \"yaxis\": \"y\"}, {\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"name\": \"diabetic\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [148.0, 183.0, 137.0, 78.0, 197.0, 125.0, 168.0, 189.0, 166.0, 100.0, 118.0, 107.0, 115.0, 196.0, 119.0, 143.0, 125.0, 147.0, 158.0, 102.0, 90.0, 111.0, 171.0, 180.0, 103.0, 176.0, 187.0, 133.0, 114.0, 109.0, 100.0, 126.0, 131.0, 137.0, 136.0, 134.0, 122.0, 163.0, 95.0, 171.0, 155.0, 160.0, 146.0, 124.0, 162.0, 113.0, 88.0, 117.0, 105.0, 173.0, 122.0, 170.0, 108.0, 156.0, 188.0, 152.0, 163.0, 131.0, 104.0, 102.0, 134.0, 179.0, 129.0, 130.0, 194.0, 181.0, 128.0, 109.0, 139.0, 159.0, 135.0, 158.0, 107.0, 109.0, 148.0, 196.0, 162.0, 184.0, 140.0, 112.0, 151.0, 109.0, 85.0, 112.0, 177.0, 158.0, 162.0, 142.0, 134.0, 171.0, 181.0, 179.0, 164.0, 139.0, 119.0, 184.0, 92.0, 113.0, 155.0, 141.0, 123.0, 138.0, 146.0, 101.0, 106.0, 146.0, 161.0, 108.0, 119.0, 107.0, 128.0, 128.0, 146.0, 100.0, 167.0, 144.0, 115.0, 161.0, 128.0, 124.0, 155.0, 109.0, 182.0, 194.0, 112.0, 124.0, 152.0, 122.0, 102.0, 180.0, 115.0, 152.0, 178.0, 142.32, 165.0, 125.0, 129.0, 196.0, 189.0, 146.0, 124.0, 133.0, 173.0, 140.0, 156.0, 116.0, 105.0, 144.0, 166.0, 158.0, 131.0, 193.0, 95.0, 136.0, 168.0, 115.0, 197.0, 172.0, 138.0, 173.0, 144.0, 129.0, 151.0, 184.0, 181.0, 95.0, 141.0, 189.0, 108.0, 117.0, 180.0, 104.0, 134.0, 175.0, 148.0, 120.0, 105.0, 158.0, 145.0, 135.0, 125.0, 195.0, 142.32, 180.0, 84.0, 163.0, 145.0, 130.0, 132.0, 129.0, 100.0, 128.0, 90.0, 186.0, 187.0, 125.0, 198.0, 121.0, 118.0, 197.0, 151.0, 124.0, 143.0, 176.0, 111.0, 132.0, 188.0, 173.0, 150.0, 183.0, 181.0, 174.0, 168.0, 138.0, 112.0, 119.0, 114.0, 104.0, 97.0, 147.0, 167.0, 179.0, 136.0, 155.0, 80.0, 199.0, 167.0, 145.0, 115.0, 145.0, 111.0, 195.0, 156.0, 121.0, 162.0, 125.0, 144.0, 158.0, 129.0, 142.0, 169.0, 125.0, 168.0, 115.0, 164.0, 93.0, 129.0, 187.0, 173.0, 97.0, 149.0, 130.0, 120.0, 174.0, 102.0, 120.0, 140.0, 147.0, 187.0, 162.0, 136.0, 181.0, 154.0, 128.0, 123.0, 190.0, 170.0, 126.0], \"xaxis\": \"x\", \"xbins\": {\"end\": 199.0, \"size\": 0, \"start\": 78.0}, \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"mode\": \"lines\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [44.0, 44.31, 44.62, 44.93, 45.24, 45.55, 45.86, 46.17, 46.48, 46.79, 47.1, 47.41, 47.72, 48.03, 48.34, 48.65, 48.96, 49.269999999999996, 49.58, 49.89, 50.2, 50.51, 50.82, 51.13, 51.44, 51.75, 52.06, 52.37, 52.68, 52.99, 53.3, 53.61, 53.92, 54.230000000000004, 54.54, 54.85, 55.16, 55.47, 55.78, 56.09, 56.4, 56.71, 57.019999999999996, 57.33, 57.64, 57.95, 58.26, 58.57, 58.88, 59.19, 59.5, 59.81, 60.120000000000005, 60.43, 60.739999999999995, 61.05, 61.36, 61.67, 61.980000000000004, 62.29, 62.6, 62.91, 63.22, 63.53, 63.84, 64.15, 64.46000000000001, 64.77, 65.08, 65.39, 65.7, 66.01, 66.32, 66.63, 66.94, 67.25, 67.56, 67.87, 68.18, 68.49, 68.8, 69.11, 69.42, 69.73, 70.03999999999999, 70.35, 70.66, 70.97, 71.28, 71.59, 71.9, 72.21000000000001, 72.52, 72.83, 73.14, 73.45, 73.76, 74.07, 74.38, 74.69, 75.0, 75.31, 75.62, 75.93, 76.24000000000001, 76.55, 76.86, 77.17, 77.47999999999999, 77.78999999999999, 78.1, 78.41, 78.72, 79.03, 79.34, 79.65, 79.96000000000001, 80.27000000000001, 80.58, 80.89, 81.2, 81.50999999999999, 81.82, 82.13, 82.44, 82.75, 83.06, 83.37, 83.68, 83.99000000000001, 84.3, 84.61, 84.92, 85.22999999999999, 85.53999999999999, 85.85, 86.16, 86.47, 86.78, 87.09, 87.4, 87.71000000000001, 88.02000000000001, 88.33, 88.64, 88.95, 89.25999999999999, 89.57, 89.88, 90.19, 90.5, 90.81, 91.12, 91.43, 91.74000000000001, 92.05, 92.36, 92.67, 92.97999999999999, 93.28999999999999, 93.6, 93.91, 94.22, 94.53, 94.84, 95.15, 95.46000000000001, 95.77000000000001, 96.08, 96.39, 96.7, 97.00999999999999, 97.32, 97.63, 97.94, 98.25, 98.56, 98.87, 99.18, 99.49000000000001, 99.8, 100.11, 100.42, 100.72999999999999, 101.03999999999999, 101.35, 101.66, 101.97, 102.28, 102.59, 102.9, 103.21000000000001, 103.52000000000001, 103.83, 104.14, 104.45, 104.75999999999999, 105.07, 105.38, 105.69, 106.0, 106.31, 106.62, 106.93, 107.24000000000001, 107.55, 107.86, 108.17, 108.48, 108.79, 109.1, 109.41, 109.72, 110.03, 110.34, 110.65, 110.96, 111.27, 111.58, 111.89, 112.2, 112.51, 112.82, 113.13, 113.44, 113.75, 114.06, 114.37, 114.68, 114.99, 115.3, 115.61, 115.92, 116.23, 116.54, 116.85, 117.16, 117.47, 117.78, 118.09, 118.4, 118.71, 119.02, 119.33, 119.64, 119.95, 120.26, 120.57, 120.88, 121.19, 121.5, 121.81, 122.12, 122.43, 122.74, 123.05, 123.36, 123.67, 123.98, 124.29, 124.6, 124.91, 125.22, 125.53, 125.84, 126.15, 126.46, 126.77, 127.08, 127.39, 127.7, 128.01, 128.32, 128.63, 128.94, 129.25, 129.56, 129.87, 130.18, 130.49, 130.8, 131.11, 131.42000000000002, 131.73000000000002, 132.04000000000002, 132.35, 132.66, 132.97, 133.28, 133.59, 133.9, 134.20999999999998, 134.51999999999998, 134.82999999999998, 135.14, 135.45, 135.76, 136.07, 136.38, 136.69, 137.0, 137.31, 137.62, 137.93, 138.24, 138.55, 138.86, 139.17000000000002, 139.48000000000002, 139.79000000000002, 140.1, 140.41, 140.72, 141.03, 141.34, 141.65, 141.95999999999998, 142.26999999999998, 142.57999999999998, 142.89, 143.2, 143.51, 143.82, 144.13, 144.44, 144.75, 145.06, 145.37, 145.68, 145.99, 146.3, 146.61, 146.92000000000002, 147.23000000000002, 147.54000000000002, 147.85, 148.16, 148.47, 148.78, 149.09, 149.4, 149.70999999999998, 150.01999999999998, 150.32999999999998, 150.64, 150.95, 151.26, 151.57, 151.88, 152.19, 152.5, 152.81, 153.12, 153.43, 153.74, 154.05, 154.36, 154.67000000000002, 154.98000000000002, 155.29000000000002, 155.6, 155.91, 156.22, 156.53, 156.84, 157.15, 157.45999999999998, 157.76999999999998, 158.07999999999998, 158.39, 158.7, 159.01, 159.32, 159.63, 159.94, 160.25, 160.56, 160.87, 161.18, 161.49, 161.8, 162.11, 162.42000000000002, 162.73000000000002, 163.04000000000002, 163.35, 163.66, 163.97, 164.28, 164.59, 164.9, 165.20999999999998, 165.51999999999998, 165.82999999999998, 166.14, 166.45, 166.76, 167.07, 167.38, 167.69, 168.0, 168.31, 168.62, 168.93, 169.24, 169.55, 169.86, 170.17000000000002, 170.48000000000002, 170.79000000000002, 171.1, 171.41, 171.72, 172.03, 172.34, 172.65, 172.96, 173.27, 173.58, 173.89, 174.2, 174.51, 174.82, 175.13, 175.44, 175.75, 176.06, 176.37, 176.68, 176.99, 177.3, 177.61, 177.92, 178.23, 178.54, 178.85, 179.16, 179.47, 179.78, 180.09, 180.4, 180.71, 181.02, 181.33, 181.64, 181.95, 182.26, 182.57, 182.88, 183.19, 183.5, 183.81, 184.12, 184.43, 184.74, 185.05, 185.36, 185.67, 185.98, 186.29, 186.6, 186.91, 187.22, 187.53, 187.84, 188.15, 188.46, 188.77, 189.08, 189.39, 189.7, 190.01, 190.32, 190.63, 190.94, 191.25, 191.56, 191.87, 192.18, 192.49, 192.8, 193.11, 193.42, 193.73, 194.04, 194.35, 194.66, 194.97, 195.28, 195.59, 195.9, 196.21, 196.52, 196.83, 197.14, 197.45, 197.76, 198.07, 198.38, 198.69], \"xaxis\": \"x\", \"y\": [0.00014067509339297683, 0.00014604988864881015, 0.0001516156259993274, 0.0001573806885745248, 0.0001633536779647897, 0.0001695433974718554, 0.00017595883595396595, 0.00018260915268801243, 0.0001895036636727757, 0.00019665182979150517, 0.00020406324723872397, 0.00021174764059526081, 0.00021971485890716718, 0.00022797487508853536, 0.00023653778892567315, 0.00024541383391101895, 0.00025461338808024177, 0.00026414698896585803, 0.00027402535271624733, 0.0002842593973611039, 0.00029486027013413656, 0.0003058393786923302, 0.00031720842599944, 0.0003289794485708065, 0.0003411648577082374, 0.00035377748328878063, 0.0003668306196108871, 0.0003803380727468082, 0.0003943142088021459, 0.00040877400244315694, 0.00042373308502060864, 0.0004392077915962694, 0.00045521520616513084, 0.0004717732043635319, 0.000488900492960689, 0.0005066166454488351, 0.0005249421330749865, 0.0005438983506951096, 0.0005635076368784886, 0.0005837932877459261, 0.0006047795640890367, 0.0006264916913884975, 0.0006489558524255337, 0.0006721991722619574, 0.0006962496954484611, 0.0007211363554072357, 0.0007468889360219629, 0.0007735380255543734, 0.0008011149630905401, 0.0008296517778004995, 0.0008591811213703533, 0.0008897361940355794, 0.0009213506647067122, 0.0009540585857329579, 0.0009878943028948182, 0.0010228923612528966, 0.0010590874075061694, 0.001096514089529011, 0.0011352069537619856, 0.001175200341127065, 0.001216528282123872, 0.0012592243917401305, 0.0013033217647777273, 0.0013488528721561038, 0.0013958494587085826, 0.0014443424429353405, 0.0014943618191207084, 0.001545936562163342, 0.0015990945354070368, 0.0016538624016989296, 0.0017102655378419093, 0.0017683279525504774, 0.0018280722079655675, 0.0018895193447347886, 0.0019526888106215431, 0.0020175983925704013, 0.0020842641521273473, 0.002152700364093281, 0.0022229194582772628, 0.002294931964212978, 0.0023687464587075825, 0.002444369516106294, 0.002521805661178529, 0.002601057324561158, 0.00268212480073093, 0.002765006208520451, 0.002849697454238846, 0.0029361921975084595, 0.0030244818199810825, 0.0031145553971499446, 0.0032063996735256207, 0.0032999990414933496, 0.0033953355242149967, 0.0034923887629792717, 0.0035911360094374027, 0.0036915521231876353, 0.003793609575188667, 0.0038972784574894084, 0.004002526499758725, 0.004109319093084083, 0.004217619321481695, 0.004327388001522605, 0.004438583730429367, 0.004551162942937028, 0.004665079977140348, 0.004780287149467263, 0.004896734838828031, 0.005014371579890633, 0.005133144165328229, 0.005252997756774111, 0.005373876004106309, 0.005495721172569207, 0.005618474277124437, 0.0057420752233109315, 0.005866462953785119, 0.005991575599609533, 0.006117350635262561, 0.006243725036256365, 0.006370635438174853, 0.006498018295881199, 0.006625810041595349, 0.006753947240508383, 0.006882366742582411, 0.007011005829182983, 0.0071398023532069045, 0.007268694871400752, 0.007397622767615801, 0.007526526365811803, 0.007655347031705953, 0.00778402726206266, 0.007912510760733873, 0.008040742500687672, 0.008168668771402718, 0.008296237211157104, 0.00842339682389955, 0.008550097980557584, 0.008676292404809294, 0.00880193314351958, 0.008926974522217529, 0.009051372086165726, 0.009175082527742913, 0.009298063601026418, 0.009420274024618206, 0.009541673373905976, 0.009662221964086913, 0.009781880725404242, 0.009900611072155063, 0.01001837476711948, 0.010135133783135216, 0.010250850163598295, 0.010365485883706947, 0.010479002714283514, 0.010591362090006507, 0.010702524983862956, 0.010812451789589462, 0.010921102213809378, 0.011028435179494759, 0.011134408742284826, 0.01123898002108023, 0.011342105144204225, 0.011443739212280554, 0.011543836278824517, 0.011642349349379771, 0.011739230399861139, 0.011834430414584608, 0.011927899444281565, 0.012019586684207108, 0.012109440572263642, 0.012197408906872763, 0.012283438984142246, 0.012367477753692235, 0.012449471992327255, 0.012529368494569497, 0.012607114278905105, 0.012682656808440444, 0.012755944224519943, 0.012826925591722355, 0.012895551152528557, 0.01296177258984205, 0.013025543295443674, 0.013086818642374869, 0.013145556259169687, 0.013201716303794726, 0.013255261735108787, 0.013306158579619962, 0.01335437619129798, 0.013399887502193534, 0.013442669261624648, 0.013482702261712762, 0.0135199715470888, 0.013554466606641984, 0.013586181545251895, 0.013615115233528046, 0.013641271433680394, 0.013664658899760233, 0.013685291450642973, 0.013703188014273445, 0.013718372641860052, 0.013730874490886738, 0.013740727776011066, 0.013747971687132245, 0.01375265027414428, 0.013754812298135941, 0.013754511049059564, 0.01375180413016377, 0.013746753209769575, 0.01373942374126259, 0.013729884652474678, 0.013718208005933322, 0.013704468631763778, 0.01368874373533452, 0.013671112482037244, 0.01365165556188535, 0.013630454736895661, 0.013607592374483049, 0.013583150970343199, 0.013557212664520627, 0.013529858754553476, 0.013501169209749997, 0.013471222190780053, 0.013440093578855523, 0.013407856518822725, 0.013374580980495644, 0.013340333342518483, 0.013305176002958347, 0.013269167020692326, 0.013232359791468112, 0.013194802762282621, 0.013156539187441004, 0.013117606929329484, 0.013078038306562338, 0.013037859991749182, 0.012997092960676474, 0.012955752494211818, 0.012913848233725728, 0.012871384290288338, 0.012828359407344312, 0.012784767176004089, 0.01274059630152019, 0.012695830918950868, 0.012650450955456423, 0.012604432536133836, 0.012557748429779476, 0.012510368530484858, 0.012462260370523184, 0.012413389659581288, 0.012363720845038171, 0.01231321768769315, 0.012261843847108196, 0.012209563470554768, 0.012156341779447601, 0.012102145647110065, 0.012046944161748287, 0.01199070916861543, 0.011933415785522566, 0.011875042886097514, 0.011815573545505276, 0.011754995443720207, 0.01169330122187679, 0.011630488787718067, 0.01156656156670249, 0.011501528695915095, 0.011435405158550469, 0.011368211857385452, 0.011299975626331034, 0.011230729179837308, 0.01116051100061416, 0.011089365166815338, 0.011017341120505801, 0.010944493379883985, 0.010870881198353584, 0.010796568174125803, 0.010721621814575992, 0.01064611306007129, 0.010570115772422338, 0.010493706193487409, 0.0104169623797667, 0.010339963619064833, 0.010262789835467726, 0.010185520988975074, 0.010108236476149775, 0.010031014538092402, 0.00995393168192206, 0.009877062121747847, 0.009800477244850118, 0.009724245108461385, 0.009648429972148488, 0.009573091870355092, 0.009498286229172356, 0.009424063530873685, 0.00935046902918184, 0.009277542517641848, 0.00920531815285839, 0.009133824333729265, 0.00906308363717425, 0.008993112810230429, 0.008923922817766302, 0.008855518944466734, 0.008787900949164994, 0.008721063269053407, 0.008654995270796897, 0.008589681545109026, 0.008525102240932654, 0.008461233435001943, 0.00839804753225178, 0.008335513692287612, 0.00827359827693586, 0.008212265313762285, 0.008151476970374735, 0.0080911940343163, 0.008031376393404127, 0.007971983511476504, 0.007912974894673575, 0.007854310543591723, 0.007795951386915556, 0.007737859692439241, 0.007679999451736661, 0.00762233673512243, 0.00756484001395756, 0.007507480447789174, 0.00745023213426748, 0.007393072320248875, 0.007335981572966474, 0.00727894391062217, 0.007221946892221978, 0.0071649816669338, 0.007108042983688389, 0.007051129162165103, 0.00699424202670031, 0.006937386805023247, 0.006880571994058319, 0.006823809195331761, 0.006767112922780744, 0.00671050038598326, 0.006653991252005741, 0.006597607389201002, 0.006541372596382404, 0.006485312320850584, 0.00642945336875732, 0.006373823611259371, 0.006318451689844022, 0.006263366724100178, 0.006208598025067199, 0.00615417481712025, 0.006100125971149526, 0.006046479751564821, 0.005993263579409413, 0.005940503813602703, 0.005888225552052856, 0.005836452454092334, 0.005785206585395316, 0.005734508286239435, 0.005684376063678866, 0.005634826507905246, 0.005585874232789997, 0.005537531840329209, 0.005489809908453757, 0.005442717001423894, 0.005396259701802569, 0.005350442662796038, 0.005305268679565561, 0.005260738777951645, 0.005216852318912811, 0.005173607116864554, 0.0051309995700119584, 0.005089024800700603, 0.005047676803764715, 0.005006948600828947, 0.004966832398519285, 0.004927319748558865, 0.00488840170776495, 0.004850068996022207, 0.004812312150384139, 0.004775121673547134, 0.004738488175048772, 0.0047024025036624725, 0.004666855869592506, 0.0046318399552152945, 0.004597347013263613, 0.0045633699515076264, 0.00452990240314987, 0.004496938782318311, 0.0044644743242112225, 0.004432505109618561, 0.004401028073715211, 0.004370040999190619, 0.004339542493945754, 0.004309531953750819, 0.004280009510413916, 0.00425097596616175, 0.004222432715076223, 0.004194381652564987, 0.004166825073968398, 0.004139765563518713, 0.004113205874968924, 0.004087148805297424, 0.004061597062969658, 0.004036553132298518, 0.004012019135490589, 0.003987996693994842, 0.0039644867907835625, 0.003941489635191847, 0.003919004531921413, 0.00389702975577705, 0.003875562433649386, 0.003854598435186434, 0.0038341322735087023, 0.00381415701721921, 0.003794664214841475, 0.0037756438326861526, 0.0037570842070019195, 0.003738972011109665, 0.0037212922380527435, 0.00370402819912141, 0.003687161538428949, 0.0036706722635320007, 0.003654538791900546, 0.003638738012856221, 0.003623245364413231, 0.0036080349242766582, 0.003593079514080626, 0.0035783508157860005, 0.0035638194990063182, 0.003549455357893674, 0.003535227456095259, 0.0035211042781882504, 0.00350705388591724, 0.003493044077495965, 0.0034790425481949594, 0.0034650170504196822, 0.003450935551490417, 0.0034367663873660485, 0.003422478410608523, 0.0034080411309631636, 0.0033934248470312385, 0.0033786007676339445, 0.0033635411216103098, 0.0033482192549531744, 0.003332609714365612, 0.003316688316512496, 0.0033004322024457644, 0.003283819876894463, 0.0032668312323289664, 0.0032494475579295822, 0.003231651533810063, 0.0032134272110628435, 0.003194759978402126, 0.0031756365163797496, 0.003156044740334449, 0.0031359737334041536, 0.003115413671081242, 0.003094355738919315, 0.0030727920451050065, 0.0030507155296879396, 0.0030281198723143927, 0.0030049994003347688, 0.0029813489991507925, 0.002957164026635127, 0.002932440233394329, 0.002907173690556177, 0.0028813607266454117, 0.002854997874969746, 0.002828081832772135, 0.0028006094332182056, 0.0027725776310822806, 0.0027439835027741446, 0.0027148242611152876, 0.0026850972850309338, 0.002654800164076441, 0.002623930757467497, 0.0025924872670365323, 0.0025604683232967793, 0.0025278730835641486, 0.0024947013408692315, 0.0024609536421903895, 0.0024266314143576275, 0.002391737095818376, 0.0023562742723228954, 0.0023202478144813887, 0.0022836640150681368, 0.002246530723902029, 0.002208857478118234, 0.002170655625662729, 0.002131938439890272, 0.002092721223226263, 0.002053021397962533, 0.0020128585823955478, 0.0019722546506802025, 0.0019312337749611268, 0.0018898224485538908, 0.0018480494891768991, 0.0018059460214785417, 0.0017635454383592962, 0.0017208833408513156, 0.0016779974565850977, 0.0016349275371399157, 0.0015917152348381793, 0.0015484039597999594, 0.0015050387183192617, 0.0014616659338542379], \"yaxis\": \"y\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"mode\": \"lines\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [78.0, 78.242, 78.484, 78.726, 78.968, 79.21, 79.452, 79.694, 79.936, 80.178, 80.42, 80.662, 80.904, 81.146, 81.388, 81.63, 81.872, 82.114, 82.356, 82.598, 82.84, 83.082, 83.324, 83.566, 83.80799999999999, 84.05, 84.292, 84.534, 84.776, 85.018, 85.26, 85.502, 85.744, 85.986, 86.228, 86.47, 86.712, 86.95400000000001, 87.196, 87.438, 87.68, 87.922, 88.164, 88.406, 88.648, 88.89, 89.132, 89.374, 89.616, 89.858, 90.1, 90.342, 90.584, 90.826, 91.068, 91.31, 91.55199999999999, 91.794, 92.036, 92.278, 92.52, 92.762, 93.004, 93.246, 93.488, 93.73, 93.972, 94.214, 94.456, 94.69800000000001, 94.94, 95.182, 95.424, 95.666, 95.908, 96.15, 96.392, 96.634, 96.876, 97.118, 97.36, 97.602, 97.844, 98.086, 98.328, 98.57, 98.812, 99.054, 99.29599999999999, 99.538, 99.78, 100.02199999999999, 100.264, 100.506, 100.748, 100.99, 101.232, 101.474, 101.71600000000001, 101.958, 102.2, 102.44200000000001, 102.684, 102.926, 103.168, 103.41, 103.652, 103.894, 104.136, 104.378, 104.62, 104.862, 105.104, 105.346, 105.588, 105.83, 106.072, 106.314, 106.556, 106.798, 107.03999999999999, 107.282, 107.524, 107.76599999999999, 108.008, 108.25, 108.492, 108.73400000000001, 108.976, 109.218, 109.46000000000001, 109.702, 109.944, 110.186, 110.428, 110.67, 110.912, 111.154, 111.396, 111.638, 111.88, 112.122, 112.364, 112.606, 112.848, 113.09, 113.332, 113.574, 113.816, 114.05799999999999, 114.3, 114.542, 114.78399999999999, 115.02600000000001, 115.268, 115.50999999999999, 115.75200000000001, 115.994, 116.23599999999999, 116.47800000000001, 116.72, 116.962, 117.20400000000001, 117.446, 117.688, 117.93, 118.172, 118.414, 118.656, 118.898, 119.14, 119.382, 119.624, 119.866, 120.108, 120.35, 120.592, 120.834, 121.076, 121.318, 121.56, 121.80199999999999, 122.044, 122.286, 122.52799999999999, 122.77000000000001, 123.012, 123.25399999999999, 123.49600000000001, 123.738, 123.97999999999999, 124.22200000000001, 124.464, 124.706, 124.94800000000001, 125.19, 125.432, 125.674, 125.916, 126.158, 126.4, 126.642, 126.884, 127.126, 127.368, 127.61, 127.852, 128.094, 128.336, 128.578, 128.82, 129.062, 129.304, 129.546, 129.788, 130.03, 130.272, 130.514, 130.756, 130.998, 131.24, 131.482, 131.724, 131.966, 132.208, 132.45, 132.692, 132.934, 133.176, 133.418, 133.66, 133.902, 134.144, 134.386, 134.628, 134.87, 135.112, 135.35399999999998, 135.596, 135.838, 136.07999999999998, 136.322, 136.564, 136.80599999999998, 137.048, 137.29, 137.53199999999998, 137.774, 138.016, 138.258, 138.5, 138.742, 138.984, 139.226, 139.46800000000002, 139.71, 139.952, 140.19400000000002, 140.436, 140.678, 140.92000000000002, 141.162, 141.404, 141.64600000000002, 141.888, 142.13, 142.372, 142.614, 142.856, 143.098, 143.34, 143.582, 143.824, 144.066, 144.308, 144.55, 144.792, 145.034, 145.276, 145.518, 145.76, 146.002, 146.244, 146.486, 146.728, 146.97, 147.212, 147.454, 147.696, 147.938, 148.18, 148.422, 148.664, 148.906, 149.148, 149.39, 149.632, 149.874, 150.11599999999999, 150.358, 150.6, 150.84199999999998, 151.084, 151.326, 151.56799999999998, 151.81, 152.05200000000002, 152.29399999999998, 152.536, 152.77800000000002, 153.01999999999998, 153.262, 153.50400000000002, 153.74599999999998, 153.988, 154.23000000000002, 154.47199999999998, 154.714, 154.95600000000002, 155.19799999999998, 155.44, 155.68200000000002, 155.924, 156.166, 156.40800000000002, 156.65, 156.892, 157.13400000000001, 157.376, 157.618, 157.86, 158.102, 158.344, 158.586, 158.828, 159.07, 159.312, 159.554, 159.796, 160.038, 160.28, 160.522, 160.764, 161.006, 161.248, 161.49, 161.732, 161.974, 162.216, 162.458, 162.7, 162.942, 163.184, 163.426, 163.668, 163.91, 164.152, 164.394, 164.636, 164.878, 165.12, 165.362, 165.60399999999998, 165.846, 166.088, 166.32999999999998, 166.572, 166.814, 167.05599999999998, 167.298, 167.54000000000002, 167.78199999999998, 168.024, 168.26600000000002, 168.50799999999998, 168.75, 168.99200000000002, 169.23399999999998, 169.476, 169.71800000000002, 169.95999999999998, 170.202, 170.44400000000002, 170.686, 170.928, 171.17000000000002, 171.412, 171.654, 171.89600000000002, 172.138, 172.38, 172.622, 172.864, 173.106, 173.348, 173.59, 173.832, 174.074, 174.316, 174.558, 174.8, 175.042, 175.284, 175.526, 175.768, 176.01, 176.252, 176.494, 176.736, 176.978, 177.22, 177.462, 177.704, 177.946, 178.188, 178.43, 178.672, 178.914, 179.156, 179.398, 179.64, 179.882, 180.124, 180.36599999999999, 180.608, 180.85, 181.09199999999998, 181.334, 181.576, 181.81799999999998, 182.06, 182.30200000000002, 182.54399999999998, 182.786, 183.02800000000002, 183.26999999999998, 183.512, 183.75400000000002, 183.99599999999998, 184.238, 184.48000000000002, 184.72199999999998, 184.964, 185.20600000000002, 185.44799999999998, 185.69, 185.93200000000002, 186.174, 186.416, 186.65800000000002, 186.9, 187.142, 187.38400000000001, 187.626, 187.868, 188.11, 188.352, 188.594, 188.836, 189.078, 189.32, 189.562, 189.804, 190.046, 190.288, 190.53, 190.772, 191.014, 191.256, 191.498, 191.74, 191.982, 192.224, 192.466, 192.708, 192.95, 193.192, 193.434, 193.676, 193.918, 194.16, 194.402, 194.644, 194.886, 195.128, 195.37, 195.612, 195.85399999999998, 196.096, 196.338, 196.57999999999998, 196.822, 197.064, 197.30599999999998, 197.548, 197.79000000000002, 198.03199999999998, 198.274, 198.51600000000002, 198.75799999999998], \"xaxis\": \"x\", \"y\": [0.0011544751585774327, 0.0011850357666987356, 0.0012161319892598091, 0.0012477691606517598, 0.0012799527321259649, 0.001312688271043612, 0.001345981459212691, 0.001379838090277986, 0.0014142640661328656, 0.0014492653923245415, 0.001484848172428038, 0.0015210186013674635, 0.0015577829576670808, 0.0015951475946183553, 0.0016331189303533233, 0.0016717034368187113, 0.0017109076276495636, 0.001750738044945479, 0.001791201244957156, 0.0018323037826954748, 0.0018740521954799041, 0.0019164529854479914, 0.0019595126010521218, 0.0020032374175747766, 0.002047633716698073, 0.0020927076651683406, 0.002138465292600982, 0.002184912468475799, 0.0022320548783773646, 0.00227989799953968, 0.0023284470757587304, 0.002377707091740867, 0.002427682746959142, 0.002478378429093583, 0.0025297981871354276, 0.0025819457042387944, 0.0026348242704066762, 0.002688436755101452, 0.002742785579872796, 0.002797872691098735, 0.0028536995329377546, 0.002910267020591996, 0.0029675755139832883, 0.003025624791945095, 0.0030844140270344395, 0.003143941761068635, 0.003204205881491727, 0.003265203598675531, 0.003326931424259598, 0.003389385150633346, 0.003452559831662374, 0.00351644976475894, 0.003581048474394539, 0.003646348697149459, 0.0037123423683915464, 0.0037790206106721046, 0.0038463737239234426, 0.003914391177537737, 0.003983061604401857, 0.0040523727969577405, 0.004122311705351894, 0.004192864437731387, 0.004264016262737218, 0.00433575161423895, 0.004408054098347153, 0.00448090650273253, 0.00455429080827261, 0.004628188203038919, 0.0047025790986284085, 0.004777443148834953, 0.004852759270647177, 0.004928505667550106, 0.005004659855098841, 0.0050811986887231144, 0.005158098393712246, 0.005235334597320752, 0.00531288236292529, 0.005390716226154796, 0.00546881023290604, 0.005547137979148186, 0.005625672652411261, 0.005704387074844528, 0.005783253747723051, 0.005862244897272569, 0.005941332521675428, 0.006020488439113319, 0.006099684336695924, 0.006178891820118638, 0.0062580824638869765, 0.006337227861940451, 0.006416299678504268, 0.006495269698993851, 0.00657410988079411, 0.00665279240373315, 0.00673128972006889, 0.006809574603806164, 0.0068876201991621665, 0.006965400067998809, 0.007042888236042748, 0.007120059237715599, 0.00719688815940135, 0.007273350680981166, 0.007349423115471417, 0.007425082446606543, 0.007500306364214821, 0.007575073297242916, 0.0076493624442929165, 0.007723153801544856, 0.007796428187947161, 0.007869167267568106, 0.007941353569011886, 0.008012970501815082, 0.00808400236975107, 0.008154434380982517, 0.008224252655015696, 0.008293444226423202, 0.00836199704531602, 0.008429899974559792, 0.008497142783744437, 0.008563716139930799, 0.008629611595212519, 0.00869482157114602, 0.008759339340115722, 0.008823159003716064, 0.00888627546824632, 0.00894868441742744, 0.009010382282464296, 0.009071366209589244, 0.009131634025235832, 0.009191184199003236, 0.009250015804583464, 0.0093081284788338, 0.009365522379187259, 0.009422198139602085, 0.009478156825260195, 0.009533399886231295, 0.009587929110325322, 0.009641746575361525, 0.00969485460108606, 0.009747255700973104, 0.009798952534146095, 0.009849947857656735, 0.009900244479357827, 0.009949845211605253, 0.009998752826020712, 0.010046970009542548, 0.010094499321986826, 0.01014134315533403, 0.010187503694948577, 0.010232982882929908, 0.010277782383783322, 0.010321903552587504, 0.010365347405824081, 0.010408114595020283, 0.010450205383342846, 0.010491619625265307, 0.010532356749415772, 0.010572415744695413, 0.010611795149741175, 0.010650493045788311, 0.01068850705297054, 0.01072583433007721, 0.010762471577768173, 0.010798415045228606, 0.010833660540226787, 0.010868203442519564, 0.010902038720531646, 0.010935160951216372, 0.01096756434298822, 0.010999242761599479, 0.011030189758817269, 0.011060398603741044, 0.011089862316584759, 0.011118573704735006, 0.011146525400881716, 0.011173709903006824, 0.011200119616004726, 0.01122574689469876, 0.011250584088009578, 0.011274623584023945, 0.011297857855706982, 0.011320279506996706, 0.011341881319016933, 0.011362656296143548, 0.011382597711659557, 0.01140169915273638, 0.01141995456448204, 0.011437358292802796, 0.011453905125830381, 0.011469590333676193, 0.011484409706282525, 0.011498359589152575, 0.011511436916753052, 0.011523639243397096, 0.011534964771429795, 0.011545412376554855, 0.011554981630158214, 0.011563672818501817, 0.011571486958680077, 0.011578425811250773, 0.011584491889472462, 0.011589688465100714, 0.011594019570716962, 0.011597489998583814, 0.011600105296043406, 0.01160187175749453, 0.01160279641300717, 0.011602887013652047, 0.011602152013643693, 0.011600600549414824, 0.011598242415758624, 0.011595088039193204, 0.011591148448719559, 0.011586435244160425, 0.011580960562281382, 0.011574737040909569, 0.011567777781276795, 0.011560096308824616, 0.011551706532717603, 0.011542622704318406, 0.011532859374883849, 0.011522431352745352, 0.011511353660238624, 0.011499641490648985, 0.011487310165436202, 0.011474375092000418, 0.011460851722245842, 0.011446755512192042, 0.011432101882874697, 0.01141690618276791, 0.011401183651948657, 0.011384949388211415, 0.01136821831532646, 0.011351005153620012, 0.011333324393037796, 0.011315190268835797, 0.011296616740022811, 0.011277617470660965, 0.01125820581410875, 0.011238394800271532, 0.011218197125902619, 0.011197625147976759, 0.011176690880136295, 0.011155405992188979, 0.011133781812614449, 0.011111829334016056, 0.011089559221433927, 0.011066981823414946, 0.011044107185716698, 0.011020945067503772, 0.010997504959877783, 0.010973796106566087, 0.010949827526579834, 0.010925608038637768, 0.010901146287140772, 0.010876450769471281, 0.010851529864382654, 0.010826391861236755, 0.010801044989841876, 0.010775497450639684, 0.01074975744498758, 0.01072383320528291, 0.01069773302467631, 0.010671465286125545, 0.01064503849054547, 0.010618461283816863, 0.01059174248242495, 0.01056489109750865, 0.01053791635711239, 0.010510827726446126, 0.01048363492597225, 0.010456347947154398, 0.010428977065719143, 0.010401532852299182, 0.010374026180344926, 0.010346468231210824, 0.01031887049634187, 0.010291244776506328, 0.01026360317804107, 0.010235958106096444, 0.010208322254888333, 0.010180708594985561, 0.010153130357681147, 0.010125601016515608, 0.010098134266040004, 0.010070743997924974, 0.010043444274539976, 0.010016249300143647, 0.009989173389842426, 0.009962230936489194, 0.009935436375707055, 0.00990880414923613, 0.009882348666811414, 0.0098560842667898, 0.009830025175751683, 0.009804185467309387, 0.009778579020358962, 0.009753219477015369, 0.00972812020047262, 0.009703294233029802, 0.00967875425452332, 0.00965451254140126, 0.00963058092667187, 0.009606970760951447, 0.0095836928748296, 0.009560757542760237, 0.009538174448677156, 0.009515952653520393, 0.009494100564848281, 0.009472625908695083, 0.009451535703820525, 0.009430836238481555, 0.009410533049841033, 0.009390630906110836, 0.009371133791510396, 0.009352044894103777, 0.009333366596560921, 0.009315100469870937, 0.009297247270017498, 0.00927980693760895, 0.009262778600438358, 0.009246160578931618, 0.009229950394425555, 0.009214144780201864, 0.009198739695187497, 0.009183730340217794, 0.009169111176744994, 0.009154875947862002, 0.009141017701499938, 0.009127528815646905, 0.009114401025426466, 0.009101625451865726, 0.009089192632175665, 0.009077092551360839, 0.009065314674970699, 0.009053847982801339, 0.009042681003354619, 0.009031801848860438, 0.00902119825066843, 0.00901085759481709, 0.009000766957590778, 0.00899091314087939, 0.0089812827071599, 0.008971862013925804, 0.008962637247396958, 0.0089535944553505, 0.008944719578922644, 0.008935998483240202, 0.008927416986751906, 0.008918960889139847, 0.008910615997703212, 0.008902368152118754, 0.008894203247494577, 0.008886107255646392, 0.008878066244538966, 0.00887006639584787, 0.008862094020609921, 0.008854135572944299, 0.00884617766183802, 0.008838207061003866, 0.008830210716829389, 0.008822175754449343, 0.008814089481984316, 0.008805939393000041, 0.008797713167252367, 0.008789398669792501, 0.008780983948516508, 0.008772457230251808, 0.008763806915480659, 0.008755021571807834, 0.008746089926285849, 0.008737000856715992, 0.00872774338204803, 0.008718306652004702, 0.008708679936059716, 0.008698852611899488, 0.00868881415349964, 0.008678554118947062, 0.008668062138137062, 0.008657327900473726, 0.008646341142697918, 0.008635091636964954, 0.008623569179288542, 0.008611763578463324, 0.00859966464557208, 0.008587262184177828, 0.008574545981293556, 0.00856150579921541, 0.008548131368296796, 0.008534412380733058, 0.008520338485417321, 0.008505899283919484, 0.008491084327631206, 0.00847588311611054, 0.008460285096650522, 0.008444279665086903, 0.008427856167851038, 0.008411003905264622, 0.008393712136064596, 0.008375970083137714, 0.008357766940435829, 0.008339091881035638, 0.008319934066298797, 0.008300282656081445, 0.008280126819935937, 0.00825945574924171, 0.008238258670196959, 0.008216524857598259, 0.008194243649331506, 0.008171404461494083, 0.008147996804066087, 0.008124010297046206, 0.008099434686967227, 0.008074259863705505, 0.008048475877499352, 0.008022072956092143, 0.007995041521917962, 0.007967372209249882, 0.007939055881233902, 0.007910083646735516, 0.007880446876929728, 0.007850137221570271, 0.007819146624878696, 0.007787467340999756, 0.007755091948975196, 0.007722013367194468, 0.00768822486728692, 0.007653720087427007, 0.007618493045030393, 0.007582538148825525, 0.0075458502102922565, 0.0075084244544650815, 0.007470256530105385, 0.007431342519253045, 0.007391678946173729, 0.007351262785723502, 0.007310091471157726, 0.007268162901415773, 0.007225475447917235, 0.007182027960908756, 0.00713781977540407, 0.0070928507167616, 0.007047121105946217, 0.007000631764522781, 0.006953384019429126, 0.006905379707576235, 0.00685662118032243, 0.006807111307866213, 0.0067568534836006805, 0.006705851628469075, 0.0066541101953574615, 0.006601634173556347, 0.006548429093318311, 0.006494501030533131, 0.006439856611536614, 0.006384503018062477, 0.006328447992340846, 0.0062716998423391, 0.006214267447134808, 0.006156160262402211, 0.006097388325987163, 0.006037962263537454, 0.005977893294148631, 0.00591719323597785, 0.00585587451177151, 0.0057939501542457915, 0.005731433811252563, 0.0056683397506575054, 0.005604682864851762, 0.005540478674813285, 0.005475743333630186, 0.005410493629394433, 0.0053447469873713635, 0.005278521471348529, 0.005211835784065867, 0.0051447092666284866, 0.005077161896804094, 0.005009214286107978, 0.004940887675580343, 0.004872203930164284, 0.004803185531595916, 0.0047338555697231475, 0.004664237732175054, 0.004594356292310146, 0.004524236095378739, 0.004453902542842834, 0.004383381574805045, 0.004312699650507646, 0.004241883726872145, 0.004170961235060643, 0.00409996005505006, 0.004028908488222365, 0.003957835227984545, 0.0038867693284438194, 0.003815740171175587, 0.0037447774301328485, 0.0036739110347579033, 0.003603171131368371, 0.0035325880429014638, 0.003462192227110651], \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [148.0, 85.0, 183.0, 89.0, 137.0, 116.0, 78.0, 115.0, 197.0, 125.0, 110.0, 168.0, 139.0, 189.0, 166.0, 100.0, 118.0, 107.0, 103.0, 115.0, 126.0, 99.0, 196.0, 119.0, 143.0, 125.0, 147.0, 97.0, 145.0, 117.0, 109.0, 158.0, 88.0, 92.0, 122.0, 103.0, 138.0, 102.0, 90.0, 111.0, 180.0, 133.0, 106.0, 171.0, 159.0, 180.0, 146.0, 71.0, 103.0, 105.0, 103.0, 101.0, 88.0, 176.0, 150.0, 73.0, 187.0, 100.0, 146.0, 105.0, 84.0, 133.0, 44.0, 141.0, 114.0, 99.0, 109.0, 109.0, 95.0, 146.0, 100.0, 139.0, 126.0, 129.0, 79.0, 110.64, 62.0, 95.0, 131.0, 112.0, 113.0, 74.0, 83.0, 101.0, 137.0, 110.0, 106.0, 100.0, 136.0, 107.0, 80.0, 123.0, 81.0, 134.0, 142.0, 144.0, 92.0, 71.0, 93.0, 122.0, 163.0, 151.0, 125.0, 81.0, 85.0, 126.0, 96.0, 144.0, 83.0, 95.0, 171.0, 155.0, 89.0, 76.0, 160.0, 146.0, 124.0, 78.0, 97.0, 99.0, 162.0, 111.0, 107.0, 132.0, 113.0, 88.0, 120.0, 118.0, 117.0, 105.0, 173.0, 122.0, 170.0, 84.0, 96.0, 125.0, 100.0, 93.0, 129.0, 105.0, 128.0, 106.0, 108.0, 108.0, 154.0, 102.0, 57.0, 106.0, 147.0, 90.0, 136.0, 114.0, 156.0, 153.0, 188.0, 152.0, 99.0, 109.0, 88.0, 163.0, 151.0, 102.0, 114.0, 100.0, 131.0, 104.0, 148.0, 120.0, 110.0, 111.0, 102.0, 134.0, 87.0, 79.0, 75.0, 179.0, 85.0, 129.0, 143.0, 130.0, 87.0, 119.0, 110.64, 73.0, 141.0, 194.0, 181.0, 128.0, 109.0, 139.0, 111.0, 123.0, 159.0, 135.0, 85.0, 158.0, 105.0, 107.0, 109.0, 148.0, 113.0, 138.0, 108.0, 99.0, 103.0, 111.0, 196.0, 162.0, 96.0, 184.0, 81.0, 147.0, 179.0, 140.0, 112.0, 151.0, 109.0, 125.0, 85.0, 112.0, 177.0, 158.0, 119.0, 142.0, 100.0, 87.0, 101.0, 162.0, 197.0, 117.0, 142.0, 134.0, 79.0, 122.0, 74.0, 171.0, 181.0, 179.0, 164.0, 104.0, 91.0, 91.0, 139.0, 119.0, 146.0, 184.0, 122.0, 165.0, 124.0, 111.0, 106.0, 129.0, 90.0, 86.0, 92.0, 113.0, 111.0, 114.0, 193.0, 155.0, 191.0, 141.0, 95.0, 142.0, 123.0, 96.0, 138.0, 128.0, 102.0, 146.0, 101.0, 108.0, 122.0, 71.0, 106.0, 100.0, 106.0, 104.0, 114.0, 108.0, 146.0, 129.0, 133.0, 161.0, 108.0, 136.0, 155.0, 119.0, 96.0, 108.0, 78.0, 107.0, 128.0, 128.0, 161.0, 151.0, 146.0, 126.0, 100.0, 112.0, 167.0, 144.0, 77.0, 115.0, 150.0, 120.0, 161.0, 137.0, 128.0, 124.0, 80.0, 106.0, 155.0, 113.0, 109.0, 112.0, 99.0, 182.0, 115.0, 194.0, 129.0, 112.0, 124.0, 152.0, 112.0, 157.0, 122.0, 179.0, 102.0, 105.0, 118.0, 87.0, 180.0, 106.0, 95.0, 165.0, 117.0, 115.0, 152.0, 178.0, 130.0, 95.0, 110.64, 122.0, 95.0, 126.0, 139.0, 116.0, 99.0, 142.32, 92.0, 137.0, 61.0, 90.0, 90.0, 165.0, 125.0, 129.0, 88.0, 196.0, 189.0, 158.0, 103.0, 146.0, 147.0, 99.0, 124.0, 101.0, 81.0, 133.0, 173.0, 118.0, 84.0, 105.0, 122.0, 140.0, 98.0, 87.0, 156.0, 93.0, 107.0, 105.0, 109.0, 90.0, 125.0, 119.0, 116.0, 105.0, 144.0, 100.0, 100.0, 166.0, 131.0, 116.0, 158.0, 127.0, 96.0, 131.0, 82.0, 193.0, 95.0, 137.0, 136.0, 72.0, 168.0, 123.0, 115.0, 101.0, 197.0, 172.0, 102.0, 112.0, 143.0, 143.0, 138.0, 173.0, 97.0, 144.0, 83.0, 129.0, 119.0, 94.0, 102.0, 115.0, 151.0, 184.0, 94.0, 181.0, 135.0, 95.0, 99.0, 89.0, 80.0, 139.0, 90.0, 141.0, 140.0, 147.0, 97.0, 107.0, 189.0, 83.0, 117.0, 108.0, 117.0, 180.0, 100.0, 95.0, 104.0, 120.0, 82.0, 134.0, 91.0, 119.0, 100.0, 175.0, 135.0, 86.0, 148.0, 134.0, 120.0, 71.0, 74.0, 88.0, 115.0, 124.0, 74.0, 97.0, 120.0, 154.0, 144.0, 137.0, 119.0, 136.0, 114.0, 137.0, 105.0, 114.0, 126.0, 132.0, 158.0, 123.0, 85.0, 84.0, 145.0, 135.0, 139.0, 173.0, 99.0, 194.0, 83.0, 89.0, 99.0, 125.0, 80.0, 166.0, 110.0, 81.0, 195.0, 154.0, 117.0, 84.0, 142.32, 94.0, 96.0, 75.0, 180.0, 130.0, 84.0, 120.0, 84.0, 139.0, 91.0, 91.0, 99.0, 163.0, 145.0, 125.0, 76.0, 129.0, 68.0, 124.0, 114.0, 130.0, 125.0, 87.0, 97.0, 116.0, 117.0, 111.0, 122.0, 107.0, 86.0, 91.0, 77.0, 132.0, 105.0, 57.0, 127.0, 129.0, 100.0, 128.0, 90.0, 84.0, 88.0, 186.0, 187.0, 131.0, 164.0, 189.0, 116.0, 84.0, 114.0, 88.0, 84.0, 124.0, 97.0, 110.0, 103.0, 85.0, 125.0, 198.0, 87.0, 99.0, 91.0, 95.0, 99.0, 92.0, 154.0, 121.0, 78.0, 130.0, 111.0, 98.0, 143.0, 119.0, 108.0, 118.0, 133.0, 197.0, 151.0, 109.0, 121.0, 100.0, 124.0, 93.0, 143.0, 103.0, 176.0, 73.0, 111.0, 112.0, 132.0, 82.0, 123.0, 188.0, 67.0, 89.0, 173.0, 109.0, 108.0, 96.0, 124.0, 150.0, 183.0, 124.0, 181.0, 92.0, 152.0, 111.0, 106.0, 174.0, 168.0, 105.0, 138.0, 106.0, 117.0, 68.0, 112.0, 119.0, 112.0, 92.0, 183.0, 94.0, 108.0, 90.0, 125.0, 132.0, 128.0, 94.0, 114.0, 102.0, 111.0, 128.0, 92.0, 104.0, 104.0, 94.0, 97.0, 100.0, 102.0, 128.0, 147.0, 90.0, 103.0, 157.0, 167.0, 179.0, 136.0, 107.0, 91.0, 117.0, 123.0, 120.0, 106.0, 155.0, 101.0, 120.0, 127.0, 80.0, 162.0, 199.0, 167.0, 145.0, 115.0, 112.0, 145.0, 111.0, 98.0, 154.0, 165.0, 99.0, 68.0, 123.0, 91.0, 195.0, 156.0, 93.0, 121.0, 101.0, 56.0, 162.0, 95.0, 125.0, 136.0, 129.0, 130.0, 107.0, 140.0, 144.0, 107.0, 158.0, 121.0, 129.0, 90.0, 142.0, 169.0, 99.0, 127.0, 118.0, 122.0, 125.0, 168.0, 129.0, 110.0, 80.0, 115.0, 127.0, 164.0, 93.0, 158.0, 126.0, 129.0, 134.0, 102.0, 187.0, 173.0, 94.0, 108.0, 97.0, 83.0, 114.0, 149.0, 117.0, 111.0, 112.0, 116.0, 141.0, 175.0, 92.0, 130.0, 120.0, 174.0, 106.0, 105.0, 95.0, 126.0, 65.0, 99.0, 102.0, 120.0, 102.0, 109.0, 140.0, 153.0, 100.0, 147.0, 81.0, 187.0, 162.0, 136.0, 121.0, 108.0, 181.0, 154.0, 128.0, 137.0, 123.0, 106.0, 190.0, 88.0, 170.0, 89.0, 101.0, 122.0, 121.0, 126.0, 93.0], \"xaxis\": \"x\", \"y\": [\"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\"], \"yaxis\": \"y2\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [148.0, 183.0, 137.0, 78.0, 197.0, 125.0, 168.0, 189.0, 166.0, 100.0, 118.0, 107.0, 115.0, 196.0, 119.0, 143.0, 125.0, 147.0, 158.0, 102.0, 90.0, 111.0, 171.0, 180.0, 103.0, 176.0, 187.0, 133.0, 114.0, 109.0, 100.0, 126.0, 131.0, 137.0, 136.0, 134.0, 122.0, 163.0, 95.0, 171.0, 155.0, 160.0, 146.0, 124.0, 162.0, 113.0, 88.0, 117.0, 105.0, 173.0, 122.0, 170.0, 108.0, 156.0, 188.0, 152.0, 163.0, 131.0, 104.0, 102.0, 134.0, 179.0, 129.0, 130.0, 194.0, 181.0, 128.0, 109.0, 139.0, 159.0, 135.0, 158.0, 107.0, 109.0, 148.0, 196.0, 162.0, 184.0, 140.0, 112.0, 151.0, 109.0, 85.0, 112.0, 177.0, 158.0, 162.0, 142.0, 134.0, 171.0, 181.0, 179.0, 164.0, 139.0, 119.0, 184.0, 92.0, 113.0, 155.0, 141.0, 123.0, 138.0, 146.0, 101.0, 106.0, 146.0, 161.0, 108.0, 119.0, 107.0, 128.0, 128.0, 146.0, 100.0, 167.0, 144.0, 115.0, 161.0, 128.0, 124.0, 155.0, 109.0, 182.0, 194.0, 112.0, 124.0, 152.0, 122.0, 102.0, 180.0, 115.0, 152.0, 178.0, 142.32, 165.0, 125.0, 129.0, 196.0, 189.0, 146.0, 124.0, 133.0, 173.0, 140.0, 156.0, 116.0, 105.0, 144.0, 166.0, 158.0, 131.0, 193.0, 95.0, 136.0, 168.0, 115.0, 197.0, 172.0, 138.0, 173.0, 144.0, 129.0, 151.0, 184.0, 181.0, 95.0, 141.0, 189.0, 108.0, 117.0, 180.0, 104.0, 134.0, 175.0, 148.0, 120.0, 105.0, 158.0, 145.0, 135.0, 125.0, 195.0, 142.32, 180.0, 84.0, 163.0, 145.0, 130.0, 132.0, 129.0, 100.0, 128.0, 90.0, 186.0, 187.0, 125.0, 198.0, 121.0, 118.0, 197.0, 151.0, 124.0, 143.0, 176.0, 111.0, 132.0, 188.0, 173.0, 150.0, 183.0, 181.0, 174.0, 168.0, 138.0, 112.0, 119.0, 114.0, 104.0, 97.0, 147.0, 167.0, 179.0, 136.0, 155.0, 80.0, 199.0, 167.0, 145.0, 115.0, 145.0, 111.0, 195.0, 156.0, 121.0, 162.0, 125.0, 144.0, 158.0, 129.0, 142.0, 169.0, 125.0, 168.0, 115.0, 164.0, 93.0, 129.0, 187.0, 173.0, 97.0, 149.0, 130.0, 120.0, 174.0, 102.0, 120.0, 140.0, 147.0, 187.0, 162.0, 136.0, 181.0, 154.0, 128.0, 123.0, 190.0, 170.0, 126.0], \"xaxis\": \"x\", \"y\": [\"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\"], \"yaxis\": \"y2\"}],                        {\"barmode\": \"overlay\", \"hovermode\": \"closest\", \"legend\": {\"traceorder\": \"reversed\"}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"GLUCOSE\"}, \"xaxis\": {\"anchor\": \"y2\", \"domain\": [0.0, 1.0], \"zeroline\": false}, \"yaxis\": {\"anchor\": \"free\", \"domain\": [0.35, 1], \"position\": 0.0}, \"yaxis2\": {\"anchor\": \"x\", \"domain\": [0, 0.25], \"dtick\": 1, \"showticklabels\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('0a894031-cc27-4be9-ba94-f9fd25f67f69');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### BLOOD PRESSURE"},{"metadata":{"trusted":true},"cell_type":"code","source":"get_mean('blood_pressure')","execution_count":22,"outputs":[{"output_type":"execute_result","execution_count":22,"data":{"text/plain":"   outcome  blood_pressure\n0        0           70.88\n1        1           75.32","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>outcome</th>\n      <th>blood_pressure</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>70.88</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>75.32</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"# REPLACE NAN VALUES WITH MEAN \n\ndf.loc[(df['outcome'] == 0) & (df['blood_pressure'].isnull()), 'blood_pressure'] = 70.88\ndf.loc[(df['outcome'] == 1) & (df['blood_pressure'].isnull()), 'blood_pressure'] = 75.32","execution_count":23,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_dist('blood_pressure', 0)","execution_count":24,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"d96221b1-d5e5-499f-b352-1fca4db6042f\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"d96221b1-d5e5-499f-b352-1fca4db6042f\")) {                    Plotly.newPlot(                        \"d96221b1-d5e5-499f-b352-1fca4db6042f\",                        [{\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"name\": \"healthy\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [72.0, 66.0, 64.0, 66.0, 40.0, 74.0, 50.0, 70.88, 70.0, 96.0, 92.0, 74.0, 80.0, 60.0, 72.0, 75.32, 84.0, 74.0, 30.0, 70.0, 88.0, 84.0, 90.0, 80.0, 94.0, 70.0, 76.0, 66.0, 82.0, 92.0, 75.0, 76.0, 58.0, 92.0, 78.0, 60.0, 76.0, 76.0, 68.0, 72.0, 64.0, 84.0, 92.0, 110.0, 64.0, 66.0, 56.0, 70.0, 66.0, 70.88, 80.0, 50.0, 66.0, 90.0, 66.0, 50.0, 68.0, 88.0, 82.0, 64.0, 70.88, 72.0, 62.0, 58.0, 66.0, 74.0, 88.0, 92.0, 66.0, 85.0, 66.0, 64.0, 90.0, 86.0, 75.0, 48.0, 78.0, 72.0, 75.32, 66.0, 44.0, 70.88, 78.0, 65.0, 108.0, 74.0, 72.0, 68.0, 70.0, 68.0, 55.0, 80.0, 78.0, 72.0, 82.0, 72.0, 62.0, 48.0, 50.0, 90.0, 72.0, 60.0, 96.0, 72.0, 65.0, 56.0, 122.0, 58.0, 58.0, 85.0, 72.0, 62.0, 76.0, 62.0, 54.0, 92.0, 74.0, 48.0, 60.0, 76.0, 76.0, 64.0, 74.0, 80.0, 76.0, 30.0, 70.0, 58.0, 88.0, 84.0, 70.0, 56.0, 64.0, 74.0, 68.0, 60.0, 70.0, 60.0, 80.0, 72.0, 78.0, 82.0, 52.0, 66.0, 62.0, 75.0, 80.0, 64.0, 78.0, 70.0, 74.0, 65.0, 86.0, 82.0, 78.0, 88.0, 52.0, 56.0, 74.0, 72.0, 90.0, 74.0, 80.0, 64.0, 88.0, 74.0, 66.0, 68.0, 66.0, 90.0, 82.0, 70.0, 70.88, 60.0, 64.0, 72.0, 78.0, 110.0, 78.0, 82.0, 80.0, 64.0, 74.0, 60.0, 74.0, 68.0, 68.0, 98.0, 76.0, 80.0, 62.0, 70.0, 66.0, 75.32, 55.0, 84.0, 58.0, 62.0, 64.0, 60.0, 80.0, 82.0, 68.0, 70.0, 72.0, 72.0, 76.0, 104.0, 64.0, 84.0, 60.0, 85.0, 95.0, 65.0, 82.0, 70.0, 62.0, 68.0, 74.0, 66.0, 60.0, 90.0, 70.88, 60.0, 66.0, 78.0, 76.0, 52.0, 70.0, 80.0, 86.0, 80.0, 80.0, 68.0, 68.0, 72.0, 84.0, 90.0, 84.0, 76.0, 64.0, 70.0, 54.0, 50.0, 76.0, 85.0, 68.0, 90.0, 70.0, 86.0, 52.0, 84.0, 80.0, 68.0, 62.0, 64.0, 56.0, 68.0, 50.0, 76.0, 68.0, 75.32, 70.0, 80.0, 62.0, 74.0, 75.32, 64.0, 52.0, 75.32, 86.0, 62.0, 78.0, 78.0, 70.0, 70.0, 60.0, 64.0, 74.0, 62.0, 70.0, 76.0, 88.0, 86.0, 80.0, 74.0, 84.0, 86.0, 56.0, 72.0, 88.0, 62.0, 78.0, 48.0, 50.0, 62.0, 70.0, 84.0, 78.0, 72.0, 75.32, 58.0, 82.0, 98.0, 76.0, 76.0, 68.0, 68.0, 68.0, 68.0, 66.0, 70.0, 74.0, 50.0, 80.0, 68.0, 80.0, 74.0, 66.0, 78.0, 60.0, 74.0, 70.0, 90.0, 75.0, 72.0, 64.0, 70.0, 86.0, 70.0, 72.0, 58.0, 75.32, 80.0, 60.0, 76.0, 70.88, 76.0, 78.0, 84.0, 70.0, 74.0, 68.0, 86.0, 72.0, 88.0, 46.0, 70.88, 62.0, 80.0, 80.0, 84.0, 82.0, 62.0, 78.0, 88.0, 50.0, 75.32, 74.0, 76.0, 64.0, 70.0, 108.0, 78.0, 74.0, 54.0, 72.0, 64.0, 86.0, 102.0, 82.0, 64.0, 64.0, 58.0, 52.0, 82.0, 82.0, 60.0, 75.0, 100.0, 72.0, 68.0, 60.0, 62.0, 70.0, 54.0, 74.0, 100.0, 82.0, 68.0, 66.0, 76.0, 64.0, 72.0, 78.0, 58.0, 56.0, 66.0, 70.0, 70.0, 64.0, 61.0, 84.0, 78.0, 64.0, 48.0, 72.0, 62.0, 74.0, 68.0, 90.0, 72.0, 84.0, 74.0, 60.0, 84.0, 68.0, 82.0, 68.0, 64.0, 88.0, 68.0, 64.0, 64.0, 78.0, 78.0, 70.88, 64.0, 94.0, 82.0, 70.88, 74.0, 74.0, 75.0, 68.0, 75.32, 85.0, 75.0, 70.0, 88.0, 104.0, 66.0, 64.0, 70.0, 62.0, 78.0, 72.0, 80.0, 64.0, 74.0, 64.0, 70.0, 68.0, 70.88, 54.0, 62.0, 54.0, 68.0, 84.0, 74.0, 72.0, 62.0, 70.0, 78.0, 98.0, 56.0, 52.0, 64.0, 75.32, 78.0, 82.0, 70.0, 66.0, 90.0, 64.0, 84.0, 80.0, 76.0, 74.0, 86.0, 70.0, 88.0, 58.0, 82.0, 75.32, 68.0, 62.0, 78.0, 72.0, 80.0, 65.0, 90.0, 68.0, 70.0, 70.88, 74.0, 68.0, 72.0, 70.0, 74.0, 90.0, 72.0, 68.0, 64.0, 78.0, 82.0, 90.0, 60.0, 50.0, 78.0, 72.0, 62.0, 68.0, 62.0, 54.0, 70.0, 88.0, 86.0, 60.0, 90.0, 70.0, 80.0, 70.88, 70.0, 58.0, 60.0, 64.0, 74.0, 66.0, 65.0, 60.0, 76.0, 66.0, 70.88, 56.0, 75.32, 90.0, 60.0, 80.0, 92.0, 74.0, 72.0, 85.0, 90.0, 78.0, 90.0, 76.0, 68.0, 82.0, 110.0, 70.0, 68.0, 88.0, 62.0, 64.0, 70.0, 70.0, 76.0, 68.0, 74.0, 76.0, 66.0, 68.0, 60.0, 80.0, 54.0, 72.0, 62.0, 72.0, 66.0, 70.0, 96.0, 58.0, 60.0, 86.0, 44.0, 44.0, 80.0, 68.0, 70.0, 90.0, 60.0, 78.0, 76.0, 76.0, 56.0, 66.0, 66.0, 86.0, 70.88, 84.0, 78.0, 80.0, 52.0, 72.0, 82.0, 76.0, 24.0, 74.0, 38.0, 88.0, 70.88, 74.0, 78.0, 75.32, 60.0, 78.0, 62.0, 82.0, 62.0, 54.0, 58.0, 88.0, 80.0, 74.0, 72.0, 96.0, 62.0, 82.0, 75.32, 86.0, 76.0, 94.0, 70.0, 64.0, 88.0, 68.0, 78.0, 80.0, 65.0, 64.0, 78.0, 60.0, 82.0, 62.0, 72.0, 74.0, 76.0, 76.0, 74.0, 86.0, 70.0, 80.0, 70.88, 72.0, 74.0, 74.0, 50.0, 84.0, 60.0, 54.0, 60.0, 74.0, 54.0, 70.0, 52.0, 58.0, 80.0, 106.0, 82.0, 84.0, 76.0, 106.0, 80.0, 60.0, 80.0, 82.0, 70.0, 58.0, 78.0, 68.0, 58.0, 106.0, 100.0, 82.0, 70.0, 86.0, 60.0, 52.0, 58.0, 56.0, 76.0, 64.0, 80.0, 82.0, 74.0, 64.0, 50.0, 74.0, 82.0, 80.0, 114.0, 70.0, 68.0, 60.0, 90.0, 74.0, 70.88, 88.0, 70.0, 76.0, 78.0, 88.0, 70.88, 76.0, 80.0, 75.32, 46.0, 78.0, 64.0, 64.0, 78.0, 62.0, 58.0, 74.0, 50.0, 78.0, 72.0, 60.0, 76.0, 86.0, 66.0, 68.0, 86.0, 94.0, 78.0, 78.0, 84.0, 88.0, 52.0, 78.0, 86.0, 88.0, 56.0, 75.0, 60.0, 86.0, 72.0, 60.0, 74.0, 80.0, 44.0, 58.0, 94.0, 88.0, 84.0, 94.0, 74.0, 70.0, 62.0, 70.0, 78.0, 62.0, 88.0, 78.0, 88.0, 90.0, 72.0, 76.0, 92.0, 58.0, 74.0, 62.0, 76.0, 70.0, 72.0, 60.0, 70.0], \"xaxis\": \"x\", \"xbins\": {\"end\": 122.0, \"size\": 0, \"start\": 24.0}, \"yaxis\": \"y\"}, {\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"name\": \"diabetic\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [72.0, 64.0, 40.0, 50.0, 70.0, 96.0, 74.0, 60.0, 72.0, 75.32, 84.0, 74.0, 70.0, 90.0, 80.0, 94.0, 70.0, 76.0, 76.0, 76.0, 68.0, 72.0, 110.0, 66.0, 66.0, 90.0, 68.0, 72.0, 66.0, 88.0, 66.0, 90.0, 75.32, 108.0, 70.0, 72.0, 90.0, 72.0, 85.0, 72.0, 62.0, 54.0, 92.0, 74.0, 76.0, 76.0, 30.0, 88.0, 84.0, 70.0, 56.0, 64.0, 66.0, 86.0, 78.0, 88.0, 72.0, 88.0, 74.0, 82.0, 70.0, 72.0, 110.0, 82.0, 68.0, 68.0, 98.0, 76.0, 80.0, 66.0, 75.32, 84.0, 62.0, 64.0, 60.0, 76.0, 104.0, 84.0, 65.0, 82.0, 70.0, 62.0, 74.0, 66.0, 60.0, 90.0, 52.0, 86.0, 80.0, 72.0, 84.0, 90.0, 84.0, 54.0, 50.0, 85.0, 62.0, 64.0, 76.0, 75.32, 62.0, 75.32, 75.32, 86.0, 60.0, 70.0, 86.0, 80.0, 86.0, 62.0, 78.0, 48.0, 70.0, 78.0, 75.32, 58.0, 98.0, 68.0, 68.0, 68.0, 74.0, 80.0, 74.0, 78.0, 74.0, 70.0, 90.0, 64.0, 86.0, 75.32, 76.0, 78.0, 84.0, 80.0, 88.0, 50.0, 75.32, 76.0, 64.0, 78.0, 72.0, 102.0, 82.0, 82.0, 75.0, 74.0, 100.0, 82.0, 76.0, 78.0, 66.0, 70.0, 64.0, 84.0, 64.0, 72.0, 74.0, 68.0, 60.0, 84.0, 82.0, 64.0, 78.0, 78.0, 64.0, 82.0, 75.32, 104.0, 70.0, 62.0, 78.0, 64.0, 70.0, 62.0, 84.0, 75.32, 80.0, 70.0, 75.32, 68.0, 70.0, 70.0, 68.0, 90.0, 72.0, 70.0, 88.0, 70.0, 75.32, 92.0, 74.0, 72.0, 85.0, 90.0, 76.0, 76.0, 66.0, 66.0, 80.0, 70.0, 90.0, 76.0, 66.0, 86.0, 84.0, 80.0, 82.0, 74.0, 78.0, 75.32, 78.0, 58.0, 88.0, 74.0, 82.0, 75.32, 64.0, 72.0, 76.0, 80.0, 74.0, 50.0, 84.0, 52.0, 82.0, 76.0, 106.0, 80.0, 60.0, 82.0, 70.0, 70.0, 86.0, 52.0, 76.0, 80.0, 82.0, 114.0, 68.0, 90.0, 74.0, 78.0, 88.0, 75.32, 78.0, 64.0, 62.0, 50.0, 78.0, 76.0, 68.0, 78.0, 86.0, 88.0, 74.0, 80.0, 94.0, 94.0, 70.0, 62.0, 70.0, 88.0, 78.0, 88.0, 72.0, 92.0, 74.0, 60.0], \"xaxis\": \"x\", \"xbins\": {\"end\": 114.0, \"size\": 0, \"start\": 30.0}, \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"mode\": \"lines\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [24.0, 24.196, 24.392, 24.588, 24.784, 24.98, 25.176, 25.372, 25.568, 25.764, 25.96, 26.156, 26.352, 26.548000000000002, 26.744, 26.94, 27.136, 27.332, 27.528, 27.724, 27.92, 28.116, 28.312, 28.508, 28.704, 28.9, 29.096, 29.292, 29.488, 29.684, 29.88, 30.076, 30.272, 30.468, 30.664, 30.86, 31.056, 31.252, 31.448, 31.644, 31.84, 32.036, 32.232, 32.428, 32.624, 32.82, 33.016, 33.212, 33.408, 33.604, 33.8, 33.996, 34.192, 34.388, 34.584, 34.78, 34.976, 35.172, 35.368, 35.564, 35.76, 35.956, 36.152, 36.348, 36.544, 36.74, 36.936, 37.132, 37.328, 37.524, 37.72, 37.916, 38.112, 38.308, 38.504, 38.7, 38.896, 39.092, 39.288, 39.484, 39.68, 39.876, 40.072, 40.268, 40.464, 40.66, 40.856, 41.052, 41.248000000000005, 41.444, 41.64, 41.836, 42.032, 42.228, 42.424, 42.620000000000005, 42.816, 43.012, 43.208, 43.403999999999996, 43.6, 43.796, 43.992000000000004, 44.188, 44.384, 44.58, 44.775999999999996, 44.972, 45.168, 45.364000000000004, 45.56, 45.756, 45.952, 46.147999999999996, 46.344, 46.54, 46.736000000000004, 46.932, 47.128, 47.324, 47.519999999999996, 47.716, 47.912, 48.108000000000004, 48.304, 48.5, 48.696, 48.891999999999996, 49.088, 49.284, 49.480000000000004, 49.676, 49.872, 50.068, 50.263999999999996, 50.46, 50.656, 50.852000000000004, 51.048, 51.244, 51.44, 51.635999999999996, 51.832, 52.028, 52.224000000000004, 52.42, 52.616, 52.812, 53.007999999999996, 53.204, 53.4, 53.596000000000004, 53.792, 53.988, 54.184, 54.379999999999995, 54.576, 54.772, 54.968, 55.164, 55.36, 55.556, 55.751999999999995, 55.948, 56.144, 56.34, 56.536, 56.732, 56.928, 57.124, 57.32, 57.516, 57.712, 57.908, 58.104, 58.3, 58.496, 58.692, 58.888, 59.084, 59.28, 59.476, 59.672, 59.868, 60.064, 60.26, 60.456, 60.652, 60.848, 61.044, 61.24, 61.436, 61.632, 61.828, 62.024, 62.22, 62.416, 62.612, 62.808, 63.004, 63.2, 63.396, 63.592, 63.788, 63.984, 64.18, 64.376, 64.572, 64.768, 64.964, 65.16, 65.356, 65.55199999999999, 65.74799999999999, 65.944, 66.14, 66.336, 66.532, 66.72800000000001, 66.924, 67.12, 67.316, 67.512, 67.708, 67.904, 68.1, 68.29599999999999, 68.49199999999999, 68.688, 68.884, 69.08, 69.27600000000001, 69.47200000000001, 69.668, 69.864, 70.06, 70.256, 70.452, 70.648, 70.844, 71.03999999999999, 71.23599999999999, 71.432, 71.628, 71.824, 72.02000000000001, 72.21600000000001, 72.412, 72.608, 72.804, 73.0, 73.196, 73.392, 73.588, 73.78399999999999, 73.97999999999999, 74.176, 74.372, 74.568, 74.76400000000001, 74.96000000000001, 75.156, 75.352, 75.548, 75.744, 75.94, 76.136, 76.332, 76.52799999999999, 76.72399999999999, 76.92, 77.116, 77.312, 77.50800000000001, 77.70400000000001, 77.9, 78.096, 78.292, 78.488, 78.684, 78.88, 79.076, 79.27199999999999, 79.468, 79.664, 79.86, 80.056, 80.25200000000001, 80.44800000000001, 80.644, 80.84, 81.036, 81.232, 81.428, 81.624, 81.82, 82.01599999999999, 82.212, 82.408, 82.604, 82.8, 82.99600000000001, 83.19200000000001, 83.388, 83.584, 83.78, 83.976, 84.172, 84.368, 84.564, 84.75999999999999, 84.956, 85.152, 85.348, 85.544, 85.74000000000001, 85.936, 86.132, 86.328, 86.524, 86.72, 86.916, 87.112, 87.30799999999999, 87.50399999999999, 87.7, 87.896, 88.092, 88.288, 88.484, 88.68, 88.876, 89.072, 89.268, 89.464, 89.66, 89.856, 90.052, 90.248, 90.444, 90.64, 90.836, 91.032, 91.228, 91.424, 91.62, 91.816, 92.012, 92.208, 92.404, 92.6, 92.796, 92.992, 93.188, 93.384, 93.58, 93.776, 93.972, 94.168, 94.364, 94.56, 94.756, 94.952, 95.148, 95.344, 95.54, 95.736, 95.932, 96.128, 96.324, 96.52, 96.716, 96.912, 97.108, 97.304, 97.5, 97.696, 97.892, 98.088, 98.284, 98.48, 98.676, 98.872, 99.068, 99.264, 99.46, 99.656, 99.852, 100.048, 100.244, 100.44, 100.636, 100.832, 101.028, 101.224, 101.42, 101.616, 101.812, 102.008, 102.204, 102.4, 102.596, 102.792, 102.988, 103.184, 103.38, 103.576, 103.772, 103.968, 104.164, 104.36, 104.556, 104.752, 104.948, 105.144, 105.34, 105.536, 105.732, 105.928, 106.124, 106.32, 106.516, 106.712, 106.908, 107.104, 107.3, 107.496, 107.692, 107.888, 108.084, 108.28, 108.476, 108.672, 108.868, 109.064, 109.26, 109.456, 109.652, 109.848, 110.044, 110.24, 110.436, 110.632, 110.828, 111.024, 111.22, 111.416, 111.612, 111.808, 112.004, 112.2, 112.396, 112.592, 112.788, 112.984, 113.18, 113.376, 113.572, 113.768, 113.964, 114.16, 114.356, 114.552, 114.748, 114.944, 115.14, 115.336, 115.532, 115.728, 115.924, 116.12, 116.316, 116.512, 116.708, 116.904, 117.1, 117.296, 117.492, 117.688, 117.884, 118.08, 118.276, 118.472, 118.668, 118.864, 119.06, 119.256, 119.452, 119.648, 119.844, 120.04, 120.236, 120.432, 120.628, 120.824, 121.02, 121.216, 121.412, 121.608, 121.804], \"xaxis\": \"x\", \"y\": [0.00021828236997258014, 0.0002246831088354083, 0.000231018582715167, 0.00023730363421961404, 0.00024355382248230205, 0.0002497845025899805, 0.00025600985523980185, 0.00026224189737243106, 0.0002684895068782106, 0.00027475749576481997, 0.00028104576630868887, 0.0002873485836321848, 0.0002936539958427228, 0.0002999434293740613, 0.00030619148256725936, 0.0003123659349476937, 0.00031842798326561284, 0.00032433270837733453, 0.0003300297696873348, 0.00033546431640285086, 0.00034057809753675164, 0.0003453107456953307, 0.0003496012034581096, 0.00035338925582807575, 0.0003566171280035077, 0.0003592311047580734, 0.0003611831261299861, 0.00036243231397913484, 0.0003629463852858997, 0.00036270291079632314, 0.00036169038167379474, 0.00035990905205868424, 0.0003573715316845781, 0.0003541031097396244, 0.00035014179875594777, 0.0003455380952061181, 0.00034035446142510116, 0.0003346645412056046, 0.00032855212869488615, 0.000322109916834862, 0.00031543805734699133, 0.0003086425690159343, 0.00030183363465684606, 0.00029512382958630964, 0.000288626325622875, 0.00028245311462572645, 0.0002767132943813695, 0.0002715114573430407, 0.0002669462194180257, 0.00026310892180876746, 0.0002600825339857384, 0.00025794078035597283, 0.00025674750724947917, 0.0002565563006365056, 0.0002574103586695375, 0.00025934261686711893, 0.000262376117666329, 0.0002665246103015685, 0.0002717933616428893, 0.00027818015385947, 0.00028567644066283815, 0.0002942686305171473, 0.00030393946265400704, 0.0003146694400565478, 0.0003264382828256435, 0.0003392263655376891, 0.0003530161033562701, 0.0003677932537569836, 0.00038354810372999215, 0.0004002765161784128, 0.0004179808138457159, 0.00043667048436829743, 0.00045636269581998435, 0.0004770826182273987, 0.0004988635528004618, 0.0005217468768337525, 0.0005457818181723601, 0.0005710250785750825, 0.0005975403300259974, 0.0006253976118326131, 0.000654672659017206, 0.0006854461939021512, 0.0007178032127964597, 0.0007518322982466742, 0.0007876249844155304, 0.0008252751988540897, 0.0008648787983606219, 0.0009065332099601318, 0.0009503371805416049, 0.0009963906306594073, 0.0010447945997895686, 0.0010956512623104821, 0.001149063986047754, 0.0012051373987795328, 0.0012639774230181308, 0.001325691236004101, 0.0013903871104525168, 0.0014581740923878639, 0.0015291614755166473, 0.0016034580370420965, 0.0016811710075449297, 0.0017624047573540165, 0.0018472591934235348, 0.0019358278737348887, 0.0020281958601853288, 0.0021244373452766405, 0.002224613102096405, 0.002328767820487765, 0.002436927404331365, 0.002549096314943489, 0.002665255053210103, 0.002785357877790411, 0.002909330858196155, 0.0030370703595650416, 0.0031684420504067765, 0.0033032805155555353, 0.003441389544198119, 0.0035825431474813397, 0.0037264873422771672, 0.0038729427177470665, 0.004021607780032359, 0.004172163048398173, 0.004324275854201425, 0.004477605772868537, 0.004631810599359418, 0.004786552760011182, 0.00494150603876796, 0.005096362484081102, 0.005250839354556993, 0.0054046859569584155, 0.005557690229514168, 0.0057096849266101415, 0.005860553267645326, 0.006010233922843029, 0.006158725221718281, 0.0063060884852460825, 0.0064524504000270586, 0.006598004371354766, 0.0067430108114953195, 0.006887796339161478, 0.007032751885605434, 0.0071783297215364085, 0.007325039436831139, 0.007473442921470301, 0.0076241484111102915, 0.007777803674075627, 0.007935088428298109, 0.008096706086859348, 0.008263374939388718, 0.008435818883731362, 0.008614757828146477, 0.008800897888933325, 0.008994921511896794, 0.009197477648508486, 0.009409172118996726, 0.009630558294869461, 0.009862128232444542, 0.010104304386699936, 0.010357432030997682, 0.010621772502797874, 0.010897497388186595, 0.011184683748736313, 0.011483310482790407, 0.011793255899665036, 0.01211429656952701, 0.012446107493963575, 0.012788263622739117, 0.013140242721272536, 0.013501429571397952, 0.01387112146551543, 0.014248534931883272, 0.014632813607182698, 0.015023037152242432, 0.015418231088572069, 0.015817377417690168, 0.016219425872631064, 0.016623305641846393, 0.017027937400212485, 0.017432245480085873, 0.017835170017227522, 0.018235678911683383, 0.018632779451955135, 0.019025529461482487, 0.01941304783894136, 0.01979452437743531, 0.020169228761596075, 0.02053651865521037, 0.020895846804627097, 0.02124676709436292, 0.02158893950065557, 0.02192213389604155, 0.022246232663388283, 0.022561232081425315, 0.022867242446131527, 0.02316448689395978, 0.023453298894570665, 0.023734118383352223, 0.024007486508410485, 0.024274038973786213, 0.02453449797115651, 0.024789662706828808, 0.025040398549827637, 0.025287624850443342, 0.025532301506585434, 0.025775414387167923, 0.0260179597567267, 0.026260927882396763, 0.026505286041849655, 0.026751961187178184, 0.02700182255323284, 0.027255664527711415, 0.027514190122555553, 0.02777799540021346, 0.02804755521260699, 0.02832321060402808, 0.028605158210911898, 0.028893441961183743, 0.029187947333848926, 0.029488398386418826, 0.029794357694894476, 0.030105229280118894, 0.030420264517554984, 0.030738570947517748, 0.03105912382241378, 0.03138078014960048, 0.03170229491607164, 0.032022339117192475, 0.03233951915878119, 0.03265239716223331, 0.03295951167787898, 0.03325939830355071, 0.03355060971395899, 0.03383173463178415, 0.034101415312547866, 0.034358363170815344, 0.03460137224296766, 0.03482933025901614, 0.035041227179638985, 0.03523616114145451, 0.03541334184003342, 0.03557209146284847, 0.035711843360009, 0.03583213870631193, 0.0359326214614118, 0.03601303197390737, 0.03607319959865727, 0.03611303470418751, 0.03613252043887599, 0.03613170460164041, 0.036110691926705796, 0.036069637044838634, 0.03600873832779857, 0.03592823276157482, 0.0358283919303007, 0.035709519129631606, 0.03557194756874091, 0.035416039566552544, 0.03524218660259888, 0.03505081004767075, 0.034842362375341024, 0.03461732864301529, 0.034376228030301555, 0.034119615232529016, 0.03384808152699434, 0.03356225535735509, 0.033262802315578585, 0.03295042443883653, 0.03262585877847698, 0.032289875237510285, 0.031943273709875666, 0.03158688058733086, 0.031221544726683877, 0.03084813299022221, 0.030467525484977383, 0.030080610631718133, 0.029688280192542982, 0.029291424377277442, 0.028890927134522505, 0.028487661714361737, 0.028082486567784386, 0.02767624162427613, 0.027269744965217977, 0.026863789888076473, 0.026459142336075037, 0.026056538651098703, 0.025656683594744528, 0.025260248574152735, 0.024867870005719984, 0.024480147750916025, 0.024097643563859766, 0.023720879499513292, 0.02335033624360739, 0.022986451339895776, 0.022629617306163707, 0.022280179646697238, 0.021938434784807337, 0.02160462795373278, 0.021278951097171893, 0.020961540841310154, 0.02065247660816453, 0.0203517789451619, 0.02005940814805505, 0.01977526325364406, 0.019499181475506618, 0.019230938150331243, 0.018970247254830624, 0.018716762543957908, 0.01847007935062892, 0.018229737075720877, 0.017995222385089955, 0.017765973117995465, 0.017541382898851283, 0.017320806431808965, 0.017103565445427, 0.016888955242676536, 0.016676251799833956, 0.01646471934646678, 0.01625361834779389, 0.016042213800281032, 0.01582978374154089, 0.015615627866612582, 0.015399076134713943, 0.015179497243851248, 0.014956306845533987, 0.01472897536859885, 0.01449703532012485, 0.014260087932936422, 0.014017809033518016, 0.013769954011521186, 0.013516361782562762, 0.013256957649725037, 0.012991754985984871, 0.012720855679505379, 0.012444449305975092, 0.01216281101650062, 0.011876298155361184, 0.011585345648528603, 0.011290460230479363, 0.01099221360266956, 0.010691234641284436, 0.010388200793714024, 0.010083828821898651, 0.009778865065582502, 0.009474075409074221, 0.009170235140954427, 0.008868118897066278, 0.008568490873028108, 0.008272095483547154, 0.007979648632294221, 0.007691829738485901, 0.007409274645221554, 0.007132569510758286, 0.006862245758086243, 0.0065987761312449895, 0.006342571879674135, 0.006093981065364774, 0.005853287962473135, 0.005620713496083351, 0.0053964166465650725, 0.005180496728936167, 0.004972996443140043, 0.004773905581365511, 0.004583165272506255, 0.00440067264147621, 0.004226285762134402, 0.004059828786692279, 0.0039010971412559107, 0.0037498626861131286, 0.00360587874999468, 0.0034688849592932613, 0.003338611795604228, 0.00321478482748183, 0.003097128574563887, 0.0029853699738526663, 0.0028792414286715816, 0.002778483430450407, 0.0026828467519069738, 0.0025920942173500382, 0.0025060020617502852, 0.0024243608949961353, 0.002346976291491495, 0.0022736690281173195, 0.0022042749957349728, 0.0021386448110244775, 0.0020766431566819035, 0.0020181478789811544, 0.001963048872541677, 0.0019112467829054001, 0.0018626515582473532, 0.00181718088222349, 0.0017747585205621272, 0.0017353126144717913, 0.0016987739541886727, 0.0016650742659310535, 0.0016341445450742827, 0.001605913467423629, 0.0015803059089750217, 0.001557241602468612, 0.0015366339563393921, 0.0015183890583655485, 0.0015024048824546212, 0.0014885707126673898, 0.0014767667938657039, 0.0014668642134136284, 0.001458725013308303, 0.0014522025271257314, 0.0014471419313959845, 0.0014433809966246354, 0.0014407510192903197, 0.0014390779128878929, 0.0014381834335409716, 0.0014378865139326464, 0.0014380046783204526, 0.0014383555111978942, 0.0014387581526931028, 0.0014390347949787866, 0.0014390121557047106, 0.0014385229066342933, 0.0014374070381390626, 0.0014355131428439593, 0.0014326996043925607, 0.0014288356798959376, 0.0014238024670421288, 0.0014174937489985964, 0.00140981671208821, 0.0014006925327394457, 0.001390056831411495, 0.0013778599921088395, 0.0013640673467844623, 0.001348659224459857, 0.00133163086534831, 0.0013129922007436487, 0.0012927675000146202, 0.0012709948867989087, 0.0012477257274777262, 0.0012230238962660717, 0.0011969649227844565, 0.001169635029765931, 0.0011411300705515771, 0.0011115543781660213, 0.0010810195399488607, 0.0010496431138376637, 0.0010175473043345553, 0.0009848576178190494, 0.0009517015180792007, 0.0009182071036181471, 0.0008845018283719947, 0.0008507112868910104, 0.0008169580837647267, 0.000783360805120675, 0.0007500331074386236, 0.0007170829357734429, 0.0006846118798753463, 0.0006527146727671604, 0.0006214788322344349, 0.0005909844415666284, 0.0005613040619211679, 0.0005325027650275054, 0.000504638271753056, 0.00047776117944547253, 0.0004519152590492082, 0.0004271378018409647, 0.00040345999527762936, 0.0003809073079065258, 0.0003594998645207651, 0.0003392527946905978, 0.0003201765403732488, 0.00030227711138375215, 0.00028555628096340355, 0.000270011717364555, 0.0002556370511277386, 0.0002424218814081643, 0.00023035172816799715, 0.00021940794015588144, 0.00020956757122988302, 0.00020080323964968982, 0.0001930829863970064, 0.00018637014933421407, 0.00018062327006073051, 0.00017579604968097007, 0.00017183736838842837, 0.0001686913818518759, 0.00016629770493641204, 0.00016459169039638197, 0.0001635048069444757, 0.0001629651176474682, 0.00016289785604557585, 0.00016322609386289547, 0.00016387149079236476, 0.0001647551137157853, 0.00016579830996381754, 0.00016692361692583456, 0.00016805568856274834, 0.00016912221821689072, 0.00017005483659123725, 0.0001707899639038996, 0.00017126959600923168, 0.00017144200568867818, 0.00017126234230633482, 0.00017069311553047172], \"yaxis\": \"y\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"mode\": \"lines\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [30.0, 30.168, 30.336, 30.504, 30.672, 30.84, 31.008, 31.176, 31.344, 31.512, 31.68, 31.848, 32.016, 32.184, 32.352, 32.52, 32.688, 32.856, 33.024, 33.192, 33.36, 33.528, 33.696, 33.864, 34.032, 34.2, 34.368, 34.536, 34.704, 34.872, 35.04, 35.208, 35.376, 35.544, 35.712, 35.88, 36.048, 36.216, 36.384, 36.552, 36.72, 36.888, 37.056, 37.224000000000004, 37.392, 37.56, 37.728, 37.896, 38.064, 38.232, 38.4, 38.568, 38.736000000000004, 38.903999999999996, 39.072, 39.24, 39.408, 39.576, 39.744, 39.912, 40.08, 40.248, 40.416, 40.584, 40.752, 40.92, 41.088, 41.256, 41.424, 41.592, 41.76, 41.928, 42.096000000000004, 42.263999999999996, 42.432, 42.6, 42.768, 42.936, 43.104, 43.272, 43.44, 43.608000000000004, 43.775999999999996, 43.944, 44.112, 44.28, 44.448, 44.616, 44.784, 44.952, 45.12, 45.288, 45.456, 45.624, 45.792, 45.96, 46.128, 46.296, 46.464, 46.632000000000005, 46.8, 46.968, 47.135999999999996, 47.304, 47.472, 47.64, 47.808, 47.976, 48.144, 48.312, 48.480000000000004, 48.647999999999996, 48.816, 48.984, 49.152, 49.32, 49.488, 49.656, 49.824, 49.992000000000004, 50.16, 50.328, 50.495999999999995, 50.664, 50.832, 51.0, 51.168, 51.336, 51.504000000000005, 51.672, 51.84, 52.007999999999996, 52.176, 52.344, 52.512, 52.68, 52.848, 53.016, 53.184, 53.352000000000004, 53.519999999999996, 53.688, 53.856, 54.024, 54.192, 54.36, 54.528, 54.696, 54.864000000000004, 55.032, 55.2, 55.367999999999995, 55.536, 55.704, 55.872, 56.04, 56.208, 56.376000000000005, 56.544, 56.712, 56.879999999999995, 57.048, 57.216, 57.384, 57.552, 57.72, 57.888000000000005, 58.056, 58.224000000000004, 58.391999999999996, 58.56, 58.728, 58.896, 59.064, 59.232, 59.4, 59.568, 59.736000000000004, 59.903999999999996, 60.072, 60.239999999999995, 60.408, 60.576, 60.744, 60.912, 61.08, 61.248000000000005, 61.416, 61.584, 61.751999999999995, 61.92, 62.088, 62.256, 62.424, 62.592, 62.76, 62.928, 63.096, 63.264, 63.432, 63.6, 63.768, 63.936, 64.104, 64.27199999999999, 64.44, 64.608, 64.77600000000001, 64.944, 65.112, 65.28, 65.44800000000001, 65.616, 65.78399999999999, 65.952, 66.12, 66.288, 66.456, 66.624, 66.792, 66.96000000000001, 67.128, 67.29599999999999, 67.464, 67.632, 67.8, 67.968, 68.136, 68.304, 68.47200000000001, 68.64, 68.80799999999999, 68.976, 69.144, 69.312, 69.47999999999999, 69.648, 69.816, 69.98400000000001, 70.152, 70.32, 70.488, 70.656, 70.824, 70.99199999999999, 71.16, 71.328, 71.49600000000001, 71.664, 71.832, 72.0, 72.168, 72.336, 72.50399999999999, 72.672, 72.84, 73.00800000000001, 73.176, 73.344, 73.512, 73.68, 73.848, 74.01599999999999, 74.184, 74.352, 74.52000000000001, 74.688, 74.856, 75.024, 75.19200000000001, 75.36, 75.52799999999999, 75.696, 75.864, 76.032, 76.2, 76.368, 76.536, 76.70400000000001, 76.872, 77.03999999999999, 77.208, 77.376, 77.544, 77.712, 77.88, 78.048, 78.21600000000001, 78.384, 78.55199999999999, 78.72, 78.888, 79.056, 79.22399999999999, 79.392, 79.56, 79.72800000000001, 79.896, 80.064, 80.232, 80.4, 80.568, 80.73599999999999, 80.904, 81.072, 81.24000000000001, 81.408, 81.576, 81.744, 81.912, 82.08, 82.24799999999999, 82.416, 82.584, 82.75200000000001, 82.92, 83.088, 83.256, 83.424, 83.592, 83.75999999999999, 83.928, 84.096, 84.26400000000001, 84.432, 84.6, 84.768, 84.936, 85.104, 85.27199999999999, 85.44, 85.608, 85.77600000000001, 85.944, 86.112, 86.28, 86.44800000000001, 86.616, 86.78399999999999, 86.952, 87.12, 87.288, 87.456, 87.624, 87.792, 87.96000000000001, 88.128, 88.29599999999999, 88.464, 88.632, 88.8, 88.968, 89.136, 89.304, 89.47200000000001, 89.64, 89.80799999999999, 89.976, 90.144, 90.312, 90.47999999999999, 90.648, 90.816, 90.98400000000001, 91.152, 91.32, 91.488, 91.656, 91.824, 91.99199999999999, 92.16, 92.328, 92.49600000000001, 92.664, 92.832, 93.0, 93.168, 93.336, 93.50399999999999, 93.672, 93.84, 94.008, 94.176, 94.344, 94.512, 94.68, 94.848, 95.016, 95.184, 95.352, 95.52, 95.688, 95.856, 96.024, 96.192, 96.36, 96.528, 96.696, 96.864, 97.032, 97.2, 97.368, 97.536, 97.704, 97.872, 98.04, 98.208, 98.376, 98.544, 98.712, 98.88, 99.048, 99.216, 99.384, 99.552, 99.72, 99.888, 100.056, 100.224, 100.392, 100.56, 100.728, 100.896, 101.064, 101.232, 101.4, 101.568, 101.736, 101.904, 102.072, 102.24, 102.408, 102.576, 102.744, 102.912, 103.08, 103.248, 103.416, 103.584, 103.752, 103.92, 104.088, 104.256, 104.424, 104.592, 104.76, 104.928, 105.096, 105.264, 105.432, 105.6, 105.768, 105.936, 106.104, 106.272, 106.44, 106.608, 106.776, 106.944, 107.112, 107.28, 107.448, 107.616, 107.784, 107.952, 108.12, 108.288, 108.456, 108.624, 108.792, 108.96, 109.128, 109.296, 109.464, 109.632, 109.8, 109.968, 110.136, 110.304, 110.472, 110.64, 110.808, 110.976, 111.144, 111.312, 111.48, 111.648, 111.816, 111.984, 112.152, 112.32, 112.488, 112.656, 112.824, 112.992, 113.16, 113.328, 113.496, 113.664, 113.832], \"xaxis\": \"x\", \"y\": [0.00039610653432047547, 0.0003974025039224466, 0.00039815014478988456, 0.00039836638782933444, 0.0003980722979119599, 0.00039729292706531703, 0.00039605712542574065, 0.00039439731153744135, 0.00039234920411219563, 0.0003899515178701991, 0.00038724562656132575, 0.0003842751967103186, 0.0003810857960336083, 0.00037772448083422125, 0.00037423936699018103, 0.00037067918940715593, 0.0003670928550048628, 0.00036352899444664185, 0.0003600355179012762, 0.0003566591801447589, 0.00035344516026735026, 0.0003504366611486602, 0.00034767453370187915, 0.0003451969306696896, 0.0003430389944812822, 0.00034123258335515456, 0.0003398060394595029, 0.00033878400252469157, 0.0003381872718446494, 0.0003380327191104204, 0.00033833325399419207, 0.0003390978438505744, 0.0003403315883288742, 0.00034203584910051383, 0.0003442084343049181, 0.00034684383671038327, 0.000349933523978928, 0.0003534662788214756, 0.0003574285862371174, 0.00036180506445327966, 0.0003665789356276391, 0.0003717325318429239, 0.0003772478314277369, 0.0003831070201752009, 0.0003892930716116721, 0.00039579034009492176, 0.0004025851601994404, 0.0004096664455804708, 0.00041702628030184096, 0.0004246604954694792, 0.0004325692239357248, 0.00044075742583220653, 0.00044923537775317155, 0.00045801911854866654, 0.00046713084489888025, 0.0004765992501277975, 0.0004864598000760191, 0.0004967549402881927, 0.0005075342292785041, 0.0005188543932159389, 0.0005307792980163382, 0.0005433798355372047, 0.000556733721339126, 0.0005709252022995934, 0.0005860446732350345, 0.0006021882025985959, 0.0006194569682674575, 0.0006379566054065106, 0.000657796469386831, 0.0006790888177386126, 0.0007019479161197906, 0.0007264890742738, 0.0007528276189224936, 0.0007810778114828602, 0.0008113517193980927, 0.0008437580507239485, 0.000878400962399247, 0.0009153788533439113, 0.0009547831541585762, 0.0009966971257357356, 0.0010411946795239287, 0.0010883392325037903, 0.0011381826101294096, 0.0011907640105520288, 0.0012461090433690256, 0.0013042288559235843, 0.0013651193598148126, 0.001428760569761657, 0.0014951160662955338, 0.001564132592936459, 0.0016357397975383895, 0.0017098501263755899, 0.001786358878290023, 0.0018651444248383657, 0.0019460686008771525, 0.002028977268418744, 0.0021137010548938667, 0.002200056265185512, 0.002287845964972162, 0.002376861231055947, 0.0024668825624746637, 0.0025576814443279876, 0.002649022054410701, 0.002740663100963264, 0.002832359778145136, 0.002923865824233376, 0.0030149356660694234, 0.003105326631942458, 0.003194801213928838, 0.003283129359719978, 0.0033700907731841544, 0.0034554772023317037, 0.0035390946930011218, 0.0036207657864616603, 0.0037003316392416937, 0.003777654043843047, 0.0038526173295873357, 0.0039251301236571745, 0.003995126953433809, 0.004062569672483832, 0.004127448693995702, 0.00418978401709708, 0.00424962603327678, 0.004307056102070717, 0.004362186887226672, 0.004415162446715431, 0.0044661580721809535, 0.004515379875695045, 0.004563064123978323, 0.004609476322543113, 0.0046549100544830075, 0.0046996855808531844, 0.0047441482117351, 0.004788666459136717, 0.004833629984827358, 0.00487944735802715, 0.004926543639549288, 0.0049753578105166014, 0.005026340065130913, 0.005079948988154856, 0.005136648638764763, 0.005196905563244892, 0.0052611857596132315, 0.005329951617698253, 0.005403658858420396, 0.005482753496078413, 0.005567668847296554, 0.005658822609961337, 0.005756614034970991, 0.005861421212938995, 0.005973598497148898, 0.006093474083049418, 0.006221347763423101, 0.006357488877059753, 0.006502134467333028, 0.006655487665516878, 0.006817716312005872, 0.006988951826822602, 0.007169288338922677, 0.007358782081850325, 0.007557451061269655, 0.007765274997809342, 0.007982195546523371, 0.008208116792104037, 0.008442906016795213, 0.008686394735763171, 0.008938379992499981, 0.009198625904680117, 0.009466865448778231, 0.00974280246970316, 0.010026113899729353, 0.010316452169125082, 0.010613447789112277, 0.010916712086156301, 0.011225840065101031, 0.011540413377345658, 0.011860003369130744, 0.012184174184069276, 0.012512485893349447, 0.012844497626554837, 0.01317977067581482, 0.013517871546019156, 0.013858374924116033, 0.014200866541070008, 0.014544945900884202, 0.014890228852193932, 0.015236349979310473, 0.015582964791226181, 0.01592975168897803, 0.016276413693884245, 0.016622679921508066, 0.016968306788729532, 0.017313078944005484, 0.01765680991372784, 0.01799934246052514, 0.018340548652351848, 0.018680329644232534, 0.01901861517753776, 0.019355362804616118, 0.019690556849456784, 0.02002420711775863, 0.020356347372298418, 0.02068703359178456, 0.02101634203340922, 0.0213443671210483, 0.021671219182467668, 0.021997022059965305, 0.022321910619579232, 0.022646028184329235, 0.02296952391692396, 0.02329255017695882, 0.02361525987687606, 0.023937803859869895, 0.024260328321528666, 0.024582972295348702, 0.02490586522037333, 0.025229124607150964, 0.02555285381602128, 0.025877139959487233, 0.02620205193816423, 0.026527638617576624, 0.026853927150956348, 0.027180921451232937, 0.027508600813651262, 0.027836918688941326, 0.028165801605746, 0.02849514824010416, 0.02882482862920933, 0.02915468352643481, 0.02948452389471682, 0.029814130535820528, 0.030143253853746457, 0.030471613751527054, 0.030798899661887195, 0.031124770713619784, 0.03144885603701922, 0.0317707552132374, 0.03209003887391559, 0.03240624945882316, 0.03271890214042729, 0.03302748592525483, 0.03333146494251858, 0.03363027993070955, 0.03392334993264522, 0.034210074208775254, 0.03448983437735091, 0.03476199678834625, 0.035025915135773765, 0.035280933310290634, 0.035526388490761535, 0.035761614469782516, 0.035985945204142965, 0.03619871857687019, 0.03639928035296389, 0.036586988306275235, 0.036761216490321436, 0.03692135962126444, 0.037066837536934814, 0.03719709969175671, 0.037311629643845726, 0.037409949487501835, 0.0374916241819098, 0.0375562657251654, 0.03760353712184379, 0.03763315609226605, 0.037644898472445336, 0.03763860125541321, 0.03761416522725293, 0.03757155715466603, 0.03751081148523915, 0.0374320315266978, 0.03733539007726194, 0.037221129485646286, 0.03708956112619429, 0.0369410642819534, 0.03677608443608352, 0.036595130979695155, 0.03639877435190195, 0.036187642635415775, 0.03596241763825675, 0.03572383049899361, 0.035472656859220415, 0.03520971165263121, 0.03493584356495727, 0.03465192922311527, 0.03435886717510569, 0.03405757172445528, 0.03374896668428863, 0.033433979116431575, 0.03311353312029807, 0.03278854373473272, 0.03245991101350005, 0.0321285143318061, 0.0317952069771724, 0.03146081107324874, 0.03112611287984325, 0.030791858506675807, 0.03045875007222867, 0.030127442332695823, 0.02979853979952875, 0.029472594357560864, 0.02915010338926399, 0.02883150840446459, 0.028517194168908057, 0.028207488319498316, 0.02790266144893174, 0.027602927637851417, 0.027308445408620863, 0.027019319071392874, 0.02673560043035556, 0.02645729081588435, 0.026184343406809946, 0.025916665806125037, 0.02565412283315963, 0.025396539495529252, 0.025143704104956564, 0.024895371502329528, 0.024651266359033648, 0.024411086523618633, 0.024174506385162373, 0.02394118022721272, 0.02371074554884896, 0.0234828263321486, 0.023257036238098706, 0.023032981715704864, 0.02281026501166053, 0.02258848707040422, 0.022367250316660904, 0.0221461613146131, 0.0219248332996388, 0.02170288858007887, 0.02147996080773773, 0.02125569711678009, 0.02102976013137027, 0.020801829842813736, 0.0205716053571361, 0.020338806513981886, 0.020103175377480263, 0.019864477599330226, 0.01962250365384613, 0.019377069944116924, 0.01912801977780314, 0.01887522421047228, 0.01861858275378809, 0.018358023945362123, 0.018093505776678235, 0.017825015975245544, 0.01755257213703712, 0.017276221705364917, 0.016996041792621822, 0.01671213884181154, 0.016424648125476223, 0.016133733080522492, 0.015839584478523426, 0.015542419432322077, 0.015242480241160119, 0.014940033078073699, 0.014635366524914487, 0.014328789962023794, 0.014020631821286515, 0.0137112377129751, 0.013400968438432501, 0.013090197902190844, 0.012779310938554585, 0.012468701068955913, 0.012158768207482518, 0.011849916332869371, 0.011542551145899516, 0.011237077731573066, 0.010933898245553493, 0.010633409644290052, 0.010336001477835246, 0.010042053763737145, 0.009751934959493586, 0.00946600004992505, 0.009184588764474193, 0.008908023937893346, 0.008636610026066204, 0.008370631786852838, 0.00811035313388143, 0.00785601616916632, 0.007607840398346867, 0.007366022130244818, 0.007130734060367135, 0.006902125035963547, 0.0066803199983189, 0.0064654200961412325, 0.006257502962228957, 0.006056623144080964, 0.005862812677772572, 0.0056760817932735765, 0.00549641973843947, 0.005323795708174356, 0.005158159864742937, 0.004999444434902472, 0.004847564869424188, 0.004702421050676163, 0.004563898534227812, 0.004431869810902458, 0.004306195576329485, 0.004186725995812993, 0.004073301953223318, 0.003965756273606008, 0.003863914910272494, 0.0037675980882623853, 0.003676621397231152, 0.0035907968279936834, 0.0035099337481272505, 0.0034338398131857992, 0.003362321811183054, 0.0032951864390514986, 0.003232241010761111, 0.0031732940976761724, 0.0031181561025301285, 0.003066639769100885, 0.0030185606302667706, 0.002973737397614907, 0.002931992296158652, 0.002893151348000469, 0.002857044608956737, 0.0028235063622455763, 0.002792375273336884, 0.0027634945099832735, 0.002736711831302099, 0.0027118796495726387, 0.002688855068160292, 0.0026674998986930564, 0.0026476806603055983, 0.002629268563444818, 0.0026121394804078275, 0.002596173904469341, 0.0025812568991580276, 0.002567278038969869, 0.002554131342565022, 0.0025417151992897214, 0.0025299322896979106, 0.002518689500621764, 0.002507897835254893, 0.002497472318666128, 0.002487331899152734, 0.0024773993458653393, 0.0024676011431885936, 0.0024578673824348805, 0.0024481316514980253, 0.0024383309232119763, 0.002428405443259899, 0.0024182986185746734, 0.002407956907255783, 0.0023973297110947336, 0.0023863692718453086, 0.0023750305723924045, 0.00236327124396037, 0.002351051480456699, 0.0023383339609679477, 0.002325083781313417, 0.002311268395418362, 0.002296857567096213, 0.002281823332631637, 0.0022661399743374344, 0.002249784005025003, 0.002232734163084898, 0.0022149714176286574, 0.00219647898290112, 0.002177242340941735, 0.0021572492712591354, 0.0021364898860924833, 0.0021149566696707276, 0.0020926445197515424, 0.0020695507896295296, 0.00204567532875024, 0.002021020520055166, 0.0019955913122125133, 0.001969395244959695, 0.0019424424658931563, 0.0019147457371874916, 0.0018863204309042508, 0.0018571845117569977, 0.0018273585064281516, 0.0017968654587779745, 0.0017657308705421406, 0.0017339826273736396, 0.0017016509103426147, 0.0016687680932568197, 0.001635368626400977, 0.0016014889075096003, 0.0015671671409809957, 0.0015324431865062235, 0.0014973583984228946, 0.0014619554572085252, 0.0014262781946000516, 0.0013903714138659164, 0.0013542807067650838, 0.0013180522687055985, 0.0012817327135661223, 0.001245368889570545, 0.0012090076975118339, 0.0011726959125104362, 0.0011364800103696683, 0.0011004059994590464, 0.0010645192589215072], \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [72.0, 66.0, 64.0, 66.0, 40.0, 74.0, 50.0, 70.88, 70.0, 96.0, 92.0, 74.0, 80.0, 60.0, 72.0, 75.32, 84.0, 74.0, 30.0, 70.0, 88.0, 84.0, 90.0, 80.0, 94.0, 70.0, 76.0, 66.0, 82.0, 92.0, 75.0, 76.0, 58.0, 92.0, 78.0, 60.0, 76.0, 76.0, 68.0, 72.0, 64.0, 84.0, 92.0, 110.0, 64.0, 66.0, 56.0, 70.0, 66.0, 70.88, 80.0, 50.0, 66.0, 90.0, 66.0, 50.0, 68.0, 88.0, 82.0, 64.0, 70.88, 72.0, 62.0, 58.0, 66.0, 74.0, 88.0, 92.0, 66.0, 85.0, 66.0, 64.0, 90.0, 86.0, 75.0, 48.0, 78.0, 72.0, 75.32, 66.0, 44.0, 70.88, 78.0, 65.0, 108.0, 74.0, 72.0, 68.0, 70.0, 68.0, 55.0, 80.0, 78.0, 72.0, 82.0, 72.0, 62.0, 48.0, 50.0, 90.0, 72.0, 60.0, 96.0, 72.0, 65.0, 56.0, 122.0, 58.0, 58.0, 85.0, 72.0, 62.0, 76.0, 62.0, 54.0, 92.0, 74.0, 48.0, 60.0, 76.0, 76.0, 64.0, 74.0, 80.0, 76.0, 30.0, 70.0, 58.0, 88.0, 84.0, 70.0, 56.0, 64.0, 74.0, 68.0, 60.0, 70.0, 60.0, 80.0, 72.0, 78.0, 82.0, 52.0, 66.0, 62.0, 75.0, 80.0, 64.0, 78.0, 70.0, 74.0, 65.0, 86.0, 82.0, 78.0, 88.0, 52.0, 56.0, 74.0, 72.0, 90.0, 74.0, 80.0, 64.0, 88.0, 74.0, 66.0, 68.0, 66.0, 90.0, 82.0, 70.0, 70.88, 60.0, 64.0, 72.0, 78.0, 110.0, 78.0, 82.0, 80.0, 64.0, 74.0, 60.0, 74.0, 68.0, 68.0, 98.0, 76.0, 80.0, 62.0, 70.0, 66.0, 75.32, 55.0, 84.0, 58.0, 62.0, 64.0, 60.0, 80.0, 82.0, 68.0, 70.0, 72.0, 72.0, 76.0, 104.0, 64.0, 84.0, 60.0, 85.0, 95.0, 65.0, 82.0, 70.0, 62.0, 68.0, 74.0, 66.0, 60.0, 90.0, 70.88, 60.0, 66.0, 78.0, 76.0, 52.0, 70.0, 80.0, 86.0, 80.0, 80.0, 68.0, 68.0, 72.0, 84.0, 90.0, 84.0, 76.0, 64.0, 70.0, 54.0, 50.0, 76.0, 85.0, 68.0, 90.0, 70.0, 86.0, 52.0, 84.0, 80.0, 68.0, 62.0, 64.0, 56.0, 68.0, 50.0, 76.0, 68.0, 75.32, 70.0, 80.0, 62.0, 74.0, 75.32, 64.0, 52.0, 75.32, 86.0, 62.0, 78.0, 78.0, 70.0, 70.0, 60.0, 64.0, 74.0, 62.0, 70.0, 76.0, 88.0, 86.0, 80.0, 74.0, 84.0, 86.0, 56.0, 72.0, 88.0, 62.0, 78.0, 48.0, 50.0, 62.0, 70.0, 84.0, 78.0, 72.0, 75.32, 58.0, 82.0, 98.0, 76.0, 76.0, 68.0, 68.0, 68.0, 68.0, 66.0, 70.0, 74.0, 50.0, 80.0, 68.0, 80.0, 74.0, 66.0, 78.0, 60.0, 74.0, 70.0, 90.0, 75.0, 72.0, 64.0, 70.0, 86.0, 70.0, 72.0, 58.0, 75.32, 80.0, 60.0, 76.0, 70.88, 76.0, 78.0, 84.0, 70.0, 74.0, 68.0, 86.0, 72.0, 88.0, 46.0, 70.88, 62.0, 80.0, 80.0, 84.0, 82.0, 62.0, 78.0, 88.0, 50.0, 75.32, 74.0, 76.0, 64.0, 70.0, 108.0, 78.0, 74.0, 54.0, 72.0, 64.0, 86.0, 102.0, 82.0, 64.0, 64.0, 58.0, 52.0, 82.0, 82.0, 60.0, 75.0, 100.0, 72.0, 68.0, 60.0, 62.0, 70.0, 54.0, 74.0, 100.0, 82.0, 68.0, 66.0, 76.0, 64.0, 72.0, 78.0, 58.0, 56.0, 66.0, 70.0, 70.0, 64.0, 61.0, 84.0, 78.0, 64.0, 48.0, 72.0, 62.0, 74.0, 68.0, 90.0, 72.0, 84.0, 74.0, 60.0, 84.0, 68.0, 82.0, 68.0, 64.0, 88.0, 68.0, 64.0, 64.0, 78.0, 78.0, 70.88, 64.0, 94.0, 82.0, 70.88, 74.0, 74.0, 75.0, 68.0, 75.32, 85.0, 75.0, 70.0, 88.0, 104.0, 66.0, 64.0, 70.0, 62.0, 78.0, 72.0, 80.0, 64.0, 74.0, 64.0, 70.0, 68.0, 70.88, 54.0, 62.0, 54.0, 68.0, 84.0, 74.0, 72.0, 62.0, 70.0, 78.0, 98.0, 56.0, 52.0, 64.0, 75.32, 78.0, 82.0, 70.0, 66.0, 90.0, 64.0, 84.0, 80.0, 76.0, 74.0, 86.0, 70.0, 88.0, 58.0, 82.0, 75.32, 68.0, 62.0, 78.0, 72.0, 80.0, 65.0, 90.0, 68.0, 70.0, 70.88, 74.0, 68.0, 72.0, 70.0, 74.0, 90.0, 72.0, 68.0, 64.0, 78.0, 82.0, 90.0, 60.0, 50.0, 78.0, 72.0, 62.0, 68.0, 62.0, 54.0, 70.0, 88.0, 86.0, 60.0, 90.0, 70.0, 80.0, 70.88, 70.0, 58.0, 60.0, 64.0, 74.0, 66.0, 65.0, 60.0, 76.0, 66.0, 70.88, 56.0, 75.32, 90.0, 60.0, 80.0, 92.0, 74.0, 72.0, 85.0, 90.0, 78.0, 90.0, 76.0, 68.0, 82.0, 110.0, 70.0, 68.0, 88.0, 62.0, 64.0, 70.0, 70.0, 76.0, 68.0, 74.0, 76.0, 66.0, 68.0, 60.0, 80.0, 54.0, 72.0, 62.0, 72.0, 66.0, 70.0, 96.0, 58.0, 60.0, 86.0, 44.0, 44.0, 80.0, 68.0, 70.0, 90.0, 60.0, 78.0, 76.0, 76.0, 56.0, 66.0, 66.0, 86.0, 70.88, 84.0, 78.0, 80.0, 52.0, 72.0, 82.0, 76.0, 24.0, 74.0, 38.0, 88.0, 70.88, 74.0, 78.0, 75.32, 60.0, 78.0, 62.0, 82.0, 62.0, 54.0, 58.0, 88.0, 80.0, 74.0, 72.0, 96.0, 62.0, 82.0, 75.32, 86.0, 76.0, 94.0, 70.0, 64.0, 88.0, 68.0, 78.0, 80.0, 65.0, 64.0, 78.0, 60.0, 82.0, 62.0, 72.0, 74.0, 76.0, 76.0, 74.0, 86.0, 70.0, 80.0, 70.88, 72.0, 74.0, 74.0, 50.0, 84.0, 60.0, 54.0, 60.0, 74.0, 54.0, 70.0, 52.0, 58.0, 80.0, 106.0, 82.0, 84.0, 76.0, 106.0, 80.0, 60.0, 80.0, 82.0, 70.0, 58.0, 78.0, 68.0, 58.0, 106.0, 100.0, 82.0, 70.0, 86.0, 60.0, 52.0, 58.0, 56.0, 76.0, 64.0, 80.0, 82.0, 74.0, 64.0, 50.0, 74.0, 82.0, 80.0, 114.0, 70.0, 68.0, 60.0, 90.0, 74.0, 70.88, 88.0, 70.0, 76.0, 78.0, 88.0, 70.88, 76.0, 80.0, 75.32, 46.0, 78.0, 64.0, 64.0, 78.0, 62.0, 58.0, 74.0, 50.0, 78.0, 72.0, 60.0, 76.0, 86.0, 66.0, 68.0, 86.0, 94.0, 78.0, 78.0, 84.0, 88.0, 52.0, 78.0, 86.0, 88.0, 56.0, 75.0, 60.0, 86.0, 72.0, 60.0, 74.0, 80.0, 44.0, 58.0, 94.0, 88.0, 84.0, 94.0, 74.0, 70.0, 62.0, 70.0, 78.0, 62.0, 88.0, 78.0, 88.0, 90.0, 72.0, 76.0, 92.0, 58.0, 74.0, 62.0, 76.0, 70.0, 72.0, 60.0, 70.0], \"xaxis\": \"x\", \"y\": [\"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\"], \"yaxis\": \"y2\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [72.0, 64.0, 40.0, 50.0, 70.0, 96.0, 74.0, 60.0, 72.0, 75.32, 84.0, 74.0, 70.0, 90.0, 80.0, 94.0, 70.0, 76.0, 76.0, 76.0, 68.0, 72.0, 110.0, 66.0, 66.0, 90.0, 68.0, 72.0, 66.0, 88.0, 66.0, 90.0, 75.32, 108.0, 70.0, 72.0, 90.0, 72.0, 85.0, 72.0, 62.0, 54.0, 92.0, 74.0, 76.0, 76.0, 30.0, 88.0, 84.0, 70.0, 56.0, 64.0, 66.0, 86.0, 78.0, 88.0, 72.0, 88.0, 74.0, 82.0, 70.0, 72.0, 110.0, 82.0, 68.0, 68.0, 98.0, 76.0, 80.0, 66.0, 75.32, 84.0, 62.0, 64.0, 60.0, 76.0, 104.0, 84.0, 65.0, 82.0, 70.0, 62.0, 74.0, 66.0, 60.0, 90.0, 52.0, 86.0, 80.0, 72.0, 84.0, 90.0, 84.0, 54.0, 50.0, 85.0, 62.0, 64.0, 76.0, 75.32, 62.0, 75.32, 75.32, 86.0, 60.0, 70.0, 86.0, 80.0, 86.0, 62.0, 78.0, 48.0, 70.0, 78.0, 75.32, 58.0, 98.0, 68.0, 68.0, 68.0, 74.0, 80.0, 74.0, 78.0, 74.0, 70.0, 90.0, 64.0, 86.0, 75.32, 76.0, 78.0, 84.0, 80.0, 88.0, 50.0, 75.32, 76.0, 64.0, 78.0, 72.0, 102.0, 82.0, 82.0, 75.0, 74.0, 100.0, 82.0, 76.0, 78.0, 66.0, 70.0, 64.0, 84.0, 64.0, 72.0, 74.0, 68.0, 60.0, 84.0, 82.0, 64.0, 78.0, 78.0, 64.0, 82.0, 75.32, 104.0, 70.0, 62.0, 78.0, 64.0, 70.0, 62.0, 84.0, 75.32, 80.0, 70.0, 75.32, 68.0, 70.0, 70.0, 68.0, 90.0, 72.0, 70.0, 88.0, 70.0, 75.32, 92.0, 74.0, 72.0, 85.0, 90.0, 76.0, 76.0, 66.0, 66.0, 80.0, 70.0, 90.0, 76.0, 66.0, 86.0, 84.0, 80.0, 82.0, 74.0, 78.0, 75.32, 78.0, 58.0, 88.0, 74.0, 82.0, 75.32, 64.0, 72.0, 76.0, 80.0, 74.0, 50.0, 84.0, 52.0, 82.0, 76.0, 106.0, 80.0, 60.0, 82.0, 70.0, 70.0, 86.0, 52.0, 76.0, 80.0, 82.0, 114.0, 68.0, 90.0, 74.0, 78.0, 88.0, 75.32, 78.0, 64.0, 62.0, 50.0, 78.0, 76.0, 68.0, 78.0, 86.0, 88.0, 74.0, 80.0, 94.0, 94.0, 70.0, 62.0, 70.0, 88.0, 78.0, 88.0, 72.0, 92.0, 74.0, 60.0], \"xaxis\": \"x\", \"y\": [\"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\"], \"yaxis\": \"y2\"}],                        {\"barmode\": \"overlay\", \"hovermode\": \"closest\", \"legend\": {\"traceorder\": \"reversed\"}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"BLOOD_PRESSURE\"}, \"xaxis\": {\"anchor\": \"y2\", \"domain\": [0.0, 1.0], \"zeroline\": false}, \"yaxis\": {\"anchor\": \"free\", \"domain\": [0.35, 1], \"position\": 0.0}, \"yaxis2\": {\"anchor\": \"x\", \"domain\": [0, 0.25], \"dtick\": 1, \"showticklabels\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('d96221b1-d5e5-499f-b352-1fca4db6042f');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### SKIN THICKNESS"},{"metadata":{"trusted":true},"cell_type":"code","source":"get_mean('skin_thickness')","execution_count":25,"outputs":[{"output_type":"execute_result","execution_count":25,"data":{"text/plain":"   outcome  skin_thickness\n0        0           27.24\n1        1           33.00","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>outcome</th>\n      <th>skin_thickness</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>27.24</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>33.00</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[(df['outcome'] == 0) & (df['skin_thickness'].isnull()), 'skin_thickness'] = 27.24\ndf.loc[(df['outcome'] == 1) & (df['skin_thickness'].isnull()), 'skin_thickness'] = 33.00","execution_count":26,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_dist('skin_thickness',0)","execution_count":27,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"24c89696-3294-45be-827b-11f811a59df8\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"24c89696-3294-45be-827b-11f811a59df8\")) {                    Plotly.newPlot(                        \"24c89696-3294-45be-827b-11f811a59df8\",                        [{\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"name\": \"healthy\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [35.0, 29.0, 33.0, 23.0, 35.0, 27.24, 32.0, 27.24, 45.0, 33.0, 27.24, 33.0, 27.24, 23.0, 19.0, 33.0, 47.0, 33.0, 38.0, 30.0, 41.0, 27.24, 33.0, 35.0, 33.0, 26.0, 33.0, 15.0, 19.0, 27.24, 26.0, 36.0, 11.0, 27.24, 31.0, 33.0, 27.24, 37.0, 42.0, 47.0, 25.0, 27.24, 18.0, 24.0, 27.24, 39.0, 27.24, 27.0, 32.0, 27.24, 11.0, 15.0, 21.0, 34.0, 42.0, 10.0, 39.0, 60.0, 27.24, 41.0, 27.24, 33.0, 27.24, 34.0, 33.0, 27.0, 30.0, 27.24, 13.0, 27.0, 20.0, 35.0, 33.0, 20.0, 30.0, 20.0, 27.24, 33.0, 33.0, 22.0, 13.0, 27.24, 26.0, 28.0, 33.0, 29.0, 54.0, 25.0, 32.0, 19.0, 27.24, 15.0, 40.0, 33.0, 18.0, 27.0, 28.0, 18.0, 30.0, 51.0, 33.0, 27.24, 27.24, 18.0, 27.24, 29.0, 27.24, 28.0, 31.0, 25.0, 33.0, 26.0, 34.0, 27.24, 32.0, 33.0, 33.0, 27.24, 23.0, 15.0, 56.0, 39.0, 30.0, 27.24, 33.0, 42.0, 30.0, 36.0, 24.0, 33.0, 14.0, 33.0, 37.0, 31.0, 13.0, 20.0, 26.0, 25.0, 27.24, 29.0, 27.24, 30.0, 26.0, 33.0, 31.0, 23.0, 37.0, 35.0, 27.24, 17.0, 50.0, 27.24, 28.0, 42.0, 33.0, 44.0, 15.0, 21.0, 19.0, 41.0, 38.0, 40.0, 34.0, 23.0, 33.0, 18.0, 25.0, 27.24, 27.24, 12.0, 33.0, 23.0, 23.0, 42.0, 24.0, 42.0, 27.24, 46.0, 27.24, 33.0, 27.24, 18.0, 20.0, 27.24, 27.24, 28.0, 36.0, 41.0, 39.0, 35.0, 27.24, 44.0, 33.0, 33.0, 20.0, 41.0, 27.24, 13.0, 44.0, 27.0, 16.0, 27.24, 20.0, 16.0, 32.0, 28.0, 29.0, 33.0, 27.0, 33.0, 22.0, 54.0, 31.0, 26.0, 32.0, 40.0, 41.0, 30.0, 22.0, 33.0, 29.0, 33.0, 27.24, 33.0, 15.0, 27.0, 27.24, 38.0, 39.0, 31.0, 33.0, 37.0, 25.0, 27.24, 28.0, 33.0, 21.0, 27.0, 21.0, 27.24, 24.0, 32.0, 33.0, 22.0, 35.0, 15.0, 27.24, 33.0, 33.0, 19.0, 27.24, 27.24, 14.0, 32.0, 7.0, 35.0, 39.0, 22.0, 16.0, 28.0, 15.0, 33.0, 32.0, 15.0, 33.0, 18.0, 33.0, 42.0, 27.24, 33.0, 37.0, 32.0, 27.24, 50.0, 27.24, 52.0, 24.0, 23.0, 27.24, 10.0, 33.0, 28.0, 15.0, 33.0, 33.0, 26.0, 44.0, 39.0, 17.0, 43.0, 29.0, 30.0, 37.0, 45.0, 27.24, 31.0, 38.0, 29.0, 25.0, 27.24, 33.0, 33.0, 41.0, 33.0, 27.24, 37.0, 23.0, 14.0, 19.0, 28.0, 30.0, 37.0, 17.0, 10.0, 31.0, 22.0, 11.0, 33.0, 39.0, 33.0, 12.0, 30.0, 20.0, 33.0, 32.0, 21.0, 32.0, 27.24, 36.0, 32.0, 19.0, 16.0, 33.0, 27.24, 18.0, 43.0, 27.24, 33.0, 34.0, 33.0, 13.0, 21.0, 35.0, 27.24, 27.24, 36.0, 19.0, 27.24, 19.0, 32.0, 27.24, 27.24, 28.0, 12.0, 27.24, 33.0, 40.0, 30.0, 40.0, 36.0, 33.0, 27.24, 37.0, 33.0, 25.0, 28.0, 33.0, 17.0, 16.0, 28.0, 48.0, 23.0, 22.0, 40.0, 43.0, 43.0, 15.0, 37.0, 33.0, 39.0, 30.0, 22.0, 8.0, 18.0, 24.0, 13.0, 29.0, 36.0, 26.0, 23.0, 29.0, 33.0, 14.0, 12.0, 33.0, 24.0, 34.0, 40.0, 27.24, 31.0, 33.0, 27.24, 41.0, 25.0, 33.0, 32.0, 33.0, 27.24, 33.0, 49.0, 39.0, 30.0, 23.0, 22.0, 35.0, 33.0, 21.0, 32.0, 27.24, 29.0, 41.0, 18.0, 46.0, 22.0, 32.0, 39.0, 27.24, 30.0, 46.0, 25.0, 27.24, 16.0, 11.0, 27.24, 8.0, 33.0, 33.0, 27.24, 15.0, 27.24, 25.0, 23.0, 27.0, 33.0, 12.0, 63.0, 12.0, 45.0, 37.0, 18.0, 13.0, 33.0, 32.0, 27.24, 28.0, 30.0, 27.24, 28.0, 48.0, 33.0, 22.0, 27.24, 40.0, 30.0, 27.24, 13.0, 10.0, 36.0, 33.0, 41.0, 40.0, 38.0, 27.0, 27.24, 27.24, 27.0, 45.0, 17.0, 38.0, 31.0, 30.0, 37.0, 22.0, 31.0, 33.0, 42.0, 41.0, 32.0, 17.0, 27.24, 28.0, 30.0, 38.0, 18.0, 27.24, 27.24, 27.24, 15.0, 33.0, 32.0, 19.0, 32.0, 41.0, 25.0, 39.0, 27.24, 26.0, 23.0, 23.0, 27.24, 31.0, 17.0, 27.24, 27.24, 19.0, 18.0, 34.0, 27.24, 27.24, 7.0, 32.0, 33.0, 27.24, 33.0, 27.24, 18.0, 19.0, 15.0, 31.0, 27.24, 18.0, 27.24, 52.0, 27.24, 30.0, 33.0, 27.24, 27.24, 37.0, 49.0, 40.0, 25.0, 32.0, 23.0, 29.0, 35.0, 27.0, 21.0, 43.0, 31.0, 28.0, 30.0, 27.24, 24.0, 23.0, 33.0, 40.0, 27.24, 40.0, 27.24, 33.0, 32.0, 34.0, 19.0, 27.24, 14.0, 30.0, 32.0, 29.0, 30.0, 27.24, 27.24, 31.0, 17.0, 30.0, 47.0, 20.0, 33.0, 27.24, 99.0, 46.0, 27.0, 17.0, 27.24, 24.0, 11.0, 33.0, 27.24, 27.0, 27.24, 40.0, 50.0, 33.0, 22.0, 45.0, 14.0, 27.24, 19.0, 33.0, 18.0, 19.0, 27.24, 36.0, 29.0, 33.0, 32.0, 42.0, 25.0, 39.0, 13.0, 21.0, 22.0, 42.0, 28.0, 26.0, 27.24, 27.24, 13.0, 24.0, 33.0, 42.0, 20.0, 27.24, 27.0, 27.24, 47.0, 27.24, 27.24, 27.24, 22.0, 33.0, 40.0, 27.24, 17.0, 27.24, 33.0, 27.24, 18.0, 32.0, 12.0, 17.0, 27.24, 33.0, 27.24, 30.0, 35.0, 17.0, 36.0, 35.0, 25.0, 25.0, 23.0, 40.0, 27.24, 28.0, 27.0, 35.0, 48.0, 27.24, 31.0, 27.24, 43.0, 46.0, 46.0, 39.0, 45.0, 18.0, 27.0, 33.0, 30.0, 26.0, 10.0, 23.0, 35.0, 27.24, 33.0, 33.0, 27.24, 33.0, 17.0, 28.0, 36.0, 39.0, 33.0, 27.24, 26.0, 27.24, 19.0, 26.0, 46.0, 27.24, 33.0, 32.0, 49.0, 27.24, 24.0, 19.0, 27.24, 11.0, 27.24, 27.0, 31.0, 29.0, 27.24, 20.0, 36.0, 33.0, 21.0, 33.0, 32.0, 13.0, 27.0, 36.0, 20.0, 27.24, 33.0, 39.0, 18.0, 46.0, 27.0, 19.0, 36.0, 29.0, 30.0, 27.24, 40.0, 29.0, 26.0, 27.24, 27.24, 23.0, 33.0, 37.0, 27.0, 27.24, 32.0, 27.0, 23.0, 17.0, 33.0, 37.0, 20.0, 18.0, 33.0, 37.0, 33.0, 41.0, 41.0, 22.0, 33.0, 33.0, 39.0, 24.0, 44.0, 32.0, 39.0, 41.0, 33.0, 27.24, 33.0, 26.0, 31.0, 27.24, 48.0, 27.0, 23.0, 33.0, 31.0], \"xaxis\": \"x\", \"xbins\": {\"end\": 99.0, \"size\": 0, \"start\": 7.0}, \"yaxis\": \"y\"}, {\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"name\": \"diabetic\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [35.0, 33.0, 35.0, 32.0, 45.0, 33.0, 33.0, 23.0, 19.0, 33.0, 47.0, 33.0, 30.0, 33.0, 35.0, 33.0, 26.0, 33.0, 36.0, 37.0, 42.0, 47.0, 24.0, 39.0, 32.0, 34.0, 39.0, 33.0, 33.0, 30.0, 20.0, 33.0, 33.0, 33.0, 32.0, 33.0, 51.0, 33.0, 25.0, 33.0, 26.0, 32.0, 33.0, 33.0, 56.0, 33.0, 42.0, 24.0, 33.0, 14.0, 33.0, 37.0, 33.0, 28.0, 33.0, 44.0, 41.0, 33.0, 18.0, 33.0, 23.0, 42.0, 46.0, 33.0, 28.0, 36.0, 41.0, 39.0, 35.0, 33.0, 33.0, 41.0, 13.0, 44.0, 27.0, 29.0, 33.0, 33.0, 26.0, 32.0, 40.0, 41.0, 22.0, 33.0, 29.0, 33.0, 38.0, 33.0, 37.0, 33.0, 21.0, 27.0, 21.0, 33.0, 22.0, 15.0, 7.0, 35.0, 28.0, 33.0, 33.0, 33.0, 33.0, 37.0, 24.0, 33.0, 33.0, 33.0, 39.0, 30.0, 37.0, 45.0, 38.0, 25.0, 33.0, 33.0, 33.0, 23.0, 19.0, 28.0, 17.0, 31.0, 33.0, 33.0, 30.0, 20.0, 33.0, 32.0, 36.0, 33.0, 33.0, 34.0, 33.0, 32.0, 33.0, 40.0, 30.0, 36.0, 33.0, 33.0, 33.0, 28.0, 48.0, 43.0, 33.0, 29.0, 36.0, 26.0, 33.0, 33.0, 40.0, 31.0, 33.0, 41.0, 33.0, 33.0, 33.0, 49.0, 35.0, 33.0, 32.0, 29.0, 32.0, 39.0, 30.0, 25.0, 33.0, 25.0, 33.0, 12.0, 63.0, 37.0, 33.0, 30.0, 48.0, 33.0, 45.0, 30.0, 33.0, 42.0, 18.0, 33.0, 41.0, 26.0, 31.0, 18.0, 34.0, 33.0, 33.0, 49.0, 40.0, 25.0, 32.0, 35.0, 27.0, 33.0, 32.0, 30.0, 33.0, 99.0, 46.0, 24.0, 33.0, 27.0, 40.0, 33.0, 14.0, 33.0, 29.0, 33.0, 42.0, 22.0, 42.0, 26.0, 24.0, 33.0, 33.0, 33.0, 32.0, 33.0, 17.0, 36.0, 35.0, 27.0, 31.0, 43.0, 46.0, 46.0, 39.0, 18.0, 27.0, 33.0, 33.0, 33.0, 36.0, 33.0, 46.0, 33.0, 49.0, 24.0, 19.0, 31.0, 29.0, 33.0, 33.0, 32.0, 36.0, 33.0, 39.0, 27.0, 29.0, 23.0, 33.0, 37.0, 33.0, 37.0, 33.0, 41.0, 22.0, 33.0, 33.0, 44.0, 32.0, 39.0, 33.0, 33.0, 31.0, 33.0], \"xaxis\": \"x\", \"xbins\": {\"end\": 99.0, \"size\": 0, \"start\": 7.0}, \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"mode\": \"lines\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [7.0, 7.184, 7.368, 7.552, 7.736, 7.92, 8.104, 8.288, 8.472, 8.656, 8.84, 9.024000000000001, 9.208, 9.392, 9.576, 9.76, 9.943999999999999, 10.128, 10.312, 10.496, 10.68, 10.864, 11.048, 11.232, 11.416, 11.6, 11.783999999999999, 11.968, 12.152000000000001, 12.336, 12.52, 12.704, 12.888, 13.072, 13.256, 13.440000000000001, 13.623999999999999, 13.808, 13.992, 14.176, 14.36, 14.544, 14.728, 14.911999999999999, 15.096, 15.28, 15.464, 15.648, 15.832, 16.016, 16.2, 16.384, 16.567999999999998, 16.752000000000002, 16.936, 17.119999999999997, 17.304000000000002, 17.488, 17.672, 17.856, 18.04, 18.224, 18.408, 18.592, 18.776, 18.96, 19.144, 19.328, 19.512, 19.695999999999998, 19.880000000000003, 20.064, 20.247999999999998, 20.432000000000002, 20.616, 20.8, 20.984, 21.168, 21.352, 21.536, 21.72, 21.904, 22.088, 22.272, 22.456, 22.64, 22.823999999999998, 23.008, 23.192, 23.376, 23.56, 23.744, 23.928, 24.112, 24.296, 24.48, 24.664, 24.848, 25.032, 25.216, 25.4, 25.584, 25.768, 25.952, 26.136, 26.32, 26.504, 26.688, 26.872, 27.056, 27.24, 27.424, 27.608, 27.792, 27.976, 28.16, 28.344, 28.528, 28.712, 28.896, 29.08, 29.264, 29.448, 29.632, 29.816, 30.0, 30.184, 30.368, 30.552, 30.736, 30.92, 31.104, 31.288, 31.472, 31.656, 31.84, 32.024, 32.208, 32.391999999999996, 32.576, 32.760000000000005, 32.944, 33.128, 33.312, 33.495999999999995, 33.68, 33.864000000000004, 34.048, 34.232, 34.416, 34.6, 34.784, 34.968, 35.152, 35.336, 35.519999999999996, 35.704, 35.888000000000005, 36.072, 36.256, 36.44, 36.623999999999995, 36.808, 36.992000000000004, 37.176, 37.36, 37.544, 37.728, 37.912, 38.096000000000004, 38.28, 38.464, 38.647999999999996, 38.832, 39.016, 39.2, 39.384, 39.568, 39.752, 39.936, 40.12, 40.304, 40.488, 40.672, 40.856, 41.04, 41.224, 41.408, 41.592, 41.776, 41.96, 42.144, 42.328, 42.512, 42.696, 42.88, 43.064, 43.248, 43.432, 43.616, 43.8, 43.984, 44.168, 44.352, 44.536, 44.72, 44.904, 45.088, 45.272, 45.456, 45.64, 45.824, 46.008, 46.192, 46.376, 46.56, 46.744, 46.928, 47.112, 47.296, 47.48, 47.664, 47.848, 48.032, 48.216, 48.4, 48.584, 48.768, 48.952, 49.136, 49.32, 49.504, 49.688, 49.872, 50.056, 50.24, 50.424, 50.608, 50.792, 50.976, 51.16, 51.344, 51.528, 51.712, 51.896, 52.08, 52.264, 52.448, 52.632, 52.816, 53.0, 53.184, 53.368, 53.552, 53.736, 53.92, 54.104, 54.288, 54.472, 54.656, 54.84, 55.024, 55.208, 55.392, 55.576, 55.76, 55.944, 56.128, 56.312, 56.496, 56.68, 56.864, 57.048, 57.232, 57.416, 57.6, 57.784, 57.968, 58.152, 58.336, 58.52, 58.704, 58.888, 59.072, 59.256, 59.44, 59.624, 59.808, 59.992, 60.176, 60.36, 60.544, 60.728, 60.912, 61.096, 61.28, 61.464, 61.648, 61.832, 62.016, 62.2, 62.384, 62.568, 62.752, 62.936, 63.12, 63.304, 63.488, 63.672, 63.856, 64.03999999999999, 64.22399999999999, 64.408, 64.592, 64.77600000000001, 64.96000000000001, 65.144, 65.328, 65.512, 65.696, 65.88, 66.064, 66.24799999999999, 66.432, 66.616, 66.8, 66.98400000000001, 67.168, 67.352, 67.536, 67.72, 67.904, 68.088, 68.27199999999999, 68.456, 68.64, 68.824, 69.00800000000001, 69.19200000000001, 69.376, 69.56, 69.744, 69.928, 70.112, 70.29599999999999, 70.47999999999999, 70.664, 70.848, 71.032, 71.216, 71.4, 71.584, 71.768, 71.952, 72.136, 72.32, 72.504, 72.688, 72.872, 73.056, 73.24, 73.424, 73.608, 73.792, 73.976, 74.16, 74.344, 74.528, 74.712, 74.896, 75.08, 75.264, 75.448, 75.632, 75.816, 76.0, 76.184, 76.368, 76.552, 76.736, 76.92, 77.104, 77.288, 77.472, 77.656, 77.84, 78.024, 78.208, 78.392, 78.576, 78.76, 78.944, 79.128, 79.312, 79.496, 79.68, 79.864, 80.048, 80.232, 80.416, 80.6, 80.784, 80.968, 81.152, 81.336, 81.52, 81.704, 81.888, 82.072, 82.256, 82.44, 82.624, 82.808, 82.992, 83.176, 83.36, 83.544, 83.728, 83.912, 84.096, 84.28, 84.464, 84.648, 84.832, 85.016, 85.2, 85.384, 85.568, 85.752, 85.936, 86.12, 86.304, 86.488, 86.672, 86.856, 87.04, 87.224, 87.408, 87.592, 87.776, 87.96, 88.144, 88.328, 88.512, 88.696, 88.88, 89.064, 89.248, 89.432, 89.616, 89.8, 89.984, 90.168, 90.352, 90.536, 90.72, 90.904, 91.088, 91.272, 91.456, 91.64, 91.824, 92.008, 92.192, 92.376, 92.56, 92.744, 92.928, 93.112, 93.296, 93.48, 93.664, 93.848, 94.032, 94.216, 94.4, 94.584, 94.768, 94.952, 95.136, 95.32, 95.504, 95.688, 95.872, 96.056, 96.24, 96.424, 96.608, 96.792, 96.976, 97.16, 97.344, 97.528, 97.712, 97.896, 98.08, 98.264, 98.448, 98.632, 98.816], \"xaxis\": \"x\", \"y\": [0.0019355607331039864, 0.0020962448391771854, 0.002266078802367335, 0.0024452973208891836, 0.002634097284305855, 0.0028326271071226613, 0.003040975987771248, 0.003259163569520095, 0.0034871305046179487, 0.00372473042358757, 0.0039717237870092684, 0.004227774047780979, 0.0044924464795414966, 0.004765209934810108, 0.005045441688612288, 0.005332435404897452, 0.005625412139339014, 0.005923534168685486, 0.006225921319040312, 0.006531669358127329, 0.006839869923864063, 0.007149631386660902, 0.007460099988092897, 0.007770480565326842, 0.008080056159458006, 0.008388205816536714, 0.0086944199218223, 0.008998312459601034, 0.009299629661450173, 0.009598254593739173, 0.009894207339027475, 0.010187640544420722, 0.010478830241368123, 0.01076816198409183, 0.011056112505712104, 0.01134322724946738, 0.011630094293754074, 0.011917315349643277, 0.012205474662701483, 0.012495106791023124, 0.012786664351240014, 0.013080486916249651, 0.013376772304735348, 0.013675551515895657, 0.013976668526857323, 0.01427976608041633, 0.014584278444779804, 0.014889431925529108, 0.015194253657102525, 0.015497588904296223, 0.015798126774771947, 0.016094433895782616, 0.01638499525942621, 0.01666826110968647, 0.01694269845101238, 0.017206845521353743, 0.017459367409568452, 0.017699110921752782, 0.017925156822470416, 0.01813686769849484, 0.018333929911474183, 0.01851638841197173, 0.018684673563990825, 0.018839619553589083, 0.018982474399726806, 0.019114902018819185, 0.019238977183801662, 0.019357174531832735, 0.0194723529831267, 0.019587737013421168, 0.019706896158568497, 0.019833723915659494, 0.01997241684594424, 0.02012745419741963, 0.020303577777950232, 0.020505771162850427, 0.02073923666301992, 0.021009367866899793, 0.021321715061216634, 0.021681940490949667, 0.022095760292841028, 0.02256887007463632, 0.023106851546176848, 0.02371505835310729, 0.024398480313300896, 0.025161586581346547, 0.026008149815251697, 0.026941055116830703, 0.027962099267831435, 0.02907178747657888, 0.03026913636368488, 0.03155149312644636, 0.0329143816118449, 0.03435138629396708, 0.035854084812747815, 0.03741203873784752, 0.03901285056239377, 0.04064229263631721, 0.04228451089180592, 0.04392230291008297, 0.045537466283402224, 0.04711120952355188, 0.048624614163416666, 0.050059133404642395, 0.05139710989014954, 0.05262229311382898, 0.05372033577726954, 0.05467924817667354, 0.05548979051088146, 0.05614578484356209, 0.05664433126855249, 0.05698591649835365, 0.05717440745140614, 0.057216927241531164, 0.057123616031048624, 0.0569072842410049, 0.056582970361613256, 0.05616741983296611, 0.05567850495916727, 0.05513460840792604, 0.054553994411483356, 0.05395419225739544, 0.05335141602969001, 0.052760042877850334, 0.05219216944918675, 0.05165726265923332, 0.051161916869397556, 0.05070972499040908, 0.050301266247464796, 0.049934208545226004, 0.049603518768461384, 0.04930177014219071, 0.049019532125459855, 0.04874582536746909, 0.04846862212113083, 0.048175371256613496, 0.04785352667542938, 0.04749105848324258, 0.047076927686841366, 0.046601507351366485, 0.04605693596961589, 0.045437392111392826, 0.04473928307332912, 0.04396134406277967, 0.04310464824471779, 0.04217253158548356, 0.041170439683769995, 0.04010570655190922, 0.03898727749308371, 0.03782538974046715, 0.03663122534756515, 0.03541655094807332, 0.03419335847745125, 0.03297351983851276, 0.03176846689757808, 0.030588906233372123, 0.029444575856269594, 0.028344048801765952, 0.02729458620479295, 0.026302040293595057, 0.02537080579762511, 0.02450381661485245, 0.023702583276567137, 0.022967265803488422, 0.022296775963240145, 0.02168890269277199, 0.021140454500230346, 0.02064741295755358, 0.020205091879565058, 0.019808297397839847, 0.019451484821235997, 0.019128908879225436, 0.018834764627546467, 0.01856331692722369, 0.018309016967569623, 0.01806660478169619, 0.01783119709873124, 0.017598360197030774, 0.017364167679000977, 0.017125243295381152, 0.016878789120456428, 0.016622599534085614, 0.016355061613582796, 0.016075142686873364, 0.015782365952502174, 0.015476775232557501, 0.015158890088288574, 0.014829652689021087, 0.014490367974632982, 0.014142638780861342, 0.013788297695374312, 0.013429337471881402, 0.01306784184212704, 0.012705918526156235, 0.012345636147146755, 0.011988966608663528, 0.01163773429265914, 0.011293573191996153, 0.010957892810286545, 0.010631853355074666, 0.01031635042996453, 0.010012009110185049, 0.009719186977424419, 0.009437985406137458, 0.009168268146326168, 0.008909686046611959, 0.008661706613572793, 0.008423647013479302, 0.008194709092533862, 0.007974015020386, 0.007760642245143792, 0.007553656579866687, 0.007352142412018949, 0.007155229228391926, 0.00696211386737824, 0.006772078136671318, 0.006584501656249108, 0.0063988699935893685, 0.006214778341623469, 0.006031931143019506, 0.0058501381822181255, 0.005669307746761724, 0.00548943750168629, 0.00531060372704835, 0.005132949542846123, 0.004956672692934999, 0.004782013386311598, 0.004609242607153083, 0.004438651211096505, 0.004270540030881855, 0.004105211125342156, 0.003942960226427024, 0.0037840703728667553, 0.003628806668262195, 0.003477412066549174, 0.003330104068451713, 0.0031870722071929425, 0.0030484762080681344, 0.0029144447216558145, 0.002785074551342897, 0.002660430319354301, 0.002540544538717845, 0.0024254180790807423, 0.002315021030092187, 0.0022092939758708106, 0.002108149697233129, 0.0020114753148508828, 0.0019191348768774874, 0.0018309723798575546, 0.0017468151932812067, 0.0016664778375640738, 0.0015897660442164392, 0.0015164810071743638, 0.001446423717228912, 0.0013793992585098517, 0.001315220938071086, 0.001253714117467769, 0.0011947196191411389, 0.001138096590419027, 0.001083724723650811, 0.0010315057517840034, 0.0009813641636625939, 0.0009332471113926803, 0.0008871235120428909, 0.0008429823764023875, 0.0008008304271557115, 0.000760689096325453, 0.0007225910159359407, 0.000686576135451876, 0.0006526876137152789, 0.000620967641138372, 0.0005914533493712033, 0.0005641729604092432, 0.0005391423153131895, 0.0005163619048808858, 0.0004958145015549267, 0.0004774634646736075, 0.0004612517612243742, 0.00044710171306251234, 0.0004349154507338325, 0.0004245760252101713, 0.0004159491035312765, 0.0004088851538644181, 0.00040322201086637167, 0.0003987877041109018, 0.0003954034309528541, 0.00039288656031373834, 0.0003910535648329938, 0.0003897227945836283, 0.00038871702473871673, 0.0003878657306288514, 0.00038700706490119133, 0.00038598953138058926, 0.0003846733673248911, 0.00038293165893655125, 0.0003806512235001962, 0.00037773329505653416, 0.00037409404924506094, 0.0003696649974264517, 0.000364393271369444, 0.0003582418088644672, 0.00035118943896650276, 0.00034323085455393004, 0.00033437645079338634, 0.0003246520019761474, 0.0003140981467786663, 0.00030276965366399667, 0.0002907344438486175, 0.0002780723585924363, 0.0002648736697731478, 0.00025123734676483605, 0.00023726910737850173, 0.00022307929481051635, 0.00020878063501205378, 0.00019448593862318, 0.00018030581783161974, 0.00016634649073425252, 0.00015270774383716387, 0.0001394811173857714, 0.00012674836872103866, 0.00011458025650271024, 0.00010303567429098598, 9.216114659533354e-05, 8.199068506124388e-05, 7.254598789340245e-05, 6.383695270667367e-05, 5.586246238512685e-05, 4.8611395644714133e-05, 4.206380905608195e-05, 3.619223530260581e-05, 3.096304325126016e-05, 2.6337808672702564e-05, 2.2274649720216024e-05, 1.8729488052578e-05, 1.565720422365935e-05, 1.3012664133621141e-05, 1.0751601459924638e-05, 8.831348648186922e-06, 7.211415916938382e-06, 5.853923584891541e-06, 4.723897727189052e-06, 3.7894426589584047e-06, 3.0218060574452626e-06, 2.395353756623019e-06, 1.88747151423493e-06, 1.478410523141188e-06, 1.1510922923675037e-06, 8.908869341893202e-07, 6.85377027111653e-07, 5.241172274407206e-07, 3.983977975722114e-07, 3.0101830458112614e-07, 2.2607598959539217e-07, 1.687717636828697e-07, 1.2523547477646364e-07, 9.237101952890535e-08, 6.77210366463612e-08, 4.9350296475574685e-08, 3.574647082780832e-08, 2.5736698895727052e-08, 1.8418230173918317e-08, 1.3101394867799048e-08, 9.263199938841408e-09, 6.50995138658137e-09, 4.54744090132155e-09, 3.1573916319494753e-09, 2.1790210554917763e-09, 1.4947395999730978e-09, 1.0191553608097439e-09, 6.906939019780697e-10, 4.6526554937412197e-10, 3.115199888386956e-10, 2.0731962660618878e-10, 1.371400013278693e-10, 9.016892470328919e-11, 5.89275575283321e-11, 3.827794524045653e-11, 2.471423968598529e-11, 1.5860402454832217e-11, 1.0116943583550986e-11, 6.414347823232368e-12, 4.042254247205153e-12, 2.53199350222941e-12, 1.576410421567974e-12, 9.755368401924106e-13, 6.000475189737913e-13, 3.6685558827880306e-13, 2.2293183936831776e-13, 1.346531373769384e-13, 8.084036109279881e-14, 4.8240015117607595e-14, 2.8612398286702416e-14, 1.6868230305154775e-14, 9.884527535049149e-15, 5.757346465792437e-15, 3.333482336057359e-15, 1.9190187596425415e-15, 1.0992063337117381e-15, 6.279424286557681e-16, 3.604855888318141e-16, 2.1288709960870337e-16, 1.379035437552176e-16, 1.1115441274672104e-16, 1.238588312917694e-16, 1.8019322764993015e-16, 2.9854994137587104e-16, 5.170402386712634e-16, 9.04732138152736e-16, 1.5816195779581386e-15, 2.752535629052069e-15, 4.763645210838712e-15, 8.19551966700475e-15, 1.4015220303256866e-14, 2.3822985022816463e-14, 4.0249557745695525e-14, 6.759171603414966e-14, 1.1282176037207481e-13, 1.8717989222454057e-13, 3.086685628529118e-13, 5.059323874930136e-13, 8.24250910267555e-13, 1.3347295009241979e-12, 2.1482951798528082e-12, 3.4368574442621475e-12, 5.465072823025066e-12, 8.637682934668631e-12, 1.356954961475733e-11, 2.118851296327784e-11, 3.288534434380165e-11, 5.073073787670943e-11, 7.778696637743998e-11, 1.185521297697793e-10, 1.795885964279394e-10, 2.704051895380789e-10, 4.046859794483936e-10, 6.019884579627934e-10, 8.90071798603487e-10, 1.3080633796560234e-09, 1.910730358955848e-09, 2.7741944003666235e-09, 4.003513042587898e-09, 5.742651676400911e-09, 8.18748602817716e-09, 1.1602605850741978e-08, 1.6342834269950108e-08, 2.2880530212809008e-08, 3.183989756714483e-08, 4.403967544425504e-08, 6.054571715234662e-08, 8.27350656408138e-08, 1.1237318079905073e-07, 1.5170594580606539e-07, 2.035679489455802e-07, 2.7150827440465783e-07, 3.599346095800746e-07, 4.742758567492374e-07, 6.211625959440806e-07, 8.086236618406484e-07, 1.0462957584818647e-06, 1.3456414435091815e-06, 1.7201689881666288e-06, 2.1856456027005732e-06, 2.760293376699447e-06, 3.464955116425513e-06, 4.323215191508774e-06, 5.361458684730362e-06, 6.6088507484629035e-06, 8.097217304571097e-06, 9.860808283613074e-06, 1.1935925680884513e-05, 1.436040098664355e-05, 1.7172910161891642e-05, 2.0412119357271486e-05, 2.411566101216963e-05, 2.831894773206816e-05, 3.30538402269917e-05, 3.834719529279051e-05, 4.421932990870796e-05, 5.068244748639259e-05, 5.773908153216921e-05, 6.538061981799286e-05, 7.358597792441031e-05, 8.232049407891236e-05, 9.153511700405798e-05, 0.00010116595458178653, 0.00011113424328351197, 0.00012134678647995447, 0.000131696894149265, 0.000142065837628431, 0.00015232481163950237, 0.00016233737283986803, 0.00017196230075210793, 0.00018105680440576573, 0.00018947997769854655, 0.00019709638964455966, 0.00020377968347739926, 0.00020941605195259885, 0.0002139074557900214, 0.0002171744583026429, 0.00021915856177804295], \"yaxis\": \"y\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"mode\": \"lines\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [7.0, 7.184, 7.368, 7.552, 7.736, 7.92, 8.104, 8.288, 8.472, 8.656, 8.84, 9.024000000000001, 9.208, 9.392, 9.576, 9.76, 9.943999999999999, 10.128, 10.312, 10.496, 10.68, 10.864, 11.048, 11.232, 11.416, 11.6, 11.783999999999999, 11.968, 12.152000000000001, 12.336, 12.52, 12.704, 12.888, 13.072, 13.256, 13.440000000000001, 13.623999999999999, 13.808, 13.992, 14.176, 14.36, 14.544, 14.728, 14.911999999999999, 15.096, 15.28, 15.464, 15.648, 15.832, 16.016, 16.2, 16.384, 16.567999999999998, 16.752000000000002, 16.936, 17.119999999999997, 17.304000000000002, 17.488, 17.672, 17.856, 18.04, 18.224, 18.408, 18.592, 18.776, 18.96, 19.144, 19.328, 19.512, 19.695999999999998, 19.880000000000003, 20.064, 20.247999999999998, 20.432000000000002, 20.616, 20.8, 20.984, 21.168, 21.352, 21.536, 21.72, 21.904, 22.088, 22.272, 22.456, 22.64, 22.823999999999998, 23.008, 23.192, 23.376, 23.56, 23.744, 23.928, 24.112, 24.296, 24.48, 24.664, 24.848, 25.032, 25.216, 25.4, 25.584, 25.768, 25.952, 26.136, 26.32, 26.504, 26.688, 26.872, 27.056, 27.24, 27.424, 27.608, 27.792, 27.976, 28.16, 28.344, 28.528, 28.712, 28.896, 29.08, 29.264, 29.448, 29.632, 29.816, 30.0, 30.184, 30.368, 30.552, 30.736, 30.92, 31.104, 31.288, 31.472, 31.656, 31.84, 32.024, 32.208, 32.391999999999996, 32.576, 32.760000000000005, 32.944, 33.128, 33.312, 33.495999999999995, 33.68, 33.864000000000004, 34.048, 34.232, 34.416, 34.6, 34.784, 34.968, 35.152, 35.336, 35.519999999999996, 35.704, 35.888000000000005, 36.072, 36.256, 36.44, 36.623999999999995, 36.808, 36.992000000000004, 37.176, 37.36, 37.544, 37.728, 37.912, 38.096000000000004, 38.28, 38.464, 38.647999999999996, 38.832, 39.016, 39.2, 39.384, 39.568, 39.752, 39.936, 40.12, 40.304, 40.488, 40.672, 40.856, 41.04, 41.224, 41.408, 41.592, 41.776, 41.96, 42.144, 42.328, 42.512, 42.696, 42.88, 43.064, 43.248, 43.432, 43.616, 43.8, 43.984, 44.168, 44.352, 44.536, 44.72, 44.904, 45.088, 45.272, 45.456, 45.64, 45.824, 46.008, 46.192, 46.376, 46.56, 46.744, 46.928, 47.112, 47.296, 47.48, 47.664, 47.848, 48.032, 48.216, 48.4, 48.584, 48.768, 48.952, 49.136, 49.32, 49.504, 49.688, 49.872, 50.056, 50.24, 50.424, 50.608, 50.792, 50.976, 51.16, 51.344, 51.528, 51.712, 51.896, 52.08, 52.264, 52.448, 52.632, 52.816, 53.0, 53.184, 53.368, 53.552, 53.736, 53.92, 54.104, 54.288, 54.472, 54.656, 54.84, 55.024, 55.208, 55.392, 55.576, 55.76, 55.944, 56.128, 56.312, 56.496, 56.68, 56.864, 57.048, 57.232, 57.416, 57.6, 57.784, 57.968, 58.152, 58.336, 58.52, 58.704, 58.888, 59.072, 59.256, 59.44, 59.624, 59.808, 59.992, 60.176, 60.36, 60.544, 60.728, 60.912, 61.096, 61.28, 61.464, 61.648, 61.832, 62.016, 62.2, 62.384, 62.568, 62.752, 62.936, 63.12, 63.304, 63.488, 63.672, 63.856, 64.03999999999999, 64.22399999999999, 64.408, 64.592, 64.77600000000001, 64.96000000000001, 65.144, 65.328, 65.512, 65.696, 65.88, 66.064, 66.24799999999999, 66.432, 66.616, 66.8, 66.98400000000001, 67.168, 67.352, 67.536, 67.72, 67.904, 68.088, 68.27199999999999, 68.456, 68.64, 68.824, 69.00800000000001, 69.19200000000001, 69.376, 69.56, 69.744, 69.928, 70.112, 70.29599999999999, 70.47999999999999, 70.664, 70.848, 71.032, 71.216, 71.4, 71.584, 71.768, 71.952, 72.136, 72.32, 72.504, 72.688, 72.872, 73.056, 73.24, 73.424, 73.608, 73.792, 73.976, 74.16, 74.344, 74.528, 74.712, 74.896, 75.08, 75.264, 75.448, 75.632, 75.816, 76.0, 76.184, 76.368, 76.552, 76.736, 76.92, 77.104, 77.288, 77.472, 77.656, 77.84, 78.024, 78.208, 78.392, 78.576, 78.76, 78.944, 79.128, 79.312, 79.496, 79.68, 79.864, 80.048, 80.232, 80.416, 80.6, 80.784, 80.968, 81.152, 81.336, 81.52, 81.704, 81.888, 82.072, 82.256, 82.44, 82.624, 82.808, 82.992, 83.176, 83.36, 83.544, 83.728, 83.912, 84.096, 84.28, 84.464, 84.648, 84.832, 85.016, 85.2, 85.384, 85.568, 85.752, 85.936, 86.12, 86.304, 86.488, 86.672, 86.856, 87.04, 87.224, 87.408, 87.592, 87.776, 87.96, 88.144, 88.328, 88.512, 88.696, 88.88, 89.064, 89.248, 89.432, 89.616, 89.8, 89.984, 90.168, 90.352, 90.536, 90.72, 90.904, 91.088, 91.272, 91.456, 91.64, 91.824, 92.008, 92.192, 92.376, 92.56, 92.744, 92.928, 93.112, 93.296, 93.48, 93.664, 93.848, 94.032, 94.216, 94.4, 94.584, 94.768, 94.952, 95.136, 95.32, 95.504, 95.688, 95.872, 96.056, 96.24, 96.424, 96.608, 96.792, 96.976, 97.16, 97.344, 97.528, 97.712, 97.896, 98.08, 98.264, 98.448, 98.632, 98.816], \"xaxis\": \"x\", \"y\": [0.0007487393590181585, 0.0007788234955483768, 0.0008101457942242179, 0.0008429997468280473, 0.0008777013099432147, 0.0009145833320296595, 0.0009539892572373071, 0.000996266270632591, 0.001041758076590795, 0.0010907975234833059, 0.001143699302363413, 0.0012007529542409664, 0.0012622164191077364, 0.0013283103497991548, 0.0013992133950429268, 0.0014750586289755934, 0.0015559312696683354, 0.0016418677877865046, 0.0017328564597153123, 0.00182883936888948, 0.001929715806467323, 0.002035346969855941, 0.002145561806989331, 0.00226016380777419, 0.0023789385037781157, 0.00250166140492602, 0.0026281060793470557, 0.0027580520709175067, 0.0028912923494269277, 0.003027640001156633, 0.003166933892997014, 0.003309043080508104, 0.003453869778464605, 0.0036013507698121902, 0.003751457193496547, 0.0039041927207845387, 0.00405959020062085, 0.00421770692417277, 0.004378618723841857, 0.004542413179550688, 0.004709182252138816, 0.0048790146976733445, 0.005051988635348695, 0.005228164643987872, 0.005407579747262611, 0.005590242615711916, 0.0057761302653683766, 0.005965186470024812, 0.006157322029371556, 0.006352416951557138, 0.006550324519845679, 0.006750877123009205, 0.00695389364211336, 0.007159188106613902, 0.007366579264116594, 0.007575900654252945, 0.00778701074075341, 0.007999802639026301, 0.00821421298055413, 0.008430229480396957, 0.00864789681926052, 0.008867320515196326, 0.009088668539431981, 0.00931217052271908, 0.009538114498984373, 0.009766841237661824, 0.009998736320374403, 0.01023422021720821, 0.010473736708514847, 0.01071774007632166, 0.010966681551979805, 0.01122099555137056, 0.011481086254411835, 0.011747315091241573, 0.012019989683657755, 0.012299354758353974, 0.012585585500079953, 0.012878783750556108, 0.01317897738562157, 0.013486123121789187, 0.01380011291720901, 0.01412078404394382, 0.014447932821043948, 0.014781331913305008, 0.01512075102035396, 0.015465980705745362, 0.01581685904630657, 0.016173300717664756, 0.016535328071786762, 0.016903103705111625, 0.0172769639598321, 0.017657452744434195, 0.0180453550012013, 0.018441729086952054, 0.018847937268315695, 0.019265673464733984, 0.019696987302517854, 0.020144303474251325, 0.020610435333440126, 0.021098591599611572, 0.0216123750103152, 0.022155771740850358, 0.022733130427980718, 0.02334912968862259, 0.024008733126627914, 0.024717130977748428, 0.025479667760810364, 0.026301755586282394, 0.02718877312346558, 0.028145950643028807, 0.02917824202747335, 0.030290185169250614, 0.031485752741372205, 0.032768195910971847, 0.03413988415096607, 0.03560214486391775, 0.03715510703799796, 0.03879755357863092, 0.04052678727181471, 0.04233851550833529, 0.04422675890711981, 0.046183788800327356, 0.048200098168162626, 0.05026441003106143, 0.052363726522944805, 0.05448342089329919, 0.0566073735395462, 0.05871815188598617, 0.06079723254206232, 0.06282526273920834, 0.06478235661654862, 0.06664842055940876, 0.0684035005502635, 0.0700281434269387, 0.07150376311038424, 0.07281300230930522, 0.07394007996628467, 0.07487111480224973, 0.07559441575159814, 0.07610073085248374, 0.07638344724392626, 0.07643873628743789, 0.07626563942651594, 0.07586609216266639, 0.07524488539347793, 0.07440956525378338, 0.07337027445091711, 0.0721395398175894, 0.07073201235478674, 0.06916416734501855, 0.06745397313735585, 0.06562053790755612, 0.06368374406141655, 0.061663879974561395, 0.05958127845908483, 0.057455970742314, 0.05530736387255754, 0.05315394837765758, 0.05101304174774691, 0.048900571950852165, 0.04683090377687767, 0.04481670939806, 0.04286888318388989, 0.04099649956094333, 0.03920681160021995, 0.03750528707454905, 0.03589567797494273, 0.034380118916557276, 0.03295924950232336, 0.03163235553754621, 0.0303975239873495, 0.029251806721043605, 0.028191388369900514, 0.027211754011946334, 0.026307852863025623, 0.0254742546720489, 0.02470529606616265, 0.023995214647305415, 0.023338269187021334, 0.022728844786665696, 0.022161542353872802, 0.02163125218527145, 0.021133211834830665, 0.020663048784380116, 0.02021680871739063, 0.019790970430211666, 0.019382448599022488, 0.018988585758824398, 0.018607134946333224, 0.018236234515168866, 0.017874376652740685, 0.017520371116988176, 0.01717330567073721, 0.016832504624801174, 0.01649748681090623, 0.016167924194886007, 0.01584360221227861, 0.0155243827655474, 0.015210170667958415, 0.014900884157207021, 0.01459642993598587, 0.014296683030731954, 0.014001471597780004, 0.013710566652009818, 0.013423676550528073, 0.013140445936345021, 0.012860458737285434, 0.012583244725768621, 0.012308289077166646, 0.012035044318974572, 0.01176294403997175, 0.011491417727105263, 0.011219906116432655, 0.010947876480933824, 0.010674837329628655, 0.010400352056139997, 0.010124051147310407, 0.009845642640361257, 0.00956492059710319, 0.009281771442832827, 0.008996178093098387, 0.008708221861237089, 0.00841808220172975, 0.008126034397760168, 0.00783244534520281, 0.007537767619384521, 0.007242532035605275, 0.006947338930157639, 0.006652848396344255, 0.006359769710846672, 0.006068850180949926, 0.005780863633809385, 0.005496598756359566, 0.005216847479702114, 0.004942393585828069, 0.004674001698108884, 0.00441240680072186, 0.004158304416460695, 0.003912341557446488, 0.0036751085491552654, 0.003447131814847009, 0.003228867694743868, 0.0030206973619128115, 0.002822922884484652, 0.0026357644712991673, 0.0024593589250413586, 0.002293759313218756, 0.0021389358527776387, 0.0019947779887109275, 0.001861097630710226, 0.001737633494896427, 0.0016240564801647736, 0.001519975991032663, 0.001424947101496434, 0.001338478437767789, 0.001260040642402379, 0.0011890752688065997, 0.0011250039439686741, 0.0010672376290331662, 0.0010151858024965495, 0.0009682653897349439, 0.0009259092655702127, 0.0008875741637960245, 0.0008527478390423222, 0.0008209553419243255, 0.0007917642878210779, 0.0007647890224308729, 0.0007396936128955333, 0.0007161936210964813, 0.0006940566449338019, 0.0006731016431762982, 0.000653197088954429, 0.0006342580253011959, 0.0006162421225053696, 0.0005991448606680637, 0.0005829939810818082, 0.0005678433663270724, 0.0005537665208815443, 0.0005408498312783368, 0.0005291857872907878, 0.0005188663432660967, 0.0005099765917157402, 0.0005025889098611172, 0.0004967577244032702, 0.0004925150208070905, 0.000489866701413931, 0.0004887898723353733, 0.0004892311129944844, 0.0004911057550592476, 0.0004942981700611907, 0.0004986630379171434, 0.0005040275425675481, 0.0005101944166787131, 0.000516945735457019, 0.0005240473406646231, 0.0005312537604148646, 0.0005383134786846095, 0.0005449744010364424, 0.0005509893600114174, 0.0005561215051261977, 0.0005601494283482984, 0.0005628718861543788, 0.0005641119934855278, 0.0005637207826531754, 0.0005615800409492111, 0.0005576043636963981, 0.0005517423839773321, 0.0005439771654805847, 0.0005343257699524382, 0.0005228380347988225, 0.0005095946186420097, 0.0004947043923713012, 0.00047830126981172633, 0.00046054058507528895, 0.00044159513261185957, 0.00042165099076100506, 0.00040090325020969235, 0.0003795517653371771, 0.00035779703928410497, 0.0003358363431606867, 0.0003138601566618869, 0.000292049002121509, 0.0002705707273969582, 0.00024957827563462415, 0.00022920796260930167, 0.0002095782656015191, 0.0001907891122455751, 0.0001729216439278645, 0.00015603841651329374, 0.00014018399168612712, 0.00012538586515203955, 0.00011165567338955239, 9.89906184856172e-05, 8.73750506756976e-05, 7.678215029219359e-05, 6.717565460972883e-05, 5.851158022788615e-05, 5.073989780035531e-05, 4.380612275274651e-05, 3.7652792794311026e-05, 3.2220810214844644e-05, 2.7450633899468882e-05, 2.3283312468887493e-05, 1.9661355788604643e-05, 1.6529447165264795e-05, 1.3835002788160179e-05, 1.1528588350104434e-05, 9.56420530476293e-06, 7.899460930330967e-06, 6.495637341159656e-06, 5.3176749069796785e-06, 4.334085302922422e-06, 3.5168087269625984e-06, 2.841028788952663e-06, 2.2849572965526765e-06, 1.8295997293374757e-06, 1.4585106837085164e-06, 1.157547056248707e-06, 9.146252672480815e-07, 7.194874519269558e-07, 5.634802948925319e-07, 4.393490730909002e-07, 3.4104851386142065e-07, 2.635712695348522e-07, 2.0279415379993583e-07, 1.5534176840771374e-07, 1.1846675892337247e-07, 8.994566031568128e-08, 6.798911135872508e-08, 5.116511518926362e-08, 3.833398661078425e-08, 2.859364067520953e-08, 2.123392897315144e-08, 1.56988088308963e-08, 1.1555226861416874e-08, 8.467704339285717e-09, 6.177721536685638e-09, 4.48710677430634e-09, 3.2447400713432675e-09, 2.335978561247787e-09, 1.6742998005459051e-09, 1.1947389744030618e-09, 8.48766582216135e-10, 6.003146648869793e-10, 4.227124947831877e-10, 2.963375583054575e-10, 2.0682539403842054e-10, 1.4371322505452757e-10, 9.941815807939688e-11, 6.847179592233105e-11, 4.695014739273941e-11, 3.2051376437480124e-11, 2.1784790322982884e-11, 1.4743030866398402e-11, 9.93613602981033e-12, 6.671347386843587e-12, 4.466557079564632e-12, 2.988367389186245e-12, 2.0080821745197426e-12, 1.3707281951764967e-12, 9.735490811055862e-13, 7.514320955141963e-13, 6.675031755583512e-13, 7.077277220446536e-13, 8.788395224771923e-13, 1.2093356292771689e-12, 1.7536632995185166e-12, 2.6001264672824648e-12, 3.883494906476457e-12, 5.80385464159919e-12, 8.653946129855728e-12, 1.285816119710248e-11, 1.902758968701399e-11, 2.803712093739999e-11, 4.113273695011522e-11, 6.00799374038546e-11, 8.736790228090651e-11, 1.2648876041387013e-10, 1.8231747728043843e-10, 2.6162574672682506e-10, 3.7377327794103e-10, 5.316324907619371e-10, 7.528184238262567e-10, 1.0613152510646157e-09, 1.489614894254557e-09, 2.0815125760156345e-09, 2.8957395856873183e-09, 4.010655851987369e-09, 5.5302749271688015e-09, 7.5919524010973e-09, 1.03761361375194e-08, 1.4118653366540833e-08, 1.9126095521261805e-08, 2.5794956218472888e-08, 3.463527974570715e-08, 4.629968479695441e-08, 6.161873795518044e-08, 8.164375931350448e-08, 1.0769824304441786e-07, 1.4143916152021545e-07, 1.849294839586398e-07, 2.407232690095388e-07, 3.1196467302654507e-07, 4.0250213826203746e-07, 5.170188729046612e-07, 6.611804919537308e-07, 8.418003384108605e-07, 1.0670225328221242e-06, 1.3465221921499e-06, 1.6917215055139718e-06, 2.1160194480435066e-06, 2.6350318542874494e-06, 3.2668373661489148e-06, 4.0322234329788435e-06, 4.9549250996411695e-06, 6.061847810106256e-06, 7.383263930105849e-06, 8.952971216076065e-06, 1.0808400105036642e-05, 1.299065555845809e-05, 1.5544478358991675e-05, 1.85181103345514e-05, 2.1963048073901203e-05, 2.5933670402472597e-05, 3.0486726298089978e-05, 3.568067211899913e-05, 4.1574850043298654e-05, 4.822850350136475e-05, 5.569963010612101e-05, 6.404367809212929e-05, 7.331209845849024e-05, 8.355077171807818e-05, 9.479833518279985e-05, 0.00010708444381098126, 0.00012042800451755347, 0.0001348354301779738, 0.000150298965000769, 0.00016679513715519542, 0.00018428339718643244, 0.000202705001529454, 0.00022198219909356888, 0.00024201777525188065, 0.0002626950015392014, 0.0002838780309451592, 0.00030541276800358566, 0.00032712823015777163, 0.00034883840247109917, 0.00037034457210837857, 0.00039143811268185075, 0.00041190367215745977, 0.0004315227022182987, 0.000450077252466925, 0.0004673539402839598, 0.00048314799716443936, 0.0004972672854590951, 0.0005095361760744026, 0.0005197991781121204, 0.0005279242157752416, 0.0005338054560813751, 0.0005373656027806324], \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [35.0, 29.0, 33.0, 23.0, 35.0, 27.24, 32.0, 27.24, 45.0, 33.0, 27.24, 33.0, 27.24, 23.0, 19.0, 33.0, 47.0, 33.0, 38.0, 30.0, 41.0, 27.24, 33.0, 35.0, 33.0, 26.0, 33.0, 15.0, 19.0, 27.24, 26.0, 36.0, 11.0, 27.24, 31.0, 33.0, 27.24, 37.0, 42.0, 47.0, 25.0, 27.24, 18.0, 24.0, 27.24, 39.0, 27.24, 27.0, 32.0, 27.24, 11.0, 15.0, 21.0, 34.0, 42.0, 10.0, 39.0, 60.0, 27.24, 41.0, 27.24, 33.0, 27.24, 34.0, 33.0, 27.0, 30.0, 27.24, 13.0, 27.0, 20.0, 35.0, 33.0, 20.0, 30.0, 20.0, 27.24, 33.0, 33.0, 22.0, 13.0, 27.24, 26.0, 28.0, 33.0, 29.0, 54.0, 25.0, 32.0, 19.0, 27.24, 15.0, 40.0, 33.0, 18.0, 27.0, 28.0, 18.0, 30.0, 51.0, 33.0, 27.24, 27.24, 18.0, 27.24, 29.0, 27.24, 28.0, 31.0, 25.0, 33.0, 26.0, 34.0, 27.24, 32.0, 33.0, 33.0, 27.24, 23.0, 15.0, 56.0, 39.0, 30.0, 27.24, 33.0, 42.0, 30.0, 36.0, 24.0, 33.0, 14.0, 33.0, 37.0, 31.0, 13.0, 20.0, 26.0, 25.0, 27.24, 29.0, 27.24, 30.0, 26.0, 33.0, 31.0, 23.0, 37.0, 35.0, 27.24, 17.0, 50.0, 27.24, 28.0, 42.0, 33.0, 44.0, 15.0, 21.0, 19.0, 41.0, 38.0, 40.0, 34.0, 23.0, 33.0, 18.0, 25.0, 27.24, 27.24, 12.0, 33.0, 23.0, 23.0, 42.0, 24.0, 42.0, 27.24, 46.0, 27.24, 33.0, 27.24, 18.0, 20.0, 27.24, 27.24, 28.0, 36.0, 41.0, 39.0, 35.0, 27.24, 44.0, 33.0, 33.0, 20.0, 41.0, 27.24, 13.0, 44.0, 27.0, 16.0, 27.24, 20.0, 16.0, 32.0, 28.0, 29.0, 33.0, 27.0, 33.0, 22.0, 54.0, 31.0, 26.0, 32.0, 40.0, 41.0, 30.0, 22.0, 33.0, 29.0, 33.0, 27.24, 33.0, 15.0, 27.0, 27.24, 38.0, 39.0, 31.0, 33.0, 37.0, 25.0, 27.24, 28.0, 33.0, 21.0, 27.0, 21.0, 27.24, 24.0, 32.0, 33.0, 22.0, 35.0, 15.0, 27.24, 33.0, 33.0, 19.0, 27.24, 27.24, 14.0, 32.0, 7.0, 35.0, 39.0, 22.0, 16.0, 28.0, 15.0, 33.0, 32.0, 15.0, 33.0, 18.0, 33.0, 42.0, 27.24, 33.0, 37.0, 32.0, 27.24, 50.0, 27.24, 52.0, 24.0, 23.0, 27.24, 10.0, 33.0, 28.0, 15.0, 33.0, 33.0, 26.0, 44.0, 39.0, 17.0, 43.0, 29.0, 30.0, 37.0, 45.0, 27.24, 31.0, 38.0, 29.0, 25.0, 27.24, 33.0, 33.0, 41.0, 33.0, 27.24, 37.0, 23.0, 14.0, 19.0, 28.0, 30.0, 37.0, 17.0, 10.0, 31.0, 22.0, 11.0, 33.0, 39.0, 33.0, 12.0, 30.0, 20.0, 33.0, 32.0, 21.0, 32.0, 27.24, 36.0, 32.0, 19.0, 16.0, 33.0, 27.24, 18.0, 43.0, 27.24, 33.0, 34.0, 33.0, 13.0, 21.0, 35.0, 27.24, 27.24, 36.0, 19.0, 27.24, 19.0, 32.0, 27.24, 27.24, 28.0, 12.0, 27.24, 33.0, 40.0, 30.0, 40.0, 36.0, 33.0, 27.24, 37.0, 33.0, 25.0, 28.0, 33.0, 17.0, 16.0, 28.0, 48.0, 23.0, 22.0, 40.0, 43.0, 43.0, 15.0, 37.0, 33.0, 39.0, 30.0, 22.0, 8.0, 18.0, 24.0, 13.0, 29.0, 36.0, 26.0, 23.0, 29.0, 33.0, 14.0, 12.0, 33.0, 24.0, 34.0, 40.0, 27.24, 31.0, 33.0, 27.24, 41.0, 25.0, 33.0, 32.0, 33.0, 27.24, 33.0, 49.0, 39.0, 30.0, 23.0, 22.0, 35.0, 33.0, 21.0, 32.0, 27.24, 29.0, 41.0, 18.0, 46.0, 22.0, 32.0, 39.0, 27.24, 30.0, 46.0, 25.0, 27.24, 16.0, 11.0, 27.24, 8.0, 33.0, 33.0, 27.24, 15.0, 27.24, 25.0, 23.0, 27.0, 33.0, 12.0, 63.0, 12.0, 45.0, 37.0, 18.0, 13.0, 33.0, 32.0, 27.24, 28.0, 30.0, 27.24, 28.0, 48.0, 33.0, 22.0, 27.24, 40.0, 30.0, 27.24, 13.0, 10.0, 36.0, 33.0, 41.0, 40.0, 38.0, 27.0, 27.24, 27.24, 27.0, 45.0, 17.0, 38.0, 31.0, 30.0, 37.0, 22.0, 31.0, 33.0, 42.0, 41.0, 32.0, 17.0, 27.24, 28.0, 30.0, 38.0, 18.0, 27.24, 27.24, 27.24, 15.0, 33.0, 32.0, 19.0, 32.0, 41.0, 25.0, 39.0, 27.24, 26.0, 23.0, 23.0, 27.24, 31.0, 17.0, 27.24, 27.24, 19.0, 18.0, 34.0, 27.24, 27.24, 7.0, 32.0, 33.0, 27.24, 33.0, 27.24, 18.0, 19.0, 15.0, 31.0, 27.24, 18.0, 27.24, 52.0, 27.24, 30.0, 33.0, 27.24, 27.24, 37.0, 49.0, 40.0, 25.0, 32.0, 23.0, 29.0, 35.0, 27.0, 21.0, 43.0, 31.0, 28.0, 30.0, 27.24, 24.0, 23.0, 33.0, 40.0, 27.24, 40.0, 27.24, 33.0, 32.0, 34.0, 19.0, 27.24, 14.0, 30.0, 32.0, 29.0, 30.0, 27.24, 27.24, 31.0, 17.0, 30.0, 47.0, 20.0, 33.0, 27.24, 99.0, 46.0, 27.0, 17.0, 27.24, 24.0, 11.0, 33.0, 27.24, 27.0, 27.24, 40.0, 50.0, 33.0, 22.0, 45.0, 14.0, 27.24, 19.0, 33.0, 18.0, 19.0, 27.24, 36.0, 29.0, 33.0, 32.0, 42.0, 25.0, 39.0, 13.0, 21.0, 22.0, 42.0, 28.0, 26.0, 27.24, 27.24, 13.0, 24.0, 33.0, 42.0, 20.0, 27.24, 27.0, 27.24, 47.0, 27.24, 27.24, 27.24, 22.0, 33.0, 40.0, 27.24, 17.0, 27.24, 33.0, 27.24, 18.0, 32.0, 12.0, 17.0, 27.24, 33.0, 27.24, 30.0, 35.0, 17.0, 36.0, 35.0, 25.0, 25.0, 23.0, 40.0, 27.24, 28.0, 27.0, 35.0, 48.0, 27.24, 31.0, 27.24, 43.0, 46.0, 46.0, 39.0, 45.0, 18.0, 27.0, 33.0, 30.0, 26.0, 10.0, 23.0, 35.0, 27.24, 33.0, 33.0, 27.24, 33.0, 17.0, 28.0, 36.0, 39.0, 33.0, 27.24, 26.0, 27.24, 19.0, 26.0, 46.0, 27.24, 33.0, 32.0, 49.0, 27.24, 24.0, 19.0, 27.24, 11.0, 27.24, 27.0, 31.0, 29.0, 27.24, 20.0, 36.0, 33.0, 21.0, 33.0, 32.0, 13.0, 27.0, 36.0, 20.0, 27.24, 33.0, 39.0, 18.0, 46.0, 27.0, 19.0, 36.0, 29.0, 30.0, 27.24, 40.0, 29.0, 26.0, 27.24, 27.24, 23.0, 33.0, 37.0, 27.0, 27.24, 32.0, 27.0, 23.0, 17.0, 33.0, 37.0, 20.0, 18.0, 33.0, 37.0, 33.0, 41.0, 41.0, 22.0, 33.0, 33.0, 39.0, 24.0, 44.0, 32.0, 39.0, 41.0, 33.0, 27.24, 33.0, 26.0, 31.0, 27.24, 48.0, 27.0, 23.0, 33.0, 31.0], \"xaxis\": \"x\", \"y\": [\"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\"], \"yaxis\": \"y2\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [35.0, 33.0, 35.0, 32.0, 45.0, 33.0, 33.0, 23.0, 19.0, 33.0, 47.0, 33.0, 30.0, 33.0, 35.0, 33.0, 26.0, 33.0, 36.0, 37.0, 42.0, 47.0, 24.0, 39.0, 32.0, 34.0, 39.0, 33.0, 33.0, 30.0, 20.0, 33.0, 33.0, 33.0, 32.0, 33.0, 51.0, 33.0, 25.0, 33.0, 26.0, 32.0, 33.0, 33.0, 56.0, 33.0, 42.0, 24.0, 33.0, 14.0, 33.0, 37.0, 33.0, 28.0, 33.0, 44.0, 41.0, 33.0, 18.0, 33.0, 23.0, 42.0, 46.0, 33.0, 28.0, 36.0, 41.0, 39.0, 35.0, 33.0, 33.0, 41.0, 13.0, 44.0, 27.0, 29.0, 33.0, 33.0, 26.0, 32.0, 40.0, 41.0, 22.0, 33.0, 29.0, 33.0, 38.0, 33.0, 37.0, 33.0, 21.0, 27.0, 21.0, 33.0, 22.0, 15.0, 7.0, 35.0, 28.0, 33.0, 33.0, 33.0, 33.0, 37.0, 24.0, 33.0, 33.0, 33.0, 39.0, 30.0, 37.0, 45.0, 38.0, 25.0, 33.0, 33.0, 33.0, 23.0, 19.0, 28.0, 17.0, 31.0, 33.0, 33.0, 30.0, 20.0, 33.0, 32.0, 36.0, 33.0, 33.0, 34.0, 33.0, 32.0, 33.0, 40.0, 30.0, 36.0, 33.0, 33.0, 33.0, 28.0, 48.0, 43.0, 33.0, 29.0, 36.0, 26.0, 33.0, 33.0, 40.0, 31.0, 33.0, 41.0, 33.0, 33.0, 33.0, 49.0, 35.0, 33.0, 32.0, 29.0, 32.0, 39.0, 30.0, 25.0, 33.0, 25.0, 33.0, 12.0, 63.0, 37.0, 33.0, 30.0, 48.0, 33.0, 45.0, 30.0, 33.0, 42.0, 18.0, 33.0, 41.0, 26.0, 31.0, 18.0, 34.0, 33.0, 33.0, 49.0, 40.0, 25.0, 32.0, 35.0, 27.0, 33.0, 32.0, 30.0, 33.0, 99.0, 46.0, 24.0, 33.0, 27.0, 40.0, 33.0, 14.0, 33.0, 29.0, 33.0, 42.0, 22.0, 42.0, 26.0, 24.0, 33.0, 33.0, 33.0, 32.0, 33.0, 17.0, 36.0, 35.0, 27.0, 31.0, 43.0, 46.0, 46.0, 39.0, 18.0, 27.0, 33.0, 33.0, 33.0, 36.0, 33.0, 46.0, 33.0, 49.0, 24.0, 19.0, 31.0, 29.0, 33.0, 33.0, 32.0, 36.0, 33.0, 39.0, 27.0, 29.0, 23.0, 33.0, 37.0, 33.0, 37.0, 33.0, 41.0, 22.0, 33.0, 33.0, 44.0, 32.0, 39.0, 33.0, 33.0, 31.0, 33.0], \"xaxis\": \"x\", \"y\": [\"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\"], \"yaxis\": \"y2\"}],                        {\"barmode\": \"overlay\", \"hovermode\": \"closest\", \"legend\": {\"traceorder\": \"reversed\"}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"SKIN_THICKNESS\"}, \"xaxis\": {\"anchor\": \"y2\", \"domain\": [0.0, 1.0], \"zeroline\": false}, \"yaxis\": {\"anchor\": \"free\", \"domain\": [0.35, 1], \"position\": 0.0}, \"yaxis2\": {\"anchor\": \"x\", \"domain\": [0, 0.25], \"dtick\": 1, \"showticklabels\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('24c89696-3294-45be-827b-11f811a59df8');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### BMI"},{"metadata":{"trusted":true},"cell_type":"code","source":"get_mean('bmi')","execution_count":28,"outputs":[{"output_type":"execute_result","execution_count":28,"data":{"text/plain":"   outcome    bmi\n0        0  30.86\n1        1  35.41","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>outcome</th>\n      <th>bmi</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>30.86</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>35.41</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[(df['outcome'] == 0) & (df['bmi'].isnull()), 'bmi'] = 30.86\ndf.loc[(df['outcome'] == 1) & (df['bmi'].isnull()), 'bmi'] = 35.41","execution_count":29,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_dist('bmi',0)","execution_count":30,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"d2217cd5-dd8b-4477-b935-d2a8047c4445\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"d2217cd5-dd8b-4477-b935-d2a8047c4445\")) {                    Plotly.newPlot(                        \"d2217cd5-dd8b-4477-b935-d2a8047c4445\",                        [{\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"name\": \"healthy\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31.0, 35.3, 30.5, 35.41, 37.6, 38.0, 27.1, 30.1, 25.8, 30.0, 45.8, 29.6, 43.3, 34.6, 39.3, 35.4, 39.8, 29.0, 36.6, 31.1, 39.4, 23.2, 22.2, 34.1, 36.0, 31.6, 24.8, 19.9, 27.6, 24.0, 33.2, 32.9, 38.2, 37.1, 34.0, 40.2, 22.7, 45.4, 27.4, 42.0, 29.7, 28.0, 39.1, 30.86, 19.4, 24.2, 24.4, 33.7, 34.7, 23.0, 37.7, 46.8, 40.5, 41.5, 30.86, 32.9, 25.0, 25.4, 32.8, 29.0, 32.5, 42.7, 19.6, 28.9, 32.9, 28.6, 43.4, 35.1, 32.0, 24.7, 32.6, 37.7, 43.2, 25.0, 22.4, 30.86, 29.3, 24.6, 48.8, 32.4, 36.6, 38.5, 37.1, 26.5, 19.1, 32.0, 46.7, 23.8, 24.7, 33.9, 31.6, 20.4, 28.7, 49.7, 39.0, 26.1, 22.5, 26.6, 39.6, 28.7, 22.4, 29.5, 34.3, 37.4, 33.3, 34.0, 31.2, 34.0, 30.5, 31.2, 34.0, 33.7, 28.2, 23.2, 53.2, 34.2, 33.6, 26.8, 33.3, 55.0, 42.9, 33.3, 34.5, 27.9, 29.7, 33.3, 34.5, 38.3, 21.1, 33.8, 30.8, 28.7, 31.2, 36.9, 21.1, 39.5, 32.5, 32.4, 32.8, 30.86, 32.8, 30.5, 33.7, 27.3, 37.4, 21.9, 34.3, 40.6, 47.9, 50.0, 24.6, 25.2, 29.0, 40.9, 29.7, 37.2, 44.2, 29.7, 31.6, 29.9, 32.5, 29.6, 31.9, 28.4, 30.8, 35.4, 28.9, 43.5, 29.7, 32.7, 31.2, 67.1, 45.0, 39.1, 23.2, 34.9, 27.7, 26.8, 27.6, 35.9, 30.1, 32.0, 27.9, 31.6, 22.6, 33.1, 30.4, 52.3, 24.4, 39.4, 24.3, 22.9, 34.8, 30.9, 31.0, 40.1, 27.3, 20.4, 37.7, 23.9, 37.5, 37.7, 33.2, 35.5, 27.7, 42.8, 34.2, 42.6, 34.2, 41.8, 35.8, 30.0, 29.0, 37.8, 34.6, 31.6, 25.2, 28.8, 23.6, 34.6, 35.7, 37.2, 36.7, 45.2, 44.0, 46.2, 25.4, 35.0, 29.7, 43.6, 35.9, 44.1, 30.8, 18.4, 29.2, 33.1, 25.6, 27.1, 38.2, 30.0, 31.2, 52.3, 35.4, 30.1, 31.2, 28.0, 24.4, 35.8, 27.6, 33.6, 30.1, 28.7, 25.9, 33.3, 30.9, 30.0, 32.1, 32.4, 32.0, 33.6, 36.3, 40.0, 25.1, 27.5, 45.6, 25.2, 23.0, 33.2, 34.2, 40.5, 26.5, 27.8, 24.9, 25.3, 37.9, 35.9, 32.4, 30.4, 27.0, 26.0, 38.7, 45.6, 20.8, 36.1, 36.9, 36.6, 43.3, 40.5, 21.9, 35.5, 28.0, 30.7, 36.6, 23.6, 32.3, 31.6, 35.8, 52.9, 21.0, 39.7, 25.5, 24.8, 30.5, 32.9, 26.2, 39.4, 26.6, 29.5, 35.9, 34.1, 19.3, 30.5, 38.1, 23.5, 27.5, 31.6, 27.4, 26.8, 35.7, 25.6, 35.1, 35.1, 45.5, 30.8, 23.1, 32.7, 43.3, 23.6, 23.9, 47.9, 33.8, 31.2, 34.2, 39.9, 25.9, 25.9, 32.0, 34.7, 36.8, 38.5, 28.7, 23.5, 21.8, 41.0, 42.2, 31.2, 34.4, 27.2, 42.7, 30.4, 33.3, 39.9, 35.3, 36.5, 31.2, 29.8, 39.2, 38.5, 34.9, 34.0, 27.6, 21.0, 27.5, 32.8, 38.4, 30.86, 35.8, 34.9, 36.2, 39.2, 25.2, 37.2, 48.3, 43.4, 30.8, 20.0, 25.4, 25.1, 24.3, 22.3, 32.3, 43.3, 32.0, 31.6, 32.0, 45.7, 23.7, 22.1, 32.9, 27.7, 24.7, 34.3, 21.1, 34.9, 32.0, 24.2, 35.0, 31.6, 32.9, 42.1, 28.9, 21.9, 25.9, 42.4, 35.7, 34.4, 42.4, 26.2, 34.6, 35.7, 27.2, 38.5, 18.2, 26.4, 45.3, 26.0, 40.6, 30.8, 42.9, 37.0, 30.86, 34.1, 40.6, 35.0, 22.2, 30.4, 30.0, 25.6, 24.5, 42.4, 37.4, 29.9, 18.2, 36.8, 34.3, 32.2, 33.2, 30.5, 29.7, 59.4, 25.3, 36.5, 33.6, 30.5, 21.2, 28.9, 39.9, 19.6, 37.8, 33.6, 26.7, 30.2, 37.6, 25.9, 20.8, 21.8, 35.3, 27.6, 24.0, 21.8, 27.8, 36.8, 30.0, 46.1, 41.3, 33.2, 38.8, 29.9, 28.9, 27.3, 33.7, 23.8, 25.9, 28.0, 35.5, 35.2, 27.8, 38.2, 44.2, 42.3, 40.7, 46.5, 25.6, 26.1, 36.8, 33.5, 32.8, 28.9, 30.86, 26.6, 26.0, 30.1, 25.1, 29.3, 25.2, 37.2, 39.0, 33.3, 37.3, 33.3, 36.5, 28.6, 30.4, 25.0, 29.7, 22.1, 24.2, 27.3, 25.6, 31.6, 30.3, 37.6, 32.8, 19.6, 25.0, 33.2, 30.86, 34.2, 31.6, 21.8, 18.2, 26.3, 30.8, 24.6, 29.8, 45.3, 41.3, 29.8, 33.3, 32.9, 29.6, 21.7, 36.3, 36.4, 39.4, 32.4, 34.9, 39.5, 32.0, 34.5, 43.6, 33.1, 32.8, 28.5, 27.4, 31.9, 27.8, 29.9, 36.9, 25.5, 38.1, 27.8, 46.2, 30.1, 33.8, 41.3, 37.6, 26.9, 32.4, 26.1, 38.6, 32.0, 31.3, 34.3, 32.5, 22.6, 29.5, 34.7, 30.1, 35.5, 24.0, 42.9, 27.0, 34.7, 42.1, 25.0, 26.5, 38.7, 28.7, 22.5, 34.9, 24.3, 33.3, 21.1, 46.8, 39.4, 34.4, 28.5, 33.6, 32.0, 45.3, 27.8, 36.8, 23.1, 27.1, 23.7, 27.8, 35.2, 28.4, 35.8, 40.0, 19.5, 41.5, 24.0, 30.9, 32.9, 38.2, 32.5, 36.1, 25.8, 28.7, 20.1, 28.2, 32.4, 38.4, 24.2, 40.8, 43.5, 30.8, 37.7, 24.7, 32.4, 34.6, 24.7, 27.4, 34.5, 26.2, 27.5, 25.9, 31.2, 28.8, 31.6, 40.9, 19.5, 29.3, 34.3, 29.5, 28.0, 27.6, 39.4, 23.4, 37.8, 28.3, 26.4, 25.2, 33.8, 34.1, 26.8, 34.2, 38.7, 21.8, 38.9, 39.0, 34.2, 27.7, 42.9, 37.6, 37.9, 33.7, 34.8, 32.5, 27.5, 34.0, 30.9, 33.6, 25.4, 35.5, 57.3, 35.6, 30.9, 24.8, 35.3, 36.0, 24.2, 24.2, 49.6, 44.6, 32.3, 30.86, 33.2, 23.1, 28.3, 24.1, 46.1, 24.6, 42.3, 39.1, 38.5, 23.5, 30.4, 29.9, 25.0, 34.5, 44.5, 35.9, 27.6, 35.0, 38.5, 28.4, 39.8, 35.41, 34.4, 32.8, 38.0, 31.2, 29.6, 41.2, 26.4, 29.5, 33.9, 33.8, 23.1, 35.5, 35.6, 29.3, 38.1, 29.3, 39.1, 32.8, 39.4, 36.1, 32.4, 22.9, 30.1, 28.4, 28.4, 44.5, 29.0, 23.3, 35.4, 27.4, 32.0, 36.6, 39.5, 42.3, 30.8, 28.5, 32.7, 40.6, 30.0, 49.3, 46.3, 36.4, 24.3, 31.2, 39.0, 26.0, 43.3, 32.4, 36.5, 32.0, 36.3, 37.5, 35.5, 28.4, 44.0, 22.5, 32.9, 36.8, 26.2, 30.1, 30.4], \"xaxis\": \"x\", \"xbins\": {\"end\": 67.1, \"size\": 0, \"start\": 18.2}, \"yaxis\": \"y\"}, {\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"name\": \"diabetic\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [33.6, 23.3, 43.1, 31.0, 30.5, 35.41, 38.0, 30.1, 25.8, 30.0, 45.8, 29.6, 34.6, 39.8, 29.0, 36.6, 31.1, 39.4, 31.6, 32.9, 38.2, 37.1, 45.4, 42.0, 39.1, 33.7, 37.7, 32.9, 32.8, 32.5, 32.9, 43.4, 43.2, 48.8, 37.1, 23.8, 49.7, 39.0, 37.4, 33.3, 34.0, 30.5, 31.2, 34.0, 53.2, 33.3, 55.0, 34.5, 27.9, 29.7, 33.3, 34.5, 32.4, 34.3, 47.9, 50.0, 40.9, 31.6, 29.9, 30.8, 35.4, 32.7, 67.1, 39.1, 35.9, 30.1, 32.0, 27.9, 31.6, 30.4, 52.3, 39.4, 22.9, 34.8, 30.9, 37.5, 37.7, 35.5, 42.6, 34.2, 41.8, 35.8, 29.0, 37.8, 34.6, 31.6, 37.2, 44.0, 46.2, 43.6, 35.9, 44.1, 30.8, 25.6, 27.1, 30.0, 27.6, 33.6, 33.3, 30.0, 32.0, 36.3, 27.5, 45.6, 26.5, 37.9, 30.4, 27.0, 45.6, 36.6, 43.3, 40.5, 28.0, 36.6, 32.3, 31.6, 52.9, 25.5, 30.5, 32.9, 26.6, 35.9, 30.5, 23.5, 31.6, 27.4, 26.8, 35.1, 45.5, 43.3, 31.2, 34.2, 39.9, 41.0, 30.4, 33.3, 39.9, 36.5, 31.2, 38.5, 27.6, 32.8, 38.4, 39.2, 48.3, 32.3, 43.3, 32.0, 45.7, 32.9, 34.3, 34.9, 32.0, 35.0, 32.9, 28.9, 25.9, 42.4, 34.6, 35.7, 38.5, 26.4, 42.9, 37.0, 34.1, 35.0, 42.4, 34.3, 30.5, 29.7, 59.4, 33.6, 28.9, 33.6, 37.6, 30.0, 33.7, 35.5, 44.2, 42.3, 28.9, 25.1, 39.0, 36.5, 29.7, 31.6, 30.3, 34.2, 32.9, 36.4, 39.4, 32.4, 34.9, 34.5, 43.6, 33.8, 41.3, 34.3, 42.9, 34.7, 42.1, 28.7, 34.9, 33.3, 46.8, 34.4, 32.0, 36.8, 35.2, 28.4, 40.0, 32.9, 38.2, 36.1, 28.2, 32.4, 27.4, 31.2, 40.9, 29.5, 23.4, 37.8, 28.3, 38.7, 34.2, 42.9, 37.6, 37.9, 33.7, 32.5, 27.5, 30.9, 24.8, 36.0, 49.6, 32.3, 46.1, 42.3, 38.5, 30.4, 29.9, 27.6, 35.0, 35.41, 32.8, 38.0, 41.2, 33.9, 33.8, 35.6, 29.3, 28.4, 28.4, 44.5, 39.5, 42.3, 32.7, 49.3, 36.4, 24.3, 31.2, 43.3, 32.4, 36.5, 36.3, 35.5, 44.0, 30.1], \"xaxis\": \"x\", \"xbins\": {\"end\": 67.1, \"size\": 0, \"start\": 22.9}, \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"mode\": \"lines\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [18.2, 18.2978, 18.395599999999998, 18.493399999999998, 18.5912, 18.689, 18.7868, 18.8846, 18.9824, 19.080199999999998, 19.177999999999997, 19.2758, 19.3736, 19.4714, 19.5692, 19.666999999999998, 19.764799999999997, 19.8626, 19.9604, 20.0582, 20.156, 20.2538, 20.351599999999998, 20.449399999999997, 20.5472, 20.645, 20.7428, 20.8406, 20.938399999999998, 21.036199999999997, 21.134, 21.2318, 21.3296, 21.4274, 21.525199999999998, 21.622999999999998, 21.720799999999997, 21.8186, 21.9164, 22.0142, 22.112, 22.209799999999998, 22.3076, 22.4054, 22.5032, 22.601, 22.6988, 22.796599999999998, 22.894399999999997, 22.992199999999997, 23.089999999999996, 23.1878, 23.2856, 23.383399999999998, 23.481199999999998, 23.578999999999997, 23.6768, 23.7746, 23.8724, 23.9702, 24.067999999999998, 24.165799999999997, 24.263599999999997, 24.361399999999996, 24.4592, 24.557, 24.654799999999998, 24.752599999999997, 24.850399999999997, 24.9482, 25.046, 25.1438, 25.2416, 25.339399999999998, 25.437199999999997, 25.534999999999997, 25.632799999999996, 25.7306, 25.8284, 25.926199999999998, 26.023999999999997, 26.121799999999997, 26.2196, 26.3174, 26.4152, 26.512999999999998, 26.610799999999998, 26.708599999999997, 26.806399999999996, 26.904199999999996, 27.001999999999995, 27.0998, 27.197599999999998, 27.295399999999997, 27.3932, 27.491, 27.5888, 27.6866, 27.784399999999998, 27.882199999999997, 27.979999999999997, 28.077799999999996, 28.175599999999996, 28.273399999999995, 28.371199999999998, 28.468999999999998, 28.566799999999997, 28.6646, 28.7624, 28.8602, 28.958, 29.055799999999998, 29.153599999999997, 29.251399999999997, 29.349199999999996, 29.446999999999996, 29.544799999999995, 29.642599999999998, 29.740399999999998, 29.838199999999997, 29.936, 30.0338, 30.1316, 30.2294, 30.327199999999998, 30.424999999999997, 30.522799999999997, 30.620599999999996, 30.718399999999995, 30.816199999999995, 30.913999999999998, 31.011799999999997, 31.1096, 31.207399999999996, 31.305199999999996, 31.403, 31.500799999999998, 31.598599999999998, 31.696399999999997, 31.794199999999996, 31.891999999999996, 31.989799999999995, 32.087599999999995, 32.1854, 32.283199999999994, 32.381, 32.47879999999999, 32.5766, 32.6744, 32.7722, 32.87, 32.9678, 33.065599999999996, 33.163399999999996, 33.261199999999995, 33.358999999999995, 33.456799999999994, 33.55459999999999, 33.6524, 33.75019999999999, 33.848, 33.9458, 34.0436, 34.1414, 34.2392, 34.336999999999996, 34.434799999999996, 34.532599999999995, 34.630399999999995, 34.7282, 34.82599999999999, 34.9238, 35.0216, 35.1194, 35.21719999999999, 35.315, 35.41279999999999, 35.5106, 35.608399999999996, 35.706199999999995, 35.803999999999995, 35.901799999999994, 35.9996, 36.09739999999999, 36.1952, 36.29299999999999, 36.3908, 36.4886, 36.5864, 36.6842, 36.782, 36.879799999999996, 36.977599999999995, 37.0754, 37.173199999999994, 37.271, 37.36879999999999, 37.46659999999999, 37.56439999999999, 37.6622, 37.75999999999999, 37.8578, 37.95559999999999, 38.053399999999996, 38.151199999999996, 38.248999999999995, 38.346799999999995, 38.444599999999994, 38.5424, 38.64019999999999, 38.738, 38.83579999999999, 38.9336, 39.0314, 39.1292, 39.227, 39.324799999999996, 39.422599999999996, 39.520399999999995, 39.6182, 39.715999999999994, 39.81379999999999, 39.91159999999999, 40.0094, 40.10719999999999, 40.205, 40.30279999999999, 40.4006, 40.4984, 40.596199999999996, 40.693999999999996, 40.791799999999995, 40.889599999999994, 40.987399999999994, 41.0852, 41.18299999999999, 41.2808, 41.37859999999999, 41.4764, 41.5742, 41.672, 41.7698, 41.867599999999996, 41.96539999999999, 42.063199999999995, 42.160999999999994, 42.258799999999994, 42.35659999999999, 42.45439999999999, 42.5522, 42.64999999999999, 42.7478, 42.84559999999999, 42.9434, 43.041199999999996, 43.138999999999996, 43.236799999999995, 43.334599999999995, 43.432399999999994, 43.530199999999994, 43.628, 43.72579999999999, 43.8236, 43.92139999999999, 44.0192, 44.117, 44.2148, 44.31259999999999, 44.410399999999996, 44.508199999999995, 44.605999999999995, 44.703799999999994, 44.80159999999999, 44.89939999999999, 44.99719999999999, 45.095, 45.19279999999999, 45.2906, 45.38839999999999, 45.4862, 45.583999999999996, 45.681799999999996, 45.779599999999995, 45.877399999999994, 45.975199999999994, 46.07299999999999, 46.1708, 46.26859999999999, 46.3664, 46.46419999999999, 46.562, 46.65979999999999, 46.7576, 46.85539999999999, 46.953199999999995, 47.050999999999995, 47.148799999999994, 47.246599999999994, 47.34439999999999, 47.44219999999999, 47.53999999999999, 47.6378, 47.73559999999999, 47.8334, 47.93119999999999, 48.028999999999996, 48.126799999999996, 48.224599999999995, 48.322399999999995, 48.420199999999994, 48.518, 48.61579999999999, 48.71359999999999, 48.81139999999999, 48.90919999999999, 49.00699999999999, 49.1048, 49.20259999999999, 49.300399999999996, 49.39819999999999, 49.495999999999995, 49.593799999999995, 49.691599999999994, 49.78939999999999, 49.88719999999999, 49.98499999999999, 50.08279999999999, 50.1806, 50.27839999999999, 50.3762, 50.47399999999999, 50.571799999999996, 50.66959999999999, 50.767399999999995, 50.86519999999999, 50.962999999999994, 51.0608, 51.15859999999999, 51.2564, 51.35419999999999, 51.452, 51.54979999999999, 51.6476, 51.74539999999999, 51.843199999999996, 51.94099999999999, 52.038799999999995, 52.13659999999999, 52.234399999999994, 52.3322, 52.42999999999999, 52.5278, 52.62559999999999, 52.7234, 52.82119999999999, 52.919, 53.01679999999999, 53.114599999999996, 53.21239999999999, 53.310199999999995, 53.40799999999999, 53.505799999999994, 53.603599999999986, 53.70139999999999, 53.7992, 53.89699999999999, 53.9948, 54.09259999999999, 54.1904, 54.2882, 54.385999999999996, 54.48379999999999, 54.581599999999995, 54.67939999999999, 54.77719999999999, 54.874999999999986, 54.97279999999999, 55.070599999999985, 55.16839999999999, 55.2662, 55.36399999999999, 55.4618, 55.55959999999999, 55.657399999999996, 55.7552, 55.852999999999994, 55.9508, 56.04859999999999, 56.1464, 56.24419999999999, 56.342, 56.43979999999999, 56.5376, 56.63539999999999, 56.73319999999998, 56.83099999999999, 56.928799999999995, 57.02659999999999, 57.124399999999994, 57.22219999999999, 57.31999999999999, 57.4178, 57.51559999999999, 57.6134, 57.71119999999999, 57.809, 57.90679999999999, 58.004599999999996, 58.10239999999999, 58.200199999999995, 58.29799999999999, 58.395799999999994, 58.49359999999999, 58.59139999999999, 58.689199999999985, 58.78699999999999, 58.8848, 58.98259999999999, 59.0804, 59.17819999999999, 59.275999999999996, 59.37379999999999, 59.471599999999995, 59.56939999999999, 59.667199999999994, 59.764999999999986, 59.86279999999999, 59.960599999999985, 60.05839999999999, 60.156199999999984, 60.25399999999999, 60.3518, 60.44959999999999, 60.547399999999996, 60.64519999999999, 60.742999999999995, 60.8408, 60.938599999999994, 61.0364, 61.13419999999999, 61.231999999999985, 61.32979999999999, 61.427599999999984, 61.52539999999999, 61.62319999999998, 61.72099999999999, 61.818799999999996, 61.91659999999999, 62.014399999999995, 62.11219999999999, 62.209999999999994, 62.3078, 62.40559999999999, 62.5034, 62.60119999999999, 62.699, 62.79679999999999, 62.8946, 62.99239999999999, 63.090199999999996, 63.18799999999999, 63.285799999999995, 63.38359999999999, 63.481399999999994, 63.579199999999986, 63.67699999999999, 63.7748, 63.87259999999999, 63.9704, 64.06819999999999, 64.166, 64.26379999999999, 64.3616, 64.45939999999999, 64.5572, 64.65499999999999, 64.7528, 64.85059999999999, 64.94839999999999, 65.04619999999998, 65.14399999999999, 65.24179999999998, 65.33959999999999, 65.4374, 65.53519999999999, 65.633, 65.73079999999999, 65.8286, 65.92639999999999, 66.0242, 66.12199999999999, 66.21979999999999, 66.31759999999998, 66.41539999999999, 66.51319999999998, 66.61099999999999, 66.70879999999998, 66.80659999999999, 66.9044, 67.00219999999999], \"xaxis\": \"x\", \"y\": [0.005316219083037461, 0.005595790269145814, 0.005882836475917545, 0.006177300479990344, 0.006479136713585149, 0.006788313310251897, 0.0071048138663027186, 0.007428638875513386, 0.00775980679976533, 0.008098354744180698, 0.008444338711843353, 0.008797833420254314, 0.009158931669084283, 0.009527743256393415, 0.009904393448123711, 0.010289021013169496, 0.010681775843541684, 0.011082816185920342, 0.011492305517113981, 0.011910409101511404, 0.012337290273441439, 0.01277310649139752, 0.013218005214308786, 0.013672119652445922, 0.014135564447162229, 0.014608431334530676, 0.015090784848109788, 0.015582658115627094, 0.016084048803394407, 0.016594915260848914, 0.01711517291583095, 0.01764469096913961, 0.0181832894346151, 0.01873073656852539, 0.0192867467294162, 0.01985097870681875, 0.020423034554288573, 0.021002458959129694, 0.021588739177791152, 0.022181305562236575, 0.022779532698501897, 0.0233827411740919, 0.02399019998574132, 0.024601129593311254, 0.025214705619156553, 0.025830063185153098, 0.02644630187172271, 0.027062491274670822, 0.027677677126538725, 0.02829088793958601, 0.028901142117618687, 0.029507455473865334, 0.03010884908221302, 0.030704357379610303, 0.03129303642861296, 0.031873972241189825, 0.03244628905831684, 0.033009157474858795, 0.03356180229603435, 0.034103510010610974, 0.03463363576706542, 0.0351516097423992, 0.03565694279917629, 0.036149231334641124, 0.036628161236389414, 0.037093510871839326, 0.03754515305344355, 0.037983055937885896, 0.03840728283504635, 0.03881799092087531, 0.03921542886702988, 0.03959993341871345, 0.03997192497013706, 0.04033190220391401, 0.040680435876064326, 0.04101816184174542, 0.041345773428004225, 0.04166401326850312, 0.04197366472113075, 0.04227554299258453, 0.04257048609441191, 0.04285934575272795, 0.04314297838907483, 0.04342223628292877, 0.04369795901752777, 0.04397096530038215, 0.04424204523846406, 0.04451195313609561, 0.04478140087140403, 0.045051051895305186, 0.045321515885683485, 0.04559334407907707, 0.04586702529299387, 0.04614298264414336, 0.046421570961446404, 0.04670307488767172, 0.046987707659847174, 0.04727561055603243, 0.04756685299437938, 0.047861433269358274, 0.048159279909267105, 0.04846025363833478, 0.04876414992554891, 0.049070702100484774, 0.04937958501363626, 0.04969041921486405, 0.050002775618478344, 0.05031618061714448, 0.05063012159932365, 0.050944052816509475, 0.051257401537365764, 0.051569574416359634, 0.05187996399503632, 0.052187955245165875, 0.052492932055104344, 0.05279428355435496, 0.05309141016697099, 0.05338372928254779, 0.053670680434475454, 0.05395172987914771, 0.054226374477113266, 0.05449414478777023, 0.05475460730305689, 0.055007365762477244, 0.05525206151137195, 0.05548837288614603, 0.05571601363362232, 0.0559347303961474, 0.05614429931881322, 0.05634452185940672, 0.05653521990469193, 0.05671623031760491, 0.05688739905819159, 0.057048575036005085, 0.057199603862659876, 0.057340321679892996, 0.0574705492405161, 0.05759008641690971, 0.057698707304217806, 0.057796156073296544, 0.05788214371205544, 0.057956345773527276, 0.058018401225365925, 0.05806791246913875, 0.05810444656947592, 0.05812753770363161, 0.0581366908121001, 0.058131386401408074, 0.05811108642184718, 0.05807524111644043, 0.058023296713509344, 0.05795470381439757, 0.05786892631068092, 0.05776545065191906, 0.05764379527592762, 0.057503520008804314, 0.05734423524154817, 0.05716561069397482, 0.05696738358456557, 0.05674936603660907, 0.05651145156614689, 0.056253620515398485, 0.055975944316041866, 0.05567858848946692, 0.05536181431536995, 0.055025979125292154, 0.054671535203397355, 0.054299027302426583, 0.05390908880787757, 0.05350243660758583, 0.05307986474662572, 0.052642236968431344, 0.052190478261952326, 0.05172556555122315, 0.05124851767773233, 0.05076038483724429, 0.050262237641139004, 0.049755155977805464, 0.04924021785213664, 0.048718488380718954, 0.048191009116957235, 0.047658787874205334, 0.04712278920611445, 0.046583925692026136, 0.04604305016151733, 0.045500948976375306, 0.04495833647058388, 0.04441585062962755, 0.043874050069842796, 0.04333341235700276, 0.04279433368112413, 0.04225712988198477, 0.04172203879738476, 0.041189223884118394, 0.040658779040305425, 0.04013073453749647, 0.03960506395215293, 0.03908169196901538, 0.038560502913821085, 0.038041349860060976, 0.037524064144229305, 0.037008465116504616, 0.03649436994917441, 0.03598160332348541, 0.0354700068170511, 0.03495944781847811, 0.03444982780347329, 0.033941089817265846, 0.033433225021597256, 0.03292627818060549, 0.03242035197842346, 0.03191561008193867, 0.03141227888458599, 0.030910647890907753, 0.030411068726487387, 0.029913952783327504, 0.029419767536318562, 0.028929031591664236, 0.02844230855250456, 0.02796019981002207, 0.02748333638956031, 0.02701237000027539, 0.026547963453161617, 0.02609078062556051, 0.025641476160160805, 0.025200685092750797, 0.024769012605408144, 0.024347024100280026, 0.023935235783591368, 0.02353410594006291, 0.02314402706467841, 0.02276531900193018, 0.02239822322262258, 0.022042898345423393, 0.021699416985099588, 0.021367763982306973, 0.021047836041518102, 0.02073944277481681, 0.02044230912052429, 0.02015607907763386, 0.0198803206704816, 0.019614532033618706, 0.019358148485066683, 0.019110550437570224, 0.018871071982566847, 0.018639009970730466, 0.018413633406374127, 0.01819419297086172, 0.01797993049249548, 0.0177700881870213, 0.017563917503702595, 0.017360687426517276, 0.017159692097991248, 0.01696025765395059, 0.01676174818044436, 0.01656357072857604, 0.016365179348277276, 0.016166078127422802, 0.01596582324740253, 0.01576402408963454, 0.01556034344888064, 0.015354496928041193, 0.015146251604875665, 0.014935424073445417, 0.01472187797174252, 0.014505521111820144, 0.014286302329762223, 0.014064208170143725, 0.013839259513467608, 0.01361150824576913, 0.013381034057590389, 0.013147941445368353, 0.012912356972524248, 0.012674426830809172, 0.012434314725378615, 0.012192200090261769, 0.011948276624954865, 0.011702751128341833, 0.011455842593511806, 0.011207781516685755, 0.010958809365688348, 0.010709178148390942, 0.010459150019397463, 0.010208996863918202, 0.009958999801152394, 0.009709448555350636, 0.009460640650743282, 0.009212880396318061, 0.00896647763756868, 0.00872174626434267, 0.00847900247629149, 0.008238562819677383, 0.008000742020935385, 0.007765850652990213, 0.007534192679484293, 0.007306062929465254, 0.007081744560445489, 0.00686150657091403, 0.00664560142425972, 0.006434262844652369, 0.006227703841806113, 0.006026115015875894, 0.005829663186243486, 0.005638490378924746, 0.005452713197116237, 0.005272422588367512, 0.005097684010417255, 0.004928537986264301, 0.004765001027958304, 0.00460706689826015, 0.004454708170083, 0.004307878035774944, 0.004166512312087792, 0.004030531582276581, 0.00389984341430558, 0.003774344593651484, 0.0036539233106730757, 0.0035384612458756364, 0.0034278355014931597, 0.003321920334443366, 0.0032205886536300515, 0.0031237132534946625, 0.0030311677653373733, 0.0029428273179134446, 0.002858568908826877, 0.002778271497963868, 0.0027018158433218284, 0.0026290841078111553, 0.0025599592726864907, 0.0024943243989952206, 0.002432061782655536, 0.0023730520513873597, 0.0023171732526681326, 0.0022642999811748016, 0.0022143025918639108, 0.002167046541041782, 0.002122391892644368, 0.0020801930206754485, 0.0020402985315728403, 0.002002551422437134, 0.001966789482834015, 0.0019328459395446958, 0.0019005503354586175, 0.0018697296260385432, 0.0018402094696771728, 0.001811815682018176, 0.0017843758191079119, 0.0017577208502159783, 0.0017316868784067294, 0.0017061168655123306, 0.0016808623180563536, 0.0016557848918696415, 0.001630757875550083, 0.0016056675164320862, 0.0015804141572061667, 0.0015549131565945542, 0.0015290955733585389, 0.001502908599187838, 0.0014763157324998925, 0.0014492966916569297, 0.0014218470724012995, 0.001393977760238963, 0.00136571411391332, 0.0013370949408751387, 0.0013081712896674035, 0.0012790050873311871, 0.0012496676522570163, 0.0012202381143404382, 0.0011908017748636101, 0.0011614484382561757, 0.0011322707468490179, 0.0011033625480045015, 0.0010748173206811891, 0.0010467266856754517, 0.0010191790205886307, 0.0009922581971106832, 0.0009660424546013652, 0.0009406034202956671, 0.0009160052828596922, 0.000892304122565857, 0.0008695473981174984, 0.0008477735871963992, 0.0008270119751808715, 0.0008072825842215208, 0.0007885962329885697, 0.0007709547159262529, 0.000754351089763877, 0.000738770054325905, 0.0007241884143326302, 0.0007105756088597883, 0.0006978942953944511, 0.0006861009759473978, 0.0006751466534169927, 0.0006649775073042459, 0.0006555355789099633, 0.0006467594572613859, 0.0006385849581772945, 0.0006309457900500108, 0.0006237742010660111, 0.0006170016036736756, 0.0006105591731107792, 0.0006043784177042679, 0.0005983917194336048, 0.0005925328438947159, 0.0005867374193074468, 0.0005809433845735193, 0.0005750914066175752, 0.0005691252673386454, 0.000562992220475899, 0.0005566433185668215, 0.0005500337099681474, 0.0005431229056421448, 0.0005358750151080075, 0.0005282589506455113, 0.0005202485985416254, 0.0005118229559151953, 0.0005029662314632398, 0.0004936679083649558, 0.0004839227675729299, 0.0004737308698273342, 0.00046309749495532205, 0.00045203303736622856, 0.0004405528571196557, 0.0004286770865189826, 0.000416430392852479, 0.0004038416986489793, 0.00039094386161143334, 0.00037777331721325385, 0.00036436968776038485, 0.00035077536250704, 0.0003370350541352617, 0.0003231953375400132, 0.00030930417737646767, 0.0002954104512024032, 0.0002815634752683046, 0.00026781254005793514, 0.0002542064625558606, 0.00024079316191384466, 0.00022761926471021664, 0.00021472974535502047, 0.0002021676064048292, 0.00018997360263496723, 0.00017818601169777165, 0.0001668404531012231, 0.0001559697561028635, 0.0001456038759602143, 0.0001357698568430094, 0.00012649183862485424, 0.00011779110376210744, 0.00010968615956273167, 0.00010219285037136345, 9.532449356949273e-05, 8.909203282727961e-05, 8.350420175820283e-05, 7.85676910265553e-05, 7.428731204325391e-05, 7.0666150655698e-05, 6.770570468580495e-05, 6.540599978642462e-05, 6.376567885536942e-05, 6.27820611503863e-05, 6.245116826619403e-05, 6.276771524248726e-05, 6.372506624339578e-05, 6.53151554565635e-05, 6.752837507477797e-05, 7.035343341529917e-05, 7.37771873719925e-05, 7.778445445376303e-05, 8.23578106114147e-05, 8.747738086739382e-05, 9.312063041459061e-05, 9.92621643201498e-05, 0.00010587354424012372, 0.00011292313060705598, 0.00012037595858587224, 0.00012819365569979003, 0.00013633440840849157, 0.0001447529840827042, 0.00015340081377539694, 0.0001622261399589217, 0.0001711742320038633, 0.00018018767064917506, 0.00018920670108856264, 0.00019816965261411338, 0.00020701342105627576, 0.0002156740085836759, 0.00022408711382176065, 0.00023218876376036076, 0.00023991597759003434, 0.0002472074514752582, 0.00025400425237490293, 0.0002602505083868417, 0.00026589408274761163, 0.00027088721857541236, 0.00027518714171317183, 0.00027875660960671674, 0.00028156439503142943, 0.0002835856946403873, 0.0002848024537210476], \"yaxis\": \"y\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"mode\": \"lines\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [22.9, 22.9884, 23.0768, 23.1652, 23.2536, 23.342, 23.4304, 23.5188, 23.6072, 23.6956, 23.784, 23.8724, 23.9608, 24.0492, 24.1376, 24.226, 24.3144, 24.4028, 24.4912, 24.5796, 24.668, 24.7564, 24.8448, 24.9332, 25.0216, 25.11, 25.1984, 25.2868, 25.3752, 25.4636, 25.552, 25.6404, 25.7288, 25.8172, 25.9056, 25.994, 26.0824, 26.1708, 26.2592, 26.3476, 26.436, 26.5244, 26.6128, 26.7012, 26.789599999999997, 26.878, 26.9664, 27.054799999999997, 27.1432, 27.2316, 27.32, 27.4084, 27.496799999999997, 27.5852, 27.673599999999997, 27.761999999999997, 27.850399999999997, 27.938799999999997, 28.0272, 28.115599999999997, 28.203999999999997, 28.292399999999997, 28.380799999999997, 28.469199999999997, 28.557599999999997, 28.645999999999997, 28.734399999999997, 28.822799999999997, 28.911199999999997, 28.999599999999997, 29.087999999999997, 29.176399999999997, 29.264799999999997, 29.353199999999998, 29.441599999999998, 29.529999999999998, 29.618399999999998, 29.706799999999998, 29.795199999999998, 29.883599999999998, 29.971999999999998, 30.060399999999998, 30.148799999999998, 30.237199999999998, 30.325599999999998, 30.413999999999998, 30.502399999999998, 30.590799999999998, 30.679199999999998, 30.767599999999998, 30.855999999999998, 30.944399999999998, 31.032799999999998, 31.121199999999998, 31.209599999999995, 31.298, 31.3864, 31.4748, 31.5632, 31.651599999999995, 31.74, 31.8284, 31.9168, 32.005199999999995, 32.093599999999995, 32.182, 32.270399999999995, 32.3588, 32.447199999999995, 32.535599999999995, 32.623999999999995, 32.7124, 32.800799999999995, 32.889199999999995, 32.977599999999995, 33.065999999999995, 33.154399999999995, 33.242799999999995, 33.331199999999995, 33.419599999999996, 33.507999999999996, 33.596399999999996, 33.684799999999996, 33.773199999999996, 33.861599999999996, 33.949999999999996, 34.038399999999996, 34.126799999999996, 34.215199999999996, 34.303599999999996, 34.391999999999996, 34.480399999999996, 34.568799999999996, 34.657199999999996, 34.745599999999996, 34.833999999999996, 34.922399999999996, 35.010799999999996, 35.099199999999996, 35.187599999999996, 35.275999999999996, 35.364399999999996, 35.452799999999996, 35.541199999999996, 35.629599999999996, 35.717999999999996, 35.8064, 35.8948, 35.9832, 36.0716, 36.16, 36.2484, 36.3368, 36.4252, 36.5136, 36.602, 36.6904, 36.7788, 36.8672, 36.9556, 37.044, 37.1324, 37.2208, 37.3092, 37.3976, 37.486, 37.5744, 37.6628, 37.7512, 37.8396, 37.928, 38.0164, 38.1048, 38.1932, 38.2816, 38.37, 38.4584, 38.5468, 38.6352, 38.7236, 38.812, 38.9004, 38.9888, 39.0772, 39.1656, 39.254, 39.3424, 39.4308, 39.5192, 39.6076, 39.696, 39.7844, 39.8728, 39.96119999999999, 40.0496, 40.138, 40.2264, 40.3148, 40.4032, 40.4916, 40.58, 40.66839999999999, 40.7568, 40.84519999999999, 40.9336, 41.022, 41.1104, 41.1988, 41.2872, 41.3756, 41.464, 41.55239999999999, 41.6408, 41.72919999999999, 41.8176, 41.90599999999999, 41.9944, 42.0828, 42.1712, 42.25959999999999, 42.348, 42.43639999999999, 42.5248, 42.61319999999999, 42.7016, 42.78999999999999, 42.8784, 42.9668, 43.0552, 43.14359999999999, 43.232, 43.32039999999999, 43.4088, 43.49719999999999, 43.5856, 43.67399999999999, 43.7624, 43.8508, 43.9392, 44.02759999999999, 44.116, 44.20439999999999, 44.2928, 44.38119999999999, 44.4696, 44.55799999999999, 44.6464, 44.73479999999999, 44.8232, 44.91159999999999, 45.0, 45.08839999999999, 45.1768, 45.26519999999999, 45.3536, 45.44199999999999, 45.5304, 45.61879999999999, 45.7072, 45.79559999999999, 45.88399999999999, 45.97239999999999, 46.0608, 46.14919999999999, 46.2376, 46.32599999999999, 46.4144, 46.50279999999999, 46.5912, 46.67959999999999, 46.767999999999994, 46.856399999999994, 46.9448, 47.033199999999994, 47.1216, 47.209999999999994, 47.2984, 47.386799999999994, 47.4752, 47.563599999999994, 47.651999999999994, 47.740399999999994, 47.8288, 47.917199999999994, 48.0056, 48.093999999999994, 48.1824, 48.270799999999994, 48.359199999999994, 48.447599999999994, 48.535999999999994, 48.624399999999994, 48.7128, 48.801199999999994, 48.8896, 48.977999999999994, 49.0664, 49.154799999999994, 49.243199999999995, 49.331599999999995, 49.419999999999995, 49.508399999999995, 49.596799999999995, 49.685199999999995, 49.7736, 49.861999999999995, 49.950399999999995, 50.038799999999995, 50.127199999999995, 50.215599999999995, 50.303999999999995, 50.392399999999995, 50.480799999999995, 50.569199999999995, 50.6576, 50.745999999999995, 50.834399999999995, 50.922799999999995, 51.011199999999995, 51.099599999999995, 51.187999999999995, 51.276399999999995, 51.364799999999995, 51.453199999999995, 51.541599999999995, 51.629999999999995, 51.718399999999995, 51.806799999999996, 51.895199999999996, 51.983599999999996, 52.071999999999996, 52.160399999999996, 52.248799999999996, 52.337199999999996, 52.425599999999996, 52.513999999999996, 52.602399999999996, 52.690799999999996, 52.779199999999996, 52.867599999999996, 52.955999999999996, 53.044399999999996, 53.13279999999999, 53.221199999999996, 53.309599999999996, 53.397999999999996, 53.486399999999996, 53.574799999999996, 53.663199999999996, 53.751599999999996, 53.839999999999996, 53.928399999999996, 54.01679999999999, 54.105199999999996, 54.193599999999996, 54.282, 54.3704, 54.4588, 54.5472, 54.6356, 54.724, 54.8124, 54.9008, 54.9892, 55.0776, 55.166, 55.2544, 55.3428, 55.4312, 55.5196, 55.608, 55.69639999999999, 55.7848, 55.8732, 55.9616, 56.05, 56.13839999999999, 56.2268, 56.3152, 56.4036, 56.492, 56.58039999999999, 56.6688, 56.7572, 56.8456, 56.934, 57.02239999999999, 57.1108, 57.1992, 57.2876, 57.376, 57.46439999999999, 57.5528, 57.6412, 57.7296, 57.818, 57.90639999999999, 57.99479999999999, 58.0832, 58.1716, 58.26, 58.34839999999999, 58.43679999999999, 58.5252, 58.6136, 58.702, 58.79039999999999, 58.87879999999999, 58.9672, 59.0556, 59.144, 59.23239999999999, 59.32079999999999, 59.4092, 59.4976, 59.586, 59.67439999999999, 59.76279999999999, 59.8512, 59.9396, 60.028, 60.11639999999999, 60.20479999999999, 60.2932, 60.3816, 60.47, 60.55839999999999, 60.64679999999999, 60.7352, 60.8236, 60.91199999999999, 61.00039999999999, 61.08879999999999, 61.1772, 61.2656, 61.35399999999999, 61.44239999999999, 61.53079999999999, 61.61919999999999, 61.7076, 61.79599999999999, 61.88439999999999, 61.97279999999999, 62.06119999999999, 62.1496, 62.23799999999999, 62.32639999999999, 62.41479999999999, 62.50319999999999, 62.5916, 62.67999999999999, 62.76839999999999, 62.85679999999999, 62.94519999999999, 63.0336, 63.12199999999999, 63.21039999999999, 63.29879999999999, 63.38719999999999, 63.4756, 63.56399999999999, 63.65239999999999, 63.74079999999999, 63.82919999999999, 63.9176, 64.006, 64.0944, 64.18279999999999, 64.2712, 64.3596, 64.448, 64.53639999999999, 64.6248, 64.7132, 64.80160000000001, 64.88999999999999, 64.9784, 65.0668, 65.1552, 65.24359999999999, 65.332, 65.4204, 65.5088, 65.59719999999999, 65.6856, 65.774, 65.8624, 65.95079999999999, 66.0392, 66.1276, 66.216, 66.30439999999999, 66.3928, 66.4812, 66.5696, 66.65799999999999, 66.7464, 66.8348, 66.9232, 67.01159999999999], \"xaxis\": \"x\", \"y\": [0.00777192763056592, 0.00807158046774516, 0.008377396496299601, 0.008689421174447662, 0.009007710184481413, 0.009332329554397294, 0.009663355634992548, 0.01000087493071527, 0.010344983784544862, 0.010695787919172252, 0.011053401838711197, 0.011417948097071761, 0.011789556440928039, 0.01216836283688686, 0.012554508393980963, 0.012948138193941772, 0.013349400042834466, 0.0137584431585369, 0.014175416809204134, 0.014600468918269176, 0.015033744651682028, 0.01547538500298734, 0.015925525391483623, 0.01638429428811187, 0.01685181188289632, 0.017328188806728387, 0.017813524919067413, 0.01830790817175663, 0.018811413557648565, 0.019324102151133792, 0.019846020246002783, 0.020377198594380783, 0.02091765174878789, 0.021467377507734503, 0.022026356463689684, 0.02259455165079147, 0.02317190828833359, 0.023758353614879723, 0.0243537968068512, 0.02495812897461957, 0.025571223228520186, 0.026192934806798875, 0.026823101257303316, 0.02746154266473701, 0.028108061915491474, 0.028762444992450342, 0.029424461292697827, 0.03009386396174233, 0.03077039023865573, 0.03145376180740619, 0.03214368515059517, 0.03283985190276594, 0.0335419392014073, 0.034249610034693415, 0.034962513585859924, 0.03568028557488748, 0.03640254859882378, 0.03712891247261116, 0.03785897457267676, 0.03859232018578417, 0.039328522865732914, 0.04006714480041943, 0.04080773719156352, 0.041549840649042505, 0.04229298560130957, 0.04303669272278828, 0.043780473378488886, 0.044523830085383825, 0.0452662569893556, 0.04600724035581208, 0.04674625907138644, 0.047482785153527135, 0.04821628426427385, 0.04894621622412334, 0.04967203552165013, 0.050393191814466456, 0.051109130417209804, 0.05181929277253607, 0.05252311690157446, 0.05322003783097184, 0.053909487994497456, 0.054590897608191365, 0.055263695019190325, 0.05592730702963601, 0.056581159198421285, 0.05722467612493591, 0.057857281720389245, 0.05847839947367207, 0.059087452720037605, 0.059683864922086466, 0.06026705997358851, 0.06083646253753626, 0.061391498430453405, 0.061931595065356074, 0.06245618196585142, 0.06296469136363995, 0.0634565588911518, 0.06393122438018617, 0.06438813277623757, 0.06482673517668991, 0.06524648999926419, 0.06564686428502811, 0.06602733513796344, 0.06638739130056051, 0.06672653486223089, 0.067044283094528, 0.06734017040431331, 0.0676137503931414, 0.06786459800833114, 0.06809231176849329, 0.06829651604375649, 0.06847686336862796, 0.06863303676340189, 0.06876475203832001, 0.06887176005335809, 0.06895384890558105, 0.06901084601551259, 0.06904262008392437, 0.0690490828908841, 0.06903019090980592, 0.06898594671062228, 0.06891640012804148, 0.06882164917312236, 0.06870184066909427, 0.06855717059540065, 0.06838788412733912, 0.06819427536233372, 0.06797668672776187, 0.06773550806931192, 0.0674711754229896, 0.06718416947807158, 0.06687501374244546, 0.06654427242581033, 0.06619254806008072, 0.06582047887996455, 0.06542873599002283, 0.06501802034750015, 0.0645890595927954, 0.06414260476157145, 0.0636794269141477, 0.06320031371894994, 0.06270606602737551, 0.062197494477476224, 0.06167541616333464, 0.06114065140593811, 0.06059402065973917, 0.060036341586954055, 0.05946842632902794, 0.058891079001610364, 0.0583050934359016, 0.05771125118537916, 0.057110319812769615, 0.05650305146773962, 0.05589018176122615, 0.05527242893765492, 0.05465049334160497, 0.054025057170816085, 0.05339678450289074, 0.05276632157867629, 0.05213429732120174, 0.05150132406524396, 0.05086799846917861, 0.05023490257778437, 0.049602605002165547, 0.04897166218097954, 0.048342619685741425, 0.047716013532151214, 0.0470923714591698, 0.04647221413797045, 0.04585605627390987, 0.04524440756629088, 0.04463777349290844, 0.04403665588915313, 0.04344155329476248, 0.04285296104510405, 0.042271371088104505, 0.04169727151254253, 0.0411311457783277, 0.04057347164453442, 0.04002471979626081, 0.03948535217676582, 0.03895582003671807, 0.03843656171768575, 0.037928000192126866, 0.03743054038701692, 0.03694456632280474, 0.03647043810353797, 0.0360084887976751, 0.03555902125224675, 0.03512230488557729, 0.034698572505690514, 0.03428801720275522, 0.03389078936445378, 0.033506993862956386, 0.03313668746125308, 0.03277987648493519, 0.032436514803145175, 0.03210650215935441, 0.03178968288891952, 0.03148584505606162, 0.031194720038059093, 0.030915982579120274, 0.03064925133067603, 0.03039408988878905, 0.030150008333102718, 0.02991646526534392, 0.02969287033894064, 0.029478587264917096, 0.02927293727298289, 0.029075203000728068, 0.028884632778168426, 0.02870044526963787, 0.02852183443027638, 0.02834797473018489, 0.028178026595771663, 0.028011142014955304, 0.027846470250751116, 0.027683163606383156, 0.02752038318445105, 0.02735730458283735, 0.02719312347096518, 0.027027060991680667, 0.026858368936410505, 0.026686334644288115, 0.026510285579591335, 0.026329593546038216, 0.02614367850115968, 0.02595201193904209, 0.025754119815117146, 0.02554958499229008, 0.025338049193445233, 0.025119214451169523, 0.024892844051291118, 0.024658762972472513, 0.02441685782952782, 0.024167076333297306, 0.023909426284725296, 0.023643974125206448, 0.02337084306922894, 0.023090210848822148, 0.022802307102273493, 0.02250741044200223, 0.022205845238351694, 0.021897978157396455, 0.021584214491655287, 0.02126499432289023, 0.020940788555968166, 0.020612094862114166, 0.0202794335688219, 0.01994334353226597, 0.019604378026316878, 0.019263100680259968, 0.018920081495098672, 0.018575892965949567, 0.018231106335544863, 0.017886288001309304, 0.017541996095904986, 0.01719877725858749, 0.016857163612216945, 0.016517669958357226, 0.01618079120058371, 0.01584700000394143, 0.015516744696443738, 0.015190447416599499, 0.014868502509191472, 0.014551275169910137, 0.014239100337954195, 0.013932281834345334, 0.013631091742442984, 0.013335770025985958, 0.013046524378898082, 0.012763530300079705, 0.012486931385432427, 0.012216839828432148, 0.011953337119655074, 0.011696474934772825, 0.011446276199651753, 0.011202736320326867, 0.010965824564764576, 0.010735485582493678, 0.010511641047373262, 0.010294191407996053, 0.010083017729507012, 0.009877983609967498, 0.00967893715383342, 0.009485712984660983, 0.009298134278821537, 0.009116014801823431, 0.00893916092881227, 0.008767373630976938, 0.008600450409930545, 0.00843818716268146, 0.008280379960561234, 0.00812682672643621, 0.00797732879569741, 0.007831692347892556, 0.007689729697418669, 0.0075512604334260275, 0.007416112400964977, 0.007284122517419971, 0.0071551374203860105, 0.007029013945324931, 0.00690561943355719, 0.006784831873364028, 0.006666539879159915, 0.0065506425158091955, 0.006437048977167915, 0.006325678129799109, 0.006216457934502901, 0.006109324759795717, 0.006004222602736469, 0.005901102233513861, 0.00579992028095844, 0.00570063827661462, 0.005603221675196219, 0.005507638869150253, 0.005413860214674442, 0.005321857085881673, 0.005231600972894824, 0.00514306263850659, 0.005056211346674717, 0.00497101417457054, 0.004887435418188004, 0.00480543609968378, 0.004724973582692002, 0.004646001299873936, 0.00456846859495982, 0.004492320679552637, 0.004417498703024925, 0.004343939931983559, 0.004271578034031937, 0.004200343458952573, 0.004130163908988441, 0.0040609648886379655, 0.0039926703233128975, 0.003925203235351103, 0.0038584864652347005, 0.003792443425441494, 0.0037269988741521036, 0.0036620796960422693, 0.0035976156775996936, 0.003533540264805869, 0.003469791291600681, 0.003406311668282349, 0.0033430500198698087, 0.0032799612654460376, 0.0032170071305883904, 0.0031541565861526624, 0.0030913862078889667, 0.003028680452607987, 0.0029660318478639453, 0.002903441093356886, 0.002840917073462548, 0.00277847678145708, 0.0027161451571020654, 0.002653954840279913, 0.0025919458443113847, 0.00253016515343746, 0.002468666249701935, 0.0024075085751252764, 0.0023467569356129393, 0.002286480853493386, 0.0022267538759336513, 0.002167652846737315, 0.002109257149195635, 0.002051647927742523, 0.001994907296163914, 0.0019391175400388352, 0.001884360320949159, 0.0018307158897946318, 0.0017782623162956195, 0.0017270747414644516, 0.0016772246594827507, 0.0016287792350423555, 0.0015818006617954938, 0.0015363455671209923, 0.0014924644679496064, 0.0014502012819077017, 0.0014095928975361744, 0.0013706688068232248, 0.001333450802757793, 0.001297952744066496, 0.00126418038874295, 0.0012321312974161616, 0.0012017948070361577, 0.001173152074782769, 0.0011461761915293994, 0.0011208323636214068, 0.0010970781611611773, 0.0010748638304327904, 0.0010541326675531893, 0.0010348214499076847, 0.0010168609214210157, 0.001000176327236021, 0.0009846879929255917, 0.000970311942955753, 0.0009569605527535015, 0.0009445432284182312, 0.0009329671078548966, 0.0009221377769051899, 0.0009119599939142473, 0.0009023384160978651, 0.0008931783210716613, 0.0008843863169708799, 0.0008758710347281277, 0.0008675437962861866, 0.000859319252802637, 0.0008511159872498961, 0.0008428570762248778, 0.0008344706062520145, 0.0008258901403862835, 0.0008170551314924186, 0.0008079112791851288, 0.0007984108280548245, 0.0007885128054650199, 0.0007781831978822538, 0.0007673950653773218, 0.0007561285946083659, 0.0007443710912523448, 0.000732116913482324, 0.0007193673486851053, 0.0007061304361686676, 0.000692420739114195, 0.0006782590694766439, 0.0006636721699250778, 0.00064869235723508, 0.0006333571317969835, 0.0006177087580834856, 0.0006017938210276531, 0.0005856627632977422, 0.0005693694084205799, 0.0005529704746033258, 0.00053652508393825, 0.0005200942714519973, 0.0005037404981856172, 0.0004875271721712116, 0.0004715181808129506, 0.00045577743779238474, 0.00044036844720869353, 0.0004253538872423003, 0.0004107952152035904, 0.00039675229540554464, 0.0003832830508879791, 0.0003704431396291304, 0.0003582856555145095, 0.00034686085399929836, 0.00033621590210422255, 0.0003263946521303669, 0.00031743743826869684, 0.00030938089511762086, 0.00030225779700772664, 0.000296096916966851, 0.0002909229041398926, 0.0002867561785040391, 0.0002836128417883327, 0.00028150460361267966, 0.0002804387220007009, 0.00028041795758777105, 0.0002814405410340259, 0.0002835001533555938, 0.00028658591909896914, 0.0002906824124963411, 0.0002957696769468845, 0.0003018232583637104, 0.00030881425310186914, 0.00031670937133345474, 0.00032547101685605917, 0.00033505738440570994, 0.00034542257559111466, 0.00035651673456946523, 0.0003682862045430599, 0.00038067370606954636, 0.0003936185380466746, 0.0004070568020560595, 0.000420921650531721, 0.0004351435589611728, 0.00044965062203370623, 0.0004643688733270783, 0.00047922262777616413, 0.000494134845801266, 0.0005090275175970784, 0.000523822065703073, 0.0005384397636000485, 0.0005528021677134833, 0.0005668315598600821, 0.0005804513968570506, 0.0005935867637312548, 0.0006061648267242988, 0.0006181152820957304, 0.000629370796585194, 0.0006398674353097709, 0.0006495450728481949, 0.0006583477833014351, 0.0006662242052202435, 0.0006731278774546259, 0.0006790175422064909, 0.0006838574118524616, 0.0006876173964454905, 0.0006902732891967034, 0.0006918069076772693], \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31.0, 35.3, 30.5, 35.41, 37.6, 38.0, 27.1, 30.1, 25.8, 30.0, 45.8, 29.6, 43.3, 34.6, 39.3, 35.4, 39.8, 29.0, 36.6, 31.1, 39.4, 23.2, 22.2, 34.1, 36.0, 31.6, 24.8, 19.9, 27.6, 24.0, 33.2, 32.9, 38.2, 37.1, 34.0, 40.2, 22.7, 45.4, 27.4, 42.0, 29.7, 28.0, 39.1, 30.86, 19.4, 24.2, 24.4, 33.7, 34.7, 23.0, 37.7, 46.8, 40.5, 41.5, 30.86, 32.9, 25.0, 25.4, 32.8, 29.0, 32.5, 42.7, 19.6, 28.9, 32.9, 28.6, 43.4, 35.1, 32.0, 24.7, 32.6, 37.7, 43.2, 25.0, 22.4, 30.86, 29.3, 24.6, 48.8, 32.4, 36.6, 38.5, 37.1, 26.5, 19.1, 32.0, 46.7, 23.8, 24.7, 33.9, 31.6, 20.4, 28.7, 49.7, 39.0, 26.1, 22.5, 26.6, 39.6, 28.7, 22.4, 29.5, 34.3, 37.4, 33.3, 34.0, 31.2, 34.0, 30.5, 31.2, 34.0, 33.7, 28.2, 23.2, 53.2, 34.2, 33.6, 26.8, 33.3, 55.0, 42.9, 33.3, 34.5, 27.9, 29.7, 33.3, 34.5, 38.3, 21.1, 33.8, 30.8, 28.7, 31.2, 36.9, 21.1, 39.5, 32.5, 32.4, 32.8, 30.86, 32.8, 30.5, 33.7, 27.3, 37.4, 21.9, 34.3, 40.6, 47.9, 50.0, 24.6, 25.2, 29.0, 40.9, 29.7, 37.2, 44.2, 29.7, 31.6, 29.9, 32.5, 29.6, 31.9, 28.4, 30.8, 35.4, 28.9, 43.5, 29.7, 32.7, 31.2, 67.1, 45.0, 39.1, 23.2, 34.9, 27.7, 26.8, 27.6, 35.9, 30.1, 32.0, 27.9, 31.6, 22.6, 33.1, 30.4, 52.3, 24.4, 39.4, 24.3, 22.9, 34.8, 30.9, 31.0, 40.1, 27.3, 20.4, 37.7, 23.9, 37.5, 37.7, 33.2, 35.5, 27.7, 42.8, 34.2, 42.6, 34.2, 41.8, 35.8, 30.0, 29.0, 37.8, 34.6, 31.6, 25.2, 28.8, 23.6, 34.6, 35.7, 37.2, 36.7, 45.2, 44.0, 46.2, 25.4, 35.0, 29.7, 43.6, 35.9, 44.1, 30.8, 18.4, 29.2, 33.1, 25.6, 27.1, 38.2, 30.0, 31.2, 52.3, 35.4, 30.1, 31.2, 28.0, 24.4, 35.8, 27.6, 33.6, 30.1, 28.7, 25.9, 33.3, 30.9, 30.0, 32.1, 32.4, 32.0, 33.6, 36.3, 40.0, 25.1, 27.5, 45.6, 25.2, 23.0, 33.2, 34.2, 40.5, 26.5, 27.8, 24.9, 25.3, 37.9, 35.9, 32.4, 30.4, 27.0, 26.0, 38.7, 45.6, 20.8, 36.1, 36.9, 36.6, 43.3, 40.5, 21.9, 35.5, 28.0, 30.7, 36.6, 23.6, 32.3, 31.6, 35.8, 52.9, 21.0, 39.7, 25.5, 24.8, 30.5, 32.9, 26.2, 39.4, 26.6, 29.5, 35.9, 34.1, 19.3, 30.5, 38.1, 23.5, 27.5, 31.6, 27.4, 26.8, 35.7, 25.6, 35.1, 35.1, 45.5, 30.8, 23.1, 32.7, 43.3, 23.6, 23.9, 47.9, 33.8, 31.2, 34.2, 39.9, 25.9, 25.9, 32.0, 34.7, 36.8, 38.5, 28.7, 23.5, 21.8, 41.0, 42.2, 31.2, 34.4, 27.2, 42.7, 30.4, 33.3, 39.9, 35.3, 36.5, 31.2, 29.8, 39.2, 38.5, 34.9, 34.0, 27.6, 21.0, 27.5, 32.8, 38.4, 30.86, 35.8, 34.9, 36.2, 39.2, 25.2, 37.2, 48.3, 43.4, 30.8, 20.0, 25.4, 25.1, 24.3, 22.3, 32.3, 43.3, 32.0, 31.6, 32.0, 45.7, 23.7, 22.1, 32.9, 27.7, 24.7, 34.3, 21.1, 34.9, 32.0, 24.2, 35.0, 31.6, 32.9, 42.1, 28.9, 21.9, 25.9, 42.4, 35.7, 34.4, 42.4, 26.2, 34.6, 35.7, 27.2, 38.5, 18.2, 26.4, 45.3, 26.0, 40.6, 30.8, 42.9, 37.0, 30.86, 34.1, 40.6, 35.0, 22.2, 30.4, 30.0, 25.6, 24.5, 42.4, 37.4, 29.9, 18.2, 36.8, 34.3, 32.2, 33.2, 30.5, 29.7, 59.4, 25.3, 36.5, 33.6, 30.5, 21.2, 28.9, 39.9, 19.6, 37.8, 33.6, 26.7, 30.2, 37.6, 25.9, 20.8, 21.8, 35.3, 27.6, 24.0, 21.8, 27.8, 36.8, 30.0, 46.1, 41.3, 33.2, 38.8, 29.9, 28.9, 27.3, 33.7, 23.8, 25.9, 28.0, 35.5, 35.2, 27.8, 38.2, 44.2, 42.3, 40.7, 46.5, 25.6, 26.1, 36.8, 33.5, 32.8, 28.9, 30.86, 26.6, 26.0, 30.1, 25.1, 29.3, 25.2, 37.2, 39.0, 33.3, 37.3, 33.3, 36.5, 28.6, 30.4, 25.0, 29.7, 22.1, 24.2, 27.3, 25.6, 31.6, 30.3, 37.6, 32.8, 19.6, 25.0, 33.2, 30.86, 34.2, 31.6, 21.8, 18.2, 26.3, 30.8, 24.6, 29.8, 45.3, 41.3, 29.8, 33.3, 32.9, 29.6, 21.7, 36.3, 36.4, 39.4, 32.4, 34.9, 39.5, 32.0, 34.5, 43.6, 33.1, 32.8, 28.5, 27.4, 31.9, 27.8, 29.9, 36.9, 25.5, 38.1, 27.8, 46.2, 30.1, 33.8, 41.3, 37.6, 26.9, 32.4, 26.1, 38.6, 32.0, 31.3, 34.3, 32.5, 22.6, 29.5, 34.7, 30.1, 35.5, 24.0, 42.9, 27.0, 34.7, 42.1, 25.0, 26.5, 38.7, 28.7, 22.5, 34.9, 24.3, 33.3, 21.1, 46.8, 39.4, 34.4, 28.5, 33.6, 32.0, 45.3, 27.8, 36.8, 23.1, 27.1, 23.7, 27.8, 35.2, 28.4, 35.8, 40.0, 19.5, 41.5, 24.0, 30.9, 32.9, 38.2, 32.5, 36.1, 25.8, 28.7, 20.1, 28.2, 32.4, 38.4, 24.2, 40.8, 43.5, 30.8, 37.7, 24.7, 32.4, 34.6, 24.7, 27.4, 34.5, 26.2, 27.5, 25.9, 31.2, 28.8, 31.6, 40.9, 19.5, 29.3, 34.3, 29.5, 28.0, 27.6, 39.4, 23.4, 37.8, 28.3, 26.4, 25.2, 33.8, 34.1, 26.8, 34.2, 38.7, 21.8, 38.9, 39.0, 34.2, 27.7, 42.9, 37.6, 37.9, 33.7, 34.8, 32.5, 27.5, 34.0, 30.9, 33.6, 25.4, 35.5, 57.3, 35.6, 30.9, 24.8, 35.3, 36.0, 24.2, 24.2, 49.6, 44.6, 32.3, 30.86, 33.2, 23.1, 28.3, 24.1, 46.1, 24.6, 42.3, 39.1, 38.5, 23.5, 30.4, 29.9, 25.0, 34.5, 44.5, 35.9, 27.6, 35.0, 38.5, 28.4, 39.8, 35.41, 34.4, 32.8, 38.0, 31.2, 29.6, 41.2, 26.4, 29.5, 33.9, 33.8, 23.1, 35.5, 35.6, 29.3, 38.1, 29.3, 39.1, 32.8, 39.4, 36.1, 32.4, 22.9, 30.1, 28.4, 28.4, 44.5, 29.0, 23.3, 35.4, 27.4, 32.0, 36.6, 39.5, 42.3, 30.8, 28.5, 32.7, 40.6, 30.0, 49.3, 46.3, 36.4, 24.3, 31.2, 39.0, 26.0, 43.3, 32.4, 36.5, 32.0, 36.3, 37.5, 35.5, 28.4, 44.0, 22.5, 32.9, 36.8, 26.2, 30.1, 30.4], \"xaxis\": \"x\", \"y\": [\"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\"], \"yaxis\": \"y2\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [33.6, 23.3, 43.1, 31.0, 30.5, 35.41, 38.0, 30.1, 25.8, 30.0, 45.8, 29.6, 34.6, 39.8, 29.0, 36.6, 31.1, 39.4, 31.6, 32.9, 38.2, 37.1, 45.4, 42.0, 39.1, 33.7, 37.7, 32.9, 32.8, 32.5, 32.9, 43.4, 43.2, 48.8, 37.1, 23.8, 49.7, 39.0, 37.4, 33.3, 34.0, 30.5, 31.2, 34.0, 53.2, 33.3, 55.0, 34.5, 27.9, 29.7, 33.3, 34.5, 32.4, 34.3, 47.9, 50.0, 40.9, 31.6, 29.9, 30.8, 35.4, 32.7, 67.1, 39.1, 35.9, 30.1, 32.0, 27.9, 31.6, 30.4, 52.3, 39.4, 22.9, 34.8, 30.9, 37.5, 37.7, 35.5, 42.6, 34.2, 41.8, 35.8, 29.0, 37.8, 34.6, 31.6, 37.2, 44.0, 46.2, 43.6, 35.9, 44.1, 30.8, 25.6, 27.1, 30.0, 27.6, 33.6, 33.3, 30.0, 32.0, 36.3, 27.5, 45.6, 26.5, 37.9, 30.4, 27.0, 45.6, 36.6, 43.3, 40.5, 28.0, 36.6, 32.3, 31.6, 52.9, 25.5, 30.5, 32.9, 26.6, 35.9, 30.5, 23.5, 31.6, 27.4, 26.8, 35.1, 45.5, 43.3, 31.2, 34.2, 39.9, 41.0, 30.4, 33.3, 39.9, 36.5, 31.2, 38.5, 27.6, 32.8, 38.4, 39.2, 48.3, 32.3, 43.3, 32.0, 45.7, 32.9, 34.3, 34.9, 32.0, 35.0, 32.9, 28.9, 25.9, 42.4, 34.6, 35.7, 38.5, 26.4, 42.9, 37.0, 34.1, 35.0, 42.4, 34.3, 30.5, 29.7, 59.4, 33.6, 28.9, 33.6, 37.6, 30.0, 33.7, 35.5, 44.2, 42.3, 28.9, 25.1, 39.0, 36.5, 29.7, 31.6, 30.3, 34.2, 32.9, 36.4, 39.4, 32.4, 34.9, 34.5, 43.6, 33.8, 41.3, 34.3, 42.9, 34.7, 42.1, 28.7, 34.9, 33.3, 46.8, 34.4, 32.0, 36.8, 35.2, 28.4, 40.0, 32.9, 38.2, 36.1, 28.2, 32.4, 27.4, 31.2, 40.9, 29.5, 23.4, 37.8, 28.3, 38.7, 34.2, 42.9, 37.6, 37.9, 33.7, 32.5, 27.5, 30.9, 24.8, 36.0, 49.6, 32.3, 46.1, 42.3, 38.5, 30.4, 29.9, 27.6, 35.0, 35.41, 32.8, 38.0, 41.2, 33.9, 33.8, 35.6, 29.3, 28.4, 28.4, 44.5, 39.5, 42.3, 32.7, 49.3, 36.4, 24.3, 31.2, 43.3, 32.4, 36.5, 36.3, 35.5, 44.0, 30.1], \"xaxis\": \"x\", \"y\": [\"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\"], \"yaxis\": \"y2\"}],                        {\"barmode\": \"overlay\", \"hovermode\": \"closest\", \"legend\": {\"traceorder\": \"reversed\"}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"BMI\"}, \"xaxis\": {\"anchor\": \"y2\", \"domain\": [0.0, 1.0], \"zeroline\": false}, \"yaxis\": {\"anchor\": \"free\", \"domain\": [0.35, 1], \"position\": 0.0}, \"yaxis2\": {\"anchor\": \"x\", \"domain\": [0, 0.25], \"dtick\": 1, \"showticklabels\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('d2217cd5-dd8b-4477-b935-d2a8047c4445');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### DIABETES PEDIGREE FUNCTION"},{"metadata":{"trusted":true},"cell_type":"code","source":"get_mean('diabetes_pedigree_function')","execution_count":31,"outputs":[{"output_type":"execute_result","execution_count":31,"data":{"text/plain":"   outcome  diabetes_pedigree_function\n0        0                        0.43\n1        1                        0.55","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>outcome</th>\n      <th>diabetes_pedigree_function</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>0.43</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>0.55</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[(df['outcome'] == 0) & (df['diabetes_pedigree_function'].isnull()), 'diabetes_pedigree_function'] = 0.43\ndf.loc[(df['outcome'] == 1) & (df['diabetes_pedigree_function'].isnull()), 'diabetes_pedigree_function'] = 0.55","execution_count":32,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_dist('diabetes_pedigree_function',0)","execution_count":33,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"14399ad7-55de-41a5-88ad-301c37896324\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"14399ad7-55de-41a5-88ad-301c37896324\")) {                    Plotly.newPlot(                        \"14399ad7-55de-41a5-88ad-301c37896324\",                        [{\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"name\": \"healthy\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [0.627, 0.35100000000000003, 0.672, 0.16699999999999998, 2.2880000000000003, 0.201, 0.248, 0.134, 0.158, 0.23199999999999998, 0.191, 0.537, 1.4409999999999998, 0.39799999999999996, 0.5870000000000001, 0.484, 0.551, 0.254, 0.183, 0.529, 0.7040000000000001, 0.38799999999999996, 0.451, 0.263, 0.254, 0.205, 0.257, 0.48700000000000004, 0.245, 0.337, 0.546, 0.851, 0.267, 0.188, 0.512, 0.966, 0.42, 0.665, 0.503, 1.39, 0.271, 0.696, 0.235, 0.721, 0.294, 1.893, 0.564, 0.586, 0.344, 0.305, 0.491, 0.526, 0.342, 0.467, 0.718, 0.248, 0.254, 0.9620000000000001, 1.781, 0.17300000000000001, 0.304, 0.27, 0.5870000000000001, 0.6990000000000001, 0.258, 0.203, 0.855, 0.845, 0.33399999999999996, 0.18899999999999997, 0.867, 0.41100000000000003, 0.583, 0.231, 0.396, 0.14, 0.391, 0.37, 0.27, 0.307, 0.14, 0.102, 0.767, 0.237, 0.22699999999999998, 0.698, 0.17800000000000002, 0.324, 0.153, 0.165, 0.258, 0.44299999999999995, 0.261, 0.27699999999999997, 0.7609999999999999, 0.255, 0.13, 0.32299999999999995, 0.35600000000000004, 0.325, 1.222, 0.179, 0.262, 0.28300000000000003, 0.93, 0.8009999999999999, 0.207, 0.287, 0.336, 0.247, 0.19899999999999998, 0.5429999999999999, 0.192, 0.391, 0.588, 0.539, 0.22, 0.654, 0.44299999999999995, 0.223, 0.759, 0.26, 0.40399999999999997, 0.18600000000000003, 0.278, 0.496, 0.452, 0.261, 0.40299999999999997, 0.741, 0.361, 1.114, 0.35600000000000004, 0.457, 0.647, 0.08800000000000001, 0.597, 0.532, 0.703, 0.159, 0.268, 0.28600000000000003, 0.318, 0.272, 0.237, 0.5720000000000001, 0.096, 1.4, 0.218, 0.085, 0.39899999999999997, 0.43200000000000005, 1.189, 0.687, 0.13699999999999998, 0.337, 0.637, 0.833, 0.22899999999999998, 0.8170000000000001, 0.294, 0.204, 0.16699999999999998, 0.368, 0.743, 0.722, 0.256, 0.7090000000000001, 0.47100000000000003, 0.495, 0.18, 0.542, 0.773, 0.6779999999999999, 0.37, 0.7190000000000001, 0.382, 0.319, 0.19, 0.956, 0.084, 0.725, 0.299, 0.268, 0.244, 0.745, 0.615, 1.321, 0.64, 0.361, 0.142, 0.374, 0.38299999999999995, 0.578, 0.136, 0.395, 0.187, 0.6779999999999999, 0.905, 0.15, 0.8740000000000001, 0.23600000000000002, 0.787, 0.235, 0.324, 0.40700000000000003, 0.605, 0.151, 0.289, 0.355, 0.29, 0.375, 0.16399999999999998, 0.431, 0.26, 0.742, 0.514, 0.46399999999999997, 1.224, 0.261, 1.072, 0.805, 0.209, 0.687, 0.6659999999999999, 0.10099999999999999, 0.198, 0.652, 2.329, 0.08900000000000001, 0.645, 0.23800000000000002, 0.583, 0.39399999999999996, 0.293, 0.479, 0.586, 0.6859999999999999, 0.831, 0.5820000000000001, 0.192, 0.446, 0.402, 1.318, 0.32899999999999996, 1.213, 0.258, 0.42700000000000005, 0.282, 0.14300000000000002, 0.38, 0.284, 0.249, 0.23800000000000002, 0.9259999999999999, 0.5429999999999999, 0.557, 0.092, 0.655, 1.3530000000000002, 0.299, 0.7609999999999999, 0.612, 0.2, 0.226, 0.997, 0.9329999999999999, 1.101, 0.078, 0.24, 1.136, 0.128, 0.254, 0.42200000000000004, 0.251, 0.677, 0.29600000000000004, 0.45399999999999996, 0.7440000000000001, 0.8809999999999999, 0.33399999999999996, 0.28, 0.262, 0.165, 0.259, 0.647, 0.619, 0.8079999999999999, 0.34, 0.263, 0.434, 0.757, 1.224, 0.613, 0.254, 0.6920000000000001, 0.337, 0.52, 0.41200000000000003, 0.84, 0.8390000000000001, 0.42200000000000004, 0.156, 0.209, 0.207, 0.215, 0.326, 0.14300000000000002, 1.391, 0.875, 0.313, 0.605, 0.433, 0.626, 1.127, 0.315, 0.284, 0.345, 0.15, 0.129, 0.527, 0.19699999999999998, 0.254, 0.731, 0.14800000000000002, 0.12300000000000001, 0.6920000000000001, 0.2, 0.127, 0.122, 1.476, 0.166, 0.282, 0.13699999999999998, 0.26, 0.259, 0.932, 0.34299999999999997, 0.893, 0.331, 0.47200000000000003, 0.6729999999999999, 0.389, 0.29, 0.485, 0.349, 0.654, 0.187, 0.27899999999999997, 0.34600000000000003, 0.237, 0.252, 0.243, 0.58, 0.5589999999999999, 0.302, 0.9620000000000001, 0.569, 0.37799999999999995, 0.875, 0.583, 0.207, 0.305, 0.52, 0.385, 0.499, 0.368, 0.252, 0.306, 0.23399999999999999, 2.137, 1.7309999999999999, 0.545, 0.225, 0.816, 0.528, 0.299, 0.509, 0.23800000000000002, 1.021, 0.821, 0.23600000000000002, 0.9470000000000001, 1.268, 0.221, 0.205, 0.66, 0.239, 0.452, 0.9490000000000001, 0.444, 0.34, 0.389, 0.46299999999999997, 0.8029999999999999, 1.6, 0.9440000000000001, 0.196, 0.389, 0.24100000000000002, 0.161, 0.151, 0.28600000000000003, 0.28, 0.135, 0.52, 0.376, 0.336, 1.1909999999999998, 0.7020000000000001, 0.674, 0.528, 1.0759999999999998, 0.256, 0.534, 0.258, 1.095, 0.5539999999999999, 0.624, 0.21899999999999997, 0.507, 0.561, 0.496, 0.42100000000000004, 0.516, 0.264, 0.256, 0.32799999999999996, 0.284, 0.233, 0.10800000000000001, 0.551, 0.527, 0.16699999999999998, 1.138, 0.205, 0.244, 0.434, 0.147, 0.727, 0.435, 0.49700000000000005, 0.23, 0.955, 0.38, 2.42, 0.6579999999999999, 0.33, 0.51, 0.285, 0.415, 0.542, 0.381, 0.8320000000000001, 0.498, 0.212, 0.687, 0.364, 1.001, 0.46, 0.733, 0.41600000000000004, 0.705, 0.258, 1.022, 0.452, 0.26899999999999996, 0.6, 0.183, 0.5710000000000001, 0.607, 0.17, 0.259, 0.21, 0.126, 0.231, 0.711, 0.466, 0.162, 0.419, 0.344, 0.19699999999999998, 0.306, 0.233, 0.63, 0.365, 0.536, 1.159, 0.294, 0.551, 0.629, 0.292, 0.145, 1.1440000000000001, 0.174, 0.304, 0.292, 0.547, 0.163, 0.8390000000000001, 0.313, 0.267, 0.727, 0.738, 0.23800000000000002, 0.263, 0.314, 0.6920000000000001, 0.968, 0.409, 0.297, 0.207, 0.2, 0.525, 0.154, 0.268, 0.7709999999999999, 0.304, 0.18, 0.5820000000000001, 0.187, 0.305, 0.18899999999999997, 0.652, 0.151, 0.444, 0.299, 0.107, 0.493, 0.66, 0.7170000000000001, 0.6859999999999999, 0.917, 0.501, 1.251, 0.302, 0.19699999999999998, 0.735, 0.804, 0.968, 0.6609999999999999, 0.5489999999999999, 0.825, 0.159, 0.365, 0.423, 1.034, 0.16, 0.341, 0.68, 0.204, 0.591, 0.247, 0.42200000000000004, 0.47100000000000003, 0.161, 0.218, 0.237, 0.126, 0.3, 0.121, 0.502, 0.401, 0.49700000000000005, 0.601, 0.748, 0.41200000000000003, 0.085, 0.33799999999999997, 0.203, 0.27, 0.268, 0.43, 0.198, 0.892, 0.28, 0.813, 0.693, 0.245, 0.575, 0.371, 0.20600000000000002, 0.259, 0.19, 0.687, 0.41700000000000004, 0.129, 0.249, 1.1540000000000001, 0.342, 0.925, 0.175, 0.402, 1.699, 0.733, 0.682, 0.19399999999999998, 0.5589999999999999, 0.08800000000000001, 0.40700000000000003, 0.4, 0.19, 0.1, 0.6920000000000001, 0.212, 0.514, 1.258, 0.48200000000000004, 0.27, 0.138, 0.292, 0.593, 0.787, 0.878, 0.557, 0.207, 0.157, 0.257, 1.2819999999999998, 0.141, 0.24600000000000002, 1.6980000000000002, 1.4609999999999999, 0.34700000000000003, 0.158, 0.36200000000000004, 0.20600000000000002, 0.39299999999999996, 0.14400000000000002, 0.14800000000000002, 0.732, 0.23800000000000002, 0.34299999999999997, 0.115, 0.16699999999999998, 0.465, 0.153, 0.649, 0.871, 0.149, 0.695, 0.303, 0.17800000000000002, 0.61, 0.73, 0.134, 0.447, 0.455, 0.26, 0.133, 0.23399999999999999, 0.466, 0.26899999999999996, 0.455, 0.142, 0.24, 0.155, 1.162, 0.19, 1.2919999999999998, 0.182, 1.3940000000000001, 0.165, 0.637, 0.245, 0.217, 0.235, 0.141, 0.43, 0.16399999999999998, 0.631, 0.551, 0.285, 0.88, 0.5870000000000001, 0.32799999999999996, 0.23, 0.263, 0.127, 0.614, 0.332, 0.364, 0.366, 0.536, 0.64, 0.591, 0.314, 0.18100000000000002, 0.828, 0.335, 0.856, 0.257, 0.8859999999999999, 0.439, 0.191, 0.128, 0.268, 0.253, 0.598, 0.904, 0.483, 0.565, 0.905, 0.304, 0.11800000000000001, 0.177, 0.261, 0.17600000000000002, 0.14800000000000002, 0.674, 0.295, 0.439, 0.441, 0.35200000000000004, 0.121, 0.826, 0.97, 0.595, 0.415, 0.37799999999999995, 0.317, 0.289, 0.349, 0.251, 0.265, 0.23600000000000002, 0.496, 0.433, 0.326, 0.141, 0.32299999999999995, 0.259, 0.6459999999999999, 0.426, 0.56, 0.284, 0.515, 0.6, 0.45299999999999996, 0.293, 0.785, 0.4, 0.21899999999999997, 0.7340000000000001, 1.1740000000000002, 0.488, 0.358, 1.0959999999999999, 0.408, 0.17800000000000002, 1.182, 0.261, 0.223, 0.222, 0.44299999999999995, 1.057, 0.391, 0.258, 0.19699999999999998, 0.278, 0.7659999999999999, 0.40299999999999997, 0.142, 0.171, 0.34, 0.245, 0.349, 0.315], \"xaxis\": \"x\", \"xbins\": {\"end\": 2.42, \"size\": 0, \"start\": 0.078}, \"yaxis\": \"y\"}, {\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"name\": \"diabetic\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [0.627, 0.672, 2.2880000000000003, 0.248, 0.158, 0.23199999999999998, 0.537, 0.39799999999999996, 0.5870000000000001, 0.484, 0.551, 0.254, 0.529, 0.451, 0.263, 0.254, 0.205, 0.257, 0.851, 0.665, 0.503, 1.39, 0.721, 1.893, 0.344, 0.467, 0.254, 0.27, 0.258, 0.855, 0.867, 0.583, 0.27, 0.22699999999999998, 0.153, 0.27699999999999997, 0.325, 1.222, 0.247, 0.19899999999999998, 0.5429999999999999, 0.588, 0.539, 0.22, 0.759, 0.278, 0.496, 0.40299999999999997, 0.741, 0.361, 1.114, 0.35600000000000004, 0.272, 1.189, 0.13699999999999998, 0.337, 0.8170000000000001, 0.743, 0.722, 0.18, 0.542, 0.7190000000000001, 0.319, 0.956, 0.745, 0.615, 1.321, 0.64, 0.361, 0.38299999999999995, 0.578, 0.395, 0.6779999999999999, 0.905, 0.15, 0.605, 0.151, 0.355, 0.431, 0.26, 0.742, 0.514, 1.224, 0.261, 1.072, 0.805, 0.652, 0.645, 0.23800000000000002, 0.479, 0.586, 0.6859999999999999, 0.831, 0.402, 1.318, 1.213, 0.9259999999999999, 0.5429999999999999, 1.3530000000000002, 0.7609999999999999, 0.226, 0.9329999999999999, 0.24, 1.136, 0.29600000000000004, 0.33399999999999996, 0.165, 0.259, 0.8079999999999999, 0.757, 1.224, 0.613, 0.337, 0.41200000000000003, 0.8390000000000001, 0.42200000000000004, 0.209, 0.326, 1.391, 0.875, 0.433, 1.127, 0.345, 0.129, 0.19699999999999998, 0.254, 0.731, 0.6920000000000001, 0.127, 0.282, 0.34299999999999997, 0.893, 0.331, 0.34600000000000003, 0.302, 0.9620000000000001, 0.569, 0.875, 0.583, 0.52, 0.368, 0.23399999999999999, 2.137, 0.528, 0.23800000000000002, 0.66, 0.239, 0.452, 0.34, 0.8029999999999999, 0.196, 0.24100000000000002, 0.161, 0.28600000000000003, 0.135, 0.376, 1.1909999999999998, 0.7020000000000001, 0.534, 0.258, 0.5539999999999999, 0.21899999999999997, 0.516, 0.264, 0.32799999999999996, 0.233, 0.205, 0.435, 0.955, 0.38, 2.42, 0.51, 0.542, 0.212, 1.001, 0.183, 0.711, 0.344, 0.63, 0.365, 1.1440000000000001, 0.163, 0.727, 0.314, 0.297, 0.268, 0.7709999999999999, 0.652, 0.302, 0.968, 0.6609999999999999, 0.5489999999999999, 0.825, 0.423, 1.034, 0.121, 0.502, 0.203, 0.693, 0.575, 0.371, 0.687, 0.129, 1.1540000000000001, 0.925, 0.402, 0.682, 0.08800000000000001, 0.6920000000000001, 0.212, 1.258, 0.593, 0.787, 0.557, 1.2819999999999998, 0.141, 0.732, 0.465, 0.871, 0.17800000000000002, 0.447, 0.455, 0.26, 0.24, 1.2919999999999998, 1.3940000000000001, 0.165, 0.637, 0.245, 0.235, 0.141, 0.32799999999999996, 0.23, 0.127, 0.364, 0.536, 0.335, 0.257, 0.439, 0.128, 0.268, 0.565, 0.905, 0.261, 0.14800000000000002, 0.674, 0.441, 0.826, 0.97, 0.37799999999999995, 0.349, 0.32299999999999995, 0.259, 0.6459999999999999, 0.293, 0.785, 0.7340000000000001, 0.358, 0.408, 0.17800000000000002, 1.182, 0.222, 0.44299999999999995, 1.057, 0.258, 0.278, 0.40299999999999997, 0.349], \"xaxis\": \"x\", \"xbins\": {\"end\": 2.42, \"size\": 0, \"start\": 0.08800000000000001}, \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"mode\": \"lines\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [0.078, 0.082684, 0.087368, 0.092052, 0.096736, 0.10142000000000001, 0.106104, 0.110788, 0.11547199999999999, 0.120156, 0.12484, 0.129524, 0.134208, 0.13889200000000002, 0.143576, 0.14826, 0.152944, 0.157628, 0.162312, 0.166996, 0.17168, 0.17636400000000002, 0.181048, 0.185732, 0.190416, 0.1951, 0.19978400000000002, 0.20446799999999998, 0.209152, 0.21383600000000003, 0.21852, 0.223204, 0.22788799999999998, 0.232572, 0.23725600000000002, 0.24194, 0.246624, 0.251308, 0.255992, 0.260676, 0.26536000000000004, 0.270044, 0.274728, 0.279412, 0.284096, 0.28878, 0.293464, 0.29814799999999997, 0.302832, 0.307516, 0.31220000000000003, 0.316884, 0.321568, 0.326252, 0.330936, 0.33562000000000003, 0.34030400000000005, 0.344988, 0.34967200000000004, 0.354356, 0.35904, 0.363724, 0.368408, 0.373092, 0.377776, 0.3824600000000001, 0.38714400000000004, 0.39182800000000007, 0.39651200000000003, 0.40119600000000005, 0.40588, 0.41056400000000004, 0.415248, 0.419932, 0.424616, 0.4293, 0.43398400000000004, 0.438668, 0.443352, 0.448036, 0.45272000000000007, 0.45740400000000003, 0.46208800000000005, 0.466772, 0.47145600000000004, 0.47614, 0.48082400000000003, 0.48550800000000005, 0.490192, 0.49487600000000004, 0.49956, 0.504244, 0.5089279999999999, 0.513612, 0.518296, 0.52298, 0.527664, 0.532348, 0.5370320000000001, 0.541716, 0.5464, 0.551084, 0.555768, 0.560452, 0.565136, 0.56982, 0.574504, 0.579188, 0.583872, 0.588556, 0.59324, 0.5979239999999999, 0.602608, 0.6072919999999999, 0.611976, 0.6166599999999999, 0.621344, 0.626028, 0.6307119999999999, 0.6353960000000001, 0.64008, 0.644764, 0.6494479999999999, 0.654132, 0.658816, 0.6635, 0.6681839999999999, 0.672868, 0.6775519999999999, 0.682236, 0.6869200000000001, 0.691604, 0.696288, 0.7009719999999999, 0.7056560000000001, 0.71034, 0.715024, 0.7197079999999999, 0.724392, 0.729076, 0.73376, 0.738444, 0.743128, 0.7478119999999999, 0.7524959999999999, 0.7571800000000001, 0.761864, 0.766548, 0.7712319999999999, 0.775916, 0.7806, 0.785284, 0.789968, 0.794652, 0.7993359999999999, 0.80402, 0.808704, 0.813388, 0.8180719999999999, 0.8227559999999999, 0.8274400000000001, 0.832124, 0.836808, 0.841492, 0.846176, 0.85086, 0.855544, 0.860228, 0.864912, 0.8695959999999999, 0.87428, 0.878964, 0.883648, 0.8883319999999999, 0.893016, 0.8977, 0.902384, 0.907068, 0.911752, 0.916436, 0.9211199999999999, 0.925804, 0.930488, 0.935172, 0.9398559999999999, 0.94454, 0.949224, 0.953908, 0.9585919999999999, 0.963276, 0.96796, 0.972644, 0.977328, 0.982012, 0.986696, 0.9913799999999999, 0.9960640000000001, 1.000748, 1.005432, 1.010116, 1.0148000000000001, 1.019484, 1.024168, 1.028852, 1.033536, 1.0382200000000001, 1.042904, 1.0475880000000002, 1.052272, 1.056956, 1.06164, 1.066324, 1.071008, 1.075692, 1.0803760000000002, 1.0850600000000001, 1.089744, 1.094428, 1.099112, 1.1037960000000002, 1.1084800000000001, 1.113164, 1.117848, 1.122532, 1.1272160000000002, 1.1319000000000001, 1.136584, 1.1412680000000002, 1.145952, 1.150636, 1.15532, 1.1600040000000003, 1.1646880000000002, 1.169372, 1.1740560000000002, 1.1787400000000001, 1.183424, 1.188108, 1.1927920000000003, 1.1974760000000002, 1.2021600000000001, 1.206844, 1.2115280000000002, 1.216212, 1.220896, 1.22558, 1.2302640000000002, 1.2349480000000002, 1.239632, 1.2443160000000002, 1.249, 1.253684, 1.258368, 1.2630520000000003, 1.2677360000000002, 1.27242, 1.277104, 1.2817880000000001, 1.286472, 1.291156, 1.2958400000000003, 1.3005240000000002, 1.3052080000000001, 1.309892, 1.3145760000000002, 1.31926, 1.323944, 1.3286280000000001, 1.3333120000000003, 1.3379960000000002, 1.34268, 1.347364, 1.3520480000000001, 1.356732, 1.361416, 1.3661000000000003, 1.3707840000000002, 1.3754680000000001, 1.380152, 1.3848360000000002, 1.38952, 1.394204, 1.3988880000000001, 1.4035720000000003, 1.4082560000000002, 1.41294, 1.417624, 1.4223080000000001, 1.426992, 1.4316760000000002, 1.4363600000000003, 1.4410440000000002, 1.4457280000000001, 1.450412, 1.4550960000000002, 1.45978, 1.464464, 1.4691480000000001, 1.4738320000000003, 1.4785160000000002, 1.4832, 1.487884, 1.4925680000000001, 1.497252, 1.5019360000000002, 1.5066200000000003, 1.5113040000000002, 1.5159880000000001, 1.520672, 1.5253560000000002, 1.53004, 1.5347240000000002, 1.539408, 1.5440920000000002, 1.5487760000000002, 1.55346, 1.558144, 1.562828, 1.567512, 1.5721960000000001, 1.5768800000000003, 1.5815640000000002, 1.586248, 1.590932, 1.5956160000000001, 1.6003, 1.6049840000000002, 1.609668, 1.6143520000000002, 1.6190360000000001, 1.62372, 1.628404, 1.633088, 1.6377720000000002, 1.6424560000000001, 1.6471400000000003, 1.6518240000000002, 1.656508, 1.661192, 1.6658760000000001, 1.67056, 1.6752440000000002, 1.679928, 1.6846120000000002, 1.6892960000000001, 1.69398, 1.698664, 1.703348, 1.7080320000000002, 1.7127160000000001, 1.7174000000000003, 1.7220840000000002, 1.726768, 1.731452, 1.7361360000000001, 1.7408200000000003, 1.7455040000000002, 1.750188, 1.7548720000000002, 1.7595560000000001, 1.76424, 1.768924, 1.773608, 1.7782920000000002, 1.7829760000000001, 1.7876600000000002, 1.7923440000000002, 1.797028, 1.801712, 1.8063960000000001, 1.8110800000000002, 1.8157640000000002, 1.820448, 1.8251320000000002, 1.829816, 1.8345, 1.839184, 1.8438680000000003, 1.8485520000000002, 1.853236, 1.8579200000000002, 1.8626040000000001, 1.867288, 1.871972, 1.876656, 1.8813400000000002, 1.8860240000000001, 1.890708, 1.8953920000000002, 1.900076, 1.90476, 1.909444, 1.9141280000000003, 1.9188120000000002, 1.923496, 1.9281800000000002, 1.9328640000000001, 1.937548, 1.942232, 1.9469160000000003, 1.9516000000000002, 1.9562840000000001, 1.960968, 1.9656520000000002, 1.970336, 1.97502, 1.9797040000000004, 1.9843880000000003, 1.9890720000000002, 1.993756, 1.9984400000000002, 2.003124, 2.007808, 2.012492, 2.017176, 2.02186, 2.026544, 2.031228, 2.035912, 2.040596, 2.04528, 2.049964, 2.0546480000000003, 2.059332, 2.064016, 2.0687, 2.073384, 2.078068, 2.082752, 2.087436, 2.09212, 2.096804, 2.101488, 2.106172, 2.1108559999999996, 2.1155399999999998, 2.120224, 2.124908, 2.129592, 2.1342760000000003, 2.13896, 2.143644, 2.148328, 2.153012, 2.1576959999999996, 2.1623799999999997, 2.167064, 2.171748, 2.176432, 2.181116, 2.1858, 2.1904839999999997, 2.195168, 2.199852, 2.204536, 2.20922, 2.213904, 2.218588, 2.2232719999999997, 2.227956, 2.2326399999999995, 2.237324, 2.2420080000000002, 2.246692, 2.251376, 2.2560599999999997, 2.260744, 2.2654279999999996, 2.270112, 2.2747960000000003, 2.27948, 2.284164, 2.2888479999999998, 2.293532, 2.2982159999999996, 2.3028999999999997, 2.3075840000000003, 2.312268, 2.316952, 2.321636, 2.32632, 2.3310039999999996, 2.3356879999999998, 2.3403720000000003, 2.345056, 2.34974, 2.354424, 2.359108, 2.3637919999999997, 2.368476, 2.3731599999999995, 2.377844, 2.382528, 2.387212, 2.391896, 2.3965799999999997, 2.401264, 2.4059479999999995, 2.410632, 2.4153160000000002], \"xaxis\": \"x\", \"y\": [0.6819149123367887, 0.7205074161959196, 0.7599021672627687, 0.800011636609975, 0.8407420939731337, 0.8819940421876269, 0.9236627030081604, 0.9656385500126676, 1.0078078839012266, 1.050053445197989, 1.0922550591483489, 1.1342903074703121, 1.1760352215613348, 1.2173649917705627, 1.2581546874106215, 1.2982799822908362, 1.337617880692534, 1.3760474388646275, 1.4134504772823724, 1.4497122790740444, 1.4847222701710932, 1.5183746768713158, 1.5505691566188409, 1.5812113978989635, 1.6102136852230629, 1.6374954252445704, 1.6629836301093814, 1.6866133542136583, 1.7083280806304195, 1.7280800535865815, 1.7458305535372711, 1.7615501116066974, 1.7752186604559526, 1.7868256190069398, 1.7963699089046616, 1.8038599011406231, 1.809313291887646, 1.8127569073065863, 1.8142264378699378, 1.8137661035937296, 1.8114282524615568, 1.8072728952437884, 1.8013671808392269, 1.7937848171720774, 1.784605443539323, 1.7739139610977561, 1.7617998288819572, 1.748356333332285, 1.733679839765829, 1.717869034527167, 1.701024166697589, 1.6832462982137735, 1.6646365710472497, 1.6452954997270164, 1.625322296957129, 1.6048142394015232, 1.583866079896858, 1.5625695114316531, 1.5410126872205836, 1.519279800132844, 1.4974507236309278, 1.4756007152692945, 1.4538001827190605, 1.4321145112516327, 1.4106039506552472, 1.3893235586950752, 1.3683231974774543, 1.3476475784555861, 1.3273363513267715, 1.3074242317246019, 1.2879411624035366, 1.2689125025436698, 1.250359239861978, 1.2322982203910589, 1.214742391062572, 1.1977010505931895, 1.1811801045972576, 1.1651823213231267, 1.1497075849097915, 1.1347531435683174, 1.1203138505910786, 1.1063823965655804, 1.0929495316055, 1.0800042767991613, 1.067534124407612, 1.0555252266165194, 1.0439625728570003, 1.0328301558619137, 1.0221111267203984, 1.0117879392410336, 1.001842483941331, 0.9922562119579289, 0.9830102491283236, 0.9740855004417157, 0.9654627450039344, 0.957122721618681, 0.9490462050626768, 0.9412140731319999, 0.9336073645654052, 0.9262073280099302, 0.9189954622846074, 0.9119535483173445, 0.9050636732736786, 0.8983082475579244, 0.8916700155394447, 0.8851320610304255, 0.8786778087069497, 0.8722910228124185, 0.8659558046017342, 0.859656590067176, 0.8533781495247541, 0.8471055906267727, 0.8408243662980913, 0.8345202889679977, 0.8281795522869495, 0.821788761280382, 0.8153349716053403, 0.8088057382472855, 0.802189173633345, 0.7954740147556716, 0.7886496985068661, 0.7817064440418733, 0.7746353406111166, 0.7674284389713779, 0.7600788441869992, 0.7525808073960568, 0.7449298139443993, 0.7371226651928728, 0.7291575512854568, 0.7210341122314776, 0.7127534848039687, 0.7043183329861249, 0.6957328600035324, 0.6870028003536566, 0.67813539067585, 0.6691393187828671, 0.6600246506848034, 0.6508027359638459, 0.641486092387735, 0.6320882711660336, 0.6226237047410502, 0.6131075394505349, 0.6035554557893116, 0.5939834793209364, 0.5844077855394866, 0.574844502149312, 0.5653095123131318, 0.5558182624150133, 0.5463855777959105, 0.5370254897492678, 0.5277510768189745, 0.5185743231296075, 0.5095059961093356, 0.5005555455500291, 0.4917310254990489, 0.4830390400052372, 0.4744847132603036, 0.46607168419817335, 0.4578021251503799, 0.4496767837156054, 0.4416950465951013, 0.4338550237805525, 0.4261536511630038, 0.4185868093650345, 0.4111494563860908, 0.4038357714938034, 0.3966393076917536, 0.38955315004469526, 0.38257007714279606, 0.3756827230331419, 0.3688837370350749, 0.36216593898091204, 0.3555224675800301, 0.3489469197870056, 0.34243347925837425, 0.3359770322028884, 0.3295732691624916, 0.32321877150175365, 0.31691108162874254, 0.3106487562173877, 0.3044314019478398, 0.29825969352507026, 0.2921353739752676, 0.2860612374529264, 0.28004109501754193, 0.27407972405615577, 0.2681828022353189, 0.2623568270618651, 0.2566090223146814, 0.2509472327776354, 0.24537980885514546, 0.23991548278451005, 0.2345632382710188, 0.22933217546094134, 0.22423137323176565, 0.21926975081672845, 0.2144559307901805, 0.20979810542054145, 0.2053039083477636, 0.20098029346224136, 0.19683342275234447, 0.19286856474936453, 0.1890900050333224, 0.18550097007324512, 0.1821035654641455, 0.17889872939365492, 0.17588620192812782, 0.17306451045552115, 0.1704309713652386, 0.16798170778829347, 0.16571168296957361, 0.1636147486025031, 0.16168370722962264, 0.1599103876048063, 0.15828573172781582, 0.1567998921028911, 0.15544233764272258, 0.15420196653936202, 0.15306722435560038, 0.152026225554547, 0.15106687668130306, 0.1501769994377729, 0.1493444519481708, 0.14855724659644481, 0.14780366292493394, 0.1470723542129522, 0.14635244650118634, 0.1456336289891177, 0.14490623490432228, 0.1441613121206488, 0.1433906829831847, 0.14258699297801666, 0.14174374806076914, 0.1408553406267522, 0.13991706426465292, 0.13892511758284568, 0.13787659753081577, 0.13676948275657438, 0.13560260764342771, 0.1343756277556323, 0.13308897749229912, 0.13174382080276978, 0.13034199585524137, 0.12888595457462426, 0.1273786979766286, 0.12582370822419828, 0.12422487832103728, 0.1225864403365262, 0.12091289302819352, 0.11920892969341719, 0.11747936704237062, 0.11572907584046092, 0.11396291402150951, 0.11218566292338786, 0.11040196724626812, 0.10861627928039576, 0.10683280789553229, 0.10505547272797414, 0.10328786394327508, 0.10153320789335246, 0.09979433892539138, 0.09807367753672828, 0.09637321500461628, 0.09469450455245614, 0.09303865904483008, 0.09140635513278751, 0.0897978436987231, 0.08821296637747124, 0.08665117785768046, 0.08511157359606827, 0.0835929225078589, 0.08209370413076207, 0.0806121496985195, 0.07914628650463644, 0.07769398488871787, 0.0762530071380945, 0.0748210575672911, 0.07339583301836429, 0.07197507301704269, 0.07055660882351855, 0.06913841063302728, 0.06771863221007063, 0.06629565228107379, 0.06486811206290974, 0.063434948368275, 0.06199542180229499, 0.060549139646645246, 0.05909607311636275, 0.057636568768660586, 0.05617135394058583, 0.05470153619131962, 0.05322859682330796, 0.051754378652247864, 0.05028106828730483, 0.04881117326798775, 0.04734749448120284, 0.04589309434968392, 0.04445126134004178, 0.04302547138412423, 0.041619346840582695, 0.040236613644128956, 0.03888105729790378, 0.037556478359916025, 0.036266648058218824, 0.035015264642195086, 0.03380591104012859, 0.03264201434742713, 0.03152680761693953, 0.030463294364357452, 0.02945421613941896, 0.02850202344923527, 0.027608850255244986, 0.026776492201660552, 0.026006388672302684, 0.025299608715732044, 0.02465684082668141, 0.02407838652584103, 0.023564157640644783, 0.023113677157181427, 0.022726083487756777, 0.022400137979744418, 0.022134235478710445, 0.021926417751693104, 0.021774389574081385, 0.021675537284747796, 0.021626949617839893, 0.02162544062477165, 0.02166757450534572, 0.02174969217151693, 0.02186793937013176, 0.022018296191269566, 0.022196607785993815, 0.022398616111051883, 0.02261999250824803, 0.022856370913021073, 0.023103381470603406, 0.023356684319679015, 0.023612003283560033, 0.023865159188604254, 0.024112102510070413, 0.024348945028098923, 0.024571990162283883, 0.024777761643599044, 0.024963030178400673, 0.025124837761847412, 0.025260519308155437, 0.025367721283211988, 0.02544441705150244, 0.02548891868407474, 0.02549988501708113, 0.025476325800711387, 0.02541760183518896, 0.025323421052802702, 0.02519383057132202, 0.025029204813037345, 0.024830229853382416, 0.024597884231850813, 0.024333416523908045, 0.02403832003404439, 0.023714305025324924, 0.023363268948224176, 0.022987265169831964, 0.022588470732562385, 0.022169153688443865, 0.02173164056036161, 0.02127828447502609, 0.020811434494037512, 0.020333406639602158, 0.01984645707094246, 0.019352757817212397, 0.018854375414028426, 0.018353252725009882, 0.017851194158624555, 0.01734985441591236, 0.016850730828145345, 0.016355159267034958, 0.015864313535546577, 0.01537920807647946, 0.014900703770348212, 0.014429516535218692, 0.01396622839027465, 0.013511300603039976, 0.013065088508137495, 0.012627857563729073, 0.012199800200581944, 0.01178105301800081, 0.011371713890344347, 0.01097185856695388, 0.010581556376285986, 0.010200884680886643, 0.009829941772445875, 0.009468857944278913, 0.009117804530858005, 0.008777000759098286, 0.008446718312601674, 0.008127283566646307, 0.007819077507097556, 0.007522533399439637, 0.007238132323726318, 0.006966396736516627, 0.006707882261038096, 0.006463167941308788, 0.006232845224320233, 0.006017505956356331, 0.005817729694979186, 0.005634070647159623, 0.005467044546606157, 0.005317115779788074, 0.0051846850607845316, 0.005070077940316823, 0.004973534414582256, 0.004895199875291399, 0.0048351176141247796, 0.004793223063196181, 0.004769339918570971, 0.004763178256978336, 0.004774334717119343, 0.004802294776955758, 0.004846437117624338, 0.004906040023725111, 0.004980289729262756, 0.005068290579077626, 0.005169076837806496, 0.005281625942898821, 0.00540487296563165, 0.005537726015070153, 0.005679082295161769, 0.005827844505258523, 0.005982937259928837, 0.00614332319548331, 0.00630801842865484, 0.006476107037701349, 0.006646754248071566, 0.0068192180237825655, 0.006992858791729332, 0.0071671470590372564, 0.007341668722841397, 0.007516127916915404, 0.007690347289565543, 0.007864265661171007, 0.008037933066544451, 0.008211503245628155, 0.008385223704543518, 0.008559423526222085, 0.008734499164275104, 0.00891089850393998, 0.009089103518459807, 0.0092696118868061, 0.009452917968089053, 0.009639493548352874, 0.00982976878599478, 0.010024113782301041, 0.010222821193371586, 0.010426090279109197, 0.010634012754387858, 0.010846560767681658, 0.011063577284312958, 0.01128476909629344, 0.01150970261993501, 0.01173780257762668, 0.01196835359315758, 0.012200504662547886, 0.012433276396364677, 0.012665570866756863, 0.012896183834636433, 0.01312381908111581, 0.013347104523825344, 0.013564609764176824, 0.013774864686832144, 0.01397637871808612, 0.014167660345780266, 0.01434723650959203, 0.014513671486655057, 0.014665584922714244, 0.01480166869240015, 0.014920702312483582, 0.015021566677722916, 0.01510325593859281, 0.015164887392155657, 0.015205709309959018, 0.015225106678506338, 0.01522260487703607, 0.01519787136268408, 0.015150715473407128, 0.015081086493345539, 0.014989070152883381, 0.014874883756072087, 0.014738870141135446, 0.01458149068555793, 0.014403317566108126, 0.014205025476635656, 0.013987382993362359, 0.013751243759595601, 0.013497537640356853, 0.01322726197346103, 0.012941473018228256, 0.012641277677379947, 0.012327825542810717, 0.012002301292784146, 0.011665917447484887], \"yaxis\": \"y\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"mode\": \"lines\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [0.08800000000000001, 0.09266400000000001, 0.09732800000000001, 0.10199200000000001, 0.106656, 0.11132, 0.115984, 0.120648, 0.125312, 0.129976, 0.13464, 0.139304, 0.143968, 0.14863200000000001, 0.153296, 0.15796, 0.162624, 0.167288, 0.171952, 0.176616, 0.18128, 0.185944, 0.190608, 0.195272, 0.199936, 0.2046, 0.209264, 0.213928, 0.218592, 0.223256, 0.22792, 0.232584, 0.23724800000000001, 0.24191199999999996, 0.24657600000000002, 0.25123999999999996, 0.255904, 0.26056799999999997, 0.265232, 0.26989599999999997, 0.27456, 0.27922399999999997, 0.283888, 0.288552, 0.293216, 0.29788, 0.302544, 0.307208, 0.311872, 0.316536, 0.3212, 0.325864, 0.330528, 0.335192, 0.339856, 0.34452, 0.349184, 0.353848, 0.358512, 0.363176, 0.36784, 0.372504, 0.377168, 0.381832, 0.386496, 0.39116, 0.39582399999999995, 0.400488, 0.405152, 0.409816, 0.41447999999999996, 0.419144, 0.423808, 0.428472, 0.43313599999999997, 0.43779999999999997, 0.442464, 0.447128, 0.45179199999999997, 0.456456, 0.46112000000000003, 0.46578400000000003, 0.470448, 0.475112, 0.479776, 0.48444000000000004, 0.489104, 0.493768, 0.498432, 0.503096, 0.50776, 0.512424, 0.517088, 0.521752, 0.526416, 0.53108, 0.535744, 0.540408, 0.5450719999999999, 0.549736, 0.5544, 0.559064, 0.5637279999999999, 0.568392, 0.573056, 0.57772, 0.5823839999999999, 0.5870479999999999, 0.5917119999999999, 0.5963759999999999, 0.6010399999999999, 0.6057039999999999, 0.6103679999999999, 0.6150319999999999, 0.6196959999999999, 0.62436, 0.6290239999999999, 0.6336879999999999, 0.6383519999999999, 0.6430159999999999, 0.6476799999999999, 0.6523439999999999, 0.6570079999999999, 0.6616719999999999, 0.6663359999999999, 0.6709999999999999, 0.6756639999999999, 0.6803279999999999, 0.6849919999999999, 0.6896559999999999, 0.6943199999999999, 0.6989839999999999, 0.7036479999999998, 0.7083119999999999, 0.7129759999999999, 0.71764, 0.722304, 0.726968, 0.731632, 0.736296, 0.7409599999999998, 0.7456239999999998, 0.750288, 0.754952, 0.759616, 0.76428, 0.768944, 0.773608, 0.7782719999999999, 0.7829359999999999, 0.7875999999999999, 0.792264, 0.796928, 0.801592, 0.806256, 0.81092, 0.8155839999999999, 0.8202479999999999, 0.8249119999999999, 0.8295759999999999, 0.83424, 0.838904, 0.843568, 0.848232, 0.8528959999999999, 0.8575599999999999, 0.8622239999999999, 0.8668879999999999, 0.8715519999999999, 0.8762159999999999, 0.88088, 0.885544, 0.8902079999999999, 0.8948719999999999, 0.8995359999999999, 0.9041999999999999, 0.9088639999999999, 0.9135279999999999, 0.9181919999999999, 0.922856, 0.9275199999999999, 0.9321839999999999, 0.9368479999999999, 0.9415119999999999, 0.9461759999999999, 0.9508399999999999, 0.9555039999999999, 0.9601679999999999, 0.9648319999999999, 0.9694959999999999, 0.9741599999999999, 0.9788239999999999, 0.9834879999999999, 0.9881519999999999, 0.9928159999999999, 0.9974799999999999, 1.002144, 1.006808, 1.011472, 1.016136, 1.0208, 1.025464, 1.030128, 1.034792, 1.039456, 1.04412, 1.048784, 1.053448, 1.058112, 1.062776, 1.06744, 1.072104, 1.076768, 1.081432, 1.086096, 1.0907600000000002, 1.095424, 1.100088, 1.104752, 1.109416, 1.11408, 1.118744, 1.123408, 1.128072, 1.132736, 1.1374, 1.142064, 1.146728, 1.151392, 1.1560560000000002, 1.1607200000000002, 1.1653840000000002, 1.170048, 1.174712, 1.179376, 1.18404, 1.188704, 1.193368, 1.198032, 1.202696, 1.20736, 1.212024, 1.216688, 1.221352, 1.226016, 1.23068, 1.235344, 1.2400080000000002, 1.244672, 1.249336, 1.254, 1.258664, 1.263328, 1.267992, 1.272656, 1.27732, 1.281984, 1.286648, 1.291312, 1.295976, 1.30064, 1.305304, 1.309968, 1.314632, 1.3192959999999998, 1.3239599999999998, 1.328624, 1.333288, 1.337952, 1.342616, 1.34728, 1.351944, 1.356608, 1.361272, 1.365936, 1.3706, 1.375264, 1.379928, 1.384592, 1.389256, 1.3939199999999998, 1.3985839999999998, 1.4032479999999998, 1.4079119999999998, 1.412576, 1.41724, 1.421904, 1.426568, 1.431232, 1.435896, 1.44056, 1.445224, 1.449888, 1.454552, 1.459216, 1.46388, 1.4685439999999998, 1.4732079999999999, 1.4778719999999999, 1.4825359999999999, 1.4871999999999999, 1.4918639999999999, 1.496528, 1.501192, 1.505856, 1.51052, 1.515184, 1.519848, 1.524512, 1.529176, 1.53384, 1.538504, 1.5431679999999999, 1.5478319999999999, 1.5524959999999999, 1.5571599999999999, 1.5618239999999999, 1.5664879999999999, 1.5711519999999999, 1.5758159999999999, 1.58048, 1.585144, 1.589808, 1.5944720000000001, 1.5991360000000001, 1.6038000000000001, 1.6084640000000001, 1.6131280000000001, 1.617792, 1.622456, 1.62712, 1.631784, 1.636448, 1.641112, 1.645776, 1.65044, 1.655104, 1.659768, 1.664432, 1.6690960000000001, 1.6737600000000001, 1.6784240000000001, 1.6830880000000001, 1.6877520000000001, 1.692416, 1.69708, 1.701744, 1.706408, 1.711072, 1.715736, 1.7204, 1.725064, 1.729728, 1.734392, 1.739056, 1.74372, 1.748384, 1.7530480000000002, 1.7577120000000002, 1.7623760000000002, 1.76704, 1.771704, 1.776368, 1.781032, 1.785696, 1.79036, 1.795024, 1.799688, 1.804352, 1.809016, 1.81368, 1.818344, 1.823008, 1.827672, 1.832336, 1.8370000000000002, 1.841664, 1.846328, 1.850992, 1.855656, 1.86032, 1.864984, 1.869648, 1.874312, 1.878976, 1.88364, 1.888304, 1.892968, 1.897632, 1.902296, 1.90696, 1.9116239999999998, 1.9162879999999998, 1.9209519999999998, 1.925616, 1.93028, 1.934944, 1.939608, 1.944272, 1.948936, 1.9536, 1.958264, 1.962928, 1.967592, 1.972256, 1.97692, 1.981584, 1.9862479999999998, 1.9909119999999998, 1.9955759999999998, 2.00024, 2.004904, 2.009568, 2.014232, 2.018896, 2.02356, 2.028224, 2.032888, 2.037552, 2.042216, 2.04688, 2.051544, 2.056208, 2.060872, 2.065536, 2.0702, 2.074864, 2.079528, 2.084192, 2.088856, 2.0935200000000003, 2.098184, 2.102848, 2.107512, 2.112176, 2.11684, 2.121504, 2.126168, 2.130832, 2.135496, 2.14016, 2.1448240000000003, 2.149488, 2.1541520000000003, 2.158816, 2.1634800000000003, 2.168144, 2.172808, 2.177472, 2.182136, 2.1868, 2.191464, 2.196128, 2.200792, 2.205456, 2.21012, 2.214784, 2.219448, 2.2241120000000003, 2.228776, 2.2334400000000003, 2.238104, 2.2427680000000003, 2.247432, 2.252096, 2.25676, 2.261424, 2.266088, 2.270752, 2.275416, 2.28008, 2.284744, 2.289408, 2.294072, 2.298736, 2.3034, 2.308064, 2.3127280000000003, 2.317392, 2.322056, 2.32672, 2.331384, 2.336048, 2.340712, 2.345376, 2.35004, 2.354704, 2.359368, 2.364032, 2.368696, 2.37336, 2.378024, 2.382688, 2.387352, 2.3920160000000004, 2.39668, 2.401344, 2.406008, 2.410672, 2.415336], \"xaxis\": \"x\", \"y\": [0.6191961763301917, 0.6431777462759342, 0.6674105366187997, 0.6918578400568595, 0.7164813928719072, 0.7412414913273826, 0.7660971182415246, 0.7910060792088524, 0.815925147864082, 0.8408102195065452, 0.8656164723310016, 0.8902985354429299, 0.9148106627737508, 0.9391069119545427, 0.9631413271562863, 0.9868681248610058, 1.010241881491929, 1.0332177218023588, 1.0557515069025485, 1.077800020792187, 1.099321154262736, 1.120274085039584, 1.1406194530483293, 1.1603195297127584, 1.1793383802239314, 1.1976420177601912, 1.215198548686355, 1.2319783078167394, 1.2479539828902757, 1.2631007274764963, 1.277396261607923, 1.2908209595166578, 1.3033579239402322, 1.314993046553098, 1.325715054174784, 1.3355155405029695, 1.3443889832186016, 1.35233274640988, 1.3593470683615752, 1.3654350348550346, 1.3706025382212244, 1.3748582224838506, 1.3782134150208392, 1.38068204525981, 1.3822805510057636, 1.3830277730764853, 1.38294483899257, 1.382055036533965, 1.380383678033054, 1.377957956325251, 1.374806793321496, 1.3709606822027245, 1.3664515242641337, 1.361312461456923, 1.3555777056869613, 1.349282365933678, 1.34246227424854, 1.3351538116808586, 1.3273937351596123, 1.3192190063338622, 1.3106666233413644, 1.3017734564357113, 1.2925760883569737, 1.28311066028007, 1.2734127241192927, 1.2635171019070903, 1.2534577529010844, 1.2432676490056556, 1.2329786590241905, 1.2226214421855246, 1.21222535131409, 1.2018183459382665, 1.191426915556079, 1.1810760132022875, 1.1707889993867004, 1.1605875964007275, 1.1504918529184216, 1.1405201187499974, 1.130689029540625, 1.1210135011456943, 1.1115067333560318, 1.102180222593361, 1.0930437831477715, 1.0841055764855434, 1.0753721481176066, 1.0668484714863622, 1.0585379983017338, 1.0504427147362492, 1.0425632028736556, 1.0348987067960769, 1.027447202690835, 1.0202054723597094, 1.0131691795203288, 1.0063329483012973, 0.9996904433492186, 0.9932344509866652, 0.9869569608848698, 0.9808492477429867, 0.9749019524969038, 0.9691051626139372, 0.9634484910651412, 0.9579211536036053, 0.9525120440146225, 0.9472098070414415, 0.942002908727987, 0.936879703956844, 0.9318285009968278, 0.9268376229088692, 0.9218954656915955, 0.9169905530785645, 0.9121115879273674, 0.9072475001665146, 0.902387491289141, 0.8975210754030644, 0.8926381168644001, 0.8877288645371797, 0.8827839827340023, 0.8777945789030245, 0.8727522281347353, 0.8676489945680991, 0.8624774497801591, 0.8572306882462746, 0.8519023399600949, 0.8464865803035188, 0.8409781372574625, 0.835372296044509, 0.8296649012948053, 0.8238523568270384, 0.8179316231371428, 0.8119002126888462, 0.8057561831022071, 0.7994981283391525, 0.7931251679886444, 0.7866369347584792, 0.7800335602858651, 0.7733156593846404, 0.7664843128532458, 0.7595410489741269, 0.7524878238419468, 0.745327000664608, 0.7380613281874115, 0.7306939183964009, 0.7232282236619484, 0.7156680134875132, 0.7080173510311724, 0.7002805695686964, 0.6924622490664277, 0.6845671930299195, 0.6766004057900098, 0.6685670703817173, 0.6604725271629761, 0.6523222533098046, 0.6441218433120309, 0.635876990579361, 0.6275934702513795, 0.6192771232873657, 0.61093384189261, 0.6025695563177272, 0.5941902230463342, 0.585801814364862, 0.5774103092865283, 0.5690216857798428, 0.5606419142309752, 0.5522769520491219, 0.5439327393050382, 0.5356151952755446, 0.5273302157513376, 0.5190836709521118, 0.5108814038821804, 0.5027292289515661, 0.4946329306822308, 0.48659826231669717, 0.4786309441471044, 0.47073666138650644, 0.46292106141116013, 0.45518975021249924, 0.44754828791034873, 0.4400021831945437, 0.4325568865802757, 0.4252177823829136, 0.41799017934049776, 0.4108792998361732, 0.4038902676982625, 0.397028094581986, 0.39029766496371493, 0.3837037198056328, 0.37725083897535305, 0.37094342253106327, 0.3647856710076222, 0.35878156486244633, 0.3529348432615411, 0.34724898240535096, 0.3417271736109283, 0.3363723013809233, 0.331186921700917, 0.32617324081441224, 0.3213330947292338, 0.31666792971011387, 0.31217878400974025, 0.307866271084615, 0.30373056453268216, 0.2997713849770234, 0.29598798910409096, 0.2923791610461798, 0.2889432062763646, 0.2856779481602342, 0.2825807272827622, 0.27964840364089827, 0.2768773617633302, 0.2742635187887307, 0.27180233550307914, 0.26948883030574067, 0.2673175960432984, 0.26528281962008804, 0.2633783042653523, 0.2615974943093245, 0.2599335022946808, 0.2583791382260343, 0.2569269407387607, 0.2555692099497136, 0.25429804173651727, 0.25310536317932153, 0.25198296888926963, 0.25092255794159374, 0.24991577112821728, 0.24895422824504304, 0.24802956513266108, 0.24713347019593546, 0.24625772013770142, 0.24539421465440828, 0.24453500985680066, 0.24367235019635647, 0.24279869869794887, 0.24190676532071836, 0.24098953329216033, 0.24004028328455562, 0.2390526153277952, 0.23802046837798024, 0.2369381374865971, 0.2358002885401919, 0.23460197056500304, 0.23333862561460642, 0.2320060962810101, 0.23060063089051486, 0.2291188864648267, 0.22755792954512227, 0.2259152349918792, 0.22418868288616553, 0.2223765536686091, 0.22047752166042478, 0.2184906471166116, 0.2164153669647998, 0.21425148438426445, 0.21199915737844482, 0.20965888649103573, 0.2072315018105153, 0.2047181494010305, 0.20212027728908008, 0.1994396211256622, 0.19667818963270847, 0.1938382499309765, 0.1909223128343842, 0.18793311818326525, 0.18487362027650445, 0.18174697345017554, 0.1785565178384042, 0.17530576534093653, 0.1719983858114699, 0.168638193471395, 0.16522913354534624, 0.16177526910794957, 0.15828076812551645, 0.15474989067218142, 0.1511869762971643, 0.14759643151843743, 0.14398271741807087, 0.14035033731583757, 0.13670382450021257, 0.13304772999957243, 0.12938661038107224, 0.12572501557018825, 0.1220674766901076, 0.11841849392685794, 0.11478252443309744, 0.11116397029067498, 0.1075671665592177, 0.10399636944494171, 0.10045574463044912, 0.09694935581229372, 0.09348115349844231, 0.09005496412229365, 0.08667447953353528, 0.08334324692872244, 0.08006465928600255, 0.07684194636881418, 0.07367816636266468, 0.07057619820720762, 0.06753873468284721, 0.06456827630700993, 0.061667126090126846, 0.058837385195329744, 0.05608094953898218, 0.053399507361549026, 0.05079453779008513, 0.04826731040491204, 0.045818885814007844, 0.04345011722937525, 0.04116165303034724, 0.038953940289555095, 0.036827229228273035, 0.03478157855919291, 0.03281686166649273, 0.030932773565466327, 0.029128838577070132, 0.027404418646617967, 0.025758722230578558, 0.02419081367108171, 0.02269962297434805, 0.021283955906868768, 0.019942504321781185, 0.018673856627527276, 0.017476508311521904, 0.01634887243317649, 0.015289290003182422, 0.014296040169404481, 0.013367350134011408, 0.012501404731505135, 0.011696355603029058, 0.010950329908650575, 0.010261438526141052, 0.00962778369202, 0.009047466048197455, 0.008518591065342732, 0.008039274822033498, 0.007607649126700914, 0.00722186597729254, 0.006880101361335275, 0.006580558406610664, 0.006321469899873153, 0.006101100197873568, 0.00591774656132566, 0.005769739948309246, 0.005655445308885027, 0.005573261427351234, 0.0055216203625625205, 0.005498986540019751, 0.005503855552001024, 0.0055347527238192515, 0.005590231505349392, 0.005668871747265998, 0.005769277920972898, 0.0058900773400047245, 0.006029918438753751, 0.006187469161752822, 0.006361415513460479, 0.006550460314588979, 0.006753322206538357, 0.006968734940504426, 0.007195446982375602, 0.007432221458689993, 0.007677836462758957, 0.007931085733653913, 0.008190779714176345, 0.008455746987269199, 0.008724836083664847, 0.008996917646984263, 0.009270886936090818, 0.00954566663834173, 0.009820209961555491, 0.010093503967101574, 0.010364573101597078, 0.010632482880331823, 0.010896343671804387, 0.01115531452969377, 0.011408607016263308, 0.01165548895963529, 0.011895288086617955, 0.012127395472830454, 0.012351268752764136, 0.012566435034141713, 0.012772493463470916, 0.01296911739301528, 0.013156056103482304, 0.01333313604151245, 0.013500261536480674, 0.013657414967129168, 0.013804656355055043, 0.013942122368996982, 0.014070024731103652, 0.01418864802382745, 0.014298346903665627, 0.014399542735560206, 0.014492719669261092, 0.014578420186246098, 0.0146572401527717, 0.01472982342119704, 0.014796856027785216, 0.014859060040649394, 0.014917187116296261, 0.014972011827252918, 0.015024324826485106, 0.015074925916674194, 0.015124617093882381, 0.015174195635675609, 0.01522444730338257, 0.015276139726850423, 0.015330016037831753, 0.015386788815035001, 0.015447134399937423, 0.015511687637753393, 0.015581037092541947, 0.015655720779404123, 0.015736222450154762, 0.01582296846184965, 0.01591632525021223, 0.016016597422442266, 0.016124026476211258, 0.016238790143970148, 0.01636100235412215, 0.016490713793258074, 0.01662791304661575, 0.016772528287307496, 0.01692442947875088, 0.017083431049219767, 0.01724929499257476, 0.017421734345097785, 0.017600416984989414, 0.017784969698527227, 0.01797498245515107, 0.018170012832843564, 0.01836959053511071, 0.018573221941617837, 0.018780394636071947, 0.018990581857222365, 0.01920324682182426, 0.01941784687201307, 0.019633837403702437, 0.019850675537266094, 0.020067823496813755, 0.02028475166973488, 0.020500941323773853, 0.020715886964626083, 0.02092909832281535, 0.021140101964345716, 0.02134844252522772, 0.021553683575384543, 0.02175540812257298, 0.021953218771744658, 0.022146737559662354, 0.02233560548853219, 0.022519481785866578, 0.02269804292073261, 0.02287098140893775, 0.023038004441551466, 0.02319883237245326, 0.023353197101338832, 0.023500840388822834, 0.02364151213996737, 0.023774968691768872, 0.023900971138884917, 0.024019283730215085, 0.02412967236690682, 0.024231903229985544, 0.024325741563149837, 0.024410950633380727, 0.024487290888930542, 0.02455451933103305, 0.02461238911235557, 0.02466064937183941, 0.024699045312189832, 0.024727318522917763, 0.02474520754853808, 0.024752448698326716, 0.024748777090958202, 0.024733927924413205, 0.024707637958783286, 0.024669647197027616, 0.024619700746368812, 0.02455755084086706, 0.024482959003793575, 0.024395698326746075, 0.02429555584101717, 0.024182334955546985, 0.024055857934868967, 0.023915968389794692, 0.023762533753182435, 0.02359544771299591, 0.023414632574983656, 0.02322004152769478, 0.023011660783192108, 0.022789511567723426, 0.022553651937762275, 0.022304178398225065, 0.02204122730130088, 0.021764976006186477, 0.02147564378208761, 0.021173492439112575, 0.020858826674133732, 0.020531994121298067, 0.020193385099616056], \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [0.627, 0.35100000000000003, 0.672, 0.16699999999999998, 2.2880000000000003, 0.201, 0.248, 0.134, 0.158, 0.23199999999999998, 0.191, 0.537, 1.4409999999999998, 0.39799999999999996, 0.5870000000000001, 0.484, 0.551, 0.254, 0.183, 0.529, 0.7040000000000001, 0.38799999999999996, 0.451, 0.263, 0.254, 0.205, 0.257, 0.48700000000000004, 0.245, 0.337, 0.546, 0.851, 0.267, 0.188, 0.512, 0.966, 0.42, 0.665, 0.503, 1.39, 0.271, 0.696, 0.235, 0.721, 0.294, 1.893, 0.564, 0.586, 0.344, 0.305, 0.491, 0.526, 0.342, 0.467, 0.718, 0.248, 0.254, 0.9620000000000001, 1.781, 0.17300000000000001, 0.304, 0.27, 0.5870000000000001, 0.6990000000000001, 0.258, 0.203, 0.855, 0.845, 0.33399999999999996, 0.18899999999999997, 0.867, 0.41100000000000003, 0.583, 0.231, 0.396, 0.14, 0.391, 0.37, 0.27, 0.307, 0.14, 0.102, 0.767, 0.237, 0.22699999999999998, 0.698, 0.17800000000000002, 0.324, 0.153, 0.165, 0.258, 0.44299999999999995, 0.261, 0.27699999999999997, 0.7609999999999999, 0.255, 0.13, 0.32299999999999995, 0.35600000000000004, 0.325, 1.222, 0.179, 0.262, 0.28300000000000003, 0.93, 0.8009999999999999, 0.207, 0.287, 0.336, 0.247, 0.19899999999999998, 0.5429999999999999, 0.192, 0.391, 0.588, 0.539, 0.22, 0.654, 0.44299999999999995, 0.223, 0.759, 0.26, 0.40399999999999997, 0.18600000000000003, 0.278, 0.496, 0.452, 0.261, 0.40299999999999997, 0.741, 0.361, 1.114, 0.35600000000000004, 0.457, 0.647, 0.08800000000000001, 0.597, 0.532, 0.703, 0.159, 0.268, 0.28600000000000003, 0.318, 0.272, 0.237, 0.5720000000000001, 0.096, 1.4, 0.218, 0.085, 0.39899999999999997, 0.43200000000000005, 1.189, 0.687, 0.13699999999999998, 0.337, 0.637, 0.833, 0.22899999999999998, 0.8170000000000001, 0.294, 0.204, 0.16699999999999998, 0.368, 0.743, 0.722, 0.256, 0.7090000000000001, 0.47100000000000003, 0.495, 0.18, 0.542, 0.773, 0.6779999999999999, 0.37, 0.7190000000000001, 0.382, 0.319, 0.19, 0.956, 0.084, 0.725, 0.299, 0.268, 0.244, 0.745, 0.615, 1.321, 0.64, 0.361, 0.142, 0.374, 0.38299999999999995, 0.578, 0.136, 0.395, 0.187, 0.6779999999999999, 0.905, 0.15, 0.8740000000000001, 0.23600000000000002, 0.787, 0.235, 0.324, 0.40700000000000003, 0.605, 0.151, 0.289, 0.355, 0.29, 0.375, 0.16399999999999998, 0.431, 0.26, 0.742, 0.514, 0.46399999999999997, 1.224, 0.261, 1.072, 0.805, 0.209, 0.687, 0.6659999999999999, 0.10099999999999999, 0.198, 0.652, 2.329, 0.08900000000000001, 0.645, 0.23800000000000002, 0.583, 0.39399999999999996, 0.293, 0.479, 0.586, 0.6859999999999999, 0.831, 0.5820000000000001, 0.192, 0.446, 0.402, 1.318, 0.32899999999999996, 1.213, 0.258, 0.42700000000000005, 0.282, 0.14300000000000002, 0.38, 0.284, 0.249, 0.23800000000000002, 0.9259999999999999, 0.5429999999999999, 0.557, 0.092, 0.655, 1.3530000000000002, 0.299, 0.7609999999999999, 0.612, 0.2, 0.226, 0.997, 0.9329999999999999, 1.101, 0.078, 0.24, 1.136, 0.128, 0.254, 0.42200000000000004, 0.251, 0.677, 0.29600000000000004, 0.45399999999999996, 0.7440000000000001, 0.8809999999999999, 0.33399999999999996, 0.28, 0.262, 0.165, 0.259, 0.647, 0.619, 0.8079999999999999, 0.34, 0.263, 0.434, 0.757, 1.224, 0.613, 0.254, 0.6920000000000001, 0.337, 0.52, 0.41200000000000003, 0.84, 0.8390000000000001, 0.42200000000000004, 0.156, 0.209, 0.207, 0.215, 0.326, 0.14300000000000002, 1.391, 0.875, 0.313, 0.605, 0.433, 0.626, 1.127, 0.315, 0.284, 0.345, 0.15, 0.129, 0.527, 0.19699999999999998, 0.254, 0.731, 0.14800000000000002, 0.12300000000000001, 0.6920000000000001, 0.2, 0.127, 0.122, 1.476, 0.166, 0.282, 0.13699999999999998, 0.26, 0.259, 0.932, 0.34299999999999997, 0.893, 0.331, 0.47200000000000003, 0.6729999999999999, 0.389, 0.29, 0.485, 0.349, 0.654, 0.187, 0.27899999999999997, 0.34600000000000003, 0.237, 0.252, 0.243, 0.58, 0.5589999999999999, 0.302, 0.9620000000000001, 0.569, 0.37799999999999995, 0.875, 0.583, 0.207, 0.305, 0.52, 0.385, 0.499, 0.368, 0.252, 0.306, 0.23399999999999999, 2.137, 1.7309999999999999, 0.545, 0.225, 0.816, 0.528, 0.299, 0.509, 0.23800000000000002, 1.021, 0.821, 0.23600000000000002, 0.9470000000000001, 1.268, 0.221, 0.205, 0.66, 0.239, 0.452, 0.9490000000000001, 0.444, 0.34, 0.389, 0.46299999999999997, 0.8029999999999999, 1.6, 0.9440000000000001, 0.196, 0.389, 0.24100000000000002, 0.161, 0.151, 0.28600000000000003, 0.28, 0.135, 0.52, 0.376, 0.336, 1.1909999999999998, 0.7020000000000001, 0.674, 0.528, 1.0759999999999998, 0.256, 0.534, 0.258, 1.095, 0.5539999999999999, 0.624, 0.21899999999999997, 0.507, 0.561, 0.496, 0.42100000000000004, 0.516, 0.264, 0.256, 0.32799999999999996, 0.284, 0.233, 0.10800000000000001, 0.551, 0.527, 0.16699999999999998, 1.138, 0.205, 0.244, 0.434, 0.147, 0.727, 0.435, 0.49700000000000005, 0.23, 0.955, 0.38, 2.42, 0.6579999999999999, 0.33, 0.51, 0.285, 0.415, 0.542, 0.381, 0.8320000000000001, 0.498, 0.212, 0.687, 0.364, 1.001, 0.46, 0.733, 0.41600000000000004, 0.705, 0.258, 1.022, 0.452, 0.26899999999999996, 0.6, 0.183, 0.5710000000000001, 0.607, 0.17, 0.259, 0.21, 0.126, 0.231, 0.711, 0.466, 0.162, 0.419, 0.344, 0.19699999999999998, 0.306, 0.233, 0.63, 0.365, 0.536, 1.159, 0.294, 0.551, 0.629, 0.292, 0.145, 1.1440000000000001, 0.174, 0.304, 0.292, 0.547, 0.163, 0.8390000000000001, 0.313, 0.267, 0.727, 0.738, 0.23800000000000002, 0.263, 0.314, 0.6920000000000001, 0.968, 0.409, 0.297, 0.207, 0.2, 0.525, 0.154, 0.268, 0.7709999999999999, 0.304, 0.18, 0.5820000000000001, 0.187, 0.305, 0.18899999999999997, 0.652, 0.151, 0.444, 0.299, 0.107, 0.493, 0.66, 0.7170000000000001, 0.6859999999999999, 0.917, 0.501, 1.251, 0.302, 0.19699999999999998, 0.735, 0.804, 0.968, 0.6609999999999999, 0.5489999999999999, 0.825, 0.159, 0.365, 0.423, 1.034, 0.16, 0.341, 0.68, 0.204, 0.591, 0.247, 0.42200000000000004, 0.47100000000000003, 0.161, 0.218, 0.237, 0.126, 0.3, 0.121, 0.502, 0.401, 0.49700000000000005, 0.601, 0.748, 0.41200000000000003, 0.085, 0.33799999999999997, 0.203, 0.27, 0.268, 0.43, 0.198, 0.892, 0.28, 0.813, 0.693, 0.245, 0.575, 0.371, 0.20600000000000002, 0.259, 0.19, 0.687, 0.41700000000000004, 0.129, 0.249, 1.1540000000000001, 0.342, 0.925, 0.175, 0.402, 1.699, 0.733, 0.682, 0.19399999999999998, 0.5589999999999999, 0.08800000000000001, 0.40700000000000003, 0.4, 0.19, 0.1, 0.6920000000000001, 0.212, 0.514, 1.258, 0.48200000000000004, 0.27, 0.138, 0.292, 0.593, 0.787, 0.878, 0.557, 0.207, 0.157, 0.257, 1.2819999999999998, 0.141, 0.24600000000000002, 1.6980000000000002, 1.4609999999999999, 0.34700000000000003, 0.158, 0.36200000000000004, 0.20600000000000002, 0.39299999999999996, 0.14400000000000002, 0.14800000000000002, 0.732, 0.23800000000000002, 0.34299999999999997, 0.115, 0.16699999999999998, 0.465, 0.153, 0.649, 0.871, 0.149, 0.695, 0.303, 0.17800000000000002, 0.61, 0.73, 0.134, 0.447, 0.455, 0.26, 0.133, 0.23399999999999999, 0.466, 0.26899999999999996, 0.455, 0.142, 0.24, 0.155, 1.162, 0.19, 1.2919999999999998, 0.182, 1.3940000000000001, 0.165, 0.637, 0.245, 0.217, 0.235, 0.141, 0.43, 0.16399999999999998, 0.631, 0.551, 0.285, 0.88, 0.5870000000000001, 0.32799999999999996, 0.23, 0.263, 0.127, 0.614, 0.332, 0.364, 0.366, 0.536, 0.64, 0.591, 0.314, 0.18100000000000002, 0.828, 0.335, 0.856, 0.257, 0.8859999999999999, 0.439, 0.191, 0.128, 0.268, 0.253, 0.598, 0.904, 0.483, 0.565, 0.905, 0.304, 0.11800000000000001, 0.177, 0.261, 0.17600000000000002, 0.14800000000000002, 0.674, 0.295, 0.439, 0.441, 0.35200000000000004, 0.121, 0.826, 0.97, 0.595, 0.415, 0.37799999999999995, 0.317, 0.289, 0.349, 0.251, 0.265, 0.23600000000000002, 0.496, 0.433, 0.326, 0.141, 0.32299999999999995, 0.259, 0.6459999999999999, 0.426, 0.56, 0.284, 0.515, 0.6, 0.45299999999999996, 0.293, 0.785, 0.4, 0.21899999999999997, 0.7340000000000001, 1.1740000000000002, 0.488, 0.358, 1.0959999999999999, 0.408, 0.17800000000000002, 1.182, 0.261, 0.223, 0.222, 0.44299999999999995, 1.057, 0.391, 0.258, 0.19699999999999998, 0.278, 0.7659999999999999, 0.40299999999999997, 0.142, 0.171, 0.34, 0.245, 0.349, 0.315], \"xaxis\": \"x\", \"y\": [\"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\"], \"yaxis\": \"y2\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [0.627, 0.672, 2.2880000000000003, 0.248, 0.158, 0.23199999999999998, 0.537, 0.39799999999999996, 0.5870000000000001, 0.484, 0.551, 0.254, 0.529, 0.451, 0.263, 0.254, 0.205, 0.257, 0.851, 0.665, 0.503, 1.39, 0.721, 1.893, 0.344, 0.467, 0.254, 0.27, 0.258, 0.855, 0.867, 0.583, 0.27, 0.22699999999999998, 0.153, 0.27699999999999997, 0.325, 1.222, 0.247, 0.19899999999999998, 0.5429999999999999, 0.588, 0.539, 0.22, 0.759, 0.278, 0.496, 0.40299999999999997, 0.741, 0.361, 1.114, 0.35600000000000004, 0.272, 1.189, 0.13699999999999998, 0.337, 0.8170000000000001, 0.743, 0.722, 0.18, 0.542, 0.7190000000000001, 0.319, 0.956, 0.745, 0.615, 1.321, 0.64, 0.361, 0.38299999999999995, 0.578, 0.395, 0.6779999999999999, 0.905, 0.15, 0.605, 0.151, 0.355, 0.431, 0.26, 0.742, 0.514, 1.224, 0.261, 1.072, 0.805, 0.652, 0.645, 0.23800000000000002, 0.479, 0.586, 0.6859999999999999, 0.831, 0.402, 1.318, 1.213, 0.9259999999999999, 0.5429999999999999, 1.3530000000000002, 0.7609999999999999, 0.226, 0.9329999999999999, 0.24, 1.136, 0.29600000000000004, 0.33399999999999996, 0.165, 0.259, 0.8079999999999999, 0.757, 1.224, 0.613, 0.337, 0.41200000000000003, 0.8390000000000001, 0.42200000000000004, 0.209, 0.326, 1.391, 0.875, 0.433, 1.127, 0.345, 0.129, 0.19699999999999998, 0.254, 0.731, 0.6920000000000001, 0.127, 0.282, 0.34299999999999997, 0.893, 0.331, 0.34600000000000003, 0.302, 0.9620000000000001, 0.569, 0.875, 0.583, 0.52, 0.368, 0.23399999999999999, 2.137, 0.528, 0.23800000000000002, 0.66, 0.239, 0.452, 0.34, 0.8029999999999999, 0.196, 0.24100000000000002, 0.161, 0.28600000000000003, 0.135, 0.376, 1.1909999999999998, 0.7020000000000001, 0.534, 0.258, 0.5539999999999999, 0.21899999999999997, 0.516, 0.264, 0.32799999999999996, 0.233, 0.205, 0.435, 0.955, 0.38, 2.42, 0.51, 0.542, 0.212, 1.001, 0.183, 0.711, 0.344, 0.63, 0.365, 1.1440000000000001, 0.163, 0.727, 0.314, 0.297, 0.268, 0.7709999999999999, 0.652, 0.302, 0.968, 0.6609999999999999, 0.5489999999999999, 0.825, 0.423, 1.034, 0.121, 0.502, 0.203, 0.693, 0.575, 0.371, 0.687, 0.129, 1.1540000000000001, 0.925, 0.402, 0.682, 0.08800000000000001, 0.6920000000000001, 0.212, 1.258, 0.593, 0.787, 0.557, 1.2819999999999998, 0.141, 0.732, 0.465, 0.871, 0.17800000000000002, 0.447, 0.455, 0.26, 0.24, 1.2919999999999998, 1.3940000000000001, 0.165, 0.637, 0.245, 0.235, 0.141, 0.32799999999999996, 0.23, 0.127, 0.364, 0.536, 0.335, 0.257, 0.439, 0.128, 0.268, 0.565, 0.905, 0.261, 0.14800000000000002, 0.674, 0.441, 0.826, 0.97, 0.37799999999999995, 0.349, 0.32299999999999995, 0.259, 0.6459999999999999, 0.293, 0.785, 0.7340000000000001, 0.358, 0.408, 0.17800000000000002, 1.182, 0.222, 0.44299999999999995, 1.057, 0.258, 0.278, 0.40299999999999997, 0.349], \"xaxis\": \"x\", \"y\": [\"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\"], \"yaxis\": \"y2\"}],                        {\"barmode\": \"overlay\", \"hovermode\": \"closest\", \"legend\": {\"traceorder\": \"reversed\"}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"DIABETES_PEDIGREE_FUNCTION\"}, \"xaxis\": {\"anchor\": \"y2\", \"domain\": [0.0, 1.0], \"zeroline\": false}, \"yaxis\": {\"anchor\": \"free\", \"domain\": [0.35, 1], \"position\": 0.0}, \"yaxis2\": {\"anchor\": \"x\", \"domain\": [0, 0.25], \"dtick\": 1, \"showticklabels\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('14399ad7-55de-41a5-88ad-301c37896324');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"missing_plot(df, 'id')","execution_count":34,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"184197ce-4fb8-4a68-bc15-e442ca1a0616\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"184197ce-4fb8-4a68-bc15-e442ca1a0616\")) {                    Plotly.newPlot(                        \"184197ce-4fb8-4a68-bc15-e442ca1a0616\",                        [{\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1.5}}, \"opacity\": 0.8, \"text\": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [\"id\", \"pregnancies\", \"glucose\", \"blood_pressure\", \"skin_thickness\", \"insulin\", \"bmi\", \"diabetes_pedigree_function\", \"age\", \"outcome\"], \"y\": [768, 768, 768, 768, 768, 768, 768, 768, 768, 768]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Missing Value Count & Percentage\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('184197ce-4fb8-4a68-bc15-e442ca1a0616');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_dist('age',0)","execution_count":35,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"8aec3cda-8b28-4a67-bed2-0366d6acb360\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"8aec3cda-8b28-4a67-bed2-0366d6acb360\")) {                    Plotly.newPlot(                        \"8aec3cda-8b28-4a67-bed2-0366d6acb360\",                        [{\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"name\": \"healthy\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [50, 31, 32, 21, 33, 30, 26, 29, 53, 54, 30, 34, 57, 59, 51, 32, 31, 31, 33, 32, 27, 50, 41, 29, 51, 41, 43, 22, 57, 38, 60, 28, 22, 28, 45, 33, 35, 46, 27, 56, 26, 37, 48, 54, 40, 25, 29, 22, 31, 24, 22, 26, 30, 58, 42, 21, 41, 31, 44, 22, 21, 39, 36, 24, 42, 32, 38, 54, 25, 27, 28, 26, 42, 23, 22, 22, 41, 27, 26, 24, 22, 22, 36, 22, 37, 27, 45, 26, 43, 24, 21, 34, 42, 60, 21, 40, 24, 22, 23, 31, 33, 22, 21, 24, 27, 21, 27, 37, 25, 24, 24, 46, 23, 25, 39, 61, 38, 25, 22, 21, 25, 24, 23, 69, 23, 26, 30, 23, 40, 62, 33, 33, 30, 39, 26, 31, 21, 22, 29, 28, 55, 38, 22, 42, 23, 21, 41, 34, 65, 22, 24, 37, 42, 23, 43, 36, 21, 23, 22, 47, 36, 45, 27, 21, 32, 41, 22, 34, 29, 29, 36, 29, 25, 23, 33, 36, 42, 26, 47, 37, 32, 23, 21, 27, 40, 41, 60, 33, 31, 25, 21, 40, 36, 40, 42, 29, 21, 23, 26, 29, 21, 28, 32, 27, 55, 27, 57, 52, 21, 41, 25, 24, 60, 24, 36, 38, 25, 32, 32, 41, 21, 66, 37, 61, 26, 22, 26, 24, 31, 24, 22, 46, 22, 29, 23, 26, 51, 23, 32, 27, 21, 22, 22, 33, 29, 49, 41, 23, 34, 23, 42, 27, 24, 25, 44, 21, 30, 25, 24, 51, 34, 27, 24, 63, 35, 43, 25, 24, 21, 28, 38, 21, 40, 21, 52, 25, 29, 23, 57, 22, 28, 39, 37, 47, 52, 51, 34, 29, 26, 33, 21, 25, 31, 24, 65, 28, 29, 24, 46, 58, 30, 25, 35, 28, 37, 29, 47, 21, 25, 30, 41, 22, 27, 25, 43, 26, 30, 29, 28, 59, 31, 25, 36, 43, 21, 24, 30, 37, 23, 37, 46, 25, 41, 44, 22, 26, 44, 44, 33, 41, 22, 36, 22, 33, 57, 49, 22, 23, 26, 37, 29, 30, 46, 24, 21, 49, 28, 44, 48, 29, 29, 63, 65, 67, 30, 30, 29, 21, 22, 45, 25, 21, 21, 25, 28, 58, 22, 22, 32, 35, 24, 22, 21, 25, 25, 24, 35, 45, 58, 28, 42, 27, 21, 37, 31, 25, 39, 22, 25, 25, 31, 55, 35, 38, 41, 26, 46, 25, 39, 28, 28, 25, 22, 21, 21, 22, 22, 37, 27, 28, 26, 21, 21, 21, 36, 31, 25, 38, 26, 43, 23, 38, 22, 29, 36, 29, 41, 28, 21, 31, 41, 22, 24, 33, 30, 25, 28, 26, 22, 26, 23, 23, 25, 72, 24, 38, 62, 24, 51, 81, 48, 26, 39, 37, 34, 21, 22, 25, 38, 27, 28, 22, 22, 50, 24, 59, 29, 31, 39, 63, 35, 29, 28, 23, 31, 24, 21, 58, 28, 67, 24, 42, 33, 45, 22, 66, 30, 25, 55, 39, 21, 28, 41, 41, 40, 38, 35, 21, 21, 64, 46, 21, 58, 22, 24, 28, 53, 51, 41, 60, 25, 26, 26, 45, 24, 21, 21, 24, 22, 31, 22, 24, 29, 31, 24, 23, 46, 67, 23, 32, 43, 27, 56, 25, 29, 37, 53, 28, 50, 37, 21, 25, 66, 23, 28, 37, 30, 58, 42, 35, 54, 28, 24, 32, 27, 22, 21, 46, 37, 33, 39, 21, 22, 22, 23, 25, 35, 21, 36, 62, 21, 27, 62, 42, 52, 22, 41, 29, 52, 25, 45, 24, 44, 25, 34, 22, 46, 21, 38, 26, 24, 28, 30, 54, 36, 21, 22, 25, 27, 23, 24, 36, 40, 26, 50, 27, 30, 23, 50, 24, 28, 28, 45, 21, 21, 29, 21, 21, 45, 21, 34, 24, 23, 22, 31, 38, 48, 23, 32, 28, 27, 24, 50, 31, 27, 30, 33, 22, 42, 23, 23, 27, 28, 27, 22, 25, 22, 41, 51, 27, 54, 22, 43, 40, 40, 24, 70, 40, 43, 45, 49, 21, 47, 22, 68, 31, 53, 25, 25, 23, 22, 26, 22, 27, 69, 25, 22, 29, 23, 46, 34, 44, 23, 43, 25, 43, 31, 22, 28, 26, 26, 49, 52, 41, 27, 28, 30, 22, 45, 23, 24, 40, 38, 21, 32, 34, 31, 56, 24, 52, 34, 21, 42, 42, 45, 38, 25, 22, 22, 22, 34, 22, 24, 22, 53, 28, 21, 42, 21, 42, 48, 26, 22, 45, 39, 46, 27, 32, 36, 50, 22, 28, 25, 26, 45, 37, 39, 52, 26, 66, 22, 43, 33, 63, 27, 30, 47, 23], \"xaxis\": \"x\", \"xbins\": {\"end\": 81.0, \"size\": 0, \"start\": 21.0}, \"yaxis\": \"y\"}, {\"autobinx\": false, \"histnorm\": \"probability density\", \"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"name\": \"diabetic\", \"opacity\": 0.7, \"type\": \"histogram\", \"x\": [50, 32, 33, 26, 53, 54, 34, 59, 51, 32, 31, 31, 32, 41, 29, 51, 41, 43, 28, 46, 27, 56, 54, 25, 31, 58, 41, 39, 42, 38, 28, 42, 26, 37, 43, 60, 31, 33, 24, 24, 46, 39, 61, 38, 25, 23, 26, 40, 62, 33, 33, 30, 42, 42, 43, 36, 47, 32, 41, 36, 29, 36, 26, 37, 41, 60, 33, 31, 25, 36, 40, 29, 23, 26, 29, 57, 52, 41, 24, 36, 38, 25, 32, 41, 21, 66, 24, 22, 46, 26, 51, 23, 32, 22, 33, 49, 44, 21, 51, 27, 35, 25, 28, 38, 29, 28, 47, 52, 29, 25, 31, 24, 29, 46, 30, 25, 28, 47, 25, 30, 27, 43, 29, 59, 25, 36, 43, 30, 23, 41, 44, 33, 41, 37, 49, 28, 44, 29, 29, 67, 29, 45, 25, 58, 32, 35, 45, 58, 27, 31, 22, 25, 31, 35, 41, 46, 39, 28, 21, 22, 37, 28, 36, 31, 38, 43, 29, 41, 33, 30, 25, 22, 23, 38, 51, 38, 29, 35, 31, 24, 45, 55, 41, 35, 46, 28, 53, 45, 23, 32, 43, 27, 56, 37, 53, 54, 28, 33, 21, 62, 21, 52, 41, 52, 45, 44, 22, 38, 54, 36, 22, 36, 40, 50, 50, 24, 34, 38, 32, 50, 33, 22, 42, 25, 27, 22, 43, 40, 40, 70, 40, 31, 53, 25, 26, 27, 46, 44, 43, 43, 31, 49, 52, 30, 45, 23, 38, 34, 31, 52, 42, 34, 22, 24, 42, 48, 45, 27, 36, 50, 22, 26, 45, 37, 52, 66, 43, 47], \"xaxis\": \"x\", \"xbins\": {\"end\": 70.0, \"size\": 0, \"start\": 21.0}, \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\"}, \"mode\": \"lines\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [21.0, 21.12, 21.24, 21.36, 21.48, 21.6, 21.72, 21.84, 21.96, 22.08, 22.2, 22.32, 22.44, 22.56, 22.68, 22.8, 22.92, 23.04, 23.16, 23.28, 23.4, 23.52, 23.64, 23.759999999999998, 23.88, 24.0, 24.12, 24.240000000000002, 24.36, 24.48, 24.6, 24.72, 24.84, 24.96, 25.08, 25.2, 25.32, 25.44, 25.56, 25.68, 25.8, 25.92, 26.04, 26.16, 26.28, 26.4, 26.52, 26.64, 26.759999999999998, 26.88, 27.0, 27.12, 27.240000000000002, 27.36, 27.48, 27.6, 27.72, 27.84, 27.96, 28.08, 28.2, 28.32, 28.44, 28.56, 28.68, 28.8, 28.92, 29.04, 29.16, 29.28, 29.4, 29.52, 29.64, 29.759999999999998, 29.880000000000003, 30.0, 30.119999999999997, 30.240000000000002, 30.36, 30.48, 30.6, 30.72, 30.84, 30.96, 31.08, 31.2, 31.32, 31.439999999999998, 31.560000000000002, 31.68, 31.8, 31.92, 32.04, 32.16, 32.28, 32.4, 32.519999999999996, 32.64, 32.76, 32.88, 33.0, 33.12, 33.24, 33.36, 33.480000000000004, 33.6, 33.72, 33.84, 33.96, 34.08, 34.2, 34.32, 34.44, 34.56, 34.68, 34.8, 34.92, 35.04, 35.16, 35.28, 35.4, 35.519999999999996, 35.64, 35.76, 35.88, 36.0, 36.12, 36.24, 36.36, 36.480000000000004, 36.6, 36.72, 36.84, 36.96, 37.08, 37.2, 37.32, 37.44, 37.56, 37.68, 37.8, 37.92, 38.04, 38.16, 38.28, 38.4, 38.519999999999996, 38.64, 38.760000000000005, 38.879999999999995, 39.0, 39.120000000000005, 39.239999999999995, 39.36, 39.480000000000004, 39.6, 39.72, 39.84, 39.96, 40.08, 40.2, 40.32, 40.44, 40.56, 40.68, 40.8, 40.92, 41.04, 41.16, 41.28, 41.4, 41.519999999999996, 41.64, 41.760000000000005, 41.879999999999995, 42.0, 42.120000000000005, 42.239999999999995, 42.36, 42.480000000000004, 42.6, 42.72, 42.84, 42.96, 43.08, 43.2, 43.32, 43.44, 43.56, 43.68, 43.8, 43.92, 44.04, 44.16, 44.28, 44.4, 44.519999999999996, 44.64, 44.760000000000005, 44.879999999999995, 45.0, 45.120000000000005, 45.239999999999995, 45.36, 45.480000000000004, 45.6, 45.72, 45.84, 45.96, 46.08, 46.2, 46.32, 46.44, 46.56, 46.68, 46.8, 46.92, 47.04, 47.16, 47.28, 47.4, 47.519999999999996, 47.64, 47.760000000000005, 47.879999999999995, 48.0, 48.120000000000005, 48.239999999999995, 48.36, 48.480000000000004, 48.6, 48.72, 48.84, 48.96, 49.08, 49.2, 49.32, 49.44, 49.56, 49.68, 49.8, 49.92, 50.04, 50.16, 50.28, 50.4, 50.519999999999996, 50.64, 50.760000000000005, 50.879999999999995, 51.0, 51.120000000000005, 51.239999999999995, 51.36, 51.480000000000004, 51.6, 51.72, 51.84, 51.96, 52.08, 52.2, 52.32, 52.44, 52.56, 52.68, 52.8, 52.92, 53.04, 53.16, 53.28, 53.4, 53.52, 53.64, 53.76, 53.88, 54.0, 54.12, 54.24, 54.36, 54.48, 54.6, 54.72, 54.84, 54.96, 55.08, 55.2, 55.32, 55.44, 55.56, 55.68, 55.8, 55.92, 56.04, 56.16, 56.28, 56.4, 56.52, 56.64, 56.76, 56.88, 57.0, 57.12, 57.24, 57.36, 57.48, 57.6, 57.72, 57.84, 57.96, 58.08, 58.2, 58.32, 58.44, 58.56, 58.68, 58.8, 58.92, 59.04, 59.16, 59.28, 59.4, 59.52, 59.64, 59.76, 59.88, 60.0, 60.12, 60.24, 60.36, 60.48, 60.6, 60.72, 60.84, 60.96, 61.08, 61.2, 61.32, 61.44, 61.56, 61.68, 61.8, 61.92, 62.04, 62.16, 62.28, 62.4, 62.52, 62.64, 62.76, 62.88, 63.0, 63.12, 63.24, 63.36, 63.48, 63.6, 63.72, 63.84, 63.96, 64.08, 64.2, 64.32, 64.44, 64.56, 64.68, 64.8, 64.92, 65.03999999999999, 65.16, 65.28, 65.4, 65.52000000000001, 65.64, 65.75999999999999, 65.88, 66.0, 66.12, 66.24000000000001, 66.36, 66.47999999999999, 66.6, 66.72, 66.84, 66.96000000000001, 67.08, 67.2, 67.32, 67.44, 67.56, 67.68, 67.8, 67.92, 68.03999999999999, 68.16, 68.28, 68.4, 68.52000000000001, 68.64, 68.75999999999999, 68.88, 69.0, 69.12, 69.24000000000001, 69.36, 69.47999999999999, 69.6, 69.72, 69.84, 69.96000000000001, 70.08, 70.2, 70.32, 70.44, 70.56, 70.68, 70.8, 70.92, 71.03999999999999, 71.16, 71.28, 71.4, 71.52000000000001, 71.64, 71.75999999999999, 71.88, 72.0, 72.12, 72.24000000000001, 72.36, 72.47999999999999, 72.6, 72.72, 72.84, 72.96000000000001, 73.08, 73.2, 73.32, 73.44, 73.56, 73.68, 73.8, 73.92, 74.03999999999999, 74.16, 74.28, 74.4, 74.52000000000001, 74.64, 74.75999999999999, 74.88, 75.0, 75.12, 75.24000000000001, 75.36, 75.47999999999999, 75.6, 75.72, 75.84, 75.96000000000001, 76.08, 76.2, 76.32, 76.44, 76.56, 76.68, 76.8, 76.92, 77.03999999999999, 77.16, 77.28, 77.4, 77.52000000000001, 77.64, 77.75999999999999, 77.88, 78.0, 78.12, 78.24000000000001, 78.36, 78.47999999999999, 78.6, 78.72, 78.84, 78.96000000000001, 79.08, 79.2, 79.32, 79.44, 79.56, 79.68, 79.8, 79.92, 80.03999999999999, 80.16, 80.28, 80.4, 80.52000000000001, 80.64, 80.75999999999999, 80.88], \"xaxis\": \"x\", \"y\": [0.038486549656701126, 0.039321487026441206, 0.04013461252124097, 0.040924355708132396, 0.04168922560324735, 0.04242781702873578, 0.04313881638226062, 0.04382100678040475, 0.044473272543533435, 0.04509460299614446, 0.045684095563425925, 0.04624095815154239, 0.046764510806003794, 0.04725418664924751, 0.04770953210520884, 0.04813020642508335, 0.04851598053462936, 0.04886673522914519, 0.04918245874762808, 0.04946324376252082, 0.049709283825833825, 0.049920869316254016, 0.050098382935089086, 0.050242294801524055, 0.050353157199674446, 0.050431599031302767, 0.05047832002882804, 0.050494084783412836, 0.05047971664248083, 0.05043609153002679, 0.05036413174156394, 0.05026479976354998, 0.050139092164687676, 0.04998803360365521, 0.04981267099463793, 0.04961406786855911, 0.04939329896419716, 0.04915144507948593, 0.0488895882092768, 0.04860880699175072, 0.04831017248155534, 0.04799474426365682, 0.04766356691788394, 0.04731766684024508, 0.046958049423356005, 0.04658569659476258, 0.04620156470860694, 0.045806582782993335, 0.0454016510725828, 0.04498763996339864, 0.04456538917456969, 0.04413570724978271, 0.04369937131956141, 0.04325712711413738, 0.042809689205621525, 0.042357741457418836, 0.04190193765833775, 0.041442902318622105, 0.040981231605156106, 0.04051749439334811, 0.04005223341366574, 0.039585966471455354, 0.03911918771950903, 0.03865236896382542, 0.03818596098412192, 0.03772039485187609, 0.03725608322998303, 0.03679342163949284, 0.036332789680318875, 0.03587455219426742, 0.035419060360212806, 0.03496665271271756, 0.03451765607685717, 0.03407238641344329, 0.03363114957023561, 0.03319424193608132, 0.032761950996212874, 0.03233455578816459, 0.03191232725892721, 0.03149552852504401, 0.031084415038359143, 0.030679234661052355, 0.03028022765443593, 0.02988762658674519, 0.029501656165823384, 0.02912253300318573, 0.028750465316444894, 0.02838565257749209, 0.028028285114155716, 0.027678543673304874, 0.02733659895352619, 0.027002611115587334, 0.026676729278903674, 0.026359091012154334, 0.026049821826049247, 0.025749034676032904, 0.025456829482427064, 0.02517329267516692, 0.02489849676987483, 0.024632499981549105, 0.02437534588162599, 0.02412706310360363, 0.02388766510180713, 0.023657149967224164, 0.023435500303661604, 0.023222683166769904, 0.02301865006775991, 0.022823337042906223, 0.02263666478919762, 0.022458538865767572, 0.022288849960025555, 0.02212747421671907, 0.021974273627497033, 0.021829096477925507, 0.021691777848333222, 0.0215621401643456, 0.021439993792509177, 0.021325137676017705, 0.02121736000523442, 0.021116438917464623, 0.02102214322027274, 0.02093423313256035, 0.020852461037627057, 0.020776572242523918, 0.02070630573817737, 0.02064139495500751, 0.02058156850908274, 0.02052655093423781, 0.020476063396027436, 0.020429824383883268, 0.02038755037838103, 0.020348956491095044, 0.020313757075110052, 0.020281666304863104, 0.02025239872459134, 0.020225669765251583, 0.020201196230346274, 0.020178696751624297, 0.020157892216117097, 0.020138506166409272, 0.02012026517642216, 0.020102899205301096, 0.0200861419322374, 0.020069731075220663, 0.020053408696803436, 0.020036921499968663, 0.020020021117120982, 0.020002464395079293, 0.019984013678733967, 0.019964437095753785, 0.01994350884439173, 0.01992100948605416, 0.019896726243873026, 0.019870453308066752, 0.019841992148401485, 0.01981115183358286, 0.019777749356928775, 0.01974160996720774, 0.019702567503084675, 0.019660464729206205, 0.019615153671589825, 0.019566495949662168, 0.019514363102028653, 0.01945863690285373, 0.019399209665592252, 0.019335984530739064, 0.01926887573425727, 0.01919780885340316, 0.019122721026786398, 0.01904356114568197, 0.018960290013842217, 0.018872880473334134, 0.01878131749424478, 0.018685598226444326, 0.018585732011967126, 0.01848174035695441, 0.018373656862490928, 0.018261527114051948, 0.018145408529649767, 0.018025370167121267, 0.017901492491324097, 0.017773867102303036, 0.01764259642574514, 0.017507793367258558, 0.017369580932184516, 0.017228091812782665, 0.01708346794471861, 0.016935860034829376, 0.016785427062152896, 0.01663233575418278, 0.016476760040257242, 0.016318880483915135, 0.01615888369596043, 0.015996961729874137, 0.015833311461109393, 0.015668133951705313, 0.015501633801566703, 0.015334018487686231, 0.01516549769253757, 0.014996282622848162, 0.014826585319972475, 0.014656617963133115, 0.014486592166879178, 0.014316718274230684, 0.014147204647131716, 0.013978256956021482, 0.01381007747054936, 0.013642864353700367, 0.013476810961857268, 0.01331210515359675, 0.013148928610293516, 0.012987456171878008, 0.012827855191353639, 0.0126702849119189, 0.012514895870749233, 0.012361829333665296, 0.012211216765040752, 0.012063179337375378, 0.011917827484973092, 0.01177526050611378, 0.011635566217987768, 0.011498820668470433, 0.011365087908550455, 0.011234419828887447, 0.011106856063566295, 0.010982423963638402, 0.010861138642499456, 0.0107430030945541, 0.010628008387968664, 0.010516133931621307, 0.010407347815633424, 0.010301607224118709, 0.010198858918026361, 0.010099039785194096, 0.010002077453977047, 0.009907890966091373, 0.009816391503617846, 0.009727483164461806, 0.009641063779972897, 0.009557025767899019, 0.00947525701339406, 0.009395641770425414, 0.009318061575640652, 0.009242396166559235, 0.00916852439585777, 0.00909632513351786, 0.009025678148706017, 0.008956464963452801, 0.00888856967049289, 0.00882187970801379, 0.008756286584534704, 0.008691686547691565, 0.00862798119133193, 0.008565077996016792, 0.008502890798775045, 0.0084413401887507, 0.008380353826212902, 0.008319866683252757, 0.008259821205357946, 0.008200167393925163, 0.008140862810630336, 0.00808187250541612, 0.008023168870665799, 0.007964731424901565, 0.007906546530065187, 0.007848607047100614, 0.007790911935155122, 0.007733465800240378, 0.007676278399642625, 0.007619364108737693, 0.00756274135714806, 0.007506432041374071, 0.007450460921138962, 0.007394855006706813, 0.007339642944366836, 0.007284854407127219, 0.007230519497432136, 0.007176668168409427, 0.007123329669780493, 0.007070532024122765, 0.0070183015386768586, 0.006966662357341277, 0.006915636056905828, 0.006865241290948956, 0.006815493484171697, 0.006766404579271561, 0.006717982837781006, 0.006670232695616327, 0.006623154673412238, 0.0065767453410625065, 0.0065309973352564435, 0.006485899428200972, 0.006441436645156008, 0.00639759042789207, 0.006354338840709635, 0.006311656815243396, 0.0062695164299156675, 0.006227887219604503, 0.006186736510855172, 0.006146029777790741, 0.006105731013767777, 0.006065803113777051, 0.006026208262604915, 0.00598690832384653, 0.0059478652249950175, 0.005909041334016789, 0.005870399823059542, 0.005831905015220132, 0.005793522710620875, 0.005755220488398192, 0.005716967981592466, 0.005678737122335705, 0.005640502355158797, 0.005602240816676826, 0.005563932480352921, 0.005525560265483243, 0.005487110109982366, 0.005448571006974159, 0.005409935005604183, 0.005371197176880502, 0.005332355545717704, 0.005293410990699593, 0.005254367113387567, 0.005215230079280973, 0.0051760084327817455, 0.005136712888726709, 0.005097356103226466, 0.00505795242668986, 0.0050185176420174575, 0.004979068691017281, 0.004939623392132258, 0.004900200152572665, 0.004860817677920147, 0.00482149468221456, 0.004782249601453006, 0.004743100313324003, 0.004704063865871685, 0.0046651562176367595, 0.004626391991655931, 0.004587784245521126, 0.004549344259507072, 0.004511081344572318, 0.004473002671826951, 0.0044351131248418305, 0.0043974151759512605, 0.004359908787474976, 0.0043225913385578985, 0.00428545757809909, 0.004248499604015204, 0.004211706868860887, 0.004175066211609275, 0.004138561915181476, 0.0041021757891059885, 0.004065887276487914, 0.004029673584275052, 0.003993509835624429, 0.003957369242999217, 0.00392122330046382, 0.003885041993494877, 0.0038487940244889543, 0.003812447052025231, 0.0037759679418339575, 0.003739323027330159, 0.0037024783774980154, 0.0036654000698548173, 0.0036280544661858624, 0.003590408488723185, 0.0035524298944423537, 0.0035140875451729467, 0.003475351671260182, 0.0034361941265768233, 0.0033965886327665773, 0.003356511010701465, 0.0033159393972557296, 0.003274854445636992, 0.0032332395076697536, 0.0031910807965963087, 0.0031483675291436165, 0.0031050920457996877, 0.003061249908448082, 0.003016839974721497, 0.002971864448653113, 0.00292632890742473, 0.0028802423042316562, 0.002833616947502883, 0.002786468456928993, 0.0027388156969573507, 0.0026906806886112197, 0.002642088500675649, 0.002593067121464796, 0.002543647312541922, 0.0024938624459026676, 0.0024437483262528645, 0.0023933430001130524, 0.0023426865535623406, 0.0022918209004933673, 0.002240789563288072, 0.0021896374478403815, 0.002138410614847458, 0.0020871560492660575, 0.0020359214297862214, 0.001984754900111295, 0.0019337048437534576, 0.001882819663958146, 0.0018321475702612, 0.0017817363730611244, 0.0017316332874568836, 0.0016818847474619192, 0.001632536231559027, 0.0015836321004106782, 0.0015352154473870356, 0.0014873279624218363, 0.0014400098095553693, 0.00139329951837701, 0.0013472338894372471, 0.0013018479135639774, 0.0012571747048898685, 0.001213245447279121, 0.0011700893537328334, 0.0011277336382544277, 0.0010862034995693924, 0.0010455221160186746, 0.001005710650881457, 0.0009667882673317533, 0.0009287721521935303, 0.0008916775476309311, 0.0008555177898930412, 0.000820304354226358, 0.0007860469050715816, 0.0007527533506742075, 0.0007204299012599014, 0.0006890811299546031, 0.0006587100356654074, 0.0006293181071803221, 0.0006009053877920678, 0.0005734705398026756, 0.000547010908320568, 0.0005215225838194107, 0.0004970004629876309, 0.0004734383074581964, 0.00045082880006959235, 0.00042916359837016015, 0.0004084333851385674, 0.0003886279157526646, 0.0003697360622970476, 0.00035174585435549785, 0.0003346445164883534, 0.00031841850244593615, 0.0003030535262174749, 0.0002885345900602648, 0.0002748460096957084, 0.0002619714368974876, 0.00024989387973205977, 0.00023859572074291013, 0.0002280587333973339, 0.00021826409713796466, 0.0002091924114005512, 0.0002008237089745773, 0.00019313746909417653, 0.00018611263065318906, 0.000179727605940164, 0.00017396029528654827, 0.0001687881030140675, 0.00016418795505555322, 0.00016013631860697353, 0.00015660922414741655, 0.00015358229013815456, 0.00015103075068192054, 0.0001489294863892042, 0.00014725305866002591, 0.00014597574754744502, 0.0001450715933234107, 0.00014451444181878698, 0.00014427799355795442, 0.0001443358566548043, 0.0001446616033817511, 0.00014522883026721255, 0.00014601122152050168, 0.0001469826155269321, 0.0001481170741009014, 0.00014938895413151962, 0.00015077298120476417, 0.00015224432473892743, 0.0001537786741270074, 0.00015535231534141508, 0.0001569422074235845, 0.0001585260582544153, 0.00016008239898149124, 0.00016159065646617233, 0.00016303122310836528, 0.00016438552340927325, 0.0001656360766429339, 0.00016676655502589828, 0.0001677618368009558, 0.00016860805368515514, 0.00016929263217424845, 0.00016980432824463784, 0.0001701332550494189, 0.0001702709032665442, 0.00017021015382371991], \"yaxis\": \"y\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\"}, \"mode\": \"lines\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [21.0, 21.098, 21.196, 21.294, 21.392, 21.49, 21.588, 21.686, 21.784, 21.882, 21.98, 22.078, 22.176, 22.274, 22.372, 22.47, 22.568, 22.666, 22.764, 22.862000000000002, 22.96, 23.058, 23.156, 23.254, 23.352, 23.45, 23.548000000000002, 23.646, 23.744, 23.842, 23.94, 24.038, 24.136, 24.234, 24.332, 24.43, 24.528, 24.626, 24.724, 24.822, 24.92, 25.018, 25.116, 25.214, 25.312, 25.41, 25.508, 25.606, 25.704, 25.802, 25.9, 25.998, 26.096, 26.194, 26.292, 26.39, 26.488, 26.586, 26.684, 26.782, 26.88, 26.978, 27.076, 27.174, 27.272, 27.37, 27.468, 27.566, 27.664, 27.762, 27.86, 27.958, 28.056, 28.154, 28.252, 28.35, 28.448, 28.546, 28.644, 28.742, 28.84, 28.938, 29.036, 29.134, 29.232, 29.33, 29.428, 29.526, 29.624000000000002, 29.722, 29.82, 29.918, 30.016, 30.114, 30.212, 30.310000000000002, 30.408, 30.506, 30.604, 30.701999999999998, 30.8, 30.898, 30.996000000000002, 31.094, 31.192, 31.29, 31.387999999999998, 31.486, 31.584, 31.682000000000002, 31.78, 31.878, 31.976, 32.074, 32.172, 32.269999999999996, 32.368, 32.466, 32.564, 32.662, 32.76, 32.858000000000004, 32.956, 33.054, 33.152, 33.25, 33.348, 33.446, 33.544, 33.641999999999996, 33.74, 33.838, 33.936, 34.034, 34.132, 34.230000000000004, 34.328, 34.426, 34.524, 34.622, 34.72, 34.818, 34.916, 35.013999999999996, 35.112, 35.21, 35.308, 35.406, 35.504, 35.602000000000004, 35.7, 35.798, 35.896, 35.994, 36.092, 36.19, 36.288, 36.385999999999996, 36.484, 36.582, 36.68, 36.778, 36.876, 36.974000000000004, 37.072, 37.17, 37.268, 37.366, 37.464, 37.562, 37.66, 37.757999999999996, 37.856, 37.954, 38.052, 38.15, 38.248000000000005, 38.346000000000004, 38.444, 38.542, 38.64, 38.738, 38.836, 38.934, 39.032, 39.129999999999995, 39.228, 39.326, 39.424, 39.522, 39.620000000000005, 39.718, 39.816, 39.914, 40.012, 40.11, 40.208, 40.306, 40.403999999999996, 40.501999999999995, 40.6, 40.698, 40.796, 40.894, 40.992000000000004, 41.09, 41.188, 41.286, 41.384, 41.482, 41.58, 41.678, 41.775999999999996, 41.873999999999995, 41.972, 42.07, 42.168, 42.266, 42.364000000000004, 42.462, 42.56, 42.658, 42.756, 42.854, 42.952, 43.05, 43.147999999999996, 43.245999999999995, 43.344, 43.442, 43.54, 43.638000000000005, 43.736000000000004, 43.834, 43.932, 44.03, 44.128, 44.226, 44.324, 44.422, 44.519999999999996, 44.617999999999995, 44.716, 44.814, 44.912, 45.010000000000005, 45.108000000000004, 45.206, 45.304, 45.402, 45.5, 45.598, 45.696, 45.794, 45.891999999999996, 45.989999999999995, 46.088, 46.186, 46.284, 46.382000000000005, 46.480000000000004, 46.578, 46.676, 46.774, 46.872, 46.97, 47.068, 47.166, 47.263999999999996, 47.361999999999995, 47.46, 47.558, 47.656, 47.754000000000005, 47.852000000000004, 47.95, 48.048, 48.146, 48.244, 48.342, 48.44, 48.538, 48.635999999999996, 48.734, 48.832, 48.93, 49.028, 49.126000000000005, 49.224000000000004, 49.322, 49.42, 49.518, 49.616, 49.714, 49.812, 49.91, 50.007999999999996, 50.106, 50.204, 50.302, 50.4, 50.498000000000005, 50.596000000000004, 50.694, 50.792, 50.89, 50.988, 51.086, 51.184, 51.282, 51.379999999999995, 51.478, 51.576, 51.674, 51.772, 51.870000000000005, 51.968, 52.066, 52.164, 52.262, 52.36, 52.458, 52.556, 52.653999999999996, 52.751999999999995, 52.85, 52.948, 53.046, 53.144, 53.242, 53.34, 53.438, 53.536, 53.634, 53.732, 53.83, 53.928, 54.026, 54.124, 54.222, 54.32, 54.418, 54.516, 54.614, 54.712, 54.81, 54.908, 55.006, 55.104, 55.202, 55.3, 55.398, 55.496, 55.594, 55.692, 55.79, 55.888, 55.986, 56.084, 56.182, 56.28, 56.378, 56.476, 56.574, 56.672, 56.77, 56.868, 56.966, 57.064, 57.162, 57.26, 57.358, 57.456, 57.554, 57.652, 57.75, 57.848, 57.946, 58.044, 58.142, 58.24, 58.338, 58.436, 58.534, 58.632, 58.73, 58.828, 58.926, 59.024, 59.122, 59.22, 59.318, 59.416, 59.514, 59.612, 59.71, 59.808, 59.906, 60.004, 60.102, 60.2, 60.298, 60.396, 60.494, 60.592, 60.69, 60.788, 60.886, 60.984, 61.082, 61.18, 61.278, 61.376, 61.474, 61.572, 61.67, 61.768, 61.866, 61.964, 62.062, 62.16, 62.258, 62.356, 62.454, 62.552, 62.65, 62.748, 62.846, 62.944, 63.042, 63.14, 63.238, 63.336, 63.434, 63.532, 63.63, 63.728, 63.826, 63.924, 64.02199999999999, 64.12, 64.218, 64.316, 64.414, 64.512, 64.61, 64.708, 64.806, 64.904, 65.00200000000001, 65.1, 65.19800000000001, 65.29599999999999, 65.394, 65.49199999999999, 65.59, 65.688, 65.786, 65.884, 65.982, 66.08, 66.178, 66.27600000000001, 66.374, 66.47200000000001, 66.57, 66.668, 66.76599999999999, 66.864, 66.962, 67.06, 67.158, 67.256, 67.354, 67.452, 67.55, 67.648, 67.74600000000001, 67.844, 67.94200000000001, 68.03999999999999, 68.138, 68.23599999999999, 68.334, 68.432, 68.53, 68.628, 68.726, 68.824, 68.922, 69.02000000000001, 69.118, 69.21600000000001, 69.314, 69.412, 69.50999999999999, 69.608, 69.706, 69.804, 69.902], \"xaxis\": \"x\", \"y\": [0.017826759214291214, 0.018212883922982367, 0.01859889140499605, 0.018984507017541764, 0.019369456969392435, 0.019753468880529673, 0.020136272334100543, 0.02051759941864028, 0.02089718525856508, 0.021274768530999952, 0.021650091967074042, 0.02202290283589762, 0.022392953409521826, 0.022760001407279365, 0.023123810418009334, 0.023484150298782078, 0.023840797548858532, 0.024193535657743247, 0.024542155426322612, 0.02488645526021182, 0.025226241434575983, 0.0255613283298306, 0.025891538637771456, 0.026216703537829254, 0.02653666284329075, 0.02685126511747225, 0.02716036775997827, 0.027463837063318904, 0.027761548240300127, 0.028053385422738192, 0.028339241632180764, 0.028619018723445435, 0.02889262730190825, 0.029159986615589432, 0.029421024423192915, 0.029675676839358307, 0.02992388815847522, 0.030165610658496243, 0.03040080438626164, 0.030629436925913706, 0.030851483152038086, 0.031066924969216175, 0.03127575103971075, 0.03147795650103537, 0.03167354267517466, 0.031862516771231274, 0.03204489158327212, 0.032220685185134386, 0.03238992062393004, 0.032552625613952876, 0.032708832232656235, 0.03285857662031378, 0.033001898684919415, 0.03313884181381614, 0.03326945259346681, 0.03339378053869826, 0.033511877832662636, 0.03362379907866207, 0.03372960106488592, 0.03382934254300104, 0.033923084021426665, 0.03401088757401535, 0.03409281666474001, 0.034168935988873585, 0.034239311331026465, 0.03430400944028594, 0.0343630979225828, 0.03441664515029163, 0.03446472018895083, 0.03450739274087547, 0.03454473310532252, 0.03457681215475735, 0.03460370132666774, 0.034625472630270715, 0.03464219866736095, 0.034653952666464614, 0.0346608085293753, 0.034662840889078964, 0.034660125178000746, 0.03465273770545182, 0.0346407557430977, 0.0346242576172291, 0.034603322806578116, 0.03457803204439696, 0.03454846742349995, 0.03451471250295771, 0.03447685241513283, 0.03443497397175808, 0.03438916576776877, 0.034339518281633376, 0.03428612397095486, 0.03422907736215937, 0.034168475133137026, 0.03410441618775671, 0.03403700172123749, 0.03396633527543135, 0.033892522783143884, 0.03381567260070055, 0.033735895528051466, 0.033653304815792824, 0.03356801615857864, 0.0334801476744861, 0.03338981986999624, 0.03329715559034902, 0.03320227995512606, 0.03310532027901538, 0.0330064059778068, 0.03290566845975993, 0.03280324100258358, 0.032699258616349466, 0.032593857892754756, 0.03248717684122513, 0.03237935471243172, 0.032270531809866006, 0.032160849290183834, 0.03205044895309127, 0.03193947302160085, 0.0318280639135348, 0.03171636400519301, 0.031604515388140776, 0.03149265962009712, 0.03138093747092784, 0.03126948866476013, 0.03115845161924292, 0.031047963182979782, 0.030938158372152042, 0.03082917010733985, 0.030721128951529588, 0.03061416285027212, 0.030508396874927124, 0.03040395296989417, 0.030300949704693582, 0.030199502031715664, 0.03009972105041414, 0.030001713778666825, 0.029905582931979386, 0.02981142671115237, 0.029719338598979156, 0.029629407166487768, 0.02954171588918351, 0.029456342973697338, 0.029373361195188352, 0.029292837745800666, 0.029214834094420977, 0.029139405857938474, 0.02906660268416147, 0.028996468146503945, 0.028929039650515666, 0.028864348352295142, 0.028802419088791262, 0.028743270319972827, 0.02868691408281967, 0.028633355957070932, 0.02858259504264656, 0.028534623948648037, 0.0284894287938339, 0.028446989218460388, 0.028407278407374087, 0.028370263124246207, 0.028335903756837942, 0.0283041543731947, 0.02827496278867188, 0.02824827064370534, 0.028224013492247978, 0.028202120900805466, 0.028182516558013467, 0.02816511839471135, 0.028149838714473744, 0.028136584334573507, 0.02812525673735389, 0.028115752231995177, 0.028107962126662167, 0.02810177291102046, 0.02809706644910669, 0.028093720182532065, 0.02809160734398912, 0.028090597181019254, 0.028090555189982894, 0.028091343360151816, 0.028092820427821758, 0.0280948421403138, 0.028097261529701063, 0.028099929196063852, 0.02810269360003515, 0.028105401364358625, 0.028107897584133453, 0.028110026145374778, 0.0281116300514669, 0.02811255175703457, 0.028112633508702425, 0.028111717692159303, 0.02810964718488663, 0.028106265713853718, 0.028101418217428, 0.028094951210691253, 0.028086713153298776, 0.028076554818967685, 0.0280643296656269, 0.028049894205217193, 0.028033108372081724, 0.028013835888849713, 0.027991944628676088, 0.02796730697266966, 0.02793980016131374, 0.02790930663866057, 0.027875714388064125, 0.027838917258205625, 0.027798815278159122, 0.027755314960247177, 0.027708329589443293, 0.027657779498092346, 0.027603592324739447, 0.02754570325588726, 0.027484055249531934, 0.02741859923937229, 0.027349294318629487, 0.02727610790247044, 0.0271990158680858, 0.02711800267153934, 0.027033061440575077, 0.02694419404264597, 0.0268514111275091, 0.026754732143817263, 0.0266541853292291, 0.026549807673652736, 0.026441644855337575, 0.026329751149628985, 0.026214189310306005, 0.026095030423527447, 0.025972353734521357, 0.025846246447260815, 0.025716803497481313, 0.025584127299505228, 0.025448327467448555, 0.0253095205114969, 0.025167829510046143, 0.02502338375860997, 0.024876318396502367, 0.024726774012405087, 0.0245748962300313, 0.024420835275188953, 0.024264745525643668, 0.024106785045263566, 0.02394711510401438, 0.02378589968544714, 0.023623304983393226, 0.023459498889644898, 0.02329465047445789, 0.02312892946176312, 0.022962505701018397, 0.022795548637664607, 0.022628226784182238, 0.02246070719375838, 0.022293154938590392, 0.022125732594849307, 0.02195859973632309, 0.021791912438742372, 0.021625822796765316, 0.021460478455566184, 0.02129602215892665, 0.021132591315677948, 0.020970317586279305, 0.020809326491248153, 0.020649737043078056, 0.020491661403192432, 0.020335204565386265, 0.020180464067103974, 0.020027529729789696, 0.019876483429428434, 0.019727398898270156, 0.019580341558598162, 0.01943536838926637, 0.01929252782558702, 0.019151859693005823, 0.019013395174849988, 0.018877156814283577, 0.018743158550448228, 0.018611405788613086, 0.018481895503999007, 0.018354616378788005, 0.018229548971672158, 0.018106665919143766, 0.01798593216757883, 0.01786730523501835, 0.017750735501411215, 0.01763616652594486, 0.017523535389960737, 0.01741277306382775, 0.017303804796031046, 0.017196550522627804, 0.017090925295122336, 0.016986839724725974, 0.01688420044088904, 0.016782910561925293, 0.016682870175494784, 0.01658397682666552, 0.016486126011245217, 0.016389211672052387, 0.0162931266957915, 0.01619776340820068, 0.01610301406516035, 0.01600877133748056, 0.01591492878712865, 0.015821381332713918, 0.01572802570211295, 0.015634760870198196, 0.015541488479720743, 0.015448113243499886, 0.015354543326180399, 0.01526069070393812, 0.01516647150064219, 0.015071806299116907, 0.014976620426288544, 0.014880844211150903, 0.014784413214635764, 0.01468726843063263, 0.014589356457562435, 0.014490629640071738, 0.014391046180579995, 0.014290570220573857, 0.014189171891708713, 0.014086827336936945, 0.01398351870204258, 0.013879234098116937, 0.013773967535659655, 0.01366771883113584, 0.013560493486957318, 0.013452302545988374, 0.013343162421800102, 0.01323309470601162, 0.013122125954163243, 0.01301028745166248, 0.012897614961429124, 0.012784148454941942, 0.012669931828452177, 0.012555012606183918, 0.012439441632380619, 0.01232327275408918, 0.012206562496589331, 0.012089369733384195, 0.01197175535266216, 0.011853781922124705, 0.01173551335404779, 0.011617014572405951, 0.01149835118384139, 0.011379589154201635, 0.011260794492301928, 0.011142032942493937, 0.011023369687536666, 0.010904869063174717, 0.010786594285730937, 0.010668607193915387, 0.010550968005943533, 0.010433735092941604, 0.010316964769500213, 0.010200711102115394, 0.010085025736133828, 0.009969957741694896, 0.00985555347903723, 0.009741856483413015, 0.009628907369730204, 0.009516743756921303, 0.00940540021191829, 0.009294908212997962, 0.009185296132149828, 0.009076589236012192, 0.008968809704819745, 0.008861976668709422, 0.008756106260642165, 0.008651211685113512, 0.008547303301750598, 0.008444388722823328, 0.008342472923636443, 0.008241558364715318, 0.008141645124653124, 0.008042731042449004, 0.007944811868138535, 0.007847881420496135, 0.007751931750576254, 0.007656953309856216, 0.007562935121746071, 0.007469864955241906, 0.007377729499518158, 0.007286514538279361, 0.007196205122724841, 0.007106785742019233, 0.007018240490206383, 0.006930553228555581, 0.006843707742385923, 0.00675768789147437, 0.006672477753220032, 0.00658806175780518, 0.0065044248146668305, 0.006421552429667229, 0.006339430812429798, 0.006258046973385041, 0.0061773888101524605, 0.006097445182963733, 0.006018205978914331, 0.005939662164910525, 0.005861805829257956, 0.005784630211915826, 0.00570812972351664, 0.005632299953325007, 0.005557137666379151, 0.0054826407901269435, 0.005408808390931163, 0.005335640640879635, 0.005263138775390797, 0.0051913050421565, 0.005120142642010997, 0.005049655662355597, 0.004979849003805543, 0.004910728300756822, 0.004842299836595747, 0.004774570454295926, 0.004707547463160599, 0.004641238542479747, 0.004575651642874001, 0.0045107948860978655, 0.004446676464067524, 0.004383304537868204, 0.004320687137479749, 0.004258832062938426, 0.004197746787628531, 0.0041374383643677385, 0.004077913334917706, 0.004019177643514863, 0.003961236554976413, 0.003904094577894608, 0.0038477553933865716, 0.0037922217898203863, 0.0037374956038884423, 0.0036835776683490015, 0.0036304677667050203, 0.0035781645950372634, 0.003526665731155776, 0.003475967611181594, 0.0034260655136179982, 0.0033769535509195784, 0.0033286246685168158, 0.0032810706512049195, 0.003234282136758594, 0.003188248636589147, 0.003142958563217344, 0.0030983992642949912, 0.00305455706287066, 0.003011417303559996, 0.00296896440424952, 0.002927181912934406, 0.0028860525692656286, 0.002845558370360264, 0.002805680640410783, 0.002766400103614471, 0.0027276969599334196, 0.0026895509631878448, 0.00265194150098204, 0.002614847675961309, 0.002578248387901717, 0.0025421224161402685, 0.0025064485018625998, 0.0024712054297774504, 0.002436372108722254, 0.0024019276507618115, 0.002367851448361825, 0.002334123249241861, 0.002300723228535561, 0.002267632057912838, 0.002234830971345257, 0.0022023018272252295, 0.0021700271665786785, 0.0021379902671416237, 0.0021061751931019863, 0.002074566840339077, 0.002043150977024635, 0.0020119142794803035, 0.0019808443632173363, 0.0019499298091144015, 0.0019191601847187729, 0.0018885260606847272, 0.0018580190223904125, 0.001827631676800214, 0.0017973576546649421, 0.0017671916081747577, 0.001737129204201956, 0.0017071671132901146, 0.0016773029945647618, 0.0016475354767567598, 0.0016178641355442662, 0.001588289467431825, 0.0015588128603958669, 0.0015294365615349742, 0.0015001636419702258, 0.0014709979592466007, 0.0014419441174896204, 0.0014130074255737837, 0.0013841938535592826, 0.0013555099876527042, 0.001326962983944392, 0.0012985605211714639], \"yaxis\": \"y\"}, {\"legendgroup\": \"healthy\", \"marker\": {\"color\": \"#41d9b3\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"healthy\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [50, 31, 32, 21, 33, 30, 26, 29, 53, 54, 30, 34, 57, 59, 51, 32, 31, 31, 33, 32, 27, 50, 41, 29, 51, 41, 43, 22, 57, 38, 60, 28, 22, 28, 45, 33, 35, 46, 27, 56, 26, 37, 48, 54, 40, 25, 29, 22, 31, 24, 22, 26, 30, 58, 42, 21, 41, 31, 44, 22, 21, 39, 36, 24, 42, 32, 38, 54, 25, 27, 28, 26, 42, 23, 22, 22, 41, 27, 26, 24, 22, 22, 36, 22, 37, 27, 45, 26, 43, 24, 21, 34, 42, 60, 21, 40, 24, 22, 23, 31, 33, 22, 21, 24, 27, 21, 27, 37, 25, 24, 24, 46, 23, 25, 39, 61, 38, 25, 22, 21, 25, 24, 23, 69, 23, 26, 30, 23, 40, 62, 33, 33, 30, 39, 26, 31, 21, 22, 29, 28, 55, 38, 22, 42, 23, 21, 41, 34, 65, 22, 24, 37, 42, 23, 43, 36, 21, 23, 22, 47, 36, 45, 27, 21, 32, 41, 22, 34, 29, 29, 36, 29, 25, 23, 33, 36, 42, 26, 47, 37, 32, 23, 21, 27, 40, 41, 60, 33, 31, 25, 21, 40, 36, 40, 42, 29, 21, 23, 26, 29, 21, 28, 32, 27, 55, 27, 57, 52, 21, 41, 25, 24, 60, 24, 36, 38, 25, 32, 32, 41, 21, 66, 37, 61, 26, 22, 26, 24, 31, 24, 22, 46, 22, 29, 23, 26, 51, 23, 32, 27, 21, 22, 22, 33, 29, 49, 41, 23, 34, 23, 42, 27, 24, 25, 44, 21, 30, 25, 24, 51, 34, 27, 24, 63, 35, 43, 25, 24, 21, 28, 38, 21, 40, 21, 52, 25, 29, 23, 57, 22, 28, 39, 37, 47, 52, 51, 34, 29, 26, 33, 21, 25, 31, 24, 65, 28, 29, 24, 46, 58, 30, 25, 35, 28, 37, 29, 47, 21, 25, 30, 41, 22, 27, 25, 43, 26, 30, 29, 28, 59, 31, 25, 36, 43, 21, 24, 30, 37, 23, 37, 46, 25, 41, 44, 22, 26, 44, 44, 33, 41, 22, 36, 22, 33, 57, 49, 22, 23, 26, 37, 29, 30, 46, 24, 21, 49, 28, 44, 48, 29, 29, 63, 65, 67, 30, 30, 29, 21, 22, 45, 25, 21, 21, 25, 28, 58, 22, 22, 32, 35, 24, 22, 21, 25, 25, 24, 35, 45, 58, 28, 42, 27, 21, 37, 31, 25, 39, 22, 25, 25, 31, 55, 35, 38, 41, 26, 46, 25, 39, 28, 28, 25, 22, 21, 21, 22, 22, 37, 27, 28, 26, 21, 21, 21, 36, 31, 25, 38, 26, 43, 23, 38, 22, 29, 36, 29, 41, 28, 21, 31, 41, 22, 24, 33, 30, 25, 28, 26, 22, 26, 23, 23, 25, 72, 24, 38, 62, 24, 51, 81, 48, 26, 39, 37, 34, 21, 22, 25, 38, 27, 28, 22, 22, 50, 24, 59, 29, 31, 39, 63, 35, 29, 28, 23, 31, 24, 21, 58, 28, 67, 24, 42, 33, 45, 22, 66, 30, 25, 55, 39, 21, 28, 41, 41, 40, 38, 35, 21, 21, 64, 46, 21, 58, 22, 24, 28, 53, 51, 41, 60, 25, 26, 26, 45, 24, 21, 21, 24, 22, 31, 22, 24, 29, 31, 24, 23, 46, 67, 23, 32, 43, 27, 56, 25, 29, 37, 53, 28, 50, 37, 21, 25, 66, 23, 28, 37, 30, 58, 42, 35, 54, 28, 24, 32, 27, 22, 21, 46, 37, 33, 39, 21, 22, 22, 23, 25, 35, 21, 36, 62, 21, 27, 62, 42, 52, 22, 41, 29, 52, 25, 45, 24, 44, 25, 34, 22, 46, 21, 38, 26, 24, 28, 30, 54, 36, 21, 22, 25, 27, 23, 24, 36, 40, 26, 50, 27, 30, 23, 50, 24, 28, 28, 45, 21, 21, 29, 21, 21, 45, 21, 34, 24, 23, 22, 31, 38, 48, 23, 32, 28, 27, 24, 50, 31, 27, 30, 33, 22, 42, 23, 23, 27, 28, 27, 22, 25, 22, 41, 51, 27, 54, 22, 43, 40, 40, 24, 70, 40, 43, 45, 49, 21, 47, 22, 68, 31, 53, 25, 25, 23, 22, 26, 22, 27, 69, 25, 22, 29, 23, 46, 34, 44, 23, 43, 25, 43, 31, 22, 28, 26, 26, 49, 52, 41, 27, 28, 30, 22, 45, 23, 24, 40, 38, 21, 32, 34, 31, 56, 24, 52, 34, 21, 42, 42, 45, 38, 25, 22, 22, 22, 34, 22, 24, 22, 53, 28, 21, 42, 21, 42, 48, 26, 22, 45, 39, 46, 27, 32, 36, 50, 22, 28, 25, 26, 45, 37, 39, 52, 26, 66, 22, 43, 33, 63, 27, 30, 47, 23], \"xaxis\": \"x\", \"y\": [\"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\", \"healthy\"], \"yaxis\": \"y2\"}, {\"legendgroup\": \"diabetic\", \"marker\": {\"color\": \"#c73062\", \"symbol\": \"line-ns-open\"}, \"mode\": \"markers\", \"name\": \"diabetic\", \"showlegend\": false, \"type\": \"scatter\", \"x\": [50, 32, 33, 26, 53, 54, 34, 59, 51, 32, 31, 31, 32, 41, 29, 51, 41, 43, 28, 46, 27, 56, 54, 25, 31, 58, 41, 39, 42, 38, 28, 42, 26, 37, 43, 60, 31, 33, 24, 24, 46, 39, 61, 38, 25, 23, 26, 40, 62, 33, 33, 30, 42, 42, 43, 36, 47, 32, 41, 36, 29, 36, 26, 37, 41, 60, 33, 31, 25, 36, 40, 29, 23, 26, 29, 57, 52, 41, 24, 36, 38, 25, 32, 41, 21, 66, 24, 22, 46, 26, 51, 23, 32, 22, 33, 49, 44, 21, 51, 27, 35, 25, 28, 38, 29, 28, 47, 52, 29, 25, 31, 24, 29, 46, 30, 25, 28, 47, 25, 30, 27, 43, 29, 59, 25, 36, 43, 30, 23, 41, 44, 33, 41, 37, 49, 28, 44, 29, 29, 67, 29, 45, 25, 58, 32, 35, 45, 58, 27, 31, 22, 25, 31, 35, 41, 46, 39, 28, 21, 22, 37, 28, 36, 31, 38, 43, 29, 41, 33, 30, 25, 22, 23, 38, 51, 38, 29, 35, 31, 24, 45, 55, 41, 35, 46, 28, 53, 45, 23, 32, 43, 27, 56, 37, 53, 54, 28, 33, 21, 62, 21, 52, 41, 52, 45, 44, 22, 38, 54, 36, 22, 36, 40, 50, 50, 24, 34, 38, 32, 50, 33, 22, 42, 25, 27, 22, 43, 40, 40, 70, 40, 31, 53, 25, 26, 27, 46, 44, 43, 43, 31, 49, 52, 30, 45, 23, 38, 34, 31, 52, 42, 34, 22, 24, 42, 48, 45, 27, 36, 50, 22, 26, 45, 37, 52, 66, 43, 47], \"xaxis\": \"x\", \"y\": [\"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\", \"diabetic\"], \"yaxis\": \"y2\"}],                        {\"barmode\": \"overlay\", \"hovermode\": \"closest\", \"legend\": {\"traceorder\": \"reversed\"}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"AGE\"}, \"xaxis\": {\"anchor\": \"y2\", \"domain\": [0.0, 1.0], \"zeroline\": false}, \"yaxis\": {\"anchor\": \"free\", \"domain\": [0.35, 1], \"position\": 0.0}, \"yaxis2\": {\"anchor\": \"x\", \"domain\": [0, 0.25], \"dtick\": 1, \"showticklabels\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('8aec3cda-8b28-4a67-bed2-0366d6acb360');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"outcome_preg = df.groupby(['outcome','pregnancies'])[['id']].count()\noutcome_preg.reset_index(inplace=True)\noutcome_preg.rename(columns={'id':'count'}, inplace=True)\n\nsns.set_style('darkgrid')\nplt.figure(figsize=(15,6))\nsns.barplot(x='pregnancies', y='count', hue='outcome', data=outcome_preg, palette='viridis')\nplt.title('Diabetes - Pregnancy Outcome Count')\n","execution_count":36,"outputs":[{"output_type":"execute_result","execution_count":36,"data":{"text/plain":"Text(0.5, 1.0, 'Diabetes - Pregnancy Outcome Count')"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 1080x432 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAA3sAAAGDCAYAAACSkwm+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deVyU5f7/8TcCg6iooCBkHktzO3pCzCVUNFFxwYXc0u/JDI9H21yy7KsZli2aHdO0UyrVMet0WtRETVMTF0iz9OjJOtqipeICGJuyCMNw//7o13wzUYEGbrh5PR+PHg/mnpnr/lz3jM2857ru63YzDMMQAAAAAMBSaphdAAAAAADA9Qh7AAAAAGBBhD0AAAAAsCDCHgAAAABYEGEPAAAAACyIsAcAAAAAFkTYA4BKbs6cOXrllVdK9NixY8dq9erV5VwRAACoCgh7AGCi8PBw3XrrrQoJCVHHjh01evRovfvuuyoqKnI+5umnn9aDDz5Y7rWYFRRPnz6tVq1aKSQkRCEhIQoPD1dsbGyF11FZXLhwQU8++aS6deum4OBgDR48WGvXri3x8z///HP16NGjHCt0ncTERP35z39WSEiIbr/9dt19992Kj48v9/2Gh4dr79695b4fADCbh9kFAEB1t3z5cnXt2lUXL17UF198oeeee06HDx/W/PnzzS6tQu3fv18eHh46dOiQ7r33XrVu3fqK0FJYWCgPD+t+dBUUFOjee+9VgwYN9N577ykwMFCfffaZZs6cqQsXLig6OtrsEl1my5YtevzxxzVr1iwtX75ctWvX1oEDB7Rhwwb17t3b7PIAwBIY2QOASsLHx0e9e/fWSy+9pHXr1um7776TJM2cOVOLFy+WJGVlZWnSpEm6/fbb1alTJ02aNEnJycmXtXPq1CmNGDFCt912m+6//35lZmY67/vPf/6j0aNHq2PHjhoyZIg+//xzSdLixYt14MABPf300woJCdHTTz8tSTp+/Liio6PVuXNn9evXT5s3b3a2tXv3bg0cOFAhISEKCwvTG2+84ZLjEBISoltuuUXff/+9c5QqNjZW3bp106xZs1RUVKTY2Fj16dNHXbp00dSpUy/rY1xcnHr16qUuXbrolVdeuWwU5+WXX9bUqVP12GOPKSQkRJGRkfrqq6+cz/2l3ZCQEA0cOFCffPKJ874PP/xQY8aM0YIFC9SpUyeFh4dr9+7dzvszMzM1a9Ysde/eXZ06ddIDDzwgSRo0aJB27NjhfJzdbleXLl109OjRK/q+fv16nTt3TkuWLFGTJk3k6empHj166IknntDSpUuVnZ0tSWrVqpVOnjzpfN4v75Hc3Fz99a9/VWpqqnOkNCUlRQ6HQ8uXL3f2bdiwYTp37pwk6eDBgxo+fLhuu+02DR8+XAcPHnS2O3bsWC1evFijR49WSEiI7rvvPmVkZOiRRx5Rhw4dNHz4cJ0+fdr5+Gu9X37NMAw9//zzeuCBBzRy5Ej5+PioRo0a6ty5s5599llJUlFRkV599VX16tVLoaGheuyxx3Tx4kVJxY9elvR1njFjhs6ePav77rtPISEheu2114qtEQAswQAAmKZXr17Gnj17rtjes2dP45133jEMwzD+93//11i0aJFhGIaRnp5ubNmyxcjNzTUuXrxoTJ482bj//vudz7v77ruN7t27G99++62Rk5NjPPTQQ8YjjzxiGIZhJCcnG507dzZ27dplOBwO49NPPzU6d+5spKWlOZ/7wQcfONvKyckxevToYaxZs8aw2+3G119/bXTu3Nn47rvvDMMwjG7duhn79+83DMMwMjMzja+//rpMxyApKclo2bKlYbfbjaKiIuPAgQPGrbfeauzdu9fYt2+f0aZNG+OFF14w8vPzjby8PGPlypXGyJEjjXPnzhn5+flGTEyM8fDDDxuGYRjff/+90b59e2P//v1Gfn6+8fzzzxt//OMfncd46dKlRrt27Yxdu3YZhYWFxsKFC42RI0c6a9m8ebORnJxsOBwOY9OmTUZwcLCRkpJiGIZhrF271vjjH/9ovP/++0ZhYaHxzjvvGN26dTOKiooMwzCMv/71r8bUqVONzMxMo6CgwPj8888NwzCM2NhYY+rUqc59fPLJJ8agQYOKPRbTpk0zHnvssSu22+12o02bNkZCQoJhGIbRsmVL48SJE877f/0e2bdvnxEWFnbZ81977TVj0KBBxvHjx42ioiLj6NGjRnp6upGRkWF07NjRWLdunWG3242NGzcaHTt2NNLT0w3D+Pk90adPH+PkyZPGhQsXjAEDBhgRERHGnj17DLvdbsyYMcOYOXOmYRjXf7/82rFjx4yWLVsap06dKv5NYRjG6tWrjT59+hinTp0ysrOzjQcffNB49NFHr9rHX/9but7rfLV/dwBgNYzsAUAlFBAQoKysrCu2+/r6ql+/fvL29ladOnV0//33a//+/Zc9ZujQoWrZsqVq1aqlqVOnasuWLXI4HFq/fr169Oihnj17qkaNGurWrZvatWt32ejUr+3atUuNGzfW8OHD5eHhobZt26pfv37aunWrJMnDw0PHjh1Tdna26tWrp7Zt2/6uPt9+++3q3LmznnjiCT3yyCMKDQ2VJNWoUUNTpkyRzWZTzZo19f777+vhhx9WYGCgbDabHnroIW3dulWFhYXasmWLevXqpY4dO8pms2nKlClyc3O7bD+33XabevbsKXd3dw0dOlTffPON874BAwaoUaNGqlGjhgYOHKimTZvq8OHDzvtvuOEGjRo1Su7u7rrzzjt1/vx5/fTTT0pNTVVCQoLmzp2revXqydPTU507d5YkDRkyRLt373aOym3YsEFDhgwp9hhkZGTI39//iu0eHh7y9fVVRkZGmY7t6tWrNXXqVDVr1kxubm5q3bq1fH19tWvXLjVt2lRRUVHy8PDQoEGD1KxZM+3cudP53GHDhukPf/iDfHx81KNHDzVp0kRdu3aVh4eH+vfvryNHjki6/vvl134ZiQ0ICLhqzRs3btS9996rJk2aqHbt2po+fbo2b96swsLCEvX5Wq8zAFQX1j3xAQCqsJSUFNWrV++K7Xl5eZo/f74SExOdYTAnJ0cOh0Pu7u6SpKCgIOfjb7jhBtntdmVkZOjs2bPasmXLZV/kCwsL1aVLl2JrOHPmjA4fPqyOHTs6tzkcDmdQWbp0qZYtW6YXX3xRrVq10iOPPKKQkJAr2omMjNTZs2clSa+99tpl7f3avn37ij0fz9fXV15eXs7bZ8+e1YMPPqgaNf7v98oaNWooLS1NqampCgwMdG739vZW/fr1L2uvYcOGzr9r1qyp/Px857mAcXFxWrlypc6cOSNJys3NvSxg/fq53t7ezsdkZWWpXr16xb5mjRo1UocOHbR161b17dtXCQkJmj17drHHwNfXV+fPn79ie2FhoTIyMuTr61vs864nOTlZf/jDH67YnpqaqhtuuOGybTfccINSUlKct3/dZy8vryuOX25urqTrv19+7ZfXJDU1VU2aNCm25tTUVDVu3Nh5u3HjxiosLFRaWto1+1pc3b99nQGguuD/eABQyRw+fFgpKSm67bbbrrjvH//4h3788Ud98MEH8vf319GjRxUVFSXDMJyP+eVcrF/+9vT0lK+vr4KCgjR06FDnOVHXExQUpE6dOmnlypXF3n/rrbdq2bJlstvteueddzRt2rRiRwk3bdpUov1dzW9H5gIDAzVv3rxij09AQIB+/PFH5+1Lly5ddj7ftZw5c0ZPPPGE3nzzTYWEhDhHhEoiMDBQWVlZunDhgurWrXvF/XfeeadWr14th8Oh9u3bq1GjRsW207VrVy1atEi5ubmqVauWc/u2bdtks9nUvn17ST8Hzby8POf958+fd7b52+P1S32nTp1Sy5YtL9seEBDgDOK/OHfunMLCwkrU71+73vvl15o1a6agoCBt27ZNf/nLX4p9TEBAgDN0Sz+HfA8PDzVo0EApKSm6dOmS8z6Hw6H09PRS1wwAVsc0TgCoJLKzs7Vz505Nnz5dQ4YMUatWra54TE5Ojry8vFS3bl1lZmbq73//+xWP2bBhg44dO6a8vDwtWbJE/fr1k7u7u4YMGaKdO3cqMTFRDodD+fn5+vzzz50LvDRs2FBJSUnOdu644w6dOHFCcXFxstvtstvtOnz4sI4fP66CggJt2LBBFy9elKenp2rXru0cWSxvY8aM0UsvveQMAunp6dq+fbskqV+/ftqxY4cOHjyogoICLV269LIgfC15eXlyc3OTn5+fJGnt2rX6/vvvS/TcgIAA9ejRQ3PnzlVWVpbsdvtl02v79OmjI0eO6K233lJUVNRV2xk6dKgCAwM1depUnT59Wna7XYmJiXr22Wf10EMPycfHR5LUunVrffTRR3I4HEpISLhsXw0aNFBmZqZzMRNJGjlypJYsWaITJ07IMAx98803ysjIUM+ePXXixAlt3LhRhYWF2rx5s44dO6Y77rijRP3+tWu9X37Lzc1NM2fO1Kuvvqq1a9cqOztbRUVFOnDggGJiYiT9vLDNqlWrlJSUpJycHC1evFgDBgyQh4eHbr75ZuXn52vXrl2y2+1atmyZCgoKSlzrb9/rAGBVhD0AMNkvqwL27NlTy5cvV3R09FUvuzBu3Djl5+fr9ttv11133VXsCMzQoUM1c+ZMdevWTQUFBc4pg0FBQXr11Ve1YsUKhYaGqmfPnnrjjTec1/S75557tHXrVnXq1EnPPvus6tSpozfeeEObN29WWFiYunfvroULFzq/VK9fv17h4eHq0KGD3nvvPb3wwgvldIQud8899yg8PFzjx49XSEiIRo0a5TyvrkWLFoqJidH06dMVFham2rVry8/PTzab7brt3nLLLRo/frxGjx6trl276rvvvlOHDh1KXNcLL7wgDw8PDRgwQF27dtWqVauc99WsWVMRERE6ffq0+vbte9U2bDabVq5cqaCgII0aNUq33Xabnn/+eT388MOaMGGC83GzZ8/Wzp071bFjR23cuFF9+vRx3te8eXNFRkaqT58+6tixo1JSUhQdHa0BAwZo/Pjx6tChg2bPnq38/Hz5+vpq+fLlWrlypbp06aLXX39dy5cvdwbe0rje++W3+vfvr8WLF2vt2rUKCwtT165dtWTJEudlF4YPH64hQ4bo7rvvVu/evWWz2ZxB0MfHR08++aSeeOIJ9ejRQ97e3pdN372eiRMnatmyZerYsaPLVpEFgMrIzSjpT54AAFQxOTk56tSpk7Zu3XrVc8Mqyt///nedOHFCCxcuNLUOAED1wcgeAMBSduzYoby8POXm5mrBggVq2bKlbrzxRlNryszM1Nq1a3XXXXeZWgcAoHoh7AEALCU+Pl5hYWEKCwvTyZMntWjRomIXLakoH3zwge644w6FhYWpU6dOptUBAKh+mMYJAAAAABbEyB4AAAAAWBBhDwAAAAAsqEpfVL2oqEgOB7NQAQAAAFRPnp5Xv85tlQ57DoehzMxcs8sAAAAAAFP4+/tc9T6mcQIAAACABRH2AAAAAMCCCHsAAAAAYEFV+pw9AACuxuEoVEbGeRUWFphdyu/m4WGTr6+/3N352AYAlByfGgAAS8rIOK+aNWupdu1Aubm5mV1OmRmGoZycC8rIOK+GDYPMLgcAUIUwjRMAYEmFhQWqXbtulQ56kuTm5qbatetaYoQSAFCxCHsAAMuq6kHvF1bpBwCgYhH2AAC4is2bN+qnn86bXQYAAGVC2AMA4CoIewCAqowFWgAA1cp77/1TmzZtkCQNHhylsLA79Nhj0/T22x9Ikv71r7eVl5erZs2a69tvj2ru3Cfk5VVTK1b8Qz/8cFxLlryovLw82WyeWrJkmdzdPfTii8/rm2+OyN3dXZMnT1eHDh21efNGJSbuksNRpB9/PK7Ro/8su92urVs3y9PTpoULl6hu3Xo6c+a0XnxxgTIzM1SzZk397/8+oaZNbzLxCAEArIKwBwCoNr755qg2b96o2NhVMgxDEyfeq/btOxT72F69+mjt2g/00EPT1Lr1H2W32zVnzuN6+ul5atOmrXJysmWzeWn16vckSW+99b5Onjyhhx9+UO+++6Ek6YcfjmvlyneUn1+g0aOjdP/9k7Vy5b+0dOmL2rJlk0aN+h+98MJzevTRWWrS5A/673+/1osvPq+lS5dX2DEBAFgXYQ8AUG0cPvwf9ejRS97e3pKknj176csv/1Oi5546dVINGzZQmzZtJUm1a9dxtjlixF2SpKZNb1JgYJCSkk5Jkjp06KhatWqrVq3aql27jrp16yFJatbsFh0/fky5ubn66qvDiomZ6dyP3c6qmwAA1yDsAQCqEeOKLdnZF2UY/7e9oCC/+GcahqTiVsW8ss1feHp6Ov+uUaOGPD1tzr8djkIZRpF8fOrozTf/VbLyAQAoBRZoqYTq1PWSv7+Py/6rU9fL7C4BQKUQHNxBiYm7dOnSJeXl5SkhYaduv72rMjLSlZWVqYKCAu3d+6nz8bVq1VZubq6kn0ftfvrpJx09+l9JUm5ujgoLCxUcHKJt2z6W9PPoX0pKsv7wh6Ylqqd27ToKCmqsHTu2S/o5UH7//Xeu7DIAoBpjZK8S8vayKWzSMy5rL3FFjLJV/C/VAFCdtGrVWgMGDNJf/3qPpJ8XaGnTpq3uvfevmjjxXgUF3XDZ4igDBw7S3/42z7lAy9NPz9PixX9Tfn6+vLy89NJLr+rOO0dq4cL5uueeu+Tu7q7Zs5+SzWYrcU1z5jyjhQuf16pVb8jhKFTv3hFq0aKlq7sOAKiG3Ixfz12pYux2hzIzc80uw+X8/X1cHvbOn7/osvYAoCpITj6pwMCSjbBVBVbrDwDANfz9fa56H9M4AQAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALIiwBwAAAAAWRNgDAKAC7du3V2PGDNNdd0Xp7bffNLscAICFcVF1AEC1Vaeul7y9Sn4B9OvJyy9Q9oX8q97vcDi0aNECLV78igICGmnChHvUvXsP3XxzM5fVAADALwh7AIBqy9vLprBJz7isvcQVMcrW1cPe0aP/1Y03NlHjxjdKkvr0idCnn+4m7AEAygXTOAEAqCDnz6cqIKCR87a/f4DOn081sSIAgJUR9gAAqCCGceU2Nze3ii8EAFAtlFvYmzVrlkJDQzVo0CDntszMTEVHRysiIkLR0dHKyspy3rdixQr17dtX/fr1U2JiYnmVBQCAaQICApSamuK8ff58qho29DexIgCAlZVb2Bs2bJhef/31y7bFxsYqNDRU27ZtU2hoqGJjYyVJx44d06ZNm7Rp0ya9/vrrmjt3rhwOR3mVBgCAKVq3/qOSkpJ09uwZ2e12bd++Td269TC7LACARZVb2OvUqZPq1at32bb4+HhFRUVJkqKiorR9+3bn9sjISNlsNjVp0kRNmzbV4cOHy6s0AABM4eHhoenTZ2j69Mn6859HKDy8j5o1a252WQAAi6rQ1TjT0tIUEBAg6eepLOnp6ZKklJQUBQcHOx/XqFEjpaSkFNsGAACukpdfoMQVMS5t73pCQ7srNLS7y/YJAMDVVIpLLxjFnLFekhPW3d3dVL9+rfIoyXI4TgCqm5QUN7m7X3sCS16OXXk5dpfu93r7LCs3Nz7zAAClU6Fhr0GDBkpNTf3/J6inys/PT5IUGBio5ORk5+NSUlKcI4DX4nAYyszMLbd6zeLv7+PyNq14nADgWgzDkMNRZHYZLmMY1vzMAwD8PtfKDhV66YXw8HDFxcVJkuLi4tS7d2/n9k2bNqmgoEBJSUk6ceKEbr311oosDQAAAAAspdxG9qZPn64vvvhCGRkZ6tGjhyZPnqyJEydq2rRpWrNmjYKCgrRkyRJJUosWLTRgwAANHDhQ7u7umjNnjtzd3curNAAAAACwPDejuBPmqgi73WHJKS3+/j4Km/SMy9pLXBGj8+cvuqw9AKgKkpNPKjCwqdlluIzV+gMAcI1KM40TAAAAAFAxCHsAAFSgefPmatCgvho7dpTZpQAALK5SXHoBAAAz+NT3Uk1Pm8vau2Qv0MXM/Gs+ZuDAwRo+/C49++wcl+0XAIDiEPYAANVWTU+bIt6b5bL2to2er4u6dthr376Dzp0767J9AgBwNUzjBAAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBhD0AACrQk08+rvvui9apUyd1550D9dFHcWaXBACwKFbjBABUW5fsBdo2er5L27ueuXPnuWx/AABcC2EPAFBtXczMv+6lEgAAqKqYxgkAAAAAFkTYAwAAAAALIuwBACzLMAyzS3AJq/QDAFCxCHsAAEvy8LApJ+dClQ9KhmEoJ+eCPDxsZpcCAKhiWKAFAGBJvr7+ysg4r+zsTLNL+d08PGzy9fU3uwwAQBVD2AMAWJK7u4caNgwyuwwAAEzDNE4AAAAAsCDCHgAAAABYEGEPAAAAACyIsAcAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBhD0AAAAAsCDCHgAAAABYEGEPAAAAACyIsAcAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBhD0AAAAAsCDCHgAAAABYEGEPAAAAACyIsAcAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBhD0AAAAAsCAPswuAddWp6yVvL5tL2srLL1D2hXyXtAUAAABUB4Q9lBtvL5vCJj3jkrYSV8QoW4Q9AAAAoKSYxgkAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBhD0AAAAAsCBTLr3w5ptvavXq1XJzc1PLli01f/585eXl6eGHH9aZM2fUuHFjvfTSS6pXr54Z5QEAAABAlVfhI3spKSl66623tHbtWn300UdyOBzatGmTYmNjFRoaqm3btik0NFSxsbEVXRoAAAAAWIYp0zgdDocuXbqkwsJCXbp0SQEBAYqPj1dUVJQkKSoqStu3bzejNAAAAACwhAqfxtmoUSONHz9evXr1kpeXl7p166bu3bsrLS1NAQEBkqSAgAClp6dfty13dzfVr1+rvEu2BCscJyv0AQAAAKgoFR72srKyFB8fr/j4ePn4+Gjq1Klav359mdpyOAxlZua6uELz+fv7uLxNM46Tq/thxdcaAAAA+D2u9Z27wqdx7t27VzfeeKP8/Pzk6empiIgIHTp0SA0aNFBqaqokKTU1VX5+fhVdGgAAAABYRoWHvRtuuEFffvml8vLyZBiGPvvsMzVv3lzh4eGKi4uTJMXFxal3794VXRoAAAAAWEaFT+MMDg5Wv379dOedd8rDw0Nt2rTRXXfdpZycHE2bNk1r1qxRUFCQlixZUtGlAQAAAIBlmHKdvSlTpmjKlCmXbbPZbFq1apUZ5QAAAACA5Zhy6QUAAAAAQPki7AEAAACABRH2AAAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALIiwBwAAAAAWRNgDAAAAAAsi7AEAAACABRH2AAAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALMjD7AJcrU5dL3l72VzWXl5+gbIv5LusPQAAAACoCJYLe95eNoVNesZl7SWuiFG2CHsAAAAAqhamcQIAAACABRH2AAAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALIiwBwAAAAAWRNgDAAAAAAsi7AEAAACABRH2AAAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALIiwBwAAAAAWRNgDAAAAAAsi7AEAAACABRH2AAAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALIiwBwAAAAAWRNgDAAAAAAsi7AEAAACABRH2AAAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALIiwBwAAAAAWRNgDAAAAAAsi7AEAAACABZkS9i5cuKApU6aof//+GjBggA4dOqTMzExFR0crIiJC0dHRysrKMqM0AAAAALAEU8Lec889p7CwMG3ZskXr169X8+bNFRsbq9DQUG3btk2hoaGKjY01ozQAAAAAsIQKD3vZ2dnav3+/RowYIUmy2WyqW7eu4uPjFRUVJUmKiorS9u3bK7o0AAAAALAMj4reYVJSkvz8/DRr1ix98803atu2rWbPnq20tDQFBARIkgICApSenn7dttzd3VS/fq3yLrlC9lHe6AMAAABQvZQo7I0bN06rVq267raSKCws1JEjRxQTE6Pg4GA9++yzZZ6y6XAYyszMvWybv79Pmdq6lt/uo7xZoQ+S6/thRh8AAACAyuxa37mvOY0zPz9fmZmZysjIUFZWljIzM5WZmanTp08rNTW1TMUEBgYqMDBQwcHBkqT+/fvryJEjatCggbPN1NRU+fn5lal9AAAAAMB1Rvbee+89rVq1SqmpqRo2bJgMw5Ak1alTR3/+85/LtEN/f38FBgbqhx9+ULNmzfTZZ5+pefPmat68ueLi4jRx4kTFxcWpd+/eZWofAAAAAHCdsDdu3DiNGzdOb7/9tsaOHeuyncbExOjRRx+V3W5XkyZNNH/+fBUVFWnatGlas2aNgoKCtGTJEpftDwAAAACqmxKdszd27FgdPHhQZ86ckcPhcG7/ZfXM0mrTpo0+/PDDK7aX5RxAAAAAAMCVShT2ZsyYoaSkJLVu3Vru7u6SJDc3tzKHPQAAAABA+SpR2Pv666+1efNmubm5lXc9AAAAAAAXKNFF1Vu0aKHz58+Xdy0AAAAAABcp0cheRkaGIiMjdeutt8rT09O5ffny5eVWGAAAAACg7EoU9iZPnlzedQAAAAAAXKhEYa9z587lXQcAAAAAwIVKFPZCQkKci7PY7XYVFhbK29tbBw8eLNfiAAAAAABlU6Kwd+jQoctub9++XYcPHy6XggAAAAAAv1+JVuP8rT59+mjfvn2urgUAAAAA4CIlGtnbtm2b8++ioiJ9/fXXXHMPAAAAACqxEoW9nTt3Ov92d3dX48aN9eqrr5ZbUQAAAACA36dEYW/+/PnlXQcAAAAAwIVKdM5ecuv0tz8AABojSURBVHKyHnzwQYWGhqpr166aPHmykpOTy7s2AAAAAEAZlSjszZo1S+Hh4UpMTFRCQoJ69eqlWbNmlXdtAAAAAIAyKlHYS09P1/Dhw+Xh4SEPDw8NGzZM6enp5V0bAAAAAKCMShT2fH19tX79ejkcDjkcDq1fv17169cv79oAAAAAAGVUorA3b948ffzxx+rWrZu6d++urVu3smgLAAAAAFRiJVqNc8mSJVqwYIHq1asnScrMzNSCBQsIfAAAAABQSZVoZO/bb791Bj1Jql+/vo4ePVpuRQEAAAAAfp8Shb2ioiJlZWU5b2dmZsrhcJRbUQAAAACA36dE0zjHjx+v0aNHq1+/fnJzc9PHH3+s++67r7xrAwAAAACUUYnCXlRUlNq1a6d9+/bJMAz9/e9/1y233FLetQEAAAAAyqhEYU+SbrnlFgIeAAAAAFQRJTpnDwAAAABQtRD2AAAAAMCCCHsAAAAAYEGEPQAAAACwIMIeAAAAAFgQYQ8AAAAALKjEl14AqqM6db3k7WVzWXt5+QXKvpDvsvYAAACAqyHsAdfg7WVT2KRnXNZe4ooYZYuwBwAAgPLHNE4AAAAAsCDCHgAAAABYEGEPAAAAACyIsAcAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAAADAgrjOHmBxXBgeAACgeiLsARbHheEBAACqJ6ZxAgAAAIAFEfYAAAAAwIIIewAAAABgQYQ9AAAAALAgwh4AAAAAWBBhDwAAAAAsiLAHAAAAABZE2AMAAAAACyLsAQAAAIAFmRb2HA6HoqKiNGnSJElSZmamoqOjFRERoejoaGVlZZlVGgAAAABUeaaFvbfeekvNmzd33o6NjVVoaKi2bdum0NBQxcbGmlUaAAAAAFR5poS95ORk7dq1SyNGjHBui4+PV1RUlCQpKipK27dvN6M0AAAAALAEU8LevHnzNGPGDNWo8X+7T0tLU0BAgCQpICBA6enpZpQGAAAAAJbgUdE73Llzp/z8/NSuXTt9/vnnv6std3c31a9fy0WVXV1F7KO80YfKwwr9sEIfAAAArK7Cw97Bgwe1Y8cOJSQkKD8/X9nZ2Xr00UfVoEEDpaamKiAgQKmpqfLz87tuWw6HoczM3Mu2+fv7uLzm3+6jvFmhD5Lr+2GFPki8nwAAAOA61/quV+HTOB955BElJCRox44dWrRokW6//XYtXLhQ4eHhiouLkyTFxcWpd+/eFV0aAAAAAFhGpbnO3sSJE7Vnzx5FRERoz549mjhxotklAQAAAECVVeHTOH+tS5cu6tKliyTJ19dXq1atMrMcAAAAALAMU8NeVVDgsLv0nKdL9gJdzMx3WXsAAAAAUBzC3nXY3D0V8d4sl7W3bfR8XRRhDwAAAED5qjTn7AEAAAAAXIewBwAAAAAWRNgDAAAAAAsi7AEAAACABbFAC4BKr05dL3l72VzWXl5+gbIvsFASAACwNsIegErP28umsEnPuKy9xBUxymZVXAAAYHFM4wQAAAAACyLsAQAAAIAFEfYAAAAAwIIIewAAAABgQSzQAgAVxJWrirKiKAAAuB7CHgBUEFeuKsqKogAA4HqYxgkAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBhD0AAAAAsCDCHgAAAABYEGEPAAAAACyIsAcAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBHmYXgPJX4LDL39/HZe1dshfoYma+y9oDAAAA4HqEvWrA5u6piPdmuay9baPn66IIewAAAEBlxjROAAAAALAgwh4AAAAAWBBhDwAAAAAsiLAHAAAAABbEAi1ABXLlyqisigoAAIBrIewBFciVK6OyKioAAACuhWmcAAAAAGBBhD0AAAAAsCDCHgAAAABYEGEPAAAAACyIBVoAAKbxqe+lmp42l7TFCrUAAFyOsAcAME1NTxsr1AIAUE6YxgkAAAAAFkTYAwAAAAALIuwBAAAAgAVxzh6AUilw2OXv7+Oy9lhUAwAAoHwQ9gCUis3d02ULakgsqgEAAFBemMYJAAAAABbEyB4AAL+DK68VKDG1GQDgOoQ9AAB+B1deK1BiajMAwHWYxgkAAAAAFlThI3vnzp3TY489pp9++kk1atTQqFGjNG7cOGVmZurhhx/WmTNn1LhxY7300kuqV69eRZcHoBpgRVEAAFAdVHjYc3d318yZM9W2bVtlZ2dr+PDh6tatmz788EOFhoZq4sSJio2NVWxsrGbMmFHR5QGoBlhRFAAAVAcVPo0zICBAbdu2lSTVqVNHzZo1U0pKiuLj4xUVFSVJioqK0vbt2yu6NAAAAACwDFMXaDl9+rSOHj2q4OBgpaWlKSAgQNLPgTA9Pf26z3d3d1P9+rXKu0yXq4o1/5YZfbDCcXM1qxwTK/SjuvybKDKK5GXzrPD9lpQV3kuSdfoBADCXaWEvJydHU6ZM0eOPP646deqUqQ2Hw1BmZu5l21x5Hk55+W3Nv2WFPkiu70dJ9ulqlf21MON1KA/8myi/fbqav7+PwiY947L2ElfEuKwtyTr/nzCjHwCAqulan0OmrMZpt9s1ZcoUDR48WBEREZKkBg0aKDU1VZKUmpoqPz8/M0oDAAAAAEuo8JE9wzA0e/ZsNWvWTNHR0c7t4eHhiouL08SJExUXF6fevXtXdGmoxFg9EQAAACidCg97//73v7V+/Xq1bNlSQ4cOlSRNnz5dEydO1LRp07RmzRoFBQVpyZIlFV0aKjFWTwQAAABKp8LDXseOHfXtt98We9+qVasquBoAAAAAsCZTV+MEAADm86nvpZqeNpe1x1R5AKgcCHsAAFRzNT1tTJUHAAsyZTVOAAAAAED5IuwBAAAAgAUR9gAAAADAggh7AAAAAGBBLNACAFVQgcMuf38fl7VXnVZPrFPXS95erlt5EgCAyoqwBwBVkM3dk9UTy8jby6awSc+4rL3EFTEuawsAAFdiGicAAAAAWBBhDwAAAAAsiLAHAAAAABZE2AMAAAAAC2KBFgAAYApXroyal1+g7AvVY5EhACgpwh4AADCFK1dGTVwRo+xqsqIsAJQU0zgBAAAAwIIIewAAAABgQYQ9AAAAALAgwh4AAAAAWBBhDwAAAAAsiLAHAAAAABZE2AMAAAAACyLsAQAAAIAFEfYAAAAAwII8zC4AAACUTp26XvL2spldRqVS4LDL39/HZe1dshfoYma+y9oDADMQ9gAAqGK8vWwKm/SMy9pLXBHjsrbMYnP3VMR7s1zW3rbR83VRhD0AVRvTOAEAAADAggh7AAAAAGBBhD0AAAAAsCDCHgAAAABYEGEPAAAAACyIsAcAAAAAFkTYAwAAAAAL4jp7AAAAlYRPfS/V9LS5pC0uDA+AsAcAAFBJ1PS0uezi8FwYHgDTOAEAAADAggh7AAAAAGBBhD0AAAAAsCDCHgAAAABYEAu0AAAAVGN16nrJ28s1K4BKUl5+gbIvVOzCMK7uQ36hXV4eni5rj5VRYRbCHgAAQDXm7WVT2KRnXNZe4ooYZVfwKqDl0QdXrYoqsTIqzMM0TgAAAACwIEb2AAAAysjV0wetoMBhl7+/j0vaYvoj8PsQ9gAAAMqoPKYPVnU2d08uDA9UEkzjBAAAAAALIuwBAAAAgAUR9gAAAADAggh7AAAAAGBBLNACAAAAWIxPfS/V9HTdSrGsjFo1EfYAAAAAi6npaePC8Kh80zgTEhLUr18/9e3bV7GxsWaXAwAAAABVUqUa2XM4HHr66ae1cuVKNWrUSCNGjFB4eLhuueUWs0sDAAAAUIGsMhXVlf0obR8qVdg7fPiwmjZtqiZNmkiSIiMjFR8fT9gDAAAAqhmrTEV1ZT9K24dKNY0zJSVFgYGBztuNGjVSSkqKiRUBAAAAQNXkZhiGYXYRv/j444/16aef6rnnnpMkxcXF6auvvlJMTIzJlQEAAABA1VKpRvYCAwOVnJzsvJ2SkqKAgAATKwIAAACAqqlShb0//elPOnHihJKSklRQUKBNmzYpPDzc7LIAAAAAoMqpVAu0eHh4aM6cOZowYYIcDoeGDx+uFi1amF0WAAAAAFQ5leqcPQAAAACAa1SqaZwAAAAAANcg7AEAAACABRH2riIhIUH9+vVT3759FRsba3Y5ZTJr1iyFhoZq0KBBZpdSZufOndPYsWM1YMAARUZGatWqVWaXVGr5+fkaMWKEhgwZosjISC1dutTsksrM4XAoKipKkyZNMruUMgsPD9fgwYM1dOhQDRs2zOxyyuTChQuaMmWK+vfvrwEDBujQoUNml1QqP/zwg4YOHer8r0OHDnrzzTfNLqvU3nzzTUVGRmrQoEGaPn268vMr/kK9v9eqVas0aNAgRUZGVqnXoLjPt8zMTEVHRysiIkLR0dHKysoyscLrK64PH3/8sSIjI9W6dWt99dVXJlZXcsX1Y8GCBerfv78GDx6sBx98UBcuXDCxwusrrg8vvfSS87Ni/Pjxlf66z9f6zvfGG2+oVatWSk9PN6GykiuuDy+//LLCwsKcnxe7d+82scLrK64P06ZNc9YfHh6uoUOHVmxRBq5QWFho9O7d2zh16pSRn59vDB482Pj+++/NLqvUvvjiC+Prr782IiMjzS6lzFJSUoyvv/7aMAzDuHjxohEREVHlXouioiIjOzvbMAzDKCgoMEaMGGEcOnTI5KrK5h//+Icxffp0Y+LEiWaXUma9evUy0tLSzC7jd3nssceMDz74wDAMw8jPzzeysrJMrqjsCgsLja5duxqnT582u5RSSU5ONnr16mXk5eUZhmEYU6ZMMdauXWtyVaXz7bffGpGRkUZubq5ht9uNcePGGT/++KPZZZVIcZ9vCxYsMFasWGEYhmGsWLHCeOGFF8wqr0SK68OxY8eM48ePG3fffbdx+PBhE6srueL6kZiYaNjtdsMwDOOFF16okq/FxYsXnX+vWrXKiImJMaO0Ervad76zZ88a48ePN+64445K/9lXXB+WLl1qvP766yZWVTrX++49f/584+WXX67QmhjZK8bhw4fVtGlTNWnSRDabTZGRkYqPjze7rFLr1KmT6tWrZ3YZv0tAQIDatm0rSapTp46aNWtW6X9d+y03NzfVrl1bklRYWKjCwkK5ubmZXFXpJScna9euXRoxYoTZpVRr2dnZ2r9/v/N1sNlsqlu3rslVld1nn32mJk2aqHHjxmaXUmoOh0OXLl1SYWGhLl26VOWuC3v8+HEFBwfL29tbHh4e6tSpkz755BOzyyqR4j7f4uPjFRUVJUmKiorS9u3bzSitxIrrQ/PmzdWsWTOTKiqb4vrRvXt3eXj8vOB7+/btL7uGcmVUXB/q1Knj/DsvL6/Sf25f7Tvf/PnzNWPGjEpfv2SN763X6oNhGPr4448rfMYdYa8YKSkpCgwMdN5u1KhRlQsYVnT69GkdPXpUwcHBZpdSag6HQ0OHDlXXrl3VtWvXKtmHefPmacaMGapRo+r/b+Mvf/mLhg0bpvfff9/sUkotKSlJfn5+mjVrlqKiojR79mzl5uaaXVaZbdq0qUpONW/UqJHGjx+vXr16qXv37qpTp466d+9udlml0rJlSx04cEAZGRnKy8tTQkJCpf9Sfi1paWnOwB0QEFDpp6xVF2vXrlWPHj3MLqNMFi9erJ49e2rjxo2aOnWq2eWUWnx8vAICAtS6dWuzS/ld3nnnHQ0ePFizZs2q9NOzr+XAgQNq0KCBbrrppgrdb9X/1lYOjGKuRlEVfhGxspycHE2ZMkWPP/74Zb+2VRXu7u5av369du/ercOHD+u7774zu6RS2blzp/z8/NSuXTuzS/nd3n33Xa1bt06vvfaa3nnnHe3fv9/skkqlsLBQR44c0ZgxYxQXFydvb+8qe15xQUGBduzYof79+5tdSqllZWUpPj5e8fHxSkxMVF5entavX292WaXSvHlzTZgwQePHj9eECRPUqlUrubu7m10WLGTZsmVyd3fXkCFDzC6lTB5++GHt3r1bgwcP1j//+U+zyymVvLw8LV++vEqG1F8bM2aMPvnkE61fv14BAQF6/vnnzS6pzD766CNTftwk7BUjMDDwsl83U1JSqtz0HCux2+2aMmWKBg8erIiICLPL+V3q1q2rLl26KDEx0exSSuXgwYPasWOHwsPDNX36dO3bt0+PPvqo2WWVSaNGjSRJDRo0UN++fXX48GGTKyqdwMBABQYGOkeH+/fvryNHjphcVdkkJCSobdu2atiwodmllNrevXt14403ys/PT56enoqIiKhyC+VI0siRI7Vu3Tq98847ql+/vpo2bWp2SWXWoEEDpaamSpJSU1Pl5+dnckXV27p167Rr1y4tXLiwyv9gPmjQIG3bts3sMkrl1KlTOn36tHNRkOTkZA0bNkznz583u7RSadiwodzd3VWjRg2NHDmyyixc9FuFhYX65JNPNHDgwArfN2GvGH/605904sQJJSUlqaCgQJs2bVJ4eLjZZVVLhmFo9uzZatasmaKjo80up0zS09OdK5FdunRJe/furXLnZDzyyCNKSEjQjh07tGjRIt1+++1auHCh2WWVWm5urrKzs51/79mzRy1atDC5qtLx9/dXYGCgfvjhB0k/n/PWvHlzk6sqm02bNikyMtLsMsrkhhtu0Jdffqm8vDwZhlFlX4e0tDRJ0tmzZ7Vt27YqOaX2F+Hh4YqLi5MkxcXFqXfv3iZXVH0lJCTotdde07Jly+Tt7W12OWVy4sQJ5987duyocp/brVq10meffaYdO3Zox44dCgwM1Icffih/f3+zSyuVX37AkaTt27dXuc/sX/zy3e/Xp4lVFI8K32MV4OHhoTlz5mjChAlyOBwaPnx4lXxzTZ8+XV988YUyMjLUo0cPTZ48WSNHjjS7rFL597//rfXr16tly5bOpWqnT5+unj17mlxZyaWmpmrmzJlyOBwyDEP9+/dXr169zC6rWkpLS9ODDz4o6efzKAcNGlQlzyWJiYnRo48+KrvdriZNmmj+/Plml1RqeXl52rt3r55++mmzSymT4OBg9evXT3feeac8PDzUpk0b3XXXXWaXVWqTJ09WZmamPDw89OSTT1aZxRGK+3ybOHGipk2bpjVr1igoKEhLliwxu8xrKq4P9evX1zPPPKP09HRNmjRJbdq00RtvvGF2qddUXD9iY2NVUFDg/JE2ODi4Uv9bL64PCQkJ+vHHH+Xm5qbGjRtr7ty5Zpd5TVb4zldcH7744gt98803kqTGjRtX6veRdPXXYfPmzab9uOlmFHeCGgAAAACgSmMaJwAAAABYEGEPAAAAACyIsAcAAAAAFkTYAwAAAAALIuwBAAAAgAUR9gAAMNno0aPNLgEAYEFcegEAUG04HA65u7ubXQYAABWCi6oDACzh9OnTmjBhgoKDg3XkyBHdfPPNWrBggSIjIzVs2DDt2bNHd999t+rVq6eXX35ZBQUFzovS165dW7t379b8+fPl6+urtm3bKikpSStWrNDLL7+ss2fP6vTp0zp79qzGjRune+65R5L0wAMPKDk5Wfn5+brnnnucF1YPCQnRPffco507d6pmzZp69dVX1bBhQ/3000968sknlZSUJEl66qmn1KFDB4WEhOjQoUOSpNdff10ff/yxCgoK1LdvX02ZMkW5ubmaNm2akpOTVVRUpAceeEADBw4050ADAKoMpnECACzjxx9/1KhRo7Rx40bVrl1b//rXvyRJXl5eevfddxUaGqply5Zp5cqVWrdundq1a6eVK1cqPz9fc+bM0WuvvaZ3331X6enpV7T7xhtvaPXq1XrllVdkt9slSfPmzdOHH36otWvX6u2331ZGRoYkKTc3V8HBwdqwYYM6duyoDz74QJL07LPPqlOnTtqwYYPWrVunFi1aXLafTz/9VCdPntSaNWu0fv16/fe//9X+/fuVmJiogIAAbdiwQR999JHCwsLK+1ACACyAsAcAsIygoCDddtttkqQhQ4bo3//+tyQ5R8G+/PJLHTt2TGPGjNHQoUMVFxens2fP6ocfflCTJk3UpEkTSVJkZORl7fbs2VM2m01+fn7y8/NTWlqaJOntt9/WkCFDNGrUKJ07d04nT56UJHl6eqpXr16SpHbt2unMmTOSpH379ul//ud/JEnu7u7y8fG5bD979uzRnj17FBUVpTvvvFM//PCDTpw4oZYtW2rv3r3629/+pgMHDlzxPAAAisM0TgCAZbi5uRV729vbW5JkGIa6deumRYsWXfa4I0eOXLNdm83m/Nvd3V2FhYX6/PPPtXfvXr3//vvy9vbW2LFjlZ+fL+nnsPfLvmvUqCGHw1Gi+g3D0MSJE4tdsOXDDz/U7t279eKLL6pbt2566KGHStQmAKD6YmQPAGAZZ8+edZ77tmnTJuco3y/at2+vgwcPOkfg8vLy9OOPP6pZs2ZKSkrS6dOnJUmbN2++7r4uXryoevXqydvbW8ePH9d//vOf6z4nNDTUObXU4XAoOzv7svu7d++utWvXKicnR5KUkpKitLQ0paSkyNvbW0OHDtVf/vKX64ZTAAAkRvYAABbSvHlzrVu3TnPmzNFNN92kMWPG6J///Kfzfj8/P82fP1/Tp09XQUGBJGnatGm6+eab9eSTT2rChAny9fXVrbfeet199ejRQ++9954GDx6sm2++We3bt7/uc2bPnq2YmBitXbtWNWrU0FNPPaWQkBDn/d27d9fx48edI3u1atXS3/72N508eVIvvPCCatSoIQ8PDz311FOlPDIAgOqISy8AACzh9OnTuu+++/TRRx+V6fk5OTmqXbu2DMPQ3LlzddNNN+nee+91bZEAAFQgRvYAAJC0evVqrVu3Tna7XW3atHFeRgEAgKqKkT0AAAAAsCAWaAEAAAAACyLsAQAAAIAFEfYAAAAAwIIIewAAAABgQYQ9AAAAALAgwh4AAAAAWND/A4Jf4l/NqGvvAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"## CORRELATION"},{"metadata":{"trusted":true},"cell_type":"code","source":"plt.figure(figsize=(10,10))\nsns.heatmap(df.corr(), cbar = True,  square = True, annot=True, cmap= 'YlGnBu')\nplt.title('FEATURE VARIABLE CORRELATIONS')\n","execution_count":37,"outputs":[{"output_type":"execute_result","execution_count":37,"data":{"text/plain":"Text(0.5, 1.0, 'FEATURE VARIABLE CORRELATIONS')"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 720x720 with 2 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAqwAAAKSCAYAAAAXsontAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd1RURx/G8e/SBBEpSrFgwRawkmALKpZgx27U+Go0RmOJxpoYNQYb9oLGbhKNscVCUeyiYsVeYjSxKyoLCooK0nbfP8CVpUgRWEl+n3P2HHbvzL3PHdZhdnbuVaFWq9UIIYQQQgjxntLTdQAhhBBCCCHeRgasQgghhBDivSYDViGEEEII8V6TAasQQgghhHivyYBVCCGEEEK812TAKoQQQggh3msyYBVCCCGEELni+++/p379+rRt2zbd7Wq1mqlTp+Lu7o6HhwdXrlzJ0n5lwCqEEEIIIXJFp06dWLVqVYbbg4KCuHPnDnv37mXKlCl4enpmab8yYBVCCCGEELmidu3amJubZ7j9wIEDdOjQAYVCQa1atYiKiiIsLCzT/cqAVQghhBBC5AulUomdnZ3muZ2dHUqlMtN6BnkZSgghhBBC5C2TMj3y7VirZ3dg06ZNmufdunWjW7duWa6vVqvTvKZQKDKtJwNWIYQQQgiRJdkdoKZmZ2dHaGio5nloaCg2NjaZ1pMlAUIIIYQQBZhCoZdvj3fVtGlTfH19UavVXLhwATMzsywNWGWGVQghhBBC5IqRI0dy6tQpIiMjadSoEUOHDiUhIQGAHj164ObmxuHDh3F3d8fExAQvL68s7VehTm8xgRBCCCGEKBBMy/bKt2O9vLs2346VkiwJEEIIIYQQ7zUZsAohhBBCiPearGEVQgghhCjAcuNiqPfdv/8MhRBCCCFEgSYzrEIIIYQQBZjMsAohhBBCCKFjMsMqhBBCCFGAZeW/Ni3oZIZVCCGEEEK812SGVQghhBCiQPv3zz/++89QCCGEEEIUaDLDKoQQQghRgMldAoQQQgghhNAxmWEVQgghhCjAZIZVCCGEEEIIHZMZViGEEEKIAkzxH5h//PefoRBCCCGEKNBkhlUIIYQQogCTNaxCCCGEEELomAxYhRBCCCHEe02WBAghhBBCFGCyJEAIIYQQQggdkxlWIYQQQogCTGZYhRBCCCGE0DGZYRVCCCGEKMAUKHQdIc/JDKsQQgghhHivyQyrEEIIIUQBJmtYhRBCCCGE0DGZYRVCCCGEKMBkhlUIIYQQQggdkwGrECJHmjZtSo0aNXB2dtY8lEolISEhVKlSRet1Z2dndu7cqVV/0aJFVKlShUuXLgHg7++vKVujRg0++OADrfoAVapU4e7du2n2M3r0aACCg4O16rVo0YKtW7dqla9SpQq1atXS2vfKlSvTnN/y5cvp2bNnmtcjIiKoVq0a//zzDwDR0dE4OzvTv3//t7aRq6srY8eO5eXLl5rtY8eOZf78+Vp1srq/2rVrM2DAAB49evTW/WX3vF+7dOkS/fv3x8XFhTp16tClSxettoyKiuLHH3/E1dWVmjVr4uHhkaats3L+1apVw9nZmTp16tC3b19u3ryp2b5t2zYcHR3TvJeUSqVm/8ePH8/wHNRqNc2aNaN169aa17788kvNfqpWrao5vrOzMxMnTiQ4OJhGjRpp7efgwYN06dKFWrVqUbduXUaNGkVoaKhWzipVqrBq1Sqteo0aNSI4OFjTXt9//z2urq6a9+aKFSsyzC5EdigUevn20BVZEiCEyLFly5bx8ccfa70WEhICwOnTpzEwSL+LUavV+Pn5YWFhgY+PDzVq1KBdu3a0a9cOSBp4jhkzhqCgoGxnsrGxISgoCLVaTVBQEIMGDcLZ2RkHBwdNGT8/P8qWLfvW/bRv3x5vb2/u37+Pvb295vWdO3dSuXJlKleuDMCePXswMjLi2LFjhIWFYWNjo7Wf120UHh5Ov379WLFiBSNGjMjwuFndX2xsLJ6enkyZMoUlS5ZkqW2yct4A58+f54svvmDQoEHMnDkTS0tLrly5wsqVK+ncuTNxcXH06dOHYsWKsXHjRuzs7Dhx4gRjx44lKiqKvn37Zvn8+/Xrx4gRI3j16hWenp6MHz+ejRs3arbXqlWLDRs2ZOn8Ujt9+jQREREkJCRw6dIlatSooTWoHDt2LLa2tlp5Xg8wX9u9ezfjxo3D09OT5s2b8/z5c+bNm8dnn32Gj48P5ubmAFhYWLBy5Uq6d+9OkSJF0mSZPn060dHR7Ny5EzMzM27fvs3169dzdF5C/BfJDKsQIt+dOXOGsLAwxo0bx86dO4mLi8v1YygUCtzc3DA3N+fvv//Odn07Ozvq1auHn5+f1uu+vr506NBB89zHx4fu3btTpUoVtm/fnuH+rK2tadCgAVevXn3rcbO6v0KFCtGyZUutGcncMmvWLDp06MCAAQOwsrJCoVBQrVo1vL29gaSB76NHj/D29sbe3h5DQ0MaNWrEhAkTWLhwIS9evEizz8zO39jYmFatWnHt2rVcOw8fHx+aNm2Km5sbvr6+2a6vVquZOXMmgwYNol27dhgbG2Ntbc20adMoXLgwq1ev1pR1cHDA2dlZ67WULl++jIeHB+bm5ujp6VGhQgVatmyZwzMTIjW9fHzohgxYhRD5zsfHhyZNmmi+qj106FCuH0OlUnHgwAEiIyOzNKuYng4dOuDv7695fuvWLa5du0bbtm0BePjwIadOncLDwwMPD4+3DopCQ0M5cuQIZcqUybBMdvYXExPDzp07qVmzZg7OLGMxMTFcuHCBFi1aZFjm+PHjNGrUiMKFC2u93rx5c2JjYzl//nyaOpmdf3R0NDt27Hhr+2RHTEwMe/bsoV27dnh4eBAQEJDtD0a3bt3i4cOHaQaWenp6NG/ePM1yhG+++YbVq1fz9OnTNPuqWbMm8+fPZ+vWrdy5cyfb5yPEf50sCRBC5NiQIUPQ19cHoE6dOlpfTderV0+r7KZNm6hQoQIxMTHs3r2bWbNmYWhoSIsWLfDx8aF58+a5kiksLAwXFxdevXpFYmIiY8eOxcnJSatMx44d0dN783l9/vz5NGzYMM2+3N3d8fT05Ny5c3z44Yf4+fnRsGFDrKysgKTZ1ipVqlCxYkXMzMyYPXs2f/31l9bxhgwZAiQNyOrVq8ewYcMyzJ7V/enr6xMdHY2VlRU///xzltsmK+cdFRWFSqXC2to6w/1ERkZSrVq1NK8bGBhgaWlJZGSkVl7I+Px/+eUX1q1bx4sXLyhZsmSa5Q0XL17ExcVF89zCwoL9+/dneq579+7FyMgIV1dXVCoViYmJHD58GHd390zrpjxPIM2yDEiaMU55ngCOjo64urqycuVKxowZo7Xthx9+YPXq1axbt46JEydSsmRJJkyYgJubW5bzCJERuUuAEEK8xeLFizlz5gxnzpxJM9A4efKkZtuZM2eoUKECAPv27cPAwEBzYYuHhwdHjhwhIiIi0+Pp6+uTkJCg9VpCQgKGhoaa5zY2Npw5c4Zz587Rq1cvTp48mWY/Pj4+WtnSG6wCmJiY0LJlS3x9fVGr1Wzfvp2OHTtqtvv5+eHh4QGAra0ttWvXxsfHJ00bnT9/nrVr13Lr1q00g5yUsrq/M2fOcPnyZSZOnEivXr0IDw/PcJ/ZPe+iRYuip6f31n1aWlqmuz0hIYHIyEgsLS218r7t/L/44gvOnDlDYGAgxsbG3L59W2t7zZo1tTJnZbAKSYP/Vq1aYWBggJGREe7u7mnaMjOvzyMsLCzNtvDwcK3zfG3YsGFs2LAhTfsYGxszcOBAtm3bRnBwMK1atWL48OHpzsYKIdKSAasQIl/5+voSHR1NkyZNcHV15ZtvviE+Pp4dO3ZkWrdEiRKai7peCwkJoWTJkmnKGhkZMXr0aP75558sD3LS07FjR3bv3s2xY8d4+fIljRs3BuDcuXPcuXOHFStW4OrqiqurK5cuXSIgICDNoBqSZqA7derEzJkz0z1Odvenr69P8+bN0dPT4+zZszk+v9RMTEyoVasWe/fuzbDMxx9/TFBQENHR0Vqvv57VrFWrVpo6mZ1/yZIlGT9+PNOmTePVq1fvdA6hoaGcPHkSf39/TVvu2bOHoKCgLH0wes3BwQE7Ozt2796t9bpKpWLv3r1pvkUAqFChAs2bN2f58uUZ7rdIkSJ89dVXREdHp3k/CyHSJwNWIUS+USqVnDhxgmXLluHr64uvry9+fn70798/SxfFtG7dmqVLlxIaGopKpeL48eMEBgZmuN7SyMiIL774gsWLF+c4s4uLC2ZmZkycOJHWrVtjZGQEJA28XV1dCQgI0JzL9u3biYmJyfDuBp9//jnHjx9P98Kj7O5PrVazf/9+oqKiNLPXkDSYio2N1TxyckHbmDFj8PHxYdWqVZoZ0WvXrmmupm/fvj12dnZ88803hISEEB8fz5EjR5g6dSpff/01ZmZm2T5/AFdXV2xsbNi0aVOWs8bHx2udb0JCAn5+fpQrV47du3dr2nLPnj3Y2toSEBCQ5X0rFAq+++47li5dyvbt23n16hXh4eGMHz+eFy9e0KdPn3TrDRkyhK1bt/L8+XPNa4sXL+bSpUvExcURGxvLb7/9RtGiRSlfvnyW8wiREbmtlRBC5FDt2rW1ng8bNoz4+HgcHR1p0KCB1rZevXrx66+/8s8//2huF5WeIUOG4O3tzWeffcazZ88oU6YMc+bMeWudzp07s2jRIgIDA2natCmQNOBSKBSaMl26dGH8+PHp1lcoFHTo0IGffvpJc3eA2NhYdu3axcyZM9Os9Wzfvj2+vr6aY6VkZWVF+/btWbJkCYsWLdK8np39DRw4ULNuuFSpUsyYMYNKlSppyq9YsULr/p4ffvih5rZQWT3vDz/8kDVr1rBw4UKWLl2Kvr4+ZcuW1dyX1sjIiF9//ZV58+bx6aef8uLFC+zt7RkxYgRdu3ZNtx3fdv4pffnll0yfPp0ePXoAcOHCBc19eF9bs2YNNWrUAGDAgAFa2wYOHMiePXvo2bNnmrbs3r07Pj4+9OrVK8OMqb3+kLJ06VJ++OEHjIyMaNCgARs2bEh3SQCAvb097du317odl0KhYNy4cTx8+BADAwOqVKnC8uXLMTU1zXIWIf7LFGq1Wq3rEEIIIYQQImdKVfsx34714M9J+XaslGRJgBBCCCGEeK/JkgAhhBBCiAJMbmslhBBCCCGEjskMqxBCCCFEAZbyYsp/KxmwijxlUqaHriNkS/Q9T11HyLa4xChdR8i2RPW73Wczv+kpDDMv9J7RVxjrOkK2qUnUdYRsMdQrousI2VYQ+4tC+ua6jpADGd+5ROSMDFiFEEIIIQowWcMqhBBCCCGEjskMqxBCCCFEAab4D8w//vvPUAghhBBCFGgywyqEEEIIUYDJGlYhhBBCCCF0TGZYhRBCCCEKMJlhFUIIIYQQQsdkwCqEEEIIId5rsiRACCGEEKIAk9taCSGEEEIIoWMywyqEEEIIUZDJRVdCCCGEEELolsywCiGEEEIUYHJbKyGEEEIIIXRMZliFEEIIIQowhUKh6wh5TmZYhRBCCCHEe01mWEWBs2z2V7Rq5kz4kyhc3L/VWQ61Ws20aSsJOnwGY+NCTJ8xnKpVK6QpF3I/lJEj5/Ds2XOcnCowc9YIjIwMObD/JN7e69DT00NfX59x477kIxcnbt0KYeSI2Zr69++HMmzYZ3zep322Mx49cpGZ09eiSlTRqUtj+vVvl+YcZnqt5UjQBYxNCjHFawBOTuWzVHf1LwHMm7OBw8eWYmlpxonjl1kwbxPx8QkYGhowcnQP6tarmu3MKR078iezZ2xAlaiiQ+eGfNG/dZr8s6Zv4FjQZYxNjJg07QscncoS+iiCH77/mSdPnqFQ6NG5ayM+6/UJAH9fvce0yb8TGxuPvoEe4yb0pFoNh3fK+SbvJWZOX4cqUUXHLm706982Td6ZXus4GnQRYxMjpnj1x9GpHAATx68i6PAFrKyKss3fS1Pnp4VbORR4Dj2FHpbFzJji1R8bG8tcyfs603Sv1RwJOo+xcSGmeQ3CqWra9ggJCWPMKG+ePX2Bo1N5Zsz8GkMjA27desAP45by11+3GTa8O32/8ADg0aPHjBu7mMePn6Kn0KPLp83o1bt1mv1mJ+cMr9+S3qvGRkz1GohT1fLp5vx21CJNzukzB2NoZJBh/djYOPr0mkxcXAKJCYm4t6jLkKFdALh29Q5TPH8hNi4efX09JkzsS/UaFXN8DinP5V36jtcuX7pOt25jmDd/DC1bur5zrrzoL8aMXMSd248AeP48GjOzwmz28SJg+zFW/xKg2fc//9xn05apfOBYNsf5k9p1BYcPn8XYuBAzZnxD1appf1/374cycuRsTbvOmjVSq10vXfqHbt3GMH/+t5p2bdq0H6amJpr+etu2+TnOmRfkPqxCAN27d0/39bFjx7J79+58TgNrNx+mfe8Z+X7c1IKCznL3zkP27F3O5ClDmOS5NN1yc+as4fM+7dizdzlFixZh65Z9ANSrXxM//4X4+nnj5TWUCRMWAeDgUBpfP298/bzZum0eJiaF+MS9frbzJSaq8Jq6hqXLv8V3+yx27TzJzRsPtMocDbrI3buh7Ng9l4mT+jF10uos1Q199ISTJ/6kRIlimtcsLMxYtGQU2/xmMHX6V4wfuyzbmVPnnzFtHT8tG85W/yns3nmKmzceauc/cpl7d8Pw2+XFBM/eeE3+HQB9Az1Gfvsp27ZP5bcN49i04aCm7oJ5Wxgw2INN235k0NftWTBvyzvlTJnXa+pvLFk+Cp/t09mdbntf4t7dULbvnsXESX2ZOmmNZlv7jg1YumJ0mv32+aI1W3yn8YfPFBq51WL5Er9cyfvakaAL3Lsbys7d3nhO6s+UyT+nW27+3HX06t2anXu8KWpuytatgQCYmxdh7Pg+9EkeqL5moK/PmG97sT1gPus3TWXj+r3cvBHyTjnv3g0lYPc8fpz0JVMn/5JBzg306t2KgD3zKWpuyratB99a38jIkJ9/ncBW3xls9pnOsaMXuXjhOgDz5mxg4JBObPGZzpChXZg3Z0OO86f0rn0HQGJiInPmrKZBA+dcyZRX/cXseUPZ7OPFZh8vPnGvTTP32gC08XDVvD5t5iBKlir+ToNVSGrXO3cesnfvcqZMGYJnhu26mj592rN37wqKFi3CljTtuibddl2zZhp+fgvfu8Hqf4UMWEWmNm7cqOsIWo6dukbE0xe6jsGBA8G079AEhUJBrVofEBX1krCwCK0yarWakycv0aJF0qf0Dh2bsv9AMACmpiaadUfRMbHprkE6ceIS9vZ2lCplk+18f16+SZkytpS2t8HQyICWrepxMPCsVpmDgWfxaN8AhUJBzZoVef78JeHhkZnWnTXzd0aM6q6V2dGpnGbmr2LF0sTGxhMXF5/t3G/y38be3obS9tYYGhnQonUdDh28oFXmcOAF2rarj0KhoEbNCjx/Hk14+FOsrS1wdEr642dqakx5hxKEh0UCoEDByxcxALx4HoO1tUWOM2rnvYW9VpvV5VDgOa0yBwPP4dHeNTlvRU1egI9cPqCouWma/RYpYqL5+VVMLLm9VO1g4GnatW+U9B6oVZnnUS81bfWaWq0m+OQVmreoB0D79m4EHjgNQLFi5lSvXhEDA32tOtY2lpqZWlNTExwqlEKp1P73kb2cZ2nXvmFyzko8j4pON+epk1dwb1EXgHbtGxJ44Mxb6ysUCgqbGgOQkJBIQnyi5n2tUPDmvfIiButcmtl+174D4Pe1O2je4mOsipnnSqa87C9en8+ePcG0ap32w/eugOPpvp5dBw6cpEOHptlq144dm3HgwEnN9rVrd9CixccUy6V2zS8KhV6+PXRFBqwiU87OSZ801Wo1kydPpnXr1gwYMIAnT57oOJluKZVPKGFnrXluZ1cMpVK7TZ5GPqdoUVPNH3M7u2KEpSizb98JWrUcxMCvJjPNa1iaY+wMCKJN20Y5zBeJrZ2V5rmtnRVhqf7Ah4VFYmf3ZpbU1taKMGXkW+seDDyLjY0lVT7IeDZk397TfOBYVutrtuwKU0ZiW+LNAMHW1pJwZer8T7FLmdPWkjDlU60yDx885u+r9zRf+48e240Fc7bQstkY5s/ZzNARnXOcMXXelFls7KxQptPetum0d2YWLdhC86YjCNhxgsFDO+VK3teUylTvAbtiKFP9kX/69DlmRQtr3se2dlaEZWPw+eBBGFev3qZGzZx/nZ66fdN7PyflTP3vLTLT+omJKrp0/B63BgOp93F1Tc7vvu/N3Dnr+aTJ18ydtY7hI7rlOH9K79p3KJVP2Lf/JN27t8yVPEn7zJv+4rWzZ/+mWDFzypazS3PsPbuDadXm3QesSuUT7OyKa56n166RkVEULVpEq12VKdp1//4TGbZrv34T6dRpOJs25f83i0IGrCIb9u3bx+3bt9m+fTtTpkzh/Pnzuo6kW+q0L6WeJVWnX0jzo7t7fXbtXspPi8ex0HudVrG4uHgCA0/lfG2aOu2xU0/OqdMro1BkWDcmJpaVy/01a/zSc+N6CAvmbWSi5xfZTZy51O2bbv43P0e/fMXo4UsYPbabZqZy86ZDjPquG7sPzGb0d92Y9MPqXImWbpbULf72t0OGhg7vwt7A+bRpW5+N6/bnMGH6MnwPaJVJWy+rVyVHv3zFiGHz+G7s5xQpUjhHGZMypBcidZl0KibnfFt9fX09tvhMZ//Bn/jz8k2u/3MfgE0b9/Pt2F7sP/gTY8b2YuKEFTnOrx00vZhZ7zu8pq1k9OjP0dfXT1smx5lyv79IaVfAiXRnUS9dvIGxsRGVKtlnJ226cvo+fV1m2rSVjB7dJ9123bBhFj4+3qxc6cm6dQGcPv3nO+fNVQpF/j10RC66Ell2+vRp2rRpg76+Pra2ttSrV0/XkfLdunUBbP5jLwDVq1fiUWi4Zlto6BNsbKy0yltaFiUq6iUJCYkYGOinWwagdu1q3Lu3gMiIKCytigJwJOgsTlUrULx4zr6GtLWzQhn6ZhZMGRqR5itNW1srQkPfzEAolRFY21gQH5+Qbt3798N48CCcrh3Hacp36zyB9ZsmUdzagtDQJ4wYtoBp0wdiX8Y2R7lfs7G1RPnozSyNUhmJtY321/e2tpaEpsyZokx8fAKjhy+lVZt6NHP/SFNmh98Jvv2+BwDuLVyYPHENucHWzkorS1hoBDap8trYWqJM095Z//22alOfrwfNe+dZ1g3r9rBlywEAqlWroP0eCH2CjbV2JktLM55HRWvex+m9l9ITH5/A8G/m0sajAe7N6+Yg5162bjmYnNNB+3cdGpFBztT/3pJ+B6l/P+nVL1rUlNp1HDl29CKVKtvj7xvE2HG9AWjRsi6eP6zM9jm8lpt9x59/3mDkyDkAPI2MIujwWQwM9Pnkk5z3yXnRX7yWkJDIgf2n2bh5Sprj7t518p2WA6xbF8Aff+wBkto1NPSxZlvG7foig3a9zsiRSRe8RkZGcfjwWQwM9Pjkk/rY2ibNLBcrZoG7e30uXfqH2rWr5Ti3yD6ZYRXZ8l+419vb9OzZRnNBVLNP6uLnexC1Ws2FC9cwMyucpnNUKBTUrVudPXuOAeDrE0izpkl/uO/efaiZsbhy5Sbx8QlYWJpp6gYEHKFNm5wtBwCoWs2Bu3dDCQkJIz4ugd27TtK4yYdaZRo3/ZDtfkdRq9VcvHgDM7PCWFtbZli3cmV7Dh9dwu79C9i9fwG2tlZs2jqV4tYWREW95OtBcxk24lOcP6yc49xv8pfj3j0lD0LCiY9LYM/OUzRuUlOrjFuTWuzwP4FarebSxZsUKWKCtbUFarWaSRPXUN6hBL36NNeqY21jztnTfwNwKvgaZcpmf31w+nnLc++ukpDkvLt3BePWRPvCjcZNndnudyw57w2KmJlkuob27p1Qzc+HDp6nvEOJd87ao2cLtvrMYqvPLJo2q42/X1DSe+DCPxQxK5xmoKJQKKhT14m9e5LW+vn5HaZpU5e3HkOtVjNxwjIcHErxeZ+2by2bcc7mbPGZzhaf6TRt5oK/35HknNeT2i6dnLXrOrFvT9JaT3+/IzRJztmkyUfp1o+IiCIq6iUAr17FcfLEn5QvXxJIWod75vRVAIJPXqFM2Zx/CMvNvuNA4CoCkx/NW3zMxB8HvtNgFfKmv3jtdZumXE4AoFKp2JvButas6tmzDX5+C/HzW8gnn9TD1zcwC+1aQ9OuPj4HaJrcroGBP2seLVp8zI8/DuKTT+oTHf2KFy+iAYiOfsWxY+epVOndLhDLdXr5+NARmWEVWVa7dm02bdpEhw4dePLkCcHBwbRtm7M/RO9izaKhNKzvSHFLM24E/8SUeVtYs+lQvudwc3Mh6PBZmrt/hbFJIbxSrEEd0H8SU6Z+ja1tMUaP6cPIEbPxXvA7jo4OdOnqDsDePSfw8wvEwMCAQsZGzJ//reYDQUxMLMeOX2DS5ME5zmdgoM+48Z8zqP8sElUqOnR0o2Kl0vyxMWlm7dPuzWjYqBZHgi7SpuUojI2NmDJtwFvrvs3G9fu4d0/JiqW+rFjqC8CyVd/l+OIFAwN9vhv/GYMHLEClUtG+oysVKpZic/Lvumu3xjRoVJ2jQZdp12ocxsZGeE7tC8CFczcI8D9Bpcql6NZpEgBfD+9Iw0Y1+MHzc2bP2EBCgopChQyZ4Nk7R/nSy/v9+F4M6j8blUpFh46Nkts76Wr6T7s3pWGjmhwNukTblmMwNi7E5Glfaup/N3oJZ05d4+nTF7g3Gc6grzvSqbMb3vM3c+f2I/T0FJQoWZwJP36eK3lfa+TmzJGg87Rq8Q0mxkZM8Rqk2TZowHQmTf0KGxsrRozqyZhR3ixauAlHx3J06tIUgMfhT+nW9XtevIhBT0/B77/txG/HXP75+x7b/Y9QqXIZOndMuv3cN8N70MgtZ1e1N3SrRVDQBVq3GIGxcSGmen2VIudMJk0dgI2NJSNG9eDbUYtYtHAzHziWpVOXxm+tHx7+lAnfLyUxUYVapaZ5y3q4JQ+2PCd/yQyv30hMTHqv/Dj5yzS5cuJd+468kJf9RUazqGfPXMPW1orS9rnzodHNzYXDh8/g7i/uh8gAACAASURBVD4AE5NCeHl9o9nWv78nU6cOxda2GGPG9GHEiFksSG7Xrl2bv2Wv8OTJU4YMmQYk3UWgbVs3GjX66K11RO5TqNNd2CPEG87Ozpw/fx61Ws2UKVM4efIk5cqVA6Bdu3a0bJnxwn+TMj3yKWXuiL7nqesI2RaXGKXrCNmWqH6l6wjZoqfI+cVjuqKvMNZ1hGxTk6jrCNliqFdE1xGyrSD2F4X0C9YV+0ne/VumbB2tfvq38MoL/5wYlHmhPCAzrCJTry+uUigUTJw4UcdphBBCCPFfI2tYhRBCCCHEe01mWIUQQgghCrL/wAXRMsMqhBBCCCHeazLDKoQQQghRkP0Hph//A6cohBBCCCEKMplhFUIIIYQowNSyhlUIIYQQQgjdkhlWIYQQQoiC7N8/wSozrEIIIYQQ4v0mM6xCCCGEEAWZ3r9/ilVmWIUQQgghxHtNZliFEEIIIQoyuUuAEEIIIYQQuiUzrEIIIYQQBdm/f4JVZliFEEIIIcT7TWZYhRBCCCEKsv/AXQJkwCryVPQ9T11HyLbCZTx1HSFb/v7rM11HyLbQmIL15U55s0RdR8i2gtXCSQobFNd1hGwx1Cus6wjZVmfDK11HyLYl7mG6jpBtrraVdR3hX6cg9mlC5JmCNlgVQggh/gtkhlUIIYQQoiCT21oJIYQQQgihWzLDKoQQQghRkP37J1hlhlUIIYQQQrzfZIZVCCGEEKIg+w/c1kpmWIUQQgghxHtNBqxCCCGEEAWZIh8fmQgKCqJFixa4u7uzYsWKNNufP3/OwIEDadeuHW3atGHr1q1ZOkUZsAohhBBCiHeWmJjI5MmTWbVqFQEBAezYsYMbN25olVm3bh0VKlTA39+ftWvXMnPmTOLi4jLdtwxYhRBCCCEKMLVCkW+Pt7l06RJly5bF3t4eIyMj2rRpw4EDB7TKKBQKXr58iVqt5uXLl5ibm2NgkPklVTJgFUIIIYQQ70ypVGJnZ6d5bmtri1Kp1CrTs2dPbt68ScOGDWnXrh3jx49HTy/z4ajcJUAIIYQQoiDLx7sEbNq0iU2bNmmed+vWjW7dugGgVqvTlFekmpU9evQojo6O/Pbbb9y7d4++ffvi4uJCkSJF3npcGbAKIYQQQogsSTlATc3Ozo7Q0FDNc6VSiY2NjVaZbdu2MWDAABQKBWXLlqV06dLcunWLGjVqvPW4siRACCGEEKIge0/uElC9enXu3LnD/fv3iYuLIyAggKZNm2qVKVGiBCdOnADg8ePH3L59m9KlS2d6ijLDKoQQQggh3pmBgQETJ07kyy+/JDExkc6dO1OpUiU2bNgAQI8ePRg8eDDff/89Hh4eqNVqRo8ejZWVVeb7zuvwQgghhBAiD2Vy9X5+cnNzw83NTeu1Hj16aH62tbXll19+yfZ+ZUmAEEIIIYR4r8mAVQghhBBCvNdkSYB4L6jVaqZNW0nQ4TMYGxdi+ozhVK1aIU25kPuhjBw5h2fPnuPkVIGZs0ZgZGTIgf0n8fZeh56eHvr6+owb9yUfuThx61YII0fM1tS/fz+UYcM+4/M+7fPt3JbN/opWzZwJfxKFi/u3+Xbctzl9/BpL5vihSlTRqkNduvfVXhR/73YYcyZt4sa1EPoObkXX3o0BiIuNZ2T/JcTHJZCYqKJhsxp8PrBFvmS+dPIqa719UalUNG5bD49ezbS2H9t7loB1gQAUMilEn1GdKVupFAArvTZy/vhfFLUswoy1efc7OHnsGt4z/VGpVLTtWIde/bTbVa1W4z3TjxNHr2FsbMi4Kd2o4ph0scEf646wfWswajW061yXT//XUKvu+jWHWDIvgB2HPLGwNM3VzAtm+pOoUuHRsQ6908k8P0XmCSkyb1p3BP+twZCcuVs6mX+aF8DOXM587MhlZs1YjypRRcfOjfiif5s0mWdNX8/RoEsYmxgxeVo/HJ3KEfroCRO+X8WTJ89QKBR07upGz17Ntequ+XUX8+f8wcGjC7G0NMuVvEn92yqCDp9N7t+GZdC/KZP7txc4OTkwc9bw5P4tGG/v9ejpKZL7t3585OKkqZeYmEiXzqOxsS3G8uUTciVzSh+XsOS72g7oKRT43AjllyshWttdbM1Z4ObEgxevAAi8/4Tll+9ptuspYEMrZ8KiYxl66K9cz5eey8FXWb/QF7VKRcM29WjzP+3+4sTes+xa/6a/6DWqM2UqliJCGckqr/U8e/IchZ4CN4/6uHdtlC+Z30k+3tZKV2SGVWjp3r27To4bFHSWu3cesmfvciZPGcIkz6XplpszZw2f92nHnr3LKVq0CFu37AOgXv2a+PkvxNfPGy+voUyYsAgAB4fS+Pp54+vnzdZt8zAxKcQn7vXz7bwA1m4+TPveM/L1mG+TmKhi0QwfvBZ+yaotYzi45zx3b4VqlTEzN2HImPZ06dVY63VDIwNmLxvI8o2jWLZ+JGeOX+Ovy3fzPLMqUcWaedsYM2cAM3//jhP7z/HgtnZm6xJWjF80BK81Y+jwuTu/zNqs2dawdW2+nTsgTzMmJqqY5+XDnCX9+N1nNPt3X+D2Te0bZp88eo379x6zcft3jJnYhTlTtwFw63oo27cGs3LdMFZvHsGxoL+4fzdcU08Z+pQzJ65jW8Ii1zPP8fJh7pJ+rM8g84mj1wi595g/tn/HdxO7MDs5883rofhvDebndcNYk0HmU3mUefq0tSxeNoJt/tPYvTOYmzceaJU5euQS9+4q8d81gx88+zBt8loA9A30GfVtN3y2e7F2wwQ2bQjUqhv66Aknj1+hRIliuZo5qX97xJ69S5k8ZTCTPJelW+5N/7Y0uX/bD0C9+jXw81+Ar9+C5P5tsVa9337bgUOFzK+yzgk9BYyrU4HBgVfouP0sLctZ42BeOE2582HP6LbzPN12ntcarAL0/KAUt55F50m+9KgSVfw+fxsjZg9g6m/fEXzgHA/upO0vvls0hMmrx+DxuTtrZif1F3r6+nQb3J5pv49l/LJvCPQ5lqau0A0ZsOpIYmKiriOka+PGjTo57oEDwbTv0ASFQkGtWh8QFfWSsLAIrTJqtZqTJy/RooUrAB06NmX/gWAATE1NNDcnjo6JTXOjYoATJy5hb29HqVI2abblpWOnrhHx9EW+HvNt/r5yj5L2xShRuhiGhgY0bl6L44euaJWxtDKjStUyGBhodxEKhQKTwoUASEhIJCFBldldTnLFzav3sC1dHJtSxTAwNKDeJ86cPfqnVpnK1ctjWjTpD2nFqmWJDH+q2fZBrQqabXnl6p/3KG1fnFLJ7fpJy1ocTdWuRw5eoaXHRygUCqrVKMuL5694HB7FndtKqtYoi7GJEQYG+jh/5EBQ4JvzWzTbn0Ej2qT7vn4Xf6WT+UgWM9+9raRaqsyHU2T2nu3PkDzI/OflW9jb21Da3gZDIwNatK7DoYPntcocCjxP23Yfo1AoqFGzAs+fRxMe/hRrawscncoBSX2Gg0MJwsLevE/mzNzI8FGfZnrrnuw6cOAU7Ts0Tu7fqrylf7tMixYfA9ChY5MM+rdXWm0aGvqYw4fO0LWLe+6GTlatmBn3n7/iwYtXJKjU7L4TTuPSmV/R/ZpNYSMalrTC50b+DfpuXb2HTani2JRM6i/qNnPmQqr+omL18piaJfUJFVL0FxbFi1K2StLg36SwMSXK2vA0/Fm+Zc+x9+S2VnlJlgTkgZCQEL788ktq1qzJX3/9Rfny5Zk5cyZt2rShU6dOHDt2jP/973+Ym5uzaNEi4uLisLe3Z/r06ZiamnL48GGmT5+OpaUlVatW5f79+yxfvpxFixbx8OFDQkJCePjwIZ9//jm9e/cGYPDgwYSGhhIbG0vv3r01N/V1dnamd+/eHDx4EGNjY5YsWULx4sV5/PgxP/74I/fv3wfA09OTDz/8EGdnZ86fT+r8V61axa5du4iLi8Pd3Z1hw4YRHR3N8OHDCQ0NRaVSMXjwYFq3bv3ObaZUPqGEnbXmuZ1dMZTKJ9jYvOkYn0Y+p2hRUwwM9DVlwpRPNNv37TvBvLm/ERHxjGXLJ6Y5xs6AINq0LQBf7eSxx2HPsLZ9M+tV3NaCa39mfZY0MVHF4P8t4OH9x7T79GMcq5fNi5haIsOfYWXzJrOVtQU3/8o486EdwdSo55jnuVIKD4vCxu5NRmsbc/5KNdP0OCwKmxRtb2NrzuOwZzhUtGPFot08e/qSQoUMOXH0Gh842QNw9NAVituYU6lKyTzJbJtJ5vCwKGxTZLa2NSc8OfPyFJmPH72GY3LmI4euYJ1HmcOUkdiVeNMv2NpacfnSTe0yYU+xs0tZxpIwZSTW1m/O48GDx1y7eo/qNRyApEGuta0FVT4ok+uZlcoIStgV1zxP6t8istC/vRnU7tt3knlz1yb3b2++9vfy+pnRYz7n5cuYXM8NYFO4EKHRsZrnYdFxVC+edqlEDeui/NHGmfDoOOadu83N5BnVbz+qwPzztzE11M+TfOl5+li7v7C0tuDWW/qLIzuCqV43bX/x+FEE964/wMEp7/s4kTmZYc0jt2/f5tNPP2X79u2Ympqyfv16AAoVKsSGDRuoX78+S5cu5ddff8XHx4dq1arx66+/Ehsby8SJE1m5ciUbNmwgIiIizX5//vlnNm/ezOLFi4mPjwfAy8uLbdu2sXXrVtauXUtkZCQA0dHR1KxZE39/f1xcXPjjjz8AmDp1KrVr18bf3x8fHx8qVaqkdZyjR49y9+5dtmzZgp+fH1euXOH06dMcOXIEGxsb/P392bFjBw0baq9Zy7G0/5tbmpkZdfqFND+6u9dn1+6l/LR4HAu912kVi4uLJzDwFC1buuZK3IIsnf85L1uzYPr6eizfMJINu37g7z/vc/vGo1xMl76s/Hd/r/117jpBAcF0G9Q2r2NpyUrGjN7D5Rxs+V/fJoz4aiWjBq+iYuWS6Bvo8SomjjUrD/Dl4OZp6+VO6BxlVqTI/M1XKxkxeBWVUmXun0eZ02nBtJkzOa/ol68YPfwnxoztQZEiJsTExLJqxQ4Gf90xt+O+DpROnlRF0n1vvPnR3b0eu3Yv5qfF37PQO+nvycGDpylmZU61ahVzM21GETRSn87ViBe09DnFpwHn2fD3Q+a7Ja2vbVTKiohXcVyNyN9vmLLTX1w9d50jAcF0HajdX7yKjmXxD6vpMbQDJqbGeZIzVykU+ffQEZlhzSMlSpTgo48+AqBdu3asXZu0hur1bOTFixe5ceOG5t5k8fHx1KpVi1u3bmFvb4+9fdJMRZs2bTSDTEi6v5mRkRFWVlZYWVnx5MkT7OzsWLt2Lfv2Ja3nfPToEXfv3sXS0hJDQ0OaNGkCQLVq1Th27BgAJ0+eZNasWQDo6+tjZqb9ifnYsWMcO3aMDh06AEkD3zt37uDi4sLMmTOZPXs2TZo0wcXFJcdttG5dAJv/2AtA9eqVeBT6Zv1baKj27CqApWVRoqJekpCQiIGBfrplAGrXrsa9ewuIjIjC0qooAEeCzuJUtQLFi1vmOO+/hbWtOeHKN1+DPlY+pVjxotneTxEzE2q6VODM8b8pX7FEbkZMw8rGgogUX91GhD/FIp3M92485OcZfzB6Tn/MzHPvIp+ssLE1Jyz0TcbwsGcUt9HOaG1jTliKtg9TPqO4dVKZtp3q0LZTHQCWL9yFta05D0Ke8OhBBH0+nZ+0T+Uzvui+gJXrhubod5aata05ykwy29iYo0yROTxFZo9OdfBIzrwsReaHDyLonSJz3+4LWJVLmW1tLQl99OaDvFIZgbWNRdoyoSnLRGrKxMcnMGr4T7RuU59m7kn9V8j9MB48COfTTknfzIQpI+nRxZPfN06kuLV5jnKuW7czVf/2WLPt3fq3qty7F0pkRBTnzl0jMPA0h4POEhcbz4sX0YwZPZ/Zc0bkKHN6lNGx2CUvA4Kkr/jDYmK1yryMf7PE7ejDSMbpKbAoZEAt66I0Ll2MBqWsKKSvh6mhPl6uVRh37O9cy5ceS2vt/iIyg/7i/s2HrJ71ByNm96dIiv4iISGRxT+spp77h3zk9vb/LlTkH5lhzSOpP829fm5iYgIkfQJ0dXXFz88PPz8/du7ciZeXV7qfDFMyMjLS/Kyvr09CQgLBwcEcP36cTZs24e/vj5OTE7GxSR2KoaGh5th6enpZXjurVqsZMGCAJt++ffvo2rUr5cuXZ9u2bVSuXJm5c+fy008/Za1B0tGzZxvNBVHNPqmLn+9B1Go1Fy5cw8yscJrOWqFQULdudfbsSRp0+/oE0qxpXQDu3n2oabsrV24SH5+ARYorfAMCjtCmjSwHAKjiZM+D+4959OAJ8fEJHNp7gfpuVbNU92nkC148T/rqMfZVPOeCr2NfLu/XBDt8YE/o/XDCHj4hIT6Bk/vP86FrNa0yj0Mj8R7/K1/98BklyuTvOmWAD6rac//eYx6GRBAfn8D+3RdwdXPSKtOgcVV2bz+LWq3mz0t3KVLEWDP4i3ySNAsV+iiSwwcu80mrWlSoVIIdhzzZsmscW3aNw9rWnF82Ds+VgR+AY1V7QlJlbpBJZtMUmSNSZD504DLuyZl3HvJk265xbEvO/GsuZq5arTz37oXxICSc+LgE9uw8hVsTZ60ybk2c2eF/HLVazaWLNylSxARrawvUajWTJv5KeYeS9Orz5u4WlSrbc/DIQnbtm8OufXOwsbVkwxbPHA9WAXr2bI2vX9KFUkn926Hk/u1vzMxM39K/HQfA1+cgzZomfRi4e/dRuv3bqFG9OBz0M4GBK5k7bxR169XI1cEqwJUnzyljZkwp00IY6CloWc6awyHa3/wVMzbU/FytWBH0FPA0NoGFF+7Q3OcUrX1P893Ra5wOfZrng1WA8h/YowwJJzy5vwg+cJ5aqfqLJ8pIFk/4lf7jP8PO/k1/oVar+XXmJkqUtaFFt8Z5njXXyAyryKmHDx9y/vx5nJ2dCQgI4KOPPuLq1aua7bVq1WLy5MncvXuXsmXLEhMTQ2hoKA4ODty/f5+QkBBKly7Nzp07Mz3W8+fPMTc3x8TEhJs3b3LhwoVM69SvX5/169fTp08fEhMTiYmJoUiRIprtDRo0wNvbGw8PD0xNTVEqlRgYGJCQkICFhQXt27fH1NSUbdu25ayBUnFzcyHo8Fmau3+FsUkhvLyGabYN6D+JKVO/xta2GKPH9GHkiNl4L/gdR0cHunRNutBg754T+PkFYmBgQCFjI+bP/1YzUI+JieXY8QtMmjw4V7Jm15pFQ2lY35HilmbcCP6JKfO2sGbTIZ1kgaQrpb/+tiPff70SVaKaFu1rU66CHdu3JP2h9OjyMRGPoxjSy5vol0kXeGzbcIRVm8cQ8TiKWT9uRJWoRq1W0eiTmtRr5JTJEXMnc++RnZg9cgUqlYpGbepQ2sGOA75JmZt1+Bjf1Xt58SyaNXO3JtXR12PyzyMBWPzjWq5euMGLpy8Z1nESnfq1oHHberma0cBAn5Hfd2DkoJWoVCradKiDQ0U7fP9I+j+zO3xan/oNP+DE0at0azsDY2Mjxk3+VFN//KjfiHr2En0DfUaO60jRPL5ILGXmEYNWkqhS0TY5s09y5o6f1ufj5MxdkzOPT5X52bOXGBjoMzofM48d35NBA+aiUqlo37EhFSuWYvOmgwB07daEho1qcDToEh6tvsPY2IhJU/sBcOHcdXb4H6dS5dKa2dShwzvTsFHNPM3s5vZRcv82MJ3+bXJy/2bF6DG9GTliLt4L1qXTvx3EwECfQsaFmD9/dK5fzJaRRDVMP32Tpc2qoadQ4HtTyc1n0XStZAfA5uuhuJcpzqeVS5CgVhOboOK7I9fyJVtG9A30+d/wTswbndRfNGhdh1Ll7Tjol9RfNGn/Mf7J/cXa+Un9hZ6+Hj+uHMn1y7c5secMpR1K8OMXcwDo3L81NernfT8n3k6hzmxKT2RbSEgIAwYMwMXFhfPnz1OuXDlmzZpFmzZt2LJli+b/zD1x4gRz5swhLi4OgOHDh9OsWTMCAwOZNWsWlpaW1KhRg8ePHzN37lwWLVpE4cKF6dcvqfNt27Yty5Ytw8bGhsGDB6NUKilfvjyRkZF8/fXX1K1bV+siqt27d3Po0CFmzJjB48eP+eGHHwgJCUFPTw9PT0+cnZ21yq9Zs4YtW7YAULhwYWbPns3du3eZNWsWenp6GBgY4OnpSfXq1TNsCzV5/2k6NxUu46nrCNn291+f6TpCtoXGFKwvd8qbvZ939XibgtXCSQobFM+80HvE2KDgLTGq9fvjzAu9Z5a4R+k6Qra52rbJvFAuqtj193w71o3N/8u3Y6UkA9Y8EBISwsCBA9mxY0eO6r98+RJTU9Okr68mTaJcuXL06dMnd0PmExmw5j0ZsOY9GbDmDxmw5j0ZsOYPGbDmPlkS8B7avHkzPj4+xMfH4+joqLlFlRBCCCFEGjpcW5pfZMCaB0qXLp3j2VWAPn36FNgZVSGEEEKI3CYDViGEEEKIguzfP8FaIJc5CSGEEEKI/xCZYRVCCCGEKMDUev/+KVaZYRVCCCGEEO81GbAKIYQQQoj3miwJEEIIIYQoyP4Dt7WSGVYhhBBCCPFekxlWIYQQQoiC7N8/wSozrEIIIYQQ4v0mM6xCCCGEEAWZ3NZKCCGEEEII3ZIZViGEEEKIgkzuEiCEEEIIIYRuyQyrEEIIIURB9u+fYJUBq8hbcYlRuo6QLX//9ZmuI2RbFaf1uo6QbXtP/U/XEbLlckTB6yp/PFNU1xGybZLLU11HyBYHsye6jpBtP7ga6jpCto0NNtd1hGw70k7XCf59Cl4vLIQQQggh3pC7BAghhBBCCKFbMsMqhBBCCFGQyQyrEEIIIYQQuiUzrEIIIYQQBZj63z/BKjOsQgghhBDi/SYDViGEEEII8V6TJQFCCCGEEAWZXHQlhBBCCCGEbskMqxBCCCFEQaaQGVYhhBBCCCF0SmZYhRBCCCEKMlnDKoQQQgghhG7JDKsQQgghREH2H5h+/A+cohBCCCGEKMhkhlUIIYQQoiCTuwQIIYQQQgihWzLDKnTm6JGLzJy+FlWiik5dGtOvfzut7Wq1mpleazkSdAFjk0JM8RqAk1P5LNVd/UsA8+Zs4PCxpVhamnHi+GUWzNtEfHwChoYGjBzdg7r1qubauZw+fo0lc/xQJapo1aEu3fs21dp+73YYcyZt4sa1EPoObkXX3o0BiIuNZ2T/JcTHJZCYqKJhsxp8PrBFruXKqWWzv6JVM2fCn0Th4v6truMA8GfwVTYs8kWlUtGwTT1a92ymtf3kvrPsWh8IgLFJIf43sjP2FUsRERbJz9PW8yziOXp6Chp51OeTLo3yJfOVU1f54ycf1IlqXNvUpcVnn2htP7XvLHs3HgCgkEkhegzvQumKpTTbVYkqpg+ch0Vxc4ZM758vmV+rY23BN9Ud0FMo2HFXybobIVrbaxUzZ3odRx5FvwIg6NETVv9zP18zQsFs49PHr7Fsjh+JqqT+olufVP3FnTDmJfcXnw9uRddejbW2JyaqGNprAcVszJmyoF+e5/3nzFUClm5DpVLh0rIebt3ctbZfCDxD0B/7gaQ2bjf0U0o4lCL8vpKN09doykWGPqZZr9a4dtQ+n7xWUN7L7+Q/cJcAGbD+C4wdO5bGjRvTsmVLXUfJssREFV5T17Bi1Vhsba3o0W0ijZt8RIUUf0iOBl3k7t1Qduyey6VLN5k6aTXrN03KtG7ooyecPPEnJUoU0+zLwsKMRUtGYWNjyfXr9xnUfxb7Dy3KtXNZNMOHmUsGUNzWnK97eVPfzYmyDnaaMmbmJgwZ055jh65o1TU0MmD2soGYFC5EQnwiI/r9RG3XD3CqXjZXsuXU2s2HWbZmD6vmD9ZpjtdUiSrWLdjGyLkDsbQ2Z+pX86nlWpWS5d60cfESVny7cAimZoW5fPIqv83ZzPhlw9HT1+fTIe0pW7k0r6JfMaX/fJxcKmvVzavMG723Mmz2QCytLZgxcD41Pq5GiRTHLVbCihELvsbUrDB/Bl9l3dw/+G7pCM32wK1B2JWx5VXyH9L8ogeMrFGBESf+JDwmjpWNanEs9Al3XsRolbv0JIrvTv2Vr9lSKohtnJioYvFMH6YvTuovhvb2pl4j7f6iaFETBo1uz/FU/cVrvhuOYF/eluiXeZ9Zlahi++LN9PUaTNHiFiwdNhfHetWxKfsmr6VdMfrPHoaJWWH+Pv0Xvt6bGOQ9Emt7W4Yu+Vazn5n/m4jTxzXyPHNKBeW9LDInSwKETvx5+SZlythS2t4GQyMDWraqx8HAs1plDgaexaN9AxQKBTVrVuT585eEh0dmWnfWzN8ZMao7ihRrehydymFjYwlAxYqliY2NJy4uPlfO5e8r9yhpX4wSpYthaGhA4+a10vyhsbQyo0rVMhgYaP+TUygUmBQuBEBCQiIJCSreh8/Jx05dI+LpC13H0Lh99R42pYpjXbIYBoYG1GnqzIWjf2qVqVitPKZmhQFwqFqWyPCnAFgUK0rZyqUBMC5sTImyNkSGP8vzzHeu3cO6ZHGsSxbHwNAAl6bOXDymnblCiszlncoS+fhNrsjwp/x58i9c29TL86ypOVqa8eDlKx5Fx5KgVnPgQTgN7IplXjGfFcQ2Tq+/OHFYu7+wyKC/AAhXPuXUsau06lAnX/KG/H0XqxLWWJVIauMabh9y9cRlrTJlncpjktzGZT4ox7PHT9Ps5+aFf7AqURxLW6t8yf1aQXkvvyu1QpFvD12RAWsBs3jxYlq2bEnfvn0ZOXIkP//8s9b2pk2bEhERAcDly5fp1asXAC9fvuT777/Hw8MDDw8P9uzZA8COHTvw8PCgbdu2zJ49G4DExETGjh1L27Zt8fDwYPXq1QDcu3ePfv360alTJz777DNu3ryZ4/NQKiOxtXvTcdnaWREWFqlVJiwsErsUHYutrRVhysi31j0YeBYbG0uqfJDxDOW+vaf5wLEsRkaGOc6f0uOwbZKOZAAAIABJREFUZ1jbWmieF7e14HE2BkSJiSq+6jGPru6efFivEo46nl19H0U+foalzZs2trS20Bp4pHY0IJhqdR3TvP74UQT3rj/AwSnv2/jp46epMpvz9C2Zj+8MpmqdDzTPN//kQ8evPNDTwVd91sZGhMXEap6Hv4qluIlRmnJVrcz41c2Z2XWdKJc8YMlPBbGNn6TuL2wseByW9f5i2Vw/vhzWVusDeV6KevIMc+s3eYsWt+DZk4zzntlzksouaf/tXTp8jhqNP8yTjG9TUN7LInOyJKAAuXz5Mnv37sXX15eEhAQ6depE1apZW4e5ZMkSihQpwvbt2wF49uwZSqWSOXPmsG3bNooWLcoXX3zB/v37sbOzQ6lUsmPHDgCioqIA+OGHH5g0aRLlypXj4sWLTJo0id9++y1nJ6NWp3kpdferTq+MQpFh3ZiYWFYu92f5qu8yPOyN6yEsmLeR5SszLpNd6cTJ1h8TfX09lm8YyYvnMXiOWs3tG48oX7FEruX7V0j3d55+G187d50jAcGM/Wmo1uuvomNZMnE13YZ2wMTUOE9ippT++yL9sn+fv87xnScZtXAYAJdPXMHMwoyyVez558KNPEyZDanO559nL+i67zQxiSrq2VjiVduRz1J9S5LnkQpgG6cTOcv9xckjf2FhVYRKjqW5eCZ/MqffD6df9tbF65zdc5IBc7/Rej0hPoFrJ/+kRd+2eREx+97D9/I7+w9MP8qAtQA5e/YszZo14//s3XdUFFcbx/HvFopKLwuKWLCXWBJjV4y9gGKJJbFFo4nGmNg7sfca85poir1GMXZj7GLBHsWSqFERlN4ERGF33z8wiytgBVbi8znHc2Tnzuxvr3eHu8/cWS0t037ZfvDBBy+87/Hjx5k7d67hZ1tbW06dOkX16tVxcEirVnp7e3Pq1Cn69+/PnTt3mDRpEp6entStW5fExETOnTvHV1+ln4gePXr0yq/FxdWBsNBow89hodE4P75kb2jj4kBoaFR6m7BonDV2pKSkZrrvnTvhhIRE8GHb0Yb2ndqPZc36CTg52xEaGsWggfOZMu1z3Iu4vHL2pzm72BIRln4JLDIsFkcnm5c+jpV1PipXK8HpY3/JhPUp9s52xISn93FMRCx2mfTxnRt3WT5rA1/N7IOVbQHD46mpWr73XUbNxu/yXv3cWUOXMXMcto62GdoF37jLqtnrGTC9ryHzjcCbXDgWSGDAZVIfpfIgKZmlU1bxyZiuuZI9IvkRmnwWhp+dLS2ITDZ+vyelag1/PxEew2ClAltzNXGPUnMlI+TNPnbSPHW+CI/F0fnFzheX/7zFicOXOXX0Ko8epZKUkMyMcWsYMemjnIqLrZMdcRHpeeMjY7FxyNjHof+EsHn+WnpM+pz8NgWMtv19+gqFShbGyv7lz4uvK6+MZfF8b8Gc/O2iUqkMn4gfPky/DKLX61/4U7ytrS1btmyhevXqrFmzhjFjxqDX67GxsWHLli2GP7t27XrlnBUqenD7dijBweGkPEpl964TNPjA+HJRg4bvsm2LP3q9nj//vI61dX6cne2z3Ld0aXcO+S9i99757N47HxcXB9ZvmoyTsx3x8YkM6DeHgYM6UvXd0q+cOzNlyrsTcieSeyFRpKSkcnDPeWp5vljlOzYmgYT7aYv/HyancDbgGu7FNNma77+gWFl3woIjiLgXRWpKKif3n6NynYpGbaLCYlg0bim9x3yEq3t6H+r1epbPWE/BohqadmqQa5mLlnUnPCSCyMeZT+8/R6XaxuMiOiyGJb5L6TnqY1yeyOzTx4tpv45nyjpfevt2p0zVUrk2WQW4GnufwgXyUTC/BWqFgkZuzviHRRu1cbBIX1JTzs4KJeT6L/i82Mf/ni9Cnzhf1Kz/YueLXgNasnrnOFZsG8OoKR9T+f2SOTpZBXArU4SouxFEh6b18YVDZylb0/i9FxsezepJv9BhWDecCmc8f104eMYkywEg74xl8XxSYc1D3n33Xb755hs+++wzUlNTOXjwIB07djRq4+bmRmBgIJ6enuzZs8fweJ06dVi1ahVjxowB0pYEVKpUiSlTphAdHY2trS07duyga9euREdHY25uTrNmzShSpAgjR47EysqKwoULs2vXLlq0aIFer+evv/6ibNmyvAq1WsXoMT3o12cmWp0On7aelCxVmA2Pv36mY+dG1KtfhSOH/6RV8yFYWpozaUrfZ+77LOvW/EFQUBhLvv+NJd//BsAPP43AMZNqzMtSqVUMGN6WUQN+RKfV06zN+xQr4cq2jccA8O5Qm+jIeL7otoCkxGQUCgV+a4/w06/DiI6MZ+Y369Bp9ej1Ouo3rkzN+uVfO9PrWr7wS+rVKoeTvTXXA75j0tyNLF9/0GR5VGoVH33djvlDl6DT6ajTsjpuxV05uCWtjxu0qc225XtIjEti9bxNAChVSsYtGcz1izc5vuc0bh4FmdB7NgBt+7SkUs2c7WeVSkXnge1ZOHwxOp2O2i1qUKh4QQ5vPQpA/dZ12LHidxLiE1k3f6Mh86jFQ3I014vQ6mHexRvMqVkRpQJ2BIVx634SbR7fGb7ldigNCjrhU8wVrR4earWMP/NXrufMi32sUqv4YlhbRn+Zdr5o2jrtfLH98fnC6/H54svu6eeL39YeYcmGYRSwyvmlLBnyqlR492/PsjHfo9fpeLdpTVyKFSRghz8ANVrVZf/q30m6n8jW734F0vr4i4VDAXiU/IjrZ//CZ2CnXM8OeWcsv7a34GutFPrMFqiIN9bChQvZvn07bm5u2NvbU6NGDc6ePWv4WqvTp08zZswYHB0dqVy5MoGBgaxcuZLExEQmTpzIpUuXUCqVDBgwgKZNm7Jt2zaWLFmCXq+nfv36DB8+nKtXrzJq1Ch0Oh0AgwcPxtPTkzt37jB+/HgiIiJITU2lZcuWDBgw4Jl5H2pP5Ua3ZJuwB6GmjvDSypRfY+oIL23PydyrFmaHFF3e+2Xwzencv/z6uiZUizd1hJfiYa19fqM3zOnI7LnZNDctuGhl6ggv7Ujrurn6fMWHbM2157o5p/XzG+UAmbDmMYmJiRQoUIAHDx7w8ccfM2nSpBe+8coUZMKa82TCmvNkwpo7ZMKa82TCmjtyfcI6dFuuPdfN2d659lxPkiUBeYyvry/Xr1/n4cOHtG3b9o2erAohhBBCZAeZsOYxc+bMMXUEIYQQQrxJ3oI1rPItAUIIIYQQ4o0mFVYhhBBCiLzsv19glQqrEEIIIYR4s0mFVQghhBAiD9PLGlYhhBBCCCFMSyqsQgghhBB5mVRYhRBCCCGEMC2psAohhBBC5GUKqbAKIYQQQghhUlJhFUIIIYTIy96C8uNb8BKFEEIIIUReJhNWIYQQQgjxRpMlAUIIIYQQeZncdCWEEEIIIYRpSYVVCCGEECIvewv+4wCZsIocpdUnmzrCSwl9kPcuOuw52dXUEV5a0+qrTB3hpRw5m/f6eFPTaFNHeGm77liYOsJLqevqYuoIL+32rbw3Ln6oF2vqCOINIBNWIYQQQoi87C2osOa9cpIQQgghhHirSIVVCCGEECIP08u3BAghhBBCCGFaUmEVQgghhMjL3oLy41vwEoUQQgghRF4mFVYhhBBCiLxM1rAKIYQQQghhWlJhFUIIIYTIy+R7WIUQQgghhDAtqbAKIYQQQuRlUmEVQgghhBDCtGTCKoQQQggh3miyJEAIIYQQIi/7768IkAqrEEIIIYR4s0mFVQghhBAiD9PLTVdCCCGEEEKYllRYxRvh6JFAZk1fi06rw6d9PXr1aWm0Xa/XM3PaWo4evohlPnMmTOlFufJFCb0XzbhRPxMVFYdCoaT9h/X5qFtjAP66EsSUiat4+DAFlVrJ6LEfU7GSR47kv3DiCisX/IZOp6OBV028uzUyfn17zrBj9X4ALPJZ0HNIe4qWcgPgx6nrOHfsMjb2VkxfOTxH8j0tMOAKaxem5a3XqiYtPzbOe+KPM+xak5bXMp8FXQe3x72kG9HhMfw8ZQ1x0fdRKhXU965F4w71cyXz8/ww6zNaNKpKRFQ81ZrkTj++jD9PXGHl/MdjxLsmrZ8eI7+fYdvq9D7/ZGj6GDGFgKNXWTBjKzqdDq+21enau6HR9ts3w5nmu56/r4TQ58vmdOnRwCQ5b5y5zB9L/NDrdFRuWovaHzYx2h544BTHN+0DwNzSnOb9O+HikdavJ7cc5PzvxwE9VZrVonqbD7Itl16vZ/rUFRw5fB5LS3MmT/2c8hWKZ2gXHBzO8CELiYtNoFz54kyb0R8zc3WW+4fei2L0yO+JjIxFqVDQoWNDunZvAcDCBRs4sP8MSqUSBwcbJk/7HI3G/rVfy51zlzm2dCN6nY6yjWpTpW1To+23Tl7g9LrtKJQKFEoltT/pgGu5EiRExnBg4QoexMajUCgo26QO77TKvj5+lrPHr/LLvLT3W+PWNWjX3fj9FnwrjO8mr+efv4L56PMW+Hycnmvb2kPs3RoACgVFS7gyYGxnzC3MciX3K5P/mlWInKfV6pg+ZTXf/fA1m7ZOYvfOk9y4fteojf+RiwTdDmfLrqmMHd+dqRNXAaBSKxk8vCN+2yazYu1o1q89YNh3/tyN9O3vzXq/b+g3oA3z527Mkfw6rY7lc/0YNrsvM1aN4Pjes4TcDDVq41zQgTELv2Dq8mH49GjCLzN/NWyr1/J9hs/pmyPZssq7er4fX8/sy6TlIzi57yx3bxnndSrowPBvv2DC0mF4dW/CitlpeZUqFR2/aMPklSMZ/f1XHNh8NMO+prLy10O06T7d1DEypdPqWDbHj+Fz+jJzddoYCX56jBRyYNx3XzB9xTB8ejbh5yfGSG7TanXMnbqZ2Yt6s3LzUPbuPs/NG2FGbWxs8vPVCB869/A0Ucq0fv39+1/pNOFz+i4azeVDZ4gIumfUxs7Vka7TB9Lnu5HU7dycXd+tAyD81l3O/36cT+YO4dOFI7h+8hLRIeHZlu3I4fPcvh3Kjt1z+WbCp0ye+Eum7ebNWUu37i3Y8fs8bGwL4LfpwDP3V6mUDB3+MVt3zGb1+omsW/MHN64HA/BJby/8tsxg4+ZpeDaoyg+L/F77dei0Ovx/2kCLMf35cN5YrvufIeaOcR+7vVOG9nNG0X72KDz7d+XQ92sAUKqU1OrRjo4LxtFm2lAu7z6cYd+coNXq+HG2H2Pn9WHB2uEc2XOOO0+936xs8tN7sA9tPmpg9HhUeBw7Nvgzc+kgFqwZhk6nx/+PczmeWTyfTFifITg4GC8vrwyPd+vWjYsXL7728f38/Jg4ceJrHyevC7x4E3d3DYXdnTEzV9OsZXUOHjhv1ObQ/vN4ta6FQqGgUuUS3L+fRERELM7OdpQrXxSAAgUsKe5RkIjwGAAUKEhMeABAwv0HODvb5Uj+G1eCcCnshMbNEbWZmpqNq3LGP9CoTel3ilPAJj8AJSsUJSYi1rCtbJUShm254eaVIDRuTjgXSstbvWFVzj+Vt2TF4hSwTsvk8UReO0cbipYuDIBlfksKFtUQExGXa9mf5ejJq0THJpg6RqYyjJFGVTlzJOsxUqpCUaLDYzM7VK64EhiEm7sThQo7YmamplHzKvgfvGTUxt7RinIV3VGrVSZKCXf/vo19QWfsXZ1QmakpX/9drp0wPjcXLudBPqu0fi1UthjxkWn9GhUchlvZophZmqNUqShSsSR/Hb+QbdkO7D9D6zb1UCgUVK5SivvxSYZz07/0ej0nT1yiSbMaALRuU4/9+04/c39njb2hUlugQD6Kl3AjLCztuFZW6eeRBw8eZsuN4xHXb2Hr6oSNS1ofl6jzLrdOGfeTWT4LFI8rfKkPHxqKffntbXHycAfAPJ8ldm6uJEbn/Li+fjmIgoUdcXVLG791m1Tl5GHj8WvnYE2p8kVQZTJ+tVotjx6moE3V8jD5EQ7Otjme+bUpFbn3x0RkSUAel5qailqdO/+MOfVc4WExuBRMv2zl4mJP4IV/jNuEx+Lq6mDUJjws1mgSejckkr+uBBku+w8d2Ykv+s5n3uxf0en0LFs9KtuzA8RExOGgSc/h4GzHjcu3s2x/cHsAlWqWy5EsLyImMg77J/LaO9vxz5Ws8/rvCKBijYx5I+9FE3QtBI/HHxhE1qIj4nB8coxo7Lhx6dljpLIJx0hEeDwa1/S8zhpbrlwMMlmerNyPisXmiXOAtZMdd//Kul//3HOcEtXS+tW5aEEOrdhOUnwiZuZm3Dh9GddSRbItW3hYjPE5y9WB8McTzn/Fxt7H2qaAYdLv6upI+OPJ54vsHxISwdUrt6hUuYThsW/nr2frliNYW+Xn5+VjX/t1JEbHUcAp/TkLONoTfu1WhnY3A/7k5OqtJMffp/mozzNsvx8eReStYDSlir12pueJeur95qix5dqlFxu/jhpb2nzcgM98JmFuYUbl6qWpUqNMTkUVL0EqrM+RmprKiBEj8Pb2ZuDAgTx48MBo+/bt2/H29sbLy4tZs2Y99/FNmzbRrFkzunbtytmzZ5/53CNHjsTX15ePPvqIZs2aceBA2qUiPz8/Bg4cyOeff06vXr1ISkpi1KhRtG/fHh8fH/bu3QvAtWvX6NChA23atMHb25tbt26RlJRE3759ad26NV5eXuzcuROAhg0bEh0dDcDFixfp1q0bAAsXLmTcuHH06tWLESNGEB0dzZdffkn79u1p3749Z86cec0ezsJT63H0ev0zmyQlJjP060UMHdkJK6t8APy6/iBDRnRi975ZDB3RiQnjluVI1MyzZf4p9PLZaxzeEUCnfhkr97kms7xZ1GKunr3GkR0BdPjMOG9y0kMW+S6j05c+5CtgmSMx/1NeYoxcOnONg9sD6Nz/zRojeWaNXBY5b134mz/3nOCDnm0AcHJ3pWaHxqwd9z/WffM9muJuKFXZ9ysxs/PC02+zzJr8m/95+yclJjNo4DxGjOxmVFkd+HUn9h74jlbedVi7es8rJH/Kc869/ypeozKdvh1H0+F9Ob1uh9G2lAcP+WP2T9Tu2R7z/PleP9PzZNavLyghPomThy/xvd8Yftr+DQ+TH3FoVw79nstOilz88xyHDx+mWbNmNGnShCVLlmTaJiAggDZt2tCqVSu6du36Qi9RKqzPcfPmTaZMmcJ7773HqFGjWLNmjWFbWFgYs2fPxs/PDxsbG3r16sXevXt55513Mn28UqVKLFy4ED8/P6ysrOjevTvly5d/5vOHhISwatUqgoKC6N69O7Vr1wbg/PnzbN26FTs7O+bOnUvNmjWZNm0a8fHxfPjhh9SuXZt169bRvXt3WrduzaNHj9DpdBw6dAiNRmMYRPfv339uH1y6dIk1a9ZgaWnJkCFD6NGjB9WqVePu3bv07t2bXbt2vUYPg8bFnrB76ZfKwsJicNYYX753cbEnNDQ60zYpKakM/fp7WrSqSaMm7xnabN9ynOGjugDQpFk1Jvouf62cWXHQ2Bldvo2OiMXOySZDu6Drd/l5+gaGzu6DtW2BHMnyIuyd7Yh5Im9MFnnv3LjL8lkb+GpmH6yeyJuaquV732XUbPwu79WvlCuZ8zoHjR1RT46R8KzHyE/TNzB8jmnHiLOLLeGh6XkjwuNw0mTMa2rWjnbEP7G85n5kLNYOGXOG3wxh57dr6TShH/lt0vu1StNaVGlaC4CDy7dh7fR6y4bWrt7Dpo1phYWKFT2Mz1mh0WicjW+Asre35n58IqmpWtRqFaGhUWgen9dcXB2y3D8lJZVBX82jlXcdGjetnmmWlq1q88Xns/jiyw6v9ZoKONqRGJl+fk6MiiG/fdaXyAuWL0l8WCTJ8QlY2lihS9Xyx+wfKVmvGsVrVnmtLC/KUWNr9H6LCo974cv6F05dw6WQA7b2VgDUaFCJqxdv4dnivefsKSBtOcXEiRNZunQpLi4udOjQgYYNG1KyZElDm/j4eCZMmMBPP/1EoUKFiIqKeqFjS4X1OQoWLMh776UN1NatWxtVFC9evEj16tVxcHBArVbj7e3NqVOnsnz8woULhsfNzc1p2bJlVk9r0KJFC5RKJcWKFcPd3Z1//km7VF6nTh3s7NJObP7+/vz444+0adOGbt268fDhQ+7du0eVKlVYvHgxS5Ys4e7du1haWlK6dGmOHTvGrFmzOH36NNbW1s/N0LBhQywt06pox44dY9KkSbRp04Z+/fqRkJBAQsLrrRusULEYQUFhhARHkPIold93nqTBB5WN2nh+UIXtW4+j1+u58OcNrKzy4exsh16vZ4Lvcop7FKRbT+M7V501tpw59RcAJwOuUqSo5rVyZsWjrDuhdyIIvxtFakoqJ/ae4906FY3aRIbGsGDMUj4b9xEFi+RMjhdVrKw7YcERRNxLy3ty/zkqP5U3KiyGReOW0nvMR7i6p+fV6/Usn7GegkU1NO3UIJeT510eZd0JDX5ijOw7x3t1M46R+aOX0s/X9GOkbAV3goMiuRscTUpKKvt2n6eu57M/XJtCodJFiLkbQWxoFNqUVC4fPkupGu8YtYkLj2bT1J9pPaQbjm7G/ZoYe9/Q5urxPynv+XqTki4fN2Xj5mls3DyNho2qsXXLEfR6PX+ev4aVdT6jy/mQVmV/v0Z5/vg9AICtW47wQcNqAHzwwXuZ7q/X6/lm7BI8PNzo0bOV0fFu30q/oenAgbMU9yj0Wq8HwLlkUeLuRRAfFok2JZUbR89S9H3jD6px9yIMFeHIf+6gTU3FwroAer2eQ4tWY1fYlUrejTI7fI4oWc6de3ciCbsbRUpKKv5/nOP9ehVeaF8nFzv+DrzNw+RH6PV6Lp6+RuFipn0/vgilMvf+PMuFCxcoWrQo7u7umJub06pVK/bt22fUZtu2bTRp0oRChdLGp6Oj4wu9RqmwPsfTl+2yuoz3qsd71efPl8/4ssq3336Lh4fxVzaVKFGCypUrc/DgQXr37s3kyZOpVasWfn5+HDp0iDlz5lCnTh0GDBiASqUynHAePnxodJwnn0un07F+/XrDBDY7qNUqRoz5iP5956PT6WjTtg4lSrrx6/qDAHzYqQF167+D/+GLtG4xGktLc8ZP/gSA82evs2PrcUqVdqNTuwkADPi6LfXqV2Lc+B7Mmr6W1FQdFhZmjB3fPdsyP0mlVtF9cDtmDV6CTqejfqvqFPZwZd9vxwBo5FOb35btISEuieVzNqXto1Iy8efBAPzvm5VcOX+dhNhEBradQLvezWjgVTNHsv6b96Ov2zF/aFreOi2r41bclYNb0vI2aFObbcv3kBiXxOp5aXmVKiXjlgzm+sWbHN9zGjePgkzoPRuAtn1aUqmm6Sczyxd+Sb1a5XCyt+Z6wHdMmruR5Y/HkKmp1Cp6DmrHjMFL0Gl1eHqljZG9m9P6vHHb2mxeuof78UksnZ0+Rib/MtgkedVqFYNG+TCk34/odDpa+VSneElXfttwHACfjrWIioynT5dvSUxMRqlU8Osqf1ZuHkoBq9xbIqJUqWj6eQfW+S5Cp9NRuUlNnIsW5OxOfwDebVkX/3W7eRCfyO5F/37ThZJe84cBsGnqzzy4n4hKpaLZ5x8abs7KDvU8q3D48HlaNhuEpaUFk6d+ZtjWr+8MJkzui0Zjz6AhXRg+ZCELv/2VsuWK0q5Dg2fuf+7sX2zb6k+p0u50aJu2Ln/g1x2p71mV+XPXcevmPRRKBYUKOTFufO/Xfh1KlYo6n3Zk1+T/odPpKdOwJg7uBbn8+xEAyjerx80T57l2KAClWoXK3IzGg3qhUCgIvXKDa4dP4lCkEJuGTgPg/Y9aU+TdF5s8viqVWsWnQ9sx8asl6HR6GnlVp4iHK7/7pb3fmrWrTUxUPMN6zudBYjIKpYLt647w7brhlK5YlFoNKzG0x1yUKhUepd1o6lMrR/P+l4SFheHq6mr42cXFhQsXjG/Su3XrFqmpqXTr1o3ExES6d++Oj4/Pc4+t0Ge6UEZA2rcENGrUiHXr1lG1alXGjh2Lh4cHBw4cYPjw4bi4uNCpUyc2bdqEra0tvXv3pmvXrlSqVOmZj/+7JKBHjx6ULVsWX1/fTJ9/5MiRREVFsXjxYoKDg+natSt//PEHO3bsIDAw0LDf3LlzSUhIYNy4cSgUCi5fvkz58uW5c+cOhQsXRqFQMGXKFNzc3GjRogV2dnZYWFiwd+9e/Pz8WLRoET179uSTTz7B09OTqVOncuXKFVauXMnChQvJnz8/vXunnfiGDBlCuXLl+PTTTwG4cuUK5cplfXNIUuqRbP5XyVmBMfGmjvDSHmpNneDlNa2+ytQRXsqRsy+2xupNUsQq7w2MXXcsTB3hpXQp4WTqCC9t4aXo5zd6wzQv/PD5jd4wFexzdw168f8dyrXnmu4Uyvr16w0/d+rUiU6dOgGwa9cu/P39mTJlCgC//fYbFy9eZNy4cYb2EydOJDAwkGXLlpGcnEznzp1ZvHgxxYtn/J7iJ0mF9TlKlCjB5s2b8fX1pVixYnTp0sVw85NGo2Hw4MH06NEDvV5P/fr1adw47Uvrs3p8wIABdO7cGWdnZ8qXL49Op3vm8xcvXpyuXbsSFRXFhAkTsLDIeELv378/U6dOpXXr1uj1etzc3Fi8eDE7d+5k69atqNVqnJyc+OKLL7h48SIzZ85EqVSiVqsZP368IdeYMWNYvHgxlStXzvAc/xozZgwTJ07E29sbrVZLtWrV5Ku5hBBCiLfEkxPUp7m6uhIamv6dt2FhYWg0mgxt7O3tyZ8/P/nz56datWpcvXr1uRNWqbC+wUaOHEmDBg1o3ry5qaO8Mqmw5jypsOY8qbDmDqmw5jypsOaO3K6weizKvQrrP/2z/s9CUlNTadasGcuWLTPcdDVnzhxKlSplaHPjxg0mTpzIzz//TEpKCh9++CFz586ldOnSz3xeqbAKIYQQQojXplar8fX15dNPP0Wr1dK+fXtKlSrF2rVrAejSpQslSpSgXr16tG7dGqVSSYcJZwYXAAAgAElEQVQOHZ47WQWZsL4Rvv/+e3bv3m30WPPmzZk+/c38byaFEEIIITLj6emJp6dxFbZLly5GP3/66aeGe2FelExY3wD9+vWjX79+po4hhBBCiDzodb/BKC+Q72EVQgghhBBvNKmwCiGEEELkYW9BgVUqrEIIIYQQ4s0mFVYhhBBCiDxMKqxCCCGEEEKYmFRYhRBCCCHyMMVbUH58C16iEEIIIYTIy6TCKoQQQgiRh8kaViGEEEIIIUxMKqxCCCGEEHmYUiqsQgghhBBCmJZUWIUQQggh8rC3YQ2rTFhFjlIqzEwd4aUUt9aaOsJLuxid997GR852NXWEl1Lv3VWmjvDSDp7OW30MMONIPlNHeCnNC4eYOsJLa18s781sdt6xMHWEl1bB3tQJ/nvy3m86IYQQQghh8DZUWGUNqxBCCCGEeKPJhFUIIYQQQrzRZEmAEEIIIUQepngL1gRIhVUIIYQQQrzRpMIqhBBCCJGHKd6C8uNb8BKFEEIIIUReJhVWIYQQQog87C1YwioVViGEEEII8WaTCqsQQgghRB4mFVYhhBBCCCFMTCqsQgghhBB5mFRYhRBCCCGEMDGpsAohhBBC5GFKqbAKIYQQQghhWlJhFUIIIYTIw2QNqxBCCCGEECYmFVYhhBBCiDzsbaiwyoRVvBGOHrnAjGmr0Wl1tO3gSe8+Xkbb9Xo9M6auxv/wn1jmM2fS1D6UK18MAN8xP3H40HkcHGzw2zrVsM93327i4P6zKBVK7B2tmTS1DxqNfbZlPnH0KgtmbEWn0+HVtjrdejfMkHnBjC0c97+KpaUZoyd1oky5wgBsWH2EbZsC0OuhdfsadOxaz2jfNcsPsmjuDrYfHI+dfYFsy/yvSyevsOG7zei1euq0qkGzjxobbT/5xxn2rNsHgEU+C7p83YHCJd0M23VaHdM+n4udky1fTOuT7fme588TV1g5/zd0Oh0NvGvSulsjo+1Hfz/DttX7AbDMZ8EnQ9tTtJRbZocymR9mfUaLRlWJiIqnWpPhpo4DwIWAK6xakNavnl418e5q3K/H9pxhx+N+tchvQc8h7SnyeFz8OG0d549dxsbeimkrcu/11HWzZ1TNEqgUCjb+HcpPF+4YbX/f1ZbvGlcg5H4yAH/cjuT780EUs8nH3A/KGdoVtrZk4dnbrLwckmvZAQKOXuXbmWnnkVZtq9O1l/F55PbNcKZ/s56/r4Tw6YDmdOnRIFfzAZw6dpUfZm9Bq9PRwqcGnXoaZwy6Fc7cCeu5fjWYHv1b8GE344xarY4vu83HUWPLpPm9cyXzrbOXOfTzJvQ6HRUa1+L99k2Ntt8IuMDxtTtQKBQoVUrq92qPW/kSAPyxcDU3TweS39aart+OzpW84vlkSYAwOa1Wx9TJK1i0eAibt01j984T3Lhu/EvD//AFgm6Hsm33THwnfMLkCcsN29q0rcv3S4ZmOG7PXi3Z+NsUNmyeRH3PKixetCVbM8+dupnZi3qzavNQ9u4+z80bYUZtTvhf5U5QJOu2jWCYbwdmT/YD4J9roWzbFMCPqwey7NdBHD18mTu3Iwz7hYXGcvr4NVwK2mVb3ifptDrWLdjEgOl98V02glP7znHvVqhRG8eCDgyaP4CxPw+nRbemrJ6zwWj7/k2HcS3ikiP5nken1bFsjh/D5/Rl5uoRHN97luCbxvmdCzkw7rsvmL5iGD49m/DzzF9NkvVZVv56iDbdp5s6hoFOq2PFXD+Gzu7L9JUjOLH3LCFP92tBB0Z/9wVTlg+jTY8m/PJEv9Zr8T7DZvfN1cxKBYytVZLP9gTi7Xealh7OlLDLn6HdmdA42m05S7stZ/n+fBAAt+IfGB7rsPUsyak69t2OzNX8Wq2OedM2M+t/vVnhN5R9u89z66nziI1tfgYO96Fzd89czfZkxv/N2Mzkbz/lx1+HceD3c9z+x3hc2Njko9/QNrTv2iDTY/y29gjuxXPvfKHT6ji45Fd8xvWj27dj+Nv/DFF37hm1ca9Uho/njeTjeSNpPOBj9i1aY9hWvmENfHz751re7KBQKnLtj6nIhPUVNWzYkOjo6AyPd+7c+ZWOt2zZMh48eGD4uWrVqpm2W7t2Lb/99luWxwkICOCzzz57pQymEnjxH9yLuFDYXYOZuZrmLWpwcP9ZozYH9p/Fu00dFAoFlSqX5P79JCIiYgF4r1pZbGwzViGtrPIZ/p784GG2XjK5EhhEYXcn3Ao7YmampnHzKvgfvGTU5siBSzT3fg+FQkHFSkVJuJ9MZEQ8t26GUaFSUSzzmaNWq6j6ngeH9wca9ls4ayv9BrVCkUPXeG5dDcK5kBPOhZxQm6mp1rAqfx4NNGpTomJxClin/eIvXr4oMZFxhm0xEbEEnrhMnVY1cyTf89y4EoRLYSc0bo6ozdTUbFSVM0eM85d+pzgFbNLyl6pQlOjwWFNEfaajJ68SHZtg6hgGN64EoXFzQlMovV/P+hv3a6l30sdFyQpFiYlI79eyVUoY+jy3vONkTVD8A4LvJ5Oi07PrnwgaFnF86ePULGhP0P0H3E18mAMps3YlMAg3dycKPT6PNGqW8Txi72BFuYruqNSqXM32r78uBVHI3ZGCjzM2aFqF44eMM9o5WFOmQhHU6oxTioiwWE4evUILn+q5FZmwa7exLeiErasTKjM1peu+xz8nLxq1Mc9nYTjHpiY/AtLPt24VSmJpnbtjWTyfTFiz2bp1615pvxUrVhhNWLPSpUsXfHx8Xuk53lThYTG4ujoYfta4OhAWHmPcJjwGF9f0X0QuLg6Ehxm3yczC+Rtp2nAQO7Yfp/+X7bItc0R4PBrX9Aqos8aWiLA4ozaR4fFoXNLbaFxsiQyPw6OkK+fP/ENcbCLJDx5x3P8q4aFp+/ofvISTxpZSZQplW9anxUbGYq9Jz2XvbEtsZFyW7Y/tDKBC9bKGn3/9bjNtP/NGaaJP2tERcTg+kd9BY0dMRNb5D24PoHLNclluF2linu5XZzujDypPO7Q9gEo1TNuvLgUsCH1ikhma+BBNfvMM7apobPDzeZfFTStSMpMKbEsPZ3b+E5Hh8ZwW+fR5xMWWiPCs+9wUosLjcH7iPOaksSPyJTL+MGcLnw70yrEP4JlJiI7F2il9+ZeVox0JURk/tF4/8ScrBkxiy5QfaDLg41zLJ16NTFhfQFJSEn379qV169Z4eXmxc+dOw7bk5GR69+7Nhg1pl0z/rYwGBATQrVs3Bg4cSPPmzRkyZAh6vT7T469YsYLw8HB69OhBt27dDI/PmzeP1q1b07FjRyIj0y5VLVy4kJ9//hmA27dv07NnT1q3bk3btm0JCgoyOu6FCxfw8fHhzp07LFy4kFGjRtGtWzcaNWrEihUrDO22bNlChw4daNOmDb6+vmi1WrRaLSNHjsTLywtvb2+WLVtmyNqyZUu8vb0ZNGjQa/Zsmsz6RcFTJ7dMuu5Fzn9fft2BPfvn0cqrFutW733FhBllmvmpQPosQhfzcKHrJx8w6LMfGdL/J0qWLoRKrST5wSOW/7iPT/s3zbhfNspsGGbVl3+du8axnSdo29cbgIvHL2FtZ03RMu45mPA5XqDv/3XpzDUObg+gc3+vTLeLJ2V2fsq8Xy+fvcahHQF07Gfafn2RKdDlqAQabwig3W9nWX05hIWNKhhtN1Mq+KCII7/fzP0J64ucR0wt01HxghlPHLmMnYMVpR6v3c81mZ7jMmYuWbMy3b8bh/fIPhxfuz0XguUchSL3/piK3HT1Ao4cOYJGo2HJkiUA3L9/n9mzZ5OUlMTgwYPx8fHJtOp5+fJlduzYgUajoUuXLpw5c4Zq1aplaNe9e3eWLVvG8uXLcXBIqzQmJSVRuXJlBg0axMyZM9mwYQP9+xuvqRk6dCh9+/alSZMmPHz4EJ1Ox717aet0zp49y+TJk1m0aBGFCqVV627evMmKFStISEigRYsWdOnShaCgIHbt2sXatWsxMzNj/PjxbNu2jZIlSxIWFsb27Wlv4vj4eACWLFnC/v37MTc3Nzz2ulxcHQgNTV9eER4ajUZjvH5T42JPWGiU4eewsGicX+IGqhatajGg39xsq7JqXGwJD03/xB4RHoeTxsaojbPGlvCw9DbhYXE4Oae18WpXHa92aZfIFn+7C2cXW0KCo7gXEk3PjvPSjhkWR6/O8/lx9Zc4Ohkf+3XYO9sR88Ql8piIOGwdbTO0C75xl1Wz1zNgel+sHi+5uBF4kwvHAgkMuEzqo1QeJCWzdMoqPhnTNdvyPY+Dxo6oJ/JHh8dil0n/BF2/y0/TNzB8Th+sM1kyIozZOz/VrxGx2GfRr7/M2MCQWabv19DEh7gWsDD87FrAgvCkR0ZtElO0hr8fDo5hXC0FdhZqYh+mAlCvsAOXoxKISk7JndBPcH76PPLEOeJN4aSxJeKJ81hkeCyOL5jx8p+3OHH4MqeOXuXRo1SSEpKZMW4NIyZ9lFNxgbSK6v3I9CtwCVGxFHDIeI77l1uFksSFRvIgPoF8NlY5mk28OqmwvoDSpUtz7NgxZs2axenTp7G2tgagf//+tGvXLstL9JUqVcLV1RWlUknZsmUJCXnxu0/NzMz44IMPAKhYsWKGfRMSEggLC6NJkyYAWFhYkC9f2prNGzdu4Ovry/fff2+YrAJ4enpibm6Og4MDDg4OREVFcfz4cQIDAw0V1uPHj3Pnzh3c3d25c+cOkyZN4vDhw1hZpb2Jy5Qpw9ChQ9myZQsqVfasqapQsThBt8MIDo4g5VEqu3cF4PmB8RreBg2rsm3LUfR6PRf+vI6VdT6cnZ99U9LtJ24kOnjgHMU9CmZLXoCyFdy5ExTJ3eBoUlJS2bv7PHU8yxu1qdugAru3nUGv1xN44TZWVpaGX0YxUWlrF0PvxXBo30Uat6hCiVIF2X5wPBt3jWbjrtE4u9jyy7qvs3WyClC0rDvhIRFE3osiNSWV0/vPUam2cdUpOiyGJb5L6TnqY1zcNYbHffp4Me3X8UxZ50tv3+6UqVoqVyerAB5l3QkNjiD8blr+E/vO8V7dikZtIkNjmD96Kf18P6JgEU0WRxJP8ijrTlhwBBFP9GvVp/s1LIZvxy7ls7FvRr8GRt6nqG0+3KwsMVMqaOHhzIGgKKM2TvnMDH9/x8kapQLDZBX+XQ4QnmuZn1S2gjvBQZHcDUk7j+z7PeN5xNTKlHcn5E4koSFRpKSkcnDPeWrWr/D8HYFeA1qyeuc4Vmwbw6gpH1P5/ZI5PlkFcClVhNh7EcSFRaJNSeVv/zN4vP+OUZvYexGGCnf4jTtoU7VYWufdD7ZSYRUAFC9eHD8/Pw4dOsScOXOoU6cOAO+++y6HDx/G29s708sN5ubpa6lUKhVarTZDm6yYmZkZjqlUKl9qX2dnZx4+fMiVK1dwcUm/M/PpPKmpqej1etq2bcuQIUMyHGfLli34+/uzZs0adu3axbRp01iyZAmnTp1i//79LFq0iB07dqBWv94wUqtVjBrTjX59ZqHT6fBpW5+SpQqzYV3a1+d07NyQevUr43/4Al7Nh2FpacHEKZ8a9h8xdBGnT14lNjaBJh98Tb8BbWnX3pMF837l1s17KJUKChZyYuw3PV4r59OZB4/yYXC/H9O+jsanOh4lXfltw3EAfDrWola9shz3v0Inr+lYWpozemJHw/5jhqwgPi4RlVrF4NFtscnFm1VUKhWdB7Zn4fDF6HQ6areoQaHiBTm89SgA9VvXYceK30mIT2Td/I0AKFVKRi3OOEZMQaVW0XNQO2YMXoJOq8PTqzqFPVzZu/kYAI3b1mbz0j3cj09i6exNafuolEz+ZbApY2ewfOGX1KtVDid7a64HfMekuRtZvv6gyfKo1Cq6D2rHzCFL0Ot01G9VncLFXdn/W1q/NvSpzZale0iIS2L53LR+VaqUTPwprV8XjV/JlXPXSYhL5Kt2E2jXqxmeXjl7Y55WD1OOX+fHZhVRKhRsvhbK9dgkOpVJ+3C6/q97NC3mTOeyBUnV63mYqmPIwauG/S1VSmoXsmf80Ws5mjMrarWKr0f6MPTxeaRlm+oUL+nKll/TziNtPqxFVGQ8fT/6lsTEZJQKBRtX+7PCbygFrCxzJaNKreKLYW0Z/eWP6LR6mrZ+n2IlXNm+MW1ceHWoTXRkPF92X0BSYjIKhYLf1h5hyYZhuZbxaUqVigZ9PuS3CYvQ6/SUb1QTxyIFubDbH4BKzety/fh5rhw8iVKlQm1uRoshnxh+5+6as5TgS9dJjk/g50/HUaNzSyo2rmWS1yLSKfRZLawUBmFhYdjZ2WFhYcHevXvx8/Pj6tWrbNy4kUWLFpGSksKECROAtDWs586dIyAggF9++YXFixcDMHHiRCpWrEi7dplfkvb29mbRokW4u7sbHQdg9+7dHDx4kOnTp7Nw4ULy589P79696dixI3379qVx48Y8evQIrVbLhQsX+OWXX5gyZQq9evVizJgx1KhRw2g/AC8vL3744QeSk5Pp378/a9euxdHRkdjYWBITE8mXLx/m5uZYWVlx5coVRo4cyebNm7l79y6FCxcmJSUFT09Pdu/ejY1N1hXAZO2JbPt3yA33U0xTaXkdF6Pz3udOG/O8ddqp9+4qU0d4aQdP527lOzt8st3a1BFeyoEub963TzzPg9Q3a43si9h5x+L5jd4w/cvn7L0IT6u5yT/XnutE+7q59lxPynu/6Uzg77//ZubMmSiVStRqNePHj+err74CYMyYMYwePZqZM2cyfPirf1l2x44d6dOnD87OzqxcufKF9pk5cya+vr4sWLAAMzMzFixYYNjm5OTEDz/8QJ8+fZg6dWqWxyhZsiRff/01vXr1QqfTYWZmhq+vL5aWlowaNQqdTgfA4MGD0Wq1DBs2jISEBPR6PT179nzmZFUIIYQQIjtIhVXkKKmw5jypsOY8qbDmDqmw5jypsOaO3K6w1vbLvQrrsXamqbDKTVdCCCGEEOKNlvdKM3ncF198QXBwsNFjQ4cOpV69elnsIYQQQgiRtTfs63tzhExYc9n//vc/U0cQQgghhMhTZMIqhBBCCJGHKd6CBZ5vwUsUQgghhBB5mVRYhRBCCCHysLdhDatUWIUQQgghxBtNKqxCCCGEEHlYZv89/H+NVFiFEEIIIcQbTSasQgghhBDijSZLAoQQQggh8rC3YEWAVFiFEEIIIcSbTSqsQgghhBB5mFRYhRBCCCGEMDGpsAohhBBC5GFvQ4VVJqwiR6kUlqaO8FLy4iWHb07bmDrCS9vUNNrUEV7KwdNdTR3hpTWotsrUEV7a7oBupo7wUlJ0eW+W8ECb9zKfjjI3dQTxBpAJqxBCCCFEHqbMe59DXlpeLCgJIYQQQoi3iFRYhRBCCCHyMKmwCiGEEEIIYWJSYRVCCCGEyMOUCr2pI+Q4qbAKIYQQQog3mlRYhRBCCCHyMFnDKoQQQgghhIlJhVUIIYQQIg97G6qPb8NrFEIIIYQQeZhMWIUQQgghxBtNlgQIIYQQQuRh8rVWQgghhBBCmJhUWIUQQggh8jD5WishhBBCCCFMTCqsQgghhBB52NtQfXwbXqMQQgghhMjDpMIq3gh6vZ5pU5dx5PA5LC0tmDK1H+UreGRoFxwczrAhC4iLTaBc+eJMnzEAM3M1//wTwrjR33P58k0Gft2ZT3p5A3DvXiSjR/6PyMhYlAolHTo2olv3ltmS+cTRq8yfsRWtTod32+p0790ww2uaN2MLx/2vYmlpxthJnShTrjAA61cfYeumANBD6/Y16NS1ntG+a5Yf5Lu5O9h5cDx29gWyJe+zVHe246t3PFAqFGy/Hcbq68FG26s42jKtejnuJSUDcPheFMv+vpPjubIScPQqC2ZsRafT4dW2Ol2f6vvbN8OZ5ruev6+E0OfL5nTp0cAkOS8EXGHVgt/Q6XR4etXEu2sjo+3H9pxhx+r9AFjkt6DnkPYUKekGwI/T1nH+2GVs7K2YtmJ4rmfPzA+zPqNFo6pERMVTrcmbkSkw4Arrv9uMTqunbqsatPi4sdH2gD/OsHvtPgAs8lnw8aAOuJd0I+VhCrO++o7UlFS0Wi3veVam9SctciXzyaNX+d/sLei0Olq2rUGXT4zHb9DNcGaOX8/1q8H0+qIFHbs3ACA8NJbpvmuJibyPQqmgVbuatP+oXibPkL3OHr/KT3PTxnGT1jVo38N4HAffCmPhpPXc+CuYrp+3wKfrBwCE3A5n1piVhnZhIVF06duc1l3q53jmmMBA/lm7AXQ6XOrVpXDL5pm2u3/zFhemTqfMZ31wqvYeANeWLifmwkXMrK2pOvGbHM+aHWQNq8gTOnfunK3HCw4OxsvLC4CLFy8yefLkbD1+Zo4cPk/Q7VB27l7A+Al9mDTx50zbzZuzmm7dW7Lz9wXY2BZg06a0X/a2tlaMHNOTno8nqv9Sq1QMG96NbTvmsWb9ZNat2cONpyZjr0Kr1TF76mbmLOrNms1D2bv7PDdvhBm1Oe5/leCgSDZsG8EI3w7MmuwHwI1roWzdFMDPqwey/NdBHD18mTu3Iwz7hYXGcvL4NVwK2r12zhehBAZXKsHQE5fotv8sjd2cKWaVL0O7C1Hx9Dp0nl6Hzpt0sqrV6pg7dTOzF/VmZRZ9b2OTn69G+NC5h6eJUoJOq2PFXD+Gzu7L9JUjOLH3LCE3Q43aOBd0YPR3XzBl+TDa9GjCLzN/NWyr1+J9hs3um9uxn2nlr4do0326qWMY6LQ61izYxMAZfZmwfASn9p/j7i3jPnYq6MDQBQP45pfhtOrelJVzNgCgNlczeG5/fH8exrifhhF48ir/XLqV45m1Wh3fztjMtIWf8sumYezffY5b/xhntrbNx4DhbfiwWwOjx1UqJZ8P8map33C+W/4lWzYczbBvTuRdPMsP3/l9WLhuOEf2nOPOU89pZZOfT4f44POxcV63ohrmrxrC/FVDmLN8EBaW5tRsUDFH8wLodTr+Wb2WCl9/SdVJ44k4eYqku3czbXd7kx/2FSoYPa6pU4vyXw/M8Zzi5ciE9T9g3bp1OXbsd955h7Fjx+bY8f91YP8pWrepj0KhoHKV0tyPTyQiPMaojV6vJ+DEJZo2qwlAmzae7N93CgBHR1veeackarXKaB9njb2hUlugQD48SrgRFhb92nkvBwZR2N0Jt8KOmJmpady8CkcOXjJqc+TAJZp7v4dCoaBipaIk3E8mMiKe2zfDqFipKJb5zFGrVVR9z4ND+wMN+y2YtZUvBrVCocidj8zl7K0JSUzmXtJDUvV69oVEUNfVMVee+1VcCQzCzd2JQo/7vlHzKvg/1ff2jlaUq+ieYTzkphtXgtC4OaEp5IjaTE3NRlU56x9o1KbUO8UpYJ0fgJIVihITEWvYVrZKCQrY5M/VzM9z9ORVomMTTB3D4ObVtD52LuSE2kzN+w2r8udR4z4uUTG9jz3KFyU2Ig4AhUKBZX4LALSpWrSpWsiF99zVwCDcCjsaxu8Hzapw7Onx62BN2QpFUKuNf0U7OttQ+vFVmvwFLCla3IXI8PgczXvtchAFCzvi6paWt26TqgQcNs5r52BNqfJFUD3j/Xbh1DVcCzuiKeiQo3kB7t+8iaVGg6WzM0q1Gufq1Yg+/2eGdvf27cfx3aqY2VgbPW5bujTqAm/We+95FAp9rv0xFZmw/gdUrVoVgICAALp168bAgQNp3rw5Q4YMQa9PG1yzZ8+mZcuWeHt7M2PGDABGjhzJ7t27MxznSQEBAXz22WcALFy4kFGjRtGtWzcaNWrEihUrsu01hIXF4PrEJMnF1ZGwcOOJZWzsfaxt8hsmIS6uDoS/xOQzJCScK1duUqlyydfOGxEej4tregXUWWNLRFhcxjYuT7RxsSUiPA6Pkq6cP/MPcbGJJD94xDH/q4SHpu175OAlnDW2lCpT6LUzvihnS3PCHzxMz538EKd85hnaVXCwZqlnVWbVKE8xa9OdzCPC49E81feRT/X9myAmIg5HTXpOB2c7YiKzznloewCVapTLjWj/GbERsTg4p/exnbMtMRFZ9/HRHQFUrF7W8LNOq2Ni71kM9RlH+Wpl8ChfNEfzAkRGxOFsNH7tiAx/+fEbejea63+FUK5ikeyMl0F0eBxOT5zHHDW2RD+jj7Pi/8c56jXN+DsmJzyKicXc3t7ws7m9PQ9jYo3aPIyJIerceVwbmO4qjHg5sob1P+by5cvs2LEDjUZDly5dOHPmDCVLluSPP/5g9+7dKBQK4uNf/RP5zZs3WbFiBQkJCbRo0YIuXbpgZmb22rn/nVg/6ekKYyZNXrgKmZSYzKCBcxkxsgdWVtkw2XqRvGTeppiHC10/+YCvPvuRfPnNKVW6ECq1kuQHj1j+4z7m/9Dn9fO9rqei/x2XwId/nOKBVkdNjT1T3y/HR/vPmChbpgMh93M8V2aViMxzXj57jUM7Ahj7vy9zNtJ/TKY9nMVQuHruGv47TzB8YfqlXqVKie/Pw0i6/4BF434h5J97uHkUzJmw/3qN89i/HiQ9ZPzQ5fQf0oYCVpbZFCxzmdbTXvLtlpKSyskjl+jWv1V2RHolT3fxzXUbKNa+HQrlf6Nu9zasYZUJ639MpUqVcHV1BaBs2bKEhIRQpUoVLCwsGDNmDA0aNKBBgwavfHxPT0/Mzc1xcHDAwcGBqKgow/O9rLWrf2fjxrSbISpWLEFoaJRhW1hoFBpne6P29vbW3I9PIjVVi1qtIiw0GmeNcZvMpKSk8vVXc2jlXZcmTWu8UtanObvYEhaa/ok9IjwOJ42NURuNxpawsCfahMXh5JzWxrtddbzbVQfgh2934exiS0hwFHdDounecZ6h/Sed5/PT6i9xdDI+dnaKSH6EJp9F+muztCAy+ZFRm6RUreHvJ8JjGKxUYGuuJu5Rao7lyoqziy3hz+n7N4G9sx1R4ek5oyNisc/k3zHo+l1+mbGBIbP6YG2b8zfY/ZfYO9sR/cQyig1K9IQAACAASURBVNiIOOycbDO0C75xlxWz1vPVjL5YZdLH+a3zUaZKCS6dvJrjE1YnjS0RRuM3FkfnFx+/qSlaxg9dTqOW71Kv0Ts5EdGIo8aWyCfOY1HhcThk0sfPcvbYVTzKFMbO0fr5jbOBub0dj2LSl5Q9ionB3M74noCE27f5a8lPAKQkJBBzMRCFSoVj1Sq5klG8vP/GRwthYG6efilXpVKh1WpRq9Vs3LiRZs2asXfvXj799FPDdp1OB6RVOFNSUl76+Kmprz5h6fJxMzZtnsmmzTNp2Oh9tm45jF6v58/zf2NlnT/DZFShUFC9Rnn2/H4CgC1bDtGwYbVnPoder8d37A94eLjRo6fXK2d9WrkK7gQHRXI3OJqUlFT27j5PXc/yRm3qNqjA7m1n0Ov1BF64TQErS8OENToqbR1g6L0YDu67SJMWVShRqiA7D47Hb9do/HaNxtnFlqXrvs7RySrA1dj7FC6Qj4L5LVArFDRyc8b/qaUWDhbpVfRydlYowSSTVYCyT/X9vkz6/k3gUdadsOAIIu5GkZqSyol956ha1/iGk8iwGL4du5TPxn5EwSIaEyXNu4qVcSc8OILIe2l9fGr/OSrXNr6BJioshu/HLaX36I9xcU/v4/uxCSTdfwDAo4ePuHLmb1xz4d+gbAV3Qu5Eci8kipSUVA78fp7anhWevyNp57PZEzdQpLgLH3bNnUvZpcq5c+9OJGF30/L6/3GO6vVfLO+/juw5R/1cWg4AYF2sGA/CwkmOiESXmkrEydM4VK5s1Kba9KlUm5H2x+m9d/H4uEuenqwqc/GPqUiF9S2QmJhIcnIynp6eVK5cmaZNmwLg5ubGpUuXaNmyJfv27XuhCWtOqe9ZlSOHz9Gi2VfkszRn0tR+hm39+k5jwuTP0GgcGDTkY4YNWcDCb9dTrlwx2nVI+zqYyIhYOn04ioSEByiVClat2MmW7XP4+68gtm09QqnSRWjfNu1reL76ugv1PV/v5KlWqxg8yodB/X5Eq9Ph5VMdj5KubN5wHIC2HWtRu15Zjvtf4UOv6VhamjNmYkfD/mOGrCAuLhG1WsXQ0W2xMeHNNVo9zLt4gzk1K6JUwI6gMG7dT6JN0bTK+ZbboTQo6IRPMVe0enio1TL+zF8my6tWqxg0yoch/X5Ep9PRyqc6xUu68tvjvvfpWIuoyHj6dPmWxMTk/7N331FRXH8fx9/LIiJFehOxmyj22HsvqIg1aqyJxhY1GrtRVGKJveanMcYkGguxBXuJvWJDEVtiQUWlgyAowu4+f2AWVlDBsKw8fl/neA67c2fms+Pdu3fv3JnFyEjBpt9PsHbbaL2fPk1Paayk98iOzBm1Eo1aTYM2NShc3JlDf54CoEn7Ovj9sp+nTxL5bcEWIPUUtc+qbwD439S1XA+4xdMnCXzdcRodv2hJw7a1ci1/Zn5bOoz6tctib2PJLf9lfLdgM7/5HjFYHqWxku5fd2LRmB9Rq9XU9ahJoeIuHPU7CUBDr7rs+m0fCXEJrFu4OXUdpRHfrhzFk6g4fpm1HrVajUatoVrjylSsk72O2LtmHjauA+O++gm1WoNHu+oUK+nMjs2p9cKzcx2iI+MY3HMxiQnPUSgUbFl/nNWbx3Dnn8cc2HWB4qVcGNBtAQD9hnpQs57+5j4rjZV8Oboj04avRKXW0MyzBkVKOLN3a2reVh3rEBMVx+g+i1LzGinYsfE4SzeOxczClKTnL7h89m8GT+ist4yvUiiVlPisG1cXLQa1Gse6dTFzLcTjI0cBcHnLvNWbK1fx5OZNUp4+5dyYcRRp54lT/Xq5EV28gUKT2eRBkadUqVKFgIAA/P39Wb16NT/++CMAPj4+lC9fnnr16jFkyBCSklIvrPniiy/o0KEDkZGRDBkyBLVaTe3atfn9998JCAggJCSEQYMGsXPnTp1tLl26FDMzM/r16wdA27ZtWbFiBYULF35ttmT1Jf0fgBwU9+K+oSNkW/v9+r/qNqdtafHf79SQm+7GGe5uA++qUbXfDR0h2/b69zJ0hGwpWVD19kLvmfjkvDfZce4VC0NHyLbV9Rvl6v4+e9kZzw3rDXShmnRYhV5Jh1X/pMOqf9JhzR3SYdU/6bDmDumw5jyZwyqEEEIIId5rModVCCGEECIP+xBuayUjrEIIIYQQ4r0mI6xCCCGEEHnYhzD6+CG8RiGEEEIIkYfJCKsQQgghRB4mc1iFEEIIIYQwMBlhFUIIIYTIw4wU//9vqS8jrEIIIYQQ4r0mHVYhhBBCiDzMSJF7/97m2LFjtGzZkubNm7Ny5crXlgsMDKRs2bLs3bs3a68xqwdDCCGEEEKI11GpVPj4+LBq1Sp27drFzp07uXXrVqbl5s2bR7169bK8bemwCiGEEELkYUa5+O9NAgMDKVq0KG5ubpiYmNCmTRsOHjyYodzatWtp2bIldnZ22XqNQgghhBBC/CdhYWE4OztrHzs5OREWFpahzF9//UW3bt2ytW25S4AQQgghRB6Wm3cJ8PX1xdfXV/u4a9eudO3aFQCNJmMOhUJ34uuMGTMYPXo0SqUyW/uVDqsQQgghhMiS9B3UVzk7OxMaGqp9HBYWhqOjo06ZoKAgvvnmGwBiYmI4evQoxsbGNGvW7I37lQ6rEEIIIUQe9r780lWFChUIDg7mwYMHODk5sWvXLubPn69T5tChQ9q/x48fT6NGjd7aWQXpsAohhBBCiBxgbGyMt7c3/fv3R6VS0alTJ0qXLs2GDRsA6N69+ztvW6HJbMKBEDnkhfqCoSNki0qdZOgI2XY6PNbQEbLtQUL25i4Z2uzjBQwdIduWezw1dIRsa1VzraEjZEvglR6GjpBtruY2ho6QbT/dTDB0hGz7ulyLXN3fkFOHc21f/6vTONf2lZ6MsAohhBBC5GHvy5QAfZLbWgkhhBBCiPeajLAKIYQQQuRhH8Lo44fwGoUQQgghRB4mI6xCCCGEEHlYbv5wgKHICKsQQgghhHivyQirEEIIIUQeJncJEEIIIYQQwsBkhFUIIYQQIg/7EEYfP4TXKIQQQggh8jAZYRVCCCGEyMNkDqsQQgghhBAGJiOsQgghhBB5mELuwyqEEEIIIYRhyQirEEIIIUQeJnNYhRBCCCGEMDDpsAohhBBCiPeaTAkQBqPRaPh+5hqOH7uEqakJ02cOwr1c8QzlQkLCGTtqKU9in1LWvTizZg8hn4nxa9dPSnpB314+vHiRgipFRfOWNflqWGcAblwP5rupq0l6kYxSacQk78+pULHUO+U/efwKc75fj1qlpkOnBnzxZZsMr2/OrPWcOBaIaQETfGb0o6x7MUIfRzFpwiqiop6gUCjo1KUhPXq10Fn3t1/2sHDeHxw+sQQbG8t3yvcmV89e549l29CoNNRtU5OWnzXTWX72wAX2bzwIQP4C+ek+ojOFS7lql6tVamYNWoC1vRVfzfoyx/Nl5vaFaxxYuRWNWk2lFrWp06W5zvKgw+c4vSU1s4mpCa2GdMWpRGrms35HuLTvNKChcsva1PBqnCuZ67naMKFWSZQKBZv/DmVV4AOd5dWdrVjWrBwP458DcOBeJMsv3adYwQIsaFxWW66wpSlLL95j7bWHes0b5H8d32XbUKs01GtTE48euvXC/8AF9m5Iqxc9RnbGrZQryUnJzP16GSnJKahUKqo2rES7zz30mjUrVswdiEfTKkRExVGt+VhDx9G6cPoGK+f/iVqtpoVXTbr0aaqz/EFwGIt8fLl9M4Tegz3o2DOtvn7hNZ0CZvkxMjJCqTRi0ZqResl48vgV5n6/HrVKQ/tO9V/bvp08dgXTAiZMm9GPsu5FCX0czeRX2rfPeqW+V29ev88MnzUkJSWjNDZi4qRelK9YQi/571+8xonVW1Cr1bg3q80nHXXb2LtnA/HfsAuFQoGR0oh6X3TCpWxJ4iNjOLhkLYkxcSiMFLg3r0ulto30kjEnfQijj9Jh/YCFhIQwaNAgdu7cme11w8LCmDFjBkuWLHnn/R8/dol790LZtXcBgZdvMd1nNet9v8tQbuH8DfTq7YFHmzr4TP2ZrVsO07V789eub2KSj59/mYSZuSnJySn06TmNevUrUalyaRbM28CgrzpSv0Fljh0NYMG8DfyyZnK2s6tUambNWMuKn0bj5GRLj64+NGxcmZLpOnUnjgdy/14Y2/d8z5XAO8zwWcvvGyejNFYyamxXyroXIyHhGd27TKNW7XLadUMfR3Hm1FVcXOze+di+iVqlZuPiLQyfOwgbB2u+H7SQinXK41LMWVvGzsWWkYuGYm5pRpD/ddbN/4Nxy9M+GA9tOYZzESeeJz7XS8bMMu9bvonu07+ioJ01v4ycR+ma5XEo4qItY+1sR8/vh1PAwozb56+xZ9lG+i4YRXjwIy7tO83nC0ahzKdko/dySlUrh62ro14zGylgUu1S9N93hbCEJHzbVeHw/ShuxybqlLsQ+oQhf13VeS447hkd/S5qt3Okay0O3ovUa161Ss36xVsYOS+1XswctJBKdctTKF29sHexZfTi1Hpxxf86a+f/wcTlIzE2MeabBUMwNctPSoqKOcOWUL5GWUqUK6bXzG+zdtNRVvy2j1ULhxg0R3oqlZrlc7YyfdlA7BytGNlnETXrl6NIibTjbFnQjIGj23PmSFCm25i5fDBW1hZ6zfj9jN9Z/tOoN7RvV7h/Lwy/PbO4EniHmT5rWLtxMkpjI74Z25Wy7kVJSHjGZ118qFnbnZKlXFm0YBMDhrSjXv2KHD8WyKIFm1j167gcz69WqTn20yY8p3yFhZ01m8fOpVj1Cti6pbUXhSt8TLHqFVAoFEQGP2T//NV8tnQyRkZG1O3TAYeSbrx49pxNo+fgVuljnXWFYXwInXKhB05OTv+pswpw+NAF2nnVR6FQUKlyaeLjEokIj9Epo9FoOHvmKs1b1gSgnVd9Dh08/8b1FQoFZuamAKSkqEhJVqFQpM5IVygg4ekzAJ4+fYaDo807ZQ+6cgc3N0cKuzmSz8SYlq1rcORwgE6ZI4cCaNuuDgqFgoqVShIfn0hERCwODtaUdS8GgLl5AUqUcCE8PFa73rzZGxkx6lPQ0yT64Bv3cShkj0Mhe4zzGVOtSRUun9T9YCxZvjjmlmYAFHcvSkzkE+2ymIhYgs5co26bWvoJmIlHf9/DxsUBG2d7lPmMcW/wCf+cuaJTpnDZEhSwSM1cqEwx4iJTj2lUSBiuZYqSz9QEI6WSIuVLcfN0oN4zV7C35H7cM0Lin5Os1rDnTgRNimT/S0gtFxvuxz/jUUKSHlKmuXvjPo6uafWi+lvqRQn3osRGpNYLhUKBqVl+AFQpKlQpqtQ3m4GdPHuD6Ninho6h4++r93EpbIezqx358hnToEUVzhzT/cJibWvJR+5FUBorDZIxY/tWkyOHL+mUOfrG9q0okNq+FS/hQsTL9k0BJDxN/ZL7ND4RBwdrveQPv3UPKxd7rF62F6XqVeXuWd32Il+B/NrPhZSkF/zb4JrbWuFQ0g0AkwKm2BR2JiHqCe87I4Um1/4Z7DUabM/ivZCSksK4cePw9PRk+PDhPHv2jCZNmrBgwQK6du1Kx44duXr1Kv369aNZs2Zs2LABSB2dbdu27X/ad3hYDM7OttrHTs62hL/SYY2NjceyoDnGLxtuZ2c7wsNi3rq+SqWmc4cJNKw3iFp1KlCxUupp/3ETejN/3nqaNR7K/DnrGDGy67tnd0m3bydbbS5tmfBY3XxONhnKPHwYyY3r96nw8rTYkUMBODhZ83GZIu+UKytiI2OxcUz7oLBxsCI28vUN8qnd/pSrUUb7eNOybXQY6IlRLl6WGh8VS8F0H26W9tbEv+FD5PL+05SslnpK3aGoCw+CbpMYl0Dy8xfcPn9N25nVJyfz/ISm62SGJiThaGaSoVxlx4Jsbf8JP7YoTylrswzLW5dwYPedCL1mBYiNiMU23TG2drAiJuL1x/jkLn/Kp6sXapUan35zGd1+Mu7VPqbEy06L0BUV8QQHp7TjbO9oRdQbjvOrFCjwHraSr3svZO+20/qISHhYLE4uum1XRIb27ZX2N5M28NHDSG5ev6897T96fHcWzfuDVk1HsXDeHwwb2Ukv+ROiYrGwSxuMsLCzJiE643v+zpnLrB/2HbtmrKDJ0B4ZlseFRxF5NwSnj6Quvw+kw/qBu3v3Lp9++ik7duzA3Nyc9evXA+Ds7Iyvry/VqlVj/PjxLF68mD/++OM/j6qmp9Fk8k1N8WqZTFZ8+a34TesrlUZs3jaLvw4vI+jKbf75O3XuoO/Gvxg7vhd/HV7GmPG98J608t2yZxpLN3xm+dKXSUx4zugRyxgzvjsWFgV49iyJVSt3MmRoh3fKlFWZHrbX9D1vBvzDqd1n6DDAE4Arp69iaW1J0Y/d9Jgwi14TOjjwby7vP0Pjvl4A2Ls5U6tzMzZM/oGNU5bjWNwVI6X+m76sdOevRT2l2R/+dPzzIuuuPWRp03I6y/MZKWhcxI59d/XfYX3DWy2DGwH/cGL3GToO9NQ+Z6Q0wvvnMczeNJW71+/z8M5j/QTN697e7L3RnFVDWbz2G6Yt6s/OTScJung7x6KleXsjkXk78mr79gOjX7ZvAJt8DzNqXDf2HpzP6HHdmDb5lxxNrc2WyXOKTI5yiVqV+GzpZDzGfcnZDbpT45KfJbFvzs/U/aIjJmYF9JIzJxkpcu+fwV6j4XYt3gcuLi5UrVoVgHbt2nHhwgUAmjZNvQjgo48+olKlSlhYWGBra0v+/PmJi4t75/1tWLefzh0m0LnDBBwdbQgNjdYuCwuNxtFB9xS9jY0l8XEJpKSoAAgNjcLx5eigk7PtW9cvWNCc6jXKcvLEZQC2/3mMZs2rA9CyVU2Crtx5p9fh5GRD6ON0+w6LxsHROmOZ9PnCYrRlkpNTGDViGa3b1KZp82oAhDwI5+HDCD7t6I1H89GEh8XQvfNUIrMx+pIVNg7WxKSbghAT8QQrO6sM5UJuP+L3eb4Mmt4PCytzAG4H3SXwVBDfdvPhZ5813Az4h19m/J6j+TJjaWdNXERa5vjIWCxtC2YoF373IbuXbKDz5C8xK2iufb5yi9r0WzyWXrO/poClGbaFHPSeOTQhCWfz/NrHzub5CU98oVMmIVlFYooagGMhMRgbKbDOn3ZpQf3CtlyLekrU82S957VxsCY63TGOjXiCtX3m9WLNXF++mpFWL9IzsyzAx5VLcvXsDb3mzavsHK2ICEs7zpHhT7B1yHicX7v+y7LWtpbUblSBv6/dz/GMjk42hD3OvO36V8b2LVqnfRs94gc82tSiafOq2jI7/U5pHzdvWZ2rV+7meHZIHVF9GpU22vs0KhYz29cf40LlSvEkNJJncanTR1QpKvbOXUXpBtUoWauyXjKK7JMO6wfu1VHBfx/ny5cPACMjI0xM0k5jGhkZkZKS8s77696jBZu3zWLztlk0aVqN7X7H0Wg0XL70DxaWBTLMKVUoFFSv6c6Bff4AbPc7TuMmqR28xo2rZrp+dHQccXEJADx//oIzp4MoXrwQAA6ONpw/dx0A/zNXKVLU6Z1eR7nyxbl/P5yHIREkv0hh3+6zNGxcRadMw8ZV2Ln9FBqNhsDLt7GwKICDgzUajYZp3r9QvEQhevVtqS1f+iM3Dh9fwp4D89hzYB6OTjZs2DwV+2x8mGVF0TJuhD+MIPJxFCnJKZw/FEDFOroje9FhMaz0/oW+E3rg5JZ2cVL7L9sya9NUZmz0pp93bz6uUprPv+2Zo/kyU+ijIsQ8iiA2NApVcgrXjl2kdM0KOmWehEezZebPtBvVC7tXLqhKiI3Xlrlx+jLuDauib0GR8RS1KoCrhSn5jBR4lHDg8P0onTL2BfJp/65gb4mRAmKT0t5fqdMBwvWeFaDYx26Eh6TVi3OHAqj0Sr2ICoth+eRf6DdRt17Exz4lMT51bviLpBdcv/A3zkX0e1FbXvWRuxuPHkQS+jCK5OQUju0PoGb9cm9fEXj+LInEhOfavwP8b1K0ZM5fDJTavoWla9/8adRYt+PWsHHlV9o3s1faNxed9g3AwdGaC+duAnDW//o7t79v41iqCE8eRxAXFokqOYVbJy5QvPor7cXjCO1ZsIjbD1CnqDC1NEej0XD4h3XYuDpTuV0TveTThw9hhFXuEvCBe/ToEQEBAVSpUoVdu3ZRtWpVrl+/niv7rt+wMseOXaJ1y5GYmuZn+syB2mWDB8xm2vQBODraMHJUd8aOWsrSJZsoU7YoHTs3euP6ERGxTJqwHJVKjUatoUWrWjRs/AkAU3368/3MNahUavLnz8cUn/7vlN3YWMn4b3sweMB81Go1Xh3qU6qUK5t8DwPQpWtj6jeoyIljgXh6jMPU1IRp0/sBcOniP+zcforSHxXm047eAAwb0Yn6DSq9U5bsUiqVdBveiaVjf0StVlPHoyaFirtwbPtJABq0q8uuNft4GpfAxkWbgdTTvRN+HJUr+TJjpFTSYlBnNnr/D7VaTaXmtXAo6sLF3ScA+KR1PU5s3MuzuAT2/m+TNvMXi8YAsGXmzzyLT0CpVNJyUBftxVn6pNLAjNO3+KlleYwUCrb9E8qt2ES6fpzawfC9+ZgWxRzoVsaFFI2GpBQ1o46kjUqaKo2oU8iGqSf/0XtWAKWxku5fd2LRmNR6UfdlvTjql1ovGnrVZddv+0iIS2DdwtR6oVQa8e3KUTyJiuOXWetRq1Pfc9UaV87wJcgQfls6jPq1y2JvY8kt/2V8t2Azv/keMWgmpbGSQWM64j18JWq1huaeNSha0pndW04B0LpTHWIi4xjRdxGJCc8xUijw23ic5RvHEvckgeljUk+jq1VqGrb8hKq1y7xpd+/E2FjJuG97MmTAgpftWz1KvtK+1XvZvrXzGI+pqQlTp38BpLZvu7afpvRHhenacQoAQ0d0on6Dikye2oe5328gJUVF/vz5mDS1T45nh9T2on7/Luzw+R8atYYyTWthW8SFoH2p7UX5lvW4ffoSN4+exUipxNgkHy1GfY5CoeDx9dv8ffQctkUL4fvN9wDU6uFJ0aqGr88fOoUm04mA4kMQEhLCgAEDqFatGgEBARQrVow5c+bQpk0bNm/ejK2tLVu3biUoKAhv79SOVZMmTdi8eTOJiYlZuiXWC/WF3HgpOUal1u+V2PpwOlz/FxDltAcJhrn6+V3NPv7+z2F71XKP9+vq+KxoVXOtoSNkS+CVjBfqvO9czd/tziiG9NPNBENHyLavy7V4e6EcND3gr1zb16Qqzd5eSA9khPUDVrhwYXbv3p3h+UOHDmn/7tixIx07dsywzNbW9p3u3yqEEEIIkV3SYRVCCCGEyMMMeX/U3CIXXQkhhBBCiPeajLAKIYQQQuRhhrx6P7fICKsQQgghhHivyQirEEIIIUQeJiOsQgghhBBCGJh0WIUQQgghxHtNpgQIIYQQQuRhSpkSIIQQQgghhGHJCKsQQgghRB4mF10JIYQQQghhYDLCKoQQQgiRh8lPswohhBBCCGFgMsIqhBBCCJGHyRxWIYQQQgghDExGWIUQQggh8jCloQPkAumwCr3KZ2Rh6AjZks/IzNARsq2EZZShI2RbPWcnQ0fIllaFHxo6QrYlq/PeOcLAKz0MHSFbKlZYZ+gI2RZ5Z7ChI2Rbs0IvDB1BvAekwyqEEEIIkYfJHFYhhBBCCCEMTEZYhRBCCCHyMLkPqxBCCCGEEAYmI6xCCCGEEHmYUuawCiGEEEIIYVjSYRVCCCGEEO81mRIghBBCCJGHyW2thBBCCCGEMDAZYRVCCCGEyMNkhFUIIYQQQggDkxFWIYQQQog8TEZYhRBCCCGEMDAZYRVCCCGEyMOU8tOsQgghhBBCGJaMsAohhBBC5GEfwujjh/AahRBCCCFEHiYjrEIIIYQQediHcJcA6bCK945Go2HGjJ84dvQ8pqb5mfX9CMqVK5mhXMiDUL75Zh5PnsTj7l6S2XNGYmKST7v8SuA/dO06hgULx9CqVV095VzFsaMXXuYc/pqcYS9zPsXdvQSz54zAxCQfB//yZ/Hi9RgZKVAqlUyc2I+q1dy166lUKjp3Go2jkx0//jgpR7OfO3WDFfP8UKnVeLSvSde+TXSW3w8OZ8E0X27dCKHPEA+69Gqks1ylUjOs1yLsHK34blG/HM2m0Wj4fuYajh+7hKmpCdNnDsK9XPEM5UJCwhk7ailPYp9S1r04s2YPIZ+J8WvXD30cxcTxy4mMjMVIoaDzp03o2dsDgKWL/+DwoQsYGRlha1uQ6bMG4ehok6Ovy//kDZbM2Y5araZNhxr0/EL3mN+7G873U3z5+/pD+g9tRfc+jXJ0/1lx9uQNfpjnh1qlpnWHmnT//JV6cTecOVNT68UXX3nwae/UjOGhsXzvvYGYyHgURgradKxFp8/q50rmC6dvsHL+n6jValp41aRLn6Y6yx8Eh7HIx5fbN0PoPdiDjj0ba5d94TWdAmb5MTIyQqk0YtGakbmS+U1WzB2IR9MqRETFUa35WIPlOHk8iHnfb0SlUtOhU30+/9JDZ7lGo2HurI2cOHYF0wImTJvxOWXdi5KUlEz/3nN48SIFlUpF0xZVGTzUS2fdNb/sY9G8zRw8sQAbG0u95L94+garF6bWi2btatKxt269CAkOY9l0X+7cDOGzQR6075FaLx7eC2f+pLXacmEPo+g2oBWe3RroJafIOpkSIN47x45d4F7wI/bt/xGf775i2tTlmZabN+83+vRtx779P1KwoAVbNh/QLlOpVMyb9yv16lXRc87H7Nu/HJ/vhjBt6oq35Fz+MudfANSqXRG/7Yv4028RM2cOY9KkH3TWW7NmJyVKFs7x3CqVmh9mb2P6kv78tGkMh/cFcO9OqE6ZggULMHi0F516Nsp0G39uOI5bcacczwZw/Ngl7t0LZdfeBUyZ1p/pPqszLbdw/gZ69fZg176FFLQyZ+uWzB/8TAAAIABJREFUw29cX6k0YvTYHmzfNY91vj5sXH+A27dCAPi8X1u2+s1m87ZZNGxUhRX/25qjr0mlUrNw1jbm/tCPNVtHc3DvJYJvh+mUKWhlxvCx7enWu2GO7js7GZfM3saspf1ZvWUMh/YGEPxKvbC0KsDQsV4ZvsAolUYMGunJL1vHsuy3Yfj9cTLDuvrKvHzOVqYt/pL/+Y7l6L4A7r+auaAZA0e3p2OPRpluY+bywSxdN+q96KwCrN10FK/e3xs0g0qlZvaM9Sxd8TVbtvuwd/dZ7tx6pFPm5PEg7t8Lx2/PDCZN7cUsn3UAmJgY8+PqUfhum8KGLd6cPnGVwMu3teuFPo7mzKlrOLvY6jX/T/O2MmnhlyzeMJbj+wN4cFe3XlgUNKPfN+3x+qyRzvOuRR1ZsHYUC9aOYu6vI8lvakLNhuX1ljWnGCly75/BXmN2V1i6dCk///wzixcv5tSpU28s26tXL65cuZLlbV+/fp2jR49mN5LehISE0LZtWwCuXLnC9OnTDZJjz549eHh40KtXrxzbZlxcHOvWrdM+DgsLY/jw4Tm2/f/i4EF/vNo3RqFQULlyGeLiEggPj9Ypo9FoOHMmkJYtU0dO23dowl8H/bXLf1+7kxYt62BrZ6XHnGfxat/oZc6P35DzCi1b1nmZs7E2p7l5ARSK1Hd/4rPn2r8BQkMjOXrkPF06N8/x3Dev3qeQmx0uhe3Il8+YRi0qc/roVZ0y1raWfFyuCMbGGZuIiLBYzp68jkf7GjmeDeDwoQu086qPQqGgUuXSxMclEhEeo1NGo9Fw9sxVmresCUA7r/ocOnj+jes7ONpoR2rNzQtQvKQrYWGp27WwMNNu+9mzJHK6Tb4edB9XN3sKvTzmTVtW5sQR3WNuY2tB2fJuKI2VObz3rLkRdB/XwnbajI1bVuZUhoyWlMmkXtg5FOSjsqlfrszMTSla3InI8Di9Z/776n1cCtvh7JqauUGLKpw5lrEuf+RexGDHNbtOnr1BdOxTg2YIunKXwm4OFHZzIJ+JMS1bV+fI4Us6ZY4cukTbdrVQKBRUrFSS+PhEIiJiUSgUmJmbApCSoiIlRaXTts2f7cuIUZ11nstpt67p1ot6zatwNpN6Ufot9eLK+X9wcrXDUY+da5F17zzC+vXXX1OnTp2czPLedVjTq1ChApMmZf20rEajQa1W58i+N2/ezJQpU1i7du3bC2dRXFwcGzZs0D52cnJiyZIlObb9/yIsLAoXZwftY2dnO8LConTKxMbEU7CgOcYvGxtnZzvCX5YJC4viwF9n6NatlZ5zRuPibP9KTt0Oa+Y508ocOHAGj1ZfMWjgdGbMHKp9fubMnxk9pg8KPXydjQp/goOTtfaxvaM1keFPsrz+ivl+9B/eVm8fOOFhMTg7p31AODnbEv5KhzU2Nh7LDMc1JsvrP3wYwY3rwVSslDaFY8kiX5o1HsquHSf5aniXHH1NkeFxODqnHXMHJysisnHMc0NkxBMc0mfMZr34V+ijaG7dfEjZ8kVyMl6moiJerctWREVkPbMCBd7DVvJ174Xs3XZaHxHzpIiwWJ0RUEcnG8LDYnXKhIfH4OSsWybiZRmVSk23jtNoVn8UNWuXpULFEgAcPXQJRycbPirjptf8URFPsHNMqxd2jlZEZ6Ne/OvEgQDqt9DfWbqcpFRocu2foWSpw7p8+XJatmxJ3759uXv3LgDjx49n7969ACxbtoxOnTrRtm1bJk+ejEaT9oK2b99Ot27daNu2LYGBgQAkJiYyYcIEOnXqRPv27fnrr7948eIFS5YsYffu3Xh5ebF79+5MywH8888/dO7cGS8vLzw9PQkODs40d0hICK1atWLcuHF4enoyfPhwnj17BkBQUBA9e/akY8eO9OvXj/DwcO3z7dq1o2vXrjojkP7+/gwcOBCA6OhoPv/8czp06IC3tzeNGzcmOjqakJAQPDw8mDp1Kh06dODx48esWrWKTp064enpqdMh9PPz074Gb29vVCpVpq9h2bJlXLx4kSlTpjB79my2bt2Kj4+PdvnAgQPx908dsatSpQoLFy6kXbt2fPrpp0RGRgIQGRnJV199Rbt27WjXrh0XL15k/vz53L9/Hy8vL2bPnq0zmpyUlMSECRPw9PSkffv2nDlzBoCtW7cydOhQ+vXrR4sWLZgzZ86bK867yuT98GrnSJN5IQBmzviJ0aP7oFTqeURFkzHDq324zHOm/dm8eS327P2BZT9MYMni9QAcPnwOO1srypcvlZNp02XKJFIWO59njl/D2taC0mVzfqrCvzSZHNdXhzwzK/LvwX/b+okJzxk5fCHjxvfSGVkdPqIrfx1eRhvPumxYt/8dkr9eZpn0OcL0TrLwvnubZ4lJTB39G0NGeWFuYZpDwd7g7VXljeasGsritd8wbVF/dm46SdDF229f6QOQWbuVoSq84T2oVBqxcesU9h6aw9Urwdz65yHPniXx88rdDBraLucDvyoH+lTJySmcO36VOk0q/feNiRzx1g5rUFAQu3fv5s8//2TZsmWZnuLv2bMnW7ZsYefOnTx//pzDhw9rlz179oyNGzcyZcoUJk6cCMCKFSuoVasWW7ZsYc2aNcydO5eUlBSGDx9O69at8fPzo3Xr1pmWS0xMZOPGjfTu3Rs/Pz+2bNmCs7Pza/PfvXuXTz/9lB07dmBubs769etJTk5m+vTpLFmyhK1bt9KpUycWLlwIwIQJE5g0aRK+vr6v3eayZcuoVasW27Zto1mzZjx6lDa35+7du7Rv354///yTu3fvcu/ePTZv3oyfnx9Xr17l3Llz3L59mz179rBhwwb8/PwwMjJix44dme5r6NChlC9fnnnz5jFu3Lg3/l8lJiZSqVIltm/fTrVq1fjjjz8AmD59OtWrV2f79u1s27aN0qVLM2rUKIoUKYKfn1+G7f7bUd+xYwfz589n/PjxJCUlAamj4IsWLWLHjh3s2bOHx48fvzFTVq1bt4v2Xl/T3utrHB1teRwaoV0WGhqFo6PuKRkbm4LExSWQkqLKUCYo6BbffDOPJk36s3/fKXymreCvv87kUM7dtPcaQXuvES9zRr5zzvSqVy/H/fuhxETHcfHiDQ4dOkeTJl8y6pv5+J8JZMzohTmSH1JHoSLSjZZEhsdi51AwS+teuxzMmWPX6O05g1nfruPyuVvMnrz+P2fasG4/nTtMoHOHCTg62hAamjYKHRYajaOD7gVQNjaWxGc4rqkjKk7Otq9dPzk5hZFfL6SNZ12atch8SkPrNnX4a//Z//ya0nNwsiI8NO2YR4Q9wT6Lxzy32DtaEZE+YzbqBUBKsoqpo3+jaetPqN+0gj4iZmCXoS4/wdYh69OA7F6Wtba1pHajCvx97X6OZ8yLHJ1sCH2c9h4KD4vBId2I5b9lwkJfLaN77C0LmlG1xkecOhFEyIMIHj6MpFtHH9o0H094WAw9Ok8n8h1GPt/GztGKqPC0ehGVzXoBEHD6BiU+Loy1nX4uChPZ99a7BJw/f55mzZpRoEABAJo0aZKhjL+/P6tWreL58+fExsZSunRpbbk2bdoAUL16dZ4+fUpcXBwnTpzg0KFDrF6dejFEUlJSph2f15WrXLkyK1asIDQ0lBYtWlCsWLHX5ndxcaFq1aoAtGvXjrVr11K/fn3+/vtvPv/8cwDUajUODg7Ex8cTHx9PjRqpH2ReXl4cP348wzYvXLjAsmXLAGjQoAFWVmlvhEKFClG5cmUATp48ycmTJ2nfvj2Q2qEMDg7m5s2bBAUF0blzZwCeP3+OnZ3da19DVuXLl4/GjVOvdCxfvjwnT54E4MyZM9rRUKVSiaWlJU+evL6RuHDhAj179gSgZMmSFCpUSDuyXrt2bSwtLbXLHj58iIuLy3/O3qNHG3r0SK0rR46cY93vu2jTpgGXL9/E0tIsQydPoVBQs2YF9u07SZs2Dfhz2yGaNkmdz3jw0CptufHjF9GoUXWaNav1nzOm5mxNjx6tX+Y8z7rfd9OmTX0uX/4bS0vzN+Q8RZs29flz22GaNkmtX/fuPaZIEWcUCgVXr94mOTkFaxtLRo3qxahRqfOV/f2vsHq1H3Pn5dwFIR+7u/HwQSShD6Owc7TiyP5LjJ/eI0vrfjG0NV8MTX39l8/fYvPvRxn33Wf/OVP3Hi3o3qMFAMeOBLB+/X48Wtcm8PItLCwL4PDKFfsKhYLqNd05sM8fjzZ12O53nMZNqgHQuHHVTNfXaDRMmbSSEiVc6dO3jc727gU/pmix1Hp8+PBFipco9J9fU3plyrkRcj+SRw+jcXAsyMF9l/Ce+d+PW04qUy61Xjx+GIW9oxWH913i25lZqxcajYZ5Pn9QpLgTXXrm3kVjH7m78ShdXT62P4Ax3/XM0rrPnyWhVmswMzfl+bMkAvxv0r1/Cz0nzhvKlS/Gg/vhPAyJwNHRhn27zzFzbn+dMg0bV8J3/WFatq7BlcA7WFgUwMHBmpjoeIyNlVgWNOP58xf4n75O336tKP1RYQ4eX6Bdv03z8fz+x7d6uUtAqbJuPH4QSdijKGwdrDhxIICRPlmrF/86vj+AenlkOgDIba203nRaKCkpiWnTprFlyxZcXFxYunSpdjQus3X/fbxkyRJKlCihs+zy5csZtp9ZuZIlS1KpUiWOHDlCv379mD59OrVr185SdoVCgUajoXTp0hlGUePi4rJ0CizTU44vmZmZ6ZQbMGAA3bp10ymzdu1aOnTowKhRo966r1cplUqdubHpj3W+fPm0+Y2MjF47zeBt3vT6TExMdLK86z7epGHDahw7eoEWzQdiWiA/M2emXQw24MtpfDd9KE5Odowe05dvRs5l8aLfKVu2BJ275PwFSm/OWfVlzkGZ5PR5mdOW0WN6883I+SxetE4n5/59p/HzO4yxsZL8pvlZuHB0rpwmVhor+WpMByYO+wm1SkOLdtUpVtKZnZtTL6Js27kO0ZFxDOu9mMSE1IvB/txwnJV/jMmV07z1G1bm2LFLtG45ElPT/EyfOVC7bPCA2UybPgBHRxtGjurO2FFLWbpkE2XKFqVj50ZvXD/g4k12bD9B6Y/c6NxhAgDDR3xKg4ZVWLRgI8F3H6MwUlCokD2Tp+bsrbqMjZWMGN+e0YN/Qq1W09qrBsVLOeO3KXXepFeX2kRFxjHgsyUkJDzHSKFg87oTrNk6OndOrZNaL4aN68C4r35Crdbg8bJe7HhZLzxf1ovBPdPqxZb1x1m9eQx3/nnMgV0XKF7KhQHdUjsl/YZ6ULNeWb1nHjSmI97DV6JWa2juWYOiJZ3ZvSU1c+tOdYiJjGNE30UkvjyufhuPs3zjWOKeJDB9zC8AqFVqGrb8hKq1y+g1b1b8tnQY9WuXxd7Gklv+y/huwWZ+8z2SqxmMjZWM+/YzvhqwCLVaQ7sOdSlZypXNL3N07tqIeg0qcOLYFbw8vsXU1ISp0/sCEBHxhCkTV6NSq9GoNTRvWY0GjXL3tLrSWEn/0R3x+Tq1XjRtW4MiJZzZtzW1XrTsWIeYqDjG9F3Es4TnKIwU7Nx4nCUbx2JmbkrS8xdcPvs3g8Z3ztXc4s3e2mGtXr0648ePZ8CAAaSkpHD48GG6du2qXf5vh8nGxoaEhAT27dtHy5Yttct3795NrVq1OH/+PJaWllhaWlKvXj1+//13Jk+ejEKh4Nq1a7i7u2Nubk5CQoJ23deVe/DgAW5ubvTu3ZsHDx5w8+bN13ZYHz16REBAAFWqVGHXrl1UrVqV4sWLEx0drX0+OTmZ4OBgSpcujYWFBefPn6datWqvPU1ftWpV9uzZw4ABAzhx4sRrRyvr1avH4sWL8fT0xNzcnLCwMIyNjalduzZDhgyhb9++2NnZERsbS0JCAq6urm/778DV1ZUNGzagVqsJCwvTzgt+k9q1a7N+/Xr69u2LSqXi2bNnGY51etWrV2fHjh3Url2bu3fv8vjxY0qUKMG1a9feuq+coFAo8J4yKNNlK3+aov3bzc2ZTZvnv3Fb338/IkezpZeac2Cmy1b+5K39OzXn3AxlvhzQkS8HdHzjPmrWrEDNmjl/erVGvbLUeKUz0bZz2kWUtvYFWbd78hu3UalaKSpVy/l5tgqFgknen2e6bPnKtOkrbm5ObPgj4507Xrf+J1XLcOV65tMXFi7R/y2NatcvS+36usfcq0tau2VnX5At+3P2frvZVbNe2QydTM9X6oXv3oz1okKV4hy8OE/v+TJTvW5ZqtfVzdy6U1pmG/uC/LbT+9XVMLMwZdn60XrPl119hi01dAQA6jWoQL0Gum1P566NtH8rFAomTM44Av/Rx4XZsCXj8X7VrgP6vXVX1TplqVpHt1607JiuXtgVZNWOzHPmNzVhzf7v9Jovp8kIK1CuXDlat26Nl5cXrq6u2tPr/ypYsCBdunTB09MTV1dXKlTQreBWVlZ069aNp0+fMnPmTACGDBnCzJkzadeuHRqNBldXV3788Udq1qzJypUr8fLyYuDAga8tt3v3brZv346xsTH29vZ89dVXr81fsmRJtm3bhre3N8WKFaN79+6YmJiwZMkSpk+fTnx8PCqVij59+lC6dGlmzZrFxIkTKVCgAPXq1ct0m0OHDuWbb75hz549VK9eHQcHBywsLEhMTNQpV69ePW7fvq0dYTUzM2Pu3LmUKlWKESNG8MUXX6BWq8mXLx/e3t5Z6rBWrVoVV1dXPD09KV26NOXKlXvrOt9++y2TJ09my5YtGBkZMXXqVKpUqcInn3xC27ZtqV+/Pj16pDU8n332GVOmTMHT0xOlUsmsWbN0RlaFEEIIIXKTQvOm8795XEhICIMGDWLnzp05ut0XL15gZGSEsbExAQEBTJ06FT8/vxzdx/8XGm4aOkI25cytyHLTvfhbho6QbYXMc3aOqL7FJD00dIRsS1bnvSGXZyl5K3PFCuveXug9E3lnsKEjZFtwvP7v6ZvTytm0zdX97XqwJ9f21cbN4+2F9EB+mvUdPHr0iBEjRmhHR7/7Lm+dOhBCCCGEyEv+X3RYY2Ji6Nu3b4bnf/311xwfXQUoVqwYf/75Z45vt0uXLrx48ULnuTlz5vDxxx/n+L6EEEII8f+DMm+dnHgn/y86rDY2Nv8vTslv2rTJ0BGEEEIIId47/y86rEIIIYQQHyojA/5kam7J0k+zCiGEEEIIYSgywiqEEEIIkYd9CKOPH8JrFEIIIYQQeZiMsAohhBBC5GEfwi9dyQirEEIIIYR4r8kIqxBCCCFEHvYh3IdVRliFEEIIIcR7TTqsQgghhBDivSZTAoQQQggh8jD54QAhhBBCCCEMTEZYhRBCCCHysA/htlbSYRV69UIVZ+gI2VJjw3NDR8i2yXXzGTpCtt0LjjZ0hGzpVCzvfRo8U+W9zEUtbAwdIVsi7ww2dIRssy+x3NARsm3H6V6GjpBt5fJWVc4TpMMqhBBCCJGHfQgjrDKHVQghhBBCvNdkhFUIIYQQIg/7EEYfP4TXKIQQQggh8jAZYRVCCCGEyMMUModVCCGEEEIIw5IOqxBCCCFEHqbIxX9vc+zYMVq2bEnz5s1ZuXJlhuXbt2/H09MTT09PunXrxo0bN7L0GqXDKoQQQggh/jOVSoWPjw+rVq1i165d7Ny5k1u3bumUKVy4ML///js7duxg8ODBTJ48OUvbljmsQgghhBB52PsyhzUwMJCiRYvi5uYGQJs2bTh48CClSpXSlvnkk0+0f1euXJnQ0NAsbVtGWIUQQgghxH8WFhaGs7Oz9rGTkxNhYWGvLb9582YaNGiQpW3LCKsQQgghRB6Wm6OPvr6++Pr6ah937dqVrl27AqDRaDKUV7xm+PfMmTNs3ryZ9evXZ2m/0mEVQgghhBBZkr6D+ipnZ2edU/xhYWE4OjpmKHfjxg0mTZrETz/9hI2NTZb2K1MChBBCCCHyMIVCk2v/3qRChQoEBwfz4MEDXrx4wa5du2jSpIlOmUePHjFs2DDmzJlD8eLFs/waZYRVCCGEEEL8Z8bGxnh7e9O/f39UKhWdOnWidOnSbNiwAYDu3bvzww8/EBsby7Rp0wBQKpVs3br17dvWa3IhhBBCCPHBaNiwIQ0bNtR5rnv37tq/Z8yYwYwZM7K9XemwCiGEEELkYe/JXa30SuawCiGEEEKI95qMsAqDOXH8MrNnrUWtUtOxcyP6fdlOZ7lGo2H2zLUcP3YJ0wL5+W7mANzdi79x3THfLCX47mMA4uMTsbQ0Y9O2mezacZJfV+/Sbvvvvx/gu3k6ZcoWzZHXUsfFhnHVS2CkULDtViirr4boLK/mZMWihu48fPocgEMPovjxyn3tciMFbPCoQnhiEsOOXMuRTG/y9/nr7Fq+FbVaTbVWtWjYtbnO8kuHznPsj78AyF8gP+2GfYpLCVciHoSxcdZv2nIxoZE07dWauh0a6T3zg4BrnPplMxq1mjJN61C5Qwud5cFnAzm/cScKIwUKIyPqfN4Z57IleRoZw+Gla3gWG4dCoaBM87pUaNNY73kBzp26wYp5fqjUajza16RrX92LD+4Hh7Ngmi+3boTQZ4gHXXo10lmuUqkZ1msRdo5WfLeon97zXjx9g1UL/kStVtO8XU069WmqszwkOIyl3/ly+2YIPQd50L5n6nF8eC+cud+u1ZYLexhF9wGtaNc9a/dXzK6Tx68w9/v1qFUa2neqzxdfttFZrtFomDNrPSePXcG0gAnTZvSjrHtRQh9HM3nCKqKinqBQKOjUpSGf9Uqt+zev32eGzxqSkpJRGhsxcVIvylcskUN5g5j3/UZUKjUdOtXn8y89MuSdO2sjJ7R5P6ese1GSkpLp33sOL16koFKpaNqiKoOHeumsu+aXfSyat5mDJxZgY2OZI3mza8XcgXg0rUJEVBzVmo81SIZXXT17nc3LtqFWa6jbuiYtPmums/zsXxc4sPEgAPlN89NtZGcKl3TVLler1MwevABreysGz/wyV7O/i/flhwP0STqswiBUKjUzp//GylXjcXKypXtXbxo1rkrJUmkNxoljl7l3L5Sde+cTGHib6dN+Zb3vtDeuO3fBMO3682avw8LSDIA2nnVp41kXSO2sfj10QY51Vo0UMLFGSQYeDCIsMYn1HpU5EhLNnSeJOuUCwp+8tjPao4wrd54kYpFPmSOZ3kStUrPjh018PnMIBe2tWT58PmVrVcCxaNrNnm2c7fhy7nAKWJpx89w1/lzsy+DF3+Dg5sSw/43Vbmd2T2/c61TMlcwnVv1BG++hmNtas238XIpWq4CNm4u2jGuFjylavQIKhYKo4If8tWA1XZdMxkhpRO0+HbEv4caLZ8/ZNnY2hSuW0VlXH1QqNT/M3sasHwZg72TFsN6LqdXAnaIl0o5zwYIFGDzai1NHrma6jT83HMetuBOJCc/1mvXfvD/O3cq0pQOxc7RiTN9F1KhfDrd0eS0KmtF/VHv8jwbprOta1JFFv4/SbqdfWx9qNSqvt5zfz/id5T+NwsnJlh5dfWjYuLJu23H8CvfvheG3ZxZXAu8w02cNazdORmlsxDdju1LWvSgJCc/4rIsPNWu7U7KUK4sWbGLAkHbUq1+R48cCWbRgE6t+HZcjeWfPWM//fhqJk5MNPbvOoGHjSpQoVUhb5uTxIO7fC8dvzwyuBN5hls861myciImJMT+uHoWZuSnJySn06zWHuvXLU7FSSQBCH0dz5tQ1nF1s/3PO/2LtpqOs+G0fqxYOMWiOf6lVav5YvIVhcwdh7WDNnMELqVCnPC7F0uqyvbMtIxcOxczSjKv+11k//w/G/m+kdvnhrcdwLuLE80T9v/dE1siUAGEQQVduU6SIE4XdHMlnYkwrj1ocPnRBp8zhQxfw9KqHQqGgUqVSxMcnEBERk6V1NRoN+/b549G6doZ979l1KtPn31V5O0sexD/n4dPnpKg17A2OoFHhrH+AOJqZUL+QLdtuZe3n6f6rkJv3sHVxwNbFHuN8xlRs+AnXT1/RKVPUvTgFXnb2i5QpxpPI2AzbuX3pb2xd7LFx0v+HZcStYKyc7SnoZI8ynzEl635C8LlAnTL5CuTX3qA6JSlJO+JgZmOFfYnUnwk0KWCKtaszCdEZX09Ou3n1PoXc7HApbEe+fMY0alGZ00d1O6bWtpZ8XK4IxsYZm+KIsFjOnryOR/saes8K8M+1+7gUtsPZNTVvveZV8D+WMW9p9yIojV//xSrw3D84F7bDUU+dqKArd3Bzc9S+/1u2rsmRw5d0yhw9FEDbdnVQKBRUrFSS+PhEIiJicXCwpqx76hdVc/MCFC/hQkR4al1QAAkvz4A8jU/EwcE6h/LepbCbA4XdHF7mrZ4h75FDl2jbrlaGvAqFAjNzUwBSUlSkpKh0bsI+f7YvI0Z1fu2N2XPLybM3iI59atAM6QXfuI+Dqz32hVLbuKpNqhB4SvdLVonyxTF72cYVdy9KbMQT7bKYiFiCzlyjTutauZr7v1Dk4j9DkRHWD9yQIUMIDQ0lKSmJ3r1707VrVzZt2sSqVatwdHSkaNGimJiY4O3tTXR0NFOmTOHRo0cATJw4kapVq77TfsPCYnByTvtAc3K25UrgbZ0y4eExODvbpZVxsiU8LCZL6164cBM7OyuKpvtG/a99e/1ZvGxkhufflaNZfkITk9JyJ76ggn3GU3MVHQryR5sqRCS+YMHFu9x+OQI7tmpJFgbcxTwXRlcB4qKeYJXuw7igvTUPbt57bfnz+87wUbWyGZ4PPHqRio0+yWSNnJcQ/QRz+7SbS5vb2RD+T3CGcnf9L3N23Xaex8XTasKgDMvjw6OIDA7BsXQxPaZNFRX+BAentONs72jNjaDXH+dXrZjvR//hbXNldBUgOvwJ9uny2jla8c/V+29YI3MnDgRQv0WVnIymIzwsFqd0nWEnJxuCAu/olgmPwTl9G/Gy7UjfCX30MJKb1+9rT/uPHt+drwYsYOE8X9RqDb+um5gjeSPCYnX9BU7HAAAgAElEQVRGQB2dbAgKvJshb/o2zdHJhoiw1A62SqWmR5fveHA/gk+7N6LCy7xHD13C0cmGj8q45UjO/09iI2OxcUz7v7a2tyL4+uvr8qnd/pSrWUb7ePMP2+gw0JPn6dp1YXgywvqBmzlzJlu3bmXLli2sXbuWsLAwli9fjq+vL6tXr+bOnbQPghkzZtCnTx+2bNnC0qVLmTRp0rvvOLOfb8tQ5DU/8ZaFdffsOp3pKGrg5VuYmppQunTONfKZfeN8NeL16Ke02naWT3cFsOHmIxY2dAeggast0c9fcD0690YnMj+umZe9c/kfLuw7Q6t+uvOLU5JTuHEmiAr1K+sjYkZZzFy8ZiW6LplMi7EDOL9xl86y5GdJHJi3ijp9O2FiVkBfSbUyu712VkfCzhy/hrWtBaXLFs7ZUG+Q6e3AszmckpycwtnjV6nbpFJORHqNTJK+clwzqS46xz4x4TmjR/zA6PHdsbBIrQubfA8zalw39h6cz+hx3Zg2+ZccSpuFupt5ZQFAqTRi49Yp7D00h6tXgrn1z0OePUvi55W7GTS0XSYriixUEa2/A/7h1J4zeH3pCcCV01extLakyEd564uAkSL3/hmKjLB+4NauXcuBAwcAePz4MX5+flSvXh1r69Rvp61atSI4OBiAU6dOcevWLe26T58+5enTp1hYWGR7v07OtoSFRmsfh4VG4+Co+/NsTk62hIZGpZUJi8bB0Zrk5JQ3rpuSouLgX+fYuOm7DPvdu+dMjk4HAAhLTMLZLL/2saOZCeHPdL+ZJySrtH+feBTDRCMF1vmNqexQkEaF7ajnakt+pRHm+ZTMrPsxE0/ezNGM6VnZW/MkIu2UeFxkLAVtrTKUC73zkG2LNtDnu0GYFTTXWfb3+esUKlUYC5uCesuZnrmdNQmRMdrHCVExmNlkzPwvF/dSxIVF8jzuKaYFLVCnqDgw7ydK1a9G8Vq508m2d7QiIiztOEeGx2LnkLXjde1yMGeOXePcyRu8eJFC4tPnzJ68nnHffaavuNg5WhGZLm9U+BNs7V9/jDNz8dQNSnxcGGs7/V384+hkQ9jjdO//sBgcHHVP3zs52RCavo142XZAaqd69Igf8GhTi6bN084Q7fQ7xdgJqce3ecvq+Hj/mmN5Q9PlDc8kr6OTjU6bllpG99hbFjSjao2POHUiiNp1y/HwYSTdOvpoy/foPJ01Gydi75C9/7P/j6wdrIkJT6vLsZFPsMqkLj+8/Yh183wZ8v0ALKxS27g7QXe5ciqIq/7XSH6RwvPE5/w683f6TuyZa/lF5mSE9QPm7+/PqVOn8PX1Zfv27bi7u7/xZ9LUajW+vr74+fnh5+fH8ePH36mzClCufAnu3QslJCSc5Bcp7N1zhkaNdU8vN2ryCTv8TqDRaLh8+RaWlmY4ONi8dd0zp4MoXryQznSCf/Pvf8281v/ialQ8RSxNcTXPj7GRglbFHDgaEq1Txs40n/bv8nYWGCkgNimFJZeCabHtLK3/PMe4Ezc4Fxqr184qgOvHRYh6FEF0aBQpySkEHr1ImVq6F8jEhkez7rvVdB7TC/vCGX8HOvDIhVybDgDgUKooTx5HEBcWiSo5hdsnL1K0uu7FXk8eR2hHjyPvPECVkkJ+S3M0Gg1H/7cO68LOVPRsmtnm9eJjdzcePogk9GEUyckpHNl/iVoNymVp3S+Gtmbd7sms2fEtE2b0oFL1UnrtrAKULuvG4weRhD1KzXviQAA1spj3X8f3B9BAj9MBAMqVL879+2E8DIkg+UUK+3b706ix7peQho0rs3P7KTQaDYGXb2NhYYaDgzUajYZp3r9QvIQLvfq21FnHwdGaC+dS33tn/a9TpKhTDuUtxoP74enynqNhY90R6IaNK7Fz+5l0eQvg4GBNTHQ88XH/196dh0VR/3EAfy/LKfchIEoqqKnglQeaeERoKl5geZRk4pFnVpqaB+JdaZqFpf4qEzTvE+8rUfMEEUTNEy9AQE65YXd+f5CbG6fpMrPwfj1Pz7M7M+u8mZbls9/5HkVdh3Jz83H+7HXUq2+Pho3q4NipZdh35CvsO/IVbO0ssWHbLBarf6vb2BGJsUl4El/0GRd+PALNOqi/l1MSUrFmzloM+/ID2Dn+8xnXb1RvLNwSgPkb/eE3+0O83qqhVhSr7MNKVdrTp09hbm4OIyMj3LlzB5cvX8Z7772HixcvIj09HcbGxjh8+DAaNWoEAHB3d8f69esxcuRIAMD169fRpEnxvo0Voasrx4yZwzB21DdQKJXo790FDRrWwZa/pxkZOPhtdOrcEqdORsKrx2QYGupj/sLRZb72mdJaUcPD/oKdnRXqOBYvwF6GQgAWX7yDn952hY5Mhl13EnAnPRvvNSzqP7v11mN0e80GAxvVQqEgIK9QiWmn/nqlGV6EXC5Hn3ED8NvMnyAolXije3vY1auF8/tOAwDcvNxxfMMhZD/Nwp7ArQAAHbkOxv8wBQCQn5uP25duoP8ngyots45cjo4jB+LAgpVQKgW87tEeVo61cO3QKQBA03c6IebcZdwKPQ8dXTnk+nrw/MwPMpkMj6/fwa2TF2D1mgO2T1kMAGj7fl+89saLFWMvSq4rx/gvvDFj4v+gVAjo3rct6jnbY++2MwCA3u++iZQnGZj44QpkZ+VCJpNh18ZTWLPlCxibGGo0W2l5R03xwdxP1kChFODZpx1ec7LHwR1FeXv4vInU5AxMGfZdUV4dGUI2ncIPm6aihokh8nLzEXnhJsZ++a5Gc+rqyjFt5lCMG70MSqUS/bzd4dygNrZu/gMA8N6gt+DeuTlOn4xC357TYWioj4AFfgCAy5duYd+es2jYqA4G+cwBAEz4dAA6dW6O2QHDsOSrjSgsVMDAQA+zAoa9wrzvY/zo76BUCujr3RHODWpj2+YTAIB3B3WFe+dmOH3yCvr1nPl33o8AAElJ6Zgz41colEoISgHd3mmDzl012d3iv1n3w0R06tAENpamuH0+EPOXbcO6v38+McjlcgycOAArp62GUqFEh55ucKhfC6f2/AkA6NS3Iw4EH0JWRhY2rdj292t0MG3VZNEyU/lkQkkd2qhayM/Px7hx45CQkID69esjNTUVEyZMwL179/Drr7/C1tYWTk5OsLCwwGeffYaUlBTMmzcPd+7cgUKhQJs2bTBv3rwyz5GnuFhJP82r0W6j9k1hMrtjltgRXtj9zMoZYPaqDKinfe+LHIX2TcxY18Sy/IMkRICi/IMkxsbpJ7EjvLCQs75iR3hhnrV7Ver5rqXtrbRzNbXoXWnneh5bWKsxfX19/Pzzz8W2u7q6YtCgQSgsLMSECRPg7u4OALCyssJ3331X2TGJiIiommPBSsUEBgbizJkzyMvLg7u7Ozw9Pct/EREREYlC++6nvDgWrFTMtGkvv7oLERER0avCgpWIiIhIi1WHFlZOa0VEREREksaClYiIiIgkjV0CiIiIiLSYmEumVha2sBIRERGRpLGFlYiIiEiLVYMGVrawEhEREZG0sYWViIiISIvJZILYETSOLaxEREREJGlsYSUiIiLSYuzDSkREREQkMrawEhEREWkxWTVoYmULKxERERFJGltYiYiIiLRYdWh9rA4/IxERERFpMZkgCFV/8i4S0U2xA7yQPxNuiR3hhU0/by52hBe2qlOa2BFeSGi8vtgRXlhYsvZlbmGVL3aEF+LpoF15ASA+W/vaqfp0CBY7wgvLebCxUs93PzOk0s5V16RPpZ3redr3ziUiIiKiaoV9WImIiIi0WDWYJIAtrEREREQkbSxYiYiIiEjS2CWAiIiISItx4QAiIiIiIpGxhZWIiIhIi1WDBla2sBIRERGRtLGFlYiIiEiL6VSDJla2sBIRERGRpLGFlYiIiEiLVYMGVrawEhEREZG0sYWViIiISIvJZILYETSOLaxEREREJGlsYSUiIiLSYuzDSkREREQkMrawEhEREWkxWTVoYmXBSpIgCAIWLlyD0NBwGBoa4KuvJsHFpUGx4x4+fIzPP1+C9PSnaNrUGd988zn09fVU+6OibmLQoC+wfPlU9OjREQDg4TECxsZG0NHRgVwux44dy195/ivnr+P373dBUCrRyas9vIa+rbb/7OFwHPj9OADAwMgAvpMH4LUGtZGSkIqfF/2O9OSnkOnI0KVPB3R7r/Mrz1eedjUtMKmZE3RkMuy9n4ANtx+p7W9pbY7F7ZogPjsXAHAyPhm/3XxYqRkvnf0Lvy7fBaVSCc++bvD5UP0aP7qXgMAFm3H3xiO8P6Yn+n/wlmpfyMZQHN1zHpDJUNfZHhNmDYa+gd6/T/HK3bt0DaG/bIegVMLFswPaDuiutv/O+Sic3bgPMpkMOnIddPYbgNpNnQEAR37YgJiwaNQwN8XQ72doPCsApEZH4+7GLYBSCbtO7qjTq0eJxz2NuYeoRV/h9Y9HwaZNawDArbXrkBp1BXqmpmg1b06l5AWAB5eu4fSv26FUKtHUswPe8FG/xjEXonD+uWvs7jcAtZo44+mTVBz7PhjZqRmQ6cjQtFtHtOjdtVIy/9f3cuz9RHw7K1h1XEJsMgaP7oE+gzX7mXH1wnVsC9wJpVJAx15u6P6+p9r+C0fDcWTTMQCAgaEBBn/2Luo411btVyqU+HrsMljYmGPsolEazVoRq5Z8jJ5vt0JScgbadJsqdhyqIBasVcSOHTvQsWNH2NnZiR3lPzl5Mhz37sXh8OHViIy8gYCAn7B167fFjlu69Dd89FE/eHl1hr//SmzbdgTvv98LAKBQKLB06Tq4u7cq9rp16xbCyspcI9mVCiXWL9+BycvGwKqmOeaNXo6W7i6oXc9edUzNWlaY9sN4GJvWQNS561i3ZCtmr/4UOnI5Bo3rh7qv10FOdi7mjVyOpm0bqb1W03QAfN7cGZ+djUZSTj7+17kl/nycjHuZOWrHRSVnYNqFa5WW63kKhRL/W7oDc77/GNa25pg6/Du07eQCx/r/XCcTsxoY8Xl/XAiNVnttcmI69m05jRUbp8LAUA9LZwbh9JEIePRup9HMSoUSJ9ZshXfAeJhYW2DT1CVwatcM1o61VMc4Nn8dTu2aQSaTIeleLA4s/RUfBs4GADT1cEOLXp1xeEVwaad4pQSlEnc3bITL559C39ISkQsWw6plc9RwcCh23P3tO2Dp4qK23bZjB9TyeAu3fllbKXmBomt88n9b0WdO0TXeNnUJ6rVtBqvnrnGdZq+jXtuia/zkXiwOf/sr3v9hNnR0dNBxmDdqOjsiPycXW6d8A8cWr6u9VhNe5r1cu64tlgVPVv07o/rMg1sXV43mVSqU2LJiOyYuGQOLmhb4ZuxyNHvTFbWe+4yysbfCZ8snoIZpDVw9fx2/f7sFU3/8TLX/jx0nYf+aHXL//sIrtuCtoVi17hB+Xj5O7CivTDVoYGUf1qpi586dSExMFDvGf3bs2Dn07+8BmUyGli0bIyMjC4mJKWrHCIKAc+ei8M47RS2n3t5v49ixc6r9wcF78c47b8LaWjOFaWnuXn8A29o2sHWwhq6eLtzeboXLp9X/0DRoVh/GpjUAAM4udZGalAYAsLAxQ93X6wAAjGoYolZdW6QlpVdq/iaWpojNykV8dh4KBQHHYpPgbm9dqRnKc/vaA9SqYw372tbQ09OFe7dWuHDyqtoxFlamaNj0Nch15cVer1AokJ9XAEWhAnm5+bCqqfn3SMKt+zCvZQNzexvI9XTRyL017l64onaMvpEBZH/fyyvMzcfzf3ZquzSA4d/vmcrwNCYGhra2MKxZEzq6uqjZrg1SLkcWOy7+2HFYv9EKemamatvNGzWCrnHl5QWAxNvq17iBe2vE/Osa6z1/jfP+ucbGVuao6ewIANA3MoRlHXtkJWv+d+9l38vPXAm7Bbva1rCtZaXRvPf+eoCatW1g42ADXT1dtPZohagz6p9vTq71UePv92r9pnXVPsNSk9IQfe4a3uzVXqM5X8SfF/5CSlqm2DHoBbGFVcLWrl2L7du3AwDeffddeHp6YsyYMdi7dy8A4JdffkF2djYaNmyI6OhoTJkyBYaGhti8eTNu3ryJRYsWITs7G/r6+vjtt9+gp6eHgIAAREdHQy6XY/r06Wjfvj127NiBo0ePQqlU4ubNm/Dz80NBQQF2794NfX19rFmzBhYWFnjw4AHmzp2L1NRUGBoaYv78+XB2dn4lP2tCQjLs7W1Uz+3trZGQkAxb238+jFNTM2BmZgLdvz/Enx3z7PVHj57FunULceXKzWL//ogR/pDJZBg0qAcGDSr5Nud/lfYkHVa2FqrnljUtcPfa/VKPP7X3PJq5NSm2/Ul8Ch7cioVT07qvNF95ahrqIzEnT/U8KTcPTSxNix3nYmWKtV1a4UluHlZeu4d7T7MrLWNyUjqsn7vG1rbmuHX1QYVea21rjn4fdMXH/edD30APLdo1Qku31zUVVSUzJQ2mNpaq5ybWFnh8816x426fi8SZ9XuQnZ6JfjPHaDxXafJT06Bv+U9efUtLPL0bo3ZMXmoqkiMuw3XK57j9W1BlRywmKzkNJtbq1zjh1r1ix909F4lzG/YgJz0TXiVc44zEZDyJeQS7Rpr/3XuZ9/LzTh+JQKfuxe8mvWppT9Jg+VxeCxtz3Lteet4z+8/Dxa2x6vm2lTvh/XEf5GbnlfoaoopgwSpR0dHR2LFjB7Zs2QJBEDBw4EC0a1fyLcwePXpgw4YNmDp1Kpo1a4b8/Hx89tlnWL58OZo3b47MzEwYGhoiKKjoD0xISAju3LmDESNG4NChQwCAW7duYefOncjPz0e3bt0wZcoU7Nq1C4sWLcKuXbvw0UcfYfbs2Zg7dy7q1auHyMhIzJ07V/VvviyhhDmPZRXoRf7smIUL/4cpUz6CXF68RWLjxm9gZ2eN5OQ0DB8+G05OddC27au7jSaUEL607Ncv3cKpfefx5cqJattzs/OwcvZvGDKxP4yMDV9Ztv/sXz/SzfRMvHfkInIUSrS3tcSitk3w/vFw0fK8iMyMbFw4eRU/7ZgJY1MjLJ2xDqEHwtGlZ+tXl68kFXxPN2jfAg3at0Ds1ds4u3EvfOZOLP5Ckfw7bsymLag3wAcyHWncnCvpbSEr4eaoU/sWcGrfAnFXb+PCxr3oG/DPNS7IycOhb35BRz8f6Ncw0mDav72C+d0LCgpx8dRVDB3r9fL/WHlKfB+XfOjNiFs4c+AcPl/xCQDgytmrMLUwxWuNHHHz8m0NhiRp/EZqFgtWiQoPD4enpydq1Ci6zdKtWzeEhYVV6LUxMTGoWbMmmjdvDgAwMTFR/ZtDhw4FADg7O8PBwQExMUUtKG5ubqrjTE1N4eHhAQBo1KgRbty4gaysLERERGDSpEmq8+Tn57/Uz7hhwz5s2VJUMDdr1hCPHz9R7Xv8WL11FQAsLc2QkZGJwkIFdHXlasdER9/C558vAVDUEhsaGg5dXR14enaAnV3R7W1rawt069YBUVE3X2nBalnTAimJaarnqUlpsLAxK3bcwztx+O2bLfhsySiYmBurthcWKrBy9m9o3+0NtO7S/JXlqqik3HzYGhmontc0NMCTXPX/t9mFCtXjc4mp+FxHBnN9XaTnF1ZKRmtbcyQ/d42TE9MrfFs/6uIt2DlYwdyy6P3t1rU5/rpyT+MFq4m1BZ4+SVU9z0xOg3EZ/ahruzRA+uMnyMnIhJGZiUazlUTf0gL5qf/kzU9Nhb6Fhdoxmffv48aanwEABZmZSL0SDZlcDutWLSs16zMm1hbITFa/xjXKuMYOLg2Q/sM/11hRqMDBJT+jYec2cG5fOT/Dy7yXn4k4+xecXq8DC+vid0JeNYuaFkh9Lm/ak3SY2xTPG3snDhuWbsa4r0arPt/uRsfgyploXD1/DQX5hcjNzsVvi9bjoxlDNZ6bqh4WrBJVUqtdRkYGlEql6nleXsm3WARBKLElp6R/8xl9fX3VYx0dHejp6akeKxQKCIIAMzMz7N69u8I/Q3k++MALH3xQ1EJw4sRFrF+/F15enREZeQOmpjWKFawymQxubs1x6NCf8PLqjJ07j8HDww0AcPz4L6rjpk9fjq5d28HTswOys3OhVCphYlID2dm5+PPPCIwbN/iV/QwAUL+xIxIeJSEpLhmWNc1x/lgEPvb3VTsmOSEVK2etxaiZ78Pe0Va1XRAErP16M2rVtcU7g7q+0lwV9VfaU9QxNkKtGgZIysnH27VrYu6lG2rHWBnoISWvAADQxMIEOkClFasA0KCJI+IfPkFCXDKsaprj9JEIfDavYn/0bOwscDP6PvJy86FvoIcrYbfg3LiOhhMDdg1fQ1p8EtITnsDEygI3T4ejx2cfqR2TFp8Ec3sbyGQyJN55CEWhAoamxiX/gxpmWq8echISkZv0BPqWFki6EIbXR41QO6bNV4tUj2/9+hssmzcTrVgFANsGryE9PgkZCU9gbGWB26fD0e1f1zg9Pglmf1/jpDsPofz7GguCgD9WboBlbXu07OtRaZlf5r38zKnDEXCvhO4AAFC3sSMSY5PwJD4ZFjbmCD8egY9mqudNSUjFmjlrMezLD2D33Odbv1G90W9UbwDAzcu3cWzLHyxWNYTTWpFo2rZti+nTp2P06NEQBAFHjx7FokWLEBwcjNTUVBgbG+PEiRPo1KkTAMDY2BhZWVkAACcnJyQmJiIqKkqtS0Dbtm0REhKCDh06ICYmBvHx8XBycsK1a+WP/DYxMUGdOnVw4MAB9OzZE4Ig4MaNG2jcuHG5r62ILl3aIDQ0DN26jYaRkQEWLfqnJXfUqAAsWDARdnbW+OKLj/DZZ9/gu+/Wo0kTJ7z3Xvcy/lUgOTkN48cvBFA08KZ37y7o3PnVtqzJdeUY+qkPlk1ZA6VSCfde7VC7vj3+2H0GAPBWvzex57fDyEzPRvDyoj7JOnIdzPnf57h1JQZnD4WhjlMtzPFbCgAYMKoXmndo+kozlkUhAMuv3MG37V2hIwP2PUjAvafZ6Fe3aBTw7vuP0bWWDfrXs4dCAPIUCgSE3yjnX3215LpyjJzig3mT1kCpFPB273Z4zckeh3YUXeN3fN5EanIGvvjoO+Rk5UKmI8PeTafw/aapaORaFx08mmPKsGXQkcvh1Kg2uvfvoPHMOnI5uo56D7vm/ghBKaDp2+1h/VotRB08DQBo3sMdt89exvUTF6Ajl0NXXw89Jw9Xfdk88O1aPLp6G7kZmfhl5Gy4De4FV0/N5ZbJ5XB6fzCufrcCUCph27EjatR2QPyJUABAra5dynz9jTU/I/3GDRRmZuLiF9PwWt8+sOvkrrG8QNE17jTyPYTMK7rGjd9uD6vXaiH6UNE1dn3HHXfOXsaN0H+ucfe/r3H89Tu4GXoRVnUdsPnzrwAA7T/og7qtXco65Ut7mfdyDWND5OXmI/LCTYyZ/q5Gc6ryyuUYOHEAVk5bDaVCiQ493eBQvxZO7fkTANCpb0ccCD6ErIwsbFqx7e/X6GDaqsmVku+/WPfDRHTq0AQ2lqa4fT4Q85dtw7rNJ8SOReWQCWU1u5Go/j3o6qOPPkJQUBCCg4NRp04d2NnZoXbt2pg4cSIOHTqEZcuWqQ26WrBgAXJzc2FoaIi1a9dCV1cXc+bMwdWrV4sNuoqOjoa/vz8AwMPDA9u2bYOVlZXavocPHyIgIABJSUkoLCxEr169MGHChHJ+iuIDoKTsz4RbYkd4YdPPV+6sCK/Cqk5p5R8kIaHx+uUfJDFhydqXuYXVy3UzqmyeDtqVFwDis7Wvt2OfDpUztdurlPNgY6WeLyUvpNLOZWXQp9LO9TwWrKRhLFg1jQWr5rFgrRwsWDWPBWvlYMH66rFLABEREZEWK2l2jKpG+75qEREREVG1whZWIiIiIi0mk1X99seq/xMSERERkVZjCysRERGRVmMfViIiIiIiUbGFlYiIiEiLcZYAIiIiIiKRsYWViIiISKuxhZWIiIiISFQsWImIiIhI0tglgIiIiEiLceEAIiIiIiKRsYWViIiISKtx0BURERERkajYwkpERESkxbhwABERERGRyGSCIAhihyAiIiKi/yaz4HilnctEz6PSzvU8trASERERkaSxDysRERGRVqv67Y9V/yckIiIiIq3GFlYiIiIiLSaTcZYAIiIiIiJRsYWViIiISKuxhZWIiIiISFRsYSUiIiLSYtVhpSsWrKQVDh8+XOb+7t27V1KSF3PgwAF06tQJJiYm+PHHH3Ht2jWMHTsWLi4uYkerkrKzs1GjRg2xY7wQpVKJ7OxsmJiYiB2lXAqFAk+ePIFCoVBtc3BwEDFR1ZOQkIDY2Fi1a9y2bVsRE5VPG3/vSPuwYCWt8McffwAAkpOTERERgfbt2wMAzp8/j3bt2km2YP3xxx/Rs2dPhIWF4fTp0/Dz80NAQAC2bt0qdrQSxcTEICAgAMnJydi7dy/++usvHD9+HOPGjRM7WpkuXbqEWbNmITs7GydOnMBff/2FTZs2ISAgQOxoJZo8eTLmzp0LHR0d+Pj4IDMzEx999BFGjhwpdrRSBQcHIzAwEDY2NtDR+ac3WUhIiIipips0aRJWrFiBPn36lLhfanmft2TJEhw4cADOzs6Qy+Wq7VItWLXt9w7Q3s84YsFKWmLx4sUAgI8//hj79u2Dra0tACAxMRHz5s0TM1qZnv3RCQ0NxZAhQ+Dp6YnAwECRU5Vu9uzZmDp1Kvz9/QEAjRs3xpQpUyT/Yb548WL88ssvGDt2LICi3GFhYSKnKt3t27dhYmKCPXv2oEuXLpgyZQp8fHwkXbAGBQXh4MGDsLS0FDtKmWbOnAkAWLVqlchJXtzRo0dx8OBB6Ovrix2lQrTt9w7Q3s+48lX9IUksWEmrxMbGqopVALCxscG9e/fEC1QOOzs7+Pv748yZMxg1ahTy8/OhVCrFjlWqnJwcNG/eXG3b8y09UlarVi2158+3AkpNYWEhCgoKcPToUQwdOrddVpcAACAASURBVBR6enqSn0fR3t4epqamYsco17PPh9q1awMAMjMzUVhYKGakCnN0dERBQYHWFKyAdv3eAdr9GVfdsWAlrdKuXTuMGDECXl5ekMlk2LdvH9zc3MSOVarvvvsOp06dgp+fH8zMzJCYmIipU6eKHatUlpaWePDggap4OnjwIGrWrClyqvLVqlULly5dgkwmQ35+PoKDg+Hs7Cx2rFINGjQIHh4eaNy4Mdq2bYvY2FjJ92F1dHSEr68vunbtqlZQDR8+XMRUpdu0aRO+//57GBoaqrbJZDIcO3ZMxFRlMzIyQv/+/dGhQwe1azxr1iwRU5VO237vAO39jCtPdRh0JRMEQRA7BNGLOHz4sOq2U9u2bdGtWzeRE5UtLCwM9+/fx4ABA5CSkoKsrCw4OjqKHatEDx8+xOzZsxEREQEzMzPUqVMHS5YsQZ06dcSOVqaUlBQsXLgQZ8+ehSAI6NixI2bOnCn529fPKywshK6udNsQSuvKMmHChEpOUjHdu3fHpk2bYGVlJXaUCtu5c2eJ2729vSs5ScVo4++dtn7GlSen8EylnctI981KO9fzWLASaVBgYCCio6MRExODQ4cOISEhAZMmTcKmTZvEjlam7OxsKJVKybf6AUUj16dNm4alS5eKHaXC1q1bhwEDBsDY2BgzZ87E9evXMXnyZLi7u4sdrcoYMWIEAgMDYWRkJHaUF5Kfn6/q5lS/fn3o6emJG6iK0qbPuIrIVZyttHMZyjtU2rmeJ92v80TPGTJkCDZu3IhWrVqp9fUTBAEymQyXLl0SMV3pjhw5gl27dqlaSOzs7JCVlSVyqtI9X0jNmjUL165dk3whJZfLkZqaivz8fK3p+7d9+3YMGzYMp06dQkpKChYvXowvv/xSktd54cKFmDlzJsaMGVPifqkObpo8eTIGDx6MFi1aaMXtdaBo1pPp06ejdu3aEAQB8fHx+PrrryU7S8CCBQuKbTMxMYGrqys8PT1FSFS+jIwM7Nq1q9jUYVJ+X1ARFqykFTZu3AgAiIiIEDnJi3k2mOZZkZ2dnS1yorI9X0glJydLupB6Xu3atTFkyBB4eHiozQcp1f6Vz25shYaGYsCAAWjcuDGkerOrX79+AAA/Pz+Rk7wYf39/tG/fHo0aNZL8QKBnvv76a/zyyy9wcnICUDQF0+TJk7Fjxw6Rk5UsLy8Pd+/eRY8ePQAUdddq0KABtm3bhvPnz6tmbJCS0aNHo0WLFlr1vqiYqt+HlQUrkQb17NkT/v7+yMjIwJYtW7B9+3YMHDhQ7Fil0qZC6nm2trawtbWFIAiSbsF+xtXVFX5+fnj06BEmT56MzMxMyf7xdHV1BVA04FGb6Orq4ssvvxQ7xgspKChQFatAUZeAgoICEROV7f79+1i3bp2q7/WQIUPg5+eHtWvXljoPrtjy8vK07n1BRViwEmnQiBEj8Oeff8LY2BgxMTH45JNP0LFjR7FjlUqbCqnnSXXgT2kWLlyI69evw9HREUZGRkhNTcWiRYvEjlWi8goPqU7E7+bmhs2bN+Ott95S6xJgYWEhYqqyubq6YsaMGapW7ZCQENUXBilKSEhATk6OarqznJwcJCYmQi6XS7Z7Tr9+/bBly5Zis11I+X1REbJqMA8rB10RkYpSqVQVUmZmZkhNTUVCQgIaN24sdrQy+fr6ljiPaVBQkAhpyicIAvbs2YOHDx9iwoQJiIuLw5MnT4rNDykFsbGxZe5/Nt+p1Hh4eJT4npDytFb5+fnYsGEDwsPDIQgC2rZti/fff1+yxd/WrVvx008/wc3NDYIg4OLFixgzZgy8vLzwww8/YNq0aWJHLGbDhg1Yvnw5zMzMVNukPt1ZReQpLlTauQzk4txtYcFKpAHaOkgMKPqD/vy0YR4eHiInKl90dLTqcV5eHg4fPgy5XC7ZOW/nzJkDHR0dnDt3DgcOHEB6ejr8/Pywfft2saNVGbm5ufj9998RHh4OmUyGNm3aYPDgwWrzstLLS0hIwO7du+Hk5IScnBzY29tLdpAYAHh6emLLli1aNd1ZReQpLlbauQzkZf//PXnyJBYuXAilUon33nsPo0ePVtsvCAIWLlyI0NBQGBoa4quvvoKLi0u552WXACIN0NZBYkuXLsWVK1dUt4GDg4MRERGByZMni5ysbP++bdq6dWsMHTpUpDTli4qKws6dO9G/f38AgLm5uaT7KgJQ+/JVUFCAwsJCGBkZSfbL17Rp02BiYgJfX18AwL59+zBt2jSsWLFC5GTFTZo0CStWrCi1+4VUu11s3boVQUFBePz4MRo3bozIyEi0bNlSsnc2AKBBgwZaN9WZNlEoFJg3bx7Wrl0LOzs7vPvuu/Dw8ECDBg1Ux5w8eRL37t3D4cOHERkZiYCAAGzdurXcf5sFK5EGXb58GQ0aNFDN9ZeVlYXbt2+jRYsWIicrWWhoKHbv3q3qt+rt7Y3+/ftLvmBNS0tTPVYqlbh69SqSkpJETFQ2XV1dKBQKVQGYkpIi+b7C//7ydfToUURFRYmUpnwxMTHYs2eP6nn79u3Rt29fEROV7tloeqlOEVaaoKAgbNu2DQMHDkRwcDDu3LmDH374QexYZZLL5ejfvz/c3Ny0ZrqzipDK0s5RUVGoW7euanEcLy8vHDt2TK1gPXbsGPr37w+ZTIaWLVsiIyMDiYmJasuul4QFK5EGBQQEqK1eY2RkVGyb1GRkZKgGIDx9+lTkNBXj4+MDmUwGQRCgq6uLOnXqYOHChWLHKpWvry/Gjx+P5ORkLF++HAcPHsSnn34qdqwX4unpiTVr1ogdo1RNmzbF5cuX0bJlSwBAZGQk3njjDZFTlezZH+rff/8dX3zxhdq+JUuWFNsmFfr6+jAwMABQ1P/W2dkZMTExIqcqm6enp2TniK0KEhISYG9vr3puZ2dX7Ivtv4+xt7dHQkICC1YiMT3rs/qMjo4OCgsLRUxUto8//hje3t5qgyik3roKAMePHxc7wgvp27cvXFxccO7cOQiCgB9//FHya7AfPnxY9VipVCI6OloyrTrPe3ZbvbCwELt27YKDgwMAIC4uTq2VR4rOnCm+vObJkyclW7Da29sjIyMDnp6eGD58OMzMzMotOsTm7e1dRVcTq7zfxc2bN2Pz5s2q54MGDcKgQYMAoMRpEP/9OVGRY0rCgpVIgxwdHREUFIQhQ4YAKGpBeXarRIp69+6Ndu3a4cqVKxAEAVOmTEHNmjXFjlWuAwcOoFOnTjAxMcGPP/6Ia9euYezYsRXqyC+WevXqwcTERLXaTlxcnKq4kqI//vhD9Vgul6N27dr48ccfRUxUMm27rQ4UfS5s3LgRDx48UOvHmpWVhVatWomYrGwrV64EAEycOBFubm54+vQpOnXqJHKqsmnbamJS9HyB+m/29vZ4/Pix6nlJLaf/Pubx48cV+qLDWQKINCg5ORkLFizAuXPnIJPJ0KFDB8yYMQPW1tZiRyvRkSNH0L59e9W8ihkZGbhw4YLkb6H16dMHISEhCAsLw7Jly+Dn54fVq1dXqCO/GIKDgxEYGAgbGxu1vqtSHVxDmvX06VOkp6dj2bJlanc0jI2NtX5+UKnx8fHB0qVLtWY1sYrKV4ZX2rn0dVqXuq+wsBDvvPMOfvvtN9Wgq2+//RYNGzZUHXPixAmsX78e//vf/xAZGYkFCxZg27Zt5Z6XLaxEGmRtbY3ly5eLHaPCAgMD0a1bN9VzMzMzBAYGSr5glcvlAIoGjQ0ZMgSenp4IDAwUOVXpgoKCcPDgQVhaWoodpcK++eYbjBs3DgYGBhg5ciT++usvtUnu6b8zNTWFqakpPvzwQ5ibm6sGaWZmZiIyMlKygzS1kbatJlZRUlk4QFdXF/7+/hg5ciQUCgUGDBiAhg0bqmbOGTJkCLp06YLQ0FB069YNRkZGFV40hQUrkQalpKRgy5YtiI2NVeu7unjxYhFTlU6pVBbb9uyWtZTZ2dnB398fZ86cwahRo5Cfn1/izyIV9vb2qlZsbfHnn39i6tSpOHLkCOzt7bFixQp8+OGHLFhfoX8PyKxRo4bkB2lqG21bTUwbdenSBV26dFHb9qxbHFDUX3XOnDkv/O+yYCXSoHHjxqF169bo0KGDqhVQylxdXbF48WJ88MEHkMlkCA4OlnQ/0Ge+++47nDp1Cn5+fjAzM0NiYqJkFw0Aivo2+/r6Flsecvjw4SKmKtuzL1yhoaHw8vLirWoN0LZBmtpo7ty52LBhA4KDg9VWE9N+0hsA+aqxYCXSoJycHMmO8C3J7Nmz8eOPP6qmWOrYsSP8/f1FTlW+pKQkVfF3/vx53LhxQzUpvxQ5ODjAwcEBBQUFWnM78q233kKPHj1gaGiIOXPmICUlRTWlEb0a2jZIUxsVFhbiww8/VH05VCgUyM/PFzkVVQQHXRFp0PLly/HGG28Uuz1Cr1a/fv2wfft2xMbGYsSIEfDw8EBMTAz+97//iR2tRI8ePUKdOnXUtkVFRaF58+YiJaqY9PR0mJiYQC6XIycnB5mZmVoxi4S20LZBmtpo4MCBWLt2LYyNjQEUzcQwYsQIbNq0SeRkL6dQGVlp59LVEadPNVtYiTQoKCgIq1evhr6+PnR1dVW3/KS6nKWvr2+J8+FJealFoOjWqa6uLg4fPoxhw4bB19dX0i2sn3zyCX766SfY2dkBAC5evIh58+ZJfpaAO3fuIDY2Vq1fs5Svs7bRtkGa2igvL09VrAJFMzHk5OSImIgqigUrkQb9ezlLqZs2bZrqcV5eHg4fPqwVfW91dXWxd+9e7N69Gz/99BMASLrvX0BAAMaNG4dVq1bh2rVrWLZsmaRXjQKAL774Ag8fPkTjxo1V7wmZTMaC9RXStkGa2sjIyAhXr15V9c2Pjo6GoaGhyKlenhQX8XjV2CWASMPS09Nx//595OXlqbZp0yTVQ4cOxfr168WOUabbt29j06ZNaNmyJXr37o2HDx/iwIEDGD16tNjRShUREQF/f38YGBhgzZo1sLKyEjtSmXr27In9+/dXiz+MYhk8eDBat24NFxcXtS+K77zzjoipqpaoqCh8/vnnqonqk5KSsGzZMjRr1kzkZC9HIUSVf9ArIpeJ03WJLaxEGrR161YEBQXh8ePHaNy4MSIjI9GyZUvJ3mJPS0tTPVYqlbh69SqSkpJETFQxDRo0wJQpUxAXFwegaPCKFIvVMWPGqD3Pzc2FqakpZsyYAUDaqzQ1bNgQSUlJkl96U5tp2yBNbdS4cWMcOHAAMTExEAQBTk5OJS4Vqn2kMQ+rJrFgJdKgoKAgbNu2DQMHDkRwcDDu3LmDH374QexYpfLx8YFMJoMgCNDV1UWdOnWwcOFCsWOV6/jx4/j6669RUFCA48eP4/r161ixYoXkCkA/Pz+xI/xnqamp8PLyQvPmzdXWXpfaNdZmXbt2RWhoKAdpatCgQYOwc+dONGrUSLXN29ubc91qARasRBqkr6+vmvonPz8fzs7OiImJETlV6Y4fPy52hP8kMDAQ27Ztg6+vLwCgSZMmiI2NFTlVce3atQMAPHz4ELa2tqr3Rm5uLp48eSJmtHJNnDhR7AhVnrYN0tQmSUlJSEhIQG5uLq5du6ZqVc3MzKwSg65knIeViF6Gvb09MjIy4OnpieHDh8PMzEySt1QPHz5c5v7u3btXUpL/Ri6Xa9XKUZMmTVKbRkdHRweTJk3C9u3bRUxVtmfFNmmOtg3S1CanT5/Gjh078PjxY7VBbMbGxvj8889FTEYVxYKVSINWrlwJoKh1ys3NDU+fPkWnTp1ETlXcH3/8UeZ+qResDRs2REhICBQKBe7du4fg4GC0atVK7FilUigUaitc6evrS3YBgSFDhmDjxo1o1aqV2oArtv69ehcvXixxuzYN0pQqb29veHt749ChQ1V0EFvVb2HlLAFEGqZQKPDkyRO1uSsdHBxETFS6X3/9VdWHFSiaKsXExASurq5o0qSJyOlKl5OTg1WrVuH06dMAAHd3d4wbN06yKzENHz4cQ4cOxdtvvw0AOHr0KIKDg7Fu3TqRk5GYnh+Ul5eXh6ioKLi4uEh2kKY2CgwMLHH7hAkTKjnJq6UUrlXauXRkTSvtXM9jwUqkQcHBwQgMDISNjQ10dP4ZxSnVCeInT56M6OhoeHh4QBAEnDhxAs2aNcPdu3fRo0cPjBo1SuyIxSgUCowYMQK//fab2FEq7MGDB5gyZQoSExMhCAJq1aqFr7/+GnXr1hU7GklIfHw8lixZgmXLlokdpcr49ddfVY/z8vJw4sQJODk5af1ctwKuV9q5ZBCn8YJdAog0KCgoCAcPHoSlpaXYUSokLS0NO3bsUK0EM3HiRHzyySfYsGEDfHx8JFmwyuVyGBoa4unTp1rTj/W1117Dli1bkJWVBUEQYGJiInYkkiB7e3vcunVL7BhVyr9n6hgxYgTGjh0rUhp6ESxYiTTI3t5ea4ooAIiLi1ObskhPTw9xcXEwNDRU63MpNQYGBujTpw/efPNN1KhRQ7V91qxZIqYqbvfu3ejXrx/Wrl1b4v7hw4dXciKSkvnz56v6CSuVSly/fh2vv/66yKmqtpycHDx8+FDsGFQBLFiJNMjR0RG+vr7o2rWrWsEn1cKkd+/eGDRokKpv5fHjx+Hl5YXs7Gw4OzuLnK50Xbt2RdeuXcWOUa5n0+dkZWWJnISkyNXVVfVYLpfDy8sLrVu3FjFR1dOnTx/VY0EQkJycjHHjxomY6FWp+gsHsA8rkQZpYwf/6OhohIeHQxAEtG7dWmuWLMzPz8fdu3chk8lQv359SbcIEz1v2LBhWLduHZYsWcKVrjQsNjYWGRkZCAsLQ0ZGBrp06aL2RUFbCbhRaeeSQZxWf7awEmmQlAvT0ri6umrdB3hoaCj8/f3x2muvQRAEPHr0CHPnzpXsikEpKSnYsmULYmNjUVhYqNqu7QM/6L9JSkrChQsXVHc0/t2O5OLiIlKyqufYsWPYunUrunXrBkEQ8OWXX2LgwIGqRUe0VXVYOIAtrEQa9O+14wHA1NQUrq6uGDx4sGSnXdI2PXr0wOrVq1Wj7B88eIDRo0fj4MGDIicr2eDBg9G6dWu4uLhALpertlfN+SGpPAcPHsS2bdsQHh5e7MuiTCbjtFavUJ8+fbB582ZVX/fs7GwMGjRIsjO30D/YwkqkQXXq1FGtwQ4A+/fvh42NDe7du4dZs2ZhyZIlIiesGqytrdWmhHJ0dIS1tbWIicqWk5PDW7+k0qNHD/To0QMrV67E+PHjSz3u1q1baNiwYSUmq5qe/5L4/GOSNhasRBp0/fp1bNiwQfXcw8MDH3zwATZs2KAqYunlNWjQAKNGjULPnj0hk8lw8OBBNGvWTLXkrNRW6uratStCQ0Ml22WBxFFWsQoAU6dOxc6dOyspTdXk4+OD9957D926dQNQtGjHgAEDRE5FFcGClUiDUlJSEBcXp1rZKi4uDqmpqQCgNn0UvZz8/HzY2Niolra0srJCenq6aslZqRSsz5Y3FQQBq1evhr6+PnR1dbnMKVUIe/C9vOHDh6Ndu3aqgaWLFy9G06birNxEL4YFK5EGTZ8+He+//z4cHR0BAI8ePcKcOXOQnZ2N/v37i5yu6ihvsNLq1avx8ccfV1Ka0kVERIgdgbTYszla6eW4uLhwIJsW4qArIg17Nt2SIAhwcnLiQCsReHt7S+pW6rNpjMrbRvQ8qb2PiSpT1Z9plkhEOTk5+Pnnn7F+/Xo0adIE8fHxqtvUVHmk8r08Ly8PqampSE1NRXp6OtLS0pCWloZHjx4hMTFR7HgkcexGRNUZuwQQadCXX34JFxcXXL58GUDRUq2TJk3CW2+9JXKy6kUqt1I3bdqEdevWITExET4+PqpC2sTEBB988IHI6UhsgiBgz549ePjwISZMmIC4uDg8efIEzZs3BwBs2bJF5IRE4mHBSqRBDx48wHfffYd9+/YBAAwNDSXT2ledSOWaDxs2DMOGDUNwcHCZE5X/+eef6NixYyUmIykICAiAjo4Ozp07hwkTJsDY2BgTJ07E9u3bxY5GJDp2CSDSIH19feTm5qpa+B48eMAlQ0XQo0cPsSOoKW9VnaVLl1ZSEpKSqKgozJkzR9XP3dzcHAUFBSKnIpIGtrASadDEiRMxcuRIxMfHY/LkyYiIiODym6/Q/Pnzy7zdP2vWLAAlrzgmZVJpEabKpaurC4VCoXpPp6SkQEeH7UpEAAtWIo1RKpVIT0/HDz/8gMjISAiCgJkzZ8LKykrsaFXGs2UsL126hNu3b6NXr14Aipa61OZpa6TS55Yql6+vL8aPH48nT55g+fLlOHjwID799FOxYxFJAqe1ItKgZ6takWb5+vri119/VY2iLigogJ+fH4KDg0VO9t9w+qLq686dOzh37hwEQUCHDh3g7OwsdiQiSeC9BiINevPNN/HLL78gPj5eNYVRWlqa2LGqnMTERGRlZameZ2dna/U0UbVr1xY7AokkNTUVhoaGGDp0KCwtLfHw4UOxIxFJAltYiTTIw8OjxNu7x44dEyFN1bV9+3YEBgbCzc0NAHDhwgVMnDgR3t7eIicr3aVLlxAbGwuFQqHaxtXPqrfAwEBER0cjJiYGhw4dQkJCAiZNmoRNmzaJHY1IdOzDSqRB+/fvx++//47w8HDIZDK0adMGgwcPFjtWlTNgwAB07twZkZGRkMlkmDx5MmrWrCl2rFJ98cUXePjwIRo3bgy5XA6gqN8qC9bq7ciRI9i1a5fqi5adnZ3anQOi6owFK5EGTZs2DSYmJqppjPbt24dp06ZhxYoVIiereqKiohAeHg6gqPjz8PAQOVHpoqOjsX//fg6uIjV6enqQyWSq90V2drbIiYikgwUrkQbFxMRgz549quft27dH3759RUxUNS1duhRXrlxBnz59AADBwcGIiIjA5MmTRU5WsoYNGyIpKQm2trZiRyEJ6dmzJ/z9/ZGRkYEtW7Zg+/btGDhwoNixiCSBBSuRBjVt2hSXL19Gy5YtAQCRkZF44403RE5V9YSGhmL37t2qOSu9vb3Rv39/yRasqamp8PLyQvPmzdXWh1+1apWIqUhMgiCgV69euHv3LoyNjRETE4NPPvmEK54R/Y0FK5EGRUZGYteuXXBwcAAAxMXFwdnZWdUSGBISIma8KiUjIwMWFhYAgKdPn4qcpmwTJ04UOwJJjEwmw/jx47Fjxw4WqUQlYMFKpEE///yz2BGqhY8//hje3t5wc3ODIAi4ePGiZFtXAaBdu3ZiRyAJatGiBaKiotC8eXOxoxBJDqe1IqIqITExEVeuXIEgCGjRooUkZwkYMmQINm7ciFatWqkNuBIEATKZDJcuXRIxHYmtV69euHfvHhwcHGBkZKTazjsxRCxYiaiKOHbsGMLCwgAAbdu2lfQsAUQliY2NLXE7F5Ig4kpXRFQFLF26FEFBQXB2doazszOCg4Px7bffih2rVFu3bi22benSpSIkISkxNjYu9h9nkiAqwj6sRKT1tG2WgEOHDsHAwEA1xVlAQADy8vJETkVi8/HxQXx8PMzMzAAUDSSsWbMmrK2tMX/+fLi6uoqckEg8LFiJqErQplkCAgMDMXbsWOjo6ODkyZMwNzdHQECA2LFIZO7u7ujWrRs6deoEADh9+jROnTqFnj17Yu7cuSW2zBNVF+wSQERa79ksAdOnT8e0adPg4+ODMWPGiB2rmLS0NKSlpSE3NxcLFizAzz//DBMTE4wfPx5paWlixyORRUdHq4pVoKiAvXjxIlq2bIn8/HwRkxGJjy2sRKT1evfujXbt2qlmCZgyZYokZwnw8fEpNjvAiRMnEBoaCqBo4BhVXxYWFlizZg28vLwAAPv374e5uTkUCoWquwtRdcVZAohIa129erXM/S4uLpWU5MXs378fnTt3homJCVauXIlr165h3Lhxks1LlSMlJQUrV65EeHg4BEFA69atMWHCBJiYmCA+Ph5169YVOyKRaFiwEpHW8vX1VT0uaV7ToKAgMWKVq0+fPggJCUFYWBiWL1+O4cOHY/Xq1eyjSERUCnYJICKtFRwcDADIzc3F77//jvDwcMhkMrRp0wZDhgwROV3p5HI5gKLZDQYPHgxPT08EBgaKnIrEsnDhQsycObPUfterVq2q5ERE0sOClYi03rRp02BiYqJqcd23bx+mTp2KFStWiJysZHZ2dvD398eZM2cwatQo5OfnQ6lUih2LRNKvXz8AgJ+fn8hJiKSLXQKISOv17dsXe/bsKXebVOTk5ODUqVNo1KgR6tWrh8TERNy8eRPu7u5iRyMikiS2sBKR1mvatCkuX76Mli1bAgAiIyPxxhtviJyqdEZGRujevbvqua2tLVc0qsb69OlT5v6QkJBKSkIkXSxYiUhrPftDX1hYiF27dsHBwQEAEBcXhwYNGogZjajCnvVR3bBhA4B/ugiEhITA0NBQtFxEUsIuAUSktWJjY8vcX7t27UpKQvTyBg8ejE2bNpW7jag6YgsrEWktFqRUleTk5CAsLAxt2rQBAFy6dAk5OTkipyKSBrawEhERSUB0dDRmzJiBzMxMAICpqSkWLVrEBSWIwIKViIhIUjIzMyEIAkxNTcWOQiQZXJyYiIhIAp48eYIZM2bg008/hampKW7fvs3Vz4j+xoKViIhIAqZPnw53d3ckJiYCAOrVqyfZ5YWJKhsLViIiIglITU1Fr169oKNT9KdZV1dX9ZiouuNvAhERkQTUqFEDqampkMlkAIDLly+zHyvR3zjoioiISAKuXr2K+fPn49atW2jYsCFSU1OxYsUKNG7cWOxoRKJjwUpERCQRhYWFiImJgSAIqF+/PvT09MSORCQJXDiAiIhIAvLy8vD7778jPDwcMpkMrVu3xpAhQ2BgYCB2NCLRsYWViIhIAiZNmgRjY2P07dsXALBv3z6kp6fj+++/FzkZkfjYwkpERCQBMTEx2LNnj+p5+/btVcUrUXXHWQKIiIgk2hsimwAABUBJREFUoGnTprh8+bLqeWRkJN544w0RExFJB7sEEBERSUDPnj0RExMDBwcHAEBcXBycnZ1Vc7GGhISIGY9IVCxYiYiIJCA2NrbM/SYmJjA3N6+kNETSwoKViIhIC3h7e2Pnzp1ixyASBfuwEhERaQG2L1F1xoKViIhICzxbspWoOmLBSkRERESSxoKViIhIC7BLAFVnHHRFREQkAQ8ePIC9vT309fVx/vx53LhxA/3794eZmRkAIC0tDRYWFiKnJBIHW1iJiIgkYOLEidDR0cH9+/cxc+ZMPHr0CJMnT1btZ7FK1RkLViIiIgnQ0dGBrq4ujhw5gmHDhmHGjBlISkoSOxaRJLBgJSIikgBdXV3s3bsXu3btQteuXQEAhYWF4oYikggWrERERBKwePFiXL58GWPGjIGjoyMePnyIvn37ih2LSBI46IqIiEgicnNzERcXBycnJ7GjEEkKW1iJiIgk4Pjx4+jXrx9GjhwJALh+/TrGjBkjcioiaWDBSkREJAGBgYHYtm2bahqrJk2aIDY2VuRURNLAgpWIiEgC5HI5TE1NxY5BJEm6YgcgIiIioGHDhggJCYFCocC9e/cQHByMVq1aiR2LSBI46IqIiEgCcnJysGrVKpw+fRoA4O7ujvHjx0NfX1/kZETiY8FKREQkAQcOHEDPnj3L3UZUHbEPKxERkQSsWbOmQtuIqiP2YSUiIhJRaGgoTp48iYSEBCxYsEC1PTMzE3K5XMRkRNLBgpWIiEhEdnZ2cHV1xfHjx+Hi4qLabmxsjC+//FLEZETSwT6sREREElBQUACFQsGVrohKwD6sREREEnDq1CmudEVUChasREREEsCVrohKx4KViIhIArjSFVHpOOiKiIhIArjSFVHpOOiKiIhIAp5f6UoQBHTq1Anjxo2DgYGB2NGIRMeClYiISEIyMzMBACYmJiInIZIOdgkgIiKSgKioKMycORNZWVkAigrWRYsWwdXVVeRkROJjCysREZEE9OnTB3PmzEGbNm0AAGFhYZg7dy5CQkJETkYkPs4SQEREJAHGxsaqYhUA2rRpA2NjYxETEUkHW1iJiIhEdPXqVQDA7t27kZubCy8vL8hkMuzfvx/m5ub47LPPRE5IJD4WrERERCLy9fUtdZ9MJkNQUFAlpiGSJhasRERERCRpnCWAiIhIIk6cOIFbt24hLy9PtW3ChAkiJiKSBg66IiIikgB/f3/s378f69evBwAcOnQIcXFxIqcikgYWrERERBIQERGBb775BmZmZpgwYQI2bdqEx48fix2LSBJYsBIREUmAoaEhAMDIyAgJCQnQ09PDo0ePRE5FJA3sw0pERCQBXbt2RUZGBkaMGAEfHx/IZDK8++67YscikgTOEkBERCQx+fn5yMvLg6mpqdhRiCSBLaxEREQiOnv2LDp06IDDhw+XuL979+6VnIhIeliwEhERiSgsLAwdOnTAH3/8UeJ+FqxELFiJiIhEZWxsjLVr16Jhw4aQyWR41lNPJpOJnIxIOliwEhERiSg7OxsAEBMTgytXruDtt9+GIAj4448/0KZNG5HTEUkDB10RERFJgJ+fH77//nuYmJgAADIzMzFp0iT88ssvIicjEh/nYSUiIpKAuLg46Ovrq57r6+sjNjZWxERE0sEuAURERBLQr18/vPvuu+jWrRtkMhmOHDkCb29vsWMRSQK7BBAREUnE1atXERYWBgBo27YtmjZtKnIiImlgwUpEREREksY+rEREREQkaSxYiYiIiEjSWLASERERkaSxYCUiIiIiSWPBSkRERESS9n9cgvO1nNW2WwAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"# <a id='4'>IV. EXPLORATORY DATA ANALYSIS</a> "},{"metadata":{},"cell_type":"markdown","source":"## <a id='4a'>IVa. DEFINE PLOTTING FUNCTIONS</a>\n"},{"metadata":{"trusted":true},"cell_type":"code","source":"def plot_features(feat1, feat2):  \n    diabetic = df[(df['outcome'] == 1)]\n    healthy = df[(df['outcome'] == 0)]\n    \n    trace0 = go.Scatter(x = diabetic[feat1], \n                        y = diabetic[feat2],\n                        name = 'diabetic',\n                        mode = 'markers', \n                        marker = dict(color = '#c73062', line = dict(width = 1)))\n\n    trace1 = go.Scatter(x = healthy[feat1], \n                        y = healthy[feat2],\n                        name = 'healthy',\n                        mode = 'markers',\n                        marker = dict(color = '#41d9b3', line = dict(width = 1)))\n\n    layout = dict(title = feat1.upper() + \" \" + \"vs\" +\" \" + feat2.upper(),\n                  height = 750, width = 1000,\n                  yaxis = dict(title = feat2.upper(), zeroline = False),\n                  xaxis = dict(title = feat1.upper(), zeroline = False))\n\n    plots = [trace0, trace1]\n\n    fig = dict(data = plots, layout=layout)\n    py.iplot(fig)","execution_count":38,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"def barplot(feature, sub) :\n    diabetic = df[(df['outcome'] == 1)]\n    healthy = df[(df['outcome'] == 0)]\n#     tmp3 = pd.DataFrame(pd.crosstab(df[feature],df['outcome']), )\n    \n#     tmp3['% diabetic'] = tmp3[1] / (tmp3[1] + tmp3[0]) * 100\n\n    color=['#c73062','#41d9b3']\n    trace1 = go.Bar(x=diabetic[feature].value_counts().keys().tolist(),\n                    y=diabetic[feature].value_counts().values.tolist(),\n                    text=diabetic[feature].value_counts().values.tolist(),\n                    textposition = 'auto',\n                    name='diabetic',\n                    opacity = 0.8, \n                    marker=dict(color='#c73062', line=dict(color='#000000',width=1)))\n\n    \n    trace2 = go.Bar(x=healthy[feature].value_counts().keys().tolist(),\n                    y=healthy[feature].value_counts().values.tolist(),\n                    text=healthy[feature].value_counts().values.tolist(),\n                    textposition = 'auto',\n                    name='healthy', \n                    opacity = 0.8, \n                    marker=dict(color='#41d9b3', line=dict(color='#000000',width=1)))\n    \n#     trace3 =  go.Scatter(x=tmp3.index,\n#                          y=tmp3['% diabetic'],\n#                          yaxis = 'y2', \n#                          name='% diabetic', \n#                          opacity = 0.6, \n#                          marker=dict(color='black', line=dict(color='#000000',width=0.5)))\n\n    layout = dict(title = str(feature)+' '+(sub),\n                  xaxis=dict(), \n                  yaxis=dict(title='Count'), \n                  yaxis2=dict(range= [-0, 75], \n                              overlaying= 'y', \n                              anchor= 'x', \n                              side= 'right',\n                              zeroline=False,\n                              showgrid= False, \n                              title= '% diabetic'))\n\n    fig = go.Figure(data=[trace1, trace2], layout=layout)\n    py.iplot(fig)","execution_count":39,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"# Define pie plot to visualize each variable repartition vs target modalities : Survived or Died (train)\n\ndef pieplot(feature, sub):\n    diabetic = df[(df['outcome'] == 1)]\n    healthy = df[(df['outcome'] == 0)]\n    \n    col =['Silver', 'mediumturquoise','#CF5C36','lightblue','magenta', '#FF5D73','#F2D7EE','mediumturquoise']\n    \n    trace1 = go.Pie(values  = diabetic[feature].value_counts().values.tolist(),\n                    labels  = diabetic[feature].value_counts().keys().tolist(),\n                    textfont=dict(size=15), opacity = 0.8,\n                    hole = 0.5, \n                    hoverinfo = \"label+percent+name\",\n                    domain  = dict(x = [.0,.48]),\n                    name    = \"Diabetic\",\n                    marker  = dict(colors = col, line = dict(width = 1.5)))\n    \n    trace2 = go.Pie(values  = healthy[feature].value_counts().values.tolist(),\n                    labels  = healthy[feature].value_counts().keys().tolist(),\n                    textfont=dict(size=15), opacity = 0.8,\n                    hole = 0.5,\n                    hoverinfo = \"label+percent+name\",\n                    marker  = dict(line = dict(width = 1.5)),\n                    domain  = dict(x = [.52,1]),\n                    name    = \"Healthy\" )\n\n    layout = go.Layout(dict(title = feature.upper() + \" distribution by target: \"+(sub),\n                            annotations = [ dict(text = \"Diabetic\"+\" : \"+\"268\",\n                                                font = dict(size = 13),\n                                                showarrow = False,\n                                                x = .22, y = -0.1),\n                                            dict(text = \"Healthy\"+\" : \"+\"500\",\n                                                font = dict(size = 13),\n                                                showarrow = False,\n                                                x = .8,y = -.1)]))\n                                          \n\n    fig  = go.Figure(data = [trace1,trace2],layout = layout)\n    py.iplot(fig)","execution_count":40,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"#CREATE A DATAFRAME WITH A COUNT OF EACH BOROUGH\noutcome = df.groupby(['outcome'])[['id']].count()\noutcome.reset_index(inplace=True)\noutcome.rename(columns={'id':'count'}, inplace=True)\noutcome.sort_values(by='count', ascending=False, inplace=True)\noutcome\n\n#CREATE BARCHART AND PIE CHART FOR BOUROUGH VALUES\nplt.style.use('fivethirtyeight')\n\nplt.figure(figsize=(15,6))\n\nplt.subplot(1,2,1)\nsns.barplot(x='outcome', y='count', data=outcome, palette='viridis')\nplt.title('Diabetes Outcome Count')\n\nplt.subplot(1,2,2)\nplt.pie(outcome['count'], labels=outcome['outcome'], shadow=True, startangle=90)\nplt.title('Diabetes Outcome Percentages')\n\nplt.show()","execution_count":41,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 1080x432 with 2 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAA8cAAAGoCAYAAABrMpf8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeVxU9f4/8NeZBRh2QUVwTzTNXVNcMk2v2dWy5bqmmV2tb+5XTb+/W7eU7FtXK5draeISV00xM/e1EnMHBRTcUFGQRXYGmIGZYWbO7w8ucyVAGBw4DLyejwcP5cxZ3nM4M5/zPp9NUKvVIoiIiIiIiIgaMJnUARARERERERFJjckxERERERERNXhMjomIiIiIiKjBY3JMREREREREDR6TYyIiIiIiImrwmBwTERERERFRg8fkmOqEoKAg9O3bFxEREU+0n8DAQJvsh4iIqKFgGUxEVEwhdQBUf/Tt27fU7wqFAi4uLmjatCk6dOiAwYMH47nnnoNCYd+X3aFDh/Dpp59i+vTpeO+996QOp4ykpCSEhITg0qVLSEtLg8lkQpMmTdCzZ0+MHTsWHTt2tMlx6vp5qAtu3bqFvXv3IioqChkZGTAYDPD09ETHjh0xZMgQjBgxAg4ODlKH+VgpKSl47bXX0KtXL3z33XdSh0NEFWAZXDewDJZWSZn1KLlcDjc3N3To0AGvvvoqhg8fLlF00ujbty98fX2xf/9+qUOxC/b9DUl10vTp0wEAZrMZGo0GCQkJ+PXXX3H48GG0bdsWgYGBZQqHcePG4cUXX0SzZs2kCLne+Omnn7By5UoYjUZ0794d/fv3h0wmQ1xcHI4cOYJDhw7h7bffxowZMyAIgtTh1ltGoxGrVq3C7t27IZPJ0KNHD/Tr1w9OTk7IzMxEREQEzpw5g927d2Pr1q1Sh0tE9QjLYOmwDK47XF1dMWHCBABAUVER4uPjcfbsWYSHh+PmzZuYO3euxBFSXcXkmGyuvCeYeXl5WL9+Pfbs2YPZs2djy5YtaNWqleV1T09PeHp61maY9c6xY8ewYsUKuLm54YsvvihTi3Dnzh0sXLgQwcHBUKlUeOeddySKtP776quv8PPPP+Opp57C559/jqeeeqrU66Io4syZM9ixY4dEERJRfcUyWBosg+sWNze3Mp+FixcvYt68edixYwfGjh0LX19fiaKjukxQq9Wi1EFQ/VBSEISHh1e4zieffIJjx47hhRdewPLlyy3Lg4KCsGnTJqxfvx69e/e2LD916hR+++033LhxAxkZGRAEAa1atcLIkSMxbtw4yOXyUvsPDAzE4cOHsX79ejx8+BA7d+7EgwcP4OLigueeew4zZsyAt7d3mbg0Gg1++OEHhIaGIjk5GXK5HO3bt8f48ePxpz/9qcz+y/PH2E+ePIk9e/YgNjYWhYWFaNasGV544QVMnToVrq6upbaNjY3Ftm3bEBMTg6ysLKhUKjRp0gTdu3fHrFmzyqz/RwUFBRg9ejTy8vKwatUqDBw4sNz1bt++jbfffhuCIODnn3+21BJERERgxowZFTbPev/99xEZGWn521p7Hvbu3Ytbt26hoKAAjRo1QseOHTFu3LhSNw+iKGLfvn04cOAA7t+/D5PJhFatWuHPf/4zxo8fD6VSWeo4r776Kh4+fIjz588jODgYhw8fRkZGBpo1a4bJkydbmlXt3r0be/bsQXJyMjw8PDB69GhMnz4dMlnZIRdu3bqFbdu2ISoqCmq1Gh4eHujbty+mT5+Oli1bPu5PYBEdHY3p06fD3d0dO3bsQNOmTStc12AwlGlW/dtvv2H37t24ffs2DAYD/Pz8MHToULz11ltwcXEpcw4AlNtUqqTJ3SeffIKXX3653PO2bds2HDp0CKmpqWjUqBFefPFFvP/++5aYSvZRHjblI6pbWAazDK7oPDSkMrikWXVFzYjHjRuH+Ph4fPHFFxg2bBiAql9/wH//VqNGjcJbb72F7777DlFRUcjNzcX27dvRoUMHq847AFy+fBk7d+5ETEwMNBoNGjdujIEDB2LatGlo3LhxqXVLroV9+/bh4sWL2L17NxITE+Hq6opBgwZh7ty5cHNzKxVreUaNGoUlS5YAsP5zDgAJCQn49ttvERERgaKiIrRv3x7vvPMO1Gp1hc39rTnPoiji0KFD2LdvHxITE1FQUABPT0+0bNkSI0aMKNN03pZYc0y16t1338WxY8dw+vRpaLXaMjf7f/Ttt99CJpOhS5cuaNKkCfLz83H58mWsWrUK169fx2effVbudjt37kRYWBiGDx+OAQMGICoqCgcOHEBkZCS2bNlS6gl5eno6ZsyYgcTERHTv3h2vv/46dDodzp07hw8//BD37t2zfMAHDx6M/Px8nD59Gr169UKvXr0s+3n0CeTy5cuxZ88eNG3aFIMHD4a7uzuuXbuGrVu34vz589i4caPlvd++fRvTpk2DIAh47rnn0KJFCxQUFCAlJQWHDh3Cm2++WWnB/NtvvyEvLw+dOnWqsFAGYOl3dvLkSRw4cKDayU1Vz8OyZctw8OBBuLm54fnnn0eTJk2Qnp6O6OhoHD16tFQB8cknn+D48eNo2rQpXn75ZSgUCpw5cwb/+te/cOHCBaxZs6bcvnIfffQRbt26hf79+0MURZw4cQKff/455HI5YmNj8euvv2LgwIHo3bs3Tp48iU2bNsHR0RFvv/12qf0cO3YMgYGBUCqVeP7559G0aVMkJSXhxIkTOHPmDL777jtLofc4e/fuBVB84/C4xBhAmcR43bp1CA4Ohru7O4YPHw5XV1eEh4djy5YtOH36NIKCgiq9Fqrq448/xpUrVzBgwAC4uLjg3Llz2L59O7Kzs7F06VIAxdfLhAkTEBISAl9fX4waNcqy/aM3X0RkH1gGswyu72Wwtay5/h6VlJSEadOmoW3bthg5ciQ0Gg0cHR0BWHfe//3vf+Pbb7+Fu7s7Bg4cCG9vb9y9exd79uzBmTNnsHnzZvj4+JQ5/tq1axEWFobnnnsOAQEBiIiIwP79+/HgwQNs2LABQPG1MH36dGzatKlUM3MApc6ltZ/z+/fvY/r06cjPz8fAgQPRvn17pKSkYPHixRgwYIBNzvM333yDbdu2wdfXF8OGDYObmxuysrJw584dHD58mMkx1R8tW7ZE06ZNkZ6ejlu3blV6g71q1Sq0aNGi1DKz2YylS5fi2LFjGD9+PLp27Vpmu/Pnz+P777/H008/bVn25ZdfYvfu3Vi/fj3+/ve/W5YHBgYiKSkJy5Ytw4gRIyzLNRoNZsyYgc2bN2PIkCHo0KEDhgwZAo1GYymQyvvCPHr0KPbs2YMhQ4bg008/hZOTk+W1zZs3Y8OGDQgKCsL8+fMBAIcPH4bBYMDy5cvxwgsvlNqXVqst87S2PFeuXAEABAQEVLpuQEAATp48iatXr1a6bkWqch727duHgwcPwt/fH+vWrSt1MySKItLT0y2/Hz9+HMePH4e/v3+pBHDWrFmYN28eLl26hJ07d+Ktt94qc5zMzEzs2LHDcqMzatQoTJ8+HatWrYKXlxd27NgBLy8vAMCkSZMwZswY/PDDD5g0aZKloE9MTMRnn32GZs2aYcOGDaWS2oiICMyePRvLli3Dtm3bKj031vwtHhUdHY3g4GA0bdoU33//PZo0aWI5V4GBgThy5AjWrVuHxYsXW7XfiqSkpGDXrl1wd3cHAMyYMQOTJk3CsWPHMHv2bDRu3LhMcsyaYiL7xjKYZTBQv8vgxwkPD0dCQgIEQUCnTp0AWHf9Perq1auYOnUqZs6cWWq5Nec9MjIS69atQ5cuXbBmzRpLjS8AHDlyBEuXLsXXX3+NFStWlHkvN27cwM6dOy2Js9FoxMyZMxEVFYVr166hS5cu8PPzw3vvvYdNmzaV28y8hLWf8xUrViA/Px8LFy7E+PHjLcvDwsIwZ86cco9h7Xnev38/mjRpgpCQEKhUqlL7UqvV5R7DVjiVE9W6kpv+7OzsStf944cVAGQyGSZOnAig+INYnj//+c+lCmWguB+WSqXC0aNHYTQaAQB3797FpUuXMHjw4FIfVqB4MId3330Xoiji2LFjlb+x/9i5cyfkcjk++uijUoUyAEydOhWenp6l9lfStOiP6wKAi4tLlUYzzsrKAoByny7+Uck6mZmZla77JHbt2gUA+Pvf/16mL5sgCKViPXjwIACUab6mVCotNzD79u0r9zizZs0qVfvRrVs3NG/eHBqNBu+8846lUAYAPz8/9OjRA2q1GhkZGZble/bsgcFgwPz588vU9vbu3RuDBg1CbGws4uLiKn3fJee1slrjPyo5B1OnTrV8RoDiczVnzhw4Ojri8OHDlmv3Sc2ePduSGAOASqXCSy+9BLPZjJs3b9rkGERU97AMZhlcn8vgEvn5+QgKCkJQUJDlwfK8efMgiiImTJgAPz+/J7r+vLy8LIPfPcqa875r1y6Iooi///3vpRJjABg5ciSefvppnDlzBhqNpsxxpk2bVmpfCoUCo0ePBlCcOFvDms95amoqIiIi4OfnhzFjxpTaJiAgoNwHRNU5z4IgQKFQlNuku6bHR2DNMUmmKiM1qtVqbN++HefPn0dycjIKCwtLvf7ol+ujHm1iVMLDwwPt2rXDtWvXkJCQgHbt2lme3Gq1WgQFBZV7fACIj4+vNFYA0Ol0iI2Nhbu7u+UL8o+USiUyMjKgVqvh6emJ4cOHIyQkBIsXL8YLL7yAPn36oGvXrmjTpk2VjgkUP40EqnZOa0NBQQHi4uLg7u5ebq3CH926dQtA+U1127dvDy8vL0ufE2dn51Kvl9fMqnHjxkhOTq7wNaC4iU9J87Po6GgAQFRUlCWWR5XcRJZcN1Vh7d8iNjYWAPDss8+Wec3b2xv+/v64fv26VTE8TslT80eV3JTk5+c/8f6JqG5jGcwyuER9LIM1Gg02bdoEoDjRc3NzQ8+ePTF69Gi89NJLAPBE11/79u3LPDix9rxfvXoVcrkcoaGhCA0NLfO6wWCAyWRCYmJimTK7vCnBqluGW/M5v337NgCgS5cu5Sau3bp1K/PQrDrn+c9//jNCQkIwbtw4DBs2DD169EC3bt3g4eFh1XurDibHVOtKPmSNGjV67Hr5+fmYOnUqUlJS0LlzZ4wcORLu7u6Qy+XQaDQICQmBwWAod9tHn1SWt7zkKVxubi4A4NKlS7h06VKFsfzxi6IieXl5EEURubm5li/lx+3T09MTzzzzDDZt2oTvv/8ep06dsjw58/X1xZQpU/CXv/yl0uOWFDapqamVrpuWllZqm5pQcn6rWnuq1Wrh6upa7pN7oDg5zM7OhkajKVMwl9cXrOQLu7z+dCWvPVoDW3Id/PDDD4+Ns6Cg4LGvA/+9KUhLS0Pr1q0rXb9EyTkrb7CaR5eX9wS5Oso7byVN3Mxms02OQUR1D8vg/+6TZXCx+lQGl6jKvL5Pcv1VNLAcUPXznpubC5PJVKVr9Y8ed95NJlOVjg9Y/znXarUAKv+MP6o653nevHlo0aIFDh48iO3bt2Pbtm2QyWTo06cP5syZUyP9z0swOaZalZiYiPT0dMjl8nKfej1q//79SElJKXfEu+joaISEhFS4bUXNxUqWl3yplPw7b948TJo0qcrvoyIl+/P397dqmp7OnTvjq6++QlFREWJjYxEWFobdu3dj+fLlUKlUGDly5GO37969Ow4ePIjw8PAy/V/+qGS0y+7du1uWlTztrugL1dqnkCXNgyqqVfgjFxcX5OXlQafTlVs4lzRZs9VgVOUdHwB++eWXJ34q2aNHDyQnJ+PSpUtlRqR8nJL3lpWVVaZ5VcnyR9cDiv9uFTWzZu0vEf0Ry+DysQyuP2WwNZ7k+iuvlYC1593V1RVGo7HcWuPaYu3nvORvVdln/FHVOc9yuRzjxo3DuHHjoFarcfXqVYSGhuLo0aOYM2cOdu3aVWPNq9nnmGrVxo0bARSPtFjZKJmJiYkAgKFDh5Z5LSoq6rHbRkZGllmWl5eHuLg4ODk5WWr0Spq9lAymURUl/ZPKq11zdnZGu3btEB8fX60BA5RKJbp06YJp06ZZRgw+depUpdsNGzYM7u7uuHHjBi5cuFDhenfv3sWpU6egUCjwyiuvWJaX9D0teaL9KI1GgwcPHpRZ/rjzoFKp4O/vj9zcXFy7dq3S+Etu0sr7u8XFxSE7OxutWrUq88TaVqpzHVTk9ddfB1A8anVlfcoefRpb0j/v8uXLZdbLyclBXFwcVCpVqdpod3d3ZGVllZsgW9vnqCLVeRJNRHUTy+DHYxls/2WwlMe19rx37doVWq3W0lS5pshksgrLcGs/5yX3KteuXSt3nyVN5B/1pOfZ09MTgwcPxtKlSzF8+HDk5OSUexxbYXJMtSI/Px/Lly/HsWPH4O7ujlmzZlW6jZ+fH4DikQofFRsbi+Dg4Mdue/ToUUsfzhIbNmxAYWEhXnrpJUvz0U6dOqFXr144ffo09u3bZ+k39KiEhIRSTaVKnlRV1Hxq0qRJMBqN+PTTTy1NSR6l1WpLfWlGRUWV+1S45EltVQYDcXFxwd/+9jcAxVP0/PGcAcUF3MKFC2EymTB9+vRS0z20adMGrq6u+P3330sldEajEStXroRery+zv8rOw7hx4wAA//znP8s9D4+O2FgyiMS6detKNZsyGo1YvXo1gP/O6VsTxo0bB6VSiTVr1pTbt8hkMpV7TsvTrVs3vPHGG8jLy8PcuXMr7Ct37tw5zJs3z/J7yY1ScHBwqb+BKIpYu3YtdDodRo0aVWoqjS5dusBkMpUZKOXChQv45ZdfqhRvZdzd3SEIQrk3bURkH1gG/xfL4GL1tQy2RnWuv8pYc97ffPNNAMAXX3xRbhmr1+ttkrh7enpCrVZDp9OVec3az7mPjw969+6NlJQU/PTTT6VeCwsLK3eQPmvPs8FgQHh4eJkHP6IoIicnB0DVPpfVxWbVZHMlne1FUYRGo0F8fDyuXLkCvV6Ptm3bIjAwsEqTuY8cORLbtm3DqlWrEBERgZYtWyIxMRFnz57FCy+88Nib/wEDBmD69OkYPnw4vL29ERUVhejoaDRv3rxMk6dly5Zh1qxZ+Pzzz/Hjjz+iS5cucHd3R0ZGBu7du4fY2FisWLECzZo1A1Cc/Dg7O+OXX36BUqm0LB85ciR8fX3x8ssv49atW/jxxx/xxhtvoF+/fvD19UV+fj4ePnyIqKgoBAQE4KuvvgJQ3McmLCwMvXr1QvPmzeHi4oIHDx7g7NmzcHR0tIwWWJmXX34ZWq0Wq1evxowZM9CjRw907twZMpkMcXFxCAsLg8lkwtSpU/HOO++U2lahUGDSpEnYsGED3nrrLct0FhERERBFEe3bt8edO3dKbVPZeXjttdcQExODgwcP4i9/+QsGDx4Mb29vZGVl4erVq+jatatlAvoXX3wRZ86cwfHjxzF+/HgMGTLEMsfigwcP0KdPnyqfh+po3bo1PvnkEyxbtgwTJ05Ev3790KpVK5jNZqSlpSE6OhoGgwEnT56s0v4++OADyOVy7N69GxMmTEDPnj3Rvn17ODk5ISsrC1FRUUhKSsIzzzxj2aZbt26YOnUqgoODMXHiRAwbNswyz/GtW7fg7+9f5todP348Dh48iC+//BKXL1+Gn58f7t+/j4sXL2LIkCFVjvdxVCoVunXrhqtXr2LBggXo2LEj5HI5evbsWe6gO0QkLZbBLIMbehlsDWuvv8pYc96fffZZzJ07F9988w3GjBmDAQMGoHnz5tDr9UhNTUVUVBR8fX0r7YtdmYCAABw9ehTz5s1Dz549oVQq0aFDBwwaNKhan/NFixbh3Xffxddff42LFy9a5jk+efIknn/+eZw+fdrSsqE651mv12P27Nlo1qwZunTpgmbNmsFoNCIyMhK3b99Gly5dyh281FaYHJPNlQwsoFAo4OzsjKZNm2LYsGEYPHgwBg0aVO4k8uVp0qQJgoKC8O233+Lq1au4ePEi2rRpg8WLF6Nv376PLZgnTpyIIUOGYOfOnXjw4AGcnZ3xyiuvYObMmWX6KDRp0gT//ve/8eOPP+LkyZM4ceIEjEYjvL290apVKyxcuLBUEuDq6ooVK1Zg48aN+OWXXyxPWXv06GF5EvzBBx9g4MCB2LNnDyIiIpCXlwc3Nzc0bdoUY8aMsYyUCABjxoyBh4cHrl27hpiYGBQVFaFp06YYOXIkJk2aZNWImePHj0f//v2xa9cuXLp0CXv27IEoivD29sbIkSMxduzYCvuZ/fWvf4WTkxN+/vln7Nu3Dx4eHhg8eDBmzJiB//3f/y2zflXOw8cff4yAgADs3bsXp06dgk6ng5eXFzp16lSmD1dgYCB69uyJAwcOYP/+/RBFES1btsScOXMwYcKEKl831TVixAi0b98eO3bswKVLlxAeHg5HR0c0btwY/fv3L7fJUUUUCgUWLVqEl19+GXv37kVUVBRu3rwJg8EAT09PPP3003jnnXdKXQcAMHPmTHTo0AG7d+/G8ePHYTAY4Ofnh3feeQdTpkwp0wyydevWWL9+Pb799lucP38eMpkMnTp1wrp165CcnGyzG4nAwECsXr0aUVFROH/+PMxmM6ZPn87kmKgOYhnMMrihl8HWsPb6qwprzvvkyZPRvXt37Nq1C1euXMGZM2fg7OyMJk2aYMSIERg+fPgTv8f58+dDEASEhYUhOjoaJpMJo0aNwqBBg6r1OX/qqaewefNmrFu3DpcvX0ZERAT8/f2xYsUKxMfH4/Tp02X6p1tznlUqFebMmYOIiAhcu3YNZ86cgaOjI/z8/DBv3jy88cYbNXo9Cmq1umzdNhEREREREVEVffzxxzh+/Dj+9a9/oV+/flKHUy3sc0xERERERESVEkWx3AFHw8PD8euvv8LT09OuW5axWTURERERERFVymQy4ZVXXsGzzz6L1q1bQy6X4969ewgPD4dMJsPixYtrdMCsmsbkmIiIiIiIiColl8sxduxYRERE4ObNm9BqtXB3d8egQYPw1ltvlZrD2x6xzzERERERERE1eOxzTERERERERA0ek2MiIiIiIiJq8JgcExERERERUYPH5JiIiIiIiIgaPCbHRERERERE1OAxOSYiIiIiIqIGj8kxERERERERNXhMjomIiIiIiKjBY3JMREREREREDR6TYyIiIiIiImrwmBwTERERERFRg8fkmIiIiIiIiBo8JsdERERERETU4CmkOnBQUBA2bdpUapmXlxeOHTsGABBFERs3bsS+ffuQn5+Pzp07Y9GiRWjXrp1lfYPBgDVr1uDEiRPQ6/Xo06cPFi9eDB8fn1p9L0RERERERGTfJK05bt26NY4cOWL52blzp+W1rVu3YseOHfjggw8QHByMRo0aYc6cOdBqtZZ1Vq5cidDQUHz22WcICgqCVqvFggULYDKZpHg7REREREREZKckTY7lcjkaN25s+WnUqBGA4lrjkJAQTJkyBUOHDkW7du2wZMkSFBQU4Pjx4wAAjUaDAwcOYO7cuQgICEDHjh0RGBiIu3fvIjw8XMq3RURERERERHZG0uQ4OTkZo0aNwquvvoqPPvoIycnJAICUlBRkZWWhX79+lnWdnJzQs2dPREdHAwBu3rwJo9GIgIAAyzo+Pj5o06YNYmJiaveNEBERERERkV2TrM9xly5d8Mknn6BNmzbIycnBli1bMG3aNISEhCArKwtAcR/kR3l5eSE9PR0AkJWVBblcDk9PzzLrlGxfkTt37tjwnQBmuSPUBXqb7pOoJng6O0Jm4rVKVFe1b99e6hCIiIgaLMmS4wEDBpT6vUuXLnj99ddx+PBhdO3aFQAgCEKpdURRLLOsOmx98xEdl4RlW4/adJ9ENeHz/3kD3XjzTURERERURp2ZysnZ2RlPPfUUEhMT4e3tDQBlaoBzcnIstcne3t4wmUxQq9Wl1snOzrZsT0RERERERFQVdSY51uv1iI+PR+PGjeHn5wdvb2+EhYWVev3KlSvo1q0bAKBTp05QKBSl1klLS0N8fLyl5pmIiIiIiIioKiRrVr1mzRoMGjQIPj4+yMnJwebNm6HT6TBq1CgIgoAJEyYgODgYbdq0QatWrbBlyxaoVCqMGDECAODq6orRo0dj7dq18PLygoeHB1avXg1/f3/07dtXqrdFREREREREdkiy5Dg9PR3/+Mc/oFar0ahRI3Tp0gWbN2+Gr68vAGDKlCnQ6/VYsWIF8vPz0blzZ6xduxYuLi6WfcyfPx9yuRwffvgh9Ho9+vTpg6VLl0Iul0v1toiIiIiIiMgOCWq1WpQ6CHsXHZeEDzf8LHUYRJX6/H/eQLd2LaQOg4iIiIiozqkzfY6JiIiIiIiIpMLkmIiIiIiIiBo8JsdERERERETU4DE5JiIiIiIiogaPyTERERERERE1eEyOiYiIiIiIqMFjckxEREREREQNHpNjIiIiIiIiavCYHBMREREREVGDx+SYiIiIiIiIGjwmx0RERERERNTgKaQOgIiIiIiIpKMzmVFYBOjNIgxmEQaTCJ0J0JlE6P/zU2QGRFGECMAsAn+SpcM5IwkQAAgCREEGyOSA0gFQOkB0cAQcHAGFEqJSASidAEcnQMa6Oaq7mBwTEREREdVjhUYz1HoRmv/8m2swQ20wI1FjRHRWEeI1puJlehF5BjOMYuX7zOj8AKpvP37sOiIAODhCdHGH6OpW/K+3D8wt2sDcuBlE5+LlcHaF6OQMuLozeSZJMTkmIiIiIqoHTGYR6TozsnVmpBWakKgx4VK6AddyipCgMSFHb7bZsUSx8gxaAACDHoIhA8jJqHhfMjlEryYw+7WGqW1HmH1bQnTzhOjpDdHdE3BvZLO4iR6HyTERERERkZ0xmUWkFZqQoTMjrdCMhHwjTibrcSnDgEyd7ZLgihQZ9Dbbl2A2QchMhSwzFYroMMtyEYDo7QNTp54wPdMLZq8mED0bFyfMLm42Oz5RCSbHRERERER2ILXAhBStCffzjTiaqMMvSTrkGqrQBroGCMX1wjV8DEDISoPs7DEozx4DAIiCDKJvSxi79oWpfReYm/hC9PYB3DxqPB6q/5gcExERERHVQdk6E5ILTHiQb0Joig4HE3RIK6z5WuG6TBDNEFIS4JCSALzv+94AACAASURBVBzfDQAwN/VD0cAXYfLvDLGxL0TvpsUDgxFZickxEREREVEdkaI14X6eEefS9Nh5twD3801Sh1TnydJT4Lg3GAAgKpQwPdMTxn5/grlZS5gb+wAeXtIGSHaDyTERERERkYSStUbczzPi9EM9vo8tQEYt9BmurwRjERTR4VBEhwMAzI2aoGjYqzB16glzsxaAK5tfU8WYHBMRERER1bJkrRH38ow4laLHv28X1MogWg2RLCcDjj9tAgCYfFuhaMRYmJ7qCNGnBeCkkjg6qmuYHBMRERER1YKCIjPu5BoRmqLD2mtaZNlwaiWqnPzhA8iDv4YIwPR0NxQNew3mlu0gNvFlH2UCwOSYiIiIiKhGJWmMuJljxMZbGpxIst0USFQ9AgBFbDQUsdEQ5XIYew9C0ZBXYG75FOdUbuCYHBMRERER2Vih0Yy7ucX9iFfFaNhsuo4STCYow09BGX4KpmatYHj9bZif6gSxqZ/UoZEEmBwTEREREdlIjs6MmBwDNtzQ4sgDHaSZhZiqQ576AKr1yyA6u8Iw6k0YuwdAbNaSTa4bECbHRERERERPKLPQhCtZRfgiKg8RmUVSh0NPQCjQwHF3EBz2bIZxwJ9QNHgUzM3bAi5uUodGNYzJMRERERFRNaUWmBCZacBnEXm4oTZKHQ7ZkGA2QXn2OJRnj8PYrjMMY6bB3Lo9k+R6jMkxEREREZGVkrVGhKcbEHg5D/Eak9ThUA1TxF2HYvkCGDv1guH1qTC38gdUzlKHRTbG5JiIiIiIqIpSC0w4l6rHPy7l4mEBB9lqaBQ3IyG/GQlTr4EwjJpUPMK1o5PUYZGNMDkmIiIiIqpEjt6MyAwDPgzPRWwum083ZAIAReQ5yCPPwThgOIpeHANzi7YcuKseYHJMRERERFQBndGMmOwiLIvIw+lUg9ThUB0iAFCe/wWKC7+i6IXRKBr6KsQWbQFBkDo0qiYmx0RERERE5biVU4QtsRpsvFnAKZmoQoIowuHkfijPHIV+3P/A1HsQRO+mUodF1cDkmIiIiIjoESlaE448KMSSy3nQGpkWU9UIRQY4/bAWphO7YXh7AUztngGcXaUOi6zA5JiIiIiICIDBJOJKlgHzzuXgppojUFP1yDNSofpqMYoCXoBh9JTiptZkF5gcExEREVGDl5hvxLbbGnwVo4WZlcVkA8qwUCiiLkA/eQ6MPfoDHl5Sh0SVYHJMRERERA1WgdGMy+kGzD6XgwcaTs1EtiUYdHDa8iWMbZ6G4e35MLdpD8jkUodFFZBJHQARERERkRTu5xnx6SU1Rh/PYmJMNUoRHwvVZ7OgOHUYyFNLHQ5VgDXHRERERNSgFBrNuJCqx/tn1UgvZFJMtUMwmeD075UwRp6FfuJMiM3bSB0S/QGTYyIiIiJqMB5qTdh8Iw9fXSuQOhRqoBQx4ZDH3YDuvQ9h6tgDUDlLHRL9B5tVExEREVGDEJOpx+TfMpgYk+SEAg2cVn8Ih582Qsh4KHU49B9MjomIiIioXiswmnHgXj5GHctCRBanaKK6QQDg8OteOC1fCNmda4DRKHVIDR6TYyIiIiKqt5I1Rvzf5WxM+T0PeUWco4nqHnlGClSfz4PizFFAmy91OA0a+xwTERERUb10NUOHuefUuJrD2mKq2wSzCU7BX8OQeA9FL0+E6NVU6pAaJNYcExEREVG9YjSL+CUhH68cz2ZiTHbF4be9cFy/DMLDB1KH0iAxOSYiIiKieiNPb8S2GzmYEMpm1GSfFLdjoPrib5DdvQ6IvIZrE5NjIiIiIqoXkvP0+CoyG/MvFcLEnILsmCw3G6p/zof88mlAr5M6nAaDyTERERER2b3YDC0WX8zBv24VSR0KkU0IRQY4fbMEymM/Ark5UofTIDA5JiIiIiK7FpGSh+ln83A4mf2LqX4RADj+vAWOP/wLQla61OHUexytmoiIiIjs1u8Jarx7oRDphWapQyGqMcqwUAgFWujfXgCxSTOpw6m3WHNMRERERHbHbDbj+N1sTD5TwMSYGgRFTDgcv1sGIS1Z6lDqLSbHRERERGRXdHoDDt3JwjsXdMjniNTUgCjuXofTvz7mVE81hMkxEREREdkNrU6Pw3FqvBdmQIGRiTE1PPKke3D6+n8hJN2XOpR6h8kxEREREdmFPG0hDsfl4f1LRdBx7C1qwOQZD6FasRCyhDtSh1KvMDkmIiIiojovR6PFgXv5mHnJgCJ2MSYqngt5+QLI7t2UOpR6g8kxEREREdVpWXla7LunxdyIIrAlNdF/Cdp8qL5cxBpkG2FyTERERER1VqY6F8cStFgYWQQzE2OiMoQCDfsg2wiTYyIiIiKqk9Kzc3A6WYf5TIyJHkuWmw2nf/0DQmqi1KHYtTqTHH///ffo27cvvvzyS8syURQRFBSEkSNHYtCgQXj//fcRFxdXajuDwYAvv/wSw4cPx/PPP4+FCxciLS2ttsMnIiIiIhtKz8pG2MNCzI00wcA+xkSVkqclw2ndpxAyUqQOxW7VieQ4JiYG+/btg7+/f6nlW7duxY4dO/DBBx8gODgYjRo1wpw5c6DVai3rrFy5EqGhofjss88QFBQErVaLBQsWwGTiEIZERERE9kidr8HlVC3+dlWAhp2MiapMnnAHjptWQMhkZWF1SJ4cazQafPLJJ/jHP/4Bd3d3y3JRFBESEoIpU6Zg6NChaNeuHZYsWYKCggIcP37csu2BAwcwd+5cBAQEoGPHjggMDMTdu3cRHh4u1VsiIiIiomoq0OlxMSEL/++6All6VhkTWUtx6wocf/gGQk6m1KHYHcmT488//xxDhw5Fnz59Si1PSUlBVlYW+vXrZ1nm5OSEnj17Ijo6GgBw8+ZNGI1GBAQEWNbx8fFBmzZtEBMTUztvgIiIiIhswlBUhN9jk7HstiMeaJkYE1WXIvIMlD9vAfLVUodiVxRSHnzfvn1ISkpCYGBgmdeysrIAAF5eXqWWe3l5IT093bKOXC6Hp6dnmXVKti/PnTu2Heq8UG/T3RHVmMLCQptf/0RkO+3bt5c6BCLJmEwm/Bodh/Wpnriey+5xRE/K4fQRiL4tUfSnNwAHR6nDsQuSJccJCQlYt24dgoKCoFQqK1xPEIRSv4uiWGaZtWx98xEdl2TT/RHVFJVKhfbtWkgdBhERUSmiKOLwxas4bWqOM+lGqcMhqjccdm2A2bc1TD0HSB2KXZCsWXVMTAzUajUmTpyI/v37o3///oiMjMRPP/2E/v37w8PDAwDK1ADn5ORYapO9vb1hMpmgVpduLpCdnQ1vb+/aeSNEREREVG2iKOLI2UtIdW6OTXFMjIlsSQDgtO5TyOJjpQ7FLkiWHA8ePBg7d+7E9u3bLT+dOnXC8OHDsX37drRq1Qre3t4ICwuzbKPX63HlyhV069YNANCpUycoFIpS66SlpSE+Ph5du3at9fdERERERNY5d+UajF4t8FE0E2OimiAYdHD8ZimEtGSpQ6nzJGtW7ebmBjc3t1LLVCoVPDw80K5dOwDAhAkTEBwcjDZt2qBVq1bYsmULVCoVRowYAQBwdXXF6NGjsXbtWnh5ecHDwwOrV6+Gv78/+vbtW+vviYiIiIiq7u6DFKhlrlgUI6DIzCmbiGqKPOMhHH9YC91fFwGebGFbEUkH5KrMlClToNfrsWLFCuTn56Nz585Yu3YtXFxcLOvMnz8fcrkcH374IfR6Pfr06YOlS5dCLpdLGDkRERERPU6uRosriRnYmO2D9EIOwEVU0xRXL0J58gCKRk0AHFVSh1MnCWq1mo/pnlB0XBI+3PCz1GEQVerz/3kD3TggFxERScxoNGH3qTCEO7TD9+xnbJdS/G+i6abPpA6DrCQC0M1aCtOzzwMyyWf1rXN4RoiIiIio1oiiiP2nLkDbmIkxUW0TADht+D/IEji1Z3mYHBMRERFRrTl1+SocfVrj42g2pSaSgmAsguPmFRCyM6QOpc5hckxEREREteLOg2SkFZiw+p4ShSb27COSijwxDoozR4Aig9Sh1ClMjomIiIioxhXo9Pgl7AruO7XA5WzWGhNJzWFvMGRxN6QOo05hckxERERENUoURYQcOwW/Z3rhy5vsZ0xUFwiiCMfv/o/zHz+CyTERERER1agL0Tfg6dsSS64DnM6YqO6Q52RAeXgHUKiVOpQ6gckxEREREdWYnNx8XItPwWmdNxK0ZqnDIaI/cPj9MOTXI6QOo05gckxERERENcJsNmPnsVNwe6obgu+xOTVRXeW08Z8Qku5LHYbkmBwTERERUY04fv4yfJ/qgCXXWWNMVJcJugI47tkMFGikDkVSTI6JiIiIyOYSU9NxLyUDF3SeSC9kckxU1ykiz0J+55rN9xsZGYmFCxdi1KhR6Nu3Lw4dOmTzY9gKk2MiIiIisimj0YSQY6fQonMvbLzL5tRE9sIh+GsImQ9tus/CwkK0a9cOCxYsgKOjo033bWtMjomIiIjIpk5ciEDrdv5YcVsAB6cmsh/y7AwoLoYCJts91Bo4cCBmzpyJYcOGQSar2+ln3Y6OiIiIiOxKZk4urt+9j0yX5riuNkkdDhFZyeHnzZAl3pM6DEkwOSYiIiIimxBFESHHT6FTr7745w0mxkT2SDCZ4PDzFkCbL3UotY7JMRERERHZxKXrsZApHHBC7YK8IjaoJrJXiqsXIb8dI3UYtY7JMRERERE9Mb2hCL9ciETzTt2x9V6R1OEQ0RNy/P4rCBkpUodRq5gcExEREdETO/j7RbRs1RLfJ/D2kqg+kOVmQxH+O2BuOFOx8duLiIiIiJ5IelYOYu7cg3Nzf5xKY19jovrCYe/3EFISnmgfBQUFuH37Nm7fvg2z2YzU1FTcvn0bqampNorSdpgcExEREdET2XvyHJ55phPWxwlSh0JENiQUGaC88CtgrP7UTjdv3sTkyZMxefJk6PV6BAUFYfLkydiwYYMNI7UNhdQBEBEREZH9ik9JRUp6Ftw7PouI+6w1JqpvlEdDUBTwAsRW/tXavnfv3ggPD7dxVDWDNcdEREREVC2iKOLgqYvo2qM7Vt+WOhoiqgmCyQRl6EGgyCB1KDWOyTERERERVUvs/URk52mgdfVFbB5rjYnqK2XoQciS46UOo8YxOSYiIiIiq4miiKPnLqFbjx746lbDGc2WqCESRDMUvx+u97XHTI6JiIiIyGpXYuOQry1AtlMTJBYwOSaq7xpC7TGTYyIiIiKyitlsxq8XI9G5SxesvytKHQ4R1QJL7bGxSOpQagyTYyIiIiKyysWYm9BoC1Dk0Qx389nXmKihUJ46BOHhA6nDqDFMjomIiIioykRRxLnIa+jQwR87HvBWkqghEcwmyK9HSB1GjeE3GhERERFV2bW78cjTFsC5WRucTjdKHQ4R1TLHA9shZDyUOowaweSYiIiIiKrs1KWraNXcF79mKaUOhYgkIGjzIEu4I3UYNYLJMRERERFVSVJaBlKzstH0qY7YFc9aY6KGyuHANkCTJ3UYNsfkmIiIiIiq5JcLEfDxboRrhc4wcpBqogZLnnAHsuT7Uodhc0yOiYiIiKhSedoC3E9OResOzyAojrXGRA2d8vcjQJFB6jBsiskxEREREVXqxPkIKJUK5CrdkWtgtTFRQ6e48CuEh4lSh2FTTI6JiIiI6LEMRUW4EZeA1i1b4OBD3j4S0X+mdbpRv6Z14rcbERERET1WWPQtmMwmePq1wW+pbFJNRMUcju0G1FlSh2EzTI6JiIiI6LGiYu/C3dUZCUYVzGxRTUT/IcvJgCw1SeowbIbJMRERERFVKEudi/QsNVq3eQpb45kZE1FpiphwqUOwGSbHRERERFSh3yNi4OigBDx9cCfPJHU4RFTHKEMPQMhMlToMm2ByTERERETlEkURdxKS0LiRO6LyHaQOh4jqIEGbD6GeNK1mckxERERE5YpLSkG+thC+bdvjh3gOxEVE5VNc/h0w23/LEibHRERERFSuM5HX4KxyRIGDO9Sc25iIKqA89wuEDPtvWs3kmIiIiIjK0BuK8OBhOtxdXXBTq5Q6HCKqwwSDDrKUBKnDeGJMjomIiIiojKhbd2E0meDXsjX2JpmlDoeI6jjF+ROA0b67XzA5JiIiIqIyrt2Nh8rRAWYXLyRp7b8vIRHVLMWVCxCy06UO44kwOSYiIiKiUoxGEx5mZMFBqUSKyVHqcIjIDggGPYTMNKnDeCJMjomIiIiolHvJD6HTG9C8uR/2J0sdDRHZC9mDO1KH8ESYHBMRERFRKZev34azyhGqxn6IzLLvPoREVHuUZ48DBVqpw6g2JsdEREREZCGKIpLSMiCTyZADFTiBExFVlSwxzq77HTM5JiIiIiKL9Gw1cjUF8PFuhDNZvFUkoqoTAMgyUqQOo9r4jUdEREREFpeux8LRQYFGPs1xOp2jVBORdeQxl6QOodqYHBMRERGRxb2kh1AqFDCr3JGp4/zGRGQdRfgpCDmZUodRLUyOiYiIiAgAoNMbkKXOAwDkw0HiaIjIHsny1RCy7HNKJybHRERERAQASHiYBqPRBA9XF1zPl0sdDhHZKSHLPgflYnJMRERERACA63HxcFY5onEzX4Smc5xqIqoeedwNqUOoFibHRERERAQASM3MgUwmg6O7N+7mcX5jIqoe+bVLQIFG6jCsxuSYiIiIiGAymZCpzgUA5AuOEkdDRPZMlvIAQp5a6jCsppDqwLt378bevXvx8OFDAEDbtm3x17/+Fc899xyA4gnoN27ciH379iE/Px+dO3fGokWL0K5dO8s+DAYD1qxZgxMnTkCv16NPnz5YvHgxfHx8JHlPRERERPYqNSsHekMR3JxVSDIoARRJHRIR2SlBNENQZ0Fs1kLqUKwiWc1x06ZNMXv2bGzduhXBwcF49tlnsWjRIty5cwcAsHXrVuzYsQMffPABgoOD0ahRI8yZMwdardayj5UrVyI0NBSfffYZgoKCoNVqsWDBAphMnJOPiIiIyBrX7sTD0UGJxt5eOG+fs7AQUR0iqO3vi0Sy5Hjw4MEYMGAAWrZsidatW2PmzJlwcXFBTEwMRFFESEgIpkyZgqFDh6Jdu3ZYsmQJCgoKcPz4cQCARqPBgQMHMHfuXAQEBKBjx44IDAzE3bt3ER4eLtXbIiIiIrJLiWkZUCoUcPFsjBu5rGggoicjvx0jdQhWk6xZ9aNMJhN+++03FBQUoFu3bkhJSUFWVhb69etnWcfJyQk9e/ZEdHQ03njjDdy8eRNGoxEBAQGWdXx8fNCmTRvExMSgf//+FR6vpHbaVgr1Nt0dUY0pLCy0+fVPRLbTvn17qUOgBiwjWw0IgEzlikydWepwiMjOKa5HwKDNB1zcpA6lyiRNju/evYtp06bBYDBApVJhxYoV8Pf3R3R0NADAy8ur1PpeXl5ITy+eMysrKwtyuRyenp5l1snKynrscW198xEdl2TT/RHVFJVKhfbt7KvvBxER1TxtoQ4FOj2cVY4ohFLqcIioHhDSkiDk5UBkclw1rVu3xvbt25Gfn4/Q0FAEBgbiu+++s7wuCEKp9UVRLLOMiIiIiJ5MWmY2TObiptQFUAJgs2oiejKCKELIU0P0bSV1KFUm6VROSqUSLVu2xDPPPINZs2ahQ4cO2LFjB7y9vQGgTA1wTk6OpTbZ29sbJpMJanXpIcKzs7Mt2xMRERFR5e4np8LRwQHOTk5I1HGmTyKyDUGbL3UIVqlT335msxlFRUXw8/ODt7c3wsLCLK/p9XpcuXIF3bp1AwB06tQJCoWi1DppaWmIj49H165daz12IiIiInv1MDMbSoUcXo08EJkjdTREVF8ImlypQ7CKVcnxa6+9htOnT1f4+pkzZ/Daa69VaV/ffPMNoqKikJKSgrt37+Lbb79FZGQkXnrpJQiCgAkTJmDr1q0IDQ1FXFwcPv30U6hUKowYMQIA4OrqitGjR2Pt2rUIDw9HbGwsli5dCn9/f/Tt29eat0VERETUoOVqtBAEAS6ejXGTI1UTkY3Iku5LHYJVrOpz/PDhQxQUFFT4emFhIVJTU6u0r6ysLCxZsgRZWVlwdXWFv78/Vq9ebRllesqUKdDr9VixYgXy8/PRuXNnrF27Fi4uLpZ9zJ8/H3K5HB9++CH0ej369OmDpUuXQi6XW/O2iIiIiBq0PE0BIABylSsyOFI1EdmILP42YDIC8joxSVKlrI7ycQNiPXjwoFTy+jhLliyp9Djvvfce3nvvvQrXcXR0xKJFi7Bo0aIqHZOIiIiIStMW6lCo10Pl5AidyAoGIrIdWXoyoMkDPLwqX7kOqDQ5PnToEA4fPmz5fcuWLdi3b1+Z9fLz8xEXF4eBAwfaNkIiIiIiqjFpmdkwmoqbUhsEJsdEZDuCOguCrgBifUmOCwsLS40ardFoIIpiqXUEQYCTkxNeffVVvPvuu7aPkoiIiIhqRMLDdDg4FM9tbIAcAJtVE5FtCKIIFGikDqPKKk2Ox44di7FjxwIAXn31VSxcuBDPP/98jQdGRERERDUvMycXDgoFBEFAoZnJMRHZlqDNh1j5anWCVX2O9+/fX1NxEBEREZEEtDpd8UjVKickF0odDRHVN0KBVuoQqqxaw4ZptVqkpqYiLy+vTBNrAOjVq9cTB0ZERERENa9QbwAAuDmrkFDxpCRERNUi6Ozni8Wq5Dg3Nxdff/01fv31V5jNZZvciKIIQRBw8eJFmwVIRERERDWnUKcHADg6uyDJfu5hichOCPm5UodQZVYlx//85z9x6tQpjB07Fr169YK7u3tNxUVEREREtaBQb4BMJkDp7IqHmSapwyGiekbIzZY6hCqzKjm+cOECxo8fj7/97W81FQ8RERER1ZIioxEGQxGcnBzgqHJBpo6DcRGRbQk5mVKHUGUya1ZWKpVo2bJlTcVCRERERLVIW6CD8T9d5UyQ2c2IskRkP4TcbMBsH61SrEqOhw4digsXLtRULERERERUi/K0BTD/56bVBEHiaIioPhK0eYBeJ3UYVWJVcjx58mRkZGRg6dKliImJQWZmJrKzs8v8EBEREVHdl52XD7lcDqC45piIyNaEAg1QZJA6jCqxqs/xmDFjIAgCbt26hWPHjlW4HkerJiIiIqr7NNpCyGXFSbGZNcdEVAOEAg2EoiK76LZhVXI8bdo0CAK/OImIiIjqg0K9HnL5f5JjgTXHRFQDdIWAySh1FFViVXL83nvv1VQcRERERFTLCnS6R2qOiYhsTwDqZ3JMRFQb0rQ5yNTlSR0GUaUaO7nDx6WR1GEQVZteX2RpFchm1UTU0FmVHG/atKnSdQRBwLRp06odEBFRpi4PS8N3Sh0GUaWW9p3I5Jjsmkk0W5JjkckxEdUUO+maa1VyvHHjxgpfEwQBoigyOSYiIiKyE2bzf4fIKU6O7WHIHCKimmFVchwWFlZmmdlsxsOHD7Fr1y5ER0dj9erVNguOiIiIiGqOyfxoT2MmxlR1eU1aolGbp6GMj5U6FLIL9lFz/MTDEspkMjRv3hwLFiyAn58fVq1aZYu4iIiIiKiGPZocy5gckxWeueCK0DF/R94rUyDaSZNZosrYdMz+3r174+zZs7bcJRERERHVEPGRZtWcyImsYQYw8rISc73+jIx5y2H28JI6JKrL7OT5iU2/BxMSEmA2cyIAIiIiInsgk//3VlBgzTFVw/YEM7reaombM1egsM8QqcOhOss+smOr+hxHRkaWu1yj0eDy5cvYvXs3hg0bZpPAiIiIiKhmyR5pDiuITI6perJ0ZnS/oMKagOl4s3MfeP6wBkKRQeqwiKxmVXI8Y8YMy3D/jxJFETKZDC+++CIWLlxos+CIiIiIqObIZXLL/9nnmJ7UvGsC/t2oN35euBI+O9ZA+eCO1CFRXWEn/dKtSo7Xr19f7nJ3d3f4+vrCxcXFJkERERERUc2Ty/57w8rkmGwhMscE//BGODL+I/S58QtcD/9gJw1qqaaICiUgs49RDaxKjnv16lVTcRARERFRLZPL2OeYbM9oBl68pMQ7bV7G5/O6wvv75ZDl5UgdFklEdHYtTpDtgFXJcQmtVovIyEikpKQAAPz8/NCrVy/WHBMRERHZEUEmQBRFCIIAOZNjsrHv48045NQaJ2ctR5vjW6GK5Kw2DZKzK6BwkDqKKrE6Od61axe+++47FBYWQnxk4AaVSoUZM2Zg/PjxNg2QiIiIiGqGg1JhSY4V4IwjZHsZOjO6XnDBuoH/g3FdAuCxcy0H62pgRGdXwNFR6jCqxKrk+MiRI1i5ciU6d+6MCRMmoG3bthBFEfHx8QgJCcGqVavg4eGBl156qabiJSIiIiIbUSoUMJtFyGSAuUgPN6Uz8otYg0y2NzNGhu+9++KnBSvh88NKKJLuSR0S1RKzmyegrIc1xzt27EC3bt2wfv16KBT/3bRDhw4YOnQoZsyYge3btzM5JiIiIrIDTo4OMIlmKCCHoVCLJipv5BeZpA6L6qlLWUa0y2mE45M+Qe+rx+ByLISDdTUAYpNmUodQZVYNG5aQkIDhw4eXSoxLKBQKDB8+HAkJCTYLjoiIiIhqjpeHG4qKjACAokItmjrZx4iyZL+MZmBYmBL/z3c0suZ8DtHNQ+qQqIaZG9fT5FilUiEzM7PC1zMzM6FSqZ44KCIiIiKqeV7u7jCbi/saFxYWogVv46iWfHdfRM+4trgz+0vouveXOhyqQaKHl9QhVJlVyXFAQAB+/PFHRERElHktMjISu3fvRr9+/WwWHBERERHVHFdnJ8hkcgCAplCH5ir2N6ba87DAjGcuuGDHkJlQv/U3u5nuh6zk6CR1BFVmVZ/j2bNnIyoqCrNmzUKHDh3Qpk0bAEB8fDxu376Nxo0bY9asWTURJxERERHZmIvKCXJZca/PQp0ePvYxoCzVM+9dlSG4SQBCFjyFptu/hiKF3TTrE9HRfpqkWFVz7OPjg+3bt2PixInQ6XQIDQ1FaGgodDod3nzzTWzfvh0+PlybRwAAIABJREFUPj41FSsRERER2ZCDUgnlI2PJOAqczomkcT7DDP//3959x1dZ3/0ff5+ZnOwFJBBCQhIIhL2iskG2giKtihYnbmWo7e+uvQu03tWqaC21A1tHrd5aUXtbf4/+qva21sGQZVCJ7MgKgZBD1smZ1+8P6sHIhiRXTs7r+SiP9prnc9Bcvd75rrXpWnXtItVNnMWq2+2IkZBodgln7Kxajj0ejxobGzVv3jzNmzfvuOMVFRVqbGxUbGzkNJ0DAABEs9gYpwLBozNUOxWUmD8YJvGFpDFrYnRX/kz96K4BSn/2EVnqa8wuC+fBsNqkuMgJx2fVcvzEE0/ovvvuO+nx+++/X08++eR5FwUAAIDWERtzbP1RlxEwsRLgqF9tNzR0Z7623fOYGvuWmF0OzoOR0UlGXLzZZZyxswrHq1ev1pgxY056fMyYMVq1atX51gQAAIBW4nIeC8dOwysHqzmhDdhdH1KvlfFaMf4uuWffI8N2Vh1e0UYEO+dK8Ulml3HGzurxV1VVpYyMjJMeT09PP+VSTwAAAGhbXLExMoyjIzw9NdXKSySEoO24fqNVVwQuVMW9SxXI7Gp2OThLofxekiVyhmqcVThOSUnRjh07Tnp8x44dSkhIOO+iAAAA0Do6pqfIHzg65rjOXa3i5Mh5kUV0eL8ypMK1GVp73RLVXTyTyboiSKhTF7NLOCtnFY6HDx+uN954Q6Wlpccd27Rpk9544w1ddNFFzVYcAAAAWlZuVqa8Xr8k6fCRWvVNNrkg4AQaQ9KI1TF6MO8KHb7jJzLiaJCLBEYEdamWznK26rlz5+qjjz7SrbfeqgsvvFD5+fmyWCzatm2bVq5cqfT0dN12220tVSsAAACaWcf0FFltR9tLAsGgMmxMyoW267Gt0isJhXp3/lJl/2W5Yr5YZ3ZJOAUjPnJmqpbOMhxnZGTo+eef169+9Su9//77+uijjyRJ8fHxmjJliu64445TjkkGAABA25IUH6cYx7FXwjgFJNnMKwg4jd11IfX8OEEvTpqnyf1WK+nV38ry7+XI0HYYVpvUnsOxdHTSrUWLFskwDFVXV8swDKWlpckSQQOtAQAAcJTFYlFSfJwavF5Jkkt+EY4RCa7ZYNOETiP17MJCZTz/qOyVe80uCd8Q6tJNRmJkjdM458n6LRaL0tLSlJ6eTjAGAACIYEkJx9Yh9dXXKDuecIzI8M6BoHps6KANN/5U9WNnMFlXGxLsf6Hkipw1jqXzCMcAAABoH1ISExQKhSRJ7sr9Gt6BV0REjoaAdOGqGP2s8Eodvm0xk3W1EcG8IrNLOGs8+QAAAKJcbpdO8nh9kqRD7hoNTqH9DZHn51sMXbC3SLvmPSZv0QCzy4l6Rmq62SWcNcIxAABAlMvJ7CjDOBqIDcNQsrwmVwScm521QRWuTNRbUxfoyHdvOzopFFqdEeuSkUw4BgAAQIRJS05UXGxseNsV8iiGTIEIduV6u661jVHlwscUyMgyu5yoE8wvlpGSZnYZZ41wDAAAEOUsFosyUpLC27WHDmhAmsPEioDz97f9QfXc2FGf3vyg6kdNM7ucqBIYcKFkj7xnCOEYAAAA6pSequC/14qtrDyoMR0Yd4zIVxeQSlbFamnv2aq69T9lxMaZXVJUCGVmm13COSEcAwAAQH0KctXQeHSscaPPpy4xQZMrAprPT8qkEfv7qHzBUvkK+5pdTrtnpGaYXcI5IRwDAABAXTM7ymG3h7eTmJQL7czWmoAKVibpb9Pv05FZt8iwEIVaQigjU0ZK5E3GJRGOAQAAICnG6VBK4rH1Yf01VSpIsp/iCiAyXbHOrhtixqpy4aMKpnU0u5x2xz9ispSYYnYZ54RwDAAAAElSRmpyeEmn/Xt267IuJhcEtJA394bUqzRTm275mRqGTzK7nHYlWNjH7BLOGeEYAAAAkqT8rllq9PkkSfWeRhW4/CZXBLScGr80ZJVLv+z/PR2e+4CMGJfZJUU8w+GU0SFyl84yLRw/99xzuu666zR27FhNnDhRCxcu1Pbt25ucYxiGli9frqlTp2rkyJG67bbbjjvH5/Pp0Ucf1YQJEzRq1Cjde++9OnDgQGt+FQAAgHahOD9XodCxWapd/nrF2y0mVgS0vB99YdGog/301cKl8uUXm11ORAsUD5GRHrld1U0Lx+vWrdOsWbP0+9//Xr/+9a9ls9l055136siRI+Fz/vjHP+qll17Sfffdp+eee06pqam6++67VV9fHz7n8ccf13vvvacHH3xQy5cvV319vRYuXBheigAAAABnJjkhXmlJieHtw3t36eIsm4kVAa2jzB1Q/spkvXv591Vz+Y1M1nWOAheMi8j1jb9m2j/1ZcuW6dJLL1V+fr4KCgq0ZMkSud1ulZaWSjraavzyyy9rzpw5GjdunPLz87Vo0SI1NDTo73//uySprq5Ob775pu655x6VlJSoqKhIS5Ys0bZt27RmzRqzvhoAAEDE6prZQaFQSJJUceiwxmSw3jGix/S1dt0SP1EHFzyiYGoHs8uJOKHMrmaXcF7azK9EGhoaFAqFlJh49LeV+/btU1VVlS644ILwObGxsRo4cGA4QG/evFmBQEAlJSXhczp16qTc3Fxt2rSpdb8AAABAOzCkdw81eI4t45SmRhOrAVrfij1B9f4sS5/f9pAaLrjY7HIiRqhjZxkZncwu47y0mfn5ly5dqh49eqhv36OLcldVVUmS0tLSmpyXlpamysrK8Dk2m00pKSnHnfP19SeydevW5ixdHpYBRITweDzN/u9/S2hwMSwCkaGhmX+mCgsLm+1ewLnKyeooV6wzvO05XKHilDx97g6YWBXQutw+adBKlx4ZdL2uLx6q1BeekMXHL4pOxT98UsQu4fS1NhGOn3jiCX366ad6+umnZbM1HddisTSdBMIwjOP2na3mfvko3b6nWe8HtBSXy6XC/Gyzyzitz6vKzS4BOCNxLpcKs7uZXQbQrGw2mzIz0lV5uFoWi0X79+7R5UV5+txtdmVA6/v+Fxb9MXWA/rpwqTJfWSbHzjKzS2qzgj36ml3CeTO9W/Xjjz+ut99+W7/+9a/VpcuxxfTS09Ml6bgW4Orq6nBrcnp6uoLBoNzupk/rw4cPh68HAADA2emdn6NG79ElnRp9fuXH+EyuCDDPZ9UB5a9K0Xuz/o9qZlwv4zwb6tqjUFKqjAgfbyyZHI6XLl0aDsa5ublNjnXu3Fnp6elavXp1eJ/X69XGjRvVr18/SVKvXr1kt9ubnHPgwAHt2rUr3D0bAAAAZ6dfYXcZxrGJuHxVe9U3tU10OARMEZI09ROH7k6aqIPzfq5QCg1x3+SfeIWMtMifwMy0p9wjjzyiv/3tb3rkkUeUmJioQ4cOSZLi4uIUFxcni8Wiq666Ss8995xyc3OVk5OjZ555Ri6XS5MmTZIkJSQkaPr06Vq2bJnS0tKUnJysX/ziFyooKNCwYcPM+moAAAARLSHOpYzUZDU0Hp1Y5avyrzS7X57+o9rkwgCTvbjb0P+r7Kr/vf1h5f3jJcWtec/sktqEYK+BZpfQLEwLxytWrJAk3XnnnU3233zzzbrlllskSXPmzJHX69Ujjzyi2tpaFRcXa9myZYqPjw+fv2DBAtlsNv3whz+U1+vV0KFDtXjx4uPGLgMAAODMFefn6sMNnynG6VAgGFQXq0dWi0MhVnZClKvyhtR/ZZyeGHajri0eqpQXn5TFF70z9Aa75Eb8Ek5fs7jdbh5x56l0+x798Hevm10GcFo/u3Wm+kXIhFyL1/y32WUAp7V42NUqTmdCLrRPdQ0ePfrsnxX775mrs7My9Vdrb729n1mrga8NSLXqLz0Pq9N//0KO8ra/IkhLaLzp+wqMmmp2Gc3C9Am5AAAA0PYkxLmU1fHYkpp7Kw7o0izaVIBv2lgdUv7qFP3rygdUe8m1UTdZl2GxKJjb0+wymg3hGAAAACc0uHcPNXiOdhc1DENJgVrF2aPr5R84naAhTVrj0IKMaTp0z8MKJaed/qJ2Ilg8REanLqc/MUIQjgEAAHBCA3rmy+k4NkVNZfk2zcph1mrgRJ7bFVK/L3NUdsfP5Rk0yuxyWoV/3HQpJtbsMpoN4RgAAAAn5LDb1TWzY3hZp0PVbo1OY8wxcDIHG0PqtzJOzw+fK/d198lwOM0uqcUYMS6FuuSZXUazIhwDAADgpC7s30sNnsbwdrBqj/qnsioIcCp3bbJqct0Q7Vv4uPzZ3c0up0X4pl7ZrrpUS4RjAAAAnEJhThclxMWFt3fu3Kmb2ldjEdAi1lYFlf9Jqj6a/Z+qm3K12tN0dobFqsDA4VI7m4CMcAwAAICTslqt6p2fI3/gaHfqUCikJG+1OsTyGgmcTiAkXbzGqfszL9Whex5SKDHF7JKaReCC8TKycswuo9nxVAMAAMApjRs2UKFgKLxdvnWzbiugazVwpp7eaWjg1lxtvesRNQ4cbnY5580/9lLJGWN2Gc2OcAwAAIBTSohzqVuXTIVCRwNyQ6NXBY56OXmTBM5YhSek4pXxenHkbar+3kIZdofZJZ2TQF6RQtntc2wFjzQAAACc1oQLBqmh0RfertxZpqtzI/PlHjDTraVWTfcM1b6FSxWIwNme/dO/J8Unml1GiyAcAwAA4LSyO3VQp/Rj4yUPHXZrTJrvFFcAOJmVh0IqXJuuldf8WHWTvhsxk3WFUtIV6lZodhkthnAMAACAMzJyUF81eLzh7fr9uzQu025eQUAE84WksWuceiD7MlXd9aCMhGSzSzot32XXy0jvaHYZLYZwDAAAgDPSv0d3xcfFhrd3796ta7sGTawIiHxPbTc0eEe+tt39qBr7lphdzkkZcQkK9hpgdhktinAMAACAM2K1WjWgZ768Pn94n2ffDlqPgfO0tyGkXivj9eq4O+W+5h4Ztrb3M+X9zi0yMruaXUaLIhwDAADgjI0Z0l9WqyW8/RWtx0CzueFTmy73X6iKex9XoA2tIxxKSlWw71Czy2hxhGMAAACcsdgYpwb0LJDXf6z1uGHfDk3IanstXUAk+qDy6GRdn8xZrLqLr2gTk3V5r75DRocss8tocYRjAAAAnJWJFw6W1XKs9Xj37t26NpvWY6C5NIakkatjtDj3ClXd+VMZJi6dFMzIVKiofY81/hrhGAAAIEqtWLFCM2bM0IgRIzRnzhxt2LDhjK47UetxdXmZZuXQegw0p19sMzS0vEA77nlM3uIhptTgm32njLQOpnx2ayMcAwAARKF33nlHS5cu1Q033KAXXnhBffv21fz581VRUXFG10+8cLCs33iV3F9xQDM6+WWznOIiAGdtd11IPVcm6PUJ98h91Z0ybLZW++xgl1wFC4pb7fPMRjgGAACIQi+99JIuueQSXXbZZcrLy9P999+vjIwMvfbaa2d0fWyMU8P69mwyc/X+rZ9pboGjpUoGotr3Ntp0pUbqwMKlCnTq0iqf6bvqDik5rVU+qy0gHAMAAEQZv9+vsrIylZQ0XVO1pKREpaWlZ3yf8SUD5bQf60pddbhaw+NrlRrDKybQEv5REVSPDR20/oafqm7sZS06WVegsI+CeUUt+AltD08uAACAKON2uxUMBpWW1rRFKC0tTVVVVWd8H4fdrhGD+sjT6Avv2/bZRv2oN6+YQEtpCEgXrYrRzwq+o8O3L5ERl9Dsn2FYrPLNvktKTGr2e7dlPLkAAACilMXSdICwYRjH7Tud4QOKlRAXK8M42obV6PMpqWavhqS13rhIIBo9slUq2dNTu+Y9Jm+vgc16b9/0axXKyW/We0YCwjEAAECUSUlJkc1mO66VuLq6+rjW5NOx2WyaMeYieTze8L5tW7/UPQWGmJsLaFm7aoMqXJmov05eoCPfvV2G9fx/KRVKTlNg5BTJHn3zBxCOAQAAoozD4VBRUZHWrFnTZP/q1avVr1+/s75fz7yu6tYlU8FQKLyvclupbi5gaSegNVy1waZrraN1YOFjCmRknde9Gm+8T0aH87tHpCIcAwAARKHZs2frrbfe0l/+8hft3LlTS5cu1aFDhzRz5sxzut+sCSPl9wfC2wcPHdaoxDqlOGk/BlrD3yqCKtrYURtvflD1oy45p3v4Bg5XqMfZ/4KsvSAcAwAARKEJEyZo4cKFevbZZ3Xttdfq008/1RNPPKGsrHNrMUpJTNAF/Xqp0Xtscq7tn23Uj4oZewy0lrqAdMGqWD3a6ypV3fpjGa74M77WcDjlv+JGqQUm+IoU9HUBAACIUrNmzdKsWbOa7X4TLhis0i07FQwFZbFY5PH6lOX+SmM7ddV7B4LN9jkATu3BLy16Oam3/t/8x9T5tV/LuWXTaa9pvOp2GdndW6G6touWYwAAADQLu92mS8dcoIbGY5Nz7di+TXNzfEpy0L0aaE3baoIqWJmk/3vpfToy6xYZlpNHv2BWN4UGj5DOcrb69oZwDAAAgGbTu3s3dcvqpGDwWEvxlk/X6qf96LAImOE76+y63jlWlQsfVSA987jjhs0m79wfyEjtYEJ1bQvhGAAAAM3qqsljFQwZ4W1Po1f2A1t1eVcCMmCGv+4Lqag0U5vm/pfqR0xpcszz3dsUyu1hUmVtC+EYAAAAzSox3qVpI0uadK/+6quvNKtDvTJief0EzFDrl4auitWTfa7V4Vt+JCPWJX9hH4UuHC/Z+MWVRDgGAABACxhS3EN5XTLlDxxb3qns03X6r768fgJm+nGZNPJAX+1e8Lgar1soJaeZXVKbwdMJAAAALeLqKWNlsx5bysnnD6ih/Atd351WKsBMXx4J6F/2bFm6Rvfs1N9GOAYAAECLcMXE6PLxw1XvaQzvq6io0Lh4t3ok8hoKmOXGAqcuzjnzNZCjBU8lAAAAtJje3bupOD9XXr8/vO+L0g1a3DukeHt0LxsDmKEg0ap5A1KU4CQKfht/IwAAAGhRV1w8QjEOhwzj6AzWhmFo64bVenQg3auB1uSyWfTbkSnqlugwu5Q2iXAMAACAFuV0ODR7ylh5vL7wvoZGrxp2fKoFRbykA63l1xfFa0gnl9lltFmEYwAAALS4bp0zNfHCwfJ8Y3mngwcPqXdgj8Z1sp3iSgDN4Yd9YzQlN9HsMto0wjEAAABaxYiBfdSjW9cm44+3bflSN3dpUJc4XkuBlnJZV5uu752sWDs/Z6fC3w4AAABahcVi0ZWTRysxLk6hUCi8//MNa/XzfhLzAwHNr3eyVT8anKyOcQxhOB0eQQAAAGg1DrtdN102WYHgsXAcCAa1q3SNHhvIyzvQnFKcFi27MFEFqYwzPhOEYwAAALSqlKQEfXfiKDV8Y/xxbV2DvDs2anFfAjLQHGwWaflF8RqclWB2KRGDcAwAAIBW16t7N40Y0EeN35jB+lBVlVIPbtadPVjiCThfjw9xaVy3JLPLiCiEYwAAAJhi4kWD1T07q8kEXfv27VMfX7m+m0NABs7Vkn5OXVGYJLvVYnYpEYVwDAAAAFNYLBZdM3W8OqQkyx8IhPfv2rFdk+MqNZolnoCztrDIrmuKkpQQwy+YzhbhGAAAAKax22266fIpiouJVfAbM1h/+cVnmptZqz4pBGTgTN2cb9ecQpcy4mPMLiUiEY4BAABgqtgYp275zjRZZJFhGOH9mzas1QMFXmWzBjJwWt/tZtPcHk7lZjDO+FzxpAEAAIDpkuLjNHfmFPn8gaYBee0qPdYnoBwCMnBSkzvbdE9Ph3pmpppdSkTjKQMAAIA2oWN6qq6bPkFe37EJuoKhkErXfKyfFwfULZ5XV+Dbhnew6Qe9HOrTJd3sUiIeTxgAAAC0GXldsjTz4pFN1kAOhkIq/eRj/by3X3kJvL4CXxuXadPiPjYNzCEYNweeLgAAAGhT+vforuljLmoSkEOhkD5d87Ee6uVTQSKvsMAlXWy6vzCkobkdzC6l3eDJAgAAgDZnaHEPXTZ2uDzfDMiGoY1rVuqnPb3qQUBGFLuqm01zu3h0YUFns0tpV3iqAAAAoE0a3LtQl48bIU+jL7zPMAx9+skqLe7RqF7JvMoi+tyUb9NVHeo1qneu2aW0OzxRAAAA0GYN7FWgKyaMbNKCbBiGSteu1o+6N2h4B9ZBRvSY19OumRkNGtM3XxaLxexy2h3CMQAAANq0/j266zsTR8vj/VZAXrdGN2Uc1JXd7CZWB7SO/+ht19S0Bg3v3d3sUtotU8Px+vXrde+992ratGkaNmyY3nrrrSbHDcPQ8uXLNXXqVI0cOVK33Xabtm/f3uQcn8+nRx99VBMmTNCoUaN077336sCBA635NQAAANDC+hbm6cpJY5u0IEvSl59/pjHaqXt7EZDRPjmt0uOD7JqQ5lFJUZ7Z5bRrpoZjj8ej/Px8LVy4UDExMccd/+Mf/6iXXnpJ9913n5577jmlpqbq7rvvVn19fficxx9/XO+9954efPBBLV++XPX19Vq4cKGCwWBrfhUAAAC0sOL8brpm2sVq9PpkGEZ4/66dO9X54Gd6bJBDNnqaoh1Jj7Fq+RCrhsV7NKgw1+xy2j1Tw/Hw4cN1xx13aPz48bJam5ZiGIZefvllzZkzR+PGjVN+fr4WLVqkhoYG/f3vf5ck1dXV6c0339Q999yjkpISFRUVacmSJdq2bZvWrFljxlcCAABAC+qZm607rrxUhmE0aQyprKyUb8tqLR9qV6KDhIzI1yfFpl/29alXnF99CnLNLicqtNkxx/v27VNVVZUuuOCC8L7Y2FgNHDhQpaWlkqTNmzcrEAiopKQkfE6nTp2Um5urTZs2tXrNAAAAaHmd0tM075qZine55PX7w/uP1NRp94YP9btBUpe4NvuaC5zWjGyb7utSrb4ZseqZl2N2OVGjzQ7OqKqqkiSlpaU12Z+WlqbKysrwOTabTSkpKced8/X1J7J169ZmrdXjPf05QFvg8Xia/d//ltDgYlgEIkNDM/9MFRYWNtu9gPYuIc6lu66eoefffEe7KyoVG+OUJHm8Pn225gM9MnCont8fp7f38/8piCwLi+zq5d+jsb2LlJwQb3Y5UaXNhuOvfXuKcsMwznva8uZ++SjdvqdZ7we0FJfLpcL8bLPLOK3Pq8rNLgE4I3Eulwqzu5ldBhC1HHa7brxskl7/x4cq3bpTrn8H5GAwpNK1q3VFQYGG9cnRzz4PKGSc5maAyVw2ix7qb1OSe5cuHT5YDnubj2rtTpvtb5Keni5Jx7UAV1dXh1uT09PTFQwG5Xa7m5xz+PDh8PUAAABov6xWq2ZNGKWxQ/ur4VszWe/Ytk2Ju9frD8Psyohts6+9gPqk2PT0oJCyPXt1+ahhBGOTtNmnROfOnZWenq7Vq1eH93m9Xm3cuFH9+vWTJPXq1Ut2u73JOQcOHNCuXbvUt2/fVq8ZAAAA5hg7dIBmTxkrvz+gYCgU3n+42q0da/+lXxZ7NbKjzcQKgRO7o4dd8ztWKsvq0cUXDDrvXrI4d6b+SqKhoUF79hztkhwKhVRRUaEtW7YoKSlJmZmZuuqqq/Tcc88pNzdXOTk5euaZZ+RyuTRp0iRJUkJCgqZPn65ly5YpLS1NycnJ+sUvfqGCggINGzbMzK8GAACAVtarezfNu3amnn/zbVW5axUb45Ak+fwBffrJSs3pWaSS9M5aujkgelnDbClOi37ez6aaHaUqKemvrpkdzS4p6pkajjdv3qzbb789vL18+XItX75c06ZN06JFizRnzhx5vV498sgjqq2tVXFxsZYtW6b4+GMD0xcsWCCbzaYf/vCH8nq9Gjp0qBYvXiybjd8MAgAARJvkhHjdeeV0/c8/V2r95q2Kd8WGj237skyd0iv19LABemBTSAc8oVPcCWg5ozradEu2R4d2btE1k8YoLjbG7JIgyeJ2u/nF2Xkq3b5HP/zd62aXAZzWz26dqX4RMiHX4jX/bXYZwGktHna1itOZkAtoq0q37tAb//hQdptNVuux0YQOu109+w3U39yJemlXwMQKEW1sFukHve3KrvtKWYkOjRnSn27UbUibHXMMAAAAnI9+hd01b/ZMxcXGyus7th6yPxDQZ+s/UUnjZv1mqF3pMbwSo+UNTrPq2aFS8u51Gl2cp7FDBxCM2xieBAAAAGi3UpISdPfVl6lPQZ4aPF4ZxrFOk/v27df+9R/oyd4NujaP2YHRMuLsFv1Xf4fmJu9VXXmZbpg+QV06ZZhdFk6AcAwAAIB2zW63adaEkZozfYIsFot8/mOtyF6/X5vWrdGQ+i/09FCbusTxeozmM6WzXcsHBNT42fsq6JCk2VPHy+lwmF0WToKffgAAAESFwpwuWvi9WeqRk616T2OTVuT9FRXatfZfeii/RguKHHLwlozzkBFr1a8G2zUxWKa9ZaW66fIpGlLcw+yycBr82AMAACBqxDgdunrqOF0zdZwsFou832hFDgSD+vzT9eq4d42eGRTS9GxWP8HZsVqkmwscerxnnfave199u2XpllnTlJKYYHZpOAOEYwAAAESdXt276d45s1TcvZsavtWK7D5Sq8/WfKiLg1/qD8OsKk4mJOP0JnW26fmhUt7+1arZ/5Xumj1DQ4p7MOlWBGHmAQAAAEQlp8Oh70wcrWF9ivTaux/IXVsn1zfWm927d5+s+/ZrYc8iVeVl6eHNIR32sjYymuqfatM9hYZqy8u0efUBXX7xCBXmdDG7LJwDWo4BAAAQ1bp17qT5187UxIuGKBgMNelqHTIMbSnbrPrPPtQviuo1r8iuGBqSISk7zqpfDrbrzrS92vT+20qLi9HCObMIxhGMlmMAAABEPavVqhED+2hocU/93w9WaWPZdsU4HbJaj7YlNfp8+nzDJ8pMTtTT/ftoXUOcfrfVr8agyYWj1SU7LbqvyKaugSp9+tE6dc3soHnXzFRqcqLZpeE8EY4BAACAf4txOjRz/EiNGdJfr737ocr3HVCcKyY8btR9pFbutSuVmZSgp/v30QZPvH67NaCGgHGaOyNISs+/AAATN0lEQVTSpcVYNa+HTd2tNfp8w1p95YrRjZdNUtesjmaXhmZCOAYAAAC+JS05SXOvmKot5Xv013+ulLu2TnGu2PBxd02d3GtXKSMxXr/r20efeRP01JaA6gjJ7U6my6p5PazqHHKrrHSDNlssmjqqRH0Lcplsq50hHAMAAAAn0aNbthZ87wqt37xN//zkU7nr6hT/jZB8pLZeR9atVmJCnH7Tp482+xP1221BJu5qB4qSbbotX0pprFLZhlIdDoU0anA/DR9QHO5uj/aFcAwAAACcgtVq1ZDiHhrcu1Abv9yu99Zs1OEjtU26W9fWNeiz9WuUEOfS44U9VeNM1Z++smjNoYDJ1eNsjc206+rskKzuvdq86gvts9o0uHcPjR3WX06Hw+zy0IIIxwAAAMAZsFgsGlhUoAE987Vp2y79Y9V6VblrmoTkugaPNpdulNVi0Y3duum2wV218ohTf9oZkCdIl+u2qqPLqpu629QzplF1Fdv1+b92KDY2RiMG9tWIQX3ksBObogH/lAEAAICzYLFY1K8wT30LcrV5x1d6e+U6Hao+IlesM9zdNmQY2rlrl7RrlwqSk/S7Pj21z5Kop7cb2l7LFNdtgc0iTe7s0CWZQbk8VSrfukVrDx9RanKiJo8YpmF9espmY92uaEI4BgAAAM6BxWJR7/xu6tU9R3sOHNQ/Vm/Uzr37ZbFYFOM81v328JEaHd7wiRx2u/4jv0Chwg76vMGp/y4PqtLD2OTWlpNg0415FnV3eFS950ttX7VPHq9fnTuk6Zpp41WU15WJtqIU4RgAAAA4DxaLRV0zO+r6GRPV0OjVv9aV6tMvd6i2vqFJl2t/IKCtX5ZJKlOH+Dj9PDdfPleqNtQ69OevmMSrJeUm2nRlV6sKYn2y1R9Q+eat+uRIrWKdMSrMydbYYf3VMS3V7DJhMsIxAAAA0EziYmM0efhQTbpoiMp27tb7a0u1p/KgnA57k3GrtfUNKvt8kySpW2KCHs/vLk9sij454tBruwM64mN88vnqnWLTd7palOPwSrWV2rNtl8rq6uX1+dW5Y7pmjB2uAT3zZbfTdRpHEY4BAACAZmaxWNSre456dc+Ru6ZO/1pfqq3le3W4pk6uGEeTsazu2jq5PyuVJPVMTtKThd3ldSZoX8Cpv+2X1lUFxFxep+ewSkPS7bq0s5Rla5Tv8F7t/eIrfenzqd7TqIQ4l/oU5Grs0AFKSUowu1y0QYRjAAAAoAWlJCVo+piLZBiGKg+79eGGz7Rjz365a+vkio2R7Rtr5h4+UqPDmzZKkpwOu67PzNRd/TurxurS5jq73toXUnkdE3pJR8Pw4HS7JnSyKMvhU0LIo9qD+7WvtEJf+P1qaPQqLjZWXTMzNLS4SD1zs1mfGKdEOAYAAABagcViUaf0VF1x8UgZhqG9lYf08cYvtGPvftXWN8gV42zSouzzB1S+e4+0e48kqXN8nP6zS7asiemqUYx2emz68KChz9wBeaMgLzut0oA0hyZmGurs8Csh1KjaQ/t1YPMBlfv9CoZC8ni8SoyPU16XLA3r21Pdu2QRiHHGCMcAAABAK7NYLMru1EHfnTRahmFo9/5KrSvbpt0Vlapy1ygQDCn+G5N5SVJNfYNqtmwJb6e7YnVTRobie3dUo82leotTW+qs+qhK2lztVyCCu2J3iLWqX6pNw9KkTs6g4g2fYkKNqquqVMW/w7AkNXp9CgRDSkmMV0HXzirp20tdMzsw2zTOCeEYAAAAMJHFYlFO507K6dxJ0tHA92X5bm3aslP7D1XJXVsvh92mGKezyXX1nkbVf6NlWZK6xsfpjowOisvOkNfiVKPFrkY5tMdj0ec10va6kHbXBdvEGOZ4u0XZ8TblxFtVmBBStzgpweJXvOFTqLFOdYcrdehLt/b7/OFrvg7DiXEudUpPVWFOZxUX5ColMYFAjPNGOAYAAADakNgYp/r3yFf/HvmSpOqaWn365Xbt2FuhKneNaus9CgQDcsXGyG5rOtNyTX2DaurLpfLyJvszXLGakZggV4dUxeQlyWdxyGtxyCer/LLJ7beoolGq8EqHfRYd8YV0xBdSjc+Q3zAUMqSQoZOGaqtFSnRYlOiwHv1vp1XJdinNaSjFIaU7pTRHSE4FFKugnArK4m9UY32NGutqVPNVg6o9jTpsHPuAUCgkj9cnw5AS4mLVKT1VBV07q09BrlKTEgnDaHaEYwAAAKANS01K1JihAzRm6NFtj9ervQcOqWzXblUcqlbVkSOqq/coFDIUG+M84dJE9Z5G1XsapcpDJ/wMh92uQleM+sXEyOl0ypoUK3tMrOwOpyxWqywWS/iPZNHRCPv1f0sWI6SA36eAz6egv1Ehv09+r0/eOr98Pr+8fr8O+gMn/Y7+QECNXp/sNpviYmOVmpSgtKREde/aWXldOhGG0SoIxwAAAEAEccXEqCCniwpyuoT31XsatfvAQe3YvV+Hj9SotsGjugaP6hsa5Q8GZRghxTidcthtJwyZ/kBA7tqA3LX1LVKzYRjyBQLyev2yWiyy2ayKdToV74pVcmK8MjPSVJjTWVkdMhQXG9MiNQCnQzgGAAAAIly8K1ZFuV1VlNu1yf5gMKgjdfU6VF2j3RWVqjx8RI1erzw+n7w+n7y+gLw+v0KhkEJGSCHDUDAY0tH8bPn6P5LFIosUDtYWSUHDUCgUklUWWaxWWS2Wo39sFjlsdtkddsXFxCjeFasEV6w6pCUrq0O60pOTlBgfpxino3X/koDTIBwDAAAA7ZTNZlNacpLSkpPUIzf7hOcYhiGfP6BGn09en18er1fBYFDBYEhBw5ARCikUMhQyjKMBOmQc7cLtdCghzqUYp0MxToecDodiHA7ZbFa6QCMiEY4BAACAKGaxWMIBF4hmrIgNAAAAAIh6hGMAAAAAQNQjHAMAAAAAoh7hGAAAAAAQ9QjHAAAAAICoRzgGAAAAAEQ9wjEAAAAAIOoRjgEAAAAAUY9wDAAAAACIeoRjAAAAAEDUIxwDAAAAAKIe4RgAAAAAEPUIxwAAAACAqEc4BgAAAABEPcIxAAAAACDqEY4BAAAAAFGPcAwAAAAAiHqEYwAAAABA1CMcAwAAAACiHuEYAAAAABD1CMcAAAAAgKhHOAYAAAAARD3CMQAAAAAg6hGOAQAAAABRj3AMAAAAAIh6hGMAAAAAQNQjHAMAAAAAol67CccrVqzQjBkzNGLECM2ZM0cbNmwwuyQAAAAAQIRoF+H4nXfe0dKlS3XDDTfohRdeUN++fTV//nxVVFSYXRoAAAAAIAJY3G63YXYR5+uGG25QQUGBHnjggfC+K664QuPGjdOdd95pYmUAAAAAgEgQ8S3Hfr9fZWVlKikpabK/pKREpaWlJlUFAAAAAIgkER+O3W63gsGg0tLSmuxPS0tTVVWVSVUBAAAAACJJxIfjr1kslibbhmEctw8AAAAAgBOJ+HCckpIim812XCtxdXX1ca3JAAAAAACcSMSHY4fDoaKiIq1Zs6bJ/tWrV6tfv34mVQUAAAAAiCR2swtoDrNnz9aiRYvUu3dv9e/fX6+//roOHTqkmTNnml0aAAAAACACtItwPGHCBB05ckTPPvusDh06pPz8fD3xxBPKysoyuzScgxUrVuiFF15QVVWVunfvrgULFmjgwIFmlwVEpPXr1+vFF19UWVmZDh48qB//+Me65JJLzC4LAACgzWkX4ViSZs2apVmzZpldBs7TO++8o6VLl+oHP/iB+vfvrxUrVmj+/Pl65ZVXlJmZaXZ5QMTxeDzKz8/X1KlTtXjxYrPLAQAAaLMifswx2peXXnpJl1xyiS677DLl5eXp/vvvV0ZGhl577TWzSwMi0vDhw3XHHXdo/Pjxslp55AMAAJwMb0poM/x+v8rKylRSUtJkf0lJiUpLS02qCgAAAEA0IByjzXC73QoGg8ctwZWWlnbcUl0AAAAA0JwIx2hzLBZLk23DMI7bBwAAAADNiXCMNiMlJUU2m+24VuLq6urjWpMBAAAAoDkRjtFmOBwOFRUVac2aNU32r169Wv369TOpKgAAAADRoN0s5YT2Yfbs2Vq0aJF69+6t/v376/XXX9ehQ4c0c+ZMs0sDIlJDQ4P27NkjSQqFQqqoqNCWLVuUlJTE8mgAAADfYHG73YbZRQDftGLFCr3wwgs6dOiQ8vPzNX/+fA0aNMjssoCItG7dOt1+++3H7Z82bZoWLVpkQkUAAABtE+EYAAAAABD1GHMMAAAAAIh6hGMAAAAAQNQjHAMAAAAAoh7hGAAAAAAQ9QjHAAAAAICoRzgGAAAAAEQ9wjEAAAAAIOoRjgHogw8+0PLly80uAwAAADAN4RiAPvzwQ/3+9783uwwAAADANIRjAAAAAEDUIxwDEWr79u269957NW7cOI0cOVI33nijPv744/Dxt956S8OGDdO+ffuaXLdv3z4NGzZMb731liRpyZIleuONNyRJw4YNC//55nVvv/22brzxRo0aNUrjxo3T3Llz9f777ze57//8z/9o9uzZGjFihCZNmqRFixbp4MGDTc5ZsmSJRowYocrKSt13330aM2aMpkyZohdffFGS9NVXX+mee+7R6NGjNW3aNL3++uvHfW+/368//OEPmjVrloYPH67JkyfroYceUm1t7Xn8bQIAACDa2c0uAMDZKy8v18033yyn06mrr75acXFx+utf/6qFCxfqoYce0tixY8/4XpdffrkOHDigtWvXasmSJeH9qampkqRnnnlGv/3tb9W7d2/ddNNNio2NVVlZmVatWqXRo0dLkp5//nk99dRTGjhwoO6++24dOHBAr776qjZu3Kg//elPSkxMDN83FApp/vz56tOnj+666y69++67evLJJxUfH69nn31Wo0eP1qhRo/Tmm2/q4YcfVnFxsXr27ClJMgxD3//+97V27VpNnz5dBQUF2rNnj1599VWVlZXpD3/4g+x2HmsAAAA4e7xFAhHoN7/5jRobG/Xss88qNzdXkjRjxgzNnj1bTzzxRDi0nol+/fqpa9euWrt2raZMmdLk2J49e7R8+XJddNFFeuyxx5oET8MwJElut1tPP/20Bg8erGXLloXP6d+/v+6//3796U9/0u233x6+LhAIaPz48brpppskSVOnTtW0adP00EMP6YEHHtD06dMlSaNHj9b06dP15ptv6v7775ck/f3vf9fHH3+sp556SkOGDAnfc9CgQVqwYIHefvttTZ069Yy/OwAAAPA1ulUDESYYDGrlypUaOXJkOBhLUkJCgmbOnKmKigpt27atWT7rn//8p0KhkObOnXtci6zFYpEkrVmzRj6fT1dffXWTc0aPHq1u3brpo48+Ou6+M2bMCP/vuLg45eXlyWq1Ngm2HTp0UMeOHbV3797wvnfffVc5OTkqKCiQ2+0O/ykuLlZcXJzWrl3bLN8bAAAA0YeWYyDCVFdXy+PxNAnGX8vLy5Mk7d+/v1k+a8+ePZKk/Pz8k57z9Wd169btuGO5ublav359k312u10ZGRlN9iUkJCg9Pf24AJ6QkKCamprw9u7du1VeXq6JEyeesJbq6upTfBsAAADg5AjHQDvydVfnUwmFQmd1v69biJurHqv1xB1WbDbbae8XCoWUl5ene++994THU1JSzq5AAAAA4N8Ix0CESU1Nlcvl0q5du447Vl5eLknKysoKh9q6urom53x79mpJJw3AXbt2lWEY2rFjh3r37n3Cc7KyssKf/e3W4/Ly8vDx5pCdna3NmzdryJAhJw3ZAAAAwLng7RKIMDabTRdeeKE+/PDDcBiWpPr6er3++uvKzMxUQUGBsrOzJem4cbgrVqw47p4ul0uSmnRhlqQxY8bIarXq6aefVjAYbHLs61bhYcOGyel06uWXX25yzgcffKDy8nINHz78PL5tUxMmTNDhw4f16quvHncsEAgcVz8AAABwpmg5BiLQ7bffrtWrV+vWW2/VrFmz5HK59NZbb+nAgQN66KGHZLVa1b17d/Xv31+/+c1vVFNTo7S0NH3wwQc6cuTIcffr1auXJOnRRx/VRRddJJvNppEjRyo7O1s33XSTnn76ac2dO1djx44NL+UUExOj73//+0pJSdHcuXP11FNP6a677tKYMWPCSzllZWXp2muvbbbvPXnyZL333ntaunSp1q9fr0GDBkk6Ojb6f//3fzVv3ryTjkcGAAAAToVwDESgbt266fe//72eeuopvfjiiwoEAiosLNTSpUubtNT+5Cc/0cMPP6wXX3xRsbGxmjBhgubPn6+rr766yf3Gjx+vTZs26Z133tHbb78twzD0l7/8RS6XS3PnzlXnzp31yiuvaPny5XI6nerevbu+973vha+/7rrrlJycrFdeeUW//OUvFRcXp3HjxunOO+9sssbx+bJarXr44Yf15z//WW+99ZY+/vhjORwOZWZmavLkyRowYECzfRYAAACii8Xtdp9+Bh8AAAAAANoxxhwDAAAAAKIe4RgAAAAAEPUIxwAAAACAqEc4BgAAAABEPcIxAAAAACDqEY4BAAAAAFGPcAwAAAAAiHqEYwAAAABA1CMcAwAAAACi3v8HlA8boz306W0AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"## <a id='4b'>IVb. BIVARIATE EXPLORATION & NEW FEATURE CREATION</a>"},{"metadata":{},"cell_type":"markdown","source":"### FEAT1: AGE & PREGNANCIES"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('pregnancies','age')","execution_count":42,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"eb2ae640-629e-4bf9-ab2b-122000cc6d56\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"eb2ae640-629e-4bf9-ab2b-122000cc6d56\")) {                    Plotly.newPlot(                        \"eb2ae640-629e-4bf9-ab2b-122000cc6d56\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [6, 8, 0, 3, 2, 8, 10, 1, 5, 7, 0, 7, 1, 7, 9, 11, 10, 7, 3, 9, 2, 4, 9, 0, 7, 8, 7, 8, 7, 0, 2, 13, 0, 5, 15, 4, 1, 1, 0, 3, 8, 7, 4, 5, 0, 0, 1, 1, 0, 4, 9, 3, 10, 9, 8, 7, 17, 0, 6, 6, 6, 8, 0, 5, 7, 8, 1, 8, 5, 7, 11, 5, 3, 4, 4, 8, 5, 7, 0, 9, 12, 5, 5, 5, 0, 2, 3, 4, 6, 4, 7, 0, 9, 3, 6, 9, 12, 1, 11, 3, 4, 0, 2, 10, 7, 0, 7, 2, 1, 0, 2, 1, 2, 14, 0, 2, 5, 10, 0, 2, 2, 7, 3, 6, 3, 0, 13, 1, 2, 1, 5, 9, 7, 5, 9, 1, 13, 1, 5, 4, 6, 1, 3, 12, 4, 5, 8, 5, 5, 4, 0, 3, 4, 5, 5, 4, 8, 1, 0, 3, 4, 3, 8, 4, 1, 1, 0, 0, 8, 4, 0, 0, 2, 14, 10, 8, 2, 3, 0, 0, 4, 7, 6, 0, 12, 3, 9, 9, 4, 3, 8, 3, 10, 8, 5, 6, 0, 0, 2, 2, 0, 8, 8, 3, 11, 3, 0, 1, 7, 4, 1, 3, 7, 11, 9, 0, 7, 13, 7, 6, 1, 0, 11, 2, 3, 1, 8, 9, 6, 4, 10, 6, 9, 3, 0, 4, 1, 13, 7, 7, 3, 6, 1, 10, 9, 2, 10, 7, 3, 5, 1, 3, 8, 2, 1, 11, 9, 1, 3, 6, 4, 0, 8, 1, 0, 6, 9, 1], \"y\": [50, 32, 33, 26, 53, 54, 34, 59, 51, 32, 31, 31, 32, 41, 29, 51, 41, 43, 28, 46, 27, 56, 54, 25, 31, 58, 41, 39, 42, 38, 28, 42, 26, 37, 43, 60, 31, 33, 24, 24, 46, 39, 61, 38, 25, 23, 26, 40, 62, 33, 33, 30, 42, 42, 43, 36, 47, 32, 41, 36, 29, 36, 26, 37, 41, 60, 33, 31, 25, 36, 40, 29, 23, 26, 29, 57, 52, 41, 24, 36, 38, 25, 32, 41, 21, 66, 24, 22, 46, 26, 51, 23, 32, 22, 33, 49, 44, 21, 51, 27, 35, 25, 28, 38, 29, 28, 47, 52, 29, 25, 31, 24, 29, 46, 30, 25, 28, 47, 25, 30, 27, 43, 29, 59, 25, 36, 43, 30, 23, 41, 44, 33, 41, 37, 49, 28, 44, 29, 29, 67, 29, 45, 25, 58, 32, 35, 45, 58, 27, 31, 22, 25, 31, 35, 41, 46, 39, 28, 21, 22, 37, 28, 36, 31, 38, 43, 29, 41, 33, 30, 25, 22, 23, 38, 51, 38, 29, 35, 31, 24, 45, 55, 41, 35, 46, 28, 53, 45, 23, 32, 43, 27, 56, 37, 53, 54, 28, 33, 21, 62, 21, 52, 41, 52, 45, 44, 22, 38, 54, 36, 22, 36, 40, 50, 50, 24, 34, 38, 32, 50, 33, 22, 42, 25, 27, 22, 43, 40, 40, 70, 40, 31, 53, 25, 26, 27, 46, 44, 43, 43, 31, 49, 52, 30, 45, 23, 38, 34, 31, 52, 42, 34, 22, 24, 42, 48, 45, 27, 36, 50, 22, 26, 45, 37, 52, 66, 43, 47]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [1, 1, 5, 10, 4, 10, 1, 3, 8, 1, 13, 5, 5, 3, 6, 10, 4, 11, 3, 7, 7, 7, 1, 2, 7, 1, 1, 5, 7, 1, 0, 0, 0, 2, 5, 2, 5, 2, 1, 4, 5, 4, 1, 1, 7, 5, 2, 3, 2, 7, 0, 2, 13, 2, 1, 1, 4, 7, 2, 6, 2, 1, 6, 1, 0, 1, 2, 1, 1, 4, 3, 1, 4, 5, 4, 4, 6, 2, 5, 3, 1, 8, 2, 2, 0, 0, 0, 5, 3, 5, 2, 4, 0, 9, 2, 5, 2, 1, 4, 1, 2, 1, 2, 4, 7, 0, 2, 3, 4, 4, 3, 2, 1, 2, 6, 5, 6, 0, 1, 5, 4, 3, 9, 8, 1, 0, 1, 0, 2, 6, 5, 1, 2, 0, 7, 6, 7, 7, 1, 1, 0, 4, 0, 1, 4, 3, 0, 1, 4, 2, 10, 0, 9, 1, 9, 2, 2, 0, 3, 2, 1, 3, 4, 3, 5, 2, 0, 2, 3, 1, 13, 2, 0, 5, 2, 10, 7, 7, 5, 4, 5, 0, 0, 6, 0, 8, 5, 3, 2, 0, 6, 0, 3, 2, 3, 3, 4, 2, 1, 10, 6, 8, 2, 12, 1, 0, 0, 1, 1, 1, 5, 8, 8, 1, 3, 3, 4, 4, 3, 1, 3, 12, 5, 5, 4, 5, 0, 3, 0, 0, 2, 2, 0, 1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 1, 4, 2, 3, 3, 6, 9, 2, 0, 6, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 0, 2, 3, 1, 2, 1, 12, 5, 1, 6, 2, 4, 1, 0, 0, 1, 0, 2, 2, 1, 5, 9, 9, 1, 8, 5, 10, 0, 0, 0, 6, 1, 0, 0, 7, 4, 0, 7, 8, 4, 0, 4, 0, 1, 0, 4, 8, 2, 2, 4, 3, 6, 5, 2, 6, 2, 3, 7, 3, 10, 1, 2, 8, 0, 9, 2, 3, 7, 13, 6, 2, 3, 6, 3, 3, 1, 3, 0, 0, 2, 0, 1, 6, 1, 0, 0, 0, 4, 1, 4, 1, 4, 1, 3, 6, 1, 1, 7, 1, 8, 11, 11, 1, 6, 0, 2, 1, 6, 4, 3, 2, 3, 2, 1, 1, 6, 10, 6, 12, 8, 1, 6, 0, 2, 2, 6, 0, 1, 1, 1, 6, 1, 1, 1, 0, 1, 3, 6, 3, 6, 2, 2, 2, 6, 0, 2, 4, 0, 0, 5, 4, 0, 2, 1, 10, 5, 2, 1, 0, 4, 4, 3, 2, 0, 1, 1, 5, 2, 1, 2, 1, 11, 10, 1, 6, 9, 6, 1, 10, 3, 8, 0, 2, 2, 0, 5, 2, 3, 1, 1, 8, 2, 2, 0, 4, 4, 2, 2, 4, 6, 2, 3, 5, 0, 3, 10, 1, 4, 1, 5, 1, 4, 1, 0, 2, 2, 2, 2, 4, 0, 8, 2, 3, 1, 13, 12, 1, 1, 3, 7, 1, 2, 9, 10, 2, 5, 1], \"y\": [31, 21, 30, 29, 30, 57, 33, 27, 50, 22, 57, 38, 60, 22, 28, 45, 33, 35, 26, 37, 48, 40, 29, 22, 24, 22, 26, 30, 42, 21, 31, 44, 22, 21, 36, 24, 32, 54, 25, 27, 26, 23, 22, 22, 41, 27, 24, 22, 22, 36, 22, 27, 45, 26, 24, 21, 34, 42, 21, 40, 24, 22, 23, 22, 21, 24, 27, 21, 27, 37, 25, 23, 25, 25, 22, 21, 24, 23, 69, 30, 23, 39, 26, 31, 21, 22, 29, 28, 55, 38, 22, 23, 21, 41, 34, 65, 22, 24, 37, 23, 21, 23, 22, 36, 45, 27, 21, 22, 34, 29, 29, 25, 23, 33, 42, 47, 32, 23, 21, 27, 40, 21, 40, 42, 21, 21, 28, 32, 27, 55, 27, 21, 25, 24, 60, 32, 37, 61, 26, 22, 26, 31, 24, 22, 29, 23, 27, 21, 22, 29, 41, 23, 34, 23, 42, 27, 24, 25, 30, 25, 24, 34, 24, 63, 43, 24, 21, 21, 40, 21, 52, 25, 23, 57, 22, 39, 37, 51, 34, 26, 33, 21, 65, 28, 24, 58, 35, 37, 29, 21, 41, 22, 25, 26, 30, 28, 31, 21, 24, 37, 37, 46, 25, 44, 22, 26, 44, 22, 36, 22, 33, 57, 49, 22, 23, 26, 29, 30, 46, 24, 21, 48, 63, 65, 30, 30, 21, 22, 21, 21, 25, 28, 22, 22, 35, 24, 22, 21, 25, 25, 24, 28, 42, 21, 37, 25, 39, 25, 55, 38, 26, 25, 28, 25, 22, 21, 22, 27, 26, 21, 21, 21, 25, 26, 23, 38, 22, 29, 36, 41, 28, 21, 31, 22, 24, 28, 26, 26, 23, 25, 72, 24, 62, 24, 81, 48, 26, 39, 37, 34, 21, 22, 25, 27, 28, 22, 22, 50, 24, 59, 31, 39, 63, 29, 28, 23, 21, 58, 28, 67, 24, 42, 33, 22, 66, 30, 25, 39, 21, 28, 41, 40, 38, 21, 21, 64, 21, 58, 22, 24, 51, 41, 60, 25, 26, 26, 24, 21, 21, 24, 22, 31, 22, 24, 29, 31, 24, 46, 67, 23, 25, 29, 28, 50, 37, 21, 25, 66, 23, 28, 37, 30, 58, 42, 35, 24, 32, 27, 22, 21, 46, 37, 39, 21, 22, 22, 23, 25, 35, 36, 27, 62, 42, 22, 29, 25, 24, 25, 34, 46, 21, 26, 24, 28, 30, 21, 25, 27, 23, 24, 26, 27, 30, 23, 28, 28, 45, 21, 21, 29, 21, 21, 45, 21, 24, 23, 22, 31, 48, 23, 28, 27, 24, 31, 27, 30, 23, 23, 27, 28, 27, 22, 22, 41, 51, 54, 24, 43, 45, 49, 21, 47, 22, 68, 25, 23, 22, 22, 69, 25, 22, 29, 23, 34, 23, 25, 22, 28, 26, 26, 41, 27, 28, 22, 24, 40, 21, 32, 56, 24, 34, 21, 42, 45, 38, 25, 22, 22, 22, 22, 53, 28, 21, 42, 21, 26, 22, 39, 46, 32, 28, 25, 39, 26, 22, 33, 63, 27, 30, 23]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"PREGNANCIES vs AGE\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"PREGNANCIES\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"AGE\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('eb2ae640-629e-4bf9-ab2b-122000cc6d56');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat1']=0\ndf.loc[(df['age']<=30) & (df['pregnancies']<=6),'feat1']=1","execution_count":43,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat1',':AGE <= 30 & PREGNANCIES <= 6')","execution_count":44,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"35f5034f-d221-41de-8533-64541be15a8e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"35f5034f-d221-41de-8533-64541be15a8e\")) {                    Plotly.newPlot(                        \"35f5034f-d221-41de-8533-64541be15a8e\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"182\", \"86\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [182, 86]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"325\", \"175\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [1, 0], \"y\": [325, 175]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat1 :AGE <= 30 & PREGNANCIES <= 6\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('35f5034f-d221-41de-8533-64541be15a8e');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat1','AGE <= 30 & PREGNANCIES <= 6')","execution_count":45,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"4b98110e-a18c-42e0-9342-6fc3ef8ed683\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"4b98110e-a18c-42e0-9342-6fc3ef8ed683\")) {                    Plotly.newPlot(                        \"4b98110e-a18c-42e0-9342-6fc3ef8ed683\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [182, 86]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [1, 0], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [325, 175]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT1 distribution by target: AGE <= 30 & PREGNANCIES <= 6\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('4b98110e-a18c-42e0-9342-6fc3ef8ed683');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT2: AGE VS BMI"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('bmi','age')","execution_count":46,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"e085b90f-ebdb-4ec0-9fbc-e07486279ca5\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"e085b90f-ebdb-4ec0-9fbc-e07486279ca5\")) {                    Plotly.newPlot(                        \"e085b90f-ebdb-4ec0-9fbc-e07486279ca5\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [33.6, 23.3, 43.1, 31.0, 30.5, 35.41, 38.0, 30.1, 25.8, 30.0, 45.8, 29.6, 34.6, 39.8, 29.0, 36.6, 31.1, 39.4, 31.6, 32.9, 38.2, 37.1, 45.4, 42.0, 39.1, 33.7, 37.7, 32.9, 32.8, 32.5, 32.9, 43.4, 43.2, 48.8, 37.1, 23.8, 49.7, 39.0, 37.4, 33.3, 34.0, 30.5, 31.2, 34.0, 53.2, 33.3, 55.0, 34.5, 27.9, 29.7, 33.3, 34.5, 32.4, 34.3, 47.9, 50.0, 40.9, 31.6, 29.9, 30.8, 35.4, 32.7, 67.1, 39.1, 35.9, 30.1, 32.0, 27.9, 31.6, 30.4, 52.3, 39.4, 22.9, 34.8, 30.9, 37.5, 37.7, 35.5, 42.6, 34.2, 41.8, 35.8, 29.0, 37.8, 34.6, 31.6, 37.2, 44.0, 46.2, 43.6, 35.9, 44.1, 30.8, 25.6, 27.1, 30.0, 27.6, 33.6, 33.3, 30.0, 32.0, 36.3, 27.5, 45.6, 26.5, 37.9, 30.4, 27.0, 45.6, 36.6, 43.3, 40.5, 28.0, 36.6, 32.3, 31.6, 52.9, 25.5, 30.5, 32.9, 26.6, 35.9, 30.5, 23.5, 31.6, 27.4, 26.8, 35.1, 45.5, 43.3, 31.2, 34.2, 39.9, 41.0, 30.4, 33.3, 39.9, 36.5, 31.2, 38.5, 27.6, 32.8, 38.4, 39.2, 48.3, 32.3, 43.3, 32.0, 45.7, 32.9, 34.3, 34.9, 32.0, 35.0, 32.9, 28.9, 25.9, 42.4, 34.6, 35.7, 38.5, 26.4, 42.9, 37.0, 34.1, 35.0, 42.4, 34.3, 30.5, 29.7, 59.4, 33.6, 28.9, 33.6, 37.6, 30.0, 33.7, 35.5, 44.2, 42.3, 28.9, 25.1, 39.0, 36.5, 29.7, 31.6, 30.3, 34.2, 32.9, 36.4, 39.4, 32.4, 34.9, 34.5, 43.6, 33.8, 41.3, 34.3, 42.9, 34.7, 42.1, 28.7, 34.9, 33.3, 46.8, 34.4, 32.0, 36.8, 35.2, 28.4, 40.0, 32.9, 38.2, 36.1, 28.2, 32.4, 27.4, 31.2, 40.9, 29.5, 23.4, 37.8, 28.3, 38.7, 34.2, 42.9, 37.6, 37.9, 33.7, 32.5, 27.5, 30.9, 24.8, 36.0, 49.6, 32.3, 46.1, 42.3, 38.5, 30.4, 29.9, 27.6, 35.0, 35.41, 32.8, 38.0, 41.2, 33.9, 33.8, 35.6, 29.3, 28.4, 28.4, 44.5, 39.5, 42.3, 32.7, 49.3, 36.4, 24.3, 31.2, 43.3, 32.4, 36.5, 36.3, 35.5, 44.0, 30.1], \"y\": [50, 32, 33, 26, 53, 54, 34, 59, 51, 32, 31, 31, 32, 41, 29, 51, 41, 43, 28, 46, 27, 56, 54, 25, 31, 58, 41, 39, 42, 38, 28, 42, 26, 37, 43, 60, 31, 33, 24, 24, 46, 39, 61, 38, 25, 23, 26, 40, 62, 33, 33, 30, 42, 42, 43, 36, 47, 32, 41, 36, 29, 36, 26, 37, 41, 60, 33, 31, 25, 36, 40, 29, 23, 26, 29, 57, 52, 41, 24, 36, 38, 25, 32, 41, 21, 66, 24, 22, 46, 26, 51, 23, 32, 22, 33, 49, 44, 21, 51, 27, 35, 25, 28, 38, 29, 28, 47, 52, 29, 25, 31, 24, 29, 46, 30, 25, 28, 47, 25, 30, 27, 43, 29, 59, 25, 36, 43, 30, 23, 41, 44, 33, 41, 37, 49, 28, 44, 29, 29, 67, 29, 45, 25, 58, 32, 35, 45, 58, 27, 31, 22, 25, 31, 35, 41, 46, 39, 28, 21, 22, 37, 28, 36, 31, 38, 43, 29, 41, 33, 30, 25, 22, 23, 38, 51, 38, 29, 35, 31, 24, 45, 55, 41, 35, 46, 28, 53, 45, 23, 32, 43, 27, 56, 37, 53, 54, 28, 33, 21, 62, 21, 52, 41, 52, 45, 44, 22, 38, 54, 36, 22, 36, 40, 50, 50, 24, 34, 38, 32, 50, 33, 22, 42, 25, 27, 22, 43, 40, 40, 70, 40, 31, 53, 25, 26, 27, 46, 44, 43, 43, 31, 49, 52, 30, 45, 23, 38, 34, 31, 52, 42, 34, 22, 24, 42, 48, 45, 27, 36, 50, 22, 26, 45, 37, 52, 66, 43, 47]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [26.6, 28.1, 25.6, 35.3, 37.6, 27.1, 43.3, 39.3, 35.4, 23.2, 22.2, 34.1, 36.0, 24.8, 19.9, 27.6, 24.0, 33.2, 34.0, 40.2, 22.7, 27.4, 29.7, 28.0, 30.86, 19.4, 24.2, 24.4, 34.7, 23.0, 46.8, 40.5, 41.5, 30.86, 25.0, 25.4, 29.0, 42.7, 19.6, 28.9, 28.6, 35.1, 32.0, 24.7, 32.6, 37.7, 25.0, 22.4, 30.86, 29.3, 24.6, 32.4, 36.6, 38.5, 26.5, 19.1, 32.0, 46.7, 24.7, 33.9, 31.6, 20.4, 28.7, 26.1, 22.5, 26.6, 39.6, 28.7, 22.4, 29.5, 34.3, 31.2, 34.0, 33.7, 28.2, 23.2, 34.2, 33.6, 26.8, 42.9, 33.3, 38.3, 21.1, 33.8, 30.8, 28.7, 31.2, 36.9, 21.1, 39.5, 32.5, 32.8, 30.86, 32.8, 30.5, 33.7, 27.3, 37.4, 21.9, 40.6, 24.6, 25.2, 29.0, 29.7, 37.2, 44.2, 29.7, 32.5, 29.6, 31.9, 28.4, 28.9, 43.5, 29.7, 31.2, 45.0, 23.2, 34.9, 27.7, 26.8, 27.6, 22.6, 33.1, 24.4, 24.3, 31.0, 40.1, 27.3, 20.4, 37.7, 23.9, 33.2, 27.7, 42.8, 34.2, 30.0, 25.2, 28.8, 23.6, 34.6, 35.7, 36.7, 45.2, 25.4, 35.0, 29.7, 18.4, 29.2, 33.1, 38.2, 31.2, 52.3, 35.4, 30.1, 31.2, 28.0, 24.4, 35.8, 30.1, 28.7, 25.9, 30.9, 32.1, 32.4, 33.6, 40.0, 25.1, 25.2, 23.0, 33.2, 34.2, 40.5, 27.8, 24.9, 25.3, 35.9, 32.4, 26.0, 38.7, 20.8, 36.1, 36.9, 21.9, 35.5, 30.7, 23.6, 35.8, 21.0, 39.7, 24.8, 26.2, 39.4, 29.5, 34.1, 19.3, 38.1, 27.5, 35.7, 25.6, 35.1, 30.8, 23.1, 32.7, 23.6, 23.9, 47.9, 33.8, 25.9, 25.9, 32.0, 34.7, 36.8, 38.5, 28.7, 23.5, 21.8, 42.2, 31.2, 34.4, 27.2, 42.7, 35.3, 29.8, 39.2, 34.9, 34.0, 21.0, 27.5, 30.86, 35.8, 34.9, 36.2, 25.2, 37.2, 43.4, 30.8, 20.0, 25.4, 25.1, 24.3, 22.3, 31.6, 32.0, 23.7, 22.1, 27.7, 24.7, 21.1, 24.2, 31.6, 42.1, 21.9, 35.7, 34.4, 42.4, 26.2, 27.2, 18.2, 45.3, 26.0, 40.6, 30.8, 30.86, 40.6, 22.2, 30.4, 30.0, 25.6, 24.5, 37.4, 29.9, 18.2, 36.8, 32.2, 33.2, 25.3, 36.5, 30.5, 21.2, 39.9, 19.6, 37.8, 26.7, 30.2, 25.9, 20.8, 21.8, 35.3, 27.6, 24.0, 21.8, 27.8, 36.8, 46.1, 41.3, 33.2, 38.8, 29.9, 28.9, 27.3, 23.8, 25.9, 28.0, 35.2, 27.8, 38.2, 40.7, 46.5, 25.6, 26.1, 36.8, 33.5, 32.8, 30.86, 26.6, 26.0, 30.1, 29.3, 25.2, 37.2, 33.3, 37.3, 33.3, 28.6, 30.4, 25.0, 22.1, 24.2, 27.3, 25.6, 37.6, 32.8, 19.6, 25.0, 33.2, 30.86, 31.6, 21.8, 18.2, 26.3, 30.8, 24.6, 29.8, 45.3, 41.3, 29.8, 33.3, 29.6, 21.7, 36.3, 39.5, 32.0, 33.1, 32.8, 28.5, 27.4, 31.9, 27.8, 29.9, 36.9, 25.5, 38.1, 27.8, 46.2, 30.1, 37.6, 26.9, 32.4, 26.1, 38.6, 32.0, 31.3, 32.5, 22.6, 29.5, 34.7, 30.1, 35.5, 24.0, 27.0, 25.0, 26.5, 38.7, 22.5, 24.3, 21.1, 39.4, 28.5, 33.6, 45.3, 27.8, 23.1, 27.1, 23.7, 27.8, 35.8, 19.5, 41.5, 24.0, 30.9, 32.5, 25.8, 28.7, 20.1, 38.4, 24.2, 40.8, 43.5, 30.8, 37.7, 24.7, 32.4, 34.6, 24.7, 34.5, 26.2, 27.5, 25.9, 28.8, 31.6, 19.5, 29.3, 34.3, 28.0, 27.6, 39.4, 26.4, 25.2, 33.8, 34.1, 26.8, 34.2, 21.8, 38.9, 39.0, 27.7, 34.8, 34.0, 30.9, 33.6, 25.4, 35.5, 57.3, 35.6, 35.3, 24.2, 24.2, 44.6, 30.86, 33.2, 23.1, 28.3, 24.1, 24.6, 39.1, 23.5, 25.0, 34.5, 44.5, 35.9, 38.5, 28.4, 39.8, 34.4, 31.2, 29.6, 26.4, 29.5, 23.1, 35.5, 29.3, 38.1, 39.1, 32.8, 39.4, 36.1, 32.4, 22.9, 30.1, 29.0, 23.3, 35.4, 27.4, 32.0, 36.6, 30.8, 28.5, 40.6, 30.0, 46.3, 39.0, 26.0, 32.0, 37.5, 28.4, 22.5, 32.9, 36.8, 26.2, 30.4], \"y\": [31, 21, 30, 29, 30, 57, 33, 27, 50, 22, 57, 38, 60, 22, 28, 45, 33, 35, 26, 37, 48, 40, 29, 22, 24, 22, 26, 30, 42, 21, 31, 44, 22, 21, 36, 24, 32, 54, 25, 27, 26, 23, 22, 22, 41, 27, 24, 22, 22, 36, 22, 27, 45, 26, 24, 21, 34, 42, 21, 40, 24, 22, 23, 22, 21, 24, 27, 21, 27, 37, 25, 23, 25, 25, 22, 21, 24, 23, 69, 30, 23, 39, 26, 31, 21, 22, 29, 28, 55, 38, 22, 23, 21, 41, 34, 65, 22, 24, 37, 23, 21, 23, 22, 36, 45, 27, 21, 22, 34, 29, 29, 25, 23, 33, 42, 47, 32, 23, 21, 27, 40, 21, 40, 42, 21, 21, 28, 32, 27, 55, 27, 21, 25, 24, 60, 32, 37, 61, 26, 22, 26, 31, 24, 22, 29, 23, 27, 21, 22, 29, 41, 23, 34, 23, 42, 27, 24, 25, 30, 25, 24, 34, 24, 63, 43, 24, 21, 21, 40, 21, 52, 25, 23, 57, 22, 39, 37, 51, 34, 26, 33, 21, 65, 28, 24, 58, 35, 37, 29, 21, 41, 22, 25, 26, 30, 28, 31, 21, 24, 37, 37, 46, 25, 44, 22, 26, 44, 22, 36, 22, 33, 57, 49, 22, 23, 26, 29, 30, 46, 24, 21, 48, 63, 65, 30, 30, 21, 22, 21, 21, 25, 28, 22, 22, 35, 24, 22, 21, 25, 25, 24, 28, 42, 21, 37, 25, 39, 25, 55, 38, 26, 25, 28, 25, 22, 21, 22, 27, 26, 21, 21, 21, 25, 26, 23, 38, 22, 29, 36, 41, 28, 21, 31, 22, 24, 28, 26, 26, 23, 25, 72, 24, 62, 24, 81, 48, 26, 39, 37, 34, 21, 22, 25, 27, 28, 22, 22, 50, 24, 59, 31, 39, 63, 29, 28, 23, 21, 58, 28, 67, 24, 42, 33, 22, 66, 30, 25, 39, 21, 28, 41, 40, 38, 21, 21, 64, 21, 58, 22, 24, 51, 41, 60, 25, 26, 26, 24, 21, 21, 24, 22, 31, 22, 24, 29, 31, 24, 46, 67, 23, 25, 29, 28, 50, 37, 21, 25, 66, 23, 28, 37, 30, 58, 42, 35, 24, 32, 27, 22, 21, 46, 37, 39, 21, 22, 22, 23, 25, 35, 36, 27, 62, 42, 22, 29, 25, 24, 25, 34, 46, 21, 26, 24, 28, 30, 21, 25, 27, 23, 24, 26, 27, 30, 23, 28, 28, 45, 21, 21, 29, 21, 21, 45, 21, 24, 23, 22, 31, 48, 23, 28, 27, 24, 31, 27, 30, 23, 23, 27, 28, 27, 22, 22, 41, 51, 54, 24, 43, 45, 49, 21, 47, 22, 68, 25, 23, 22, 22, 69, 25, 22, 29, 23, 34, 23, 25, 22, 28, 26, 26, 41, 27, 28, 22, 24, 40, 21, 32, 56, 24, 34, 21, 42, 45, 38, 25, 22, 22, 22, 22, 53, 28, 21, 42, 21, 26, 22, 39, 46, 32, 28, 25, 39, 26, 22, 33, 63, 27, 30, 23]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"BMI vs AGE\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"BMI\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"AGE\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('e085b90f-ebdb-4ec0-9fbc-e07486279ca5');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat2']= 0\ndf.loc[(df['age']<=30) & (df['bmi']<=30),'feat2']=1","execution_count":47,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat2',': AGE <= 30 & BMI <= 30')","execution_count":48,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"67e80d66-88de-4d92-bf0e-fad01df2b9f6\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"67e80d66-88de-4d92-bf0e-fad01df2b9f6\")) {                    Plotly.newPlot(                        \"67e80d66-88de-4d92-bf0e-fad01df2b9f6\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"255\", \"13\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [255, 13]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"340\", \"160\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [340, 160]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat2 : AGE <= 30 & BMI <= 30\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('67e80d66-88de-4d92-bf0e-fad01df2b9f6');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat2','AGE <= 30 & BMI <= 30')","execution_count":49,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"823b4b19-5e29-4b77-a617-6fa3d5284640\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"823b4b19-5e29-4b77-a617-6fa3d5284640\")) {                    Plotly.newPlot(                        \"823b4b19-5e29-4b77-a617-6fa3d5284640\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [255, 13]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [340, 160]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT2 distribution by target: AGE <= 30 & BMI <= 30\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('823b4b19-5e29-4b77-a617-6fa3d5284640');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT3: AGE vs SKIN THICKNESS"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('skin_thickness','age')","execution_count":50,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"6ebfaa7f-9796-47c0-be93-a0b5c277343a\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"6ebfaa7f-9796-47c0-be93-a0b5c277343a\")) {                    Plotly.newPlot(                        \"6ebfaa7f-9796-47c0-be93-a0b5c277343a\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [35.0, 33.0, 35.0, 32.0, 45.0, 33.0, 33.0, 23.0, 19.0, 33.0, 47.0, 33.0, 30.0, 33.0, 35.0, 33.0, 26.0, 33.0, 36.0, 37.0, 42.0, 47.0, 24.0, 39.0, 32.0, 34.0, 39.0, 33.0, 33.0, 30.0, 20.0, 33.0, 33.0, 33.0, 32.0, 33.0, 51.0, 33.0, 25.0, 33.0, 26.0, 32.0, 33.0, 33.0, 56.0, 33.0, 42.0, 24.0, 33.0, 14.0, 33.0, 37.0, 33.0, 28.0, 33.0, 44.0, 41.0, 33.0, 18.0, 33.0, 23.0, 42.0, 46.0, 33.0, 28.0, 36.0, 41.0, 39.0, 35.0, 33.0, 33.0, 41.0, 13.0, 44.0, 27.0, 29.0, 33.0, 33.0, 26.0, 32.0, 40.0, 41.0, 22.0, 33.0, 29.0, 33.0, 38.0, 33.0, 37.0, 33.0, 21.0, 27.0, 21.0, 33.0, 22.0, 15.0, 7.0, 35.0, 28.0, 33.0, 33.0, 33.0, 33.0, 37.0, 24.0, 33.0, 33.0, 33.0, 39.0, 30.0, 37.0, 45.0, 38.0, 25.0, 33.0, 33.0, 33.0, 23.0, 19.0, 28.0, 17.0, 31.0, 33.0, 33.0, 30.0, 20.0, 33.0, 32.0, 36.0, 33.0, 33.0, 34.0, 33.0, 32.0, 33.0, 40.0, 30.0, 36.0, 33.0, 33.0, 33.0, 28.0, 48.0, 43.0, 33.0, 29.0, 36.0, 26.0, 33.0, 33.0, 40.0, 31.0, 33.0, 41.0, 33.0, 33.0, 33.0, 49.0, 35.0, 33.0, 32.0, 29.0, 32.0, 39.0, 30.0, 25.0, 33.0, 25.0, 33.0, 12.0, 63.0, 37.0, 33.0, 30.0, 48.0, 33.0, 45.0, 30.0, 33.0, 42.0, 18.0, 33.0, 41.0, 26.0, 31.0, 18.0, 34.0, 33.0, 33.0, 49.0, 40.0, 25.0, 32.0, 35.0, 27.0, 33.0, 32.0, 30.0, 33.0, 99.0, 46.0, 24.0, 33.0, 27.0, 40.0, 33.0, 14.0, 33.0, 29.0, 33.0, 42.0, 22.0, 42.0, 26.0, 24.0, 33.0, 33.0, 33.0, 32.0, 33.0, 17.0, 36.0, 35.0, 27.0, 31.0, 43.0, 46.0, 46.0, 39.0, 18.0, 27.0, 33.0, 33.0, 33.0, 36.0, 33.0, 46.0, 33.0, 49.0, 24.0, 19.0, 31.0, 29.0, 33.0, 33.0, 32.0, 36.0, 33.0, 39.0, 27.0, 29.0, 23.0, 33.0, 37.0, 33.0, 37.0, 33.0, 41.0, 22.0, 33.0, 33.0, 44.0, 32.0, 39.0, 33.0, 33.0, 31.0, 33.0], \"y\": [50, 32, 33, 26, 53, 54, 34, 59, 51, 32, 31, 31, 32, 41, 29, 51, 41, 43, 28, 46, 27, 56, 54, 25, 31, 58, 41, 39, 42, 38, 28, 42, 26, 37, 43, 60, 31, 33, 24, 24, 46, 39, 61, 38, 25, 23, 26, 40, 62, 33, 33, 30, 42, 42, 43, 36, 47, 32, 41, 36, 29, 36, 26, 37, 41, 60, 33, 31, 25, 36, 40, 29, 23, 26, 29, 57, 52, 41, 24, 36, 38, 25, 32, 41, 21, 66, 24, 22, 46, 26, 51, 23, 32, 22, 33, 49, 44, 21, 51, 27, 35, 25, 28, 38, 29, 28, 47, 52, 29, 25, 31, 24, 29, 46, 30, 25, 28, 47, 25, 30, 27, 43, 29, 59, 25, 36, 43, 30, 23, 41, 44, 33, 41, 37, 49, 28, 44, 29, 29, 67, 29, 45, 25, 58, 32, 35, 45, 58, 27, 31, 22, 25, 31, 35, 41, 46, 39, 28, 21, 22, 37, 28, 36, 31, 38, 43, 29, 41, 33, 30, 25, 22, 23, 38, 51, 38, 29, 35, 31, 24, 45, 55, 41, 35, 46, 28, 53, 45, 23, 32, 43, 27, 56, 37, 53, 54, 28, 33, 21, 62, 21, 52, 41, 52, 45, 44, 22, 38, 54, 36, 22, 36, 40, 50, 50, 24, 34, 38, 32, 50, 33, 22, 42, 25, 27, 22, 43, 40, 40, 70, 40, 31, 53, 25, 26, 27, 46, 44, 43, 43, 31, 49, 52, 30, 45, 23, 38, 34, 31, 52, 42, 34, 22, 24, 42, 48, 45, 27, 36, 50, 22, 26, 45, 37, 52, 66, 43, 47]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [29.0, 23.0, 27.24, 27.24, 27.24, 27.24, 38.0, 41.0, 27.24, 15.0, 19.0, 27.24, 26.0, 11.0, 27.24, 31.0, 33.0, 27.24, 25.0, 27.24, 18.0, 27.24, 27.24, 27.0, 27.24, 11.0, 15.0, 21.0, 42.0, 10.0, 60.0, 27.24, 41.0, 27.24, 27.24, 34.0, 27.0, 27.24, 13.0, 27.0, 35.0, 20.0, 30.0, 20.0, 27.24, 33.0, 22.0, 13.0, 27.24, 26.0, 28.0, 29.0, 54.0, 25.0, 19.0, 27.24, 15.0, 40.0, 18.0, 27.0, 28.0, 18.0, 30.0, 27.24, 27.24, 18.0, 27.24, 29.0, 27.24, 28.0, 31.0, 34.0, 27.24, 27.24, 23.0, 15.0, 39.0, 30.0, 27.24, 30.0, 36.0, 31.0, 13.0, 20.0, 26.0, 25.0, 27.24, 29.0, 27.24, 30.0, 26.0, 31.0, 23.0, 37.0, 35.0, 27.24, 17.0, 50.0, 27.24, 42.0, 15.0, 21.0, 19.0, 38.0, 40.0, 34.0, 23.0, 25.0, 27.24, 27.24, 12.0, 23.0, 42.0, 24.0, 27.24, 27.24, 27.24, 18.0, 20.0, 27.24, 27.24, 27.24, 44.0, 20.0, 27.24, 16.0, 27.24, 20.0, 16.0, 32.0, 28.0, 27.0, 22.0, 54.0, 31.0, 30.0, 27.24, 33.0, 15.0, 27.0, 27.24, 39.0, 31.0, 25.0, 27.24, 28.0, 27.24, 24.0, 32.0, 35.0, 27.24, 33.0, 33.0, 19.0, 27.24, 27.24, 14.0, 32.0, 39.0, 22.0, 16.0, 15.0, 32.0, 15.0, 18.0, 42.0, 27.24, 32.0, 27.24, 50.0, 27.24, 52.0, 23.0, 27.24, 10.0, 28.0, 15.0, 26.0, 44.0, 17.0, 43.0, 29.0, 27.24, 31.0, 29.0, 27.24, 41.0, 27.24, 37.0, 14.0, 30.0, 37.0, 10.0, 22.0, 11.0, 39.0, 12.0, 32.0, 21.0, 27.24, 32.0, 19.0, 16.0, 27.24, 18.0, 43.0, 27.24, 13.0, 21.0, 35.0, 27.24, 27.24, 36.0, 19.0, 27.24, 19.0, 27.24, 27.24, 28.0, 12.0, 27.24, 40.0, 27.24, 37.0, 25.0, 28.0, 17.0, 16.0, 23.0, 22.0, 40.0, 43.0, 15.0, 37.0, 39.0, 30.0, 22.0, 8.0, 18.0, 24.0, 13.0, 23.0, 29.0, 14.0, 12.0, 24.0, 34.0, 27.24, 27.24, 25.0, 32.0, 27.24, 39.0, 30.0, 23.0, 22.0, 21.0, 27.24, 41.0, 18.0, 46.0, 22.0, 27.24, 46.0, 27.24, 16.0, 11.0, 27.24, 8.0, 33.0, 27.24, 15.0, 27.24, 23.0, 27.0, 12.0, 45.0, 18.0, 13.0, 32.0, 27.24, 28.0, 27.24, 28.0, 33.0, 22.0, 27.24, 40.0, 30.0, 27.24, 13.0, 10.0, 36.0, 41.0, 40.0, 38.0, 27.0, 27.24, 27.24, 27.0, 17.0, 38.0, 31.0, 37.0, 22.0, 31.0, 41.0, 32.0, 17.0, 27.24, 28.0, 30.0, 38.0, 27.24, 27.24, 27.24, 15.0, 32.0, 19.0, 32.0, 25.0, 39.0, 27.24, 23.0, 23.0, 27.24, 17.0, 27.24, 27.24, 19.0, 27.24, 27.24, 7.0, 32.0, 33.0, 27.24, 27.24, 18.0, 19.0, 15.0, 31.0, 27.24, 18.0, 27.24, 52.0, 27.24, 30.0, 27.24, 27.24, 37.0, 23.0, 29.0, 21.0, 43.0, 31.0, 28.0, 30.0, 27.24, 24.0, 23.0, 33.0, 40.0, 27.24, 40.0, 27.24, 34.0, 19.0, 27.24, 14.0, 30.0, 32.0, 29.0, 27.24, 27.24, 31.0, 17.0, 30.0, 47.0, 20.0, 27.24, 27.0, 17.0, 27.24, 11.0, 27.24, 27.24, 50.0, 22.0, 45.0, 27.24, 19.0, 18.0, 19.0, 27.24, 36.0, 32.0, 25.0, 39.0, 13.0, 21.0, 28.0, 27.24, 27.24, 13.0, 42.0, 20.0, 27.24, 27.0, 27.24, 47.0, 27.24, 27.24, 27.24, 22.0, 40.0, 27.24, 17.0, 27.24, 27.24, 18.0, 12.0, 17.0, 27.24, 27.24, 30.0, 35.0, 25.0, 25.0, 23.0, 40.0, 27.24, 28.0, 35.0, 48.0, 27.24, 27.24, 45.0, 33.0, 30.0, 26.0, 10.0, 23.0, 35.0, 27.24, 27.24, 17.0, 28.0, 39.0, 27.24, 26.0, 27.24, 19.0, 26.0, 27.24, 32.0, 27.24, 27.24, 11.0, 27.24, 27.0, 27.24, 20.0, 36.0, 21.0, 13.0, 27.0, 20.0, 27.24, 18.0, 46.0, 19.0, 36.0, 30.0, 27.24, 40.0, 29.0, 26.0, 27.24, 27.24, 27.0, 27.24, 32.0, 27.0, 23.0, 17.0, 20.0, 18.0, 37.0, 33.0, 41.0, 39.0, 24.0, 41.0, 27.24, 26.0, 27.24, 48.0, 27.0, 23.0, 31.0], \"y\": [31, 21, 30, 29, 30, 57, 33, 27, 50, 22, 57, 38, 60, 22, 28, 45, 33, 35, 26, 37, 48, 40, 29, 22, 24, 22, 26, 30, 42, 21, 31, 44, 22, 21, 36, 24, 32, 54, 25, 27, 26, 23, 22, 22, 41, 27, 24, 22, 22, 36, 22, 27, 45, 26, 24, 21, 34, 42, 21, 40, 24, 22, 23, 22, 21, 24, 27, 21, 27, 37, 25, 23, 25, 25, 22, 21, 24, 23, 69, 30, 23, 39, 26, 31, 21, 22, 29, 28, 55, 38, 22, 23, 21, 41, 34, 65, 22, 24, 37, 23, 21, 23, 22, 36, 45, 27, 21, 22, 34, 29, 29, 25, 23, 33, 42, 47, 32, 23, 21, 27, 40, 21, 40, 42, 21, 21, 28, 32, 27, 55, 27, 21, 25, 24, 60, 32, 37, 61, 26, 22, 26, 31, 24, 22, 29, 23, 27, 21, 22, 29, 41, 23, 34, 23, 42, 27, 24, 25, 30, 25, 24, 34, 24, 63, 43, 24, 21, 21, 40, 21, 52, 25, 23, 57, 22, 39, 37, 51, 34, 26, 33, 21, 65, 28, 24, 58, 35, 37, 29, 21, 41, 22, 25, 26, 30, 28, 31, 21, 24, 37, 37, 46, 25, 44, 22, 26, 44, 22, 36, 22, 33, 57, 49, 22, 23, 26, 29, 30, 46, 24, 21, 48, 63, 65, 30, 30, 21, 22, 21, 21, 25, 28, 22, 22, 35, 24, 22, 21, 25, 25, 24, 28, 42, 21, 37, 25, 39, 25, 55, 38, 26, 25, 28, 25, 22, 21, 22, 27, 26, 21, 21, 21, 25, 26, 23, 38, 22, 29, 36, 41, 28, 21, 31, 22, 24, 28, 26, 26, 23, 25, 72, 24, 62, 24, 81, 48, 26, 39, 37, 34, 21, 22, 25, 27, 28, 22, 22, 50, 24, 59, 31, 39, 63, 29, 28, 23, 21, 58, 28, 67, 24, 42, 33, 22, 66, 30, 25, 39, 21, 28, 41, 40, 38, 21, 21, 64, 21, 58, 22, 24, 51, 41, 60, 25, 26, 26, 24, 21, 21, 24, 22, 31, 22, 24, 29, 31, 24, 46, 67, 23, 25, 29, 28, 50, 37, 21, 25, 66, 23, 28, 37, 30, 58, 42, 35, 24, 32, 27, 22, 21, 46, 37, 39, 21, 22, 22, 23, 25, 35, 36, 27, 62, 42, 22, 29, 25, 24, 25, 34, 46, 21, 26, 24, 28, 30, 21, 25, 27, 23, 24, 26, 27, 30, 23, 28, 28, 45, 21, 21, 29, 21, 21, 45, 21, 24, 23, 22, 31, 48, 23, 28, 27, 24, 31, 27, 30, 23, 23, 27, 28, 27, 22, 22, 41, 51, 54, 24, 43, 45, 49, 21, 47, 22, 68, 25, 23, 22, 22, 69, 25, 22, 29, 23, 34, 23, 25, 22, 28, 26, 26, 41, 27, 28, 22, 24, 40, 21, 32, 56, 24, 34, 21, 42, 45, 38, 25, 22, 22, 22, 22, 53, 28, 21, 42, 21, 26, 22, 39, 46, 32, 28, 25, 39, 26, 22, 33, 63, 27, 30, 23]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"SKIN_THICKNESS vs AGE\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"SKIN_THICKNESS\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"AGE\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('6ebfaa7f-9796-47c0-be93-a0b5c277343a');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat3'] = 0\ndf.loc[(df['age'] <= 30) & (df['skin_thickness'] <= 32), 'feat3'] = 1","execution_count":51,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat3',': AGE <=30 & SKIN THICKNESS <=32')","execution_count":52,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"c7a7361d-5b73-4512-8a9e-1ad2a87eb46a\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"c7a7361d-5b73-4512-8a9e-1ad2a87eb46a\")) {                    Plotly.newPlot(                        \"c7a7361d-5b73-4512-8a9e-1ad2a87eb46a\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"242\", \"26\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [242, 26]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"267\", \"233\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [1, 0], \"y\": [267, 233]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat3 : AGE <=30 & SKIN THICKNESS <=32\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('c7a7361d-5b73-4512-8a9e-1ad2a87eb46a');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat3','AGE <=30 & SKIN THICKNESS <=32')","execution_count":53,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"d13f925d-5356-4b8d-9ccf-bc4081e27476\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"d13f925d-5356-4b8d-9ccf-bc4081e27476\")) {                    Plotly.newPlot(                        \"d13f925d-5356-4b8d-9ccf-bc4081e27476\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [242, 26]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [1, 0], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [267, 233]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT3 distribution by target: AGE <=30 & SKIN THICKNESS <=32\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('d13f925d-5356-4b8d-9ccf-bc4081e27476');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT4: AGE vs GLUCOSE"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('glucose', 'age')","execution_count":54,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"b9812602-9c3c-4753-8ef5-73bc417c92d8\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"b9812602-9c3c-4753-8ef5-73bc417c92d8\")) {                    Plotly.newPlot(                        \"b9812602-9c3c-4753-8ef5-73bc417c92d8\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [148.0, 183.0, 137.0, 78.0, 197.0, 125.0, 168.0, 189.0, 166.0, 100.0, 118.0, 107.0, 115.0, 196.0, 119.0, 143.0, 125.0, 147.0, 158.0, 102.0, 90.0, 111.0, 171.0, 180.0, 103.0, 176.0, 187.0, 133.0, 114.0, 109.0, 100.0, 126.0, 131.0, 137.0, 136.0, 134.0, 122.0, 163.0, 95.0, 171.0, 155.0, 160.0, 146.0, 124.0, 162.0, 113.0, 88.0, 117.0, 105.0, 173.0, 122.0, 170.0, 108.0, 156.0, 188.0, 152.0, 163.0, 131.0, 104.0, 102.0, 134.0, 179.0, 129.0, 130.0, 194.0, 181.0, 128.0, 109.0, 139.0, 159.0, 135.0, 158.0, 107.0, 109.0, 148.0, 196.0, 162.0, 184.0, 140.0, 112.0, 151.0, 109.0, 85.0, 112.0, 177.0, 158.0, 162.0, 142.0, 134.0, 171.0, 181.0, 179.0, 164.0, 139.0, 119.0, 184.0, 92.0, 113.0, 155.0, 141.0, 123.0, 138.0, 146.0, 101.0, 106.0, 146.0, 161.0, 108.0, 119.0, 107.0, 128.0, 128.0, 146.0, 100.0, 167.0, 144.0, 115.0, 161.0, 128.0, 124.0, 155.0, 109.0, 182.0, 194.0, 112.0, 124.0, 152.0, 122.0, 102.0, 180.0, 115.0, 152.0, 178.0, 142.32, 165.0, 125.0, 129.0, 196.0, 189.0, 146.0, 124.0, 133.0, 173.0, 140.0, 156.0, 116.0, 105.0, 144.0, 166.0, 158.0, 131.0, 193.0, 95.0, 136.0, 168.0, 115.0, 197.0, 172.0, 138.0, 173.0, 144.0, 129.0, 151.0, 184.0, 181.0, 95.0, 141.0, 189.0, 108.0, 117.0, 180.0, 104.0, 134.0, 175.0, 148.0, 120.0, 105.0, 158.0, 145.0, 135.0, 125.0, 195.0, 142.32, 180.0, 84.0, 163.0, 145.0, 130.0, 132.0, 129.0, 100.0, 128.0, 90.0, 186.0, 187.0, 125.0, 198.0, 121.0, 118.0, 197.0, 151.0, 124.0, 143.0, 176.0, 111.0, 132.0, 188.0, 173.0, 150.0, 183.0, 181.0, 174.0, 168.0, 138.0, 112.0, 119.0, 114.0, 104.0, 97.0, 147.0, 167.0, 179.0, 136.0, 155.0, 80.0, 199.0, 167.0, 145.0, 115.0, 145.0, 111.0, 195.0, 156.0, 121.0, 162.0, 125.0, 144.0, 158.0, 129.0, 142.0, 169.0, 125.0, 168.0, 115.0, 164.0, 93.0, 129.0, 187.0, 173.0, 97.0, 149.0, 130.0, 120.0, 174.0, 102.0, 120.0, 140.0, 147.0, 187.0, 162.0, 136.0, 181.0, 154.0, 128.0, 123.0, 190.0, 170.0, 126.0], \"y\": [50, 32, 33, 26, 53, 54, 34, 59, 51, 32, 31, 31, 32, 41, 29, 51, 41, 43, 28, 46, 27, 56, 54, 25, 31, 58, 41, 39, 42, 38, 28, 42, 26, 37, 43, 60, 31, 33, 24, 24, 46, 39, 61, 38, 25, 23, 26, 40, 62, 33, 33, 30, 42, 42, 43, 36, 47, 32, 41, 36, 29, 36, 26, 37, 41, 60, 33, 31, 25, 36, 40, 29, 23, 26, 29, 57, 52, 41, 24, 36, 38, 25, 32, 41, 21, 66, 24, 22, 46, 26, 51, 23, 32, 22, 33, 49, 44, 21, 51, 27, 35, 25, 28, 38, 29, 28, 47, 52, 29, 25, 31, 24, 29, 46, 30, 25, 28, 47, 25, 30, 27, 43, 29, 59, 25, 36, 43, 30, 23, 41, 44, 33, 41, 37, 49, 28, 44, 29, 29, 67, 29, 45, 25, 58, 32, 35, 45, 58, 27, 31, 22, 25, 31, 35, 41, 46, 39, 28, 21, 22, 37, 28, 36, 31, 38, 43, 29, 41, 33, 30, 25, 22, 23, 38, 51, 38, 29, 35, 31, 24, 45, 55, 41, 35, 46, 28, 53, 45, 23, 32, 43, 27, 56, 37, 53, 54, 28, 33, 21, 62, 21, 52, 41, 52, 45, 44, 22, 38, 54, 36, 22, 36, 40, 50, 50, 24, 34, 38, 32, 50, 33, 22, 42, 25, 27, 22, 43, 40, 40, 70, 40, 31, 53, 25, 26, 27, 46, 44, 43, 43, 31, 49, 52, 30, 45, 23, 38, 34, 31, 52, 42, 34, 22, 24, 42, 48, 45, 27, 36, 50, 22, 26, 45, 37, 52, 66, 43, 47]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [85.0, 89.0, 116.0, 115.0, 110.0, 139.0, 103.0, 126.0, 99.0, 97.0, 145.0, 117.0, 109.0, 88.0, 92.0, 122.0, 103.0, 138.0, 180.0, 133.0, 106.0, 159.0, 146.0, 71.0, 105.0, 103.0, 101.0, 88.0, 150.0, 73.0, 100.0, 146.0, 105.0, 84.0, 44.0, 141.0, 99.0, 109.0, 95.0, 146.0, 139.0, 129.0, 79.0, 110.64, 62.0, 95.0, 112.0, 113.0, 74.0, 83.0, 101.0, 110.0, 106.0, 100.0, 107.0, 80.0, 123.0, 81.0, 142.0, 144.0, 92.0, 71.0, 93.0, 151.0, 125.0, 81.0, 85.0, 126.0, 96.0, 144.0, 83.0, 89.0, 76.0, 78.0, 97.0, 99.0, 111.0, 107.0, 132.0, 120.0, 118.0, 84.0, 96.0, 125.0, 100.0, 93.0, 129.0, 105.0, 128.0, 106.0, 108.0, 154.0, 102.0, 57.0, 106.0, 147.0, 90.0, 136.0, 114.0, 153.0, 99.0, 109.0, 88.0, 151.0, 102.0, 114.0, 100.0, 148.0, 120.0, 110.0, 111.0, 87.0, 79.0, 75.0, 85.0, 143.0, 87.0, 119.0, 110.64, 73.0, 141.0, 111.0, 123.0, 85.0, 105.0, 113.0, 138.0, 108.0, 99.0, 103.0, 111.0, 96.0, 81.0, 147.0, 179.0, 125.0, 119.0, 142.0, 100.0, 87.0, 101.0, 197.0, 117.0, 79.0, 122.0, 74.0, 104.0, 91.0, 91.0, 146.0, 122.0, 165.0, 124.0, 111.0, 106.0, 129.0, 90.0, 86.0, 111.0, 114.0, 193.0, 191.0, 95.0, 142.0, 96.0, 128.0, 102.0, 108.0, 122.0, 71.0, 106.0, 100.0, 104.0, 114.0, 108.0, 129.0, 133.0, 136.0, 155.0, 96.0, 108.0, 78.0, 161.0, 151.0, 126.0, 112.0, 77.0, 150.0, 120.0, 137.0, 80.0, 106.0, 113.0, 112.0, 99.0, 115.0, 129.0, 112.0, 157.0, 179.0, 105.0, 118.0, 87.0, 106.0, 95.0, 165.0, 117.0, 130.0, 95.0, 110.64, 122.0, 95.0, 126.0, 139.0, 116.0, 99.0, 92.0, 137.0, 61.0, 90.0, 90.0, 88.0, 158.0, 103.0, 147.0, 99.0, 101.0, 81.0, 118.0, 84.0, 105.0, 122.0, 98.0, 87.0, 93.0, 107.0, 105.0, 109.0, 90.0, 125.0, 119.0, 100.0, 100.0, 131.0, 116.0, 127.0, 96.0, 82.0, 137.0, 72.0, 123.0, 101.0, 102.0, 112.0, 143.0, 143.0, 97.0, 83.0, 119.0, 94.0, 102.0, 115.0, 94.0, 135.0, 99.0, 89.0, 80.0, 139.0, 90.0, 140.0, 147.0, 97.0, 107.0, 83.0, 117.0, 100.0, 95.0, 120.0, 82.0, 91.0, 119.0, 100.0, 135.0, 86.0, 134.0, 120.0, 71.0, 74.0, 88.0, 115.0, 124.0, 74.0, 97.0, 154.0, 144.0, 137.0, 119.0, 136.0, 114.0, 137.0, 114.0, 126.0, 132.0, 123.0, 85.0, 84.0, 139.0, 173.0, 99.0, 194.0, 83.0, 89.0, 99.0, 80.0, 166.0, 110.0, 81.0, 154.0, 117.0, 84.0, 94.0, 96.0, 75.0, 130.0, 84.0, 120.0, 139.0, 91.0, 91.0, 99.0, 125.0, 76.0, 129.0, 68.0, 124.0, 114.0, 125.0, 87.0, 97.0, 116.0, 117.0, 111.0, 122.0, 107.0, 86.0, 91.0, 77.0, 105.0, 57.0, 127.0, 84.0, 88.0, 131.0, 164.0, 189.0, 116.0, 84.0, 114.0, 88.0, 84.0, 124.0, 97.0, 110.0, 103.0, 85.0, 87.0, 99.0, 91.0, 95.0, 99.0, 92.0, 154.0, 78.0, 130.0, 111.0, 98.0, 143.0, 119.0, 108.0, 133.0, 109.0, 121.0, 100.0, 93.0, 103.0, 73.0, 112.0, 82.0, 123.0, 67.0, 89.0, 109.0, 108.0, 96.0, 124.0, 124.0, 92.0, 152.0, 111.0, 106.0, 105.0, 106.0, 117.0, 68.0, 112.0, 92.0, 183.0, 94.0, 108.0, 90.0, 125.0, 132.0, 128.0, 94.0, 102.0, 111.0, 128.0, 92.0, 104.0, 94.0, 100.0, 102.0, 128.0, 90.0, 103.0, 157.0, 107.0, 91.0, 117.0, 123.0, 120.0, 106.0, 101.0, 120.0, 127.0, 162.0, 112.0, 98.0, 154.0, 165.0, 99.0, 68.0, 123.0, 91.0, 93.0, 101.0, 56.0, 95.0, 136.0, 129.0, 130.0, 107.0, 140.0, 107.0, 121.0, 90.0, 99.0, 127.0, 118.0, 122.0, 129.0, 110.0, 80.0, 127.0, 158.0, 126.0, 134.0, 102.0, 94.0, 108.0, 83.0, 114.0, 117.0, 111.0, 112.0, 116.0, 141.0, 175.0, 92.0, 106.0, 105.0, 95.0, 126.0, 65.0, 99.0, 102.0, 109.0, 153.0, 100.0, 81.0, 121.0, 108.0, 137.0, 106.0, 88.0, 89.0, 101.0, 122.0, 121.0, 93.0], \"y\": [31, 21, 30, 29, 30, 57, 33, 27, 50, 22, 57, 38, 60, 22, 28, 45, 33, 35, 26, 37, 48, 40, 29, 22, 24, 22, 26, 30, 42, 21, 31, 44, 22, 21, 36, 24, 32, 54, 25, 27, 26, 23, 22, 22, 41, 27, 24, 22, 22, 36, 22, 27, 45, 26, 24, 21, 34, 42, 21, 40, 24, 22, 23, 22, 21, 24, 27, 21, 27, 37, 25, 23, 25, 25, 22, 21, 24, 23, 69, 30, 23, 39, 26, 31, 21, 22, 29, 28, 55, 38, 22, 23, 21, 41, 34, 65, 22, 24, 37, 23, 21, 23, 22, 36, 45, 27, 21, 22, 34, 29, 29, 25, 23, 33, 42, 47, 32, 23, 21, 27, 40, 21, 40, 42, 21, 21, 28, 32, 27, 55, 27, 21, 25, 24, 60, 32, 37, 61, 26, 22, 26, 31, 24, 22, 29, 23, 27, 21, 22, 29, 41, 23, 34, 23, 42, 27, 24, 25, 30, 25, 24, 34, 24, 63, 43, 24, 21, 21, 40, 21, 52, 25, 23, 57, 22, 39, 37, 51, 34, 26, 33, 21, 65, 28, 24, 58, 35, 37, 29, 21, 41, 22, 25, 26, 30, 28, 31, 21, 24, 37, 37, 46, 25, 44, 22, 26, 44, 22, 36, 22, 33, 57, 49, 22, 23, 26, 29, 30, 46, 24, 21, 48, 63, 65, 30, 30, 21, 22, 21, 21, 25, 28, 22, 22, 35, 24, 22, 21, 25, 25, 24, 28, 42, 21, 37, 25, 39, 25, 55, 38, 26, 25, 28, 25, 22, 21, 22, 27, 26, 21, 21, 21, 25, 26, 23, 38, 22, 29, 36, 41, 28, 21, 31, 22, 24, 28, 26, 26, 23, 25, 72, 24, 62, 24, 81, 48, 26, 39, 37, 34, 21, 22, 25, 27, 28, 22, 22, 50, 24, 59, 31, 39, 63, 29, 28, 23, 21, 58, 28, 67, 24, 42, 33, 22, 66, 30, 25, 39, 21, 28, 41, 40, 38, 21, 21, 64, 21, 58, 22, 24, 51, 41, 60, 25, 26, 26, 24, 21, 21, 24, 22, 31, 22, 24, 29, 31, 24, 46, 67, 23, 25, 29, 28, 50, 37, 21, 25, 66, 23, 28, 37, 30, 58, 42, 35, 24, 32, 27, 22, 21, 46, 37, 39, 21, 22, 22, 23, 25, 35, 36, 27, 62, 42, 22, 29, 25, 24, 25, 34, 46, 21, 26, 24, 28, 30, 21, 25, 27, 23, 24, 26, 27, 30, 23, 28, 28, 45, 21, 21, 29, 21, 21, 45, 21, 24, 23, 22, 31, 48, 23, 28, 27, 24, 31, 27, 30, 23, 23, 27, 28, 27, 22, 22, 41, 51, 54, 24, 43, 45, 49, 21, 47, 22, 68, 25, 23, 22, 22, 69, 25, 22, 29, 23, 34, 23, 25, 22, 28, 26, 26, 41, 27, 28, 22, 24, 40, 21, 32, 56, 24, 34, 21, 42, 45, 38, 25, 22, 22, 22, 22, 53, 28, 21, 42, 21, 26, 22, 39, 46, 32, 28, 25, 39, 26, 22, 33, 63, 27, 30, 23]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"GLUCOSE vs AGE\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"GLUCOSE\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"AGE\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('b9812602-9c3c-4753-8ef5-73bc417c92d8');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat4'] = 0\ndf.loc[(df['age'] <= 30) & (df['glucose'] <= 120), 'feat4'] = 1","execution_count":55,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat4',': AGE <=30 & GLUCOSE <=120')","execution_count":56,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"62ec3c02-a43d-4917-93a6-a2d17ec96331\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"62ec3c02-a43d-4917-93a6-a2d17ec96331\")) {                    Plotly.newPlot(                        \"62ec3c02-a43d-4917-93a6-a2d17ec96331\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"242\", \"26\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [242, 26]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"256\", \"244\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [256, 244]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat4 : AGE <=30 & GLUCOSE <=120\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('62ec3c02-a43d-4917-93a6-a2d17ec96331');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat4','AGE <= 30 & GLUCOSE <= 120')","execution_count":57,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"22e66367-cac1-4974-8fdc-b425184775d9\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"22e66367-cac1-4974-8fdc-b425184775d9\")) {                    Plotly.newPlot(                        \"22e66367-cac1-4974-8fdc-b425184775d9\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [242, 26]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [256, 244]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT4 distribution by target: AGE <= 30 & GLUCOSE <= 120\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('22e66367-cac1-4974-8fdc-b425184775d9');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT5: GLUCOSE vs BLOOD PRESSURE"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('glucose','blood_pressure')","execution_count":58,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"b3f54139-bef2-4bf7-80f4-141eeda1e7f6\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"b3f54139-bef2-4bf7-80f4-141eeda1e7f6\")) {                    Plotly.newPlot(                        \"b3f54139-bef2-4bf7-80f4-141eeda1e7f6\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [148.0, 183.0, 137.0, 78.0, 197.0, 125.0, 168.0, 189.0, 166.0, 100.0, 118.0, 107.0, 115.0, 196.0, 119.0, 143.0, 125.0, 147.0, 158.0, 102.0, 90.0, 111.0, 171.0, 180.0, 103.0, 176.0, 187.0, 133.0, 114.0, 109.0, 100.0, 126.0, 131.0, 137.0, 136.0, 134.0, 122.0, 163.0, 95.0, 171.0, 155.0, 160.0, 146.0, 124.0, 162.0, 113.0, 88.0, 117.0, 105.0, 173.0, 122.0, 170.0, 108.0, 156.0, 188.0, 152.0, 163.0, 131.0, 104.0, 102.0, 134.0, 179.0, 129.0, 130.0, 194.0, 181.0, 128.0, 109.0, 139.0, 159.0, 135.0, 158.0, 107.0, 109.0, 148.0, 196.0, 162.0, 184.0, 140.0, 112.0, 151.0, 109.0, 85.0, 112.0, 177.0, 158.0, 162.0, 142.0, 134.0, 171.0, 181.0, 179.0, 164.0, 139.0, 119.0, 184.0, 92.0, 113.0, 155.0, 141.0, 123.0, 138.0, 146.0, 101.0, 106.0, 146.0, 161.0, 108.0, 119.0, 107.0, 128.0, 128.0, 146.0, 100.0, 167.0, 144.0, 115.0, 161.0, 128.0, 124.0, 155.0, 109.0, 182.0, 194.0, 112.0, 124.0, 152.0, 122.0, 102.0, 180.0, 115.0, 152.0, 178.0, 142.32, 165.0, 125.0, 129.0, 196.0, 189.0, 146.0, 124.0, 133.0, 173.0, 140.0, 156.0, 116.0, 105.0, 144.0, 166.0, 158.0, 131.0, 193.0, 95.0, 136.0, 168.0, 115.0, 197.0, 172.0, 138.0, 173.0, 144.0, 129.0, 151.0, 184.0, 181.0, 95.0, 141.0, 189.0, 108.0, 117.0, 180.0, 104.0, 134.0, 175.0, 148.0, 120.0, 105.0, 158.0, 145.0, 135.0, 125.0, 195.0, 142.32, 180.0, 84.0, 163.0, 145.0, 130.0, 132.0, 129.0, 100.0, 128.0, 90.0, 186.0, 187.0, 125.0, 198.0, 121.0, 118.0, 197.0, 151.0, 124.0, 143.0, 176.0, 111.0, 132.0, 188.0, 173.0, 150.0, 183.0, 181.0, 174.0, 168.0, 138.0, 112.0, 119.0, 114.0, 104.0, 97.0, 147.0, 167.0, 179.0, 136.0, 155.0, 80.0, 199.0, 167.0, 145.0, 115.0, 145.0, 111.0, 195.0, 156.0, 121.0, 162.0, 125.0, 144.0, 158.0, 129.0, 142.0, 169.0, 125.0, 168.0, 115.0, 164.0, 93.0, 129.0, 187.0, 173.0, 97.0, 149.0, 130.0, 120.0, 174.0, 102.0, 120.0, 140.0, 147.0, 187.0, 162.0, 136.0, 181.0, 154.0, 128.0, 123.0, 190.0, 170.0, 126.0], \"y\": [72.0, 64.0, 40.0, 50.0, 70.0, 96.0, 74.0, 60.0, 72.0, 75.32, 84.0, 74.0, 70.0, 90.0, 80.0, 94.0, 70.0, 76.0, 76.0, 76.0, 68.0, 72.0, 110.0, 66.0, 66.0, 90.0, 68.0, 72.0, 66.0, 88.0, 66.0, 90.0, 75.32, 108.0, 70.0, 72.0, 90.0, 72.0, 85.0, 72.0, 62.0, 54.0, 92.0, 74.0, 76.0, 76.0, 30.0, 88.0, 84.0, 70.0, 56.0, 64.0, 66.0, 86.0, 78.0, 88.0, 72.0, 88.0, 74.0, 82.0, 70.0, 72.0, 110.0, 82.0, 68.0, 68.0, 98.0, 76.0, 80.0, 66.0, 75.32, 84.0, 62.0, 64.0, 60.0, 76.0, 104.0, 84.0, 65.0, 82.0, 70.0, 62.0, 74.0, 66.0, 60.0, 90.0, 52.0, 86.0, 80.0, 72.0, 84.0, 90.0, 84.0, 54.0, 50.0, 85.0, 62.0, 64.0, 76.0, 75.32, 62.0, 75.32, 75.32, 86.0, 60.0, 70.0, 86.0, 80.0, 86.0, 62.0, 78.0, 48.0, 70.0, 78.0, 75.32, 58.0, 98.0, 68.0, 68.0, 68.0, 74.0, 80.0, 74.0, 78.0, 74.0, 70.0, 90.0, 64.0, 86.0, 75.32, 76.0, 78.0, 84.0, 80.0, 88.0, 50.0, 75.32, 76.0, 64.0, 78.0, 72.0, 102.0, 82.0, 82.0, 75.0, 74.0, 100.0, 82.0, 76.0, 78.0, 66.0, 70.0, 64.0, 84.0, 64.0, 72.0, 74.0, 68.0, 60.0, 84.0, 82.0, 64.0, 78.0, 78.0, 64.0, 82.0, 75.32, 104.0, 70.0, 62.0, 78.0, 64.0, 70.0, 62.0, 84.0, 75.32, 80.0, 70.0, 75.32, 68.0, 70.0, 70.0, 68.0, 90.0, 72.0, 70.0, 88.0, 70.0, 75.32, 92.0, 74.0, 72.0, 85.0, 90.0, 76.0, 76.0, 66.0, 66.0, 80.0, 70.0, 90.0, 76.0, 66.0, 86.0, 84.0, 80.0, 82.0, 74.0, 78.0, 75.32, 78.0, 58.0, 88.0, 74.0, 82.0, 75.32, 64.0, 72.0, 76.0, 80.0, 74.0, 50.0, 84.0, 52.0, 82.0, 76.0, 106.0, 80.0, 60.0, 82.0, 70.0, 70.0, 86.0, 52.0, 76.0, 80.0, 82.0, 114.0, 68.0, 90.0, 74.0, 78.0, 88.0, 75.32, 78.0, 64.0, 62.0, 50.0, 78.0, 76.0, 68.0, 78.0, 86.0, 88.0, 74.0, 80.0, 94.0, 94.0, 70.0, 62.0, 70.0, 88.0, 78.0, 88.0, 72.0, 92.0, 74.0, 60.0]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [85.0, 89.0, 116.0, 115.0, 110.0, 139.0, 103.0, 126.0, 99.0, 97.0, 145.0, 117.0, 109.0, 88.0, 92.0, 122.0, 103.0, 138.0, 180.0, 133.0, 106.0, 159.0, 146.0, 71.0, 105.0, 103.0, 101.0, 88.0, 150.0, 73.0, 100.0, 146.0, 105.0, 84.0, 44.0, 141.0, 99.0, 109.0, 95.0, 146.0, 139.0, 129.0, 79.0, 110.64, 62.0, 95.0, 112.0, 113.0, 74.0, 83.0, 101.0, 110.0, 106.0, 100.0, 107.0, 80.0, 123.0, 81.0, 142.0, 144.0, 92.0, 71.0, 93.0, 151.0, 125.0, 81.0, 85.0, 126.0, 96.0, 144.0, 83.0, 89.0, 76.0, 78.0, 97.0, 99.0, 111.0, 107.0, 132.0, 120.0, 118.0, 84.0, 96.0, 125.0, 100.0, 93.0, 129.0, 105.0, 128.0, 106.0, 108.0, 154.0, 102.0, 57.0, 106.0, 147.0, 90.0, 136.0, 114.0, 153.0, 99.0, 109.0, 88.0, 151.0, 102.0, 114.0, 100.0, 148.0, 120.0, 110.0, 111.0, 87.0, 79.0, 75.0, 85.0, 143.0, 87.0, 119.0, 110.64, 73.0, 141.0, 111.0, 123.0, 85.0, 105.0, 113.0, 138.0, 108.0, 99.0, 103.0, 111.0, 96.0, 81.0, 147.0, 179.0, 125.0, 119.0, 142.0, 100.0, 87.0, 101.0, 197.0, 117.0, 79.0, 122.0, 74.0, 104.0, 91.0, 91.0, 146.0, 122.0, 165.0, 124.0, 111.0, 106.0, 129.0, 90.0, 86.0, 111.0, 114.0, 193.0, 191.0, 95.0, 142.0, 96.0, 128.0, 102.0, 108.0, 122.0, 71.0, 106.0, 100.0, 104.0, 114.0, 108.0, 129.0, 133.0, 136.0, 155.0, 96.0, 108.0, 78.0, 161.0, 151.0, 126.0, 112.0, 77.0, 150.0, 120.0, 137.0, 80.0, 106.0, 113.0, 112.0, 99.0, 115.0, 129.0, 112.0, 157.0, 179.0, 105.0, 118.0, 87.0, 106.0, 95.0, 165.0, 117.0, 130.0, 95.0, 110.64, 122.0, 95.0, 126.0, 139.0, 116.0, 99.0, 92.0, 137.0, 61.0, 90.0, 90.0, 88.0, 158.0, 103.0, 147.0, 99.0, 101.0, 81.0, 118.0, 84.0, 105.0, 122.0, 98.0, 87.0, 93.0, 107.0, 105.0, 109.0, 90.0, 125.0, 119.0, 100.0, 100.0, 131.0, 116.0, 127.0, 96.0, 82.0, 137.0, 72.0, 123.0, 101.0, 102.0, 112.0, 143.0, 143.0, 97.0, 83.0, 119.0, 94.0, 102.0, 115.0, 94.0, 135.0, 99.0, 89.0, 80.0, 139.0, 90.0, 140.0, 147.0, 97.0, 107.0, 83.0, 117.0, 100.0, 95.0, 120.0, 82.0, 91.0, 119.0, 100.0, 135.0, 86.0, 134.0, 120.0, 71.0, 74.0, 88.0, 115.0, 124.0, 74.0, 97.0, 154.0, 144.0, 137.0, 119.0, 136.0, 114.0, 137.0, 114.0, 126.0, 132.0, 123.0, 85.0, 84.0, 139.0, 173.0, 99.0, 194.0, 83.0, 89.0, 99.0, 80.0, 166.0, 110.0, 81.0, 154.0, 117.0, 84.0, 94.0, 96.0, 75.0, 130.0, 84.0, 120.0, 139.0, 91.0, 91.0, 99.0, 125.0, 76.0, 129.0, 68.0, 124.0, 114.0, 125.0, 87.0, 97.0, 116.0, 117.0, 111.0, 122.0, 107.0, 86.0, 91.0, 77.0, 105.0, 57.0, 127.0, 84.0, 88.0, 131.0, 164.0, 189.0, 116.0, 84.0, 114.0, 88.0, 84.0, 124.0, 97.0, 110.0, 103.0, 85.0, 87.0, 99.0, 91.0, 95.0, 99.0, 92.0, 154.0, 78.0, 130.0, 111.0, 98.0, 143.0, 119.0, 108.0, 133.0, 109.0, 121.0, 100.0, 93.0, 103.0, 73.0, 112.0, 82.0, 123.0, 67.0, 89.0, 109.0, 108.0, 96.0, 124.0, 124.0, 92.0, 152.0, 111.0, 106.0, 105.0, 106.0, 117.0, 68.0, 112.0, 92.0, 183.0, 94.0, 108.0, 90.0, 125.0, 132.0, 128.0, 94.0, 102.0, 111.0, 128.0, 92.0, 104.0, 94.0, 100.0, 102.0, 128.0, 90.0, 103.0, 157.0, 107.0, 91.0, 117.0, 123.0, 120.0, 106.0, 101.0, 120.0, 127.0, 162.0, 112.0, 98.0, 154.0, 165.0, 99.0, 68.0, 123.0, 91.0, 93.0, 101.0, 56.0, 95.0, 136.0, 129.0, 130.0, 107.0, 140.0, 107.0, 121.0, 90.0, 99.0, 127.0, 118.0, 122.0, 129.0, 110.0, 80.0, 127.0, 158.0, 126.0, 134.0, 102.0, 94.0, 108.0, 83.0, 114.0, 117.0, 111.0, 112.0, 116.0, 141.0, 175.0, 92.0, 106.0, 105.0, 95.0, 126.0, 65.0, 99.0, 102.0, 109.0, 153.0, 100.0, 81.0, 121.0, 108.0, 137.0, 106.0, 88.0, 89.0, 101.0, 122.0, 121.0, 93.0], \"y\": [66.0, 66.0, 74.0, 70.88, 92.0, 80.0, 30.0, 88.0, 84.0, 66.0, 82.0, 92.0, 75.0, 58.0, 92.0, 78.0, 60.0, 76.0, 64.0, 84.0, 92.0, 64.0, 56.0, 70.0, 70.88, 80.0, 50.0, 66.0, 66.0, 50.0, 88.0, 82.0, 64.0, 70.88, 62.0, 58.0, 74.0, 92.0, 66.0, 85.0, 64.0, 86.0, 75.0, 48.0, 78.0, 72.0, 66.0, 44.0, 70.88, 78.0, 65.0, 74.0, 72.0, 68.0, 68.0, 55.0, 80.0, 78.0, 82.0, 72.0, 62.0, 48.0, 50.0, 60.0, 96.0, 72.0, 65.0, 56.0, 122.0, 58.0, 58.0, 76.0, 62.0, 48.0, 60.0, 76.0, 64.0, 74.0, 80.0, 70.0, 58.0, 74.0, 68.0, 60.0, 70.0, 60.0, 80.0, 72.0, 78.0, 82.0, 52.0, 62.0, 75.0, 80.0, 64.0, 78.0, 70.0, 74.0, 65.0, 82.0, 52.0, 56.0, 74.0, 90.0, 74.0, 80.0, 64.0, 66.0, 68.0, 66.0, 90.0, 70.88, 60.0, 64.0, 78.0, 78.0, 80.0, 64.0, 74.0, 60.0, 74.0, 62.0, 70.0, 55.0, 58.0, 80.0, 82.0, 68.0, 70.0, 72.0, 72.0, 64.0, 60.0, 85.0, 95.0, 68.0, 70.88, 60.0, 66.0, 78.0, 76.0, 70.0, 80.0, 80.0, 68.0, 68.0, 76.0, 64.0, 70.0, 76.0, 68.0, 90.0, 70.0, 86.0, 52.0, 84.0, 80.0, 68.0, 56.0, 68.0, 50.0, 68.0, 70.0, 80.0, 74.0, 64.0, 52.0, 62.0, 78.0, 78.0, 70.0, 70.0, 64.0, 74.0, 62.0, 76.0, 88.0, 74.0, 84.0, 56.0, 72.0, 88.0, 50.0, 62.0, 84.0, 72.0, 82.0, 76.0, 76.0, 68.0, 66.0, 70.0, 50.0, 68.0, 80.0, 66.0, 60.0, 75.0, 72.0, 70.0, 70.0, 72.0, 58.0, 80.0, 60.0, 76.0, 70.88, 70.0, 74.0, 68.0, 86.0, 72.0, 88.0, 46.0, 70.88, 62.0, 80.0, 84.0, 82.0, 62.0, 78.0, 74.0, 70.0, 108.0, 74.0, 54.0, 64.0, 86.0, 64.0, 64.0, 58.0, 52.0, 82.0, 60.0, 100.0, 72.0, 68.0, 60.0, 62.0, 70.0, 54.0, 68.0, 66.0, 64.0, 72.0, 58.0, 56.0, 70.0, 61.0, 78.0, 48.0, 62.0, 90.0, 72.0, 84.0, 74.0, 68.0, 68.0, 88.0, 68.0, 64.0, 64.0, 70.88, 94.0, 70.88, 74.0, 74.0, 75.0, 68.0, 85.0, 75.0, 70.0, 88.0, 66.0, 64.0, 72.0, 80.0, 74.0, 64.0, 68.0, 70.88, 54.0, 54.0, 68.0, 74.0, 72.0, 62.0, 70.0, 78.0, 98.0, 56.0, 52.0, 64.0, 78.0, 82.0, 70.0, 66.0, 90.0, 64.0, 84.0, 76.0, 74.0, 86.0, 88.0, 58.0, 82.0, 62.0, 78.0, 72.0, 80.0, 65.0, 90.0, 68.0, 70.88, 74.0, 68.0, 72.0, 74.0, 90.0, 72.0, 64.0, 78.0, 82.0, 60.0, 50.0, 78.0, 62.0, 68.0, 62.0, 54.0, 86.0, 60.0, 90.0, 70.0, 80.0, 70.88, 58.0, 60.0, 64.0, 74.0, 66.0, 65.0, 60.0, 76.0, 66.0, 70.88, 56.0, 90.0, 60.0, 80.0, 90.0, 78.0, 68.0, 82.0, 110.0, 70.0, 68.0, 88.0, 62.0, 64.0, 70.0, 70.0, 76.0, 68.0, 74.0, 68.0, 60.0, 80.0, 54.0, 72.0, 62.0, 72.0, 70.0, 96.0, 58.0, 60.0, 86.0, 44.0, 44.0, 68.0, 60.0, 78.0, 76.0, 56.0, 66.0, 70.88, 78.0, 52.0, 72.0, 76.0, 24.0, 38.0, 88.0, 70.88, 74.0, 60.0, 62.0, 82.0, 62.0, 54.0, 80.0, 72.0, 96.0, 62.0, 86.0, 76.0, 94.0, 70.0, 64.0, 88.0, 68.0, 78.0, 80.0, 65.0, 78.0, 60.0, 82.0, 62.0, 74.0, 76.0, 74.0, 86.0, 70.0, 70.88, 72.0, 74.0, 60.0, 54.0, 60.0, 74.0, 54.0, 70.0, 58.0, 80.0, 106.0, 84.0, 80.0, 58.0, 78.0, 68.0, 58.0, 106.0, 100.0, 82.0, 60.0, 58.0, 56.0, 64.0, 82.0, 74.0, 64.0, 50.0, 74.0, 80.0, 70.0, 60.0, 70.88, 88.0, 70.0, 76.0, 70.88, 76.0, 80.0, 46.0, 64.0, 78.0, 58.0, 74.0, 72.0, 60.0, 86.0, 66.0, 86.0, 94.0, 78.0, 78.0, 84.0, 88.0, 52.0, 56.0, 75.0, 60.0, 86.0, 72.0, 60.0, 44.0, 58.0, 88.0, 84.0, 74.0, 78.0, 62.0, 90.0, 76.0, 58.0, 62.0, 76.0, 70.0, 72.0, 70.0]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"GLUCOSE vs BLOOD_PRESSURE\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"GLUCOSE\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"BLOOD_PRESSURE\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('b3f54139-bef2-4bf7-80f4-141eeda1e7f6');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat5'] = 0\ndf.loc[(df['glucose'] <= 100) & (df['blood_pressure'] <= 80), 'feat5'] = 1","execution_count":59,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat5',': GLUCOSE <= 100 & BLOOD PRESSURE <=80')","execution_count":60,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"bf402ae8-1b33-4383-8f15-71214a7b078a\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"bf402ae8-1b33-4383-8f15-71214a7b078a\")) {                    Plotly.newPlot(                        \"bf402ae8-1b33-4383-8f15-71214a7b078a\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"254\", \"14\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [254, 14]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"328\", \"172\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [328, 172]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat5 : GLUCOSE <= 100 & BLOOD PRESSURE <=80\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('bf402ae8-1b33-4383-8f15-71214a7b078a');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat5', 'GLUCOSE <= 100 & BLOOD PRESSURE <=80')","execution_count":61,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"67943ae2-f42d-4d13-b4aa-bc6186858a52\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"67943ae2-f42d-4d13-b4aa-bc6186858a52\")) {                    Plotly.newPlot(                        \"67943ae2-f42d-4d13-b4aa-bc6186858a52\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [254, 14]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [328, 172]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT5 distribution by target: GLUCOSE <= 100 & BLOOD PRESSURE <=80\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('67943ae2-f42d-4d13-b4aa-bc6186858a52');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT6: GLUCOSE vs BMI"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('glucose','bmi')","execution_count":62,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"dcd4162d-fbbe-4453-b92d-dea20c9e0de6\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"dcd4162d-fbbe-4453-b92d-dea20c9e0de6\")) {                    Plotly.newPlot(                        \"dcd4162d-fbbe-4453-b92d-dea20c9e0de6\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [148.0, 183.0, 137.0, 78.0, 197.0, 125.0, 168.0, 189.0, 166.0, 100.0, 118.0, 107.0, 115.0, 196.0, 119.0, 143.0, 125.0, 147.0, 158.0, 102.0, 90.0, 111.0, 171.0, 180.0, 103.0, 176.0, 187.0, 133.0, 114.0, 109.0, 100.0, 126.0, 131.0, 137.0, 136.0, 134.0, 122.0, 163.0, 95.0, 171.0, 155.0, 160.0, 146.0, 124.0, 162.0, 113.0, 88.0, 117.0, 105.0, 173.0, 122.0, 170.0, 108.0, 156.0, 188.0, 152.0, 163.0, 131.0, 104.0, 102.0, 134.0, 179.0, 129.0, 130.0, 194.0, 181.0, 128.0, 109.0, 139.0, 159.0, 135.0, 158.0, 107.0, 109.0, 148.0, 196.0, 162.0, 184.0, 140.0, 112.0, 151.0, 109.0, 85.0, 112.0, 177.0, 158.0, 162.0, 142.0, 134.0, 171.0, 181.0, 179.0, 164.0, 139.0, 119.0, 184.0, 92.0, 113.0, 155.0, 141.0, 123.0, 138.0, 146.0, 101.0, 106.0, 146.0, 161.0, 108.0, 119.0, 107.0, 128.0, 128.0, 146.0, 100.0, 167.0, 144.0, 115.0, 161.0, 128.0, 124.0, 155.0, 109.0, 182.0, 194.0, 112.0, 124.0, 152.0, 122.0, 102.0, 180.0, 115.0, 152.0, 178.0, 142.32, 165.0, 125.0, 129.0, 196.0, 189.0, 146.0, 124.0, 133.0, 173.0, 140.0, 156.0, 116.0, 105.0, 144.0, 166.0, 158.0, 131.0, 193.0, 95.0, 136.0, 168.0, 115.0, 197.0, 172.0, 138.0, 173.0, 144.0, 129.0, 151.0, 184.0, 181.0, 95.0, 141.0, 189.0, 108.0, 117.0, 180.0, 104.0, 134.0, 175.0, 148.0, 120.0, 105.0, 158.0, 145.0, 135.0, 125.0, 195.0, 142.32, 180.0, 84.0, 163.0, 145.0, 130.0, 132.0, 129.0, 100.0, 128.0, 90.0, 186.0, 187.0, 125.0, 198.0, 121.0, 118.0, 197.0, 151.0, 124.0, 143.0, 176.0, 111.0, 132.0, 188.0, 173.0, 150.0, 183.0, 181.0, 174.0, 168.0, 138.0, 112.0, 119.0, 114.0, 104.0, 97.0, 147.0, 167.0, 179.0, 136.0, 155.0, 80.0, 199.0, 167.0, 145.0, 115.0, 145.0, 111.0, 195.0, 156.0, 121.0, 162.0, 125.0, 144.0, 158.0, 129.0, 142.0, 169.0, 125.0, 168.0, 115.0, 164.0, 93.0, 129.0, 187.0, 173.0, 97.0, 149.0, 130.0, 120.0, 174.0, 102.0, 120.0, 140.0, 147.0, 187.0, 162.0, 136.0, 181.0, 154.0, 128.0, 123.0, 190.0, 170.0, 126.0], \"y\": [33.6, 23.3, 43.1, 31.0, 30.5, 35.41, 38.0, 30.1, 25.8, 30.0, 45.8, 29.6, 34.6, 39.8, 29.0, 36.6, 31.1, 39.4, 31.6, 32.9, 38.2, 37.1, 45.4, 42.0, 39.1, 33.7, 37.7, 32.9, 32.8, 32.5, 32.9, 43.4, 43.2, 48.8, 37.1, 23.8, 49.7, 39.0, 37.4, 33.3, 34.0, 30.5, 31.2, 34.0, 53.2, 33.3, 55.0, 34.5, 27.9, 29.7, 33.3, 34.5, 32.4, 34.3, 47.9, 50.0, 40.9, 31.6, 29.9, 30.8, 35.4, 32.7, 67.1, 39.1, 35.9, 30.1, 32.0, 27.9, 31.6, 30.4, 52.3, 39.4, 22.9, 34.8, 30.9, 37.5, 37.7, 35.5, 42.6, 34.2, 41.8, 35.8, 29.0, 37.8, 34.6, 31.6, 37.2, 44.0, 46.2, 43.6, 35.9, 44.1, 30.8, 25.6, 27.1, 30.0, 27.6, 33.6, 33.3, 30.0, 32.0, 36.3, 27.5, 45.6, 26.5, 37.9, 30.4, 27.0, 45.6, 36.6, 43.3, 40.5, 28.0, 36.6, 32.3, 31.6, 52.9, 25.5, 30.5, 32.9, 26.6, 35.9, 30.5, 23.5, 31.6, 27.4, 26.8, 35.1, 45.5, 43.3, 31.2, 34.2, 39.9, 41.0, 30.4, 33.3, 39.9, 36.5, 31.2, 38.5, 27.6, 32.8, 38.4, 39.2, 48.3, 32.3, 43.3, 32.0, 45.7, 32.9, 34.3, 34.9, 32.0, 35.0, 32.9, 28.9, 25.9, 42.4, 34.6, 35.7, 38.5, 26.4, 42.9, 37.0, 34.1, 35.0, 42.4, 34.3, 30.5, 29.7, 59.4, 33.6, 28.9, 33.6, 37.6, 30.0, 33.7, 35.5, 44.2, 42.3, 28.9, 25.1, 39.0, 36.5, 29.7, 31.6, 30.3, 34.2, 32.9, 36.4, 39.4, 32.4, 34.9, 34.5, 43.6, 33.8, 41.3, 34.3, 42.9, 34.7, 42.1, 28.7, 34.9, 33.3, 46.8, 34.4, 32.0, 36.8, 35.2, 28.4, 40.0, 32.9, 38.2, 36.1, 28.2, 32.4, 27.4, 31.2, 40.9, 29.5, 23.4, 37.8, 28.3, 38.7, 34.2, 42.9, 37.6, 37.9, 33.7, 32.5, 27.5, 30.9, 24.8, 36.0, 49.6, 32.3, 46.1, 42.3, 38.5, 30.4, 29.9, 27.6, 35.0, 35.41, 32.8, 38.0, 41.2, 33.9, 33.8, 35.6, 29.3, 28.4, 28.4, 44.5, 39.5, 42.3, 32.7, 49.3, 36.4, 24.3, 31.2, 43.3, 32.4, 36.5, 36.3, 35.5, 44.0, 30.1]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [85.0, 89.0, 116.0, 115.0, 110.0, 139.0, 103.0, 126.0, 99.0, 97.0, 145.0, 117.0, 109.0, 88.0, 92.0, 122.0, 103.0, 138.0, 180.0, 133.0, 106.0, 159.0, 146.0, 71.0, 105.0, 103.0, 101.0, 88.0, 150.0, 73.0, 100.0, 146.0, 105.0, 84.0, 44.0, 141.0, 99.0, 109.0, 95.0, 146.0, 139.0, 129.0, 79.0, 110.64, 62.0, 95.0, 112.0, 113.0, 74.0, 83.0, 101.0, 110.0, 106.0, 100.0, 107.0, 80.0, 123.0, 81.0, 142.0, 144.0, 92.0, 71.0, 93.0, 151.0, 125.0, 81.0, 85.0, 126.0, 96.0, 144.0, 83.0, 89.0, 76.0, 78.0, 97.0, 99.0, 111.0, 107.0, 132.0, 120.0, 118.0, 84.0, 96.0, 125.0, 100.0, 93.0, 129.0, 105.0, 128.0, 106.0, 108.0, 154.0, 102.0, 57.0, 106.0, 147.0, 90.0, 136.0, 114.0, 153.0, 99.0, 109.0, 88.0, 151.0, 102.0, 114.0, 100.0, 148.0, 120.0, 110.0, 111.0, 87.0, 79.0, 75.0, 85.0, 143.0, 87.0, 119.0, 110.64, 73.0, 141.0, 111.0, 123.0, 85.0, 105.0, 113.0, 138.0, 108.0, 99.0, 103.0, 111.0, 96.0, 81.0, 147.0, 179.0, 125.0, 119.0, 142.0, 100.0, 87.0, 101.0, 197.0, 117.0, 79.0, 122.0, 74.0, 104.0, 91.0, 91.0, 146.0, 122.0, 165.0, 124.0, 111.0, 106.0, 129.0, 90.0, 86.0, 111.0, 114.0, 193.0, 191.0, 95.0, 142.0, 96.0, 128.0, 102.0, 108.0, 122.0, 71.0, 106.0, 100.0, 104.0, 114.0, 108.0, 129.0, 133.0, 136.0, 155.0, 96.0, 108.0, 78.0, 161.0, 151.0, 126.0, 112.0, 77.0, 150.0, 120.0, 137.0, 80.0, 106.0, 113.0, 112.0, 99.0, 115.0, 129.0, 112.0, 157.0, 179.0, 105.0, 118.0, 87.0, 106.0, 95.0, 165.0, 117.0, 130.0, 95.0, 110.64, 122.0, 95.0, 126.0, 139.0, 116.0, 99.0, 92.0, 137.0, 61.0, 90.0, 90.0, 88.0, 158.0, 103.0, 147.0, 99.0, 101.0, 81.0, 118.0, 84.0, 105.0, 122.0, 98.0, 87.0, 93.0, 107.0, 105.0, 109.0, 90.0, 125.0, 119.0, 100.0, 100.0, 131.0, 116.0, 127.0, 96.0, 82.0, 137.0, 72.0, 123.0, 101.0, 102.0, 112.0, 143.0, 143.0, 97.0, 83.0, 119.0, 94.0, 102.0, 115.0, 94.0, 135.0, 99.0, 89.0, 80.0, 139.0, 90.0, 140.0, 147.0, 97.0, 107.0, 83.0, 117.0, 100.0, 95.0, 120.0, 82.0, 91.0, 119.0, 100.0, 135.0, 86.0, 134.0, 120.0, 71.0, 74.0, 88.0, 115.0, 124.0, 74.0, 97.0, 154.0, 144.0, 137.0, 119.0, 136.0, 114.0, 137.0, 114.0, 126.0, 132.0, 123.0, 85.0, 84.0, 139.0, 173.0, 99.0, 194.0, 83.0, 89.0, 99.0, 80.0, 166.0, 110.0, 81.0, 154.0, 117.0, 84.0, 94.0, 96.0, 75.0, 130.0, 84.0, 120.0, 139.0, 91.0, 91.0, 99.0, 125.0, 76.0, 129.0, 68.0, 124.0, 114.0, 125.0, 87.0, 97.0, 116.0, 117.0, 111.0, 122.0, 107.0, 86.0, 91.0, 77.0, 105.0, 57.0, 127.0, 84.0, 88.0, 131.0, 164.0, 189.0, 116.0, 84.0, 114.0, 88.0, 84.0, 124.0, 97.0, 110.0, 103.0, 85.0, 87.0, 99.0, 91.0, 95.0, 99.0, 92.0, 154.0, 78.0, 130.0, 111.0, 98.0, 143.0, 119.0, 108.0, 133.0, 109.0, 121.0, 100.0, 93.0, 103.0, 73.0, 112.0, 82.0, 123.0, 67.0, 89.0, 109.0, 108.0, 96.0, 124.0, 124.0, 92.0, 152.0, 111.0, 106.0, 105.0, 106.0, 117.0, 68.0, 112.0, 92.0, 183.0, 94.0, 108.0, 90.0, 125.0, 132.0, 128.0, 94.0, 102.0, 111.0, 128.0, 92.0, 104.0, 94.0, 100.0, 102.0, 128.0, 90.0, 103.0, 157.0, 107.0, 91.0, 117.0, 123.0, 120.0, 106.0, 101.0, 120.0, 127.0, 162.0, 112.0, 98.0, 154.0, 165.0, 99.0, 68.0, 123.0, 91.0, 93.0, 101.0, 56.0, 95.0, 136.0, 129.0, 130.0, 107.0, 140.0, 107.0, 121.0, 90.0, 99.0, 127.0, 118.0, 122.0, 129.0, 110.0, 80.0, 127.0, 158.0, 126.0, 134.0, 102.0, 94.0, 108.0, 83.0, 114.0, 117.0, 111.0, 112.0, 116.0, 141.0, 175.0, 92.0, 106.0, 105.0, 95.0, 126.0, 65.0, 99.0, 102.0, 109.0, 153.0, 100.0, 81.0, 121.0, 108.0, 137.0, 106.0, 88.0, 89.0, 101.0, 122.0, 121.0, 93.0], \"y\": [26.6, 28.1, 25.6, 35.3, 37.6, 27.1, 43.3, 39.3, 35.4, 23.2, 22.2, 34.1, 36.0, 24.8, 19.9, 27.6, 24.0, 33.2, 34.0, 40.2, 22.7, 27.4, 29.7, 28.0, 30.86, 19.4, 24.2, 24.4, 34.7, 23.0, 46.8, 40.5, 41.5, 30.86, 25.0, 25.4, 29.0, 42.7, 19.6, 28.9, 28.6, 35.1, 32.0, 24.7, 32.6, 37.7, 25.0, 22.4, 30.86, 29.3, 24.6, 32.4, 36.6, 38.5, 26.5, 19.1, 32.0, 46.7, 24.7, 33.9, 31.6, 20.4, 28.7, 26.1, 22.5, 26.6, 39.6, 28.7, 22.4, 29.5, 34.3, 31.2, 34.0, 33.7, 28.2, 23.2, 34.2, 33.6, 26.8, 42.9, 33.3, 38.3, 21.1, 33.8, 30.8, 28.7, 31.2, 36.9, 21.1, 39.5, 32.5, 32.8, 30.86, 32.8, 30.5, 33.7, 27.3, 37.4, 21.9, 40.6, 24.6, 25.2, 29.0, 29.7, 37.2, 44.2, 29.7, 32.5, 29.6, 31.9, 28.4, 28.9, 43.5, 29.7, 31.2, 45.0, 23.2, 34.9, 27.7, 26.8, 27.6, 22.6, 33.1, 24.4, 24.3, 31.0, 40.1, 27.3, 20.4, 37.7, 23.9, 33.2, 27.7, 42.8, 34.2, 30.0, 25.2, 28.8, 23.6, 34.6, 35.7, 36.7, 45.2, 25.4, 35.0, 29.7, 18.4, 29.2, 33.1, 38.2, 31.2, 52.3, 35.4, 30.1, 31.2, 28.0, 24.4, 35.8, 30.1, 28.7, 25.9, 30.9, 32.1, 32.4, 33.6, 40.0, 25.1, 25.2, 23.0, 33.2, 34.2, 40.5, 27.8, 24.9, 25.3, 35.9, 32.4, 26.0, 38.7, 20.8, 36.1, 36.9, 21.9, 35.5, 30.7, 23.6, 35.8, 21.0, 39.7, 24.8, 26.2, 39.4, 29.5, 34.1, 19.3, 38.1, 27.5, 35.7, 25.6, 35.1, 30.8, 23.1, 32.7, 23.6, 23.9, 47.9, 33.8, 25.9, 25.9, 32.0, 34.7, 36.8, 38.5, 28.7, 23.5, 21.8, 42.2, 31.2, 34.4, 27.2, 42.7, 35.3, 29.8, 39.2, 34.9, 34.0, 21.0, 27.5, 30.86, 35.8, 34.9, 36.2, 25.2, 37.2, 43.4, 30.8, 20.0, 25.4, 25.1, 24.3, 22.3, 31.6, 32.0, 23.7, 22.1, 27.7, 24.7, 21.1, 24.2, 31.6, 42.1, 21.9, 35.7, 34.4, 42.4, 26.2, 27.2, 18.2, 45.3, 26.0, 40.6, 30.8, 30.86, 40.6, 22.2, 30.4, 30.0, 25.6, 24.5, 37.4, 29.9, 18.2, 36.8, 32.2, 33.2, 25.3, 36.5, 30.5, 21.2, 39.9, 19.6, 37.8, 26.7, 30.2, 25.9, 20.8, 21.8, 35.3, 27.6, 24.0, 21.8, 27.8, 36.8, 46.1, 41.3, 33.2, 38.8, 29.9, 28.9, 27.3, 23.8, 25.9, 28.0, 35.2, 27.8, 38.2, 40.7, 46.5, 25.6, 26.1, 36.8, 33.5, 32.8, 30.86, 26.6, 26.0, 30.1, 29.3, 25.2, 37.2, 33.3, 37.3, 33.3, 28.6, 30.4, 25.0, 22.1, 24.2, 27.3, 25.6, 37.6, 32.8, 19.6, 25.0, 33.2, 30.86, 31.6, 21.8, 18.2, 26.3, 30.8, 24.6, 29.8, 45.3, 41.3, 29.8, 33.3, 29.6, 21.7, 36.3, 39.5, 32.0, 33.1, 32.8, 28.5, 27.4, 31.9, 27.8, 29.9, 36.9, 25.5, 38.1, 27.8, 46.2, 30.1, 37.6, 26.9, 32.4, 26.1, 38.6, 32.0, 31.3, 32.5, 22.6, 29.5, 34.7, 30.1, 35.5, 24.0, 27.0, 25.0, 26.5, 38.7, 22.5, 24.3, 21.1, 39.4, 28.5, 33.6, 45.3, 27.8, 23.1, 27.1, 23.7, 27.8, 35.8, 19.5, 41.5, 24.0, 30.9, 32.5, 25.8, 28.7, 20.1, 38.4, 24.2, 40.8, 43.5, 30.8, 37.7, 24.7, 32.4, 34.6, 24.7, 34.5, 26.2, 27.5, 25.9, 28.8, 31.6, 19.5, 29.3, 34.3, 28.0, 27.6, 39.4, 26.4, 25.2, 33.8, 34.1, 26.8, 34.2, 21.8, 38.9, 39.0, 27.7, 34.8, 34.0, 30.9, 33.6, 25.4, 35.5, 57.3, 35.6, 35.3, 24.2, 24.2, 44.6, 30.86, 33.2, 23.1, 28.3, 24.1, 24.6, 39.1, 23.5, 25.0, 34.5, 44.5, 35.9, 38.5, 28.4, 39.8, 34.4, 31.2, 29.6, 26.4, 29.5, 23.1, 35.5, 29.3, 38.1, 39.1, 32.8, 39.4, 36.1, 32.4, 22.9, 30.1, 29.0, 23.3, 35.4, 27.4, 32.0, 36.6, 30.8, 28.5, 40.6, 30.0, 46.3, 39.0, 26.0, 32.0, 37.5, 28.4, 22.5, 32.9, 36.8, 26.2, 30.4]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"GLUCOSE vs BMI\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"GLUCOSE\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"BMI\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('dcd4162d-fbbe-4453-b92d-dea20c9e0de6');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat6'] = 0\ndf.loc[(df['bmi'] <= 40) & (df['glucose'] <= 100), 'feat6'] = 1","execution_count":63,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat6',': GLUCOSE <= 100 & BMI <= 40')","execution_count":64,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"69f6a8e7-3a24-44fb-bb85-e2550d0627d5\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"69f6a8e7-3a24-44fb-bb85-e2550d0627d5\")) {                    Plotly.newPlot(                        \"69f6a8e7-3a24-44fb-bb85-e2550d0627d5\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"252\", \"16\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [252, 16]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"321\", \"179\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [321, 179]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat6 : GLUCOSE <= 100 & BMI <= 40\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('69f6a8e7-3a24-44fb-bb85-e2550d0627d5');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat6','GLUCOSE <= 100 & BMI <= 40')","execution_count":65,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"5e87c8ba-0ef6-4311-ba16-ae819bce2607\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"5e87c8ba-0ef6-4311-ba16-ae819bce2607\")) {                    Plotly.newPlot(                        \"5e87c8ba-0ef6-4311-ba16-ae819bce2607\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [252, 16]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [321, 179]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT6 distribution by target: GLUCOSE <= 100 & BMI <= 40\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('5e87c8ba-0ef6-4311-ba16-ae819bce2607');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT 7: GLUCOSE vs SKIN THICKNESS"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('glucose','skin_thickness')","execution_count":66,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"1af65ddc-c0a4-4158-a0ae-44507a5796bf\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"1af65ddc-c0a4-4158-a0ae-44507a5796bf\")) {                    Plotly.newPlot(                        \"1af65ddc-c0a4-4158-a0ae-44507a5796bf\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [148.0, 183.0, 137.0, 78.0, 197.0, 125.0, 168.0, 189.0, 166.0, 100.0, 118.0, 107.0, 115.0, 196.0, 119.0, 143.0, 125.0, 147.0, 158.0, 102.0, 90.0, 111.0, 171.0, 180.0, 103.0, 176.0, 187.0, 133.0, 114.0, 109.0, 100.0, 126.0, 131.0, 137.0, 136.0, 134.0, 122.0, 163.0, 95.0, 171.0, 155.0, 160.0, 146.0, 124.0, 162.0, 113.0, 88.0, 117.0, 105.0, 173.0, 122.0, 170.0, 108.0, 156.0, 188.0, 152.0, 163.0, 131.0, 104.0, 102.0, 134.0, 179.0, 129.0, 130.0, 194.0, 181.0, 128.0, 109.0, 139.0, 159.0, 135.0, 158.0, 107.0, 109.0, 148.0, 196.0, 162.0, 184.0, 140.0, 112.0, 151.0, 109.0, 85.0, 112.0, 177.0, 158.0, 162.0, 142.0, 134.0, 171.0, 181.0, 179.0, 164.0, 139.0, 119.0, 184.0, 92.0, 113.0, 155.0, 141.0, 123.0, 138.0, 146.0, 101.0, 106.0, 146.0, 161.0, 108.0, 119.0, 107.0, 128.0, 128.0, 146.0, 100.0, 167.0, 144.0, 115.0, 161.0, 128.0, 124.0, 155.0, 109.0, 182.0, 194.0, 112.0, 124.0, 152.0, 122.0, 102.0, 180.0, 115.0, 152.0, 178.0, 142.32, 165.0, 125.0, 129.0, 196.0, 189.0, 146.0, 124.0, 133.0, 173.0, 140.0, 156.0, 116.0, 105.0, 144.0, 166.0, 158.0, 131.0, 193.0, 95.0, 136.0, 168.0, 115.0, 197.0, 172.0, 138.0, 173.0, 144.0, 129.0, 151.0, 184.0, 181.0, 95.0, 141.0, 189.0, 108.0, 117.0, 180.0, 104.0, 134.0, 175.0, 148.0, 120.0, 105.0, 158.0, 145.0, 135.0, 125.0, 195.0, 142.32, 180.0, 84.0, 163.0, 145.0, 130.0, 132.0, 129.0, 100.0, 128.0, 90.0, 186.0, 187.0, 125.0, 198.0, 121.0, 118.0, 197.0, 151.0, 124.0, 143.0, 176.0, 111.0, 132.0, 188.0, 173.0, 150.0, 183.0, 181.0, 174.0, 168.0, 138.0, 112.0, 119.0, 114.0, 104.0, 97.0, 147.0, 167.0, 179.0, 136.0, 155.0, 80.0, 199.0, 167.0, 145.0, 115.0, 145.0, 111.0, 195.0, 156.0, 121.0, 162.0, 125.0, 144.0, 158.0, 129.0, 142.0, 169.0, 125.0, 168.0, 115.0, 164.0, 93.0, 129.0, 187.0, 173.0, 97.0, 149.0, 130.0, 120.0, 174.0, 102.0, 120.0, 140.0, 147.0, 187.0, 162.0, 136.0, 181.0, 154.0, 128.0, 123.0, 190.0, 170.0, 126.0], \"y\": [35.0, 33.0, 35.0, 32.0, 45.0, 33.0, 33.0, 23.0, 19.0, 33.0, 47.0, 33.0, 30.0, 33.0, 35.0, 33.0, 26.0, 33.0, 36.0, 37.0, 42.0, 47.0, 24.0, 39.0, 32.0, 34.0, 39.0, 33.0, 33.0, 30.0, 20.0, 33.0, 33.0, 33.0, 32.0, 33.0, 51.0, 33.0, 25.0, 33.0, 26.0, 32.0, 33.0, 33.0, 56.0, 33.0, 42.0, 24.0, 33.0, 14.0, 33.0, 37.0, 33.0, 28.0, 33.0, 44.0, 41.0, 33.0, 18.0, 33.0, 23.0, 42.0, 46.0, 33.0, 28.0, 36.0, 41.0, 39.0, 35.0, 33.0, 33.0, 41.0, 13.0, 44.0, 27.0, 29.0, 33.0, 33.0, 26.0, 32.0, 40.0, 41.0, 22.0, 33.0, 29.0, 33.0, 38.0, 33.0, 37.0, 33.0, 21.0, 27.0, 21.0, 33.0, 22.0, 15.0, 7.0, 35.0, 28.0, 33.0, 33.0, 33.0, 33.0, 37.0, 24.0, 33.0, 33.0, 33.0, 39.0, 30.0, 37.0, 45.0, 38.0, 25.0, 33.0, 33.0, 33.0, 23.0, 19.0, 28.0, 17.0, 31.0, 33.0, 33.0, 30.0, 20.0, 33.0, 32.0, 36.0, 33.0, 33.0, 34.0, 33.0, 32.0, 33.0, 40.0, 30.0, 36.0, 33.0, 33.0, 33.0, 28.0, 48.0, 43.0, 33.0, 29.0, 36.0, 26.0, 33.0, 33.0, 40.0, 31.0, 33.0, 41.0, 33.0, 33.0, 33.0, 49.0, 35.0, 33.0, 32.0, 29.0, 32.0, 39.0, 30.0, 25.0, 33.0, 25.0, 33.0, 12.0, 63.0, 37.0, 33.0, 30.0, 48.0, 33.0, 45.0, 30.0, 33.0, 42.0, 18.0, 33.0, 41.0, 26.0, 31.0, 18.0, 34.0, 33.0, 33.0, 49.0, 40.0, 25.0, 32.0, 35.0, 27.0, 33.0, 32.0, 30.0, 33.0, 99.0, 46.0, 24.0, 33.0, 27.0, 40.0, 33.0, 14.0, 33.0, 29.0, 33.0, 42.0, 22.0, 42.0, 26.0, 24.0, 33.0, 33.0, 33.0, 32.0, 33.0, 17.0, 36.0, 35.0, 27.0, 31.0, 43.0, 46.0, 46.0, 39.0, 18.0, 27.0, 33.0, 33.0, 33.0, 36.0, 33.0, 46.0, 33.0, 49.0, 24.0, 19.0, 31.0, 29.0, 33.0, 33.0, 32.0, 36.0, 33.0, 39.0, 27.0, 29.0, 23.0, 33.0, 37.0, 33.0, 37.0, 33.0, 41.0, 22.0, 33.0, 33.0, 44.0, 32.0, 39.0, 33.0, 33.0, 31.0, 33.0]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [85.0, 89.0, 116.0, 115.0, 110.0, 139.0, 103.0, 126.0, 99.0, 97.0, 145.0, 117.0, 109.0, 88.0, 92.0, 122.0, 103.0, 138.0, 180.0, 133.0, 106.0, 159.0, 146.0, 71.0, 105.0, 103.0, 101.0, 88.0, 150.0, 73.0, 100.0, 146.0, 105.0, 84.0, 44.0, 141.0, 99.0, 109.0, 95.0, 146.0, 139.0, 129.0, 79.0, 110.64, 62.0, 95.0, 112.0, 113.0, 74.0, 83.0, 101.0, 110.0, 106.0, 100.0, 107.0, 80.0, 123.0, 81.0, 142.0, 144.0, 92.0, 71.0, 93.0, 151.0, 125.0, 81.0, 85.0, 126.0, 96.0, 144.0, 83.0, 89.0, 76.0, 78.0, 97.0, 99.0, 111.0, 107.0, 132.0, 120.0, 118.0, 84.0, 96.0, 125.0, 100.0, 93.0, 129.0, 105.0, 128.0, 106.0, 108.0, 154.0, 102.0, 57.0, 106.0, 147.0, 90.0, 136.0, 114.0, 153.0, 99.0, 109.0, 88.0, 151.0, 102.0, 114.0, 100.0, 148.0, 120.0, 110.0, 111.0, 87.0, 79.0, 75.0, 85.0, 143.0, 87.0, 119.0, 110.64, 73.0, 141.0, 111.0, 123.0, 85.0, 105.0, 113.0, 138.0, 108.0, 99.0, 103.0, 111.0, 96.0, 81.0, 147.0, 179.0, 125.0, 119.0, 142.0, 100.0, 87.0, 101.0, 197.0, 117.0, 79.0, 122.0, 74.0, 104.0, 91.0, 91.0, 146.0, 122.0, 165.0, 124.0, 111.0, 106.0, 129.0, 90.0, 86.0, 111.0, 114.0, 193.0, 191.0, 95.0, 142.0, 96.0, 128.0, 102.0, 108.0, 122.0, 71.0, 106.0, 100.0, 104.0, 114.0, 108.0, 129.0, 133.0, 136.0, 155.0, 96.0, 108.0, 78.0, 161.0, 151.0, 126.0, 112.0, 77.0, 150.0, 120.0, 137.0, 80.0, 106.0, 113.0, 112.0, 99.0, 115.0, 129.0, 112.0, 157.0, 179.0, 105.0, 118.0, 87.0, 106.0, 95.0, 165.0, 117.0, 130.0, 95.0, 110.64, 122.0, 95.0, 126.0, 139.0, 116.0, 99.0, 92.0, 137.0, 61.0, 90.0, 90.0, 88.0, 158.0, 103.0, 147.0, 99.0, 101.0, 81.0, 118.0, 84.0, 105.0, 122.0, 98.0, 87.0, 93.0, 107.0, 105.0, 109.0, 90.0, 125.0, 119.0, 100.0, 100.0, 131.0, 116.0, 127.0, 96.0, 82.0, 137.0, 72.0, 123.0, 101.0, 102.0, 112.0, 143.0, 143.0, 97.0, 83.0, 119.0, 94.0, 102.0, 115.0, 94.0, 135.0, 99.0, 89.0, 80.0, 139.0, 90.0, 140.0, 147.0, 97.0, 107.0, 83.0, 117.0, 100.0, 95.0, 120.0, 82.0, 91.0, 119.0, 100.0, 135.0, 86.0, 134.0, 120.0, 71.0, 74.0, 88.0, 115.0, 124.0, 74.0, 97.0, 154.0, 144.0, 137.0, 119.0, 136.0, 114.0, 137.0, 114.0, 126.0, 132.0, 123.0, 85.0, 84.0, 139.0, 173.0, 99.0, 194.0, 83.0, 89.0, 99.0, 80.0, 166.0, 110.0, 81.0, 154.0, 117.0, 84.0, 94.0, 96.0, 75.0, 130.0, 84.0, 120.0, 139.0, 91.0, 91.0, 99.0, 125.0, 76.0, 129.0, 68.0, 124.0, 114.0, 125.0, 87.0, 97.0, 116.0, 117.0, 111.0, 122.0, 107.0, 86.0, 91.0, 77.0, 105.0, 57.0, 127.0, 84.0, 88.0, 131.0, 164.0, 189.0, 116.0, 84.0, 114.0, 88.0, 84.0, 124.0, 97.0, 110.0, 103.0, 85.0, 87.0, 99.0, 91.0, 95.0, 99.0, 92.0, 154.0, 78.0, 130.0, 111.0, 98.0, 143.0, 119.0, 108.0, 133.0, 109.0, 121.0, 100.0, 93.0, 103.0, 73.0, 112.0, 82.0, 123.0, 67.0, 89.0, 109.0, 108.0, 96.0, 124.0, 124.0, 92.0, 152.0, 111.0, 106.0, 105.0, 106.0, 117.0, 68.0, 112.0, 92.0, 183.0, 94.0, 108.0, 90.0, 125.0, 132.0, 128.0, 94.0, 102.0, 111.0, 128.0, 92.0, 104.0, 94.0, 100.0, 102.0, 128.0, 90.0, 103.0, 157.0, 107.0, 91.0, 117.0, 123.0, 120.0, 106.0, 101.0, 120.0, 127.0, 162.0, 112.0, 98.0, 154.0, 165.0, 99.0, 68.0, 123.0, 91.0, 93.0, 101.0, 56.0, 95.0, 136.0, 129.0, 130.0, 107.0, 140.0, 107.0, 121.0, 90.0, 99.0, 127.0, 118.0, 122.0, 129.0, 110.0, 80.0, 127.0, 158.0, 126.0, 134.0, 102.0, 94.0, 108.0, 83.0, 114.0, 117.0, 111.0, 112.0, 116.0, 141.0, 175.0, 92.0, 106.0, 105.0, 95.0, 126.0, 65.0, 99.0, 102.0, 109.0, 153.0, 100.0, 81.0, 121.0, 108.0, 137.0, 106.0, 88.0, 89.0, 101.0, 122.0, 121.0, 93.0], \"y\": [29.0, 23.0, 27.24, 27.24, 27.24, 27.24, 38.0, 41.0, 27.24, 15.0, 19.0, 27.24, 26.0, 11.0, 27.24, 31.0, 33.0, 27.24, 25.0, 27.24, 18.0, 27.24, 27.24, 27.0, 27.24, 11.0, 15.0, 21.0, 42.0, 10.0, 60.0, 27.24, 41.0, 27.24, 27.24, 34.0, 27.0, 27.24, 13.0, 27.0, 35.0, 20.0, 30.0, 20.0, 27.24, 33.0, 22.0, 13.0, 27.24, 26.0, 28.0, 29.0, 54.0, 25.0, 19.0, 27.24, 15.0, 40.0, 18.0, 27.0, 28.0, 18.0, 30.0, 27.24, 27.24, 18.0, 27.24, 29.0, 27.24, 28.0, 31.0, 34.0, 27.24, 27.24, 23.0, 15.0, 39.0, 30.0, 27.24, 30.0, 36.0, 31.0, 13.0, 20.0, 26.0, 25.0, 27.24, 29.0, 27.24, 30.0, 26.0, 31.0, 23.0, 37.0, 35.0, 27.24, 17.0, 50.0, 27.24, 42.0, 15.0, 21.0, 19.0, 38.0, 40.0, 34.0, 23.0, 25.0, 27.24, 27.24, 12.0, 23.0, 42.0, 24.0, 27.24, 27.24, 27.24, 18.0, 20.0, 27.24, 27.24, 27.24, 44.0, 20.0, 27.24, 16.0, 27.24, 20.0, 16.0, 32.0, 28.0, 27.0, 22.0, 54.0, 31.0, 30.0, 27.24, 33.0, 15.0, 27.0, 27.24, 39.0, 31.0, 25.0, 27.24, 28.0, 27.24, 24.0, 32.0, 35.0, 27.24, 33.0, 33.0, 19.0, 27.24, 27.24, 14.0, 32.0, 39.0, 22.0, 16.0, 15.0, 32.0, 15.0, 18.0, 42.0, 27.24, 32.0, 27.24, 50.0, 27.24, 52.0, 23.0, 27.24, 10.0, 28.0, 15.0, 26.0, 44.0, 17.0, 43.0, 29.0, 27.24, 31.0, 29.0, 27.24, 41.0, 27.24, 37.0, 14.0, 30.0, 37.0, 10.0, 22.0, 11.0, 39.0, 12.0, 32.0, 21.0, 27.24, 32.0, 19.0, 16.0, 27.24, 18.0, 43.0, 27.24, 13.0, 21.0, 35.0, 27.24, 27.24, 36.0, 19.0, 27.24, 19.0, 27.24, 27.24, 28.0, 12.0, 27.24, 40.0, 27.24, 37.0, 25.0, 28.0, 17.0, 16.0, 23.0, 22.0, 40.0, 43.0, 15.0, 37.0, 39.0, 30.0, 22.0, 8.0, 18.0, 24.0, 13.0, 23.0, 29.0, 14.0, 12.0, 24.0, 34.0, 27.24, 27.24, 25.0, 32.0, 27.24, 39.0, 30.0, 23.0, 22.0, 21.0, 27.24, 41.0, 18.0, 46.0, 22.0, 27.24, 46.0, 27.24, 16.0, 11.0, 27.24, 8.0, 33.0, 27.24, 15.0, 27.24, 23.0, 27.0, 12.0, 45.0, 18.0, 13.0, 32.0, 27.24, 28.0, 27.24, 28.0, 33.0, 22.0, 27.24, 40.0, 30.0, 27.24, 13.0, 10.0, 36.0, 41.0, 40.0, 38.0, 27.0, 27.24, 27.24, 27.0, 17.0, 38.0, 31.0, 37.0, 22.0, 31.0, 41.0, 32.0, 17.0, 27.24, 28.0, 30.0, 38.0, 27.24, 27.24, 27.24, 15.0, 32.0, 19.0, 32.0, 25.0, 39.0, 27.24, 23.0, 23.0, 27.24, 17.0, 27.24, 27.24, 19.0, 27.24, 27.24, 7.0, 32.0, 33.0, 27.24, 27.24, 18.0, 19.0, 15.0, 31.0, 27.24, 18.0, 27.24, 52.0, 27.24, 30.0, 27.24, 27.24, 37.0, 23.0, 29.0, 21.0, 43.0, 31.0, 28.0, 30.0, 27.24, 24.0, 23.0, 33.0, 40.0, 27.24, 40.0, 27.24, 34.0, 19.0, 27.24, 14.0, 30.0, 32.0, 29.0, 27.24, 27.24, 31.0, 17.0, 30.0, 47.0, 20.0, 27.24, 27.0, 17.0, 27.24, 11.0, 27.24, 27.24, 50.0, 22.0, 45.0, 27.24, 19.0, 18.0, 19.0, 27.24, 36.0, 32.0, 25.0, 39.0, 13.0, 21.0, 28.0, 27.24, 27.24, 13.0, 42.0, 20.0, 27.24, 27.0, 27.24, 47.0, 27.24, 27.24, 27.24, 22.0, 40.0, 27.24, 17.0, 27.24, 27.24, 18.0, 12.0, 17.0, 27.24, 27.24, 30.0, 35.0, 25.0, 25.0, 23.0, 40.0, 27.24, 28.0, 35.0, 48.0, 27.24, 27.24, 45.0, 33.0, 30.0, 26.0, 10.0, 23.0, 35.0, 27.24, 27.24, 17.0, 28.0, 39.0, 27.24, 26.0, 27.24, 19.0, 26.0, 27.24, 32.0, 27.24, 27.24, 11.0, 27.24, 27.0, 27.24, 20.0, 36.0, 21.0, 13.0, 27.0, 20.0, 27.24, 18.0, 46.0, 19.0, 36.0, 30.0, 27.24, 40.0, 29.0, 26.0, 27.24, 27.24, 27.0, 27.24, 32.0, 27.0, 23.0, 17.0, 20.0, 18.0, 37.0, 33.0, 41.0, 39.0, 24.0, 41.0, 27.24, 26.0, 27.24, 48.0, 27.0, 23.0, 31.0]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"GLUCOSE vs SKIN_THICKNESS\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"GLUCOSE\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"SKIN_THICKNESS\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('1af65ddc-c0a4-4158-a0ae-44507a5796bf');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat7'] = 0\ndf.loc[(df['glucose'] <= 120) & (df['skin_thickness'] <= 32), 'feat7'] = 1","execution_count":67,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat7',': GLUCOSE <= 120 & SKIN THICKNESS <= 32')","execution_count":68,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"b27dc433-c5cd-43a7-9704-085a54e80190\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"b27dc433-c5cd-43a7-9704-085a54e80190\")) {                    Plotly.newPlot(                        \"b27dc433-c5cd-43a7-9704-085a54e80190\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"239\", \"29\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [239, 29]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"287\", \"213\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [1, 0], \"y\": [287, 213]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat7 : GLUCOSE <= 120 & SKIN THICKNESS <= 32\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('b27dc433-c5cd-43a7-9704-085a54e80190');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat7','GLUCOSE <= 120 & SKIN THICKNESS <= 32')","execution_count":69,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"27901c1f-1873-49ec-94b6-32361322cc50\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"27901c1f-1873-49ec-94b6-32361322cc50\")) {                    Plotly.newPlot(                        \"27901c1f-1873-49ec-94b6-32361322cc50\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [239, 29]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [1, 0], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [287, 213]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT7 distribution by target: GLUCOSE <= 120 & SKIN THICKNESS <= 32\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('27901c1f-1873-49ec-94b6-32361322cc50');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT 8: GLUCOSE vs INSULIN"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('glucose','insulin')","execution_count":70,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"828f1604-9797-44bf-8aa7-9a5049147ed3\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"828f1604-9797-44bf-8aa7-9a5049147ed3\")) {                    Plotly.newPlot(                        \"828f1604-9797-44bf-8aa7-9a5049147ed3\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [148.0, 183.0, 137.0, 78.0, 197.0, 125.0, 168.0, 189.0, 166.0, 100.0, 118.0, 107.0, 115.0, 196.0, 119.0, 143.0, 125.0, 147.0, 158.0, 102.0, 90.0, 111.0, 171.0, 180.0, 103.0, 176.0, 187.0, 133.0, 114.0, 109.0, 100.0, 126.0, 131.0, 137.0, 136.0, 134.0, 122.0, 163.0, 95.0, 171.0, 155.0, 160.0, 146.0, 124.0, 162.0, 113.0, 88.0, 117.0, 105.0, 173.0, 122.0, 170.0, 108.0, 156.0, 188.0, 152.0, 163.0, 131.0, 104.0, 102.0, 134.0, 179.0, 129.0, 130.0, 194.0, 181.0, 128.0, 109.0, 139.0, 159.0, 135.0, 158.0, 107.0, 109.0, 148.0, 196.0, 162.0, 184.0, 140.0, 112.0, 151.0, 109.0, 85.0, 112.0, 177.0, 158.0, 162.0, 142.0, 134.0, 171.0, 181.0, 179.0, 164.0, 139.0, 119.0, 184.0, 92.0, 113.0, 155.0, 141.0, 123.0, 138.0, 146.0, 101.0, 106.0, 146.0, 161.0, 108.0, 119.0, 107.0, 128.0, 128.0, 146.0, 100.0, 167.0, 144.0, 115.0, 161.0, 128.0, 124.0, 155.0, 109.0, 182.0, 194.0, 112.0, 124.0, 152.0, 122.0, 102.0, 180.0, 115.0, 152.0, 178.0, 142.32, 165.0, 125.0, 129.0, 196.0, 189.0, 146.0, 124.0, 133.0, 173.0, 140.0, 156.0, 116.0, 105.0, 144.0, 166.0, 158.0, 131.0, 193.0, 95.0, 136.0, 168.0, 115.0, 197.0, 172.0, 138.0, 173.0, 144.0, 129.0, 151.0, 184.0, 181.0, 95.0, 141.0, 189.0, 108.0, 117.0, 180.0, 104.0, 134.0, 175.0, 148.0, 120.0, 105.0, 158.0, 145.0, 135.0, 125.0, 195.0, 142.32, 180.0, 84.0, 163.0, 145.0, 130.0, 132.0, 129.0, 100.0, 128.0, 90.0, 186.0, 187.0, 125.0, 198.0, 121.0, 118.0, 197.0, 151.0, 124.0, 143.0, 176.0, 111.0, 132.0, 188.0, 173.0, 150.0, 183.0, 181.0, 174.0, 168.0, 138.0, 112.0, 119.0, 114.0, 104.0, 97.0, 147.0, 167.0, 179.0, 136.0, 155.0, 80.0, 199.0, 167.0, 145.0, 115.0, 145.0, 111.0, 195.0, 156.0, 121.0, 162.0, 125.0, 144.0, 158.0, 129.0, 142.0, 169.0, 125.0, 168.0, 115.0, 164.0, 93.0, 129.0, 187.0, 173.0, 97.0, 149.0, 130.0, 120.0, 174.0, 102.0, 120.0, 140.0, 147.0, 187.0, 162.0, 136.0, 181.0, 154.0, 128.0, 123.0, 190.0, 170.0, 126.0], \"y\": [206.85, 206.85, 168.0, 88.0, 543.0, 206.85, 206.85, 846.0, 175.0, 206.85, 230.0, 206.85, 96.0, 206.85, 206.85, 146.0, 115.0, 206.85, 245.0, 206.85, 206.85, 207.0, 240.0, 206.85, 206.85, 300.0, 304.0, 206.85, 206.85, 206.85, 90.0, 206.85, 206.85, 206.85, 110.0, 206.85, 220.0, 206.85, 36.0, 135.0, 495.0, 175.0, 206.85, 206.85, 100.0, 206.85, 99.0, 145.0, 206.85, 168.0, 206.85, 225.0, 206.85, 155.0, 206.85, 206.85, 114.0, 206.85, 156.0, 206.85, 130.0, 130.0, 130.0, 206.85, 206.85, 495.0, 58.0, 114.0, 160.0, 206.85, 206.85, 210.0, 48.0, 99.0, 318.0, 280.0, 206.85, 206.85, 130.0, 175.0, 271.0, 129.0, 206.85, 206.85, 478.0, 206.85, 206.85, 206.85, 370.0, 206.85, 192.0, 206.85, 206.85, 206.85, 176.0, 206.85, 258.0, 206.85, 150.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 220.0, 74.0, 182.0, 194.0, 360.0, 184.0, 206.85, 135.0, 206.85, 132.0, 180.0, 205.0, 96.0, 206.85, 206.85, 206.85, 206.85, 206.85, 29.0, 156.0, 120.0, 206.85, 206.85, 171.0, 206.85, 206.85, 206.85, 167.0, 206.85, 249.0, 325.0, 206.85, 206.85, 140.0, 465.0, 325.0, 206.85, 206.85, 206.85, 285.0, 206.85, 206.85, 206.85, 206.85, 206.85, 88.0, 206.85, 206.85, 206.85, 579.0, 167.0, 474.0, 206.85, 115.0, 210.0, 277.0, 180.0, 180.0, 206.85, 206.85, 206.85, 206.85, 14.0, 64.0, 206.85, 206.85, 237.0, 206.85, 191.0, 328.0, 206.85, 250.0, 122.0, 145.0, 206.85, 90.0, 206.85, 105.0, 165.0, 206.85, 206.85, 155.0, 215.0, 190.0, 206.85, 225.0, 207.0, 206.85, 274.0, 165.0, 206.85, 206.85, 206.85, 600.0, 206.85, 156.0, 206.85, 206.85, 185.0, 206.85, 126.0, 206.85, 293.0, 194.0, 321.0, 144.0, 206.85, 206.85, 206.85, 206.85, 91.0, 206.85, 144.0, 159.0, 130.0, 540.0, 70.0, 206.85, 231.0, 130.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 180.0, 206.85, 125.0, 480.0, 125.0, 206.85, 206.85, 206.85, 206.85, 160.0, 206.85, 392.0, 185.0, 206.85, 127.0, 79.0, 206.85, 120.0, 206.85, 150.0, 206.85, 206.85, 200.0, 206.85, 206.85, 510.0, 206.85, 110.0, 206.85, 206.85, 206.85, 206.85]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [85.0, 89.0, 116.0, 115.0, 110.0, 139.0, 103.0, 126.0, 99.0, 97.0, 145.0, 117.0, 109.0, 88.0, 92.0, 122.0, 103.0, 138.0, 180.0, 133.0, 106.0, 159.0, 146.0, 71.0, 105.0, 103.0, 101.0, 88.0, 150.0, 73.0, 100.0, 146.0, 105.0, 84.0, 44.0, 141.0, 99.0, 109.0, 95.0, 146.0, 139.0, 129.0, 79.0, 110.64, 62.0, 95.0, 112.0, 113.0, 74.0, 83.0, 101.0, 110.0, 106.0, 100.0, 107.0, 80.0, 123.0, 81.0, 142.0, 144.0, 92.0, 71.0, 93.0, 151.0, 125.0, 81.0, 85.0, 126.0, 96.0, 144.0, 83.0, 89.0, 76.0, 78.0, 97.0, 99.0, 111.0, 107.0, 132.0, 120.0, 118.0, 84.0, 96.0, 125.0, 100.0, 93.0, 129.0, 105.0, 128.0, 106.0, 108.0, 154.0, 102.0, 57.0, 106.0, 147.0, 90.0, 136.0, 114.0, 153.0, 99.0, 109.0, 88.0, 151.0, 102.0, 114.0, 100.0, 148.0, 120.0, 110.0, 111.0, 87.0, 79.0, 75.0, 85.0, 143.0, 87.0, 119.0, 110.64, 73.0, 141.0, 111.0, 123.0, 85.0, 105.0, 113.0, 138.0, 108.0, 99.0, 103.0, 111.0, 96.0, 81.0, 147.0, 179.0, 125.0, 119.0, 142.0, 100.0, 87.0, 101.0, 197.0, 117.0, 79.0, 122.0, 74.0, 104.0, 91.0, 91.0, 146.0, 122.0, 165.0, 124.0, 111.0, 106.0, 129.0, 90.0, 86.0, 111.0, 114.0, 193.0, 191.0, 95.0, 142.0, 96.0, 128.0, 102.0, 108.0, 122.0, 71.0, 106.0, 100.0, 104.0, 114.0, 108.0, 129.0, 133.0, 136.0, 155.0, 96.0, 108.0, 78.0, 161.0, 151.0, 126.0, 112.0, 77.0, 150.0, 120.0, 137.0, 80.0, 106.0, 113.0, 112.0, 99.0, 115.0, 129.0, 112.0, 157.0, 179.0, 105.0, 118.0, 87.0, 106.0, 95.0, 165.0, 117.0, 130.0, 95.0, 110.64, 122.0, 95.0, 126.0, 139.0, 116.0, 99.0, 92.0, 137.0, 61.0, 90.0, 90.0, 88.0, 158.0, 103.0, 147.0, 99.0, 101.0, 81.0, 118.0, 84.0, 105.0, 122.0, 98.0, 87.0, 93.0, 107.0, 105.0, 109.0, 90.0, 125.0, 119.0, 100.0, 100.0, 131.0, 116.0, 127.0, 96.0, 82.0, 137.0, 72.0, 123.0, 101.0, 102.0, 112.0, 143.0, 143.0, 97.0, 83.0, 119.0, 94.0, 102.0, 115.0, 94.0, 135.0, 99.0, 89.0, 80.0, 139.0, 90.0, 140.0, 147.0, 97.0, 107.0, 83.0, 117.0, 100.0, 95.0, 120.0, 82.0, 91.0, 119.0, 100.0, 135.0, 86.0, 134.0, 120.0, 71.0, 74.0, 88.0, 115.0, 124.0, 74.0, 97.0, 154.0, 144.0, 137.0, 119.0, 136.0, 114.0, 137.0, 114.0, 126.0, 132.0, 123.0, 85.0, 84.0, 139.0, 173.0, 99.0, 194.0, 83.0, 89.0, 99.0, 80.0, 166.0, 110.0, 81.0, 154.0, 117.0, 84.0, 94.0, 96.0, 75.0, 130.0, 84.0, 120.0, 139.0, 91.0, 91.0, 99.0, 125.0, 76.0, 129.0, 68.0, 124.0, 114.0, 125.0, 87.0, 97.0, 116.0, 117.0, 111.0, 122.0, 107.0, 86.0, 91.0, 77.0, 105.0, 57.0, 127.0, 84.0, 88.0, 131.0, 164.0, 189.0, 116.0, 84.0, 114.0, 88.0, 84.0, 124.0, 97.0, 110.0, 103.0, 85.0, 87.0, 99.0, 91.0, 95.0, 99.0, 92.0, 154.0, 78.0, 130.0, 111.0, 98.0, 143.0, 119.0, 108.0, 133.0, 109.0, 121.0, 100.0, 93.0, 103.0, 73.0, 112.0, 82.0, 123.0, 67.0, 89.0, 109.0, 108.0, 96.0, 124.0, 124.0, 92.0, 152.0, 111.0, 106.0, 105.0, 106.0, 117.0, 68.0, 112.0, 92.0, 183.0, 94.0, 108.0, 90.0, 125.0, 132.0, 128.0, 94.0, 102.0, 111.0, 128.0, 92.0, 104.0, 94.0, 100.0, 102.0, 128.0, 90.0, 103.0, 157.0, 107.0, 91.0, 117.0, 123.0, 120.0, 106.0, 101.0, 120.0, 127.0, 162.0, 112.0, 98.0, 154.0, 165.0, 99.0, 68.0, 123.0, 91.0, 93.0, 101.0, 56.0, 95.0, 136.0, 129.0, 130.0, 107.0, 140.0, 107.0, 121.0, 90.0, 99.0, 127.0, 118.0, 122.0, 129.0, 110.0, 80.0, 127.0, 158.0, 126.0, 134.0, 102.0, 94.0, 108.0, 83.0, 114.0, 117.0, 111.0, 112.0, 116.0, 141.0, 175.0, 92.0, 106.0, 105.0, 95.0, 126.0, 65.0, 99.0, 102.0, 109.0, 153.0, 100.0, 81.0, 121.0, 108.0, 137.0, 106.0, 88.0, 89.0, 101.0, 122.0, 121.0, 93.0], \"y\": [130.29, 94.0, 130.29, 130.29, 130.29, 130.29, 83.0, 235.0, 130.29, 140.0, 110.0, 130.29, 130.29, 54.0, 130.29, 130.29, 192.0, 130.29, 70.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 82.0, 36.0, 23.0, 342.0, 130.29, 110.0, 130.29, 142.0, 130.29, 130.29, 128.0, 130.29, 130.29, 38.0, 100.0, 140.0, 270.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 71.0, 130.29, 125.0, 130.29, 71.0, 130.29, 130.29, 176.0, 48.0, 64.0, 228.0, 130.29, 76.0, 64.0, 130.29, 130.29, 40.0, 130.29, 152.0, 130.29, 140.0, 18.0, 37.0, 130.29, 130.29, 130.29, 51.0, 130.29, 100.0, 130.29, 135.0, 94.0, 130.29, 49.0, 140.0, 50.0, 92.0, 130.29, 325.0, 130.29, 130.29, 63.0, 284.0, 130.29, 130.29, 119.0, 130.29, 130.29, 204.0, 130.29, 485.0, 94.0, 135.0, 53.0, 130.29, 105.0, 285.0, 130.29, 130.29, 130.29, 130.29, 78.0, 130.29, 48.0, 55.0, 130.29, 130.29, 130.29, 92.0, 23.0, 130.29, 130.29, 130.29, 94.0, 130.29, 130.29, 130.29, 130.29, 130.29, 44.0, 190.0, 130.29, 87.0, 130.29, 130.29, 130.29, 120.0, 130.29, 190.0, 56.0, 32.0, 130.29, 744.0, 53.0, 37.0, 130.29, 45.0, 130.29, 130.29, 88.0, 194.0, 130.29, 680.0, 402.0, 130.29, 130.29, 130.29, 55.0, 130.29, 130.29, 130.29, 375.0, 130.0, 130.29, 130.29, 67.0, 130.29, 130.29, 56.0, 130.29, 45.0, 130.29, 57.0, 116.0, 130.29, 278.0, 122.0, 155.0, 135.0, 545.0, 49.0, 75.0, 40.0, 130.29, 120.0, 215.0, 130.29, 42.0, 130.29, 105.0, 148.0, 130.29, 148.0, 85.0, 94.0, 64.0, 140.0, 231.0, 130.29, 168.0, 130.29, 68.0, 130.29, 52.0, 130.29, 58.0, 255.0, 130.29, 105.0, 73.0, 130.29, 130.29, 130.29, 108.0, 83.0, 130.29, 74.0, 130.29, 130.29, 130.29, 43.0, 130.29, 54.0, 130.29, 130.29, 293.0, 83.0, 130.29, 66.0, 89.0, 66.0, 94.0, 158.0, 84.0, 75.0, 72.0, 82.0, 130.29, 182.0, 59.0, 110.0, 50.0, 81.0, 196.0, 415.0, 87.0, 275.0, 115.0, 130.29, 130.29, 130.29, 165.0, 130.29, 130.29, 176.0, 310.0, 61.0, 130.29, 130.29, 170.0, 76.0, 78.0, 130.29, 130.29, 145.0, 130.29, 85.0, 60.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 50.0, 120.0, 70.0, 92.0, 63.0, 95.0, 210.0, 130.29, 105.0, 130.29, 71.0, 60.0, 56.0, 130.29, 49.0, 130.29, 130.29, 105.0, 36.0, 100.0, 140.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 110.0, 75.0, 130.29, 130.29, 49.0, 125.0, 480.0, 265.0, 130.29, 130.29, 66.0, 130.29, 130.29, 130.29, 130.29, 130.29, 76.0, 193.0, 71.0, 130.29, 79.0, 130.29, 130.29, 170.0, 76.0, 130.29, 210.0, 130.29, 130.29, 86.0, 130.29, 130.29, 326.0, 66.0, 130.0, 130.29, 130.29, 130.29, 82.0, 105.0, 188.0, 130.29, 106.0, 130.29, 65.0, 130.29, 56.0, 130.29, 130.29, 210.0, 56.0, 76.0, 166.0, 67.0, 130.29, 130.29, 106.0, 130.29, 44.0, 115.0, 215.0, 130.29, 130.29, 130.29, 130.29, 77.0, 54.0, 130.29, 88.0, 18.0, 126.0, 126.0, 130.29, 130.29, 44.0, 120.0, 330.0, 63.0, 130.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 140.0, 115.0, 230.0, 130.29, 25.0, 120.0, 130.29, 130.29, 130.29, 130.29, 41.0, 272.0, 182.0, 158.0, 130.29, 130.29, 130.29, 15.0, 160.0, 130.29, 130.29, 115.0, 130.29, 54.0, 130.29, 130.29, 130.29, 130.29, 90.0, 130.29, 183.0, 130.29, 130.29, 66.0, 46.0, 105.0, 130.29, 130.29, 152.0, 440.0, 130.29, 100.0, 106.0, 77.0, 130.29, 135.0, 90.0, 200.0, 130.29, 130.29, 132.0, 190.0, 100.0, 168.0, 130.29, 49.0, 240.0, 130.29, 130.29, 265.0, 45.0, 105.0, 130.29, 205.0, 130.29, 130.29, 180.0, 130.29, 95.0, 130.29, 130.29, 155.0, 130.29, 200.0, 130.29, 100.0, 130.29, 335.0, 387.0, 22.0, 291.0, 130.29, 130.29, 178.0, 130.29, 200.0, 105.0, 130.29, 130.29, 180.0, 130.29, 130.29, 130.29, 165.0, 130.29, 130.29, 120.0, 130.29, 160.0, 94.0, 116.0, 140.0, 105.0, 57.0, 74.0, 130.29, 130.29, 130.29, 16.0, 130.29, 180.0, 130.29, 112.0, 130.29]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"GLUCOSE vs INSULIN\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"GLUCOSE\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"INSULIN\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('828f1604-9797-44bf-8aa7-9a5049147ed3');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat8'] = 0\ndf.loc[(df['insulin'] <= 130) & (df['glucose'] <= 120), 'feat8'] = 1","execution_count":71,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat8',': GLUCOSE <= 120 & INSULIN <= 130')","execution_count":72,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"1ef35d3f-9a7b-4871-ad99-6279b2d9b364\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"1ef35d3f-9a7b-4871-ad99-6279b2d9b364\")) {                    Plotly.newPlot(                        \"1ef35d3f-9a7b-4871-ad99-6279b2d9b364\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"254\", \"14\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [254, 14]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"356\", \"144\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [356, 144]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat8 : GLUCOSE <= 120 & INSULIN <= 130\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('1ef35d3f-9a7b-4871-ad99-6279b2d9b364');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat8','GLUCOSE <= 120 & INSULIN <= 130')","execution_count":73,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"2f06e792-931c-4d8f-8612-9823f60006ef\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"2f06e792-931c-4d8f-8612-9823f60006ef\")) {                    Plotly.newPlot(                        \"2f06e792-931c-4d8f-8612-9823f60006ef\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [254, 14]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [356, 144]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT8 distribution by target: GLUCOSE <= 120 & INSULIN <= 130\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('2f06e792-931c-4d8f-8612-9823f60006ef');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT 9: BLOOD PRESSURE vs BMI"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('blood_pressure','bmi')","execution_count":74,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"98d3e3e7-f467-416e-8f22-5d7102eb002e\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"98d3e3e7-f467-416e-8f22-5d7102eb002e\")) {                    Plotly.newPlot(                        \"98d3e3e7-f467-416e-8f22-5d7102eb002e\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [72.0, 64.0, 40.0, 50.0, 70.0, 96.0, 74.0, 60.0, 72.0, 75.32, 84.0, 74.0, 70.0, 90.0, 80.0, 94.0, 70.0, 76.0, 76.0, 76.0, 68.0, 72.0, 110.0, 66.0, 66.0, 90.0, 68.0, 72.0, 66.0, 88.0, 66.0, 90.0, 75.32, 108.0, 70.0, 72.0, 90.0, 72.0, 85.0, 72.0, 62.0, 54.0, 92.0, 74.0, 76.0, 76.0, 30.0, 88.0, 84.0, 70.0, 56.0, 64.0, 66.0, 86.0, 78.0, 88.0, 72.0, 88.0, 74.0, 82.0, 70.0, 72.0, 110.0, 82.0, 68.0, 68.0, 98.0, 76.0, 80.0, 66.0, 75.32, 84.0, 62.0, 64.0, 60.0, 76.0, 104.0, 84.0, 65.0, 82.0, 70.0, 62.0, 74.0, 66.0, 60.0, 90.0, 52.0, 86.0, 80.0, 72.0, 84.0, 90.0, 84.0, 54.0, 50.0, 85.0, 62.0, 64.0, 76.0, 75.32, 62.0, 75.32, 75.32, 86.0, 60.0, 70.0, 86.0, 80.0, 86.0, 62.0, 78.0, 48.0, 70.0, 78.0, 75.32, 58.0, 98.0, 68.0, 68.0, 68.0, 74.0, 80.0, 74.0, 78.0, 74.0, 70.0, 90.0, 64.0, 86.0, 75.32, 76.0, 78.0, 84.0, 80.0, 88.0, 50.0, 75.32, 76.0, 64.0, 78.0, 72.0, 102.0, 82.0, 82.0, 75.0, 74.0, 100.0, 82.0, 76.0, 78.0, 66.0, 70.0, 64.0, 84.0, 64.0, 72.0, 74.0, 68.0, 60.0, 84.0, 82.0, 64.0, 78.0, 78.0, 64.0, 82.0, 75.32, 104.0, 70.0, 62.0, 78.0, 64.0, 70.0, 62.0, 84.0, 75.32, 80.0, 70.0, 75.32, 68.0, 70.0, 70.0, 68.0, 90.0, 72.0, 70.0, 88.0, 70.0, 75.32, 92.0, 74.0, 72.0, 85.0, 90.0, 76.0, 76.0, 66.0, 66.0, 80.0, 70.0, 90.0, 76.0, 66.0, 86.0, 84.0, 80.0, 82.0, 74.0, 78.0, 75.32, 78.0, 58.0, 88.0, 74.0, 82.0, 75.32, 64.0, 72.0, 76.0, 80.0, 74.0, 50.0, 84.0, 52.0, 82.0, 76.0, 106.0, 80.0, 60.0, 82.0, 70.0, 70.0, 86.0, 52.0, 76.0, 80.0, 82.0, 114.0, 68.0, 90.0, 74.0, 78.0, 88.0, 75.32, 78.0, 64.0, 62.0, 50.0, 78.0, 76.0, 68.0, 78.0, 86.0, 88.0, 74.0, 80.0, 94.0, 94.0, 70.0, 62.0, 70.0, 88.0, 78.0, 88.0, 72.0, 92.0, 74.0, 60.0], \"y\": [33.6, 23.3, 43.1, 31.0, 30.5, 35.41, 38.0, 30.1, 25.8, 30.0, 45.8, 29.6, 34.6, 39.8, 29.0, 36.6, 31.1, 39.4, 31.6, 32.9, 38.2, 37.1, 45.4, 42.0, 39.1, 33.7, 37.7, 32.9, 32.8, 32.5, 32.9, 43.4, 43.2, 48.8, 37.1, 23.8, 49.7, 39.0, 37.4, 33.3, 34.0, 30.5, 31.2, 34.0, 53.2, 33.3, 55.0, 34.5, 27.9, 29.7, 33.3, 34.5, 32.4, 34.3, 47.9, 50.0, 40.9, 31.6, 29.9, 30.8, 35.4, 32.7, 67.1, 39.1, 35.9, 30.1, 32.0, 27.9, 31.6, 30.4, 52.3, 39.4, 22.9, 34.8, 30.9, 37.5, 37.7, 35.5, 42.6, 34.2, 41.8, 35.8, 29.0, 37.8, 34.6, 31.6, 37.2, 44.0, 46.2, 43.6, 35.9, 44.1, 30.8, 25.6, 27.1, 30.0, 27.6, 33.6, 33.3, 30.0, 32.0, 36.3, 27.5, 45.6, 26.5, 37.9, 30.4, 27.0, 45.6, 36.6, 43.3, 40.5, 28.0, 36.6, 32.3, 31.6, 52.9, 25.5, 30.5, 32.9, 26.6, 35.9, 30.5, 23.5, 31.6, 27.4, 26.8, 35.1, 45.5, 43.3, 31.2, 34.2, 39.9, 41.0, 30.4, 33.3, 39.9, 36.5, 31.2, 38.5, 27.6, 32.8, 38.4, 39.2, 48.3, 32.3, 43.3, 32.0, 45.7, 32.9, 34.3, 34.9, 32.0, 35.0, 32.9, 28.9, 25.9, 42.4, 34.6, 35.7, 38.5, 26.4, 42.9, 37.0, 34.1, 35.0, 42.4, 34.3, 30.5, 29.7, 59.4, 33.6, 28.9, 33.6, 37.6, 30.0, 33.7, 35.5, 44.2, 42.3, 28.9, 25.1, 39.0, 36.5, 29.7, 31.6, 30.3, 34.2, 32.9, 36.4, 39.4, 32.4, 34.9, 34.5, 43.6, 33.8, 41.3, 34.3, 42.9, 34.7, 42.1, 28.7, 34.9, 33.3, 46.8, 34.4, 32.0, 36.8, 35.2, 28.4, 40.0, 32.9, 38.2, 36.1, 28.2, 32.4, 27.4, 31.2, 40.9, 29.5, 23.4, 37.8, 28.3, 38.7, 34.2, 42.9, 37.6, 37.9, 33.7, 32.5, 27.5, 30.9, 24.8, 36.0, 49.6, 32.3, 46.1, 42.3, 38.5, 30.4, 29.9, 27.6, 35.0, 35.41, 32.8, 38.0, 41.2, 33.9, 33.8, 35.6, 29.3, 28.4, 28.4, 44.5, 39.5, 42.3, 32.7, 49.3, 36.4, 24.3, 31.2, 43.3, 32.4, 36.5, 36.3, 35.5, 44.0, 30.1]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [66.0, 66.0, 74.0, 70.88, 92.0, 80.0, 30.0, 88.0, 84.0, 66.0, 82.0, 92.0, 75.0, 58.0, 92.0, 78.0, 60.0, 76.0, 64.0, 84.0, 92.0, 64.0, 56.0, 70.0, 70.88, 80.0, 50.0, 66.0, 66.0, 50.0, 88.0, 82.0, 64.0, 70.88, 62.0, 58.0, 74.0, 92.0, 66.0, 85.0, 64.0, 86.0, 75.0, 48.0, 78.0, 72.0, 66.0, 44.0, 70.88, 78.0, 65.0, 74.0, 72.0, 68.0, 68.0, 55.0, 80.0, 78.0, 82.0, 72.0, 62.0, 48.0, 50.0, 60.0, 96.0, 72.0, 65.0, 56.0, 122.0, 58.0, 58.0, 76.0, 62.0, 48.0, 60.0, 76.0, 64.0, 74.0, 80.0, 70.0, 58.0, 74.0, 68.0, 60.0, 70.0, 60.0, 80.0, 72.0, 78.0, 82.0, 52.0, 62.0, 75.0, 80.0, 64.0, 78.0, 70.0, 74.0, 65.0, 82.0, 52.0, 56.0, 74.0, 90.0, 74.0, 80.0, 64.0, 66.0, 68.0, 66.0, 90.0, 70.88, 60.0, 64.0, 78.0, 78.0, 80.0, 64.0, 74.0, 60.0, 74.0, 62.0, 70.0, 55.0, 58.0, 80.0, 82.0, 68.0, 70.0, 72.0, 72.0, 64.0, 60.0, 85.0, 95.0, 68.0, 70.88, 60.0, 66.0, 78.0, 76.0, 70.0, 80.0, 80.0, 68.0, 68.0, 76.0, 64.0, 70.0, 76.0, 68.0, 90.0, 70.0, 86.0, 52.0, 84.0, 80.0, 68.0, 56.0, 68.0, 50.0, 68.0, 70.0, 80.0, 74.0, 64.0, 52.0, 62.0, 78.0, 78.0, 70.0, 70.0, 64.0, 74.0, 62.0, 76.0, 88.0, 74.0, 84.0, 56.0, 72.0, 88.0, 50.0, 62.0, 84.0, 72.0, 82.0, 76.0, 76.0, 68.0, 66.0, 70.0, 50.0, 68.0, 80.0, 66.0, 60.0, 75.0, 72.0, 70.0, 70.0, 72.0, 58.0, 80.0, 60.0, 76.0, 70.88, 70.0, 74.0, 68.0, 86.0, 72.0, 88.0, 46.0, 70.88, 62.0, 80.0, 84.0, 82.0, 62.0, 78.0, 74.0, 70.0, 108.0, 74.0, 54.0, 64.0, 86.0, 64.0, 64.0, 58.0, 52.0, 82.0, 60.0, 100.0, 72.0, 68.0, 60.0, 62.0, 70.0, 54.0, 68.0, 66.0, 64.0, 72.0, 58.0, 56.0, 70.0, 61.0, 78.0, 48.0, 62.0, 90.0, 72.0, 84.0, 74.0, 68.0, 68.0, 88.0, 68.0, 64.0, 64.0, 70.88, 94.0, 70.88, 74.0, 74.0, 75.0, 68.0, 85.0, 75.0, 70.0, 88.0, 66.0, 64.0, 72.0, 80.0, 74.0, 64.0, 68.0, 70.88, 54.0, 54.0, 68.0, 74.0, 72.0, 62.0, 70.0, 78.0, 98.0, 56.0, 52.0, 64.0, 78.0, 82.0, 70.0, 66.0, 90.0, 64.0, 84.0, 76.0, 74.0, 86.0, 88.0, 58.0, 82.0, 62.0, 78.0, 72.0, 80.0, 65.0, 90.0, 68.0, 70.88, 74.0, 68.0, 72.0, 74.0, 90.0, 72.0, 64.0, 78.0, 82.0, 60.0, 50.0, 78.0, 62.0, 68.0, 62.0, 54.0, 86.0, 60.0, 90.0, 70.0, 80.0, 70.88, 58.0, 60.0, 64.0, 74.0, 66.0, 65.0, 60.0, 76.0, 66.0, 70.88, 56.0, 90.0, 60.0, 80.0, 90.0, 78.0, 68.0, 82.0, 110.0, 70.0, 68.0, 88.0, 62.0, 64.0, 70.0, 70.0, 76.0, 68.0, 74.0, 68.0, 60.0, 80.0, 54.0, 72.0, 62.0, 72.0, 70.0, 96.0, 58.0, 60.0, 86.0, 44.0, 44.0, 68.0, 60.0, 78.0, 76.0, 56.0, 66.0, 70.88, 78.0, 52.0, 72.0, 76.0, 24.0, 38.0, 88.0, 70.88, 74.0, 60.0, 62.0, 82.0, 62.0, 54.0, 80.0, 72.0, 96.0, 62.0, 86.0, 76.0, 94.0, 70.0, 64.0, 88.0, 68.0, 78.0, 80.0, 65.0, 78.0, 60.0, 82.0, 62.0, 74.0, 76.0, 74.0, 86.0, 70.0, 70.88, 72.0, 74.0, 60.0, 54.0, 60.0, 74.0, 54.0, 70.0, 58.0, 80.0, 106.0, 84.0, 80.0, 58.0, 78.0, 68.0, 58.0, 106.0, 100.0, 82.0, 60.0, 58.0, 56.0, 64.0, 82.0, 74.0, 64.0, 50.0, 74.0, 80.0, 70.0, 60.0, 70.88, 88.0, 70.0, 76.0, 70.88, 76.0, 80.0, 46.0, 64.0, 78.0, 58.0, 74.0, 72.0, 60.0, 86.0, 66.0, 86.0, 94.0, 78.0, 78.0, 84.0, 88.0, 52.0, 56.0, 75.0, 60.0, 86.0, 72.0, 60.0, 44.0, 58.0, 88.0, 84.0, 74.0, 78.0, 62.0, 90.0, 76.0, 58.0, 62.0, 76.0, 70.0, 72.0, 70.0], \"y\": [26.6, 28.1, 25.6, 35.3, 37.6, 27.1, 43.3, 39.3, 35.4, 23.2, 22.2, 34.1, 36.0, 24.8, 19.9, 27.6, 24.0, 33.2, 34.0, 40.2, 22.7, 27.4, 29.7, 28.0, 30.86, 19.4, 24.2, 24.4, 34.7, 23.0, 46.8, 40.5, 41.5, 30.86, 25.0, 25.4, 29.0, 42.7, 19.6, 28.9, 28.6, 35.1, 32.0, 24.7, 32.6, 37.7, 25.0, 22.4, 30.86, 29.3, 24.6, 32.4, 36.6, 38.5, 26.5, 19.1, 32.0, 46.7, 24.7, 33.9, 31.6, 20.4, 28.7, 26.1, 22.5, 26.6, 39.6, 28.7, 22.4, 29.5, 34.3, 31.2, 34.0, 33.7, 28.2, 23.2, 34.2, 33.6, 26.8, 42.9, 33.3, 38.3, 21.1, 33.8, 30.8, 28.7, 31.2, 36.9, 21.1, 39.5, 32.5, 32.8, 30.86, 32.8, 30.5, 33.7, 27.3, 37.4, 21.9, 40.6, 24.6, 25.2, 29.0, 29.7, 37.2, 44.2, 29.7, 32.5, 29.6, 31.9, 28.4, 28.9, 43.5, 29.7, 31.2, 45.0, 23.2, 34.9, 27.7, 26.8, 27.6, 22.6, 33.1, 24.4, 24.3, 31.0, 40.1, 27.3, 20.4, 37.7, 23.9, 33.2, 27.7, 42.8, 34.2, 30.0, 25.2, 28.8, 23.6, 34.6, 35.7, 36.7, 45.2, 25.4, 35.0, 29.7, 18.4, 29.2, 33.1, 38.2, 31.2, 52.3, 35.4, 30.1, 31.2, 28.0, 24.4, 35.8, 30.1, 28.7, 25.9, 30.9, 32.1, 32.4, 33.6, 40.0, 25.1, 25.2, 23.0, 33.2, 34.2, 40.5, 27.8, 24.9, 25.3, 35.9, 32.4, 26.0, 38.7, 20.8, 36.1, 36.9, 21.9, 35.5, 30.7, 23.6, 35.8, 21.0, 39.7, 24.8, 26.2, 39.4, 29.5, 34.1, 19.3, 38.1, 27.5, 35.7, 25.6, 35.1, 30.8, 23.1, 32.7, 23.6, 23.9, 47.9, 33.8, 25.9, 25.9, 32.0, 34.7, 36.8, 38.5, 28.7, 23.5, 21.8, 42.2, 31.2, 34.4, 27.2, 42.7, 35.3, 29.8, 39.2, 34.9, 34.0, 21.0, 27.5, 30.86, 35.8, 34.9, 36.2, 25.2, 37.2, 43.4, 30.8, 20.0, 25.4, 25.1, 24.3, 22.3, 31.6, 32.0, 23.7, 22.1, 27.7, 24.7, 21.1, 24.2, 31.6, 42.1, 21.9, 35.7, 34.4, 42.4, 26.2, 27.2, 18.2, 45.3, 26.0, 40.6, 30.8, 30.86, 40.6, 22.2, 30.4, 30.0, 25.6, 24.5, 37.4, 29.9, 18.2, 36.8, 32.2, 33.2, 25.3, 36.5, 30.5, 21.2, 39.9, 19.6, 37.8, 26.7, 30.2, 25.9, 20.8, 21.8, 35.3, 27.6, 24.0, 21.8, 27.8, 36.8, 46.1, 41.3, 33.2, 38.8, 29.9, 28.9, 27.3, 23.8, 25.9, 28.0, 35.2, 27.8, 38.2, 40.7, 46.5, 25.6, 26.1, 36.8, 33.5, 32.8, 30.86, 26.6, 26.0, 30.1, 29.3, 25.2, 37.2, 33.3, 37.3, 33.3, 28.6, 30.4, 25.0, 22.1, 24.2, 27.3, 25.6, 37.6, 32.8, 19.6, 25.0, 33.2, 30.86, 31.6, 21.8, 18.2, 26.3, 30.8, 24.6, 29.8, 45.3, 41.3, 29.8, 33.3, 29.6, 21.7, 36.3, 39.5, 32.0, 33.1, 32.8, 28.5, 27.4, 31.9, 27.8, 29.9, 36.9, 25.5, 38.1, 27.8, 46.2, 30.1, 37.6, 26.9, 32.4, 26.1, 38.6, 32.0, 31.3, 32.5, 22.6, 29.5, 34.7, 30.1, 35.5, 24.0, 27.0, 25.0, 26.5, 38.7, 22.5, 24.3, 21.1, 39.4, 28.5, 33.6, 45.3, 27.8, 23.1, 27.1, 23.7, 27.8, 35.8, 19.5, 41.5, 24.0, 30.9, 32.5, 25.8, 28.7, 20.1, 38.4, 24.2, 40.8, 43.5, 30.8, 37.7, 24.7, 32.4, 34.6, 24.7, 34.5, 26.2, 27.5, 25.9, 28.8, 31.6, 19.5, 29.3, 34.3, 28.0, 27.6, 39.4, 26.4, 25.2, 33.8, 34.1, 26.8, 34.2, 21.8, 38.9, 39.0, 27.7, 34.8, 34.0, 30.9, 33.6, 25.4, 35.5, 57.3, 35.6, 35.3, 24.2, 24.2, 44.6, 30.86, 33.2, 23.1, 28.3, 24.1, 24.6, 39.1, 23.5, 25.0, 34.5, 44.5, 35.9, 38.5, 28.4, 39.8, 34.4, 31.2, 29.6, 26.4, 29.5, 23.1, 35.5, 29.3, 38.1, 39.1, 32.8, 39.4, 36.1, 32.4, 22.9, 30.1, 29.0, 23.3, 35.4, 27.4, 32.0, 36.6, 30.8, 28.5, 40.6, 30.0, 46.3, 39.0, 26.0, 32.0, 37.5, 28.4, 22.5, 32.9, 36.8, 26.2, 30.4]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"BLOOD_PRESSURE vs BMI\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"BLOOD_PRESSURE\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"BMI\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('98d3e3e7-f467-416e-8f22-5d7102eb002e');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat9'] = 0\ndf.loc[(df['bmi'] <= 30) & (df['blood_pressure'] <= 80), 'feat9'] = 1","execution_count":75,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat9',': BMI <= 30 & BLOOD PRESSURE <= 80')","execution_count":76,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"38ff210c-87da-411d-aff4-7e98870307de\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"38ff210c-87da-411d-aff4-7e98870307de\")) {                    Plotly.newPlot(                        \"38ff210c-87da-411d-aff4-7e98870307de\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"224\", \"44\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [224, 44]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"290\", \"210\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [290, 210]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat9 : BMI <= 30 & BLOOD PRESSURE <= 80\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('38ff210c-87da-411d-aff4-7e98870307de');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat9','BMI <= 30 & BLOOD PRESSURE <= 80')","execution_count":77,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"e1dcfe57-2dc9-45b8-948c-e736e4a67046\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"e1dcfe57-2dc9-45b8-948c-e736e4a67046\")) {                    Plotly.newPlot(                        \"e1dcfe57-2dc9-45b8-948c-e736e4a67046\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"224\", \"44\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [224, 44]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"290\", \"210\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [290, 210]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat9 BMI <= 30 & BLOOD PRESSURE <= 80\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('e1dcfe57-2dc9-45b8-948c-e736e4a67046');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT 10: BLOOD PRESSURE vs SKIN THICKNESS"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('blood_pressure','skin_thickness')","execution_count":78,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"4f05b192-0ddb-4bcd-86f3-8151d46fe2ad\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"4f05b192-0ddb-4bcd-86f3-8151d46fe2ad\")) {                    Plotly.newPlot(                        \"4f05b192-0ddb-4bcd-86f3-8151d46fe2ad\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [72.0, 64.0, 40.0, 50.0, 70.0, 96.0, 74.0, 60.0, 72.0, 75.32, 84.0, 74.0, 70.0, 90.0, 80.0, 94.0, 70.0, 76.0, 76.0, 76.0, 68.0, 72.0, 110.0, 66.0, 66.0, 90.0, 68.0, 72.0, 66.0, 88.0, 66.0, 90.0, 75.32, 108.0, 70.0, 72.0, 90.0, 72.0, 85.0, 72.0, 62.0, 54.0, 92.0, 74.0, 76.0, 76.0, 30.0, 88.0, 84.0, 70.0, 56.0, 64.0, 66.0, 86.0, 78.0, 88.0, 72.0, 88.0, 74.0, 82.0, 70.0, 72.0, 110.0, 82.0, 68.0, 68.0, 98.0, 76.0, 80.0, 66.0, 75.32, 84.0, 62.0, 64.0, 60.0, 76.0, 104.0, 84.0, 65.0, 82.0, 70.0, 62.0, 74.0, 66.0, 60.0, 90.0, 52.0, 86.0, 80.0, 72.0, 84.0, 90.0, 84.0, 54.0, 50.0, 85.0, 62.0, 64.0, 76.0, 75.32, 62.0, 75.32, 75.32, 86.0, 60.0, 70.0, 86.0, 80.0, 86.0, 62.0, 78.0, 48.0, 70.0, 78.0, 75.32, 58.0, 98.0, 68.0, 68.0, 68.0, 74.0, 80.0, 74.0, 78.0, 74.0, 70.0, 90.0, 64.0, 86.0, 75.32, 76.0, 78.0, 84.0, 80.0, 88.0, 50.0, 75.32, 76.0, 64.0, 78.0, 72.0, 102.0, 82.0, 82.0, 75.0, 74.0, 100.0, 82.0, 76.0, 78.0, 66.0, 70.0, 64.0, 84.0, 64.0, 72.0, 74.0, 68.0, 60.0, 84.0, 82.0, 64.0, 78.0, 78.0, 64.0, 82.0, 75.32, 104.0, 70.0, 62.0, 78.0, 64.0, 70.0, 62.0, 84.0, 75.32, 80.0, 70.0, 75.32, 68.0, 70.0, 70.0, 68.0, 90.0, 72.0, 70.0, 88.0, 70.0, 75.32, 92.0, 74.0, 72.0, 85.0, 90.0, 76.0, 76.0, 66.0, 66.0, 80.0, 70.0, 90.0, 76.0, 66.0, 86.0, 84.0, 80.0, 82.0, 74.0, 78.0, 75.32, 78.0, 58.0, 88.0, 74.0, 82.0, 75.32, 64.0, 72.0, 76.0, 80.0, 74.0, 50.0, 84.0, 52.0, 82.0, 76.0, 106.0, 80.0, 60.0, 82.0, 70.0, 70.0, 86.0, 52.0, 76.0, 80.0, 82.0, 114.0, 68.0, 90.0, 74.0, 78.0, 88.0, 75.32, 78.0, 64.0, 62.0, 50.0, 78.0, 76.0, 68.0, 78.0, 86.0, 88.0, 74.0, 80.0, 94.0, 94.0, 70.0, 62.0, 70.0, 88.0, 78.0, 88.0, 72.0, 92.0, 74.0, 60.0], \"y\": [35.0, 33.0, 35.0, 32.0, 45.0, 33.0, 33.0, 23.0, 19.0, 33.0, 47.0, 33.0, 30.0, 33.0, 35.0, 33.0, 26.0, 33.0, 36.0, 37.0, 42.0, 47.0, 24.0, 39.0, 32.0, 34.0, 39.0, 33.0, 33.0, 30.0, 20.0, 33.0, 33.0, 33.0, 32.0, 33.0, 51.0, 33.0, 25.0, 33.0, 26.0, 32.0, 33.0, 33.0, 56.0, 33.0, 42.0, 24.0, 33.0, 14.0, 33.0, 37.0, 33.0, 28.0, 33.0, 44.0, 41.0, 33.0, 18.0, 33.0, 23.0, 42.0, 46.0, 33.0, 28.0, 36.0, 41.0, 39.0, 35.0, 33.0, 33.0, 41.0, 13.0, 44.0, 27.0, 29.0, 33.0, 33.0, 26.0, 32.0, 40.0, 41.0, 22.0, 33.0, 29.0, 33.0, 38.0, 33.0, 37.0, 33.0, 21.0, 27.0, 21.0, 33.0, 22.0, 15.0, 7.0, 35.0, 28.0, 33.0, 33.0, 33.0, 33.0, 37.0, 24.0, 33.0, 33.0, 33.0, 39.0, 30.0, 37.0, 45.0, 38.0, 25.0, 33.0, 33.0, 33.0, 23.0, 19.0, 28.0, 17.0, 31.0, 33.0, 33.0, 30.0, 20.0, 33.0, 32.0, 36.0, 33.0, 33.0, 34.0, 33.0, 32.0, 33.0, 40.0, 30.0, 36.0, 33.0, 33.0, 33.0, 28.0, 48.0, 43.0, 33.0, 29.0, 36.0, 26.0, 33.0, 33.0, 40.0, 31.0, 33.0, 41.0, 33.0, 33.0, 33.0, 49.0, 35.0, 33.0, 32.0, 29.0, 32.0, 39.0, 30.0, 25.0, 33.0, 25.0, 33.0, 12.0, 63.0, 37.0, 33.0, 30.0, 48.0, 33.0, 45.0, 30.0, 33.0, 42.0, 18.0, 33.0, 41.0, 26.0, 31.0, 18.0, 34.0, 33.0, 33.0, 49.0, 40.0, 25.0, 32.0, 35.0, 27.0, 33.0, 32.0, 30.0, 33.0, 99.0, 46.0, 24.0, 33.0, 27.0, 40.0, 33.0, 14.0, 33.0, 29.0, 33.0, 42.0, 22.0, 42.0, 26.0, 24.0, 33.0, 33.0, 33.0, 32.0, 33.0, 17.0, 36.0, 35.0, 27.0, 31.0, 43.0, 46.0, 46.0, 39.0, 18.0, 27.0, 33.0, 33.0, 33.0, 36.0, 33.0, 46.0, 33.0, 49.0, 24.0, 19.0, 31.0, 29.0, 33.0, 33.0, 32.0, 36.0, 33.0, 39.0, 27.0, 29.0, 23.0, 33.0, 37.0, 33.0, 37.0, 33.0, 41.0, 22.0, 33.0, 33.0, 44.0, 32.0, 39.0, 33.0, 33.0, 31.0, 33.0]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [66.0, 66.0, 74.0, 70.88, 92.0, 80.0, 30.0, 88.0, 84.0, 66.0, 82.0, 92.0, 75.0, 58.0, 92.0, 78.0, 60.0, 76.0, 64.0, 84.0, 92.0, 64.0, 56.0, 70.0, 70.88, 80.0, 50.0, 66.0, 66.0, 50.0, 88.0, 82.0, 64.0, 70.88, 62.0, 58.0, 74.0, 92.0, 66.0, 85.0, 64.0, 86.0, 75.0, 48.0, 78.0, 72.0, 66.0, 44.0, 70.88, 78.0, 65.0, 74.0, 72.0, 68.0, 68.0, 55.0, 80.0, 78.0, 82.0, 72.0, 62.0, 48.0, 50.0, 60.0, 96.0, 72.0, 65.0, 56.0, 122.0, 58.0, 58.0, 76.0, 62.0, 48.0, 60.0, 76.0, 64.0, 74.0, 80.0, 70.0, 58.0, 74.0, 68.0, 60.0, 70.0, 60.0, 80.0, 72.0, 78.0, 82.0, 52.0, 62.0, 75.0, 80.0, 64.0, 78.0, 70.0, 74.0, 65.0, 82.0, 52.0, 56.0, 74.0, 90.0, 74.0, 80.0, 64.0, 66.0, 68.0, 66.0, 90.0, 70.88, 60.0, 64.0, 78.0, 78.0, 80.0, 64.0, 74.0, 60.0, 74.0, 62.0, 70.0, 55.0, 58.0, 80.0, 82.0, 68.0, 70.0, 72.0, 72.0, 64.0, 60.0, 85.0, 95.0, 68.0, 70.88, 60.0, 66.0, 78.0, 76.0, 70.0, 80.0, 80.0, 68.0, 68.0, 76.0, 64.0, 70.0, 76.0, 68.0, 90.0, 70.0, 86.0, 52.0, 84.0, 80.0, 68.0, 56.0, 68.0, 50.0, 68.0, 70.0, 80.0, 74.0, 64.0, 52.0, 62.0, 78.0, 78.0, 70.0, 70.0, 64.0, 74.0, 62.0, 76.0, 88.0, 74.0, 84.0, 56.0, 72.0, 88.0, 50.0, 62.0, 84.0, 72.0, 82.0, 76.0, 76.0, 68.0, 66.0, 70.0, 50.0, 68.0, 80.0, 66.0, 60.0, 75.0, 72.0, 70.0, 70.0, 72.0, 58.0, 80.0, 60.0, 76.0, 70.88, 70.0, 74.0, 68.0, 86.0, 72.0, 88.0, 46.0, 70.88, 62.0, 80.0, 84.0, 82.0, 62.0, 78.0, 74.0, 70.0, 108.0, 74.0, 54.0, 64.0, 86.0, 64.0, 64.0, 58.0, 52.0, 82.0, 60.0, 100.0, 72.0, 68.0, 60.0, 62.0, 70.0, 54.0, 68.0, 66.0, 64.0, 72.0, 58.0, 56.0, 70.0, 61.0, 78.0, 48.0, 62.0, 90.0, 72.0, 84.0, 74.0, 68.0, 68.0, 88.0, 68.0, 64.0, 64.0, 70.88, 94.0, 70.88, 74.0, 74.0, 75.0, 68.0, 85.0, 75.0, 70.0, 88.0, 66.0, 64.0, 72.0, 80.0, 74.0, 64.0, 68.0, 70.88, 54.0, 54.0, 68.0, 74.0, 72.0, 62.0, 70.0, 78.0, 98.0, 56.0, 52.0, 64.0, 78.0, 82.0, 70.0, 66.0, 90.0, 64.0, 84.0, 76.0, 74.0, 86.0, 88.0, 58.0, 82.0, 62.0, 78.0, 72.0, 80.0, 65.0, 90.0, 68.0, 70.88, 74.0, 68.0, 72.0, 74.0, 90.0, 72.0, 64.0, 78.0, 82.0, 60.0, 50.0, 78.0, 62.0, 68.0, 62.0, 54.0, 86.0, 60.0, 90.0, 70.0, 80.0, 70.88, 58.0, 60.0, 64.0, 74.0, 66.0, 65.0, 60.0, 76.0, 66.0, 70.88, 56.0, 90.0, 60.0, 80.0, 90.0, 78.0, 68.0, 82.0, 110.0, 70.0, 68.0, 88.0, 62.0, 64.0, 70.0, 70.0, 76.0, 68.0, 74.0, 68.0, 60.0, 80.0, 54.0, 72.0, 62.0, 72.0, 70.0, 96.0, 58.0, 60.0, 86.0, 44.0, 44.0, 68.0, 60.0, 78.0, 76.0, 56.0, 66.0, 70.88, 78.0, 52.0, 72.0, 76.0, 24.0, 38.0, 88.0, 70.88, 74.0, 60.0, 62.0, 82.0, 62.0, 54.0, 80.0, 72.0, 96.0, 62.0, 86.0, 76.0, 94.0, 70.0, 64.0, 88.0, 68.0, 78.0, 80.0, 65.0, 78.0, 60.0, 82.0, 62.0, 74.0, 76.0, 74.0, 86.0, 70.0, 70.88, 72.0, 74.0, 60.0, 54.0, 60.0, 74.0, 54.0, 70.0, 58.0, 80.0, 106.0, 84.0, 80.0, 58.0, 78.0, 68.0, 58.0, 106.0, 100.0, 82.0, 60.0, 58.0, 56.0, 64.0, 82.0, 74.0, 64.0, 50.0, 74.0, 80.0, 70.0, 60.0, 70.88, 88.0, 70.0, 76.0, 70.88, 76.0, 80.0, 46.0, 64.0, 78.0, 58.0, 74.0, 72.0, 60.0, 86.0, 66.0, 86.0, 94.0, 78.0, 78.0, 84.0, 88.0, 52.0, 56.0, 75.0, 60.0, 86.0, 72.0, 60.0, 44.0, 58.0, 88.0, 84.0, 74.0, 78.0, 62.0, 90.0, 76.0, 58.0, 62.0, 76.0, 70.0, 72.0, 70.0], \"y\": [29.0, 23.0, 27.24, 27.24, 27.24, 27.24, 38.0, 41.0, 27.24, 15.0, 19.0, 27.24, 26.0, 11.0, 27.24, 31.0, 33.0, 27.24, 25.0, 27.24, 18.0, 27.24, 27.24, 27.0, 27.24, 11.0, 15.0, 21.0, 42.0, 10.0, 60.0, 27.24, 41.0, 27.24, 27.24, 34.0, 27.0, 27.24, 13.0, 27.0, 35.0, 20.0, 30.0, 20.0, 27.24, 33.0, 22.0, 13.0, 27.24, 26.0, 28.0, 29.0, 54.0, 25.0, 19.0, 27.24, 15.0, 40.0, 18.0, 27.0, 28.0, 18.0, 30.0, 27.24, 27.24, 18.0, 27.24, 29.0, 27.24, 28.0, 31.0, 34.0, 27.24, 27.24, 23.0, 15.0, 39.0, 30.0, 27.24, 30.0, 36.0, 31.0, 13.0, 20.0, 26.0, 25.0, 27.24, 29.0, 27.24, 30.0, 26.0, 31.0, 23.0, 37.0, 35.0, 27.24, 17.0, 50.0, 27.24, 42.0, 15.0, 21.0, 19.0, 38.0, 40.0, 34.0, 23.0, 25.0, 27.24, 27.24, 12.0, 23.0, 42.0, 24.0, 27.24, 27.24, 27.24, 18.0, 20.0, 27.24, 27.24, 27.24, 44.0, 20.0, 27.24, 16.0, 27.24, 20.0, 16.0, 32.0, 28.0, 27.0, 22.0, 54.0, 31.0, 30.0, 27.24, 33.0, 15.0, 27.0, 27.24, 39.0, 31.0, 25.0, 27.24, 28.0, 27.24, 24.0, 32.0, 35.0, 27.24, 33.0, 33.0, 19.0, 27.24, 27.24, 14.0, 32.0, 39.0, 22.0, 16.0, 15.0, 32.0, 15.0, 18.0, 42.0, 27.24, 32.0, 27.24, 50.0, 27.24, 52.0, 23.0, 27.24, 10.0, 28.0, 15.0, 26.0, 44.0, 17.0, 43.0, 29.0, 27.24, 31.0, 29.0, 27.24, 41.0, 27.24, 37.0, 14.0, 30.0, 37.0, 10.0, 22.0, 11.0, 39.0, 12.0, 32.0, 21.0, 27.24, 32.0, 19.0, 16.0, 27.24, 18.0, 43.0, 27.24, 13.0, 21.0, 35.0, 27.24, 27.24, 36.0, 19.0, 27.24, 19.0, 27.24, 27.24, 28.0, 12.0, 27.24, 40.0, 27.24, 37.0, 25.0, 28.0, 17.0, 16.0, 23.0, 22.0, 40.0, 43.0, 15.0, 37.0, 39.0, 30.0, 22.0, 8.0, 18.0, 24.0, 13.0, 23.0, 29.0, 14.0, 12.0, 24.0, 34.0, 27.24, 27.24, 25.0, 32.0, 27.24, 39.0, 30.0, 23.0, 22.0, 21.0, 27.24, 41.0, 18.0, 46.0, 22.0, 27.24, 46.0, 27.24, 16.0, 11.0, 27.24, 8.0, 33.0, 27.24, 15.0, 27.24, 23.0, 27.0, 12.0, 45.0, 18.0, 13.0, 32.0, 27.24, 28.0, 27.24, 28.0, 33.0, 22.0, 27.24, 40.0, 30.0, 27.24, 13.0, 10.0, 36.0, 41.0, 40.0, 38.0, 27.0, 27.24, 27.24, 27.0, 17.0, 38.0, 31.0, 37.0, 22.0, 31.0, 41.0, 32.0, 17.0, 27.24, 28.0, 30.0, 38.0, 27.24, 27.24, 27.24, 15.0, 32.0, 19.0, 32.0, 25.0, 39.0, 27.24, 23.0, 23.0, 27.24, 17.0, 27.24, 27.24, 19.0, 27.24, 27.24, 7.0, 32.0, 33.0, 27.24, 27.24, 18.0, 19.0, 15.0, 31.0, 27.24, 18.0, 27.24, 52.0, 27.24, 30.0, 27.24, 27.24, 37.0, 23.0, 29.0, 21.0, 43.0, 31.0, 28.0, 30.0, 27.24, 24.0, 23.0, 33.0, 40.0, 27.24, 40.0, 27.24, 34.0, 19.0, 27.24, 14.0, 30.0, 32.0, 29.0, 27.24, 27.24, 31.0, 17.0, 30.0, 47.0, 20.0, 27.24, 27.0, 17.0, 27.24, 11.0, 27.24, 27.24, 50.0, 22.0, 45.0, 27.24, 19.0, 18.0, 19.0, 27.24, 36.0, 32.0, 25.0, 39.0, 13.0, 21.0, 28.0, 27.24, 27.24, 13.0, 42.0, 20.0, 27.24, 27.0, 27.24, 47.0, 27.24, 27.24, 27.24, 22.0, 40.0, 27.24, 17.0, 27.24, 27.24, 18.0, 12.0, 17.0, 27.24, 27.24, 30.0, 35.0, 25.0, 25.0, 23.0, 40.0, 27.24, 28.0, 35.0, 48.0, 27.24, 27.24, 45.0, 33.0, 30.0, 26.0, 10.0, 23.0, 35.0, 27.24, 27.24, 17.0, 28.0, 39.0, 27.24, 26.0, 27.24, 19.0, 26.0, 27.24, 32.0, 27.24, 27.24, 11.0, 27.24, 27.0, 27.24, 20.0, 36.0, 21.0, 13.0, 27.0, 20.0, 27.24, 18.0, 46.0, 19.0, 36.0, 30.0, 27.24, 40.0, 29.0, 26.0, 27.24, 27.24, 27.0, 27.24, 32.0, 27.0, 23.0, 17.0, 20.0, 18.0, 37.0, 33.0, 41.0, 39.0, 24.0, 41.0, 27.24, 26.0, 27.24, 48.0, 27.0, 23.0, 31.0]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"BLOOD_PRESSURE vs SKIN_THICKNESS\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"BLOOD_PRESSURE\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"SKIN_THICKNESS\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('4f05b192-0ddb-4bcd-86f3-8151d46fe2ad');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat10'] = 0\ndf.loc[(df['blood_pressure'] <= 80) & (df['skin_thickness'] <= 28), 'feat10'] = 1","execution_count":79,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat10',': BLOOD PRESSURE <= 80 & SKIN THICKNESS <= 28')","execution_count":80,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"5b9a89cc-33f2-4c47-9af9-ab47c6bb13e6\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"5b9a89cc-33f2-4c47-9af9-ab47c6bb13e6\")) {                    Plotly.newPlot(                        \"5b9a89cc-33f2-4c47-9af9-ab47c6bb13e6\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"230\", \"38\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [230, 38]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"289\", \"211\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [1, 0], \"y\": [289, 211]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat10 : BLOOD PRESSURE <= 80 & SKIN THICKNESS <= 28\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('5b9a89cc-33f2-4c47-9af9-ab47c6bb13e6');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat10','BLOOD PRESSURE <= 80 & SKIN THICKNESS <= 28')","execution_count":81,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"66adae90-e809-4657-9d6b-55ba9386239f\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"66adae90-e809-4657-9d6b-55ba9386239f\")) {                    Plotly.newPlot(                        \"66adae90-e809-4657-9d6b-55ba9386239f\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [230, 38]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [1, 0], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [289, 211]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT10 distribution by target: BLOOD PRESSURE <= 80 & SKIN THICKNESS <= 28\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('66adae90-e809-4657-9d6b-55ba9386239f');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT 11: SKIN THICKNESS vs INSULIN"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('skin_thickness','insulin')","execution_count":82,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"3c8d3fbe-5f1e-4fe6-a419-b8437165babe\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"3c8d3fbe-5f1e-4fe6-a419-b8437165babe\")) {                    Plotly.newPlot(                        \"3c8d3fbe-5f1e-4fe6-a419-b8437165babe\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [35.0, 33.0, 35.0, 32.0, 45.0, 33.0, 33.0, 23.0, 19.0, 33.0, 47.0, 33.0, 30.0, 33.0, 35.0, 33.0, 26.0, 33.0, 36.0, 37.0, 42.0, 47.0, 24.0, 39.0, 32.0, 34.0, 39.0, 33.0, 33.0, 30.0, 20.0, 33.0, 33.0, 33.0, 32.0, 33.0, 51.0, 33.0, 25.0, 33.0, 26.0, 32.0, 33.0, 33.0, 56.0, 33.0, 42.0, 24.0, 33.0, 14.0, 33.0, 37.0, 33.0, 28.0, 33.0, 44.0, 41.0, 33.0, 18.0, 33.0, 23.0, 42.0, 46.0, 33.0, 28.0, 36.0, 41.0, 39.0, 35.0, 33.0, 33.0, 41.0, 13.0, 44.0, 27.0, 29.0, 33.0, 33.0, 26.0, 32.0, 40.0, 41.0, 22.0, 33.0, 29.0, 33.0, 38.0, 33.0, 37.0, 33.0, 21.0, 27.0, 21.0, 33.0, 22.0, 15.0, 7.0, 35.0, 28.0, 33.0, 33.0, 33.0, 33.0, 37.0, 24.0, 33.0, 33.0, 33.0, 39.0, 30.0, 37.0, 45.0, 38.0, 25.0, 33.0, 33.0, 33.0, 23.0, 19.0, 28.0, 17.0, 31.0, 33.0, 33.0, 30.0, 20.0, 33.0, 32.0, 36.0, 33.0, 33.0, 34.0, 33.0, 32.0, 33.0, 40.0, 30.0, 36.0, 33.0, 33.0, 33.0, 28.0, 48.0, 43.0, 33.0, 29.0, 36.0, 26.0, 33.0, 33.0, 40.0, 31.0, 33.0, 41.0, 33.0, 33.0, 33.0, 49.0, 35.0, 33.0, 32.0, 29.0, 32.0, 39.0, 30.0, 25.0, 33.0, 25.0, 33.0, 12.0, 63.0, 37.0, 33.0, 30.0, 48.0, 33.0, 45.0, 30.0, 33.0, 42.0, 18.0, 33.0, 41.0, 26.0, 31.0, 18.0, 34.0, 33.0, 33.0, 49.0, 40.0, 25.0, 32.0, 35.0, 27.0, 33.0, 32.0, 30.0, 33.0, 99.0, 46.0, 24.0, 33.0, 27.0, 40.0, 33.0, 14.0, 33.0, 29.0, 33.0, 42.0, 22.0, 42.0, 26.0, 24.0, 33.0, 33.0, 33.0, 32.0, 33.0, 17.0, 36.0, 35.0, 27.0, 31.0, 43.0, 46.0, 46.0, 39.0, 18.0, 27.0, 33.0, 33.0, 33.0, 36.0, 33.0, 46.0, 33.0, 49.0, 24.0, 19.0, 31.0, 29.0, 33.0, 33.0, 32.0, 36.0, 33.0, 39.0, 27.0, 29.0, 23.0, 33.0, 37.0, 33.0, 37.0, 33.0, 41.0, 22.0, 33.0, 33.0, 44.0, 32.0, 39.0, 33.0, 33.0, 31.0, 33.0], \"y\": [206.85, 206.85, 168.0, 88.0, 543.0, 206.85, 206.85, 846.0, 175.0, 206.85, 230.0, 206.85, 96.0, 206.85, 206.85, 146.0, 115.0, 206.85, 245.0, 206.85, 206.85, 207.0, 240.0, 206.85, 206.85, 300.0, 304.0, 206.85, 206.85, 206.85, 90.0, 206.85, 206.85, 206.85, 110.0, 206.85, 220.0, 206.85, 36.0, 135.0, 495.0, 175.0, 206.85, 206.85, 100.0, 206.85, 99.0, 145.0, 206.85, 168.0, 206.85, 225.0, 206.85, 155.0, 206.85, 206.85, 114.0, 206.85, 156.0, 206.85, 130.0, 130.0, 130.0, 206.85, 206.85, 495.0, 58.0, 114.0, 160.0, 206.85, 206.85, 210.0, 48.0, 99.0, 318.0, 280.0, 206.85, 206.85, 130.0, 175.0, 271.0, 129.0, 206.85, 206.85, 478.0, 206.85, 206.85, 206.85, 370.0, 206.85, 192.0, 206.85, 206.85, 206.85, 176.0, 206.85, 258.0, 206.85, 150.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 220.0, 74.0, 182.0, 194.0, 360.0, 184.0, 206.85, 135.0, 206.85, 132.0, 180.0, 205.0, 96.0, 206.85, 206.85, 206.85, 206.85, 206.85, 29.0, 156.0, 120.0, 206.85, 206.85, 171.0, 206.85, 206.85, 206.85, 167.0, 206.85, 249.0, 325.0, 206.85, 206.85, 140.0, 465.0, 325.0, 206.85, 206.85, 206.85, 285.0, 206.85, 206.85, 206.85, 206.85, 206.85, 88.0, 206.85, 206.85, 206.85, 579.0, 167.0, 474.0, 206.85, 115.0, 210.0, 277.0, 180.0, 180.0, 206.85, 206.85, 206.85, 206.85, 14.0, 64.0, 206.85, 206.85, 237.0, 206.85, 191.0, 328.0, 206.85, 250.0, 122.0, 145.0, 206.85, 90.0, 206.85, 105.0, 165.0, 206.85, 206.85, 155.0, 215.0, 190.0, 206.85, 225.0, 207.0, 206.85, 274.0, 165.0, 206.85, 206.85, 206.85, 600.0, 206.85, 156.0, 206.85, 206.85, 185.0, 206.85, 126.0, 206.85, 293.0, 194.0, 321.0, 144.0, 206.85, 206.85, 206.85, 206.85, 91.0, 206.85, 144.0, 159.0, 130.0, 540.0, 70.0, 206.85, 231.0, 130.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 180.0, 206.85, 125.0, 480.0, 125.0, 206.85, 206.85, 206.85, 206.85, 160.0, 206.85, 392.0, 185.0, 206.85, 127.0, 79.0, 206.85, 120.0, 206.85, 150.0, 206.85, 206.85, 200.0, 206.85, 206.85, 510.0, 206.85, 110.0, 206.85, 206.85, 206.85, 206.85]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [29.0, 23.0, 27.24, 27.24, 27.24, 27.24, 38.0, 41.0, 27.24, 15.0, 19.0, 27.24, 26.0, 11.0, 27.24, 31.0, 33.0, 27.24, 25.0, 27.24, 18.0, 27.24, 27.24, 27.0, 27.24, 11.0, 15.0, 21.0, 42.0, 10.0, 60.0, 27.24, 41.0, 27.24, 27.24, 34.0, 27.0, 27.24, 13.0, 27.0, 35.0, 20.0, 30.0, 20.0, 27.24, 33.0, 22.0, 13.0, 27.24, 26.0, 28.0, 29.0, 54.0, 25.0, 19.0, 27.24, 15.0, 40.0, 18.0, 27.0, 28.0, 18.0, 30.0, 27.24, 27.24, 18.0, 27.24, 29.0, 27.24, 28.0, 31.0, 34.0, 27.24, 27.24, 23.0, 15.0, 39.0, 30.0, 27.24, 30.0, 36.0, 31.0, 13.0, 20.0, 26.0, 25.0, 27.24, 29.0, 27.24, 30.0, 26.0, 31.0, 23.0, 37.0, 35.0, 27.24, 17.0, 50.0, 27.24, 42.0, 15.0, 21.0, 19.0, 38.0, 40.0, 34.0, 23.0, 25.0, 27.24, 27.24, 12.0, 23.0, 42.0, 24.0, 27.24, 27.24, 27.24, 18.0, 20.0, 27.24, 27.24, 27.24, 44.0, 20.0, 27.24, 16.0, 27.24, 20.0, 16.0, 32.0, 28.0, 27.0, 22.0, 54.0, 31.0, 30.0, 27.24, 33.0, 15.0, 27.0, 27.24, 39.0, 31.0, 25.0, 27.24, 28.0, 27.24, 24.0, 32.0, 35.0, 27.24, 33.0, 33.0, 19.0, 27.24, 27.24, 14.0, 32.0, 39.0, 22.0, 16.0, 15.0, 32.0, 15.0, 18.0, 42.0, 27.24, 32.0, 27.24, 50.0, 27.24, 52.0, 23.0, 27.24, 10.0, 28.0, 15.0, 26.0, 44.0, 17.0, 43.0, 29.0, 27.24, 31.0, 29.0, 27.24, 41.0, 27.24, 37.0, 14.0, 30.0, 37.0, 10.0, 22.0, 11.0, 39.0, 12.0, 32.0, 21.0, 27.24, 32.0, 19.0, 16.0, 27.24, 18.0, 43.0, 27.24, 13.0, 21.0, 35.0, 27.24, 27.24, 36.0, 19.0, 27.24, 19.0, 27.24, 27.24, 28.0, 12.0, 27.24, 40.0, 27.24, 37.0, 25.0, 28.0, 17.0, 16.0, 23.0, 22.0, 40.0, 43.0, 15.0, 37.0, 39.0, 30.0, 22.0, 8.0, 18.0, 24.0, 13.0, 23.0, 29.0, 14.0, 12.0, 24.0, 34.0, 27.24, 27.24, 25.0, 32.0, 27.24, 39.0, 30.0, 23.0, 22.0, 21.0, 27.24, 41.0, 18.0, 46.0, 22.0, 27.24, 46.0, 27.24, 16.0, 11.0, 27.24, 8.0, 33.0, 27.24, 15.0, 27.24, 23.0, 27.0, 12.0, 45.0, 18.0, 13.0, 32.0, 27.24, 28.0, 27.24, 28.0, 33.0, 22.0, 27.24, 40.0, 30.0, 27.24, 13.0, 10.0, 36.0, 41.0, 40.0, 38.0, 27.0, 27.24, 27.24, 27.0, 17.0, 38.0, 31.0, 37.0, 22.0, 31.0, 41.0, 32.0, 17.0, 27.24, 28.0, 30.0, 38.0, 27.24, 27.24, 27.24, 15.0, 32.0, 19.0, 32.0, 25.0, 39.0, 27.24, 23.0, 23.0, 27.24, 17.0, 27.24, 27.24, 19.0, 27.24, 27.24, 7.0, 32.0, 33.0, 27.24, 27.24, 18.0, 19.0, 15.0, 31.0, 27.24, 18.0, 27.24, 52.0, 27.24, 30.0, 27.24, 27.24, 37.0, 23.0, 29.0, 21.0, 43.0, 31.0, 28.0, 30.0, 27.24, 24.0, 23.0, 33.0, 40.0, 27.24, 40.0, 27.24, 34.0, 19.0, 27.24, 14.0, 30.0, 32.0, 29.0, 27.24, 27.24, 31.0, 17.0, 30.0, 47.0, 20.0, 27.24, 27.0, 17.0, 27.24, 11.0, 27.24, 27.24, 50.0, 22.0, 45.0, 27.24, 19.0, 18.0, 19.0, 27.24, 36.0, 32.0, 25.0, 39.0, 13.0, 21.0, 28.0, 27.24, 27.24, 13.0, 42.0, 20.0, 27.24, 27.0, 27.24, 47.0, 27.24, 27.24, 27.24, 22.0, 40.0, 27.24, 17.0, 27.24, 27.24, 18.0, 12.0, 17.0, 27.24, 27.24, 30.0, 35.0, 25.0, 25.0, 23.0, 40.0, 27.24, 28.0, 35.0, 48.0, 27.24, 27.24, 45.0, 33.0, 30.0, 26.0, 10.0, 23.0, 35.0, 27.24, 27.24, 17.0, 28.0, 39.0, 27.24, 26.0, 27.24, 19.0, 26.0, 27.24, 32.0, 27.24, 27.24, 11.0, 27.24, 27.0, 27.24, 20.0, 36.0, 21.0, 13.0, 27.0, 20.0, 27.24, 18.0, 46.0, 19.0, 36.0, 30.0, 27.24, 40.0, 29.0, 26.0, 27.24, 27.24, 27.0, 27.24, 32.0, 27.0, 23.0, 17.0, 20.0, 18.0, 37.0, 33.0, 41.0, 39.0, 24.0, 41.0, 27.24, 26.0, 27.24, 48.0, 27.0, 23.0, 31.0], \"y\": [130.29, 94.0, 130.29, 130.29, 130.29, 130.29, 83.0, 235.0, 130.29, 140.0, 110.0, 130.29, 130.29, 54.0, 130.29, 130.29, 192.0, 130.29, 70.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 82.0, 36.0, 23.0, 342.0, 130.29, 110.0, 130.29, 142.0, 130.29, 130.29, 128.0, 130.29, 130.29, 38.0, 100.0, 140.0, 270.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 71.0, 130.29, 125.0, 130.29, 71.0, 130.29, 130.29, 176.0, 48.0, 64.0, 228.0, 130.29, 76.0, 64.0, 130.29, 130.29, 40.0, 130.29, 152.0, 130.29, 140.0, 18.0, 37.0, 130.29, 130.29, 130.29, 51.0, 130.29, 100.0, 130.29, 135.0, 94.0, 130.29, 49.0, 140.0, 50.0, 92.0, 130.29, 325.0, 130.29, 130.29, 63.0, 284.0, 130.29, 130.29, 119.0, 130.29, 130.29, 204.0, 130.29, 485.0, 94.0, 135.0, 53.0, 130.29, 105.0, 285.0, 130.29, 130.29, 130.29, 130.29, 78.0, 130.29, 48.0, 55.0, 130.29, 130.29, 130.29, 92.0, 23.0, 130.29, 130.29, 130.29, 94.0, 130.29, 130.29, 130.29, 130.29, 130.29, 44.0, 190.0, 130.29, 87.0, 130.29, 130.29, 130.29, 120.0, 130.29, 190.0, 56.0, 32.0, 130.29, 744.0, 53.0, 37.0, 130.29, 45.0, 130.29, 130.29, 88.0, 194.0, 130.29, 680.0, 402.0, 130.29, 130.29, 130.29, 55.0, 130.29, 130.29, 130.29, 375.0, 130.0, 130.29, 130.29, 67.0, 130.29, 130.29, 56.0, 130.29, 45.0, 130.29, 57.0, 116.0, 130.29, 278.0, 122.0, 155.0, 135.0, 545.0, 49.0, 75.0, 40.0, 130.29, 120.0, 215.0, 130.29, 42.0, 130.29, 105.0, 148.0, 130.29, 148.0, 85.0, 94.0, 64.0, 140.0, 231.0, 130.29, 168.0, 130.29, 68.0, 130.29, 52.0, 130.29, 58.0, 255.0, 130.29, 105.0, 73.0, 130.29, 130.29, 130.29, 108.0, 83.0, 130.29, 74.0, 130.29, 130.29, 130.29, 43.0, 130.29, 54.0, 130.29, 130.29, 293.0, 83.0, 130.29, 66.0, 89.0, 66.0, 94.0, 158.0, 84.0, 75.0, 72.0, 82.0, 130.29, 182.0, 59.0, 110.0, 50.0, 81.0, 196.0, 415.0, 87.0, 275.0, 115.0, 130.29, 130.29, 130.29, 165.0, 130.29, 130.29, 176.0, 310.0, 61.0, 130.29, 130.29, 170.0, 76.0, 78.0, 130.29, 130.29, 145.0, 130.29, 85.0, 60.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 50.0, 120.0, 70.0, 92.0, 63.0, 95.0, 210.0, 130.29, 105.0, 130.29, 71.0, 60.0, 56.0, 130.29, 49.0, 130.29, 130.29, 105.0, 36.0, 100.0, 140.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 110.0, 75.0, 130.29, 130.29, 49.0, 125.0, 480.0, 265.0, 130.29, 130.29, 66.0, 130.29, 130.29, 130.29, 130.29, 130.29, 76.0, 193.0, 71.0, 130.29, 79.0, 130.29, 130.29, 170.0, 76.0, 130.29, 210.0, 130.29, 130.29, 86.0, 130.29, 130.29, 326.0, 66.0, 130.0, 130.29, 130.29, 130.29, 82.0, 105.0, 188.0, 130.29, 106.0, 130.29, 65.0, 130.29, 56.0, 130.29, 130.29, 210.0, 56.0, 76.0, 166.0, 67.0, 130.29, 130.29, 106.0, 130.29, 44.0, 115.0, 215.0, 130.29, 130.29, 130.29, 130.29, 77.0, 54.0, 130.29, 88.0, 18.0, 126.0, 126.0, 130.29, 130.29, 44.0, 120.0, 330.0, 63.0, 130.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 140.0, 115.0, 230.0, 130.29, 25.0, 120.0, 130.29, 130.29, 130.29, 130.29, 41.0, 272.0, 182.0, 158.0, 130.29, 130.29, 130.29, 15.0, 160.0, 130.29, 130.29, 115.0, 130.29, 54.0, 130.29, 130.29, 130.29, 130.29, 90.0, 130.29, 183.0, 130.29, 130.29, 66.0, 46.0, 105.0, 130.29, 130.29, 152.0, 440.0, 130.29, 100.0, 106.0, 77.0, 130.29, 135.0, 90.0, 200.0, 130.29, 130.29, 132.0, 190.0, 100.0, 168.0, 130.29, 49.0, 240.0, 130.29, 130.29, 265.0, 45.0, 105.0, 130.29, 205.0, 130.29, 130.29, 180.0, 130.29, 95.0, 130.29, 130.29, 155.0, 130.29, 200.0, 130.29, 100.0, 130.29, 335.0, 387.0, 22.0, 291.0, 130.29, 130.29, 178.0, 130.29, 200.0, 105.0, 130.29, 130.29, 180.0, 130.29, 130.29, 130.29, 165.0, 130.29, 130.29, 120.0, 130.29, 160.0, 94.0, 116.0, 140.0, 105.0, 57.0, 74.0, 130.29, 130.29, 130.29, 16.0, 130.29, 180.0, 130.29, 112.0, 130.29]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"SKIN_THICKNESS vs INSULIN\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"SKIN_THICKNESS\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"INSULIN\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('3c8d3fbe-5f1e-4fe6-a419-b8437165babe');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat11'] = 0\ndf.loc[(df['skin_thickness'] <= 40) & (df['insulin'] <= 131), 'feat11'] = 1","execution_count":83,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat11',': SKIN THICKNESS <= 28 & INSULIN <= 131')","execution_count":84,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"b8b7ef84-f722-4982-b040-72e1eb19275c\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"b8b7ef84-f722-4982-b040-72e1eb19275c\")) {                    Plotly.newPlot(                        \"b8b7ef84-f722-4982-b040-72e1eb19275c\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"240\", \"28\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [240, 28]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"391\", \"109\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [1, 0], \"y\": [391, 109]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat11 : SKIN THICKNESS <= 28 & INSULIN <= 131\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('b8b7ef84-f722-4982-b040-72e1eb19275c');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat11','SKIN THICKNESS <= 28 & INSULIN <= 131')","execution_count":85,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"44575d05-e95c-4472-abfd-cc25050f40b7\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"44575d05-e95c-4472-abfd-cc25050f40b7\")) {                    Plotly.newPlot(                        \"44575d05-e95c-4472-abfd-cc25050f40b7\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [240, 28]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [1, 0], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [391, 109]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT11 distribution by target: SKIN THICKNESS <= 28 & INSULIN <= 131\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('44575d05-e95c-4472-abfd-cc25050f40b7');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT 12: SKIN THICKNESS vs BMI"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('skin_thickness','bmi')","execution_count":86,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"3ffb7e8c-4d94-4225-803c-c98e112034e0\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"3ffb7e8c-4d94-4225-803c-c98e112034e0\")) {                    Plotly.newPlot(                        \"3ffb7e8c-4d94-4225-803c-c98e112034e0\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [35.0, 33.0, 35.0, 32.0, 45.0, 33.0, 33.0, 23.0, 19.0, 33.0, 47.0, 33.0, 30.0, 33.0, 35.0, 33.0, 26.0, 33.0, 36.0, 37.0, 42.0, 47.0, 24.0, 39.0, 32.0, 34.0, 39.0, 33.0, 33.0, 30.0, 20.0, 33.0, 33.0, 33.0, 32.0, 33.0, 51.0, 33.0, 25.0, 33.0, 26.0, 32.0, 33.0, 33.0, 56.0, 33.0, 42.0, 24.0, 33.0, 14.0, 33.0, 37.0, 33.0, 28.0, 33.0, 44.0, 41.0, 33.0, 18.0, 33.0, 23.0, 42.0, 46.0, 33.0, 28.0, 36.0, 41.0, 39.0, 35.0, 33.0, 33.0, 41.0, 13.0, 44.0, 27.0, 29.0, 33.0, 33.0, 26.0, 32.0, 40.0, 41.0, 22.0, 33.0, 29.0, 33.0, 38.0, 33.0, 37.0, 33.0, 21.0, 27.0, 21.0, 33.0, 22.0, 15.0, 7.0, 35.0, 28.0, 33.0, 33.0, 33.0, 33.0, 37.0, 24.0, 33.0, 33.0, 33.0, 39.0, 30.0, 37.0, 45.0, 38.0, 25.0, 33.0, 33.0, 33.0, 23.0, 19.0, 28.0, 17.0, 31.0, 33.0, 33.0, 30.0, 20.0, 33.0, 32.0, 36.0, 33.0, 33.0, 34.0, 33.0, 32.0, 33.0, 40.0, 30.0, 36.0, 33.0, 33.0, 33.0, 28.0, 48.0, 43.0, 33.0, 29.0, 36.0, 26.0, 33.0, 33.0, 40.0, 31.0, 33.0, 41.0, 33.0, 33.0, 33.0, 49.0, 35.0, 33.0, 32.0, 29.0, 32.0, 39.0, 30.0, 25.0, 33.0, 25.0, 33.0, 12.0, 63.0, 37.0, 33.0, 30.0, 48.0, 33.0, 45.0, 30.0, 33.0, 42.0, 18.0, 33.0, 41.0, 26.0, 31.0, 18.0, 34.0, 33.0, 33.0, 49.0, 40.0, 25.0, 32.0, 35.0, 27.0, 33.0, 32.0, 30.0, 33.0, 99.0, 46.0, 24.0, 33.0, 27.0, 40.0, 33.0, 14.0, 33.0, 29.0, 33.0, 42.0, 22.0, 42.0, 26.0, 24.0, 33.0, 33.0, 33.0, 32.0, 33.0, 17.0, 36.0, 35.0, 27.0, 31.0, 43.0, 46.0, 46.0, 39.0, 18.0, 27.0, 33.0, 33.0, 33.0, 36.0, 33.0, 46.0, 33.0, 49.0, 24.0, 19.0, 31.0, 29.0, 33.0, 33.0, 32.0, 36.0, 33.0, 39.0, 27.0, 29.0, 23.0, 33.0, 37.0, 33.0, 37.0, 33.0, 41.0, 22.0, 33.0, 33.0, 44.0, 32.0, 39.0, 33.0, 33.0, 31.0, 33.0], \"y\": [33.6, 23.3, 43.1, 31.0, 30.5, 35.41, 38.0, 30.1, 25.8, 30.0, 45.8, 29.6, 34.6, 39.8, 29.0, 36.6, 31.1, 39.4, 31.6, 32.9, 38.2, 37.1, 45.4, 42.0, 39.1, 33.7, 37.7, 32.9, 32.8, 32.5, 32.9, 43.4, 43.2, 48.8, 37.1, 23.8, 49.7, 39.0, 37.4, 33.3, 34.0, 30.5, 31.2, 34.0, 53.2, 33.3, 55.0, 34.5, 27.9, 29.7, 33.3, 34.5, 32.4, 34.3, 47.9, 50.0, 40.9, 31.6, 29.9, 30.8, 35.4, 32.7, 67.1, 39.1, 35.9, 30.1, 32.0, 27.9, 31.6, 30.4, 52.3, 39.4, 22.9, 34.8, 30.9, 37.5, 37.7, 35.5, 42.6, 34.2, 41.8, 35.8, 29.0, 37.8, 34.6, 31.6, 37.2, 44.0, 46.2, 43.6, 35.9, 44.1, 30.8, 25.6, 27.1, 30.0, 27.6, 33.6, 33.3, 30.0, 32.0, 36.3, 27.5, 45.6, 26.5, 37.9, 30.4, 27.0, 45.6, 36.6, 43.3, 40.5, 28.0, 36.6, 32.3, 31.6, 52.9, 25.5, 30.5, 32.9, 26.6, 35.9, 30.5, 23.5, 31.6, 27.4, 26.8, 35.1, 45.5, 43.3, 31.2, 34.2, 39.9, 41.0, 30.4, 33.3, 39.9, 36.5, 31.2, 38.5, 27.6, 32.8, 38.4, 39.2, 48.3, 32.3, 43.3, 32.0, 45.7, 32.9, 34.3, 34.9, 32.0, 35.0, 32.9, 28.9, 25.9, 42.4, 34.6, 35.7, 38.5, 26.4, 42.9, 37.0, 34.1, 35.0, 42.4, 34.3, 30.5, 29.7, 59.4, 33.6, 28.9, 33.6, 37.6, 30.0, 33.7, 35.5, 44.2, 42.3, 28.9, 25.1, 39.0, 36.5, 29.7, 31.6, 30.3, 34.2, 32.9, 36.4, 39.4, 32.4, 34.9, 34.5, 43.6, 33.8, 41.3, 34.3, 42.9, 34.7, 42.1, 28.7, 34.9, 33.3, 46.8, 34.4, 32.0, 36.8, 35.2, 28.4, 40.0, 32.9, 38.2, 36.1, 28.2, 32.4, 27.4, 31.2, 40.9, 29.5, 23.4, 37.8, 28.3, 38.7, 34.2, 42.9, 37.6, 37.9, 33.7, 32.5, 27.5, 30.9, 24.8, 36.0, 49.6, 32.3, 46.1, 42.3, 38.5, 30.4, 29.9, 27.6, 35.0, 35.41, 32.8, 38.0, 41.2, 33.9, 33.8, 35.6, 29.3, 28.4, 28.4, 44.5, 39.5, 42.3, 32.7, 49.3, 36.4, 24.3, 31.2, 43.3, 32.4, 36.5, 36.3, 35.5, 44.0, 30.1]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [29.0, 23.0, 27.24, 27.24, 27.24, 27.24, 38.0, 41.0, 27.24, 15.0, 19.0, 27.24, 26.0, 11.0, 27.24, 31.0, 33.0, 27.24, 25.0, 27.24, 18.0, 27.24, 27.24, 27.0, 27.24, 11.0, 15.0, 21.0, 42.0, 10.0, 60.0, 27.24, 41.0, 27.24, 27.24, 34.0, 27.0, 27.24, 13.0, 27.0, 35.0, 20.0, 30.0, 20.0, 27.24, 33.0, 22.0, 13.0, 27.24, 26.0, 28.0, 29.0, 54.0, 25.0, 19.0, 27.24, 15.0, 40.0, 18.0, 27.0, 28.0, 18.0, 30.0, 27.24, 27.24, 18.0, 27.24, 29.0, 27.24, 28.0, 31.0, 34.0, 27.24, 27.24, 23.0, 15.0, 39.0, 30.0, 27.24, 30.0, 36.0, 31.0, 13.0, 20.0, 26.0, 25.0, 27.24, 29.0, 27.24, 30.0, 26.0, 31.0, 23.0, 37.0, 35.0, 27.24, 17.0, 50.0, 27.24, 42.0, 15.0, 21.0, 19.0, 38.0, 40.0, 34.0, 23.0, 25.0, 27.24, 27.24, 12.0, 23.0, 42.0, 24.0, 27.24, 27.24, 27.24, 18.0, 20.0, 27.24, 27.24, 27.24, 44.0, 20.0, 27.24, 16.0, 27.24, 20.0, 16.0, 32.0, 28.0, 27.0, 22.0, 54.0, 31.0, 30.0, 27.24, 33.0, 15.0, 27.0, 27.24, 39.0, 31.0, 25.0, 27.24, 28.0, 27.24, 24.0, 32.0, 35.0, 27.24, 33.0, 33.0, 19.0, 27.24, 27.24, 14.0, 32.0, 39.0, 22.0, 16.0, 15.0, 32.0, 15.0, 18.0, 42.0, 27.24, 32.0, 27.24, 50.0, 27.24, 52.0, 23.0, 27.24, 10.0, 28.0, 15.0, 26.0, 44.0, 17.0, 43.0, 29.0, 27.24, 31.0, 29.0, 27.24, 41.0, 27.24, 37.0, 14.0, 30.0, 37.0, 10.0, 22.0, 11.0, 39.0, 12.0, 32.0, 21.0, 27.24, 32.0, 19.0, 16.0, 27.24, 18.0, 43.0, 27.24, 13.0, 21.0, 35.0, 27.24, 27.24, 36.0, 19.0, 27.24, 19.0, 27.24, 27.24, 28.0, 12.0, 27.24, 40.0, 27.24, 37.0, 25.0, 28.0, 17.0, 16.0, 23.0, 22.0, 40.0, 43.0, 15.0, 37.0, 39.0, 30.0, 22.0, 8.0, 18.0, 24.0, 13.0, 23.0, 29.0, 14.0, 12.0, 24.0, 34.0, 27.24, 27.24, 25.0, 32.0, 27.24, 39.0, 30.0, 23.0, 22.0, 21.0, 27.24, 41.0, 18.0, 46.0, 22.0, 27.24, 46.0, 27.24, 16.0, 11.0, 27.24, 8.0, 33.0, 27.24, 15.0, 27.24, 23.0, 27.0, 12.0, 45.0, 18.0, 13.0, 32.0, 27.24, 28.0, 27.24, 28.0, 33.0, 22.0, 27.24, 40.0, 30.0, 27.24, 13.0, 10.0, 36.0, 41.0, 40.0, 38.0, 27.0, 27.24, 27.24, 27.0, 17.0, 38.0, 31.0, 37.0, 22.0, 31.0, 41.0, 32.0, 17.0, 27.24, 28.0, 30.0, 38.0, 27.24, 27.24, 27.24, 15.0, 32.0, 19.0, 32.0, 25.0, 39.0, 27.24, 23.0, 23.0, 27.24, 17.0, 27.24, 27.24, 19.0, 27.24, 27.24, 7.0, 32.0, 33.0, 27.24, 27.24, 18.0, 19.0, 15.0, 31.0, 27.24, 18.0, 27.24, 52.0, 27.24, 30.0, 27.24, 27.24, 37.0, 23.0, 29.0, 21.0, 43.0, 31.0, 28.0, 30.0, 27.24, 24.0, 23.0, 33.0, 40.0, 27.24, 40.0, 27.24, 34.0, 19.0, 27.24, 14.0, 30.0, 32.0, 29.0, 27.24, 27.24, 31.0, 17.0, 30.0, 47.0, 20.0, 27.24, 27.0, 17.0, 27.24, 11.0, 27.24, 27.24, 50.0, 22.0, 45.0, 27.24, 19.0, 18.0, 19.0, 27.24, 36.0, 32.0, 25.0, 39.0, 13.0, 21.0, 28.0, 27.24, 27.24, 13.0, 42.0, 20.0, 27.24, 27.0, 27.24, 47.0, 27.24, 27.24, 27.24, 22.0, 40.0, 27.24, 17.0, 27.24, 27.24, 18.0, 12.0, 17.0, 27.24, 27.24, 30.0, 35.0, 25.0, 25.0, 23.0, 40.0, 27.24, 28.0, 35.0, 48.0, 27.24, 27.24, 45.0, 33.0, 30.0, 26.0, 10.0, 23.0, 35.0, 27.24, 27.24, 17.0, 28.0, 39.0, 27.24, 26.0, 27.24, 19.0, 26.0, 27.24, 32.0, 27.24, 27.24, 11.0, 27.24, 27.0, 27.24, 20.0, 36.0, 21.0, 13.0, 27.0, 20.0, 27.24, 18.0, 46.0, 19.0, 36.0, 30.0, 27.24, 40.0, 29.0, 26.0, 27.24, 27.24, 27.0, 27.24, 32.0, 27.0, 23.0, 17.0, 20.0, 18.0, 37.0, 33.0, 41.0, 39.0, 24.0, 41.0, 27.24, 26.0, 27.24, 48.0, 27.0, 23.0, 31.0], \"y\": [26.6, 28.1, 25.6, 35.3, 37.6, 27.1, 43.3, 39.3, 35.4, 23.2, 22.2, 34.1, 36.0, 24.8, 19.9, 27.6, 24.0, 33.2, 34.0, 40.2, 22.7, 27.4, 29.7, 28.0, 30.86, 19.4, 24.2, 24.4, 34.7, 23.0, 46.8, 40.5, 41.5, 30.86, 25.0, 25.4, 29.0, 42.7, 19.6, 28.9, 28.6, 35.1, 32.0, 24.7, 32.6, 37.7, 25.0, 22.4, 30.86, 29.3, 24.6, 32.4, 36.6, 38.5, 26.5, 19.1, 32.0, 46.7, 24.7, 33.9, 31.6, 20.4, 28.7, 26.1, 22.5, 26.6, 39.6, 28.7, 22.4, 29.5, 34.3, 31.2, 34.0, 33.7, 28.2, 23.2, 34.2, 33.6, 26.8, 42.9, 33.3, 38.3, 21.1, 33.8, 30.8, 28.7, 31.2, 36.9, 21.1, 39.5, 32.5, 32.8, 30.86, 32.8, 30.5, 33.7, 27.3, 37.4, 21.9, 40.6, 24.6, 25.2, 29.0, 29.7, 37.2, 44.2, 29.7, 32.5, 29.6, 31.9, 28.4, 28.9, 43.5, 29.7, 31.2, 45.0, 23.2, 34.9, 27.7, 26.8, 27.6, 22.6, 33.1, 24.4, 24.3, 31.0, 40.1, 27.3, 20.4, 37.7, 23.9, 33.2, 27.7, 42.8, 34.2, 30.0, 25.2, 28.8, 23.6, 34.6, 35.7, 36.7, 45.2, 25.4, 35.0, 29.7, 18.4, 29.2, 33.1, 38.2, 31.2, 52.3, 35.4, 30.1, 31.2, 28.0, 24.4, 35.8, 30.1, 28.7, 25.9, 30.9, 32.1, 32.4, 33.6, 40.0, 25.1, 25.2, 23.0, 33.2, 34.2, 40.5, 27.8, 24.9, 25.3, 35.9, 32.4, 26.0, 38.7, 20.8, 36.1, 36.9, 21.9, 35.5, 30.7, 23.6, 35.8, 21.0, 39.7, 24.8, 26.2, 39.4, 29.5, 34.1, 19.3, 38.1, 27.5, 35.7, 25.6, 35.1, 30.8, 23.1, 32.7, 23.6, 23.9, 47.9, 33.8, 25.9, 25.9, 32.0, 34.7, 36.8, 38.5, 28.7, 23.5, 21.8, 42.2, 31.2, 34.4, 27.2, 42.7, 35.3, 29.8, 39.2, 34.9, 34.0, 21.0, 27.5, 30.86, 35.8, 34.9, 36.2, 25.2, 37.2, 43.4, 30.8, 20.0, 25.4, 25.1, 24.3, 22.3, 31.6, 32.0, 23.7, 22.1, 27.7, 24.7, 21.1, 24.2, 31.6, 42.1, 21.9, 35.7, 34.4, 42.4, 26.2, 27.2, 18.2, 45.3, 26.0, 40.6, 30.8, 30.86, 40.6, 22.2, 30.4, 30.0, 25.6, 24.5, 37.4, 29.9, 18.2, 36.8, 32.2, 33.2, 25.3, 36.5, 30.5, 21.2, 39.9, 19.6, 37.8, 26.7, 30.2, 25.9, 20.8, 21.8, 35.3, 27.6, 24.0, 21.8, 27.8, 36.8, 46.1, 41.3, 33.2, 38.8, 29.9, 28.9, 27.3, 23.8, 25.9, 28.0, 35.2, 27.8, 38.2, 40.7, 46.5, 25.6, 26.1, 36.8, 33.5, 32.8, 30.86, 26.6, 26.0, 30.1, 29.3, 25.2, 37.2, 33.3, 37.3, 33.3, 28.6, 30.4, 25.0, 22.1, 24.2, 27.3, 25.6, 37.6, 32.8, 19.6, 25.0, 33.2, 30.86, 31.6, 21.8, 18.2, 26.3, 30.8, 24.6, 29.8, 45.3, 41.3, 29.8, 33.3, 29.6, 21.7, 36.3, 39.5, 32.0, 33.1, 32.8, 28.5, 27.4, 31.9, 27.8, 29.9, 36.9, 25.5, 38.1, 27.8, 46.2, 30.1, 37.6, 26.9, 32.4, 26.1, 38.6, 32.0, 31.3, 32.5, 22.6, 29.5, 34.7, 30.1, 35.5, 24.0, 27.0, 25.0, 26.5, 38.7, 22.5, 24.3, 21.1, 39.4, 28.5, 33.6, 45.3, 27.8, 23.1, 27.1, 23.7, 27.8, 35.8, 19.5, 41.5, 24.0, 30.9, 32.5, 25.8, 28.7, 20.1, 38.4, 24.2, 40.8, 43.5, 30.8, 37.7, 24.7, 32.4, 34.6, 24.7, 34.5, 26.2, 27.5, 25.9, 28.8, 31.6, 19.5, 29.3, 34.3, 28.0, 27.6, 39.4, 26.4, 25.2, 33.8, 34.1, 26.8, 34.2, 21.8, 38.9, 39.0, 27.7, 34.8, 34.0, 30.9, 33.6, 25.4, 35.5, 57.3, 35.6, 35.3, 24.2, 24.2, 44.6, 30.86, 33.2, 23.1, 28.3, 24.1, 24.6, 39.1, 23.5, 25.0, 34.5, 44.5, 35.9, 38.5, 28.4, 39.8, 34.4, 31.2, 29.6, 26.4, 29.5, 23.1, 35.5, 29.3, 38.1, 39.1, 32.8, 39.4, 36.1, 32.4, 22.9, 30.1, 29.0, 23.3, 35.4, 27.4, 32.0, 36.6, 30.8, 28.5, 40.6, 30.0, 46.3, 39.0, 26.0, 32.0, 37.5, 28.4, 22.5, 32.9, 36.8, 26.2, 30.4]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"SKIN_THICKNESS vs BMI\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"SKIN_THICKNESS\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"BMI\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('3ffb7e8c-4d94-4225-803c-c98e112034e0');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat12'] = 0\ndf.loc[(df['bmi'] <= 30) & (df['skin_thickness'] <= 28), 'feat12'] = 1","execution_count":87,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat12',': SKIN THICKNESS <= 28 & BMI <= 30')","execution_count":88,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"2aa803b2-c0a9-44b3-a2da-3ac8c464a266\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"2aa803b2-c0a9-44b3-a2da-3ac8c464a266\")) {                    Plotly.newPlot(                        \"2aa803b2-c0a9-44b3-a2da-3ac8c464a266\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"248\", \"20\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [248, 20]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"285\", \"215\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [285, 215]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat12 : SKIN THICKNESS <= 28 & BMI <= 30\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('2aa803b2-c0a9-44b3-a2da-3ac8c464a266');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat12','SKIN THICKNESS <= 28 & BMI <= 30')","execution_count":89,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"6dbb7967-c84b-4008-b323-1a06f8798188\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"6dbb7967-c84b-4008-b323-1a06f8798188\")) {                    Plotly.newPlot(                        \"6dbb7967-c84b-4008-b323-1a06f8798188\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [248, 20]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [285, 215]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT12 distribution by target: SKIN THICKNESS <= 28 & BMI <= 30\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('6dbb7967-c84b-4008-b323-1a06f8798188');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### FEAT 13: INSULIN vs BMI"},{"metadata":{"trusted":true},"cell_type":"code","source":"plot_features('insulin','bmi')","execution_count":90,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"872e7028-18a7-4b2c-b696-3ef954f227aa\" class=\"plotly-graph-div\" style=\"height:750px; width:1000px;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"872e7028-18a7-4b2c-b696-3ef954f227aa\")) {                    Plotly.newPlot(                        \"872e7028-18a7-4b2c-b696-3ef954f227aa\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"diabetic\", \"type\": \"scatter\", \"x\": [206.85, 206.85, 168.0, 88.0, 543.0, 206.85, 206.85, 846.0, 175.0, 206.85, 230.0, 206.85, 96.0, 206.85, 206.85, 146.0, 115.0, 206.85, 245.0, 206.85, 206.85, 207.0, 240.0, 206.85, 206.85, 300.0, 304.0, 206.85, 206.85, 206.85, 90.0, 206.85, 206.85, 206.85, 110.0, 206.85, 220.0, 206.85, 36.0, 135.0, 495.0, 175.0, 206.85, 206.85, 100.0, 206.85, 99.0, 145.0, 206.85, 168.0, 206.85, 225.0, 206.85, 155.0, 206.85, 206.85, 114.0, 206.85, 156.0, 206.85, 130.0, 130.0, 130.0, 206.85, 206.85, 495.0, 58.0, 114.0, 160.0, 206.85, 206.85, 210.0, 48.0, 99.0, 318.0, 280.0, 206.85, 206.85, 130.0, 175.0, 271.0, 129.0, 206.85, 206.85, 478.0, 206.85, 206.85, 206.85, 370.0, 206.85, 192.0, 206.85, 206.85, 206.85, 176.0, 206.85, 258.0, 206.85, 150.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 220.0, 74.0, 182.0, 194.0, 360.0, 184.0, 206.85, 135.0, 206.85, 132.0, 180.0, 205.0, 96.0, 206.85, 206.85, 206.85, 206.85, 206.85, 29.0, 156.0, 120.0, 206.85, 206.85, 171.0, 206.85, 206.85, 206.85, 167.0, 206.85, 249.0, 325.0, 206.85, 206.85, 140.0, 465.0, 325.0, 206.85, 206.85, 206.85, 285.0, 206.85, 206.85, 206.85, 206.85, 206.85, 88.0, 206.85, 206.85, 206.85, 579.0, 167.0, 474.0, 206.85, 115.0, 210.0, 277.0, 180.0, 180.0, 206.85, 206.85, 206.85, 206.85, 14.0, 64.0, 206.85, 206.85, 237.0, 206.85, 191.0, 328.0, 206.85, 250.0, 122.0, 145.0, 206.85, 90.0, 206.85, 105.0, 165.0, 206.85, 206.85, 155.0, 215.0, 190.0, 206.85, 225.0, 207.0, 206.85, 274.0, 165.0, 206.85, 206.85, 206.85, 600.0, 206.85, 156.0, 206.85, 206.85, 185.0, 206.85, 126.0, 206.85, 293.0, 194.0, 321.0, 144.0, 206.85, 206.85, 206.85, 206.85, 91.0, 206.85, 144.0, 159.0, 130.0, 540.0, 70.0, 206.85, 231.0, 130.0, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 206.85, 180.0, 206.85, 125.0, 480.0, 125.0, 206.85, 206.85, 206.85, 206.85, 160.0, 206.85, 392.0, 185.0, 206.85, 127.0, 79.0, 206.85, 120.0, 206.85, 150.0, 206.85, 206.85, 200.0, 206.85, 206.85, 510.0, 206.85, 110.0, 206.85, 206.85, 206.85, 206.85], \"y\": [33.6, 23.3, 43.1, 31.0, 30.5, 35.41, 38.0, 30.1, 25.8, 30.0, 45.8, 29.6, 34.6, 39.8, 29.0, 36.6, 31.1, 39.4, 31.6, 32.9, 38.2, 37.1, 45.4, 42.0, 39.1, 33.7, 37.7, 32.9, 32.8, 32.5, 32.9, 43.4, 43.2, 48.8, 37.1, 23.8, 49.7, 39.0, 37.4, 33.3, 34.0, 30.5, 31.2, 34.0, 53.2, 33.3, 55.0, 34.5, 27.9, 29.7, 33.3, 34.5, 32.4, 34.3, 47.9, 50.0, 40.9, 31.6, 29.9, 30.8, 35.4, 32.7, 67.1, 39.1, 35.9, 30.1, 32.0, 27.9, 31.6, 30.4, 52.3, 39.4, 22.9, 34.8, 30.9, 37.5, 37.7, 35.5, 42.6, 34.2, 41.8, 35.8, 29.0, 37.8, 34.6, 31.6, 37.2, 44.0, 46.2, 43.6, 35.9, 44.1, 30.8, 25.6, 27.1, 30.0, 27.6, 33.6, 33.3, 30.0, 32.0, 36.3, 27.5, 45.6, 26.5, 37.9, 30.4, 27.0, 45.6, 36.6, 43.3, 40.5, 28.0, 36.6, 32.3, 31.6, 52.9, 25.5, 30.5, 32.9, 26.6, 35.9, 30.5, 23.5, 31.6, 27.4, 26.8, 35.1, 45.5, 43.3, 31.2, 34.2, 39.9, 41.0, 30.4, 33.3, 39.9, 36.5, 31.2, 38.5, 27.6, 32.8, 38.4, 39.2, 48.3, 32.3, 43.3, 32.0, 45.7, 32.9, 34.3, 34.9, 32.0, 35.0, 32.9, 28.9, 25.9, 42.4, 34.6, 35.7, 38.5, 26.4, 42.9, 37.0, 34.1, 35.0, 42.4, 34.3, 30.5, 29.7, 59.4, 33.6, 28.9, 33.6, 37.6, 30.0, 33.7, 35.5, 44.2, 42.3, 28.9, 25.1, 39.0, 36.5, 29.7, 31.6, 30.3, 34.2, 32.9, 36.4, 39.4, 32.4, 34.9, 34.5, 43.6, 33.8, 41.3, 34.3, 42.9, 34.7, 42.1, 28.7, 34.9, 33.3, 46.8, 34.4, 32.0, 36.8, 35.2, 28.4, 40.0, 32.9, 38.2, 36.1, 28.2, 32.4, 27.4, 31.2, 40.9, 29.5, 23.4, 37.8, 28.3, 38.7, 34.2, 42.9, 37.6, 37.9, 33.7, 32.5, 27.5, 30.9, 24.8, 36.0, 49.6, 32.3, 46.1, 42.3, 38.5, 30.4, 29.9, 27.6, 35.0, 35.41, 32.8, 38.0, 41.2, 33.9, 33.8, 35.6, 29.3, 28.4, 28.4, 44.5, 39.5, 42.3, 32.7, 49.3, 36.4, 24.3, 31.2, 43.3, 32.4, 36.5, 36.3, 35.5, 44.0, 30.1]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"width\": 1}}, \"mode\": \"markers\", \"name\": \"healthy\", \"type\": \"scatter\", \"x\": [130.29, 94.0, 130.29, 130.29, 130.29, 130.29, 83.0, 235.0, 130.29, 140.0, 110.0, 130.29, 130.29, 54.0, 130.29, 130.29, 192.0, 130.29, 70.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 82.0, 36.0, 23.0, 342.0, 130.29, 110.0, 130.29, 142.0, 130.29, 130.29, 128.0, 130.29, 130.29, 38.0, 100.0, 140.0, 270.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 71.0, 130.29, 125.0, 130.29, 71.0, 130.29, 130.29, 176.0, 48.0, 64.0, 228.0, 130.29, 76.0, 64.0, 130.29, 130.29, 40.0, 130.29, 152.0, 130.29, 140.0, 18.0, 37.0, 130.29, 130.29, 130.29, 51.0, 130.29, 100.0, 130.29, 135.0, 94.0, 130.29, 49.0, 140.0, 50.0, 92.0, 130.29, 325.0, 130.29, 130.29, 63.0, 284.0, 130.29, 130.29, 119.0, 130.29, 130.29, 204.0, 130.29, 485.0, 94.0, 135.0, 53.0, 130.29, 105.0, 285.0, 130.29, 130.29, 130.29, 130.29, 78.0, 130.29, 48.0, 55.0, 130.29, 130.29, 130.29, 92.0, 23.0, 130.29, 130.29, 130.29, 94.0, 130.29, 130.29, 130.29, 130.29, 130.29, 44.0, 190.0, 130.29, 87.0, 130.29, 130.29, 130.29, 120.0, 130.29, 190.0, 56.0, 32.0, 130.29, 744.0, 53.0, 37.0, 130.29, 45.0, 130.29, 130.29, 88.0, 194.0, 130.29, 680.0, 402.0, 130.29, 130.29, 130.29, 55.0, 130.29, 130.29, 130.29, 375.0, 130.0, 130.29, 130.29, 67.0, 130.29, 130.29, 56.0, 130.29, 45.0, 130.29, 57.0, 116.0, 130.29, 278.0, 122.0, 155.0, 135.0, 545.0, 49.0, 75.0, 40.0, 130.29, 120.0, 215.0, 130.29, 42.0, 130.29, 105.0, 148.0, 130.29, 148.0, 85.0, 94.0, 64.0, 140.0, 231.0, 130.29, 168.0, 130.29, 68.0, 130.29, 52.0, 130.29, 58.0, 255.0, 130.29, 105.0, 73.0, 130.29, 130.29, 130.29, 108.0, 83.0, 130.29, 74.0, 130.29, 130.29, 130.29, 43.0, 130.29, 54.0, 130.29, 130.29, 293.0, 83.0, 130.29, 66.0, 89.0, 66.0, 94.0, 158.0, 84.0, 75.0, 72.0, 82.0, 130.29, 182.0, 59.0, 110.0, 50.0, 81.0, 196.0, 415.0, 87.0, 275.0, 115.0, 130.29, 130.29, 130.29, 165.0, 130.29, 130.29, 176.0, 310.0, 61.0, 130.29, 130.29, 170.0, 76.0, 78.0, 130.29, 130.29, 145.0, 130.29, 85.0, 60.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 50.0, 120.0, 70.0, 92.0, 63.0, 95.0, 210.0, 130.29, 105.0, 130.29, 71.0, 60.0, 56.0, 130.29, 49.0, 130.29, 130.29, 105.0, 36.0, 100.0, 140.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 110.0, 75.0, 130.29, 130.29, 49.0, 125.0, 480.0, 265.0, 130.29, 130.29, 66.0, 130.29, 130.29, 130.29, 130.29, 130.29, 76.0, 193.0, 71.0, 130.29, 79.0, 130.29, 130.29, 170.0, 76.0, 130.29, 210.0, 130.29, 130.29, 86.0, 130.29, 130.29, 326.0, 66.0, 130.0, 130.29, 130.29, 130.29, 82.0, 105.0, 188.0, 130.29, 106.0, 130.29, 65.0, 130.29, 56.0, 130.29, 130.29, 210.0, 56.0, 76.0, 166.0, 67.0, 130.29, 130.29, 106.0, 130.29, 44.0, 115.0, 215.0, 130.29, 130.29, 130.29, 130.29, 77.0, 54.0, 130.29, 88.0, 18.0, 126.0, 126.0, 130.29, 130.29, 44.0, 120.0, 330.0, 63.0, 130.0, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 130.29, 140.0, 115.0, 230.0, 130.29, 25.0, 120.0, 130.29, 130.29, 130.29, 130.29, 41.0, 272.0, 182.0, 158.0, 130.29, 130.29, 130.29, 15.0, 160.0, 130.29, 130.29, 115.0, 130.29, 54.0, 130.29, 130.29, 130.29, 130.29, 90.0, 130.29, 183.0, 130.29, 130.29, 66.0, 46.0, 105.0, 130.29, 130.29, 152.0, 440.0, 130.29, 100.0, 106.0, 77.0, 130.29, 135.0, 90.0, 200.0, 130.29, 130.29, 132.0, 190.0, 100.0, 168.0, 130.29, 49.0, 240.0, 130.29, 130.29, 265.0, 45.0, 105.0, 130.29, 205.0, 130.29, 130.29, 180.0, 130.29, 95.0, 130.29, 130.29, 155.0, 130.29, 200.0, 130.29, 100.0, 130.29, 335.0, 387.0, 22.0, 291.0, 130.29, 130.29, 178.0, 130.29, 200.0, 105.0, 130.29, 130.29, 180.0, 130.29, 130.29, 130.29, 165.0, 130.29, 130.29, 120.0, 130.29, 160.0, 94.0, 116.0, 140.0, 105.0, 57.0, 74.0, 130.29, 130.29, 130.29, 16.0, 130.29, 180.0, 130.29, 112.0, 130.29], \"y\": [26.6, 28.1, 25.6, 35.3, 37.6, 27.1, 43.3, 39.3, 35.4, 23.2, 22.2, 34.1, 36.0, 24.8, 19.9, 27.6, 24.0, 33.2, 34.0, 40.2, 22.7, 27.4, 29.7, 28.0, 30.86, 19.4, 24.2, 24.4, 34.7, 23.0, 46.8, 40.5, 41.5, 30.86, 25.0, 25.4, 29.0, 42.7, 19.6, 28.9, 28.6, 35.1, 32.0, 24.7, 32.6, 37.7, 25.0, 22.4, 30.86, 29.3, 24.6, 32.4, 36.6, 38.5, 26.5, 19.1, 32.0, 46.7, 24.7, 33.9, 31.6, 20.4, 28.7, 26.1, 22.5, 26.6, 39.6, 28.7, 22.4, 29.5, 34.3, 31.2, 34.0, 33.7, 28.2, 23.2, 34.2, 33.6, 26.8, 42.9, 33.3, 38.3, 21.1, 33.8, 30.8, 28.7, 31.2, 36.9, 21.1, 39.5, 32.5, 32.8, 30.86, 32.8, 30.5, 33.7, 27.3, 37.4, 21.9, 40.6, 24.6, 25.2, 29.0, 29.7, 37.2, 44.2, 29.7, 32.5, 29.6, 31.9, 28.4, 28.9, 43.5, 29.7, 31.2, 45.0, 23.2, 34.9, 27.7, 26.8, 27.6, 22.6, 33.1, 24.4, 24.3, 31.0, 40.1, 27.3, 20.4, 37.7, 23.9, 33.2, 27.7, 42.8, 34.2, 30.0, 25.2, 28.8, 23.6, 34.6, 35.7, 36.7, 45.2, 25.4, 35.0, 29.7, 18.4, 29.2, 33.1, 38.2, 31.2, 52.3, 35.4, 30.1, 31.2, 28.0, 24.4, 35.8, 30.1, 28.7, 25.9, 30.9, 32.1, 32.4, 33.6, 40.0, 25.1, 25.2, 23.0, 33.2, 34.2, 40.5, 27.8, 24.9, 25.3, 35.9, 32.4, 26.0, 38.7, 20.8, 36.1, 36.9, 21.9, 35.5, 30.7, 23.6, 35.8, 21.0, 39.7, 24.8, 26.2, 39.4, 29.5, 34.1, 19.3, 38.1, 27.5, 35.7, 25.6, 35.1, 30.8, 23.1, 32.7, 23.6, 23.9, 47.9, 33.8, 25.9, 25.9, 32.0, 34.7, 36.8, 38.5, 28.7, 23.5, 21.8, 42.2, 31.2, 34.4, 27.2, 42.7, 35.3, 29.8, 39.2, 34.9, 34.0, 21.0, 27.5, 30.86, 35.8, 34.9, 36.2, 25.2, 37.2, 43.4, 30.8, 20.0, 25.4, 25.1, 24.3, 22.3, 31.6, 32.0, 23.7, 22.1, 27.7, 24.7, 21.1, 24.2, 31.6, 42.1, 21.9, 35.7, 34.4, 42.4, 26.2, 27.2, 18.2, 45.3, 26.0, 40.6, 30.8, 30.86, 40.6, 22.2, 30.4, 30.0, 25.6, 24.5, 37.4, 29.9, 18.2, 36.8, 32.2, 33.2, 25.3, 36.5, 30.5, 21.2, 39.9, 19.6, 37.8, 26.7, 30.2, 25.9, 20.8, 21.8, 35.3, 27.6, 24.0, 21.8, 27.8, 36.8, 46.1, 41.3, 33.2, 38.8, 29.9, 28.9, 27.3, 23.8, 25.9, 28.0, 35.2, 27.8, 38.2, 40.7, 46.5, 25.6, 26.1, 36.8, 33.5, 32.8, 30.86, 26.6, 26.0, 30.1, 29.3, 25.2, 37.2, 33.3, 37.3, 33.3, 28.6, 30.4, 25.0, 22.1, 24.2, 27.3, 25.6, 37.6, 32.8, 19.6, 25.0, 33.2, 30.86, 31.6, 21.8, 18.2, 26.3, 30.8, 24.6, 29.8, 45.3, 41.3, 29.8, 33.3, 29.6, 21.7, 36.3, 39.5, 32.0, 33.1, 32.8, 28.5, 27.4, 31.9, 27.8, 29.9, 36.9, 25.5, 38.1, 27.8, 46.2, 30.1, 37.6, 26.9, 32.4, 26.1, 38.6, 32.0, 31.3, 32.5, 22.6, 29.5, 34.7, 30.1, 35.5, 24.0, 27.0, 25.0, 26.5, 38.7, 22.5, 24.3, 21.1, 39.4, 28.5, 33.6, 45.3, 27.8, 23.1, 27.1, 23.7, 27.8, 35.8, 19.5, 41.5, 24.0, 30.9, 32.5, 25.8, 28.7, 20.1, 38.4, 24.2, 40.8, 43.5, 30.8, 37.7, 24.7, 32.4, 34.6, 24.7, 34.5, 26.2, 27.5, 25.9, 28.8, 31.6, 19.5, 29.3, 34.3, 28.0, 27.6, 39.4, 26.4, 25.2, 33.8, 34.1, 26.8, 34.2, 21.8, 38.9, 39.0, 27.7, 34.8, 34.0, 30.9, 33.6, 25.4, 35.5, 57.3, 35.6, 35.3, 24.2, 24.2, 44.6, 30.86, 33.2, 23.1, 28.3, 24.1, 24.6, 39.1, 23.5, 25.0, 34.5, 44.5, 35.9, 38.5, 28.4, 39.8, 34.4, 31.2, 29.6, 26.4, 29.5, 23.1, 35.5, 29.3, 38.1, 39.1, 32.8, 39.4, 36.1, 32.4, 22.9, 30.1, 29.0, 23.3, 35.4, 27.4, 32.0, 36.6, 30.8, 28.5, 40.6, 30.0, 46.3, 39.0, 26.0, 32.0, 37.5, 28.4, 22.5, 32.9, 36.8, 26.2, 30.4]}],                        {\"height\": 750, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"INSULIN vs BMI\"}, \"width\": 1000, \"xaxis\": {\"title\": {\"text\": \"INSULIN\"}, \"zeroline\": false}, \"yaxis\": {\"title\": {\"text\": \"BMI\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('872e7028-18a7-4b2c-b696-3ef954f227aa');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"df.loc[:,'feat13'] = 0\ndf.loc[(df['bmi'] <= 40) & (df['insulin'] <= 131), 'feat13'] = 1","execution_count":91,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"barplot('feat13',': BMI <= 40 & INSULIN <= 131')","execution_count":92,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"54f3e377-bb26-47a4-95ef-491e0944e2fd\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"54f3e377-bb26-47a4-95ef-491e0944e2fd\")) {                    Plotly.newPlot(                        \"54f3e377-bb26-47a4-95ef-491e0944e2fd\",                        [{\"marker\": {\"color\": \"#c73062\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"diabetic\", \"opacity\": 0.8, \"text\": [\"237\", \"31\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [0, 1], \"y\": [237, 31]}, {\"marker\": {\"color\": \"#41d9b3\", \"line\": {\"color\": \"#000000\", \"width\": 1}}, \"name\": \"healthy\", \"opacity\": 0.8, \"text\": [\"383\", \"117\"], \"textposition\": \"auto\", \"type\": \"bar\", \"x\": [1, 0], \"y\": [383, 117]}],                        {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"feat13 : BMI <= 40 & INSULIN <= 131\"}, \"yaxis\": {\"title\": {\"text\": \"Count\"}}, \"yaxis2\": {\"anchor\": \"x\", \"overlaying\": \"y\", \"range\": [0, 75], \"showgrid\": false, \"side\": \"right\", \"title\": {\"text\": \"% diabetic\"}, \"zeroline\": false}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('54f3e377-bb26-47a4-95ef-491e0944e2fd');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pieplot('feat13','BMI <= 40 & INSULIN <= 131')","execution_count":93,"outputs":[{"output_type":"display_data","data":{"text/html":"<div>                            <div id=\"59dfc1a8-8542-4dd1-9dae-35884b905243\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>            <script type=\"text/javascript\">                require([\"plotly\"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"59dfc1a8-8542-4dd1-9dae-35884b905243\")) {                    Plotly.newPlot(                        \"59dfc1a8-8542-4dd1-9dae-35884b905243\",                        [{\"domain\": {\"x\": [0.0, 0.48]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [0, 1], \"marker\": {\"colors\": [\"Silver\", \"mediumturquoise\", \"#CF5C36\", \"lightblue\", \"magenta\", \"#FF5D73\", \"#F2D7EE\", \"mediumturquoise\"], \"line\": {\"width\": 1.5}}, \"name\": \"Diabetic\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [237, 31]}, {\"domain\": {\"x\": [0.52, 1]}, \"hole\": 0.5, \"hoverinfo\": \"label+percent+name\", \"labels\": [1, 0], \"marker\": {\"line\": {\"width\": 1.5}}, \"name\": \"Healthy\", \"opacity\": 0.8, \"textfont\": {\"size\": 15}, \"type\": \"pie\", \"values\": [383, 117]}],                        {\"annotations\": [{\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Diabetic : 268\", \"x\": 0.22, \"y\": -0.1}, {\"font\": {\"size\": 13}, \"showarrow\": false, \"text\": \"Healthy : 500\", \"x\": 0.8, \"y\": -0.1}], \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"FEAT13 distribution by target: BMI <= 40 & INSULIN <= 131\"}},                        {\"responsive\": true}                    ).then(function(){\n                            \nvar gd = document.getElementById('59dfc1a8-8542-4dd1-9dae-35884b905243');\nvar x = new MutationObserver(function (mutations, observer) {{\n        var display = window.getComputedStyle(gd).display;\n        if (!display || display === 'none') {{\n            console.log([gd, 'removed!']);\n            Plotly.purge(gd);\n            observer.disconnect();\n        }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n    x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n    x.observe(outputEl, {childList: true});\n}}\n\n                        })                };                });            </script>        </div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"plt.figure(figsize=(18,18))\nsns.heatmap(df.corr(), cbar = True,  square = False, annot=True, cmap= 'YlGnBu')\nplt.title('FEATURE VARIABLE CORRELATIONS')","execution_count":94,"outputs":[{"output_type":"execute_result","execution_count":94,"data":{"text/plain":"Text(0.5, 1.0, 'FEATURE VARIABLE CORRELATIONS')"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 1296x1296 with 2 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAABOwAAAUCCAYAAAC5fGzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3gTR/748bdkWZar3G25dwi9dwIJzWCHmoQSAoFwueQS0kjulyupd1+S48jlm6uBkCOFQALBBkwvAZs0mjHNBmODezfuVbb0+0OWkGzJNmCwv8m8noeHx7uzu7OfnZmVRrM7kvLyci2CIAiCIAiCIAiCIAiCIPQI0u7OgCAIgiAIgiAIgiAIgiAIN4kOO0EQBEEQBEEQBEEQBEHoQUSHnSAIgiAIgiAIgiAIgiD0IKLDThAEQRAEQRAEQRAEQRB6ENFhJwiCIAiCIAiCIAiCIAg9iOiwEwRBEARBEARBEARBEIQeRHTYCYIgCIIgCIIgCIIgCEIPIuvuDAiCIAjCL82IESPaXf/SSy+xcOFCAHbv3s0777zTbnoHBwe+/fZbs+vKysqIjo5GrVYzb948/t//+3+GdevXr2fDhg2dzrdKpWLnzp2GPEVFRfHmm2+aTZuXl8fs2bMN2+iZOx+ZTIaLiwv9+/dnwYIFDBo0qM3+7jQOABqNhlmzZlFYWMiXX35JeHh4u2nnzJlDfn4+W7ZsITQ01LAuNTWVxYsXA/Dcc8+xZMkSi/tpfa0lEgn29vYEBwczdepU5s2bh0zW9uOYfruTJ09a3PeWLVv44IMPANi4cSN9+/Y1m+7MmTM888wzbZbb2Njg5eXFqFGjWLJkCZ6enibr9eVjxYoVPPXUUxbz0d4xWjty5AiOjo4dptO7fPkysbGxnD17luLiYhobG3F2dqZ3795MnDiRadOmIZfL22yXmprK1q1bOXv2LEVFRUilUry9vRk2bBgLFizA39+/zTb6MmtMKpXi6OhIWFgYDz30ENOnT0cikdy17czZtGkTERERAJ2qe5bcjbbAUj03lpiYSGxsLOfPn6e0tBRra2t8fHwYPXo0CxYswN3dvc02xuVpwoQJ/PWvf22TpqGhgfHjx5s9dmNjI9u2bePIkSNkZGRQX1+Pk5MT7u7u9O3bl4kTJzJ69OhOn68gCIIgdAfRYScIgiAI3WTFihVml/fr16/NsvDwcCZMmGA2vY2NjcVjxMXFoVarkUgk7N+/n+effx5bW1sAhg4d2iZ9fn4+e/bsQaVSERUVZbLuVjpaOmJ8PrW1tSQnJ/Ptt99y7NgxVq9ezYMPPtjhdq21FwfQdaLMmjWL9evXs2PHDl599VWLaX/66Sfy8/MZMGCASWcdQGxsLKDrfNuxYwePP/54m86Y1vTXurm5mfz8fI4ePcqFCxc4deoUa9eubXdbS3bs2IFEIkGr1RITE2Oxw06v9TWtqKjgzJkzbN26lcOHD/P555+36bS7VebKjTFznWvmNDU18cEHH7Bt2zakUimDBg1i1KhRKBQKSkpKOHPmDMePH2fbtm18/vnnhu20Wi0fffQRn376KVKplGHDhjFhwgQ0Gg3Jycls27aNmJgYVq1axcMPP2z22A4ODixYsMCQj6ysLOLj4zlz5gwpKSmsWrXqrm1njqura6di1pF73Rao1Wree+894uLikMvljBo1iilTptDY2EhSUhKff/4527Zt46233uKBBx6wuJ/4+HgSExMZMmRIp86zrq6Op59+mpSUFFxdXZk4cSJubm6UlZWRnZ3N7t27yc/PFx12giAIQo8nOuwEQRAEoZt0NGrJWERExC2lB13nxc6dO7GxsWHevHls3ryZAwcOGEb1DB06tM0X9TNnzhi+pN/q8W6FufPZsGED69ev5+9//7vFDrvbiYOxmTNn8sknn7B//35WrlyJQqEwm27Hjh0AbUZA1dXVsX//fjw9PRk2bBh79+7l1KlTHY6abJ3n69evs3TpUhISEm6pM0Lv7NmzXL9+nalTp3Lp0iUOHTrESy+9hIODg8VtzF1TrVbLyy+/zPfff8+OHTvu+Jp3VblZu3YtMTExhISEsHr1akJCQkzWa7Vajh8/zubNm02Wb9y4kY0bN+Ll5cX7779vGJmmd/r0aV577TXWrFmDg4MDkZGRbY7t6OjY5hzOnDnDs88+y9atW1m4cCE+Pj53dbuu1h1twZo1a4iLiyMsLIy//vWv+Pr6mqw/ePAg77zzDr///e/517/+ZbYO+Pv7k52dzf/+7//y2WefddgxDrqRpykpKYwcOZK//e1vWFtbm6yvqanhypUrt3w+giAIgnCviXfYCYIgCMLP1KlTp8jOzuaBBx5g/vz5hhFhPdXcuXMB3aOC5eXld+UYnp6ejB07lqqqKouPz5aUlHD8+HEcHR2ZPHmyybqDBw9SU1NDVFQUs2bNAm6OuLsVwcHBhg6K5OTkW95efx1nzpxJdHQ09fX17N+//5b3I5FIGDVqFMBdi/mtOn/+PDExMTg5OfH3v/+9TWcd6PJ9//338/e//92wLD8/nw0bNmBlZWW2sw5g2LBhvPXWWwC8//771NbWdipPQ4cOJTAwEK1WS0pKSqfP5Xa362r3ui04f/48O3fuxNHRkQ8//LBNZx3A1KlTeeGFF2hubua9995Do9G0SdO7d28mT57M5cuX2bdvX6ePDTBv3rw2nXUA9vb2t9xBLgiCIAjdQXTYCYIgCMLPlL4jKTo6GpVKxbBhw0hOTu6xo0uMR8+Ye69bV9GPKrLUYbF7926am5uZPn16mxF4xjEdPHgw/v7+xMfHc+PGjdvOz62ea2VlJd9++63hnWxRUVFIpVJiYmJu6/j69+T16dPntrbvavoYz5o1q8NHdI0fsY2Li6OpqYkJEyaY7azTGzduHL1796aioqLddx5acrtl826W6Y7c67ZAXxZnzZqFh4eHxXRz5szBzc2NjIwMzp49azbNs88+i1wu59///jf19fUdHlupVAKQlZV1GzkXBEEQhJ5DPBIrCIIgCN1k/fr1bZa5ubkxb968NstTU1PNpgfdY6ITJ040WXbjxg0SEhJQqVQMHz4cgIceeohTp04RGxvLa6+9ducn0MX0X/LDwsIsPtp5q3EwZ8yYMXh7e5OUlERGRgZBQUGGdfpHB0HXmdD62MnJyQwaNMgwaUFUVBQfffQRcXFxLF26tMNj62VmZho6KAYOHNjp7QD27NlDQ0ODoaNO33F38uRJLl68aPYdiKAbgWYcu8rKShITE7l+/TqzZs1i+vTpt5SPzhzDmI+PD9HR0R3uIykpCYCRI0fe0rH12+lHDLZn1KhRXL58maSkpE7lKTExkczMTORyeYfvCrzV7aqqqizGzNHR0TABze3qjrbg3LlzQMfXUCaTMXToUA4ePEhSUpLZd+n5+vry6KOPsmnTJr788kuefPLJdvc5efJk9u3bx7p168jNzWX06NH07t0bb2/v2z8hQRAEQegGosNOEARBELqJuVkZw8PDzXbYXb16latXr5rdT1RUVJuOKv0L5qOiogwj1yZOnIiDgwMHDhzghRdeMLxwvjsYd7zV1dWRkpJCYmIiDg4O7XYg3GoczJFKpcycOdMw+cSLL75oWHfq1Clyc3MZOHBgm8km9B2KDz30kMkx169fz86dO1myZInFd2zpz7W5uZmCggKOHj1KfX09ixcv5r777uswz8b0k00YTwQQHR3NyZMniY2NbbfDzlyZGzhwINOmTcPKyuqW8nErxwAYMmRIpzrHSkpKAG55AozS0lIAvLy8Okyr37f+WMaMO9D0k0ckJCSg1Wp5/vnnzc5qeifbVVdXW4yZSqW64w677mgL9HHtzLXQpzF3LfSWL1/O7t27+eKLL5g1a5bFWAKMHz+eVatWsW7dOmJjYw2jC11dXRkyZAgzZ87sVKeuIAiCIHQ30WEnCIIgCN1E/yhiZ0RFRfHmm292Kq1+lFjrTh2FQsGUKVOIjY01eeF8dzDX8ebk5MRHH31EWFiYxe1uJQ7t0U8+sXfvXp599lnDu670X+7NTTZx4MABbG1tmTRpkmG5l5cXw4cP58SJE+1OPmGuQ+aZZ55h2bJlt5Rv/Yi4IUOG4OfnZ1iu74Bpb/KJIUOG8NFHHxn+Li8v58KFC6xdu5aVK1eyevXqdmfr7IzWx7gTnZlgwJhWq+2SY5jrQJNKpbz55pvMmDHD4r5udzuVSmUY1dnVurstuJVr2F5aBwcHVqxYwdq1a1m/fj2///3v293X/PnzmTVrFidOnODChQtcvXqV8+fPc/jwYQ4fPszs2bM73IcgCIIgdDfxDjtBEARB+Jk5deoUOTk5DB48uM3L3vUjnG5nogQ9/Rdrcy+J19N3nlj6Eh4VFcXJkyc5efIkBw4c4OWXX6ampoZVq1ZRVlZ223nrLP3kE+Xl5Rw7dgyAsrIyEhIScHJyMumUAzhw4AA1NTU8+OCD2NnZmazTj7hr7x1y+nNNSEjgo48+IjAwkHXr1nHo0KFbyrf+vXutR6rpO2Dq6+s7/XJ+Z2dnxo8fzx/+8Aeam5v55z//eUt5uVv0o6cKCwtvaTs3N7dOb1dUVGSyjTGVSmW4XkePHuVvf/sbzs7OvPvuuxbfs3Yn291Nd7stsEQf14KCgg7T6q+XuWthbO7cuQQGBhIXF0daWlqH+1UoFEyYMIHnnnuODz/8kEOHDvHb3/4WqVTKjh07SEhI6MSZCIIgCEL3ER12giAIgvAzo+84SkxMZMSIESb/9O9/SklJue0XzutHb1VWVlpMo59x1NHRscP9ubi4sGDBAp555hny8/P5y1/+clv5ulX6d9TpO8F2796NWq1ud7KJPXv2tInpH//4RwASEhIMj2VaolAoGDJkCB9++CFyuZzVq1e3+yigMeNJEt555502+dDn8VY7YPTvVsvOzqaqquqWtr0bBg0aBOg6m25nuxMnTnSYVj+6Vb+NJfb29owbN461a9fS2NjIm2++2amJD253u652t9sCS/TvZezoWjQ1NZGYmAh0fC1kMhnPP/88zc3NfPjhh7ecJ5lMxsMPP8zUqVOBWxvhLAiCIAjdQTwSKwiCIAg/I/oXzCsUCsMX09by8vI4ffo0MTEx/O53v7vlY4SHhwNw6dIlmpqazM5+qX/pvD5tZyxatIhdu3bx7bffkpSU1OEX+Ds1evRoVCoVp0+fJicnx/BYYuvHA69cuUJKSgqurq6MGzfO7L7S09O5dOkSu3fv7tTkEz4+PixZsoT169ezbt06/vCHP3S4zZ49e2hsbCQiIoLevXubTXPixAnS0tK4cOEC/fv373CfgEkn3e08VtrV5syZw549e4iNjWX+/Pntvq+ssbHRMFNsdHQ0n376KfHx8aSlpVl8tPqHH34gOTkZJycnHnzwwU7lqV+/fkRHRxMXF8fmzZtZvnz5Xd2uK9yLtsCS2bNns2/fPnbt2sWiRYssXsMdO3ZQUlJCUFAQgwcP7nC/48ePZ+jQoZw4cYIff/zxtvJmb28P9IyyLgiCIAjtER12giAIgvAzEhcXR1NTE9OnTzeM/GqtvLycqKgoDh48yAsvvNDmEc+O+Pj4MGTIEBITE/n444955plnTNbn5+fz5ZdfAm0f3WyPTCbjqaee4o9//CP//ve/Lc6c2VX0k0+sW7eOP/3pT2RlZbU72cQjjzxicYbKq1ev8thjj7Fjx452J58wtnDhQrZu3cru3btZvHgxgYGB7abXjwRctWqVxc6Nr7/+mvfff5/Y2NhOd9ht3rwZ0M3O6+Tk1Klt7qYBAwYwd+5cYmJieP7551m9erXJTL5633//PZs2beI///kPoJtNdPny5Xz88cesWrWKtWvXtukwTkxM5I033gDglVdeuaWyv2LFCvbv38+mTZuYN28eSqXyrm53p+5FW2DJ4MGDiY6OZvfu3bz00kusWbMGlUplkubIkSN8+OGHWFlZ8dprryGVdu7BnxdffJGlS5fyj3/8w+z67du3ExERYbb8Z2ZmcuTIEUMeBUEQBKEnEx12giAIgvB/gPGsquYsXboUuVxuGCWmf9zTHGdnZyZOnMihQ4c4ePDgbb1w/o9//CO//vWv2bhxI99//z1DhgxBoVCQl5fH8ePHqaurY8mSJQwZMuSW9jtlyhQ+/fRTkpKS+OGHHxgzZozJ+s7EwcbGptPHmzlzJhs2bDC8Y6x13Gprazl48CBWVlYms8O2Fh4eTr9+/bh48SInT55k5MiRHR7b3t6epUuX8uGHH7Ju3TpWr15tMW1iYiIZGRkdjkSaPn06//znPzl8+DAvv/yyyeQT+fn5JrGrrKzk/PnzXL58GRsbG1599VWz+4yPjyc/P9/suoEDB5qUn9bHaG3u3LntjpjTe+WVV7CysmLbtm0sWLCAwYMHEx4ejkKhoLS0lLNnz5KTk0OfPn1MtluxYgUNDQ18/vnnLFmyhOHDhxMWFoZWqzXMRGxlZcWrr75KZGRkh/kwplKpmD17Ntu2bePzzz9n5cqVXbKd8eyy5kydOrVNh+W5c+d4++23zaYPCgpiyZIl96wtsOS1116jubmZffv28eijjzJq1CiCgoJoaGjg3LlzpKSkYGtry+rVq2+pnejVqxczZsxg9+7dZtf/+OOP/OUvf0GlUjFgwAC8vb1pbGwkOzubn376iaamJh544IE276kUBEEQhJ5GdNgJgiAIwv8B5mZVNbZw4UKSkpLIyckhLCyMfv36tbu/WbNmcejQIWJiYm7rS7qfnx9ffvklmzdv5rvvvmPnzp00Njbi7OzM8OHDmTt3bpvOts6QSCQ8/fTTvPLKK/znP/9h9OjRJqPVOhOHW+mw8/DwYNy4ccTHx5udbOLgwYPU1NQwfvx4PD09293XrFmzuHjxIrGxsZ3qsAOYN28emzdv5siRI1y5coVevXqZTad/L92sWbPa3Z/+Mc99+/axd+9eHn30UcO6/Px8k1lMra2t8fDwYObMmTz++OMWR/h1FPPWHXbmZsTVmzhxYqc67GQyGa+++irR0dHExsZy9uxZUlJSDGWsV69eLFu2rE2nm0Qi4bnnnmPy5Mls27aNxMREzp49i0QiwcvLi0ceeYT58+cTEBDQYR7MWbZsGXFxcWzdupUFCxbg4eFxx9uZm13WWERERJsOu5ycHHJycsymHzJkCL17975nbYElcrmct99+m+joaHbu3Mm5c+f44YcfsLa2xsfHh8cff5yFCxd2qjy09swzz3D48GGz7wVcuXIlgwcP5vTp0yQnJ5OQkIBarcbFxYWRI0cSGRnJ1KlTb3kWYkEQBEG41yTl5eXiBQ6CIAiCIAiCIAiCIAiC0EOIWWIFQRAEQRAEQRAEQRAEoQcRHXaCIAiCIAiCIAiCIAjCL05iYiKrVq0iKiqKESNGWHxHqrG0tDR+/etfM378eKKiotiwYcNdmX1cdNgJgiAIgiAIgiAIgiAIvzh1dXWEhoby8ssvd+o9yNXV1Tz33HO4urry6aefsmrVKjZt2sTmzZu7PG9i0glBEARBEARBEARBEAThF2fs2LGMHTsWgHfeeafD9Pv376ehoYE333wThUJBaGgo169fZ/PmzSxatKhLJzUSI+wEQRAEQRAEQRAEQRAEoQMXLlxg0KBBKBQKw7LRo0dTXFxMXl5elx5LjLAThFvk3f/p7s6CWcu+eqq7s9CuanXP/X2gXtN1v4J0Nbm0507k3ZPzptH23GsKYCfTdHcWLKrswXXVWd5z41ZUb9XdWbDIoQeXN4D65p5bXxVWop27HZqeGzYAZD34/iXruZeVntyS9OR2RPj5+tegQd2dhbuqp37vvV0FFz7qkv3cuHEDT09Pk2Wurq4AlJaW4uvr2yXHATHCThAEQRAEQRAEQRAEQRBui37Cia58HBZEh50gCIIgCIIgCIIgCIIgdMjV1ZUbN26YLCsrKzOs60qiw04QBEEQBEEQBEEQBEEQOtC/f3+SkpJoaGgwLDtx4gQeHh74+Ph06bFEh50gCIIgCIIgCIIgCIJgIJFIf1b/LKmtrSU1NZXU1FQ0Gg0FBQWkpqZSUFAAwL/+9S9+85vfGNJHRkZiY2PDO++8Q3p6OkePHuXzzz/v8hliQXTYCYIgCIIgCIIgCIIgCL9AKSkpLF68mMWLF9PQ0MD69etZvHgx69atA6CkpITc3FxDegcHB/75z39SXFzM0qVLWbNmDYsWLWLRokVdnjcxS6wgCIIgCIIgCIIgCILwizN06FBOnjxpcf2bb77ZZllYWBjr16+/m9kCxAg7QRAEQRAEQRAEQRAEQehRxAg7QRAEQRAEQRAEQRAEwUAixnd1O3EFBEEQBEEQBEEQBEEQBKEHER12giAIgiAIgiAIgiAIgtCDiA47QRAEQRAEQRAEQRAEQehBxDvsBEEQBEEQBEEQBEEQBAOJRIzv6m7iCgiCIAiCIAiCIAiCIAhCDyI67ARBEARBEARBEARBEAShBxEddoIgCIIgCIIgCIIgCILQg4gOO0EQBEEQBEEQBEEQBEHoQcSkE4Jwj40d0ZsXfx3NkP7B+Hi78quX/8OmbxK6/DharZbrO3eTG/8dTTW1OIUE0evxhTj4+rS7XdnlVK5+9Q01uXnIXZwJnD4VvwfuN6wvPHWGzL0HqCssRtPcjJ2XJwFTJ6EaN9qQ5vtXfk996Y02+7ZSKIhYuRKn8HCLx6/NySFjyxaqMzKQ2dvjef/9+EZFIZFIDGkqr1whc9s26vLykDs7o5o2Da8JE8zur+TkSdI3bMC5f396rVxpWJ67bx9liYnUFRYikcmwDw7Be/Zcaq6mUnzoAOqKChQ+Pvg8Mh+H8AiL+a3LzSH3qy3UZlzHys4et/vvx2tGtCG/5WcTKU2Ipy47C61ajULlg+f0GSgHDjLZT/GRw5QmxNN4oxSZvT1OAwehmjMP7GwMaYqOHSP/gC5vtj4+BMyfj2MHscwyiqXH/ffjYxTLxvJysr/5htrMTOqLinAbNYqQZctM9nHj9GnyDxygoagIbXMzNp6eeE+ejPuYMSbptFot2bt2U5BwnObaWhyCgwl9bCF2HZS3iiupXP96G7Ut19I3ciqqiTevZW1uHlm74qjOzKKhpAT/h6IJmPWQyT5y9u6jNPEsdQW6a+kQHISNqxs3kpJoqq3FMTiY4EWLOpGXK2RuvZkXn2nT8J5oWq5Kz5whe+cu6ouLUXh44D97Nm5DBhvWFxw9SmF8Ag2lpQDY+vjgFzUDlwEDDGma6+u5siOG4sQk1NU1KNxc8Z04noBpkw2xvBt111jBT6e4tO4T3Ab2Z9CLz+ri+O0xMvcdoqG8a8oX6OpqtlFd9Z42DU+junp57VqqUlPb7FuhUtH/7bcBOPe739HYEk9jbv37ogwJIqclTsqQIHov6ThONy6nkrpFFyebljj5P2g+Tvk/neLiR5/gPrA/g1961rA8PTaOazv3mKSVOTnRd837AJQcO9ql7Uh16hXyd8TSUFiAprERuasbrmPH4Tl1mmEfpccTKDvxI/V5eWi1Wmz9A/CeOQuHMMvXUK87629rRceOUXjwZjvn92j75bAuV1cOa1rKofv4+1EZlUN1RTnZ276hNiuThpZ2LugJ03buyvtrqbZQDof+6a0eEaeK1FRyDxyiJjOLxvJyQp9YQkPpDQoTjt/zds5Yzp69ZO/YgdcDEwlZtAiAgqPHyDtwgMaWa2jt7EzF+fMEPPwwqqlT2+yjK+77tXl55OzaRW2WLoa+0dH4zZxpcpzK1FTyDhygKjUVTUMDEisrHENDu+QaApScSSRrx824Bc6ZZRK3pvp6snbs5EZiEuqqKuwD/AleMB/H4CBDmsaKStK2x1B2KZmmulqcwsOw8/Ki5MxZ3XUOCSb8sYXYd5Df8iuppH+9TdfOOTvjP30qPkb5zY8/TsGPP1Gbq2svHAL8CZ4zC2V4mCGNVqMhY2ccRT+doKG8AhtnJR4jRxA46yEkVlZotVqydu2mIP64IW+hnczbdaO8+U03jWVNbh6ZO+OoycyivqSEgJnRBLaqD1qNhsyWvDWWV2BlY4NWo0GjVveo+xdA3t695O/bh6ahAQC5mxvBTzyBU69e3Zo3S/dWhUqFprHxnn7WLD5+nJIff6QuLw+0Wuz8/bELCKDs7Nkuy0dn4qZpaiJ//35Kf/iBxvJyFN7e+M+di7JfP7PHzNu7lxFPPcUjjzzCq6++ajFv/5eJSSe6n9Vrr732VndnQhDutbfffpudO3cSGRlpdv1LL73EiRMnmDhxYpt1a/+z+46O3SfCD4WNNZ9vPcb0SUPY/+1Zzidn3tE+AQY/PNTk78y9B8ncd4D7lj5GUFQkVRmZZOzeh++E8UitzffV1xWXcHr1X/EYPID7lj+Ows2V1E1fYe+jwt5HBeg+TCpDgwmMisRv0kSs5HJSN32FY1AAdt5eAHiPGkFA5GRsPT25ceESQdGRlKem4RgWRv6BA7iPHInMzq7N8Zvq6rj07rvY+vgQ9uSTOAQFkbV9O1KZDMfQUADqS0pIXrMGl4EDCVm6FBs3NzI3b8ZWpcLWx/RDYn1xMWkbNmDv749UJsN95EjDurw9e/AYOxbf6GicRo2hOjWVgridVJ4/h2rOPFSz56KurCA/5htcRo7EyrZtfpvr6rj63moUKhUBy1dgFxREfsw3SGTW2LfktzQhHoWvH97To/CYNAWNupHcLV/i0KsXcjc3AMpOniD36y2o5j2Mz9yHsY/oRcnhgzQUFuA6SNexV3rqFJlffIH/vHn4zZmDurKS7G++wc1CLJvr6khuiWXIk09iHxRETkssHVry1lRdTW1ODq7DhqGurETm4IDLYNMvZerKShyCg1FFRuL5wANIbWzI3LIF+8BA7L09Dely9x8gZ98BwpYsxm9GJNWZmWTv2YvXhPFIZebLW31xCRfeW4PboAGELV2CjZsr1zdvwdbHB7uW8lZfWkpjWTmeo0ZSnZWNvb8fyt6mH3Kzd+/Fc+wY/B+KwnPMaAq/+47yixcJXrQQ/4ceoiYjk5y9e/G6//5283LpL2twHTiQ0CeWYuPqRsYWXbmyaylXVenppPz9H6gmPUjQggVIrKRc37wZ5759sHFxAaCxogLnvn3xnTEDr/HjaffeaTkAACAASURBVK6vI+Orr3AZNAi5kxMA1zdvoexSMn2eXErwzOko3NxI3bwVhbsrjv5+d63uGtIWFXNp3Sc4BvghtbbGe9QICk+c5vJnmwh7ZA7es+Z2SflqKCnh8po1OA8cSHBLXc3avBmFUV11HjgQ78mT8Z46Fe+pU/F88EGKv/8ej/HjDV9m3EaOxHvKFLynTiUiajLeo0eQG/8djgF+5P9wgj5LHyM4OpLKjEyuxe3Dr4M4nfqfv+I5eAB9ntTF6UpLnBx8TeNUW1TMxY9uxkk1eoRhXdnlVBoqKhn95zcIjJxCYOQU7MZNQmpjQ9npU+Rs+gLVnLld1o40Vddg4+mJ17RI3CdNxsbdnfzt27CytcMuKBiA4sMHcerbD88Z0bhPmEhjUSH5Md/gPGQYdk72ZuOh1531F6BJq/tCdePUKTI3fYHv3Hn4zp6DuqKS3O26cmgpdikt5TB4ua4c5m7fjtTatJ2ry8nBZegwmlraOedBpu2c88CBeE2ajNeUqXhNmYrHAw9S8v33uI8bj0vvmx2t3Rmn2tw8tE1qPMeOoez8eSRIKP7xJ0IfX4zfjOn3tJ3Tq0q/RnZsLDZubti4ueLSvz8lp05x7Ysv8J87D/85c6hKS6Pi0iVkTk44hoYa7uWGa99F9/2G0lIay8pwHzmS2uxs7Pz82nSI1OXlUXnlCo1lZUikEvweikLT0NAl17AyPZ3kD/+Jz6QHCVkwH4mVFelfbsGlb19D3FI3/JeqtGuELX0c3+mRaBoaufblZjxGj0Jma4tWqyX5b/9LU20tvZYvxW/KJIpPnKL0bBLhSx4jMDqK6oxMsnbvRXV/++1c0ru6/PZ6YgkKN1fSNm/BTuVjuB/kHDyMa7++BETPwPfBCdQVFnNt23Y8hg/F2sEBgKy9+8g99C3hSxYTPGcmDoEBZMTsRKvRoOwVQc4+XX0IX7IY/xmRVGdkkr17L97t5K2+uIRz767BddAAIp7QxTK9JW/6WDYY1Yealvrg3Pq+v3cfeS15cwwJojTpHEgkeIwbh9zVtcfcv4q/+47sr7/GLiAA/0ceQSqXU5ORgevw4Sg8PLo1b8b3Vu+pU3EdOZLihASaamru+WfNgkOHUPbti09UFJ4TJ1Jx8SI3Tp7Ee+pUAhYsuGefSXJiYyn5/nsCH3sMn4ceQmZnx/XPPkPZvz9ypdLkmNXXrpETG0uwry8qlYqxY8e2ydfPwd8+2t/dWehSLz9t/rt/Tya6TIVfpFWrVvHOO+90y7EPHE3izTVfE7v3JBqN9q4cQ6vVkn3oCIEzpuE5bAgOfr70WfEEzfX1FPx00uJ2uUcTsHFW0mvxAux9VPhOGI9qzGgy9x8ypHHt0xuPIYOwV3lj5+lBwNRJOPj5Up6aZkgjd3LERqkk/7sfUI0bjdTaGitbWyKefRZrpZLC+Hizxy89cYLmxkZCly3DztcX16FD8YmMJP/wYbRaXayK4uOxdnYmaOFCbFUqPMePx33MGPIPHTLZl6apibSPP8Z/9mxs3N3bHKv3iy/iMXYsdr6+2Pr6EbDsSTR1dTj06o3b+PtRqFT4LViEzElJqYX8lp08gaaxkYAnlmPr64vzkKF4Touk+PAhQ3595y/AK3I6dsHButFp0TOxDQik8lySYT816enYBYfgOmo0cnd3HHvfh8uo0dRmXDekKTx0CLcxY/AYPx5blYrAhQuxViopaieWmsZGQoxiqYqMpMAoljbu7gQuWID7mDHI7M1/oXfq3RuXwYOxValQeHriPWkSdr6+VF29akij1WrJO3wEv+mRuA8dgr2vL+HLdeWt5ITl8lYQH4/c2ZmQRQux81Hhff94PEaPJu/AQUMax+Aggh99GI+RI7CSy83up+9LL+A1biz2vr7Y+frQVF0DgMzeHjtfX0KXL2vJywmLeSlsyUvwooXYqVR43T8ej9FjyDt4s1zlHz6Cslcv/KKisFOp8IuKQtkrgvzDRwxpXAcNwqV/f2w9PbH19iJgzhykNgqq09MNaarS01GNHonrfb2wdXdHNXYUytBgKtOv39W6C6Bpaubiuk8InTsLW4+b9SLr4GFUY0fjO6Hrype+rga21FWP8eNxGzOGAqO6KrO3x1qpNPyrTktD09CAu9EHX2tHR8N6G2clJecuYmVjQ/mVNIJmTMNruC5OfX/VcZxyjiZg46Kk9+MLcPBR4TdxPKqx5uN04aNPCJtnGidjEisrbJyVhn8yR0cASg4fwnX0mC5tR+wCA3EZPgKFjy827h64jByFY5++1KTdrIeBT/4K9wcexC4gAIW3N76LFiNVKKhMvmgxHtD99ddY4eFDuBu1cwEt5bDYQuxutMQu6Ill2Pr64jJkKN7TIils1c4FdNDOdaYcdnecXAf0J3DuHNyHDUWLhPLkFHynR+I2dOg9b+cAmmprufrJBkKXLjX5Ap1/6BAeY8bgOX48Urmc2txc5C4uaBobzeapq+77DkFBBD7yCO4jRyK1EENlv37UFxTgO2MGEisZNi4uXXYN8w7p4uYfPQM7HxX+0TNQ9oogryVuzY2NlCaeJXDeHJS9e2Hr5UnArIdQeHhScExXvusLi6i6dp3wxQtxCgnG1suLhhs3kMrlaBrV2Pv50utJXX6L2slv/rF4bJyddSPxfFSoJozHa8xoso3ye99TT+I76QEcAwOw8/Ym/PFFWCkUlF28ZEhTmXYNt0EDcB80EIW7O+6DBuI6aABV13T3qtzDR/CbEYn7sCHY+/kS0ZK34g7yJnd2JuwxXSxVE8bjOWY0Oa3qQ8j8h/EcNcLitaxKu4broAG4DRpI8Y8n8B47BtehQ2koKelR96/cnTuROTrS53e/w234cEKWL0fu4kJlSkq358343mqtVFJx4QJIJLiNGnXPP2uGrliB14MPYh8QgK23N5r6eiQt3x3u5WeS0p9+wjsyEucBA1B4eOA5cSLO/fqZpAFd+3dtwwaCly7FqeXHWEG4W0SHnfCL5ODggGPLl6ufo/riEhorKnHr28ewzEouxzkinIq0axa3q0i/hmu/PibLXPv3oSojE01Tc5v0Wq2WG8mXqSkoxLmX6TB1TVMTVRlZuPa9j7zjP+A+ciRWNjYo+/Qx6bwwVn3tGk5hYSYf0JR9+6IuLzc8Ylh97RrKPqZ5VPbpQ01GBpqmJsOynB07sHF3x6PVo5uWNNdUA2AfFmay3LFPH2qumc9v7bV07MPCTfLr2KcvTRXlNJaWWDyWpqEeK6MvOPZhYdRlZxuO03ijlIrz53Ds21+XvqmJmqws8+fdTiwdW8XSqSWW5h6B6AytVktlSgr1hYUmjyU0lJSgrqjEuVV5U0aEU5lmPn+gG53h3Pc+k2Uu/fpSnWm+vHVGQ0kJ6spKAMOXSCu5HKeIcKrSLZf9KjPlyrlvH2oyb5arqmvpKPu2ugZ9+1Jl4RpoNRpKTp5E09Bg+IUXwCksjJKk84bHxsuvplOVlY1b/753ve6mx+xA4eZm8gi7oa7269ryZamu1raqq8aKjx9H2a8fNq6uZtdrtVryjv+A55ABNFZW4tbPNE4uEeGUtxOn8rRrJrEFcO/Xh8pWcUrbvgNbdzd8jOLUWl1xMQkv/j+Ov/IHzv97Aw3FxWiamqjNysSx1Xl3dTtSm5VFzbV07CMsP2arbWpCo1Yjs2t/dF1Pqb+62GXh1Cp2Tve1f89w6OJ2DqDkO105lBuVw54SJ73mujqc+/Q1ycu9bOeufbEJtyFDUd7X27BM09REdWYWzn36oG1uJu3jj/GdMQPnAQPQWqjzXXnf74j+/qDsaxq3rriGVdfapnHu24eqlv1qNRrQaJBaW5ukkcqtqbyqS6M/F32a+hLd/cDKxoaKq2mm+bVQJwAq06/h0iovrn3bL3M324ubn02U4WGUX75CbX4BADV5eZSnXMGlfz/qW+qDS6v64HQbeXPpIG/mOIWHUXH5CtXZOVRlZmHr403l5cs499d9buoJ9y9NUxPqigrsg4JIW7+es6tWcfGdd7B2cmq3Teuue2vxd9+BVmuIofG+7+VnTf1nXolEYvJZ+V5cU01TU5uRthK5nOq0NJNlGZs24TJ0KE69eyMId5vosBN+kd5++21eeuklAOrr63n77beZMGECkZGRbNy4sZtzd+caKnQdFnKl6a8+cicnGlvWWdpO7tR2G22zBnV1tWFZU20dx55+gaO/epZzH/yTXo/Nx32A6fsd1FXVaDUa6m+UUV9cgsf48QBYOzkZOlRaa6yowLrV8a1bOlbVFRWG/9ukcXJCq9HQ1JLH8kuXKD19muDHHrN4rq3lbNkMgH2r9z3JnJxoqqwwu426shJZq7zo/26ycI4lx46iLivDZeTNjgCX4SNQzZ5D+vt/5dxvnibl969h6+OLau483b6qq0GjaXPesnZiaTZOrWLZWU21tZxZuZIzzzxD6j/+QcCCBSYf6PRlqnXZae9aAzRWVpq5lo5om29ey1ulz4tCpTJ59MrayYnGds7bYrkyyou6ohK5Y6v64dj2HGtycjjx3Ep+euY3XNv0Jb1+8wz2fn6G9UELF+AQ4M/3r/yeb1f8hsS/vE/YI3NxHzTgrtbd0ovJFJ08Q++li0zPvaWutt7+TsuXuqKiTf1oXVeN1RcWUpWaamgrzLlxKYW64hJc79N94WsTJ2X7cWqsqDS7Tes4FZ48w32t4mRMGRpM3xVLGbxqJX2WLaaxooK0v75HQ2EhaDRm24WuaEeSX3uV8889w9V3/4zbhIm43z/RYh4Ldu3AysYGpwEDLaaBnlN/9e2czPEOy6HT7bVzevWFhVSnpuI+zrQc9pQ4AdAyYkR/rsZ5uRftXGHCceqLivCfPcsknfG9KmfXLmQODnhNnGio9+Z01X2/M/TnYO3YNm53eg3VFtrgRv0PSAoFjqEh5OzZS0NZGVqNhqIff6Iq/Zrhmtl6e2Pj5sb17TtQV9fQcKNMt++qKpPr2tH9oL38qi3E63rsTqwUNrgNutle+E+fhtfoUZx6/S0SnnqG06+/jdeYUfg8OBF1y/FbH6ejvKnN5E1+G/XBb/o0PEeP4uxbfwKNhutff4P76NF4trzKpifcv/TpKpKTsXF3J+KFF/CaNIma69epLyjo1ry1VpmcbOjY6q7Pmnr6dkQil+My8GZ5vBfXVNm3L4VHjlBXUIBWo6EiOZnyxESTcyk+fpyGoiJ8Z5m2fz9XEonkZ/Xv/yIx6YTwi/fhhx9y8uRJ3nvvPTw9Pfn4449JSkoy+/66nsrO6gbHnn7B8PfAF5+1kFILHbRVbdqyli8GxttZKWwY8fYfaG5o4EbyZVK/2obC3Q3XPm1/aSpJuoBTcCD2/v6m++t0Btoub5PCkEcJ6qoqrn36KWErVlgcet9a7ravqc3M0O1C2up3DK3W3BHbyYvl45QnniFv+zcErviV4f11oHuhfOHe3fgufAy74GAai4rI3fo1hXG7CJht9NLs1rHpglh2hpVCQd/XX0fT0EBlSgqZW7aQuWWLIVZ9nn+uZb+tNuwof4Ck9UZaw4pOKfrpBOlffGn426WfbuRE6OOLTa+llg7Pu214tW1XtMlu23O09fZmwBuv01xbS2liImkbN9L3lVew8/UFoODbb6lIS2fAC7+hOieX6zv3cOXzzVzdso1BL69ssz/DCdxB3W2sqib5k8/o9+vlWFuqF7d6/W6jrupjau5DU/Hx41grlW1+3Qfd4y4ZmzahVatBIkHh4WZ2/50rc+bzBLo4XdzwGf3bixO0+YFCGRrM8VdfpyLxtPkNuqgdCX3lt2gaGqi9do382O3I3dxxHdV2FGDxkcOUHk8g9IWXsbK1BW52lrSuM91Zf83v9M7aOUPy2/xgXtJSDpvr6jj7/M362JPauZs7NrPfu9zO1RUUkBUbS7/fvmrxnW/V2dkU//gj/V9/XX+QdvN0p/d9S0pOnOD6pk2Gv3s9p7+Gt1jG6OQ1NHc9jIQ/uZy0Tz/j9KuvgVSKQ0AAHiOGU52Vrcvv6dOoKyspOZtESeJZw/6UvSJM7mfaTt0PzCcwtzjn0BHy448zYNWLyGxtDcuLT56m8IefuO9XT1JXWkrmzjiy9+wj58Ah+r38goX9aTuseq3zZgjTLVRZfd5CH1tI+pdb8IuaTv7RY7onK8aN61H3L4WnJ/5z5wJgHxBAyfffU3P9ept03ZE34zS2fn7U5eR022dNQ16++w4Av9mzW+5fXZePjuIWMH8+GZ9/zsU332z5rOGB+9ixlHz/PaBr/3JiY+n9quX2TxC6mihpwi9abW0tu3bt4vXXX2f0aN2XnjfeeIPo6OhuztmtqWtWMuLt5Ya/9UO7GysqUbjdHP7eWFnV5hdgYzZKJ8MIH8M2VVVIrKRY2zsYlkmkUuy8dBMOOAb4U5tXQMbufSYddtaODiCVUn41jd5LFhqWq6uq2vwKpidXKtv8IqeuqtLtr2Uba6XS8Iu1cRqJVIrM3p7q9HTUFRWkfPDBzQQtN+QTTz/NgLfewtbb27Aq8+uvKT91mtAXXiJ19Z/bjGhpqqpq84uc4RzN/NrXVNXya3qrbcoTz5C18b8EPLG8zQyxBbt24DxsBG4tIzpsff3QNDaS/cVn+D8UhcxBF8vWsWlqJ5bWnYhlZ0mkUhSeuutt5+9PTU4ODUVF9HpSN8uX1qi8GT9u0d61Bv3og7Z5lFhJkRmVt/a4DhqIY7DupfvZe/ZSdv48AFKZ6WNH6qq2ox+MWSuVbUYFNBnyYt+Sxsls2Wt9jlKZDNuWeDkEBVGTkUHeocOEPbGU5sZGsmJi6f+bX+ExaAAuvSLwGj6U9G92UF9erqs3dH3drUhLo7G8grN//dCwXv9B9btVvwOpxOz530n5slYqzdQPXV21atUZpmlqouTHH/EYNw6JlVWb4zkPHEgvDw9S1qwhdM5DyFvi1GAuTsp2ypyZOKkrW+Lk4ED5VV2cEs3E6fDy3zD6f97AXuVNazKFAhuVjy4mUulda0ds3HUvKbf19aOpqpLC3XFtOuyKjxymYNcOgle+gF1L3TBmXGege+uvMX0713ok4q2Ww6bbbOdAVw5Lf/oR93HjcB48GPvQUGykuuvfU9o5gLNv6d7Bq26Tl7vfzlWlX6Opupqkt27OgolGQ+XVqxQeiweplKqrV1FXVJConzWxZXRd1vbt5B8+zJA1awybdsV93xKXgQNxMIqb/rNR6/rWFdfQWtl2dGNjq+th6+lB/9++QnNDA8119cidlVz+aD0Kd90PEPrrLJPoZpRtbmjg3F/W6maU7XXz8Xd1B/cDuZmRlvp2rnWZyzl0hIzYnfR/6XmcQkzbi2vbtuM3bQqeI4fTVFeP59Ah5Hx7lJLEJMPEFK3rQ2Nl+7E0NwrUUt7ac70lb973jyN9y9c4+PvjPWUK+fv24TFuXI+4f8kcHAz7MiaRySyOOL3X91bQ1Yfyc+cImD+fzK++6rbPmgAFR46Qv38/SCRtJpe4F9fU2tGR8GefRaNW01RdjbWzMzkxMchb3oVdc03X/l1827T9O3v2LDExMcTHxyPvxPtaBeFWiA474RctJycHtVpNf6Nfnezs7AhtNYtZT6fFytCBBrovmHKlEzeSU3AKCQKgWa2mPDWNsEfnWtyPMjSE4rPnTJbduJSCY1AgUpn5G73+eK3fmyGVybBxVtJYUYHXiOHUtyyvTE7GZcgQs/txCAkhKyYGjVpteIdLRXIy1s7O2LSMSHMICaEsKclku4qUFOyDgpDKZNgHBdH/zTdN1ufs2EFTbS1BixaZTECR8dVXlJ46RejLr6JQqbALCKQqJRnnocMMaapSknEebDoDr55dSCj5sdtN8luVkoxM6Yzc7eZxyk+fIuuzjQQsXYbz0Lb70jQ2th3ZJ735O6BUJsM+IIDKlBRch93MW0UHscxuFcvKllgaj+67HVKpFIlEgm1LmdNqtVgrnShPTsYxOEh3Tmo1lVfTCHpknsX9OIaGUNqqvJUnJ+MQ2H55MyZTKJApFFzb8jXlFy7S79VXuPS3D3T7McpL1dU0Ah9uJy8hIdxoVa7Kk1OwDwwy/IrqGBJKRXIyvtOmGdJUJCe3mfWwNa1Ga/iyr21uRtvcbLjeMluF7p+9PVbVNdj7qO5K3XUKDmLkn143WZ8es0s3G+HiBST/93NuXErBa/jN8nmn5cshJITyVjGtTEnBLiiozS/T5UlJNFVX4z5unNnjWSkUVKWmYiW3JmDKg1gpbHRxupSCUh+nRjVlqWlEzLccJ+ewEIoSTeNUeikFp5Y4KUOCGP1n0zilbd+FuraW+x5fYHECiuZGNQ0FBTj06nXX2pHWtFot2ia1ybLiwwcpiNtF8HPP49Dq8X49fZ0x3k931V9jUpkMu4AAKpNTcDGKXWVK++UwpwvbOUM5HDsOK4UCK4UChVVLh10PaOcMJBKsbG27pZ1zHTwIhyDTe2zaxk9ReHnhN2M6aZ9+htTamv5vvGFYf+Uf/6CppgbP++/Hs9VjeV1x37dEfw31tFot1k5OVCQnG5Z11TV0DAmhIjkFv0jjuKXgGNb2/mBlY4OVjQ1NNTWUX0om6GFdm6W/zjKJUX4dHajNyyd0/qOG/FZcTSOknfw6hYZQ0iq/ZWbKXPaBQ2TsjKP/C8+hDA9rvRuajT6b6O9VcicnpFIpdj4qrJVOlJmpD8Ed5K0r2g395yapTIZjYADlyclYuXkYfqDtCfcvqUyGlb09dXl5Jstrs7NN3s3WHXkzVvLDD0hkMtxGjaLkhx+67bNmwaFD5O7aRa/nnyf7m2+6PB+3EjeptbVuspymJsoSEw35cB40iL6tvmNotm7F39+fZcuWYd3qHZWC0BWsXnvttbe6OxOCcK/Fx8dTX1/P8OHDiYmJYcGCBSaz/MTFxeHk5GT2sdi1/9l9R8e2t7PhvnA/vDycWbbwAS5dyaayqha5tYzKqrrb3u/gh29+GZRIJGibNWTs2Y+dtxdajYarX31DY0UF9y1djNRad2O69PFGihOT8Byqm17d1tODjD0HUFdVoXBzpTjxHBm79xGx4GHsfVQAXI/bazLSIP/7n8g+eJjAGZE4BQca8qDVasncd5Dm+gZsPdzRyuTk7tlD1dWrhD7xBDI7O7JiYsjbtw+PltGNCk9PihMSqMnOxtbbm6q0NLK++QbfyEgcWyaDsPH0JH//fpqqqrBxc6MsKYm8vXsJfOQRbH18kMpkWDs5mfwrv3QJNBpUkycbPnxe37yZkh9/JPzpp7FycUXT0IBELqd4/z5kSiVSazmFe/dQk3YV/yVPYGVnR35sDEX79+I6WjeRhY2XJ6XHE6jPycbGy5ua9DTyt3+DZ+R0HEJ1+S07dZKsjf/FZ+48nPoPQNPQgKahAW1zs+HluOryCkrijyJ3c0dqI6cuI5O87dtwCI/AfcQIAKQKBXm7dmGtVCKVy8nbs4fqq1cJbolldkwM+fv24d4SS5uWWNZlZ6NoiWX2N9/gYxRL0H1wVFdWUpaUhESrxValoqmmxvDuj7w9e0xGJZT++COFhw6hmj7dcL0lEglajYbcvfux9fJCq9WQ8fU2GisqCF2y2PBBKPWTjZSeTcJtiK68KTw8yd23H3VVFTaubpSePUfOnn0EzX8Eu5bypmlqoiYnl8aKSkpOnMTayQm5iwvN9Q1YO+h+EU3/cjPFP/xEr2d+jcLNFW1zM3kHD2Hj6oZEIiFj69aWvDxuyMvVT/7LjbNnTfKSt78lL25u3EhKInfvXoIefQQ7Hx8A5M7OZO/ahdTKCmsHB4qOf0fxD98T8vjj2Li4AJC5PQapTIZWq6Xhxg3yDx+m5MRJAubOwdbLC6m1NZVXrlB67jz2Pt6gheKzSWTu3o//lAdQhgbflborlcmQOzmZ/Ltx4RJajZaAqZOQKWy5tiMOuVKJRtY15UthVFflbm6UJyWRv3cv/i111VjWV19h4+GB96RJbdo2fXty/bPP8BzYH68RQw1l7vpuXZzQaEjd8g0NFRX0eeJmnC6u30jRmZtxsvP04PqeA6grq1C4u1KUeI7rcbo4Ofiaj1PJhUug0RI4bZKh/Uj96hskMhlotdQWFHJ501fUFhXh/9jjWLu6Uhi3q0vbkeKjR2iuqgIkNNfUUHHuLIVxu3AdOw7H+3Qv0S46eICCHbEELF2GbUCgoa1Bq0FhY7lTo7vrL0CTVtdDYaVQkB+na+ck1nIK9urKYeBSXTnMjY2hYN8+3PT3DC/TclidlkbO9m9QRUYaYgc32zndlzUtilbtnF7217py6GVUDmXSnhGn5vp6avPyaayopOi773AMDaHkxElkDvZIra3vWTsntbZuc48tOXESGzdXPMeOxcpWQe7uPdj5+WHj5kZRQgLV6elY2dri3KcPVenpXX7f18ewNjdXd586eTOGmoYGwyg8TUMD6spKCo8cQatpxlrpRMHReJqqqwld+vgdXUO5szNZO+OQWlkhc3Ck8Phxir7/gbAlN+8PZRcvUV9YhEQqpTojg9QN/8XayYmQhQsNbUvJ6TO6kUFaLRWpVylOTILmZtwGDwSNhvSWMhex5GY7d3nDRkoSk3DX59fTk+x9N69z6dlzZO3ZR+j8Rwyf5bL3H+B6zA56P/kEjoEBulF/DQ1oNVpDh0dtXj6FP/6EnZc3UpkV5ZevcD1mBx4jhuHary/aZg05e/dj23Kvuvb1NtQVFYQZ5e3Kho2UGuXN1ihvipa8Ze/ZR4iF+lB88iTWjk7YtKoPtXn5FLXkTe7mQvbeA9Rcu4ayXz8qr1zpMfcvrUZDxblzuk46W1uyvvqKutxc3WeoiIgec291HjAA16FDu+2zZv6BA+TGxhKybBn2AQFI5XLy9+1DamuLla3tPftMUn3tGtXXryORyajLyyPjiy9orq0lePlypNbWZts/q3PnUKlUREdH/599R1p7Plh3CN3DxD+Pfy8/ffNHlf8rxAg74RfNz88PmUzGhQsXIbttZgAAIABJREFU8G15v1RdXR3Xrl3Dz+gl8V1pyIAQDm69+cvzG6se4Y1Vj/DFtnieWvVRlx0ncMZUNOpGrmzaQlNNLU6hwQxe9Twy25u/NutnqdSz9XBn0EvPcXXLNnKOJmDjrCTisfl4Drv5i1ZzfQOXP99MQ1k5Urk19t7e9FmxDO9Rw032VXY5FXVFJQHTp5ARt5eGikpsfXzotXKl4VdzdUUF9cXFhm1kdnb0fvFFMrZs4eL//A8yOztUU6bgPWWKIY3C3Z1eK1eSuXUrhfHxyJVKAhcswNXMyLX2FB07BsDlv/3NZLlj3/4U7t1DU2UFCh8fgp973vDrnLqinAaj/FrZ2hHywkvkbtnM1Xf/jJWdPR6Tp+Ax+WZ+SxPiQdNM3ravydv2tWG5fXgEYat0jwt5zYgCCRTs2om6vAyZgwNO/QfiPWu2Ib3b8OE019SQt3cv6ooKbH18iGgVy4ZWsez14otkbtlCckssvadMwcsolgCX/vQnk7/Lz59H7ubGwHffBaC5oYHMzZtpLCtDam2Nwtub4OXLcRsxAuMX9PhGTkPTqCZ9s668OYYE0/flF0xGhTS0Km8KD3f6vLCS619vpeBYAnJnJcEL5+M+9GZ5aywv59w7fzb8XR9fTGF8Ak4REfT/7SoACo7G687l/Q9M9n9t0ya0zc04hATT56UXTUZaNN5om5fez5uWq6AFC3AzKleOYaFEPPUrsnbsIHvXLhQeHoQ/9RSOISGGNOqKCq5+8gnqykqsbG2x9/Plvuefx7nfzVkJw5/6FXk7Yri07r+oa2pRuLkSMuch/CZNBO5e3W2P18hhqGuqTerqnZYvG3d3wleuJHvrVori47FWKgkwU1fri4upvHKF0F/9ymL+qq5c0b3k+ellhmVBM6aiaWzk8hc34zT0lY7jNPjl50jdso3sljj1emw+XsM7FyfDfm+Uc+GjT1BXVSN3dEAZGkL4b3+H3M0NuZsbzdXVXdqOoNGSF7sddWkpSK2w8fBANXsubvdPMCQpOXYUbXMzmRvWm+TVZdRolCueaPd8urP+GnMdPpymmhryjdq5sOdalcMS09hFvPgiWZu3kLL6f7Cys8Nr8hQ8J5u2cyl/Nm3nKlrauf6r3715fsXFVF25QvAKy+WwO+NUnZHJxbU371cVySkAZH69Fa1We0/bufa4Dx9OU3UNuUbXsNfKlaS3TOh1t+776vJyLhrdz4qKiylKSMAxIoI+r7wCQE1mJoXffvv/2bvv8Kiq9IHj30mZ9N57SIWE0DvSexNFqYICKiq2tfe1rKtYd3+WtQIivQqKdKVIEZAeIJSEVNLbpM9MMr8/JkwyyUwIls3ovp/n4XmYO+feeXPOnDN33jn3XEOZ3PrPDs/OnX9zG7pGRRI77x7SN24ifdN32Pv4EDvvXlwaXWZaW1VF2oZvqCkuwcbJEa9u3Qi79RajmWXqklJ9IlilQunmRuCQQSgUCi4vX4mmohLXiHZ0evxR43GuqPk4l/C3h0letYare/TjXNSMqfg0+jzI+nEvutpazn/6hdG+fv360v7u2QBEzZhG6sZNXFq2Ak1ZGUo3NwIG3kTozfplY4LHjKJOo+Hy8ob+0LFJbDUm3oPxf3uYlFVryK6vy8gZU/HuYdwfTrza0B9y8vLJ2bsPt9gYOtX3h8gZ00jbuInL9bHZODigq6uj6OhRi/r8Chw7FnVxMQX791Ny8iQKGxt8hwwhcNy4No8NGj5bI+6+G2i7c828PXvQ1daS/Lnx51fWxo1krl//X2vTOo2GrE2bqMnPx9rODreEBCLmzm12ea4Q/02KkpKS66+0KsRfzKuvvkpJSQn/+te/WLBgAfv37+ell17C29ubhQsXcujQIQYPHszLTaY9A/gn3N8GEV/fnFXz2jqEFpVrLPem1NV1lvuLmNLKcodoS46tTme5bQrgaGN6/RpLoLLgvuqutNx6y6u+8ctA/1ucLfj9BlBda7n99dolsZbIkse5OsutNgBsLPjzy8ZymxVLHkkseRwRf10fd+ly/UJ/YiFdm/+49meWceK9tg7hhskMO/E/79FHH6Wqqoqnn34ae3t7pkyZQlXVr780VQghhBBCCCGEEOK3kISd+J/UeOacg4MDrza+248QQgghhBBCCPE/TKGw3Ksu/ldICwghhBBCCCGEEEIIYUEkYSeEEEIIIYQQQgghhAWRhJ0QQgghhBBCCCGEEBZE1rATQgghhBBCCCGEEAayhl3bkxYQQgghhBBCCCGEEMKCSMJOCCGEEEIIIYQQQggLIgk7IYQQQgghhBBCCCEsiKxhJ4QQQgghhBBCCCEMFDK/q81JCwghhBBCCCGEEEIIYUEkYSeEEEIIIYQQQgghhAWRhJ0QQgghhBBCCCGEEBZE1rATQgghhBBCCCGEEAYKhczvamvSAkIIIYQQQgghhBBCWBBJ2AkhhBBCCCGEEEIIYUEkYSeEEEIIIYQQQgghhAWRNeyEuEFzVs1r6xBMWjzt87YOoUU9P36orUMwS6Wqa+sQzPLxsm7rEP6UvOxq2zqEFtlbcLMe+iq3rUMwy3lYQFuHYNZPU6vbOgSzfsrRtnUILWrnYrn9tcZyQ2Njmn1bh2BWlday5wR421tuw/rYW+45yfkS27YOwSxXW8utN42urSNomZWirSMwr0Jj2WPJX52sYdf2pAWEEEIIIYQQQgghhLAgkrATQgghhBBCCCGEEMKCSMJOCCGEEEIIIYQQQggLImvYCSGEEEIIIYQQQggDWcOu7UkLCCGEEEIIIYQQQghhQSRhJ4QQQgghhBBCCCGEBZGEnRBCCCGEEEIIIYQQFkTWsBNCCCGEEEIIIYQQBgoUbR3C/zyZYSeEEEIIIYQQQgghhAWRhJ0QQgghhBBCCCGEEBZEEnZCCCGEEEIIIYQQQlgQSdgJIYQQQgghhBBCCGFB5KYTQgghhBBCCCGEEMJAoZD5XW1NWkAIIYQQQgghhBBCCAsiCTshhBBCCCGEEEIIISyIJOyEEEIIIYQQQgghhLAgsoadEEIIIYQQQgghhDCQNezaniTsxF/O/fffT2RkJE899dQf+jo6nY4rmzaTtXc/2opKXCPCiZ01HeegwBb3K066yKVV66jIuorSw52wMSMJHjLQ8Hzu0WOkbdlOVW4+dbW1OPr5EjpyGAE39TWUOfDk81QXFhkdN9QBqmpdyVdH/aa/q3+v9vztvvF0S2hHoL8n9z7+CcvW7ftNx7yeW8L8mR4VhKedktSySj48e4XTRSqTZZVWCp7oFEmMmzNhzg6cKSrj0UOJRmU6e7lyX/swQpwdsLe2Iqeqhu/TclmVcvWGY5sSHcBdccF4OyhJLqngnWMpnMg3HVsPXzfuaB9ER28XnG2tySirZnlSFptScg1lvO1teaJ7BO09nAl1ceD7K3n8/eeLrYplQog/k9sF4WWnJLW8kk+SrpBYbDoWgHBnRx6OiyDWzZkyjZbvM3JZlpxhVObmUH8mhgbg52BHXrWaFckZ7Lqab/J4QwK8eb5zLD/nFfHS8fN/mtjy9+wmb+d2NKWl2AcGEjx5Ks7RMWZjq8rKJHPVSipSr2Dj6ITXwIH4jx2PQqEAoOTEcQr27aUqI506jQb7gED8x4zFrXMXk8crOnqYtIVf4pqQQOSDjzR7XqfTkbppM1f37kdbqR9LYmZOx+l6Y8mFi1xetY7KrKso3d0JHTOSoEZjSd7RY6Rv2U5VXsNYEjxyGAH9+5o8XurmrVzZsAkr/97URYw3WeaOIZHcOyYWX3cHLmWV8o8VJ/nlUoHJskFejux7t/lx5ry3j32JOc22d4/2ZsUzg0nJLmPMS9tb/NtNmRITwOxGffXtX1roq35uzDTRVzcmN/TVYSFeTI4OINbTGTtrBSmllXyRmMHezCKTx7wenU7HF//ZwjfrDlCmqiI+IYynX5xKZFRAi/tpNFoWfraNrd8dJT+vFE8vF2bOHsa0mYMB+GbdAbZ8e4SUy9nU6XTEtg/m/ofH06Vb5A3Ftv3rbfy85RCVZVWEtQ/ltkduxz/cfGynfzrFwc0HybqciVatxS/Mj+EzRtKxX0ejcvs27OXgdwcoyi3GydWRjv0SGH/vBOwc7Fod2+ovd7Bj489UlFUSHR/GvKcmERrh36r9z51M4aX5nxAU5ssHKxvOCw78cIpvvv6R7MwCarV1BIR4M2H6QIaO69mq4zaOb93CHfz47c+UqyqJig9j7hOTCGkhvnMnkln5yfdkp+dTU63Gx9+DITf3ZsKMIUbltqzex65vDpKfU4yLmxM9BsQzY/547B1bX3eJ67eQ/MMBNBWVeEaF02POFNxCzI8tVcWlnFi2geLUDMqz8wgb0Is+D9xpVKY04ypn1n1PcWoGFXmFxN82loTbx103lgvffE/q7v1oKirxiAyn013TcA1ueZwrOH+RxBXrKMvKxt7djahxI2k3bKBRmeTtP5L6wz4qC4pQOjvh360T8dNuxcbeHoCUnXtI272fyvxCAFyCA+hx+yhCu3ds9nrXYj2xdgsXdh2gprwKn+gw+t0zFY8Q8/2hsriUw0s2UHglE1V2HlEDezHwoVlGZS7u/pmf/rOs2b53Lf8XNkrbFuuhaXz7V27l1PaDVJdXERATxsj7J+MTZj6+CwdPcWLrfnJTMqnVaPEK8afflJFE904wlMlPy2b/ii3kJGdSmltI/+mjGTBjbItxtFWbFiRdInnLTkpS06kuLqXrvXfScVjv69bb6XVbuPTjAdTllXhHhdNr7hTcW+gPlcWlHFu6gaLUDMqy82g3oBf95xv3h7Sfj5P47U7KcvSfta7+PnQYO5TIQX1ajKdpbJbSV03FdmbdFpLr680rKpwe16m3quJSji/Vx1aWnUf4gF70bVJv6T8f51yjenPx96H92KFEtFBvlvaeCx1o+nxKiN+T9bPPPvtKWwchxO9pwIAB9O7dG6VS+Ycc/4f8bADStuwgbet2Otx1B+HjRlOWmkbq5q0EDRqAla3pXHhVfgG/vPEOPl070WHuLOy9PLm4bBVOgQE4BepPtNSlKtwi2xE2bjTBwwZjrVRycdkqXMJDcfT3A8C/Ty9CRw8ndPQIQkePwL9PLzJ3/4RK649G5/ib/r64mGDs7Wz5es0exgzrxrYfT3D6XNpvOiZA0LheJrcPDfTmqc6RfHY+jS+T0vC0t2V+XDt2ZOVRoa1tVt7Wyoru3u7szykCBSitrNiWmWdUxk1pQ2ZFNSsuZ7IuJZvsyhoejG9HuUZLUml5s2PW1OhMxjYyzJuXekfzwYlUPjqVireDHY93i+D7K3mUa5rHNibcF5VGy8KzGXx1LpMytZbne0WRUV7F5ZJKANztbIlxd2JXRgHeDkpKa7Tsziw0W29Ojvok0SB/bx7rGMnCi2ksvpSGp50t98W2Y9fVPCpN1JOjtTUf9etMWnkVC05f4kJpOffGhqOtq+NcSRkA40P8uTc2nM8vpLLoYhpZFdU8Gh9FalkFmZXVRsfzd7Dj+c6xJKsq0NTp2J3dkKSxxNgcbfRtWvzLUdKXLSXw1kkE3jIJjaqUqxvW4dm7N9YOzftKbVUVFxa8gX1AAOFz78EpPJyrG9ahsLHFOVKfACnYtxf7oGD8x4zDd9gI6jRqMlYuxyU2FqWXl9HxavLzSVv4BQ7BIVjZ2uDZS/+Fwt664T2XvnUH6Vu2E3vXHYTVjyVpm7cSeJ2x5Pgb7+DdtRPt5+jHkkvLV+HYeCxRqXCNaEdo/VhiZafk0rWxxM/P6HilySlc2bAJO09P1HWu6DyaJzTH9Qrhn7N78M66M7y3/gw+bg48N7UzGw+lU16laVbe1dGWOSNjmP3eXt5cfZovt13gy20XuHxVRZ1O16zs4scHciatGGd7W5bvTjb5dysjXExuHxXmzd/7RPN/J1L58KS+rz7R/Tp9Va1lYWIGi89lolJreaFXFBllDX11ckwAl0oq+DIxnWXnr2Jnbc0LvaI4klNCTmVNs2PO7ag1Gds1Xy/axdcLd/L8K9O5656RJJ1LZ9Hn27h1cn+USvO/nz73xEKSzmXy+DOTuHf+WPoPjMfNzZHAIP17bfmSH+l3Uxx33zea26YOICMtjw/e38jwUV1xc3cCIL28rsXYflz9A7tX/8jkv01l+PThZFzMYNeKnfQZ1xcbM+/Bg5sPEtgukOF3jGTgbYPQqrWs/2At0V2i8fDzBODYD8fY8NE6bp43kQnzJhDVOYo963aTl5FHx34NiQIPO9NjMMA3S3ezYelu5j87mUl3DSP5fCbrFu9i5C19sG2h3gDKVZX8429fENUhmKrKGsbc3t/wXElRGTEdQ5l051DGTO6Pnb2SL979hqj2IQSG+hjK1ZoPDYBvl+3m2+W7uffpydxy5zBSkjLZuGQXw242H19ZaQUBwT7cPGsoY6cOxCfAi2UffoeTswORcaEA7N9xnMXvb+COhyZwx0MTiOsayeaVe7mankePAfpEU1Jpy39/0nc7Of/tTnreM50Ot4yiOCWNsxu3EzmsP9Zm2rWmvIKStExC+nSlurQMOxcngnt2NipTUVBEVVEJYTf1pDg1A/ewYPzijMcMbZ3C6PHl73dwafMOusydQcyEUZRcSefit9sIG3KT2Vgq8grY/4938e/Wma53z8TB24szX6/CJSgAlyD9OJd58Ahnvl5N/PTbiJ82Ce8O0SRv/YHy7FwCuuvjri4pxbdTHNE3jyZ88E1oqqr55as1hPXshIO7a7PXPb1pF2c27qT/fdPpfOtIClPSObVhG7HDzddbdVkFRWlZtOvblarSMuxdnAjrZVxvhamZXD2dxNRP/kHChGGGf3bOxp9FTjYtv+kOr9/F4fU/MOrBafSdPIKcS+kcWruDzqP6me2vJ7YewDc8kH5TR9Hz5sFoNRp2fLKGsE4xuPnq+6sqr4iywlLiB/cgNyUT33ZBhCVEGx2noNra8P+2bNOyzGxqNRrCBvYj9+QZ/Lok4BsR3GK9nf12J2e/3Umfe6fT8ZZRFKWkcWbjdqJb6g9lFRSnZxLeu6E/hDbpD1UlKryjwuk4cSTtRw7Cxs6OI4vX4BURimuALwAtj8Bt21cBFIpmmwzOf7uTc9/upNe904mvr7ezG7cTdZ16K0nPJLRRvYWYqDevqHDiJo4kpr7eflm8Bs9G9QagaTSWWNp7zi0shIHeLScL/+w+/PKPnbTx3/bwPQOvX8jCyBzH/3EaTfMvWX92bm5uODk5/aGvodPpyNj5A2FjR+HboxvOwUHE3TOb2upqcn4+Yna/rN37sHN3I3bmNJwCAwgaNICAfn1J27bTUMYzrj0+3brgFOCPo68PoSOH4RwcRMnFy4YySlcX7NzcDP8KTieiw5rKWo/f/Ldt332Sl99ezTdbjlBXd51vKr+DKRGBbM3IY3N6LmnlVfxf4hWKqtXcYuaX4uraOt47k8x36bnkV6lNlrlYWsGPVwtILa8iu6qGnVn5HM0voZNX8xPzlsxqH8R3KblsSM7hiqqKt35JpqBKzeQY07EtPJvBx6fSOJmvIqu8mrWXsvkxo4BhId6GMlcranj7WArfpuRRqm59/7stPJAdWXlszcwlvaKKj89foahGzYRQ07EMDfTBztqKt89cIrW8kv25haxOyeS28IYTi+GBPmzJzGV3dgE5VTXsySlgS0YOU5uc9ForFDzfOZbFF9PIqapu+lIWHVverp149e2H94CB2AcEEDJtBraubhTs3WsytqIjh6lTqwmbPReHoCDcu3XHb9Ro8nftRFefZAqeOg3/0WNwatcOO19fAsbfjGNoGCWnThodS1erJXXhFwRMvBU7b29TL4dOpyNz5w+ENhpLOtSPJbmHzY8lV/fox5KYO/RjSeCgAfj360vG9oaxxKNDw1ji4OtDyIhhODUZSwC0lVWc+3wR7efMwtbJfMJ/7sgYNhxIZfW+FJKzy3h1+QnyS6u5Y2jLM7lKytUUqKoN/zS1zb+6LJjbkw0HUzlx2XzyuiWzOgTxbXIuGy7r++qCX5LJr1Iz5Qb66g8ZBQwPbWint39JYdHZTBILy8kor+azM+mcLypnaIiXyWO2RKfTsXLpbu66ewRDR3QlKjqQl/85i8qKGrZ//4vZ/X4+cJ4jP1/g/z55gN79OhAY5EXHTuF079Xwhev1t2YzZcYgYjuEEN7Oj2f/Pg1HRzsO7T/X6tj2bdjH0GnD6DywMwHtApj+zAxqKms4/uMxs/vd+uAkhk0fTlj7MHyCfBh152iCo0M4c+CMoUzquSuEdQinx4ieePp7Ed01hh4jepKe1LofgXQ6HZtX7WPSnUPpO7QTYZEBPPL36VRV1rBv+4nr7v/RP9cwZFwPYhPCmz3XqUc0vQclEBzuR0CwNxOmDSQ8KoBzJ1NaFdu1+Lau2cfEmUPpPaQTIZEBzH9JH9+Bnebji2gfQr8RXQmJ8Mc30IsBo7vTqXcsSacaXvvimVSi48MYOKYHvgGedOwRzcAx3bl8Nr3VsV3YupsON48kpHdX3EMC6T3/TrTV1aQdOGp2P2cfL7rPnkLEoL7YOZs+l/KKDKPrzEmE9++JTSt+HNXpdCRv+5Ho8aMI7NkN15Agut13F9rqarIOmY8l9cefsPdwo9OdU3EJCiB8yE2E3NSHy1t2GcoUXUrBI7IdITf1xtHHC5/49oTc1Jvi5CuGMgHdO+PXuSPOfr44B/gRN3kitvb25F280uw1dTodZ7/fTadbRtCuT1c8QwMZ+OAsNFU1pOw331ddfL3oO3cyMUP6NEvANeXo4Wr070bodDqOfruXPrcNp33/LviEBTLusZmoq2o4t9d8fx0x7zb6Th5BYEwYHoE+3DR9DP6RIVz8+bShTEBMGEPvvoX4wT2wtWu5Xdu6Tf26dCRuyi0E9uoGrbhkT6fTkbR1Nx0njiSsd1c8QgLpN/9ONFXVXGmpP/h60Wv2FCIH90Vppj8EdIwltGdn3IL8cfH3ocPYIXiEBpGbZPqHJ1OxWUpfNRVb0tbdxE0cSWh9bH3q6y31OvXWY/YUIlqoN/+OsYQ0qrf2Y4fgHhpEvpl6+7O954T4vci77S/m/vvv58033+S9995j2LBhDBs2jA8++IC6Ov0XpIkTJ/L555/zj3/8g6FDh/LSSy8BcPr0ae677z4GDBjAuHHjWLBgAeXlDTORqqqqePnllxk0aBCjR4/mq6++4rHHHuPVV181lJk4cSILFy7kzTffZMiQIYwfP56lS5caxbd8+XJmzJjBwIEDGTduHK+//jplZWWG5zdv3sygQYM4cuQI06ZNY+DAgTzwwANkZWUZHWf//v3MmTOHAQMGMHz4cB5//HFqamoMdfDOO+8Yymo0Gj788EPGjx/PwIEDueuuuzh06JDhea1Wy7vvvsvYsWPp378/48eP56OPPmqxnqvzC1CXqvCKjzNss1YqcY+JpvSy+ZP90uQUPDvGGW3zTIijLDWNOhMzkXQ6HUXnkqjIycU9NrrZ89fKXP3pIBW1nuj+ZF3aRqEgxs2Zo/klRtuP5pfQ0dP0TJpfI9rViXgPF04Wmr9Es1lsVgo6eLpwKNs4tkM5xXT2bv0JtpOtNSp1yzNvrhuLQkGMqzPHCoxjOVZQQry76XqKc3chsUiFuq4hOfJLQQne9nb411+KZmtlZfQ8QE1dHbFuzlg3+rl1TnQouVU17DRxOaolx1an1VKZnoZLnHGfc4mLoyLF9AlhRUoyzlHRWDU6sXWJi0dTWoK60PSlnwC1NdXYOBp/Sbu6cSNKLy+8+vYzu9+1saTxuGCtVOIWG43qemNJfJOxpOP1x5LKnFzcY4zHkgtLluHboxseHdqbfT1bays6hnvwU5NLWX9KzKVbZMsJrP881I8j/3cza54fyugezWdA3DEkEh83ez7+9ryJva/PbF/NLqazT+v7qnMr+qrjr+zPWZmFFBao6N2vg2Gbvb2Srt2jON1CgmjPj6eJ6xjG8iU/Mm7Yi0wa+yrvvrGWShMz/K7RaLSo1VpcXFs327oou5CyIhWx3RvaX2mnJCIhktSzqa06xjU1VdU4NkpWRHSM4OrlLFLP6Y9TnFvM2YOJdOgVZ+YIxnKvFlFcWEaX3g0JSjt7W+K7RJB0puXYtq47QEmhitvnjLju6+h0Ok4fvUhWWj5xXSNaFRtA3tUiSgrL6NQogaq0s6VD5wguXie+xq5cyOTimVQ6dG1Ifrfv1I7US1e5lKhPbhbkFHPsp7N07We+nzZWkVdIdYkK/04N7zkbpRKf9lEUmEhU/ZEq8wuoKVXhm9AQi7VSiXdsNEWXzCc1ii+n4NOxg9E234Q4Sq40jHOeMZGUpmdQVD9eVhYUkXPiNH6dzVzuWldH5qGjaKtr8I1p1+z5srxCqkpUBHVuVG92Svw6RJF7ofXJXHNq1RpWPfASK+97kR1vfkLBlYzr79RIaW4hFcUq2nVteB/Y2ikJiY8kK+nG2lVdVYP9dZKL5lhSm7ZGeX27BjTpD34dosj/HfuDTqcj+0wSpdm5+LVv3RI1ltRXm7oWW9N68+3w+8am0+nIOZOEKjsXXzP19md7z/1VKBRWf6l/f0ayht1f0Pbt2xk3bhwLFy7k0qVLvPHGG3h5eXHHHXcAsHLlSubMmcOSJUvQ6XRcvnyZhx9+mHnz5vHCCy+gUql4//33ef3111mwYAEA//73vzlx4gRvv/023t7eLFq0iJMnTzJ48GCj1165ciXz5s3j66+/5uDBg7z33nt07tyZTp06AWBlZcVjjz1GUFAQOTk5vPvuu7z77rtGiT+1Ws2SJUt46aWXUCqVvPrqqyxYsIAPP/wQgEOHDvHUU09x55138tJLL1FbW8vhw4cNs1+aeu2118jKyuK1117Dz8+PAwcO8MQTT/DVV18RExPD6tWr2bNnD6+//jqBgYHk5eWRltbyr/81pfrEj9LN+Mug0tWVmuISU7sY9vOIM/7QULq6oqsuBVTGAAAgAElEQVStQ1Nejp27G6Cf8bL/8Wep02pQKKyInTUd706mPzSKzp6nOr+Acm3rTuItiZvSFhsrBcU1xjPNimo0dL/Or7utsW54D9yVtlhbKfjqQgbfpjVfN8scDzt9bIXVxrP4Cqs09PZv3VozA4I86eXvzpwdp24o7qbc6v+G4iYz8orVGrqaqSdPO1vym8RerNY/9rBTklNVw7GCYkYH+7E/p5CLqnJiXJ0ZE+yHrZUVbkobfTt4uTM4wJv7D5w09TIWHVtteTnU1WHratxPbVxd0SSZTg5pVSpsPYxnql7bX6tSYeft02yf/D270RQX49m7YS0T1bmzFB87SvsX/m7yda5Rq+rHEtcbG0vUpSpsWzmWHHyiYSyJnjkdr0ZjydW9P1GZl0+He+e0GKeHixIbaysKVMazGAtU1fSP8zW5T2WNljdWneTYpQJq63QM6xLIBw/04akvj7DpkH6WUEywG49MjOe2139odplsa5nrq0XVGrwdWtdXB9b31dnbzffVqTEB+Dkq2Xwlz2wZcwoL9O3s5W2cxPb0ciE/z3w7Z2UWcOp4MkpbG9761z2UlVXy7htryc8v5a1/3WNyn08+2Iyjox0DhySYfL4pVbH+RzMXD+PYXDycKS0obdUxAPZv+onS/FK6j+hh2NZ1SDcqVBV8/PiH6HQ66mrr6DG8B+PvndCqY5bU/8ji3uQHHDdPZ4ryzceWdjmb1V/u4K1Fj2Btbf4EvaK8invGv4ZGrcXK2op5T02ie78OZss3i69+rVW3G4zvmvkTX0NVUk5tbR23zx3JiFsbkvv9RnSlTFXBK/M/Bp2O2to6Bozuzoz5pteXbKq6/jzF3s04Nns3F6qKW9+uv4eaEn0sdk3GOTs3F6paGOeqS1X4xBuf29i56cc5dXk59u5uBPftibq8gv2vvw/o0NXWEdy/N3HTbjXaT5WRxb5X36FOo8Ha3o5hT92LZ1hQs9esqo/VoUm9Obi7UFlkPtbWcAv0ZcD8O/AMC0ZTXc3Z7/ew+cX3ufXd53ALMD2ONlVevzasY5MfxBzdXSgvbH27Hvt+H2WFJXQccmNrNl5jCW16I8y1q72bC5VFv70/qCurWP/A89RqtSisrOg1ZypBXeNbta8l9dWmrtWbqdh+r3rb2Kjees6ZSqCZevuzveeE+L1Iwu4vyMvLiyeffBKFQkF4eDjp6emsXLnSkLDr2rUrd97ZsPDnyy+/zPDhww3PAzz77LPMnDmToqIi7O3t+e6773jllVfo3Vu//tKLL77I+PHNTxr79OnDlClTAJg6dSpr1qzh6NGjhoTd9OnTDWUDAwN5+OGHefLJJ3n55ZexstKfVNfW1vL0008TFhYGwMyZM3nttdeoq6vDysqKhQsXMnToUB544AHDsaKjTc8+y8zMZMeOHWzatAl/f/0C0FOmTOHIkSN88803PPPMM2RnZxMaGkrXrl1RKBT4+/sb4r1m27ZtvPnmmwCo6+ro/LcHzdS+DlpYBwJMrBNx7Utqo+3W9nb0evUFamtqKDqXxMVVa7H39sIzrnlS7ure/bi2CyP93G9bu64tNf2arlCArtnWG/fwgTM42FgT5+HC/R3CyK6qZkem6ZsWmI2tSRgKRfNtpnTxceXN/rG8/UsKiYXN1837NUy9rLlEtanyimtvsvp9liVn4mGn5P/6JKBAQbFazc6sPKZGBFOnA1dbG55KiOaN0xcoNzFr688Sm4nAuG5HbSnYRkqOHyNr/Tra3XOvYf06bXkZaUsWEz73XmyaXJ5fdPhnMlYsM7x6wrWxxMS40NKaMiZ3wfRY0uMV/VhSfC6Jy6sbxpLK7BxS1m+i63NPYmXTutMBk/3BTNnicjULtzfcUOVMajEeLnbMG9OeTYfSUdpY8X/39+HN1afILKho1evfSGzmtjV1ra++ddR8Xx0W4sVj3drxzP4ksivMz267Zuvmo7z56krD43/959rnlXGr6dC1uHiQrk6HQqHg9bdn4+ziAMBTz0/h4fs+prBAhVeT2b4rl+7mm7UH+PjLh3B2djB5zGM//MLaf60xPL7nn/NMhaZv1+u9Ceud2neK7z7/llkv3IVn/fp1AJdPXWbnsh3c9sjthLYPo+BqARs/3sC2JVsZM7v5YvZ7tx3j0wXrDI9feF+flGz+uYnhJjBNadRa3ntxKbMfmYBfYMuzPx0c7Xh/6RNUV9Vw+uglFv/7W3wDPOjU0/RNafZvP8YXbzfE98y79UnTpnXXQnyNvfLJg1RXqbmUmMaK/2zGJ8CTgWP0Cc9zJ5LZsHgXdz85iaj4MHIyC1jy742s/XI7U+4d3exYqfuP8MuXDe+5gU/Pr4/tBsa630nq/iMc/XKV4XGfJ+abDEWnazT2m2Nqp0YKzl/k4qatdJ49DY/IdpTn5pO4bA1JGzbT4baGxLBzgB+D//k8mooqso+eYN/HSxn7yqMUpWVx4LOGehv53AMtvO5vq0u/2Aj8YhtmcPrGRLDxqTc5t3UvfedONrnP2T1H2fbxasPjyX+/rz48Ex22leElHTjJ7kWbmPj0bMP6dddzLY46nf5FLKFNW5Ky/wiHv2ho16HPzL/24k1e+/fpIrb2dox76zm01TXkJF7g2NL1OPt4EpDQ/LzdkvpqU1f2H+Foo3ob9F+otzGN6u340vU4+Xjin9DeEIuOP8d7Tog/iiTs/oI6duxo9EGekJDAZ599ZrjEtUMH41+Pk5KSyMzMZNeuhmv5r33RzszMxN7eHq1WS3x8wy8eDg4OREQ0v2wkKsp4GrO3tzfFxcWGx0ePHmXJkiWkpqZSXl5ObW0tGo2GwsJCfHz0M1eUSqUhWXftGFqtlrKyMtzc3Lhw4YLJZKEpSUlJ6HQ6pk6darRdrVbTo4f+pHj8+PE89NBD3H777fTu3Zt+/frRr18/QwIR9DeyuPb3v3vpLHVa/SVR6lIV9l4NJztqVVmzmTKN2bm5GmbnGfYpK0NhbYWtk7Nhm8LKCkc//a+tLqEhVF7NIXXz1mYJO7VKRf6JU8TOmkbiuV93OVlbKlVr0Nbp8LQzngXjobRtNuvu18iu0n+xTimrxNPOljkxIa1O2BXX6GPzdjCeJeZpb0thdcuxdfFx5aMh8XxyKo21l7J/XfCNlKo11Nbp8FQ2r6cSM+vgFdVompV3r398bTacuq6O9xIv8++zyXgobSmqUTM2xJ8KrZZStYYET1e87JW83aNhRta1oWXbyH7cc+AEOZXVFhnbk0d+IUurBSsrNCrjPqctK2s26+4aG1dXtE3Ka8pUhucaKzl+jNTFiwibPdfoDrFVWVfRlpZy+f/ebyhcP6aqEhOJfOhRvAP144au8Vji2WgsKWt5LFG6uaJuMpZoVK0YS7JzSPteP5aUJqegKS/n6EuvNYRZV4cCBdY5R6nt8xJY6U8TisvUaGvr8HGzN3pNLxd7Ckqbrx1ozqmUQm6/KRwAHzd7YoLceOvunrx1t36Wh5VCgZWVggtf3s7d//qJ/WdzWzia3m/pq13r++p/Tpvvq8NCvPhn/1hePHix1XeIHTgkgY6dwg2P1fWX0RYWqPAPaJjBWVxYjpeX+cv/vX1c8fF1MyTrAMLr7z6ak11slLBbuXQ3n364mf/7dD7xJtZsuya+b0dC2zd8xtZq9LGVFZXh4dsQW3lxebNZd6ac2neKFW8tY8YzdzS7Q+zWxVvoOqQbfcbqZ58GRgSirlaz5r1VjJw1Cmtra6PyvQbEExPfEJumPrbiwjK8/RpiKy0ubzar7ZriAhUZV3L58PXVfPi6PtGhq9Oh0+m4rd9TvPT+PXTpEwvoZ/0H1K8x2i4miMzUXNZ99YPZhF33m+KJahxffbuWNolP1UJ8jfnWJxRDIwMoLSpj3cIdhoTd6s+30m9EV4be3MdQpqZKzecL1nDbnBFY2xjXXVD3TnhFhRse19XXXXWJCievhtiqS8uwd7uxddNuVFD3Tji1azhHNMRSqsKhyTmTnZv5erJ3c6W6xHgWT039OKd01o9z59d9S1CfHoQNvgkA15AgamtqOLlwGbG3jMWq/j1mZWODc/1Y6BERRkVaKmc376b3nNvwbVRvtfVjclWJCmfvhnqrKi3HwcwyD7+WlbUV3pGhqLLNn5dE9UpgbkxDfNr6uqwoVuHq0xBfZWkZTiZuoNFU0oGTbH5/KeMfn2l0h9jruRbH5TL9Z4IltGlLQrp3wttEf6gqVeHUqF2rVb9Pf1BYWeHqr39/eYaHUJqVS+LG7SYTdpbUV5sKblJvtY3a+Y+qN5f6evMID0GVlcvZjdvxT2hviKVSq/8+ZunvOSH+KJKw+x/k4GD8q7tOp2PixIlGs9+u8fHxIT29dQscA9g0maWhUCgMyb/s7Gwef/xxJk6cyLx58wzJtxdffNHo5hdNT+CvJR9bmq1jjk6nn53w1VdfNYvNzk6/Vlb79u3ZtGkThw4d4pdffuHVV18lOjqajz76yJC0c3JyMtzIwlGVj06nQ+nmStG587hGhANQq9FQcvEyUVMmmY3HLTKC/BPGl1wVnT2PS3gYVjbmPwx0Op0hSdhY9v5DWNna4NerJ3zy50vYaXU6LpaW08PHnT3ZDYvN9/BxZ2/2r1t83hwFCmytWr92gbZOx/miMvr4u7MzvWHtsj7+7uzKMB9bN19XPhwcz6en01l+4epvitkQi07HRVU53bzd2Zfb8NrdvN35Kdd0LOdKyrgnNgxbKwWa+puHdPd2p6C6hpwq4xlCtTodBTX6ywmHBHhzOK8YHXCxtJx79xsvnD47OhQXWxs+PJdCTmW1xcZWqa3GysYGx9Awys6fw6N7w2V6ZefP4d61u8nYnCIiufrNeuo0GqxsbQ3lbd3cUXo13JCg+JejpC1ZTNhdc/Dobnwsx/Bw2r/0itG27G83UltZSfC0Gdj5+eHo2DCuKd1cKTp7Htd24fq/WaOh9OJlIq83lhz/dWOJrv6k17tbF3qGhxk9n7Toa0rLXakLGgSKhuNoautITC3mpng/tv6Sadh+U7wf245l0lodQjzIK9En+HJLqhjz4jaj5+8YGsVN8X488OEBMgsqW3VMQ18NMO6rfQPc2ZXecl/9aEh9X00y3VdHhnrzj34xvHTwIrvSza9h2JSTkz1OTg3JTZ1Oh5e3K0cOJRGfoK/zmhoNJ48n88gTt5g9TqeuEezacYLKyhocHfWfWelp+ktyAwIbvrAsX/IDn330Pf/+ZD5durV8ExB7R3vsHY1jc/F05eLxC4S219+hVKPWkJKYzIR5N7d4rJN7TrDi7RXMeHoGnQd2afa8pkaNVZNLUq2sFGZnUDs42ePQpN48vFw4deQi0fV3T1XXaDh3MoW7HjY968HT141/r3jSaNu29Qc5dfgiz7w9G98A8zOK6up0hiRca+Nz93Lh9NGLhru7qms0JJ1K4Y6HbmxWhk6nMyRjANTVGqysjGeFWFkpzJ4L2TrYY+tgHJu9uys5Z87jFal/z9WqNeRfSKbLDPPvud+DrYM9zn4Ns/51Oh12bq7kJ57H49o5k1pD4YXLxE83P855REWQfcx4yYP8xCTc2zWMc7VqNYomn+0KK6sWZ0aDPolbq9WidLBH2aTeHNxdyTqdhE+Uvt60ag25Scn0mvX71ptOp6Mo7Sqe4c0vzb3GztEeuyb91cnDlSsnLxAQ0xBfxtlkhsxpOb7zPx3n+38vZ9zf7qB9/643FOu1OJxLbA1xWFqbNmaqPzi4u5J9+jzejfpDXlIy3e74/fuDTldnSP62Jra26qutju20cWx5Scl0/YPq7dr3nWuxWGmsDLFY8nvur+vPue7bX4kk7P6Czp49a0hUASQmJuLj44Ozs7PJ8rGxsaSkpBASEmLy+eDgYGxsbDh37hxBQfqTiurqalJSUggObvkW6o2dP38ejUbDY489ZkjK7d+//0b+NEO8R48e5ZZbrv9BERMTg06no7Cw0DCjzhQnJyeGDx/O8OHDGT9+PHPnziUjI8Nopl9jCoWCkBHDSN28FUd/fxz9fbny3Vas7e3w79PLUO7sF4sBiK9fHypoyEAyftjDxRVrCBo8gJJLyWTvP0TH++827HPluy24RbTDwcebOq2WgtOJ5Bz6mZg7phnFoNPpyNp3AL9ePbBxMJ718ls4OdoRGa6fwWFlpSAkyJtOcWEUl5STcfX3TaIBrEm5ygtdozlfUk5ikYqJYf542SvZVL/e3Lz2YXRwd+axn88a9glzdjCsZeZgY02Uqz6Zelmlv6xuUngA2ZXVZFRUAdDZ05VpkYFsTG39GnYAS5Oy+GffWBILyziZr2JydAA+Dnasq5+J83CXcDp6uXDfD/q7IvbwdePDIfGsuZjNltQ8vOz1J7Z1OoxmDMZ66ON1srWhTqd/rKnVkaIyn6BYn3qVZzpFc6G0nLPFKsaH+ONlp2Rzuv5vmhsTRns3Z54+qq+nH7PzmRUVwlMJ0axIziTYyZ6pEUEsu9ywwHWQoz0d3F04X1KGs60Nt4UHEu7syNtnLgH6O/KmlhvHVKHVYq1QGG23xNi87PRnWb7DR5C2eCGO4e1wjoyiYN9eNKWleA8cBMDVbzZQkXqF6MeeAMCzVy9yvv+OtCWL8R8zjpq8XHK3b8N/3ATDmFp89AipixcRdNvtOEfHoCnV/3KrsLHBxskJazs7HIKMv4BZOzigq6tttF1/Ga9CoSB4xDDSNm/V383Vz5e0zVuxtrPDr3fDWHKufiyJqx9LAgcPJPOHPVxasYbAwQMovZxMzoFDxN3XMJakfrcF10ZjSeHpRHIP/Uz0DP1YYuvoiG2TG2VY2ymh2hGc/Ghq0Y6LvHtvL05dKeLYpQJmDInE192eFbv1iz0/eXsCndt5Musd/R14J/UPQ1Or41xaMXU6GNYlkJnDInl7rb6/aGt1XMwyniVYqKpBralrtv16lp7P4p/96vtqnorJMfq+em3W3CP1fXXetb7q58ZHQ+JZfTGb76+Y7qujw3x4vX8M7x+7wrG8UkMZTZ3uhm88oVAomD5rCIs/305YOz9Cw31Z9Nk2HByVjBrX8Nn08nNfA/Dqm/plK0aP68nCT7fx2ovLuHf+WMpVlby3YB3DRnbFs35m3tJFu/jPB9/x2oK7CA33paB+vTx7O1ujmXktxTZw0kB2rdiJb4gvPsG+7Fy+AzsHO7oNbUhGr1iwDIAZz84E4MTu4yxfsIyb75tIRKdIVPXruVnbWONUPybH9Yln7/o9hMSEGC6J3frVVuJ6xzf7cc5cbOOnDWTd4l0EhfkSGOrDukW7sHe0Y+CohoTD/72yAoBHX5mBjY01YZHGdwd283DGRmljtH3t4l3ExIfiF+SFRq3l+MHz7N16jHuebP2aRQqFgjFTBrJxiT6+gBAfNnylj6//iIb4Pn5NH9+Df58BwLa1P+ET6EVgqP7KgvMnU9i8Yg8jJjWsYdetfxxbVu0lsn0IUfGh5GQWsOaLbXTrH9dsdp252GLHDOHsxu24BvrjEuDLuW+2YWNnR1j/hnXLfv7PEgD6zL/LsK04VT8Wa6qqQKGgODUDKxsb3IL19Ver1aLK1PetWo2G6hIVxakZ2NjbGWbLNI0lcvRQLm7ahnOAP87+vlzcpD9nCurbEMuxT78CoPv9swEIHzqAKzv3cGbZGsKHDKDoUjLpPx2ix4NzDfv4d+1E8tYfcG8XikdkOypy80la9x1+XToaZsWcXf0N/l064uDpiba6msyDR8k+d4mRz91vMtb4cUM4tWE77kF+uAb4cnL9NmztlUTc1NBX936o76uDHm5YYqbwiv7HC3VVNQqFgsIrmVjZWOMRoq+342u34BsdjmuAL5rKas5u3UNRehb97zW+CqQlCoWCnjcP4uCaHXgF++EZ5MPB1TtQOtgRN6ihv373vv6mbxMenwXAuX3H2Pz+UobMvYWQjlGGtfCsbaxxcNH311qNloIM/ee2VqOhoriM3JRMlPZ2eAQar9/a1m2qra6mIrd+ZqKujqrCIopSM7BzdsLJu3lSXqFQ0H7MEBI3btfflTTAlzMbtmFjb0e7Rv3hwMf6/tD/wYb+UNSoPyisFBTV9wf3+v5w5ptteEeF4+yr/6zNOpFIyk9H6DV7SsuN2Sg2S+mrLdWba329JW7Yhq29HeGNYjtYX2/9HjQdm8KqeWyJjeqtVqvl6olErvx0hB5m6s0S33OlaRnkuAUZll0S4o8gCbu/oIKCAt5//31uv/12Ll++zLJly5g7d67Z8nfeeSdz587lzTffZNKkSTg6OpKamsr+/ft57rnncHR0ZMKECXz00Ue4ubkZbjpRV1fXqjVargkJCaGuro5Vq1YxePBgEhMTWbVq1fV3bGLOnDk88cQTBAcHM2rUKHQ6HYcPH2bSpEnY2xsnrsLCwhg9ejSvvfYajz76KO3bt6e0tJTjx48TFBTEkCFDWL58Od7e3sTExGBjY8P27dtxcnLCz6/5F1ajY48dSZ1GzYVlK9FWVOIa2Y6uTzxilDyrLjS+fMrBx5sujz3EpZVrydy9Dzt3N2LumIpvj26GMrXVNSR9vYKa4hKslLY4+fsTd88c/PsYLwxcnHSRqtw84ue1vFj8jerWKYIdaxoWyv/7E5P5+xOTWbp2L/Oe+PR3fS2AH68W4Gprw53RwXjZKblSVskzh8+RWz/TysvelkAn43Z9u3ccAY1+cV40SD+zY+B3BwCwVsD9ceH4O9hRq9NxtbKaz86nGZKArbUjrQB3pS33dgzF20HJ5ZIKHtqTaFjDysdeSYhzQxw3R/jhYGPNXXHB3BXXkMy+Wl7N2E0Nt5xfPbahvQEGB3s1K9PU3hx9Pc2IDMbTTklqWSUvHDtHXnV9PdnZGtVJpbaWZ46e5eG4CD7u25kyjZZ1V66yLrVhJpG1QsFt4YEEOzlQW6fjZFEpjx4+Y6j71rLk2Dx69ERbXk7ulu/JVJViHxhI5EOPGNab05SWoM5vuBzJ2sGRqEcfI2PlCi68+TrWjk74Dh+B7/CGO00W7NsLdbVkrV1N1tqGtYWco2OIfuKpG4oPIHTMSOrUai7WjyUuEe3o3GQsqSlqPpZ0euwhLq9cS9Ye/VgSPaPJWFJTw8WlDWOJo78/He6eg1+fX7fI+PdHMnB3UvLghDh83Oy5lFXK3f/6iauF+sSpr5s9ob7GPww9OL4DQd5O1NbpSM0p49lFRw03nPg9bU8rwM1O31d96vvqg7sb+qq3g5Jgl+Z9dXZcMLMb9dWs8mrGbtT3w9tj/LG1suKZnpE807Nh1trR3BLu2XnmhmO8c+5waqrVvP3PNZSpKonvFM6Hnz9kNBMvJ9u4nR0d7fj4y4d594213DXtbVxdHRk0tBMPPTbRUGbtqn1otbU8/+Qio33HTezNK/+c1arYhk4dhqZGw/oP11NVVklohzDuW/CA0Uy84rxio30OfneAuto6Nv7nGzb+5xvD9shOkTz4/sMAjJg5EoVCwdavtlCSX4qzmxNxfeIZO3dcq+ICuHXWENQ1Gr54ZwPlZVVEx4fy8gfzjGa65efe+M0Aqitr+Oyt9RTml6C0syUozJdHX57OgFHdrr9zIzfP1Me36L0NVJRVERUXyvP/Mo6voEl8dXU6Vv5nM/nZxVhZW+EX5MX0B8Yx/NaGG9dMmj0chQLWfLGNwrwSXNyd6N4/nqn3jWl1bO0njECr1nBs8WrUFZV4RYYz+PmHjGbQVBQUN9tv+3MLjB5fPX4GR29Pbv7wHwBUFZcalSnP3U/yD/vx6RDNsL//zWQsUeNGUqvWcHrJKjSVlXhEtKPf0w8bxVLV5JzJydebPk8+SOLydaT+8BP27m4kzJpCYM+GNoqZqK+PpPXfUVVUgtLFGf+uCXSY3DA7tKZExbFPvqKmVIWNgz2uoUGMev4BgruYvltxp4nDqVWrOfjlGtQVlfhEhTPqxYeMZuKVFzS/PH7j08b1ln4sEWcfT6b+R7/sgLqiiv2fraSqpAyloz1e7YIZ9+rf8IkONxmHOb1vG45GrWHHp2upLq8kMCaMqa/NN5qJp8o3btcTW/X99YcvNvDDFxsM20M6RnHHm48AUFZUyuJH3zY8dzK7gJPbDhiVaawt27TkSjoH3viX4XHShs0kbdhMxMDe9J/fkERtLP7mEdSqNRxZtJqaikq8o8IZ1or+8P2zxu2aeewMTt6eTPpI3x801TUcXriKysISrJW2uAX60X/+XbTrb36iQFOW1Feb6nCzPraji/SxeUeFM6RJbJUmYtvapN6y6uttYn29aatrOLJwFVX19eYa6Eff+XcR3kK9WeJ7zmncOF5++eUW61CI30JRUlIikz3/Qu6//37CwsKwsbFh69atKBQKJkyYwMMPP4y1tTUTJ05k8uTJzJw502i/c+fO8emnn3LmzBlqa2sJCgpi8ODB3HeffnHbyspK3nrrLXbv3o2joyPTp0/n8OHDhIaG8uyzzwKYPPb9999PZGQkTz2l/xK7evVqvv76a1QqFQkJCdx666288MILbNy4kcDAQDZv3sw777zD3r17Dcc4duwYDzzwADt27MDd3R2Affv28eWXX5KcnIyjoyOdOnXijTfewM7OrtlrarVaFi1axJYtW8jLy8PV1ZX4+HjuueceOnTowMaNG1m/fj0ZGRkoFApiYmJ48MEHm9144prnzh7/nVrr97V42udtHUKLen78UFuHYJZKVdfWIZjl4yVT0X8NL7sbvBHFf5m70nLj2/nljd2Y5b/JeVjA9Qu1kZ+mtn4tv/+2n3JubEbgf1s7F8vtDzWWGxob036/2fW/tyqtZX92edtbbsP62FvuOcn5ktbdebstuNpabr1pLPzbtlXb3+/CrAqNZY8lL8SaXmLlryK274LrF/oTuXDo2bYO4YZJwu4vpmmy6o+iVqu5+eabmTVrltHdZf8XSMLu15GE3a8jCbtfRxJ2v54k7H4dSdj9epKw+3UkYffrScLu15GE3a8jCR1QP3AAACAASURBVLtfTxJ2bat9v7evX+hPJOng020dwg2TS2JFq1y4cIErV64QHx9PZWUlX3/9NZWVlQwfPrytQxNCCCGEEEIIIYT4S5GEnWi1FStWkJ6ejrW1NTExMXz22WfXXedNCCGEEEIIIYQQQtwYSdj9xXz66e9/UwDQ35n166+//kOOLYQQQgghhBBCCCEaSMJOCCGEEEIIIYQQQhgoFJa9huD/AmkBIYQQQgghhBBCCCEsiCTshBBCCCGEEEIIIYSwIJKwE0IIIYQQQgghhBDCgsgadkIIIYQQQgghhBDCQCHzu9qctIAQQgghhBBCCCGEEBZEEnZCCCGEEEIIIYQQQlgQSdgJIYQQQgghhBBCCGFBZA07IYQQQgghhBBCCGGgUMj8rrYmLSCEEEIIIYQQQgghhAWRhJ0QQgghhBBCCCGEEBZEEnZCCCGEEEIIIYQQQlgQWcNOiBtUrrHMPHfPjx9q6xBadPTBj9o6BLOi/zm/rUMwKyevrq1DMKvicH5bh2BWTm+ftg6hRe7utm0dglk2/f3bOgSzyg5Z7ntuc1/Htg6hBQqUlvnRBUCpWtHWIZgV5Vrb1iGY9URCW0dgnrXCuq1DaJECyx2D08pL2zoEs6wst6sS5Gi5fRUgxs1y4zuYa7n9oY+vpq1DaJnlnqb/LhQKC+70/yMs+PRNCCGEEEL8VpacrBNCiL86S07WCSEsm5zCCSGEEEIIIYQQQghhQSRhJ4QQQgghhBBCCCGEBZE17IQQQgghhBBCCCGEgUIh87vamrSAEEIIIYQQQgghhBAWRBJ2QgghhBBCCCGEEEJYEEnYCSGEEEIIIYQQQghhQSRhJ4QQQgghhBBCCCGEBZGbTgghhBBCCCGEEEIIA4XM72pz0gJCCCGEEEIIIYQQQlgQSdgJIYQQQgghhBBCCGFBJGEnhBBCCCGEEEIIIYQFkTXshBBCCCGEEEIIIYSBQiHzu9qatIAQQgghhBBCCCGEEBZEEnZCCCGEEEIIIYQQQlgQSdgJIYQQQgghhBBCCGFBZA07IYQQQgghhBBCCGEga9i1PUnYCdFK69atY+nSpeTk5+MQGEjY1Km4RkebLV+ZmUnqypWUp6Zi4+SE78CBBI0bh0KhMJRRXbhA2tq1VF29itLdnYBRo/AbNMjk8QqOHCH5yy9xT0gg9uGHDduztm6l+PhxKnNywcYG29BIXMbehk1AsNH+t4T5Mz0qCE87JalllXx49gqni1QmX0tppeCJTpHEuDkT5uzAmaIyHj2UaFSms5cr97UPI8TZAXtrK3Kqavg+LZdVKVevW5e/Vv9e7fnbfePpltCOQH9P7n38E5at2/eHvR7A1JgAZscH4+2gJLmkgrd/SeF4nul66+HnxqwOQXT0csFZaU1GWTXLzmexMTnXUGZYiBeTYwJo7+mMnbWClNJKvjiTwZ7MohuPLTaA2XHB+DjqY3vraMux3RlnHNvS81lsvJxrsnxXX1cWjezEldJKJn13/IZjM2XmgAjuHR6Nr5s9F7NVvL7uNEeTC02WDfJ05Kd/jG62ffbHB9h3znTMN8KS6+6WcH+mRwbjZa/vqx8kprTYV5/sFEWMe0NffeTgGbPHTvB05YN+CaSXV3LXnhM3HNuMDgHc3SkEHwcll0oqeONQMsdyTcfWK8CN2R2DSPBxwUVpQ7qqiiWJWay/2FBvbw6MYVKMf7N9KzW1dF1y4Ibja8qS3nM6nY69y7dxbNtBqsurCIoNY+z82/ENCzC7z/kDp/hlywFykjPRarT4hPgzYNoIYvskmCx/Zs8xNrz9NdE945jx6n03FNuPy7ZxdOtBqsqrCIkNY8KDt+MXbj62s/tPcWTLAa4mZ6JVa/EN9WfwtBF06NsQ2/Edh1n//opm+77y7bvYKm1bHdvGxdvZ++3PVJRVEhEXxp2P30ZQu+bvm2uSTlxm3edbyE7PQ12txsvfk0HjezNm+hCT5X/edZxPX11G575xPPb2Pa2Kq3F8iz7dybfrD1OmqiQuIZTHn7uViCjz8R0/mswj93zabPvyjU8R1u7/2bvPsKiuhQ3DD3Xo0nuvCigae+9YE42xlxhjTIyJRo0mJhpLosZojMZeosbee+8Ve8FeKQqI9F4HmO/HIDAwA4MxR8751n1d/phh783r2mUxa1axBuDQ3mvMnLytzDYnr85EIlG/7FYuOcTuHUGkpWbiV9OV7yb1xsPTvtz9pNI8Vi0/wuH9V4mLTcHcwpiBn7Sl70B5+e3eEcShfVcIfRZNgUyGT3VHho/sSu33PNXK9Trb8iX72bX9PGmpmfjXcmPCpP4VZ8vN46/lBzm4/zJxsSlYWBgzaEgg/Qa2BWDf7otMnfR3mf0u3VxcqXJbvmQfO7efK8r2w6QBeHg6VJht5fIDhdmSsbAwYdCQQPoPbFe0TXp6FosX7ObEsRukJGdga2vG16N7ENixvlrZXufb8tcxju2R3xNefi58Mb4Hzu6qr7mSHgSHMmnEUhxdrFmweXzR+0Enb7Nr3SmiI+PJzyvAzsmSD/q1oE2XymU7v+kwwUflzzl7bxc6fNkLq3Kec48u3ubW4Qu8CokkX5qHpZMtTfoE4t2w+Fly68hF7p66SvyLV8hkMmzcHWg5sAtOfh6VynZo7VGCDl4iMy0L1xrO9B71EfZuqrM9vf2MvSsPEhsZS262FHMbM5p0bkS7PsXPkpdh0Rxce4SIp5EkRCfS+eMOdPmkbF1SUbb1K45xcNcV0tMyqe7vzMjve+Dqod45vXcrjG+/WIqzqxUrtxWf0zxpPpvXnOT4gRvEx6Xg5GLFZ6O6UL9J9UplO1NYd2WlZ+Ho40KXCuquB4V1V3SJuqtF3/ZUL1F33Tp+hT3zytYPk/aoXz+8zrdhxTEO7S4sOz9nvqpM2QWHMf6LpTi5WLGiRNkB7N58ngM7LhL7KgmTaoY0bunH0JFd0DeQqJ1PEP4p0WAn/McNHz4cDw8Pxo8fX/HGVcTx48eZO3cu33//PQckEmLOnOHxggXUmjoViYVFme3zsrJ4NH8+xl5e+P/4I9mvXhHy999o6epiFxgIQHZ8PI8XLsSqaVM8hw4l7dkzwjduRMfICPO6dRWOlx0Xx4sdOzBW0kCY9vgxNq1akWLpgQzIOLqbpBW/YzF+OpoGRgC0sbdklL8bf9wN5W5iKt1dbZnd0JePz9wkNiu3zDE1NTTIzZexKyyaRjZmGGmXfVRk5eWzIyya0NQMcvIL8Dc3YVwtD7LzC9jz/NWbFHOFjAz1ePA4gk07z/HXvBH/yu8oqYOLJd/Vd2fmlRBuxqbQx8eeJW386b7vBq8yc8psX9vKhKfJGay5H0lcVi5N7c2Y3MiL3PwCDoXHAfLGn6uvklkUHE5Kbh5d3KyZ19KXocfvqGwwUprN1ZLv67szozBbXx97lrb1p9u+G7zKUJEtKYPV9yKJz8qlib0ZU15nC4tT2NZEV5uZTb258ioZa33dSpaacl3ec+CnXrWYvCWY6yEJDGzhzuqvmtLhl+O8TMpSud/gRRd4GJVS9Dolo+z1WllVueza2Fvyjb87f9wJ4U5iKh+62jGnkR+DTt8kNqtsNk0NDXIKCtgZ9pLG1uYY6aiu1o10tJhUx5ub8clY6lU+Wyd3K35s7MG0oGfciEmhfw17VnasSZcd14lWUm51rE14kpjJX3ciic3MpbmjGT838yYnv4ADIfJym3EphLnXwhT22/x+ba69SilzvMqqStccQNCOk1zafZpuY/pj6WjN2U1HWT9xCV+vmIjEQE/pPuF3n+EW4EWbj7ugb2zAndPX2Tp9FYNnjcTFX/GDalJ0PMdX7cW5Eh9gXzu//SQXdp3mo2/7Y+VozamNR1nz4xLG/KU6W9jdZ7gHeNFucBcMjA0IPnWdjb+s4rPZI3EtkU1Hosu3a35S2LcyH8YObTrF0S1nGfpjX+ycrdn79zHmjFnGr5smoK8im56BhHYfNcfJww5diQ5P74bx9+870NXTpe2HTRW2jX2ZwNYl+/EOcFc7U0kb15xhy7pzTPylN84u1qxZcZwxw1eyee94DAyV53tt/a5xmFTTL3ptamak+P/Q02HrwQkK76nb6ASwbvVxNq49yZQZg3B2tWHVskN8PWwROw5MxrCcbBPHryHmVRI/TumHk4s1iQmp5GRLi35+49oT2nd8j4A6Hkj0dNm87hQjv1jMxh0/4OxirVa2tauOsuHv40yb8QkubrasXHqALz+bx+6Dv5Sb7YfxK4l5lcSkqYNwdrEmoVQ2AD19XfYdnqHwXmXK7e9VR1j/9zGmzfgUVzdbVizdz/DP/mDPwRnlZpswfgUxrxL5aeognF1sCrMVPz+k0jxGDJuHsYkBs+cOx8bWjJhXSejqVu7j2O71p9m76SyjfuqLg4sVW1cdZ8rI5SzZ9j36FVxz6amZ/DltM7XqeZIYp/g3h3E1A3p92g5HF2u0tLW4fuEBi2Zsw8TUiHpNa6iV7fLOE1zdc5quowdg7mDNhS1H2PzTYr5YNknls+TF3We41PKm5cCu6BkbcP/MdXbO+IsBM0fhXPgseXH3Kb7N38PR1w0diS5X95xhy+SlDF3wHeYO6l1zx7ec4uT2Mwz6vh82TtYcWneURd8tY/LaH9BTkU2iL6FVj+bYu9mhq6dL6L0wNs/bjq6eDi26NQNAmiPFwsac2s1rsX/1IbWylLZ17Wl2bDjH+Kl9cHSxYsPK43w/YgVrdn1X4XMkLTWT36Zspk59TxLiFOvONUsPc+LgTcZO6omzmw3XLz1m6ri/+XP1SDyrl98A/dqFHSe5uPs0H47pj0Vh3bVu4hJGVrLu2jJ9FUNK1V06El2+WfXm9QPAtrWn2bnxHN9O6YOTixUb/jrOD1+tYNVO9cpuTmHZxccqlt2pIzdZteAAoyf1xr+OG6+iEvjjl23k5uQxdnLvSmUUhH9C9HEUBDVs2rSJrl270r17d/Tt7HDt1w+datWIOXtW6fYJV66Qn5uLx5AhGDg4YF63LvYdOxJ94gQymQyA2LNn0TE1xbVfP/Tt7LBu3hzLJk2IPn5c4VgFeXk8W7kSp+7dkVhalvld1UePxqppU7TtHNGxc8Sk3zAK0tOQhj0r2qa3uz2HI2I58CKG5+lZ/HkvjMTsXLqr+HYsO7+AuXdD2P8ihjglDXoAT1IyOPUynvD0LKKzcjgeFce1uGRqWZioVaZv4ujpYKbM3sruQ1cpKJD9a7/ntY99HdgXEsPOZ68IS81i1rUQ4rJy6e2jvNz+uhfBouDnBMelEpWezbYn0Zx8EU875+Lz9tv1UFbfj+ReQjoRadksu/OCB4nptHYq2/BbbrYaDuwNiWHn01eEpWTx61V5tj7eqrMtLMwWqSLba9Mae7E3JJbbceo3IFZkaFsvdl5+ztaL4YTEpDFt+23iUrIZ0Lz8D8nJGbnEp+YU/ZPm//PzXpXLro+HA4cjYtlfeK/OvxdKQnYuH7oq/6Y4O7+AuXdC2P88htjsso1mJU2o7cXhiBjuJaW9UbYh/g7sfhLD9sevCE3OYvqlEOIyc+lXQ3m5Lb8dwfwb4dyMSSUyLZvND6M5Hh5PoGtxuaVL84nPkhb9czbRx9lEn+2P/nmjf1W65mQyGVf2nKVpr3b4NquNtas93b8dQG5WDnfP3FC5X6fhH9Gsd3scfFwwt7ei1YBO2Hk68ejSHYXt8vPy2fnbOtoM7oqZXeWeJTKZjKDdZ2nRux3+zWpj42pPz3EDyMnK4fZp1dm6fvkRLfu0x8nHBQt7K9oO7IS9pxMPLipm09AAY3MThX+VyXZs2zk6D2xD/VYBOLrbMWxiP7Izc7h8XHXvVVcfJxq1q4ODmy1W9hY06VCPmg18eHI7VGG7vLx8lk1dz0fDOmNVyXJ7nW/7xvMM/LQ1rdrVwt3Llkm/9CUzI4djhyruwWpmboSFpUnRPy0txT/LNTQ0FH5uYVm5stu8/jSDhwbSpn0dPL3smTLjYzIzsjl68JrK/S4HPeTq5Uf8uXQEDZvUwN7BAv9abtRt4F20zfTfhtC7fyt8ajjh6mbDhMl9MTCQcOnCA7WzbVp/gk8+60jbwLp4ejkwbeYQMjOyOXzwisr9LgXd5+rlhyxYNpJGTXyxd7CkZi136jXwUdhOAw0sraop/FPX62xDPutEu8JsP8/8VO1sC5d9Q6MmfiWyFfdk2rc7iMTEVOYv/Jo6db2wd7CkTl0v/Gq6VSrf/i3n+OjjNjRpUwsXDzu+mdyPrMwczh2t+JpbNGMbrbvUw6ema5mf1arnRaOWNXF0tcHO0ZL3+7bA1dOOh8GhZQ+kItvVvWdp3LMd1ZvKn3PvjxlIblYO98+qfpYEfvERTXq1x77wOde8fydsPZx4crn4WdJt/GDqvd8CWw8nLBxt6PhVb3T1JYTcfKh2ttM7zxLYry11WgRg72bHxxP6k52Zw7WTqp8lzt5O1GvzHvZudljaWdCgfT1q1PPh2Z3iMnGp7kyPL7tRv21ddCWV/zJMJpOxe9N5+nzSmuZta+Hmacd30+Tn9NSRis/p3J+3Edi1Hr61XMr87MTBm/QZ3JqGzX2xc7Tg/V5NaNC0Bjs2KP/8oizb5T1naVZYd9m42vPht/L64U45dVfn4R/RvHd7HAvrh9YD5PXDw0tvr354nW/P5vP0HiwvO1dPO8ZPlZfdaTXKbt4v22jfpR41apYtuwe3w6le04V2Xepia29O7fpetOtSj0f3nlcqoyD8U6LBThAqIJVKefToEQ0bNlR4v5qvL+khIUr3SQ8NxcTTE03d4oq7mp8f0uRkchISirap5utb5pgZ4eEU5OUVvRe5Zw8SS0usmjRRK68sJxtkMjQMDADQ1tDAu5oR1+KSFba7FpeMv7mxWsdUh5eJIX5mxgQnvL1GnndJW1ODGubGXHypWG6XopOobaX+HxRGOlqk5uaVu42hGtuUzuZrYcyl0tleVi6bst/bx8cOS31dVtx9ofZxKqKjpYG/kynnH8YqvH/+YQzvuZuXu+/SYY24Oqsz28a2pFOd8odKqaMql93re/VqbJLC+9fikvA3+2cN4d1dbTGX6LLuScQb7a+jqYGfpTFBUYrZgqKSqGPz9u6HXj62PEnM4FYlepsqU5WuOYDkVwmkJ6Xi8V5xw4KORBcXfw8iH4aVs2dZuVk56BsZKLx3au0BTG3Mqd2uQaWzJRVm8yqVzdXfgxdvIZs0V8qcj6fy28DJrJu8nJfPItU+Xlx0IimJafjXL86mK9HFO8CdZ/fC1T7O8yeRPL0Xjk9txd6HO1ccwtLOnGad1B/yV9LLqEQS4tNo0Li4MUuip0Ptum7cu13xh7rP+v9Jt7Y/882w5dy8+qzMz3NypHzUcQYftp/Od1+v5snDKLWzRUUmkBCfSsMmxT2j9PR0qVPXkzvBqs/rmVO38fV3YePak3RpO5Eenafy+8xtZGZmq9xHKs0jNzcPYxMDldsoZosnPj6Vxk38FLK9V8+LO7dUNw6dORmMr78rG9aeoGOb7+jWaRKzZ24hM0MxW05OLp3bTaBjm+8YNWIhjx6q/0yWZ0tRks2b27fKnqPXTp+8VZjtOB3ajOeDTj/y28xNCtlOn7pF7Tqe/DZzE+1ajKXH+z+xbPFepFL16/+Yl4kkJaRRu6HiNedX251Hd8PL3ffQjiCSElLpNaR9hb9HJpNx+9oTop7H4VtHvd6nyTEJZCSl4lanuJFSR6KLk58HUW/wLNEzUn095eflkSfNK/O8USUhOoHUxDRq1FN8lnjWcifsvvrZIp5GEno/HK+AyvdkVuVVVCKJCWnUa6R4TmvWcePB7fBy9923LYikhDT6D22n9OdSaR66EsUenBKJDvfKeQaU9Lp+8FRSd0VU8pzmqKgf/hg8lbmDJrNxynKiQ9SvH6C47OoqK7s74eXuu397EIkJafRTUXb+td0IefySh3flz/LYV0lcPnufBmr2Nv1foYHm/9S//0ZiSKzw1mVlZTFr1izOnDmDvr4+ffv25fbt25iamjJlypQy23fr1o1evXoxcODAovdKD5uVSqWsXLmSI0eOkJCQgJWVFf369aNPnz4A3Lx5k4ULF/L06VOMjIwIDAxk5MiR6OjoFP180aJFhISEoKmpiaurK5MmTcLDQ17h3rlzh8WLF/PgwQNMTExo3rw5X3/9NUZGRiQnJ5Ofn4+5ueKHPB0TE1IfKv9mLzclBYmZmeL2xvLGMWlKCnqWlkhTUjCpofjQ1zExQVZQQF56OrqmpiTfv0/C9evU/Emxu3h50vZsQtveGR0X+Vwy1XR10NbUIClHcchIYo6Uum/wTWBpO9rVw1RXBy1NDf5+HMG+f2k47H+amURebonZij0ME7KkNLJVr7t+CwdzGtiZMvjIbZXb9PG2w8ZAlwOhsSq3UZUtoVTvx4RsKQ311c/W0M6Ujw8XZ/MyNeDLWs4MOBzM2+zAaGYkQVtLk/g0xQ9V8Wk5NDVRPlwhMyePGbvucCMkgfwCGW1r2rHg04aMW3edvdferNEJqnbZqbpXk3KkmFtVbohISe7GBgzxcWb4+dsUvOExzPTk2eKzFLMlZOXSxN5UrWO0cjKnkYMp/fYrvx+MdLTo6GbFvOuV+xCgNG8VuuYA0gt7NRqZKn5JYmhqTFqC+sN/r+4/T2p8MrXaFDcwhdx8xP1zt/hi0XdvlC3tdTYzxWxGZsakxquf7fK+86TEJ1O7bXE2S0dreozpj627PblZOVzcc5YV387n6yXfYanGMLaUwi+AqpX6cqmauTFJcRVnG9NjGmnJ6eTnF9D9k0DadC/+4uve1cdcPRXMz2u+Vfe/WEZivLzszCwUh7KamRuXGV5VkqWVMeMm9qC6vxN50jyOHLjJN5+vYOGq4dSuK28ccXa14odpvfH0tiMzM4ftGy/w5SeL+XvbGJxcrCrMlhAvLzsLS8WyM7cwJq6cbFGR8dy+GYKujja/zfuMtLQsfp+5nbi4FH6bN0zpPksX7MfAQEKL1srnVlSVzdyidDYTYmOSle0CQGRkPME3n6Grq82c+cNJS81i9szNxMUmM2f+cABc3GyY8stgvH2cyMjMZvP6k3w68De27JqMs4tNhdniC69581KjBSwqyBYVGUfwzafo6mrz+/wv5cMUZ24mLjaF3+d/WbhNPNeuPKJTl4YsWDqKl1EJzJq+kczMHMaOV2+IXXLhPWFa6p4wNTcqMxyypPBn0Wz96xizV48q05OzpIz0LIZ2/Rlpbh6aWpp8Pr4HdZuo10CRkSTPZvgPn3PXD5wjLSGZmm1UN6SfXX8QXT1dvBr6q3XM1ET5vWpc6jlnbGZMihrPuYm9p5KeIn+WdP64A80/aFrhPupKTCh8jpQ6p2YW5T9Hwp5Gs37lcRb8PVLlOa3XyIddm84TUNcDB2dLbl19xoVTdykoUO+vgdd1V+lzamRqTGolzumVwroroI1i/dB9dH9s3OT1w+W9Z1k1bj5fLvoOCzWHOReVnUXp+8G43Psh7Fk0G1Ye5881qsuuVYc6pKZkMm7YEmQyGfn5BbTtXJeho7qolU0Q3hbRYCe8dfPnz+fWrVvMnj0bS0tLVq9eTXBwMK1atXrjY06bNo3g4GDGjh2Lj48P0dHRxMTIJwGPjY1l9OjRdOrUicmTJxMZGcmMGTPQ1NRk9OjR5OXlMX78eD744AN+/vln8vLyePToEZqa8gf0s2fPGDlyJJ9//jkTJ04kNTWVP/74g+nTpzNr1qyiDCUXiwBAVsGn8tLbK3m/zBavj6mhgTQtjdC//8bzs8/QNjSsqIgASNu3BWn4U8y++gENTcUKqHRaDQ2QlXm38kYG3UVfWwtfM2OG13AhOiubY5FxFe/4X0J5uVWstpUJs5r58Nu1UO4lpCvdpp2zBWPruvH9+UdK5wCrbDZ11bYy4bfmPsy6WpxNR1OD2S2q8/uNMKLSK59FLaUCa2iovo2SMnJZdbK4N8PdF8mYG0n4or33P248URJFbf+JslOWraLHjSo6mhpMrevDkvthRCuZd7GyZEqCqBPtPRsT5rauzoxLIdyNUz4k9wNPa7Q0NNj7TP3G6wq9o2vuzunrHFi4teh10QIQyuoRFVVFaQ8uBHN89V56fj8YUxv5F0iZKens+WMjH333MfrG6vU0CT51nb0LirN9/LPqbKqqsdLuXQjmyKq99JkwGDOb4i+3nH3dcPYtHu7nXMONRV/N5vLe83Qd8VGZ41w8doO1v28vej3mN+ULQMjULLcfF31NdlYOIfefs33ZASztLGjasR5pyen8NXMzX0wZiKGa5QZw7OBN5vyys+j17EWfAir+Pignn7OrNc6uxR9I/QNcefUyic1rzxY12PkHuOIf4KqwzZDe89i5OYjRE7qXOebhA1f5ddrmotfzlrye51UxiKzsW4o/L5ChoaHB9NlDMDKWz683/sfejPxiEQnxqWWG5W5ef5rd24NY/NdIjIz0lR2SQweuMGPqhqLXC5Z+LU9WqtxkMiVlqfDzAjQ0NJgx+zOMC8/b9xP78dXnfxZlC6jtQUCJnpQBtT3o99HPbNl4mu9+7Ksk22WmT11fItsoFdnKvx8KZPJymzl7WFG2CRP7M+LzeSTEp2BhWY2CAhnm5ib8NG0wWlqa+Pq5kpKczu+ztzJmXC+l//ezR26wdNaOoteT/ii8J5RdcioCSnPzmDtpPZ+Meh8b+/KHfusbSJi3/luysnK4c+0pa+bvw9rOjID63mW2vXf6GocXFz9Lek+RP0uU5VD3WfIoKJhTa/bS/btPqGatvDf01b1nuHU4iP7Tv0ZioPyau3riBpv/KF60ZcSvw5TnkKkXbsyfI8nJyiH8wXP2rDyAha05DQPfrGfuyUM3mT+z+JxO/3MoysLJCq8pZXJz85jx4wY+H/0+dg6qz+mI8d2Y98t2Pus1BzQ0sHe0IPCD+hzbp3xY/J3T19lfou4aME35Oa3ofihJNiwx/wAAIABJREFUWd0F4FTDDacabgqvl349myv7z9N5eNn6AeDU4Zv8WaLsfplfWHZlnnMylec1NzePmT9uYNg372NbTtnduRHCplUn+HpCD6r7O/MyIp6lv+9l3fKjDB5euUVFhP8OrxeYTEhIwN3dnTFjxlCnTh2V21+6dImVK1cSGhqKjo4OAQEBjBw5EheXskOs/wnRYCe8VZmZmezfv5+pU6cWDSGdNGkSXbt2feNjvnjxgmPHjvHnn3/SuHFjABwciidK3bFjB5aWlnz//fdoamri5ubG119/za+//srw4cPJyckhLS2N5s2b4+goXznV1dW1aP/169fTrl07BgwYUPTehAkTGDhwIImJiZiamqKlpUVCguLKgtK0NHRMlA8F061WDWlKSpntgaJ9dKpVIzc1tcw2GpqaaBsakh4SgjQlhYfz5hVvUPhJ88rw4dSaOhV92+J5rdL2biY7+CpmX36HtkXxB4GUXCl5BTLMS024bKarU6Ynz5uILpwIPzQtE3OJDkO8nf4nGuyScuTlZlFqcn5zPR0SsssvtzpWJixu48eS28/Z9iRa6TbtnC2Y0dSHSUFPKr1C7OtslqUWNbDQ0yEhq4Js1iYsaePH4lLZrPR18TQ15Jcm3vzSRP6HuaaGfFGDWwObMeLkPS5Fq+5dUG7e9Bzy8guwLNWzycJIUqYHVHmCwxPp2eifVYJVuexU3quSN79XLSS6uJkYMqG2NxNqK2Y73bUp3125X2a4vDJJ2fJsVgalyk1fl3gV81y+VtfGhBUd/Flw4zmbHyq/HwB6V7fjWHg8KTnqDw9TmfcdX3M+Df1x9CneL69wyFt6UirVrIp7X2ekpJfpdafMgwvB7J67gQ+/HaiwQmzs82jSE1NZ9+OSovdeN6r+3HUMI5ZNwNJRsVdRjUb+OFUvka1wiHJ6YiqmJbKlJ6eX6XWnzL0LweyYs4Ge4wYqrBCrjKaWJg5eTsS/VF5H1Gnmh4evc3E2aT4AKYlpWNgUZ0tNSi/T604Zq8LGCScPe1KT0tmz5ihNO9YjMuwVyQmpzBlTvFKrrLBr7KetxjFj3XfYOZft4dGslS++NYvz5RaWXWJ8Gja2xT1Nk5LSy/Qeq4hvTSdOltMbW0tLk+q+jkS8iFf68xata+Ffy7VMtoT4VGztissuKSENi3LmmrW0qoaVdbWixjoA18LVR19FJyk02G1ef5plC/fz57IR+CmZE+21lq0D8C8xT9vrIaDybMUf4JMSU8vPZmmKlbVpUYMYgJu7XWG2RKVz/GlpaVLDz5UXz5Wv9NyydW0V2VIUsiUmppXpdaeYrRrW5WaTz6Wnra2l0KPHzcOO7Kxc+TWj5Jpu0NwPb7/i+/V1vuSENKxK3BMpSellet0VZY9PJSIshoXTt7JwurwxRlYgQyaT0aPJeH764zPqNJIPedTU1MTOST7PqLu3A5HhMez4+6TSBjuvhjWx93Etep1f4jlnUvI5l5yGoWnFUyc8Cgpm3x/reX/MQIUVYku6uvcM5zYcpM/U4dj7qH4212rih2uNcUWvXz/nUhPTMLMuzpaWnIZJqcVelLEsnOPSwd2e1KQ0Dq09+sYNdo1b+lK95tii19LCbEkJqViXeI4kJ6ZjZq48W2J8Ks9DY/h92lZ+n6Z4Tjs0+I4Zfw6lXmMfTM2MmPbHEHJzpKSmZGJhZcJfCw9i66C8MdSnoT8OJco1v5y6q3SvO2UeXAhmV2HdVV3F6uavaWppYu/lREKU6s8QjVr44uNfcdmlVFB2L0JjmPvzVub+rFh2nRp+x/Q/h1K3kQ9/Lz1Cq8DadOou/zzr5im/V+dN387Az9qjpa1V4f9f+O9RcoHJgIAAduzYwejRo9m6dSu2tmXnkY6KimL8+PH07t2badOmkZWVxcKFCxkzZgy7du16q9lEg53wVkVGRpKXl4efX/HcH/r6+ri7v9nqawCPHz9GU1OTuqVWTn0tPDycmjVrFvWYAwgICEAqlRIREYGXlxddu3Zl1KhR1K9fn3r16tGuXTtsbOQfYh49ekRkZCQnTpwo2v/1B57IyEhq1apF9erVuXr1Ku3aFc9zkPrgAWbvvac0k5G7Oy927aJAKkWzcFhuyoMH6JiaFq0qa+TuTlJwsMJ+KQ8fYujqiqa2NoaurtQsNYQ4cs8e8jIzce3fX2EBivAtW8i+dV3eWGetOAF8nkzGk5R06lmZcia6uNGxnpUpZ6MVGyH/KQ000NH875wfoLS8AhkPE9NobG/K8RIfkBrZmXLihepyq2ttwqI2fiy9/YINj14q3SbQxZLpTbyZdPGJwrErk+1BQhqN7Uw59rxENntTTjwvP9vitn4suf2CDQ8Vs8Vm5vLhPsUJhPv42NHYzozRZx4Qla5+I0dp0nwZ9yKSaVbdmsO3iudgalbdmiPBystIGV/HasSmvnkOqNpl9/perW9lpnCv1rcy42x05a8TgLjsXD4+rTih9oeudtSzMmXitYe8KmdeqpKkBTLux6fRxMGMI2HFWZo4mHIsTHW2erbVWBHox8Jbz1l7X/X8WzWtjKlhYcTMy8rnBa2sd33NSQz0FFbPk8lkGJmZEHrrMQ7e8g9DeblSnt8Lof3QbuUe6/65W+z5YyPdxw7At1lthZ/Zezvz5ZLvFd47te4Q2emZdB7REzObsr0HVGV7dutxUSOjNFfK8/shdKwg291zt9jx+0Z6jhuAf/Pa5W77+ne9CnuJrbvy1Qn1DfQUVn6VyWRUMzfm/rUnuNeQN5Tl5kh5cieUPiPer/D3KfzugoKihlP36k5MX6u4Uv3OlYfJTMtk0NiPsLJT/mHWwFBPYdVBmUyGhaUx1y4/oYa/EyCfd+72zTBGjKncsKmnj16WGb6qkF8m49nTaDy9lc+raGiop7CCqTybCVcvPcSvcEL1nBwpwTdDGPVt2R56r9Wq486JYzfJzMzGoPBcvG7ssrMvLpeNa0+yfNEB5i8dQe33PMv9vynLZmlpwuVLD4oa+nJypNy68YxvxinvWQMQUMeDE8euk5mRXXQenivJVpJMJuPpk0i8fRwrka1aYTa3EtmeMnpcL5XZatfx5MSxGyqyWRRtc/jgFQoKCor+Zn0eHoOevi5mKhqN9A31FFZ+lclkmFkYE3z1CV6+xffEg+BQPhmp/J6wsK7Gn5vGKbx3eOdFbl95woTZn2Ct4noHeUNGnop5R5U9SwzNTAgLfox9iedcxP0Q2nyq+poDeHD+JgfmbaTrmAHUaKa8R8uV3ac4t/EQfaYOx6mC1bD1DPQUVn6VyWSYmBvz8MZjXKrLy02aKyXkbijdv/ig3GOVJpPJip4lb0LZc8TcwpgbV57i41d8Tu8FhzHsG+UdHiytqrFiq+Jw/v3bL3LjylOm/j4Y21L3g65EB0vrauRJ87lw8i4t2gcoPa6q+iGkRN0lzZXyQo266965W+z+YyMfjh2AXzP16oeY8JfYuqlevVZV2d1UUnafjVJRdtbVWL6lVNntuMjNK0+ZMmcwNoVll5Odi2ap4bKamppvPuThv5XG/8bnuoqUXGASYPz48Vy+fJmdO3fy1Vdfldn+0aNH5OXl8dVXX6GlJW+8HTx4MCNGjCA5ORlTU/Wmi1GHaLAT3jkNDY0yw6zy8tSvCJUN0Sp5bIDJkyfTt29fLl26xPnz51m2bBmzZ8+mcePGyGQyunXrRr9+/crsb2Ulnyemf//+TJkyBV9fX7IkEmLOniU3JQWbli0BeLFrFxnh4dQYK//Wx6JBA6IOHCBkzRocunQhOyaGl0eO4Ni1a1Em65YtiTl9mudbt2LdogVpz54Rf/Einp/JhztoSSQYOChWWloGBsgKChTeD9u0ifjLl6k2eCQa+obkp8p79mlIJGhK5JXattCXTKzjxcPkdO4lptLNxRYLPV32Fs4393l1F2qYGjHm8v2i47oY6aOjqUk1XW30tbXwNJEPy32WmgFAD1c7ojOzicjIAiDA3IS+HvbsCf/35rAzNJDgUbhapqamBk4OltTydSEpOZ2Il2+38RFg3YMoZjb14V58GrdiU+ntbYe1voTthb2rRtVxpaaFMcNO3AWgnk01FrfxY+vjaA6GxWKhJ2+sLZBR1EOqo6sVM5p688eNMG7EpBRtIy2QVWrhiXUPo/i1qQ9349O4FVec7XXPr2/quOJvacyw46WyPYnmYGjZbHkyGc+SMxV+R2K2lNz8gjLvv4lVJ58yd3B9bj9P4kZIAv2bu2Ftqs/GC/IJxsd/4EeAqxkDF1wAoEdDZ/LyC7gfkUKBTD6f2MAWHszec+8fZ6nKZbc1JIpJ73nzMDmNu4mpdHO1w0JPt+i++qKGCzVMjRl9qbgcXI300dbUxFRXB31tTYV7NV8mIyxNMUNSrhRpQUGZ9yuy5l4Us1v6cCcujZsxKfSrbo+1gYQtj+TlNraeK7WsjPnksLzcGthVY3mgP5sfvmT/s1gsC+cIzJfJe+yV1Ke6LWEpmVyNVn9OnIpUpWtOQ0ODht1bcn7LMSwdbbBwsOLclmPo6kuo2ar4y6jdv8uHDX44Tj6n672zN9n9+3raD+2Gi78H6YnyXtlaOlroGxuiqyfB2lWxAUfPSJ+C/Pwy75eXremHLTmz5RhWjjZYOlpxevMxdPUkBLQuzrZ9jjxbr/HybHfO3GT7nPV0GtYNV38P0kpkMzCWX4MnNxzGuborFg5WZGdmc2nvOV6FveSDkerN16WhoUFg7xbsX3cCOxdrbJ2s2Lf2OHr6Ehq1L/7CbMX0TQB8Pqk/AMd3nMfKzhzbwl5yj2+HcHjLGdp8KJ93SqIvwdFd8cstAyN9CvILyrxfUb5eA5qz7q+TuLha4+RixdqVJ9A3kBDYubjR4ZeJ8qGqP82Q/52xbcN5bO3NcPOwQSrN59jBm5w/fZ8Zcz8u2mf1smP41XTB0cWSzPRstm8KIuRpNOMm9lA7W79BrVmz4igubrY4u1qzevkR9A0kdOhS3DNoyg9rAZj262AAOnapx6plh/l50gaGjehMemoWc2ftoG1gnaJeg+tXH2fJgv38PGswzq7WRfO+6Ul0FXrmlZet/6B2rFpxCFc3W1xcbfhr+UH0DSR06lK8wNdPP6yWl9+v8qHHnbo04K/lB5k66W+++OoD0lIz+f3XrbQLfK+o99vyJfupWcsdZxdrMtKz2bzxJM+eRPLjTwPKBik328HCbLasXH6gTLZJP6wCYPqvQwuzNWTl8gNMmbSG4YXZ5vy6mXaBdYuy9erTiq2bTjH71y307d+Gl1HxLFu8j959W5c7FLh0vvf7tmD7mhM4ulhj72zF9tUn0DOQ0KJD8TU3f6r8nhg9tT/a2lq4eChe19XMjNDR1VZ4f/uaE3j7OWPjYIE0N48bFx9y5vANho37UO1sDbq1JGjrMSwcbTC3tyJoq/w559ey+Fmyb658CPIH3w4C4P7ZG+z/Yz1tPu2Os78n6YVz4Wlpy59zAJd3nuTM+gN88O0gzB2si7bR1tVBz1C9a671Ry05uvE4tk42WDtZcWTDcST6Euq3LX6WrP11IwCDf5BfL2d2ncPCzgIbJ/mz5NmdEE5uO60wh12eNI/owsZZaW4eqUmpRDyLQqKvi7VDxfNNamho8GH/5mxefRInV2scnS3ZtOokevoS2nQsPqe/TZY/R77/uR/aOlq4eSqeU1NzI3R1Fd9/ePc58XGpeHrbEx+XwrrlxyiQyegzuHWFuV5na6Si7qpVou7aVVh39Sisu+6evcmu39cTWFh3KasfTm88jFN1V8ztrcjJzObKvnPEhL2k61fq1Q+v83Xv15wta8qWXesSZTe7sOy++7kf2tpauJYuOzMjdHQU32/U3Jddm87hXcOR6v7OREUksHbZERo08xW96/7HvF5gsuRoO4CGDRty584dpfvUqFEDbW1t9u7dS7du3cjOzubgwYP4+vq+1cY6EA12wlvm6OiItrY2Dx48KBq2mp2dTWhoaNFw1NLMzMyIjy/uoZGTk0N4eDg+PvLu+T4+PhQUFHDjxo2iIbElubm5cfLkSYVvLG/fvo2Ojo7C7/T29sbb25vBgwfzzTffcPDgQRo3boyPjw+hoaE4OTmp/H+1b9+elJQU1qxZw6u4OPTt7fEZObKot5w0JYXsuOIu3NoGBlQfPZrwzZu5N2MG2gYG2LVvj2374pW59Cwt8Rk5kufbthFz9iy61arh0rcv5ip6EqoSe+YMAEnL5yi8b9j+A4w6yL8lOPUyHhMdbT72csRCoktYWibfX3lATOFwVgs9HewNFYeOzW7oi12Jb9lWt5R/O9ZifxAAWhow3NcVW30J+TIZLzOzWf7weVEj4L/hvVruHNs2uej15G97MfnbXqzffpbPv11Wzp5v5ujzeEwlOgyr6YyVvi7PkjP46tS9ovnmrPR1cTQuLqNuHjboa2vxiZ8jn/gVX3tR6dl02i2fL6SXly06mpp8X9+D7+sXf0N87VUyQwsbiNTKFi7P9nmt4mwjTipmcyqRrbuHDQY6Wgzxc2RIqWwddymfy+RtOngzCjNDCV939MHKRI8n0al8uiSIl4nyBl+rano4WyrO1fhVx+o4mBuQXyAjPDad7zfceCvz11Xlsjv1Mh4TXW0+9nYqule/u3y/+F6V6Ja9Vxv5Kdyra1rJ/0htvu/CW812ODQOM4k2X9Z2xtpAlydJGXx+9B4vC+ftszLQxcmk+IPTh17ychtay4mhtYqfr5Fp2bTderXotaGOFp3drVlyq+JVNSujKl1zAE17tiUvR8qhJTvISs/E0ceFQdO/VOjNkBKnuArv9UNBFOQXcHTFbo6u2F30vktNTz75beRbyQXQvFdbpDlS9i3eQXZ6Jo7VXRgys1S2UqsXXz0oz3Zw2W4OLivO5lbTk8/myLNlZ2SxZ8FW0pJS0TPQx87DkWFzRuFUzlC20jr3b0NujpT1f+wkIz0LjxrOjPvjC4WeeAkxitkKCgrYtuwA8a+S0NLSxNregl7Du9K6W9m/If6pAUNakZMj5Y9fd5OWmoVvTWfmLR2m0Ask5pXisHOpNI/FfxwgLjYFiUQHNw9b5iz6lMbNiyf3T0/LZvYvO0iMT8PQSA/v6g4sXv2lwpDcinz8aXtysqXMnrGVtNRM/Gq5snDF1wo9yl5FK5adgYEei/8axe8ztzG472xMTAxo2SaAr8cU96bZvuUceXn5/DhutcK+Xbo1ZOqMj1HH4KEdyM7J5bfpm0hNzcS/lhtLVo4ulU1xuggDQz2W/jWG2TM3M6jPDIxNDGnVpjajxhY3YqalZjJ96noS4lMxMtbHp7oTK9eOx7+WG+r6ZGhHcnJymTV9E6mpGfjXcmfpyrGlsil+SWhgqMeyv77lt5mbGNhnBsYmBrRuU4dRY4t7DNrambNk5Rjmzt5G34+mYWFZjW4fNmXYF5WbNubDQa3JyZGyYs4u0tOy8PZzZuqCzxV64sWVs0CGKtmZOSz7bScJccnoSnRwcLHmmyn9aNFB+WgSZRp91A5pjpSjS7eTnZ6JvY8LfX8eofAsSS31nLt1WP4sObFyFydWFg8lc/b3ZOAs+ZyCNw6epyAvnz2//a2wb822DXh/zEDU0b5vG6Q5UrYu2EFmWhauNVz4evZwhZ54SbGlnyUy9qzYT2JMEppamljZWdBtWFeavV+8gE1KQiqzPv+96PWFl/Fc2H8JrwAPRs/7Wq1sfQa3JjdHyqJZu0hLy6K6vzOzFis+R2JfJZVzBOVyc/P4e8lhoqMS0dfXpUGzGnz/Sz+1GtZfa1ZYdx1cIq8fHCpRdx1ZsZsjJeou15qeDPmtuH7Yt2Ar6Ump6BnqY+vhyKezRylMJ6GO3oVlt/i34rL7dZFi2cW9Qdn1H9oODQ0N1i47SnxsMiamhjRq7ssnIzpV+lhC1aZqgUlzc3OuXr2qdB97e3sWLlzIDz/8wJw5cygoKMDHx4f58+e/9XwaycnJ/8/6dQr/tl9//ZXLly8zceLEokUngoKCaN26NZMnTy6zAuzixYvZv38/M2bMwNTUlDVr1hAUFETnzp2Ltvnxxx+5c+dO0aITsbGxREdH07lzZ2JjY+nZsyedOnWib9++REVFMX36dDp27Mjo0aOJiopi9+7dtGjRAisrK6KiopgyZQo9evRg6NChPH36lE8//ZTOnTvTo0cPDAwMCA8P58KFC/zwww9l/n8jSw1jrSrCU6t2+/u1rxa96wgqec0YUfFG70hV7nmfcaXqzlVo2LDib7XfJVNTNWdrfgdiY990Ldl/n/TWmw0N/k+YPlb9xQv+03Sr+IgWB8P8dx1BJU+TqptNolV1rzktjTdf2fo/QYOqe1M8T397PY3ftqtxVfe8OhhU3XvVu1rVzQZwMabqntdG1v98vu1/k1lBi3cd4V9Vp/Wqdx3hrbp1emiZ9+Li4ujSpQvLly9XWGRi5cqVHDt2jO3bt5fZJz4+ni+++IKWLVvSoUMHMjIyWLFiBQBLlixRmKrrn6ran/CF/0rffPMN2dnZjBs3DgMDA/r160diYiK6urpKtx88eDDR0dFF2w8ZMkShxx3A1KlTWbZsGXPnziU5ORlra+uiIazW1tbMnz+fhQsXMnDgQIyNjQkMDGTECHkjjJ6eHi9evOCHH34gOTkZc3NzOnTowODB8uEfXl5eLF++nGXLljF8+HDy8/NxcHD4R6vaCoIgCIIgCIIgCMJ/K43/B3PYqVpgMikpqUyvu9d27NiBvr4+o0aNKnpv2rRpvP/++9y5c4fatSuet1FdosFOeOsMDAyYNm0a06ZNAyA3N5fNmzfTtKl8vodlyxSHLhoZGTF9+nSF93r27KnwWldXl1GjRincFCW99957rFmzRunPLCwsmD17drmZfX19WbBgQbnbCIIgCIIgCIIgCILwv0FHR0fpApNXrlyhTZs2SvfJzs4u04vu9eITBQVvd6SKaLAT3rrHjx8TFhaGn58fmZmZrFu3jszMTIUbQBAEQRAEQRAEQRAE4V0qucBkQEAAu3btIj4+nh495HOkLl68mPv377NkyRIAmjZtyubNm1m5ciUdOnQgMzOTJUuWYGNjQ40aNcr7VZUmGuyEf8WmTZt48eIFWlpaeHt7s3z5cmxsbN51LEEQBEEQBEEQBEEQBEBxgcn4+Hg8PDyYN28ednbylYPj4+OJiooq2r5+/fr88ssvrF+/ng0bNiCRSPD39+fPP/9EX1/9RV3UIRrshLfOx8eHdevWvesYgiAIgiAIgiAIgiC8AQ2NqrtI2tvWs2fPMtNyvTZlypQy7wUGBhIYGPhvx6rCSyQJgiAIgiAIgiAIgiAIwv9DosFOEARBEARBEARBEARBEKoQ0WAnCIIgCIIgCIIgCIIgCFWImMNOEARBEARBEARBEARBKKIh+ne9c+IMCIIgCIIgCIIgCIIgCEIVIhrsBEEQBEEQBEEQBEEQBKEKEQ12giAIgiAIgiAIgiAIglCFiDnsBEEQBEEQBEEQBEEQhCIaGqJ/17smzoAgCIIgCIIgCIIgCIIgVCGiwU4QBEEQBEEQBEEQBEEQqhDRYCcIgiAIgiAIgiAIgiAIVYiYw04QBEEQBEEQBEEQBEEopqHxrhP8vyca7AShkrILquaDKzW14F1HKJfXjBHvOoJKTycuedcRVKoxq+qWm1tXm3cdQaXnz/PfdYRy1XWtuvfr8/B3nUA121bW7zqCSpZ6qe86gkpZeVWz3nqtKue7lVB1/1TOyZe+6wgqRaRX3WccgKmk6ubLl+m86wgq+ZrmvesIKhloy951BJXWPdV/1xHK5WBYdf9m2hKq964jlOtL13edQPhfJ4bECoIgCIIgCIIgCIIgCEIVIhrsBEEQBEEQBEEQBEEQBKEKEQ12giAIgiAIgiAIgiAIglCFVN2JOQRBEARBEARBEARBEIT/PNG9650Tp0AQBEEQBEEQBEEQBEEQqhDRYCcIgiAIgiAIgiAIgiAIVYhosBMEQRAEQRAEQRAEQRCEKkTMYScIgiAIgiAIgiAIgiAU09B41wn+3xM97ARBEARBEARBEARBEAShChENdoIgCIIgCIIgCIIgCIJQhYgGO0EQBEEQBEEQBEEQBEGoQsQcdoIgCIIgCIIgCIIgCEIxMYfdOyd62AmCIAiCIAiCIAiCIAhCFSIa7ARBEARBEARBEARBEAShChENdoIgCIIgCIIgCIIgCIJQhYg57ARBEARBEARBEARBEIRionvXOydOgSAIgiAIgiAIgiAIgiBUIaKHnSC8ofgzp4k7fhRpSgp69vbY9+qDkZe3yu2zoiKJ2rKZzPAwtAwMsWjRApvOXdEoXH0n+dZNEs6dJSviBTKpFD07e6w7daZaQG2F48SdPEHCubPkJiagbWiISUBt7D78CNAvN29vLzsG+zpiqa9LSHIGc26EcisuVem29ayrMaC6A/6WxhjpaBGRls3GR1HsDY0p2sZST4dv67pT3cwIZ2N9DobFMvnyEzVLT1Efbzs+8SvONvt6KDdjVWSzqcagGg74WxhjpCvPtuFhFHtCirO1dbKgl7cd1c2NkGhpEJqSycq7EZyJTHyjfOpo2qA6o7/oyns13bC3NWfY2KVs2HHuX/t9qvTysuPjGvKyDE3J4PdyznPdwvPsZyE/z5Fp2Wx6rHie36YPnG3p7eaAhUSX8PRMljwM426S8mw6mhqM8fPAy8QIZyN97iWl8e3Ve28tywA/Oz4LcMLaQJenSRlMDwrh+ivlWRraV2NITQdqWRtjrKvN89Qs/r4TxY7HiuU00M+Ogf4OOBpLeJmew5KbL9jzJFbxYDIZGpf3c331OfIyMzF2c8Otf38MHOzLzZvy+DHPt20n8+VLdE1Nse/QAdtWLRW2Sbhxg4i9+8iOi0PPygqn7t2xeK9O0c+jDh0m4eZNsmNi0NDWxtjdHeceH2Lg4FC0zYs9e5EEXUcjPQm0tCmwdCavYTcK7DwAGFTTni/ec8TaUMK9EAGQAAAgAElEQVTTxAymnQvh6ssUpZm9zA34pZUXXuYGGOtqE5uRw74nccy7Eo60QAZARw9LBta0w8/KCImWJk8TM1l07QXHwxLKLQ9lPvKwZZCPIxZ6uoSmZjIvOJTgeOXnVFdTgwl1PfExNcLNRJ/b8Wl8efZume06OFkxqLoDzkb6ZOTlczUmmQW3w0jIkVY6X2kymYzDa48SdPASWWlZuNRwpveoj7Bzs1O5z9Pbz9i/8iAxkbFIs6WY2ZjRpHMj2vZp/Y+zHF9/hCuHLpGVnoVzdWe6f90TW1fVWe5euM3lAxd5GRKJNDcPG2cb2vQPxK+xf9E2y8YtJPROSJl9bVxs+XblBLWzHVx7lAsHLpGZloVrDWf6fvMR9uWU05PgZ+z96yAxEbHkZksxtzGjaZdGtC9RThcOXOLysWtEh8cgKyjAycuR9z/thGdNd7VylZe3Kp3XY+uPcOXgJTILz2uPkRWc1/O3uXTgIlEhkeTl5mHtYkO7foH4NfFX2O78rrNcPBBEUkwShiYG+DWuSZdh7yPRl6id7crWw9w7FkR2Rha2Xi60/rw3Fs6qs2UkpnDu793EhUaQHB1H9Zb1CRw1SGGb/Lx8ru88xsPTV0lPTMbMwZqmg7rh+p6vWrleZzu78Qg3jlwkOz0LBx8XOo/oibWL6mwPg25z/VAQr0IiyZPmYeVkS/O+7fFpVLNom/vnbxG0/SSJ0fEU5OVj7mBFo+6tqN2ugdrZXuc7t+kwtwrz2fu40OnLXliVk+9R0G1uHL5ATGE+SydbmvUJxLtEvgfnb3Fpx4nifPZWNOjeioB2DSuVbdfqo5zed5mMtEw8fF34ZOxHOLrbqtzn4a1nbFt+iOgXseRk52Jpa06rrg3p0l/x+s/MyGbHykNcPX2H9NQMzK1N6f15Fxq1ra3iyGWzbf3rGMf3yrN5+bowbHwPnMvJppAzOJSfvlqKg4s1f24aX/T+i9BXbFl5lLDHkcS8TKT30ED6Duug1jFLZruz4xBPTwWRm56JpacrDT7tjamT6r8NMpNSuLF+F4nhEaRFx+LWvAFNR3yssM3zyze5t+84aa/iKMjPx8TWihqd2+DRslGlsl3YfJjbR+XXm523C4HDy7/eHl+8za3DF4gJjSRfmoeFky1Negfi1bD4egs+epF7p64S/+IVMpkMG3cHmg/ogpOfh9rZXucL3n6IxyeDyE3PwsrLhUZD+2DmpDpfZlIK19btIiEsktToWDxaNKD5V4rPkqdnLnNhyYYy+w7aMA9tXZ1KZRSEf0JrwoQJU991iP/Phg8fzsOHD2natOkb/fxt6du3L4mJidStW/df/T3/C/ZHx5B0/RqRG9Zj92EP7Lr3QJqaQvSuHZg1bIiWvkGZffKzsng6ayZ6dnY4f/oZBq6uRO/agYa2DoYe8oop4dxZ9Bwcse3UBau27SmQ5hK1eSNGPj7oWlgAkHT1ClFbN2P3UU/se/TE0NuH+BPHyIl5RZ57nTK/97VAF0t+aujFglvhLLodjqW+hLHvuXMwLJZ0aX6Z7Tu5WpMqzWPV/Qj+fhBJWm4ePzbwJCI9i2fJmQCYSnTwNjXkREQ8lvq6pOTkcTpS9YdsmUz5+x1cLJnc2Is/b4az4JY827d13TkQqjxbZzdrUnPz+OteBGvuy7NNbOhJRFoWTwuz9fa242lyBivvvmDDo5dItLSY2MCTazHJRGfklDlm4qlrKnOry9fbET2JDuu2naFT2/c4cuoWdx48/8fHtWpXX+1tA50tmdTQi4XB4Sy+HY6FnoQxddw5FK7iPLvIy3L1/QjWPogkNTePH+rLy/JZSmaFv09fX/2l3lvZWjLW34O/Hj9n9ZPnmEt0GF7djRMvY8nIK5tNV1OTOhamXIxNLHp9LCq2zHaqpKSouOCAzh5WzGjhxe9Xw5h7NQwrA10mNPFg79NY0nPLZvnA05qUnHyW3opgZXAkqTl5TGvhxfOULJ4kysupv68d3zV2Z9alUOZeCSc8JYtfWnjxJDGDsJSsomNpXD+CxrUjeH48EMfOncgIf07koUPYtGiBprby79Cy4+K5/9tszAMC8PhkMBJzC8I3b0Lfzg4De/kf82khITxcsBC7tm1w7dsXDS1NwjZtwtTPF4mZGQCRBw5i3awpjl27YtW4MalPnhB16DBWzZqipasLQG5yMq+s6pNXtzP5Po3RTH6FzuXd5NVoyvu+jsxq481vF8OYcykcK0NdJjXzYPejGNKUlJuxrhYpOXksvxnBipsRPIjLYHRDF8z0dDgfkQTAwJp2PIrPYOG1F6wKjkRPW4sZrb24FJlMVFrZe9XIWPnAgHaOlkys58miu+EsvfccSz1dRgW4cfh5nNLrS0dTk/rWppx7mQBooKulycHnitdXLQtj5jbzZcPjKObeCuVCdBJdXW1oamfOoedlr8U2TmXzlufEllOc2HKKfmN7075/OyIeR3B04wmadm2Mto7yayEjNQMrB0va921Lq54tsbQ1Z/eyfegb6eNS3Vnl78orKP9ePbPtJGe2naLn6D606duOyKcRnNx0nIadVWe5fOAidm72tOkfSPMeLcnLzWP3wu14BnhhZmMOgG8jf5r3aEXLnq1p2bM1Tbs159rRyzTo1BiPAM+iY0m0VGc7tuUUxzafov/Y3nQY0I4XjyM4svEEzcopp/SUDKwcLenQry1terbEws6cnUv3YWCkj2thOZ3Ydga/BjXoPKg9Lbo1Iy4qjl3L91O3VW0MTQyLjlVQbsmV9Z88r/my8s/r6a0nObP1FD3HFJ7XJ4XntYvqLJcOXMTO3Z52/QNpUXhedy3cjmft4vN689QNdi/awfvDutF12Pt4BHhydudp4iJi8Wsi/0Cemlv+IJ4bu09wfdcJ2ozoR/0e7YkNieDajqP4BzZFS0W27LQM4sNf4tWkDpnJaegZG+LRMEBhm4sb9vPg5CVaf9GbRn06IzEy4PiiTbjW9cXQrFrRdnraquuIoB0nCdpxkq4j+9C8dztePo3g/NZj1O3YRGW5XT8UxP+xd9/xTVWNH8c/adN0Jt17b+hgLwFRhuBiC6ggKAoPQ+URcYsbEQc4QUGWbGTvJXtvaCmrLdDSvXebpM3vj5SkaZPSIj70eX7n/XrxepH03ttvzjn3Njk59xz3QC+6PduHTgMeRaVUsW32nwS0CMXBTVtuJXlF+IT703VoL9r3fRgLSwu2zV6DV6gvzt5uumNpqL9ej63Zw7E1f/Hka8/SZchjpF1P4vCqXbSuJ9+Z7UdwC/Ci67N96DjgUdQqFdtnryagRRj21fmK84vwDg+g85DHaNf3YWRWMnbM0eZzqs7nYlX/GbFl2V62LNvH6LeH0O+FXty4kszGP/bQvX8nLOo5X919XOk7vCePD+2Gq6cTK37ZjI2dNcHNte1fra7ky9dnoyxXMfLfA+k/8jEi24Qid7DFyVVbrxZ3uW9s/ZJ9rF+6j/HvDGHQqJ4kXLnNmkV76N2/Exay+sewFBeW8sUb8whp7kNZaQVPDNZ/LstMyyU3q4Bufdpy41oKAaFeRLUNMdj/Sn79x7+0aTeXNu2m05jniBrQh9zEW8Rs2EloT9PnQ0VRCXlJtwno2JrygiIs5bb4tTc8H8ryC3EJCSCqf2+a9X4EqaUlJxeuxjnID4Wnvs0pZKbPhxNr93Bi7V/0mfgsDw15jPTrSRz7cxct+5hub+eq21vnYX1o30/b3nbNWY1/jfZ2csNegtpG0HlYb9o82ZW81Gz2L9xIs66tsJbrr8El6vrPh5iNe4jZuJsuY5+jxcDeZCckcWH9DsJ71X8tyb2VQsBDrSkr0F5L/DsYll3uzdukXrzCkDmfE9W3p+6fpa3h57z2Dt78L5u3/P59Wd4UjB0effeNmhjRYfeAbdmyBScnJ5Mdcnf7+f2yZs0aAgMDRYddA2xOy+D2H4uRR0Ti0bcfUrkcRVQ0uUePoFEqkTdvXmef3KNHKLoUS+hb7yJzdMTK0ws0VWTv24trr8eQSCQooqKwCwnFwtERqa0tdmHhFMZcRKNSIY+IBCDn4EEkUineQ4dhbmODpYsrlaUlFF+5jKSN6W/iP+kUyrG0PH6NSSK/Qs2R1Dz6B7ljZWHOyfT8OtufyyrkVEYB6aUVFCnVxOUWE+JgQ7C9LbuSsgEoUlVyJC2Pq3kl9PB1plxddU8ddp91DuVoah5zLmqzHU7No3+wO9YW5pwwku1sZiEn0/XZLuVos4U42LLzljbbkdQ8zmUVklmmpFCp5nRGAd18nLCSmnEsre4x70eHXcLNdPYfucSV6ym8NbE/O/ed/4932H3UUVvPc2Or6zktj37B7lhJzTmZYbqeM0orKFJp6znYXlvPu6vruT6N6bCbEh3C6ex8/ohPpkCl5mR2Pn183LAyN+dcTt0RWmqNhuNZeVwvLCHKUYGDzOK+ddhNfzSMw7fz+PF0Ennlag4k5/FMMw9spGYcTalbTqfTCzmemk9acQWFSjUxWcWEOdkS6mTDtgRtOU3tEszeWznMv5BCoVLN9bxSHK0seCrYVT8ST6PBbMtvaNo+RviTj2ChUODQogUpW7chs7fHLiDAaN6U7dtR5ufT/N+TsJDLsfP3pyInl9zzF3B/uCsAt/5cg0yhIHjUSCzkchRhYRRdv0bp7RScq6/rrg91wtbPDwuFAplCgWOLaJI3bkQeEoy1h3aEga2PD4llrmBlCzZyqrzDsDi1hSrf5nw9uCsHk/KYdfIWueUq9t/KZWiEOzYW5hxJrltuBRVq4rJLyC5VUaSsJDG/DHdbS9p52rMqLh2A/bfyOJVWSEaJkoIKNcdTCugZoD1XDybl1TmmqQ67D9uFcjwjn9/jkslXqjmaru1cs5aacSrTePs6nJbHlfwSWroocLKU1emw6+XrSoDcmg9OXKVIVUlmmRJVVRUDgjxYdOV2nWM2psNOo9Gw4NNF9BjyKF37dkbuKCfyoQh2Ld2DwlmBX7iv0f3sne3xCvRE7ijHRm6Dd7AXSVeTKcguoPUjLY3uA/V32Gk0GpZ+sZhugx+l09NdsHOU07xjBH+t2I3CSYFPmPEOo2btmxMYFYS9iwM2CluCW4Zw5UQcygoV4e2aAWBhKcPS2lL37/KJS1w8eJ5hbw3HylY/KtxUh51Go2HeJ4voNfRRuvXrjMJRTvRDEWxfugd7JwX+JsrJwcUe7xrl5BPsRdK1ZPKzC2hTXU6tu7UkoLk/9s4K7OxtieoUwf51h7B3VhDY3F93rMZ02P2n67W+DjuNRsOS6np96OkuyB3lRHSK4K/l2nr1NVWvHerW6+UTcahq1OuxLUeRSqX0nzAQazsbnD2dKSsq5drZq3Tpp70m1ddhp9Fo2PbtAtr060GLPl2xcZAT2C6Sk2t2YeuowD3EeDZLWxsC2kTgGuhD/PELWFjK6nTY7fphCW0HPkbz7h2wsrPBPcSfzMRkMuKTCHlIPxLLVIedRqNhzZeL6DSwO+2e7IKtg5ywDpEcWrUbOycFXqHGs4W2i8AvMhiFiwPWclsCWoRy7eQlVBVKQtpq3xc6ejjj4uuOjb0d1nIbfJoFcOVYDGbm5gS1DtdnqKfDTqPRsG76QjoO6E7bJ7ti6yAntEMkR1btws7J3mS+kFr5/KNDiT91CZVSRXAbY/ls8W4WwLXjFzGTmhPYSpuvvg47jUbDjx8t5slhj9BzQGfsHeW07hLBxsV7cHBWENTMePt3dLHHN8gThaMdtnIb/EK8uHElmbysAjp019bv/s0niDl5lY/nvIablzO2cmtcPBx1nXVQf4edRqPh2w/+oN9zj9Bn0EM4OMlp2yWCNYv24OiiIKS58Wx3zPpoGa06hePs5sDtmxkGHXbOrva06hiOf4gnuzeewDfQvVEddhqNhkPfzyfiqZ6E9XoYa3s53m2iiFm/A2tHBc5B/kb3k9na4N0qEqcAX5JOXUBqKavTYSd3c8He2wMrhR2Wdra4hgaSfOoiEqk5ntHNdNuZ6rDTaDRsmLGQDv270/oJbXsLbh/JsdW7sHO0x9NEewtuG4FvZDByZ21784sOJaG6vQVVt7fwzq3wCvPHzskeG4Udwe0jObPloLYdhwfojlVfh51Go2H/rPlEPd2DZo9py863bRQX1u3E2tEel2DT1xKf1pE4B/hw66S27Ix12N0+d4l2z/fDwspS96+2//UOu7krLoFE8j/zb+zzUXd/0U2MmMNO+I9Qq9UPOoJR95KrSq2mNOkW8gjD2yvkERGUJNa99QegNDEB25BQzKpHsWi3j0RdkI8yx3THSFVFOeY2+m9ybENCKEtO1v0eZW4OBRcvII80/W2B1ExCcyd5nY6qY+l5tHRRmH6htdhamFOovL/1eCfb0dRa2dLyaOXa8Gx2Dcj2T+RvSu6U5fFa9Xw8rXH13JCybHQ2iYQwhR2nsw2zncnOJ9JRfl9/191YmEmIcpVzONmwM+hwch5tPBpZThX6cpKZm1GhNvwgU66uooWbHKlZ9ZvNgmwkpQVo/PXXDnOZDEVYKEUJiSZ/V1FiIva1rjcOkRGU3LpJVfU1rCgxAftIw23sIyMpSjB+TQKoLC8HjQapTd1RwdoN1EgvHUIjs8LczY9oNzkHkwxvKz+YlEdbz4aVm7+9FY/6O3LCSKdoTbbVI/MaSiqR0MzRjhMZhnV6IiOPFo1o+7VdzC7ExVpGV0/taAB7mZTevq4cTfv7t9bnpOVQmFtEs3b6D+kySxnBLYK4celGg4+TfP02Ny7dJLRl424hqik3PYei3ELC2uo/vFlYygiKDuZW3M1GHauitBwbOxPtCTi5/Rjh7Zvj4ObYoONlV5dT81rlFNoiiIRGllNibP3lpFZVolKqsJGbzn83TbJe2xnWa2B0MDfvpV5rlEtgVBCpCSm69pGXmcelY7E079Cw204LM3IozSvEr5U+m9RShndkMGlXGl5OxlSq1EhrjZaSyixIvWz6GltTfnoOxXmFBLfR16GFpQz/qGBuX25cNmVZBdYmzgeNRkPi+avk3M7EP6rh9XwnX1Abw3r1i2x8vorSCqzqyXejOp9fVIjRbWrLSs2lIKeIqA6G7T+8VRDXY282ONfNa7e5HnuT5q315XLmUAxhLQJZPGsdE/t9zNsjZrB2/g7URkZQG5ORmkt+ThEtO+qnrrG0siCiVRBXY+rPtn3NEfJzC3nmpcca/Boaozgzh7L8Qjxb6L/wl8pkuDcPIeva3zsfatJoNKTFXKEgLQP3Zg2r04KMHEryCglsbdjefCODSWnkuaosM93eACrVatQqdb3b1Han7LxqlZ1H8xAyrzbsnK9PpVLF6glTWTXuQ3Z/NYecG8l/+5iC0FhiDrsmQK1W891337Ft2zYA+vfvz6uvvoqZWd3+1MLCQmbOnMmhQ4dQKpW0aNGCyZMnExys/6O2b98+5s6dS1JSEo6OjgwaNIiXXnpJN1dabm4uX375JSdOnMDR0ZFXXnmlUXk7dOjAlClTOHbsGKdPn8bR0ZHx48fzxBNPAJCamsqAAQP4/PPP2bBhA7Gxsbz22msMHTqUzZs3s3TpUlJSUnB3d2fw4ME8++yzute6bt06li1bRkZGBjY2NoSHhzNr1iykUinx8fHMnDmTy5cvo9Fo8PLyYvLkybRr144zZ84wfvx4du3ahYODg0GORYsWERERodtm1qxZzJs3j2vXrjFjxgy6du3KkiVLWL9+PdnZ2fj4+DBy5Ejd66mtsrgYqqqQKgw/CEoVCtRXLhvdR1VYiIWjY53tAdSFhVi6uNbZJ3v/PlR5eTh2fEj3nGP7DlSWlJDw3TfaEWtVlTh27ITnoMFcTzNeX46WFkjNJOSUKw2ezylT0dGjYXMwPOztRAcPB17adaFB2zfUnWy5RrJ1amC2bt5OdPB0YNQO09mGhXnibiNjS2LDR2j9t3EwVZblKjo0tJ69nGjv4cDo3fe3nu1lFpibScirNe9XnlJFmxqd2P8JjlbacsouM8ySXaaks41Dg47R3c+Jh7wdGLZRX06HkvMY0syDnTeyickqJsrVjqHNPZCZm+FoZUFWqRJKq0d62RheOywUCpR5pjuxVAUFWNQauWuhUKCprEJdXIzMwQFVQSEyueFxZXIFqkLjc7gB3Fy5ChtfX+TBhh8WzW5eRLZzHqiVYGtPRb83cHN2RmomIau0VrmVqujqW38drhvSiihXOVZSM5bHpjLjqOk3+SNbeOFpZ8m6Kw2fR1Hf9g2z5Zar6OB+7/PMxOQW8eHxq3zWMQwrczOkZmYcT8/j05PX7/mYdxTmFgEgr9VhrXCUk59tfE7AmqYO/YTigmIqK6t4YmQfuva791H4RdVZ7GplsXO0o7ABWe44uumQdgRbr3ZGf551O5PEiwmM+uTlBh/zTjkpamWTN7Cc3huiL6enRvahWz3ltGnBNiytLWnR+d6/fW+K9Vo7i9zRjoJG1OuRjYcoqFWvrbu3obSwhNlv/oRGo6Gqsoq2vdrx1Ct9G3TMknztdcnGwTCbjb2C4tz6O/Tvxq91c85t3o9PVCgOnq4kXbxGwvELaKpMj7quqTiv+nyolc3WQU6RkdHgppzcfIjC7Hxa9DAcJV9eUsbMFz6iUqVGYmbGkxOeIbR9w+fXK66e99W2dj7HxuU7veUgRTn5RBvJ98PIqbp8j48fQki7huXLz9Vms6/V5uwd5eQ1oM29NvBTivK17X/QS73pOaCz7meZqbnEnY3noV5tmPL1K2Sl57J45joqypQ8/2q/u2fL0WZzcDLM5uBkR26W6Wy34tNYPX8XX81/HXPzf2acS1n1+WBtb5jNyl5OaW7D69QUZWkZa8e/T6VaW6cdXhqGd+vIBu17p73VOVcd5BQ3or2d2aptb1HdTd81cnDJVmRWMkI7NvwaXHqn7Grls7aXU1LP+6qGsPdyo8v44TgF+KAqKydu2362Tp1J/2/ew77G7cSC8E8THXZNwM6dO3nqqaeYP38+169f58svv8TZ2Znhw4fX2fazzz7j1q1bfPPNNygUCubMmcOkSZNYs2YNVlZWXL58mffee4/Ro0fTp08fLl++zPTp07G1tWXYsGG6Y6SlpfHzzz9jZWXFrFmzSEsz0dtjwty5c5kwYQL//ve/+euvv/jkk0/w9/cnosYokNmzZ/P666/z4YcfIpVK2bBhA7/99htTpkyhWbNmJCYmMm3aNKRSKUOHDiUuLo5vvvmGjz/+mJYtW1JUVMTp06d1x5s6dSqhoaEsXLgQc3Nz4uPjkd3Dh/2ff/6ZSZMm4evri42NDXPmzGHv3r28/fbb+Pn5ERMTw5dffolcLqdr164NP7BGA/XcxlDnJ/W8d8w/e4bUtWvwf2WMbv46gOJrV8nYtgXv54ZjExiIMjOTlNWryNi8CdoNuHu8mnkkpm9TramVq4LpXcL5+nQisTnFd9/hHtSOIZHUWzw6rVwVfNU1nBmnTGfr5efM5LaBvHPoitH56/7X1ClLGlbPLV0UTOsSzjenE7n0D9WzMZoG1fQ/8HtrFUpDy6mNh4JZvZrx+ZEELmYW6Z7/+UwSLjYyVg9ohUQiIbtMybT5yzmw4AdKVZWYAVUDXqv+ZbWuBhojz9VSZ5c7YWv+oM5hTb+gm6tWUxgfT9Q7byOp9eVQlXc4FcOmQnkx0rhDyHbOhVEfG8/F3ctt4vbL2MnMae5iywddg5nQrpxfTtf9lvqJYBc+6BLEqzsuG52/7m6MXkf+RvMKlFvzZusgFsQlczwjDxcrGa+1COS9tiF8cqpxC+yc2nOGlTNX6x6Pmz5Gl7EmjQbdl2v1mfTDayjLKrgRd4tN87bg7OFEh94Nu33+7F+nWfeDPstLX4zVZqm9YQPa5R0xhy6wdd4mnn9/lG6es9pObDuG3ElBs46mP/yf3H2G5TXKaUJ1ORn709qQcnrzx9eoqC6n9XO34OLpREcj5bR3zQEObz7KpG/HY21rddfj3tHU6nXN9/osL5uo14ZmAbh46AJb5m1ixPujcKpRrwkX4tmzbBeDXnsGv+b+ZKdks3H2OnYu3s7jLz5Z5zhXDpxi768rdY/7fTBOm61WDg2aBmcz5ZGXB/PX7BUseX0aIMHew4WIHp2I23vc+Gvcd5otP63SPX7+039RHc5wQ42mvrd4BuIOn2f3go08884oHGqdD5bWloz7+W2UZRUkXrjGrnkbcHB3IqhVuNFjxew7xbaf9fme/cR4vsZc6y4fOc+eBRsZ9PaLuvn1auYb89M7KMsquHnhGnt+X4+Du5Pultiajuw6w4Jv/tQ9nvL1K8aiNfjv/NRfXqWirIL4S7dYOWcLrp7OdH1c21GsqdKgcLDjlXeGYmZuRmAzX4oLSln200aem9i3Trs5sOMMv81Yo3v8wXcmstVznVMp1cycuoRRr/fF3cvZ6Db3IvHwSU7MW6F73OOdCdX/q/ve4G+eDgBYWFny1Iz3UJdXkB57lTNL1mLn6mRwS+wdl/afYscv+vY25CNte6tzXtb/kcfAlSPn2bdgI/3fflE3f11tpzbt5/yOIzz7xatY2pheRC/h0CmOztWX3WPvja/+n5FrSUMDmuAWFoRbmH4RIrfwIDa+NZ3L2w/QafSQv3VsQWgM0WHXBDg7OzNlyhQkEgkBAQEkJSWxYsWKOh12SUlJHDx4kF9//ZU2bdoA8Omnn9K3b1927NjBgAEDWL58Oa1bt2bsWO0bNX9/f5KSkliyZAnDhg3j1q1bHD16lHnz5tGypfZe/Y8//piBAwc2KnP37t0ZNGgQAKNHj+bMmTOsXLmSzz77TLfN0KFD6dmzp+7x/Pnzee2113TPeXt7M2rUKNauXcvQoUPJyMjAysqKhx9+GFtbWzw9PQkL0w9dT09PZ/jw4QRUz/Pk61v/fBOmjBkzhk6dtKsjlZWVsWLFCn788Udat26tyxUXF8eaNWuMdtiZ29mBmRnqWiNX1EVFdUbd3WGhqDvSRV2kfeskTBgAACAASURBVFx7n/yzZ0hauAC/F0fXWSE2fdMGHNp1wLnrwwBYe/tQpVSSvGQxlm36IjGrOxFQXoUKdZUGF2vDzk0nKwtyyutf6bCVq4Kfu0cy58It/jQ1hO9vuJPN2arx2Vq7KvilRySzL9xi9TXj2Xr5OTOtSzgfHrn2j64Q2xTk11OWtUce1dbKVcGPj0by68VbrIm///VcoFRRWaXB0dJwtJOjzII85d9fbbMx8sq15eRqY1hOztYycsqUJvbSauuhYP6TUXx/6hbL4wzLqaKyivf2X2Pqweu4WFuQWapkcHhrlv+5hn5rzmk/rqirX2tJAaAfcasqKkRm4toBYGFvj7Kg7vVGYm6G1Na2ehsFylrXGFVRERZGjntz1SqyT50i8s03sXKtO7oXC0s0Dm6AGyqPICyXfkjhmX2oq3rjamNYh842FmTfpdzSirWdb9dzSzGXSJjRM5xfzyRTWeMz3BPBLnzfuxlv7L7S6BVi9W2/VvuytCD3b6zmOqq5L3G5xSy9lgJAfEEpZWcTmNejBbNjb5J5l9ddU3TnSAKaT9E9Vlffdl6YW4RjjdtDi/KLkDva3fV4Lp7aD49eQV4U5RWxffHOBnfsRDwUhV8z/ZxIalX1bdV5RQa3qhbnFyN3uPst6zGHLrDy66UMe2u4wQqxNalVas7sPkXHJx/C3Nz0ChMtukQSEGG8nJxqllNe48rJO8iLwrwitizeWafDbu+aA2xasJ1XZ4wloMbcdQ3R1Op1spF6LTRSr7VHUxpz8dAFVsxYyrNvD6+zQuyORdto1b0NHZ/U3gHgGeiFslzJnzNX8tgLferUcVCHaDzCAnSPK6uzleQVInfRZysrKMLG/u9Nk2BjL6fve2NRK1WUF5Vg62TPkSWbULgb73AJ7xiFT3jdcivOK8TeVZ+tpKC4zqg7Y+IOn2f9d0sZ+OYIgxVi75CYmeHkpb3uegT7kJ2UweFVu0122IV1jMa7xnxeNcuuZr7S/CJsHe8+BcDlI+fZ+N0S+k8eYbBCrMl8yekcWb3baIddm66RBEfo5whTVy8+lJ9bhLO7PlthXjH2TncvO7fqTjHfYC8KcotZt2CnrsPOwUWOubk5ZjVGuXkFuFNRrqQovwRFrfOrw8ORhEXq61VVXW55OUW41MhWkFdcZ9TdHXnZhSTfyODnL1bx8xfaTixNlQaNRsMzXd7iw5mv0Kqj8Xqrj2/bFriEBOgeV1VnKysoxLbG+VBeWISV/b1P63CHxMwMhYd2RJhTgC8FKRnEbthptMMupEM0o2ucq+oa7U1Rs70VFGHrcPdsV46cZ8vMJTw9eYTBCrE1ndq0n0NLtzLk43F4hdV/DfZrF41rqD7fnfOhLL8Qu5plV1CM1d+8ltRmZmaGS7AfhelZ9/W4Td596DQW/h7RYdcEREVFGXxzER0dzW+//UZxseEol5s3b2JmZkaLFi10z9nZ2RESEsKNGzd029ReoKJVq1b8/vvvFBcX644RGakfCu3p6YmLi0ujMkdHR9d5fOTIEYPnmte4hSsvL4+MjAymT5/OjBkzdM9XVlbqRop06NABT09PBgwYQKdOnejYsSPdu3fHtvoD6XPPPce0adPYunUr7du3p0ePHrrOu8aomevGjRtUVFQwadIkgzpQq9V4ehpfDtxMKsXGz5+iy3E4tNXfIlJ0OQ6H1sYX7bAJCiZt/VqqVCrMLCx020vtHZA568s+//QpkhYvxG/USzgYWQCkSqmsMxoGs/qvpOoqDZdzi+jk4WCwkEAnDwf2JJv+YNzGTcFPj0by68Ukll1Nrfd33Ks72R7yqpXN04E9SaaztXVT8HOPSOZc0K4Ca0xvfxe+6BzGh0evNWgBhf92unr2dGBPsv71dvRw4K/66tlVwQ+PRvJbTBLL/6l61mi4VlhMW2cHDqbrs7R1MXz8n6Cq0hCbVUQXH0e2J+rLqYuPAzsTTbeT9p72zHsikp9O32JRTIrJ7dRVGtJLtB05A6P8uV6irO78AjQaNDb2SJLigAAAqlQqiq7H4//MYJPHlAcFkXv+vMFz+XGXsfUP0K0sKw8KpiAuDu8+fXTbFMTF1bnd9cbKleScPEXEW1OwNnGNq0NThUpZQUxmEQ/7ObI1Xl9OD/s6sj2h4eeXmUSC1EyCuZmEyuoeu6dDXZn5WDiTd19lW3zjz1W1RsOVvGI6uDvyV42Fbzq6O7L39r2f+1bmZlTWGrZSVf24sd/cW9lYYWWjH7ml0WhQOMm5cuaqbhVQlVJFYkwi/f9199u7atJoNLoPVfeaRe6k4PrZq/iG67PciE3gqVfqz3LhwDlWfbOcYW89T4turUxud+loDKWFJbR/vGOjsymc5Fw+fVW3uqtKqSI+JpFBjS2nKo2uQ+2OPav3s2XhdiZ+NZaQ6CATezY+b5Oq1zNX8atVr0+PqT/L+QPnWPn1cp59+3laGqlXZYWyzrQtZmYSkyOpZNZWyKwNs9k4Kki6cAWPUO0HdLVSRWpcIl1H9W/YC74LqcwCO2cHKtWVxB87T2iX1ka3s7SxwrJWudk5Kkg8dxXvMH22W7EJPPZy/dkuHTzHhpnLGDB5OBFdTZ8PNd2tnuvL51UjX9KlBHq+XP+dFnGHzrJp5jL6TR5O867Gy6Mx+axtrLCulc3eWU7sqWu61V2VFSquXkjkuQkNu11af6wqXScbQGh0IMd2n6WqqkrX9tKTM7G0kiF3sK2zv7WtlcFoWY1Gg4OznAsnrxEaoc92+XwiI18zns3JzZ5Zy6YYPLdj7VEunrzG2zNexM3T+Gixu7GwtsKi1vlg7aAg7eJlXIK1dVqpVJF5JYE2w+uv03uh0VRRaWIOb2PtzdZRwY3zV/Gs0d6SLyXQ/aX6s10+dJat3y/jqX8Pp5mJ8+/khr0cWraNIR+Pwzfy7nM5miq71ItXcA3R58u4kkC7Efe37DQaDXm3UnHy/99eZEJoekSH3X+R2rdw1XSns0mjMX07gUQiqfcY95uVlf6CWlWlnYz93XffNehwrMnW1pY//viDc+fOcfLkSRYvXsycOXNYtGgRrq6ujB07lscff5xjx45x/Phxfv/9d95991369etn8PrvMLWghLW1fqj1nVzfffcdHtWrJN4hlZo+PVx6PUbywvnYBARiGxxCzsEDqAsKcO72CABp69dRevMGwW+8CYBjhw5kbN1M8uKFuD3xFBWZGWTu3IH7U/ph/HmnTpK0cAFeg5/BNjQMVYF2bgiJVKobRaOIbknWX7ux9vevviU2i/RNG1FEt0BpZHTdHUuupDDtoXBic4o4n1XIkFBPXK0tWVM9au61VgFEOcv5118xALRzs+en7pGsvpbGtpuZupErVRoM5iELd9TmsrWQUqXRPlZVakgsLDWZpbY/4lL4sks4sdlFnMssZGiYJ27WlvxZPWru9dYBRDvLGbOnOpu7Pb/0iGTV1TS23jCe7fEAV6Z1CWPmmRucySjQbaOq0vxjC0/Y2lgSHKBtQ2ZmEny9XWgR4U9efjHJqf+ZTqllV1L4vLqeL2QVMri6ntdW1/OrLbX1PG6vtizbutnz46OR/Hktje016rlSox21dD+tuZHKuy1DuVpQTGxeIX39PHC2lLE5Sbta6Mth/jSzt+OtU5d0+/jbWSOVmGFvIcVaak6wXNveEopK/laWBRdT+LZHOBcziziTXsBzkV642VrqRs1N6RBACzc5I7doy6mjlz3znohi2aVUNl7PxMVa3+bujF4MsLemlZucc5mF2FtaMLqFN6FOtry176r+F0skaNr0RHJyGzktPLB2d+f21q2YWVri0lHfkXF9/gIAQl8eDYD7I4+Qvm8fN1auwv2RbhTFx5N19CihY/Tzj3r27EnsN9+Qsm07Tq1bkXvuPIVXrxL59tu6bRKXLSf7+HHCJ0xAamODsvoaY25pibmVFeqyMlJ37ERi3QJs7aGsGGnMPiTF+VSGtOP3c7eZ1bsZ5zOKOJ1ayIhoT9xtLVkao+3ofadzIK3c5Ty3/iIAg5q5UaGu4kpOCapKDS3c5bzTOZBt8Vkoqzvr+oa68n3vZkw7nMiJlHzdCD5lpaZRC08sv5bCpx3DiMst4kJ2IYOCPXGxlrEuUdu+JkT5E+kkZ+LBWN0+gXJrpGZmOMgssJGaEWqvbV/XC7Tt61BqLh+0C2FwkAfHqm+JndwqiMt5xWSU/b3b6yUSCY8OfoRdy3bj7uuOm68rO5fuRmZtSbuebXTb/TF9GQAj39OOuD+w7iDOns64+Wo7gRMuJrB39b6/NdeZRCKh68Bu7F2xG1dfN1y93fhr+S5kVpa06qH/4mjl10sBePbtEQCc33eWlV8v5emx/QmKDqaoev4qc6k5NgrDD9Anth0jpFUozp6N+3JQIpHQ45lH2LF0Nx5+2nLavmQ3ltaWtO+lL6dFX2rL6cX3teW0b91BXDydca8up+sXEtizeh/d+uvLadfKvWyav42X3h+Om68rBdX5ZTILrO1M35J1t7xNqV4fHtiNv1bsxs3XDRcfbb1aWlnSuka9rpihrdfn3tHW67l9Z1kxYyl9q+u1sLpcpDXqNaJTJAfX7scnzBe/Zv7kpGazY/F2IjpG1juCsma21k8/yqk1u3DydsfBy41Ta3ZiYSUjvJv+i9CdP/wBQJ9JI3XPZd3QrtCsLCtHYiYh68ZtzKTmOPtqv4BIv3aT4px8XAN9KM7N5/jK7Wg0GtoN7NXgcus44BEOrdyFi487zt6uHFy5C5m1JdGP6stt/bfachs4RVtusQfOsv7bJTz2cn/8o4IpvnM+WJhjXf236+DKXfiE++Po4Yxapeb66Tgu7j3FE+NMf2FjLF+H/o9weJU2n5O3K4dXafNFPaLPt/G7JQD0f/MFAC4dOMPG75bQ6+UB+EWGGM13eOVOvMIDcPRwplKlJv50HDF7T9Fn3DMNzvb4kG5s/GMPXv5uePi6snHxbqysLencW9/+f/18OQDjpj4PwK41h3D1dMLTT9v+r1xIYOuK/fQaqG//vQZ0Zvfawyz5YQOPDe5Kdloua+fvpOfAzg26jVoikfD0sG6sXbQHH383PP1cWbNwD1Y2lnTrre9M+uFTbbZJHz+PVGqOf7DhF1v2jnZIZVKD51UqNbdvaOddVSlV5OcWceNaClbWlnj63v2aJ5FIaPZEd2I37MTe2wO5pxsx63YgtbIksIt+hO2RXxYD0GXiKN1zuTe100uoysqQmEnIvZmMmVSKg482X8z6HbiEBGDn5kKVWk3KuVgSD52kw4tD75rrTrb2/R7h6OpdOFe3t6PV7S2iRnvbPFPb3vpO1ra3uINn2DJzCd1HD8A3KkQ3F565VN/eTqz7iwNLttB38gs4ebvptpHKLAxWEb9bvognu3Nx/U7svd2x93TjwrodSK1kBHfVX0sO/qy9lnR7VX8tybl5u7rsypFIJOTcvI251FxXduf+3IZbaAAKTzeUZeVc3raf3KQUHhozrEHZBOF+ER12TcClS5cMOtpiY2NxdXXFzs5weHdgYCBVVVVcvHhRd0tscXEx8fHxPP3007ptztcaiXH+/Hnc3NywtbXVHSMuLk7XcZaenk52duNGIcTGxtKvXz+Dx/WNdnN2dsbNzY2UlBSeeuopk9tJpVLat29P+/btGTt2LH369OHw4cO6W3b9/Pzw8/Nj2LBhfPXVV2zcuJF+/frhWL2gQ3Z2tu7/167dfY6hwMBAZDIZ6enptG/fsNtOABzbtaeyuJiMbVtRFxZg5eVF4Kuv6+abUxXkU5GlHzJtbm1D0KQ3SFmxnOvTv8DcxhbXXo/h2ku/4lTOwQNQVUnqn6tI/VM/f4RtaBghb74FgPuTT4EE0jdtRJWfh9TODkV0Szz6DyCxnrlfd93KxkFmwZgoP1ysZcTnl/Dq/ljdnG6uVjJ87fQdrP2C3LGWmjMqwodRET6651OLy3ly4ynd41VP6t+AATzq41xnm7vZeSsbB0sLxkT74VqdbeLeGtmsZfjI9dn6B2uzvRjpw4uR+mwpxeU8sV77e4eEemBhZsY77YN5p73+G7tT6fm8vDumwdkao02LIHat/kj3+KM3h/DRm0NY8ucBxr756z/yO2vblZSNvaUFr0Rq6zmhoITX98eSVqotSxdrGT416rlvdT2PjPBhZK16fnpTw+uwIfanZ6OQSRke7IOTlYybRaW8dzqOzHJtNmdLC7xsDOeO+rJtBB41nptbPWKh53bD0byNtS0hC0crKRPa+uFmI+NabgmvbIsltfrWTVdbGX72+jeLg8LdsbEwZ0wrX8a00t+Kf7uonEeXnQTAXAKjW/oQaG+NukrD8dR8hq4/X2cuNk27x0Gt4sby5ahLSrELCiTijX9jXuMLDmWu4e3bVq4uNHv9NW6tXk3GgQPI7O0JePZZnGuMwpWHBBM2dgxJGzaQvGkTVq6uhI4dizxIP2ooY/9+AOJmzjQ4vk/fp/Ht1w+JmRmlqalYXjsC5SVgZUuVWwAVA6egcfFh8/UsHKwseK29P262Mq7llDBqU4zuNbrZGJabukrDhHZ+BDpYI0FCSlE5iy+m8vu527ptRkR7YWFuxiePhPDJI/pV647dzmfYuoYvfrLndjb2llJeau6Li5WMhMJS3jh0ifQabd/bzrB9zXo4Eq8aIzCWVX9o6/DnYQC23srE1sKcISGeTGoZSLGqkjNZ+fx08WaDc9Wn17M9UFWo+PPHNZQWlRHQ3J+JX48zGCWVl2m48m1VlYaNczeTm5GHmbkZLp7O9B3zNF37dq59+EZ5dGhPVBUqNvy8lrKiUnyb+TNm+niDLPm1shzfeoSqyio2zVnPpjnrdc8HtQhm3Lev6R7npGWTcP46z78/knvRu7qcVv6gLafA5v689o1hOeUaKaf1v20mp7qcXL2cGTDmaR7upy+nAxsOU6mu5PfP/jDYt1Of9ox69/l7ygpNq167D+uJSqliXXW9+jXzZ8xX4+vNcmyLtl43zlnPxlr1OuE7bb32Gt4biUTCzkXbyM8uwNbelohOkTzxkun3d7W1HdgLtVLFvnl/UlFcikdoAAM+nmgwEq8oK6/OfssnzzB4fONULHJXJ0bP/RTQjq45tnwrBRnZWFhZEtA2gj7/HomlbcNXnuzyTE/UFSq2zV5DWXEpPuH+vPDFeIORRwW1sp3epi23nXPXs3Ouvtz8o0N4cYa23JRlFWz9ZTWF2QVIZRa4+Lox4M0RBh2BDfHQM71QKVXsmPMnZcWleIf78/znE+rNd2a7Nt+uuevYNXed7nm/6BBGfvW6Nl95Bdtnr6YoO1+bz8eNfpNfIKoR+Z4e3gNlhYpFM9dSWlRGcIQf78z6l8FIvOyM2u2/ipVztpCdrm3/bt7ODBv3ND0H6Bddc3Z35N2Z/2LZz5v44MVvcXBW8MhTHRgwquErtw58oTvKChVzv11HSVEZoZF+fPTDWIOReNnpjV+oIC+rkDdH6v+upt8+xq71x4hsHczncybUs6deZL/HqFSqOLlgFRUlpbiEBNDz/VcNRpOVZNc9H7a++5XB49tnYrB1cWLQz58DoCqv4MT8lZTm5GMus8Dey50uE0YR2MX44kDGdBysbW+7fv2T8uJSvML8GfaZYXsrrNXezlW3t7/mreOvefr25hsVwvDp2vZ2ZushqtSVbPx6kcG+UT068PQbIxqcL7p/LyqVSo7PX42yuuz6fFC77OpOi7PpbcOySz4Ti52rE0N+0U7vpCwp48jcFZTlFyGzscIp0IcnP/03rjVuZxaE/wRJfn7+g5nxWwBg3LhxXLlyhb59+/LMM88QHx/PtGnTGD16NCNGjGDcuHEEBwfz1lvaDpspU6aQlJTEe++9h1wuZ86cOVy9elW36MSVK1d48cUXDRad+Oqrrxg/frxu0YlJkyaRmZnJe++9p1t0Ii4ujuHDh+vmvqtPhw4dsLe3Z+LEibRp04a9e/cyZ84cFi5cSERERJ3VWe/YsGED3333HePHj6dLly6o1WquXLlCVlYWL774IocOHSIlJYXWrVujUCg4c+YMX3zxBXPmzKF58+b8+OOP9OzZE09PT3Jzc5k2bRqRkZF8+OGHqNVqBg4cSPPmzZk4cSJpaWn8+OOPxMfH11kltuZKsgBz5sxh7dq1vP7667Ru3ZqysjJiYmIwMzMzOrffmLP3dwXN++VaatOeZKB6MGOTdP2D2Q86gknNv2rYm70HwdHxn1kx7X64davyQUeoV9eIpvund+/5u2/zoHh43n30zoPyRWfTK/I+aGXqpv33QW7RdM8HddONRkVl063X5OKme64COFg23TcllZqmW6/N7P+ZuxTuBxtp0z1Z199s+GI2D4K3bdN9z5RR1nTfawKMD+jwoCP8o9r1X3X3jf6LnN743zdCUoywawL69OlDVVUVL730EhKJhH79+vHcc88Z3fajjz5i5syZTJkyBaVSSYsWLfjhhx90t582a9aM6dOnM3fuXBYtWoSTkxMjR45k6NChBsf48ssvmThxIvb29rzyyivk5dX91qY+Y8aMYe/evXz33Xc4ODgwdepUg845YwYMGIC1tTVLly5l9uzZWFpaEhQUxJAh2pV25HI5Bw4c4Pfff6eiogJvb28++OADWrdujUqlorCwkE8//ZScnBzs7e3p2rUrr7+u/ZZGKpUybdo0ZsyYwYgRIwgNDWXChAlMnjz5rq9l3LhxODk5sWzZMmbMmIGtrS1hYWG88MILjSoTQRAEQRAEQRAEQRCE+0GMsBMarUOHDkyfPt1gBdj/T8QIu3sjRtjdGzHC7t6IEXb3ToywuzdihN29EyPs7o0YYXfvxAi7eyNG2N0bMcLu3okRdg+WGGH34DXtM0AQBEEQBEEQBEEQBEEQ/p8Rt8QKBnbs2MH06dON/szDw4NVq/63etkFQRAEQRAEQRAEQailAaswC/8s0WEnGHj44YeJjIw0+jOpVNtcTp48+Z+MJAiCIAiCIAiCIAiC8P+K6LATDNja2mJra/ugYwiCIAiCIAiCIAiCIPy/JeawEwRBEARBEARBEARBEIQmRIywEwRBEARBEARBEARBEPTEFHYPnBhhJwiCIAiCIAiCIAiCIAhNiOiwEwRBEARBEARBEARBEIQmRHTYCYIgCIIgCIIgCIIgCEITIuawEwRBEARBEARBEARBEPTMxCR2D5oYYScIgiAIgiAIgiAIgiAITYjosBMEQRAEQRAEQRAEQRCEJkR02AmCIAiCIAiCIAiCIAhCEyI67ARBEARBEARBEARBEAShCRGLTgiCIAiCIAiCIAiCIAh6ErHoxIMmOuwEoZFkZpoHHcEoV2fzBx2hXumZVQ86gknNv5rwoCOYdPnd2Q86gknh05tuuWmOpD7oCPVK9vd90BFM8g9omtc4gNvJlQ86gknncywedAST+vlVPOgI9VLImm6bO5zedOu1oqrpfpDytGm65ypAO1f1g45g0oZblg86gkn2Tfhc9bKxedARTBoQUPqgI9TLy6bp1uvVAnFDoPD/mzgDBEEQBEEQBEEQBEEQBKEJER12giAIgiAIgiAIgiAIgtCEiFtiBUEQBEEQBEEQBEEQBL2mO/PC/xtihJ0gCIIgCIIgCIIgCIIgNCGiw04QBEEQBEEQBEEQBEEQmhDRYScIgiAIgiAIgiAIgiAITYiYw04QBEEQBEEQBEEQBEHQMxOT2D1oYoSdIAiCIAiCIAiCIAiCIDQhosNOEARBEARBEARBEARBEJoQ0WEnCIIgCIIgCIIgCIIgCE2ImMNOEARBEARBEARBEARB0BNT2D1wYoSdIAiCIAiCIAiCIAiCIDQhosNOEARBEARBEARBEARBEJoQ0WEnCIIgCIIgCIIgCIIgCE2ImMNOEARBEARBEARBEARB0NFIxCR2D5oYYScIgiAIgiAIgiAIgiAITYjosBMEQRAEQRAEQRAEQRCEJkTcEvtfZMuWLXzzzTccOHDA6M9TU1MZMGAAixYtIiIi4h/L0b9/f4YMGcKIESP+1jZ33O11NVWZ+/eTtnMnqoICrL288Bs2DHloqMntS2/fJmnFCopv3kRqa4trt254PfUUkuqhxsr8fJLXrKH01i3KMzNx7tSJoJdeMjhG7unTpO3cSUVmJprKSizd3PDo1QuXzp0Ntuvr68GQQG+cLWXcLC5lzpUbxOYVmswWYGfDaxFBhNvbUaRSszU5g6UJyQbb9PPzoL+fJ+7WlmSWK1mekMye1Cyjx+vu6cL7LcM5npnL1LOX6y1HgGHhnrwY4YOrjYyE/BJmnErkbKbxvO3c7RkZ4U2Usxw7mTnJReUsuZzChvgMo9u3dlOwoHcLbhSUMmjz2btmaYghoZ6MbO6Di7WMxIISvj2TyLks43nbutkzvJk3kc5y7CzMuV1UzvKrKWxMNJ73n9ClQzP+/a+naRMdiJeHE2Mmz2HpmoP/+O8dGurJqAhtOSXkl/BNPeXUrrqcoly05ZRcVM6yK4bl5GJlwZttg2jmaIef3JqtNzL56Pi1e8o2vGcIY55qhpu9NddTCvh86TlOXzPenr1dbDk4q2+d51/6ej8HY9IB+HpsRwY/HFhnm9IKNdGvrLmnjHf08/NgaI3zefblG8SYOJ8tzCS8ERlMqMIOPztrYvOKePNk7N/6/TUNCPDguWAfnK1k3Cwq5cfYRC7mGs8iM5MwpUUIYQ52+NtZE5NbxOtHY0weO9pJwY+do0kqLmXU/nONzjYiyouxrX1ws7HkWm4Jnx9O4FRagdFtQxxt+KxbKKFONshlUjJKKtgcn8UPJ2+iqtIA4Goj44MuQUS5ygmwt2b91Qze2nu10bnu0Gg0nPtzG1f3HKGiuAzXUH86vzIMR19Pk/uU5hVwYvE6cm7cpjAtk5BuHej26gsG21zbd5xDs5fW2XfUsllIZRYNzrby913s3HCckqJSwiL9+ddbg/AL8mjQ/nHnE/lgwhx8/N34acVbRrc5uPMs3320nWvfVgAAIABJREFUjHZdmjN15isNOu6dbIt/28WWtScoKiqleZQfk94bRGCw6WznT8fzxphf6zy/eN3b+AW6AXAjIZ1Fc3Zy/UoKaSm5jPrXY7w4rk+Dc9XMt2/ZDk5vP0pZcRk+4f48PfEZ3P1N1+ulIxc4tfUIaQm3UavUuPl50O3Zx2jeKVq3zdndJ1g/c3mdfT/a+C0WjajXg8u3c27HUcqLy/AK9+eJ8UNwrSfblSMXOLP9MBnV2Vx8Peg6rDdhNbLFHTrHsTV7yE3LpkpdiZOXKx0GPErLXh0blOtOtj1Ld3By2zHKisvwbebHgInP4B5gOlvs4Quc2HqU1ITbqJRq3P3c6f5cbyIeitJt89tbP3HjYkKdfd38PJg8790G5zOW94/fdrFtnbYdNovy4/V3BxFwl3Y4ZWzddrhgrb4d3muWk6u2c2nXESpKynAP9eeRsUNx9jNddiW5BRxetJ6sxGQK0rIIf6Q9vV5/oc52FzbvJ2bnIYqy8rCS2xLUPpqHRvZHZm3Z4Gwr5mmvJcXV15Jxbw3Cv55yqunS+UTeH6+9lvyy0vi15MDOs3w7VXst+XhW464lc2dvZd2awxQVlhIVHcA7Hz5LcIhXvfupVGp+/2072zafICuzACdnOS+82IvnRvQAYPfOMyyev4vk5CzU6kr8/Nx4fmQP+vZ/qFHZVv++i90btdfg0Ah/XmnENfjy+UQ+mjgHb383vl+uL7ekxHRWzdtJ4tXbZKbmMvTl3gwb07jrnEajYf6cXWxce4LCwlIio/2Y8v4ggkJMZzt7Kp6JL9dt+ys2vk1AddufMHo2504n1tkmMNid5euN172pfBsW7uTAJm3ZBUX4M3LyYLwDTee7ci6eNXO3kZaUibJcibOHE4883ZEnnutudPvje87y66dLaflQBG983fA2Jwj3g+iw+x/i7u7Otm3bcHBwuC/H+zsdaYsWLcLa2vq+5GiKck6dImnlSvyHD8cuJITM/fu59uOPRH3yCZbOznW2rywr4+r33yMPDSXi/fcpT0/nxqJFmMtkePTuDYBGrUZqZ4fnE0+QedB4Z4rUzg6vJ5/EysMDibk5+TEx3PjjD6RyOYS0BuARDxcmNA/kx7hELuUV0tfPgy/bRvDy4bNklSvrHNPG3JwZ7SOJyS3k1WMX8bG15q3oUMorK1lzMxWAp309eCUsgFmX4rmcX0QzezlvRIVQrFJzPCvP4Hge1paMCQ/gYq7xD8q19Qlw4Z32QUw7kcDZzAKeDfdiTs8o+m86Q3pJRZ3tW7kquJ5XwoLY22SXKens5cjHnUJRVlax7YZhh4tCJuXLLmGcSM/HzVrWoDx309vPhSltg/jqVALnswoYEurFT49G8czWM6SX1s3b0kVBfH4Ji+O0eR/ydOSDDqFUVFax45bxDqL7zc7WirirySxfe5DfZ034j/zO3v4uvNUuiOknEziXVcDQMC9+6R7FoC0myslVQXxBCYsv3yarTElnT0emdgxFWVXF9pvacpKZm5FXrmJhXDKDQ0x/MLmbpzr6MnVEGz5efJrT17IZ0TOEBW91o8+720nLKTW534tf7+dyUr7ucUGx/nz6bMlZvl51wWD71VN7cepq5j3nBHjUw4WJzQP54VIisXmF9PPzYHq7CEYfOkumkfPZXCJBWaVhQ1IaHV0dsZXevz/zPbxcmBQVxMyLCVzMLWRggCffdIrkhX1nySyrW6dmEgkVVVWsvZHKQ25O2FmYzmJnYc6HrcM4m52Pi1Xjz9WnQlz5qGswHx28zqm0Ql6I8mJh32h6Lz9FanHdbKqqKtZeTScuq5hCpZrmznZM7x6GVCLhq2PaDxAycwl55SrmnE3iuYh7b293XNy4h9jNe3l44gjsvdw5v2Y7Oz7/icE/fITM2sroPpUqNVYKO1oMeIyre46YPLbUUsaQnz4xfK6BnToA65bsY8PyA0ya+ize/q6smr+bj177jdmr38HG1ni2O4oLS/n+0xW0aBdCrokO+fSUHBb9tIWIVkENznTHykX7WL3kIO98Ogy/AFcWz93NW+Pm8seGt++abeGaKSjsbXSP7R3tdP+vKFfi4eXEwz2jWfDLjkbnuuPQn39xZN0+Bk1+HhcfN/Yt38ni92czad4HWNoYz3czJp6gVqH0GvUU1nIbLuw7zYrP5zN6xmsERAXrtrOwlPHGgqkG+za0sw7g2Jo9nFi/j75vDMfZ241DK3aw7MNfGP/bhyaz3YqNJ6BFGI++8DTWchti95/mz2m/88L01/GrzmatsKXrs31w9nHHTGpG/MlLbPlhBbb2doS0j2xQtgOr/+LQ2v0MefN5XH3d+GvpTn5/bw5T5r9vMltiTALBrULpPepJrOU2nN93hiWfzWfs168SGK3N9sLU0VSqK3X7qFVqvh83gxaPtGpwuRmzavE+1iw9yFufDsPX35Ul83bzzvi5LFx/93Y4f80U5Arj7fBenF2/h/Mb99Lz9RE4erlxavUONn7yMyN+mWr6WqJWY62wo+2gx7i066jRba4ePM2RPzbSY+JzeEUEU5iezV+/LEetUtHz1eENyrb2j+pryUfP4uPvyorftdeSOX827Foy65MVtGwXQk4915KFP20h8h6uJYsX7GLp4j18Mm0k/gHuzPt1GxPG/Mi6LZ9gW0+299+aT0Z6Hh98PBw/fzdycgqpKFfpfm7vYMvL/3qCgEAPpFJzDh2I4fOPluLoKKdrtyiTx61pw5J9bFpxgFc/1F6DVy/YzWev/8ZPq97BugHl9uNnK4g2cg1Wlitx83Sk06PRLP9te4Oy1LZ04T5W/HGQDz/XXoMX/LabSf+ay8pNb9dbbgDL1xtegx1qtP3ps15ErVLrsyrVjBj8HT17t2xUvm3L97Jz5QFefv9ZPP3c2LhoF9+88SvTl7+LtYlriZWNJb0GP4xvsCcySwuux9xg0bdrkFnJ6Dmwi8G2mak5rJq9mbCWjW9z/xPMxBx2D5q4JfZ/iLm5OS4uLkjv4we0e+Xo6IiVVf0X8f9mGbt349y5M64PP4y1pyf+zz2Hhb09mSY6N3NOnKBKqSTopZew8fbGqW1bPB9/nPQ9e9BotKM5LF1c8H/2WVw6d0Zqa2v0OIpmzXBs3RprT0+s3Nzw6NkTG29viq5f120zOMCLXSmZbL+dQVJJGb9cvkFuhZK+Jr557eHliqW5GV/HXOdmcSmHM3JYlXibwQH6bxx7ebmy7XYG+9KySS+rYH96NtuS0xkW5GNwLHOJhPdbhrPw2i3Sy8obVJYjm3uzMSGDtdfTuVFQxvSTCWSVKRkWZjzv77HJ/HT+FuezCrldXM7qa2n8lZRNLz+XOtt++lAoGxMyuWDijd+9GN7Mm82JGaxPSOdGYRlfn0kgu1zJM6HG8y6IS2b2xVtcyC4kpaScNfFp7E3Opqdv3bz/lJ37zvPx16tYv+0kVdWjh/5pL1SX07rqcppxOoHsMiVDTNTr/EvJ/HJBW68pxeX8eb1uOaWWVPD1mUQ2JWZSoFQZPU5DjH6iGesO3WDV/kQSUgv5dMlZsvLLGd4zpN798osryC4o1/1TVVbpflZcpjL4mb+bHf7udqzaX3ekR2M8E+jFzpRMtlWfzz9fvkFOPedzeWUV319KYGtyhtEO+r9jWLA325Mz2ZyUwa3iMr6PTSSnXMnAAOPfYpdXVvHdxQQ238ogs7xup1lN77YKZXtyBrF5RfeU7ZVWPqy9ksHKuHQS8kr55FA8mSUVDI8yPnLiVkE5a69kcDmnhJSiCvbczGHDtUzae9nrtkkpquDTQwmsvZJBfoXa6HEaSqPRcGnrPloMeIzATq1x8vOi28QXUJVVkHj4tMn95G7OPDR6CGHdO2FpZ2NyOwAbR4XBv8Zk27zyIINH9qBzjxb4B3sy6aPnKCv9P/bOMy6Kq+3D1wJL771XKQJix26ssSYajSW2RKPRFBOjj6nGmkSjxrTXlp6Y2GKPXWPvvYAtIKhUXerSlgX2/bDIsrALC2r0eXKu348PM3POzH/uc+Zm5577nKPg0K7aMx2/+WQtXfq0IKyRv87jJSWlLPzoN0a82gt3L0eDdd3Xtm7lYYaN7sxT3aIIaODB+7NfoKBAwd4dtWtzcLTB0dm24s/YWPOzNyzCl1cnP0O3Xs0wMzc8CFZV3/FNB+kwqBsR7Zvg5u/JwCnDURQquHTgrN56fSYMpOPg7niH+uHk6UKX4b3wbODD1eOXtMpJJGDjaKv1VxdtpzYfpO3z3WjYrgmu/p48O3kExYUKYg7q19Zj/EDaDe6OV6gfjp4udBzWC48GPlw/odEW0DiE0DZROPu44ejhQnS/TrgFeHI71jB/p1KpOLrpEJ0Gd6VRh8a4+3sweOowFIUKLuzXr+3ZVwfQaUg3fML8cPZyoduInng18CG2Uuaupa2Vlr0SY29SXFRMi6cNz/7TpXfDysMMfakzHbuq++G7s9T9cJ8B/dDeQX8/rI+Wi1sP0HxAdxq0aYKTnyfd3hyBslDBjUP6fYmtqxMdxz5Pwy76fUnatZu4h/gT1ikaW1cnvKNCCesUTfqNWwZr21LuS9qV+5K3Z6h9yUEDfMnXH6+lay2+ZMG03xg5oRdu9fAlK1fs46WXe9C1ezMaBHsx65MXKcgvYue203rrHT96hZMnrvHV0jdo3bYhnl5ONIoKoEV0SEWZ6FZhdO7ahIBAd3x8XRg2sgsNQrw4fzbOYG1b1xziuZFdaNMlCt8gDyZ+pLbb4d21223JJ2vp3LsFoZH+1Y41CPflxTefpUOPZpjV42OYSqVizW+HGTmmM527RxEU7MFHH79AQb6C3dsN88FOzrYVf5X7vp2dpdaxS+cTKSospu9z0XXSt3vtIXqP6ELLTo3xDvRg3IcvUFSg4MQe/aNq/EN9aN2tKV4B7rh4OtG2RwsaRYdy46J2xl9JSSnLZq5g4LjeuHhUT8gQCP4JRMDuCeTcuXOMGTOGp556is6dOzN69Gji46v/CMrNzWXs2LFMnDiRwsJCUlJSiI6O5sqVKwCcPXuW6OhoTp06xejRo+nQoQOjRo3i2rVrtWo4e/Yss2fPprCwkOjoaKKjo/n2228rjisUCubOnUvnzp3p27cvK1as0Krfr18/fvtNM0QnLy+PefPm0atXL9q3b8/gwYPZs2ePzmtXvS9D7+PSpUuMHz+eDh060KdPH+bNm0deXp5Bds3Ly2PGjBn06NGD9u3b079/f1atWqVTX1lJCfm3b2NXZdixXXg4+TraCSDv5k1sGjTAyFTzz9I2IgJldjbFGRk669SGSqUi9+pVitLTK4bimkgkhNhac1aWrVX2rCybCHsbnecJt7chJjOX4jJN8OGMLBtnczPcy4dASI2MtI4DKMrKCLWzxrjS6kGjg31JL1SwR89Q2aqYGEkId7LheIq23uMpWTRxMfzFxEpqTG6x9gv1kFAPnC1M+fbybYPPUxsmRhIaOtpwIlVb74nULBo7G67XWofe/yXu2+l4FTsdT6ubnXS164MiNTYi0t+BwzFpWvsPx6TRLLjmIOqSN9tzanF/1n7UlZ4tvWssO6RzEDeSsjn3d/2eb9A8z2d0Pc8Oup/nR4WJREKInTWn7mpn1J6+l0VkHYJDuujv746jmSm/3rhTe2EdSI0kRLrYcPhOptb+I3eyaO5umDY/O3Oe8nXgZHJ27YXrgfxuBoXZuXg1blixz8TMFLeGDUi/Xn1IUF0pLVay+tWPWDV+GrvnLkWWYLgt01MyycqQ07SV5gXUzFxKRJNArl1OrLHu9nVHycrIZdDo7nrL/LZ0O64eDnTp09JgTfdJTc4kUyanRRttbVHNAoi9WLM2gPHDv2Rg91lMHr+M86cNe3muC1lpGeRl5dKgWWjFPqmZKf6RQdy+klCncykKFVhUCaQoi5UsfHEmC0ZMZ8WM5aTEJRl8vuxybYHNwrS0+UYEkXS1jtoKFJjrCfKoVCoSLlwnI+kuvpE1f/S4T2ZaBvLMXIKba2sLaBTErSuJddNWWISFjf5g9qkdxwlt0RB7V4c6nbcy9/th8yr9sFGzAGIvJdZa/7URXzL46VlMHb+MCw/YD3PTMyjIysWnicZ2JmameEYEkXqtbu1aFY+GQcgSk0i7rj6P/F4mCadj8Gtu2DQ7Fb6kdRVf0jSQa7XYaVu5Lxk8Rr8vWbFE7Uu69q27L0lOkpEhy6V1W40PNjc3pWnzYC5e0B9oPrDvIhGRfvz+y156dX2f/r2nM//TNRQU6P4orVKpOHXiGrcS02nWwrDnIT0lk+wMOU2q+ODwJoFcr8UH71x3lOzMXAbW4IMfhJTkTDJkcqLbarSZm0tp0jyAyxdq1gYw+oUv6dtlFm+MXcbZUzX3/c3rT9C6fRhu7oaPFLuXmklOppzIlhofbGpmSkjjQOJiatd3n1s3kvg7JpHQJkFa+9d/ux1nD0fa96p7nxMIHhaPPxVLoEVJSQlTp07l2WefZfbs2ZSUlHDt2jWMjLRjqzKZjIkTJ+Lv78/s2bORSqVkZWXpPOeSJUt44403cHZ25vPPP2f69OmsWbOmYu40XURFRTF58mSWLFnChg0bALC01PwgWrVqFa+88gq//vorx44d4/PPP6dx48ZERUVVO5dKpWLSpEnI5XKmT5+Or68vt27dQqGonnGh674MuY+4uDgmTpzIK6+8wocffkhubi6LFi3i448/Zt68ebXadenSpcTFxbFo0SIcHBxITU3Va8+SvDwoK0Nqq/0iaGJri/Kq7vnalDk5mDpo/1iU2thUHDNzNjzbqqSggIvvvotKqQQjI/yGDcO+USPSC8HOVIqxkYSsKtlHWcVKmprp/rLmaCatlomTVazedjAzJa1QwVlZFj293TiSlsGN3DxCbK3p5e2G1MgIO1MTMhVKmjvZ08nDmQlHLxh8Lw5mUkyMJGQUal8/o0hJKwvDMh46ejnSysOeUTs0wxGD7S15NcqX4Tsu8DATyuzL9WYWVdcb7W6Y3g6ejrR0t2fMnou1F/4vpaJdq9qpUEkrQ+3k5Ui0uz2jdz9cOznYmGJibIQsR/vHtiyniHYRbjrrFBQp+XTlec7ekFFaVkbXpl58/UZbpi4/yeZj1TMPrC2k9Ir24fO1l3SczXAqnmdF9ee5menDGeJdFy0murQolDi61C87CSDQxpLRob5MOHyRstqL68TBXK1NVqCt7V6BknbeNdtp3YAmRLrYYGZixKrYFBaceLAXXn0UZquzfC3stAOtFvY2FGQ+WJDQztOVDq8Nx9HPG2VREbHbDrB12iKeW/g+dh61z5OVlaHWZu+orc3e0ZqMe/qnNkiMS2X197tZ8OObejOGzp+4zpG9F/lyxeQ63JGGTJk649KhijYHJxtkd/Vrc3S25e0PBhAa4UuJsoTd284yZfxyvvhuAo2bB+mtV1fyyjNCrasE0K3tbcjNMGxaCICTfx4mV5ZNky6al0Jnb1eemzQM90BPFIUKjm86yPf/+ZLXF7+Dk1ft7ZpXPs+lVZWPdVYONsjroO3M1kPIM7Jp1EX7hbUov5CvRn1EqbIEiZERPV8dRIMWhgV28jLVdrOpZjfrOtnt+JbD5MhyaNa1hc7j95LuknApnpEzXjb4nLrIytDTDx1r7odOzra89cEAQsPV/XDP9rNMnbCcz7+dQFQ9+2FBuS+xrNKulna25D2gLwnp0JwieT4bpn0FKhVlpWWEdmpJ21H9DKpfoy+pwU4VvuQH/b7k3InrHN57ka9/q58vyZCptTlW+Wjo5GTD3bv67ZacJOPCuXikUinzv3gFubyQBZ+uQXYvh/lfvFJRTi4vpFeX9ylWKjE2MuLdD4fSroNhw2Gzy+1mV0cffCsulbU/7GZuDXZ7UDLKfbCjU918sJOzLVOnDSA80helsoSdf55l4rjlLP5hAk1bVO/7txPvcf7MTT776qU66cvRYzs7RxuyarDdfd4eMAt5dh6lpWX0f+lpuvTXzAkec+o6p/ZdYPZPU+qkSSB42IiA3RNGfn4+crmcDh064O2tzuDw9/cHIDY2FoA7d+4wceJEWrduzTvvvFMtmFeV8ePH06KF+sfM2LFjGTduHHfv3sXNTffLKYBUKsXa2hqJRIKzjmBS69atGTx4MABDhgxh7dq1nD59WmfA7tSpU1y+fJnVq1cTEKCelN3Ly6taudruq6b7WLFiBd26dWP4cM0cG++99x4jRowgMzMTY2NjvXYFSEtLIzQ0lIgI9dwrnp41T0ALqMeqVEZVS2RIX4C0hsCpLozNzYn46CPKFApyr17lztq16nnz/DUTQutSoqpBX9UjEiT3KwHwW3wSDmamfNW6ERIkZBUXsyf5LkMCvSlTga3UhKmNgvn00nXyKs0dYyj1jak1cbHlsw6hzDt1k5gMdTal1EjC/I5hLDybQLKOuaseBtXtVXvzg3o+u0/ahbLgzE1iM/Jqr/BfTlWbSCSG2amJiy1z24Uy/4ymXR+ntqy8Yn7YoVls4HJCFg42ZrzSp6HOgF3/dn4YSyRsPJr4EBVro6r3U/Og19Wxr55SpEYSZjYPZUlsAqk65jWsK9WeS0ntvmXi7qtYSY1p6GzF+22DmNCsiKXn6pfpV5m4w6c5ulyTpf30+69qRGmJVgEPNj+MW2ggbqGauXVcQwLZNHUuV3YcpM2YQdXKH9h5lqXzNAuhVCwAoUOavg97yuISFk5bweg3n8HNU/cwodzsPL6as5ops4djbVvzcN777Nl+jkUfa7TN/VodaKmmQ6Wq8aOjr78rvv6aoFZEY3/SU7JY++vBBwrYXdx3hi3frKnYHjFrvE59KlQGN2vskQvs+mEzg957EXs3zTA/34YB+DYM0Npe/MZ8Tmw5TJ9XB1Y7z+X9p9n+fxptQ2eqtVXtc3V5Xq8evcDeHzcz4J2XsHfVHoJoZmHGuG/epbhQQeLFG+z9fiP2bo4ENAmtdp7z+86w8au1FdsvzXmlWhm1uEq/P2rh8uGLbP9+Cy+8/yIObrqHR57ecRwbR1vCWtVtIba/tp/ji080/fCTevZDH39XfCr1w/DyfvjHioMGB+yuHzzNgWWrK7b7fjiBcjHaUqhZiyEkx/zNmT928tQrg3EL8Scn9R6Hf1jPqVXbaTWsT7XyB3aeZfFcjZ2mly8AocvN1eRL5n+o9iXuXrp9SU52Hl/NXs1/5hjuS7ZvPcWnszSLtny1RD1/b1UVKvRrAygrU9v1k/ljsLFRz839zgdDeGP8N2TIcnEqDwBaWZmxav0HFBQoOHXiOosWrMPTy4no1mHVznlo51mWf6ax2wef189uiz5awagafHB92LXtHJ/N1mhbuFh/36/JyfkFuOJXaWGVRo39SU3JYuUvB3UG7DavP4Gziy1tOzSsdqwyx3af5ZeFf1Rsv/2Z7gUgVCrDfPAH//cGRYUK4mNv8ceyrTh7ONGuZwvk2Xl8/+kqxs8YgVUNGbz/CsQUdo8dEbB7wrCzs6Nv3768+eabtGzZkhYtWtCtW7eK4JpSqWTcuHF06dKFd955x6BzBldaufR+8C0rK6vGgF1tNGignebt7OysNyPt+vXrODs7VwTrdGHIfdV0H9euXSMpKYm9e/dWlLkfoEpKSiIqKqpGuw4cOJD33nuPa9eu0apVKzp06ECzZs106jCxtgYjI5Q52l9uSuTyall395Ha2VUrr5Srv1rpq6MPiZER5q7qf4KWPj4UpqWRsmMHDq82IqdYSWmZCscqk1I7mErJ1jPnV6ZCWa28ffn2/Uy94rIyPo+J48vYeBxMpWQqiunt405+SQk5xUoaOdriZG7K/Baar4n3/7fvfLotY4+eJ438atfOUigpKVPhXGVBCCdzKRmFNc9R1tTVliVdIlh88RZrb6RW7HexMKWBvRVz2oYwpzyF30iingD//Ij2vPZXTLWhmoaSXa7Xqco8II7mUjKLatbbxMWWrztFsOzSLdbFpdZY9r8dfe3qaC4lwwA7/V/nCJZevMUffz98O2XJiykpLcPFXnuOTSdbc2S5hs27CHAxPoPnO+r2aUM6BbHzzB1y8h9sDrn7z7ODWfXnuWoW7aMmp1jdpo5VtZhJq2XdGYqTmSkBtla81ySE95poP6v7+7bjnZOxnL5X+7OaVaTW5mKprc3ZQoqsoOY2SC0P6sdlFWAskTCvcyjfnr9D6QPGQ31bNMK1gX/FdmmJemh3YXYu1s6abOvCnDws9ExXUF+MjI1wDvIlN1X31ATRHSIIjfCr2FaWT/qdnSHHxU2jLScrr1qmzH0yZbncSUjn64/X8PXH6iCRqkyFSqXiubZTmb5oLCZSY7JkuUyfuLyinqo85fm5tlP5ZtVUvP20M8XaPRVOeKQmg6a4XFtmRi6ulYZJZWXm4eBYt4n7GzbyZd8uwzPAdRHWOhLvMI3t7k+YLs/Mxc5FY7v87DysDWjX2CMXWL/wNwZMGaG1QqwujIyN8Ar2IUPPlBMhrRrhFepfsV1ari0/S1tbQbYcKwOGsV89eoHNn6+g3+QRWivE3kdiZISjpwsA7kHeyO6kcXTtHp0Bu/DWkfiEaux2X5s8S641VDUvJ69atqIuLh++yNoFvzF46nCtFWIrU6Is4eye00T3aoOxsXGt56xMm6fCCavUD5X6+mFWHg5OdeuHYZG+HKhDPwyIboRbiH/F9n3bFWTlYqPlS+TVMnjryomVWwnu0JyI7uosI2c/T0qKitm3ZCUth/TEqIodoztEEFLZl5RPYZFVD1/y1Zw1fDVH25f0azOVGV+MRSo1JlOWy7Q3qvuSfm2msnh1dV/yVOcoGkX5V2wXl2vLkOXi7qEJ8GZmyKtlj1XG2cUWF1f7imAdQED5yq1pqZkVATsjIyN8fNUaQsN8SLiZyo/f7dQZsGvZIYJgPT7Y2UC7ZclySUpIZ/HHa1hcxQcPajeVDxeNpUmr6s9ibbTvFE54o0p9v5Ld3Kr4YMc69v2IRr7s2Vm97yvZzrPNAAAgAElEQVSVJezYcoZnB7bGxKTmZ7Vp+wiCwn0rtkuU6iSBnEw5TpVsl5uVVy3rThcu5cFOnyBPcrPy2PTTLtr1bEFSQhrZGbkseFuz0u39Pjem03/45Nd38PCt/0rPAkFdEAG7J5Dp06czdOhQjh8/zuHDh1m2bBnz588HwMTEhFatWnH06FFSU1Px8Kh95brKi1Dc/0JSVlbfwUfVz3n/vPoyuGrK7Kp8vtruq6b7UKlU9OvXjxdeeKFaPRcX9Q9KfXZt06YNbdu2ZcuWLRw7dozTp0/z9ttv07VrV6ZPn17tfEYmJlj5+pJ79SqOLTTDMHKuXMFBT5DPOjCQOxs2UKZUYlQ+zDf3yhWk9vaY6lhVtk6UlamHxwIlKhU3cvNo5mzPoXTN3FnNnO05nK57Lq0r2XLGhvohNZKgLP9n1NzZHlmRgrQqKz+WqlTIFOoX4M4ezpy8m4UKuJGTx7gj2pPPvhTsi43UhG+u3CRNz1wfJWUqrmTIaeNhz+5bsor9rT3t2XtL/9xfzV1tWdw1giUXb/Pb1RStY3cLinlui/ak1UNCPWjj4cCkA1dIzjM8KKNL79VMOa097Nl7R6O3lbs9f93Rr7eZiy1fdYpg+eXbrLyeorfc/woVdnK3Z8/tSu3qbs/emuzkass3nSJYduk2vz8iOylLy4hJzKJ9pDs7TmkyqdpHuLHzjOHzQzX0c+BudvW+FBXoSLifAx//VvtkzLVx/3lu7mTPoTSN3Zo7a2//E5SoVNzIyaOliwMHUjXXbuniwMFUWQ019XOvqJhR+7UnhX7O34MWLvZ8ePqqXr9RFWWZiph7ctr7OLA9XqOlvY8DO+IN12YkkWBsJMFYIqG0vmmD5ZhamGut1qhSqbCwtyX50jVcGqhf1EqKlaRfiyd6ZP8HulZVVCoVmbdScPSvnskOYGllrrVao0qlwsHJhgunbhBc/iJUrFBy5cJNXpr4jM5zOLna8fXK/2jt27H+GBdO3uD9+S/h6uGIREK1Mr8v20GevJDxUwfg5lk9K0qXNkdnG86c+JuwCI22y+cTGD+prwHW0BB3PQUn5wcLaJhZmmutYKpSqbB2sCX+/HW8ywNSymIlt2Li6TG25mGElw+dZ8PnvzNgynAiO9S+gqlKpSI9IQX3AN3tqk/bzfPX8QzR9LnbsfF0fbnmPnfl8Dm2LPqdZycPp2H7prVqu3+9yis+1qbNxtGWuHPX8QlVt6uyWEliTDy9xz5b43UuHTzP2oUrGfyfYTSqwW5Xjl2mIDefFj3rvtiEvn54rko/jDmfwCtv1a0fxt9IwbEO/VCXL7F0sOXOxWu4BWvaNeXKTdq9aNjQVX2UKJRIqoxukRhL9GZl6vUlJ28QUsmXxF64yegafMn/rdL2E9vWHePCqRt8WMmXVC2zYqnal7z6jm5fYmVlrrWCqUqlwsnZlpPHrxJRvqiFQqHkwrk43poyQPcNAk2aBrF39zkKCoqwLO/Dt2+pV3/30HHdiuuVqSqChFWxsDLXWvlVpVJh72TDxVM3aFDJblcv3GSUHrs5utrxxe/aNtm5/hgXT93g3c9ewsWjboty3Ee33Ww4dfxvwiPV2tR2S+CNyXXr+zeup+Cso+8f3BdDdnYBzwyofbEJC0tzrZVfVSoVdo42xJ6+QWBDje1uXLrJkNd0204fqrKyCh8WGObDx79M1Tq+/rsdFMgLGDl5YL3tKxDUBxGwe0IJCQkhJCSEF198kbfeeott27bRunVrJBIJM2bMYNasWbz66qssW7YMd3fdK/Q9KCYmJg8c2AMICwtDJpORkJCgN8vuQe8rNDSUmzdv4uPjU2M5XXZt06YNAPb29vTu3ZvevXvTtm1bpk2bxnvvvYepjrmi3Lp3J+HHH7Hy98e6QQPuHjyIMicH16eeAuDOhg3kJyYSNln9lcoxOprkrVtJ+OknPPr0oSg9ndSdO/Hq21crzbzgjjqAUFpUhEQioeDOHSTGxliUD9FN2bYNq4AAzFxcUJWUkHP5MhknTuD7wgsVQ7/WJ6bwblQw13PyiM3Kpa+PO05mpmy9rZ5kf0yIH2F21rxzWj3Eel/qPUY28GFqo2BWxifhbWXOkEAvfovTBDO8LM1paG/D1Ww51lITBvp74m9tyfzL6tVpi0rLSMwr0LJRfkkJxhJJtf1V+fVqMnPbhXJZJuf8vVwGh3jgamFWkTX3VlN/Ip1tGLdHvQpcCzc7FneJYM2NVLbdvItT+ep+ZaryzC6Virhs7WtmFikpLi2rtr8+/H4tmTltQonJkHPxXi4Dgz1wsTBjfXk22BuN/Yl0smHCPrXe5q52fN0pgj9upLIjUaO3VKXO2PsnsLI0I6h8JU8jIwk+Xs5EhfuRlZ3HnZRHE/hZcS2ZT8rtdOFeLoPK7bSu3E4Tm6jtNP6v8nZ1teObzhGsvZHK9sTq7XqfUAf1CspWUhPKVOptZamKm7mGt+2PO66xcEJrLsZncPZvGcO6BOHqYMHKv9QTIv9ncBSNA50YOW8/AAPa+6MsVXHlVhZlZSq6NvNkRLcGzF9TfX69oZ2DSEjN5eS1u/WwWnXWJaTwXmP18xyTlcszvurn+c/y5/nl8ud5avnzDOBnbYGJxAg7qQkWJsYE2ahtFi+vnuVaF9bEJzOtWQhXs+Vczsyln78HTuambEpUaxnf0I+G9jZMOh5TUcff2gITIyPsTaVYmBjRwFatJS43n1KVigS5drtlFStRlpVV218b319IYlG3MC6myzmTlsvwCA9crcxYGasO/E5tHUBjNxtGbFbPK/hciCuK0jKuZeSjLFMR5WrD1NYB7Ii/R3GliS8bOqv12pgao1KpaOis7m9xWXXTJ5FIiOjTmYsbdmHv5YathysX1u9Eam5KYHvNh5+D3/wKwFMTR1Xsy0hQB5KLC9X/FzISkjAyMcbBR/1h69wf23EN9sfWwxVlQRGxOw6QeTuZduOGGKztmaEd+eOnvXj7ueLp68LaH/dibmlGxx6aYM0XM9XDy96eOQwTE2P8grQ/rNk5WCM1NdHaX7WMlY0FpaVl1fbXpO35YR347Ye/8PV3xcfPmRXf/YWFhRndemm0fTpNPfz4g4/VH+3W/X4Id09H/APdUJaUsnfbOY7sj2HWwhcr6iiVJdy6mQ6os28yZXLiridjYWGGl45Vx/Xpa9P/KQ6t3o2zjxvOXi4cWLUbUwszojo1ryi3bqF6Ea7n/zMCgEsHzrF+4Qp6ju2Hf2QQ8kz1PEzGUmMsy5/Xfb/vwCfMHydPFxQFRZzYfIi0hBSeeWOwwdqi+z3FkTW7cfZ2w9HLhSNr1Noin9Jo2/y5etGwflNGAhB78CybP19Bt5f74xvRgLxK2izKtR1ZvQvPUH8c3J0oVZYQd+YKl/edpseE5w3W1q5/R/av3oOLjyvO3q7sW7kbU3MzmnTWaFszX223Ie+o7XbxwDnWzP+N3uP6EdCokt1MjLEs9y33ObX9OEFNgnHyePAV2SUSCQOGdWDlD3/h4++Kt58zv3+v7oddKvXDeR+p++F7c9T9cH15P/QLcqNEWcre7ec4uj+GGQte1HkdQ7U07tuJM+t24+Dlhr2nK2fW7UJqbkpIR40v2fOV2pd0f0vjS+6V+xJlYRESIwn3EpIwNjHGsdyX+LeM5MKW/bgG+eIe4kd2qoyTK7fh3yKiWnadPm3PDu3I2p/34u3vipevC2t+3IuFhRlPVfIli2aofcnkWbp9ib2DNVLpw/clw0Z24cdvd+If4I6vvys/LN+BhaUZPSstiDP9/Z8BmD33JQB69mnJ98t2MHPaCsa/1gd5biEL562l69PNcHRSZ9f9sHwHkVH+eHk7oywu4cjhWLZtPck77xvug/sO6cj6n/fiVe6D1/2k9sEdntbY7evyIb5vzlDbzVePD668X6ksISlB7eeUxUqyM+Uk3EjG3MIMD5/anw2JRMKQER34+bu/8A9Q++Cfv/sLS0sznu6t0TbrA3Xfn/Gpuu+vXnEIDy9HAoPcUCpL2bntHIf2xTB3UfW+v3ndSVq0aoCXd90TGCQSCU8P7sifv+7Fw88Vdx8XtvyyB3MLM1p31yRRfPux2navTBsGwJ51h3HxcMS9PEvu+sV4dqw+QJfn2gHqIf/egdr2tbS2oKy0rNp+geBRIwJ2TxjJycls3LiRjh074uLiQnJyMnFxcQwYoPn6Y2RkxIwZM5g5cyYTJkx4ZEE7T09PFAoFJ0+eJDQ0FHNzc8zNzWuvWIWWLVsSERHBe++9x6RJk/D19SUpKYnCwkI6depUUe5B7mvUqFGMGTOGuXPnMmDAACwtLUlMTOTIkSO8//77tdp1+fLlhIaGEhgYSGlpKfv378fLy0tnsA7AqWVLSvPzSdm+HWVODhaenoRMnKieSw71QhKKe5phKyaWloROmsStVau48sknmFha4t69O27dtVd1ip0zR2s7+9IlTJ2caDx3LgClCgW3Vq6kOCsLI6kUc3d3AsaMwSk6mvRCdZ2DaTJspSYMC/LG0cyURHkBH569wt0idback5kUj0pfpwpKSnn3dCwTwwNZ3KYxcmUJ6xJSWJeoyXAylkgY6O+Jt5UFpWUqLmTm8NbJy6QXPvi8U7sSZdibSXklyhcXC1PisvN57a8YUvPV53axMMXHRqO3f5AbllJjRkd4MzpCs1Jncl4RPTecfmA9tbH7tgw7MyljI3xxtjAlPiefNw/EVMzB5Wxhire1Ru8zgW5YmBgzKtybUeEavSl5RfTd8uj1AjSLCmT3Wk226PQpg5g+ZRAr/jjIK1OW1VCz/uy+JcPeVMq4SLWd4rLzeeNApXY1N8Wnkp2eLbfTi+HevFjFTr03a+y0prd2Fmsnb6dqZWpj28k72Fub8Xq/CFzszfk7KYeXFx4iJUMdhHG1t8DXVXuox+v9wvFytqK0TEViqpz3vjtVbf46K3MT+rb25f82xfKwOJAmw9bUhOFB3jiaq5/n989oP8+eltp++dPm4bhX2vdte3UWStcdRx9Iy74UtZZRIT44mZmSIC/gnROxFX7AycwUTyttLfNbR2j5m586qX/gd9hy5IG0VGVb3D0czKW80cIPFytTbmTkM+bPyyTL1dpcLU3xs9UMaSpRqXi1uS/+dhZIJBKS5UWsiEnhhwvaWZbbh2hPZt8twJmk3CI6rDhZZ41R/bpRWlzMse/XUpxfgEsDf3pMe0MreyZPllmt3qZ35mlt3z4bg7WLI0OWzAagOL+QI8tXUZgtx9TSHKcAb/rMmoRLsL/B2gaM7EyxQsnyBRvIkxcSEuHLrK9f0cqekaU/mhV0a2PoS51RKJR8NW8D8txCGkb6smDpOC1td9O0p+RQKktZ+sWfyO7mYGYmxT/Inblfv0zrSvMjZdzLZdzQLyq2U+5k8Of6EzRuHsiX379msL4Og7pSUqxk6+J1FOUV4B3qx4ufvKqVUZZTdXXl7UcpKy1j+/KNbF++sWK/f6MGvDx/IgBFeYVs/noNeZm5mFtZ4BHkzcsL3qzI5DOENs93Q1msZOfSPyjMK8Ar1I9hc17T1nZPW9vZHWptu7/dwO5vN1Ts923UgFHz3gSguEjBjiVrkcuyMTGV4uztyrOTRxJZKUhZG08N7oqyWMnmxesplBfgE+bHy3O17ZZdRduJbWptW5dtZOsyjd0CooIYv2BixXZGqoz4i3/zwvujeFgMebEziiIl33ym6YfzltTcD0uUpSz/4k9k99T90C/QnU++fplW7Wuep6s2mj3XjZJiJQe/+wNFXgFuwf70m/G6li+R36s+Tc2ayZ9pbSeejsHGxZEXv50FQMtBPZBI4OSqbeRlZGNhY4V/y0haDzc8U2ngKLUvWTZf40tmf6PtS+49Jl/y4pinURQpmffJauS5BURGBbD424laGWVpqdo+2NLSnCXfv8n8T9cycug8bG0t6dSlMRPffq6iTEGBgrlzVnE3PVvtbwLcmf3pS/TsbfjKov3LffB3CzeQLy8kOMKX6V+9opWJJ0uru92y7uXyn1GLNPeXdJzdG48T0TSI2UsN83MjRqv7/sJP1X0/vJEvXy4bp2W3dB19/5vP/+ReuQ8ODHLn88UvV5ujLjkpg7On4pg9fzj1pfewLhQrlKxYtJ78vEKCGvryn0XjtTLxMtK19ZWVlbF22VZkaVkYGxvh6unEoAl96dyvTb11/M/ygHNjCh4cSXZ29uOZuVqgk4yMDD777DNiY2PJzs7G0dGR7t2789prr7Fz504WLFjAwYMHASgtLWXWrFlcvnyZpUuXUlZWRv/+/fn5558JDw/n7NmzvPrqq+zevRt7e/W8AykpKVplamPevHn89ddf5OTkMHbsWF555RX69evHoEGDGDFiREW5CRMmEBQUxNSp6vThqmXkcjlff/01Bw8epKCgAC8vL8aOHUv37t3ZunVrjfeVnJxs0H1cuXKFZcuWcfnyZUpLS/Hy8qJTp06MHz++RruamJjw448/smvXLlJSUjAzMyMyMpK33npLZ0bg6xcebA6cR0V64ZMdf0+7++DZmo8K6RNsuqvvLXncEvQSOtfwl9p/GvnO5MctoUb8h9WcDfw4KVY+uT8Lku7UfVGbf4pXOzzYnIWPkmd9H80CPA8LW9Mnt88dSav/KsiPGkXZk/siZW3y5P7PB2jhonu44pPApltmj1uCXnp4Pbl+ztPyyV0coLbRJo8bT8sn1wdfz3k0K+A+LMLN2j9uCY+U5iM3PW4JD5WzKx7uNCT/BCJgJxDUERGwqx8iYFc/RMCufoiAXf0RAbv6IQJ29UcE7OqHCNjVHxGwqx8iYFc/RMCu/oiA3eNFBOweP0/2EyAQCAQCgUAgEAgEAoFAIBD8y3iC80oEj5q33nqLC3qyxV566SVGjx79DysSCAQCgUAgEAgEAoFA8NgxenIzuf8tiIDdv5gPP/wQhUL3MBlbW9t/WI1AIBAIBAKBQCAQCAQCgQBEwO5fjaur6+OWIBAIBAKBQCAQCAQCgUAgqIKYw04gEAgEAoFAIBAIBAKBQCB4ghAZdgKBQCAQCAQCgUAgEAgEAg1iCrvHjsiwEwgEAoFAIBAIBAKBQCAQCJ4gRMBOIBAIBAKBQCAQCAQCgUAgeIIQATuBQCAQCAQCgUAgEAgEAoHgCUIE7AQCgUAgEAgEAoFAIBAIBIInCLHohEAgEAgEAoFAIBAIBAKBQINErDrxuBEZdgKBQCAQCAQCgUAgEAgEAsEThAjYCQQCgUAgEAgEAoFAIBAIBE8QImAnEAgEAoFAIBAIBAKBQCAQPEGIOewEAoFAIBAIBAKBQCAQCAQaxBx2jx0RsBMI6oipkepxS/ivJP/kvcctQS8Bfd0etwS9hM597XFL0Mv195c8bgl6afDxk2s3gJLSx61AP0rl41agH9XdwsctQS9SI+PHLUEvO5LMcDYve9wy9GJv+uRqa2D75D6siifXbE88GUVP7ktoHx/F45agl/0ppo9bgl5spMWPW4JeenhLH7eEGtmV9OS+2/TwfnKfVQCe3J8lgv8RxJBYgUAgEAgEgv9hnuRgnUAgEAgEAoFANyJgJxAIBAKBQCAQCAQCgUAgEDxBiCGxAoFAIBAIBAKBQCAQCAQCDf+i9K5169axYsUKMjIyCAwM5O2336Zp06Z6y6tUKlavXs2GDRtISUnB1taWPn368MYbbzxUXSJgJxAIBAKBQCAQCAQCgUAg+NexZ88ePv/8c959910aN27MunXrmDRpEmvWrMHd3V1nnS+//JIjR47w5ptv0qBBA/Ly8pDJZA9dmwjYCQQCgUAgEAgEAoFAIBAI/nWsXLmSvn370r9/fwCmTp3KiRMnWL9+Pa+//nq18rdu3WLt2rWsXLmSgICAiv2hoaEPXdu/KMlRIBAIBAKBQCAQCAQCgUAgAKVSybVr12jVqpXW/latWnHp0iWddQ4ePIiXlxfHjx+nf//+9OvXj5kzZ5KZmfnQ9YmAnUAgEAgEAoFAIBAIBAKBQINE8r/1p4Ps7GxKS0txdHTU2u/o6EhGRobOOsnJyaSlpbFnzx6mT5/OzJkzuXXrFlOmTKGsrOyhNoEI2AkEAoFAIBAIBAKBQCAQCP6VSKoE9FQqVbV9lY8VFxczc+ZMmjVrRtOmTZk5cyaxsbFcuXLloeoSATuBQCAQCAQCgUAgEAgEAsG/Cnt7e4yNjatl02VlZVXLuruPs7MzxsbG+Pn5Vezz9fXF2NiYtLS0h6pPBOwEAoFAIBAIBAKBQCAQCAT/KqRSKWFhYZw6dUpr/8mTJ4mKitJZJyoqitLSUpKSkir2JScnU1paioeHx0PVJwJ2AoFAIBAIBAKBQCAQCAQCDZL/sT89DBs2jK1bt7Jp0yYSEhL4/PPPkclkDBgwAIDFixfz2muvVZSPjo4mLCyMOXPmcP36da5fv86cOXOIjIykYcOGdTJxbZg81LMJBAKBQCAQCAQCgUAgEAgE/wV0796dnJwcfvrpJ2QyGUFBQXzxxRcV2XIymYzk5OSK8kZGRixatIiFCxcyfvx4zMzMiI6OZtKkSRgZPdycOBGwEwgEAoFAIBAIBAKBQCAQ/Ct5/vnnef7553UemzFjRrV9zs7OzJs371HLEkNiBQKBQCAQCAQCgUAgEAgEgicJkWEnEAgEAoFAIBAIBAKBQCCoQGVUw8Rvgn8EkWEnEAgEAoFAIBAIBAKBQCAQPEGIgJ1AIBAIBAKBQCAQCAQCgUDwBCGGxAoE9USlUnFny1bSDh2mtKAA64AAgoa/gKWXZ431cq7fIGHNHxSkpGBqb49Xz6fx6PRUxfGC5BRub/mTvFu3Uchk+DzTF99+z2idI2n7DjLOnacwLR2JiQk2gQGY9RqEqac3AM/4uDMowAsnM1MS8wpYei2BmKxcvZr8rS2ZGB5IqJ01cmUJ2+6k81v8Ha0yz/q608/XAzcLM+4WFbMy/g57U+7pPF9nD2c+aBzKibuZfHTuao320MWIDoGM6xaMq505N1Jz+XjdJU7HZ+gs6+VoyeE5Pavtf2nxUQ5dSa/ztQ3hWV93Bley75KrCVzWY1+pkYS3I4IItrXG19qCmCw5U07FPBQdg4M9eDHcG2cLU+Kz81lw9ibn7+nW0cLVjuFhXkQ622AtNeaOvIjfryWz+abGRs7mUqY0DyTMwRpfGwu2Jdxl+okbD0WrPtpFhzFpfF+aNQrA092RcZOX8tu6Q4/0mgBDQj14KdwbF0u17T47fZNzd/XYzs2OUeFeRDrZYG2qtt2Kq8lsikvXKvNWU3/87SwwNzYiNV/B+r/T+OVKss5z1kR/P3eGBnnhaGZKoryA/7uSwKVM3dpMjSRMbhREiJ01ftYWXM6SM+m4dv/q4O5IPz93gm2tMTU2IlFewIq4JI6lZ9ZZ28BAd4aHeONkbkpCbgFfXLzJxQz92t5t2oBQB2v8bSy4lCHntUOXtcp81DyYPv5u1eoWlpTSefPxOmkb0dKH8e0CcLU248a9PGbvuMbp21m11vN3tGTrhLZIgIhP91bsd7E2Y1qPUCI9bPF3smLjxRT+s+my/hPVgkql4sza7VzdcxRFfiGuwX50GDsER18PvXXys3I4/vMGZDeTyEm7S3DHaLpMHKlVZvP0L0mNjatW18HbnSFfTTNY26GVOzi/8xhFeYV4hvrR69VBuPjp13bt6EXO7jhCenwSJcoSnH3caT/kaUJaN6ooc+XweY6v20tmqoyyklIcPV2I7t+Jxt1aGaTrvrbdK3ZycttxCvIK8Q3zZcDE53H316/t8uGLHN96jOT4JEqKS3D1c6PbC08T0TZSq9zhDQc5tvUoWelZWNlaEtGmEX3GPYOZhVmd9K3/cRd/bT5BvryABhF+jJ48EJ9Ad711rpyPY/Wy7aTevouiqBgXd0c6P9OKvsM6V5SZ/cZirp6Pr1bXy9+Nhb+/a7C2TT/t4uAWtbbAcD9GTR6IV4B+bdfOx7HuW7W24qJinNwdeapvK3q90Fln+RN7z7Fs1m80bhPO2/PHGqTrv0Hbuh9289eWE+TlFhAc4ceYKQNqadN4Vi3dRsrte+Vt6kCXZ1vxTKU2LSkpZdOvf3Fo+xkyZTl4+Low/LW+NGkdZrC2+/p+/3Y3OzaeJE9eQGiEL6+/OwC/IP36KhNzIYF3xy/Fx8+FZWunah3btOow29Yd425aFjZ2VrR5KoIxE/tgYWnYM6FSqTi6agcXdx9DkVeIR4gf3ScMwrkGP3fj2EUu7DxC+k2NL2k96GmCW2l8iex2KkdWbic9Pomc9AzaDu1J+2G9DdJUWdv+33dyZscxCvMK8Q71o+/rz+NWg5+LPXqR09uOklru51x93ek4tDsNK/m5c3tOsnHRymp1p29eiNRUWieNVfV+t3QHm9YdQ55bSEQjP6Z+OIigBvr1AiiVJfy4fBfbt55GdjcHRydbRrzUhSHDn6qxXk06nmS7PSo7xcel8t2S7Vy7kkRKcgZjX+3JK6/Vrc8JBA8DEbAT/KPMmjWL7Oxsvvjii3/kelu3bmXBggUcPHhQ5/aDkLxzF8m79xA85iUs3N248+c2YhZ9SbNPZmNibq6zTtE9GVe++ga39m0JGTuG3Lg4bv6+EqmNDc7NmwFQWlyMmZMTTs2acmvjZp3nybl+A/dOT2Ed4A8quL15C3eXLMTj/Y/pEuTPaw0D+PrKTWKzcnnG151Pm4fz8pFz3CsqrnYuS2NjPmsZweXMXN44fglvKwumNgqmqLSUdYkpAPT1cWdsiD9fxMZxNVtOmJ0Nb0c2IE9Zwol72i/E7hZmjAv151JmTr3s2qeZFx8NimL66gucic9gRMdAfny9HT3m7CElq1BvvRf/7whXkzXXzMmvfq8Pg07uzrzeMICvYm8Sk5XLs77uzG0RzpjD57irw77GEgnFZSo23U6llYsDViYPx+0+7efM1BaBzD0Vz/l7OQwO8WRx50gGbD1LWoGiWvnGLrbE5eTzy9Uk7qJfL6kAACAASURBVBUW09bDgY9aBVNcVsaORHXg1dTYiKwiJT9ducPAWn7oPCysrcy5cv0OK9cf4vsvXvtHrtnD35l3Wwbyycl4zt3NYWioJ0u7RtJvy1nS8qvbromLLX9n5fNjTBKywmLaejowo3UwxaVlbE9Q265AWcrv11L4OyufotJSmrrY8lHrYIpKy1hzPdVgbZ09nJkYEcAXMTe5nJlLfz93PosO58UDuvuXUXn/2piYSitXB6yl1ftXEyc7zsly+P76beTFJXTzcuHjFmFMOh6jNxCoi27ezrzdOJAF5+O5mJHLwEAPvmgfwQu7z5FeWN1uRhIJirIy/ohPoa27IzY6tC26eJPFMYla+77tFMUFmeG6APpGuDOjV0M+2naF07eyGBnty88jmtN98RFScor01pMaS/hmUGNO3cqklZ+j1jEzEyMyC5QsPZLAC82966RHFxc27eXSln10fmME9l5unFm7g62zv2HoN9MxtdD9P6NUWYK5rTVNnuvO1b1HdZbpMXUcZSWlWnXWTv6UoHbNDNZ2fN1eTm7czzNvD8fJy5XDq3by+7TFvLp8GmaWurXdionDPyqETiP7YmFjScyBM/zxyfeMnPsmvpFBAFjYWtF+aA+cvN0wMjEi7lQsW79ahZWdNQ1aRhikbf+avzi07gBDpg7DxduVPb/t4tt3l/LOTx9grkdb/KV4GjQNpufo3ljaWHJu31l+nvUDry58g8BGam3n9p1l6/dbGPz2UAIaBZKRmsHaRaspUSoZPOUFg2335+/72LbqIBM+HIqnnyvrf9rNp5OWsWjVe1hY6dZnbmFGz0Ed8An0wMxcyvXLCfwwfx2m5qY8PaAdAJM/fYkSpaZdlcoS3h25gNZdmxisbfvKfexafZCXPxiKh68rm3/ezYK3lzF35XtY6LGduaUZ3QZ2wCfIA1MzKX9fTuDnhWptXZ9rp1X2bkoGa5b8SUjjQIM1/Tdo2/LbfrauPshrHw7Fw9eF9T/t4ZNJy/li1bs1tKkpPQd1wDeovE0vJfLd/HWYmpnSY6Ba25rlOzi86yyvvDsIL383Lp68zsL3fmLO8okEhBruY/74ZT8bfj/E5BlD8PZzYeX3e/jg9W/5bv07WOrRdx95bgGfz1hFk5YNyLir/Ttt/85z/PD1ViZNG0xk0wBSkzP4cs5aihUlvD19sEHaTm3Yy+nN++n91nAcvVw5tnona6YvZuwS/b7kTmwcvlEhdBjRF3NrS64cPMOmud8z9JM38YlQP69KRTF2rk6EtGnM4d+2GaSlKof/+IujG/YzYPIwnL1d2b9yF798sIS3vvtQr7bEy3EENgmm24t9sLCx5OL+M6ya8wNjPpuIf7mfA5CamfL2jx9p1X2QYB3Arz/uZeUv+5n+8XD8/F35ftlOJr6ymD/+nIZVDe087Z1fSE/L4oPpQ/HxcyEzQ45Coay3jifdbo/KToqiYjw8nejUtTHLvqlfn/ufQCLmsHvciCGxgn+UKVOmMHv27Md2/W7durFx48YHPo9KpSJl71949+qJc/NmWHl5ETzmJUqLipCdPKW3XtrBg5ja2xM47AUsPT1w79gBlzZtSNm1u6KMTYA/AYOfx6VVNMampjrPE/H2W7i1b4eVlxdW3l6EvDyasjw5ioQ4Bvp7sjv5LjuS0rmdX8jiqwlkKop5Rs/XzS6eLpgZGzH/8t8k5hVwJD2DNTeTGOivyRTs5unC9qR09qfKSCtUcCBNxvY7aQwJ1P6BaSyR8EHjUH66cYu0Qv0vyTXxctdg1p+4xZpjicSny5n1x0Xu5RQxvEPNP7qz84uR5Soq/pSlqnpdvzaeD/BkV/Jdtpfb9/+uJpBRg32LSsv4MjaebXfSdQZM68vIMC/+vJnOhvg0EnIL+exMPLLCYgaF6NbxQ+wdFl+8xYV7uSTnFfHH36nsuyOjq49zRZmUfAXzz95ky8275BTX/8ddXdi1/wIz5q9h4/ZTlJU9mjaryqiGXmyOT2f932kk5BQy91Q89wqLGaLHdt/H3OGbC2rbJeUVsfZGKn/dltHNV2O7K5l57Ey8R3xOAcl5CrYm3ONYShbNXG3rpG1woCc7k+6y9XY6t/IK+SpW/fz205NNVFRaxqLL8fx5W3//+iY2gZXxyVzLziO5oIhf/r7DjZw82rs56iyvjxeCvdh26y6bE9NJlBfy+cWbZBQVM0BP1klRaRnzz8ezOSGduzoCegD5JaVkKpQVf97W5nhbW7A5Ia1O2sa29WfdhWRWn00iXpbPzO1XuZunYERL3xrrvdc9lGvpcrbHVs/GTcouZNaOq6y7kEx24YM9DyqVistb99Pkue4EtmmKo68nXSaORFmoIO7wGb31bF2daP/yIMK6tMbM2lJnGXMbKywdbCv+Uq/FU6JQENaljcHaTm0+SNvnu9GwXRNc/T15dvIIigsVxBw8q7dej/EDaTe4O16hfjh6utBxWC88Gvhw/cSlijIBjUMIbROFs48bjh4uRPfrhFuAJ7djq2eO6dN2eOMhOg/pSlSHxngEePDCO8NQFCo4v0+/tv6vD6DL0G74hvnh7OXC0yN74h3sQ8xRTYZkYmwCfmH+NO/eEkd3J4KbhtCiW0tuXbtlkLb7+nasPcSzI7vQqnNjfAI9eG3aCxQVKDi655zeeoFhPrTt1hSfQHdcPZ3o0KMFUdGhXLt4s6KMta0V9k62FX/XLyZQVFRM5z7RBmvbvfYQvUd0oWWnxngHejDuQ7W2EzVo8w/1oXW3pngFuOPi6UTbHi1oFB3KjUraQJ0ttmzmCgaO642Lh5NBmv5btG1fe4h+I7rQqnMUvkEevP7RCxQWKDiy57zeeoFhPrTrXqlNezYnqpV2mx7edZZnh3emWbtw3LyceHpAW5q2bcjWVYZ/RFapVGxadZhBL3amfdco/Bt4MGWmWt+Bnfr13efLOWvp1qcFDRv5VTt29WIiYY386NqnOW6ejjRpGUzXPi24HmPYM6FSqTiz5SCtB3YjtG0TXPw86T1J7UuuHtL/vHYdN5DWz3fHI8QPB08X2r3QC7cgH/6u5Es8gv3oPKY/4U+1QGqm+7dxbdqObzpIh0HdiGjfBDd/TwZOGY6iUMGlA/q19ZkwkI6Du+Md6oeTpwtdhvfCs4EPV49f0ionkYCNo63W34OgUqlY/dtBRr3cjS7dmxAU7MmMT0ZQkK9g1zb9ek8cu8qpE9f5cskEWrUNw9PLicgof5q3DK63jifZbo/STuGRfrz1n/707NMCc4u69zmB4GEhAnaCfxRra2tsbGwe2/XNzc1xdKzbS6ouFDIZypxc7CPCK/YZm5piFxJMbpz+FxF5/E3sIxpq7XOIjCDv1i2tDIm6UlqkAJUKUytrQmytOSvL1jp+VpZNhL1uu4fb2xCTmUtxWVnFvjOybJzNzXAvHxYkNTLSOg6gKCsj1M4a40pfXkYH+5JeqGCPnqGytSE1lhDpY8/hq3e19h++mk6zwJrbbem41pya15u1k5+iV9OahyXXFxOJhBBba87osq/DP9evTYwkNHS04Xiqto7jaVk0djb8x46V1Jjc4pKHLe+JxsRIQriTDcdTqtguJYsmLg/PdmGOVjRxteVMuuGZpiYSCSF21py+p63t9L1sIh9y/7I0NkauNLztTSQSQu2tOZmunVF7Mj2LRk4P9mJSmX7+7sTn5HM5U25wHamxhEgPWw7HybT2H46X0dzHXm+9zsEudAlxYeb2ug/bryvy9AwKsnPxaaLx/yZmpniENyDt+s0aatadq3uP4tM0HGtnB4PKZ6dlkJeVS2AzzbA8qZkpvhFBJF1NqNO1FQUKzPUEFlUqFQkXrpORdBffyAYGnS8zLQN5Zi4hLbS1BTQKIvFKYh21FWFpo9EWEBlISnwyt8rPk3U3i9jjMTSMDtdzhurcTckkO0NOVHRoxT5TM1PCmgRy47Lh+hJuJHEjJpGGTYL0ltn35wmatG6Ik5th7XovNZOcTDmRLbW1hTQOJK5KVmtN3LqRxN8xiYRW0bb+2+04ezjSvldLg8/136BN06YhlbRJadi4jm16PYkblxMJb6rRpiwuQWqmnT1kairl+iXDn7O05EyyMuQ0a63RZ2YuJbJpAFcu1axv6x9HycqQM/TlbjqPhzcJ4Ob1FK5eVgfo7qZlceJgLC3bNdRZvio56RnkZ+Xi31T7efWJCCK5jr6kuFC/L6kPWeV+rkEzTZ+TmpniHxnE7St19HOFCiyqaFMWK1n44kwWjJjOihnLSYlLeiC9KUkZZMhyad1WY0tzc1OaNg/i0kX9eg/uu0x4hC8rf91P364fMbDPHBbOXUeBjpEXhvCk2+1JsZNA8CgRQ2IF/yiVh8ROmDCBgIAAbGxs2LhxI0ZGRvTu3ZuJEydiZKSOJe/fv5/vvvuOO3fuYGZmRlBQEJ9++ilOTk58++237Nu3j9WrV1ecv7Yhr1WP3z/HmDFjWLp0KVlZWbRo0YJp06Zhb6//Ra84Rz1cy9RW+0VVamtLcXa2rirqerm52Nlq//CR2tqgKi2jJC8PU3u7Gqynn5ur1yD18sU1JAxjIwlZVbKjsoqVNNXzRdLRTFotMyerWL3tYGZKWqGCs7Isenq7cSQtgxu5eYTYWtPL2w2pkRF2piZkKpQ0d7Knk4czE45eqNc9ADhYm2FibIRMrp2dJ5MraGerO629QFHCJxsucTY+g9IyFV0befD1mFb859czbD59R2ed+mJnKlXbV1Hdvs30ZEM+ChzMpJgYScio0m4ZhUpauRs2lKCDlyPR7vaM3n3xUUh8YqmwXWEV2xUpaWVhmO06ejnSysOeUTuq227vwGgczKUYSyQsu3SbP24YnilmZ6rWllm1fymUNHd+eP2rv587LhZm7E42PLBub6ZbW2aRkpauDzbs5z5WJsZ08XZmaazhGU4ADpamar9RZRi8LK+YdoG6511ysTZj3rMRTFhznvzi+n8sMZSCbPX/DAs77cCrhb0N+Rn6/2fUleyUdFJj4+jx7isG18krn3/TqspHHSsHG+QZhgecz2w9hDwjm0ZdtIMkRfmFfDXqI0qVJUiMjOj56iAatDAsKCYvD9zaVAlY2zhYkyMzXNvRzYfJkeXQrFuLin1NOzejIDefJVO+QaVSUVZaRvNuLegz9pkazqRNTvmQcrsq+uwcbci6V7u+1/+fvfuOb6rqHzj+SUe6996blg723nsIIoIDAUGGgigOFBcqAi4QxIFsHlD2HpaN7CF7r0KhQGlLd5POJG1+f6QkTZt0qQ/1+Z336+Xree7Nvbdfzjk5yT35nnP7T0GWnUtxcQkDR/Sg+7NtDB6XfD+V6+fjee/bkdWPrXRtSQfn2sX27oApyEtj6/9KD7r018V25dRNTu2/wNSl71U7nn9LbNmldepYITZbMqsR2+vPTNXW6XMj9eu0Yctwdqw9TFTjEDz9XLly5hanDl2mpNwPopXJytC8J5xc9ONzdLYjo5L47t5OZuWivcxeOh5TU8P5Gp16Nkaek88Hr85FrVZTXFxC16eaMvKtPtWKLc9YX+Jgh7wGy6Sc267pS6I613zA1ZjcLE252ZZ7r9o62iGrQT938vcjyNKzaVSmn3P1defZdwbjGexNUUERJ7YcYvH7P/DGLx/g4uNeq3gzSt8jzuXq2dnFjtRU4/E+TEzn4vk7SKVmfDt7FHJ5ATO/2UB6Wg7ffj+qxnHU9XKrK+UkCP8kMWAnPFG7du1i0KBBLF68mLi4OD7//HMiIiLo2bMn6enpTJo0iTfeeIPOnTtTUFDA5cu1X/DbmOTkZPbu3cuMGTMoKCjg008/Zd68eXz88cd6cX7zzTeAJrMs8q03NS+Un9avrnpKn6T8SWrtC7Vyd+06ZLdu4/bWx0hKBzoNRaGuJLbyr2hjLD1nRXwiThZSfmwVgwQJWQoFex+m8mKwLyVqsDc3Y2JMGF9fuknuX8gUNBaQRGK8aLPyFCz5Q7fg+uX72TjbWjCme72/fcCuMmqDpf4P/80alFNZjdzs+aZtODPO3OFKRu4/E1wdV9vaauRmz/T24Xx7ynDZDd99EWszUxq42fNuk0AScwuJvZNq4Eo183e1rw6eLrweGciUc3EG152rMg5Dbe5viQx6+btjIpGw617tystQbMbeED8MbMCKMw84n1i7tTarEnf4NIcXrNZuP/XJ66Uxle//1RX3/QXX9x7H2smegKbG14e7fOA0O+as1W4P+mIMpcGVD636f/fYBfb9ZysDPngFR/dyawFaWfDqzx+iKCgi4WIc+xZvxtHDmaBG4RWuc+6PM2z4YZ12e9SXmoFHQx+11S23S0cuErtoG0M/GY5zmWng8Rdvs2/lHgaMfw7/+gGkP0xn69xN7P51J71eMbyw+NHdZ1n83Xrt9gffaR5kUCEUtbpan+mT575JYUERt67eY/Xc2NKplM0qHLd/2584utjTuLXxTKfje87y60xdbO9ON/yQBXU1Y/tkjia2+Kv3WD8/FlcvF9r2aoY8O5fFX69mzOSh2NhVLwOqLsd2ZPdZFs3YoN3+aGZpbBXfqtVqc1PmvUFhgYJbV+6xcm4s7l7OdOitqdNX3unPgm/XMWHIDCQSCR4+LnTq05yD208bvd7+nef4+WtdfFN+GFUaXoVGZzQ+hULFt5+sYPTbT+PpY3yK8KWz8axeso83PhpAeLQ/SQ/SWTBzK8sX7GbY2IoP97p68DR75ur6koGfl/Yl5WJTV9hj3M3jFzi4dCtPT3wFB/faz4i5uP8M237WxTZ0iia28mWkpnptDuDq0QvsXrKV5z8ajmOZvsS/fhD+9YP0tn95cwZ/bjtCn9cHVuvau2JP881UXbyzfzESr7ryJcXUJZp2MG36cGztrACY+MlzvDVmHhnpMlyqmIVR18utrpTT/ytiCbsnTgzYCU9UUFAQY8ZoOtuAgAC2bt3K6dOntQN2KpWKLl264OWlWb8pJMT4dJHaKi4uZvLkydja2gLQv39/YmNj9Y5p3749UVGaG6CvblxDrdJMJVPkyLAoM8VWKZdjbm+8k5fa26OQ6d8gKuVyJKYmmNnY1jj2O2vWkX76NNHvv0eGvTs5CiXFJWqcyy3Y6iQ1J9vImmSZRcoKxzuWbj/O1FOUlDDrym1+uBqPk9SczCIFT/l5kqdSkaNQEuNsj4ullBnNdE/ge/xBuatHG0YfO091VizKyi1CVVyCa7lsOhdbiwpZd5W5kJDJc60qrs/yVz0uXyeLiuVbPqvxn5RVpERVosa13JoazpbmZBRWHkcjN3vmdI5i3sV7rL9V/Ych/K8wVnYuluZkVLFOWWN3e+Z2ieKXi/dYF2e47B7magbBbmXn42JpzriG/tUesMtRaGJzLt++LMwrZHXWRgdPFyY1DuPrC7dq/ITY7NJyc7GsGFtmFW2uup4J8uDgw3RkNZiqC5CVr0BVXIKbbbk6tZFWyLp7rG2wCy0DnHi7o+YzRSKRYGoi4fbnPfhs+zVWn/1r05kCm8fgERao3S4u/TflZ8v0pqoW5ORiZWS5gpoqVqq4efAk9bu1wcTU1Ohx9VrG4BNeMba8LBkObrrY8rPl2DhVfdNy/dgFts5azjMThuo9IfYxiYkJzt5uAHiG+JL+IIVj6/YaHLCLbB3NhAhd360qjU2WJcfRXRdbbnZuhYwPQy4ducjq6SsY9MGQCk+I3bVsB406N6HlU5q1/ryCvFEUKlj//Rq6v9wTUwNl2LRdFKFRunURlaXZmdmZcr2pqjlZuRWy7gxx99YMnviHeJOTmcuGJbsrDNiplCoO7zxDl36tMDUzXq+N20UREulf5jxNbDnlYpNl5VbIbDPErTQ2vxBvZFm5bFm6m7a9mpF4N4XsDBnfvTtfe6y6dP3RkZ3e56vfPsDLXz87pi7H1qxdFGFRujanLF3qIDtDjmstYtPVqRfZmXI2LNmjHbCzd7Jl4vSRKIqU5MrycXK1Z9Xc7bh7Gx+YatUhkojoCRXiy8yQ4eapmwmSnZmLo7Ph75FZ6TLu33nE91PX8n3pYIe6RI1araZPyw+Y+uMomrYK57d5u+jYoxG9+mue4hwU6kVRgYIfvlzPkNHdK7S/0BYxeNcL1G4Xl343zsuWYV+2L8mRY+1YdV9y8/gFtn+/nD7vDtV7QmxtRLSKxtdAXyLP1O/n8rJzsa1GH3z16AU2zlzBgPeG6j3p1BATUxN8wvzIqMHyMO07xxDVIFC7rSit54x0GR6eunizMuU4V7IMhYubA27uDtpBKICg0nVmH6VkVTkQVdfLra6UkyD8N4kBO+GJCgvTXwTV1dWVrKws7WstWrTgpZdeomXLljRv3pyuXbvi5FS99Vuqy9PTUztYB+Dm5qaN4TEbGxtsbGwAsMpKR61WY+5gT/a1a9gFBQJQolQiu3WbwOeN/5pmFxJMxnn9aXTZ165hGxCASSVfxA25s3ot6adOEz3xPay9PMnIA5VaTZwslyaujhx+lKE9tomrI0fKbJd1LVvO6PAAzE0kKEu/2DZ1dSS9sIiUchk4xWo16UWaG+DOXq6cTM1CDcTl5PLqUf3Fjl8J88fO3Iyfr90hJb96g23KYjVXHmTTLsKdnecfave3i3Bn14Wkal0DINLXgVRZ7R56UZnH5dvUxZHDKbrybOqqv/1PU5WouZ4pp5WnI3vv69btauXpyL4HxuNo4m7Pz52imH/pPitvVr88/5eoStRcy5DT2suRPffKlJ23I/vuGS+7pu72/NI1irkX77PievXKzkQiQWpS/aViVWo1cTm5NHN15GCyLpZmro4c+ovtq7OXCx83CuObC7c4lFzza6nUam5m59LCw4n9D3Xnt3B34sDD9ErOrJ5IJ1vqOdryQyVrzhijLFZzJVlGuxBXdlzTPTyiXbAru65XfJgEQI9fjuptd49w5832ITyz6AQpf0PfIbWy1Hvyq1qtxtrRnsSLN3AP1dwMqRRKkq/H03pY/7/89wDunrpEoTyP+l0NT6t8zMLaUu/Jfmq1Glsne+6cv4l3PV1s96/G03VU5bFdO3KObd+vpN+EIdRv17hacarVau1NYHmW1pZ6T35Vq9XYOdtz6+xN/MM1Az5KhZK7V+Lp+2q/Sv/OhUPnWTNjFYM+GEzDDhWfrKooUmiX33jMxERSaTarlY2l3lNC1Wo1ji52XD4VR0h9/9LrKrl58Q6D36j+1FoAdUmJwXI5ffgK8pw8OvVtWen5VtaWek9XVavVODjbcfV0HMFlYou7dIcXx9U+tuAIP778daLe6xsX7SRfns/LEwbi5lVx8KlOx2asTk/HERqpi+3GxTsMebOGsanVKA3UqdTCHGc3B1SqYk4evETrSp78a21jqffkV7VajZOLHedP3iI8ShfflQt3Gf1WX4PXcHF3YN4a/SnCsRuOc/7kLT77bjgepQOGRYUKTEzLvydMjM7QMNSX2DjZk3D+Jl5hur4k8Wo8nUZU3pfcOHqOHT+s5Kl3hhDetnp9SWWM9XPx52/iG66JTalQcu9KPD1HP1PptS4fPs+mWSsZ8N4QottX/ZRmtVrNo7tJeAb5VDteGxtLvSeaqtVqXFztOXniJpHRmniLipRcOBfP+AnGy7JhoyD+2HOe/PwirK01S0LcS9D8aOhpoP2XV9fLra6UkyD8N4kBO+GJMjPTb4ISiUS7loepqSk///wzly9f5uTJk2zbto25c+cyf/586tWrZ/BLhEpV8wX0K4vBGIlEgne3riRu34m1pyeWnh4kxu7AxMIC15a6J7jFLVkKQL1RIwDw7NiR5P0HubNmLZ4dOiC7HU/qsRPUe003PaREpSI/SZO9U6JUopDJyL3/AFMLC6w8NL8Mx69cRdqJk0S88TpmNtYocnIozjdHYmHBxoQkPmwQxs2cXK5myejr54mLhZTY+5q1tEbWCyDCwZYPTl8FYH9yGi+H+jExJoxV8Yn42ljyYrAPK27rppP6WFtS39GO69lybM3NGBjoTaCtNTMu3wI0T4NMyM3XK6M8lQpTiaTC/qos+eMWs4Y35+K9LM7GZzC4fRDujlasPKpZmH1ivygaBjox9CfNDfeAlv6oiku4+iCHErVmDbuhHUKYseVKjf5udW24m8RHDTXleyVLxtP+mvL9vbR8R5WW78TS8gUIsLXCTGKCg7kZVmamhNhpBn/j5Xm1jmP5jYd81TqcKxlyLqTJeD7MCzcrCzaUZs2NbxRItIsdY/7QTCNv5u7Az52jWBeXzI6EVG2mVIkaveytcCdNbDbmZpSoNdvKYjV3ZDWrx+qysbYgJFDzq6aJiQQ/H1caRAaQlZ3Lg6R/ZhD0t+sP+aZtOJfT5ZxPk/FCPS/crSy0WXNvNw4k2tWOV/eWlp2HA790iWJtXDLb7xguu8ER3iTKC0koLaemHg4Mj/RhrZFMPGPW3UliUuMwrmdr2le/AE9cLKVsu6dpX69GBFDf0ZYJf+q3L3OT0vZlakqovaYOb8s07auLtyuTGoUx93oCFzNl2gw+ZYm6Rg+eWH3rIZOb1+NappxLGTKeDfbC1UrK5tInur4eFUCksx3jj+jee4F2mtgcpeZYmZkQ5qCJ7VaOftvvH+TJfXkB52qwLllZi48n8P2ABlx8mMOZ+1kMbe6Hh50FK0/fB+CDbvVo6OPAkF81U8/iUvWnMzfwdqBEra6wP9JTk0Fga6F5P0R62qEoLuF2Ws3euxKJhJi+nTm3cTeOPh44ertzdsMuzC2lhLbXZVTt/+k3ALq8NUy7L/2uJttPmV+IRCIh/W4iJmamOPvpPzn4+t5j+MTUw97TlZqQSCS0eKYjR9fuwdXXA2cfN46u3YPUyoLojk21x22dtRyAZ957GYCrh86yddZyuo3qj39UKLmla3+ZmptiVdrHHV2zG+/wQJw8XShWqrh95hqX95+m59jnqh1b+2c78Mfqvbj7uePq684fq/ZgYWlB4y662FZPXwHASx8OBeD8gXOsjITUYQAAIABJREFUnr6Cp197huCYEGSlsZmZmWJd+v6IbBXF4Y0H8a3nh39EABlJ6ez6dSeRLaMMZtcZi6/3Cx3Y8us+vAPc8fJ3Y/OyvVhYWdC2exPtcXOnrQJg3GeDAdi1/gju3s7abK8bF+LZvvog3Qe0rfA39m87QVTTMDwqmcpoLLYeL3Tg99/24RXgjqefG9t+3YullQWtysS28EtNbK99qolt74YjuHk541ka282L8excc5Auz2pis7CywDdYv+1Z21pRUlxSYf+/NbanXujA5sd16ufGpmX7sLS2oF133UDSnKma2N78XBPbzvVHcPd2wdtfk016/cIdYlcdpMcA3QD6rav3yEzLITDMh8y0HDYs2Y1arabfkM7Viu1xfP1fas+apX/gF+iOj78rq5f8gZWVBZ166eKb+blmSv77U1/CzMyUwFD9f7+jky3m5vr7W7aPZNOqw4TV9yUi2p+kBxn8Nn8XLdtFVprdWTa2Zv06cmLdHlx8PXDycePEuj2YW1lQv4Pu/bp9tqYv6fOupi+5fvgs22cvp9OI/vhGhWrX1TQ10/UlxUoV6Q80nzUqhZK8bDmP7iQitbTAqTSDt6rYWvfvyOE1e3D188DVx42DqzX9XINOutg2zNT0Jc+9r+lLLh08x8aZy+k1+hkCo0OQl+nnrEtj279yJ34Rgbh4u1GUX8ifWw+TcjeJp998ocq4Kot30NCOLFu0h8AgD/wD3PjPwj1YWVvQs48u3smfaMpyyteasuzZpxlLFuxm6qcreXVcb3LlBXw/fRNdujeqsM5bdeOoy+X2T5aTUqnibrymzSmKlGSky4m7kYiVtQV+/lW3OUH4u4gBO6FOk0gkNGjQgAYNGjB69GgGDRrEvn37qFevHo6OjmRmZqIuswZQXFzcfy02n149KVEoiV+1GlVePnbBQURNeBszS90vP0UZ+tPOLN1ciXx7PHfXriPl4GGkjg4EvfQirk11X1AV2dlcnPqldrvwUBqPDh3Gvl49Yj7Q/EKackDz0Iyrs2brXd++Vz8O9e6PvbkZg0N8cbaQkiDPZ9LZa6QWarLlXCzM8Srz61m+qpgPT19lfGQwv7RuiFypYsPdJDYk6LKITCUSBgZ642tjRXGJmguZObx98nKt1sCqyvZzD3GyseDNXuG42VsSlyxj5NxjJGUWAODmYIm/q43eOW/0isDH2ZriEjUJqbl8uOLsP7Z+3cGUdOylZgwJ8cXZUlO+H5/RL19va/0pvV83jcSzzL6F7TS/NHbdeazWcey5l46j1JxXo/1xtZJyOzuPNw9eITlPE4ebpRQ/W93f7BfsgZWZKcMjfRke6avdn5RbyFNbdevnrH1K1xYBOvm6VDjm79SkQTB71n2u3f78vef5/L3nWb7+EK+9N7+SM2tvd0I6jhbmvNbAH7fSshv3R5mys5LiZ6cru/4hHlibmzIiypcRUbqye5hbSK9NmnIxkcC7TQPxtrGkWK3mgbyQH84nsO5mzQbsDiSn4yA14+UwX1wspNyV5/PhqWva95qh9jW9RaTee3pJaTZRx1hN++oX4ImZiQlvRQXzVlSw9rjzGTm8c6L6A9v7EjWxjYjww8VSyh1ZPhOOXSWl9KlqrpZSfG30Y5vdNgqvMvuWd9PcULbaqMtwszYzpZufG/+5fr/asZQXezUFR2tzxncIwc3OgrhUOSNWnuVhjiZbzt3WggCnmj9xcMfr+gMo3SPcScwqoN0Phh9sVJlG/buhUig4umgdRXn5uIcF0vfzN/Uy8eTpFacqb3j/W73te2euYOvmzND5U7X7ZCnpPLwSR7d3R9Q4LoDWz3VDqVCya956CnLz8QkPYPC0cXqZFjlp+pnnZ3ceo6S4hD0LN7Fn4Sbtfv+YUIZ9+xYAisIids5dhzw9GzOpOa6+7vSb8DLRZW70qtL5xa4oFUo2zdlIgTwf/4gAXv32db1MvKxU/dhOxGpi2zpvM1vnbdbuD24QwrhZ4wHoNqQHEomE3ct2kJ2eg42DDZGtoug9onoL7D/29JAuKIqULP1+I3nyAkIi/fnkhzF6WVvp5Z6uXFJSwqq5saSnZGFiaoKHjwuDXu9Lt/6t9Y579DCDq2dvM37KyzWK6bGnBmtiW/79RvJyCwip78/734/Ry3bLMBDbuvma2ExNTXD3duH5sX3p/Ezr8pf/S+pybP2GdkZRpOQ/szaRJy8gNNKfT2a/plenGY/0HxZTUqJm1dxY0pJ1dfrS633o/qwuNqVCxdqFu0hNysDSSkqj1vV54/PB2JSZllcdzw/XxPfL9E3kygsIj/bnqzmv6mXipaZkVXIFw14a1Q2JRMLy+btJT83G3tGGlu0jGT6ud7Wv0WJAN5RFSvYuWE9hbj5e9QJ4YYp+XyIr15dc2KV5v+5fvIn9i3V9iV90KC99relLcjNz+PWdGdrXsnelc3HXMb1jqtL++a6oFEpif9lAYW4+vuEBDP/qdf1+rlxfcnqHJrYdCzazY4GuLwmMCWXUDE1fUphbwNaf1pKbKcPSxgqvEF9GffeWNiOttoaN7EZRkZIZX61HLssnKiaAnxeM08swe5SsH6+1tQW/LHqDmd9s4JWXZmJvb03HzjG88W7lGcmVqevl9k+VU1pqDkOf17W5xAfpbF5/jCbNQpm/tHpt7n+CiVjE7kmTZGdn//dXShf+3yr/lNiQkBAmTpxo8PXLly9z6tQpWrdujbOzMzdv3mTy5Ml8+OGH9O7dm7t37zJo0CDGjBlDjx49OHv2LPPmzaOgoED7FNjyT4U19pTYmjxp9t1L5w3uf9Ie5P09T2r8p8T/bnhqWl0Q1NfjSYdgVEZm9Z8e99928+O5TzoEo0K/HPekQ6iUs3P1p8r+txUV1d2vBSmX6u5DUt5+vmbLGvw3uVrW3X4EwFFad+Pzsa67sRXV3dDqPCvTutvP2UvrbmwHkv6+J5b/3ezM62659fSt24MeuxNF2dVaQasnHcE/qsmbO590CH+rc3Oq/wNEXSEy7IQ6y9bWlkuXLrF+/XrkcjkeHh6MHDmS3r01b7SgoCA+/PBDli1bxrJly2jfvj2vvPIK8+bNe8KRC4IgCIIgCIIgCIIg1J7IsBOEGhIZdrUjMuxqR2TY1Y7IsKs9kWFXOyLDrvZEhl3tiAy72hMZdrUjMuxqp65niYkMu79AZNj9q/wbM+zq7h2DIAiCIAiCIAiCIAiCIPw/JKbECoIgCIIgCIIgCIIgCDqSOp7h+P+AyLATBEEQBEEQBEEQBEEQhDpEDNgJgiAIgiAIgiAIgiAIQh0iBuwEQRAEQRAEQRAEQRAEoQ4Ra9gJgiAIgiAIgiAIgiAIOmIJuydOZNgJgiAIgiAIgiAIgiAIQh0iBuwEQRAEQRAEQRAEQRAEoQ4RA3aCIAiCIAiCIAiCIAiCUIeINewEQRAEQRAEQRAEQRAEHROxiN2TJjLsBEEQBEEQBEEQBEEQBKEOEQN2giAIgiAIgiAIgiAIglCHiAE7QRAEQRAEQRAEQRAEQahDxBp2giAIgiAIgiAIgiAIgo5Yw+6JExl2giAIgiAIgiAIgiAIglCHiAw7QaihEnXd/KXBxaL4SYdQqZSWbk86BKPu3au7Zac+lvSkQzAq9MtxTzoEo25/OvdJh1CpJj++8aRDMMrfueRJh2BUipvVkw7BqAd5dbcfGRZa8KRDqNRtmemTDsGoM+l196uyqqRufh8BcLSou/0IQH1H1ZMOwaglN62fdAhGfdbY5kmHYFRKftqTDsGou/K6+14FeNrf+UmHYFRSfsaTDqFSrk86AOF/nsiwEwRBEARBEARBEARBEIQ6pO7+bCgIgiAIgiAIgiAIgiD819XRiWX/r4gMO0EQBEEQBEEQBEEQBEGoQ8SAnSAIgiAIgiAIgiAIgiDUIWLAThAEQRAEQRAEQRAEQRDqELGGnSAIgiAIgiAIgiAIgqBjIhaxe9JEhp0gCIIgCIIgCIIgCIIg1CFiwE4QBEEQBEEQBEEQBEEQ6hAxYCcIgiAIgiAIgiAIgiAIdYhYw04QBEEQBEEQBEEQBEHQkYg17J40kWEnCIIgCIIgCIIgCIIgCHWIGLATBEEQBEEQBEEQBEEQhDpEDNgJgiAIgiAIgiAIgiAIQh0i1rATBEEQBEEQBEEQBEEQdEzEGnZPmsiwEwRBEARBEARBEARBEIQ6RAzYCYIgCIIgCIIgCIIgCEIdIgbsBEEQBEEQBEEQBEEQBKEOEWvYCf9qY8eOJSQkhIkTJ/5t10xKSqJ///4sW7aMyMhI7X61Ws2iRYs4s349qvx87IKCCBo8GGsf70qvl3PzJvfWrSc/KQmpoyPePXvi2amj3jEZZ8/yYOs2CtPSsHRzw69/f1yaNNa+nnLgAI8OHaYoIwMAK29vfPs8hVODBtpjigsLSdqyiZwL51HKZNr9Vr6++D7/IrZh9YzGWPAwkcQ1q8lLuIuZtQ0uHTrg+VRfJBLNugXZ58+RfvgQBQ/uU6JUYunljWfvp3Bo2Mjg9TJPn+TeksXYx8QQ8sZblZYPwIvhXrwS6YubtZT47Dymn77DuVSZwWObeTgwLNKHaBc7bKWmPJAXsvz6Q7bcfmTw+Mbu9vynRwPu5uQz4PdzVcZS3pAoL0Y39MPdWsqtrDy+PBbPmRTDsbX0dmBEjA8N3O2wk5pxT1bAsksP2XBTP7ahUV4MjfbB186CpNwi5p67z5a41JrH1jWUV/tE4O5gxa2HOUxbcZ4zcWkGj/VxteHw7Kcr7B8x4yCHL6cAMOO1lgxsH1ThmPwiFTGjN9Q4vr+7Xpt5OPB240ACHaywNDUhOa+IjbdS+PXawxrHVl1tW0Twzpi+NIkJwtvTmVcnzGPFhsP/2N8DeDbIk8FhvrhYSrkry+eny3e4mGG43KQmEiY2CqWeoy2BdlZcypAz/uhlvWMauzowp31MhXNf2nuW+7kFlcaSfvAAaXt3o8zJwdLbG+9q9CUP16wmP+EupqV9iUe5viSjtC9Rl/Yl7gb6krQ/9pFx+BCKzAzMbGywb9gIr2cHAhZG//bQaG/GNPHF3dqCuMw8ph6J53RyjsFjQ52smdYxjFBna+ylZjzKK+L3W2n8cCoBZYkagJ7BrgyJ9iLKzRYLUxNuZ+Yz58x99iVkVFpmj6nVam5t3s79g0dR5uXjGBJI9LBB2PlW/pmRcSOOa6s2kPswGQtHB0L69CCgSwe9Y5QFBcRt2Eby6fMoc/OwdHYi/Pln8G7ZFID9EyZRkJ6pPX576f+2bh/BrDmjDMa6ZP5etm08iUyWT1SMP+99/CzBoZ5G4zx3Op43R8+vsH/VlokEBrlrt/NyC1kwZxcH910mJzsPd09Hxo7vTdeeDSsth7KxbV66m4Pb/iRPnk9IZADDJgzEN8h4bDfO32bdwh0k309FUajA1dOZjn1b8tRLnbXHHNlxikXfrKlw7uJ905FamFcrNmPxnlizk0u7j1OUV4BnvQC6jnkeV38vo+fcOnGRi7uOknonEZVChYufJy2f70Foy4rv25rGcnLtTq7sOUZhXgGeYQF0fu0FXCqJJS8zh8PLNpN25wHZyWlEdGxOj7dernDc+d8Pcnn3EWRpWVjZ2RDcPIa2w55BamX8PVo+tkMrd3F213EKcwvwCQ/gqXHP4R5gPLbrxy5yZscxUuITUSlVuPl50n5Qd8JbGS6nywfPsmnGb4Q1j2TwlDHViutxbBuW7GH/tj/JleUTGhXAyPcG4BdsvM1dOx/P6nnbSb6fRlGhAjdPJzr3a8nTgzvrHbdj7WH2bT5OWkoWdg42NGsfxeBxfbG0rl65GYv32qbt3N1/DEVePs6hgTR+5UUcKulrCrJyuLRyI9kJD5CnpBLQriXNxw6rdQxlY5n/yxY2rj+ITJZHTIMQPv70ZULDfCs9T6lQsXDBNmK3HSMtNRsXF3uGjejNkJd7aF5XqliyKJbftx4l9VE2gUGevDPhBdq2b1DpdcvHtmLhHnZsPkmuPJ+IKH/e+HAAgSHG67WsKxfuMnHMPPwC3Fi4Tv++Y/PqI8RuOE5qShb2Dja07hjFqPF9sKpmvT5uc3+UtrmwGrS5pDJtrku5NqdSFbPltz84vOMMmek5ePm7MWRcXxq1iqhWXI9jmz93K5vWH0ImyyO6QbCmTkN9Kj1PqVCxaMHvxP5+vEyd9mLw0O7aY1Yu38P6tQdITsrAwdGWTp0b886E57G2saxRfCsX7WFXab2GR/kz7oMBBFSzXq9euMuHYzX1Om+tfr3m5xby2/xdHP3jErKcPNw8HBk+rjcduhu+//mfJNK7njgxYCcI5Xh4eLBjxw4cHR319v/222+sWrWKoGEvY+XpSeLvsVybPZvGX07D1NLwB0thWjo3fvoZ97ZtCR09Cvmt29xdtRJzO1tcmmpurOTx8cQtXIRfv6dxbtKEzHPniFuwgOgPP8AuOBgAqZMT/gMHYOnhASVq0k4c5+bcucR8+ik2vpovQQ83rEN+4zrObdryaNdOnFu1IvPkScysbYif8xP1J09B6uxSIcbiggJu/zgb29Awwj+aRNGjFO79uhQTqQUe3TVflHLj4rANj8CrX3/MbGzIPPUnd+bPJWzC+xVu3ovS0kjauAGb0LBqlXfPQFc+bB7MVyfjOZeaw6Bwb+Z1jeaZbWdJySuqcHwjN3tuZeXxnyuJpBcoaOPtxORWYSiKS9hxV3+wyl5qxtdt63EyJRt3K2m14inrqRA3Pm0TwhdHb3MmOYchUd4s6RNDr7VnSM6tGFsTD3tuZuaz8GIiaXkK2vs58WXHehQVl/D7bU1sgyO9mNgqmEmH4rj4SE4Ddzu+6hiGrEjF/nuZFa5pTJ+Wfnw2tAmTfz3Dmbh0hnYN5T8TO9Dzo50kZ+QbPe+VGQe5fj9bu52Tq9D+/6nLzzFj7UW949d91o3TN2s+mPhP1Gu+spiVN5K4lZVHYXExjd3s+axVGIXFJay9mVzjGKvD1saSazcfsGrjYRbPHveP/I2yuvq48k6DYGZejOdShowBQV7MbBPF0H3neFRQsdxMJBIUJSVsvJNEaw9nbM2Nf6wP2XcWmUKl3c4uUlYaS9aZ0zxctxbflwZjExpG+qED3J3zE+GV9CV3fpyNTWgYYaV9yYPSvsS9tC/JK9OXmNrYkHXqTxLmzyWkTF+SdeokyZs34jt0GLahYRSlp5G4/FfUSiU0HW4w1r6hbkxuH8Jnh25xOlnGyzHeLHs6hu6rTpNk4L2qLClh440UrqblIlOoqO9iyzdd6mFqIuHb43cAaOXjwInEbGb9mUB2kZL+9TxY8FQUgzZfNDoQWNad7Xu4s2sfDV8dhq2XB7e27ODkjJ/oNP0LzKwMf2bkp6VzeuYv+HZoQ6MxI8iKi+fKb6uR2tni1bwJACWqYk7N+AlzG2uavDEaS2cnCjOzMClT922/+Ah1SYl2e6h7CiNf+pGuPQwPkq1YepA1vx1m0rQX8A9wZ+nCvbwzdhGrt07Epoobp5Wb3sfewUq77ehkq/3/KmUx74xdhJ29FdNmDMXdw4HURzmYS6v/9XP7qv3sWnOIVz8ZhJe/O1uW7WHGu/OZvuojrKwNx2ZhbUGPge3xDfHCwsKcuMt3WTpzA1JLKd2ebas9TmopZeaaT/TO/SuDdQCnN+3jzJYD9Hp7CM4+7pxYu4sNn//CyLmfIjUS74Mrt/GLqUfbIX2xtLPm+qEzbPt2MS98+Ra+USG1juXs5n2c27qf7m8NxcnbnVPrdrH5izkM++UzpEbaYLFKhZW9Lc0GdOfKnuMGj7lx+AzHfttK1zdewicyhJyUdPb9sgqVUkn3N4dUK7ZjG/7gxOYDPPPuYFx93Tm0ajfLJ83lzYWTsDBSTgmXbxPUMIwuw/pgZWfNpQNnWPvlEoZ/O56AaP1yykpOZ++SrfjXovy2rTjA9jWHeH3SILz93di4dC9fv7OA71d/iJWR94OllZTez7fHL8QLC0tzbl5KYPGMDVhYSOkxUNPmju45x6q5sbz20QtENAom9WEGC75Zh0KhYuwnL9Y4zsduxu7l1o4/aDZmGHZeHlzfvIMj3/xMz5mTMTdSzyUqFRZ2toQ/3YM7B47W+m+Xt3TJDn5btotpX48mIMiLhXO3MHb0d2zd8S02NlZGz/tw4jxSUjL4fMoI/AM8yEiXUVSk+34y56eNbN92nM+njiA42Jvjxy7z7ls/8evKz6gfGVCt2Nb9eoCNKw/z3uQX8QtwY8XivXz8xkKWbPygygEiuSyf7yavpnHzUNJT9fv//bvOseSnWN759AWiGweR8jCD76etQ1GkYsLnL1Qrtm0rDhC75hDjJg3Cq7TNffXOAmZX0eZ6Pd8e/zJtbtGMDUgtpPQsbXNrF+zkyO6zvPbh8/gEenDx5E1mfrSUaQvGExRe+SDqY8uW7GD5st1M/WoUgUGeLJi3jddHz2TL9q8rrdOPJs4nJSWTz754Bf8ADzIzcigs1H3v2BF7gh9mrWfy1BE0blqPhw9S+eLzpSgUSr6YNrJasQFs+O0Am1ce5t3JL+Lr78aqJXuZ9OZCFm6oXr3OmryaRs1DyShXrypVMZPGL8TWzoqPv3kZV3cH0lNzMDc3rXZsgvB3EGOmglCOqakprq6umJnpbijUajVr1qxh2LBhuDRtirWPDyEjR1BcWEj6yZNGr/Xo0CGkjo4EDX4Jay8vPDq0x611G5L27NUek7zvDxzCw/Ht0wdrLy98+/TBIbweyfv+0B7j3KgRTjExWLm7Y+Xpgf+zz2JiYUlufLz2mLw78Ti3bIX82jVcWrclYNgIbINDsPDwxNzegfRDhwzGmHnqJCUKBQGvjMTKxwfHJk3x6NmLtH17Uas1mSa+Lw7Cs1dvbIKCsHB3x6tvP6z9A8i+eEHvWupiFQlLFuH1zLNYuLpWq7yH1fdha/wjNt5K4W5OAd+ciietQMGL9Qz/yr74ygN+vnCPC2kyEnMLWReXzB/30+nmX/HvTWkdxtb4VC6mGc5OqsrIBj5sinvE2uspxGcXMPVYPGn5CoZEGo5t3vkHzD6dwLkUGQ/khay6lsyeu+n0DNbF1r+eO+uuJxN7O40H8kK2x6ex9noKrzXyq1lsvSPYdOQuaw/eIT5JxpTl50jLLmRI19BKz8vOLSI9p1D7n7JYd1OfW6DUey3A3ZYAD1vWHoyv5IqG/RP1ei0zl10JacTn5PMwt4jYu2kcT8qiibt9jeOrrt0HLjB5xlo27zhFSWnm1T/pxVAfdtxP5feER9yTFzD70h0yChU8aySbqLC4hO8uxLMt4RFpBgb0ysoqUpJZ5r+SSo+G9H17cW7dBpf2HbD08sJ30GDM7B3IMNKXZJX2Jf5l+hL3cn2Jz4uD8OjVG+vSvsSzbz+s/AOQlelL8uLjsQ4KxrlVa6SurthF1MepVWvyE+4ajXV0I1823HjEmmspxGfl88Xh26TmFzE0xnCGyb2cQjbceMT1jDweyovYl5DB1rhUWng7aI+ZciSeeececDFVzr2cQn48fY/LaXJ6BFccrCxPrVZzd/d+Qvr2xKt5E+x8fWj42nBUhYU8PHHa6Hn39h/BwsmB6GEvYufjhX/ndvi2a8WdHfu0xyQeOU6RTE6zd17HOTwUazcXnMNDcQwO1B5jYW+HpaOD9r8TR29gY2tBl+4Vs1HUajXrVh5h6MjOdO7WgJAwTz6bNoj8vCL27jhf5b/VydkWF1d77X+mprqvlrFbT5OVmcv0H1+hYZMgvHycadgkiMjo6vV3arWa3esO03doF5p3aohvsBevTXqJwvwiTuw1njEdFO5Hq26N8Q3yxM3bhbY9mxHTIpy4i3f0jpNIwNHFXu+/v0KtVnPu90O0GNiNem0a4RrgTa+3h6IoKOL64bNGz+vy6kBaPtcdr3oBOHm50WZQbzxC/Lh98tJfiuV87EGaDehOWGtNLD3e0sRy8/AZo+fZu7vQafRzRHZphYWttcFjkm/cwbNeIPU7tcDe3QW/BuFEdGrBo7h71Y7t5JZDtH2+G5HtGuEe6E3/94agKCji8kHj5dR77EDavdAdn/AAnL3d6DSkN16hftw4oV9OxapiNk7/jS7D++LkVfX7tXxsO9cd5pmhXWjZuQF+IV6M++wlCvKLOLbX+PshOMKPNt0b4xfsibu3C+17NaVBy3BulGlzcZcTCIsKoEPvZrh7ORPdLIwOvZty++r9GsVYPt7bu/YT/nQPfFs0xsHPm+Zjh6EqLOTBceN9jY2bC42Gv0Bgx9ZIbWxq/ffLx7Lyt92MHN2Hbj2aExbmy7RvXiMvr5AdsX8aPe/4scucPHGVX+a/R+s20fj4uNGgYQjNW9TXHrN923FGjO5Dh46N8PVz54VBXWnXoSG/LdtZ7di2rD7CC8M7075rAwJDvZj4haZeD+yqup+bPW0d3fs0o35MxcHBaxcTiIgJoFufpnh6O9OoeRjd+jTjxpXqvx92lGlz/iFevFHa5o5W0ebaVtHmjuw+S78hnWnSNhIPHxd6DGhD4zb1iV1t+HPcUGwrl+9lxOin6NajGaFhvkz7ejR5eYXs3F5ZnV7h5J/XmDP/XVq3icLHx5WYBiE0b6HL7Lt44TYNGobQt18bfHxcadEqkr792nD50h2j1zUU35bVR3h+eGfaddHU63uTNWV3cHfV9frjtHV07duMCAP1unfbaXIyc/l81giiGgXh4e1MVKMg6kX5Vzs+Qfg7iAE74V9PpVIxa9YsunbtSteuXfnpp58oKc0seOaZZ1i8eDFTpkyhU6dO9O3bl7179yKXy5k0aRIdO3Zk4MCB/Pmn7kMnKSmJFi1acO3aNb19GRkZtGrVSrvPVCrFvl4Y8njjHyzyO3dwKDOtFsAxKpK8ewmUqFSlx8TjEKV/jENUFPJ4w4Mk6pIS0k+doqSoCNsQ3S/HNiGhZF+8SP79e9hFRpIbf5v8Bw+wj4rCLjKSvDuGr5d3Jx7b0DBMpLoLynXOAAAgAElEQVQMNLvIKJQ52Sgy0o3+24qLCjGz1v8yn7RlC1IXF1xatzF6XllmJhIiXew4kZStt/9EUhaN3Kp/42RjbqqXOQSa6ZiuVlIWXq7dF2FzEwnRbnYcfZClt//ogyyaeFY/NltzU2RFutikpiYUqfSHSgpVJTRwt8Osmo9ONzc1ITrQiSNXUvT2H7mSQpOwygdK577VjlO/9GfdZ13p1bzyX1df7BxCXGI2525VbwrgY/9kvZYV4WxDI3d7zjyqOtvp38BMIiHc0ZZTj/Tb3KnULKL/4kACwJJOjdjauwU/to2miatDpceWqFTavqSsyvqS/Dvx2BjoS1RV9CUlRYWYlulLbEJDKXjwQPt3FJkZ5Fy6iF2U4Wlv5iYSot3tOHJfP0P1yP0smlbzvRrgYElHfydOPsyu9Dhbc1Nyioy3yccK0tIpypHhFq274TSVSnEODyPrlvEB8Ozbd/TOAXCLiSQn4R4lqmIAUs5exDkshKvL17Jv/Icc+mgKcZtita+Xp1arid18ip5PNcHSQKZx0sNMMtLltGity5a2sDSnYdMgLl+s+oZz5OAfebrrVMa/uoCzp27rvXbkwFViGgXy/Tdb6NtlCoOf/Y7F8/agUhqOtby05ExyMuVENw/X7pNaSAlvGMytKwnVugZAQlwit68kENFIP9tKUaTk3eem8faAKcz6YDEJcYnVvqYhOY8yyMuSEdhYd1NqbiHFNyqEpBvGB5wNURQUYWlkwKw6ZI8yyM+S4d9IF4uZhRSfqBCSaxhLed71Q0hLSCT5puY6srRM7p6+QmDTyCrO1MhOySA3S0ZIE129mltICYgOIfF6zcvJqlw57f81FkcPZxp1a1GjawGkJmWSnSGnQQvd+0FqYU79hsHEXU6o9nXu3kwk7nIC9Rvr2lxEgyASbiVxq3QgJz0li7NHrtK4TfWnJ5aXl5ZBYbYMjxj9vsY1IpSMW9Uf+Pg7PExMIz09h9Zto7X7LC2lNG0WzsULt4yed+CPc0RFB7F82S66d36Hp3t9wLdfrSA/r1B7jEKhRCrVz361sDDnwjnj1y0r5WEmmRlymrbS7+diGgdx7VJCpef+vv4YmRlyXhrVzeDr0Y2CiL+ZxPXLmnpNTcniz0NXadG2vsHjy/u721xkmTanVKgwL5c1LJWac/NS9d5n2jptE6XdZ2kppUmzelw4f9voedo6/XU3PbpM4OneHzL965V6ddq4ST1u3rjPpYuaz8TkpAwOHbhAuxpMc055mElWhpwmLfXrNbpxENerqNfY9cfIypAzaKThej1x6Ar1GwYy/7stDOk5hTEvzGDFwt2ojHzWCsI/RUyJFf71du/eTZ8+fViyZAm3bt3i66+/xsXFhSFDNNMy1qxZw9ixYxkxYgSbNm1iypQpNGvWjO7duzN27FiWLVvG5MmT2bZtGxYWhteayChdO87Z2Rke6QZJzO3tUWQZv8FT5uRgXl//A9vc3h51cQmq3Fykjo4oc2RI7fRvKqV29nrr0AHkJSZy5dvplCiVmFpYED7ude10WADfF1/i3rIlFCY+IGHxIpBI8Bs0CIcGDcl/cB/ljesGY1TJZJg7OVWI8fFrFq5uFc5JO3gAZVYWzi1ba/fJrl0l6+xpIiZ9brQ8ynOyMMfMREJGgUJvf0ahkpZW1ZuW1MHHmZZejgzbqZvKGeZozesN/Bmy8wK1TYpystTEll6gP20wvUBBG2tHI2fp6+zvTGsfR17cqovtyIMsno/wZPfddC6n5RLtZssL9T2RmprgZGlOWr6ikiuWxmYnxczUhPScQr396TmFtI3yMHhOfqGSr1ed52xcOsUlJXRt7MNPb7Zh4oKTbD1e8abc1sqc3i38mLWu5hke/1S9PrZvYAucLM0xlUiYf+k+6+NSDFzh38extNwyy01VzSpU4uJW+2l6GYUKvjt/m+vZcsxMTOjl586P7aJ588hlo2vjFefmQkkJZvb6fZOZvT0qI32J0kBfYlZFX5Je2pc4lelLnJq3oDgvj/hZ36FWAyXFOLVshdeAgSReq3AJnKyMvVeVtLWufCr8xoGNiHazw8LMhFVXk5hxwvhNzMsx3njaWrD5puH1MssqzNGUq0W58rOwt6Owks+MomwZrlH6N+/S0s8MRW4ulo4O5Kelk3H9Jt6tmtN8wjjy0zO4+ttaVEVFRL40sMI1069cJ+lhJk8PMDx4kZkuB8DZxVZvv7OzHWmpxgfDXdzsmDhpAPWj/VAqVeyKPcdbry1kzpKxNG6qWc7hYWIGZ0/dpnvvxsycM4rkpExmfb2Zgvwixr9XcU3N8nJK26e9s53efntnO7LSqh6of3vAFOTZuRQXl/DsKz3o0l/3Y5KnvzujPxqEf6g3hflF7Fl/mC/H/cyXS9/H069iW62OvCxNvNaO+vFaO9qRm1H9HxbObz+MPD2byE7NaxUHQF62kVgc7MnNrHxguirh7ZtSKM9jw6c/glpNSXEJEZ2a03bYM9U6PzdL0+Zsy8Vm42iHvAbldOr3I8jSs2nQRVdO8educPXwecbM+aDa1ykrO1NTbg7l2pyDsy2Z1Whz456Ziqy0zT03sgfdn9W1uTbdGyOX5fHFuF9Araa4uIT2vZoyeFzfWsUKUJiticnSQb+vsXSwp+Av1nNNpadrYnFx0f9ByNnFntTULEOnAJCYmMb5c7eQSs2Z9cN45PJ8vv1qOWlpWcz6YTwAbdrFsHL5bpq3iMA/wIOTf15j/76zFBdXlSuukZmhaXNOLvr16uhsR0Yl9Xr3djIrFu3lx6Xj9bKHy+rUszGynHzef3Uu6tJ67fpUU0a91adasT1uc461bHOvV9LmGrYMZ8faw0Q1DsHTz5UrZ25x6tBlbWJDVYzVqYuLPamPjNfpw8Q0zp+Lw1xqxqwf3kAuy+fbr1eSlprNzB/eAKDXUy3Jzs5l5LBvAM0U1L792vDOe89XKzaArNJ6daxFva5avJfv/2O8XlMeZnDxzG069WzMFz+M4lFyJvOmb6YwX8Hod6r+/PqfIaleMoHwzxEDdsK/nouLC++//z4SiYTAwEDu37/P6tWrtQN2rVq14rnnngPgtddeY9WqVfj6+tKnj+aDdNSoUfz+++/Ex8frPWRizJgxmJhoOvHZs2cDaBdO11JTZUdW4ZTSqWF6L1S4bMVRJitPTxp8/hnF+flknDvH7aVLiXr/fax9NIu+ph3YT35CAgD+Lw+jpKiIhxs3IHVxRXPXW4MOt5JBruxzZ3m4cQNBo19F6qKZaqLKlXPv16UEjnwVs1pMrajtRMNGbvZMbx/Ot6fucCUjF9Bk28zoEMHMs3d5aGDtqhrHptaPTkJpcVahiac9s7tFMO1YPJdS5dr9c87ex9Vayrr+jZBIJKQXKNh08xFjGvtRXMPRxfJxSCTGY8vKVbBk503t9uW7WTjZWfBan/oGB+z6tw3AVCJh87GEGsWkF18tzzNUr2UN330RazNTGrjZ826TQBJzC4m9U/N19v41JLUvS4D7uQV6D5e4minHy9qCwWE+RgfsjKqiL6nwShV9SdLGDQSU6UsAcuNu8mhHLD4vDcE6KAhFaioP163l0e/bIKRf5aFVFosBb+6+jo25KZGuNnzcNoTXmxYy9+yDCsf1CnHlkzbBjN99nYdyA2sJ3jzJroUrtNvN3xtnNIgKnyMVjyi3Xe4fVqJGamdHg1FDkZiY4BAUgDI3j2srN1B/0IAK179/8Bj1o/yoF6H5rNi9/Rwzpm3Uvj5zzkiDcanV6ko/3gIC3QkI1D1cIqZhIClJWaz+9ZB2wE5dosbJ2ZaPJj+HqakJEZG+5GTn89N323hzQt8Kf/P4nrMsnbleu/3e9NEGS4QqYnvs0zlvUlhQxO2r91g3PxY3Lxfa9moGQFh0IGHRgdpjw6ID+XTkTPZuPMLL7wyo+uLA9YOn2TtvrXb72c8eP9ig4neF6t7zxB2/wOFlW+nz/ivYuztX7yTgxqHT7J+ve4hGv0ljNZGUr1fU1WiDlUu8cotT63fR+bUX8KwXSHZyGoeWbOTP1TtoPbjiIMWlA2eI/VlXTtoHQFT8glTtryrXjl5g73+28tyHw3H00JRTfk4uW75fycAPhmFlV73sxKO7z7Johu6hSh/OHF0am4HQqlFuX8x7g8ICBbeu3GPV3FjcvJzp0FvT5q6dj2fT0n2Men8AoVEBpCSm8+sPW1i/eDcvvNqrWvHeP3aKs0tWa7fbTXzdSLw1aHS1tP3340z7Ypl2e878CZpQDMRSWdmVlJQgkcA3343FrrTePv70ZV5/dSYZ6Tm4uDrwwcdDmPr5Up59+mMkEgm+fu4882x7tm4+YvCa+3ee48evdfU67YfHD9up+H4wVk4KhYqvP1nBq28/jaeP8anVl87Gs2rJPt78aAAR0f4kPUhn3syt/LZgN8PHVqzXI+Xa3Ed/sc1NKdPmVs6Nxb1Mm3vlnf4s+HYdE4bMQCKR4OHjQqc+zTm43fB06e2xJ/jyi1+12z/Pe0cTWg1jKymt829mjNHW6UeThjLutVnaOj1z+gaL5m/jk89eJqZBMA/upzLjm1XMm7OFceOfNXjdAzvP8fM3urKbMltTr5Ly9apWV9j3mFKhYvonKxhVRb2WqNU4Otny1qTnMTU1Iay+L/LsfBbO3sqotyt+fgnCP0UM2An/etHR0XqdZkxMDAsWLCA3V3OjHxqqW9PL2toaS0tLvX3OzpovellZ+r8UTZ06VXucQqHJFHqcafeYUi5Dam98ypW5gwOKHP0bYpVcjsTURDuwZe5gj6JcNp1SLtdmuT1mYmaGlbvm5sg2MJC8hASS9u4j9JXhFCsUJG/ZRMDIV0lYshATCwtc2rSlIPEBj/buwdLDo8L1HjOzt0dV4e/LtK+VlX3uLAlL/0PAKyP1nupY8DAJVU4Ot3/8Xndw6d3z+XFjqP/5FKDi2mVZRUpUJWpcy03TcrE0J6Og8gXxG7vbM7dLFL9cvMe6ON0DB9yspIQ62jCtTT2mtdGkyJtINIvznx/ajnF/XOFEctW/OmcVamJzK5eh42IlrZA5Vl5TT3uWPBXND6fvseqa/sMQiopL+PhgHJ8dvoWrlTmp+QoG1fciV6Eiq7Dyf7M2NrkCVXEJbo76i+m62FuSLis0clZFF+MzeK5DxafCArzYKYRdZx6Qk1d1xl+F+P6Bei3r8UDsrex8XCzNGdfQ/39iwC67tNycy01fcbIwr5B191ddzZLTzdd4FpGprS2YmFToG1RyeYV+4TFz+4qZwapK+pL7S/+Df7m+BCBl2xYcm7XApV17AKx8fClRKHiw/FcY0wdM9Bd8zip4/F7VLzcXK3PSq8hYffzwmNtZ+ZhIJEzvEs6Ccw8oLjNG1ivEldndIpiw74bRJ8SWBDWkfXfdujYlSs202aIcGVYuukGXIpkcqb1dhfMfs3C0pyhHPytAIdN8ZkhtbUuPcUBiaoLERJcVYOvtSbFCgUKei0WZ6xfJZDw6d5Hhk3Q3P+06RRIVo4tVUTrtPCNdjoenLns4KysXZxfjsRoSGePHvl26rFgXN3vMzEz0MhgCg90pLFSSnZWHk7N+Vl/jdlGEROpiU5ZOnc3JlOPiocvelGXlVsi6M8TNW3Mz5hfijSwrl81Ld2sH7MozMTUhKNyPR4nGp2+XF9IiBs/wQO12cWm952fLsHfTxZufI8faserp2XHHL7Bz9nJ6vzO0xk+IDW4Rg2e9irHkZcmwc9XFUpAjx9qhZvVa3olVsdRr35To7ppMHtcAb1SFCvbNXUXLF3thYqr/Hg1vGY1vuG6NKFVpbLlZMhzKlFNeTm6FrDtDrh29wOZZK3j2vaF6T4hNvZdMbqaM3z6Zq933+Ee3qX3fZdz8j3D11c9Cb9ouitAoXWzK0vdDToYc13JtrnzWnSHupW3OP8SLnEw5G5bs0Q6erF24kzbdG9OlXyvtMUUFChZ+u46BI7pjalb1YvZeTRrQPSRQu11curxKYbYM63J9jeVfrOeqdOrSmJgGuumXCoXmcyo9PQfPMmsHZmXKcalkWQc3N0fc3Z20AzsAwcGa9UeTkzNwcXXA2dmeH+a8TVGRguzsXNzdnfjh+3V4+xheBqRVh0jCoydotx/Xa1aGDPcy/VxOZm6FfuixzHQZ9+88YtbUtcyaqhlwVpeoUavV9G75AV/+OIqmrcJZNm8XnXo0onf/lgAEhXpRWKBg9pfrGTq6Yr02axdFmIE2l/03tLnscm3O3smWidNHoihSkivLx8nVnlVzt+PubfjHgE6dGxETE6zdVpS+V8vXaWamDOdK6tTV1cFAnWruAx7X6S8/baLXU60Y8FxHAMLq+VFQUMSUz5fy2uv9MDPwfmhZSb26la3X/2PvvsOjKvbHj793k+xu+qb3XoCEXoK00AUEBb1eiiCKhaagiO1asFy96lWxY0PFDtJ7l6b0TkgjDUjvjbRN9vz+2GQ3m+wmoWjyvb95PQ/Pw5495ZOZM3POzpkzU1SO2qWFfE3N4YPXV/FBk3ydcNuzvP7hw/S+rRPOLg5YWloYXb/8gtyprtJQWnwNRyfT+xeEW0002An/8xpPHgG6J0KNlzU09jXtHu7h4YGfn25gbEmScHFx4dixY9C7l259jYayS0kE3Nv8FaQG9sHBFJ41npihODYO24BA5PUx2AeHUBIbi8+YMfp1SmJjsQ9peWYzSSsh1d+oSXV1SHV1yK0ssfEPoCwuFqc+fUEuB0lLWVws6l59TO7HNjiEzPVr0Wo0yK10P3jL4mKxclTreufVKzp5gsvff0fAA7Nw6mO8L5vAQDq//KrRsqxNG6irqMB36n0oXF3BRNtLrVYitqCMAV5qdl02/Ei6zVvNnsvmx03r4+7AZyMjWXbuCj/FZRp9l1tRw92bjAetntLJiwFeTjy5P5aM8rY1aGm0EjF5ZQzydWJ7iiG2Qb5qdqaY/0HXz8uRr8dF8snJy6y4kGF2vVqtRHZ9Y9iEUDd+v1zY5l5UmjotMWlFDO7qyfbjht5AgyM92HGy7WMwdQlwIre4eXp0D3YmIsCJN35qfcBeU/6KfDVHLpOhkP9vDMdaK0kkFJfTz92JfZmGdOrn7sSBjLY3IrRFmKMdBVXmG7Pkloa6RN3H0MDRUl1iExxClom6xLJJXVJ88gRXvv8O/wdmoe7TfF/amhqjxihdQOafZGu0EjG5ZQz2d2JbsiGdBvs7sSO57ekml8mwkMuwkMmoq/+RPz7UjfdHdWLxngS2t7QvhQpbD0NvM0mSUDo6kB8Tp58Moq5GQ1FCEp2nmu+9pQ4NJueU8TUjLyYex8AA5PU/XpzCg8k8cgJJq9WnU3l2LhYKBQp74x8Q6YeOIreyZNRYw+ywtrYqo5lfJUnCxdWeE0cT9ZNBVFdrOHc6lccXte2VrgaX4jNxcTX8wOzeM5Bd28+g1Wr1PdavpuWjUlmhdmreG9vaRmU086skSTg62xNzIpHgLrqGvJpqDQnnU5g6//peSZK0WjQa8+MPSpLE1eQs/EJNT1RiisJGZTTzqyRJ2Do5cPlsAp5huh/ktTUaMmKTiX5wUov7SvjjNDs++pmxT0wnfFCvNsegj8VaZTTzqyRJ2Dg5cOVcvFEsmbEpDH6gba+umlNbrdHnZwOZhfmuwEobldHMr5IkYefkQMqZBHzCDbFdjklm9MMtx3bx4Bk2LP2ZSU9NJ2KwcWO/d7g/85Y9Z7Ts9x+2UVVewR3z78XJo3lvGmtbldEsnJIkoXax5/yJRH3jcU21hvhzKUx//DrPOUnSN04C1FRpkDepy+RyWbOe/C2xslYZzfwqSRIqtQM5MfE41zfk1dVoyI9Ppvt9pnsp3Sq2ttZGs4RKkoSrqyNHD1+ka32jT3V1DadPJbDo6alm99OzVxi7d56g4lqVflbPy2m6oS68vI0b5JRKBR4ezmg0tezddZLbx5p+1d/GVmU0Q6gkSTi72HP62CU6RRryNeZsKo8sNP1Ksqu7I1+uXGy0bPOaw5w+dolX3n0Aj/pGr+qqGuRNXquUy+VmX3kwd85dOJFI6C0450zVcwqlFc5ujtTW1nFs/3kGjOxpYusW8vRIbKM81XDmVCKLnjY/A27PXmHs2XXSOE8v64aT8K7P06qqGiwsmpYHeYtvsZjKVycXe84cv6SfDKIhXx82k68u7o4s+9U4X7euOcyZ45d46b+GfI3oEcj+ncbXr4wreShVVjiob81ELYLQFqLBTvg/7+LFi0bd7WNiYnBzc8PO7tY9+ZDJZEydOpUVK1bgg4S1hwfpW7ciVypx7d9fv96lb74FIOxh3StGHkOHkr1vH6krV+ExNJqypCTyDh8m7NFH9Nt4jRxJzLvvkrFtO869elJ45iylCQlEPmsYf+Xy2nU4deuGwtlJNzPt8eOUJibSecHjAFhaW2MXFk7mhnU49uxNzs7tSHV1FJ44jl1QMJqSElyjdU+wMtev41paKmGLdBcr56gosrdu5vL33+E5bjzVuTnk7NyB5/g79WladOI4ad99i88/7sUuLBxNfQ8QmaUllra2WCiVWNe/mtvAwtoaSVvXbHlTP8Rl8NagTlzIL+NMXimTw71wt1bqe1c90SuQrq72PLr7AgB9PRz5bEQkqxKz2JqSi4tK1zCglep7dkkSScUVRscorNJQU6dttrw1357P4L0RnTifW8ap7BKmRXrjbqvU95p7OiqQ7u72zNyii62/tyNfj+vKzxcz2XgpF1drQ2yF9b3nAh2t6eluz5ncUhyVVjzU3YcwZ1ue2ZdgOghzsW2P5725t3EuuYBTl/K5b0QI7k7W/LJXNwjw05O70yPYhfvf3gfAPYMD0dRJxF4uQquVGNnbmxmjQvnvquZjxE0dHkJqVinH4m+819qtzleA+zp7k15WRVqpLh/7eDjyQIQPq8z0xLsVbG2UhATqZmiVy2X4+bjSPSKAouJyrmaab3y8UauSMni5bzhxRWWcLyxlUqAXrioF61N1P17mRgTQxcmeJ/6M0W8TaG+NlVyOo9IKG0s5YY66G8lLJdcAmBziTVZFFamlFVjJ5Yzxc2OotwsvHDM9Fl0D11GjufrdN9gEBmEbEkrBwQPUlpTgUl+XZK1fR0VaKiH1dYlTVBQ5Wzdz9fvvcK+vS3J37sCjSV1y5btv8f7HvdiaqEsAHLr1IG/vbqwDAupfic0je9NGHLp1p0puugfK8rPpLB3dmXM5ZZzMKmVGVy88bJT8HKNr+H12QBA93O2ZvlE3JuPdndyprtWSUHCNGq1Ed3d7nh0QxPakPGrqX02/M8yNpaM6858/UzieWazvwVdTJ7U68YRMJiNozAiSNu3A1ssTOy93Lm3cjoVKic8Aw3hbZ79cAUDPOQ8CEDBiCJd37+fiT7/hP3wIRZeSST90hF7zH9JvEzAimsu7D3Dxp9UEjh5KZV4hl9ZtIWBktFFvc0mSuLr/T7z79zVqoDMV6+TpQ/h++V4CAt3xC3Bjxdd7sLFRMvoOQ8PR6y/qXsNb8uY0AFb9dAhPbyeCQzzQaOrYufU0B/dd5D/vz9Rvc/fkAaxZ+ScfvrOJf0wbSFZGEcs/38U9Uwa26XUimUzGmMnRbPphD14B7nj5ubHx+92orJUMGN1bv96Xb/wCwJyX7gNg15pDuHk54+Wva0RNOJfMtpX7GXn3IP0267/bSUhEAJ5+blReq2LXmkNcTc7kgcXmH8K1Jd7edw7l2OpdOPt64OTtxtHfdmGlUtIl2tA4vf2DHwEYt+h+AOIPnmL7hz8ydNYkfCND9WPhyS0tsLa/sR+GMpmMXhOGcWLNLpx9PFB7u3NizU6sVAo6RRsa4Xd+9AMAY54w5Ftequ7BT01lFTK5jLzUdOSWFrj46XrIBPXryplN+3AP8cczPIDirHyO/LKVwL6RzXrXmYut/6ShHFq5C1dfD1x83Di4chcKayXdhhnSaf17utfM7356BgAxB06z/r0fGf3wRAK6hlBeP/aXhZUunRQqJe6Bxg2uKjtrtHV1zZa3FNu4ydFs+H4PPvXn3LoVe1DZKBk02lAePntdd849tkR3zu1YfQg3bxe8/XU9l+POprDll/2MvscwnljvQRFsW3mAkM5+hEb6k52ez29f76D3oIg29a4zF2/o2BHEb9iBg7cHdp4exG3YjqVKid9AQ11z/PMVAETNe1C/rDhN98Cvtj6fi9OuIre0xMHX9GzubYll+swxLP9yE4HBXgQEevL1F5uwsVFxxwTDpG0vPv8lAG++rXs1+o7xA/jqi00seXE5cx+bRFlZBe+89TOjb++n75l3/lwyublFdO7sT25OEZ9/tgGtJPHgw3e0ObZJ04aw8ru9+AW64+vvyi/f7EVlrWT4WEO+/neJrp579vVpWFpaEBhqnBZqJzusrIyX3zYkgnW/HCS8iy+du/qTcbWA77/YQdTgtuWrTCbjjsnRrP9+D95NzrnBjc65T+vPucfrz7ntqw/hbuKcu73ROXfp4mUK80oIDPOhMK+ENd/sRJIk7po+vM3pNv3+0Sz/agtBQZ66PP1yMzY2KsaNN+TpS//6GoA33noUgDvG38bXX25iyUvf6PK0tIL/vvULo27vq++ZFz2sJz99v5OIyCC6dQ/mypVcln2ynuihPUz2rjMXX0O++ga44+Pvyspv92JtrWTYGEPavfeKLl+ffs10vjo6N8/X8f8YyObVf/Ll+xu585+DyMkq4qevdjHh3rZdvwThVhENdsL/efn5+SxdupR7772XpKQkfvrpJx566KHWN7xOM2fOpLq6mu9/+YXaaxXYBQcRsehJLFSGH0I1hcazFKrcXOm8cAGXf/uNnAMHUDg6Ejh1Ki6NepXYh4YQPvtRrmzYwNVNm1C5uRE2ezb2wYYu6ZqSEi598w2a0lIsrK2x9fWhy8KFqLsaZm0KfGQ2mRvWUfjnHyBJFB7TzXxbV1VFyOML9WNEaUqKqcnL029nYYqThkoAACAASURBVG1D6BOLuPrrLyS89QYWNra4jxqN+6jR+nXyDx4AbR0Zq1eRsdowDo1dWDhhi5+5qXTdmZaPWmnF7O7+uFkrSCq+xvy9MWRd072q5matwM/ekMaTQjywsbJgVqQvsyINk25klFcxdp3pMTlu1LbkPJxUlszv44+7jYLEwms8si2GzPrX6NxsFfg7Gp5E3tNJF9ujPf14tKeffnl6WRXDfj4OgIUMHurhS5CjNbVaiaOZxUxef9bkuFgt2XrsKmo7JY9NjMRNreJSegkPv3eQzAJdY5a72hp/d+NG68cmRuDjakudViItq4znvz7ebPw6W5UlE27z59MNF68rnqb+inyVy2BRn0C8bVXUSRJXy6r48EwavyX8dQ12vbsHs+s3w0QqSxb/kyWL/8mPqw8we/EXt/x4ezPycVBY8kAnP1xUClJKK3j68EVyKnXp5qJS4NOk8eW9AZF4NVq2YoTuJnXQ+j8A3ay9j3cNws1aQXWdltT6fR5pYcBoAKe+/agrLydn21ZqS0tQeXsT1KQuqW5SlwQ/sYiMX3/hUn1d4jZqNG6N6pKC+rokc/UqMhvVJbZh4YTW1yUed4wHGWRv2oimuAhLOzscuvXAc+IkctNMx7olKQ+1yooFfQNws1WQWHCNWVsu6MuVu42CgEZltU4rMb+PP4Fqa2TIyCir4ocLmXxz1tBDdXpXb6ws5LwSHcor0YZhFI5mFDN1ffOG7qaCx99OXY2Giz+sRFNRgTo4iP7PLsCyUe+YygLja4aNmyv9nn6M2J/XcOX3QyjVjkTePxmvfobGKWsXZ6KeXUDsL2s59NJ/UDo64Bs9kLCJ44z2VRCXyLWcXHrOndVqrDNmDaO6WsP7b62nrLSSiG7+fPD5o0YNfTnZxkMJaDS1fLp0C3m5JSiVVgSHePLepw8xcIhhoiUPTzUffvEoH7+3mQcmf4CLiz0TJvXjwdkjW42pwfj7RlBTreGHpWupKK8kuIs/zy6dY9QTr6DJuazVavntiy3kZRdhYSHH3duFyXMnMGKiYXKTirJKvnt3NSWFpVjbWhMQ5sMLnz5OSEQAN6PfPaOordGw98vVVJVX4BUewL2vzTfqiVeabxzvuZ1/oq3Tsm/5OvYtX6df7ts1lClvLrzhWPrcrYtl39erqS6vwDMskEmvPGbUE68sr3k98MtT7xh9Tj0Rg72bMw999RoAUf8cAzI48utWyguKsba3JahfVwZOb3tvoEH3jqS2WsO2ZWuoLK/At1MA978xz6gnXkmT2E5u06XTzq/Ws/Or9frlAd1CefCdBW0+dmvumjGcmmoN376/jmtllYRG+PPCB7ONekXl5xiXB61W4tdlW8jLKkJuIcfDx4Vp88Yz6m7DOXfPg6OQyeC3r3dQkFuMvdqWPoMimTLHuOxer04TRlNXU8OZFauouVaBc0ggQ55fYNQTr6KgeT7vefEto89Zpy9g4+rMHR+9ccOxzHr4Dqqranjr3z9QWlpBt+7BfL78GaNeW9lZTeo9WxVfffMsb735I9OnvIa9gw0jRvbhiacMkw/U1Gj47KO1pKfnYWOjZHB0d958ZzYODm1v0J78gC5fP3tnHWVllXTu6s9bnz5q1GMrL7vl66Ip9z08CplMxvdf7CQ/txgHtS23DYngwfltz9e2nHMFJs65X0ycc6MbnXOamlpWfbWD3MwCVNYKeg7owmNL7sPW3pq2evDhO6iq1vDWGz9RWnqNbt1D+PzrxUZ5mpVl/ADTxlbFl8uf4e3//MyMKa9j72DD8BG9eeKpe/XrPDrnTmQy+OyTdeTmFKF2siN6aE8WPHF9D03unTmc6moNy/67jvKySjpF+vPGJzefr26eat78ZDZff7CJx2csxcnFntvv7MdUM7MF/89q4Q0H4e8hKy4uvpmxrAWhXc2dO5eAgAAsLS3Zvn07MpmMO++8kwULFmBhYcHEiRP55z//yYwZM/TbDB06lGeeeYYJE3RdpaurqxkyZAjvv/8+Q4YMITMzk0mTJrFixQqjSSgaPHHubLNlHUFVXceuUC9e7bjxVVZ03GpQ+rNtr4a2B5vRLfeebE9JLy1rfaV21Pujx9o7BLN81G2bPa49HL/YccvqPf3q2jsEs17s0Xzylo4kqfTGehf9Hc4Vdtxn27XajntdVSs7bj0C0EXdci/Z9rQmte2NKX+3l3t13FcBsyvyWl+pnRTXdNyyCtDJse0T3PzdMitu/dsMt5KrFN3eIfyler28r71DuKXO/LttvUs7ko57FyIIbfDFF4YeLs8807yn18aNG5stO3DggNFnpVLJ8ePH9Z+9vb2NPguCIAiCIAiCIAiCIPyd/jdG6hYEQRAEQRAEQRAEQRCE/xGih50gCIIgCIIgCIIgCIKgJ4kJNtqd6GEnCIIgCIIgCIIgCIIgCB2IaLATBEEQBEEQBEEQBEEQhA5ENNgJgiAIgiAIgiAIgiAIQgcixrATBEEQBEEQBEEQBEEQDET3rnYnskAQBEEQBEEQBEEQBEEQOhDRYCcIgiAIgiAIgiAIgiAIHYhosBMEQRAEQRAEQRAEQRCEDkSMYScIgiAIgiAIgiAIgiAYyGXtHcH/90QPO0EQBEEQBEEQBEEQBEHoQESDnSAIgiAIgiAIgiAIgiB0IKLBThAEQRAEQRAEQRAEQRA6EDGGnSAIgiAIgiAIgiAIgmAgE2PYtTfRw04QBEEQBEEQBEEQBEEQOhDRYCcIgiAIgiAIgiAIgiAIHYh4JVYQrpONpba9QzBJZdHeEbRMrbZq7xDM6hPYMfMU4GqAX3uHYFZtXXtHYF7vjx5r7xBadPqJz9o7BLN8vp/X3iGY5e7RcSs6OR23QHweZ9PeIbSouuNWwVhbSO0dglnpFR33Nl7VgdMN4GyBor1DMCuzsuPWcy+drGjvEMyykHfcei7IruNeHwB+Sqpq7xDMCnfsuGUVYIpXe0cg/K/ruFd6QRAEQRAEQRAEQRAE4e8nF2PYtTfxSqwgCIIgCIIgCIIgCIIgdCCiwU4QBEEQBEEQBEEQBEEQOhDRYCcIgiAIgiAIgiAIgiAIHYgYw04QBEEQBEEQBEEQBEEwEEPYtTvRw04QBEEQBEEQBEEQBEEQOhDRYCcIgiAIgiAIgiAIgiAIHYhosBMEQRAEQRAEQRAEQRCEDkSMYScIgiAIgiAIgiAIgiDoSXIxiF17Ez3sBEEQBEEQBEEQBEEQBKEDEQ12giAIgiAIgiAIgiAIgtCBiAY7QRAEQRAEQRAEQRAEQehAxBh2giAIgiAIgiAIgiAIgoEYw67diR52giAIgiAIgiAIgiAIgtCBiAY7QRAEQRAEQRAEQRAEQehARIOdIAiCIAiCIAiCIAiCIHQgYgw7QRAEQRAEQRAEQRAEwUAmxrBrbzfcYLdo0SLUajWvvPIKc+fOJSQkhGeeeaZN2546dYp58+axa9cu1Gr1jYbwP6VxegLXnabt6dy5c7zzzjukpaXRvXt3vvjii3aLJTMzk0mTJrFixQoiIiL+9uNLkkTqxi1kHPiD2msVOAQH0un+adj5eLe4XVF8IpdWruFaRiYKJzUB427Hd3i0yXWzj57g4pff4NKjGz2ffKzFWNI2biHzwB/UVuhiCZ8xDdvWYklIJGnlGioyMlGo1fiPux2fRrHknjjFlW07qczNQ1tXh42HO763j8Rr0ACT+0vbsp3UdRuxHjgC+7unm1xnUqAn00J8cVEpSCur4OOYFM4XlppcVyGX8XT3UMLVdgTYWXOhsIyFhy+Y/Xu6OTvw8cBuXCmv4IH9Z5p9L0kSVzdtIufgIWorKrAPCiLovvuwaSWdShISuPzbaioydenkPWYMnsOGGq1TcOoUVzduoiovD5WbG36TJuHSu5f++4xt2yk4fZqqnBxklpbYBwfjf8/d2Pj4GI6zbR2VZ09SV1wIFpYofANwuONulEGhJuO6y9+TyUE+uCgVpJVXsCwulQtFptPSSi5jUWQIYQ52+NtZE1NUxuLjMS3+3ddjUoAnU0N8cFbq8vXT2NQW8/WpbiGEO9bna1EZTx4xjmWIpzMTAzwJc7BDYSEnrayCH5PSOZxTeN2x3R3kyX1hunMutbSCjy+kcK7AfGzP9NSdc4H21pwvKGPBH8bnXC9XRz4d0q3ZttN2n+JKeeV1x9cWg6I68+ScCfTuFoS3pzOPPvU5P605eEuPkb9/H3m7d6IpKUHl7Y33P6dgFxZudv3KjHQyVv5KRVoqFja2uERH43HHBGT1N3zliQlkbVhPdU422poaFM4uOA8ajPvtY0zur+jEMa58sxz7bt0Ifmxhi7H+I8ST+zvp8jSltIIPzqZwNt98nj7fJ5ROajuCHKw5l1/GvAPGebqkXxgTAj2a/421dQxdf6TFWEBXtySu38rl/X+guVaBU0gg3WZOxd635bolPz6R2F/WUJaRhUrtSMj42wkcYaiDD/9nKQXxl5ptZ+fjxfC3lgBwafMOsk6e5VpWDnIrS9zCAuk1bSJOfqaPLUkS59ds49Lvf1JTXoFraCBRD01GbWZ9gIqiEk79uI7CtKuUZeUSNCSKQfNnGq1z+ehpYjbtpixbd71w8HSjyx0jCBl6W4tp0DS2i2u3kfL7n2iuVeAcGkjvWZNxbCEdK4tKOPfzOopSr1KenUvAkCii5hrHVpKeycU1WylKvcq1vAIi7rmDrveOb3NcjeM7t2YbiXv/pKa8EtewAPo/NAUnPy+z21QUlXDyx3UUpKZTlpVLcHQUg+ffb3b9lD9PcujjFfj2jmTkc/PMxtFe9x9pW3aQe+oMFdk5yC0tcQwJImLKROx9fUzupyHeS+u3cqW+fKhDAunahvJRUF8+yjOyUNaXj4BG5ePIf5ZSaKZ8DK0vH6ZiSVi/lbR9hrLa/YGpOLRWVuMSiWlUVkPH307QSOO0S975O2l7D1KRX4jCzhbP3t2JnHo3lioVAImbdGW1vL6sOoUE4TrxHv19QO7+/WTt1NXB1t7e+E+Zgn1YmNmYKtLTufLrr5SnpWFpa4tbdDTe48fr6+Ca4mKurllDxeXLVOXm4nLbbQTPmmW0j7xDh8g/coTKzEyQJGz8/PCZOLHZcduzjpO0WhLWbSH98HGqS0pQOjriN6gfne8Zj9zCQh9f/LqtXN73JzX18fV4cEqb8vXCz2v18YVNGN08X3f8TureQ/p89erTncipk/T5Grd2CwnrtxltY6O2Z86K/5g8piRJHF25nQu7/qTqWiVeYQEMnzMZV3/z9Uh5YQkHv1tPbspVirPy6DK0H2OeMK5H6mrrOLF2F7G/H6e8sBgnH3eGzJxIYG/zv5HaM1/3PPUilfnN7+mC+kRwz5K5LR6/cfxHVm7n/M7DVF+rxDM8gJFz/tliWl46co5zO/4gNyWd2ppaXPw86f/P2wnt3/y+ThD+brekh90777yDpeXf31nv/1Kj1vVqrzS9Ee+//z5hYWF88MEHqOovVH8HU/nv4eHBtm3b2q0h+PK2XVzZuYeIhx/AxtOD1E1bOfPeRwz4z2tYWptOm8q8fM5+8CneQwYSOXsWxZeSSPjxVxT2drj37W28bm4eSb+tRR1uurGmsSvbd3F15x4618eStmkrZ9/7iP6txHL+g0/xGjKQiEdnUXIpicSffsWqUSxWdrYE3HkHNl6eyC0syD93noTvfkRhb4dLd+MLW0lyClkH/8DW1wetmThHeLvyRNdglp5P5nxhKXcHevHubZHcv+80uZXVzdaXy2RUa7WsTc1kgLszdlbmy4mdlQUv9QrndH4xriqFyXUq9m+nYO9uQmc9iLWnJ+mbtxD7wQf0euPfWJg5n6vy8on/+BPcBw0i9JGHKbuUROovP2Nlb4dLnz4AlCUnk/jV1/jddSfOvXtTePo0iV9+SdfnnsU+OFiXPgkJeA4fhl1goK7hcOMmYpd+QI/XX8PK1hYAS3cv1PfOwNLZFUmjoezALvK/WIrnS29hYe9oFNcwT1ce6xLERxdTiCkq5S5/T97qG8FDh06TW1XT7O+wkMmo0UpsuJJFfzcnbG9hnTPcy5UFkUF8EJPChcJSJgV48k5UBA/sNx2LvD6W9WlZ9Hd3MpmvPV0cOZ1fwvKEK5TV1DLKx403+nbmySMxZhsCTRnp48qT3YN571wy5wtKuSfIi/cGRjJjz2lyzJxzNVota1MyGeDR8jk3fc8pSmtq9Z+LqzVtjut62dmqiE24yi9rD7L8g/m3fP9FJ0+Q8dsqfKfdh21oGPkH9pH66cd0euU1FM4uzdavq6wk5aMPsA0NI+z5F6nOyebq998hVyhxH307AHKlCtfhI7D28UGmUFCRnEz6zz8iVyhwHTbcaH/VeXlkrV2Dbaj5H6cNRvm6srhnMO+cTuZcfin3hnjx4ZBIpuxoIU/rtKxOymSQl+k8ff9MCp+dTzNa9vWI7pzJa9u5lrx1F8k79tDz0ZnYeXmQuGEbR/77MSPeedVsHVyRl8/x9z7DL3ogvebMojAxmQs/6K4H3v10dXDfhXPQ1hrOMW1tLQdeeAPvKMP1oiAukcCR0aiDA0CClA2b2fPGx9z1/sso7WybHffipt3Ebt3LwHn34+DtwYW129jzn0+ZuHQJVmZi1WpqUTrY0vWu0Vza+6fJdRR2tnS7eyyO3h7ILSxIPx3DkS9/RuVgh0+vrm1Kx/jNu0nctpeoufdj7+XBxXXbOPCfTxn3fgux1daisLel812jSfnddGx11Rps3Fzw6deTmN82tykWU2I27eHilt8ZPH8GDl4enFu7nd1vfsLdH7SSdvZ2dJs4mkQzadegLCefUz9twL1zSIvrtef9R1F8Ir4jhuIQ1HC+beLYOx8T/dYSFCbON4CUrbtI2bGHHvXl49KGbRz778cMa6V8nHjvM3yjB9JzziyKEpOJqS8fXvXlo4+J8nHohTfwiuptcp8ASVt3kbR9D71nz8TO04OEDds4/M7HjPzvq2bz8FpuPkff+wz/oQPpM3cWBYnJnP/+V5QOhrKafvg4sSvX0/PhGbh0CuVabh5nl/+EVlNLr0d1DSv58YkEjorGKSgAgLi1m0n44AO6vfYaJbGxXFm5koDp07ELDSV3/34SP/6Yrq++itLFdB2c8OGH2IeFEfHCC1RlZ5O6YgUWCgWet+vqYKm2Fks7O7zGjSP3oOkHPKUJCTj37YtdaChyhYKcPXtI/OgjIl9+GQJc9eu1Zx2XtGUnaXsP0HP2Azj4+lB6NZ2zX32P3NKSznffAcClLbtJ3r6XXrNnYu/lQfz6bRx++xNGvvtKi/l65L1l+EcPoO+8BylITObcipUo7O3xidI9cL16+AQXV26g5yPTcekUSkVuPmeW/0SdRkPvRw0NZnZeHgx+8UkA/G21yFqYbfPk+j2c2vg7YxbOwMnHnaOrdrDulU95cNnLKMzEWqepxdrBjn73jObCrsMm1zn88xbi9h9n1GPTcPb15PKZODa9vZypby/CPdjP5Dbtma9DXn0eSWv4xVBdXMrBV96i02DDw+7WnFi3h5Mb9jH2iek4+7hzZNUO1iz5jIeWvYTCxnT8V2OS8OsWzqDpE1DZ2xB34CSb3l7O5DcW4hvZct0rCH+1WzKGnaOjI7a2pi/Iwo25FWmq0fx1PxQbS09Pp2/fvnh4eODo6Nj6Bn8hCwsLXF1d26WxU5Ikru7eS8AdY3Dv2xs7Xx8iHnmQuqoqso8eN7tdxr6DKNWOdJoxFVtvL3yGDsFr4AAu79httJ62to6YL78h5J6JWLu5mtmbIZb03XvxbxRLl/pYco6ZjyVzvy6W8Om6WLyHDsFz4ACu7jTE4tSlM269e2Lr5Ym1uxt+o0di6+tDcWKS0b5qKyqJ/epbOs+6HytbG7PHnBLiw/aruWy+ksPl8ko+jEmhoKqGuwM9Ta5fVafl/fPJbL6cQ25V8x/ijT3fM4ztV3OIKSoz+b0kSVQe2oPPuLG49OmDjY8PIQ/Noq6qivxjx8zuN+fAARRqNUH3TcPGywuP6CG4DRhI5i5DOmXt2Ytjp074jh+PjZcXvuPH49gpnKw9e/XrRCx6EvdBg7Dx8cHW15ewhx9CU1ZGWZIhLW37DkAVHoGlqztWXj6oJ01Fqq5Ck361WVz3BnmzMyOXbek5XLlWyadxqRRU13CnmaeKVXVaPryYzNarOeSZaES7GZODvdmRnsuW+nz96GIqhdU1TAw0H8vSC8lsvmI+lk8upvJLcgbxxeVkVFTx/aWrJJaUM9jD+bpimxLqw7YruWxOy+FyWSUfnK8/54LMn3Pvnk1mU1oOeSYafxorqtZQ2OifuYbqW2HnvrO88t9VrN92HK1WuuX7z9+zG+cBA3EZEo3Kywvfqfdh6eBIwYEDJtcvOn4MbU0N/g8+hLWPD+refXAfM5a8PbuRJF18NgEBOPWLQuXtg9LVDaf+t2EfEcm1JOOn7lJdLVe++RrPiXejcG25vgO4L9yHLWm5bEzNIa2skvfOppBfWcM/Qszn6dunk9mQmmOyQQ/gWm0dBdUa/T8fOxW+dtZsSM1uNR5JkkjZ+TuhE8bg3a83Dr4+9Jr9ALVVVaQfOWF2u7TfD6FycqTbzCnY+3gRMHwwfoNvI2XbHv06CjtbVGpH/b/CxGRqq6vxjx6oX+e2ZxfiHz0QB18fHPx8GPTYTKpLy8lNSDEZa/z2fXSdeDsB/Xvh5OfNwPkz0VRWkfqn+Vjt3F2IenAyIcMGmG2U8eraCf9+PXD08cTe040udwzHyd+HnPjkVtOwIbZLO/bR+a7b8Y3qhaOfN1HzZlJbVcWVw+Zjs3VzofcDkwkaaj4255AAek6/h4BB/bBQmn6g05b44rbto9vE0bq08/dm8GP3o6msJuWPk2a3s3N3of+sfxI67DaUduavj9raOg5+/B29pk7A3sN8OWjv+49eTy/Ee8hA7Hx9sPPzIeLRWVSXllF0yXQ+S5JE6s7fCZkwBq9+vbH39aFHffnIaKF8XP79EEonR7rWlw//4YPxbaV8FNWXD79G5aNpLMk7fiesoaz6+dB7TuuxNJTV7vWxBNaX1aRGsRReSsEpJAi/wf2xcXPBLbIzfoP7U5Scql9n4LMLCYgeiIOfrqz2mfsgtWVllCclkbN7Ny4DB+I2ZAjWXl4ETJuGlaMjuWbq4IJjujo4eNYsbHx8cO7TB6+xY8nes0dfBytdXQmYOhXXgQOxNPM7I+SRR/AYMQJbf3+sPT0JmD4duUpFycWLRunWnnVc4aUUPHp2w7NXd2zcXPDs3QPP3t0pSk4zztc7b8cnqhcOft70maurO9JbqDvSfj+ESu1IjwcM+epvKl9DA/Ef3B9bNxfcIjvV52ua0b5kFnL932Dr5ICNo73JY0qSxOnN++n3j9GEDeyJa4A3Y5+YQU1lNfEHzdcjjh4uDH/0XiJH3obK3nQ9Erf/OH3vGU1w366oPV3pMW4IQb0jOLXxd7OxtGe+Kh3sjdbJOR+D0kZF+KC2Ndjp0vIAUf8YRXiTtIw7eMrsdiMe/Qf97x2NV3gATl5uDJw6Do8QP5KOnW/TcQXhr9SmBruqqipee+01hg4dytixY/nuu++Mvp87dy7vvvuu/vP27dt54IEHGDZsGGPGjOH5558nNze32X4vXLjA9OnTGTx4MDNnziQuLs7o+/PnzzNnzhyGDBnC+PHjefvttykvLwfgtdde4/Tp06xevZqoqCiioqLIzMwEICUlhUWLFumP/9JLL5Gfn6/fb1JSEvPnz2f48OEMGzaM++67j5MnzVeIDU6dOkVUVBSHDh264bjbkp6m0rSgoIDFixczZMgQ7rrrLjZv3szUqVP56quv9OtERUWxevVqnn32WaKjo1m2bBkAhw4dYubMmQwePJiJEyeybNkyo8Y8jUbDJ598woQJE4iOjuaBBx7gyJHWX/fJzMwkKiqK8vJy/v3vfxMVFcWWLVv06VRcXNxs3djYWKO0PH78OLNmzWLIkCHMnDmT+Ph4o2NcuHCBefPmER0dzfDhw5k/fz55eXlm87/pcQBOnz7NrFmzGDx4MGPHjmXp0qVGf//cuXN55513WLZsGaNHj2bMmDF89NFHaLXX91O7Ki+fmpJSXCIN3cwtFArU4WGUJDX/kdSgJDkF567GXdOdu0VQlnYZbW2dflnyug2oXFzwGmz61VNTsTTer4VCgWOnMEpbiyWySSxdm8fSQJIkCmPjqcjOQR1u3Asm4fufcO/bG6cunc0ez1ImI9zRjuO5RUbLT+QV0dXJocW/sTWTAj1xVir4IbF5w1YDbWE+2rIS1BGR+mUWCgUO4WGUJZtPp7KUFBybvHKtjozg2uU0/dPDspRkHJukpWNkJGXJ5n+o1lVVgSRhaWP6xkuqreXa4QPIVNZY+Ro/GbWUyQh3sONkfrHR8lP5xUQ6mb5J/Ks05OuJPONYTuQV0/UWx2JjYUGZprb1FRvF1kltx/Ec43PueG4RXV1u7pwD+GZYTzaOi+KjQV3p7dq+DzBuhra2loorl7Fvcp7bR0RwLcX0OVyRkoxtaBhyhaLR+pHUlhRTU5BvepsrV7iWkoxtuPFrtlkbNmDl4oLzANM/shuzlMno7GTHsSZ5eiyniO6uN5+nDSYFe5Jcco0LBaYfADRWkZdPdUkp7l276JdZKBS4dAoz24gBUJSUglujbQDcukVQbKYOBriy/w/cu0di7WK+4VpTWY0kSShtrZt9V55bQGVxKV7dDce1VCjw6BJKXmJqs/VvlCRJZF2IpyQrB4/OrfcSB7iWW0BVcSme3Yxjc+scSv4tjO1GNaSdt8m0M38NaavTKzdj5+ZCaCuvEHek+w+AuqpqkCSszFzLKuvLh1uT8uHcSvkoNlM+Sm6ifOjLajfjWFw7hVF4nWXVvVsExamGWJzDQyi5cpXC+jyoyC8k+8x5PHqY711aW592cqWSa1euNLvXcIyI4JqZ+4jylBTs63vFNXCIjERTXExNPAI4wgAAIABJREFUQYHZY7ZGqq1F0miwaJSf7V3HOYeHkh+XSFmm7gFKWUYW+bEJePSIrI+vwEx8oRReMl8mCi+lGp0LAO7djfPVJTyEksvpFCbp6qCK/EKyT5/XH7tBRW4+Oxb8i12LXmbre99RnG36OliSU0BFUSkBPQ33y5ZKBb6RIWTG31w9V1dbi6XCuBODpdKKzFjTadDe+dqYJElcPfAnXYb2xaqND1VKcgq4VlRKYC9DWlrdYFrWVFajauGBiiD8XdrUDemjjz7i+PHjvP3227i7u/P1119z9uxZhg0bZnJ9jUbD7NmzCQwMpLi4mE8//ZSXXnrJqHEJ4OOPP+app57S73PRokVs2LABlUpFUlISCxYsYPbs2bz44ouUlpaydOlS3njjDd5++20WL17MlStXCAwMZN483XgeTk5O5OfnM2fOHO666y4WLlxIbW0tn3/+OU8//TTffvstcrmcl19+mbCwML777jssLCxISkpCoWj709WbiftG0hN0DZT5+fl89tlnqFQqPvzwQ7Kzmz/lX758OfPmzeOJJ54A4MiRIyxZsoSnnnqKXr16kZ2dzdtvv41Go9Gv8/rrr5ORkcHrr7+Oh4cHf/75J4sXL2bFihWEh5sfq6jh9dN77rmH+fPnM2rUKOzs7LjY6Alca5YtW8bjjz+Oq6sr77//PkuWLGHVqlXIZDISExOZP38+48aNY9GiRVhZWXHmzBnq6urM5n9OTo7R/nNzc3nyyScZN24cS5YsIT09nTfffBO5XM6TTz6pX2/Hjh1MnTqV5cuXk5iYyJIlS+jcuTNjxpgeV8mU6hLda1IKR+MfiAoHB6qLik1tot/OKcL4IqdwcECq06IpL0epdqQgJpbc46eIeu3FNsVSU1qq38/1xFJTUopVK7GArvfc4cXPo63VIJPJCZsxDZfuhhvQzAOHqMjNo8ujxuOiNOWosMJSLqOoyWuDRdUanN2sWv9DzQi2t2FWJ3/mHjrXYg8nbVkJAFYOxo1IVg4O1LSQTpqSEqy6GKeTVX061ZaXo1Cr0ZSUorBvkv72DmhKzb9Ol7ZyFTZ+ftiHGHe/r7x4lsLvv0TS1CB3cMRt3uJmr8M6KqywMJWWNRp6X0f9dis05GuhiXzt43rrYpkU4ImbtZJdGXlt3katNBNblQaXmzjnCqpqePdMEnHFZVjK5Yz1c+ejwV15/NAFs2PjdWR15eWg1WLZpA6xdHCgNj7O5Daa0lKsnJyarQ9QW1qK0tVNvzz2+WeoLS9HqqvDY8KduEYP039XFnuR4lMnCH/R9HhTTenztMo4TwurNER53HieNmZracFIX1eWXbjcpvX114Mm6ad0sKeqpetBcSnKSOOHHMr6uqWmvByV2rjcl2flUBB/iX5PtDy2z8nvV+MU6ItreHCz7yqLdbFaN+n9oXK0p6KwpMX9tkVNRSVr571AXW0tMrmcqFlT8OkV2fqGQFV9OiqbxKZ0tKfyFsR2sxrSTqU2js/a0Z6KQvP53BYZ5+JIO3KKO9/5V6vrdqT7D4DEX1bh4O+LU1jz8w0a5esNlA/XJuVD0Ur5KIy/RJ8Wykd1sZlYHO2pbCGWqpJS3JqWVUfjWHwH9KOm/Bp/vLEUkJDqtPgO6k/E1LvN7vfCj79h4+eH0t0dtFqsTNTBmjgzdXBJCYomdbCVvb3+O2UbeiubkrFxI3KlEqcePfTL2ruOC51wO7VVVez/1+vI5DKkOi3hE8cSPFo3lnBVsa5+UDo2zVeHFuOrKinFrWvTfLXXxVdWjsrJEd8Bfakpv8ahfxvy1W9wFJGN8tU5NEj3irW3B9Wl5VzZvI1Vzy9l5scvYu1g3LOxov4ctGlSj9ioHSgvuLl6JKBnF85s3o9v1zCcvNy4cj6RpCPnkMz0ym/vfG0sLyaOirwCuo1u24MCgGtF5tLSnvKCtl8zzmw9SFl+MRHD+rV5m/9Zt+R9TOFmtNpgV1FRwaZNm3j55ZcZMEBXYJYsWcKECRPMbnPXXXfp/+/j48Nzzz3H5MmTycnJwcPDMIDzww8/3GyfO3bsYNKkSfz444+MGjWK6dMNg9Q///zzzJgxg8LCQpydnbGyskKlUuHa6AK0du1awsLCWLBggX7Zq6++yqhRo4iLiyMyMpLs7GymT59OYGAgAH5+pt/hN+dm4lapVNednpcvX+bo0aN88803dOumGyPslVdeYeLEic3WHTVqFJMmTdJ/fu2115gxYwZ33nknAL6+vjz++OO88sorLFy4kIyMDHbt2sXGjRvx9NS9OjR58mSOHz/O+vXree6558zG1fD6qUwmw87Ozigf2mrOnDn07dsXgEceeYRHH32U3NxcPDw8+PHHHwkLC+OFF17Qrx8UFKT/v6n8b2rNmjW4urry3HPPIZfLCQoK4vHHH+ett95i7ty5+jH3goKCmDNnDgABAQFs3LiREydOtNhgl33kGPHf/6L/3MPsBBAStDLBTrMJeOpfXUAGNWXlxH7zPV3nPKQf16y1WLo1xGJiv61N9tNsE6RmX1iolPR99UXqqqspio0nadVqVK4uOEd0piIrm5S1G+n1r6eRt/HVZFO3DdINvuFnJZfxap9OLLuYSlaF8atuVaePUrb2B/1nx4d0jdbNEkUysayJZpvo86zRF812a/6PSlv1G6VJSXR97llkcuOrozK0Cx7PvErdtXKuHTlAwYrPcX/yRSwc2zZWY0vH/bvdqliiPV2YFxHIa6cTzb7SeF1kps/DtrpSXmk0ucTFwjK8bJTcF+bzf7LBzixJoqUKrdk3ZhI15Oln0VZXU5GSQtb6tShcXHG+bQC15WVc+f47Ah561OzrWmZDaxqL7MbrkabGBbgjl8nYfrn52wIANWePsu3fhrolavF8fQzNtDrjmvH3LZWZK/v/QKl2xL2n+R47F39eQ25CCmNefQq5XE7KH8c59vWv+u9HPNcw/mHzevBWTA5npVIy/p1/UVtVTXZMAqd+XIudmzNe3Zr3vr78x3FOfWOIbfCzDen418R2vVIOneBIo7Qb+bzugaGsaZ5JNxdgVWk5f37+I9ELHjT5ymxDHFL9cdvz/qOpxF9XU3wpmUEvLdZfyzIOH+fCd4Z7lH715cNUbM3yuvkaTQM2u+ZVE+WjaSy3mSmrktQ8X00E23yjRvLjEkncuJ0eD07FKSSI8pw8Yn76jfh1W+jyjzub7S7m5zUUJCYT/kyj+4BWjtFqTK0tb0X23r3kHjyI5+jRnH32Wc7VL2/vOi7z2EnS/zxG73mzsPfxJnXvARI37iBp6x5kFhYMeHqeqUO1eg0zSTK+D86PSyRhQ32+hgZyLTuPCz+tJn7tFrrcq8vXpr3tevXw59u5rxK77xg2anv2fr5S/92kl+bW7/7W1iMAwx75B3s++5UfFrwJyFB7uhI58jYu7j0KQNyBE+z9fCVaSXec9s5X43X+RB0cgHuwr9l14vafYPfnq/Sf7355jslYrueakXj4LAdXbGT80w/i4H59Q64Iwl+h1V/T6enpaDQafUMRgI2NDSEh5gdgjI+P1/dUKi0t1f+QbdpgZ2qfqamp+n2kp6ezZ4/h3feG/aSnp+PsbLoAxcfHc+bMGYYOHdrsu/T0dCIjI5k2bRpvvvkmW7dupV+/fowYMULfeNcWNxO3SqW67vRMS0tDLpfTpVGPHg8PD5MNVV2a9PqJj48nNjaWH34w/JDQarVUV1dTUFBAfHw8kiQxZcoUo+1qamr0DWl/pbBGM041/D1FRUV4eHiQmJhoMh+vR1paGt26dUPeqAGkR48eaDQarl69qj9+WJOZr1xdXSkqMn69qinXnj2ICjY0IDa8CllTUoqqUffumtKyZk+qGlM6OuifaOm3KStDZiHHytaOkqQkaopLOPPuR/rvG86p3x+eT/83luDaswd9GzVmSo1jaVRWaspajkXh6EBNk1g0pYZYGsjkcmw83AGw9/ejIiuby1u34xzRmZLkFDTl5Zx4+XVDPFotyJKoPLoftzeXIbPU9XopqdFQq5VwVhr3gnFSWjXrKdZWLkoFQQ62PN8znOd76nqIymW6Qeb3LJ7Dsz17GCYoqE8nTUkpykbppCkrbTGdrBwdm6VTbX2eNTQyWDk66Hs6GvZb1uxpOUDaqlXknzhB5OLFqNzcmn0vVyqRu3lg6eaBMjCE7Dee59rRgziMMTwcKanRUKeVcGqalgorimr+nvEsG8dyq/O1sWhPF17sFcZ/zl667hlii6vNx9a0193NulhUxijf5vn5f4GFnR3I5dSWNj/Pm/a6a2Dl0LwHaW2Z7nPTbRp621n7+FJbVkrOls043zaAqoxMaktKSP5oqWHl+vru3Pw52C34NxZuxuPSNeSpi+qvy9NJwR7sS8+n1Mzr11ZdejCgv+HhkrZ+veqSUqPXfapLy1A6mH8tXKl2oLrEuBdATX0drLCzM1qura3l6h9H8R82WD8rYlMxP68m8+hJxix5Qj8Gml+f7riGBjaLtbKkFFtXQ++cqtIyVI43/0qxTC7HwVN3vXAO9KMkI4eYDTtNNth59+mOc+PY6uvoquJSbFwMsVWXljXrOfN38OvbDdewQP3nuoa0K26aduXNeixej+KrmVQWlbLrjU/1yxqu+z9MW8gdbz7Nnf/9F9mVunxvz/sPWy9DeUz89Tdyjp2k93NPYeNuqPs8enVHHRKo/9xS+VDcwvKR/sdR/JqUj4ZYLGTGsVQ1iaWmtKxZz87GVI4O+l5cjeNvHEvcmk343NaXgGGDAXDw86Guupqz3/xEp0l3GMV14afVZBw9yaAXFlHm5KbLU7kcTZO/t9bMfQTo7k2arq8p073Cb26blmTv3UvGhg2EL1yIjZ8fLv3746bUvd7Y3nVc7Mr1hIwbhc9tuh5QkVPuwUphRebxswx6YaG+TFQXl2LTNL5W8rVpmaguLTfO19Wb8R3Ql8DhgwBwrM/XM9/8TKe77zBZHyuslbj4eVGclUe32wfiFR6o/662Pi2vFZdi72aoRypLypr1FLteNo723PXCbGprNFSVXcPW2ZE/ftiEg4du0pKQqG54hQdyuby+Lukg167q0lKyT5+j28ypLf59IVHd8OwUqP/cUCdXFJfi0CgtK0rKsFG3XgYSD59l+wc/Mu7JGWKGWKHDuOUj81dWVrJw4UKioqJ49dVXcXZ2pri4mNmzZ1/XJAiSJDFx4kSmTZvW7Ds3Ez9oG2i1WgYNGqR/3bOxhka+2bNnM3bsWI4cOcLRo0dZvnw5zz//vFHPwBvVWtxXrly5oX22lbW18fg0kiTxyCOPMHLkyGbrqtVqJElCJpOxYsWKZhM1KJXK644VDE9HG8ddW2v6R07jYzZs1zB23PX83ea0tI/GT3Gb/u0ymazVMewsrVVGsyVJkoTC0YHC2DgcggMBqNNoKE5MInTyPWb34xgSTN6Zc0bLCi/GYR8YgNzSAoegQPr/+2Wj75PXbaK2ooJOM6Zi7eaK3NISG5WJWC7G4RBkiKUkMYmQ1mI5bT4WcyRJQqq/SLr27km/wACj7+O//YEatSe2I+8AC0Na10oSiSXl9HNzYn+WYXyVfm5OHMgyPdZHa/Kqapi577TRsrsDvejrpubFk5fItrLF0tVaH7fc3pHi2FjsggIB0Go0lF1KIuDef5g9hn1wMIVnzxotK46NwzYgUN+r0D44hJLYWHwa9dIsiY1t9rpr6sqVFBw/QcQzT2PtZX7K+cYkSdI3yjaolSQSS8vp46LmYLYhLfu4Gn/+OzTka19XtVG+9nVVc+AmYxnu5cK/eobx1tlLHMi6/n3VShIJxeX0c3diX2ajc87diQMZN3bOmRPmaEfBLZ7M4+8it7TExj+AsrhY1H0MD2/K4mJR9+pjchub4BCy1q9Fq9Egt7LSr2/pqEbh0vKA+VKt7v7AOjCQ8JdfNfo+e9MG6ioq8Jl6H9kWzfdTK0nEF5UT5eHE3nRDnvb3cOL39JvP0wgnO8LVdiw9a378G5nSGtv6hxig+5uUjg7kxcShbrge1GgoTEiiy1TzdbBTaDDZp4zrlryYeNQm6uDsU+eoKb+G/1DT4/zF/PQbGUdPMvBfi3D0MTwstbJWGc2QKEkS1moHss7H4RoSoI81Nz6Z3tMnNdvvzZIkLXVm7glMxaZSO5B9IQ7nRrHlJSTT475bH1trzKVd5oV4XEON067PTaSdS0gAd737gtGyM6u2UHOtgv4PTcbB2x0LS0tKKyz1cbTX/UeDhJ9XkXP8JH2ee6q+Ec9w/2Xqfknp6EB+k/JRlJBE5xbKhzo0mBwT5cPxOspHQyyWMuNY8mLicGoUS0FCEpHTWi6rWabKapAhlrqammY95mVyebNOgRd+/E3fWGfv7UlZpa4OtvX3pzQuDudGD9BLYmNx6m16xlu74GCurltnVAeXxsZipVajMDGrbEuyd+8mY9MmwhcswL7+obaFSoWtStdg1951XF21cdpaWqtQOtghs5Bh5+mujy83Jh6nEEN8BQnJRE4z/0qyc1gQWSeNy0RuTJxRvtbW1DSb8dVUvjZWW6OhMCMHv25hKKxVRjO/SpKEjZMDV87G4xkWoF8/IzaFIQ82f5vqRlgqrLBzUVNXW8elI2f1kzg0xJJfaqhL2vvaBXD10FHkVpb43NZy5xGFjcpo5ldJkrB1cuDy2YQmaZlM9IMt18kJf5xmx0c/M/aJ6W2e5EIQ/g6tNtj5+vpiaWnJhQsX8PHxAXSNcikpKfj6Nu+impaWRnFxMfPmzdOvv2/fPpP7NrXP8ePHA9CpUydSUlJafF3VysqKujrjgSw7derE3r178fLyanGmUH9/f/z9/ZkyZQpvv/02GzdubHOD3c3Efb3pCbrXNbVaLfHx8XTtqus6nJOTYzSRhjmdOnUiLS3NbDzh4eFIkkRBQcEt61HnVD9+Rn5+vv7/iYmJ172fTp06tTgZiKn8byooKIi9e/ei1Wr1vezOnTuHlZWV2fS+UTKZDL/RI0nbsh0bT09sPN1J3bwdC5USz9ui9Otd/Fo3yUhk/fhuPsOjubp3P4m//IbPsCEUX0om648jdJ37MAAWSiV2vj5Gx7KysUbSapstbxyL7+iRXN6yXTebq4c7l7dsx0KpxKO/IZbY+lgi6mPxHhZN+t79XPrlN7yHDaEkKZnsP48QMedh/TZpm7fhEByEtZsr2tpaCs7HkHPkKGH3Ta2PzabZQNMWSgVyG1ssPZun+arkDF7qHU5ccRkXCkuZGOiFi0rBhjTdGI1zugTQRW3Pk0di9NsE2lljKZejVlhhbSkntH48kKTSa9RJEqllFUbHKKrRoNFqmy2XyWRYDxlF5o6tWHt5Yu3hQfrWrciVSlz799evd+mbbwEIe/ghADyGDiV73z5SV67CY2g0ZUlJ5B0+TNijj+i38Ro5kph33yVj23ace/Wk8MxZShMSiHz2Wf06KT//Qv7Ro3SaPx9LGxtq6p9OWiiVWKhU1FZWUrJ1N6rIHlg4qtGWl1F+6Hfqiouw7tV8XI01qZk83yOMhP/H3n3HN1U1fhz/pCNJR7rTXbpLaSmbsjdFkIrsJaCCCqKg4EBRQdz4qPgIAi4QUfYG2asge5bRlkIHhVK690zb/P5IaZo2KS3iA8/zO+/Xi9eL3Nx78+25IzfnnntObgFXsvN4qokz9jIp25M0ZTkpwJNAa0veOqPtZ9LT0gwTiRHWpiaYmRjjq9CUZVx+YZ31N8a6+Du819qf6BxNlkGeztjLpWy7qcnyYqAnzWwsmXlSN4upUVUWY2Od7QrQ29WB91r5szg6kcisvOpWcqpKdaMGnlh7I5kP2gUQnZ3Ppaw8Bnu54CCXsrlq9M8pQZ40s1Xw2rEa+5yiKpvMFHMTI/ytNdmu52qyjfR1JaWohIS8IkyNjHjCQ0kPV3tmn9Lf19DDYGEuw7dqNGUjIwkebg60CPIkO6eAW3f+fiWtQ98wbi3/BXMvbyx8/cg8EkF5bi723TUtn1M2b6IoMQHfGW8AYBsaSuqf27m1YjmOAwZSmpZK2p7dOA18qvoGSfqhA8jsHZA5aXIX3Iglfd9e7Hv0BDT7vpmb7nnN2MwMdWUFZm5uSDL0d6ayKjaZeR0CiMrKJzIjj6G+LjiYSdkUr9mmU5t7Emyn4JUj2m3qrdCeR/Rt03uG+DiTlF/M+fSG938jkUjweaI317ftxtLFGQsXR65v1XwfuHfSHrsXfvgVgNaTnwPAq3c3Evcd5srv6/Ds1Y2s63HcOnqCNlMn1vmMm4eO4hDUFAvHujcxL69Yze1jp2n/+mRMLcwprmoJZCKXYVrj5s69rIEDenFlyx7NaK4ujlzetBsTuQzvLtqsx75fAUCXV56tnpaVqBnUR1VcjMRIQlbiLYxMTLBx19x8uLx5Nw5+Xlg6ar4vki9cIf7oaUKfG9ngcvTv34vorXuwctVki9q8GxOZjCadtdlOLdZk6zBVmy27ZjaJhOyqbNZV2SrKy8m7nQJobtSU5OaRnXgLE7kMhbO28vV++Zo92YvLm/dg7eqElYsjlzbtxkQuxaer9prq6CLNUw7dXp1Qo+xuA1BWVAISCVmJtzEyMcbG3QVTuQzbJq46nyW10BwHtaffy/Eorz9iVq7m7vFTtJg2BRMLc01LGyM1JnIZJrX2t3t5vZ/ozY1tu7FwccayxvHhVuP4uFh1fLSqOj48e3fj5r7DXP19HU16dSP7ehy3j56gtZ7jI6nq+DDXc3zUzuLbvzexWzXHqqWzI7F6spxbqsnSdoomi1fvbiTsO8zl39fhVXWsJh09QbtXtFmcW7cgbtcBbLybYOvrTWFqOjEbtuPUqnl1y6LIXzXHamjVsVqSk4uqxBgjmQynsDASli3DwssLSz8/0iIiUOXm4lj19MmtTZsoTEwkcOZMAOxCQ0nesYOE5ctxGTiQktRUUnbvxi08XOcmddEtzbFRUVKCRCKh6NYtJMbGmLlq9q2UPXtI3rIFn0mTkDs5Vbfak5iaglxWXW6P8hzn1DqEGzv2YK60R+HmSu7NW9zYdRCPrh3qbFeFqxOWzk5c27oLE7kM9871b9f4fRFcWrke795dyYyNJ+nIyVrbNYS4XQex8fbE1teLwtR0ojfswKm1drteWbUR59YhmNnbUZqXT+SOnZSXlBHUS3tteY9EIqHNUz05vX4vtu5O2Lo6cmr9HkzlUgK7a88ju7/VnEf6v649j6TFa88jEomEtPjbGJsaY++hOc+lxCZSkJmD0tudgswcTq7ZhVqtpt2QvnVy3MvyKLcraCrdkg4fw61Du6qK/oY3+NGUZQ9Ord+LnbsTtq5KTq7bi6lcRrPu2puNuxasBGDAjPEAxBw5x65vV9Lj+cG4B/tV94VnZGKMmaJx3XP8z3kU/U8IOu5bYWdubs6gQYNYtGgRtra2ODg48MsvvxhsfeTs7IxUKmX9+vWMGDGChIQEli5dqnfe5cuX66zT1NS0us+wCRMmMHHiRD7//HOGDh2Kubk5iYmJ/PXXX7z7rqYDXhcXF6Kiorhz5w7m5uZYWVkxYsQItm7dyuzZs5kwYQK2trYkJyezf/9+XnvtNYyNjfnuu+/o06cPLi4uZGVlERkZSXBwwzpA/ru5G1ueoOlTrWPHjnzxxRfMmjULmUzGd999h1wuv29fH5MmTWLmzJm4uLjQt29fjI2NiYuL4+rVq0yfPh1PT0/69+/PRx99xGuvvUZgYCC5ubmcP38eNzc3evXq1eByucfDwwMnJyd++uknXnnlFVJSUli2bFmj1zN+/HgmTpzIZ599xvDhw5HJZFy4cIGOHTvi7Oysd/vXNnz4cNasWcP8+fMZPXo0ycnJLFq0iBEjRlT3X/cweT7Zj0pVGdd+X015YRFWvt60fmO6zp3lkkzdR/jMlA60mvEq11ev5/ahI8hsrAl4ZhSO7fTfQW2oJgP6UVlWRmxVFoWPNy1rZSnNqpulxYxXubF6PcmHNVn8x+pmqSgtJXblKkqzczCSmmLu7EyzSc/j1PHBOmY9eCcDK6kJEwI8sJdJScgv4u2TV6v7JbOXSXG10N1WX3YMxqXGHbXlPTV3wrpt+6vRn2/ecwC2xqUkrFpFeWERlj7eBM14HeMa+0dZrXKSKx0InD6Nm+vWkRoRgdTaGq/Ro7Fvq70YUPj5EvDSiyRt2cKtbduQK5X4v/QSCh9tJ9yphw8DEPXNNzrrd38qHI9Bg5AYGaG6m0zhqaNUFhZiZGGBtIk3ymmzkLrWrYQ/fFdTls/4umMnl5KYX8S7Z6NIK7lXlqa4muuW5Wdtg3CuMe3Hrq0A6LPrWGOKsY5DKRlYS00Y7+9evV1nnY6qsV3rZpkfGqSzXX/prsnSY4cmyyBPZ0yMjJge7MP0YG05XsjM1anQvZ8DyZpyerapB/ZyKfF5Rbx5vMY+J5fiVmuf+6pTMC41pv3aW7PPddms2edMjCS82twbpZmU0opKEqrWeSK1/kfr/442LXzYu047MMOcN0Yw540RrFwfwUtv6P/ebQzbdu2pKCggdeeflOflInd1xfvV6dUtNVS5OZSmawf8MDYzx+e1GSSvXsX1zz/B2NwCZd8wlH3DtCutVHNn80ZUmZlgZIxMqcRl8NDqSsAHtf92BtYyE55v5oGDXEpcXhEzjl7lblU/lg5mUtwsdbfpgm7BOueWP/pptmnoeu15xNzEmLAmSn6JanzreN+B/agoU3H5tzWoioqw8fGm49vTdM7BxbW+D8yVDoS++QpX/9jAzYNHkdlY03z8SFzb634fFKalkxEdS9upk9An8cARAE588W+d6S2GPUnLEQPrzB88KIyKMhWnl62ltLAIBz8v+sx+Vac1WWFG3X35z3e+0Hl9+9xlLBzsGLroYwBUJaWc+mUNRZk5GEtNsXZ1osvUZ/Hu0vAbhIFPabKd/3UtZYVF2Pt60eNd3WxFmXWz7Zutm+3O+cuYO9gR/p0mW0l2rs48Bal/EX/xyYWgAAAgAElEQVTgL5TN/On1wes0VPNBfakoK+PUsnWUFhah9PMirHbZZdZ9dH/7rNpldwULpR3DF31UZ96GeJTXH8kHIwC48K9vdab7Dx5IwFD9fTT7VB0fV2scHx0acHy0f/MVov7YQFLV8RE8fiQutY6PorR0MqNjaW3g+KjNryrLpRWaLLY+3nR+e5rONqydxcLRgY5vvsKVPzaQeOAochtrQmodqwFPDwAgZuN2irNykCoscW4dQrMR2gYC947V47WOVdfwcNwGDaKisJA7O3eiys3FzNWVgGnTkFWfg3N1zsEm5uY0ff11bq5eTdSnn2Jibo5zWBhOYWE667768cc6r3MuXUJqb0/Lzz8HIO3wYdQVFcTVGizQvlMn3F/WVhY9ynNcyPhRxGzcxuUVayjNy0duY4VXzy40HfJk9Tz+4WFUlJUR+etazXb19aLzLN3tWlTrvGbh6ECnN6dy+feNmu1qa02LCSNwC9W2uGo6eAASiYToDZrtKlNYaLbrSG1ruOKsHM5+v5zS/AJkVpa4N/Vi9JczDfaJ1m5IX8pLVRz8cT2lBUU4B3gx9MNXdFri5afXPc/9MXO+zuv4M1ewUtox6ad5gKZ13PE//iQ3NQNTuQzvtkH0nzGh3tFPH+V2BciMjqUwNY3WU+ofuM6Q9kP7Ul6m4sAP6ykpKMIlwJPh86bqtMTLq7XdI/cco7KikkM/b+LQz5uqp7s392PUp9MfKIcgPCySnJyc+z53WFxczBdffMHhw4eRy+WMHDmSK1euYGNjw9y5c5kyZQq+vr689dZbAOzbt4/FixeTnp6On58fkydP5rXXXmPJkiW0bduWc+fO8fLLL/PVV1+xdOlSbt68iY+PD++++y5BNYYvj4qKYunSpVy+fJmKigrc3Nzo2bNn9eAAN2/eZN68eVy/fp3S0lK2bNmCq6srSUlJLF68mDNnzlBWVoaTkxMdOnSoHhV03rx5XLp0iczMTKytrenatSvTp0/HstYz9rU9rNz3K0+gTplmZGTw2Wefcfr0aWxtbZk8eTK//PILgwcP5tlnNXeUQ0ND+fzzz+s8/npvwIqYmBhMTEzw8PAgPDyckSM1d7jLy8tZtmwZO3fuJC0tDSsrK4KDg3nhhRfq9ImnT48ePXjrrbd0Bs64dOkS8+fPJykpCX9/fyZOnMjMmTP59ddfCQoKqi7LvXv3YmOj6Tj/zp07DB48uHoegIsXL7J48WKio6MxNTWlWbNmzJs3DwcHB73bH6izjvPnz7Nw4UJiY2NRKBT069ePV199tXpk4NplfW8fycnJYcGCBXX+3nevnq8z7XFgYMCnx8bVzIczWuM/wdem/paaj9Ktwofec8FDU/74Fhvlqsf7gDj/2vePOoJBT614+VFHMCjRQAu7x0H3Jo/v48820vq7eHjUSh/jeGbGj++55HbR4/v9IH+Myw2ofiT2cXSn2HAXJI+as/zx/eI3Nnp89zlvy8e33ABu5D2+55IA6/9sP8yNNcql46OO8I9q+c2JRx3hoYqcaXjU4Q0bNrBy5UoyMzPx8fFhxowZtG59/8ejk5KSmDBhAmq1moiIiIcZF2hghZ2goa+S6VHJycnhySef5JNPPqF3796PNMv/N6LC7sGICrsHIyrsHoyosHtwosLuwYgKuwcnKuwejKiwe3Ciwu7BiAq7ByMq7B6cqLB7tP6/VNjt27ePOXPmMGvWLFq2bMmGDRvYsWMHa9euxdnZWe8yACqVikmTJmFvb8/58+f/kQq7x/fKV9Bx5swZIiIiSE5O5vLly8yePRsbGxs6dTJcSywIgiAIgiAIgiAIgtBoRpL/rX8GrFq1ivDwcAYPHoy3tzdvvfUWDg4ObNy4sd7iWbhwIX5+fnoH+HxYHt/q9Efg888/Z/fu3Xrf69+/P/369fsPJ9IqLy9n6dKlJCcnI5fLCQ4O5ocffqgzKuzDdr8yudefoCAIgiAIgiAIgiAIwn8LlUpFTEwMzzzzjM70Dh06cOnSJYPL/fXXXxw7dozffvvN4CCrD4OosKth8uTJjBs3Tu97FhYW2NnZcfr06f9wKo1OnTo9ktZ09ysTQRAEQRAEQRAEQRCE/zY5OTlUVFRgZ6c7KEx9dT/3xheYP3/+P14nIirsarCzs6uzof6/E2UiCIIgCIIgCIIgCML/KolE95FZtVpdZ9o9c+bMYdiwYYSEhPzjuUSFnSAIgiAIgiAIgiAIgqBVT79v/ytsbGwwNjYmMzNTZ3p2drbBhktnz57lwoUL/Pzzz4Cmcq+yspJOnTrx9ttvM2TIkIeWT1TYCYIgCIIgCIIgCIIgCP+vmJqaEhgYyOnTp+nbt2/19FOnTtG7d2+9y6xevVrndUREBMuXL+fXX39FqVQ+1Hyiwk4QBEEQBEEQBEEQBEH4f2fs2LHMnTuXoKAgWrZsyaZNm8jIyGDo0KEAfP/991y9epXFixcD4Ovrq7N8dHQ0RkZGdaY/DKLCThAEQRAEQRAEQRAEQfh/JywsjNzcXJYvX05GRga+vr4sWLAAFxcXQDPIRHJy8iPJJirsBEEQBEEQBEEQBEEQhGpqA4Mu/C8aPnw4w4cP1/ve3Llz6102PDyc8PDwfyIWRv/IWgVBEARBEARBEARBEARBeCCiwk4QBEEQBEEQBEEQBEEQHiOiwk4QBEEQBEEQBEEQBEEQHiOiDztBEARBEARBEARBEARBSzTveuTEJhAEQRAEQRAEQRAEQRCEx4iosBMEQRAEQRAEQRAEQRCEx4h4JFYQGilP9XjWc5/4NfVRR6iXSRfnRx3BoJuJjzqBYZ5e6kcdwSCV6lEnMKyJXeWjjlAvtxUvP+oIBm1/dsmjjmCQ70dTH3UEg77q4P6oIxgUlRP7qCPUy8388b0cLa8se9QRDNpxS/aoIxhUXC551BHqZSN9fL8jekgf3+/9I3eljzqCQa7mFY86gkE5ZY/38WBh+vgeDxklj+fvLkH4T3l8r5AEQRAEQRAEQRAEQRCE/zzJ413Z/P+BqLIWBEEQBEEQBEEQBEEQhMeIqLATBEEQBEEQBEEQBEEQhMeIqLATBEEQBEEQBEEQBEEQhMeI6MNOEARBEARBEARBEARB0DISfdg9aqKFnSAIgiAIgiAIgiAIgiA8RkSFnSAIgiAIgiAIgiAIgiA8RkSFnSAIgiAIgiAIgiAIgiA8RkQfdoIgCIIgCIIgCIIgCIKW6MPukRMt7ARBEARBEARBEARBEAThMSIq7ARBEARBEARBEARBEAThMSIq7ARBEARBEARBEARBEAThMSL6sBMEQRAEQRAEQRAEQRC0RBd2j5xoYScIgiAIgiAIgiAIgiAIjxFRYScIgiAIgiAIgiAIgiAIjxFRYScIgiAIgiAIgiAIgiAIjxFRYScIgiAIgiAIgiAIgiAIjxEx6IQgNNCGDRtYuXIld9PTMXN1pcmoUSj8/Q3OX3T7NkmrV1OQmIiJhQXK7t1xHTgQiUTbe2fetWvcWr+e4jt3kNrY4PzEEzj26FH9fsxXX5EfG1tn3XIXF0LmzQMg8t13KcvMrHMwV9oEUBk0vvr1M718eXFAUxxtzLienMvHqy5y9nqG3uxu9uYc+Sq8zvTnvz7CkSt360xv6+/Aqlk9iU/JZ8AHewyWiSFjm7kwqYUHSjMp13MK+exEHOdS8/TOG+pizXPN3QhRKlBITUjKK2bFlWQ2xqZWz/N59wCGBjjXWbZIVUHrFccalW18iCuT27jjaCHjelYh847EcfpOrt55/e3M+binP/525iikJqQVlrItNp0FpxJRVaoB6O/rwLgQF4KVlsiMjbieVcSiM0nsS8hsVC6AwV7OjPF1x14uJTG/iO+uxHMpS3+5SY0kvNnCjwAbSzwtzbiclc/045cNrjvEzorvOoeQVFDEs4cvNDobwDAfZ54J0ORLyCtiQWQ8kZmG881q7UdTW0u8FGZcysxn6hHdfB+09Wegl1OdZYvLK+i19YTBHBmHD5G+bw+q3Fzkrq64jhiFpX+AwfmLk2+TvGY1RYkJGJtbYN+9O05PhlcfuzkXzpN5JILiW0moVSrkLq44DngS65atdNaTfmA/mUciKMvKxMTCAquWrXAZMgxjufwfzVcQe42ULZspTb1LZVkZUjt77Lp0xbHfE3rXl33mFEm//IwiJASfV6Yb/NzG6BIayOuTw2kT4o2rsx0vzlzC7xuOPJR1GzKqqQvPN3dHaS7lRnYh80/Hcz5N//7W3tma8UFuhDgosJQacyuvhJVRyWy+kap3/taOVizv34KE3CKGbD3/QPnUajWLFq1m7do95OUV0LJlAHPmTMHf39PgMu+8s4DNmw/WmW5mJuPixQ0AqFTl/PDDerZsOUhqaibe3m68+eZzdO/etlHZ1v68l71bTlKYX4R/sCcvvTWUJj51z6P6RF2M54OpS3DzdOS71W9VT9+75SSHd57lVsJdKivV+AS4MWZyf4Ja+TQ4m6G8Py3ZzZYNx8nPKyY4xJO33huOr59LvcupVOUs+2EvO3ecISMtFzt7BeOe682oZ3rUu9z9svyydB/bNp4iL6+I4JAmvPHuEHz8DJfd+TNxvPrC0jrTV215Cy9vx+rXhQUl/LBoN4f3XyY3pxBHZxumTBtAnydaNjjb0VW7uLjnOCUFxbgGePLEyyNQehoup5jjkVzY9Rd3425ToSrHwcOZzqP6EdAhpHqeC7uPc/ngaTKS7qJWq3HycaPHuIF4BPs2KNe9bCfX7OLy3mOUFBbj4u9Jr8kjcWhiOFtBVi5Hlm8mLf4WOSnpNOvRnideG68zT0V5BWc27iXq4GkKsnKwdXOk24Sn8WoT1Khsh//YzbndxykuKMa9qScDpw7HsZ5yizoWydmdx0iJu025qhylhzPdR4cR2LFGue07xZYFq+os+/6WrzCVmjYq357fdnNy5wmK8ovxDGzCsOnDcfYynO/S0UiO7zhO8o3blJeV4+TpRN+x/WjeubnOfEc2RXB8+zGyUrOxsDKneecQwl98CpmZTG+OmE1/cvPQMcoKi7D19aLlc6OwcnetN39GdCyX/9hIfnIKchtr/MPD8O7Tvfr9yvIKYrfvIenoSUqyc7B0cSJ41GCcWgZr1xFznRt/7icnMYmS7FxavzQe1/6h9y23M2t3EbXvGKWFxTj5e9L9xZHY1bPPFWblcnzFZtLjb5Gbkk5Aj/b0maa7z2354N/cuXqjzrK2Hs6M+fd79Waqme3i+p1cO3CMsoJilP6edJw0ClsPw9mKsnM589smMhNuk5eShm/3ULq9Mt7g/PF/nSXiu19xbxNM2DsvNyjXvWxXNu4k7sAxVIVF2Pl50e75kVh7GN7Oxdm5XPh9E9mJtyhIScOzWygdX56gM0/cgWMkHD1F3u0U1Go1tl7uhIwIRxno1+Bs9/JFbthJbFXZOfh70mHi/cvu7EpN2eWnpOHTPZSuU+spu2NnOVpVdn1mNbzs/heojcSoE4+aqLAThAbYt28fX3/9NbNmzWKbTEba4cPEfvcdzT/8EJm9fZ35K4qLufbttyj8/QmaPZuSu3dJ+PVXjKVSnPv1A6A0I4PrCxfi0KULPpMmUXDjBjf/+AMTS0vs2mp+aPm9/DLq8vLq9VaWl3Nl3jzs2rWrnhY0ezZUVnJ2bbpmQlk+xpeWonbQXoQNDPXgg7GtmbvyPGevpzOutx/LZnbjiff2kJJVZPDvfu7rCKKTtJVTuYVldeaxMjflqxdCOR6dhrONWQNLVGuAj5LZnXyZd+wG51JzGdvMlZ/6hzBww1lSCkvrzN/a0YrYrCJ+vnSbtKIyurnb8lHXAEorKtkRpymDT0/E8fWZBJ3lVj/VijN39Ve0GfKUv5IPu/vy/uHrnLmTx/gWrqwYFEKf389wp6ButrKKSjZE3+VqegF5peUEOVjyRZ8ATIwkfHYsHoCObtYcv5XDv04kklOiYkhTJ34cGMyoTZEGKwL16e3qwGvNffjmUhyXsvIY4uXCvzoGM/7QedKK62YzkkgoraxkY8IdOjnaYWlq+PRvaWrM+60DOJ+Rg4Nc2uBMNfV1d2BGSx/+dSGOyMw8hvm4sKBrMGP2nie1nnzr4+7Q2dkOhZ5830TG8/2VRJ1pP/ZswcUM/ZUyANlnz5C8bi3uY8Zi4edPRsQhEhZ9R9O585Da6T924/+9AAs/f/zfeY/S1LvcWrEcI6kMxzDNsVsYG4tl00BcBg3G2MKC7NMnSVy6GN+Zb1ZXtGWfPkXK5o24j5uApZ8/pRnp3F65ArVKhceE5/7RfEYyOQ69emPm5oZEKqUoLo7bf6zESCrFoWcvnfWVpqeTsnEDFn6Gbz48CEsLOVHXbrFq4xF+XjD1oa5bn/5eDrzTwYdPTsRxIS2XUYGuLA1rzqAt57ir5zzSSmnF9exCll+5TXpRGV3cbJnb2Z/Sikp2JqTrzGslNeGzbgGcSsnB0fzBjgeAn37ayLJlW/jii9fw9nbn++9X8/zzc9i9ewmWluZ6l3nvvZd4443ndKaNGfM27dtrf7h+++3vbN16iE8+eRVfXw+OHj3Pq69+xpo1XxIU1LAKlM0rD7F1VQTTPxiNq6eSdb/s48NpP/D9ulmYWcjrXbYgr4jv5q2mRTs/MtN1j8Wr52/QNawVgS28kMmlbFt9hI9e+4lvVs7EtYmyQdn0+W3ZAVatOMScT8bi6eXIz0v3MO2lxazf/h4W9eR9/+0VpN7NYfacUXh4KsnKzKe0VPXAOQB+X36YNb8d4b2PR9LE05HlP+7j9Sk/sXrrW/VmAfhj05tYWWu/N21sLav/X66q4PUpP6GwMuPjL8fh6GRNWmouptKGX7qf3Lif01sOEf76M9i5OfLXmt2s/uB7Ji99H5m5/mxJl2/g2SKAHuPCkSvMuXr4LBs//ZlnPptOk+a+VfNcJ6hbG9yDvDGVSTm95TBr5ixh0ndvY+fmqHe9tZ3dvJ9zWw/yxPRx2Lo5cnLtbjbNXcRziz9AaqY/W4WqHDMrS9oPDePy3uN65zn+xw6iD5+m7ytjsHN35uaFaLZ98TOjv5iBo49Hg7L9teEAxzcfYsiMsdi7OxKxag+/vbeYaT++Z7DcEi/fwLulP70nDMRMYc6lQ2dZ88kvPP/FNDyba49DU5mU1375QGfZxlTWARxce4CIDYcZ/dZYHD0c2btyD0tnLeGd5bORG8gXdykO/1b+DHj+ScwV5pw/cI7lH/7CK1+/ik+IJt+5A+fY/tM2Rs0cjU+ID5kpmaz9eg2qMhWj3xxTZ53Xd+wjbtcBWr80AYWLEzGbd3L8i4X0+ddcTA1sw8K0DE58tZgm3TvR7uXnyIyNI/LXNUgVCtxCWwMQvWEbt/46TatJY1G4uZB2KYpT3/5I97lvYuOl2YblJaVYubvi0a0D55euaFC5Xdi8n8htB+k9bRw2ro6cXb+bbfMWMXZRPftceTlyhSVthoRxdZ/+fa7/2y9QWV6hXUZVzpoZn+PXuXWDcgFc3rqfKzsO0m3qOKxdnbi4YRd7PlnIsG/nGCzLClU5MoUlIYPDuLa//pvR+akZnPl9C07NGl6pfk/M9n1c+/MAHaaMR+HqxNWNOzn02SIGflNPtvJyZAoLmg0KI+6A/mxp0bE06dQGZYAvxjIp13Ye5PAX39P/83dRuDTsPAJwZdt+ru44SNep47BycSJy4y72fbqQIQsM56u8V3ZPhxFrIN89+akZnPt9C46BjS87QXgYxCOxgtAAq1atIjw8nMGDB2Pm4oLnmDGYWluTFhGhd/7MU6eoLCvD5/nnMXdzw65tW1z69+fu/v2o1ZqWVmkREZja2OA5ZgxmLi4ou3XDvnNn7u7bV70eEwsLTK2tq/8V3LhBZWkpDl26VM9jqlBgam0NUgVIFUhyYsFYhtpe+4NuYr8ANh1LZO2ReOJS8pn3xwXSc0t4pnf9Xz45BWVk5JVU/1NVVNaZ54uJ7dl0PJELNxrfQgzg+eZubI5NZf21u8TnFPPJiTjSi8oY00z/nbEfIm/x7blEzqfmcTu/hNXRKexLzKCfl0P1PAWqCjKKVdX/mliZ0cTKjPUxdVsH1ueF1u5siE5l9dW73MguYm7EDdKKShnfQv9dxZu5JWyITiU6o5Dk/FL2JWSy5Voa7V2tq+f58Egci8/dIjI1n5u5JXx7+iaX0/Lp51O3cqY+o3zd2HUrje1JqdwsKObbK/FklpQxxEt/q46Sikq+vhTH9puppJXUrcCo6Z1W/uy6lcqV7PxGZappjL8bf95MY2tiKon5xXwdqck31ECLnZKKSr68EMfWhFS9FY4AheUVZJWqqv+5W8pxtzRja4Lh7Zqxfx92nTpj3607chcX3EePxcTKmkwDx272ac2x2+S5iZi5uWHTpi2OT/Qnff++6mPXbdRonPoPwNzbG5mjI87hgzBr4kle5EVt1rg4zL19sOvYCamDA4rAZth27ERRom5F8j+Rz9zTE9v2ochd3ZA5KLHt0BFFUDCFN67rrEtdUU7SLz/h/PQQpA4O+j7uge05dJG5X65l887TVFa1Lv0nTQh2Y+uNVDZev0t8bjGfn4ojvbiM0U31n0d+unyLhRduciEtj9sFJay9lsL+mxmEedYth4+6+LPtRhqR6YYrhu9HrVbz22/beOmlYTzxRBcCAjyZP38GhYXF7Nihf1sDKBQWKJW21f+SklK4desuI0ZoW0tu3XqIF18cRs+e7fHwcGbs2Cfp0aMty5ZtaXC2HWuOMHRCbzr1boGnrwvT54yhuKiUI3vu37p20afr6DWwHU1DvOq8N+OjcTw5ois+Td1x83RkyqxhmJnLuHAypkHZDOVd83sEEyb1pXdYK3z9XZn76TMUFZay589zBpc7eTyG0ydj+XbxZDp0DsTVzZ7mLbxo2/7BK6vVajXr/jjKuIm96NW3Bb7+znzw8WiKCkvZt/P+ZWdrZ4m9g1X1P2Nj7WX5jq1nyM4qYP6/n6NlG29c3Oxo2caboOYNq3RSq9Wc3hpBp+F9CezSCkcvV56aMY6y4lKuRhgup36Th9F5RBiuTT2xc1XSbewAnH09iD15qXqep996lnZPdcfZ1wN7dyf6vzISqZmMuPPRDc52fvth2g8Lw79zKxw8Xen/miZbzJGzBpezdrKn14vDCe7TEblCfyV39OHTtBsahk+75tg4O9ByQDe82wRxbmvdlqqGsp3cEkHXEX0J6toKJy9XhrzxDKXFpVw6bLjcnpwyjG4jw3Bv6om9q5JezwzA1c+D6BOXdOaTSEBhZ6XzrzHUajVHNh2h9+g+tOzeEhdvF8bMGktpUSnnDxrON+SVofQZ0xfPQE+UbkqemNAfd38PLh/TtmRPjErAs5kX7cLaY+dsj3/rANqFtScp5qbeHHG7D+L/VD/cQltj5eFK2ykTKC8p4fbxMwZzJB48itzGmpbPjkLh5oJXr6406dqRGzv3V89z66/T+IeH4dw6BAtHB7z7dsepVbDOPM6tmhM06mncQtuA5P4/Z9VqNZd2HKb10DB8O7XC3tOVPtPGoSou5Xo9+5yVoz3dXhhOYO+OyA3cWJErLDC3tar+lxIdR3lpKYF9Ot03171sUTsP0WJwGF4dW2PbxJVur45HVVxK3F+Gsykc7ek4cQT+PTsiM5ANNC0WD/97OW1Gh6NwbNx3vVqt5tquQzQb1A+PDq2x8XClw1TNdr55zPB2tlTa0/a5kfj06ITM0kLvPJ1efZ6AJ3pi6+2BlasT7SaNxlQuIyUyqlH5onceIuTpMDw7aMqu6yuasouvp+wsHe3p8PwI/BpQdke+W07r0eEonB7udZIgNJSosBOE+1CpVMTExNChQwed6dZBQRTGxeldpiA+HoWfH0ZSbWsMq+BgVDk5lGVmVs9jHaT7iIZ1UBBFiYlU1mhVV1P60aNYN2+OzM5Of1i1GqPU86iVLcFY89mmxkY097LlaK1HWY9eSaWNb/2VRItf7czpfw9i3eze9G/nXuf9Z3r5orSW8/22hl2k12ZqJCHYQcGx5Gyd6ceSs2nt1PCLWEtTY/LK9JcZwIimzsRmFXLBwONxhrKFOCo4kpSlM/1IUjZtXRqWzdNaTk9PW04l59Q7n4XUmNxSw/lrM5FICLC25HSabrmdSc+muW3jLv5rG+zljJ1Mym+xtx54HSYSCU1tLDmVqpvvVGo2IfZ/L19NT3s5E5dbyOUs/RWLleXlFCXdRFHrOFMEBVEYr//YLYqPw8LPX+fYVQQFU56bQ1mm/kfIASpLSzA21170Wfj5UXzrVvXnlGVlknspEkWw9vGo/1S+oqQkCuPjsAjQfcw2ZcsWTO3tsevU2eDf9d/AxEhCkL2C47WOs+PJ2bR0bMR5RFr3PDKqqQsOZlJ+uJT0tzLevp1Keno2XbpoW1zI5TLatw/mwoWGV16tX78Hf/8mtGnTrHqaSqVCJtNtoSOTyTh/vmE/elLvZJGdmU+rDtr9QyY3JbiVDzGXE+tddteGY+Rk5jH8+bAGfVa5qoKyMhUWBipbGuLO7UwyM/Lo2Llp9TS5XErrtr5cikwwuFzEwUsEBTdh1W+HCO8zh2EDP+arzzdSVFT/DYx6syRnkZmRT2gn3bJr2daby5F1Kzlqmzj23zzV5yOmvfgD507rPlJ39NBVQlp58c3nWwjvPY+xQ/7Fz0v2Uq6qMLA2XTmpmRRm5+HdOrB6mqlMikewL8nRhstJn7LiUoOVFaBpTVOuKsesnnlqyk3NpCg7D89W2mwmMinuwb7ciWlcNn1ZTGq1QjSRmXInKr5By2ffzaQgOw+/Ntr9y1QmxbO5L7caWW6lxaV1ykRVpuKbZz/k6/Fz+GPuD6TE3W7UOrNSMsnPyqNpW23ZSWVSfEJ8Sbya2Mh8JZjXyOfT3Ic7N5JJjNKsJzs1m6vHr9AstO7jxEXpmZTm5uHYXHsuMpZKsW/qR9Z1w2WddT0Bx5BmOtMcWwSRk3CzupVaRXk5RqRTVm0AACAASURBVKa65zRjU1MyY/V/LzZEXmomRTl5eLTU3edcgny5e+3v7XO1Re0/TpPWQSgcbBs0f0FaJsU5ebi20JaLiVSKczM/0q41bL+tz7k127FU2uPfs2Ojly1My6QkJw/nWtmUgX5kxD7ccqssL6dCVY7UouHfD4bKzqmZH+mxf7/szleVnV+PxpedIDws4pFY4b/eiRMnWLZsGfHx8UgkEpo1a8bMmTPx9vYG4MqVK8yfP5+EhAS8vLx4+eWXmTFjBkuWLKFt1aOn8fHxLFy4kAsXLiCTyWjfvj2vv/46Dg4O5OTkUFFRgV2tSjITKytU0forqlS5uUhtdb+oTRWK6vdkDg6ocnMxaaZ70WJqZYW6spLyggKkNjY675WkppIfG4vfVMOPl0ly45CUZlPhpO27yFYhxcTYiIy8Ep15M/JK6BKkv8l5UWk5n625yLnrGVRUqunTypXvXu7IWz+fZusJzQ/XAHdrpj8dzLBPDlCpfrAWNLZyU0yMJGQU6z6SlFlcRmdXGwNL6erpYUdHNxvGbI/U+76lqTH9vZUsONu4Cws7M0229CLdbBlFKrp61P9Y3KYRrWiuVCA3MWLVlTvMP274sye0cMXFUsamGP19Z+ljLdVky671KFd2qQo7ZeMeranJR2HO802bMOVoJHXbUjacjUyTL6tWvqwSFe0dHzxfTRYmxvR2d2DJVcM/iisKCqCyEhMr3UobEysrymMMHLt5eZjWOnbvLV+el4fMoe5jfBmHD6HKzsa2g/Zuum37UCoKC4n7+l+o1UBlBbYdOuIydNh/LF/UO29RXlCAuqICp/CncOjes/q9/Kir5Jw7Q8B7c/R+zn8T26r9LbNE95H9zBIVHc0atr/1cLejg4sN43dqzyP+NuZMbdWEsX9e5O82EkxP11ReOzjontfs7W1IS2tY6+T8/EJ27z7GjBm6/QB17dqaFSu2ERoagpeXKydORLJv33Eq9LSI1ienql9JGzuFznRrO0uy0g0/pn/zRgprf97L/GXTdVqG1eePpbswM5MR2i34/jMbkJmpqaC3s9fNa2evIC3NcN7k25lEXohHKjXhiwUTyc8v5qvPN5KRnssX30x8oCxZGfeyWOpMt7NTkF5PFnulgrfeG0qz5h6oVOXs3nGe6S/9yKJfptC6rU913nOnbxA2oDVfLZpEyp0svv5sM8VFpUx746n7ZivM1mxXCxvdcrKwUZCf2fDuF87uOEJ+Zg4hvdsbnCdi5Z9I5VL8OzQ3OE9NRTmabOa1spnbWFGQWf8NrvvxbNWMC9sP497cH1sXJUmXYrlxIhJ1Aw/igqqW5bXLzdJGQV4jyu3U9qPkZeTQska5Obg7Mvj1sTh5u1JWXMrJrRH88ua3vLzobewb+ChxXlU+ha1uPoWtJbkZDc/319aj5Kbn0jZM28VK615tKMwr5PuZC1Gr1VRWVNKubzvCX6y7v5XkaD5LZq37/SWztqIk2/A2LMnNQ9k8UGeazFqBuqKSsvwC5LbWOIU0I27PQRyaBWDprCT96jVSzl5s8DbUp759rjDr7+1zNeXcSePO1RsMeOfFRmczq5XNzFpBYT1l2RDJkdEkHD/H01+++0DLl+RqssmtdbPJrRUUZzeum5n7ubxuOyZyGW5tQ+4/c5XiqrKT6ym7or+5XZMjo0k8cY6n5j9Y2f3PkIg+7B41UWEn/NcrLi5mzJgx+Pn5UVpayrJly3jjjTdYu3YtKpWKmTNnEhoayocffkhGRgbffPONzvIZGRlMnjyZQYMGMX36dMrLy1myZAlvvvkmy5Ytq55PUvuEdb9KKkMnuBrTa89x75G2Op+FpnWdqbU1NiGGv8gkqWdRW7qBRd3HwGrHlUjA0F+QXVDGL3u0g11cTszGViHjpQGBbD2RhNTEiH9P6cjnayO5nVFoME9DqfWUZUMuy9o4WfF1r0A+PRHH5XT9rawG+TliLJGw9Uba30ypIeH+m/6VXdFYSo1p5mDBe119mdquhO/P1m2xNsDXgfe6+PDq7miS8xvfykNfjAesO8XUSMKHbZuy+GoCKX+jxUl9Werb5xqrfxNHjCQSdt98gO2qVlP36NOq8049oXPOn+POxg14vvAi0hr9WRbEXiN15w7cxjyDubc3ZWlpJK9bS+r2bTgPevo/ks/3zbepLC2lKD6elM0bkdo7YNexE+UF+SStWI7nxBcxsdD/qMp/ozr7Gw3b31o7WjG/e1O+OBXPlYwCQHM8/KtHIF+dSSBZT3+V97Nt22Hmzv2++vUPP2gqRuue2+vf1rXXWVFRydNP6/ZD+N57L/H++wsZOPAVJBLw8HBh6NC+bNq0X+96InafY+kXG7TLf/NCVba60fR9FwGoysr5+v2VPDf9KZxcG/Y4//Y1R9i7+QQfLpqCuWX9fbvVtHvHWT7/aG316wXfT67Kq5tNrVbX+7tCXalGIpHw8fwJWCo0/ca9NXs40ycvITMjD3uH+7fG3PPneb78eGP1668WTXygLJ5ejnh6aStoQlp6cfdONqtXRFRX2Kkr1djaWfLO3OEYGxsRGORObk4R3/1rG6/ODK/zmVcOnWHX99pyGjlXfzlppt33TwUg5thFDi7fyuC3n8PaUX/L/tNbD3Nh1zHGfvIqMnP9/dhGR5zhwJI11a8Hvz9Fk4O65fZ3fxz2fGEY+79fzW/TPgUk2Dg7ENynI1cPnNQ7/6VDZ9m+UFtuz8x7sP2rpqi/LrJv2VaGz3oWGydtuXk088ajmbfO6yWvfsmp7Ud5csowfavi3IGzrF+wrvr1C5++pPlP7UtSTegG5Ys8Esn2H7cx/r1nsauR70bkDfb9vpdh04fTJNCTjDsZbPl+E7tX7MLRw5H1C9ZRodZ8Rqc3X9ab437fX3rdO3lXLRYyfgQXfvmDA7M+QiKRYOHoQJPunUg6YnhwqdpiI85w+AftPjfwvSlVn6HvWv7hVUhE7TuOua0Vnm0N35SIO3qG4z+urn4d9u69QQxq7XOo6xwjjVGSV8DRxSvpMf25eh/7rCnxr9Oc/VmbrfvbVY0E/uFKm2u7DnHjwDF6zZ6GqYHzCED80TOc+Embr0/V4BkP+1xSklfAsSUr6T6t4WUnCP8UUWEn/Nfr3bu3zus5c+bQq1cvrl69Snx8PJWVlbz//vvI5XJ8fX15/vnnmTNH26pk48aN+Pv7M23atOppH374IX379iU6OpqAgACMjY3JzNRtBVGen4+plf4LfFNra1S5uneeVPmaCqV7y5haW6PK031Eszw/H4mREca1fkRXlpeTceIEyq5dkRgb6y+IsgIkWTFU+uiO7pqdX0Z5RSVKa90fSPYKORm5uq3u6hMZn8nwrl4AKK3lBLhZM39Se+ZP0tw9NpJIMDKScO3n4UxacJS/rt6/xVh2iYrySjXKWh2525tJySiuO8BFTW2drPjxieZ8d+4mq6NTDM43MtCFvYkZjXrkFCCr+F423RY69uam982WUvUD/3pWEcYSCfP7NGXpuVtU1Kg9GODrwLf9ApmxL6bRI8Tmlmmy2dV6DM5WZlqn1V1D2cukeFtZ8E6rAN5ppXm8y0ii2a6Hwrvw9qmrnElv2N3KnFJNPnt53XxZJX+vg/d7nvZ24nByBnkqw9vV2NISjIwo13Oc1W7Vdo+plZWe41LzuvYyOefPkbR8GU2em1hnhNi727Zg0y4U+67dADBzc6eyrIxbK1fgNDAcibHxP57vXms7Mzd3yvPzSN2xHbuOnShJvkN5bi5x/65x86LqB1Pk1MmYSAIpVze8QuVRy67a3xzMdM8jdnJTMovr399aO1qxpG8wiy7eZO017XlEaS7Fz9aCj7sG8HFX3ePh4oSuTN1/heN3DB8PvXuH0rKl9jHJsjJNjvT0bFxctK0gMzNz67S6M2Tduj3069cZm1otCezsrFm8+H1KS8vIycnH0dGOr75agbt73RGVAUK7BRMQrB2ZVlV1DGVn5uPgpG29mZtdgHWtVnf3ZGfkcSshlYWfrGXhJ5rKDnWlGrVazbDOb/HBNy/QqqP2kcLta46w6ofdfLDgBQKCmzTo772nW6/mBLfQ5i2remw5MyMPJ2dt3uysgjqt7mqyV1qhdLSurqwD8PbRlFHq3ewGVdh17RlEcIg2vzZLPk7O2u2YnV1/Fn2CQjzYv1vbwtNeaYWJiZFO60UvH0dKSlTkZBdia6fbqs+/QwiuTb2qX1dUbdeC7DyslNpyKszJx8Lm/n9rzLGLbPtmJU/NGKczQmxNp7ce5sjvfzLqwym4NjU82rFvaAguAdps5VXZCnPyUNTIVpybX6cFVGOZWysYNPslystUlOQXYmFnzV+/bcPKSX/FctMOzXGrkb1muVnXLLfcgjqt7vSJ+usim77+nSFvjNMZIVYfI2MjXP09yExONzhPcKfmNAmsmy8/Kx9bR22+guyCOq3u9Ik8Esmq+b8zdtYzdUaI3bV8J617taHjk5rW4q4+rpSVlLHu6zXMXTePN354izPpmu/1e123lObkYW6vrfQrzctHZm04h9zaitJc3e+w0rwCJMZGSC01+7TMSkHHGVOoKFNRVlCI3NaaqLVbMFc2vA8xr9AQRtXY5+6VW1F2ns6jqkUPYZ+r+RnXDp2iWVhnjAxdqwNN2oWg9K+brTgnD8sa2UpyC+q0bGuM7Ft3KM7OY8/Hi6qn3btB/uvo6Qz55j2sXXW/J9zatsDeT5utsipbSU4eFvY1s+Ujt344XZxc23WIy+u202PWVJ3P1sejXQgOBsrOombZ5RVg9jfKLqeq7PZ+Urfsfhsznae/rlt2gvBPERV2wn+927dvs3TpUq5evUpOTg6VlZVUVlZy9+5dEhMT8fHxQS7X/vhs3lz3AiUmJoYLFy7Qo0cPvesODg4mMDCQ06dP07dv3+r3cqOisG3TRm8mSx8fbm3aRKVKVd0PR15UFKY2NtWtcCx9fMi5eFFnubzoaMy9vDAy0T00cy5epLygAIeuXQ2WgyT9AkiMUTvoXiCqKiq5kphN12Andp3V9pXSNdiJ3eca3ndKMw9b0nI0FXypOcUMeH+3zvvP9Paja7ATLy88xu0MwyPP6mSrVHM1I5/ObrbsTtD2v9XZzYa9CYb7C2vnbM2P/YJZeOEmK64mG5wvRKmgmb0ln51sfL8nqko1l9Py6dbElj9vaLN087BlV5zhbLUZSSSYGEkwNpJQUVVjF+6v5Juwpszcd42dNxq+rnvK1Wpicwtor7TlcIq2sq+90paIlMavDyC9pIwJh87rTBvi5UI7pQ3vnYnmblHDK3fL1Wqu5RQQ6mTLwWRtvlBHWw4lP1i+moJsLQmwseTbevqrAjAyMcG8iSf50VHYtNU+9pMfHYVN67Z6lzH38SVl80adYzc/OgoTaxuk9tofCzlnz5C0YjlNnn0em7Z111VZVobEqNZjgka6d3v/yXy1qdVq1OWaSiMzLy8CPvhQ5/2727ZQUVSE2+ixJM1u2GAFj4vySjVRmfl0crVh703t/tXJ1Yb9Nw1Xhrd1smJx32AWX0zi96g7Ou+lFZYxeItuB+6jA13o5GrLawejSC6o/3iwtDTXGflVrVajVNpy/PhFWrTQVOSVlpZx9uxV3n77+fv+jZcuxRITk8Ds2YYfs5LJpDg52aNSlbN373EGDND/fWFmIdcZ+VWtVmNrryDydCz+QZrKqLJSFVEX43l2mv5HL+0crfl21Zs603ZvPE7kqVhmffkcji7aH/BbV0Ww5sfdvL/gBYJa+dz3b63NwkKuM9qqWq3G3sGKUyeuEdRcU5FRWqri4vk4ps003Hq1ZSsfDuy9SFFRKebmMgBuJmpa6Dq7GOgXtkFZFJw5GVs9GERpqYrI8wm8OmNgo/7O6zF3sHfQ/sBs0cqLvbsuUFlZiVHVueRWYgZyuSk2tnVbxsrM5TojmKrVaixsrUi4eA3XAE05lZepuHU1jt4TB9ebJeroeXYs+IPwGc/QrKv+kS5PbT7IkT92MurDKXgE1z+AldRMrjMKp1qtxtzWiqSLMTj7a7MlR8XT7bn7tEBuIBOpKZb2NlSUV3D9xEUCuuj/O/SVm6WtFXEXruFWVW6qMhVJV+IIm1R/titHLrD5mz8YMvMZgru2qnfee5+VmngHZ283g/PIzeU6I7+q1WoUdlbEnr9Gk8Am1fnir8Tx1EuD6v28i4cvsOrLVYx9eywtu9fNpyotw6jW4+1GRhLUqJGby7FQWGBZ1T+yWq1GZm1F2pUYbH29AKgoU5F5LY7gMUMMZrDz9yblrG4XJmlXorHx9sTIRLeSy1hqipmdDZXlFdw5fRG3DvqvufXRu8/ZWHE7MganGvtcSnQ8nSc8nH0u4fQlivMLaXafwSZMzeQ6o5eq1WrMbKy4cykGpZ82W2pMHO3G1X+s1sfB15PBX83WmXZ+zQ5KC4voNGkklo51K7H1ZZPbWHH3cjT2vppsFWUq0q/F0Wrsg2e7J+bPA1xZv4Pus6aiDPS77/wGy+5yDA5+2nxpMXG0febB89n7ejLoX7pld2HtDsoKi+gwUX/ZCcI/RVTYCf/13njjDZRKJe+++y5KpRJjY2NGjRpFedXdP0OP9NxTWVlJly5deO211+q8d6/furFjxzJ37lyCgoIolslIi4hAlZuLY1Ul361NmyhMTCRw5kzNcqGhJO/YQcLy5bgMHEhJaiopu3fjFq59jMWxRw/SDh0iae1alN27U3DjBhnHj+Pzwgt1cqQfOYJVYCByZd3+s0DzhWWUek5TWWcsq/P+sr2xfPViKJEJWZy7nsHYXr442shZdUhTkfXm8BBaetsx/l+a0QqHdvFEVaEm6mY2lWro08qVcX18+XK9ZjSx8go1scm6d0gz80opU1XWmX4/y68k82WPplxKz+d8ai5jAl1xNJexJkbT2mVmOy9aKBU8t0vz2aEu1vzQrzmro++w/UYaDlV9VFWoNS32ahoV6ExCbhGnUx6sn42fL9xmQb9ALqbmc/ZOHuNCXHCykPH7Zc2P+1mdvWnlpGDMZs0ocEMDHSktryQmsxBVhZoWTgpmdfZm5410yqoq657yV/Jtv0A+/SueU8k51S34yirUjWoFuDYumffbBBCdk8/lrDye9nLBXi5lS6JmcJHJzTxpZqPg9RNXqpfxsjTDxMgIG6kpZiZG+FlpfvTdyCukQq0mIV+3ojW7TIWqsrLO9IZYfT2Zue0DiMrK51JmHkN8NJ33b64a0fXlYE+C7BRMO1ojn8IM0xr5/K01+a7n6j52PdjbmaT8Ys43oL8eh75h3Fr+C+Ze3lj4+pF5JILy3Fzsu2uO3ZTNmyhKTMB3xhsA2IaGkvrndm6tWI7jgIGUpqWStmc3TgOfqj52s8+cJmn5MlyHDcfCP6C6Na3ExKT6EVOrkJakH9iHmadn1SOx6dzdthWrkBY6rWT/iXzphw4gs3dA5qQZkbfgRizp+/Zi36MnAMYyGWZuuj8Qjc3MUFdWVE3/++NRWZjL8K0asdjISIKHmwMtgjzJzing1p0HG1G6Pr9dTebzbk25kpHPhbQ8RjZ1wdFcVt1q7vU2XjR3UPDCXs15pL2zNd/3CWbttRR2xKdhX3UeqaysarGnVnMjR3e/zypRUVZRWWd6Q0gkEiZMGMTSpevw8XHHy8uNJUvWYm5uRni49mbR229rWj1++eVMneXXrt2Nl5croaF1+wiLjLxGamomzZr5kJqaycKFq6isrOSFF4Y2OFv46O5sWL4fN09HXJso2bBsP3JzGd2f0FZy/PvDVQC89uFYTEyM8fTV7XrB2tYSE6mJzvTNKw+xaukuXp83FtcmSrKr+suTykyxsDT82NP98o4e14Nff9qLl7cTTTyVLPtxL2bmMp4YqK3onjv7dwDmfTYOgCcGtuWXH/bw0fureHFqfwryi/lm/iZ6h7VqdGu4mllGPtONFT8fwNPLEQ9PJb/+tB9zcxlhT2rL7qP3NI9wzfl0DABrfz+Ks6stPr5OqFQV7PnzPEcOXeWzr7X9Ew4Z2YkNa47x7fxtDBvTmZTkbH5espehozrf97rmXrbQp3twbO1e7N2dsHNVcmztXqRmMoJ7aMtp29crARj0xngArkacY/s3K+k9cTBNmvtRUNUXnrGJMWYKzfnt5MYDHF65g0FvjMfOzbF6HhOpKXKL+29XiURCm6d6cnr9XmzdnbB1deTU+j2YyqUEdtfevNj97W8A9H9dWy5p8ZobjWVFJUgkEtLib2Nsaoy9h2a/S4lNpCAzB6W3OwWZOZxcswu1Wk27IX1pCIlEQsfBPTi6Zi8O7k7Yuyk5skZTbi16astt01ea/Wvom5r963LEeTZ9tZJ+k57Gs7kv+VlV5WZqjHlVuR36YxcegV7YuSopLSrh1LYjpCbcIfyVkQ3Kdi9f96Hd2b9qH44ejvwfe/cdHVXR/3H8vSm76b33QhJCQkIHaUpHwAb4AEoTRQRERMSG0hQFVFBEqihK70jvCIggNXQICb2m957s748Nm2ySDRssyfP8vq9zOIe9uXfzydy5s7uzM3OdvVzYtXQnKnMVDdqW5Fs2RZPvpQ80+U7tO8nSKUt4dshzBEQEkpZUcl4ti98L1GkWxv61v+Ed7K2dErtt0TbqNA3DuMyIMYVCQWDntkT/uh1rD1es3Fy5/Os2TMxUeDUvWbfvxNxFADR8YyAAfm1bcXXXfs4sXo1/25YkRl/l5oEjNBpeso5kUsw1cpJTsPX1JjsphUvrtqBWF1GrW8nNbQpycsh4UDwyUV1EdmIyCdduo7KywNq5fAe8QqEgottTnFi7EzsvV+zcXTixRlPngkrVud3faupc+5EldS7hWnGdy9bUuYRrtzEyMcbBW7cNvLDrEF51g7F1q9rdRBUKBXW6tOHM+h3Yerpi6+7C6XXbMTFTEtiyJNuBWZpsrd8syZZ4XZMtvzhb4vXbGJsYY+fljqmZCnsfD53fpbQ0p6iosNz2yrKFPN2G8xt2YOPhhrW7CxfWb8dEpcK3Rcl5PjL7ZwCaDRug3ZZ8/VZxtmxQKEi+fgsjExNsvTTldnHTLs6u3ESz4QOwdnchu3hdRGOlEmUl02LL5gvt0oaz63dg6+GKjbsLZ4rLLqBU2R0sLrtWpcou6XpJW4JCQdJ1zXmtrOzUVSi7/xlG/+x0aPFo0mEn/qulpKRw7do1xowZQ6NGmob50qVLFBZq7jTl5+fH1q1bycnJ0Y6yO3/+vM5zhISEsGfPHtzd3TExqfiS6NChA6mpqfz000/cj4/H3MOD4BEjUBWPlstPTSU3vmRKg4mFBSFvv82N5cu5MHkyJhYWuHXogGuHkjcbKicngkaM4NaqVcTt34+prS0+vXvjUGa0Tk58PGmXLxM4WP/IivTLl1HkJFIY1LPCn285egs7SyXDn6mDs60ZV+6k8uqMg9xN1HzwdLE1w8dFd3rN8G6heDpZUlik5vr9dD748Zj2hhN/p21X47FXmTC0ng8uFkqikzN5fcc57hZPK3W2UOJtU/LC/UKQKxamxrwa4c2rEd7a7bfTc2i38qj2saWpMV0CXJh96tF36tNn05V47MxMGdHYFxdLJdGJmQzYeFa73pyLhRIf25JsBUVqhjXywd/OHAUK7qTn8POZu/xwqmQkY9+6HpgaGzHhyVpMeLLk28TDt1Pota7iG2dUZO/dBGyUJvQP9sZRpeRaehbvHTnPg2xNNkeVEg9L3WmN05qF4V7qm/qfntJ8oGy18fcqlIphdt9OwFZpwiu1vXE0U3I1LYt3Dp3nfvH6eE5mSrzK5JvRIgz3UtsWt9fka7a2JJ+FiTHtvZ358aJhddG+UWMKMzJ4sHULBWmpmHl44P/mW9qRrvmpKTrXrrG5BQEjR3Fn+TKufPEZxhaWOLfvgHP7kms38cB+KCrk7uqV3F1dsvaRZVAwtUaPAcC1S1dQwP2Nv5KfkoyJlRU2dSNxe073G99/Ih9Fau6uX0t+YiIYGaNydsb9+e7aTsB/Q4OIAHauKll6YNzoFxk3+kUWr97P66Pn/u2/b/v1BGxVprwe6YOzuZIryZkM3X2Oe5nF9c1CibdNSd16rpamHXkl3ItXwkvugH0nI4dOa4797fkABg/uQW5uHpMmzSU1NYPIyGB+/HGSzki8e/fKT43LyMhi69aDDBvWu8KOmtzcPL75Zgm3bt3HwsKMJ59sxLRp72BjY1VuX31e6NeGvNx8Fny5joz0bILCfBg/83WdkXjxD6q+gPe2tYcoKCjkq7GLdba36dqIt8b1qfLzPdR/UDtyc/OZNnkN6WlZhNX15bt5Q3VGvz24p3uXagsLFd8vGMZXX6xlYJ+vsbGx4Mk2dRk+6tE3cKhM31eeIjc3n6+/WE96WjZ16vowY85g3Sz3dcsuP7+AWdM3Ex+XikplSkCgG1/NGkTzViU3onJ1s+ObuYOZ+dUmBvxnBo6O1nR7vjEDX29ncLZmPdqTn5vPjjmrycnIwiPEl96ThumMKEuL1y2nU9sOUVRYxO4F69i9YJ12u094LfpOeQuAE1sOUlRQyIapi3SOrduuCc+M6mtQtkYvtKcgN5+981eTm5GFW7Af3ScM1xkVlV4mG8DSd6bqPL567Bw2zg68umAioBld88fSLaQ+SMDUTIV/wzp0HtW/0rvcltWyZzsKcvPZMnsNORlZeIb40u+zoTrlllom2/GtmnLbPn892+ev1273q1uLV6ZqllzJycxm48yVZCSnYWZpjlugF4OmvYVXJdOJK9K2Vzvyc/NZ+91astOz8An1ZciUoToj8ZLL3EX+j02afBtmr2fD7JJ8gRGBDJ+uydehb0cUCgXbFm0lJT4VK1tL6jQLo8ugikeLBnXrQGFeHqcXrSQ/Kwv7QD+avz9CZwRUVoJuDksXJ554dxhnl6zl+p6DmNnbEtH/RTyblHRwF+Xnc3H1JjLjEzBRqXCtF0bDoQN07h6afPUmhz7/Rvv40trNXFq7fx0zwAAAIABJREFUmZA2TWg3ol+Feeu/0J6CvHwOzl9NbmYWrkF+PDNOt85lJJSvc6tG69a568fPYe3sQL95E7XbUu8ncPvsFTq+M7DC3/0odZ9rT2FeHkcWriIvMwunWn50GvumTllmJiSVO27je1N0Ht86cQ4rZwde/H7SY+WoSO1nOlCQl8+Jn1aSl5mFY6AfT31UNlv5ctvxoW62uyfPYuHkwLPffQrAlZ0HKCos5I+ZP+rs59e6Kc2G6t5cqTLhz2rK7s8fV5GbmYVzLT86lM2XWL7sNr2vm+/2iXNYOjvQc9bfV3ZC/B0UKSkpf9ca4EL864qKiujcuTNNmjRhyJAhxMfHM3PmTC5fvszYsWNp27Ytzz//PM2aNWPgwIEkJCQwY8YMYmNjmTt3Lg0aNCA+Pp6+ffsSGRlJ//79sbe3586dO+zevZuRI0diWWY9ueFlprHWFIcXGX6X0epg0sKtuiPolZ1Vc5tBXz/966BUt/y/Zzm6f4SPw1+5z+3/b5sGzKnuCHoFTtJ/l+zqdm5gzV3P5kJK9KN3qkaeFjX3++OCosrXLK1Om2+VH1FfU2QX1OxRGXbKmvsaYa2sue9JDtxXPnqnauJhUVjdEfSq6ddDdmHNzacyqrnXA8Bw/ybVHeEfVXdRzfzc+7jODnz0cgU1zV+f9yJENTIyMmLy5MnExMTQp08fpk2bxpAhQ1AqNW8oLCws+Prrr7l69Sr9+vVj5syZDC4eqfZwH2dnZxYsWICRkREjR46kd+/eTJs2DVNTU+0+QgghhBBCCCGEEP+WmvuVphAGaty4MStWrNDZtn//fu3/69aty5IlS3R+plAo8PIqmQbl4+PDlCm6Q6OFEEIIIYQQQoj/l2ru4Mv/N6TDTvzP27x5M56enri6uhIbG8v06dNp1aoVdnZ21R1NCCGEEEIIIYQQohzpsBP/85KSkliwYAEJCQk4OjrSokUL3nzzzeqOJYQQQgghhBBCCFEh6bAT//P69+9P//6G321ICCGEEEIIIYQQojpJh50QQgghhBBCCCGE0DKSW5RWOzkFQgghhBBCCCGEEELUINJhJ4QQQgghhBBCCCFEDSIddkIIIYQQQgghhBBC1CCyhp0QQgghhBBCCCGE0FIoqjuBkBF2QgghhBBCCCGEEELUINJhJ4QQQgghhBBCCCFEDSIddkIIIYQQQgghhBBC1CCyhp0QQgghhBBCCCGE0JI17KqfjLATQgghhBBCCCGEEKIGkQ47IYQQQgghhBBCCCFqEOmwE0IIIYQQQgghhBCiBpE17ISoIjtlUXVHqJBVO/fqjlCp9MPx1R1BL7enXKo7gl63bxVWdwS91HHZ1R1Br/vO5tUdoVIursbVHUGvwEnDqjuCXrHjZld3BL32duxX3REqUbO/n1VQUN0R9MotrLllF2Bdc8utpnMzV1d3BL0updbc14fGTvnVHUGvULuaez34WVtXd4RKXUzJqO4IegXbqqo7QqXUWdWd4J+lkEXsql3NfRcihBBCCCGEEEIIIcT/Q9JhJ4QQQgghhBBCCCFEDSIddkIIIYQQQgghhBBC1CCyhp0QQgghhBBCCCGE0JIl7KqfjLATQgghhBBCCCGEEKIGkQ47IYQQQgghhBBCCCFqEOmwE0IIIYQQQgghhBCiBpE17IQQQgghhBBCCCGElqxhV/1khJ0QQgghhBBCCCGEEDWIdNgJIYQQQgghhBBCCFGDSIedEEIIIYQQQgghhBA1iHTYCSGEEEIIIYQQQghRg8hNJ4QQQgghhBBCCCGElkKGd1U7OQVCCCGEEEIIIYQQQtQg0mEnhBBCCCGEEEIIIUQNIh12QgghhBBCCCGEEELUILKGnRBCCCGEEEIIIYTQUiiqO4GQDjshHpNarebqhs3c3v87BZlZ2Ab4Ubt/H6w8PSo9LulSNNHL15B55y4qezt8n+6Id9vWFe5778gxzs1diFNkXeqPGq7dHrt+E1d/3aK7s6UNZu9M1/t7/xPszsA6XjiZK4lNyWTa8aucik+rcN9Grrb0re1JuJM1VqbG3ErPYemlO2yIfaDdp523Iy8GuRPiYIXKWMHV1CwWnLvF/ttJlf79hujbKoDB7YNwsTUj+l4an605w7HYxAr39XSw4OCnncttH/j9IQ5ceFDBEVXTI9CNfiFeOJopuZqWxYyoq0QlVFxuSiMFHzSsRYidFf425pxOSGfo/rPl9uvk7Uy/2p74WJmTWVDI0QcpzDx9jcTc/Cpl6xvuwev1vXCxUBGdlMmnv8dy7F5qhfvWsrdgUusgghwssFaa8CAzl00x8Xx79Dr5RWoAnC2UjG0RQLizNX625qy//IAxey9XKZNOvsbeDGnhj4uViuj4DCZtu8Sxm8mPPM7PwYLNbzRHAYR9vlu73dlKxcedQgh3t8HP0ZL1p+/y7oby5WtQtnAPhjQoKbtJBysvu0+fDKKWgwU2D8vuSjzflCq7TgFOvBzuTpizFSpjI2KSsph1/Ca7r1dcbyvzd9e5cY2D6ObnWu7Y7IJCnlx/uErZeoW480q4F84WSmKSM5l69Con4yrO1tjNln51PKnrZI2V0phbaTksvnCH9TEVX5f1XWz4qXME11KzeOHXk1XKVRUtmtTm7SHdaFDXHw83Bwa/M4claw78Y7/vIbVazZafd/D75sNkpWfjF+pD75E98PB313tMdFQMv/6whQe34sjLycfB1Z4WXZvRoVcb7T53r91j86Lt3Lxym8R7SXQd0IluA8u3if/N2Vb8sJOdG46QmZ5FUJgvQ8Z0xyfAzaDjL0Rd5eNhc/DydWHm8jHa7Yf2nGbdL3u5dzuBwoIi3L2deLZPa9p2bVzlfGsW7mTPxiNkpGnyDRrdHe9K8l04FcvyOVu4ezOe3Jw8nN3saftsU555qaTsCgoK2fDLHg5sPU5SQiruPs68PKwb9ZrVrlK2jYt2cGDTEbLSs/Cv48vLb/fA019/tstRMaybv5X7t+LIy8nD0c2BVl2b0ql3SbYDmw5zeMdx7ly/j1qtxqeWJ8+/+jRBEQHVnu34vii2Ld9L3B3NeXX1cqL9i0/SorPh51WtVrNswU52bDhCRnoWwWG+DB3THd9Aw+rc+airfDhUU+dmryipc7s3H+WbSSvL7b/u4BSUKtMq5du5eDt/bjlMVkY2PrV96D6iJ25++q/XswdPc3jzH9yJvU1BXgEuvq6079ORsObhOvsdXLefPzYfIvlBMpY2FoQ9UZeug59BZa4yONveJds5tu0PsjOy8Q7x5ZnhPXGtJNv5309zdOsh7j7M5uPGU707EPpEXZ39cjJz2P3zFs79HkVWeia2TvZ0fKUbdVvXNzjbyh92suvX4rakji+Dq9CWXIy6yifD5+Dp68K3y0rO664NR/ht23FuXbtPUZGagGBP+rzemdB6Vbse5s3exLrVB0lPyyI8wp8PPn6JwFqVf6bIzyvgh3lb2LLpCPFxqTg6WtPvlY706dsOgI3r/2DCx4vKHXf45PeoDKxzarWadT/uYG9xudUK82XgOz3wqqTcLp6KYeXcrdy7GUduTh5Obg60eaYpXUu1cZ+9+T0XT8WWO9bTz5VpS983KNvDfAtmb2X9mkOkp2URVteP9z7+z6PLLr+AhfO2s23TUeLjUnFwtKbvwHb07qvJuH7NIbZu/JOrMfcoUqsJqe3FGyO6Ua9BLYOzCfF3kA478a87ceIEQ4cOZefOndjZ2VV3nMd2fetObuzYTdirA7B0d+Xqr1s48eW3tPhiIibmZhUekx2fwKnps/Bs1ZzwIa+QEh3DpcXLUVpb4dq4gc6+WXHxXFm5Frvgil8YLNxcafTBO9rHf95U6s3aydeJ9xoF8PnRWE7FpdIr2IPZbcN5YdMJ7mfllts/0smGKymZLLpwm/jsPJq72/NJ0yByC4vYdj0egIauthx9kMKs09dJzS2gi78LM1rX4dVdZ/R2BBqiawNPPnkxgnErojgem0jf1gH8OLwFnT7dxd3kbL3HDZj1OxfvlHS4pGbmPXaGh9p7OTG6XgBTT8ZyOiGNnoHufNMqjF7bT/Igu3y5GSkU5BUWsTrmLi3cHbAyLd/ERjhaM6FpMDNPX2P/nUQczJS81yCQSU1DGH7gnMHZutZyZlzLQMYduMKxe2n0C/fgp2fq0nHZMe5mlM+WX1TE2sv3uRCfQVpeAaGOVnzRJhgThYIph68CoDRWkJyTz5yTN+lTR/+ba0N0C3Nj/NOhfLLlAsduJNOviQ+L+jakw/e/czc1R+9xpsYKvnsxkqM3kmjq66DzM5WJEUlZ+cz5/Rp9Gno9frZazoxvFcgn+4vLrq4Hi56pS4fKyu7Sfc6XLru2wRgbKZjyh6bsmnnacvh2Cl8fuU5Kbj7PB7syr0sYvdef1tsRWJF/os59feoq35+5rrNtQduIKl+nnf2c+KBpAJ8dLm5Hanswt0M4z244wf3M8tnqOdtwJTmTn87dJj4rjxae9oxvrmlHtl6L19nXRmnC562C+fNeCi4W+tuyv4OVpRkXLt9i2doD/DBj2D/6u0rbuWIvu1f9Rv/3++Dq48LWn3cwc8xcJvzyIWYWFb9mqMxVPNW9FZ7+7ijNlMSeu8ay6atRqkx58vmWAOTl5uPo5kC9VhFs/HHr/1y29Yv38euy/bz1SW88fZ1ZuXAX40fMY/aq9zG3rDjbQxlpWXw7cTkRjWqRVKa+W9ta8OKg9nj5umBsYszx3y8wa/IqbOysaNQi1OB8G5fsY/OK/Qwb2xt3H2fW/rSLyW/PY8Zy/fnMzJV0frEVPoHuqMxMuXzmOgumrUGpUtKpRwsAVs7bxsEdJ3j9/Rfx9HPl9J+X+eqDn/h03gj8Qwxr/7Yv38vOlfsZ9GFv3Lxd2PTzTqaPnsvkJR9Uel7b9WiFZ4A7SjNTYs5eY/HXmmxtXtBkuxwVS+O29egT7o/STMmu1fuZMWY+4xeOxtXLuVqzWdpa0q1fB9x8NOf1zOEL/DxtJdZ2lkQ0q2NQtrW/7GPDsv28PU5T51b8sItPRsxj7ur3sTCgzk2fsJzIRrVIrKCNVZkp+WHdhzrbqtJZB7Bv5R4OrPmNXmNewtnLhV1LdjD//Tm899NHessu9kwsteoH0fmVLlhYW3By7wkWTVzI0K/eJKBuIAAn955g8w8b+c+o3vjXDSDxXiKrpq+gID+f/4zuY1C2g6v38Pu6ffQYrcm2d+kOfvpoNqN+GItKT7ZrZ2MIiAyi/YCuWFhbELX3OEs/Xchr00bgF67JVlhQyKKxszGzsqD3RwOxdbIjNSEFkwpe8/RZv3gfG5fvZ8THvfHwdWb1j7uY+NY8Zq00rC2ZOUnTlpQ9r+dOxtCifT1qR/ihMlOyacUBJr29gK9/eQcPH8Ouh58X7mDJol1MnDwQX383FszZzNDXZrB+y6dYVpLtwzELeHA/mY8n9MPH14XExDRyc3S//DUzV7Jx22SdbYZ21gFsXrqXrcv3M2Rsb9x9XVj/006+eHsuXy3/oJI2TkWnF1vhXXytRp+9xo/T1qA0U9Khu+ZaffvzgRTkF2qPyc8v4IN+X9K0XT2DswH88uMulv68h/GT++Hj58rCuVt5c/As1mweV2nZjR3zEw/uJ/PR+D54+7qQVKbsThyLpkPnBkTWD0RlpmT5L3sZMeR7lq75EB9flyplFOKvkDXshHgMarWamzv34NelE66NG2Dl5UnY4IEU5uRw/8hRvcfd3ncAlb0ttfv1xsrDHa+nWuHe4glubN+ls19RQSFn5y6kVo/nMHd2qvC5FMbGqOxstf8UltZ6f2+/UE82xj5gXcx9rqVlM+V4LPHZefwnuOJOmYXnb/H96RtExadxJyOH1VfusedWAu19SrJMO36VH8/f5lxiBrcycph39iYXkzJo6+1YWdE90qvtglh75AYr/7hO7IN0Jq4+TXxqDi+3qvybypTMPBLScrX/8gvVfykHwEvBnmy+Hsev1x5wPT2br6KukpCdRw8937LnFBYx5WQsG649qLBzBaCuow1xWbksv3KXu1m5nEtKZ1XMXcIc9Z+/irxWz4u1lx6w4sJ9YpOzmHAwhrjMXF4Or/gbxRupOay99ICLiZncSc9l9/VENkTH0djDVrvPnfRcJh6MZe2lB6TkFlQpT7l8zf1YE3WHFSduE5uQyYStF4nLyKVvY59Kj/ugQwiXHqSz9Xz5UVi3U7KZuO0ia6LukJJdtdGIOtnqebGmdNkdiCEuK5e+dfWX3ZoyZfdrdBxNSpXdxIOxzDl5i9Nx6dxIzeHbYzc4G59Ox4CqXQ//RJ3LLCgkMTdf+8/TygwvK3M2XLtfpWz9wzz5NeYBa6/c52pqNl/8qWlHeodU3I4sOHuL707d4FRcGrczclh5+R67byTQwbd8mzapRRAbY+I4/Rc6+w21Y18U46etZP3WoxQV/fV2whBqtZq9a/bT6aV2NHgyEk9/dwZ8+BI5Wbkc261/NKFviDeN2zbAw98dJ3dHmnZoRJ3GIcScvardx6+2Dz2GPkeT9g1Rqqre2VnTs21acYAe/dvSvG0EvoHujBzXh+ysXA7sOPXI42dNXkWbro0IqetX7mcRjYJo9mRdvPxccfdy4pnerfGr5c7FqKvln6iSfFtXHeC5vm1p2iYCn0B3hn+iyff7Lv35Amp706JDfbwD3HDxcKRV54ZENA3h0umS331wxwmefbkNDVrUwdXTkY7dm1O/eSibl+83ONvu1Qd4+uW2NHwyEs8AdwZ91IecrFz+rOS8+oV406RdfTz93XB2d+SJjo0IaxzClTMl2QZ/0pe23VvhE+yFm48Lfd/piZmFinN/Xqr2bKENgqjfqi7uvq64eDrRvmdrvALcdfZ5VLZfVxygZ/+2tGgbgV+gO6PGa87pfgPq3LefraJd10bUrqDOgWZ6mb2Tjc6/qlCr1Rxcf4A2vdoR0SoSd393+rz3ErnZuZzae0Lvcc8P707b3u3xqe2Lk6czHft1xivIm3OHSkZkXz9/Dd/afjTs0BgHN0eC6gfTqH1jbly6YXC2Q+v30/o/7QlvWQ9XPw96vvsyudm5nN6nP1u3oT14slcHvEN8cfRwpl3fp/Go5c2FP85o9zmx808yUjLoO/41/MIDsXdzxC88EK8QX4OzbV55gO792vJEcVsyovhaPbDz0ef1+8mreKpLI4LD/cr9bNSkvnR5sSUBIV54+row5L0emFuoOHXE8Oth2eLdDHytM+06NqRWkCcTP3+FrMwctm35U+9xhw+d5+iRi8ycO4Jmzevg4elE3YgAGjUJ0dlPgQInZ1udf4ZSq9VsX3WAZ/q1pUmbSLwD3HnjY821+scu/deqf21vnmhfH6/iNq5lp0bUbRLC5VJtnJWNJXaONtp/0aevkZuTx1Ndm1Qp3/LF+xjwakfadqhPrSAPxk/uT1ZmDju2HNN73JFDFzl65BLfzhlG0+aheHg6Eh7hT8Mmwdp9Ppv6Cv956SlCQr3x83flg3G9sbBQcfj3CwbnE+LvIB12osry8vKYPn06nTt3pmXLlgwaNIioqChAM3quSZMmpKSkaPe/e/cuTZo04cKFC9y9e5ehQ4cC0LFjR5o0acLEiRMBTaO7dOlSevToQYsWLejWrRvff/+99nliYmIYPnw4rVq1on379kycOJGMjAztzydOnMioUaP4+eef6dy5M23atGHWrFkUFRUxf/58OnXqROfOnfn55591/p6MjAw+//xzOnXqxFNPPcWQIUO4cKHyxjg7PoG81DQcw0u+rTVWKrEPDiIlRv+bwpSYqziG6X7D6xReh7TrNygqKPmWKWbtBsydHPFo+UQlGeI58Pb7HHx3LGdm/0BRcnyF+5kYKQh1sObwvRSd7YfvJRPpbPgbRStTY9LyKu/EsTBgn8qYGisI97bj4MU4ne0HLz6gQYCDnqM05gxuxtEpXVj1zpM8Xb/yYfCGMFEoqG1vxZ8PdKdw/vkgmYgqvsEu7UxCGk7mSlq6a/4eW6UJHb2d+eOe4VOJTY0UhDtbc/CW7jG/30qmoZth2XxtzXjSx54/76Q8eucqMjVWEO5uw8GYBJ3tB2MTaOitf1RtmyBn2gY7M2Hrxb89kzabkYJwF2sO3tQtu4M3//6yszI1JrUKHZ//VJ0r6/kAN2JTMzmbmG54NiMFdRyt+aPM3/zHnWQiXarQjijLtxG9QtxxMlcy78xNg5/nv03CvUTSktIJbVTyQUqpUhIUEUDs+WsGP8+tK7e5eu46QZGB/y+yPbibRHJiOvWalnyIUpmZElYvgEtnr1d67NY1h0hOTOPFVzo88veo1WpOH4vmzo146tQ3fBpb3N0kUhLTiSj1IU+pMiU0MoDoR+Qr7drl20SfvU6d+iVll59XgGmZUTBKpSmXzxh2ThLuJZGalE5YmfMaHBlAzDnDs92Mvk3s+esE19N/XgvyC8nPy8fC2rxGZVOr1Vw8Ec39W/EERxhWLx/WufrNytS5+gFcLDNSuawtxXWu1yD9dS4vN59Xnv2MAd0mMXHUD8Revm1QroeS7ieSnpRGcKOSqdGmKiX+dQO5fqHyfGXlZuVgYW2hfewfHsDd2DvcKH6e5Lhkzh8+R2gTw0YmJt9PJCM5jaAGJefVVKXELzyQmxcNb0sA8rJzMbcqyXbx8Bl86/izefZavujzMd+8/jl7Fm+jsNR758o8KL5WI8u0JXXqBXD5EdfqtjWHSElKo6cBbQloroe8vHysSpVtZe7cTiAhIY0nmodpt5mZKWnQKIgzp/R/pvhtTxR1wv1Y8vNuOrd9j+ee/phpn68gK1N3FkNubh5d2n9A57bv8daw77h00fDX2vjicqvbRPdarV0vgCtVaOOuR9/myrnr1K6kHdm36QiRzUJxdLU3+Hnv3E4kMSGNps1LRkWbmSmp37AWZ6L017nf9p6mTrgvS3/eQ9d2Y+neZQJffb6KrCz9M0Dy8wvIyyvA2saw8/q/wkjxv/Xvv5FMiRVV9t1337F7924+/vhjPD09WbZsGSNHjmTt2rWPPNbV1ZWpU6fy/vvvs2LFCmxsbDAz0wxXnj17NmvXruXtt9+mfv36JCcnEx0dDUBOTg4jR44kNDSUn376ibS0NCZPnsynn37K1KlTtc8fFRWFi4sLc+fO5fLly4wbN47o6GhCQkKYP38+x48fZ+rUqTRp0oTQ0FDUajWjRo3CysqK6dOnY2Njw5YtWxg+fDirV6/Gyani0W15qZpRIEpb3Q+qSlsbcpP1f4jPS01DGaY71UZpa4O6sIj8jAxUdrYknrvAg6MnaDZprN7nsQ30J+y1AVi6u5GXls61jVvJ++kLVG9MQmFhpbOvvcoUEyMFiTm6U0STcvJxMjdsSHxrTweauNkxcMdpvfv0CnbH1ULJ5mtxevd5FHsrFSbGRiSk675gJqTn0sKm4mHtWbkFTF53hhOxiRQWqWlX152Zg5ry7i/H+fXYrcfOYldcbkllphYk5eTTxLVq01dKO5uUzsdHLjOpaTBmxkaYGBlx5H4yE49eMfg57M002RKydLPFZ+XTwqvyUSxrutcj3NkalYkRy8/f5csjVXsTbVA+C6XmPJaZlpyQkUeLgIrXwXG2UjHl2TDeWHmKzDzD3oA/Vjbz4rIrM0IvITufFo+Yirm2R0nZLTt/l2mH9Zddv7oeuFmpWH/Z8HUU/6k6V5qliTHtvJyYfdawERMP6WtHEnPyaWZgO/KklwNN3e3ot7WkHQmys2BYPR9e2hLFvzTYrVqkJWk6R23sdUfSWttbk5Lw6CnTH744gYzUDAoLi+javxOtn23x/yJbSqLmtdbOQTebnYMVifH6s12PucfKH3Yy7ce3MDbW/910ZkY2r3abRH5eAUbGRrw+pjsNmxs+HTYlqeJ8tg5WJFWS76Ghz00iLUVTdj0HdaTDC821P4tsGsLWlQcIqx+Im7cT545f4ej+sxQVFRmULbU4m02ZbDYGntcxPSeSXpzt2QEdeeq55nr33bBwK2bmKuq1CNe7z7+ZLSsjmzE9J1KQV4DC2IiX3+5O3WaGndfkyupcXOV1bvkPO/lqof465+njwsiPe+Ef7EFWZi4bVx7kvddmMXPpaDwNnDqZXny9Wpe7Xq1INaDsHjr060FSE1Jp0L6Rdlv9Ng3ISstk9ujvUKvVFBUW0bB9I7q+9oxh2ZI12azKZLOytyatCtmObDxIakIK9dqVrDuYdC+Rq1FXiGjTkP6ThpD8IJFN368hLyeXpwc//8jnrKwtqexavRFzj1ULdzKlkvNa1rJ52zAzV9G4ddijdwYSi9eodSgz08LB0Ya4B/o/U9y+nUDUyRiUShO+/OYN0tOymfb5cuLjUvjymzcA8PV3ZfynAwgO8SYzK4fli/cwqO9UVqwbh49v+bVty3rYxtnal23jrA1q4958vuRa7f5KR9q/UHE7cu9mHBdPxTJqyqBHPmdpD8vO0als2VkTX8n1eud2AqdPxqI0NWHqjNdIT8/mq89XEx+fytQZgys8Zs7MTVhYqGjdpm6FPxfinyIddqJKsrOzWbt2LWPHjqVlS80aNR988AHHjx9n9erVNGlS+TBmY2NjbGw0nVwODg7aNeyysrJYvnw5o0aN4tlnnwXA29ubiIgIALZv305WVhYTJ07E0tISgI8++oihQ4dy69YtvL29AbC0tOS9997D2NgYPz8/li5dSkJCAjNnzgTA19eXX375hRMnThAaGsrx48eJjo5mx44d2o7DN954g4MHD7J161b69++v/f1ffPEFAHlFRdQrvgFEuY569aM/cZY9Rl3qmLz0DM798DN1hwzCtPjvrIhThO6bYttAf/a98wmFZ/7ApFnHCo+pKJoBcannbMMXLUKYeuwq5xIzKtynnbcjoxr48/7vl7hXwVpWVVYml0KhP2tyZh4L98RoH5+9mYKDlYohHYL/UoedniiVZjGEv7U5o+sH8OOFWxx5kIyTmZIREf6bbe5fAAAgAElEQVR82LAWE45F//VsjzhmxM6LWJoaE+pkyYfNA3mjQQ5zTv71cqowXwXnUV/hfdMjgiXHb3HqtuFv6v+KctkMOObNHZqyq+NkyYctAhnaMIfZJ8qXXedAJz5qHsCIHRe5k1716+HvrnOlPe3rgpFCwbYbj9exXlG5GRKtvosNU1uHMOXPq5xL0LQjpkYKvnyyNl8du8adCtYO/G92dNcJlk1fpX087IviDwAVVDSFAbdgGz1zBLnZuVy7cIP18zfj5O5A045VuznCf0O2/dtPMGfKGu3jj6e/VmE2tVp/tvy8Ar7+eDED33oGV4/Kp6SbW6iYsXg02dm5nDl2hZ++2YiLuz2RjYMr3P/gjhMsmFaS74Ovqp6vtIlzhpOTnceVczdYOnszLu4OtH5a04Ey8O3nmTdlFe+8PA2FQoGrpyNPdW3Mb3qmeR3ZdYLFX6/WPn5riiZb2RhqtdqgBu+9794kNyuXqxdusGbeZpzcHXmiU6Ny++1ec4D9Gw/zzvQ39K5n9W9nM7NQMe6H0eRm53Hx5BVWfb8RJzcHQhuWP6/7tp/g+y9Kzun4GRVn4xF1btrYxQx66xncPPXXudAIP0Ij/HQev9X3azav+p0h775Q4TEn9xxnzTcl1+urn72uyVc2noF1DuDMwdNsXrCRvh8NwMG1ZPZC7OkYdi/dSfcRPfEJ9SXhTgK/zl7Hjp+30Xlgl3LPE7X3OL/OLLmJRv9JQzT/KX9iDb7T5Lnfo9i+8Fd6fTAA+1LZ1Go1lnZWvDCyN0bGRngGeZOVlsXWeevp/Npz5f72/dtPMG9qyXkd+7W+OlfBxmL5eQVM/2QxAwxoSx7avPIAO9cfZsJ3b+hd73Dr5j+ZPGGJ9vHMOW8WZ9PN8ahzqlYXoVAomDztNayLR/O9P7YPw1//lsSENBydbIisF0hkqVFtkfUC6dNjEiuW7uO9j3qXe85DO06w8MuSa3XMl/qvVUPO6bjZb5KTnUvM+RusmL0ZZw9HWnUu347s23gEO0cb6j9Recf6ts1H+WLicu3jGbMfrkNbpuzKb9L9eZEahULBZ9Newap4ZPCYj/7DiCGztGVX2vLF+1i/+hDf/zACKyvDRhIL8XeRDjtRJbdv36agoIDIyEjtNmNjY+rWrcu1a9ce2WGnz7Vr18jLy6Nx44rf5F+7do1atWppO+sAIiIiMDIy4tq1a9oOO39/f4yNjbX7ODo6YmWlO+LMwcGBpCTNdLhLly6Rk5NDp06ddPbJy8vjzp072setWrUiLEzzTdn0mPMUFWimdOWmpmHmWPKGIi8tvdyou9KUtjbkpuqu0ZSflo7C2AhTKytSrsSQl5LKyS+/1f78YYfe7kHDeGLyOCzdy69lZWJmhpGzB+qk8qN5knPzKShS42SuO3rIwcyUxJzK1wGr72zDrDZhzD5zg9VX7lW4TztvRya3COHjP6L/8h1ikzNyKSgswqnMaDpHK1W5UXeVibqeRM9mhq1rok9Kcbk5mumOHrJXmZJUxbu5ljYg1JsLSRksidbUr5jULLJPxrKgbQSzz10nLvvRN8tIztFkc7bQzeZkbkpCVuXH3yvuGIlJzsJYoWBKmxDmn7rF37DkX0m+rDwKCotwttKtc46WynKj7h5qEeBIU197Rj6peWOpUCgwNlIQM64jn2y5wPITVZs2pDdbdsVl51jFsjNSKJjaNoR5J3XLrnOgEzPa1+ad3ZeqfIfYf6rOlfZ8gCv7bieQll+1qeuVtiOPWE+wvosNc9qHMSvqBisvl7QjzhZKatlb8mnLYD5tqfkgrZmyoCCqf0uG7T7HH3f//inb/4aIFmH41XlX+7igeBpwWlI6Di4l033Sk9Oxtrcqd3xZTu6aD4ueAR6kJaez+ecdj90pVpOzNWkVRnBYSdudX1xPUxLTcS41TSo1OaPcSJmHkhLSuHXtAd99tpLvPtN0JqiL1KjVaro3H8Mn01+jfjPN9C4jIyPcvTUj6QOCPbl9/QFrFu3R22HXqGUYQaXz5ZXkcyqVLy05A1s9+UpzKe4E8Al0JyUpnTULd2o77GzsrRgzdRB5uflkpGVh72TDstlbcPGoeHmIei3C8A8tWSP04WLuqYllzmtKRrnRlBVxLj6vXoEepCVnsHHRjnIddrvXHGD9D9t4e9pgAkL1v+b+29mMjIy0N7/wCfLk3o0HbFmyp8IOu6atwgip4Jwml6lzKY+oczevPeCbT1fyzae6de7ZJ8YwYcZrNGgWUu44Y2MjgkK9uXsrodzPHqrzRDjv1C7JV1B8TaQlp2NXquwyUjLKjWyryJmDp1k+dQm933u53B1ity/aSr02DWjaRbMci7u/B3k5eayevoIO/TrpvL8GCG0WjnfpbMVll5GUhp1z1bOd+z2KNV8uoee7fcvdIdbawQZjY2OMSo1yc/FxJT83j6zUTCztdNsqfW1JcplrtbK2JLm4LZn12UpmlWlLerYYw8fTX6Ne05LzunnlAZbN284n018jKEz/er1PtokkvK5/uWyJCWm4uZdc38lJaTg66v9M4eRkh7OLnbazDsA/QLOm7P17SeU6nUBT50LD/Lh5o+LR/w1ahhFYKntB8YyHlKR0namqackZ5UbdVaSkjfMgNSmDdQt3lOuwK8gv4OC247R5thnGJsYVPY1W6zYRhJfq9M7LK112JfmSE9MrLztnW5xdbLWddQB+xXe9vX8vWafsli/ex9zvNvHt3GGE6VmbUoh/knTYiSp52HlU0Tc+CoVCu730qLGCgkd/MFQ/YviI5pucir8qKb3dxKR8lS67TaFQaH9fUVERDg4OzJ8/v9xxpTsHLS0ttY8t0uNRq9UobW1IOn8R2wA/AArz8kmOjiG4V3e9f4ddrQDiTupOK008fxEbP1+MTIyxDfDjic8+0fl5zNqN5GdlEdqvt94bUBTm5VOUeB8Tv9rlflZQpOZiUjrN3O3YdbPkTeET7nbsvqm/Q6GBi6azbu6Zmyy9dLfCfTr6OPFp82A++SOa3Tf1v+E0VH6hmnO3UmhZ24Vtp0o6TFvWdmF7VMUZKlLHy5a4NMM7+CpSoFZzKTmDJq727LldUk5NXe3Ze/vx/1YzYyMKy9T3oofXlUHjvCC/SM25+HRaetuzNbYkS0tve7bFGp7NqLhTzFihKJfpr8gvVHPuXhotA53YeqHkTWHLACe2X6z4TWLH73/XedyhtgtvtgrkuQWHuf8Xz6VOtiI15+LSaelTpux87Nn+F8uuay1nvm4fwujdl6t0Hh76p+rcQ3XsrQi2s2J6Jeu66M1WpOZCYjpPeNix80apdsTDjt039LcjDV1tmN0+jNlRN1lyQfcajsvM4/kNuguR967tzhMe9ozce4E7GX/fef+3mVmY6dytUa1WY+NgzcXjl/GrrfkwlJ+XT8zZq3Qf8myVnltdpNZ+MP5fy2ZuaaYzSkutVmPvaE3U0WiC6miy5eXmcyHqKgNHVDxNz9HFlm+XvauzbdvaPzj9ZzQfTBuIi7v+9VAflb+ifHaO1pw9Fk2tUvkunb7Ky28aNo2w9HPlV9CRrlSZ4uBsS0FBIX/+doYn9NxBsaLzautgzYXj0drOsvzcfK6cucqLQ6uYrahI21H00M6Vv/HrT9sZOXUwQRGVr/v3b2crv49a7z4WlmY6I6G0de7PaIJLndPzUVcZVEmdm7Vct85tXfMHp45GM3baQFz11Dm1Ws21mHv4B+m/K3tFZWftYMOVE5fxCSm5Xq+di6Xb4Mqv16j9p1gxbRm933uJyNbl61Febh5GRrrTPo2MFKj1jKNWWZjp3PlVrVZjZW9DzKnL2ptB5Oflc+N8LJ1ffa7SbGcPnGLNV0vp+e7LhLcqn823jj+n952kqKhImzHhdhymKiUWtuVnpOi7Vk+XaUsuRl2lv57z6uBiy4yluud1+9o/OHM0mvem6rYlG5ftZ8WC7Yyd/hqh9Sq/HiwtzXTuXqpWq3FysuHI4QvaDqHc3HxOnYhh5Ls99D5PZP1Adu88TlZmjrYO3yjuiHPX07GvVqu5En2bYD13mtZXbueORhMYqtvGvTS86tdqRW3c8QPnSE/N5KluTR/5HBWVnaOTDUcPXySsrqbO5ebmE3UylrdG658qHVE/gN07T5KVlYNFcR2+WUHZLf15D/NmbeabOcOo16CWYX/o/xhDR8eKf4502Ikq8fb2xtTUlKioKDw9PQEoLCzk7NmzdOrUCXt7zbcbCQkJ2v8/XIfuIVNTU+1xD/n7+6NUKjl27Bg+PuW/lQoICGDTpk1kZmZqO87OnDlDUVERfn5+j/331K5dm6SkJIyMjLR/jyEUCgU+HdtxbdM2LNzdsHRz4erGbRibqXBrVjLK8Nz8nwAIf/0VALzatObm7t+4vHQVnm1akXIllru/H6buG68CYKxSYeWlm8PEwhx1UZHO9ugVa3CqF4G5owN5aelc3bgV8nIxjqh4bYjFF+8wuXkI5xLTiYpL48Vgd5zNVdpRc2/V8yPc0ZrX92juFtbI1ZZZbcJYGX2PLdfitCN+itSakTYAnX2d+axFMNNPXONEXKp2n/wi9V+68cTCPVf4ekBjTt9I5kRsIi+18sfFzpylv2sW3h3zbBiRfvb0nanp4One1IeCwiLO30qlSK1Zw65v60CmbTj32BkeWhZ9h4lNg7mQlM7phDS6B2oWx193VXN3zWHhvoQ5WDP8QMnv8rc2x8TICDulKRYmRgQVv5G8kpoJwMG7SYxtVIseAW4cLp4S+069AC4mZ+i9y2dFfoi6zfT2tTn9IJ3j99N4OcwdF0sVy85rOkXGNPMn0tWavr9q7rL2QrALuYVFXErMJL9ITYSLNWOa+bMtNp68UouHhTpp8lorjVGr1YQ6WZJfqCYmOatKZffDH9eZ3j2C03dSOX4zmb6NvXG1VrH0mGax4/faBxPpacvLP2umd0XH6U63jvCwpUitLre9jpvmG10rlQlFas3jvMIiYuIzDc8WdZvpHYrL7l4afcPdcbVQsfScpuzee8KfSBdrXn5YdiEu5BYUcTkxk7zisnvvCX+2xZSU3TNBzkxvX5vPD13l6N0U7Qi+vEJ1lW488U/UuYdeCHDjZno2Jw1Yd6Yiv5y/wxetQjiXkM6puDT+E+KOi4VKO2ru7QZ+hDtZ89pOTTvS2M2W79uFsfLyPTZfjcOxeK27oqLiEXtqNTEpuvUqKSdfcz5TqlbfqsLSQkWgn+abdCMjBd6eTkTU8SU5JYNbd6s2KtJQCoWCtj2fZPuSXbj5uOLi7cy2xbtQmato3L6Bdr9Fny8FYOBHLwOwb90BnNwdcfV2AeDK6Vh2r9pH6+dK1okryC/gXvEHjYK8AtKS0rgVcweVuRIXz0evi1XTsz3TuzWrf9qNl68LHj7OrP5xN2YWKlp3qq/d75sJywB4e8JLmJgY4xuo2wFia2+FqdJEZ/vqn3YTHOaDq6cj+XkFnPjjIr9tO8FgPVMT9eXr8p/WrP95Nx6+Lrh7O7NukSZfyw4l+WZN0uR7c9xLAGxbfRAXD0c8itctuxh1lc3LfqNj95LX8Cvnb5AUn4pfkCdJ8amsWbhDM2Lr5TYGZ2v/Ymu2LN6Nm68Lbl7ObC4+r01LndeFkzXZXh2rybZn7UGc3B1w89Gc1+jTsexY+RtPPV9yXrcv38v6H7bx2tiXcfVyJrV4fTBTlSkWBkwX+yezbV68i4BQX5w9NOf17J8XObLzOH1G6v8ytWy253q3ZuWi3Xj5aercyh93Y26u4slSde7r8Zpsoydq6pxfRXXO1ERn+7IFOwgJ98XTx5mszBw2rjzI9St3Gfa+/k6ZivK1eqE1e5bvwsXbBScvF/Ys24nKTEX9tg21+y2fqply2ef9vgCc2neS5VOX8MzrzxFQN5C04rXJTEyMsbDRvGbUaRbGgbW/4RXsjU9tXxLvJrD9523UaRpWbnSdvmwtXniS31bsxNnLFScvZ/Yt34nSTEVkm5Jsq7/UZHtxjCbbmd9OsvrLxTw9+Dn8wgNJL85mbGqMhbUmW5NuLTmy6SBb5q6j2TOtSHmQxJ4l22jaraVBU4EVCgXderVm7SJNW+Lu48yan4rbko4l5/XbiZrzOnK8/rbEpExbsmHJPpbN3cbICS/h4eOsXQdRqTLF0sDr4aV+7Vk4fyt+/m74+rnyw7wtmFuoeLprSSfWJx/+CMCnX2jWeXu6axN+mLeFCR8vYsjwZ0lPy+KrL1bSvmMDHIpHl82bvYm6EQH4+LqQmZHD8qV7iIm+zUefvPzIXA+zdf5PazYUt3FuPs5sWLQLM3MVzTuUXKtzPtWU29BPNNfqjtUHcfZwwKP4Wr0UFcuW5b/RoXv5NU73bjxMWMMgXCqZTl5Zvj792vDT/B34+rvh4+fCj/O2Y26holPXkpHe4z/U3HBw4hcDAOjctREL525j0sdLGDysCxlp2Xw9ZQ3tOtbXriW4+MddzJ65iUlTBuDj50JC8TqMZiqlzsg8If5p0mEnqsTc3JwePXrw/fffY2dnh4eHB8uXLycpKYmePXtiZ2eHq6srCxYsYPjw4dy7d48ff/xR5znc3NxQKBQcOnSIVq1aoVKpsLS0pFevXsyePRulUkn9+vVJTU3l4sWL9OzZk86dOzN//nwmTJjAkCFDSEtL44svvqBNmzba6bCPo0mTJkRERPDuu+8yYsQIfH19SUxM5MiRIzRu3Jj69evrPdavS0eK8vK4tHg5BZlZ2AT60/DdtzAxL/nmJydRd4qoubMT9d95k+jlq7m17wAqO1tCXu6Fa+MGZZ++UjlJKZydu5D89AyU1lbYBgagHPQRCruKX+x23EjAVmXK4HAfnM2VxKRkMnzfOe16c07mSrysS3I/G+CKuYkxA+t4MbBOybdwdzJy6LJB08HSM9gNUyMj3m8cyPuNS9bHOPYghdd2na3S31PalpN3sLdU8WbnEJxtzIi+l8ag2Ye4m5QNgLOtGT5Out+mDu9cG08HCwqL1FyPy+D9JSf+lvXrdt9OwFZlwiuh3jiZKYlNy2LUwfPczyopN08r3em7M1qF4VHq27+lxW8Em6zWdDBuuRGHpakxL9ZyZ2SkPxn5hZyIT+G7R9x9rqwtMfHYm5nyZiNfnC2VRCdmMmjTWe2aaS4WSnxtSt5QFKjVDG3og5+tOQqFgjvpOSw+d5eFUbpTTbf20p2q0N7fidtpObRa/GeV8m0+fx87C1NGtA7E2VpFdFw6ryw9wZ1UzagpFysVvvZVv9PW1qG6b/Y61HbhdnI2Lb/Zb3i2mHjszEwZUarsXtlcpuxsS8qusEjNsIY++NmZo0BTdr+c1S27l8M9MDU2YnzrWoxvXfIt7JE7KfRer/9mLWX9E3UOwMLEmA4+ziy88Ph3Yt1+XdOOvB6paUeuJGcydHepdsRCiXep6ezP1XLFwtSYV8K9eCVctx3ptKbidbj+DQ0iAti5apz28bjRLzJu9IssXr2f10fP/cd+b8febcnPzWfFt2vISs/GP9SXEV++oTN6JilO9w7BRUVq1s/bROKDZIyMjXD2cOT5wd1o9WxJx05qYhqfD/5K+zj+bgIHNx0mKDKQd755878+2wv92pCbm8/8L9eRkZ5NcJgPE2a+rjMKJL6Shdn1ycnKZe7UtSTGp6BUmeLp68LI8X1o3alqr8fP9m1DXm4+P369jsz0bGrV8eGjGbr5EsvkKypSs2z2ZuLvacrO1dORPkO70uGFkjvD5+cVsHL+duLuJmJmrqTeE6EMH/cSllX4oNi5T1vycvNZNmMtmRnZBIT68M5XQ3TOa2K581rE2nmbSbifjHHxee3xejeefK4k274NhygsKGTexF90jm3euTGDPuxTrdlys3NZMn0NyfEpmKpMcfdxZdBHL+l0BD5Kj/6aOjdnmqbOhYT5MOm713VG4j1OnctMz2HWF2tITkzD0sqcgGAPpswbTkgl0ycr0qZXO/Lz8lk3ay3Z6Vn41PZl8JShOmWXXKbsDm8+RFFhEb/OWc+vc9ZrtwdEBDLs6xEAtH+5IwqFgh2LtpKSkIqlrSV1moXx9CtdDc7W6sV25Ofms/H7NeRkZOFV25dXPh+qMxIvtUy2o1s02bbMXc+WuSXZ/OvW4rUvNdnsnO0ZOHkY2+avZ9bwL7G2t6Zhx2Y81afidZsr8kI/zbU6/yvNtRoU5sO4b3Wv1YT7VT+v29YcoqCgkK8/XqyzvU2XRowYZ9j1MODVTuTk5jH1s2WkpWURHuHP7AVv64wmu39P9zOFhaUZc34YxbTPl9Ov12SsbSx5qm093nqnpHM6PS2LzyYsJjEhDStrc0Jqe7Pg5zGER/hjqG4va67VRdPXkpmeTWAdHz74ZkiZNq78tbpituZafdjG9R7ajXbPP6GzX9ydRC6ciOHNif0MzlNW/0EdyM3JZ9rklaSnZREW4cd3898sU3a6+SwszPj+h7f46vNVDOg9DRsbC55sG8mbo0pGgq5ecYCCgkI+elf3c2zX55oyYXL/x84rRFUpUlJS/ofvyyb+CXl5ecyaNYudO3eSnp5OSEgIb731FvXqaYawnzlzhqlTp3Lz5k2CgoIYNGgQ77zzDosWLaJOHc2t4RcuXMiaNWtISkqiS5cujB8/nqKiIhYvXsz69euJi4vDwcGBLl26MGyYZkHRmJgYpk+fztmzZ1EqlbRu3ZrRo0dr16ibOHEiKSkpzJgxQ5t11KhR2NnZMX78eO22QYMGERkZyciRIwHIzMxk7ty57Nu3j6SkJBwcHIiMjGTo0KF4eZUfMj72wsl/pmD/ooOxNbv/Pf1wfHVH0MvpKZfqjqBXfNw/d8fUv0odl13dEfRzrtnffrq4Pnq0QnXJyqy5bwtix82u7gh6bTny+B84/r9ztzDszqfVIbfmNsGk58tcpcflZl5z27lLqTX39SG3sObWuVC7x5/d8U/zs370em/V6WJKxTeVqwmCbVXVHaFS6qzHW7P1v8UTaw3/0vm/weEekY/eqYaRDjshqkg67B6PdNg9Humwe0zSYffYpMPu8UiH3eOTDrvHIx12j0867B6PdNg9Humwe3zSYVe9mq/73+qw+6P7f1+HndGjdxFCCCGEEEIIIYQQQvxbpMNOCCGEEEIIIYQQQogaRDrshBBCCCGEEEIIIYSoQWr2oldCCCGEEEIIIYQQ4l+lUNTcdSv/v5ARdkIIIYQQQgghhBBC1CDSYSeEEEIIIYQQQgghRA0iHXZCCCGEEEIIIYQQQtQgsoadEEIIIYQQQgghhNBSyPCuaienQAghhBBCCCGEEEKIGkQ67IQQQgghhBBCCCGEqEGkw04IIYQQQgghhBBCiBpE1rATQgghhBBCCCGEEFoKRXUnEDLCTgghhBBCCCGEEEKIGkQ67IQQQgghhBBCCCGEqEGkw04IIYQQQgghhBBCiBpE1rATQgghhBBCCCGEEFqyhl31kw47IaooLse4uiNU6GCvnOqOUKnNT1hUdwS9nMzSqjuCXlGJptUdQS9To5p5LQDcyiys7giVMqLm5vuqqVd1R9Brb8d+1R1Br67NFld3BL3cn+9V3REqZXwmrroj6KX+P/buO77Jqv//+Ksr6d57TwqUspdskCGCgAoKCIgKggiK4tYb98I9cSvK3lv2XgJllN3SFuhu071nfn+kpE2blBS4f/T++nk+Hv0jV68refdc+aTJybnOsVXc6QgG2Y8PudMRDDIzb96f8oqLqu90BIMqKu90AsMC/Jrv//3snOZ7TtXqO52gcZaWDnc6gkHl5c278XYOvdMJxP91ckmsEEIIIYQQQgghhBDNiHTYCSGEEEIIIYQQQgjRjMglsUIIIYQQQgghhBBCS+awu/NkhJ0QQgghhBBCCCGEEM2IdNgJIYQQQgghhBBCCNGMSIedEEIIIYQQQgghhBDNiHTYCSGEEEIIIYQQQgjRjMiiE0IIIYQQQgghhBBCy/RftOjEypUr+euvv8jKyiI4OJjnnnuODh066N03KiqKJUuWcO7cOQoLC/Hz82Ps2LGMGDHitueSDjshhBBCCCGEEEII8a+zfft2PvvsM15++WXatWvHypUrmT17NsuWLcPT07PB/tHR0YSEhDBx4kRcXV05fPgwH374IQqFgnvuuee2ZpMOOyGEEEIIIYQQQgjxr7N48WKGDx/OqFGjAHjxxRc5cuQIq1at4umnn26w/2OPPaZze/To0URFRbF79+7b3mEnc9gJIYQQQgghhBBCiH+ViooKLl68SLdu3XS2d+vWjejoaKPvp6ioCDs7u9sdTzrshBBCCCGEEEIIIUQtE5P/Wz/65ObmUlVVhbOzs852Z2dnsrKyjGqn/fv3c+zYMe6///5bbfIGpMNOCCGEEEIIIYQQQvwrmdTr0VOr1Q226XP69Gnmzp3LnDlziIiIuO25pMNOCCGEEEIIIYQQQvyrODo6YmZm1mA0XU5OToNRd/WdOnWK2bNn8+STTzJ69Oj/Sj7psBNCCCGEEEIIIYQQ/yoWFha0bNmSo0eP6mz/559/aNu2rcHjTpw4wezZs5kyZQrjxo37r+WTVWKFEEIIIYQQQgghhJYRV4T+nzB+/HjefPNNWrduTbt27Vi9ejUqlYoHHngAgO+++45z587x/fffAxAVFcVzzz3H6NGjGTJkCCqVCgAzMzOcnJxuazbpsBPiJqn27CZz+1Yq8vKw9PbGe8zD2Ia1MLh/SXISyUuXUHwlATNrG1z69MHj3uHaa+MLYy6RunYNZelpVJeXo3B2wblnL9wHD9HeR9b+feT8c5jSlBTUajVWfv54jhiJbWjYDfOq1Wp+/n4za1YepCC/hIjIAF5642FCQr0aPa6iopJff9zC3xuOkZmRh7OLHRMm383YCf0AWLPyIJvXHyX+cirVajXhLX2ZPms47TuGGNGKtdn2LtpC1JZDlBaW4BMewL0zRuMeYDjbhYOnOb75IGlxSVRWVOLm50nvsYMI7z1zDAIAACAASURBVB6pd/8ze6JYPe9Pwrq0Zvzb04zOZijv3wu2cnDTYUoKSgho5c9DzzyIV5DhvLGnL7Ph502kJ2VQUVqBk4cTPe7tzt0P97/lLCdXbObSjoOUFZbgFhZAjykP4+RnOEtxTh7/LFhNVkIS+akZhPbpSp+ZE3X2idl9hP3fL2xw7KOLvsBcYWF0tuPLN3Nh+0HKikpwDwug95SHcfY3nK0oJ4/Df6xGFZ9EXloGYX26MmCWbrZ1c78k9dzlBsc6+Xry8FdvGMwSu2YT1/YcoKKoGMeQQNpMGoudr3ejf0PWxRjOL15JYXIqSkcHQoYNJmBAH519KkpKiFm5ntRjJ6koLMLS2YnwMSPx7tYJgF3Pv06JKrvBfbu3a0O3OU+jVquJWbOJqzXZnEICiTQim6omW0FyKpY12QLrZDv0wedkXYxtcJytjxf9P5wLQOyGLaQeP0VRajqmFuY4hQQR8+40WrQIMPi4arWab79dwrJlW8nPL6RduxbMnTudsDDDx7zyyhesWbOrwXYrKyWnTq0ENK81P/64grVrd5GenkVQkA8vvDCZPn06NdoO9bNtWrCVAxsPU1xQQmArf8Y++yDejdRmzKnLrPtlE+mJGZSXVuDs4UTPYd0ZVKc2UxJS2fjHFq7FJpGVms2wR4cwfPI9RucyVs+uLZk9bTgdI4Pw9nRm6vPzWbhy321/nPom9Api6t2huNtbEpNWwHurznAs/sYTLQe62bD+xX6YmJgQ+eJGnd+N6OTLk3eHEeRuQ2FpJQcvZfLB2rOoCsqalG38yNZMGdsWdxdrYhNyeP/bwxw/k6Z331mTO/HMZP3Pl26j/iQ7t5TBvQMZN6I1rcNcUCjMiLuSy/cLT7Lr0NUm5QJ45N5wpjzQBndna2Kv5fDez0c5fi6j0WMmj2jNuKHh+HnakltQxpqdcXyyIEqTMdKTRR82fF4Nnr6G+KS8Juerb0yYF5Na+eJqpSA+r4hPo+I5mZmvd99O7g480tKHCBc7bC3MSCooZfGlZNbFp99yDoDRIZ5MCL+epZjPT8VzSqU/i8LUhFc7hRLuZEuQvRWnVQVM33OmwX5D/N2YFO6Dv50VRRVVHM3I5avTCWSVVjQp29iWXjzWxg83KwWXc4v46GgcJ9L1Z+vi6cCkCB8iXe2wVZhzLb+Ev84nsyY2XWefP4a2a3Ds8NXHSMgraVK28a28eKKdH+5WCmJzivjgSBzH0/Rn6+rlwOQ2PrR1t8NOYc7VvBIWnE1mVUxtto/6tuCBFp4Nji2uqKL9HwcbzXKfnydjgnxwUSq4UljM/IsJnM3RnwUg0NaaWa2DCXewpaCikk2J6SyMS9TZZ4S/JyP9vfCwUpJRWs7iuER2pGRqfz/Yx50XIxu+571326FGs+ozJtSLiXXr4UQ8pxqph/HhPrSpqYfEQk09rL9N9dAgWzOq1QeCPRkf5ouLpYKE/GK+io7ndJbhWn2xQyjhjrYE2lkRnVXAzP26tdrB1YHv+jR8rz5uWxRXC5tWD6NDvZjYsradPjtp+BwqTE14tUsYLbWvI/lM29XwdWRMqBcPhXnjZaMkvbiM384nsulK46/r4n/foEGDyMvL4/fff0elUhESEsIXX3yBl5fm/aNKpSI5OVm7/8aNGyktLWXhwoUsXFj7ecnLy4t169bd1mzSYSeaperqaj7++GN27txJfn4+8+fPp1Mn4z+0/bflHD9G8vJl+I4bj01oGKq9u0n49mvC33wbhbNLg/2rSkqI/+oLbELDCHvldcrS00hc8DumCiXugwYDYKq0xLX/AKx8fDBRKCiOiyNp0V+YKhS49tN8cCyMuYRjpy5YPxSKqUKBaud2Er7+khavzwUcG8385287WLRgF2++PwH/QA9+/eFvZk79hpUb52JjY2nwuNdf/J30tFxee3MsfgHuZGcVUFZarv191LFYBt3TkXYdglFaKljy5y5mTfuORStfwT/A3aj2PLhyJ4fX7Gbkc+Nx9XVn7+Kt/PX698z86XWU1vqzXTlzmaB2YQyYNAwrO2uidx9n2Xu/8uhHswhoo9tZmJOqYvuv6/CPML4TsTE7lu5i14o9THh5HO5+7mz5cyvfvvQD/1nwKpYG8iqtlPR9oDfeQV5YWCpIOJvA0i9WYGFpQZ+RvW46S/S6HZzdsIveT0/AwduDUyv/Zsu73/DgV3NRWOnPUlVRiaW9LW1HDeLSDsNvyM2VCsZ885buNiM76wBOrd1B9Ppd9J85AUcfD44v/5uN73zD2G9unK39/YO4YCDbkBenUl1ZpXPM8uc/IKRnR4NZ4jdtI37LDtpNnYStlwexazfzz7yv6ffxW5gbyFKcqeLYp9/h26cH7ac9Rk5MHGf/XILCzhavLprHqq6s4ui8r7Gwsabj01OwdHaiNDsHU4vaf68933oFdXW19nZZbj4H3vwQ766a+4jbtI24LTtoX5MtZu1mDs/7mgE3yHb00+/w69ODDtMeIzsmjjM12bxrsnV+ZhrVlZXaY6orK9n72nvaxwXIuhBD4N19cAwOADVcWr2Bxx57g02bvsfRUf/S9D//vIrfflvLRx89S1CQL999t4THHpvLli3zsbW11nvM668/yZw5k3W2jRv3El261E7O++WXC1m3bjfvvTeTkBA/9u8/wcyZH7B06Txatzaudrct3cWO5XuY9PI4PPzd2bxgK1+/+ANv/dl4bfZ7oDc+QV4oLBXEnU1g8ecrUCgt6DtKU5vlZRW4eDrTvndb1v+22agsN8PWxpLzlxJZvGofv3wx47/2OHUN6+DDfx6MZO7y0xyPz2JCr2B+e+ouhnywk5Qcwx+eLMxM+GpyF47FZdE11FXnd52CnPlsYic+XHuWbdGpuNoreWdMO76c1JkJ3zXeCVDXvf2DeWNWD9764gBRZ9IYP6o1v8wbytBHl5OaUdRg/1+XnWbJ+vM6276cezdqNWTnlgLQtZ0Xh08m88Wvx8gtKGPEwFC+f3cQE2ZvNNgRqDdb70DeeLIbb80/zPFzGTwyrCW/vjWIe2asJTWzYTaA16Z0oX8XXz7+7TiXruRgZ6PAzdmqwX73PLWG3ILa/7PZ+aVG5zJksL8rL3QK5qNjcZzKzGNMmDff9GvD6E1RpBU37ERt52rP5dwiFpxPQlVSzl1eTrzeNYyyqmq2XM3U8wjGG+TnypwOwXx8Io5TmfmMDvXiq94RPLT1BOl6spiamFBWXc2Kyyn08HLGzqLhx5e2Lna83bUFX0UnsDc5C2elgpc7hfBut3Bm7D1rdLZ7gtx4pVsI7x2+zIn0PMa29ObHQZGMWHOc1KKG2dq72xObU8xvZ5LILC6np48Tb/VoQXlVNZviddtpxOrj5JXXdh5mN7Ej8d5gN17vEcLbBy4TlZ7H+Nbe/HxPJPeu0J+to4c9MTnF/BKtydbL14l3e7egrKqajXGabO8diuPTowk6xy0d0Z5jqY13EPf1dGVGqyC+Ph/PuZx87vP35INOrXniwAky67xHvM7azIyPu0RwJjufmYej8bWx4sXIMEqrqlh5JQWA4X6eTGkRyBfnLnMht4CWDnY81yaUwopKjmTmaO+rpLKKR/dF6dx/RbXauEasMeh6PRyP4+T1eujbhjGb9ddD25p6+PNCnXroEkb5baiH+ppTrd7t48rstsF8eiqO01n5PBDsxWc9I3hk+wnSS/TXanlVNaviUrjL0xlbPbV63fjtUeSX175HyS1rWj0M8nPlhY6ac3hKlceYUG++7tOGMX9HGXwdKa+qZnlsCj29nLBTNMz2YKgXs9oF8f6xWM5mFRDhYsfrXULJL69kf0rDL17F/y2jR482OA/dm2++2eB2/W3/LTKHnWiWDh48yIYNG/j888/ZvHlzo9ePG+unn35i7NixDbavWbOGp556igEDBtC1a1dSUlJueF+qHdtxvqsHLr37YOnlhe/Y8ZjbO5C1d6/e/XOO/kN1eTn+kx/HyscHx46dcB9yD5k7tqNWa95kWAcE4NSlK5bePihd3XDq1h271hEUXa4dIRPwxFRc+w/A2t8fS09PfMZPwNTSkvzzjb8ZVavVLPlrN48+MYgBgzoQGubNm+9PpLiojK2bjhs87sjBCxw9comv5j9Ftx6t8PZxoU3bQDp1rR1J+N7Hk3lofF/CW/kRGOTBK3PHYm2t5PCB8wbvt362f9bupeeYgbTu1R73QG9GzXmE8pIyzuyJMnjc0OkP0uuhQfiEB+Ds7Ua/R4biFerHxcPROvtVVVax6uM/GfDocJy8GnamNpVarWbPqr0MGnc37fu0wzvIiwmvjKesuIzjO08YPM6/hR+dBnTEK8gLVy8XugzqTMvO4cRFx99SlnObdtN21CCCunfA2d+bPk9PpKKkjPgDhs+rnbsLdz0+hhb9u6M00MFynbWTvc5PU7Kd2bib9vcPIvguTbYBszTZLu83nM3e3YVeT4yh5QDD2SztbHQypV6Mo7KsjJYD7jKYJWHrLkKGD8GrS0fsfH1o9+SjVJaWknz4mMEsV3ftR+nkQJtJD2Pn44V//1749upO/OYd2n2S9h+iLL+AzrOfwjk8FGs3F5zDQ3EMDtTuo7S3w9LRQfuTEX0WcytLvLp2Qq1WE791F6HDh+DdpSP2vj50qMmW1Ei2K7v2Y+nkQGRNtoD+vfCrl01ha6PzuNkxmnby79NDu0/3l57Bv08P7H19sPfzocO0yWRn53PixAWDbfnnn+t58skHGTKkJy1aBPDxx89RVFTCxo36X/8A7OxscHNz0v5cu5ZKYmIaY8bUjiBet243U6c+SL9+XfDz82T8+Hvp27cTv/221uD91s+2a+Vehoy/m4592+ET5MWjr46ntLiMYzsM12ZAuB9dBnTEu6Y2uw3qTOsu4Vw+U1ubgS39efCpkXQd2AmFUmFUnpuxdfcp3py3jDWbj1LdxA+gN+uJ/iGs+ucayw5fJS69kLdXRZOZV8ojvYIaPe7lERFcSs5j88mG/zM7BDmTllvCb3viSMou5tSVHP7cF0+7wKZdJvL4mLas3nKJ5ZsuEnctl3e/PkRmVjHjR7bWu39xSSWq7BLtj7mZKZ0jPVm+sfb5/N63h/lp8WmiL2ZyLTmfbxec4GyMioG9ApuWbVQEq3deZtnWWOKS8njnx3/IzCnhkXvD9e4f5GPPxOGtmP7uLnb8k0hieiHn47PZezy5wb5ZeaWocku0P7fjufBISx82xKezJi6NhPwS5kXFoSotZ3SY/tGnv51P5Pvoq5xW5ZNcVMrKy6nsSlRxt5+r3v2bYnwLHzZeyWBtfDpXCkr49GS8JktIw5FeAKVV1XwUFcea+HQy9HwQB02HSkZJGUtiUkgpKuNsdgHLY1OIcNb/xYMhj0b4sC42nZUxacTnlfDBP3FklpTzcEv97fRzdCJfn7jCyYx8kgpLWXYplR1XVQwKaNhOWaXlqEoqtD9NPa2PRfqwJiad5ZfSiMst4d1DcWQWlzO+tf5sP5xK5MvjVziRnk9iQSlLLqSy7YqKIUG12QorqnQy+dtb4W9vxfKLjXdePxjozbbkDP5OSudaUQnfXUggu6yc+wyMoB/g7YbSzJR5Z2K5UljMgfQslsUn8WBg7Ujygd5ubE5KZ3eqirSSMvakqdicmMbDwb4N7i+nvELnp6kmhNfWw5X8Ej65QT38fj6R+Wd062F3kooBt6Ee6mtOtTo2zIfNVzNYfyWdqwUlfHE6nqzScu4PNlyrn5yKY92VdDL0dOjVlVNWQXadn+pG927okZY+bEhIZ218zTk8UdNOBq4cKq2q5sPjl1kTl0ZGccNOZYB7A91ZG5/G1muZJBeVsu1aJmvi0ni0VcPnoBD/v0iHnWiWkpKScHV1pW3btri6umJhYfyonqYqLS2lW7duTJ061aj9qysrKb52FbvWuh8Y7Fq3pig+Tu8xxfFx2ISGYapQ1Nk/gsq8XMqzVPqPuXaNovg4bFoYvsxWXVlJdUUF5tY2jWZOTsoiS5VPtx6ttNssLRV06BRK9CnDHUZ7dkXTuk0AixbsYtjdb/DAvW/z6QcrKDbwhhk0l7WVl1diZ994R9B1uWlZFObkE9Kx9kOOhVJBQJsQki4kNHJkQ+UlZVjV6+TZtWAjjh7OtB/YtUn3ZUhWahb52QW07FybV6FUENI2mIRzxudNjE0i4dwVwtrd/Ki/gowsSnLz8WlXe17NlQo8WoWSfunmOwKvqyqvYOlT/2HJtDfY9uF8VAmJNz7oerb0LIpz8/Frr5vNq3UoabchW10XdhzEr0NrbF31dwaUZKooy8vHrU1tFjOFAufwMHJi9dcsQO7leJ1jANwiW5N35ap2hF9a1Gmcw0I499cydsx6mb2vvE3M6o06IwDrUqvVJO49iG+PrpgrFRTXZHOvl83lBtlyDGTLrZOtvmt7DuDeNgIrF8MrXlWWllFdXY29vf7XlKSkdDIzc+jZs4N2m6Wlki5dIjh58qLB+61vxYqthIX507Fj7d9QUVGBUqn7Wq9UKjlxwrjOf1VNbbaqV5thbYOJa2Jtxp+9tdr8X2FhZkIbP0f2X9S93Gf/pQw6Bhl+nvRv7cGACE/eXtXwciKAqPgs3OwtGdBG86HOyUbB8I4+7Dlv/CVaFuamRIS7cuBYks72A8eS6BjhYdR9jBnWkvzCcrbua/z821pbkF9o/KW6FuamtAl14cAJ3c62AyeS6dhS/8jygd39SUwroE8nH3b98iB7fh3NvOd64ezQcOTnmi/u49CfD/Hn+4PpHqn/g3FTmJua0MrZjiOpuTrbj6Tm0M7V+C9ibC3MdEbE3GyWlk62HEnL0dn+T3oObV2Mz1LfaVU+rpYKentpnrcOCnMG+btxMM34UTEWpia0drHjYIputkPJObR3b1o75elpp+X3dWTPw934dUgkXT0djL6/69kiXO04kKSb7WBSDh08mngOywyfw4daehKTXcTJDMOXtpqbmNDC3pYole7zKUqVS4SBkdmtHe04m51PeZ3R5sdVubhaKvG0UgJgYWqq83uAsupqwh1sMaszkZbCzJSFfTuxuF9n3u3YihC7xt8DN8hvakJLZzuOpDWsh7ZNqAcbCzMKbrEe9GVrNrVqYkK4oy3/ZOg+546m5xDpfPO1et1v/duz/t6ufN2rDR1dm1YPmtcRPecwrWnnsD6FqQllVfWeg1XVRDjb6TwH/01MTE3+T/38L5JLYkWz8/bbb7Np0yYAunbtipeXF2vXruWvv/5izZo1qFQqfH19mTRpEkOHDtUe9+2337Jnzx7S09Nxdnbm7rvvZtq0aSiVSjZu3Mgvv/yivU+AuXPnMnz4cO2qLufPG/ehsKqwEKqrMbfX/Ydgbm9P5UX9o1Iq8vOxqDcB5fXjK/PzUbq6abeff+VFKgsLUVdV4TH8Plz79DOYJW39WsyUSuzbNpwbpa6smnlhXFx130g5u9iRmZGr7xAAkpNUnD4Rh8LCnI+/mEJBQTGffrCCzMw8Pv5iit5j5n+9EWtrJX36659Lrr7CnAIAbOu9ybNxtKMgy/g5e45u2E++Kpe2A7pot8WduMi5fSeZ9u1LRt/PjeRna/LaOenmtXeyI1d147z/eegtCvMKqaqqZuikIfQa0fOms5Tkas6rlYNuFitHO4qzDZ9XYzh4u9N7xiM4B/hSUVrKuU172PjG59z/6as4eN34UufiRrIVZd1atrpyU9JJPXeZIS8/aXCf0jxNFmW9mlXa21GaYzhLWW4+rhEtdbYp7O1RV1VTXliIpaMDxZkqsi5cwrt7F7o8P4NiVRbn/lxGZVkZrcc92OA+VWcvUJKZhX9fzXkvq8mmuIlsynrZlPWy1VWYmk7WxVi6PDvd4H0CnF24nFatgunQoaXe32fWXJbk6qp7Cb6LiyMZGTee8wygoKCILVsO8txzk3S29+rVgQUL1tO1aySBgd4cPnya7dsPUVVl3Pfu12vTvl5t2hlZm6+Oqa3NYZOG0OcWavN/hZONEnMz0wbzyqkKyujZQqn3GDd7JR+Ma89Tvx6lyMAH/5NXcpi94DhfTOqEpYUZFmam7L+YwQsLDY+abpDNwRJzM1Oy6l2Wm5VTgmsnnxseb2ICo4eGs3ZbLOUVhp9Dj4xqjYebDWu3NZzv0WA2+5p2y9W9VFWVW0qP9g0vcQXw87TDx92WYX2CePmLA6hR88rjXfhp7t2MeWETajVkZBfzn+8OEx2jQmFhyqj+Ifz5/hAeeXULx87d/HxUjkoLzE1NyK53qWJWaQVdPY37QrS3tzNdPB15fPvpm84B4Ki4nkV3VFR2aQVd3W/+y9kzWQW8fuQS73RvgaWZKeamphxJy+Hto8af1+vtlFWimy2rpJzu3o1PO3JdX19nunk7MnFTbTtlFpfz9qFYzqoKsDA1YUSIB7/e05bJf0cTlW7c+xwnS002Vb1sqpJy7rIyLls/f2fu8nFk3Hr959DWwox7gtz4/FjjHdwOCgvMTE0ajGzLKa+gg4ERyM5KiwaXyuaUa247KRWklZQRpcrhHl8PDqRlEZNfSAt7W4b6emBhaoqDwpzssgoSi0r47Ews8QXFWJmbcX+AF192j2T6wVNk5xQb1Q7a81wvT3ZpBV0tja+Hrh63Xg+GsjWLWq3JklO/Vssq6GxkO+mTVVrOvJOXuZBTgIWpKff4u/N17zbM3HeGUwbmxmuQTaG/nbJLK+jmcfPZDqflMDLYk91JKs5nF9LKyZaRwZ5YmJniqDRv8nyYQtwO0mEnmp05c+bg5eXF+vXr+eOPPzAzM2P+/Pns2rWLl156CX9/f86cOcMHH3yAnZ0dvXpp5hiysrLiP//5D25ubiQkJPDRRx+hUCiYPn06AwcOJC4ujgMHDjB//nwAbG1tb29wtRow3HPf4DcGLoUIeeElqsvKKI6PJ3XNKhQurjh3b3ipX+bOHWTt30fIs89jZmUF1H7g+nvjMT58e4n29hffP6U3hRp1o8v/qKvVmJiY8N68ydjaaT6EvPjaQ8ya9h1Zqnxc6n2LteSv3axZcZDvfpmJra3+Dy3Ru4+z8Ztl2tvaBSDq51CrG2tOHecPnGL7b+sY/fKjOHpovl0vzitk7eeLePClSVjZGTfaT59jO6JY+vly7e3pH041HNeIb9+e/WoW5SVlJJy/yvqfN+Li6UzXwV1ueBzA5f3HOPhj7Xkd/GrNedUXxtjGM8AjPBiP8GDtbfcWwax98UPO/72Xux4f02D/mH3H2Fcn272vPVUTrWE2Y9rJWBe2H8LayZ6ATrVzocXsO8beH5Zqb3eZUzMXmJ6HvXGW+r+vV7jVahR2drR9YgImpqY4BAVQUVjE+UUraTX2gQb3f2nVBjAx4eB7nwHQtSab3hhNzKY29KKCZnSd0tEB9/ZtDO5zbtFKsmPi+Gvlp5iZmQGwfv0e3nzzO+0+P/44tyaavnYx7ryuX7+HqqpqRo7UXXDl9def5I03vmHYsKcxMQE/Py8eeGAgq1fv0Hs/R7dHsbhObc6oqc2bO88w5+tZlNXU5pqfNuLq5Uw3I2vzf169p45Jw01aX0zszKIDVzh1JcfAHhDqacfcByP5dssl9l/MwM3ekldHRvD+w+15YaHhy5P1RqsfxMRwtrr6dvPD28OW5ZsMj/wc0ieIl6d3Z/Y7O0lJL2xSLmhYcyYmevLWMDUBpcKMFz7bz5UUzYfSFz7bz46fHqBtmCunY1QkJOeTkFz7gfXkxUx8PGyZ8kDELXXY1ebVZYLhvHW1c7Xn/Z7hfHI8nnNZTW8nY7IY2masIHsrXugQzK/nEzmSloOrpYJn2gXxaqdQ3joa08RsDQvCmHbq4G7PvL4t+fBIHGdUBdrtV/JLuJJf2/F8OrMAbztLHmvja3SHXd10OtGM/Hfa0cOez/u35L1DcURnFujdZ2SYO2YmJqy7bNwE+3rPYSMN1fD5Z3L9IAAWxiXhpFTwVfdITDAhp7yc7ckZPBzsq718+EJuARdya/Ofz8nnh57tGRngxZlkw6PSjcpvZFu2c7XnvR7hfBIVz7ns21MP9TXnWr3Vd3DXCku4VmdxibPZBXhaKxnXwodTh43rsGss2628jvx6LhFXSwW/DWwHaDoEN11J59FWfk2+hF2I20U67ESzY2tri7W1NWZmZri6ulJSUsKSJUv4+uuv6dBBcxmWj48P58+fZ+XKldoOuyeeeEJ7H97e3kyePJlFixYxffp0LC0tsbKy0t7nrTCztQVTUyrzdf+pVBYUNBh1d52FvT0VDfbX3K5/zPXRdlY+vlQW5JO+cUODDrvMnTtIW7+WoFnPYh3UcJ6hPv0jadM2UHu7vGZYfJYqH0+v2pF+OVmFuLgYnt/F1c0eN3cHbWcdQGDNvBVpqTk6HXZL/trND99s5KsfZhARGVj/rrTCu7XBN7x2NcnKCk22wpx8HNxqsxXlFTYYdafP+QOnWPPZQu6fM0FnhdiMq6kUZufz52vfa7ddfyP5zvDnmPHDK7j63viyqsgeEQS2eqE2b01b5mcX4ORem7cgtwA7pxt3ArvWzKPnHexNQU4Bfy/YanSHnX/nSNxDA7W3q2oWFCjJzde5HLQkrxArI9quKUzNTHEN8Sc/Vf8ExoFdIvEIq5Ot5rwW/xezVVVUcmnPP7Qa2APTmg6m61mqfWs7G6trspTl5etcDlqWX4DC3nAWpaM9ZXm6H6bK8wswMTNFUdPhr3R0wMTMFBPT2hkmbL09qSovp7ygEGWd+y/LzyfvyjVaPHAfvt073TCb8hazaf/+ykoSDxzBv18vnXaq6+yiFaQcOc5drz6Hn1/tJXgDBnSlXbvay/LLa0ZUZGbm4OVVOzI4Kyuvwag7Q5Yv38rgwT0aLGrh7OzA99+/QVlZObm5Bbi7O/PppwvwNVCnbXtGENhaf206163NnKbVpk+wN/k5BWxcsPX/fIddTlEZlVXVuNrrjqZzsVMaXM21R7gbXUNdeOYezaXHU67lnQAAIABJREFUJiYmmJmaEPPFCOauOM3SQ1d5alALTl/N4eddmtWcL6bkU1JeyfLZffhs4wVSc2+8EmBOXqkmW71FGVwcrcjKvvFImoeHtyLqTBqXDXQsDukTxCev9eelD3c3eYXYnHxNu7k51svmYEmWgb8tM7uEispqbWcdwJWUfCoqq/F2s+F0jP7pMU5fymRYn8bnE7yR3LIKKqvVuFjqjn5ytrS44cIH7d3s+bpfBD9EX2Xl5dRbygGQW349i+4oGGOyNGZySz/OZRey8JLmMuXLecWUnIjjlwFtmX/mCukl+ues0slW006uVrrt5GKpaDAaq76O7vbMH9SGb09eZdmlG7dTdGY+Q4OMW5gLIKfUcDbVDf62Th72/HxPG76KusqSC4azPdTSi61XVOQ1csksQF55BVXVapzrLULlpLAg18B8ctllFQ32d6y5fX2kXnl1NZ+dvcyX5+JwUliQXVbOvX6eFFVW6izWUVc1EJNXiI+1/i+J9dGe5/r1oLS44Qiq9q72fNUvgh/O3J56MJStWdRqTRbnerXqpLy1WtXnfHYBA33dbrzj9Wzl+tvJyfLG57AxZVXVvHM0lvePXcbF0gJVaTn3h3hRWFHZ5EUxhLhdpMNONHsJCQmUlZXx7LPP6oySqKys1C61DLBz506WLl1KYmIiJSUlVFdXU1Wlfy6nW2Fqbo61fwAFF87j2KmzdnvBhfM4dtC/kq11cAipa1ZRXVGBac18fAUXzmPu4IjCxXAHolqtRl2p+w8ic8c20jasJ2jmM9iGNlzaHsDGxlJn5Ve1Wo2Lqz1HD18kIlLTWVZWVsGpE3E8M2eUwcdv2yGYHdtOUlxchrW15gPdtauab169vGs7FxYt2MmP327iy/kzaN+x8XmflNaWOiu/qtVqbJ3siT95CZ8WmmyV5RVcPRvHoCdGNnpf5/adZO3nixj1/CO07tVe53feLfx56vuXdbbt+nMzpYXF3DtjNE4exi1AYWltqbO6pFqtxt7ZjotRlwho6Q9ARXkF8WfiGTlthFH3Wfe+rndYGkNhZamzuqparcbK0Z7k6Iu4hda2XfrFOLpONHxeb4ZarSb7agrOgfovRdOXzdrRnqTTF3Gvky31Qhx3Tbo92RKORlNaUESru3vobFdYWWLjUTunjVqtRulgj+rsBe1iEFXlFeRcukzLsQ8YvH/H0GDSo07pbMs8exGHwABMzTUdX04tgkk5fAx1dbW2064wLQMzhQKFnW4nUdL+I5gpLAga3F/bVtezZdbLln3pMq0ayeYUGkyanmyOdbJdlxZ1mvLCIvz76rbTdWcXLif5yHF6vPocdt6682XZ2lrrrPyqVqtxc3Pi0KFTtG2r6cgrKyvn+PFzvPTSYwbzXhcdHcPFiwm89prhOUOVSgUeHi5UVFSybdshhg7Vv4qyodq8cPwSgXVq8/KZeB5oam1Wq7UdgP+XVVSpOZuYS69wd/4+Vbt4RK9wd7ac1r8A0z0f7tS5PTDSi6cHt+D+z/aSVnOJqJWFGdX1hoNU1QxPMHZEUEVlNecuqejZ2Zcte2sv0evZ2eeGc9K5u1jT7y5/Xv9kn97fD+0XzLxX+/HSh3t07ttYFZXVnL2cRc8O3vx9sLazr2cHb7Ya6PyLupCBhbkp/p52XEvTjBDy97TDwtyUZAOrygK0CnYmM/vGHZyNqaxWcyG7gO5ejuxIrO0Y7ObpyM5Ew5eyd3TTdE78eOYaiy/deEEuY7NczCmkm4cTO5NqH7urhxO7k/R3WhrD0ty0wXNOe9vIJ11FtZrzWQX08HZi25XaLHd5O7L9quFsnTwcmD8ogu9OXuWv8w0XEdGnpbPtDTva6mc7pyqgp48TWxJqs/TwdWRbguFsnT0d+GlIBN+euMqCs4aztXWzo5WLLe8fvvEotUq1mpj8Qjq6OrIvvfYcdnR1ZH+6/ufT+dwCpoQHYGFqol3RtZOrI6rSMtLqLU5QpVajKtO0TX8vV/7JyGl01FSQnQ3xBYZrqEH+ajUXswvo5tmwHnYlGa6HDm72fNU3gp/OXmPJbaoHfdmaTa2q1VzKLaSruxO7k2sfu4u7E3tSbr5W9QlztL1hp7hOtmo1F3MKatqlTjt5NH4OjVWlVpNRU5+D/d04kJJ9SyP3/pf9S6fua1akw040e9U1E9B+9tlneHrqfpg0N9c8hc+cOcMbb7zBlClTeO6557C1tWX//v189dVX/5VMrgMHkfj7r1gHBmETEkrWvr1U5uXh0qcvAKlrVlN8JYGQ5+YA4NS1K+mbNpC44Hfchw6jLCOdjK1b8Bh2n7YTMnP3TpQurig9NH9j4eUYMrdvw6VvP+3jZmzbStq6Nfg/9gRKdw8qakbYmCosAP0jZ0AzAmLcxP78/tNWAoI88A9057cft2BlrWDIsNpOxzdf/ROAtz/UzC11z7Au/PrDFt55YyFTZ9xLYX4xn320krsHd8C5ZmTeX7/t4PuvN/DOR4/iH+iOqma+PEulhc7IvMaydRvVl/1Lt+Hq64GLjxv7lm5DYaUksl9tB+iaTxcCcP8LEwA4u/cEaz79i0FPjCSgTQiF2ZrHNbMww8rOBoWlEvc6q48BWNpaUV1V1WB7U5iYmNDvwb5sW7QdDz8P3P3c2LpwOworJZ3v7qjd788PFwEw6dVHANi7eh8uXi64+2m+UY+LjmPX8t23NIediYkJEcP6c3r1Vhx9PLD3cufUqi1YWCoI7lV7Xvd+ozmvfWfVzhmWlaCZyL28pBQTExOyEpIwNTfDyU/TCX5ixWbcwwKx93KnoriUc3/vIftaMj2nPmx0tsjh/TmxSpPN0dudqJWabKG9a7Pt+lqTbcAztdlUNdkqijXZVDXZnP10V/66sP0gPpEtsPdsfNSsiYkJQUMGcHn9Fmy8PLH1cid23d+YWSrxuat2BNWpH/8AoP20yQAEDOjN1e17OLdwOf79e5MTG0fS/sN0mPG49piAAX24un0v5xauIHBQX0oys4ldvZGAu/vofMGgVqtJ3HMQ726dMa/TsWliYkLwkAHErt+CrZcnNnWy+dbJdrImW4eabIEDenNl+x7OLlxOQP/eZMfGkbj/MB3rZLvu6u79uLYOx8a94bfXZxYsIengUbrMnoaFjTWluXlkZtpgbW2JjU3D+jUxMWHSpBH88MNygoN9CQz0Yf78ZVhbWzF8eF/tfi+99DkA8+Y9r3P8smVbCAz0pmvXhpfmnj59ifT0LFq1CiY9PYtvvllMdXU1U6YY7risn23A6L5sWbgdT39Nbf7913aUVkq6DKytzT8+0NTm5Nc0tbl79T5cvVzwqKnN2NNx7Fi+mz4ja2uzsqKS1KuaSxIryyvJz84n8XIySisF7j7Gjwq4ERtrJSGBmv8BpqYm+Pm40rZ1ADm5hSSm3PqHEH1+3R3HZxM7cfpaDlHxWYzvGYS7gyWLDmg6sl68rzXt/J2Y8N1BAGJSdS+ni/Rzolqtu33n2TQ+GNeeR3oFsu9CBu72lvzngUjOJOaSkmN859NvK6L55LX+RF/M4MSZdMaNaIW7qw1L1mvmi50ztQttW7rz6JxNOseNvjeckpJKNu9u2PkwbEAIn7zWn4/nH+FYdKp2BF9FRTV5BkYV6s229hyfPt+b6BgVUeczGHdvOO7O1izefAmAFx7tSNsWrkx6fRsAB0+lcPayio+e7cl7Px8F4I2pXTl1MZMzsZoPnJNHtCYpo5DYazkozM0Y2T+YwXcFMOP9XUbnMmTRxWTevSucs1kFnM7M58EwL9yslKyK1YzEmdkukDYudkzfpVlIpJO7A1/3i2BFTCp/X8nQjoirUnPLI00WxyTzdtcWnMsu4LQqnwdDvHCzVLAqTrMy6dORAUQ42zFj71ntMUH2VliYmuKotMDK3JQWjpovZWJyNR01+1Oyeb1zKA+GeHIkLQcXSwVzOgRzIbuQ9EYWyqpvwblkPuodzpnMAk5m5PFQS2/crZUsu6hpp9mdAol0teOJrZp26uLpwPcD27D0Ygqb4jNwtappp2rNKpgAE1v7kFxYyuXcIixMTbkvxJ2BAa48u+tck9rt9zPJzOsXTnRmASfS8xjbSpPt+qi5OV0Caetmx6ObNdm6ejnw05A2LD6fwvrLdbKpaTAv2cMtPUnIK+ZoqnGX6K66ksLLbcO4lFfIuZx8hvt54qJUsPGa5hw+3iKAlg62vHRM8zfuSs1kYqgfL0aGsTguCV8bSx4O9mHh5drFrHysLWnlaMeF3AJsLcx5MNCbQFtr5p2pnYdwQogfF/MKSCoqwcbcnFEBXgTbWfP1+aZdDrvwUjLvdg/nXFYBp1T5jA7V1MPKOvUQ4WzHU7tr6+GrvhGsiL399VBfc6rVpbHJzO3SgvM5BURn5XN/kBeuVgrWxmvO8/SIAFo72fHMgdpaDbSrqVWFplbDHDS1GpunqdWHQrxJKy4lPr8YC1NThvi70dfbhVeP6J8HvLF2eqfmHGpfR6yUrKoZXfh020AiXOyYsbt2caQge2ssTE1qXkfMGryO+NtZ0cbFjjOqfOwV5jwS7kuIgzVv/XPpJltQiFsnHXai2QsKCkKhUJCWlkaXLvovT4qOjsbNzU3nstjUVN3h4BYWFtrOv1vl1LkLVYWFpG/eRGV+Hpbe3gTNfAaFi2bUVkVeLmWZtZcOmllZE/zscyQvWUzsh+9hZm2D28BBuA0cVHun1WpS1qyiIisLTM1QurnhNeoBbScggGrPbtRVVVz95SfdPN3vgkGPNJp50uMDKSstZ977yynILyaibSDf/DRTZyReWqruamrW1kq++2UWn36wgkfHzsPe3pq+A9oy87nakW8rlu6jsrKK1174TefYYSO78db7E2/Qkho9R99NZVkFm79fSUlhMb7hAUx87ymdkXh5mbqXNR3ffJDqqmq2/rSGrT+t0W4PiAxl8sezjHrcmzVw7AAqyipY8fVKigtKCGwVwNPzpuuM9smpt6pWdbWadT9tIDs9R3N5qZcL900dTq/79I96MlbbkQOpKi/n0C/LKS8qxi00kCFvzNQZ7VaoarhK3tqXPtK5fS3qLLZuzjz8/TsAlBeVcODHJZTkFqCwtsQlyJdhb8/Grc5lrzfSftRAKsvLOfDzcsqKinEPC2T4XN1sBXqyrXxBN9vV45psE354R7stP01F8tkYBj5341FdAMHDBlNVXsG5P5dSUVyMY3AQ3V6apdN5VpJV7/nv5kqXF57m/KKVXNu1H6WjAxETH8KrS23nj5WLM11fmsX5xavY/8YHKB3s8e3Tg7CRQ3XuK+tCDEXpGbSf3jBvSE22M3WydTciW9cXnubcopVcrcnWZuJDeNfJBlCUkYnqQgydZjyBPld2akYgHf6o9suN7cDMmeOYNWu83mOmTn2QsrJy3nnnB/LyCmnXrgW//faOzki8VD2XThcWFrN5835mzBird065srJyvvxyIYmJaVhbW9K3b2fmzXsee3vj5xsdXFObS7/S1GZQqwBmfaJbm9l6anPNjxvIqqlNN28XRk0dTu8RtbWZl5XPB1M/1d7OTFGxf8NhwtqF8PyXM43OdyMd2wazbflc7e25c8Ywd84Y/lqxlyfn/HDbHqeuTSeTcbJRMHNwOG4OSmJSC3j8h8PajjU3e0v8XZu2CuOqo9ewsTRnYu9gXhvVhoKSSo7EZvLR+qZ1UGzeHY+jvSUzJnbE3dmamIRspr78t3a+OXcXa/x9Gk5FMfrecNbviKW0rOEo+3EjWmFhbsobs3rwxqzac/zPqRQmzN5ofLb9V3CyUzLj4Xa4O1sRczWHKW/tIKVmtJybkzX+nrXZ1GqY+vZO5k7rxuKPhlJWXsmBUyl88Msx7dxUFhamvPp4ZzxcrCktryL2Wi5PvLWdvceNG7XVmG3XVDgoLZgS4Y+rlYK4vCKe2XOW1JrOLFcrBb62tXVyX7AHVuZmTGrty6TWvtrtKYWlDF9/7JaybE9U4aAw5/HWfrhaKojLK2b2/nOkXc9iqcDHVnf13C97R+Bd5/3KosGaKVK6LD8AwMYrGVibm/FQqBez2wVRWFHF8Yxcvom+0qRsWxIycVSaM62dP27WCmJzipi+/SypRZpsblYK/Op8GTkq1ANrCzMej/Tj8Ug/7fbkglIGr9R0zFqYmvBil2DcrRWUVVVzOaeY6dvPsD/J8DyQ+myO12R7qoM/7tYKYrKLmLrlLCk1Kxy7WSvws6/N9kALTbYp7fyY0q42W1JBKQOWHtXetrEw494Qd747Yfyl4XvTVNhbmDM+xBdnpYIrBcW8HnWejFJNFhelBV51XneLK6t4+dg5ZrUO5ru72lFQUcnKhBRWXqkdDWZmYsKDgd742lhRVa3mVHYez/5zhvQ6I/BsLcyZHRGCk1JBUUUlcQVFPH/0LJfymjZf2/ZrKhwVFjxRtx72ntV5DurUQ1BNPbTyZVIr3Xq4b8Ot1UN9zalWdyarcFCaMzncDxdLBfH5xbxw8Jx2VKSLpQIfG91a/axHBF51ti24W1OrPVZratXC1ISZkUG4WWnqIT6/mDkHz3E4vWn1sD1R005PRPjXvI4U8ey+OuewXjsBfNVX93Vk8T2a90ydl+4HNHONPhLuQ0DnUCqr1RzPyOWJHae19S/EnWCSm5v7bx3hKZqxhQsXsmLFCtatWwfA/PnzWbVqFc888wwdOnSgpKSEM2fOYGpqyv3338/+/ft56aWXePPNN4mMjOTw4cP89NNP5ObmcvSo5k3Jli1beP/99/n555/x9PTE2toahUKBSqUiOzub+Ph45s6dyxdffIGbmxseHh44ODRcZnzqidu7ItTt8kuv5v3PZOO123958u3ianl7OnL/G05l3fxqV/9tFqY33udOSSwyPOK0OWjGTcen3XxvvNMdsivl8p2OYNCw7n/d6QgGeY0ybmTsnWIWbdwk93eC2lb/qpfNgf34xqeguJPMzJv3dVTFRc33/34TZsr4/y7Ar/n+b83Oab7n1JgFI+4kS8vmW6/l5c278XYObXunI/xXDdp25sY7/Q/ZPjjyxjs1MzLCTvxPmD59Os7OzixatIiPP/4YGxsbWrRowcSJmhFcvXv3ZsKECXz++eeUlZXRrVs3nnzySebNm6e9jwEDBrBnzx6efvppCgoKmDt3LsOHD2f16tX88ssv2v2ee+45AO3vhRBCCCGEEEKIfxOZw+7OkxF2QjSRjLC7OTLC7ubICLubIyPsbp6MsLs5MsLu5skIu5sjI+xunoywuzkywu7myAi7mycj7O6swdv/b42w2zbof2+EXXP+zCCEEEIIIYQQQgghxL+OdNgJIYQQQgghhBBCCNGMyBx2QgghhBBCCCGEEEJL5rC782SEnRBCCCGEEEIIIYQQzYh02AkhhBBCCCGEEEII0YxIh50QQgghhBBCCCGEEM2IzGEnhBBCCCGEEEIIIbRMZQ67O05G2AkhhBBCCCGEEEII0YxIh50QQgghhBBCCCGEEM2IdNgJIYQQQgghhBBCCNGMyBx2QgghhBBCCCGEEELLROawu+NkhJ0QQgghhBBCCCGEEM2IdNgJIYQQQgghhBBCCNGMSIedEEIIIYQQQgghhBDNiMxhJ4QQQgghhBBCCCG0TGR41x0nHXZCNJGtefWdjqDX/rTKOx2hUQrT5jtraUll8802wr/sTkcw6JjK4k5HMGhSaMmdjtCo+Res73QEg87nxtzpCI1ovu8cvUY9fKcjGJS6dtmdjtAony7D7nQEg6qCHO50hP9JFRXqOx2hUYWq5vueydW3+f5vTfgu9k5HMKiys9edjmCQqZvlnY7QKLO1l+90BIMqR4be6QhC3FHN952vEEIIIYQQQgghhBD/QtJhJ4QQQgghhBBCCCFEMyIddkIIIYQQQgghhBBCNCMyh50QQgghhBBCCCGE0DJpvtN8/2vICDshhBBCCCGEEEIIIZoR6bATQgghhBBCCCGEEKIZkQ47IYQQQgghhBBCCCGaEZnDTgghhBBCCCGEEEJomcgkdnecjLATQgghhBBCCCGEEKIZkQ47IYQQQgghhBBCCCGaEemwE0IIIYQQQgghhBCiGZE57IQQQgghhBBCCCGElkxhd+fJCDshhBBCCCGEEEIIIZoR6bATQgghhBBCCCGEEKIZkQ47IYQQQgghhBBCCCGaEZnDTgghhBBCCCGEEEJoyRx2d56MsBNCCCGEEEIIIYQQohmREXZC3EZqtZrE9RtJ27efquJibIOCCHlkHNY+3o0el3cphoRlKyhOSUHh6IjPPYPx6tdX+/vi5BSurd9A4dVrlKlU+N03HP+R9zU529Y/t3Bk82GKC0oIaOnPg8+MxjPQy+Ax0ftPc2jjIZIvJ1FZXolHgAcDxw+mTY82OvvtW72XQxsOkp2eg429NW16RDJ86n0orZRGZ9u1cAvH/j5ESWEJfuEB3Pf0aDwayXbuwGmObj5ISpwmm7u/J/3GDqLVXZHafU5s+4dVny9ucOxb6z/FQmFhdLbtf23hn82HKSkswb+lP6NmNt5uZw6c5sjGQ6TEJVFRXomHvwcDxg8m4q7advvhhW+Ij45rcKxHgCdzfn7FqGzX8y39ZRtb1x6hqKCYFhEBTHvxAfyDPY06/vypeF6fMR/fAHe+WfKi3n32bT3BZ3MX0blnK/7z+ZQmZdu3+G9ObjlEaWEJ3uEBDH1qDG4Bhtvu4sHTRP19gPS4JCorKnH186TXw4Np0b32vJ7ff5LDK3eQnaqiurIKZ283uo7qR7uB3ZqU7dcftrN+1T/k5xcTEenPnFfvJzjUcLudOBbHzCk/NNi+eO2LBAa5a28XFZby47db2LPjDHm5Rbh7OjJ91lDuHtLO6GzRKzcTu+sg5YXFuIYG0vXxh3D0M/w6UpyTR9Rfq8m+kkhBagZBvbvSc8YknX2uHjnB2fXbKUjLpLqqCntPN1rdO4CQvt2NylU337JftrGt5jkXFhHAk018zv1nxnx8Atz5us5zbtvaI+zZfJzEhDSqq9UEt/Bh3LR7aN0+uEnZNi3YyoGNmte5wFb+jH32QbyDDD/nYk5dZt0vm0hPzKC8tAJnDyd6DuvOoIf7a/dJSUhl4x9buBabRFZqNsMeHcLwyfcYnQtgQq8gpt4diru9JTFpBby36gzH4rNueFygmw3rX+yHiYkJkS9u1PndiE6+PHl3GEHuNhSWVnLwUiYfrD2LqqCsSdmM1bNrS2ZPG07HyCC8PZ2Z+vx8Fq7c9195rOseGdKCKSNb4+5kRWxiLu/9fpzjFzIbPWbysJaMGxKGn7stuYXlrNkTxycLTwHg5mjFq5M7EhHsTKCnHWv3JfDyt4dvKtuEHgE82S8UdzslMekFvLvuHMcSsm94XKCrDRtm98HEBNq8/rfO7yzMTJg5sAX3d/LF3V6JqqCcX/bG8ceBhJvKWNeYMC8mtfLF1UpBfF4Rn0bFczIzX+++ndwdeKSlDxEudthamJFUUMriS8msi0+/5RwAD4V58WhrTZa43CI+aSRL55osbVw1WRILSll0UTfLAD8XxoR5Ee5ki9LMhPi8Yn45m8je5Bufj/omtvdhWhd/3GwVxKqKeHtXLMeS8/TuG+ZizbsDwwl1scFOaUZGYTnrL6bz5cEEKqrV2v0sTE2YdVcgD7T2xN1Wiaq4nJ+OXeOPE0lNzlffmFAvJtY9ryfiOdXIeR0f7kObmvOaWKg5r+tvw3l95N5wpjzQBncna2Kv5fDez0c5fj6j0WMmj2jNuKHh+HnYkltQxppdcXyyIAqAbm08WfRhw9fZwU+tIT5J//loigmd/ZjWI1BTvxmFvLP1Iseu5d7wuEBnazY+eRcmJhDx4c5bzqE3W4Q3Uzv44m6tJCa7iPcOxnEsVf/fHOpkzdt9wghzssZOYU56URkbL2fy1bErOs/BmzX+vlZMGROJu7MVsVdzeX/+EY6fbfz5Mvn+CMYOb4mfh53mvG6P5dPfjmt/f1//YKY+1JZAHwcKi8s5dDKFj346iiqnpEnZJrTx5sk67fTugcbb6Z0+YYQ517bThsuZfHW0tp3crBW83jOYNm52BDpYseZSOi/uutSkTELcbtJhJ5ql6upqPv74Y3bu3El+fj7z58+nU6dOdzrWDSVv2Urytu2EPT4ZK08PEjds4uznX9Lx/Xcwt7TUe0xpporzX32DR68etJjyOPmXLxO/aDEWdna4duoIQFV5OUoXF1w6duDqmnU3lW3Xsp3sXbmHsS+Ox93PnW1/beWHl+fzyu+vYWmtP1tcdBxh7cMY+ti9WNtZc2JnFL+/9StPfzaT4MgQAKJ2RrHh5/U8/PxYgiODyUrNYtlnS6kor2DsC+OMyrZ/xU7+H3v3HR1V0fBx/Lspm56QZDe9hySk0ntvUhVFkI6ooKCCFbAAgopSBBVRuop0pPfeOwESElpIaCG99559/9iQZJPdsCH6kOd553MO57B37938MjP3bnZ2Zu6Zbcd59ZPhyJ1sOLbuIH988RsfrfwSAw3Z7odF4tHYix6v98PYzJiQY8Gs+2YVY+dNxC3As3w/fQMpn/wxXeVYbTvrAE5sPsqprScY8qky25F1B1nx2RIm/6653O5dj6JhEy96jVGW27VjV/hr1irGz38f97JyGz3jTUqKS8qPKS4qZuE7cwnq1ETrbADb1hxnx/qTfDB9KI6ucjatOsyMicv4bfNUjE3U53siOzOXn2ZtIKhFQ1I1/HEfH5PCn7/sqVWnyRPntxzh4vbjvPjRCKwdbTi94QDrpv3KhGXTNNbrw/BI3IK86TKqP0ZmxoSfCObv2SsZ9f0kXMrq1cjchA5De2HtZIuOng6Rl26w5+cNmFiY0rClv1bZ1v5xgo1/neLLb17DxdWGP5Yf5sPxK9iwczImTym3dds+xdzCqPxxA0vT8v8XF5Xw4fgVmJkb8c28kdjYWpCYkIG+VPu32xu7DnNz71HaTRiFuYMtYVv3ceS7xQxYOAPIkVLrAAAgAElEQVR9I/XZSouKMTA3IeClntw9elbtPlJTEwJf6Y2Fgy06uro8vhrO+WXrMDQ3xbFpgNpj1Nm+5jg7159k0vShOLjK2bzqMDMnLuPXzVMx0qLNLSprcylV2tyNq5F06NmERkFuGBhK2bXhFF9/sIKFaz7GwUWuVbZDG49xZPMJRk8dhq2LDftWH2TR5KXM/OtzjeergZEBXQZ2xNHdHqmhlKjw+6xf+DdSA306v9wBgMKCIqztrGjSMYhdv+/TKktl/Zo6Mv3VQGZsDiX4XgojO3jw+4S29PruKLE1fEDR15Xw85iWXI5KoVVDmcpzzd2tWDCqOd/vCOfQ9Thk5gZ8PbgxP41uwchf1beBujI1MeTmnWjWbz3Fyh/f/Vd+RmV927ky7c0WzFxxieBbiYzo7c2qL7vR+8PdxCXnqj3mizHN6drckbl/XeXOo3TMjPWRW1acr1J9HdIyC1i2/QZDe3g9c7Z+jR2YMSCAGdvCuHw/lVHt3PhjbGtemH+C2PSa63TRyGZcup9Caw/ras//PKI5Dg0M+eLvUO4n5yA3M8BAX/eZcz7xgouMT5t7MOdyFCFJGQz2cuCXLgEM2nuF+NzqHbyNZeZEpuew+uZjkvMKaWtvyZetvCgoKeXAw5o7TJ+axVXG5BYefH8pimtJGbzm7cCvXQMYuEdDFrk5kRk5rL71mKS8QtrZWzK9tReFpaXsf6DM0sLGgkvx6fwa+oCMgmL6utuwsJMfY49c19gRqE5/Hxu+6ubFtCMRBD9OZ1RTR1YPakyP3y8Sq6YjvLBEwZbwOG4kZpNZUIyv3JQ5vRqhpyPh+5MVX8r98qI/9maGfHboNg/S8pCZSDHUq/tEp55P6jVYWZaDvRz4pXMAg/epL8ugsnr961alem3pRWEd67VvBzemjWvNzCXnCb6ZyIi+jVg1sye939tBXFKO2mO+eKslXVs6MfePYO48SMPMRKpyrj7R+93tpGcVlj9Ozcx/5pxP9Pe346vejZi+7xaXH6UxqqUzf45oTs9fzxJbw+vr60j45dUgLj1Mo7WbZZ1zqNOvoZzpHTyZceouwfGZjPR34Pf+gfTacJnY7Op1WlRSyrbb8dxILmuDMlO+7+KNro6Euefv1SlL387uTJvQhpm/nONKeDzDX/Rl5exe9Bm7VWO9fv5Oa7q2dmbuiktE3C+rV6uKem3mZ8P8KZ2Zs+ISR849RNbAiJkT27Hgsy68PnW/2tdUp19DOTPKyulyXCajAhz448VAXlivoZxKS9l6J56bSdlkFhbja23K91290ZNImFNWTlJdCWn5RSy5+ohhfpq/6BOE/yQxJVaol86ePcvu3btZuHAh+/btIygoqM6vuXz5coYOHaqyLSMjg/nz5zN48GA6duxI//79mTNnDunpT/+GrSqFQkHskaM49emNrHkzTBwd8XpzDCX5+SRfvKTxuPiTJ5E2aIDH8GEYO9hj16kj8rZtiT14qHwfM3c33F8bhLx1K3Sl0mfKdmrbKboN7U7jTo2xd7dn2NThFOQWcPXYFY3HvfLeQLoP64FrI1fkjnJ6je6Nk5czYWfDyvd5cPM+rr5utOjZEis7a7yaetOiZ0se3X6odbaz20/S6bUeBHRogq2bA4M+HUFBXgGhxzVn6z/hVToP6YmzjyvWDnK6j+yDQ0Nnbp67rrKfRAJmVuYq/7SlUCg4s/0UXYd0J7BjY+zc7RkyeTgFeQWE1FBuA94dSNehPXBp5IrMUU7PUcpyCz9XUW7G5iYqme6H36Mwv5CWvWo3Smz3xlO8Orob7boF4eppzwczhpGXW8Cpg9eeevwvszfTrV8LGgW6qX2+uLiEH6avZeSEPtg5Wmmd60m2SztP0m5QD3zbN8HGzYGXPh5JYV4B4Sc1l12vd16l/Ws9cfRxxcpBTqfhfbBv6MydCxX16t7YG5+2QcicbbGyl9NqQBds3R14dKP6iEVN2TavO83IN7vStUcQnl52TP9mKLk5BRze9/Rys7QyxVpmXv5PV7firXTPzsukpWYz9+cxNG7mjr2jFY2bueMX4Kx1ttv7jxMw4AVcWzfF0tmBdu+Opigvn/tnL2s8ztTGmlZjXsOzS1ukpiZq97EP8MGlZWMsHO0ws5Pj27crli6OJNzWrtye5Nuz8RQDR3ejbVmbm1SLNrd49ma69muBj5o299HXI+k7uAMePk44utowfuqrGBkbcO3Cba2zHdtykl7Du9Osc2Mc3e15/fPh5OcWcPnIVY3Hufo407JbMxzc7ZHZW9O6Zwv8WvoQGVbxQcetkQuvThhAqx7NkRrU/hr8VldPtl58xKbzD4lKyGbW1uskZeQzooN7jcdNfcmfOzEZ7LsWW+25pu5WxKfn8fuJKB6n5hLyII2/Tt2j8b/0IRLg4PEQvpq3ie37LlH6D4zceJo3X/Rl2/EoNh2JJComk69XBZOUnseIXt5q93d3MGdUHx/GzznBkcuPiU7I5ub9NE5erSi/mKQcvvk9mG3H75Gu5kOdtsZ29mDr5Wg2XnxEVGI2M3eEk5iZz4i2rjUeN7WfH7fjMtkXWr1OO3rLae8l442VlzhzN5mYtDxCHqVzMerpIzGfZkQjR3bfS2B7VDz3M/OYdyWK5PxCBnmp/1D6+81ofrv+kNDkTGJy8tkSGcex6GS6O8vU7l8bo8qybCvLMjc4iuS8QgZ7q8+y6kY0v4Y+JCQpk5jsfP6+Wz3LvCv3+OPmY8JTsonOzmdZ2CNupWbT1bl6p2hNxrZwZkt4PBuvxxKZmstXR++SmFPIyCaOavd/mJ7Hlhvx3ErKJiYznyNRyey8FU8rpwbl+3R0s6K9qxVjtoZy5mEajzPzCYnL5EJ07f/WrGqkT0W9PsjMY/5T6vWPm9EsCVOt1+OPk+lWx3p982V/th2NZNOhu0Q9zuDr5RdJSstjRB8ftfu7O5ozqr8v4789xpGL0cpz9V4qJ6/EVNs3JSOf5PS88n//xLVnbBtXtoTGsvHqY6KSc5i5/zaJWQWMbFnze/VnPb25nZDNvpvxdc6gyVuNndh6J4FNt+KJSstl1plIknIKGBGgfpT9w8x8tt5J4HZKDrHZBRx9kMLOiERa2lvUOcubrwaw7dBdNu+/Q1R0Bt/8doGk1FyGv+irdn93JwtGDfBjwleHOXr+EdHxWdyMSuHk5YqRpE39bIhPzuXPbTd4HJ9NyO0k1uy8SeNG2n0x98TYJk5svZ3AxpvKcpp5OpLEmsopI5+ttxO4lZJDTFYBRx6ksCMikZYOFeUUk1XArNNRbL2dQHpBca3y/K+SSP63/v03Eh12Qr30+PFjZDIZQUFByGQy9PW1HxFVG8nJySQlJTFx4kTWr1/P119/zbVr15g+ffrTD66iIDmZooxMGvj7lW/TlUqx8PYiM1LzB+KsqHs08Fd947MM8Cf74UNKK43AqovUuBSyUjPxad6ofJvUQIpHoCcPbjyo1WsV5OVjbGpc/tgjwIPYyBge3FS+TlpCGjfOhePbyk/DK6hKi08hOy0Tr2YVf9TpG0hxC/Dk0a3aTQEqzCvAqFI2gKLCIuaPnsnckTP4a8YyYiO1n36SGq8sN+9K5aZfVm4Py35fbRXkqpZbVZf2n8enpS8NbLT/sJ0Qm0paShZNW1d8eDUw1Me/iQe3w2rOt2/LWdJSMhn8Rk+N+6xdsg8be0u69WupdaYn0svq1aOZatm5+HvyuJb1WpBbgKGGslMoFNwPuUPK40RcAhpq9XqxMamkJGfRqq1quTVu7k5Y6NM7mt8c/jMvdv+aieOWceVSpMpzp4/fILCJGwu/30H/brMY/sp8Vi45RHGRdudydmIKeemZ2AdVXBP0pFJsfRuSFFH3KXFPKBQK4sJukxGXgG0j7coNKtpck2doc/u3nCU9JZNBNbS5yoqLSigsLMLETPN5U1lyXAqZqVn4tqi4lkgNpHgFeRB1Q/uyi777mHvhD/Bq7Pn0nbWgryshwLkBp2+rTg07fSeRZu6aO8K7+tnSzd+OWVvD1D5/5V4KcnNDugUopyJbmkjp38yREzf/mSmLz5u+ng4BnlacCY1T2X4mJI5mPuo/2PVo6UR0Qjadmjpw7LcBnFjyMvPeb4uVuXbLM2idTVdCgKMFpyNURySdiUiiuVsNdeprQzdfG2btCFf7fM8AO65Hp/NWZw/OTevBsald+WqAP8bSuo2w09OR4GtlxoU41Q6iC3FpNJZp/yWWqb4umYV1+xD7JMv5KlnOx9cui4kWWYxrmVdfR0KgnRmnHqh2kJ5+kEpzR+06P1wbGNHZzVqlM65XQxnX4zMZ28KZC+PbcWJsG2Z288K4jiMn9XQkNLIy40J89XoNqmVZZtWhXvX1dAhoaM2Za6qdbWeuxdDM10btMT1auxAdn0Wn5o4cW/EqJ1YOYt6HHbCyqD4SevvCFzm3+jX++vYF2gRqt/RCjXl1JAQ4mHM6Klll++l7KTSv1NFaVVcvGd285Mw8cKvOGWrMJjfjdLTqVO7T0Wk0s9WuTl3NDenkYsml2Lp1COvr6eDvJePMFdW/m89ciaGZn4Z6betCdFwmHVs6cWz1YI7/9RpzJ3fCqkFFvV65kYjcyohubZSdo5bmBvTr4sHJS9HaZ9NQTmei02hup2U5WRjS2cWSizF17zgXhH+TmBIr1DuzZs1i7969ALRq1Qp7e3t27NjBmjVr2L59O8nJyTg5OTF69Gj69OlTftzixYs5ceIECQkJWFlZ0b17d9555x0MDAzYs2cPK1euLH9NgBkzZtC/f3/mzZtX/hrOzs5MmjSJjz/+mOzsbExNTdFWYYZyyoXUXPWNQt/cnMIaRuwVZmZiYa7aYadvboaipJTi7GykDer+DVlmWhYAZpZmKtvNLE3JSNZ+HZAzO0+TkZRB854tyrc17dqMnMwcfv34FxQKBaUlpbTo0YL+47RbYy+rLJtplWymlmZk1iLbhV2nyUhOp0n3is4lmZMNAz8ajp2HA4V5BZzbcZLln/zE+79NQeao/o8NlWypmrKZ1irbuV2nSU/OoFmPFmqfT3qcyL3rUbw+8y2tXxMgLUXZ5hpYqeZrYGVKSpLmfA8i49i48hDzf5+kMjqssmsX7nDmSCg/rfm4VpmeyE5TZjNpoJrNxNKMrBTtyy54zymyUtIJ7KbaaZifk8fPo6dTUlSMREeH3hMG07CFdp3EqcnKerWyVj2/razMSErUnM1absbkLwfiG+BMUVExB/ZcZdLby1m8ajxNmyunDMc8TuHKpUh69mnKD4vfIi42lQXfbScvt4CJnzz9nMhLV5abkYVquRlamJGbWvc1ewpz89g64QtKipXl1uqNITg21W4aMUC6hjZnYWVKag1t7mFkHJtWHmJuDW2uqnVL92NkZECrjtrlyyw7X82rXefMSNfifP188EyyM7IpKSml3+hedHqpvVY/92ksTQzQ09Wptq5cclYB7b3VdyTJzQ34blgTJqy6RI6Gb/mvPUjjw9XB/Di6OYb6uujr6nD6diKfrtU8gvW/iaVZWbllqE5PS87Ip12D6tPmAJxtTXGUm9CvvRtTF59HoVDw2ejmLP+8K4O/OIDiHxoUaGkiVWarMkIvKbuA9mYa6tTMgO8HNWb86svkFKjvwHexMqaluxWFJaW8+1cw5ob6zHwlAFsLQ97969nrtYGBPno6ElLzC1W2p+QX0cpOuy9EOzpY0dKuAW8eDn3mHACWZVlSqmbJK6K1tlkcrWhl14A3DmnOMsTbHltjKXvv17yGmko2I330dHRIzi1S2Z6UU0h715q/TNs2vDn+tqYY6umyPjSGeacqvqh1bmBEC0cLCotLGb8zHHMDPWZ198bW1IAJu9R33mqjgYayTM0vopWh9vXayrZu9WppXnauplc5V9PzaddYw7lqZ4ajjSn9Oroz9aczynP1zZYsn96dwZP3olBAYlou0389z/W7yUj1dHi5myd/fduLEV8c4PKNZ/9iwtJYqqznbNVyS84upL27hvPXVMqcF/0ZvymEnMJ/5st0tdkMlXVatQ0m5xXR3rjm0d1/D2xCgMwMAz0dNtyIZf6Fun3JZ2luiJ6uDilV6jUlLQ9ZU/Wj2JztzXC0NaV/Fw+m/nBaWa9vt2L51z0Z/MFuFAoIuZXIx9+fYMHULhgY6KGvp8OZKzFMma/9eqiayikpt4j2TjWX05aBTQiQ/3PlJAj/NtFhJ9Q7n3zyCfb29uzatYs///wTXV1dlixZwrFjx5gyZQouLi6EhYXx3XffYWZmRocOyjWGjIyMmD59OnK5nPv37zNnzhykUinjx4+nR48eREVFcebMGZYsWQKgsTMuJycHqVSKoYY1555IvHCRqDXryh/7TXpf+Z+qw221+IQgqXqQovyJZ3LlaDB//7i5/PHY2W+rfT0FaD0+OPRUKLuX72LUl69jZVsxgiAyNJLDaw/x6qRBuDRyJTk2mR2/buPA6v30GdO32uuEHAtm56JN5Y9Hf/1OWbaq4RRaD10OPxPCgVU7GfLZ61hWyubi546LX8WUMxdfdxa/N48LO0/T/91Xq73O1aPBbPu5otze+FZZbtViKNTk1SDsdCh7V+xi+Beq2Sq7uO88ZlbmNGpdc4fTiQNXWDJnS/nj8htAVC86JBryFRUW88O0Nbwx6UVsHdRPFcpMz+bnbzbyydcjMDXXbnRT2PHL7FtcUa9DZ6qv19p8YL51NoQjv+9k4JQxNLBRLTsDIwPG/TKVwrwCHoRGcGTldhrYWuHepPr0m4N7rzLvm63lj39Y/GZZtKrZam5zrm42uLpVdPQGNnYjPjaNDatPlnfYKUoVWFqZ8tlXg9DV1aGRnxMZ6bksmr+L9z/uX+1n3jtziYsrNpQ/7jb1ybpg1U/Wf2Iov76hAf3mfk5xfgHx4Xe4smYrpnIr7AMbqd3/5IErLK3U5r4sa3PVsjylzS2YtoYxNbS5qnZvPMWh7eeZuXg8xqbqr8WXDl9h/cKK8/Xd78cp/6MmhqZslX2yaCIFeQXcv/mQ7cv3ILO3ovULtR9dqlGVti+pvqncj6NasO7MA0IepGl8uYZ2Zsx4NZDFB+5w+nYicnNDPh/gz+whTfh0reYpwP9tFFUuGspyU19yOjoSDKS6fLroLA/ilB24ny46y5HFAwhqaE3o3bpPLVXNpvpYgkRznQ5vyrrzDwipYVF7HYny+A/XXSUrX9lR+9X2cP56uw0y07BqHQy1zlvlsQTtrsmNZebMbu/D/OB73EjJrlOG8ixVy06iXZYmcnO+b+/DvOB7hGvI0t3Zmg+buvPZmdvE5dR+2nO1NqdFtvd2h2Mq1cVXbsYXXTyZ0NqV3y4qR2zrSCSggEl7bpBV1tkz42gEawc3QWasX63TodZ5q27Q8r2iscycb9v5MP/KPW6k1r1e1Z+r6ulIUJ6rC0/zIFb5RdCnC09zZNlAgrxkhEYkcz8mk/sxFesPXruThKONKWNf8a9Th115XqrXs6bEP70SxNrgaK5puPnIv62msnxi0qFbmOjr4mttwmftPBnfLJ8lV7UftaZJ1XpFovk6J9GRYCDV49O5J3lQVnefzj3J4T8GE+QjJ/R2Eg1dGjDt3Tb8uj6E08GPkVsZM3VcK775oH2tOu1AzTVN8vRymviknGQmfP4PlpMg/FtEh51Q75iammJsbIyuri4ymYy8vDw2bNjAokWLaNq0KQCOjo7cvHmTLVu2lHfYvfVWxegkBwcHxowZw7p16xg/fjyGhoYYGRmVv6YmWVlZLFu2jAEDBqCnV/PpYdWkMWbuFZ1BimLlH9eFGZkYWFV0LhRlZaFvrnl4ttTcnMJM1T8AirKykOjqoGei/Qi/yvzbBuDSqGIdnZIiZbas1CwsK025zE7LrjbqTp3QU6Gsn7uW4VNHVLtD7P4/9tG0azPa9G0LgIOHA4X5hWxesJEXRvVCV1d1yodvmwCcK2UrLpuGkZ2aSQN5pWzp2dVGtqkTfiaELfPXMujTkSp3iFVHR1cHRy9nkmPVL6zsV6Xcip+UW1qWylTV7PRszBo8PVvY6VA2zlvLkMkjVO4QW1lxUTFXDl+mdd+21cqqqlYd/fHxr8hXVJYvPSULuW1Fvoy07GojoJ5ITc4k+n4Ci77dxKJvlR1silIFCoWCV9pNZsbCsejp65KWnMmMicvKj1OUrRnzSrvJ/LJhMk6uqiMUvVsH4ujjVv74SZvLScvEolK95qZnYWL59OkKt86GsHPBGgZ8PFLlDrFPSHR0sHJQTouz83QiOTqes5sPq+2w69DFD/9Al/LHhWVtLiU5C1u7iukvaWnZWFk/vV4r8wt05siBipEJ1nJz9PR0VEaRuXnYkJ9fRHpaDpZWque0c/MgZA3dyh+XlpVbXkYmJrKKcsvPzMLQQvspTppIdHQwt1PWnZWbMxkxCYTvOKixw65VR3+81bS5tJQsZFXanIWGNpdW1uZ++XYTv1Rpc6+2m8z0hWNp0qai3nZvPMX6ZQeY/uNYvP1d1L4mQFB7f9z8Pi1//ORakpmahVWl8zUrLQszy6dfS2X2ys5ERw8HMtOy2LP64D/SYZeWU0BxSSmyKtMyrc0MNN7NtZ2PnFYNrZnUW1kuEokEXR0JET++xIy/Q9l47iETenoT+jCNFceU07Jvx2aSV1jM5g87sWDPLeJquPHBf4O0LGW5yauMprO2MKw24uOJpLQ8iopLyzvrAB7EZVFUXIqDzOQf67BLyylUZqsymk5mKtVYp+295LT2sGZST+V08id1enduP2ZsC2PDxUckZuUTn5Ff3lkHEJmg/F0cLI2eucMuvaCI4lIF1oaqI0+sDPVJza+5s6iJ3JxFXfxZev0hWyLjatxXG2llWWRG1bOkaJFlcVd/loQ+5O+76rN0d7bm23Y+TD8XUes7xKblFVFcWorcRDWbzFhKcm7NZR9XVu93U3LR1YE5vRqx7NIjShQKErMLiM8uKO+sA4hMUS7Y72Bu+Mwddk/qVVa1Xg20KEuZOT938WdpWN3rNS2z7FytcsMI6waGpGi4DpWfq7EVHXIPYjOV56rchNCIZLXHhd5Jol+nmtf+fGre3EJlPZtWuSabSDWeY+09rGntZskHnZVLJUhQnr+R03syfe8tNvwDd/sFSMsvq1Nj1RGS1kb6T2+DZSN+I9Ny0dGRMKeLD8uvRVPyjCOL0zLzle9d6upVw82SklJylfVaqaP1QYyyXu3lJoTeTuKdoY25fieJlX8rl3u4cz+NvPxzbPyxPwv/vEK8hptZqGQrKyd5lXKS1bKcdCUS5nStWzn9r9P5L1337X+J6LAT6r379+9TUFDABx98oDJKori4GHv7ikV1jx49ysaNG4mOjiYvL4/S0lJKSrQftp6Xl8fHH3+MXC5n4sSJT91fz9BQ5c6vCoUCfQtz0m/exMzdDYDSoiIy70biNrj6aK4nzDw9SLmmOhUh/eZNTF1d0dF7tvVNDI0NVe6IqFAoMLMyJ+LqHVwaKT8AFxUWcS88ihfffqnG1wo5cY3189YzfMpwGqu5g2lRQSE6Vaa46ehINI6AMDA2VLlDqEKhwNTSnMhrd3DycS3P9vBGFL3fGlBjtrBT19jywzoGfTqCgI5Pv7uqQqEg/n4sdh7qF4/WVG53r97B2aei3O6HR9FvbM3lFnryGpvmr2fI5OE13vn1xrkwcjNzaNn76TebMDYxVLnzq0KhwNLajJBLEXj5KfMVFhRxM+QeYyaqn35pbWPBovWfqmzbv/UcIRcj+HzeGGzsrZBIqLbPuqX7yc7K453JA7F1qD5SUFO93rt2BwdvZb0WFxbx6EYU3d96ucbf8+bpq+xauI6XPh6Bb4emNe5b+ec96WCtysTEUOXOrwqFAmuZGZcvRJTfDKKgoIjQq/d5/6N+Wv28J+7ejsVaVtFRFdTEjUP7r1FaWoqOjvK8iH6QjKGhPg0sq98MQt/IUOXOrwqFAqMG5sRdv4XMU1luJYVFJN6OotmImsvtWSgUpZQUa167yMjEUOXOr0/aXKiaNve6hjZnZWPBT1Xa04Gt5wi9GMHUsjb3xM71J9m4/ADTfhz71DsTqztfza3MuBV8B7dK17nIsHsMfKfm87UqRamivAOwropKFIRHp9PBx4b9IRU3GujgY8MBNTceAOj9/VGVxz0C7XnvBW9eWXCS+LLOKiN9XUqrjHwoKetY/29dWLmyouJSwqNSad/Ynv3nH5Vvb9/YnoMXHqk95srtJPT1dHCxNeVRgnLEkIutKfp6OsRo8SFQ62wlCsJjMujgLWff9YrOjg7ecvZfV9/50euHEyqPe/rb8V53L15edJr4smm/V+6n0jfIAWOpLrllnTvucmVnc0wNdxN+muJSBbdSs2hj34Aj0RUdIa3tGnA0WnMnZjO5slNnWdgj1t9R31afOYtdAw4/qsjSxq4BR2rKYmPOL138WXr9Ees0ZHnBRcbXbb2ZcT5C5ffUVlGpgrD4LDq6WbGv0vqEHVyt2B+h/dRaiUSCno4EXR0oKYHgmAz6+dhgrK9Lbtl6ph6WytHrMXW442lxqYLbqVm0tqter8ceay7LpnJzfu7sz/LwR2z4B+q1qLiU8MgU2jdxYP/ZinVg2zdx4OA59evCXrmVqDxX7cx4FK/slHaxM1Oeq4maz1VfDyuSUuv2ZURRqYLw2Ew6eFizr9Kanx08rDlwS/3IvRd+U73zds9GNrzf0YMBKy4Qn1X3u9aqZEvKooOTJfsrrbHXwdmSA/e0b9M6ZV8I6EoklDzjWgBFxaXcuJtM++aOHDj9oHx7+2aOHDzzQO0xV2+W1au9GY/KvjhxsVfWa2yi8ppsZKBb7cYh5e9d2mZ7Uk7OluyrUk77o/6z5SQI/zbRYSfUe6WlpQAsWLAAOzvVxWafjIILCwtj2rRpjB07lo8++ghTU1NOnz7Nzz//rNXPyM3N5cMPPwRg4cKFGBjUfoFqiUSCQ4/uPN67H6yyerUAACAASURBVGM7OwztbHm8Zx86BgbIWrcq3y9i1R8AeL/1BgB2nTsTd+wE9zZuwq5TJzIjo0g8ex7vt8dWlEFxMbmxyg8BpUVFFGZmkv0oGl0DA4xsn74Wm0QiodPAThxZfxgbZxvkTjYcXncIAyMDmnVrXr7f+jlrARj+2UgArh2/yro5a3npnQF4BHmSmar8xkxXTxcTc2Xng18bf05uPYGzt3P5lNj9f+7Hr7X/U0eMPcnW/pXOnNh4CLmTLTInOcc3HEJqaEDjrhXZ/p6vzDZ4sjLb9RNX+Xv+GvqMG4BbgCdZT7Lp62Jspsx2dO1+XBq5Ye0oJz83n/M7TxF/P5aXJr721FxPsnV4pRPHNhxG7myD3NGGo+uV2ZpUKreN85TZhk5RZgs5fpWN89bS/+0BeARWyqani7G5aqfNxX3nadjEC2v72t+hTSKR8OLQTvz9xxGcXG1wcJGz+fcjGBob0KlXRUfXjzPXA/DRzOHo6eni6ql69zgLS1P0pXoq26vuY2JmRElJabXtNWVrNaAzZzYdQuZki5WjnDObDiE1MiCgc0XZ7VywBoABn4wC4MbJK+xcsIYeb72Mi39DsivVq1FZvZ7ZeBAHHzcs7awpKSomMvgmYccu02v8IK2zvTaiI6tXHsXVzQZnVzl/rjiCsbEBPftWlNvXXyqnqs6YPQyATWtPY+dgiYenLUVFJRzce5VTx2/w3YLR5ce88lpbtmw8y09zd/HqsHbExaSxcskhBg5pp9W0TIlEQqM+XQnfcVB5N1d7G8K2HUDP0AD39hWjvc7+uhqA9u+9Xr4t9YFySkdRXh4SHQmpD6LR0dOjgZOyzsK2H0DW0A1TGxmlxcXEXAvn3ulLtBqj3fnwJF//oZ3Y8scRHMva3BY1be7nsjb3QQ1tTq9Km9u+5jjrl+7nw1nDcXCRl6/RKDXQx8RU/TpIVbN1G9SZA2sPY+dii42znP1rDmNgZEDLHs3K9/vzO+VSBmO+GAHA8W2nkNlbY+usvJbeDY3iyObjdBpQsYZdcVExcQ+VH+SKC4vJTM0kOjIGAyMpNo5Pv7PdquNRLBjVnNBHaVy5l8Lw9u7YWBiy7oxy7ZzJL/rR2MWSkb8qPxRGVBohBhDobEmpQnX70fB4vhvWhBEd3Dh1KxEbc0OmDwwkLDqd2Dp07tTExNgATzfl+7COjgRnRxlBfq6kpWcTHfvPTjcF+H33LX6Y1I7rd1O4cjuRYb28sbE0Yv2huwB8OqIJQQ2tGT1L2cF59noc4VEpzHmvLd/+EQzAtDdaEBKRRFilO636lt1J19RYH4VC+biouJTIx9pPd1t58h4LhzUl9FE6wQ9SGdHWFRtzQ9ZfUHZQTO7TiMYuDRi57AIAEfFV6tTJglKFQmX7zmsxvN/Tm/lDmvDToTuYG+kz42V/9oXGklLH6bDrbsfwTVsfwlOyCE3K5FUve+RGBmwtG6n2fmM3AqzNGH9MOeqluY0Fi7r483dEHPsfJGJdtiZaiUI5sqsu1tyOYXZZlpCkTAaXZdlSlmViE2WWd44qs7SwseCXrv5sjohjX6UspQrliD2AXq5yvm3nzY9X73MlMaN8n6JSRa1uPLEyOJof+/kRGpdJcEwGI5o4YmsqZV1Z5/qUjh40sTdn+OYQAF7xs6OguIQ7yTkUlpQSZGfO1I6e7LuTRGHZkJ2dtxKY1NaNH/r48uPZ+1gY6vFVNy/23kkkpY7TYdfeieGbNj7cSMkiJDmTQQ1Vy/L9xm74W5kx4XhFvf7c2Z+/7/6z9fr7jhv88HFHrt9N5srNRIb18cHGypj1++8A8OnoZgR5yxg97RAAZ0NiCY9MZs4H7fl2xSUApo1rRcjtJMIilR0uY17y43FiNncfpiHV12VAFw9eaOvKu98de+acT6y88JCFrwQSGpNBcHQ6I1s4Y2tmwLpg5fvolO5eNHawYMQa5XUkIkl1ynCQg7ny/E36Z6aIV7Yq9DELujciNDGLK/GZDPe3x8bEgHXhyjY4uY07jW3MGLnrOgAve9tQUFLKnZQcikoVBMrNmNzanf1RSRTW8Y66v28NZ/6Uzly/ncTVGwkM6++LjbUxG/Yo797+yZstCPKR8/rU/QCcvRpD+N1kvv+kI7OXXATgywmtCbmVSFjZqMljF6L59qMODO/fiNPBMcitjPhyQhvC7yYTV4svVlaGPGZhj0aEJmQRHJ/JiLJyWn+jUjnZmjFyp7KcXikrp9tl5RRkY8bkNtXLyVem/FvTTKqLQqHAV2ZCUYmCyLTcOpWlIDwr0WEn1Hvu7u5IpVLi4+Np2VL99KTr168jl8tVpsXGxal+y62vr1/e+VdZTk4OH374IQqFgp9//hljY+3W7FLHsXcvSguLiFq/geKcXMw83PH/+AOVkXgFKapTNAzlMvw+mMj9TZuJP3EKaQML3IcNQda84gNmYXo6oV9/W/44/2QSCSdPYe7tTeCUT7TK1m1Id4oKitj6y1bysnJx8XXlnTkTVEaopCWqrpd0bvdZSktK2fHbdnb8tr18u2eQJ+8tVI5C7DnyBSQSCfv/3Ed6UgamFib4tfGn75vaj1TqOFiZbdevW8jPzsWpkStvfDdBZcRWRpVsl/Yqs+1dup29SyuyuQc2ZOx8Zbb8nDx2LNpEVlomhsZG2Hs6MW7+JJx9XNFWl9eU2XYsVpabcyNXxn2vWm7pVbJdKMu2a8l2di2pyOYR5Mn4HypGb6bEJRMVcpfhX4zmWQ0c1ZXCgiKWzd9GdlYe3v4uzFr0tspIvOSE53MHrLaDelBUWMSBJX+Tl52Lo48rw795V7Vek1TL7sp+ZdkdWr6NQ8u3lW93CWzI6DmTACjML2D/b5vJSk5HT6qPzMmGlz4eRUCX5mhr5BtdKCgoYsH328nKzMMv0IUfl4xTGYmXUOXOe0VFxSxeuIekxAwMDPTx8LTjh8Vv0q5jxU1jbO0a8NPScSz6YTevv/Yj1tZm9H+5JWPe7q51Nv+XelJSWMSl3zdRkJOLrKEb3b94X2UkXk5y9bXN9n42R+Xx4ythmMisGLj4G2X+/AIurtpIbko6ulJ9LBxsaf/u67i3V38zFE1eKWtzK8ranJe/C18teltlJF7SM7S5/VvPUlxcwg9frlHZ3rVfCybNGKbVa7wwtBtFBUVs/HkLuVl5uPu6MnH+eJXzNbXK+VpaqmD7st2kJKSho6uD3MGal8f1p+NL7cr3yUjJ5LtxP1T8frHJnN59Hq/Gnnz80/tPzbX3WgyWJlLef8EHuYUBEXFZvLn0fHnHmtzcEBdZ9RGYNdl66REmhnqM6ujBFy8HkJVXzIW7SczZdaNWr1MbzYI8OLR5RvnjGZ8MZsYng1nz90ne/mTpP/7z9p17iKWZAe8OCsDG0oiIR+mM/e44sWUf6uSWRrjYVYxwVShg3HcnmPFWC9Z/8wIFhSWcCY3juz+vqKxBtnuB6vtT95ZOPE7MpsuEHVpn2xsai6WJPu/38EJubkBEfBZvrrpYPhLOxtwQV+va1WluYQmjlp1n5suB7PygExl5hRwOj2fuvrrflfLQo2QsDPQZ6++CzEhKVEYOk06EE5ernB4mM5LiVGm9yBc9bDHS02W0nxOj/ZzKt8dm59N/1+W6ZXmYTAOpPuMClFki03N4/0R4+XpzckMpzpWyvFSW5XU/J16vkqXvTmWWwV526OvoMKWFJ1NaVNzhOTghnbFH1N9pWZ09dxKxNNLn/bZu2JgYEJGczZit18tHwtmYGuBSaZp2SamC99q44WZphATliLm/rj1m5ZWKNbFyi0oYsTmEWT282T2qBRn5xRyKTGLOyaiqP77WDj9SluVblev1ZDjxT+rVsEq9upfVq68To31Vy/LF3c9er/vOPMDS3IB3X2uMjZUREQ/TGDvrSMW5amWMS6W7dyoUMO7ro8x4uzXrv+9DQWExZ0Ji+W7V5fJzVV9Ph8/faIGttTH5hSXcfZTOWzMPc/JKjLoItbLnRjwNjPSZ2MkTuakBEYlZvLHuKjEZFfXsavXsnwfqYm9kEpYG+rzf3BW5iZSIlBze3BNGbNlUTrmxFBdz1TY4oZkLbhZGSCQSYrLyWRsey6rQuk/T3XfyPg3MDXl3eBNsrIyJeJjGuGmHykfL2VgZ4WKveg1+e/ohpr/blnUL+lJQWMLZqzF8t/Rieb1uO3wXE2N9Rr7kx2dvtyYrp5CLoXHMW3mpVtn2RiZhaajP+y0qldPuMGLKpqfbGEtxrVROxQoFE5qrltOa8FhWhaiW074hqn8T9XCX8Tgzn45rLtYqnyD8UyTp6eli/KdQ76xdu5a///6bnTt3ArBkyRK2bt3KpEmTaNq0KXl5eYSFhaGjo8Mrr7zC6dOnmTJlCl999RWBgYGcP3+e5cuXk56ezqVLyjeAAwcOMHv2bFasWIGdnR3GxsYUFRUxceJEcnJymD9/vkpnnYWFBfr61e+y9dH1a/+ZQqilV93q93pFecX1d46Wvk79vQz6WPx7dyOrq8vJ2t2F7nno61T7hcb/k5bcej4fBLQx0P2fm97zT4vP1e4Os8/D2Dl1GwH1b4rbsenpOz1Hji1rNxX9P6nEve53av+3WDZr8PSdnpM6Duz516XF1m1k279J5lR/31sz1te9k/HfUtxCuxkAz4OOvOYb2T1vujsin3cEjYoHNHzeEWoUMvLpS/L8Nxt0/tnvZF0fbdGwpnh9JkbYCf8Vxo8fj5WVFevWrWPu3LmYmJjg7e3NqFHKaXQdO3Zk5MiRLFy4kIKCAlq3bs3bb7/NvHnzyl+jW7dunDhxgvfee4+srCxmzJiBvb094eHKC9GgQarT6ZYsWULz5tqP2BEEQRAEQRAEQRAEQfgniA47oV4aOXIkI0eOLH8skUgYMmQIQ4YM0XjMe++9x3vvvaeyrXInnFQqZc6cOVUPKx+BJwiCIAiCIAiCIAiCUB/U37klgiAIgiAIgiAIgiAIgvD/kBhhJwiCIAiCIAiCIAiCIJTTkdTzBUn/HxAj7ARBEARBEARBEARBEAShHhEddoIgCIIgCIIgCIIgCIJQj4gOO0EQBEEQBEEQBEEQBEGoR8QadoIgCIIgCIIgCIIgCEI5HcnzTiCIEXaCIAiCIAiCIAiCIAiCUI+IDjtBEARBEARBEARBEARBqEdEh50gCIIgCIIgCIIgCIIg1CNiDTtBEARBEARBEARBEAShnBjd9fyJOhAEQRAEQRAEQRAEQRCEekR02AmCIAiCIAiCIAiCIAhCPSI67ARBEARBEARBEARBEAShHhEddoIgCIIgCIIgCIIgCIJQj4ibTgiCIAiCIAiCIAiCIAjldCSK5x3h/z3RYScItZRfInneEdRyNyt53hFqlFFYP8sNIK+4/mYzl9bfN8oG0tLnHUGjyEzd5x2hRgX1t+hwNK6/fxpIKH7eETTSvZ74vCNo5Niy3/OOUKOYy3ufdwSNHAt6Pe8IGmV4WjzvCBopFPX3vQtA73bK846gUYaZ7fOOoJHuAI/nHUGj0pD6W6elJfX4TR8o6er6vCNollH4vBMIwnMlpsQKgiAIgiAIgiAIgiAIQj0iOuwEQRAEQRAEQRAEQRAEoR6pv/NeBEEQBEEQBEEQBEEQhP84nfq7atD/G2KEnSAIgiAIgiAIgiAIgiDUI6LDThAEQRAEQRAEQRAEQRDqEdFhJwiCIAiCIAiCIAiCIAj1iFjDThAEQRAEQRAEQRAEQSgnRnc9f6IOBEEQBEEQBEEQBEEQBKEeER12giAIgiAIgiAIgiAIglCPiA47QRAEQRAEQRAEQRAEQahHxBp2giAIgiAIgiAIgiAIQjkdyfNOIIgRdoIgCIIgCIIgCIIgCIJQj4gOO0EQBEEQBEEQBEEQBEGoR0SHnSAIgiAIgiAIgiAIgiDUI2INO0EQBEEQBEEQBEEQBKGcRKJ43hH+3xMj7ARBEARBEARBEARBEAShHhEddoIgCIIgCIIgCIIgCIJQj4gpsUK9VFpayty5czl69CiZmZksWbKE5s2bP+9YKhJPnCDh0EGKMjIwcnDA6bUhmHl5adw/L+YxjzZsIOfBA/RMTJB17IR9v35IJMr7ZRdlpBP99xZyHz2kIDER6zZtcBvzhspr3FnwA9kREdVe29DeHnZ8WmNehULBppWHOLTjAjlZuXj5u/L25IG4eNhp9fveDLnH9HeX4Ohqw6INk8u3nz0ayva/jhH3OJmS4lLsnWW8OKwT3fq11Op1n2Tb8cdBTu5SZvPwc2X0x6/i6K452+1rkWxZvo+4R4kU5hdibWdF5/6t6TOsq9r9Lxy5ytJZa2nc1o+P5o2tVba9qw9yZs95crPycPN1YegHr+Lgbq/xmIiQSHau3EtCdCKF+UVY2VrSvl8beg6pyHZmz3kuHLpM3IMEFKWlOHs58eKbfWgY6KF1tif5Vi87xJ6tF8nKysU3wIUPPh+Iu6fmsgsJjuSjcUurbV+9bQou7jYA3I+K588lB7l7O4a4mFRef6cnY8b3qnW2Q2sOcHHveXKz83Bp5MLAiYOwc9NcdmGnQzm/5xwxUY8pLizGxtWWHsNewL9dgMp+p7ed5Nyes6QlpGFibox/20D6jXsRAyMDrbNt/+MgJ8ranGdZm3N6SpvbXKnNycraXN9Kbe70vkus+H5jtWNXHpmL1EBf62w3tu7j3rGzFOXkYtXQjWZvvIaFk4PGY/LSMghdt420+9Fkxyfi2rEVrcaPVtkn43EsN7bsJe1+NDlJKfgN7EvAoH5aZXpa3hVLDrBjyzmyMvPwD3Rl8peD8GyouZ4BioqK+X3ZIfbtuUxyYgZW1maMHNONISM61ynLxirXuXdqeZ2b9u4SnNRc57ZVuc69VMvr3PABfowdGoSNtTF376cxe/F5gsPi1e47cUxzJo1R/57X+uW/SE3P54WObgx7yQ8/L2ukUl2iHqTz29prHDv3UOtMT4zo5c3YAX7YWBpxNzqdb/8IJvhWUo3HjOnXiGG9vHC2MSU9u5DtJ6KYvzYEAHkDIz4f0wx/Dyvc7MzYceo+Uxefr3Wu2mjfqhEfvtOfZoHuONhZMe7jJazdcupf/Zkj+vowdmAANlbG3H2UxrcrLhF8I7HGY8a85MewPj4425mSnlXA9qNRzF99BYDWgXas+753tWNeGL+de48zap/P355xTZyxMZZyNy2Hb85GERyXqXbf1g4WvBHkSGMbM8ykejzMzOOP6zFsuZ2gst9If3tGBTriZGZAbHYBv115xPaImn9ndUb6OzCuqRM2xgZEpObw7dkoLsep/x0bWhozq5MXXpbGmEn1SMgpYE9kEj9ffkBRqXK6ltxYypftPPCXm+FmYcT2iASmHLtT61wAI7p6Mq6XDzYNDLkbk8k3G0MIvpusdl9Ha2NOzat+HX3jx1OcCk+otr15Q2vWT+nCvfgs+sw4VPts/vaMbVxRp9+ejSI4voY6DXQkqFKd/nk9hi13qtfpyIBKdXr1ETueoU6H+9rzVpAzciMpd9Nz+O58FFcS1GdrZW/BmABHAuXKbI8y81gdHsPWiIps33fyZqB39Wt3blEJTVefrXW+kR3dGdfdCxsLQyLiMvl2axiXo1Keepyb3IRdU7sikUgI/GS3ynOjOrkzqpMnTlbGxKbl8uvBO2y/FF37bC1deKeDOzamBkQkZfP1/ltcfpj29GxWxuyZ0B4J4D/7cPn2Xr62jGjpgr+9OQZ6OkQmZbP4ZBRH7tS+Xkc1c+Kd1q7ITaXcTcph1pEILj9OV7uvl7UJ3/TyoaHMBDMDPRKzCth1K4GfTt8rP1d/6OfH4KDqf8/kFpbgu+B47bO1cauU7Q6XozVkk5nwTa9GqtluJvDT6ajybAAD/Ox4p60bHlbGZBUUc/ZBKrOPRpCUU1irbILwTxEddkK9dPbsWXbv3s3SpUtxcHDAwsKizq+5fPlyjh07xsaNqh+mZ8+eTXBwMMnJyRgZGREUFMR7772Hu7u7xtdKvXyZ6E0bcRk+AtOGDUk6cYLIXxbhP3MmUivravuX5OUR8dNPmHl54fv5F+QnxPPgzz/RNZBi2/MFAEqLitEzNcWudx+ST6v/kOE5fgKK4uLyx6XFxdz8ehaWzVs89fffvuY4O9efZNL0oTi4ytm86jAzJy7j181TMTIxrPHY7MxcFs3aQFCLhqQkqf7xZWZhzOA3e+DoaoOuni7BZ27y6+zNWDQwpXl736fmAti3/hgHN57krS+GYu9iw84/DzH/o6V8v/4zjIzVZzM0NqDHqx1x9rRHaqDP3bD7/PnDFqSGUrq/0l5l38TYFDb9thvvxrXrDAM4tPEYRzafYPTUYdi62LBv9UEWTV7KzL8+x1BDNgMjA7oM7Iijuz1SQylR4fdZv/BvpAb6dH65A6Ds1GvRtSmeAe7oG0g5tuUEv0xZxpcrPsXGSa51vo1/HmfzmlNMnTUEFzc5q5cfZvL45fy1YwrGT6nXP7Z8irmFcfljC0vT8v8X5Bdi52BFx+6B/P7rAa3zVHZ801FObTnBkMnDkTvZcHjtQZZPXcKUP77QWHZR16No2NSL3m/0xdjMmKvHrvDnrFVM+OF9PAI9Abh67Ap7Vu7itY+G4h7oQUpcCpsXbqS4qIjXPhmmVba9649xYONJxpW1uR1/HmLeR0uZW0ObMzA24IVXO+LkaY+BgT4RYff5o6zN9ajU5qSGUn7Y+IXKsdp21gHc3n2YiH1HaTV+FGb2ttzYto+T3y2mz4IZ6Bupz1ZaXIzUzIRGL/Xk3jH1H2RKCoowllvj2LIJ4Zt3q93nWfz1+1HWrz7OjG+H4+pmw8qlB5n49m/8vftLTGpog9OmrCYhPp0vZgzB2VVOakoWBQVFdcpS+Trn6Cpn06rDfDVxGb9peZ37uew6l6rhOudU6Tq3ePZmzBuY0kKL61zfrh5Mm9iOmT+e4UpYPMNf9mPlvD70eX0zcYk51fZftSmUDbtuqmz7aUZ3FApITc8HoFVje85fi+HHVZdJzyrgpR4N+e2bnoz8cI/GjkC12dq5Mu3NFsxccYngW4mM6O3Nqi+70fvD3cQl56o95osxzena3JG5f13lzqN0zIz1kVsalT8v1dchLbOAZdtvMLSH5i+y/kmmJobcvBPN+q2nWPnju//6z+vb0Y1pb7dm5pLzBN9IZES/Rqya2ZPe7+4gLql6nQJ8MbYlXVs6Mff3YO48SMPMRIrcyqjafr0nbCc9q+LDYWpmfq3z9fOUM729J1+djiQ4LoORAQ783i+QXhuDicsuqLZ/MztzIlJzWRHymMScQjq6WDK7szcFJaXsvqvsvB3ub8+Uth58eSKCkIQsGtuaMbuzFxkFxRx7mKp9toZypnfwZMapuwTHZzLS34Hf+wfSa8NlYtVkKyopZdvteG4kZ5NZUIyvzJTvu3ijqyNh7vl7AEh1JaTmF7H06iOG+tf8ZUGN2Vo6MX1oE75ad5Xgu8mM7OrJ7x92pNf0A8Sl5mk8bszCU9yq1FGQoebDvbmxPj+MbcW5W4nYWVav96fp6ylnWjtPZp5R1ukIfwdW9Quk9yYNdWprzp3UXJaHPiYpp5COzpZ8+6ROI8vq1M+eyW08+PJkBKEJWQTZKOs0s5Z12sdDzhdtPZl1NpIrCRkM93VgRe9A+m0JJi6neramNsr2tvL6YxJzC+noZMnXHZTZ9kQps80+H8WCy/dVjtvwYhMux9e+87pfM0emDwpixqZQgqNSGNnJnd/fbUevb48Qm6a5XvV1Jfz8RksuR6bQykum8tyIDu5MGRDAF+uvEfIglcZulnw3rCkZuUUcC9f+Gtw/wI6v+voyfc8NLj9MY1QrF/4c2YKei08Tm6H53NfXlfDLa0249DCV1q5WKs+1cbPi/P0UFhyNID2viJeDHFg2rBlD/7ioVUdgeTZfW77q4c20g7cJfpzOqGbOrB7ShB4rzhObWb1eC0tL2RIWx42ELDLzi/G1MWVOX1/0dCR8fzwSgFlH7jD3RKTKcVtHteCiho62GrP19FFmi05nVHMnVg9pSo/l54lVc80sLClly/XYimy2ZpWy3QWghZMFP74UwOyjERyKSERmYsC3vRvx84AAhq+/Wqt8/yt0JM87gSCmxAr10uPHj5HJZAQFBSGTydDX1/7Dbm35+voyY8YMNm3axKJFi1AoFLz//vsUV+oYqyrhyGFk7doh79gRI3t7XIYNQ9/CgqSTJ9Xun3rpIqWFhbiNeQMjR0csmzXHrldvEo4cQaFQfqtjIJPhMnQosnbt0DMxUfs6eiYm6FtYlP/LjoyktKAAWfv2avd/QqFQsGfjKQaO7kbbbkG4etozacYw8nILOHXw2lPLaPHszXTt1wKfQLdqzwW18KJ150Cc3Gyxd5Lx4tBOuDW052bIvae+7pNshzafou/IbrTs0hgnD3vGfTmM/NwCLhzW/Obo5uNMmx5NcXS3Q+5gTbteLQhs5UNEqOrPLS4uYenMNbw6ri9y++qdqU/LdmzLSXoN706zzo1xdLfn9c+Hk59bwOUjmrO5+jjTslszHNztkdlb07pnC/xa+hAZVpHtzWmj6PJKR5y9nLBzsWHYR4MxNDLgxqVbtcq3Zf1phr/Rlc49gnBvaM/nXw8jN7eAI/ufXq+WVmZYyczL/+nqVrwlNPJ3YcLHL9KjTzMMDGt//ikUCk5vP0XXId0J6tgYe3d7hk0ZTkFeAdeOXdF43MvvDaTb0B64NHJF5ijnhVG9cfJyJvxsWPk+D27cx7WRG817tsTKzhqvpt606NGSh7e1G1mkUCg4uPkU/Su1ubfL2tz5Gtqce1mbcyprc+01tDmJBBpYm6v805ZCoeDugeM0eukFnFo1xcLZgVYTRlOcn8+jc5c1Hmcit6bZ66/h3rktUlP11w8rT1eajBiIa/uW6BpItc70tLwb155k9Fs96NazCZ5eDnw1ewS5OQUc3Ku5ni+cu82lCxH89Ns7tG7XCAdHawKCKtGB5gAAIABJREFU3Gje8tk7dxQKBbs3nuLV0d1oV3ad++AfvM61UXOdu6Xlde7NwUFsO3CHzXtvE/UonW8WnSMpJZfhA/zU7p+bV0xyal75Pz1dHVoE2rF5T8X14dvF51m+PpTrt5N4FJPJ4tVXCY9IpkeH6vlrzPaiL9uOR7HpSCRRMZl8vSqYpPQ8RvTyVru/u4M5o/r4MH7OCY5cfkx0QjY376dx8mps+T4xSTl883sw247fI11NR8K/4eDxEL6at4nt+y5RWvrvL5L95sv+bDsayaaDd4l6nMHXyy7+H3vnHR5V0f7ve1N20za9h3QgPfTQUToCiiAq1QIoiF3sIgoqYkUsL4ogiFKU3nsNiJQASaghDdKTTd20TdvfHxuSbLKbbHjxJb+vc19XrivnnJmTT+aZmd3znOeZISe/jMkjA3SW9/WwZuroIGZ9dJiDp1M07ZaYx7FzaU3K5haWoygoq/u5k/9nWicPNl/P4o+rmSQUlDH/RAI5JRVM1uPMWno+ha/PJBOVWUSKspy1lzPYl6hghF+9k2JsR2f+uJLBjvgcUpTl7IzPYf2VTGZ28WyVtumd2rHptrb8UuafiCenRMXkUN1RxDeLytl0PYtruSWkF6s4lJzLtrhserjVv8xNU6pYcCKBTdezKCzX//2tJaYN68jmv5L543gSCRlK5q+9SE5hGZPv92+2XkFxBYoiVd1PZXVTmy16qjub/7rJBQOiunRqC/dgc1y9TRecTCCntILJwXpseiGFxWeTOX/bplcy2J+kYHgDmz7c0Zk/r2aws9amuxJy+ONqJs92bp1Nnw71YEtcFhuuZ5JYUMbHpzTaJgbp1vZTdArfRCVzPquIVGU5665mcCBZwTCfem3FldUoyirrfryszfGyNmfDNcOdYbeZPqg9m/6+xR9/JZOQpWT+hhhyCsuZ3F//y3mAt8aEcj29iN0Xmo7ThyM8+eNkMjuiUknJLWVnVBrrTyYza6juuVMfM/r4svFCGuujUklQlPDh7qtkF6uY0sOr2XpvDw3gWqaS3Tqcg/P3XGVpZCLRaYXczCtlydF4YtMLGRbo0jptEV5sjM1gfXQ68bmlfHDgOtnFFUzp0k5n+Zv5ZWyMzeBqdjFpReUcjFew7XImEZ62dWWUqmpySirqfrxtzfG2s2D9xaZt3Lw2bzbGpLP+YhrxuSV8sL9WW1cDtd3IYdslbW1dPWzJUJaz4uwtUgrLuZBeyKpzKXR2/+8DRwSCO0U47ARtjvnz57N48WIyMzOJiIhgzJgxqNVqVq9ezdixY+nfvz8TJ05kz549WvW+//57xo8fT//+/RkzZgzffvstKpXmQWHnzp0sX76cxMREIiIiiIiIYOfOnQCMGzeOLl264O7uTmBgILNmzSInJ4e0NN0fHDVVVZTeuoV1sPaDlnVQMMUJCTrrFCcmYtW+PUbS+odk65AQKgsKqMi9sy9uAIoTkdiEhiK1t2+2XFZ6Hvm5Sjr3rP8SITMzJaSzH9dik5utu2fjSQpyixj/9NAW9ajVamLOxpF2M4fgLoZFs+Vk5FGYpyS0R/1DjlQmpWMnP+IvNa+tITfjUrlxKZmAztpfqjct242jmz39HjA8de02ioxcivKUBHXX1tYh3I+Ey0nN1NQm5UYqiZeS6dBJ/xf+qspqKisqsZBb6C3TmIy0PPIUSrr31rZreFdfLkcnt1h/5uRveGTofF6b+SMXzsa3WL415GXmoswromP3wLpzpjIpvmH+JF9pWVtDVKXlWu3iG+pHekIaN2vvk5+dz+VTlwiK0O38aIy+PhfQyY8brehzyXGpxF9KJrBRn6tQVfLq+I94edx8vnpzOclxqQbfsyQ7l/KCIlzD6qO2TKRSnALbo4gzvM/9r0hPzSVXUUSvPvVtaWYmpUs3f2Ki9es9djiG4BAv1q4+wujB83hk1Ed8+ekmSkvv3Lnz38xzuzeeJD+3iEcNnOeiWzHPmZoYERLgyImz2v3gxNlUuoYY9vD06KhAioor2He8+T5gZWFKUSscZKYmRoT623MiOkNb28UMugbojvQd0qMdKVnFDOjizuH/jOHo0of5/IXe2Fsblo7+fwFTEyNC2ztw4rz294QT59PoGuiss86QXl6kZCoZ0M2Dw8sf4eiK8Xz+aj/sbZpGfm5Z/CB/rX6M1Z8Mo1eYYencWvqMJIQ6yYlM0Y6kiUzNp6ur4S8Q5FJjClX1zi+psRGq6hqtMqrqGsKd5ZgYGIZRr007eisyJZ+uLoZp87Y2Y4CXHWfSWxeR06I2Ywmh3nZEXtZOGY28nEXX9o56amn4z/N9OLP4Qf58eyAjunk0uT55oD9ONmb8sOOKjtoGaKtttxONbHoipXU2tTI1pqixTau0bVpe1XqbhjjKOZmmre1kWj5dDLRpnbYK/c7WRwNcicsr4UK27jRbvfqMJYR62hLZKL078lo2XX31v8gdGOLCoFBX5m+I0XldamKEqqpa61x5ZTXh3naGt52xhFA3ayITtFOuI+MVdPOy06+toxODApz5cLfh/clKZkJhueFR7KZGEsJc5RxP0n5OiUzKpVs7Wz21tPG2M+c+Pwf+vqV/rE7o7MH1nGKi0gyPnDQ1khDmdhe0+Tvw9636fnsutQBnKxmDa8e7nbkpDwa7cCRBd0q8QPC/QKTECtocc+bMwc3Nje3bt7Nq1SqMjY1ZunQphw8f5s0338TLy4vY2FgWLlyIXC6nXz9NiqG5uTnvv/8+Tk5OJCUlsWjRIqRSKbNmzWLIkCEkJCRw4sQJli5dCoCVlVWTv11WVsaOHTtwdXXFzU33W8Gq4mKoqcFErv0lxMTamspruqOjKgsLkdppf/CaWsvrrskcm/8iqIvyrCyK4+Lwf67l1J+CXM2XG1t7udZ5G3sr8nL0f0DejM/gj+X7+eyXl7SirxpTUlzGjNELqKyowsjYiGffGEe3PoalwxbWarNpok1OfjPabvPquPkoC4qprq7h4aeGMejhPnXXLp25zpnDF1mwco5BWhpTlKcEwNpOW5vcTk6BomVt7zz6IcWFGm2jnhjOgIf0R0Ju/2U3MnMZ4Y3WamuOPIVGn12jtrNzkKPI1q/P3tGaV98dR0CIF1WVVezfFcWcmT+x+OdZdOrWfBSBoShr207epO2sKDSg7W5zclskhYpCug6pT/vuMrArpUUl/GfOd6jVamqqa+g2pDujZjxo0D1v9znrRu1mbWCfe7lBnxvbqM+5ejkz4+0JeLV3p7xUxf4Nx/l49nd8vPJ1XD1bTnUuL9Rok9loa5PZyCnLa30a0D9Nbq7GzvYO2nrtHeRkN9MH01Jzib6QiFRqwqLF01Aqy/jy000ocgpZ9PW0O9Kib56ztbcitxm7JtfOc58bMM9Nv4N5zs7GDBNjI3IbpV3l5pfhqOPBvjESCYx/IICt+29QUVmjt9zkh4NxcbJk6/4bLd6zTptchomxEYpGaVeKwnL62OpO2fN0scLDyZJRfX146/tTqNVq3n6iG8veGcij7+5F/c8Ht91z7Kxr262gUbsVlNOns552c5Xj4WzFqAG+vLX4BGrUvD2tB8vmDebR13ehVkN2Xinv/3CKmDgFUlMjHh7oz+pPhjP5nb2cvdx0PTS9+sxMMTGSoCjTfjhXlFbQ18CH2YHe9vT2sOWxrdF1546n5PNYoCv7EhXE5hQT5mTFY0GuSI2NsDMzJae05TWe6rSVNtJWVklfi+YjfzeM60yooxyZiRHrLqfzxd939yVG3XholE6nKCqnb7Bu53qpqoqFf0QTFa+gulrN4M7ufDurN2+sOMO2v28B0NHDmpceDOaRhYe40+BPvTYtq6CPhYE29dLY9PFt9TaNTMnn0UBX9iVpbBr639i0kbbcsgr6uBum7X5Pe3p52DJxR7TO61amxozwdWLxudbb3M7qtl21X2Yoisrpq+fFhJO1jIWTuvDcz6cpUel2IkZezeax3t7su5hOzK0CwrxsebyPD1ITI+yspOToSBltos1CqtHW6EWLoqSCvla6x4OTlYxFD4Uya/0FSiqqdZZpzNQIL1ytzdjSiig2OwtTTIyMUDRK784pqaCvT/NjdfPU7oS4yjEzMWbthVQ+P6r7pbBcZsyoQBc+P9a6l8Z2FtI71/ZED73azqcV8tLWWJaMCcPMxAhTYyOOJ+by2o7LrdInENxNhMNO0OawsrLCwsICY2NjHB0dKSsrY926dXz77bd06dIFAA8PD65cucLGjRvrHHbTp0+vu4e7uztPPfUUa9asYdasWZiZmWFubl53z8Zs3LiR7777jrKyMry9vfnhhx+QSltIGZM0envW0lNKo/J1xRvfx0AUkZGY2thgExbW5NqxvVH8uGhj3fF7X8/Q/afU1G160ZjKiiq+mvsbT730IC7uzaeSmlvI+Pq3OZSXqYg5e4OV32zH2c2O8B5N0wL+2h/Fr19uqDt+9TPdG0Co1WowoGne/f4FystUJFy+yYYfd+Lo5kDfEd1RFhSzfOE6Zn4wBUsDo9bOHIhi7dd/1h3P/vQZzS86dOhrt4bM+fZFVGUqkq7cZMuynTi62dNzWNNIv8Mbj3Fix1+8/OVzza6zdWD3eb7+uN6un347XbcWtbpZfV4+znj51EeBhHTyISs9nz9XH7tjh935Q+fY+E19203/+FmNtkbl1M30ucbEREaz8+ftTHn3Sexd6qNIE6LjObhmP+NeHI9XkDeKNAXb/rOZfb/uYcRTI5vc56/9Uaxs0Ofm1Pa5JirUaoOG49zaPhd/+SZ//rgTp9o+B9Ah1IcOoT51ZTuE+jB32pcc2BTJ1FfGNbnXzRNniFqxru6435saB3xTm97xVHFX2bvzHJ8u+KPuePEPM4GmetUttKW6RtNHP/rsCazkGgfHG++O56WZS8lVFOHg2HJUxrG9USxtMM/NrZ3nGhu2uT7X2nlu8W9zKGs0z3XSMc/poslHhAQMeXa/r6cn7i5W/Lnrmt4ywwf48tasXryy4BDpWcUG6dHWpq1EAqj1qDMykiCTGvP6tydJztA4bF//9iQHvx9DeHsHom/cedT4/280biOJRP9XASMJmnb7KpLkdI1z+fWvIjm4bBzhHRyJjlOQlFZEUlp99NCFazl4uFgxY1xIqxx2d6KvId1crVk8JJAFJxOIyVbWnf/+3C2czKVsGNsZiUSCorSCzdezmNnFk5r/0lOr6XPN89L+q1iaGhPkYMnbffyZ1bWcpedbv8B/SzT+VyQSSZMxcpv84gpW7K/fDCz2Zj52cinPjghg29+3kJoYsWRmLz7dEE2qnjUhW6dNx1g1oOm71tr0o8Y2jbqFo4WUPx+utWlZvU2rW+ld1NVGhtyhq4s1Xw0M5JNTCcTmKHWWeai9M8YSCdviW79pgj40dtV9bfGT3VkTmcTFZP3rvX239xpO1mZsmHMfEkChVLH59C1mDu3Y6jR2HR8Pehvvm/Hh/H72Fhf0bPzQmBHBLrw7LJAXN1wkrZk18fRqazIeWrbr81tjsZKaEORixbsDO/Bcbx/+cyq5SbmxIW4YGcHmSxlNrhmkrdGxIfPI81tisJKZEOQs591B2to6OFry4bAAvjuRyLHEXJytZLw7uAOfPhD0r3XaiXTMe49w2AnaPElJSahUKl5++WWth66qqiqtKLhDhw6xfv16UlJSKCsro6amhupqw948jRgxgoiICBQKBWvWrOGdd95h+fLlmJk1dZ6YWFmBkRFVRdoRG1VKJabWuh8yTW1sqCxsWh7QW6c5aqqqyP37FI79+iExNm5yPaJ/CB1DvOuOKys1bwfzc5U4utRH+hXmFzeJbLtNvqKIlKQsvvv4D777WPOArq5Ro1areaTPG7z/9Qw699KkwRkZGeHmqXGE+nb0IDU5i42rDul02HXpF4J/cP26HFWVGhsV5ilxaKCtqBltDXGqfcj29HenKL+YrSv30XdEd1KTMinILeKLV+t3Q1XXfoGadv/rfLL6Tdy8tFOXwvuG4BNcv9tuVW1qRlGeEnvnem3KfCVyu6YRmo1xrF0zz8PPnaJ8JTt/3dfEYXd44zG2/7KHFz57Fp8gb123qaPvfcEEh75Wd1xRa9e83CKcXevfYufnFWNn37K+hgSFeXF438VW1WlIcO9QXgus119Vq60oX4ltg7YrLijGyq5lu8ZERrPus9+Z8ObkJjvE7l21m84Du9JzZG8A3HzdqSivYMPX6xk6dTjGjcZE4z5X2Uyfaxx1p4vGfW5LbZ/ThZGxEb4BnmSl6k6ncO8Wjn17n7rjmtq1M8sLirBwqNemKlIis2n9XHG36T8wlJDwejtX1I6RXEURLq71evPziptE3TXEwckaJ2ebOmcdgK+fJoIlKzPfIIedvnmuIFeJU6N5rnHU3W3ympnnxtXOc110zHN+Dea5lhx2+YXlVFXX4NhocwEHW3Ny81p+gH98dBBRsZnE63lwHD7Aly/eHcibnx5p9Q6x+UoVVdU1ODWKpnOwMSO3QPeDXU5+GZVVNXXOOoDkDCWVVTW4O1r+Kxx2+UXNtZvuBexz8mrbLb3eIZecXqRpNydLouN0zxHR13MYNaD5dbaa6CuvpKpGjZO59otHB3MpirLmI6a6uVqzYlQo35y9ydrL2g/Rquoa3j4ax9zjN3A0NyW7tIIJwW4oK6rIKzMs1e62NkcL7bVRHcxNUbQQzXV7Y4X4/FKMjCQsuj+AZRdS0LFc3B1RNx4apSk7yGVNorOaIzoxj/F9NTZzsjGjo4cNnz3dg8+e1nz+G0kkGBlJuL7sEaYvOcEJA5yxdTa1aGrTXENsOrLWplea2vSdo3G839CmQW4UV1SRb2D6ZHPaWuxvLtYsGx7Kt1E3WXdVv9PmsUA39icrtFK0DSW/WGNXx0Zp+w5yGQqlbrv2CXAmor0jLz2gWdZDIpFgbCQhbskY5v0ZzfqTyagqa3hrzXneW3cBR2sZ2YXlTOzri7KskjwDdxTNL63Q9DmrRtospU2ix27T18+Rnt72vHx/ey1t8R8M5/2dV1gXVe/EHhHswuJxnXhtc0yrd4jNL62kqqYGp0aRfo4W+rXdJkOpAlTcyC3BWCJh0cggfvr7JtWNvH8TOnuw93p2q9edzC+t0GizbKStmXbT0qZUcUNRgrEEFo0KrtM2u7cPF9OL+Om05rP0Wk4xpXur2fRED744Gl/7fwkE/1uEw07Q5qmp0aQAffXVV7i6aq/lYmKi6cKxsbHMnTuXGTNm8Oqrr2JlZUVkZCRLliwx6G9YWVlhZWWFl5cXYWFhDB48mMOHDzNyZNNoHSMTEyy8vCi6clVrd9aiq1ew69pV9/39/EjdvJmaykqMajfQKLpyBVNbW6QOrdsIAaDg4kWqiotx7NtP53VzSzOtSC21Wo2dg5zoM3F0qHVcVKgquXIxkSdf1J1GaO9swzdrX9c6t3fTX0SfjuOtz5/C2U3/unk1NWoq9axDYm5hprULp1qtxsZezuWzcfgF1WuLi0nk8dmGpTjW3aumps5R5Bfoyce/vqF1fdPPeyhVljL1tUdw0qHfzMJMa/dStVqNtb2cq+eu4xOo0VZZUUl8bCLjZj7USm3qOgfgbQ7+eZSdK/fw/KJnaR/W8lpYFpZmWju/qtVq7B3lnPv7BoEh9W0XeyGJma+MbpW++OvpODi27KzSh662k9tbcyPqOl4B9W2XdCmB0c8033YXj11g/edrmfDmJDoN6NzkeoWqAiMj7Xd+RkYSvRFB+vrcpUZ97npMIhPuoM/ddhTpvK5Wk5KQgWd73Yupm5qbae38qlarMbO1JjP2Kvb+GmdUdUUlOdcT6DTp4VZp+yewtDTT2vlVrVbj4GjN6VPXCQ7V6FWpKrl4PoEXXxuj9z6dOvtxaP9FSktVWFhoHlRuJmseJlybmVsaom+eu6hjnntKzzzn4GzDkkbz3J7aee7tFuY5XWNaF5VVNVy+rqBv93bsPVafztW3u0eLa9I5O1hwf28v3vtC987hD9zvx+fv3M+bnx7VurehVFbVcCkhj76d3Nhz6la9tk5u7Pv7ls46UddyMDUxwsvFilu10XxeLlaYmhiRpmd31P9rVFbVcCk+l75d3Nlzst5J2reLO/v0OE2jrmZr2s1Vzq1MjbPTy1XeYrsF+dmT08zupDr11ai5lKOkn6cdexLrHYH92tmyN1H/Wkw93GxYPjKEb8/dZFWM/tS5qho1mbUPxaPbO3HkZp5BkVRa2trZsafBulD9PO2a1dYYo1onhbFE0sQJcKdUVqu5dDOffsEu7DlXv+Zkv2AX9kYZvhZpkKct2YUam2UVlPHAvH1a1ycP9KdfsAvP/fAXqQrDxsztduvbTtumfdvZsq8Fm/78QAjfnbvJqljDbXq4lTa9rFDSx8OOvUn1Wvp42LI/Sb+27q42LBsWwncXbvLrZf3awpzkBDlYsfBv3etEt6ivWs2llAL6BTqz50L95jj9Ap3ZqydFdMQnB7WOh4S78fzwAMZ+cZTMRi8zqmrUdedGd2vHkcuZBi8NUFmt5lJGEf38Hdh9uX7ziH7+juy9ontzjWHfR2odDw104YUB/oxZ9heZDdK5R4W48tW4cOZsjmGPnns1q61GTWymkv4+9uy+Vu/s6+drz55rhjv/JBIJJkYSjI2gYRxFJzdrQlzkLDgYp79yc9oylPT3ddDW5mPPnlY4JhtrMzc1bhItfPvY0OwQgeBuIxx2gjaPr68vUqmUzMxMevTQvXFATEwMTk5OWmmxGRnab+pMTU3rnH/NoVZroisqKvS/oXEZMpTklb9g6euDpX97FMePUVlYiOOA+wBI27KZkqRkOr6miYayj4ggfedOkletxG3kKMqzssjctxf30aO1PgBKUzRvxarLykEioTQlBYmxMebu2g/7isjjyAMDkTm1vCYWaD5kRk8YwMaVB/Hwdsbdy4mNvxzEzELGgOFd6sot+XAtAC9/OAkTE2O8/bXX8bOxs8JEaqJ1fsPKg3QM8cLFw4HKiirO/3WVY3uimPH6WIO1DXtsADtWH8TN2xlXTye2/3oAM3MZvYbWO0CXfazR9uzcSQAc2BiJk5s9rrVRctejE9iz/iiDxmrWiZOZy2jnp63fwsqcmuqaJueb0zZo/H3s/f0Arl4uOHs6see3A8jMZfQYUq9t1cI1ADz17mQAjmw+jqObAy6eGm03ohM4+OcRBoypX8Nu//rDbF+xm6ffnYyzpxOFeZqoC6nUFHMr3Wsg6dI3flJ/fl9xCC8fZzy9Hfnt50OYm8sY8kC9XRfO1aRcvvvxRAA2rjmOq7s9Pn4uVFZVc3DXeU4cucT8L5+sq1NZWcXNRM1b/4qKKvIUSuKvp2FuLsPDq+U1FyUSCf3HDuDQugM4ezrj2M6ZQ2v3IzOT0WVQt7py6z77HYCJb00B4MKR86z77HcefHYMfmH+FNW2i4mJMRbWmt1Pg3uFcHzTUdp19MQr0JvcdAV7f91DcM+QJtF1+rQNf2wA22v7nJunE9tq+1zvBn3up9o+N7O2z+2v7XNuDfrc7vVHGTy23q5bVu7DP9gbV08nykrK2b8xkpSEdJ6c80iLum5r6zBiIFe37cPa3RW5mzNXtuzFRCbDq0/9/Hf6P78C0HN2vc3ykzXzR2VZGRKJhPzkFIxMTLBpp+nv1VVVFKVq5sWaykrKC4vIT07BxEyG3FX3QvmG6J0w5T5W/bwfH18XvLyd+GXZfswtZAwfVW/nD97V2Hn+Qo2dh4/qxoqf9rFg7lqemT2CYmUZX3+2mUFDOzcbmdeSlgcnDGDDyoO0q53nNuiY576pnedeaWaeM21hnov66ypH90TxjIHz3C8bYvji3YHEXMvmfGwWEx8KwtnRknXbNeueznmmB+GBzjw5Z5dWvfEjAygrq2L3kaYPqqMG+fPFuwP5bOnfnI3JqIvgq6ysobAVUQC/7LjKly/1IeZGLlHXspk4vCPOduasrV0L7/XJnQlv78AT8w8BcDImg0sJuSx6vjcfrzwHwNynu3MxLofYBrtfBvloohytLExRqzXHlVU1xKf+M2sxWlrI8PfRvNQzMpLg6eFIeLA3+QXFpKTf/ai/X7Ze5svX+hMTpyDqSjYTRwbgbG/B2t3XAXj9ya6Ed3Tkiff2A3DyYjqX4hUserkvH/98BoC5z0Rw8VoOsTc0To2nHgomNbuYG7fykZoYM2agH8N6ezP7k8Ot1xedxpeDA4jOVhKVUcikEHecLWV1UXOv9/Shk7OcqTs0O3D3dLdh+chQ1lxOZ1tcNo7mmpeLNWrIq4208rExp7OLnItZRVjLTJke7kFHe0veOHy9VdpWRKfy1eBAjbbMIiaFuOFsKWPNJY0z5Y1evnRyljNlu2ax/4c7OqOqruF6bgmVNWrCnOS80dOXPQk5VDRIPQxy0HxGWEk1D91BDpZU1qiJzzc8FfWX/XF8OaMn0Ul5RMUrmHS/P8625qw9ptkR+vVxoXTys2fqlxon+rg+3lRW13DlVgE1NZo17KYMas/nGzXaq6rVxKVpb5KQW6SioqqmyfkWtcWk8eWgAGKylURlFjLxtk1ro+Zej/Ah3FnOEzvrbfrzA7U2vdGMTZ3lXMguwkZmyrRwDzrYW/LGkdbZdOWlND6/L4CYHCXnswqZGOiOs4WM9dc02l7r7kO4k5yn9mi0RbjZ8NOwUNZdTWdHfL22ajVNIvseD3QlqbCUMxl3PnesOBzPV090Jzo5n6jEPCb188HZxow1kZoXHW88FEwnbzumfHcSgLgM7dTcMC87atTa532drejkbcfF5DysLaRMH9Seju7WvP6b/h3SdbH8ryS+HteJ6NRCzt3KZ0oPL1zkMtac1bw0eXNIRzq1s2HyKs1O8XHZ2ssehLvbUKNWa51/MNSNrx8JZ+G+a5y5mVcXJVdRrabQwGhYgOVnbrH4wRCiM4o4l1rA5C7tcLGSsaZ219w37/Ons7sNk9adB2BsqCuqqhocsMHAAAAgAElEQVSuZxdTUaMm3FXOW/f7s/taNhWNQmEndfYgMa9Ea9OH1rD8zE0WPxRKdHqttq7tNO12XuNcf/P+9nR2t2bS2tva3FBVVXM9p5iKajXhbta8NbC9lraDN3JYNDKYKV3bcSwxFxcrKfOGBBCbUUR6UevTiQWCu4Fw2AnaPJaWlkyePJklS5agVqvp0qULZWVlxMbGYmRkxNixY/Hy8iInJ4e9e/cSFhbGqVOn2L9/v9Z93NzcyMjI4Nq1a7i6umJhYUFWVhaHDx8mIiICOzs7srOz+fXXX5FKpXVr4+nCvkcPqkpKyNi9m8rCQszd3Wn/wovIaqPlKgsLUSly6sobm1vQ8ZVXuLV2HVcXfoKxhQUuQ4biPER7R8KrH3+kdVwYE4PUwYGwhZ/WnVPl5KC8fh3fGc+0qh3HTh1IhaqSn7/YTLGyjA4hXnzw7bNaESo5Wa3fca28VMVPn20iN6cAqcwUD29nXv5gIv2H64421MXISYOoUFXy29ebKCkuwz/Ii9e/nqkVFZWbpf2BXlNTw58/7kSRmY+xsRHO7g48Oms0A8f0bvX/0BzDJgyiUlXJ+iUbKVWW4RvkzYtfzNKKJsvLbqxNzZafdpCblY+RsRFO7g48/Mxo+j9UvznBsa0nqK6qZvmC1Vp1ew3vwZNvTzJY34SnBqJSVbJk0WaURWUEhXrxxdJntCLxsjO19VVWVrN08Q4U2YXIZKb4+Lvy6bfT6dW/fgH93JwinpmwuO44PSWXHZv+plM3P75Z3vJGJwADHx9MZUUlm7/fRJmyFK9Ab55Z9JxW2+U3artTO09SU13DtqVb2LZ0S915v3B/Zn/1IgBDJg9DIpGwb9VuChSFWNpYEtwrhAeeHmWQLoBRtX1u9debKC0uwy/IizcN7HM5DfrcY7NGM6hBnytVlrHyiw0U5hVhbmmOdwcP3v3+BfyDm093bkjgg0Oprqjk/Ko/qCgpxcHfh/veeUErEq80t+kX3APvLtI6Tj8fi4WjPaO/1cwr5fmFWmWKs06QeOgETkEdGPj+Kwbra8wT0wajUlXy+ScbURaVEhLmzXc/PacViZeVoa3XwkLGDz/P5stPN/HUxK+wtrbgvoFhPP9q6yIcGzN2qmY8LKud5zqGePHhXZrnftQxzw0wcJ7bfSQRW2szZk/tirO9BXFJeTzz1p669eacHSzw8miaBjx+ZADbD96gXNV0eYeJDwVhamLE3Bf7MPfF+rnl9MV0pryy0+D/bfdfN7GTy5g9PhRnO3PibhUwY+ER0mujvpzszPFyrXeiqtXwzMKjzJvenbUfDUNVUc2J6AwWrorSiirZ8ZX2eBzcox2p2cXc/9xWg7W1hq7hfuz/c17d8bw5jzJvzqP8tuEYz875sZmad8buyGRNuz3eCWd7c+Ju5jPjw4MN2s0Crwa7d6rV8Mz8Q8yb2ZO1ix5AVVHFiYvpLFx+tq7dTE2NeGdad1wcLCivqObGrQKmf3iAY+cMXyj+NrsScrA1M+H5rl44WUq5kVfC9F2XSK9NK3W2kOJlXf9y6JEAFyxMjXmmsyfPdPasO59aVM59azQORmMJTAtvh5+tOVU1av5OL+DRLRdJa2Wa2K74HOxkprzQzRsnSylxuSVM2xlbp82pkbbqGjXPdfXCx8YciURCmrKc3y+lsyJaO+pt1+PaSxMM8XUktaicAb+fNlzb2VRsrWQ8PzoIJxszbqQVMX1JJOm5Gqefs605Xk7aS048PzoYDwcLqmvUJGcpeXvl2boNJ+4muxNysDMzYXY3L5wtpMTllTBjd71NnSyleNnUt9s4fTZVlnN/Q5t2aoevTb1NH7sDm+5JzMFOZsJznWu15Zfw7L5LWjb1bGDTsR002qaHezI9XFvb4D/O1B1bmhoz0s+Z/1xoXbp/Y3adT8POUsoLIwJwsjYjLqOIaf/5i/TazYCcrM3wcrRs1T2NJBKmD2qPn4sVVdVqTsXlMP6rY6QZsNRBQ3ZeysTWXMqL9/njJDcjLlvJ07+fq1tvzlkuw9vOsLWYbzO5hyemxkZ8MDKYD0YG153/OymXCSvPNFOzkbarWdiZm/JCH1+crWTE5RTz1J8XSat1XjlbyfCy1R6rz/f2wcfOAokE0grLWR2VyvKz2uPBUmrMg8EuLDlx5xvH1Gnr20DbHxcaaatvt+oaNc/38W2kLYXlZ+q1bYzNwEpmwpPdPJk7uCNKVRWnbuax8LDhmzn9X8NI8i/YSaqNIykoKBBWELQ5fv/9dzZs2MC2bdsATdTbn3/+yebNm0lNTcXS0pKOHTsydepUevbsCcAPP/zAtm3bUKlU9OzZk4iICD7//HPOnNF8MFVUVDBv3jzOnj2LUqlk3rx59OjRg4ULF3Lt2jWUSiX29vZ06dKF6dOn4+Pjo1PbcxfufJ2vf5K5nXUv1NtWKKxou6HkZVVtV1ugrWHrMN4LohRt952Ps1nL0bT3kp0pspYL3SNeD2v9GkH/K9JL2662hx5Ob7nQPULt0LqHvf81aWd3tVzoHuERPvxeS9CLelTLSyncK/Rt0tBWkETdvc0L7jaSHrp3pG0LGLfdj30qL7bd9TNr7PVvKNYWUJubtlzoXtHG55KY5yPutYR/lLb63HunLO3SdKmdto5w2AkEraStTlzCYXfnCIfdnSEcdneOcNjdGcJhd2cIh92dIxx2d4Zw2N05wmF3ZwiH3Z0jHHZ3jnDY/f/F/48OO7FTr0AgEAgEAoFAIBAIBAKBQNCGaMPvSQQCgUAgEAgEAoFAIBAIBP9rjNpuEtK/BhFhJxAIBAKBQCAQCAQCgUAgELQhhMNOIBAIBAKBQCAQCAQCgUAgaEMIh51AIBAIBAKBQCAQCAQCgeBfycaNGxkzZgz9+vXjiSee4MKFC82Wj4+PZ+bMmfTv359Ro0axfPnyf2TDJeGwEwgEAoFAIBAIBAKBQCAQ1GH0f+xHHwcOHOCrr77i6aef5rfffiMsLIxXXnmFzMxMneWLi4t54YUXsLe3Z9WqVcyZM4fff/+dtWvXGtCqrUM47AQCgUAgEAgEAoFAIBAIBP861q5dy+jRo3n44Yfx9fXljTfewNHRkU2bNuksv3fvXlQqFR988AH+/v4MGjSIqVOnsnbt2rseZSccdgKBQCAQCAQCgUAgEAgEgn8VlZWVXLt2jZ49e2qd79mzJzExMTrrxMbG0rlzZ8zMzOrO9e7dm5ycHNLT0++qPuGwEwgEAoFAIBAIBAKBQCAQ/KsoKCiguroae3t7rfP29vbk5ubqrJOXl6ezPKC3zp0iHHYCgUAgEAgEAoFAIBAIBIJ/JRKJROtYrVY3Odcct1NhW1PHEEzu6t0EAoFAIBAIBAKBQCAQCAT/X2N0d31PbRJbW1uMjY2bRMbl5+c3iaK7jb29PXl5eU3K3752NxERdgKBQCAQCAQCgUAgEAgEgn8VpqamBAYGcubMGa3zp0+fJjw8XGedsLAwLl68iEql0irv5OSEu7v7XdUnHHYCgUAgEAgEAoFAIBAIBIJ/HZMmTWLnzp1s3bqVpKQkvvrqKxQKBePGjQPghx9+YPbs2XXlR4wYgUwmY8GCBSQkJHDkyBFWr17NpEmTREqsQCAQCAQCgUAgEAgEAoFA8N8ydOhQCgsLWblyJQqFAn9/fxYvXoybmxsACoWCtLS0uvJWVlZ8//33fP755zz55JPI5XImTZrEpEmT7ro24bATCAQCgUAgEAgEAoFAIBDUYSRR32sJ/zPGjx/P+PHjdV774IMPmpxr3749y5Yt+6dliZRYgUAgEAgEAoFAIBAIBAKBoC0hIuwEglZiZtw23zSoqu+1guZpb912BV7IbbtT4YlM03stQS9t2abnFG3XpgDmbXQeAaiqqbjXEvSiqm677xnVVtJ7LUEv1b4291pCs3ioht9rCXpJi9l3ryXoxaXT1HstQT/GbXtrQRNl253naq7ktVzoHmHXz/FeS9CLIuju7sx4N1EXtt3+BiB3k91rCXpRppffawkCwT2l7X7zFQgEAoFAIBAIBAKBQCAQCP6FtO0QBIFAIBAIBAKBQCAQCAQCwf8Uo7YdLP2vQETYCQQCgUAgEAgEAoFAIBAIBG0I4bATCAQCgUAgEAgEAoFAIBAI2hDCYScQCAQCgUAgEAgEAoFAIBC0IcQadgKBQCAQCAQCgUAgEAgEgjpEdNe9R9hAIBAIBAKBQCAQCAQCgUAgaEMIh51AIBAIBAKBQCAQCAQCgUDQhhAOO4FAIBAIBAKBQCAQCAQCgaANIdawEwgEAoFAIBAIBAKBQCAQ1GEkUd9rCf96RISdQCAQCAQCgUAgEAgEAoFA0IYQDjuBQCAQCAQCgUAgEAgEAoGgDSEcdgKBQCAQCAQCgUAgEAgEAkEbQqxhJxAIBAKBQCAQCAQCgUAgqMNIcq8VCESEnUAgEAgEAoFAIBAIBAKBQNCGEA47gUAgEAgEAoFAIBAIBAKBoA0hUmIFgjtErVaTsn0nmccjqS4txcrXF//JE7HwcG+2XuH1OJL+2EBpejpSW1s8RgzD7f776q6XpqVza/sOim/eQqVQ4PngaLzGPKh9j7g40vYdoOTmLSoKCmj/9JMQHN6i3o0r9nN4+98UF5XSPsSbaXPG4ennqrfOlQsJrFu6i4xbOajKK3BytWPgQz15cNJArXK7/zjOwS1/kZOZj9zGku79Q5g0ezRmFrJmNTXU9suPB9i+6TTKolKCw7x47Z2x+LXXr+382QRemvFjk/Nrtr6Bt6+zRte2syyc92eTMofOLEQmMzVImz69e37dx8ldpyhTluEd5MVjLz2Cm6+b3jo3ouPZ8fMuslKzqSyvxM7Fjj4jezH48YF66xiq5ciavZzb8xdlxWW0C/Bm9PPjcfHWr+XyyWjO7jpJRkIqVZVVOHu5MmDCUIJ6hdWVOX/gNFu+Xtuk7rxtX2IqNazt1Go1m37Zx6Ftf1Oi1PS5p197pIU+F8/6H3eTcSu7ts/ZM/DBnoxu0OcWvPADVy8kNKnr4ePCl2veMkibPr2n1u8hZt9fqErKcO3ozeCZj+Lo1YxdT0UTvfcE2YmpVFVU4eDpSs9Hh9G+Z5jeOoboiN64m7hDJ6koLsOxgzc9pz2Onad+HaX5hZz7bTO5SakoM7LxGxBBv9lT9ZZPPHmOyG9X0a5rCIPfeq7V+lbUjteiolJCwryYY8B4fUHHeF279Q18ascrQElxOT99v5ejB2MpLCjB2dWWWS8+wODhnQzWtnHFfg7VznMdWjHPpTeY5wY1mueqqqrZuvoQx3efI09RiJuXE5Nnj6Zzr0CDdAFMHhnAjHGhONtbcONWPh//fIZzl7ObrfPUQ8FMfCAAT1crCpQqthxK4ItfowDoGebKmk9HNKkzbNYWElMLDdYFMKWPN8/e3x5nuYy4LCUfbbvM2aS8Fuv5OFqy45UBSCQQ+t4erWumxhJeGNKRsd3a4WwtQ6GsYPmxBFadSGqVtrbcbobSNyKQV2aOpmuYL+6u9jzz2lJ+33j8H/lbDZnS04uZ/fw0ds0uZsGuK5y9md9iPR8HC3Y+3w8JELJgf935nj72vDksAD8nS8xNjUkrKGP9uRR+bqVNAab08GJmP1+crWTE5RSzYM9Vw7TZW7Dzub4abZ8cqDs/PMiFyT28CHGzRmZiRHxOMd8fS+Dg9eb7iiFMHtaBGQ8F42xrzo3UAj5eFcW5aznN1nlqZAATh3bA09mKguIKthxL5Iu1F/9rLVP6+fLM4PY4W5sRl6nk402xnE3MbbGej5Ml29+4H4lEQtgbO7WuPdStHc8O7oCvsyXF5VWcvJ7Dwq2XUChVrdI23t+VKQHtcDSXklhYytcXE7moKNJZVmok4Z1u7Qmws8LX2pxohZJZR2OblBvu5cQTAR54yc0pqazmTHYBS6KTyC2vbJU2gCmh7jzbpR3OFjLi8kr46EQCZzN0j/n2dhYsGNCBDvYWyKUmZJWo2BGfw5IzyVTWqAFwspDyXl8/Qp3k+NiYs+V6Fm8cvt5qXQBTu7ZjZi8fnKyk3MgpYf7B65xNKdBZtoOjJR8ND6S9oyVymQnZShXbr2TxTWRCnTaAMcGuzOztg5+9BUpVFSeT8/jkUBw5JRWt0vZ4gBtPh7bDyUJKfH4Jn51J5Hy2brv2cLVharAHYY5yrKTGpBSV89uVNLbEZ+ks38XZmpUjwkkqLGXstvOt0gVtu90EgruFcNgJ2iQ1NTV89tlnHDp0iKKiIpYuXUq3bt3utSwt0vbuI23/ATpMewpzVxdSduzi0tff0PWTBZiYmemsU56j4MqS73Dp14eOM6ZRFB9P4pq1mMrlOHbrCkB1RQUyBwccunbh5pZtOu9TXa7C0sMd5969uPHLSoP0bv/9CLvWH+O59ybg7uXEppUHWPjKT3y97i3MLXXrNTOX8sCj/fH0d0NmZsr1mGSWf74RmUzKsEf6AnBi/3nW/mcnz779GIGd/chOy+WnT/+koqKKWe8+bpC2NSuPsn71cd776DG8vJ1ZuewAr876mXXb3sBCj7bb/Lb5daxtzOuObe2stP8HM1P+2PW21rn/xlkHcHD9YQ5vOMqUtybi7OnM3tX7+P7NH3n/13cws9CtV2Yu475x/XH3dcPUTErSpSTWL96AqZkpA8b0u2MtkRsOcXLzEca9NgnHds4cWbuPX9/9Dy///B4yPVqSY+Px69yBIU+OwlxuQfSRc6z7aAXTPnsRn1D/unKmMimv/vK+Vl1DnXUAO9YcZte6Y8x6bwLu3s5sWrmfha/8yNfr3m6mz8kY8Wh/PP1q+1xsEis+34jUTMqwcZo+99rCp6iqrK6rU1lZxVtTv6DX4M4Ga9PF2c0HObf1CCNenoy9hzOn/tjLxnk/MO0/c5HqacuUS/F4hnWk7+TRmMktuHrsHNsXLeexj1+iXYi/zjotcWn7QS7vPEy/2VOwdnMhetMeDnzyHWMXz8PUXLeOmsoqZHIrwsYMJe7QyWbvr8xSEPX7VpwD70zf7zrG6yu149WyhfG6ppnxWlVZzSuzfkZubc5Hn0/B2cWG7KxCTKWGf1XZ/vsRdq4/xuz3JuBWO8998spPLG5hnhvxaH+8GsxzP3++EalMyvDaee6Pn/YQuS+KZ996FA8fF6JPX+fLt1fy0U8v4hvQrkVdI/v7MPfZnny49BTnLmczeVQgKz4cyojZW8nIKdFZ590ZPRjYox2f/XKO68n5yC2lONmbNyk34rktFCjrHyTyisoNaao6RnVyZ96YUOZtjuVsUh5T+/iwckZPhn1xlPSCMr31TI0lfDulK2eScunp59Dk+pLJ3XC3NePdDdEkKUpwksuQmRq3SltbbrfWYGVpxpXrKazddJzli2f/Y3+nIaPD3PhgVDDvb7/M2Zt5TO3pzaonezB0yXHSC/X/r6bGEr57vAtnkvPo6WOvda2koopVp5K5lqWkrLKa7l52LHw4lLLKan4/fctwbaGufDAyiPd3XubszXymRnixakp3hn4f2bK2xzpz5mYePb21tfXysedUUi5fHYqjoKySh8Pd+WliVyasPG2QI1AfI3t7M/ep7ny44gznruUweVhHVrw7kBGv7iQjt1RnnXef6MrArh589vsFrt8qQG5hipNd0z7YWkZ18eD9R8KY92c05xJzmdLPj1+e683whYdIz29+rC55qgdnE3KJaO+oda2brz1fTe3Gp1svsT8mA0drGQse7cQ3T3Rnyg/Nf5Y0ZKinI3O6+PHZ+QQu5hQxvr0bS/qH8Ni+82SVNnX8GUkkqGpq2BCfTh83e+SmTef5cAc58yM6siQmiWNpudjLpLzVzZ+PegYw+9glg7UBjGrvxLx+/sw7foOzGUVMDXVn5YNhDFt7lvTipvoqa2rYdD2TKznFFFVUEeRgxacDO2IikbDoVCIAUmMJ+eWVLD1/i4nB+l+otcToIBc+GBrA3H3XOJdSwNRu7fj18S4MWXaKdB3zUkV1DRtj0rmcpaSovIogFzmLRgZhYiTh0yM3AOjezobFD4XyyaE49sdl42gp4+MRgSwZE8qktYY7xkb4OPJ2Tz8+PpXAhexCHg9058ehoTy0NYrMkqbt1tnJmhv5Jay8lEpOaQV9Pez4oE8HVNU17E7SdnJbS01Y2L8jpzMKcLaQtrLV2na7/V9CrGF37xEpsYI2ycmTJ9mxYwdff/01u3fvJjy8+egxQ1i2bBkTJkzQe12tVvPSSy8RERHBoUOHmr2XWq0m/eAh2j0wAsduXbH08KDDtKeoLi9HcfqM3nqZx44htbXFb9JELNzdcB3QH6fevUnfV/8GW+7rg+9j43HqGYGxVPcHmH14GN7jxuLYvRtIWh7GarWaPX8eZ8yUQfQcGI6nvxuz359IWamKkwcu6K3nF+hJn6Fd8PRzxdndgf4juhHeM4Br0Yl1ZeJik+kQ4s2AB7rj7GZPaPcODHigG/GXDfvyrlar2bAmkinTBnL/kHD8Orgy96MJlJao2L9bv7bb2Nlb4eBoXfdjbKzdHhKJROu6g6O1Qbqa03t00zGGThxM5wGdcPd1Y8rbk1CVqjh3SP+HuVdHT7oN6oqbrxuObg70GNqdwO4BJMQk6q1jiJZTW4/R/9EhhPTrjIuPO4/MmYyqTEXM0Si99UbNeoQBjw2lXYA3Du5ODJr8AO7tPbl6KkarnEQCcntrrZ/WaNvz53EemjqIngM74ennxuy5EykvVXHygP528gv0pM+QBn1ueHfCI7T7nJW1JbYO1nU/16OTKC+vYOCoCIP16dJ7fscxIh4ZQsc+nXH0dmfEy1OoKFNx9bj+thz0zCP0HD8Ut47e2Lk50WfCA7j4exJ/OkZvnZZ0XN19hLAxQ/Hu2QU7L3f6PT+VyjIViSfO6a1n5exAz6cfpf39vZBZWegtV1NVzfFvV9JlwmjkLo56yzWn78/a8TpwSDj+HVx5v3a8Hvgvx+vObWfJzyvmsyVP0amrL24e9nTq6ktwqKfB2nY3mOe8/N14vnaeO9HCPNe3hXkucl8UD00eSNe+wbh4ODBsXB+69Ali57pjBmmb9nAImw/F88e+GySkFrLgp9Pk5JcxeWSAzvK+HtZMHR3ErI8Oc/B0CilZxVxJzOPYubQmZXMLy1EUlNX91DSIFDCEGff5selsCutP3yIhu5gPt14iu6icyb29m6331qhgrmUUsTs6vcm1/h2d6NvBkaeXn+HEDQVp+WVcvFXA6YSWI4Ea0pbbrTXsO3KRDz7/gy27z/yjf6chM/r6svF8KuvPpZCQU8KHO6+QrVQxpWfzdn17eCDXMpXsjs1ocu1SehE7YjO4kV1Man4ZW6PTOX5DQUQj51mL2vr4svFCGuujUklQlPDh7qtkF6uY0sOreW1DAzTaLmU2uTZ/z1WWRiYSnVbIzbxSlhyNJza9kGGBLq3S1phpowPZfCyRPw4lkJBWxIKV5zR9cFhHneV93eRMHRHArC+OcfBcKinZxVxJzufYhabjpLVMH+jPptO3+OPUTRKyipm/KYacwnIm9/Nttt5bD4VwPa2Q3To0dPG1J7OgjF+OJpCaV8rF5HxWH0+kk49dq7RN6ujBzuRstiZmkaws48sLiSjKKxjvrzu6uby6hkVRCWxJzCJbh0MPINzRmuwyFevi0kkvUXEpT8mfN9IJsZe3ShvAjM7t2HQti/VXMknIL+XDyHiyS1RMDtWdFXOzsJxN17K4mltCmlLFweRctsZl08Pdpq5MmlLF/MgENl3LokBV1WpNddoivNkYk876i2nE55bwwf7rZBdXMKWr7pdBN/PL2BibwdXsYtKKyjl4I4dtlzKJ8LStK9PVw5YMZTkrzt4ipbCcC+mFrDqXQucG+g3hiRAPtsVnselGJomFZXx6OoGcsgomBOh2UP4cm8J3F25yIbuI1OJy/riewcGbCoZ6N/2+saBvB7bHZxOdoztaryXacrsJBHcT4bATtElSU1NxdHQkPDwcR0dHTE3/u4goQ1izZg3Gxoa9/VcpFFQWFmEbElx3zlgqxaZjB4rim6bq3UaZkIhtSJDWObvQEIpv3qSmqlpPrf+e7PQ8CnKVhEfUf8GUykwJ6uRHXGyywfdJup5KXGwyQV3qI3MCw31JvpHOjUs3AVBk5hMVeZkufQxLFUtPyyNXoSSid702mZkpnbv5cin6Zov1Z0xawpjBC3j5mZ84fya+yXWVqpJHRnzC2KEf8+YLvxB3temDW2vIzcilKE9JYPf6B0apTIp/uB9Jlw1PC0q5kUrS5WQ6dLqzKCeA/MxcivOLaN+1XoupTIpPqD+3rrQuRUlVpsK8kaOnsqKSL5/8kC+mzOO3D34iPT7V4PvV9zntdgrs3Mo+F5dK3KVkgjrrb6fDO/6mc68gHFxa94DRkMKsXEryi/DpUt9vTWVS2oX4k36tdW1ZUabCrBmnWXMUZ+dSVlCEe3j9PGEileIS1J6cuDt37t7m/PodWDk50P6+XndUX9947dTNl1gDxuu0SUt4cPACXnzmJ6IajdfII5cJ6+zD159uZfSg+Uwa+wXLl+7XiqZsjrs9zwU3mOcqK6owbRSZK5Wacj2m5b5hamJEaHsHTpzXnntOnE+ja6CzzjpDenmRkqlkQDcPDi9/hKMrxvP5q/2wt2kaJbhl8YP8tfoxVn8yjF5h+lN/dWozlhDqYUNknHbkw4m4HLr56HfCDAxyZlCQM/O36o5yGRrqSkxKAdPv8+OvuUM4/NZAPhgTgoXU8Ai7ttxubR1TYwmh7tZExiu0zkfGK+jmZaunFgwMcGJQgDMf7rxs0N8JcbOmm5cdp5NbTp/W0uZmTWSCLm365/CBHWu17b5i8N+ykplQeAepk/VajQj1s+dEtLbz8kRMJl0DdL/wGNLDk5TsYgZ0dufwdw9x9PsxfP58b+ytDVsiRL8WCaGetkRe007xjbyeTVffZsZqsAuDQlyZv6lpuilAVGIuTtZmDArVjAE7S4GceJoAACAASURBVCmju3pw9IruFEZdmBhJCLSz4u9M7UjG01n5hDvc+UvSaEURjmZS+rtp/j8bqQlDvZw4mWl4fwMwNZIQ6iQnMkW73omUfLq5GqbP28aM+7zsOJ2mO93yTjE1khDmJud4kvbLjMikXLq10z9WtbTZmXOfvwN/36pv/3OpBThbyRhcG1FpZ27Kg8EuHGk07prDxEhCsIOcvxr9z3+l5dPJ2XC7WkmNKarQdmg+HuCGo7mUn2IMj8xtSFtuN4HgbiNSYgVtjvnz57Nr1y4AIiIicHNzY+vWrfz2229s2bIFhUJBu3bteOKJJ3jggQfq6n3//fccPXqUrKws7O3tGTx4MDNnzkQmk7Fz506WL19ed0+AefPmMXr0aACuXLnC+vXrWb16NSNGNF3bpjEVhZq3QVJr7Q8sU2trKgr0f5hXFBVhY63tsDO1lqOurqGquBip7T/zBqcgT6PXptFbSRt7K/JyWl6zZ/aYBRQVFFNdXcP4acMYOrZP3bU+Q7ugLCrhw9k/gFpNdXUN/Ud0Y9Ls0QZpy1MoAbBz0E5ltbOXo8jWr83RSc7r740jMNSTqsoq9u48z8vPLuO7FbPo3M0PAC8fJ96Z/xjtO7pRWqpiw5oTPPfUD6z681U8vZ0M0teYojyNXrmddlta28kpULTclu8/9iHFhZq2fOCJ4fR7qO8d6QAoztdosWqkxcpWTlGu4Wsxnd4RSZGigM6DetSdc2znzNhXJuHq546qTMWprcdY/vo3PP/Dmzh46H5Ybkjh7T5n17jPyck3oM89//D8uj73yNPafa4hGbeyuXohgTmLprV4z+YoydfotbDV1mthK6e4FW15YddxlIoCgu/v0XJhHZQVaHSYNdJhbiOnNO+/e1BIi75K8qkoHvzsnTu+x+3xat9ovNrby8lpZrw6OMl5471xBIV6Ulk7Xl96dhnfr5hFl9rxmpaaS9SZeIY+0IUvv59ORnoeXy3cQlmpihfnPKj33re5Pc/Z3uE891wz81ynngHs/uM4IV38cfV05NK5G5w5FktNTU2L97WzlmFibISiQDtFR1FQTp/OutPkPF3leDhbMWqAL28tPoEaNW9P68GyeYN59PVdqNWQnVfK+z+cIiZOgdTUiIcH+rP6k+FMfmcvZy8b9rBtZynVaGuUEpZTrKKvXLeDwUku49PxnZj161lKVLqdqV72FvTwtaeiuobZq89hbWbKh2NDcbExY/Zq/RGrWtracLu1dewsdNtVUayir3/T9GXQ2HXRw2HMWnuekormneSn3hyIvaUUEyMjlhy+wZozhj9069VWUkFfK91ZBU5WMhY9FMqs9Rda1HabqRFeuFqbseXinb+kq+uDhY37YBl99Dh5PV2s8HC0ZFQfb976z9+o1WrentqVZW/dz6Nz96G+wwBLO8taLY3WlVMoVfTtqGesWstYOLEzz604Q4meCLALyfm88us5Fv8/9u47vqnqf/z4Kx3pTPfeixZayt5lb0VFEdkgKAgKbuXjAkVFcYEDRQUUZUOVXYbsgmwotKwuWrr3SGc68vsjJW3apE0dH/r5fc/z8fDxMLf33rw599yT5H3PmNEdU2NDjA0NiLyVzWsb9LtPAWykxhgZSMhvlBzNr6iil9Nff+AenSfn7bO3eb9PIKaGBhgZGHA2s4Al5+NadR5bU1V8uWWa8eWUVRHm0fxQzPBxXejoKMPEyIDN19P57Gzr52tsNjZz1X2U22h+tJxSBWE+zcf2+4yehLjIMDUyZNOVVD49Xv8Q7HJaES/sjOarsaGYGhlgbGjAycQ8XtmjXzIewNZEVW55FZqx5VVU0cdMv+s6yMOO3q42TI+4qt7Wzsac57p4MWVfFH+1w3FbLjdB+KeJhJ3Q5rz66qu4urqye/du1q1bh6GhIatWreLo0aMsXLgQLy8voqOj+eijj5DJZPTvr5r/y8zMjEWLFuHo6MidO3dYtmwZUqmUefPmMXz4cBISEjh16hSrVq0CwNJS9YOztLSURYsW8eabb2Jnp/0p5YEDB/j4448BqKytJfiFBao/NB7Xr8c3MUnjg5TqP/xjTh28xOpPw9Wv//P5bK3voVSqhoy25L1V86koVxAXk8ym7/bi6GrHwAd6AKoJ23//+TBPvzaOgBBvMlNz+eXLnWxfc5AJc5omPw/tu8xnH/ymfv3pSlWipUkcSmWzZeLl44SXT33iqGNnHzLTC9j8ywl1wq5jZx86dvbR2GfWhBX8tvk0L73xaIv/boALhy+xZXn9whXzPp5TF6+WcPUoyxe/eh5FeSV3biSze/Ve7F3s6DVSv+TO1aMX2f3NVvXraUvm1sWi+b5Kmi+7hq6fiuLg2l088caT2DjX13+vDr54dfDVeP3tgk85uzuSMc8+3uQ8pw5eYs1n29WvF342uy62Rju2cF3vefe7BVSUVxJ3PZnN3+2tG6rYo8l+R3efxcbeiq59O2g5i243j1/gj1X1ZfnYorl1/9f0/tTjsgIQ+2cUJ9ftYsxrM7Fy0m+IWGLkBc6s3qx+PeyNZ+uiaHRNla0IRIuK4hJOr1rPwOdnNjtktrGD+y7zaYP79XMd96tSqWw2PG8fJ7wb3K+hDe7Xewk7Za0SWztL3nh3PIaGBrQP9qCosIyvP9vNglceavKekY3auTf+Zju3pEE7t/G7vTg1aOdmvvQoPyzbxitTP0UikeDsbs/gMT05vu9Ci+dVx4Hm54NEovsjw0ACJlJDXvsikqR0VSLytS8iOfzjODq1c+BqbC530oq5k1Y/lOjKrRzcnS2ZPS6k1YmnxnFIkKDr02zFlK5sPJNE1F3dCWQDier4lzZeRl6hShS8uyOGX5/pg4NlNLkl+k/e3ZbLra1rcl2buQ2+fKIzG87f5YqOCdsbemL1WSykRnT1tOGNUUGkFJSxI6p1Qz4bX0KJto33YhvfiQ0X7nIlVb+HFqODnXlrZHue3x5FWjNz4ulLqWxcByVNtt2jroMr/yQpQ/WA47WVf3L4q0fo5G/P1fjWDQtvGozmS0nTTWorpvdg46kkopJ0z+EX4CJj8eOhrDxwm8hb2ThamfLm2BCWTuzCaxtaN2eXtjj+zgBwXyszXuvqx9obKZzNLMDBVMoLnX15s3sA752PbfX5mtQ5ScvxPX/oJhbGhnRwsODNfv7M61bBqssprX7vVsemZVtj83dcw9LEiA5OMt4a2o5n+/rw3ZkkQLXAwnsjg/jmVCInEvNwsjThrWHt+PiBDq1OPjX9fNDvunZ1suKTgUEsO5dITG4JoOoZ99mg9nx+4Q5pWuYObK22XG7/vxDDMe8/kbAT2hxLS0vMzc0xNDTEwcGB8vJyNm/ezNdff03Xrl0BcHd358aNG4SHh6sTdk8//bT6HG5ubsycOZONGzcyb948TE1NMTMzU5+zoWXLltGnTx/CwnT3dBowYAAhISEALL11A2W16geIoqgYkwZJviq5HGMr3d3EpVZWKIo1e3pUyeVIDA0wsrDUcVTrde8fQkBI/Tw1VXVd0Yvy5Dg0GDZYXFDSpNedNk5uqifyXv6uFOXLCV97SP1DduuP++k3oitDH+mj3qeyXMGPy7bx+KwRGBppDoHqPziY4ND6eWoUdbHl58pxdqnvxl5QUIKdfevmKQkO9eTIgas6/34vCZByV/+u7aH9QvDp8Jr6dXVdvMX5cmyd6stSXihHZtvyNXRwVZWlm58b8gI5+385qHfCrn2fjni0r7+u1VWqWOT5xVg71sdSWliCpU3LZXf9VBS/fb6Bca9O01ghVhsDQwPc23mSl659ZTxVnau/rlV1vSAK8+UaQ1WLCkqa9LrTpr7OuVGUX0L42oNNEnbVVdWc3H+RoY/0aVLPWuLfKxSXIB/165q6siwrLMaqQVmWFckxt2l56Efsn1HsX7GeB16a1qoVYj17hOLQrmkc5YXFWDjUx1FRXIKZdevn7bmnMCWd8oJiDn24Ur3t3g/OXye/wNgv3sbarelcT/0HBxOi5X7N+4fu18MN7ld7RyuMjAw05rXz8XOioqKKwoJSbO00768e/UNop6WdK/wH2rnCRu2cla0lr3/yFIrKKkqKy7B1sGLTd/twcms5MVtQXEl1TS2ONpq9wuytTcnTsahDTn45VdW16qQTQFJ6MVXVtbg5WnA1VnsbdvV2DmMGNj+flUZspQpVbI160zlYSnWuEBnWzpHefva8MEI19FgikWBoICHukzEs/j2azefuki2vILOoQp2sA4jPUiUv3GzN9ErYteVya+sKyrRfV3sLkyY92+4J83egt48dLw4JAOqva/z7o1m05zqbL9QnKVLrFji4nSXHwVLKS0Pb6Z2wU8dm2Tg2aZPeMurY/Bzo7W3Hi4MbxfbuKBbtvcHmS/WxjQ52ZsW4zrzy+7W/vUJss3VQRyIwp6CuDtYl6wCSMuSqOuhg8ZcTdgWlqlgcGg2ttZeZ6LxX+wU50ivAnhdGq6amuFdusSseYfH2q2z5M5lnRwRyNbmA1UdVvYxupRdTrqhm20sD+WLvTTKaWXjmnkJFFdW1SuxNNXtd2ZkaN+l11xoz23tyPb+EDbdVvSTji8oov5zAmqGdWBWdRFa5fon/ggpVfI7mmvE5mBmTW9b8OTLq7pf4gjIMJRKWDQnixysp1PxDU1EWlCmorq3F0UKzV5hDM/eDOjZ5JcgricstxVACy8YE88PZZGqUSp7r60NUejE/nFNNVXErp4SyAzX8NqMnnx2PVx3bUmyVqnJzMNOMzc7UmLzy5q9rVycrVg0PYWVUMltv1w8pdzSXEmBrwQf9A/mgv+ozxECiesgTNaM/zx2O4c/0lhPzbbncBOGfJhJ2Qpt3584dKisrefHFFzV6SVRXV+PqWj/p6ZEjR9iyZQspKSmUl5dTW1tLTU3zQyciIiKIi4vjl19+aXY/CwsLLCwsADAryEWpVGJsbUXhjRvIfH0AqK2qojguHp8nmvY+ukfm70feFc2EUuGNG1h6e2PQyoRDc8wsTDVWRFQqldjYy7h2IRb/YNWPb0VlFbeuJjJ1QctDzRpSKpXqRBGAoqIKg0ZLCBkY6H76bG5hqrHyq1KpxN5BxoWzsXSom1y+srKKq5fv8NzLY1oVW9ytdOwddP8wVyqVxMdlEBCofZJhbUzNTTVWflUqlVjZybh16Tbe7VVlWaWoIjE6kbFzH2lVvI3LsiUm5qYaK78qlUosba1IuHIbjyBvdSzJMQmMmj222XNFn7zC719sZNyrU+k4oOXVVZVKJVl30nHxddf6d111Lvp8LP4d6uvc7auJTJnfyjpXW6u1nC6cjEFeVMrgh3q36nwAUnNTjZVflUolFrZWJEfdxqWdqiyrFVWk3Uhg4Mzme2PePnWZA19tZPSLUwkM69qqOIzNTDVWflUqlZjZWJEefQuHAFUcNYoqsm8l0H2qfr1CtbH39+aRz97S2HZl614UpWX0fmoClk7ah8lZWJhqrPza8H4NbnS/Lvib92unLj4c2n+F2tpaDAxUSbuUpFxMTY2xsbVocrzOOnchloB/oJ2r0lLnpCbG2DlaU11dw7nj1+irx8rEVdW1xMTnEdbVjf2n6+f5C+vqxsE/tc/7d+lmNsZGBni5yLibqfrh7+Uiw9jIgDQdq6MCdPCzIye/5R/Y6thqlMSkFdE/0JGIa/U/qvoHOrL/WtNFBwBGfX5c4/WIEBfmD2vHo19HklmXxLh0J58HO7lhLjWkrC557+uoSrimNbOapUZsbbjc2rqqGiUx6cX0D3DQWKChf4ADB643XbABYORXJzVejwh2ZsGgAMauOk1mMyvoGkgkSI3074NRVaMkJqOY/v72RDSIpb+/Awdu6IhtZaRmbO2dWTDQn7E//qkR25gQF74Y14lXf7/Gfh3nao2qmlpiEvMJ6+TC/rP1w37DQl04eE57L6tLt3NUddDZkrtZql5FXs6WLdbBlmNREpNSSP8gJ/Y3SI72D3LigJaFXwBGf6y5gNrwUFfmjwzksS9OkFk31NzM2JDaRt/XaurGKerbqbu6VsmtghJ6O9tyJLU+IdnL2ZZjqX997i9TI4Mmsalft6LHeVWtkpgcOf09bYloMBdZf09b9rdibjKDuoSnoURCzV8d26wltugMOQN87YloMD9hfx879rci4SyRSDAykGBoADU12q/rvdf69DgH1XW9kSenr5sNh5Lry6mvmw2Hk3Unnrs7W/Hd8BC+i7rLhhuadTO7VMGjOzWHW09q70pfN1tePHqDtBL9esS25XIThH+aSNgJbd69OYK++OILXFw05wwxMlJV4ejoaN555x1mz57Nyy+/jKWlJZGRkXz11VfNnvvChQvcuXOHwYMHa2x/++232bJlC6tXr9Z6nEQiwW34MFL37cfcxQVTF2dS90ZgYGKCQ+/6lSpj1/4MQODTswBwGTSIjKPHSdyyFZeBAymOTyD79BkCn5ld/++trqYsXfVDqbaqCkVxMSV3UzA0McHMWTWkrKaigvLsup5Oyloq8/NJik3D0socB5emkzZLJBIemDCQnb8cxt3bCVdPR35fdxhTcxPCRtQnGL59fxMA8xdPAeDA9kgc3exx81LN93YzKpG9m44zYlz93E7dwoKJ2HIC//aeBIR4kZmay7bVB+gWFqxXryeJRMITUwfw65ojePs44entyC+rD2NmbsLIB+tj++Bt1bDBRUsnA7BtQyQubrb4+jtTVVXDoX2XiTx2naVfzFAf89P3hwgJ9cbD24Gykgq2bzpNQlwGr709rsW4mot38OODOLTxD5w9nXHydOTghj+QmpnQY1g39X6/frwRgBlvTgXgxO8nsXe1x8lTdQ0TriVwdNuxvzWHnUQioe+jgzi55RAOns44uDtyfPMhpGYmdBrcXb1f+OcbABj/2jQArh2/zG+fr2f07LH4dPRHXjf3l6GxIeYyVWLk6Mb9eLb3wd7NkcqyCs7uOknmnXQeXjBB79ju1Tk3bydcvRzZse4PTMxMCBtRX07ffaCqc88tqq9zTm52uHqpyulWVAL7Nh9nxLim5XR09xlCurfD2V17sqk1JBIJ3R4exLnth7DzcMbWzZGz2w5hbGpCh4H1Zbl/xXoAHnh5uiq+k5fY/+V6Bs16FI+QAPVceAZGhpjJmiaZ9Imjw4NDiN5xEGs3Z6xcnbj2+wGMTKX49a/vYRi58lcABiyor+/5SapFQRRlFSCRkJ+UioGRITYerhibmmDrpZmollqYoaytabK9pfgmTB3ALw3u13WrD2NubsKIBvfr+3X36+K6+3Vr3f3qV3e/Htx3mZPHrvNRg/v1sQl9Cd9ymi8/2c3jk/uRkVbAmlWHGDexn15flCUSCQ9OGMiOe3WuQTvXv0E7t7KunVtQ187t3x6Jk5Z2bmSDdi7uejL5OUX4tHMnP6eI8LUHUSqVPDJ1iF7l9tPO63z+ygCuxeZy6UY2kx8MwsnOnE0RtwF47cludAp0YMbbqhXDT0elExOfy7IXw/hwtWrl8Xfm9CLqVg7RcaofTjMfCSY1u4S4uwVIjQwZO8SPkX29eW7pUb1iumfNiUSWT+7K1buFXEzKZ2pfb5ysTNl0VpUUe/2B9nT2smHaD2cBiM2Uaxwf6mFNrVKpsX3XlTQWjAjks4ld+PLQbazMjFn8aAgRV9PJa8Vw2LZcbq1hYW6Cv4/q+4uBgQRPdwc6BXtTUFhCSvrfHCKpw5rTd1g+vjNXUwu5mFzAtF5eOMtM2HhedV0Xjgyis4c1U39SlVNsdonG8Z3c665rg+1P9vEmpaCcxLrhbb187JjT35cN51o3cfyaP++wfFxnrqYWcfFuAdN61sV2QXWehcMDVbGtu6A9NremsT3c0ZXlj3fio4O3OJ+cj2PdfHiKGiVFLfQGas5Pe2/x+fN9uRafx6XbOUwe0Q4nOzM2/aGaR+21yV3oFGDPjA9UybHT0ZnEJOax7Nk+fLhOlZh4Z2Z3omJziU78e9d67bEEvpjenat3C7iUmMeUMF+crE3ZeEo1r9rrDwfT2cuWad+eBiA2o9G96mlLrVJz+5GYTD6a3IWp/X04eTMbJytTFo0LJTqlkHQ9k+sAm2LTWNIrkOv5cq7mFvO4vyuOplJ+S1AlTueHehNiJ+O5E/UL1fhamWFsYICNiTFmRgYE2qg+M2MLVYnNyPR83u4RwOP+LpzNLMDeVMqrXf24mV9Clo6VZXVZE5XK8uHtuZol52JmMVNDXHGyMGHTdVVC6fU+vnR2ljFtl2qF98cCnaisqeVWXilVtUo6Ocl4vY8v+xNyUDSYeK2DgypmmdQQpVJJBwcLqmqUxBeU6R/b+WRWPNKRq+nFXEwtZGo3D9X9cFn1mb5wcABd3KyYskk1RPmxjq5UVtdwO6cERY2STq5W/GdIABG3slHUdf07HJfDsgeDmdbNgxOJeThbSlk8PIjojGLSm0nAN/br9TQ+HhBETK6cK9nFTAhyxcncRN1r7qVuPnR0kDH7kGpRk54u1nw7LISttzPYm5iNfd1cd7W1dT32lEriCzXLJr+iCkVNbZPt/8vlJgj/JJGwE9o8X19fpFIpmZmZ9OypfejgtWvXcHR01BgWm5Gh2TvA2Ni4yQThzz77LNOmTdPYNnnyZF544QUGDRrUbFzuo0dRq6giYdNmqkvLkPn5EvLKixiZ1vf4qMzTXJHK1NGB4Bef587WbWQeP4nUxhrfyRNx6F6fwFAUFnL1/Q/VrytO5JB14iRWgYGELnwVgJKkZGI+X67eJ2XXHt7YBQMf7MFz70zWGu8j04agqKzipy9+p1ReTkCwF2+teEajh0pulmY39NpaJZu/20tORgEGhgY4u9sz+dkxDH+sr3qfcTOHI5HAttUHyMsuRGZjQfewECbOfQB9TZ01mMrKKpZ/vAN5cTnBoV6sWDVHoydeVqZmbFVV1Xy7fC852UWYmBjj6+/CZyufou+A+rnMSuQVfPpBOPm5ciwsTQls7863Pz2rMST3rxg+aShVlVVs/zqcMnk5Ph28mf/pPI2eeAXZmnPG1NYq2fXjHvKzVGXp4GrPw3Meov/D2hdT0NeAJ4ZRrahi77fhVJSU4RHkzZNLn9XoiVfUKJYLEaeprakl4ocdRPywQ73dJzSApz99HoCKknJ2fb2VkvxiTC3McPX34OnPXlD35NPHw1OHoqis4uflv1EqL8c/2Iu3vpzbqM41LqdaNn23l9zM+jo36dmHGP5oX439stLyuH4pnueXTNc7npb0HDecakUVR37YTkVJGa6B3oxf8pxGT7ziXM14rx5UleWxNb9zbM3v6u0eHQOYuPSFvxRHx0eGU6NQcO6nbVSWluEY4MOItxZo9MQrzWu6St6e/yzTeJ16KQYLRzvGr3z/L8Why7S6+/WLRverRQv368oG96ufvwufr3yKfg3uV2cXG778fg5ff76HJyeswN5exkOP9mTmM8P0jk2fdi5PSzu3SUs7N6JBO1elqGbrjwfITs/D1ExKl74dmL94ChYy7YsfNBYRmYStzITnJnbGyc6M2OQCZr93mPS6HjeOtuZ4NVitUKmEOUuOsHhubzYte4BKRTWnotL5aM0F9XxCxsYGvPlUD5ztzalQ1BB3t5Cn3/uDExdbN8n+vqvp2FoYs2B4OxytTIjNlPPU2nPqnnBOVqZ427cu+VymqGH6D2d479FQdr04kKJyBX/EZPJJxM1Wnactl1trdOvkx6Fti9WvF7/6BItffYL120/wzKvf/yvvuTc6AxtzY54fHICjzITYrBJm/XqBtLqeVU4yE7ztWreataGBhDdGBeFha0Z1rZK7+WV8cuh2qxadANgbk4mNmZTnB/njKDMlNlvOrA0X1fPNOclM8LZtXWxTe3pibGjAuw8G8+6DwertZ+/kMenn8606V0MRZ5KxlUl5blxHnGzNiE0pZPbHx0nPvVcHTfFyrh+ur1TCnGXHWTyrB5uWjKBSUcOpaxl89Ovlv7zgxD37rqRhayFlwcggHK1NiM2Q89T3Z9SJNUcrU7wcWnev/nb+LhamRkwf4Mdbj3ZEXl7N2bgclu1u3Xxdf6TkYi014qlgTxxMpSQUlfFS5HUy6xJrDqZS3C01V2v+ckAIbg3a5o0jVQ9Wem47BcDepGzMjQyZEODKS519Kamq4WJ2Id9cS2pVbAD74nOwNTVmQQ9vHC2kxOaV8tSeaNLqhjg6mUvxtqpvz6uVSp7t7oWPtRkSiYQ0eQXrY9JZG5Wqcd6IiZpTdQz3dSC1uIIB68/pHdvem1nYmhmzIMwXJ0sTYnNKmLn1Cml1CSInSxO8bOrvh5paJfP7+eJja45EAmlFFfx6KYU1De7D8OgMLE2MeLK7J+8MC0ReWc2Z5Hw+Otq6BTsOJOVibWLMM529cDSTEldQyrOHY8gorbuu5lI8reqv4dgAZ8yNDZnV0YNZHT3U29NKKhgVrv+cr/poy+X2/xMDyT80/lv4yySFhYXiKghtzoYNG9i+fTu7du0CYNWqVfz222+88MILdO3alfLycqKjozEwMOCxxx4jMjKShQsX8u677xIaGsqZM2f48ccfKSws5Px51Re1AwcOsHTpUlavXo2Liwvm5uZIpU1XEurVqxcff/wxw4Zp/5H48rUr/94//G94Prik5Z3uIw+LlldTvF+u5LXdZxeFlW13utcAK/1W67sfLua23WsKkFvRdq/r3PZtd2hgSmnbLbfxT/71oV//tpr2f78X6r/J8Na/08vsn5B27eD9DkEn5+n/3AOLf5xh2x4+ZnSr6UOPtqLWpfW9s/9b7Ps7tLzTfZKb03a/k9QW6d+z+H6QuZm2vNN9Ik9v2z3brs3v1fJO/8Pevan/itH/C5Z06N7yTm1M2/3mKwgNzJs3jzlz5rBx40YmTZrEggULOHbsGG5uqqFcAwYMYNq0aSxfvpwpU6Zw/vx5nnnmGY1zDB06lLCwMObPn8/IkSM5dOjQ/finCIIgCIIgGDb5bgAAIABJREFUCIIgCIIgNKttd0EQ/s+aNm2axlBViUTCxIkTmThxos5j5s+fz/z58zW2jR8/Xv3/UqmUZcuWNT6siXs98gRBEARBEARBEARBEO4HkbATBEEQBEEQBEEQBEEQ1Aza9uwG/yeIIbGCIAiCIAiCIAiCIAiC0IaIhJ0gCIIgCIIgCIIgCIIgtCEiYScIgiAIgiAIgiAIgiAIbYhI2AmCIAiCIAiCIAiCIAhCGyIWnRAEQRAEQRAEQRAEQRDURO+u+09cA0EQBEEQBEEQBEEQBEFoQ0TCThAEQRAEQRAEQRAEQRDaEJGwEwRBEARBEARBEARBEIQ2RMxhJwiCIAiCIAiCIAiCIKgZSO53BILoYScIgiAIgiAIgiAIgiAIbYhI2AmCIAiCIAiCIAiCIAhCGyISdoIgCIIgCIIgCIIgCILQhog57ARBEARBEARBEARBEAQ1iUR5v0P4P0/0sBMEQRAEQRAEQRAEQRCENkT0sBOEVqpVts3lcnYmm97vEJr1auj9jkC3ypqq+x2CTpW1bbO+AVTW3u8IdKtuw+UGkFrWdj9+96aY3O8QdPKTVd/vEHSymuJ/v0P4n1Xkb32/Q9DJufP0+x2CTlnr19/vEHSytvS63yE0y3xQ7/sdgk61tm33+1xVVdvtbVOjaLuxte1vJGDadqsccmPD+x2CINxXooedIAiCIAiCIAiCIAiCILQhbfcRvyAIgiAIgiAIgiAIgvBfZ9DWu4f+HyB62AmCIAiCIAiCIAiCIAhCGyISdoIgCIIgCIIgCIIgCILQhoiEnSAIgiAIgiAIgiAIgiC0IWIOO0EQBEEQBEEQBEEQBEFN9O66/8Q1EARBEARBEARBEARBEIQ2RCTsBEEQBEEQBEEQBEEQBKENEQk7QRAEQRAEQRAEQRAEQWhDxBx2giAIgiAIgiAIgiAIgpqBRHm/Q/g/T/SwEwRBEARBEARBEARBEIQ2RCTsBEEQBEEQBEEQBEEQBKENEQk7QRAEQRAEQRAEQRAEQWhDxBx2giAIgiAIgiAIgiAIgpqB5H5HIIgedoIgCIIgCIIgCIIgCILQhoiEnSAIgiAIgiAIgiAIgiC0ISJhJwiCIAiCIAiCIAiCIAhtiJjDThD0pFQqWb16NRe3b6e6rAyZry++U6Zg7u7W7HFFt2+TvG07ZenpSG1scBs1CpfBgzT2ybt0iZRdu6nIycHU0RHPRx/FvltXredL3RdBys6dOA8ZjN+UKVr3Ob96E4lHT9Nl6mO0f2i4Ov6Y3yJIOHKaqtIy7AJ86DFrAtaeuuMvLyjiyobfKUhKoSQjG+8Bvejz7AzNf19KOtHh+yhISqE0O4+Qxx8kdPyYZsukMaVSyervItgRfhp5cRkhoT4sfGcC/gHNl21VVTVrfzjA/j3nyckuws5exrSZw5g0bQgAO8JPE7H7HInxGdQqlQS192De8w/RpVtAq2I7tP4A5/adoaykHK/2Xox7fjwuPq46j4mOvMqZvX+SlpBKtaIaJ29nhk8eSUi/jhr7Rf5+gj/3nqYgqwALK3NC+oYyZs7DmJiZtCq+k5v2c+XAn1SUlOMW5M0Dzz6Bo7fu+G6dvsql/afISkiluqoaB08X+k8cSWCfUPU+NyKvcCb8MPkZudRW12Dn5kivRwfTeXjvVsW28+eDnNh9llJ5GX7B3sx45XHcfV10x3YlnvAfI8i4m42iQoG9ix2DHurNA5OHaN3/7OHLfL9kA537BvPyp7NbFdu5rfuJOXSaitJyXNp5M+SZCdh76S630vwiTq7bQU5iCoUZObQf1JORL0xvst+VPceJPhhJcU4BZjIL/HqGEjZjLFId11WpVHJn117STpyiurQMKz8fgqZPxrKFtqXgVixxW8IpTUtHamuD9wMj8RgyUOu+mWcvcP2Htdh3DqXLS/PV25P2HiD70hXKMrMwMDLC2t8X3zljcPLR/d5KpZLITfuJOlhX5wK9GdVSnfvzKlf2nyIzIZWaujrXb+JIAnvX17krB/4k+uh5cu9molQqcfZzZ9C0MXiG+DdbDo1j273uICf3nKVMXoZvsDdTX2q+zt2Oiuf3HyPITKmvcwPG9GbUpPo6d3LPGc4cvEhakio2rwB3Hn36Adp18tM7tsaeaOfKjA4eOJhJSSwq5fNLiVzJKda6b3cna6a2dyfEXoalsSGp8go23U5jV2LWX37//5XYpoa4MqeLJ07mUuIKSvngdAIXM7TH0tvNmlmd3OnsJEMmNSK5uJyfr6URfkszlmkhrkwPdcdDZkJ6SSXfXbrLjtjsVsc2rbcXc/v74SQzITa7hPf33eBCckGLx/nYm7N3fn8kQMj7h+rj97Fj4cgg/BwtMDM2JK2wnC0XU1h96k6rY9NXWK/2vDT3IbqF+uLmYsecV1axIfzkv/Z+98yc1IfnnhqEk6OM2/FZLF62h3OXknTuPzgskNfmD6d9OxcqFdVcuJLE+59FkJicq95n1uS+zJrSD093W9IyCvnqh6Ns33251bFNG+jHnBHtcLI2JTajmA+3X+NCfJ7Wfd3tzIlcOrrpv++b05y8oap3jlamvD0+lBBPG3ycLNlx7i4Lf73U6rgApvX0ZG6YL06WJsTmlPD+/ltcuKtHnbMzZ++8fqo699Fh9XZHSxPeGRVER1crfOwt2HE1ndd2Rv+l2Ca0c+XJYFW7kVBYymfNtBs96tqNjg6qdiNFXsHGW5rthoOpMa9296O9rSVeMjP23clm8dnYvxQbwPRObszt4YmThQlxeaUsORHP+bQirfu2szPng6HtaGdngczEiOzSSnbfzmbFmSSqapVN9u/pZs3WJ7qQkF/GiPUXWh9bNw/m9vHB0VJKXE4pSw7f5kJKofbYHCz4YFR7AhzqYpNXsvtGFl9GJmjENjbYhbl9ffCzM0deWc3ppHyWHoklp1TRqtjGB7gyvX3958EXVxKJ0nFdpQYS3uzZjva2lvhamXE1t5i5R5vWpycCXJnQzg1XCxOyyir56UYK+5Ja3wZP7+LO3J5eqnLLLWXJ0Tgu6Lqm9uZ8MDyIAHsLZCaGZJco2H0riy9P39EoN2MDCc/39WFcsAtOlibklin48cJd1l1ObXV8/z8Qc9jdfyJhJ7RJtbW1fPLJJxw5coTi4mJWrVpF9+7d72tMv/76K5s2bcJ3xnTMXFxI3bOXGytW0PXDDzA0NdV6TEVOLre+/gansDACZj+NPC6eO5s2YiyzxL7u3yNPSCD2x9V4PvIwdt26kX/5MrE//EDH/yxE5qf5Y1CekEh2ZCTmHh4640w5d5n8hGTMbK01tt/a8we39x2h97zpyNycuf5bBMc+WsmY5YsxNtMef011NSYyCzo8MoKEI6e17lOtqMLC0R6PXl2I3rZHZ1zN+fWnP9j4yxHeXTodLx9n1n4fwYI5KwnfuxgLC+2xAbz9+s9kZRbw1ruT8fR2Ij+vmMqKKvXfL12IZcTobnTu6o+JqZTNvx7l+bnfsjH8Tby8nfSK7djWI5wMP87E16fg6OHEHxsO8uN/VrHw57cwNdceW8K1BAK6tmP0rAcxl5lz+egl1i1Zy7OfL8AvVJV8uHz0EnvX7GbCy5PwDfUjLyOPbcu3UF1VxYRXJ+tddmfCD3NuxzEefnkq9u5ORG4+wMZ3vuXZH97BREd8yTHx+HQKZPD0hzCTmRNz/CLbl65h+scv4NVRFZ+ZlQX9J43C3sMZAyMD4s9fZ+9Xm7GwtiSgZ4hesUVsOsrBLSd4+q1JuHo5sWvdIT57+Xs+3vQGZjpiMzU3YfjjA/D0d0VqYkxc9B3WfR6O1FTKsMfCNPbNTs9j63d7COzc+qTJpR2HubzrKCNemIatmxPntx1gx3srmfHtIqTN3A9mVpb0GDeCmEN/at3n1smLnP51F8PmT8Y92J+izFwOf7uJ6qoqRiyYqvWY5IhD3D14mOCnn8TcxZk7u/dx5fOv6PvREox0xFKek0vUipW4DehHyDOzKIyL5/b6zUhlljj16Ka5b3YO8dt+wyawaaK64FYsHkMHYeXrDUpI3Lmbze98yzOr3sJMZqH1vc/+dpjzO4/x0EtTsXN34tSWA2xe9C1zv9dd5+5Gx+PdKZBB0x7CVGbO9eMX+W3pGqZ+VF/n7kbHETygGx7BvhibSDm/8zhbFq/i6a8XYueu3/16YPNRDm09wVNvTsLF04k9vxxi+avfs3TDGzrvVxMzE4Y9PgB3P1ekpsbER99h/RfhSE2kDKmrc7ejEug5tAuTO/oiNZXyx/YTrHj9R95d+yrOHo56xdbQSC8HXuvux7ILCUTlFPFEOze+GdyR8fsukVlW2WT/zg5WxBeW8suNVHLLFfR1teXtXu2orKnlQHJOq9//fyW2Mf6OLArz593IeC5mFDGtoxs/jQll1JaLZJQ0jaWbixWx+WWsjkolu1TBAC9blg4KpLKmlj1xqlimhLiysK8fbx+PJSpLTmdnGUsHtaOospqjyfl6x/ZQqCvvjglm0e7rXEjOZ3pvb9Y92ZMRX50kvahC53HGhhK+mdiV80n59Pax0/hbqaKadWeSuJUlp7yqhh5etnz0aEfKq2rYcO6u3rG1hqWFKTdup7Dpt5OsWfHcv/IejY0d3YkP3nyENz7YyfnLScyc3IdNPzzFwIeXk5bRNEnh5W7LupUzWLvhNAve2IqFuZRFrz7Ixh9m0Xf0ZwA8ObEP77z6AK8u/o3L11LoGurJF+8/TmFxOX8cv6l3bGO6u7NoQicWb47iYkIe0wb68dP8MEa9/wfpBeU6j3vy61PcbJAoKGqQFJEaGZBfUsn3B28zqb+v3rE09lCIC+8+0IFFdYnh6b28WDetOyO+PdVynXuiM+eT8+ntrVnnTIwMyC+rYtWpO0zurvu7ZUtGejvweg8/Pj6fwJWcIiYEuvHtkI6M26uj3XC0Ir6olF9uppJTrqCfqy2LerdDUVvL/iTVvSo1NKCgooqfb6TweIDuB0L6eDjQkfcGB/DO0TgupBcxvZMbvzzaiWG/nidd3jQ+RY2S8BtZXM+WU1xZTbCjJcuGB2FkIOGjyESNfa1NjFgxuj2n7xbgYqn/A9d7HurgzLsjgnjn4C0uphQyvbsHv0zsyvAfz5Be3PS6KmpqCb+WzvUsOcUV1XRwlrHswQ4YGUj4+FgcAD08rFnxSEeWHonlUGw2DhYmfDi6PV+N7ciUTfonsUd4OvBaNz+WXUwgKreIJwLc+HpgR57Yf4ksLdfVQCJBUVPLtrh0wlxtkUmbphoeD3Dl+c6+LL0QR0yenBB7GW/3DKBYUU1keiva4CAn3h3ajncOx3IxtZDpXd35ZXxnhv90Tvc1jcngenYJxZXVdHC0ZNmo9qpyO5Gg3u+bh0NwlZnyxqFbJBWU42AhxdRIDEoU7h9R+4Q26fTp0+zZs4fly5cTERFBp06d/vY5f/zxRyZNmtRk+7x58+jVq5fGf2+//bbGPkqlki1btjBjxgzsu3fH3N0d/6dmUVNRQe65czrfM+vECaQ2NvhOmYy5qyvOAwfg2Lcf6Yf+UO+TcfgI1kFBeIwZg7mrKx5jxmAdFEjG4SMa56ouKyNu7Rr8n3wSI3Nzre9XmpPH5V/C6fv8LCSGhhrx395/jA6PjMSzd1dsPN3o/dwMqisqSD6t+0mgpaM93WdOwG9QX0wstf94t/f3puu0cfiE9cRIKtV5Ll2USiWb1x/jyadHMnREVwLaufHu0hmUlVZwcJ/u2M6evsn5s7f4atVz9O7XATd3ezp28qV7r0D1Ph9+MosJUwYT1METH19n3lg8CXNzE86cuqF3bJE7TjJk4jA6DeiMq68rkxdOobK8kitHdT8df3T+OIZOGo5Xe28c3B0ZOX00Hu08iTld/5Qx6fodvNv70H1ET+xc7GnXNZAew3uSfCtZr9juxXd+1wn6jR9Oh7AuOPm48cgr01CUVxJzQnd8o+Y+TtiEEbgHeWPn5sjAKQ/gGuDJ7bPX1Pv4dg4kqG8nHDydsXN1pNfYwTj7unH3eoLO8zaO7dC2kzw4bSg9B3fGw8+VOW9PpqKskrN/6P6y6BPkSZ/hXXH3dcHRzZ5+o3oQ2iuI2KuaX5Crq2v4/r31PD7nQRxd7fWKqWFsV/Yep8e4EbTr2wUHbzdGvqAqt9snL+o8zsrJnsGzxxM8tA8mltrvwYxbibgE+tBhcC+snOzx7BRE+8G9yIrVfl2VSiUpfxzB+8FROPXohqWHO8GzZ1JTUUHm2fM6Y0k7dhITG2uCpk3Cws0V90EDcO3Xl+QDf2jsV1tdQ8wPa/EfNxYzR4cm5+n62gu4DeiHpYc7lp7uBM+ZRVlxCak3Epvsey/e87tO0Hf8cNrX1bmHX1aV3fVm6tzIuY/T74kRuNXVuQFTHsDF35PYBnVu7OtP0uPhgbj4e2Lv4czo+ROQmpmQcFm/H9tKpZLD20/ywNShdB/UGXc/V556S1Xnzh1uvs71GlZX51zt6TuyByE9g4i7Vl8GcxZNY+i4AXgFeuDi5cS0V8Zjam5CzLlbesXW2NT27uxJzGJHQiZ3isv59FICuRUKxrfT/qP0pxspfHctmau5xaSVVhAen8HRlFyGeTa9pn9XW4rtqc7u/H47i603M0koLGfJqQRyShVMDdEey6rLKSw/n8SlzGJS5BVsup7BwcRcRvvVx/JYoBNbb2SwJz6HFHkFe+Nz2HIjk7ldPVsV2+wwX8Ivp7LlYgoJOaW8t/cG2fJKpvX2bva4N0a151amnIjojCZ/i0kvZk90BnHZJaQWlLPzajon43Lp1SjJ8k86eCyKdz/dyo6I89Rq6Tn0b5g7cwBbd15iY/h54hKzeXvpbrJy5Dw5qY/W/TuFeGBsZMjSFQdIupvH9VsZfLP6GL5eDtjZqNri8Y90Y8P28+yMuMrd1Hx27b/Khu3nWPD0IK3n1OXpYe347UwyW08nkZApZ8m2q+QUVzB1YPMPhgpLFeQWV6r/q6qpL8u0/DLe33aN387epaisdb2bGprdz4fwqDS2XEolIbeU9yJukl1SybSeXs0e98aIIG5lyYm43rTXa2phOUv23yQ8Ko3C8iotR+tnel278Xtdu/HJxQRyyxU8Eaj9Xl17PYVvryYTlVNMWkkF2+OathvppZV8eimR3YnZFCn+emwAs7t5En4jk80xGcTnl/Hu8XiySyuZ3kl7b/LkonLCb2RyM7eUNHklfyTmsfNWFj3drJvs++mIIMJvZHJZR8/fFmPr5U34tXS2RKURn1fKu4duk12iYFo37QnU5IJywqMzuJldQlpxBYfjctgVk0kvTxv1Pt3cbciQV7D2wl1Siiq4kl7EuospdNESf3Omtndnz50sdiZmklRczmeX6z4PdCRQK2pq+fhiPDsSMsnWUdcf9HFiZ2ImB+/mkFZawaG7OexIyOTJDq1LGM/u4Ul4TCZbrqWrrumROLJLFUzr4q51/+TCcsKvZ3Izp67cEnLZdTOTXh715TbAx44wbztm/naVU8kFpBZXEJVRzFkdvR0F4b9BJOyENik1NRUHBwc6deqEg4MDxsbG/+r7Pfzww0RERKj/e/PNNzX+np6eTl5eHn361H+ZNJRKsQpshzxB+w9bAHliItbBwRrbbEKCKU1Oora6um6fBKxDNPexDglBnqCZGElcvwH7bt2x7tBe63vV1tTw5zc/E/zYaKzdNYd/lWbnUVFYjEunDuptRlIpju0DyI3994ba6CMtNY+83GJ696uPzdRUStfuAVyL0h3b8aNXCe7ozcZfjjBm2NuMe/A9Pv9oG2Vlup8yV1VVo1BUI7PSnmxpLD8zD3l+MYE96svc2ESKb6g/STeS9DrHPZVlFZjL6t/Xt6Mf6QlpJNedpyC7gOtnYujQK1jHGZoqzMyjpKAYv26a8XmF+JN6s3XXtbKsElMdSSilUsmdqNvkpWbj1VG/4cQ5GfkU5cvp2DNIvU1qIiWwsx/xMUl6x5Ucm0pcTBJBXTSHRf72YwQOrnb0f6Cn3ue6pzgrj7KCYry61JebkYkU9xB/Mm79vfvBrYM/OUmpZNxWnac4J587F2Lw6a79ulbk5KIoKsa+QRtgKJViE9iOonjdbUtRQiJ2HTXPaRcajDwpmdrqGvW2hN93Ympvj2v/vnrFX1NRibJWqbMuFGblUVpQjG9XzTrnGeJPWivrnKJcd50DVY/G6qpqzJrZp6HcujoX0uPv1bm7sakkXE8isIvuobjVVTVUKaowl5npfd57jAwkdLCTcbZRT6KzGQV0drDS+zyWxoYUK6pb/f7/K7EZG0jo6CgjMkVzuF9kagHdXPSPRSY1pKiyPhapoQGVNbUa+1TW1NLJSYaRnmN/jA0ldHSzIjI+V2N7ZHwu3b1sdBwFQ4IcGRrkxHt7r+v1PiGuVnT3suVckv69Tto6Y2NDOgW7c+JPzaGNJ07H0rOL9mTn1ZhUqqprmDq+FwYGEizMpUwY250r11LILywDQCo1pLJRnSuvqKJrJ0+M9OwdY2wooaOXDZE3NYfmRd7Moptf80nTVXP7cP7TB9n22iAe6Nr8dAZ/hbGhhI6uWupcQi7dPZupc+0cGRroyHsR+vcybK177caZRu3GmczWtRsW/0KbBqq2JNRZxslGw9VPJhfQXc8Elre1GYN97DjXaLjl9E5uOFpI+fqc/g9bm8TmKuPkHc0h15F38ujuofu6asRma8Ygf3vONhgafTG1ECdLE4YFqBKgtmbGPBzszLGEXF2nacLIQEJ7WxlnMxt9HmQW0KkV17UxqYFEaxscYifDUKJnG2wgIdRFxsmkRuWWlE93dz2vqY0Zg3zsNZJxowIcuJZZzOwenpyd14/js/vw3tB2mBsbNnMmQfh3iSGxQpuzZMkS9u3bB0CvXr1wdXVl586drF+/nh07dpCbm4uHhwczZszggQceUB+3cuVKjh8/TlZWFnZ2dgwbNoy5c+diYmLC3r17WbNmjfqcAIsXL+ahhx4CwNTUFAcH3b0B8vJUHwh2dnaQlanebmxlhaJA91OXqqIijDt00NhmbGWFsqaW6pISpDY2VBUVI5VpfvBJZVZUFdc/qcs6GUlFdjYBTz+l871iwvdhIrOg3Yimc1hVFKnOZWot09huai2jvED7XA//LXm5qtjsHTRjs7OXkZOtO7a01FyuXk5AamzEJytmI5eX8/lH28nJKeKTFXO0HrPq6z2Ym5swcEio1r83Js+XAyCz1YxNZmtJUa7+5XZ6VyRFuUV0G95Dva3rkG6UFZfy3avfoFQqqa2ppfvwHoyZ/bDe5y0pUJWdhY1mfBa2MuR5+sd3ce9J5HmFhA7VTH5VlJbz1YxF1FRVIzEwYPSzTxDQQ7+EYlGeKjZrO83YrO1kFOS0HNvL45YgLyyhpqaWR2eOZOij/dR/izl/m/NHo3j/51f1iqWx0kJVbOaNys3c2oqS/L/3FDVoQHcq5KWEv/MV1F3X9oN7EjZjrNb9K+vuTal1ozbAyorKZtqWyqJibIM12xZpXdtSVVKCiY01eTE3yD5/iV5L3tZxlqZiN23F2c8d9/bah22V6qpzNv9MnWvoxPp9SE2ltOvdUec+DRXlq2KzalTnrGxlFOpxv74+vr7OPfLkSAaP7adz351rIzA1M6FLmH6xNWRjYoyRgYT8Cs3eB3kVVfRy0e/h1AA3O3q62PDUH1db/f7/K7HZmqpiyW3U6ye3TEGYnj9kh3jb0dfdhgk762M5mVLAhPYuHEzMJTqnhFBHSyZ0cEFqaICtqTE5evSAsjWXYmRoQG6jYbm5JZWE+Wvv8esoM2HZo6HM23SZUkWN1n3uObNwCHYWUowMDPjqaBwbz/87w2HvBzsbc4yMDMnJLdHYnpNXwoC+Mq3HpKQXMHH2GlavmMbH74zFwEBC9M10ps79Sb3P8dOxTBnXk4g/YoiKSaVziDtTx/dCamyEnY0F2bnyFmOztTRRXddGwxBziysJa699SH1ZZTVLw69xKTGPmholwzq58vXs3rz2y0V2nU9p8T31pa5zjeYfyy1REOanfRimo6UJyx4JYd7WKy3Wub8VW127kde43Sivore+7Ya7Hb1cbJh16J9t0wDszFTxNb63c8sU9De3bfbY3yd2paOTDFMjAzZFp/PJqfoHaUH2FrzUx4dHt1zmr3ZOtTVX3eeNr2tOqYIwn+ZHrfw+oychLjJMjQzZdCWVT4/Hq/92Oa2IF3ZG89XYUEyNDDA2NOBkYh6v7NHvYQGAjVT750F+RRW9nf96R4ozmQWM9XPhWGouN/JL6GBryVg/F4wNDbAxMSKvouXelLZmxqpyK9PcN6dUQZh3C9d0SndCnC1V5XY1jU9P1neQ8LQxo4e7NYrqWubtisHKxIglwwJxtjTh2d0xf+0f/D9OpCrvP5GwE9qcV199FVdXV3bv3s26deswNDRk1apVHD16lIULF+Ll5UV0dDQfffQRMpmM/v37A2BmZsaiRYtwdHTkzp07LFu2DKlUyrx58xg+fDgJCQmcOnWKVatWAWBpaal+z0OHDnHo0CHs7Ozo168f3t7erFixQv33e/8vafzkRwm08DSoySFKZdM/NDlt/Sd/eWYmd3fsoOPC1zEw0n7LFt2+zZ0TZxm1TNUzMOnUecpy87m2dTcx4fsYuPA57cHcB/v3nufjJZvVr1d8d2/OHM3YlE03af69VolEIuHDT2dhWdfL5fW3JvD83JXk5RZj3+jp3+b1x9ix/TTfrnkeS0vtvWIuH7lI+Jfb1K+f/vAZLZGBUqmlLuhwLfIqe1fvZtpbT2LnXP+EPuFqPIc3HmLc8+Px6uBNblouu777nYO/7Gf0zAe1niv62AUiVm5Vv5703lzV/zSKRdmKL443T0dx+KddjFs4ExunRnPbmJkw55v/oCivJOlqLIfX7MDG2Q7fLkFNzvPnoUv88vl29euXP9G+AIRSqWz2ut7z1soFVJRXknA9me3f78XB1Z6w0T0Bx2vyAAAgAElEQVSQF5aw5qPNzH13GhYy/Xpe3TpxgaPfb1G/fuTteUDTa6hEqfd11SU1Jo7z2w8w5JkJuAT6UJiRw4m1v3F2cwR9p4xRx1KrVL1P5wYLQGhquZyahKpuW0AhL+HG2l/oOPcpjC20D2dvLHbzdgrjEnj68xcxMFT1SIk5doH939bXuQnvzq1776bB6Vt0t05HcfTnXTy6cCbWTtp7rZzfdZwr+08z5cMFmJhrv1/P/nGJ9V/U17kXls3WGoe+dW7hNwuoLKsk8UYy4T+o6lzfUT2a7Hc4/CQndp/hleXzMGtmjs2WNL5NJeh373Z2sGJpWBCfXUzkel5Jywf8BW0pNmWjaCQS/WLp7mLFiuHtef90Atey65M1Ky/exdFMyvbHuiCRSMgtU/D77SzmdvWktjWNJ03jaO4e+PKJzmw4f5cregytemL1WSykRnT1tOGNUUGkFJSxIyq9VbG1dU2vq6T++1Ejjg6WLP9gPNt3XWJHxFUszU1Y+PwIflw+lcdnrUapVLJi1RGcHGTs2fgcEokqAbht5yUWzB5MbW2t1vPqq7k6V1CqYO2R+kRJ9N1C7CxNmDsi8B9N2N2jtc7pCO7Lxzux4WIKV1L/Ow9mtcWmzy3VxdGKj8OC+PRiIjH/UpumjUTStK1rbP6+G1hKDengaMnbA/x5rqcX3164i9RQwrdjglkamUCKlnnmWktrm9tSbDuuYWliRAcnGW8NbcezfX347kwSoFqY4r2RQXxzKpETiXk4WZrw1rB2fPxAh1Yl7f5qbM1Zez0FB1MpPw3vDKgSgvuSsniyg2erE5+N2wx96tz8PTF111TGW4P9eba3N9/V9ZA0qKsUL+y9jrwuyb34SCwbnuiCg7lxkwShIPw3iISd0OZYWlpibm6OoaEhDg4OlJeXs3nzZr7++mu6dlWtnOru7s6NGzcIDw9XJ+yefvpp9Tnc3NyYOXMmGzduZN68eZiammJmZqY+Z0OjRo3CxcUFR0dHEhMT+fbbb3Fzc2PDhg3qfRQK1dOlez3t7qmSFyO10t0t3NjaGkWR5pwW1XI5EkMDjOp+RBtbW6Eo1tynSi7HuO688oREqktKiHpvSf0OtbUUx8WRdeIkvVd+Q/Ht25QXFrPr2beA+g+w2uoajC3MMambPL6isBgL+/onTxVFckyt/3q39r9i4JBOdOzko36tqBv+kJdbjItrfWwFeXLs7XXH5uBojaOTtTpZB+DjpxoKnJlRoJGw27z+GN9/s4evvn+OkFCfxqdSC+7bkVfa1w/Jqa5SxVZcIMfGqT62ksISLG219wRo6FrkVTZ/soFJC6c2WSH2wLoIugzpRu8HVUMVXX3dUFQo2L58CyOmj8LQsOkzrcDeobgH1cdfUxdfaUEx1o718ZUVyrGwbfm63jwdxa4v1jP2lWkaK8TeIzEwwM5NNaG+i78HuSmZnN72h9aEXdf+IfgH18+jU12l+qJTlC/H3rk+tuKCkia97rRxdFP1UvH0d6O4oISdPx8kbHQPUu9kUphXzGcvf6/eV1n3De+pwa+x9NeFuHppLlDg1ysUl0Af9euG5SZzqI+tvEiOuXXLsTXnzKa9BA7oTscRqt5ZDt5uVFcoOPzdJnpPHK2OJbZY9fF7b2i8oqgYU/v65JWiWN5s22JibaXunac+pq5tMbawpCg+HkVhEVc++0r993vtwtGnn6P3h4uxcK0fOh+7eRtZ5y7S7T+vYOtSH0e73qG4aalzJQXFWDWoc6WFcixsWq5zt05HsXv5eh5+eZrGCrENnd91nJMb9jHxvXm4BemeD6xLWAi+HbTUuTw5dg3uV3lhCVZ63K/35kL0qKtzu9cdbJKwOxx+kh1r9vPSp3Pw69D8XGW6FFZWUV2rxN5Us/eEnakx+S30LOjiaMXXg0P4/loy4fFN50D7u9pSbAUVqlgczTRjsTeTklvefC+47i5WrB3TkS8vJLPpumYslTW1vHE8lndOxuFgZkx2mYJJwa7IFdXk6zmHV0GZguqaWhxlmj2b7C1MmvS6uyfM34HePna8OEQ1rYBEIsHQQEL8+6NZtOc6my/UJ3dS6xY3uJ0lx8FSyktD2/1/k7DLLyyjuroGp0a96h3sLMjVkayZNbkfZeUKPvhiv3rb/P9s5cqxt+jZ1Zvzl5OoqKzm5XfCef2933G0l5GVU8z0J3ojL6kgr6BMr9gKSiqprqnFwUozEW8vM2nS6645UUn5jO/719oHnbHdq3OWje4HC2mT3ln3hPnZ09vblhcHqYb3q+vc4pEs2neDzZf+mVUvC+raDQezpu1GS72lujhasXJICKuuJrM97p9v0wDyy+vaEnMtbUkLPWrvLW4Tl1+GoUTCJyOC+P5iCk4WJgTaW/D5yPZ8PlI1RYSBRJXwSXxxEE/uuEakHqv3FpQpqK6txdFCMzaHZq6rOjZ5JcgricstxVACy8YE88PZZGqUSp7r60NUejE/1CWibuWUUHaght9m9OSz4/GqY1tQqND+eWCrx3VtTmVNLe+fj2PphXjsTf8fe/cd1+S1P3D8E1aYYe+9RAFxb3Gvqlfbalu3rdXqta291tbuql23tletXVprW617773rHrhQUAQcgIDsTUhIfn8EA4EEg729cn/3vF8vXy8TzvPkm+c55zzJyfc5x5zs8gqeCfakWKEkX25kH1ym0H/crI04p1Xv/VZOKaYm8GX/pvx07h6VajUPiuVkFMu1g3UAiTklAHjJLMWAnfBEiAE7odG7ffs2crmcN954QyerQ6lU4ulZPenpoUOHWLt2LSkpKZSVlaFSqaisfPQtAM8884z2/yEhIXh7e/PSSy9RUlJC06aai7BarcbZ2ZmzZ89Ca82goUqhoOhWIv7Dhxnct11QELmXL+s8lx8Xj41/gDZbzi4omIK4OLz799eWKYiLwy5Y8wHLqVVLbANm6ewj8bdlWLq74zPwKSRmZnj06EFkdAudMsf++T1+ndsS3KsLdp5uWDrIyIiNxzlY8yGyskJB1s0kWo56+pHH6N/JxsZSZ+VXtVqNs4uMc6fjiWiuiU0uV3D5YhLTZhiOLapVEAf3X6S0tBzrqtUf793VTKjs6VU94LBq+SF++n4n3yyaSsvW9c+/ZmltqbOSpFqtxs5Jxq2Ym/iFaQYGFBUKbl9LYvCkIfXu6/KxS6z9ajUjZo6iRbeWdf5eIa/AxER3Xh0TE0mdrIOapNaWOqtwqtVqbB1lJF+6iVcTzbFTVii4dz2J3i/Xf17jjl9k+/xVDHlzNM26tqq3bM3XeziIWZuVtaXOyq9qtRp7Jzuun08gqGpQpUKuIOFqMi9MNf62XwC1SqV93aCmvny2/G2dv2/6eQ+lRaWMfXMYrp51M7YsrCx1Vn5Vq9VYO8q4d+UGHqHVx+1+XDJdx+u/ddVYSrmiznmVmFb/jP8wFmsrc20sFvYycuPikQUFAFCpUJCfkEjI888afB374CCyLuneOpR7PR67AH9MzEyRBQbQ4dOPdP6etHk7ytJSwsaM0FmA4uaqdWSeu0Cbd96sGsSr/rCrr87ZOMq4fVm3zqVcT6LXhEfXuZ0LVjF4uuE6d3bLYf5YtZsXZk/BN8LwHHKgv73aO9kRdyFBO5CnkCu4dTWZ5/7++HXuof3rjrLtt728MXcSoVENX5n4IaVKTXxuER09HTiYUj2fUAcPBw6l5BjcrrWrjIU9Ivgp9h6rb/41gzeNKTaFSs21rCK6+jqyJ7k6lq4+DuxNNjwPUztPe5YOjODbC3dZdjXNYDmlSk1G1RfiwSGuHLmba3TWiKJSzbX7hXQNcWH3teppMrqGuLD3eobebfot/EPncd9wd17rHsLQRSfJqGcwyEQiweL/0QqFCkUlV+PS6NYplB37qhdi6tY5lF0H9N9yZm1ljqpS9+xUVs2BZVIrrVGpVJGeqckoe3pgCw4cjTeYuVcntko11+7l07WpG3suVtedrk3d2HvJ+Hod7mPPg39D1lWd2NIL6Rrswu646sUjuga5sDe+7mISAP1+OKHzuG9TN16LDmboz6frrXMNpe03PBw4cK+6bXb0cOBgff2Gm4zvekSw+Oo9Vv1FfRpo+pLYzCKi/R3Zdat65epof0f23DJ+JWsTiWZeN1MTyCiW0+d33YXRxrXwItrPkUk7rpNq5PFVqNTEphcRHejM7hvVcyd2DXBiz80H9WypSyKRaGOrrAQrc9M6GcMPHxt7J4FSpeZGXlFV/1/jeuDuwOFUw+fVWJVqNQ+qfnzp5+fKifsN6INVamIziogOcGJ3QvU57OrvxJ6Exz9uF9IKGBTmhrW5KaVVPwIGOWru5kj7N7dpQTCWGLATGr2HtzLMmzcPDw/dxRTMqga9YmNj+fDDD5k4cSLTp0/H1taW48ePs3Dhwjr7e5RmzZphampKSkqKdsBOIpEwYsQIli1bhjdqrNzdSd21CxOpFJcOHbTb3vpFM59KaNVcc+7du5Nx5Ai3167DvXs3ihITyTp1itBJ1bcLevbuzbWvvyZt9x6cWrUk99JlCm/eJGLmTM17tLausyqsqVSKmY011t6alZDMZTIcat3mKTE1xcpBhszLHYCwp3pyfes+ZF4e2Hm6EbdlL2ZSKf5dqueQOvPjcgA6Th2vfS7vjuZXf0VZGUgk5N1JwcTMDHsfzWBppVJJYarmV9FKhYLy/ELy7qRgZinFzkM300kfiUTCyLE9+W3JPvwDPfALcOPXn/ZiZS2l/6Dq2Ga9p4ltzj81sQ0Y1JZfFu/hkw9XMmnqQIoLy5j35UZ692uFk7Pml/sVvx7gx2938MmX4/ELcCO7ah4rS6mFTmZefbFFP9ONQ2sO4ObrhouPG4dW70dqKaVVrzbacmvmarIxR74zBoBLRy6yZu5K/vbKUIKaB1NYNbeWmZkp1jJNtmN4xwj+2HQUnya++DX1J+d+NnuX7yG8Q4Te7DpD8bUf2p0T6/bj4uOOk7crJ9btx8JKSmT36vi2zVsBwNAZYwG4fiyGbfNW0Oflp/GLCKG4Kj5Tc1OsqrIxT6zdh1dYAI4ezlQqlCReiCP28Hn6TxludGz9nu/Gjt8P4unvhoevK9uXH8DSSkrHvq215ZZ8thqAVz4cBcCBjcdx9XTCoypL7uaVJPasPUqvZ7oAmtt0fYJ0VyeztrVCVamq83x9sbUa3IPzG/fj5O2Og5cb5zfuw9zSgrBu1RlV+xb+DkD/N8Zpn8u6rclIqCgrR2IiIet2KiZmpjj7al47sF0kl7YfwS3YD48m/uSnZ3N69S4C2kZgoue8SiQSfPv25s7OPVh7eGDt4cbtHXswtZTi0bG9ttz1n38DIGLSSwB49+xGyqGjJKxej3ePaPJvJZF+4jSRUzSZxqZSKbY+uiulmVtboVapdJ6/sWINGafOEvX6FMxsrJEXFFBspsDCUoqFVd15kR7WuZPr9uPs446Tlysnq+pcRI06t72qzg2pUed2zF9BrwlP4xcZop1/0dSsus6d2XSIoyt2MmTGWJy83bRlzCzMsbQxrr32ea4bu1YcxMPfDQ8fV3auOIDUSkqHPtV17pfPNXXu5Q80de7QpuO41KhzCVeS2LfuKD2e7qLdZu+aw2xZuoeJH4zG3cdVO0ejudQcawO32Ndn1Y00Pu0UxrWcIq5kFTIs1BNXKymbqjJMXmsRQKSzHVMOawY02rjZ822PCDYkpLPnzgOcLTUDvpVqjM5I+G+M7dcrafyrdxhXHhQRk17AqAgv3Gyk2qy5tzoE0MLNjrE7NLF08LJn6cBIVl2/z7aEB7hUDYyr1GgzBAPsrWjpbsflzEJkUnNejvKmiZMNbx++2aDYlp68zfzhLbiSms+Fu3mMae+Hu52UVec0GS0z+4XRwsee0b9qVntOeKCbPRblbY9KrdZ5fnxHf1Lyykiumt+tfYATk7oGsvLsXzeHnY21lOAAzWcrExMJvt4uRIX7k5dfTMr9P/+lXJ+flh3nu7kvcCk2hfOX7jLuhQ54uMn4fd0ZAN6fPoBWzX15bsLPABw4doNXxnVlxtQ+bN51CVtrKe/9YwCp6flcjdP0yUH+LrSO8iXm6j0cZFZMHt+NsFB3pr233mAc+vxy6BbzXmzHlbt5xCTlMCo6EDd7K1Yd18xd9vbQCFoEODJmoWYw7NmOfigrVVxPKUClVtO7uSdjugfz1RbdwcdmPpqJ8G0tzVGpNY8VShWJGY+eW++hpafuMP/ZKK6kFXDhXh5j2vlq6tx5Tf2Y2acJLbztGb1cM5BUp8551a1zAOEems9MtlIzVGrN44pKFYlZJUbHtuJGGp9X9RuXswp5rqrf2FjVb7zeUtNvTD6kaatt3ez5rmcE6xPS2V2j31CpNRl7D4U5aq4PNuaa2MIcbVBUqkkuNC5r8qGlF1NYMKAZlzOKuHC/gDFRXrjbSFl5VTNQ+E6XQFp6yBi5SfND2LPN3JErVdzILkGhUhHlbsc7XYPYfSuLiqrB44Qc3eOTU6qgolJd5/lHxnbuLguGRHLlfiEXUvMZ3dpHc14vaur2zB4htPSSMWq1ZrXzZyI9kSsruZlVTEWlmihPGe/0DGH3jQfa2A7eyuLLgeGMae3DseQc3G0t+LhPGLHphdxvwMDTqhtpfNIxjOs5RVzJLmRYcNX1oCqL+tWoACKc7Zh6pHrwPVBmjbmJBAepOVZmpjRx0JzDhHzNcfGzsyLS2Y7Y7EJkFmaMDvMh2N6a2Wcb2AdfSGHBoHCupBdyIa2A0S29cbe1YNUVzTmdGR1ES08Zo9ZrEieeCffQHLfsEioqVUR5yHgnOpjdN6vP6bb4TKZ1CuBfTzVjwcnb2FuaMatXKLtuPiDnfzS7zkTyn1k9XDBMDNgJjV5gYCAWFhZkZGTQrp3+CcqvXr2Kq6urzm2x6em6qfXm5uZGzWOSmJhIZWUlzs66E0ePGzcOuVzO8tWrUZaUYhsUSPj0f2BqWZ3hUZGru5KbpasLTae9zt3168k8dgwLe3sCRozAuU31F1u7kGCavDKJe1u3krJ9O5auroS+8gp2QY+fwaFP07/1RVmhIOa3dVSUlOIcHECP91/DvEbmUUl23fT9fe99qfP4/sVYrF2cGPLdpwCU5RXolCnOPEHSoRO4Ngul98f/MCq2cRP6Ii9X8NXn6ygqLCUiKoDvlrymk4mXka4bm7W1JT8snca/vljP+BFfIZNZ071XC16bXp0htWHtHyiVlbz/1q862w4a2oHZn4/DGD1f6I2iQsHm7zdRVlSKX1N/Jn35d53MnrwHurGd3nkSVaWKbYu2sG3RFu3zQVHBTJ33OgB9RvdDIpGwb9lu8rMLsLG3IbxjBE+9NMiouB7qNLwPigoFexdtoKy4FO8wf0Z9OlUnK6ogSze+mD2a+PYv2cz+JZu1z/s1D2Hcl9MAqCiXs+fH9RRl52NmYY6LjxtD3hxLZI82GGvgqF5UyBWsmL+JkuIygpv58db8yTqZeDmZurGpVCrWL95JdkYepqYmuHk589yUwfQcatwqp8Zq80wflBUKjvy8AXlxKR6hATw961WdTLyirLrtYfWbc3Ue3z5/DTtXJyYs0dyy3v65/iCB02t2UZyTj5WdDYHtIuk82nCGl//AfqgUFdxcuQZlSSmy4EBazZiGWY1YynN0+xYrVxdaTn+NW2s2kHrkD6QO9jQZ/QJubVvX3n290g4fA+DS199onzsBdB05gG6j9c+l2HFYHxRyBfsWbaC8uBSvMH9GfKJb5wprHbtLVXXu4M+bOfhzjToXGcKYqjoXs+s4KmUlW+cu09m2ee/2/G36GKPez4CRmjq3eoGmzgU18+PNf03Waa85D+rWuU0/Vdc5Vy9nhr0ymO416tyRrSepVFby05zfdbbtPKAdE94baVRsNe2/l4291JyJEX64WFmQVFDCtKPXSC/V3KrjYmWBj211zH8LcsfKzJRx4T6MC/fRPn+/uJzB28/X2f+f0Zhi25WUhYOlGa+29sPVxoJbuSW8vOsa96tuU3OztsBPVj1gOizMHWtzUya19GVSS1/t86mF5XRfpRk4M5XAhCgfghysUKrUnLmfz3NbLpNmxC1iNe2MTcfB2pzXe4TgaiclIbOYl34/T1q+5suwm50Ufyfj5tl8yNREwrv9w/Bx1MR2L7eUuftv/qWLTrSOCmL/+o+1jz+e8Rwfz3iOFRuO8cqMxfVs+fi27b2Ko4M106f0ws1Vxo1bGYye/Bup9zXz+7m72BHgW50tffJsEn9/ey2vvtydqRO6UV6uIObKPUa98gulVbcxm5qaMPnFaIIDXFEqVZw8l8TfRv1Iyv1H35ZY066YNBxtpLz2VBiuMksS0guZ8MNJ7udqblN2tbfEz1V3XtBXn2qKt5M1lSo1dx4U886KmDrz1+36oLfO4z5RnqTmlNDtw31Gx7bzeoamznUL1tS5B0W8tCqGtIKqOmcrxd+xYXUOYPffu+g87tvUjdS8Mrp+c8zofey/m42DhTmTIjX9RmJ+Ca8dvUZ6iaZduVpa4Fuj3xhS1W+MD/dhfK1+Y+C26n5j3UDda1oPH+c6ZYyxIyELB0tzXm/vj5uNBQk5JYzfelXb7t1spPjZV/clSpWaqe38CHS0QoKEtKJyll9OY+nFf89txDXtjM/E0cqc17oE4mYrJSGrmBfXXdJmdLnZSvFzqD6vlSo1r3YOJMDRGokE0grK+T0mhaU1+omNsenYSs0Y38aXD3s3oUiu5PTdXL44fKtBsR1I0VwPXo7ww8VScz14449rZBi4HgAs7B6BV43P76sHaM5h27XHAU2m4ugwb/zbhqBUqbnwIJ+XD17R1hVj7bz5QHPcOgXgZiMlIbuYFzddrXXcqs9ppUrNqx0DCHC0QoImY+73S6ksjaluq6WKSkavv8ycPk3YMbYtBeVK9idm8eWxpNovLwj/MZL8/HwxbCo0OitXrmTDhg1s27YNgEWLFrFp0yamTZtGq1atKCsrIzY2FhMTE5555hmOHz/OzJkzmTVrFs2bN+f06dMsWbKE/Px8zp3TfEjfu3cvn3/+OT///DMeHh5YW1vz4MED9u7dS+fOnXFwcOD27dssXLgQqVSqXfCitjeuXK7zXGPgb9u4f/mZYdzCrE/EsfTGe+zyKxrvrVAhMv23xzYGl7IffwWz/4Rr+Y03vg6uj14l80kJsmu8de6Nw//Z+UD/PykoaLwfRStT/3OT4DdU5ooVTzoEg+xt/R5d6Amy7t7h0YWeEJVbwwfd/lMcmhi3iNGTkPvgr1sJ98+SGDk/5pPiGvT4Cyj91bJSGvexu/qK8T9k/zf64fa5Jx3Cv9Wrge0fXaiRERl2wn+FKVOm4OTkxKpVq5g7dy42NjY0adKEsWM1t1tFR0czZswY5s+fj1wup0OHDrzyyit89dVX2n306tWLo0eP8uqrr1JUVMTHH39Mu3btOH/+PGvXrqWsrAx3d3e6dOnCxIkTjb4tURAEQRAEQRAEQRAE4d9JZNgJQgOJDLvHIzLsHo/IsHs8IsPu8YkMu8cjMuwen8iwezwiw+7xiQy7xyMy7B6PyLB7fCLD7skSGXZPnsiwEwRBEARBEARBEARBELRMjFtUWPgLNd7UDUEQBEEQBEEQBEEQBEH4HyQG7ARBEARBEARBEARBEAShEREDdoIgCIIgCIIgCIIgCILQiIg57ARBEARBEARBEARBEAQtMYfdkycy7ARBEARBEARBEARBEAShEREDdoIgCIIgCIIgCIIgCILQiIgBO0EQBEEQBEEQBEEQBEFoRMQcdoIgCIIgCIIgCIIgCIKWqZjD7okTGXaCIAiCIAiCIAiCIAiC0IiIATtBEARBEARBEARBEARBaETEgJ0gCIIgCIIgCIIgCIIgNCJiDjtBEARBEARBEARBEARBy0TMYffEiQw7QRAEQRAEQRAEQRAEQWhExICdIAiCIAiCIAiCIAiCIDQi4pZYQWgglfpJR6BfmbJxj7+bSkyfdAgGpRSrnnQIBnlaVz7pEP4rOUgb7zkFsDRtpB0JUKYU9z88DlOzxnvcFIrGW98A1OpGHJ9p4z2v9rZ+TzoEgwqK7z3pEOplU9L6SYfwX8ncvPG2B6l14/0crMhv3J/lVI34I5Mkt+xJhyAIT5QYsBMEQRAEQRAEQRAEQRC0TCSN+Ae1/xGN96cIQRAEQRAEQRAEQRAEQfgfJAbsBEEQBEEQBEEQBEEQBKEREQN2giAIgiAIgiAIgiAIgtCIiDnsBEEQBEEQBEEQBEEQBC2TxrvOzP8MkWEnCIIgCIIgCIIgCIIgCI2IGLATBEEQBEEQBEEQBEEQhEZEDNgJgiAIgiAIgiAIgiAIQiMi5rATBEEQBEEQBEEQBEEQtEyfdACCyLATBEEQBEEQBEEQBEEQhMZEDNgJgiAIgiAIgiAIgiAIQiMiBuwEQRAEQRAEQRAEQRAEoRERc9gJgiAIgiAIgiAIgiAIWiaSJx2BIDLsBEEQBEEQBEEQBEEQBKERERl2giAIgiAIgiAIgiAIgmBARUUFCxcuZP/+/cjlctq1a8fMmTNxd3c3uM3WrVvZtWsXt2/fRqVSERYWxuTJk2nZsqVRryky7ARBEARBEARBEARBEATBgPnz53PkyBE+++wzlixZQklJCW+++SaVlZUGt4mJiaFv37788MMP/Pbbb/j5+TFt2jTu3btn1GuKDDtBEARBEARBEARBEARBy0SiftIhNBrFxcVs376djz/+mA4dOgAwZ84chgwZwrlz5+jUqZPe7T799FOdx++++y7Hjh3j9OnT+Pn5PfJ1xYCd0CipVCrmzp3LoUOHKCwsZNGiRbRp0+aJxrRx40ZWrFhBRlYWVl5e+L/wArLQUIPlS1NTubNmDcV37mBmY4Nbt254DxqERFI9e2fhzZvc3bCBsvv3sXBwwLN/f9y7d6/ex/37pG7fTum9e8izs/EePBifIUN0XqcwIYH0/fu5knKX8rwCWk0ahzb2v/YAACAASURBVF+3TqjVam5u2cWdIydQlJTiGBxA1PgRyHy86n2f2fEJXFu9kaK0dCwd7AkZ1I/A3t10yiTtO8ydQ39Qmp2Lha0NHq2jiBjxDGaWlgAkHzjK3SMnKM3KAcDOx5Pjbw4iunuU3tdUq9X89OMONm84TlFhKZFRgbz74SiCQ+qPVVGhZOlPu9i14wxZDwpwdrZj7Ev9GDmmNwDbt5xi9ofL6mx3+uIPSKXm9e67Zmxn1+3h2v6TlJeU4RHqT89XnsfZz9PgNiW5BfyxbAtZySnkp2fRtHs7+k0bq1OmUlnJhU37iT9yjuLcfBy93egydigBrcONiqtmfAdX7uXc7tOUFZfh29SPp18djnuA4fiunbjC2V2nuJ+UiqJCibufOz1H9iO8U6S2zE9vf8ftq0l1tnXz8+DNn981Oratv+3j2PYzlBSVEhTuz7g3h+Ed6GFwmxuXEtm4ZDfp9x5QUV6Bs4cT3Qd34KmRPfWWP3PwIovnrKRFp3CmfzXRqLgexnZs1V5i9p6ivLgM7zB/Bk4djpu/4eMWf/IKF3afJCMpFaVCiauvB9Ej+hLWsbne8rFHY9j81e+Etgtn1JzJDYrt1pZd3DuqabsOwQFEjhuB3SPabs6NBOJWb6Q4LR2pgz3Bg/rh36u67Z7+Yj65N27V2c7W25Pu//y4QfGdWbuH2Ko24RnqT8/Jz+NST5sozi3gj9+28KCqTTTr3o7+b9RtE+c37SfucHWbiB7XsDahVqvZvmwff+w4Q2lRKYHh/oz+R/117ublRDYv2U1GSnWdix7Ugf4jquvchSOX2bPmMA/SsqlUqnD3caHPc93pMqCd0bEND/ZgTJgPLlYWJBeUMv9yMpezC/WWtTCR8F6bEMIcbQmUWXElu4gpR2PrlOvv58q4MG/87KwoUVRy7kE+C6/cJqdcYXRcAM+HejI+XBNbUn4JX8ckcylLf2xt3ewZ3dSbSBc7bM1NSSkqZ9WNNLYlZ2rL9PJ15rlQT8IcbZGaSkguKGXptRSOpeU2KC6AMRFeTGrlg5u1lITcEj47mcT59AK9ZUMcrZnTLZRQR2vsLMzILJGzMzGLhefvoFBpvnS4WlvwQecgIlztCLC3YktCJjMP32xwXABj2vkxuWsgbrZSErKK+WRPPOfv5j1yuwAna3b+vQsSIOLzA9rn+zdzZ3Q7PyI8ZUjNTEjMKub7Y0kcvPngseJ7cURHpk7ojpurHTcTM/n4yx2cjbljsHyPLk1469U+NA31QF6h5PylO3zy9W6S72Zry7w0shMvjeqMr7cjaen5LPzpMBu2X3ys+IzRpX1T/jF5MK2bB+Ll4cSkNxexcuMff9nrAYzuHcKkgWG42VtxK62AT1dd4kJCtt6y3i7W/DH/b3Wef+nrY/wRm6F9bG5qwqtDw3m6iz9uDlbkFJazdPdNlh+o2yfXZ0w7XyZ3qVnnbnD+npF1bkpnTZ374qD2eVdbKR/2DyPSU0aAsw1brtznra11+xpj/BV93HMhnjwX4omntZTMUjm/xqey++7jtYdR4Z5MbOGLm7UFt/JK+PxUEhcy9MfX3tOel6K8iXK1w87CjLuFZSyPTWPjzUydcn8LcWVSC18C7K0oVlRyKi2PL08nk13WsD64MZ9XfZ4L9WRcs4fnuoR/1XPNaFN1zYhw1lwzUovKWX1T95rxuMZ09GdydBBudlISHhTzyc7rnL9jxHFztmbn69Ga4zZ7n94ybf0dWTupI0lZJfRf+Nf2OcJ/h/j4eJRKpXawDsDd3Z2AgABiY2MNDtjVplAoqKioQCaTGVVeDNgJjdLJkyfZsWMHixcvxsvLC3t7+z+9zyVLlnD48GHWrl1b52/Xr19n0aJFxMbGIpFICA4OZt68eTg4OABw4MAB5s2bxzvvvMNOqZTMo0e5+e23RM2ejdTZuc7+lGVl3PjmG+xCQ4l8/33KMzJIWrYMUwsLPPv1A6A8O5ub332Ha5cuhLz8MkWJidxZtQpzW1ucqgYnVRUVSJ2dcWrVitRt2/S+L5VcjrW3N6HdO3Dxp2Xa5xN37Sdxz0FavzIOWw93bm7dzam539L7q9mYW1nq3VfJg2zO/OsH/Lp3ps2Ul8hJSOLq8jVIZbZ4tWsNQOqpc8St3ULLl8fgHBZCyYMsLi9diUqhpNUkzRdwKydHwl94GhsPN1CpuXfiDDOm/cjK9R/SJMynzusu/2UfK5cdYM7nL+If6MHPi3by94kL2LLrU2xs9McK8N7bP5OZkceHs8fi5+9GTk4h8lpfVC2tLNi+53Od54wdrAOI2XKQi9sO03faGBy93Di3fi9bZn/PuB8+wsLAcaxUKrGS2dL22b5c239Kb5nTq3dy4+g5ek8diZOPB3cvx7Nz7lKe/+d03IJ8jY7v2PpDHN90lOdmjMLV141DK/ex9L1FvPXL+0it9ceXHJtEcMtQ+o0fiJWdNZePxLDik1945avXCGweDMDYjyZQqaxO71YqlHwzZS5R3Y2bbwFg9+rD7Ft7jJffH4Gnnxvblu3n6+mL+efqd7EyEJultZQ+w6LxDfbEQmrOrdjbLPvXRiwsLej9TBedsg/u57Duxx00aRFkdEwPndx4iNNbjjB0+ihcfNw4tnofKz74kdeWfGDwuN2JTSSwRSi9xg3Cys6aq0cusO6zXxj/5ev4RwbrlM1Lz+bAL9vwiwjWu6/6JO/aT/Leg7SYNA5bT3dubd3N2a++pcfc2ZgZqHOlWdmc/9cP+HTrTMvJL5GXkMS139dgYWeLZ1XbbTNtMiqlUruNSqnk+Puf4dm+dYPiu7DlIDHbDtN/2hgcvd04s24vm2d9z4s/1tMmFJo20e7ZvsQaaBOnVu0k/ug5+rxa1SYuxbP9y6WM+NL4NrF3zWH2rzvGhPdG4OHrxo7l+5k/YzGfr3wXSwPnVWolpfewaLyDPLGwNCcx9jYr5m3EQmpBz6o6Z2Nvw+CxffHwc8PUzJSrp+NY/tU67BxsiOr46AHFvr4uzGgVxNyLSVzOKmR4iCcLoyN4ft9FMkvldcqbSCTIVSo2JN6ns6cTduZ1P65FOdsxp30TFl69zbG0HJykFrzTJphPO4Qx9dg1o44XQD9/F95uG8Q/zyVxKauA55t48UPPSJ7dGUOGnthauMpILChheXwqWWUVdPZ05KMOoVSoVOy5kwVoBvXOZeTzw5U7FMiVDAx0Y363cCYevGrwS50+g0Jc+ahrMB//cYsLGYWMifDi18HN6b/mPPeL68amqFSx+UYG17OLKZQraeZiyz97NMHURMLc08kAWJhKyC1XsPjiPUZEGB5kfpTBkR7MGtiMj3Ze5/zdPMa292PZmLb0/f449wvKDW5nbirhu+dbcu5uLh38nXT+1jHAidO3c5h3KIH8MgVPR3nx08jWjPjtrFEDgTUNHRDFp+8N4d1Pt3Lu4h1eHNmR1T9NoNvf5pOWnl+nvJ+3I8u+H8cvK0/y2rvrsLG24KMZA1n100t0GvA1AONf6MiHM55ixsebuHg1hVbNfZn3yTDyC8s4cDS+QfEZy9bGkribKaze9AdLF0z9S16jpkEdfPlodCtm/R7DhYQsxvQO5de3utH/vb2k55Qa3O7Fr48Rf6/6uBYUV+j8/ZupHfF0suaDXy9wJ7MIF5kllhamDYptcIQHs55qxke74mrUuTb0/eHEo+vccy301jmpmQm5pQoWnbjNyDZ1P58Z66/o44YFe/Ba8wA+v3CL67lFhDvZ8UHbEIoqlBxPb9jg/8BgVz7sHMzsE4nEZBQwKsKLpQOb89T6C6Tr6Utae8hIyC3l58upZJVWEO3ryKfdmiCvVLEjUdPPtXaX8XXPpnx5JpmDd3JwsTJndtcQ5vVuyvidxg+ONebzqk8/PxfeahPEl+eTuJxVwHOhXnzXI5LhuwxcM1xkJOaXsDwuleyyCjp5OvJB+1DklSr23s167DgGN/dk1uBwPtp2jfN38hjb0Z9lL7an74Jjjz5uI1tz7nYuHQKd9JaRWZox//mWnErKwV1m+HuI8L8lJycHU1NT7fjAQ05OTuTk5Bi9n8WLF2NtbU10dLRR5cUcdkKjlJqaiouLC1FRUbi4uGBubvwAS0Ndu3aN119/ndatW/Prr7+yfPlyxowZg5lZ9YeH1atXM3jwYJ5++mmsPD0JGDkSc3t7Mo8d07vPnLNnqayoIPill7D29sapTRu8Bgwg/eBB1GrNr/wPjh3D3MGBgJEjsfL0xC06GpfOnUk/UP1ru21AAP7PPYdLhw6YWFjofS2H5s3xfeYZvNq3BommSavVapL2HiZ0cH+82rVG5utN68njUZaXk3b6vMFjcefwcSwd7Yka9wJ23p4E9OyKb9eOJO6u/tUu91YyjsGB+HbtgLWrM64RTfHt2oG8pNvaMp5tWuDeIhJbdzdsPd0Jf24o1taWXL1SN2NLrVazesVBXpw4gN792hAS6s2cL16itKScPbvOGoz19MnrnDsTz7eLX6dj53C8vF1oHhVE2/ZhOuUkSHBxtdf5Zyy1Ws2lnUdp+2xfQju1xMXfi37TxlBRJufmHxcMbidzc6bHxOGE9+qI1NZab5kbR8/R5pm+BLaNxN7DhagB0QS0DufitsMNiu/k1j/o8Xxvmke3wCPAk+ffHoW8TM7lIzEGtxvy92fp8UIffJv64+LtSp8xA/AO8eX6qeoPmNYyG+ycZNp/d64nU1FeQdt+HQzut3Zs+9f/wcAxvWjXowU+QZ5M+mAk5aVyzhwwnI0REOZLxz6t8A70wNXLmc7929K8fRgJV5J1yimVlSyevYJhkwbi6ll30PxRsZ3deowuz/UhvGtL3AK8eHrGaCrK5MQeNXzcnpoyjK7P98U7zB8nL1d6jH4KzxBfbpy+qlOuUlnJprm/02v8YBwfI7bb+w4TPLg/nu1aY+fjTYtXHt127x4+jtTRnsiqtuvXsys+XTuSXKPtWtjaYOlgr/2Xl5CEUi7Ht1vnBsV3ccdR2g3rS2hnTZsY8IamTdyop03YuzvTc9JwInp3xNJOf5uIP3qOts/2JahtJA4eLrR4KprA1uHEGNkm1Go1Bzf8wVOje9Gmewu8gzyZ8L6mzp09WH+da9+7qs55OtOpX1si2oVx62p1nWvWOpRW0c3x9HfHzduFPsO74RPkqVOmPqOaeLPzzgO2Jmdyp6iMf11KJru8guHB+jP/yitVfBmTxJbkTB7o+QIEEOUi40GZnDUJ97lfIudabhHrb90nwsnOqJgeGtvUmx3JmWxOyuB2YRlzLySRXVbBc030D2b9cj2FH67c5XJWIWnF5Wy4lc7hlGx6+7poy3wVk8xvcalcyykmpbicn2LvEZ9bTE/fhrWHl1v4sOlmJuviM0jKK2XOiUSySuSMjtSfbXq3sJxNNzO5kVPC/WI5h+7ksC3hAe08q/v9tCI5n5xIYtPNTArKlXr3Y4yJnQPZeCmNtTGpJGWXMHt3PA+K5YxpV//tLe/2DeNGRhG7r2XU+ducPfEsOp7MlbQC7uaWsvBoIrH3C+jX1PBk1oZMfjGadVtjWLXxHLeSH/DB59vJzCpi/IiOestHRfhgbmbK5wv2cudeDtdvpPPdz0cI9HPByUHTZocPac3KDefYuvsK91Jz2bbnCis3nOW1l7vr3ee/w74jl5n11Tq27D6HSvXX35o1YUAYm0/cZt3RZJLuFzFnxUWy8ssZ3av+H1/yi+VkF5Rr/ykqVdq/dY10p0uEOy/P+4OT1zNJyy7lSnIuZ280bLBiYucANl5+zDqXWcTu63UzmlLzy5izJ56Nl9PIb2BWWE1/RR830N+Nrbcz2J+STVqJnAMp2WxNzmRcU+8GxzehuTebEzJZfyODpPwyPj2ZRFZpBaPC9fdziy+lsOD8HS5mFpJSVM7quHT2386mf2B1P9fKXUZGiZxlsWmkFpVz+UERK67fp4WbcVkzDzXm86rP6Kprxpaqa8ZXMUmacx2q/1j+GpfCj1fvciW7kLSScjYm1r1mPI6J0YFsjEll7fkUkrKKmb3jOg+K5Izp6F/vdu8OaMqN9EJ2x6YbLPPVsBZsupjKRSOyHIX/fosWLaJ9+/b1/ouJMfz9oCHWrl3Lli1bmDt3Lra2tkZtIwbshEZnzpw5LFiwgIyMDNq3b8/QoUNRq9X8/vvvPPPMM0RHRzNy5Ej27Nmjs93333/P8OHDiY6OZujQoXz77bfI5ZoPATt37mTp0qUkJydrG97OnTsBWLBgAcOHD2fChAkEBwfj7+9Pz549tY1IoVBw48YNnfRXAPvwcIqT6g5AARQnJyMLCdEZZLOPiECRn4+8agS+ODkZ+3DdzAz78HBK7tzRyYJ5HKVZ2cgLCnFr3kz7nKmFBS5hoeTe0h8zQF5iMq6RzXSec2seTv7tu6iqsq2cmgRTcC+F3ETNF9XS7FwyLl3FvUVknf0BqFUqUk+fp7RUTouWdT/wpqVmk51dSKfOEdrnLC0taN02lKuXDH8ZPnroMuGRAaxcfpABvWYy9KkP+eqLtZSW6P6qJpdXMLDPuwzoNZNpU7/jRrxxE3wCFGbmUJpXiF/LptrnzKQWeEcEk37jdj1bPlqlQomZhe4vymYW5tyPN24AACA3I4ei3EJC21THZy61ILB5MHfj7jQoHnlZOVYGBlIAzu05TVjbZji4ORq1v6z0XApyi4hsVz2AaiG1oEmLIBKvGR/b3YRUbl27Q1iturNpyW5cPJ3o+pTxtyQ+lJ+RQ3FeIcGtq2Mzl1rgHxlManzDzmtFmRyrWoOyh5fvxMHdiZZ92jc4trKqtluzHZpaWOAUFkpePW03X0/bdW0eTsGd6rZb272jJ3CLisDKWf8vzPoUVLUJ/1ptwicimPt/tk0o9bQJqTn344xrE9lVdS6i7Z+rc/cSUkm6focmevor0AwMxsckkJGSRZOoR2dQmplIaOpoy5kM3Q/+ZzPziHJu2Be7mq5kF+JiaUG0p+b82VuY0dfPlZMZxmeemJlIaOZkx+laGVenM/Jo4WJ8bDbmphRW1H/dsjaiTE3mJhIiXe04nqL7fo6n5NHa3bjY/GWWdPNz5Nz9uhllf4a5qYRITxnHk3RvkzyemE0bP8N9ZM8mrvQKc2P27jijX8tWakZBA29xNjc3JSrcm2OnEnSeP3YygXYt9X+ZvXItFYWyktHD22NiIsHG2oLnh7bh0tUUcvM1mWUWFqbIa53DsnIFraJ8MTP77/9KYW5qQmSAI8djdQdTj1/LoHVo/YMLP07rwrnvh7L+w94MaKeb0dS3jQ9Xb+cyYUAYJ775G4e+GsjHY1phLTX+RidtnUusVeeSsmnj62BgK+gZ6kqvJq7M3v3XZEDCX9fHmZuYUFFj4BOgvLKSCCc7TGtML/Po/UiIcLXjRKpufCdSje9LAGwtTCmQV9f/mMwCXK0t6FWV3eZoacagYFeO3TO+D27M51Wfh9eMM7WuGWfSG3bNsG3g9aA2c1MJkV72HL+lO+h9/FZW/X1wmBu9mroze8d1g2XGdPTH1U7Kd4cbdrv6/1emkv9f//QZOXIk69evr/dfREQEzs7OVFZWkp+vW/9zc3Nx1nPHXW1r165l8eLFLFiwgIiIiEeWf0jcEis0OjNmzMDT05Pt27ezbNkyTE1NWbRoEYcPH2bmzJn4+fkRGxvLF198gZ2dHV27dgXAysqKjz76CFdXV27fvs2XX36JhYUFU6ZMoU+fPiQlJXHixAkWLVoEgK2tLbm5ucTGxtK/f38mTZpESkoKvr6+TJo0ifbtNV+28/PzqaysxMlJ90utuUxGYbz+C2VFQQFSR90LhrmdJutBUVCApYsLioICZM10v2Cby2SoVSqUxcVYOBi+UD+KPF9zy5G01r3xUns7yvIMf3EpLyjENaKpznNSexnqShUVxcVYOtjj06kdFcUlnPhsPqBGXanCp0sHwkc8o7NdYUoaf8z5GpVCgamllHnf/p3QJnXT8nOq5jdxctbNCnFylvEg03CsqanZXL6YiIWFGV9/M4WiwjK++mINWQ/y+fqbKQD4B7oz69PxNAnzpaS0nDUrDjFhzFzWbv4YP/9HZyyUVB1Hawfd2KztZRTn/rkvgH6tmnFpx1F8IkNx8HTl3tUEks5cQd2ADILi3CIA7Bx147N1sKUwR/8cT/qc3n6cguwCWvduq/fvWakPuH01ibGzXjZ6nwU5mmNnXyvbx97JjrysR8c2/dk5FOUXU1mp4ukX+9Hr6eossGvnbnLu8GU++W2G0fHUVJynOW62tc6rjYMdRQ04bud2HKcwO5+oXtWDhkkXb3D9j0tM/n7mY8VWXmCg7crsKK+n7crzC3Gp1XYtZLptt6bi9Exyb9yizRtTGhRfqaE24SCjOOfPtQn/ltVtwrGqTSSeNr5NFORqYpPVqnMyRzvysx99Xt8eXl3nhozvR4+hupmHpcVlvD18DsoKJRJTE0b/41mad2xmYG/VHCzMMTPR3IZZU265gvZuj589HptTxAdnbvJJxyZYmppgZmLCmYw85pwz/kuGo1QTW0657u17OWUKOngYF1u0txPtPRx4af8Vg2VeaOKJu7UFu24bP/eUo6UmtuxS3eOWXaagi7X+jPOHNjzbkkgXO6RmJqy5fp+vz/y5weQ6sVlbYGZqQnatW+mySyroYqs/NldbKV8OiWTK2kuUVBheTa6mse398JBZsuVyWoPic3KwxszMlKzsYp3ns3KKie6kPwMz5X4eL0xcys8LxvDPD4diYiIhNv4+oyf/qi1z9GQCo55tx+4D17h8LZUWEd6MHt4eC3MznBxseJBd1KA4GxtHu6rzWljrvBaU0yVC/2eG0nIlX6y+TMytbCpVKnq38ubbVzvx9pJzbDt1FwA/VxvahrpSoVDx6rcnkdlYMGtsa9wcrHjte/1TBNSJ7WGdK9Ftq9nFFXQJkurdRlPnIpiyzvg69zj+qj7uTGYeQwLdOZKaQ1xeMc0cbXk60ANzUxMcpGZGz9X5sC/JqZVpllNagYu3cZ+1e/o50cnLgRHbqvu5y5lFvHnoBvN6NUVqaoK5qQknUvKYecT4OTEb83nVx0H68FzXumaUK2hv7DXDy4l2Hg5MOGD4mvEo1X1w7eMmp0uI/sF1VzspXz7bnCkrYwwetzB3O97oFcozi07yH0joFRoJBweHOre56tOsWTPMzMw4e/YsAwYMACAzM5M7d+7QvLn++awfWrVqFUuWLGHBggW0bGn89EIgBuyERsjW1hZra2tMTU1xcXGhrKyMNWvW8O2339KqVSsAvL29iYuLY+PGjdoBu5dfrh5M8PLy4sUXX2TVqlVMmTIFS0tLrKystPt86NYtzRebJUuWMG3aNMLCwjh06BBvvPEGy5cvp0mTJtqyktq/5qkf0ZMb+vWvxvN1SjzcZwN+OQTIPnuWCytXUimXc+W31XSa+bre3ajVmltE6/WI95kdn0DCtj20eHEEjsGBFGdmcW3lem5s3kmzYdUTL9t6utPj8/dRlJSRfv4Ss97/jSXL3iLhZiqfz16pLfftoteqXlb3ddVqPcdc5+8qJBIJn381EbuqzLB3PhjJq68sJCe7EGcXGS1aButk9bVoGczIYZ+wdtURZr4/os4+bxw7z+HF1XMcDvlgiv7YUNcbmzG6vzyMQz+uYcW0zwEJ9h4uhPfqSNzhMwa3uXT4AlsWrtc+fvHTV/QXNOY8V4k9foXdS7cz8r3xOLrrz7Q6v+c0dk4ymnYwPFfXqf0xLP/XBu3j6XP1LwCh1lTCR3r/+9coL5OTdP0uGxbvxMXTmS4D2lKUX8zSL9YwedYYbOrJCKzp6pEL7PxunfaxdgEI/Q3EKHEnLnPg120Mf2c8DlXHrbSgmK3zVzFs5rh6sxVrSjt1jtjfVmsft5tRNUeTnjgeXedq/91wH5Vy9ARSB3vcWurPjH0o/th5Di2qbhNPf1jVJqjdXtUN7rdq6zFxGAd/WMPvr2vahIOHCxG9O3L9kP42ceZADCvmVde5aV9q6lzd02rceZ353WvIS+Ukx91l40+aOtepf/UgtqW1lI+XzkBeVkH8xVus/2E7Lh5ONGvTpJ691ojDyOeMFSiz4q1WQfwSl8KZjDxcLC2Y1iKQ99qEMPtcwqN3UDOOWoFIJI++xAG0dJXxzy5hfHUhmWs5xXrL9PZ15h+tAnn3xA3SS/Tf+tYQEh593Kbtj8fG3JRmzja82zmYKa3LWXQx5U+/dm2145Doe7LKN8OjWHn+HpdSjRvYHhDuzvv9mvL6hsuk1TMfU/3x6QYjkUi003LU5upiy/xPh7NhWwxbdl/B1lrKzNf7smT+aIa99DNqtZoFiw7h5mLHjlVTkUg0A4Drt8bw2sQeqFQqvfv9b1T7GGmOm/6yecUV/LK3eoAm9nYejnZSXhnYVDtgJ5FIUKPmH4vOUFw1aDT79xiWz+yBs0xKTqHx7UJfWzUU3DfDolh5IYVLqcb/EPVn/Lv7uF/iUnC2tOCX3lGAZpBo590HjG/q81iDKXXqvpH9XGt3GfN7N+WzU0lczaoelA5xsObDLsH8cPEex1PycLW24J2OgXzaLbRBg3aa2GqF1ojOqz76+j5jjmULFxmfdwnj6wvJXDdwzWhYHHXbqsE++PmWrDx7l0sp+vtgC1MTvhvZii/2xJOaV/anYxP+/7G1tWXIkCF89913ODk5YW9vzzfffENISIg20Qdg6tSpRERE8OqrrwKwYsUKFi1axJw5c/Dz8yM7W5NRa2lpadRtsWLATmj0bt++jVwu54033tD5wqpUKvH0rJ4v4dChQ6xdu5aUlBTKyspQqVRUVtb/y9PDi/ezzz7LkKrVV8PCwoiJiWHz5s28++67ODg4YGpqWmcySUVREeYGVnexsLdHUVBQpzyg3cbc3p6KwsI6ZSQmJpjZ2NQbd22OLVoQ0MyPI+9/TtOnB2Jhp2n85QWFOre7VRQWIbU3PL+Rpb2M8nzduOWFOXcm+AAAIABJREFURUhMTbCo6lDiN27Hu2Nb/HtoBkplvt5UyuVc/mUlYU8PxMRUM4myiZkZtu5umviC/EnPvsuq3w/y1rsvENk8sPo9KzQp8TnZhXh4Vseal1uIcz23Uri4OODq5qAdrAMIDNLUh4z0XJz1pOabmprQLCKAe3f1r0wV1L45Hk0CtI8rq2IrySvEzqU6Y7KsoAjreo6jMazt7fjbe6+grFBQXlSCjZM9J1dsR+ZuOKU6vGMkvmHVtzM9jK8or0jnVtXigmJsHR8dX+zxK6z/eiXPvz1aZ4XYmpQKJTEHztP+qU6YmhqeILtV1wiCw/1qbKdpewW5RTi7V8dWmFdcJ+tOH1cvzXHwDfaiMK+Yrb/to8uAtqTeziA/p5Cvpy/Wln2YgTWhx1t8/vtMPP3cdPYV1iESnxrHTVl13IrzCrF3rY6tpKC4TtadPnEnLrNl3kqemTFGZ4XYB3fTKc4t5Pf3f6yOraqP+WTwdKYufhcXH90sDfdWUTgEB2gfq6pik9dqu/LCIixkhmOTOsiQ1+pzKmq1Xe1rKJWknjiDb4+u2vZqSHD75njWaBMPj11JfiF2rrXahBHHrj7W9nYMeV+3TZz43XCbaNklgsBmeupcThFONdpDUX4xMiPaw8O5EH2q6tz2Zft0BuxMTExw93EFwC/Um/S7mexaeeiRA3b5FQqUKjXOlrrZB06W5nUyUhrixaa+XM8tZuVNTfZVYkEpZReTWNorikWxd8gsq3jEHiBPronNxUo3K8zJ0vyR2SstXWV83zOCRVfusuGW/rmAevs681nnMD46ldDgFWLzyqtis9Y9bs5W5mSX1v/eHk4in5hXiomJhC97hLHkUgqV/6aMibzSCpSVKlxtdTNgnG0s6mTKPNQlyIUO/k680SME0HyxNDWRkDirPx/tjGNNTPWA4oBwdxY824I3N199rBVic/NLUSorcXPRrfcuTjZkG/iS/NLIzpSWVfDpvOrpRl59Zx2XjrxPu1b+nLt4h3K5kukfbuTt2ZtxdbYjM6uQsc91oKi4nJw8wwsy/LfIK6o6r/a6k8w7y6RkFxo/aHolKYfh0QHax1kFZWTmlWkH6wCS7ms+/3k52xg1YFdd53Tbav11zpkO/o680V3zw6W2zn3cj492xbEmJtXo91Sfv6qPk1eq+PT8Lb64kIizpTnZ5RU8E+RBsUJJvtz4/Vb3JbWOnZUFOY/oJ9t4yFj6VCQLL9xldZxuPze5lS9XHxSx9IrmON7MLaHsRCVrh7Zk/rk7ZBjxA0VjPq/65Msfnuu614xHneuWrjK+7RHB4qt32ZhoeP44Y9TbB+tZRASgS4gLHQKdeKNXKFDjuH32FB9tu8bxW9k0cbfj62FRfD0sCtAsjmJSVeal5ec5fkv/atHC/47p06djamrK+++/j1wup127dsyePVvnO1JaWhru7tWf9zdu3IhSqeSDDz7Q2degQYOYNWvWI19TDNgJjd7DX23nzZuHh4fu5LUPF4aIjY3lww8/ZOLEiUyfPh1bW1uOHz/OwoUL6933w/vNAwMDdZ4PCAggM1MzqGNubk7Tpk05d+4cffr00ZYpjIvDsbX+1RVtg4K4t3kzKoUCk6oFMwri4jB3cNCuKmsbFETe5cs62xXEx2MTEICJWcOapqmlJbaObkgkEqT2Muy8PZHay8i6Fo9jUAAAlRUKcm4mEjHyWYP7cQwJIj1GN6asazdwCPTHxMy0aj8VSEx056qRmJg88mdUlUpNRYUSGxtLnZVf1Wo1Li4yzpyOI6K5Jla5XMGlmETeeGuYwf21aBXMwf0XKC0px7pqf3erBuI8vfRniqnVam4lpOpdqRbAwspSZ5VLtVqNtaOMe1du4BGqGfBRVii4H5dM1/FD63/DRjKzMMfW2YFKZSWJpy8T2qWVwbJSa0udFUzVajV2TjISL97EN0wzcKGoUHDnWhIDJw6p93WvHrvE+n+t5vm3RtE82nBqdtypWEoLS2g7oP7FJqysLXVWflWr1dg72XH9fAJBVYMqFXIFCVeTeWHq3wztRi+1SqUdKApq6stny9/W+fumn/dQWlTK2DeH4epZ99zrO262jjKSL93Eu0n1eb17LYm+L9d/Xq//cYmt81fx9JujCe+qe9y8mvjx9x/f0Xnu8O+7KS8uZeDU4TjqGXgys7LUWflVrVYjtZeRfS0ehxptN+9mIk1HGG67DiFBZOppu/YB1W33oYyYK1QUl+DX/dGLTRhsE5d120RaXDLRL/7728St05dpYqBNWFpb6qz8+rDOxV1I0A7kKeQKbl1N5rm/P36dM1xG/cgyAEqVmht5xXRwd+RQavUPP+3dHTmS+vgf/i3NTFDVSmnQPjYy21GpUhOfW0RHDwcO3KuOpaOHAwdTDK941tpNxnc9Ilh89R6rbt7XW6afnwufdGrCx6cTOJjS8PepUKm5llVEVx9H9tSYK66rryN7k43fn0nVlzJTiYRKY1JAjImtUs219EK6Bjuz+3r1fGddg13YG1d3MQmAft8f13nct6k7r3ULZuiSU2TUGAwaFOHBvGejmLH5KnsM7OuR8SkquRqXRrdOoezYV72YULfOoew6oH8FYWsrc1S1RjQrq+YPM6lVn5RKFemZmh8Inh7YggNH4w1m7v03UVSquHYnj66RHuw5Xz3o0TXSg73njc/QbObnwIP86nMak5DNU+18sZaaUVo1B1qgh2Yw9X52iZGxPaxzLuyOq/7RsWuQC3vj9f8I2e+HEzqP+zZ147XoYIb+fFqnzv1Zf1Uf91ClWs2DqoG1fr6unLif26DMPYVKzfWsIrr46PYdXbwd2HfbcHztPO1ZMiCC72Lusiy27m3pVnr64Id9jLEJ5435vOqjvWZ4Ouj06x08HDhU3zXDVcbCHhH8FHuP1QauGQ2hqFRz7X4BXUNddRbw6Rrqwl49C/oA9PtGd6HAvs08eK1nCEN/PEFGQTmlFZV1yoztGEDXEBcmr7wgsu4EAKRSKW+//TZvv/22wTLbtm2r93FDiQE7odELDAzEwsKCjIwM2rXTP8H81atXcXV11bktNj1d99cbc3PzOrdseHl54erqyt27d3Wev3fvHiEhIdrHo0aNYtasWYSHh1MmlZJ57BgVBQW4d9esjHZv82ZK7tyh2ZtvAuDcvj1pO3eS9NtveA8aRHlmJvf37sVn8GBtlqBb9+5kHjnC3XXrcOvWjaLERLJPnSJkYvWthCqlkrKq96FSKFAUFlKSkoKpVIqlmyaLqLK8nPKsLAqklaBWUZaTS+G9VHyjO3Frx35sPT2w9XAjYdseTC2leHeqPoYxi5cB0GbKiwAE9Irm9oGjxK5cT0DPaHJvJXHv+GnavjpBu41HqyiS9hzCIdAPx+BASjKzuLFxB+4tI7XZOtfXbcGjZSRWTk4oy8tJPXWexPMJ2ttfa5JIJIwa24dfluwmINAD/wB3lv60CytrKU8Nqh4k+ug9zTw6n/5TE8tTg9qz9KddzP5wGZNfHcL/sXff8U1V/+PHX0nbpHs33bul0EKhZZS9p6CAiiJLBBQEcSLugRs+DEUFWQqytyB7CRSUDaVllRYodO890jb5/ZGSNm1TUtQP/X2+5/l49PEwl5Pk7b33fZJ78r7nFOQXM/frjfTtH459VWXekkW/0yrUDy9vBUWFpaxfe5i42ETe/2h0nTjqI5FICBvSk7NbDmDv7oytm4KzW/ZjYiojqHt15c3+734FYMBr47TbMm5rvuwrS0qRSCVk3E5EamyEg2dVFWDsHQqzcnHy9aAwO5dTG/aiVqtpN7wvhpJIJHQZ1p0/NhzEyVOBo4eCI+sOIDOV06ZXW227jXM0tyA/O3MMAFFHL7Bxzhoee3Eovq38Kaia+8vI2Ahza93qzjN7/sK/TSAOro1bzUsikdD/me78/ushXL0VuHg6sXPVQUzN5HTsVz3QvfQLze2gL304CoCDWyJxcrXHpapK7kZUPHs3HKX38C4AyM3kePjprkRmbmmGqlJVZ3tDsUUM60HkhgM4ejjj4O7E8Q0HkJnJadWzer9tn6vZb8NnaPZbzLELbJ+7mn4Th+Ld0p/C+/vNxAgzKwtkpnIUPrqrV5pamqGqrKyzvaHYfAf0Jm7nPixcXbB0VXCznty9tGQlAG0mjwfAu3c3Eg4e5cqaTXj16kbOzXgSI/8ibOqEOu9x949IHIODMFc4GRRT7fjCH+/Jmc0HsPNwxs5NwenNmpxoXiMn9n2ryYmBr1fnRPqtqpwoLkUikZB+KxEjk+qcSKmZE1mNzwmJRELfEd3ZvfoQLt4KXDyc2LX6IHIzORF9q8+5FV9qzrmJH2jOucNbI3Gscc7FRsWzf+NReg7ron3OrtUH8WvhjZObA+XKCqJPX+PUgXM895r+QdSa1sUmMatDM65kFxCVmc9T/q44mcrYGq+5sJjWypsQeyumHqseTPG1NsNEKsVWboKZsZRmtprcjM3VXOBHJmfzQbsAnvJ34VRqDg6mMt4K8+NadiFpelZdrM/q60l82SmImKwCLmXkMyLQFSczOVuqquamt/GhpYMVkw9rBn7aKWz4vlcIm2JT2HMnXVtVo1JrKvYABng78UXnZiy4cJvz6XnaNuUqdaMmGl8Rlci8Ps2JSi/gfGo+o0JcUVjIWRujueB7u6MvrRVWjNmpWal5WDMFZZUqbmQVUa5S08rJircjfNkbn4Gyxj10LRw0+9JSZoRKraaFgwXlKjVxjagSW/7nbeY/2ZqoxDzO3c1hTHsvnK3krD2rWdhoZt9mtPawYfRKzerOsem6lW2hbjao1Gqd7Y+3dGX+U6F8tf86ZxKytVU3yko1eY1c6XHJyki+n/0sF6PvcfZiAuOejcBFYc2vGzW3mL//xkDCWnkyYsIyAA4eu85L47ry1tS+bNt9EUtzOe+9PpDElFwuX9Xkrp+3I+Ghnpy/fBdbazMmP9+doEBnXn1vk944/i4Lczn+Ppofa6VSCZ7ujoQGe5OTW8i9ZP0DBA/r5303mDs5gqhb2Zy/mcGoXgEobE1Zd0Sz6M+MEa1o7efA2NlHAXiyqw/llSquJuSgUkGfMDfG9A1gzsbq1cN3/nWXV4aGMPvFDizcHoO1uYyPxoSz58w9sgoMz9Xlf95h/pOhRCXdP+c8655z7jaMXmX4OQcQXDV4aCk3RqXWPFZWqojLMGwwEf6dPs7L0pQQBytisgqwkhkzupk7fjbmjb7lH+Dn6CT+0yuIy+kFXEjN47lgNxQWctZXVc291cGHUIUVz+/S9HMdXG1YNqgl664ms/NmOo5m1f3c/UqyIwnZfNE9kFHBrtpbYj/o7E9MRoG2ytcQTfm41mft9SQ+r/rMiMrI56mqz4ytVZ8Zr7TWfGZMOaLZl20VNizsGcLm2BT21vjMqFTTqErJ2pZH3mb+M22IupfLuYQcxkR44WxlytrTVfttQBCtPWwZveI0ALFptfabe6lmv9XYXrtNVmEZygpVne3/l0j/3mwnwj9ADNgJTZ6FhQWjR4/mu+++Q61WExYWRklJCdHR0UilUoYPH46XlxcZGRns27ePVq1a8ddff3HgwAGd13F1dSUlJYXr16/j4uKCubk5MpmMMWPGsHTpUgICAggKCuLQoUPExMTojJz369ePvLw8fvnlF1IzMjBzcyNo+nRttVx5Xh6lGdUrFRmbm9P89de5s349MV9+ibG5Oa79+uHSr5+2jamjI0HTp5OwaRNpx44hs7HBe+RI7NtWDxiU5+YS8/nn2sfpGRmkHz+OVbNmBM+YAUBRQgLX5s3Ttrm+bRfXt+3Co0sE/oP6cHnVBsqLi7Hz86XzzOmY1KiWKcnSvUXJQuFIxxnTiFm7hTuHIzG1taHV2Gdwa199sdts6CDN+2z9nZLsXGRWlriEtaLFiOqKrrLcfM4vXklZXj7GZqZYe7nz/U+v0rlr/SviPD9xAKVlSmZ/sY78/GJahvqyaNnrOpV4qSm6sZpbmLJ4+RvM+Wo9Y5/9EitrC3r2bsOrb1ZfQBfkF/PFp6vJyszH0sqMoOaeLFv1Ni1DdSsqG9J2eF8qlOX8sWwzZYXFuAT6MOyTaTpVRwUZdZd9X/fmbJ3Ht8/GYOVkz4SlswBNVdJf63aTl5aJiakcn7bBDHh9HHILw+Y+u6/HM30oV5az48etlBQU49ncm4lfv6xTUZZbK75Tu0+iqlSx66ft7Pppu3a7b6g/k/8zXfs4KyWT+KibPPfeOB7GY6N6oywrZ/X8rRQVluDfwosZ8yfrVOJlpenGplKp2PTTLjJTczAykqJwc2DElCH0GtrpoWLQp8vTfagoK2fPoi2UFBbjEeTN2C9091terf12bo9mv+1fup39S6v3m3erAMbPns4/xW9wfyqV5Vz5VZO7tn6+RMycrlOJVzt3zZ0caT9jGlfXbuHukUjktjaEjH0G1/a6VcDF6RlkXYslbKrhC4jU1m54XyrKyjmytConmvnw5KcPzom1tXLi1tkYrJ3smbhMkxOVynL+XFudE75tgxn4xjhMLQ3PiYHPac65dQs055xfCy/enDtZpxIvK73uObd1SfU55+TmwFMvDaFHjXOurKSMNfO3kJORi4ncBFcvZya8P0pnILAhB+9lYiMzZkKwJ46mMuLzink98gqpVQNrjqYy3C11b8P7tlsIbjX6wLX9NZWG7Tdpqit23UnH3NiIZwJceb21L4XllZxLz+X7y3cM3l8ABxIysZWZ8GJLLxzNZMTlFvHK0RjtfHNOpjI8a8T2hJ8zZsZGPB/swfPB1dXKyYWlPLZDc0E5ItAFE6mUme38mdmueh7Rc2m5TDpUXfH1ILvjMrCTm/BKW2+cLGTEZhUxYVc0yVUXw07mMryszbTtK1VqXg73wsfGDIlEQlJBKWtiklkRpXuL2O5ndRfY6evrSGJ+Kd3XnDY4tl0xqdiayZjewx8nK1Ni0wt4Yc057XxzCis53naN689Ht/fExEjKJ48F88lj1XOGnrqdxchfzjTqtXbsu4ydrTlvTOmNwsma6zdTGT35FxKrVsx1drTCx7O6Ivnk6XhefnsD0yb2YOqE7pSWlnM+6i6jXlpBcdVgoZGRlMnju+Hv40RFhYqTZ+J5fNQi7iXXzfd/SnioHwc2fax9/PFbI/j4rRGs3nyMl976qYFnPpzdp+9hayln2hPBONmacjMxj4nzIknO0gzmKmzN8FLoTjMw7Ylg3B0tqFSpuZNawLvLz2rnrwMoLqtg7OyjfDI2nO2f9iOvSMnBC0n8Z9NlGmPXlVRszU2Y3t0fJyu55pxbe776nLNs/DkHsOflLjqP+zVXkJhTQtda1UYN+Tf6OKlEwuhm7nhbmVGhUnMuI49JRy6T0ogfJLT/j/EZ2MqNmRruhcJcRmx2ES/ujdH2JYpafclTQc6YmxgxqbUnk1p7arcnFpTSa50mF7fFpmFhYsSYEDfe7ehHgbKC08l5zDlt2Mrm9zXl41qfA3czsZGbMClE85kRn1fEq0djtMfF0UyGR41j/XjVZ8a4YA/G1frMGLLz7EPHsSs6BVsLGdN7B2j2W1ohL6w8S1KuphJOYSXH26Hx+00QmhpJbm7u//817ML/nDVr1rB582ZtCalarWbTpk1s27aNxMRELCwsaNasGWPHjiUiQlOF9eOPP7Jjxw7KysqIiIigQ4cOzJkzhzNnNB+sSqWSjz/+mLNnz1JQUMDHH3/MkCFDAPj111/ZvHkzeXl5+Pn5MXXqVJ3JI2uaXus21qbCxey/u1JUY30S3vBcWY/Sqti/PxH6v8XVvOkeVxfzpjvJ+O2Cpnu+AZzLbHiVy0epmbXhFVD/bSF2D/9r/L/tzeM2D270iJSXN+2vevl5TbcvUaU23bnZSrccfdQh6JVXePdRh9Agt57DHnUIelX6Nt2+xCnkwROkPyq5OU23HylPbrr9CIB9UOPmzv5vyo7Of3CjRyjq3a6POoR/1bY0/Yvh/f/oSeeOjzqERhMDdoLQSGLA7uGIAbuHIwbsHo4YsHt4YsDu4YgBu4cnBuwejhiwe3hiwO7hiAG7hyMG7B6eGLB7tMSA3aMnbokVBEEQBEEQBEEQBEEQtMQcdo+e9MFNBEEQBEEQBEEQBEEQBEH4bxEDdoIgCIIgCIIgCIIgCILQhIgBO0EQBEEQBEEQBEEQBEFoQsQcdoIgCIIgCIIgCIIgCIKWmMPu0RMVdoIgCIIgCIIgCIIgCILQhIgBO0EQBEEQBEEQBEEQBEFoQsSAnSAIgiAIgiAIgiAIgiA0IWIOO0EQBEEQBEEQBEEQBEHLSKJ+1CH8nycq7ARBEARBEARBEARBEAShCREDdoIgCIIgCIIgCIIgCILQhIgBO0EQBEEQBEEQBEEQBEFoQsQcdoIgCIIgCIIgCIIgCIKWqO569MQxEARBEARBEARBEARBEIQmRAzYCYIgCIIgCIIgCIIgCEITIm6JFYRGMpY2zeWtHU0rH3UIDZJg8qhD0MtWrnrUIejVzqniUYegV1ap5FGHoFcL26a73wAuZckedQh62cqabj64mDXN/heguKjp7jeAwsymmxPG17MedQh6GRcoH3UIepn3iHjUIehlURT+qENoUPLR3x51CHopQiY96hD0Sktput81ja9mPuoQ9DIqbbr9L0B2ZdP9bJVmlz7qEAThkRIDdoIgCIIgCP/DmvJgnSAIgiAITZO06f42/3+GuCVWEARBEARBEARBEARBEJoQMWAnCIIgCIIgCIIgCIIgCE2IGLATBEEQBEEQBEEQBEEQhCZEzGEnCIIgCIIgCIIgCIIgaIk57B49UWEnCIIgCIIgCIIgCIIgCE2IGLATBEEQBEEQBEEQBEEQhCZEDNgJgiAIgiAIgiAIgiAIQhMi5rATBEEQBEEQBEEQBEEQtIwk6kcdwv95osJOEARBEARBEARBEARBEJoQMWAnCIIgCIIgCIIgCIIgCE2IGLATBEEQBEEQBEEQBEEQhCZEzGEnCIIgCIIgCIIgCIIgaEkljzoCQVTYCYIgCIIgCIIgCIIgCEITIgbsBEEQBEEQBEEQBEEQBKEJEQN2giAIgiAIgiAIgiAIgtCEiDnsBEEQBEEQBEEQBEEQBC0xh92jJwbsBMFAarWaZcuWcWbzZiqLi7H09cV/9HOYu7s1+Ly8G7Hc3riZ4uRkZLa2uA/sj2vPHjptMs9f4O5vOynNyMDUyQnv4UNxCA/T/ntFaSl3f9tB9oVLlBcUYOHlie/IZ7Hy9dG2KcnN5+yaHSRdvkZZUQkuLQLoNHEENq4KbfwXN+/hxqGTlBWW4BToTedJz2Ln6ao39uKcPE6v2kbW7UTyU9IJ6N6B7q+M1WkT+8cpIhetqfPc59cuwFhm0uC+uU+tVrNk0U62bj5OQX4xLUN9ee/D0fgHuDf4vHJlBcuW7GL376fISM/FwcGasS/0Z9SYvto2hYUl/LhwO4cOnCcvtwgXFzteef1J+g9sb3Bsx9bu4/y+PyktLME9yJvHpj6Nwlv/frt2Mopze06SGp9IRXkFTp4udBvZj6COrbRtrkRe5OTmw2SnZKKqqMTe3YmOw3rSpm8Hg+JqKN5flxxgz7bTFBQU07ylF6+++yQ+/i56n3PpXBwzXvqpzvaft87Ey1fxt2LZsuIAh3eeojC/mMAQbya89SSefvpjuXoxnvWLd5N8N4OyUiVOLnb0fiKCx0f10rapqKjkt18Pc3zPObIz83D1cmL01CG06di80bEdqYotoBGxpdSIrVet2AD2bDzOoe1/kpGag5WNBe26hTBq6hBMzeV6Y7mxfTd3/jhBeVExdv4+hD4/EmuPhvuWzGuxxKzbQkFSCqa2NgQM7o9vn+46beL3H+HO4eMUZ2Yjs7TAJTyUkJHDMTY1BSB25z5Szl2iMCUNqYkxdv6+uL/0GM4++t9brVZztConSgpL8AjyZvADcuJqVU6k1MiJ7iP70bxGTlw8eJrfFqyr89wPf5uLSSP6knXLDrD/t1MUFhTTLMSbl99+Eu8Gzv+arly6xXsvL8bDW8GiDW9rtx/adYZvP9tYp/22yG+QyQ2LbWRzV15o6YmTmYy43CK+ORPPhbT8etu2d7FhXIg7rRytsJQZcze/hNVXk9h+M02nzcpBres8d8i2s9zOKzEopvvGtnFncnsvnCxl3MwsYtaRm5xNyqu3baCDOZ/3DSLAwQIruRHphUp2Xk/j25O3KVepte1MpBKmd/LhyWAXFJZyMouVLD17l5UXEhsV2+he/rw4IAiFrSk3k/L5fMMlzt3MrLetu4M5x+cMrrP9hQXHOR6TVmd72wAH1s3sya3UAgZ9fKBRcemNt38gk54IRmFrxs3EXL5YeZ5z1zMafM74x4J4rl8gngpLcguVbD92i/+su/S3YxnT3Y8X+wWisDElNiWfLzZf5mxcVr1t3e3NifxyYN3Yvj/J8auafedkbcoHT7cixNMWH4Ul20/fZeav5x8qttF9AnjxsSAUNmbcTMrj87UXORer57g6mnN8/uN1tr/wn2Mcj07VPjYxkjJtaDDDunijsDUjK7+U5XtusOrgzYeK8UG6dGjO65OHEN7KFzcXe158czFrthz/V97rvrFh7kzu4F2dq4dvcjYxt962gQ4WfN4viADHGrl6LY1vT9zS5urcx1owolXd/r5YWUmLBUcbF1uoG5PDPVBYyLmZVcSs4/GcSdbTj9ib83nPQAIdzLGSGZNeVMbO2AwWnLqjjS3C3YZ3Ovvib2eOmYmUxPwyNlxJYWkj+5D7xvTw48X+zTT5kJzPF5ui9OeDgzmRXw2qs338whMcv6LJhwFhbozq7kewpy1yEylxKQX8uOc6hy+nNDq20b1r5EOyAfkwr558mFudDxHNnVj3Xu86bfq9u4dbKQWNim1MBy8md/NFYSknNr2Qz/Zc42xCzgOf5+Ngzq6pXZAAIZ8f1G4fEOzM6A5ehLhaIzeWEpdeyA/H4jm1mkS5AAAgAElEQVR0Pb1RccE/f0ydrE35YEQrQrzsNH3cqQRmrnq4Pk4Q/iliwE5oklQqFbNnz+bw4cPk5+ezePFi2rZt+0hj+vXXX1m3bh1+z4/FzMWZe7/vJmb+t4R/+Zn24re20oxMrn73Pc5dO9Ns0gTy4+K4tXYdJlZWOLYNByA/Pp4bS5bh9cTjOISHkXXhItd/WkrouzOx8vMFIG7lrxQnJhE4YTwyOzsyTp3myvwFhH32KXI7O9RqNQfnLEUildL37ZcwMTcjZtcR9n72PU8t+BATUzmXdxwi5vcjdJs2Bhs3Zy5t2cu+z7/nqe8+RmZWf/yV5RWYWlsSOqwfNw6d1LtvjOUyRnz/qe42Ay+wAVau2MfqlQeY9eUEfHxdWLr4d6ZMms9vu7/EwqL+2ADefXspaanZfPTpWLy8ncnKyqesVKn99/LyCqa+uAAra3PmzJuCs4sdaak5yGSGd30ntxzmr+1/MPSNUTh6KDi2bj+rP1jEK0s/QG5ef2x3ouPwbR1I73GDMbMy5/If59j4xQqe/2Y63i39ATC3sqD7yP44ejojNTYi9nQMO79dj4WNBYHtQwyOr7aNq/5gy5rjvD3rWTy9nVi97CDvvLyUX7bPxLyBfQmwYssMrKzNtY9t7CwfOg6AnWv+YNeGY0z9YCSuXk5s/eUgX76+hAXr38FMTyymZjIGjuiGl78rclMTbly+w7I5W5DJZQx4qovm/3HJXiL3n+eld0bg7uNM1OkbzH33Fz5fMh3fIA+DY9u94RgvfzASt6rYvnp9CfMfENugEd3wrBHb8jlbkMtl9K+K7cSBC6xbtIuX3n2G5m38SE/KYsnXm1AqK5jy/rP1vm7c7gPE7T1E+EvjsHRx5sZve/hz9kL6zPkUEz25WZSeyam5P+LVozNtp7xAVmw8l1etR25tiVt7Td+S+OcZrm7YTpuJY3AICqAoPYNLy9egKq8g7EXNwHvm9Vh8+nbHztcbgGtbf+fXDxYx7af3MLeyqPe9T2w5zJ/b/2D4G6NwqMqJXz9YxPRG5sSGL1bwQo2cADCRy3htxUc6zzV0sA5g669/8Nu6Y7z+8UjcvZ3YsPwgH01fwk+b33ng+V+YX8z8T9fTul0AWRl1B9LkpjKWb3tPZ5uhg3UDfZ14N8KfL/6K40JaHiObu7GkXyue2H6OlKKyOu3bKKy5mVPMz9GJZBQr6eJux6edm6GsVLH7lu7gzxPbzpGnLNc+zi4tr/1yDRoSpOCT3oF8eCiWc4m5jA1zZ9XTren782mSC+rGpqxUsyUmhSvpheSXVdDCyZJvBjTHWCrh62Px2nbfPx6Cq5Up7x64zp2cEhwtZJgaN24mlsHtPfhoZBs+WXuBczczGdPLn59f78aAj/aRkq1/UHL8/ONcu1c9iJFXpKzTxtrchLmTOvDntXRc7MwaFZc+j3Xy5sPx7fh0xRnOXc9gdP9mrHi/FwPf2EVKVnG9z3l/XDi9wt2ZveYiN+7mYmVugtM/EM/gtu589EwoH6+/xLn4LMZ09+PnaV0Y8NlBknP077vnF57gWo3B2pr7TmYsJbuwjJ/232BkV9+Hjy3Ck49Gh/HJr+c5F5vBmD6B/DyjOwPe26d3PwGM/88xrt2tcVwLdY/rt1M74mpvzgc/n+NOWgGO1qaYyoweOs4HsbQw5eqNe6zbepzlC6b+a+9z35DmCj7p04wPD96oylUPVo1oTd/lp/TkqkqTq2kFmlxVWPLNwBaaXD0aB8CsQ7HMrpG3AFtHt+W0nkFAfR4PdOLT7v58+MdNzibnMzbUjVVDW9FnzVn9sV1L5UqGph8JdrTkm77NMJZI+OrkLQCKyyv5JSqJG5lFlFSoaOdqzdd9mlFSoWL15eRGxTe4nQcfPduaj9dd5FxcFmN6+vHz9K4M+PRAw/nw3QmuJdbfl3QIdOKv6+nM23GFvCIlQyO8+OnlToyad0zvoFG9sXWoJx/eqsqH7Afkwz39+QAw4L295NaIOTu/7rFoyJCWLnwyuAUf/X6Fswk5jO3gxcpx7ei3MJLkvFK9zzMxkvD9M204cyebCB97nX/r6GPPX7eymHcwltyScoa1dmPJqHBGrjht0EDgff/GMZWZSMkuVPLTvhuM7PbwfZwg/JPEHHZCk3Ty5El+//135s+fz549ewgNDf3br7l06VJGjhypsy05OZkOHTrU+7d69WptO7VazYYNGxg3bhyObcOxcHcncMJ4KktLyTx9Ru97ph47hszWFr9Rz2Hu5opL9244depE8v7qX/KTDx7GJigIzyGPYe7miueQx7AJakbyocMAVCqVZF24iPdTw7FpHoSZswKvoY9j6qQg9egxAErT0sm4eYfOk57BKdAHW3dnurz4LJXKcm6dPI9arebK7j8IHdYP345h2Hu50X3aWMpLyrh14pze+K0UDnSaMIJmvToitzTX2w7A3M5a589QarWadasP8cKkQfTt35aAQHc++2oCxUWl7N19Wu/z/jp5hTOnrvH9T6/RsXMIbu6OtAr1o12H6iqrndtPkp2dz7ffv0JY20Dc3B0JaxtISCvDPoTVajWnfztGlxF9Ce7aBoWPG8PeGo2ypIzoo/p/cRs05Sm6PtMP9yBv7N2c6Dl6EK4Bnlz/67K2jW+bZjTvHIqjpzP2ro50HNYTZ183EmJuGRSbvni3rYtk5PhedO8Tim+AK+/Meo7i4jKO7L34wOfb2llh72it/TMyeviPCLVazZ5Nxxk6pjcRvULx8ndl2kfPUVJcxomD+mPxa+5Jl35hePq5oHBzoNvAtoRGBHE9qnq/RO4/zxOjexHeJRhndwf6P9mZsM4t2LX+mMGx7a0Rm6e/K1OrYjv5gNg6PyC22Og7BIZ4031QOxSu9rRsF0j3QW2Ju3JXbyzx+44QOGQAbu3DsfZ0J3zy81SUlpL011m9sdw5EompnQ2h457Fyt0Vn15d8ezakbg9h7Rtsm/ews7fF8+uEZg7OeAU0hzPrhHkxN/Wtuk881W8u3fG2tMda0932k4ZT1FeIfeu3q7vbVGr1Zz67Rhdq3LC2ceN4W+NpqykjMsN5MRjU56i2zP98AjyxsHNiV6jB+EW4Mm1GjkBIJGAlb21zp+h1Go1OzYc5+lxvenSOxQff1fe+ERzXI/tf/D5/90Xm+gzuB3NW/nU++8SCdg5Wuv8Ger5EHd23ExjS2wqt/JK+Op0PBklSp5tXn9V4rLL91h44Q4X0/NJLCxl440UDiVk0s/bsU7brFIlmSXl2r8aRW4GmdTOky0xqWy4nExcdjGfHL5JepGSMW3qr3BOyC1hy5VUrmUUkpRfyqH4THZcS6WDh622TTcfe7p42zN+axQnEnJIzC/lUko+p+41bhBgQv9mbPvzDhuP3yY+pYBZ6y6RkVfC6J7+DT4vt1BJZn6Z9q+8su5O+WZ8O7b9mcDFeMMvrB8Y75DmbDt2i42H44lPyuezX86RkVPC6P7N6m3v62rF2IFBTPnPMQ6dS+ReeiFX7+Rw7GLjBiPqM7FPIFv/SmDjyTvEpxYwa1MUGfmljO7u1+Dzcov077uk7GI+23SZrafukldcd3DAUBMGBrHtxG02Hr1FfHIBs1ZfICO3lNG9H3Rcy8jMK9X+lVeqtP/WtaUzXUKcmTjvOCevpJGUWUzUrWxOP6C68e/Y/8clPpmzke17zqBqbOI9hEntvdgSk8KGqGTisor55FAs6YVKxoTV/0NVQm4JW2JSqnM1LpMdV3VztUBZSUaRUvvnbWuGt505G6Iadw5OCvdgy7U01l9JJS6nmE+OxZFeXMbYeqr3ABLyStlyLY1rmUUkFZRx8HYWv11Pp727jbZNdHohv8dmEJtdzL38UrbfSOdYQjYd3Gzqfc2GTOwbyNY/E9h4oiofNkSRkVfK6B4Pyocyvfnw+aYoftofy+U7OSRkFLFw1zViEnLo16bh6vjatPlw7Jamn1tTlQ99Hj4f7svKL9Vpo1I37jyd1MWXLReT2HAukfiMIj7dfY30gjLGdPBq8Hnv9g/ieloBe2JS6/zbrD3XWHz8FlFJeSRkF/PdH3FEJ+fRv4Vzo2L7N45pUlYxn22MYutfCfX+0CMIj4IYsBOapMTERBwdHQkNDcXR0RETE8MrLBrD2dmZPXv26PzNnDkTiURC797VpeTJyclkZWXRsWNH7TYjmQybZoHkx8XX99IAFMTfwjakhc42u5YhFCYkoKqo1LS5VbeNbUgwBVWvq1apQKVCWmsfSGUm5N/UtFFVVGhiqtFGIpViZGJM2rV4CtKzKMnNx7119fsYy2U4twgg7cbDDxDdV6ksZ8PLH7F+8occ+HoxmbfvGfzcpMRMMjPz6NS5uqrM1FRGeLtmRF2M0/u8Pw5fJLilD2tWHWRA77d5YtD7zP5qHcVF1b/4/XHkIm3CApj91Tr6dn+TJx//iJ9+3EF5eYVBseWmZlGYk49/eJB2m4lchndLfxKv1T+goY+ypAwzPYOearWaW5dukJWYrlNt1FgpSdlkZxbQtlP1xaHc1IRW4b5cuXzngc+fOuZbnuk/i7cn/8Sls/r3vSHSk7PJzSogtEN1LDK5CS1a+xEb/eBY7rt9I5HY6DsEh1Xvl3JlBSa1KptkMhNuXDbsmPzTsbWoEVvzUF/u3EzmZkwCAJmpOZyPvEJY5/pv1y3OyKQsLx9Fq+rcNJLJcAwKJPum/r4lJ+4WTi11+w1Fq2Byb1f3LfbN/Mm7e4/suKpqhcxsUi9exrl1S72vW1FahlqlxtSy/gqfnKqcCKgnJ+41MifK6smJcmU585//lHljP2btJ0tIiTf81qe05GxysgoI66h7/oeE+XHtAef/7i0nycnK59kJ/fS2UZaV88ITX/D8kM+Y9cZy4m8YFpuJVEKwgxUnk3UrB/5MyqGNwvBBP0sTI/KUdfuuTY+Hc/TZCFYMaEUHl8ZdyJpIJbRyseL4Hd1Bq8g72bR1N+y1vG3N6OHjoDMYNyDAkcup+Uxq58mpKZ05Oqkjn/YOxNzE8GonEyMJLb3tiLyieytr5JU0wgPqDlzWtGhaZ84seJxN7/ZiYNu6A4+je/njZGPKj79fNTieB8crpaWfPSeidG+HO3E5lfCg+uPt296Te+mFdG/jxpHvn+DoD0OZM60T9tb13z5veCwSWnrZEnlN9xazyGtphPvZ63mWxuLJHTkz5zE2zejBoLDGDTwYFpuUlj52REbrXshHxqQSHviA4/pqF878MJRNH/ZhYHvdQap+bT24fDubCQODOPHt4xye8xgfjwnDXP6/cTORNldvZ+tsb3Su+jpw6p7+KqaRrd24kVHIeT23xOuNTWHF8QTd2I4n5NDW1bA+ztvGlJ7edpxO0j+oH+JkSVtXmwbb1Bvf/Xy4WqsvuZZGuL9Dg89dPKUTZ/4zmE1v92BQeMPTtABYmBqTV2x4lbM2H2LqyYcH9XOvduHM91X50K7+QdvfPu3PX989weqZPenYvHFTnJgYSWjpZk1krSkIIuMyaetlp/d5vZo50TtIwae7DO9fLWXG5DWiOvy/eUwF4VH73/gUE/6nzJo1i927dwPQoUMHXF1d+e2331i9ejXbt28nMzMTDw8Pxo0bx6BB1XMR/PDDDxw9epS0tDTs7e3p06cPkydPRi6Xs2vXLpYvX659TYCPP/6YIUOG4Oio+4F49OhROnTogLt7dSeelaW5mLG3t4f06i/jJtbWKHP1f3FQ5udjY617UW1ibYW6UkVFYSEyWxvK8/KRWet+oZFZW6PM19ySZWxqipW/H4m792Du7obMxoaM02coiL+FqULz4Wvm4oKlkz3n1++k6+RRGJvKidn9B0VZuRTn5lGSq3ktMxsrnfcxs7WiOLtxX3xqs3FT0G3qaOy9PSgvLeXK7qPs+nA+w+e+p50/ryGZmZovhfYOuvvAwcGa9DT9sSUlZnDpwk1kMmPmfvsyBfnFzP5qPRnpecz99uWqNpmcPX2dQYMjWLj4VZKTsvjmi7UUF5fx5tvPPDC2whzNPB+Wtrr7zcLWioIsw7/Mnvk9kvzMXEJ7686bV1pUwvyxH1NZXoFEKuWxqU8T2D7Y4NetLSdLE6+dvW68dvZWZKbrj9fB0ZrX3n+SoGAvKsorOLjnPG9PWcK8pVMIbftwA4i52ZpzzrZWLDb2lmRnPHjfvTz0M/JzC6msVPH0hP70G95Z+2+tI4LYs/E4IWH+uHg6EnPuJmeORaNS1f11uaHYbB4ytqkNxNa5XxgF+UV8OvVHUKuprFTRbWBbRk0dUu9rlVXlprxWHyC3saIkR//5X5qXj1OI7iCg3MYadaUKZWEhprY2eHRqj7KwiBNfzAfUqCtVeHSJIHjkcL2vG716Ey5+7ng2r78K9X5OWNTKCUtbK/IbkROnq3KidY2ccPRQMOz1UTj7uqEsKePUjmOsmPEtL/8wEwf3B/clOVn1n3O29pZkNXD+34lLYf3yA8xd8areqlJ3LwWvffgsvs3cKC4qY+fGSGZO+oGFa9/C3cupwbhs5SYYSyVklehejGSVKOnoZqvnWbp6eNgT4WbL2N1R2m0ZxUpm/XmTmMwCTKQSnvB3ZsXAUMbvvcz5NMOOhZ2ZCcZSKZm1LjAzipR08dZ/QQawbVRbQpwtMTU2Yl1UEnOOVw8we9qa0c7dBmWFiik7YrCWGzOrTzOcLeW8vDPGsNis5BgbScnM173tKjO/lC7B9VdiFJdV8NXGKM7HZVJZqaZPGzcWTunE2yvOsOOUpsq1mbs1rz4ezFNfHW50NWKD8VpXxVvrNrHM3BI6t6p/DkVPZ0vcHS0Y3NmbdxadQq1W8+7YcJa+05MRH+6nkcUw1bFY6tt3ZXRpXv+t4cVlFXy55TLnb2Vp9l2oKwsnRTBj1Tl2nDH8R7gHxmYlq4pN99a8zLxSuoToOa6lFXy17hLnb2ZSqVLRJ8ydhdM68fbSM+z4U/PjiJeTBe0CnVCWq5i28CTWFjI+GRuOwtaMV3748x+L/1GxM6/K1VpVPwbl6pi2hDhbaXL1UhJzjtX/Y5CVzIjBQc46uWwIezNNH5dRqx/JLC6nq5es4dhGtKGlwgpTYynropOZfbLuDz+nJ3TUvse3pxNYE924OeK0+VDr1tzM/FK66BnEKi6t4MvNlzkfn6U550LdWPhiBDNWnmXH6frzYWxPP1zszNh+qv6K+npj05cP+aV0sWkgH9ZX5UNljXxYVp0P6bmlfLjyHNG3szExkjKsiw+r3+nJqG/+4OwNw6pO7cyrYqs1bUNmkZIulvUfVydLOd8Ma8mUdRcpUlYa9D5jI7xwsTFl+6Ukg9rDf++YCmLRiaZADNgJTc5bb72Fq6srO3fuZOXKlRgZGbF48WKOHDnCzJkz8fLyIjo6mq+++gorKyu6du0KgJmZGR999BFOTk7cvn2bb775BplMxpQpU+jbty/x8fGcOHGCxYsXA2BpWXd+rqSkJM6ePcuIESPo0aN6YYgFCxYAIJHU6rUM+DYtofZztP9Qo5GeNlUCJ04gbuUqzr39LkilWHp54dShPYV3NR8wUmMj+rw1icjFa1kz4R2QSJBIQCKVkBx9g9bDB+h5H3WtQBrPOcgP56Dq8nNFMz9+e/trru49RqcJI+q037PrFF98Wn278cLFr1aFphuHWq2uE25NKrUaiUTCV3NexMpKU6Xz7gejmPrSArIy83BwtEGlUmNvb81Hs57HyEhKcIgPebmFzJ2zkTdmjKjznpf/OMeu76snlh81azJVwem+uVpt8G67euISB3/ewdPvPI+ts25lg9xMzpQfZqIsKeNWVCwHlv2GrbM9fm2C9LyarsN7LrDgyy3ax18unFgVbt1462yrwdNHgadP9Rec4NY+pCXnsHn1MYMH7CL3n2fZnOpY3p07SfMf9e26hg5slVmLp1FaouRmTAJrF+1C4WpP90HtABj/+jCWfLOJN0fPQSKR4OzuQM/B7Tm6u/5bSE/Uiu2dvxnbpzViW7doF041Yrt6MZ5tvxxi4ownCQjxJjUxk1Xf/sbm5ft55sWB2lgqVJr36fiWZt6j+k+xB8TygP4o81ossTv20nr8SOz8fSlMyyBmzSaub9tFi6fqTlgds3YLWbHxTJn3KtKqgavLf5zj9xo5MboqJxqbrzXpywnPFr54tvDVebz4lTmc/j2Sx6Y8Ved1/th3nh+/rj6unyyYVBVbrYYNHNdyZQVzPljNhFcfx8Vd/6/yLUJ9aBHqo/P41THz2LXpBJNn6B8A1Q2jVscuMegjhDCFNXN6NOfrU/FEZ1ZPFn4nv4Q7+dXz9ERlFOBmZcoLLT0MHrDTxlYrEIkBsU37PQZLmREtnKx4v6c/L0d4s+i05mJRKpGAGl7ddYWCqou2jw/HsmZEGxzNTeoMEDYcm+5jiURSJ977cgqVrDgQq30cnZCDnZWMlwYGsePUXWTGUr6b3JGvN0eRmKl/bqi/o+6+1B+vVAJymREzfviTO1UTwc/44U8OffcEof4ORDViHixDNHRcc4qUrDhcXVkdfTcXe0s5k/s1+0cH7O6rfz/pia1QyYp9N6pju52DnZWclx5rrh2gkEgkqFHz+uJTFFYNjn/663lWzeyJg7WcrEbO3dVU1d5FVanWoGk7YrCUGdNCYcn7vQJ4uaM3i04l1Gk3PMQVqRS2XWn8ogn1Magf2XtN0484WvBBV3+mtivlx3O659vTWy5hbmJEuIsV73X1415+CdseYoGC2sFozpn65RQpWXGoerGS6IRc7C1lTO4fVO/gzsAwN959qhWvLjtDcgPzzukP7W/kw526+XA7tYDbqdWfFxfjs/BwNGfSoCCDB+yqY9N93NBH/bcjQllz5i4XDZwDcWCwM+8PaM70TZdIytU/J56hwf2Tx1QQmgoxYCc0OZaWlpibm2NkZISjoyMlJSWsX7+ehQsXEhamWTnV3d2dq1evsmXLFu2A3cSJE7Wv4ebmxvjx41m7di1TpkzB1NQUMzMz7Wvqs2PHDmxtbXnxxRd59tnqCeKVSs0vmvcr7e4rLyjAxFp/ub+mUk73wqm8oACJkRRjC82AoYmNNco83TbKAt2qOzOFE61mzqCyrIzKklJktjZc/2kppo7VF5iO/l4Mn/seyqISSguLQKXm8Nxl2Hm5YWqtea+S3HwsHat/iS3JK8SsVqXM3yU1kuLo70V+Sv1fCHr0akPLGnPI3b89NSszDxfX6ov37OyCOlV3NTk62qBQ2GoH6wB8/TTzQaWmZOPgaIOjkw3GxkY6VTO+/q6UlijJySnEvlYlTlBESzyCvLWPK6piK8zJx8aper8V5RXWqbqrz9UTl9g+bw3D3xqjs0LsfRKpFHs3TXWOi78HmXfTOLHxoMEDdp16BNO85Zvax/f3ZXZWPgqX6sqdnJxC7Bwat4BE85ZeHN1v+CqF7bqGEBhSve/Kq27dy80qwNG5et/l5xTWqWyrj8JNc257+buSm13AlhUHtINi1naWvD17Asqycgrzi7FztGbdot0o3Oq/1att1xAC6okt7x+ILa9WbBuX7qVzvzB6P9FR26asRMnSbzbx1Av9tLH8fldT5aKqOmalefmYOVTHr8wvQG6jPxZTG2tKc3X7jbJ8Td8iq/ox4tqWnbh3bId3T00fae3pTmVZGZdWrCFo2GNIjapvT4xes5mkU+fo8v4b2NfIw6CIlrjXyInKBnKidtVdfa6euMS2qpxoXk9O1CQ1kuIW6ElWUv19SUS3EILqOa45WQU41TiuuTmFdaru7svOzOfu7TS+/Xwj336uGZhUq9So1Wqe6PQ2ny6YRHjHuvloZCQlsIUnyffqX8WvptyycipUahzNdCsSHExlZJU2PEdOuMKaxf1a8sPFBDbeePBF9OWMfAY1YmXnnJJyKlQqnCx0Y3M0l5H5gDnKUqoqG25mFWMkhW8GNGfJmbtUqtWkF5aRWlimHawDiMsqAsDN2tSgAbucgjIqKlU42ehWhDlYyetUozQk6lY2T3fRfOY42ZjSzN2G2S+0Z/YLmupOqUSCVCrhxtKnmPjdCU5cqbuarCFy8qvitdW9ndzBxpQsPZOzZ+SUUF6h0g7WAdxJKaC8QoWbo8VDD9jlFGpicbSub98ZflF86U42T3fyfnDDxsRWoKz/uFo3Lrao+Cye7uajfZyRV0JaTol2sA4gPllTdevmYPH//YBdTnEDufqAubY0uVrGzawijCQSvhnUnCWnNbla08jWbuy7kUFeqWHThtyXXaLp45zMdaeqcDAzeXA/UljVj2QXYySRMLtvED+dv0fNaSfvVZ0XN7KKcDSX8UaET6MG7P6xfLidzdOdfepsHxjmxrwJ7Znxy7lGrxCrNx8aGVvtfKjPpVvZDIloeO45ndiKq2Kz1L1F38FCRmY9C1wAdPF3JMLHntd6BQCaATQjqYS4WQP46PerrK8xGDsw2JkFT7fmza2XG71C7L99TAWhKREDdkKTd/v2bcrKynjttdd0qiQqKipwda2esPvw4cNs2LCBe/fuUVJSgkqlorLSsHLs+6+3a9cuBg8ejI2NDTY21XOCqNVqHBwcOH36NLRtA4CqvJz8m3H4jKhb+XGflb8fWRejdLblXr2Kpbc3UmPNxbKVnx95V6/hMXCAtk3e1WtYBdStbDKSyzGSy6koKiL3ylV8nn6yThuZhRkyCzPyUtLJuZdC+3HDsfVwwczWmqTL13EK0Hz5rlCWk3Y9ng5jhxm8jwyhVqvJTkjG3qf+eSEsLEx1Vn5Vq9U4Otpw6q+r2sUgysrKuXj+Jq/PqFuhd1+bsAAOHThPcVGpdvXHhATNhZZr1YBKm7AA9u4+jUqlQirVDNol3EnD1EyGXT0roMrNTXVWuVSr1VjaWXPr4g3cm1Xvt4SYePpNHNrgfrhy/CK/zV/LsDdHE9y1TYNta75fhYHz6wGYW5jqrHypVquxd7TiwqmbNA/RfClTlpUTc/E2L71W/y2Z+sCaV3EAACAASURBVMTHJmPvaPhgrpmFqc7qqmq1GlsHK6LPxhIQXB3L9ahbjH6lbnVXQ9Rqdb3zDsrkJtg72VBRUcnpo5fp1Kf+/awvtstnY/H/B2KrecyUpeVIa90/IJVWV9jcj8WyzFz7fLmNNRkx17Dz8wE0c0Jm3Ygj5Lm6+X2fXYAfKed1B1QzYq5j61vdt1QqlUikurd4SqTSOuUY0as3aQfrrNxcgOov4vpyIr5GTpQry7lrQE7EHL/I9vlrGf7maEIMyAm1Wk3anWRcfOvvS+o7/+0crLh0OpZmNY7rlUu3mDC9/uPqoLDhh/UzdLbt2fInF8/E8sGc8Ti71j8IrFaruR2Xgm9g/YtG1FSuUnM1q4DObnYcuFM9wNfJzZaDCfoH/No627C4Xwg/Xkxg9VXDbhVqbm9JZonhE2WXq9REpxbQzceePbHVA6Ndve3ZG2v4BZREIsFYKsFICpWVcC4pj8FBCsxNjCgu13wO+9lpzvkkAy+myivVxCTk0DXYmb3nqucL7BrszL7zhs9t2MLTlvQ8TSViWm4Jgz7er/Pvo3v50zXYmZd//JPEzCKDX7duvCpibmXTJdSFvTVuievSyoX9eqo3zt/IwMRYipezJXfTCgHwcrbExFhKUsbfiUVNzN1cujZXsPdC9bnTtbmCfY1Y0CLYw4b0Rlz8Ghabipg7OXRt6cLeszWOa0sX9p01vMqlhZct6TUqcs7HZjKovSfmcmOKyzR9sq+L5jMs+W8c16ZCJ1dvVOdmVx979t5oTK6ik6v3tXa1JsTZis8Ox+p/ckOxpRfQzcuO3XHVfVo3Lzv2xj34R437pNp+REJlPQvF3G8ja+SCWNp8CHbWzYcWCvZdMPw2zGBPW9JrDb4/1taduePbM2PlWZ3XNjy2BvLhXCPywVs3H+oT7GVLRq7+1VPrxqYmJjmfrgEO7LlSPcde1wBH9l2pu5gEQP+FkTqP+7Vw5pUe/gz96U9Sa/Qlg1u6MO+pUN7aepm9el7rgbH9S8dUEJoaMWAnNHn356WaN28eLi6688AYG2tO4ejoaD788EMmTZrEG2+8gaWlJZGRkXz33XcGv09kZCSZmZkMHVr3olMikTBy5EhWrlyJJypMXZxJ3LUHqVyOY0QHbbvYFb8A0GziCwC49OhBypGj3NqwEZfu3cmPiyf95F80e2mS9jluffsQPWcuiXv2Yh8WRvbFi+TduEGrd2Zq2+TEXAG1GjMXF0rT07mzZStmLs4ounTRtrn91wXkVpZYOtmTczeZU79swbtDKB5VC02EDO5F1Lb92Lo7Y+2q4NLWfZiYyvDr2k77Gse+/xWAHtPHabdl3dZ8gVCWlCKRSMi6nYjU2Ag7T82F6oXNe1AE+mDtqqC8uJQre4+SfTeJLi9WVyg2RCKRMGpsX1Ys3Y2PrwvePi4sW7ILM3M5gwZHaNt9+N4KAL74WlNJOWhwBMuW7OKTD39hyrQnKMgv5j9fr6dv/7bayrwRz/Zk47ojzPl6AyNH9SY5KZOfftzJMyN7GXTro0QiIWJYDyI3HMDRwxkHdyeObziAzExOq55tte22z10DwPAZYwCIOXaB7XNX02/iULxb+lNYNWeakYkRZlYWABzfcACPIG/sXByoKK/g5rmrXD5ylkH13PpnKIlEwpOjurFuxWE8fRR4eDuydvlhzMzk9B4Upm33zUfrAXj38+cA2Lr2OC5u9nj7O1NRXsmhPRc4+UcMn/zn+b8Vy2PPdGf7qkO4eStw9XRi28pDmJrL6dqvOpYfPlsHwCsfjwJg7+ZIFG4OuFXNC3bt0i12rTtK/yer54m7eSWB7Iw8fALdyc7IY8uK/ZqKqNG9DI5t0DPd+W3VIdxrxdalRmw/VsU2rSq2fZsjcaontn41YgvvEsyeDcfwb+5JQIgXqYmZbFq2j/AuwRgZ151wXyKR4D+wN7E79mHp6oKli4LYHXsxMpXj3ql6frfzP60EoO2U8QD49O7G7YNHiV6zCZ9e3ci+Gc/dyL9oN22C9jkuYaHE7z2Mra8Xdv6+FKVlcH3L7zi3aamtrotauZ7Ek2fo8PpkTCzMKc3No0BSjsxMjtys7sT3EomEjnpyIrRGTmyryoknq3Ii+tgFts1dTf+qnCiokRPmVTnxx9q9eDb3wd7NibLiUk7vPE7a7WSGTHvwfJP3Yxs6sjsbVx7Cw0eBm5cTG38+hJmZnB4Dqo/rvE80x/WtWaMwNjbCx1930M3GzhITE2Od7euW7SeopTfuXk4UF5Wyc2Mkd24mM/Udw/J11ZUkvukWRHRGARfT83imuRsKczkbr2uqMV5v60MrRysm7o8GoL2LDYv6tmTD9WR230rH0UxTuVKpgpwyTQXR2GB3kgpLicstwkQq5XF/BX29HXntyBWDYrpv+bl7LBgcTFRKPueS8hjdxh1nSxlrq1aJnNnNjzau1ozapBkgHh7sQllFJTcyi1BWqgh1seadbv7suZGBsuoie8e1NF7t5MPcQS1YcPI2NqbGfNI7kN030slqxO2wPx+IZe6kCKJuZ3M+LpNRPf1R2Jqx7phmIZUZT7aktZ89Y+ceB+DJzt6UV6q4ejcXlUozh92Y3gHM2aJZjbiiUk1sUr7Oe2Tll6GsUNXZ/jB+3nWdudM7cTkui/M3MniuXyAKezPWHdTchjXjuTaEBjgw7nPNKvAno1OJuZXFNy935IuVmlWWPxzflkuxmUTf+nu3w644fJN549sTlZDD+fgsRnXzRWFjxtpIzb57e2gIrX3sGPPdCQCe7OhFRaWKK/fyUKnV9Gnlypge/szZrjvnYAsPzY+ZlqYmqNSax+UVKuJq3H73wP207wZzJ0cQdSub8zczGNUrAIWtKeuOaOZOmzGiFa39HBg7+6gmtq4+muOakINKBX3C3BjTN4A5G6tXmd75111eGRrC7Bc7sHB7DNbmMj4aE86eM/fIKvh3qusszOX4+2i+l0qlEjzdHQkN9iYnt5B7yf/s7cwAy8/eZcGQkKpczWV0Gw9NrlbN/TWzu78mVzdqVsUeHuJCWYWKGxmFmlx1teadHrq5et+o1m7cyi5u9ErO2tguJLJgQHMupRVwLjmfMa1ccbaQsyZa04+809mXNi5WPLdNc8yebK6grELF9awiyivVhDpb8U4XX/bcrI5tfGs37uWXEp+jGWSKcLfhpXAPVkc3fhXlFYduMu+F9pq+JD6LUd39NPlwXDNn3tvDQmjta8+YBZoBJ00+qLlyL1eTD6GujOnpz5xt0drXHNLOg3kT2vP1lmjO3MzEsWqxmPIKVaMWntDJh9gMRvWuJx98HRg756gmti418kFdlQ99ApizqTofxvdvRlJmETeT8jAxljK0szf923rw8sITjdpvy0/eZv7TrYlKzOPc3RzGtPfC2UrO2rOaHyVm9mtGaw8bRv+imZIkNr1Q5/mh7jao1Gqd7Y+3cmX+06F8te86Z+5k41Q1H56yUk1eieH77d84plCjjzMzRqVWa/q4ShVxKYb3cf9LjMQcdo+cGLATmjxfX19kMhmpqam0b9++3jaXL1/GyclJ57bYlBTdsnQTE5MGJ6XfsWMH4eHheHvXf/vHuHHjKCsrY9W69VQUFWPl50vIm69hbFpd4VGWpbtClqmTI8GvTef2xk2kHj2OzNYG3+eexbFtuLaNdYA/QS9N4u5vO7i743dMnZwIeulFrPyqbxutLCkhYdt2ynJyMbYwxyE8HO/hw7SVNADFOfmcXrWNktwCzOysCewRQZunBmr/PXRoXyqVSv5cvgllUTFOAT4M+PAVZGbV8Rdm6sYP8NvMb3Qe3z0fg6WTPc8u+gwAZVEJJ5aspyS3AJm5KQ6+Hgye9TpOgT5693Vt4ycOpKxMyTdfrCM/v4iWoX4sXvamTiVeaorul19zC1N+Wv4Ws79ax5hnv8TK2pxevcN49c3qC2gXV3sWLXuDeXM2MfKpWTg42jB0eBdenGx4tVmXp/tQUVbOnkVbKCksxiPIm7FfvKxTdZSXobvi2rk9J1FVqti/dDv7l27XbvduFcD42dMBzaqxu3/cRH5mHsYyExw9FQx7a4zOQODDePb5XpSVlvP97G0U5JfQoqUX3yx6UacSKT1VN96K8kqWLPidzIw85HITvP1c+HLhRCK6tqj98o3yxJheKMvK+XneNooKSggI9uL9BS/pVLtl1VpYRKVSs27RLjJScpAaSXF2d+C5lwfTb3gnbZtyZQUbl+4jPTkLUzMZbTq1YNrHo7Cwqn9l04eNLbOe2NbXE1vfGrE9Ob4vEglsWraPrPRcrGwtaNslhGcnD0KfgMH9qVSWc3nVBsqLi7Hz86XzzOmY1MjNklp9i4XCkY4zphGzdgt3DkdiamtDq7HP4Na+um9pNvT/sXff4VGV2QPHv5NJJr333hMgCZ0gXRAQBcSySHdVsKK46qK7Lvbu2lARF3F1ld4ERAi9904gECAkkN57m0kyvz8mJBkyk4KsGfd3Ps/D8zB3bjk5t8zMe899X902L6z+hcqCIlT2dnj1iKHz+Hsa5knZrmvoOPBB482NzcDtk0cxdKrhmAfWnxO/fr2KqrIKfNtxTsQt+Jm4JudEUEwYj9SfE1Xllaz/YjllhSVY2VrjFerHox/N0ntMvTUPPDSU6moN8z9aQ1lpJZFRAbz15eN6x39uC4PZGFNeWsVX76+iML8EWztrQiJ8+OBfM4mMatvjRXHJuThZmvNEtwDcbVRcKiznya1nyazvzNvdWoV/k+P33jBPbCyUPBrjz6Mx/g3T00urGLnqCKAbmXF2nxA8bFRU19ZxubCCJ7fGszfN+AiQhmxIzMHZ2oJn+gXhYWvJxbwyHl59pqESzsPOkoAmj3nW1mmZeVsQQc7WKNBVzP14Mo2FxxurQSo0tUxZcYo3h0fwy7TeFFfVsOVyLh8Y6ezemF+PpuFkZ8nMMZ1xd7TiUnoJ0+fuJSNf10eUh5M1Ae761dIzx3TB19WG2jotKdml/O37ow0DTvy3bTx4FWd7FU/fH42HszUXU4uY8f6uhgovd2crAjwb49Vq4bEPdvHaI71Z8uYIqtW17DuTyXs/nrjpASeu+/V4Os62ljxzVyTuDlZczCzh0Xn7ySjQNX64O1oR4G6rt8zMuzrh61Kfu5wyXv7peLP+6379xx16r4d39SYtv5zBc/QrF1uM7XCqbr/e0wV3JysupRUz/ZMb9qvHDfv1ni74utnqYssq5W8Ljzb01wW6QTOmfbiL16f15Oc3RlBcrmbriXT+2aQR41br2TWELStea3j92ovjee3F8fy0cjePv/jNLd/ehgv152r/JufqytNNzlUVAc43nquBBDnboFDUn6sn0lh4Q+WWrUrJ2M6ezDUw4ENb/XIpFydrC56NDcTDRsXF/HL+vC6e9PrGUg9bFQGOjbHV1Gl5uk8AwU7WKFCQXlrFf85ksPBEY5WZUqHg7wNC8HOwoqZOy9XiSj44kMyiM+1vsPv1WBrOtiqeubsT7o5WXMwo4dGv9jf0N+fuaEWA2w3nw92dGq8lOWW8/OMxvb7OJg8OwUJpxmsTuvHahG4N0w8l5jL50z1tj+1I/fkwtv58SC9m+qdNzgfHNpwP3+mfDypzM/4+sRueztZUqWt1185P9rCrnY/sbjibhZONimdvD8Xd3oqL2aU88tOxhv7mPOwtCXSxaWUt+qbE+mOhNOP10V14fXTjQGuHkvOZ+N2RNq/nv7FPAX59dbje6+HdfEjLK2fwP+La9XcKcasoioqKbuEYWULcGosWLWLlypWsW7cOgPnz57N69WpmzZpFjx49qKysJD4+HjMzM+677z727t3LSy+9xOuvv05MTAwHDx5kwYIFFBUVceSI7uIfFxfHu+++y7fffouXlxc2NjaoVLq7OllZWdx777288cYbjBo1ymhcAM+fOfnf/eNvUifHtt+V6gjPdDE8Mp0pWHvVdB+XGeRluvs1v8p0b7uZ+gfb0qT2fcH9PfV0bfsjlb+3Xm7t61vp93TvGuN9bna0sjzTzRuA+YVbX410qyhKTfd8qHNt+02K35ui3HQ/uwAydq3t6BCM8pg5o/WZOojWynRrPcwT2v747e9N0c5+AX9vtf6m+/lllvvfGSDoVjn50fDWZ/oDO1j6xx9lu6l+9v1bn8nEtK8TACE6yJNPPsljjz3G4sWLmThxIs888ww7d+7Ex8cHgEGDBjF16lQ+/fRTJk+ezJEjR3j88cf11jFs2DAGDBjAzJkzGTlyJFu2bGl4b/369djZ2TF0aNseqRNCCCGEEEIIIYT4b5EKOyHaSSrsbo5U2N0cqbC7Oab+wSYVdjdHKuxujlTY3TypsLs5UmF386TC7uZIhd3Nkwq7m/e/XmF3uGx/R4dwS/W1G9D6TCZGKuyEEEIIIYQQQgghhDAh0mAnhBBCCCGEEEIIIYQJkQY7IYQQQgghhBBCCCFMiOl2RCCEEEIIIYQQQgghfndS3dXxZB8IIYQQQgghhBBCCGFCpMFOCCGEEEIIIYQQQggTIg12QgghhBBCCCGEEEKYEOnDTgghhBBCCCGEEEI0MFN0dARCKuyEEEIIIYQQQgghhDAh0mAnhBBCCCGEEEIIIYQJkQY7IYQQQgghhBBCCCFMiPRhJ4QQQgghhBBCCCEaKKUPuw4nFXZCCCGEEEIIIYQQQpgQabATQgghhBBCCCGEEMKESIOdEEIIIYQQQgghhBAmRPqwE6KdzE30WX53q7qODqFFV8uKOzoEo2q1Fh0dglFrr1p2dAhGjfav7ugQjPou0aajQ2hRRqWyo0MwaohK29EhGHWh2HTzpqnp6AiMc/Mz3WscQLG9Z0eHYFRdQkFHh2BUnbNVR4fwh+URNaOjQzAqZ97Cjg7BqIELnunoEIyqDDLd60jqBdP9vgQQEmO615Irp0378+t/nZnCdL8T/n8hFXZCCCGEEEIIIYQQQpgQabATQgghhBBCCCGEEMKESIOdEEIIIYQQQgghhBAmRPqwE0IIIYQQQgghhBANzEy07/b/T6TCTgghhBBCCCGEEEIIEyINdkIIIYQQQgghhBBCmBBpsBNCCCGEEEIIIYQQwoRIH3ZCCCGEEEIIIYQQooH0YdfxpMJOCCGEEEIIIYQQQggTIg12QgghhBBCCCGEEEKYEGmwE0IIIYQQQgghhBDChEgfdkIIIYQQQgghhBCigVR3dTzZB0IIIYQQQgghhBBCmBBpsBNCCCGEEEIIIYQQwoRIg50QQgghhBBCCCGEECZEGuyEEEIIIYQQQgghhDAhMuiEEEIIIYQQQgghhGigUHR0BEIa7IRJqqur48MPP2T79u2UlJQwf/58evXq1dFh6dFqtVxdv4HM3XupqajAPiSY8CmTsPX1aXG5osSLJC1fSXl6BpZOTvjfNRKf24c0vJ+5ey9ZBw9RkZ6BVqvFLsCf4PvG4Rge1rjtujpS1v1CzqHDVBcVY+nkiGZYLwZOvgszpdJovPuWbuL05gNUlVXiHRHIyCfH4x7obTTWxAOnOblpH9lX0qjV1ODq70X/B0cS3jemYZ7cq5nsW7KRrKQ0irPzGTBpFIMm393WNDbEtmzhFrasPUR5aQXhUYE8Mft+AkK82rR8wqkrzHl6Pn6BHnyxdHbD9P3bT7Pmxx1kpuVRW1OHt78b90wazLDRfdoV254lmzgZp8ubT2Qgdz3Vct4u7D/N8U37yE5Ko0ZTg5u/FwMnjCTitsa8Jew9ycFV2yjIzKOuphYXH3di772dbsP7tjm26/EdWb6Jc1v2U11eiWd4IEMefxDXAOPxlRcUs++Hn8m9kkpxZi6RQ/owfNa0ZvOd/mUX8Zv3UppbiJW9LSF9Yuj30DhU1pZtjm3xgi1s+vkwZaUVREYFMPPl+wkMbdt+PXsqmZefmI9/oDvfrJit997apXv5ddUBcrIKsXe0pd+QKB59djTWNm2LzVi8CWt+JXnHftTlFbiEBdHj4Qk4+hk/pysLizmzeDVFKamUZuUQOLAvfZ58qF3bzdm1i8zNm9EUF2Pt40PAhAnYh4cbnb8iLY1rS5dSlpKCua0t7oMH4zN6NIr6b1XqoiJSV62i4upVqnJycL3tNkIeeURvHbl795J38CCVGRmg1WLj74/vuHEtbvc6rVbL5h/jOLTxIBWllQR2CuCBWX/CK8j4MXdm72kObDhA+uU0atQ1eAZ6MnzySKL7R+vNt2fNbg78sp+C7EJsHWyI7h/DmMfGYtmOY27LT3Ec/vUgFWWVBHQK4P5nW44tfu9pDm44QHqSLjaPQE+GTxpJ1A2x7V2zmwMb9lNYH1tUvxhGtyO2yZ29md7NHw9rFZcKy3nvUBLHskoMzhvr7cjD0b509bDHXmXO1eJK/nM2ndUXsxvm+WBIBPdHND+XKjS1dP9hf5tiMmZ8mDfTOvvhZq3iSnE5H5+4wqlcw7H28nBkcqQv0a722FkoSS2rYkliOuuvZBucv72mRHkzo5s/Hja6vL2z33je+vo48khMk7yVVPLDmXRWJerHMjXKm6nRvvjZW5JRVs3XJ66x9mJOu2ObOjCYx+4Iw8PBiotZpbyzOp6jV/JbXS7I3Zb1s29HoVAQM3uD3nv39PLj8TvCCfawpayqhv2Juby39ix5pdXtj6+PP08MCMbDzpKLuWW8tekCR68Vth6fiw0bnuyPAoh6b1vDdHc7S+bcGUm0twNBrrb8fDqDv66Nb3dcph7btB6+PBEbiLudikt55by5/RJH04oMzhvuasvbIyIJc7PF3lJJTpma9eez+XzfFTR1WgA+vrsz42Oaf45UqGvp/Nmum4qxNQNiO/GXJ8bQMyYYHy8XHnthPotW7bml2xjr78X4YF9cLVWklFUw/0IyZwsNn5sAQXY2PNslhEhHO0o1Nfyams2ipFS9ee4J8GJcgDee1pbkVKlZkpTKtoxcg+sb6u3GK90iOZRTwKsnzrca731BXkwK88PVSkVKaQVz469wpsBwvCozBX/tFkaEox1B9tbEF5Ty7H7jx1NXFwe+GBDDtbIKHtp5stVYbmTKx9y4AC8mhDTu568Skok3sp8tzBS8EB1KuIMdgXbWnC0s5fnDZ/XmcbG04OnOwYQ72OJra83W9Bw+PHO5XTFdN62nH0/0rc9bbjlvbrvYct7uvJ43c3JKq3V529skb6O7ML6rkbx9svOmYhTit5IGO2GS9u/fzy+//MI333yDj48Pjo6Ov3mdCxYsYMeOHSxbtkxvel5eHl9++SWHDx+moqICPz8/HnroIUaNGtXi+lI3bSZt81YiH30YGy9Prv7yK2c++Zw+776FubWVwWUqc/OI//xLvAb2p9OMRym5dJlLi5dgYWePe++egK5Bz6NPbxwmhaK0VJG2ZTtnPp1LrzfmYOPpCcC1TXFk7NhF5PSHsfPzpSwtneP//h6lhTkDJhqO+/DqbRxdu5O7n5uCq58H+5fGsfy1eTw2fw6WNobjvXb2MoFdIxg8bQzWdjac232MNe8tZPJ7s/CPCgWgplqNo4crEf26sWfRry3mzJiff9rJuiW7mfXqRHwD3Vn+3VZef/ZffL3iZaxtDcd2XVlJBXPfXErX3mEU3PCD0t7RhvGPDscv0AOluZJj+xL46t0VODjZ0XtA5zbFdnDVNg7/vJOxz0/B1deDvUvjWDxnHk/9y3jerp69TFDXCG6fNgZrexvO7jrGyncXMu39WQRE6/Jm7WDLwIl34urniZm5GZePnGPD3KXYOtoR1ieqTbEBnPh5G6fW7eCOWVNx9vHg6Io41r3xFVPnvYrKyHFYW1ODtYMdve4fwbktBwzOk7jnGPt/XMewmZPw6RJKSVYe2+ctoUaj4Y5nprQptpX/2cmaxXt44fUJ+AW6s2ThVl6ZuYBvV7+ETSv7tbSkgk9eX0r3PmHk5xTrvbcz7gTffbGBv8x5kOgewWSm5/P52ytQV9fw/GsPtik2g3/zhq1c2rid3k88hL23J+d/3sje97/kzo9fx8JILutqarC0tyNy7Eiu7NzX7m3mHz3KtWXLCJwyBbuwMHJ27eLiF18Q/cYbWLq6Npu/trKSxM8/xz48nC6vvEJVVhbJP/yAUqXCa+RIALQ1NZjb2eF9113k7DH8A60kMRGX3r2xCwvDTKUie9s2Ls6dS9Srr0KIfYsx71i+nd2rdjFx9mQ8/D3Y8tNmvnl5Pn/7/hWsjJwTSWeSCO8ezl2P3I2NvQ0nth/n+ze+Y+YnzxASozsnjm8/zi/frmfCCxMJiQkhPzOf5Z8sQ6PWMPGvk9qUz53Lt7Nn1S4mzJ6Mu58HWxdtZsHL83mpldjCeoQz6npsO47zw5vf8dTHjbGd2HGcDQvX8+DzEwmuj23Fp8uo0Wh48MXWY7s7xJ1/9A/lzX2XOZ5dzOQuPnw7Koa7Vx4js7x5Q0xPTwcuFlaw8EwauRVqBvo58/agCKpr69iQpPvx+s6BJD4+kqy33LJ7unM0s7jZ+tpjRIAbf+0VwgfHkjiZW8z4cB++HBLN+I3HyapoHmtXNwcuF5Xz4/k08irV9PN25h99wlHX1hF31fAP7ba6O9SdOf1DeWPfZY5lFjMlyofvRscwavkxMssM5y2xoIIFp9PILVczyN+Zd4bo8vbLZV0sk7t4M/u2EP6x+yKns0vp6mHPu0PCKamuYcfVgjbHNrqHL68+EMNrK05z7Eo+UweG8O+n+nHne9vJKKw0upyFUsHch/twNCmf2DA3vfd6BbvwybRevL/2LFvOZOLmYMlb47vx+UO9mTqvfY2wY6K8eP2uzrz6awJHrxYyLTaAH6b2YsS8fWQUV7UY35fju3HkagF9A1303rM0N6OgQsP8fclM6uXXrnj+MLF18uD1OyKYszWRY2lFTOvhx3/Gd2P4wkNkGGg0VdfWsepsJueySymprqGzhx0fjOqMuZmC93fpGiHe3HaRD3cn6S23ekovDhtpWLgV7GytSEhMZcnqz+mQQgAAIABJREFUPSz87Olbvv4hXm483TmYLxKucK6whLEBXrzXqwvT950gt0rdbH4bpZIP+0QRX1DCMwfP4GdrzeyYcKpqa1mVkgHAGH8vZkQE8dm5y5wvKqWToz3PR4dRpqnhUK5+Y66XtSWPRQZxpqBt17thPm48FxPCJ2eSOJNfwn3B3nzcL4ppO06QXdl8v5opFKhr61iTnMFtni7YWxj/yWxvoWROzwiO5xXhbqVqUzxNmfIxN9TbjWe6BPP5uSvEF5QwLtCLD/t04eE9J8gxsJ+VCgXqOi1rr2bS190ZOwN5szAzo1itYUlSOmMCPNsVT1NjOnvy+vAI5my+oMtbT3/+M6E7w789SEaJgbzV1bEqvj5vVfV5u7s+bzuv5y2RD3fpNx6untabw6n/vXNViNZIH3bCJKWlpeHm5kbXrl1xc3PDwsLiv7atN998k+TkZD7++GOWLl3K6NGjef311zlx4oTRZbRaLenbtuN/9yjce/fE1s+XyOkPU1tVRc7hI0aXy9y1G0snJ10lno833kMG4dm/H6mbtzTM0/nx6fjeMRT7wABsvLwInzYZpZUVhWfPNcxTcvkKrt274ta9G1Zubrh170Z43xgyEq8ajffo+t3c9sBwOg3ojnugD6Ofn4q6spqE3ceNxjvi8QfoN34EPhGBOPu4M3DSXXiF+nPx0JmGebwjAhk2/V6ibu+NhWX7v6hotVp+WbaHBx4aRv9hXQkM9ea51yZRWVHNns2t36X86t0VDB3dm8iYoGbvde0dzm1DYvAL8sTbz42xEwcTFObN+VNX2hzbkXW76f+n4XQe0B2PIB/ueUGXt7Mt5O3OJx5gwIMj8I0MxMXHncGT78I7zJ/EJnkL7hZBZL+uuPl74uLtTuy42/EM9uHauSSj6zUU3+kNu+h1/wjC+nXHNdCH4bOmoqms5uKeY0aXc/BwZfCMP9F52G1Y2tkYnCfrwhW8IoLodHssDh6u+HWNpNPtsWRfNHyMGYpt7dK9jP/zUAbe0ZWgMG9efEO3X3fFtb5fP397BcNH96ZzTGCz986fTqFTTCB3jO6Fp48L3fuEc8fo3iSebVtsxuK9HLeDyLEj8YvtgaO/D32efIiaqipSDxw1upytuyvd//wgQUP6obK1bfd2s7duxbV/f9wHDcLa25vASZOwcHQkZ/dug/PnHz5MnVpNyCOPYOPri0uvXniPGkXWtm1otbo7xJZubgROnIhb//6YG4kpdMYMPIcNwzYgAGsvLwKnTMHMyoric+cMzn+dVqtlz5o9DJt4B90Gd8M72JtJL0+muqKaEzuMnxP3zbyfOyYNJ7BTIO6+7tz50Cj8wv2Jb1KxkJKQTGDnIHqP6IOLlyvhPSLoPaIP1y60/Zjb+/Mehk64g66D6mN7aTLVldWcbCG2e2fez7CJwwnoFIibrzsjp+liO9s0tnPJBHYKolfT2Ib34WobY3skxpefL2azIjGLpKJK3j6QRG6FmsldDFf+fXMqlc+PpXAiu4TU0iqWns9kS0oedwY3NvCUaWrJq9Q0/AtwsCbAwZoVF7LaFJMxUyN9+eVKNj8nZZFSUsk/jyeRV6XmT+GGY/0+IZX58Vc5nVdCenkVqy5nsjMtj2H+bgbnb49Hu/qy5mI2y8/r8vbWfl3ephjJ2/yTqXx2NIUTWbq8LUnIZEtyHneGNMZyb4QHK85nsuFyLqmlVfyalMvy81k83t2/XbFNHxrK6sPXWH7wKknZZby5+gy5xVVMGRjc4nIv3xNFYnoxG09mNHuvR7ALWUWV/HtXEmkFFZxKKeTHPVfoFuTcrtgAZvQPYtWpdJYdTyMpr5w3Np4np6yaqX0CWlzubyMiuZBdysZzzSsk04oqeXPTeVadSqeoUtPumP4QsfUJYNXZTJadzuByfgWvb7tITpmaqT0MNwJeLapk1dlMzueWkV5SxbbLeaxLyCLWz6lhnlJ1Lbnl6oZ/gU7WBDrbsOx082PgVtm88xSvf7Scnzceoa6+euhWeiDIhy3pOWxKy+ZaeSXzzidTUK1mrJHq/mE+7lgqzfgo/hIpZRXsy85n+ZU0HghqrGYa7uPOxrRsdmbmkVVZza6sPDamZjEhRD/3SoWCV7pF8v3Fq2RVGm/gbWpimC8br+Xwy9VsrpZV8nn8FfKr1NwbZLjiv6q2jo/PJLH+aja5Bhr0mvpb93A2pWZzrqC0TbHcyJSPufHBPsSl5fBrqm4/f5mQTH61mnuMPGVSVVvHZ2eT2JCabbDhFiC7spovE5LZnJ5DqaamXfE0NSM2gFXxTfK2NbHlvBVWsio+k/M5TfJ2LotY/yZ5qzaSt1PpNx2nEL+VNNgJk/Pmm2/y2WefkZWVRWxsLOPGjUOr1fLjjz9y3333MWjQICZNmsSmTZv0lvvqq6/405/+xKBBgxg3bhxffPEF1dW6D9kNGzawcOFCrly5QmxsLLGxsWzYoHsM5cyZM4wfP57o6Gh8fX2ZMmUKnp6eJCQkGI2xKi8PdXEJzlFdGqYpVSocI8IpSTLe4FKSdAXnKP3KLpeoKMquXqWuptbgMtqaGuo0GsxtGhtWHMPDKLqQSEWm7odZeUYGV89cJLR3F4PrKM7Op7ywhOAenRqmWViq8I8KJf1CssFljFFXVmNlpJHnZmRnFFCYX0r3vhEN0yytLIjqHsKF+JQWl924aj+F+SWMf2REq9vRarWcPnqR9Ku5dOkR0qbYirLyKSssIaSnft4CokJJO9++vFVXGM+bVqsl+VQi+Wk5BESHGZzHkJLsfCoKS/Dv3hifuaUKn6hQMtu5X2/k3TmUvJQ0shJ16ynNLSD56FkCexk+xm6Ula7brz1v09+v0T2CSTiT0uKyG1bupzC/lInThxt8v0v3YK4kZnA+XtdYkpNVyKHd5+jTxqpJQ8pz86kqKsEzpnEdSpUKt05h5F9qWwNve9XV1FB+7RqOXfRz6tilC+VGriNlV65gX18Vd51DVBSaoiLU+a0/imeMtqYGrUaD0qblc7sgM5/SghIiezUecypLFSExoaScS2nXNqsrq7Bpck6ERIeQcTmdlATdegqzCzl34CydY9t2zBVk6WKL6K1/vgbHhDass82xVVRhY98YW3B0CBlJ6Vy9HltOIecOti02CzMFUW727EvTrxDZn1ZID0+HNsdkZ6GkpNr4j5sHO3lxsaCckznGH0lrjbmZgk4u9hzK0q8mOJRZSFe3tsdqa6GkVH3zP8RAl7dod3v2pernbV9qIT29bj5vKqUZ1TV1evNU1dTR1cMec7O2ddZjoVQQ7e/E3gv6j9HuTcyhZ7CLkaVgaBdPhkV58eZqw4/WHb+Sj7uDFcOidY0IzrYqxvT0ZVdC+x4vtlAqiPZ2YO/lPP34kvLo1eTHabP4wt0ZFuHOGxtbf7zwZpl0bGYKYrzs2ZOsX2m5N6WAXr5te9Ij0MmaIcGuHEo1/njvxG4+JOaWcTz9t1XDdhRzhYIIBzuO5+lfJ47nFRHlZLhCu4uTPWcLSlDXNZ57x/KKcLOyxKu+WwELMzO99wGq6+qIdLRD2aQjrUfCA8iurGarkUdlDcbraMfRG6r0juYWEu3S9muJIfcFeeFipeI/iamtz2yAKR9z1/fzsRv287G8IqKN7OffS2Pe9L/37E3Op5ef8etIU4HO1gwJceXQNePVcxO7+/6hz9VbQfE/9u+PSB6JFSbnxRdfxNvbm/Xr1/PDDz+gVCqZP38+O3bs4KWXXiIgIID4+Hjee+897O3tGThwIADW1ta8+uqruLu7k5yczAcffIBKpeLJJ59k+PDhJCUlsW/fPubPnw+AnZ0dAN26dWPbtm0MGjQIBwcH9u7dS2FhIbGxsUZjVBfrfhCpHPQ/6FUODlQXGb/wq0tKcHLQb1SwcLBHW1uHpqwMS6fmH87JP69DaWWJa/duDdP877qT2qoqjr76BgozBdraOvo/OJKeowcZ3G5ZfV8TNjd8wNo42VOW3/YPoeO/7qE0v4jooW3vA641Rfm62Jxc9GNzcrEjP9d4bCmXM1m+cAsf/XsWSqXxew/lZZVMH/MWGnUNZkozHp99P736t61h53rebG/Im62zPaXtyNuxDbq8xQzTz1tVeSVzH3qVWk0NCjMzRj01njAjja6GVBQZ2a+ODpQV/Lby/YhBvagqLWfNnLmg1VJXW0fk7X3o/9C4Ni1fmK+70+zseuN+tW9xvyZfzmTxt1v57Ptnje7X2+/sQWlxBS899jVarZba2jruuLsXj84a3ca/rrmqIl1MVo7657SVowOVvzGXxtSUlUFdHRY3XEfMHRzQnDf8o1RTXIzKWb/axsLevuE9S7ebq2pKX7cOM0tLnLt1A4xXY5QU6varvbP+frV3tqM4r+3nxL51eynOLabXiN4N03oM7Ul5STnzXvgSbf0x13t4b8Y8NrZN6ywtuDWx7V+3l+K8YnoO14+toqScr19sjK3X8N6MntF6bM5WFpibKci7oeonr1JNP+u2/bC4PcCFfr5OTFp/2uD7dhZKRgW78+nR39ZQ72SpizX/hsqIgioNsVZtq3Qf5ONCrKcTj241HGtbtZS3/jZty9vQ+rxNWNcYy97UQsZ38mJzch7xuWVEu9vxYGcvVEoznK0syK0wXBWiF5utJeZKs2b9yuWVVjMgwnCfhu4Olrw3qTtPfXeEciMNrydTCvnLf47x2UO9sLJQYqE0Y++FHP66yHiFqMH4bFS6+Mr1/5a8MjUDQozEZ2fJB/dE8eTyk5SrDd9AvBVMOzYLzM2ax5ZbrmZAYMtVjmum9iLK0x4rcyVLTqXz0W7DN13sVUpGR3ry0Z62V9ObGkeVBUozBYVq/XOzUK2hh5EnLVwsLZpVXBWqda+dLVVkVVZzPK+QUX6e7MvK52JJGREOdtzl54mFmRmOKnMKqjX0cnXidm83ntx/qu3x1l/XCqr14y2o0tDb/eaf4Amxt+GRyACe2HuautZnN8iUj7mG/XxD3gqrNfR0bf8TNbdSi3kLajm2NdN6E+VVn7eTaXy0y3D/efaWSkZ38uSj3TfXv54Qt4o02AmTY2dnh42NDUqlEjc3NyorK1m6dClffPEFPXr0AMDX15eEhARWrVrV0GA3ffr0hnX4+Pjw8MMPs3jxYp588kmsrKywtrZuWGdT7733HnPmzGHkyJEolUpUKhXvvPMOERGNlUFxcXG8//77gO5uX8xzz+jeuKGpXou21eZ7hZHhdgxNTtu6nczde+n64l8wt7ZumJ575BjZBw7R+bHp2Pj6UH4tlRPLl+Po6Uq3kf04t+socfOWN8w//rUnDG9b2/xvMObC/lPs/Pc6xr30MI4exisIWrM77jjzP1jV8HrOpzN0/7kxNK3xXGnUNXwy5ycenjUWT5/m/Xw1ZW1jyWc/vUhlZTVnjl7i+8/X4+HtTLc+Ec3mjd95lI1fNeZt4htP1MemH4e2HU+XnN9/im3/Xsf9Lz2M0w15s7S25LEvX0ZdWU3K6YtsW/gzTp4uBHePNLiuxN1H2fVNYx+MY/7xpOH40BrNXVuln73EsZVxDHn8QTwjgijOzGXvd6s5snQjfSc3bxjbsekEX77XuF/f/Fx3PiqaHWDGY1Ora/jglUXMeG4sXr7G9+uZ40ks/W4bM/92P5HRAWSk5vGvj9fx078289CTLfc9ed21/Uc4/t3ShtcDZz9FfcD60eoOxDat86Y1Oy9bOcCMxXOTcWZt307Onj1EPv88SmtroKLhvePbj7HysxUNr2e8+3j9tvTXoW3H9k/vOc0vC9Yz7R9/xsWz8Zy4fPoyWxdt4YFZfyKgUyB5GXmsnbeGuP9s4q6Hmw9kc2L7MVZ93hjb9HceNxRai9eSG53Ze5oN365n6iv6sSWdvsy2xVu4/9k/EdA5kLz0PNZ9vYbN/9nEKAOxGaa/X9u6u3p6OvDp0E68cyCJM7mGH7kaF+6BUqFg3eX2D5xgSLMjsI2xdnNz4J3+kfzz+BXOFZTdmlhuOB8UtO0a3NPLgc+Gd+Lt/UmcyWnM21fHr+Fmo2LFvd1RKBTkVapZk5jNEz38qW3vo4M3zK5oPqnBZ9N6s3hfCqdSjFfBhHnZ89oDMXwVl8jeCzm4O1jx93FRvDuhO39dZLybDqPh3RhfC8n7/IGuLDqWysm036eSxKRju+G1QtHSbQydmevOYqcyp7OHHa8MDeOp2wL5+lDzR+bvi/LGzAzWnMu8ZfF2FEM5ufF8bWn+hu8H9cssSkrD2VLF3NtiUKCgUK1ma3oOE0L8qNOCg4U5s2PCee9MImVGnkppMV4Dx1x7vs81ZWGm4M3ekcw7l0ymgb492x3bDa9N6ZgzHMetf8z6Zhjcp60sM3NtvC5vnna8MjScp/oF8fXBlGbzNeTt7B//XBV/bNJgJ0xecnIy1dXVPPfcc3o/umpqavD2buxDYfv27SxbtozU1FQqKyupq6ujtrb1D/RvvvmGoqIivvrqK5ycnNi9ezdvvPEG//rXvxoa7QYNGkRUlG4ggA8TE6ir0d0dVxeXYOXS+KNOU1LarOquKZWDA+pi/S+cmpJSFEozzG3t9Kanbd1Oys/riHl+Fg4h+n3iXFm5Gr87R+DRV1exZefni3t1DgdXbaXbyH6ExcbwaERQY67q+4goLyzBwb3xjl1FcSm2Tq0/DnBh/yk2fPoTY16YqjdC7M2IHRRFRFRjv2Sa+tiK8ktx92yMrbiwrFnV3XUFeSWkJmfz5TvL+fIdXQObtk6LVqvl/v6zefXTGfS4TdfoZWZmhnd9X0ohEb6kpWSz6oftBhvsIvrG4BsZ1PC6tkneHJvmragUW+fW83Z+/ynWffIT416YqjdC7HUKMzNcfNwB8Ar1Iy81i/0rthptsAuOjcGzyX69Hl9FYQn2bo3xVRaXYu342x5XOLRkA+GDehE1oj8AboE+1FSp2fH1EvpMGNVsNOLbBnehU/QLDa819Y/DFeSX4O7VWA1TVFCGk4v+sX5dYV4J165k8+lby/n0Lf39OrrvS7w1dzq9bovkx/lxDBnZnVH36kbUDQ7zprpSzefvrGTKjBEozQ2PlNyUd8+ujAgNanhdW39OVxWVYOPaeE5Xl5Ri9RtzaYy5nR2YmaG54ZpQU1rarOruOgtHx2bza0p1jRHGlmlJ1vbtpK9dS8SsWdgFN+97K6pfNAGdGs/X68dcaUEpzh6Nx1xZYVmzyjZDTu85zZIPFzH55SnNRojd9P1GegztyW139wPAJ8QHdZWaFZ8sY+S0O1HecMx16RfNC01iu36dKyksxalpbEVl2LUhtjN7T7P0w0VMfGlKsxFi437YSPehPelbH5t3sC62lZ8uY4SB2JoqrNJQU6fFzVr/rr+rlYq8yparuXp5OvDtqGjmHr/K0vPGfzQ82MmbzSl5FLfwyGxbFFXXx3pDx+kulhbkV7XcL1h3Nwfm3h7FN/FXWXX5t//AuZ43d5sb8matIr+1vHk58N3d0Xx+9CpLEvRjqa6t4++7LvLqnku4WVuQU6FmYmdvytQ1FLbyNzbEVl5NTW0dbg76FWGu9pZGR3PtH+lObJgrs0bpru8KhQKlmYKLn93DaytPs+zAVZ4aEcHpq4V8u0NX0XEho4RKdQ0r/jKYTzacJ7PI+GAWevFVqKmprcPd7obc2aqaVaRcNyDElb6Bzjw3JFQvvsuvjeTVXxNYejytTdv+Y8emoaauDndb/djcbIzHdl1maTVQzaX8cpQKBR/c1Yl/Hb5G7Q0tChO7+RCXmEtx1W87VztSsVpDbZ0WF5V+dZqzyoIiteFzqKBa02x+p/rX1yv11HV1fHL2Mp+fS8JZZUFBtZq7/b0or6mhWK0hxsUBVysVH/VuvD5f/1kQN7I/U3eeILWs+TlSXH9dc72hStjZ0qJZ1V1buVqqCHaw5e89Ivh7D933STOFbrCKXWMHMPvQOY7mtl6db8rHXMN+tmyetxur7n5vDXmzuwV5u7sz/zp0tXneuvsSl5jzhz5Xxf8GabATJq+uvj+LTz75BC8v/c5hzc11h3B8fDxz5sxhxowZPP/889jZ2bF3717mzp3b4rrT0tJYsWIFixYtamici4iI4NSpU6xYsYI5c+YAYGtri2195+3WRXlotVpUjg4UJiTgEByki1OjofjSZULGP2B0ew6hIeSd1H9MqDAhAbvAQMyaNDKkbt5KyrpfiHnuGRzDm/dpVqtWozDTf1zQzEyBtr46wNLGSm8EU61Wi62zA8mnEvGO0P3ArVFrSD2XxNBH7m0xR+f3nuDXzxcz+i9T6DSgR4vztoW1rZXeyK9arRZnV3tOHblIeBddh9Pqag0Jp67w8LOGHzdz9XBk7pK/6k3btPoApw9f5G8fPYyHt/EKQG2dlhojfSsZypudswNXTibi0yRv184lccf0lvOWsPcE6z9dzD0vTKHzwLblTavVNjQ6GKKyttIb+VWr1WLj7EDq6Qt4hjfGl5FwhQF/btujq8bUVGuaHWMKpcLo3WgbWyu9kV+v79eThy8RGdW4X8+eSmbGrDEG1+Hq4cj8ZS/qTduw6gAnD1/i1X/+GU8f3X6trlJjprzx+Ddr8c7+jSysrfRGftVqtVg5OZB99gIu9Q15tWoNeReS6Dr5vjavtz3MzM2xDQig5Px5XHo3Pn5ZnJCAc8+eBpexCwkhdc0a6jQazOoH4ylJSMDCyQmVgVFlW5K1dSvp69cT8eyz2IeHG5zHysZKb3RVrVaLvYsDF08kEtBJt181ag1XziYx9vF7WtzeqV0nWfLREia/NJlug7s3e19TbWi/KnSVy+2I7dLxRAIiG2NLPpvEmMdaiW33SZZ9tISJRmJTV6sxM3TNbUOVgaZOy7m8Ugb4OhOX3NhvV38/J7Yk5xldrreXIwvujOKrE1f5z1njHV53dbens6sd7x787Y/Y1dRpuVBQSl8vJ7alNsbW18uJHWnG+0js4e7A3CFRLDh7jaWJt6YjfU2dlrO5pQzwc2bTlcZYBvg5sfmK8bz18Xbk27ui+PLYVX6IN563mjotWfU/7MaEubPjakGba0Y0tVrOphYxMNKDTaca/96BkR7EGenUfdT72/VeD4/xZubICO77ZDdZRbqO860tlNTdcB27XvXXngJaTa2Ws5klDAx1Y2OT/u8GhrgRd95wf3gj5+mPcj2ikwfPDApl3LcHySppW8f+f/jY6rTEZ5UyKMiFjYmN1aoDg1zYlNj26lWFQtcfpNIMmt437ubtQJSnPW9tv3jLYu4INVotF0vK6OnmxJ7sxutCTzcn9mYbvk4kFJUyIzIQCzMFmvpjupebE3lV1WTdMKhDrVZLXrXu3Bzq7cbhnEK0wMXiMh7bpz9o1cPhAdhbmPNlwhUyyw0fCzVaLReLy+jj7szOjMb4+rg7syvD+LWkJblVaqbt0K96vT/Ym97uTrxy5DxZFW07Lk35mLu+n3u7ObE7qzFvvdyc2JN1833m3gp6eWvSl+jAYBc2XWhP3hQt523bH/tcvRX+2w+ZiNZJg50wecHBwahUKrKysujTx3DfaWfOnMHd3V3vsdjMTP276hYWFg2Nf9dVVek+UG+sjmjtx79CocB3+B1c+3UTNl5e2Hh6cnXDRpSWlnj0bez77sLC7wHoNOMRALxvH0L6jl1cXroc7yGDKbmcRNb+g3R+fEbDMqlxm0les45Ojz2KjZdnQ0WemYUKcxvdY7Gu3bpybVMcVm5u2Pp6U3YtlStrdxI9zHC/ewqFgj73DOHAii24+nni4uvOgeVbUFlb0mVIr4b5fvn0JwDGvjANgIQ9x9nw6U8MffRe/KPDGvp0U5orsbbXNWDWamrIS9UNflGj0VBeWEr2lTRUVpY411ePtUShUDB24mBWfr8Nv0APfALcWfnvbVjZWDL4zsaGrs/fWALAX96YjLm5ksBQ/RGqHJ3tsFCZ601f+f02IqIC8PR1RaOu4fiB8+zadJzH/tq2BhiFQkHsuCHsW74Ft/q87avPW3STvK37RJe3cS/q8nZu93HWffITw6ffS0BUGGUF9XmzaMzbvmWb8YkMwtnLlVpNDZePJRC/4yh3PvmnNsV2Pb5uY27n2KotOPt64uTjwbFVm7GwUhExuLEBaOvcHwEY8dxDDdNyk3UVCZrKKhRmCnKT01CaK3Hx1+UvqE80p9bvxCM0AK+IQIoy8zi85FeCekc1q64zFtu9kwax7Pvt+Ad54BvgxtLvtmNtbcntoxr368ev6R5L/etbkzA3VxIUpr9fnZztsLDQn953UBfWLNlDeGc/OkUHkJGaz4/fxNF3YJc2VdcZizds1DAurI3DwccTOy9Pzq/dhLmVJf79G687R+b/AEDsUw83TCtK0XU2XVOfy6KUVMzMzXHwMzyKWlOeI0aQ/O9/YxsUhF1YGDm7d6MpLsZjyBAAUtesoTwlhU4v6KoXXWJjSd+wgeTvv8d79GiqsrPJjIvDd8wYvQrkilRdTLVVVSgUCipSU1EolVj76Ebky9y8mfS1awmZPh0rT8+Gqj1FKyNyKxQKBt8/mG1LtuLh74G7nwdbF2/B0tqSnsMaz4klHywCYPLfpgJwcucJFn+wiHueGEdI11BKChqvJbYOunOiy21R7F69C/8I/4ZHYjf9sIkufaNarGBrGtug+wazfakuNjc/D7Yv2YKllSU9msS29ENdbJNeboxt6YeLGPv4OEJiGmMzN1di0yS2Pat34VcfW35GHnH/aXts38en89HtkZzJLeVEdjETO/vgYWPZUDX3Yp8gurrb8+eNusEIYr0dWXBnNEsSMlh/OQc3a91+qdXSrApsQicvkosrOJJ5ax4XXJSYztu3RXIuv5RTeSX8Kcwbd2tLVl3SxfpMtyCiXOx5aqcu1l4ejswdEsXKS5lsSslpqGKp1eoq9n6Lf59J5+NhkZzJKeV4VjGTonzwsLVsqJr7a2wQXT3seWiDLpa+Po58e1c0i89lsO5SY97qtLr+qgDKNZeYAAAgAElEQVSCHK3p7mHPyZwSHC0teLSrL+Eutszemdiu2L7bmcQn03px+lohx6/kM3lAMB6OVizep+tHcPbYLnQLcGbqvP0AXMzUf5w5xt+ZOq3+9O1ns3hvUnemDAxiz/kcPBysePX+GOJTi8gobFt13XULD6Tw6f1dOZ1ezLFrhUzt44+nvSWLj14D4KXhEXTzdWTKf3SjYF/M0X+EuauPI3VabbPpXbx01ap2lubUaXWv1bV1XM4t/9+I7eg1PhsTxenMEo6lFzGlux+edioW148S+dLgULp7OzB5ua7h6L4oL6pr6kjMLUNdW0dXbwdeHhLKxsRc1LX63yMnd/PhSkEFh1L/O/2iNmVrY0lo/QioZmYK/H3d6NolkMKiMlIzfntjy+qUDF7uGk5icRnnCksY4++Fq6WKDdd03wcfjQikk6MdLx3VjTy+IzOXaWH+zI4JZ0lSGn62VkwI8WXR5cbBGnxtrOjsZM/5olLsLMx5IMiHIDsbPoq/BOhGIE0pq9CLo7ymBqVCQUpZBTUtfG9fdjmdV3tFkFBYSnxBCfcGeeNqpWJtii7eJzoH0tnZnr8cONuwTJC9NeYKMxxVFlibmxFW/3lwuaScWq2W5FL9WAqrNWjq6ppNb40pH3MrkzP4e7dwzheVcbawhHsCvHCzVPHLVV3eZkQG0tnRjhePNI4wH2h3PW/mWJsrCa3/3ptU2ngeXp9mY66kTqt7XaOt46qBCkljFh65xmdj6/OWVsSUHn542lmy+GR93oaE0t3HkclLdQ2r90XX5y2nDHWdlq5e9rx8eygbL+Q0z1t3X64UlHPomvEuDIT4vUiDnTB5tra2TJkyhblz56LVaunRoweVlZXEx8djZmbGfffdR0BAALm5ucTFxRETE8PBgwfZsmWL3nq8vb3JzMzkwoULeHl5YWNjQ1BQEP7+/nz44Yc899xzODo6snv3bo4cOcLHH3/cYlz+d91JnUbD5cVL0ZRX4BASTNcXnsO8SdVOVYH+qE/W7m7E/OVZkpatIGPXHiydHAmbPAH33o3VNOk7dqOtreX8N9/qLevZvx+dpj8MQNjkiaSsXcelRUvQlJaicnSkx539GTDReP9dfR8YjkatYcs3K6kqq8AnIpAJbz2tV1FWcsMIWic37aeuto7t365h+7drGv/26DCmvD8LgNKCYr5/7qOG905l5nEqbr/ePK25b9pQqqs1LPjnGspKK4mICuCNLx7Xq8TLzW7/l42qimq++XA1+blFqCwt8A304LnXJzH4TsPVS4b0+5Mub3HzV1JZVoFvZCCT39bPW/ENeTten7ctC9awZUFj3gJiwnjoA11O1FXVbPp6BaV5RZirLHDz8+CeF6YRfXsv2qPnfcOpUWvY/e1Kqssq8AwPYtzrM/Uq8Upzm3/hWP7Ch3qvU46exd7dhT8veBOAPuPvRKGAw0t/pSy/CGt7W4L6RHPblLYNAAAw/s9DUVdrmPehbr9GRgfw7leP6VXi5WS1/8vQpOnDUSgU/PTNZvJyinBwsqXvoC78+em72r2upiLHjKBWrebkD8tRl1fgEhrEoL89q1eJV5HfPN5t/3hf73XmiXhs3Fy4e+47rW7TtU8fasvLydi4EU1xMdY+PkQ8+yyW9dVymuJiqnMbR8Izt7Eh8i9/4erSpSS8+y7mNjZ4jRiB5wj9kZLPvf223uuiM2dQubrSrb4vzpxdu9DW1pK0YIF+PP36QfSEFmMeNuEONNUaVn+5msrSCgI6B/LEB0/pVbsV5ujn6cAvunNi7dc/s/brnxumh3YNZeanzwIwYupIFAoFm37YSFFuMXaOtnS5LYq7H237YCJDJ9yBRq1hzVf1sXUK5LFWYju4QRfbuvk/s25+Y2whXUN5+hNdbMOn6GLb/MNGivKKsa2P7a5H2hbbxiu5OFma81SPADxsVFwsKOexuLNklOkqS9xtVPg7NPZTen+EJzYWSmZ082dGN/+G6WmlVQxbdqThta2FkrtDPZh3onm/RTdr67U8nFQWTI8KwM1aRVJxObN2nyWrvp8mNysVfnaN+Rwb7Im1uZKHOvvxUGe/hukZZVWM/eXob4plY1IuzlbmPN2rMW8zNjbJm62KAMcmeYvU5e2x7v481l0/b7cv1uVNqYBHu/kR7GhNTZ2WQxlFPPjzKdKNPMpqzK8n03G2VfHMyEjcHS25mFnKo98cbGhYc3ewIsDNtl3rXH3kGrZW5kwbFMIr90ZTWlnDoUu5fLD+XOsL32DDuSycbCx4dnAo7vaWXMwp5ZHFx0kv1t2o9LCzJNC5/SO+b3xqgN7rEZ08SCusZODnu/83YruQg7O1Bc/0D8LD1pKLeWU8vPI06SXXY1MR4Nx4zNXWaZl5WyBBzjYoFJBeUsWPJ9JYeEx/1FBblZKxnT2Zu/+3DQzTVj27hrBlxWsNr197cTyvvTien1bu5vEXv/nN69+dlYeDhTmTQ/1wsVSRUlrBP44nkFOlO49cLS3wbnLdraip5eWj53i2Swjz+nWjVFPDquQMVqU0VqQqFQoeCPLBz9aa2jotpwqKee5wPNmVv72PuB0ZeTiqzPlzpD+uliqSSyuYfehcw7pdrVT4NvluAvDP26L0/oYfhupuNg5cp1/x+VuZ8jG3M1O3n6eF1e/nsgr+djSB7Cb72cdGP28f9O6CV5NpCwfpqtaHbtzfbNp1AzxdyKqoYtKutg+ws+F8dn3egvGws+RibhkPrzjVJG+WBDjdkLd+QY15K67ix+NpLKy/UXCdrUrJ2C6ezN33+5yrQrRGUVRUZBq9RgrRxKJFi1i5ciXr1q0DdI86rVixgjVr1pCWloatrS0RERFMmzaNvn11/VjNmzePdevWUV1dTd++fYmNjeWjjz7iyBHdl3S1Ws1rr73G0aNHKS0t5bXXXmPMmDFcu3aNefPmcfr0aSoqKvDz82Py5MmMGWP4sb3Z8ScNTu9o/Tx++xea/6bbPDq2v4uWHMu7+VHC/tuK1KZbiz7a33SPue8S2/9j7/d0tdx075dNCmlfdcDvqb1jAvyeXtzcvsaZ35O9neleRwCKi013x9YlFLQ+Uwepc7ZqfSZhkNbGdD/3c+Yt7OgQjBq44JmODsGoymrTvY6kXjDd70sAITGmey25crp91cW/tzNPG37663/FJc2tbaDuaOEWAzs6hHaTBjsh2kka7G6ONNjdHGmwuznSYHfzpMHu5kiD3c2TBrubIw12N08a7G6ONNjdHGmwu3nSYNexkv7HGuxC/4ANdmatzyKEEEIIIYQQQgghhPi9SIOdEEIIIYQQQgghhBAmRBrshBBCCCGEEEIIIYQwIabbiY4QQgghhBBCCCGE+N0pFKbbN+T/F1JhJ4QQQgghhBBCCCGECZEGOyGEEEIIIYQQQgghTIg02AkhhBBCCCGEEEIIYUKkDzshhBBCCCGEEEII0UDR0QEIqbATQgghhBBCCCGEEMKUSIOdEEIIIYQQQgghhBAmRBrshBBCCCGEEEIIIYQwIdJgJ4QQQgghhBBCCCEaKBT/W/9+K7VazT//+U9GjBjB4MGDefHFF8nOzm7z8ps3byY2Npbnn3++zctIg50QQgghhBBCCCGEEEZ8+umn7Ny5k3feeYcFCxZQXl7OCy+8QG1tbavLpqen8+WXX9K9e/d2bVMa7IQQQgghhBBCCCGEMKCsrIz169cza9Ys+vbtS6dOnXjzzTe5fPkyR44caXHZmpoa5syZw5NPPomvr2+7tisNdkIIIYQQQgghhBBCGHD+/Hlqamro27dvwzRPT0+CgoKIj49vcdmvv/4ab29vxowZ0+7tmrd7CSGEEEIIIYQQQgjxP+sWdPv2PyM/Px+lUomTk5PedBcXF/Lz840ud+jQIbZt28aiRYtuarvSYCdEO9V1dABGnC+y6OgQWmRmwlf8Lk41HR2CUY4qbUeHYNTODFVHh2DUqz1sOzqEFs05VtHRIRi1J8t092sfN01Hh2BUoL+yo0MwKnnepY4OoUXKcSEdHYJRzgPdOjoEozQa0/18sLAw4Q99IDuz9f6GOsrABc90dAhG7Xv8q44OwSifofd2dAhGmd/m3dEhtCj99VMdHYJRykeiOzoE8T9u/vz5fP/9963OczOKiop46623ePvtt3FwcLipdUiDnRBCCCGEEEIIIYT4f2XSpEncddddLc7j5eVFfHw8tbW1FBUV4ezs3PBeQUEBPXr0MLhcUlISeXl5PPNM442Yujpd+U+/fv1YtmwZgYGBLW5bGuyEEEIIIYQQQgghxP8rTk5OzR5zNaRz586Ym5tz+PBhRo0aBUB2djYpKSnExMQYXKZLly4sXbpUb9r8+fMpLS3lpZdewsfHp9XtSoOdEEIIIYQQQgghhGhgyl0a/d7s7Oy45557+PLLL3FxccHR0ZHPP/+csLAwYmNjG+Z7+umniYqKYubMmVhbWxMaGqq3Hnt7e2pra5tNN0Ya7IQQQgghhBBCCCGEMOL5559HqVTyyiuvUF1dTZ8+fXjjjTdQKhv7MU5PT8fT0/OWbVMa7IQQQgghhBBCCCGEMMLS0pLZs2cze/Zso/OsW7euxXW8/vrr7dqmWbvmFkIIIYQQQgghhBBC/FdJhZ0QQgghhBBCCCGEaCBd2HU8qbATQgghhBBCCCGEEMKESIOdEEIIIYQQQgghhBAmRBrshBBCCCGEEEIIIYQwIdJgJ4QQQgghhBBCCCGECZFBJ4QQQgghhBBCCCFEA4WMOtHhpMJOCCGEEEIIIYQQQggTIg12QgghhBBCCCGEEEKYEGmwE0IIIYQQQgghhBDChEgfdkIIIYQQQgghhBCigXRh1/Gkwk4IIYQQQgghhBBCCBMiFXbCJNXV1fHhhx+yfft2SkpKmD9/Pr169erosPRotVqurd9A1u691FRUYB8STOiUSdj6+rS4XFHiRZKXr6Q8PQNLJyf87hqJ9+1DGt4vT8/g6rpfKL96jaq8PALuGUPguLH6266r4+q6X8g5dBh1UTEqJ0cC+/ch8v4xmCmVDfEl/vwrKTv3oSmvwDk0iK5/noiDX8vx5Z2/yNklqyhNz8TKyZGw0SMJvmOw3jxJm3eQsn0PFXkFqOxs8erZlaiJ92FuZaVbx4VLJG3cSlHKNaoKi+nx2ENEjevdYi73LtnEqc0HqCqrxCcikDufGo97oLfRZS4cOM3JTfvISkqjVlODm78X/SeMJKJvTMM8J+MOEL/jCHnXstBqtXiG+DJk6mj8o0JbzMGNsa3592Z2rj9EeWkFoV0CefiFB/AL8TK6zPmTl1nxr41kXsuhukrN/7F33/FNV/vjx1/pSLrS3XTvBXSwyx6yRIaADJkKAopbL6DXheIAxQmKoOJAQFD2XrKnzEIZ3YyW7r3TtMnvj5S0oUlp8Xrb+/2d5+PB40E+PZ9P3jmfc06b8znD2c2RvsO6MHTiQ3rpykor2PDDLs4cukxJUSmOCnvGPT2Urv3bNSm+tT/sY++W05QUlxES5susuY/hG2g8vrquRifz5rPL8PJVsHTdXINpjuy9wGfvrKFTj9a8++WMJsV2Yu1uLu07ibKkHPcQXwbOGouzj/H7Gn/yEtF7jpOZnEpVzX3tOnYQwXXua87tdI7/tovMpFQKM3PpPn4wPScOaXRcd2NbvnQLG9cfpqiolIjIQN54ewpBwV4NnqeqrOL777axY9sJsrMKcHKy5YlpjzBpyiDtz1VV/PjDDrZvPU5WZgF+/m688q9x9OgV2WAs8Zt3cutwbV2NeGI88vvV1dh4rtWpq4FDB+HXr7aunlzwBbmxCfXOs/F056GF87TvrVYTt2kHqSfPoCwsRGZnh3ePzrR6bCgmpqZoNBpiN+3k1qETVNbE1nbq441qR2LWbNTFFjxsoF47oq6qJn77Xm4fO01FfgE27q6EPT4S17ZhdT5fAok7/6xtR56eQufHjLcjd/Py4Oo9nN19kvKScrxDfRn+/Bhc/YyXuavHL3Fm1wnSklKpqqxC4eNG3/EDad0tQi9dRWkFf67cyZXj0ZQVl2Ln7MCgacOI6N2+3jWHe7sx1t8TJ5mUmyVlLIu9wZX8IqMx+NlY8WKbAELtbChWVbEzJZPVSSl6aR71cWOEjzuuljKyKir5LSmFP9OydT8f5KlgbkRwvWsP2XfS6PveNWlIKDMeC0fhYEXC7Xw+/OEM565lNXjO1EfbMOGRULxdbSgoVrL5YBKfrjwPQJdwN9YsHFzvnEHPbiY5tfC+8dQ1sbU70yO9cbGUklBQyoJTSZzPNJyXUe52TA33JMJFjlxqxu2iclZeucPG+ExdmoW9Q3gspH77WKaqpv3KE02KbUygG5NDvXC2lJJcWMYX0clE5xiOTWoi4Y2OQYQ62OBva8mlnGJmHY6pl+5hHxeeCPXER25JqaqaM1kFLL50g9wKVZNiAxgX7M6TbbTxJRWU8un5ZC5mG46vk8KOSa08CXeWY2NuSkpxBWti77A1uTbvnC3Mmd0xgFYONvjILdl5I4t5p+ObHBf8M3k3NsidsUHuuFvJyCxT8tP1VHbdargcGzIl0oNnOnihsJaRkFvK/KNJnEkzXG6DHa34oG8wwU5WyKVmZJUq2RafzZenb6JSawDo4mnH6939CXSwwtLchNQiJeuupvP9hdT7xtIcbUldD7k782bbUE5n5fHOhev3jbcxekS14pVnhtEhwh8PN0dm/msZqzcc/Y9cuyGT+gUxc0goCjtLEtIK+WDNRc7F5xhM6+lsxdHPh9c7Pu2zIxyNyQCgSysXfnujX700A/+9i+T04r8Xa5g7M9t5o7CSkpBfygcnkjiXbvi+BzlYMb9XEEEO2jKYWaZkR2I2S87e0pXBv2PimHCmT26PwtmKhOQ8FnxxnHPR6QbTvjizMy8+HWXwZ10H/URefjkfv9uPx4a1rvfzsnIV7Xp/36TYJod5MLO9FworGfF5pXx4Iomz6YbrapCDFfN7BxN8N59Ktfm0+GxtXXWxkvJW9wDCXOT42VmyOT6T1w7GNSkmQfhPEx12Qot04sQJtm/fzvLly/Hw8MDOzu5vX/P777/n4MGDrFu3Tu94amoqixcv5tKlS6hUKrp27cqcOXNwcnJq8Hqpu/dyZ+9+Qp6aiqWbK7e37+TK51/R8aP3MbO0MHhORXYOV7/6Gtee3Qmd8RSFCYkkrfkNcxs5zp06AKCurMTCyQnnDu25tXmrweuk7N5D+sHDhEyfirWXJ6Wpd0j48WdMzM0JHantuEjcuY/E3X/S4eknsHFzJW7LLk5+soT+i97D3Eh8pVk5nP5sKT59utNx1jRy45O4vHItMlsbPDpr40s9eYZr6zbTbvpknEKDKM3KJnrFatSqKtrPnAJAdYUSuZcH3j27cuG7XxrMR4DTG//kzJZDDHtlEo6eCo6v28Pad5byzPK3kVkZjvV2TCK+kSH0mTwMC7kVVw+fY+NHK5i04CV8wgNr0iTQplcHvNr4Yy6TcmbLYdbNW8b0Ja/h6Km4b1wAO9YcZPe6Izz91njcfRRs/nkfH7+6nE/X/htLI7FZWMoYNKYX3gHuSC3MiY+5wc+fbkBqIWXgYz0AqKqq5pNXl2Mtt+LF95/AUWFPXlYBZtKmNcsbfz3Elt+O8PK88Xj5urB2xX7mvfgdy9a/jpW14fjuKikq48v31tK2UxC5Rr7EZdzJ5eevdxDWLqBJcQGc2fQnZ7ceYsjL2vt6ct0efp+3lBnfGr+vKVcT8YkModfkYVjYWHHtyDm2LFzB+I9e0nW0qpSV2CmcCOnWlmOrdzY5LoCff9zFr7/s4YMFM/D1d+f7b7cwa8anbN31MdbWlkbPe33uMjIycpk3fxo+vq7k5hShVFbqfv7Nko3s3HaSee9PIyDAg5MnYnj1pSWsXPMOrdv4Grxm0s59JO35k3Yzn8DG3ZX4Lbs4tWgJ/T55z2hbUpadw5nPluLduzvtn5lGXnwSMb+uRSqvraudXnoGdVWV7hx1VRVH3vwQj6gOumOJO/Zy88AR2j39JLZenhSlpBL9/UpMzMxoNWoICTv2k7T7AO2ffgK5uyuxm3dx8uOv6f/puw22I6c++xaf3t3o9OxUcuOTuPTLOqRyOZ5R2s6t6xu2kXL8DO2mT0Tu6U7W5Wv89dX39H53DvZ+3gBUVSix9fLAu1cXLixfafSe1HVs/QGObzrE6NkTcfFScHDNXn5+81teXfGW0TJ3IyaRgLbBDHhyKFZyK6IPnmPNBz8yY9GL+NW0JdVV1fzy1rdY2Fgx/s2p2DnbU5hTgJl5/frax82Z51r7s+RaMlfzixju48aCjm2YfvwC2RWV9dJbmZrySecwYvKKeOHUZbysLZkbEUxFdTUbbqYBMMzbjRkhfnx5NZHrBcW0spPzangQJaoqTmfn665VXlXNk0fP613/fl/YhvT04+2ZXXhv2SnOXcti0pBW/PjeQAY/v4X07FKD57w5vTMPdfbik5/PEXczH7m1FBeH+vVm8HObKSiu/cx5RRUNxnKvRwJceLNbIPNPJHI+s5CJrT34YXAEQzecI71UWS99e4Ut8XllrLicSlZZJb28HHi/ZwjKajU7krQdEh+dSuLzszf0zls7vB1nM5rWkTjQ25nZ7QP45EIS0dlFjAlyZ3GvMMbtvUBmWf3YTCQSlGo16xPT6O7uiNxA2Yl0kjM/KoTFl29w5E4ujjIpr3cM5IMuoTx35EqT4hvk68zcTgEsPJPExexCxoV4sPShcB7bcZ4MA/G1dbElsbCUlddTyS6vpLu7A+90CaZSrWb3TW3eSU1NyK9Q8fO1FEYHGe8Ev59/Iu9GB7rxQoQfH51L4GpeMW0c5bzVKYjiyiqOpec1OrbhwS681zuQtw8lcDatiCmRHqwcEUH/1WdJK64fW2W1mg3XM7iaXUKRsoo2zjZ8PCAEM4mEBSeSAW1n8M+X7hCXU0p5lZpO7rYs7B9CeZWaVZfTjMbSnG0JgJuljJmhflzOa1rduB8bawuuxaXw28ajrPjyuf/otY0ZGuXNO5Pa8+6v5zkXn83k/sH8NLs3D7+xh/S8MqPnTf30CNdTCnSvC0vq5/vDb+ymoLRuO1e/nDQp1kAX3ukRyLvHEjmXXsjkcA9+GhrBw+vOkV5S/9qqajWb4jK5mqMtg62drVnQR1sGPzl9w8A7NN6QgUG8Nbsn8z85yvnodCaOCeeHxcMZMu430jNL6qX/cXU0azdd1Tv25UeD0Gg05OWXA/DhZ8f57JvTemnWrXiMsxeN1wVDhga58E7PQOYdTeBcRhGTwzz4aVgED689S5qxfIrNqJNPNizsG4KpiYRPTmnrqtRUQl6FiuUXbjM+7MHbOEH4TxJTYoUWKTU1FWdnZyIjI3F2dsbc3PwfeZ/y8nJefPFFNBoNS5cu5YcffkClUjF79mzUarXR8zQaDXf+PIDXkME4d+qAtZcnIdOnUl1RQfZfZ4yel374CFJ7e4ImTcDKwx33Pr1QdO9G6t59ujRyfz8CHh+DomsUJlKpwesUJybj2C4Sp3ZtsXB2xqldW9w6RJKfdEMXX9KegwQPexiPzh2w9fakwzNPUlVRwZ1TZ43Gd/PgMSwc7Ih84nHknu74PdQT755dSdz1py5NXkIyDoH+ePfsgpWLEy5hrfDu2UX33gCu7cJpM26ktmNA0nAzo9FoOLP1CN3GDKBVj3Yo/DwY/upkKsuVXD1y3uh5g54ZTfexA/EI9cXRw4VeEx/BLdCb+NOXdWlGzH2STsN74xbojZOXK4OfH4fUUkZSI58SazQa9qw/yvDJ/Yjq2xbvAHdmvT2BijIlJ/ddMHqefytvug1oj1eAGwoPJ3o+3ImIqFDiLiXr0hzdeYai/BL+9fFThLYNwMXdkdC2AQS29mlUbHfj27buKKOf6EePfpH4Brrz6rsTKC9TcmTvxfuev+TDP+g/tBOtIvwM/ryqqppP317NlFmP4Orp2Oi47sZ2btsRuo4eQGj3drj4ejDkFe19vX7U+H3tP3M0XccMxD3EFwcPF3pMeATXQG8S6txX92BfHnpqJG36dMJcZriO3C+2Nb/u5akZQxkwqDPBwV58sPBpSksr2LXjtNHzTp6I4a9TV1m6fDbduofj6elCZNtAOkfVPineue0k02YMpXefdnh5Kxg3vj89e7fl1192G40lee9Bgu7WVS9P2j+traupjairETV11bemribXqatSG2ss7O10//Lik6hSKvHp3V2XJi8hGdd2Ebi1j8TKxQm3Dnfbkpu17cjwQXhGtcfW24OOs57QxnbyPrHZ29H2ydp2xOeediTl+BmChw3ErX0E1gpn/Af0xrVdmF4at3bhtHl8BJ6NaEfu5uWJzUfoPW4A4T3b4ernwZg5k1CWK7l0yHiZG/bsaPo8PhDvUF+cPFzoP/kRPIK8uXaytsyd3/cXJQUlTH53Bn7hgTi4OeEXHohXaP1O2NF+Huy7k8Xu1Exul5az9PoN8pSVDDcysrSfhwsyUxMWxSRws6SM45m5/J6cymi/2lGMAzxc2JWayaH0HDLKlRzOyGFXSgaPB9QfEZpfqdL7dz9PjQxj04FEft+XQFJqIe9//xfZ+eVMeiTUYHp/T1umDGvNrA8P8udfKaRklnAtOY8j5+/US5tbWEFOQbnun7qJoz2mhXuyOT6T9XEZJBeU8+GpJLLLKpnQ2nBefncpha/O3+RCZhGpxRWsvZ7O/ps5DPJz1qUpUVWTU67S/fOxtcTH1pL1sRlNim1iiCc7bmaxJTmTm8XlfHYxmZyKSsYYGd1cUa3m4/NJbE7OJMtApxRApLMtWeVK1sankVaq5EpeMX8kpBHmKG9SbABTWnmyPTmTTUkZ3Cgq55NzSeSUVzI2xHDe/Xg1haWXbhGdXcSdkgrWJ6RzMCWH/t61eZdWqmTR+WS2JWdR2IiyZcw/kXdDfBVsuZHBvpQc7pQq2Z+Sw5bkTJ5o5dmk2GZ08GLD9b1D2xMAACAASURBVEzWXs0gMb+Md48kklWmZEqE4VHFtwor2HA9k+s5pdwpVrL/Ri5bYrPo7Fn7oDkmq4Tt8dnE55WRUlTB5rgsjtzKI8qj4YfRzdmWmEokvNk2lJ/jb5FR3rSO9vvZeyiadxf9zuZdZ5rcJjyopwaHsun4DX4/kkxSejHzV18gu6CCSf0bnnFRUKIkp7BC909VXf+7QW5RhV4atebvfaan2nqyKS6T369nkFRQzvzjSWSXVjLJSAfSraIKNsZlEptbSlqJkgM389iakEUn978/2GHaxHZs3hHLH1uukXQznw8+O0Z2TikTx4QbTF9WriInt0z3z8zMhE7t3PljyzVdmpLSSr00Pp62+HjZ6aVpjOltvdh4N5/yy5h/PJHsUiWTwo3U1Xr5lMvW+Cw618mnO8VK3j+exMa4TAorqgxe5/83kv9j//4XiQ47ocWZP38+X375JRkZGURFRTFixAg0Gg2//voro0aNolevXkyYMIHdu/W/AH/zzTeMGTOGXr16MWLECJYsWYJSqf3DbseOHaxYsYLk5GSioqKIiopix44dXLp0ibS0NObNm0dwcDBBQUG89957XL9+nXPnzhmNsSInB1VhEQ5hbXTHTKVSbEOCKUpKMnpeUVIyDmH6w8AdwsIouXULdVV1o/PINjiIwtg4ytK1XzBK09LIvhaPa1vtL9Cy7ByUhUUoImrfy1QqxTk0mLwE4/HlJybjEq4fnyKiDQU3auNzDAmk8HYKeYk1T45z8si4eFn33k1VkJlLaX4R/u1b6Y6Zy6R4hwVy53rTngxWliuxsLEy+vPqqiqqVFVYNpCmruy0PApziwmPqv3iKpVJCW0XQMKVm42O62Z8KglXbtK6fe0fhuePxRAS6c/KLzfx/KPv8trkT9j44x6qmlAOMtPyyM8tpn3XEN0xmYU5Ye0DiL3ccHw7N5wgP7eIcU8NNJpm1be7ULg70H9Y50bHdFdhzX31+y/c16a6k5pNTk4h3XrUllkLCykdO4VyKbr+FNK7Dh24QFi4P6t+2cPAh15h+ODX+Pij1ZSV1n6ZqaxUIZXqP2CQycyJvmD4urq6Gq5fV51Cg8lvYl11iWhDwU3jbcntw8dRRIZh6VTb+eoYEkTO9XiK07RtSfGddHKuxeHaNoyy7FwjsQWRl5Bc7/p35SXc0Gt7ABSR+u1IdVUVJvc8iDE1Nyc33vhnvp/8jFxK8osI7lBbX81lUvzCA7n9AGWubjtx/dRlfNv4s+PbjSyc8DZfPb2AA6t2U31PXptJJITY2nA+p0Dv+PmcAsLsDXe6tLGXcyWviMo6D4nO5RTgbCHDzVKm/RwmJno/B1Cq1YTa2WAqqf0TVGpqwuo+Hfmtbyc+6NCaQLl1g5/T3MyE8CAnjl/U72w7fvEOHVobHoU8oIsPKRnF9O7oycEfRnN4xRgWvdITR7v6Ixg3fzGckyvH8euHg+ga0bhp+rrYTCSEOcs5cUd/1M+JO/m0d7Vt9HVszE0pqjT+xWtsqBvxeaVczDI+zfBeZiYSWjnYcDpDP7a/MvOJdGp8bPe6lFOEs4WUXu7aOmonNWOgjwsnMho/QuxufK0d5ZxK1y+HpzLyaevc+Pis75N3D+KfyjtzExMq7+lMqaiuJsxRrldHGr6GhAiFnKO39PP76K18Oro3LjZfOwv6+jrw150Co2nCXGzo6G7XYJrmbkumBfuQWa5kv5Gpsv9LzE1NCPdz4NgV/U75Y1cy6BDkbOQsrW9f6sGZr0fwx9v9GdzJ8JIZW94bxKnFj7Lqtb50bdW42RtGYzWREO4i51iKfv04lppPB7dGlkFbC3p7O3AmzXj5alQsZiaEtXLh+Gn9KdUn/kqhfWTj2vOxj7amqLiSvQeN/24fN6oN8Um5XLzc+IcmtfmkX1ePpeTToZG/H3xtLejt8/fzSRD+aWJKrNDizJ49G3d3d7Zt28Yvv/yCqakpy5Yt4+DBg7z22mv4+PgQExPDggULkMvl9OzZEwBLS0veeecdXFxcuHHjBh9//DFSqZRZs2YxYMAAkpKSOH78OMuWLQPAxsaGs2fPIpFIkNYZySaVSjExMSE6OpqoKMPrMKgKtX/Ym9vq/1KQ2tqiLDDe8KuKijC31f8iK7WVo6lWU1VSgtS+cU/DvB55mOqKCs6/8x4SEwmaajUhjw7Gf4B2LTxlgTY+2T3xyezklOcbj6+isAiXsFZ6x2R2tmiq1VSWlGBhb4dXt85UlpRy/MMvAA2aajVePbrQZvyoRsV+r9KatVis7/kD1NpeTnFu46dhnNtxlOLcAiL6Ge9cOrJqJ1ILKcFdGte5WJCnjc3OQT82Owc5+Tn3j+3FUfMpLiihulrNY9MG0X9k7cimrLQ8rl1IpNuADsxZNIPsjDxWfrEJZXklE194tFHx5edq47O/Z/SFvaMNuVnG47uZmM66Ffv49MeXMDU1/Nzmwuk4jv15iSWr/9WoWO5l9L7aySluwvSaCzu19zXsoaZ3GhqTU3PvnJz065ujky1ZWfmGTgEgNTWbixcSkErN+fyrFykuLuPjj1aRnZ3P51+9CED3nhGsWbWXzlGt8PF15a/T1zj453mqDTyVB1DWtCXSe+uqrZyKBuqqsqAI2b111Va/rtZVkp5JbmwCnV+epXc8aNggqioqOPzG+7VtyYjBBAzso+s8k9nd247YNhhbRWERLuH3tiPadq6yuAQLBztcI1qTtPcgzq1DsHFzIftqHOnnotH8jdEWxfnaNYNs7qmvNg5yihpRX+86ve0YhTkFtOtfW+by0nNJjk4g8qGOPPH+M+Rn5rJ96QYqK5Q8MnOkLp2d1BxTE0m9kW35lSraGxkN6igzrze9Lb9S+9pBJiWjXMn5nHwGe7lyPCOX+KISQmxteMTLFXMTE+ykZuQpVaSUlvN5TALJxWVYmpkyytedr7pGMOtENMa6Kx1sZZiZmpBToD+CJqeggu5tDU8N93aT46mwYWgvf17/6jgajYZ/P9WZ79/pz9i5O9FoICu/jHeWnuJyQg5SMxNG9gvk1w8fZtKbezh7NdPgdevFZmGOmYmEnHL9vMwtr6S7h32jrtHX25GunvZM2H7J4M9tzE0Z7O/Cl+ea1qFrL9XGlnfPunJ5FSqiFA8+IyAmt5i3TsfxftcQLExNMDMx4XRGPvPPGH+QYIiDTBtf7j3lKrdcRRe3xsXXy9ORKDd7pu0znHcP6p/Ku9OZ+Tzq78qh1Fyu5ZfQ2sGGkf5umJuaYC8za9QagI6W2tiyy/TT5pSp6OnT8GjuTWPbEa6QY2Fmwm8xaXxyon6Z+uuprrr3+OqvW6yOMbwOGDRvW9LRyZ6+7s7MOhHd4Gf+X+Egl2rbuXumquYUVdDDztXgOWUVVSxYG835hByqq9X0b+/Jkue7MfeHM2w9eQuArIIK3v7lHDE38jA3NWFkDz9Wvd6XiR8f4mzcg3V0Gmv3csoq6eHVcLu3flRbwpzlyMxMWHctnc/+uvlAMehisbfAzMyEnHumDOfkldEtquH1fgEkEhj9aGu27IpFpTL8N5CNtZTB/YP44lvjsxsMxnY3n+6tq+Uqelg1XFfXP9aO8Jp8Wns1jU//5rRhQfiniQ47ocWxsbHBysoKU1NTnJ2dKS8vZ+3atSxZsoT27bXrH3l6enLt2jU2bNig67CbPn267hoeHh5MnTqVNWvWMGvWLCwsLLC0tNRd867w8HAsLS35+uuveeGFFwDtSL3q6mpyc3N16fbs2cPChQsB7ZPIsJe1aes/tNUYOKZPck8C3dfTJozTzT5zjsyTpwmdOR1rTw/SDh4mftseEnf9icTUlK6znzMYn0YDkvu9kaGT6si5Hk/81t20nToeh0B/SjKzubL6D2I37aD16PoL9N7ryqGz7F76u+71uHefqXnb+nE18qE4sSeiOfjzVka+NhU7heGpm2e2Hubi7hNM/PAFZFaGv4ie2Heenz5dr3s9Z9EMg3FoaFynwjtLX0BZriTx6i3WLduBi7sTPQdrF83XqDXY2tsw4/VxmJia4N/Km5LCMtZ8vZUJzw83mB+H95xn6cINutfzvjQSn8ZwfoJ204RFb61i2kvDcfM0vE5jYUEJi99fx5wPJmFj27iRbVcPn2Xft7X3dfS8Z2r+V7+8N7aox52M5vDPWxk+1/h9bYyd20/ywXu/6F5/s1zbCVk/3zRG8w20m+FIJLDw01nI5dp8eePtKTw78zNycwpxcrbjtTcm8f68nxk1/A0kEgle3gpGjOrF1s3H9GKprPnbNcpIXTV+UC+BfvwNlMvbh48js7dD0U6/szrtr3OknviLDs9Ooyw7l/jNO4nfuofEnX/S/fUXDL1NTZvQxIkFd9uRmtMipozl4o9rOPD6+0gkEqwVzvj07sbto6cafcnog+fYuqS2zD3xfk2ZM1AhGtuWXDkezZ4ft/L4v5/EwbW2zGk0GqztbRj18nhMTE3wDPamrKiMXd9tZvCMEcbbdb0wjN+fe3+ia6drzlmdlIqDTMrirhFIkJBfWcn+O1k8HuDF3T7O6wXFXC+oXej8Wn4Ry3u0Y4SvO8epv0B/Q7FJjHwGABMJyKSmzPniGDfTtB3Oc744xp/fPUZksDOX4nO4caeIG3dqR6xdjMvGU2HDjFFhje6wMxYbDcRWVwdXWz5/qBUfnUoiJtvwAvCPBikwlUjYmtj0jQmMxfF3JsP521oyp30AP15L4XRGPs4WUl5q688bHYN470zTN3e4N+skkvrHDGnnYsvCHqEsOpfMldz661T9J/yn8+7Hayk4WUj5sX8kICGvopIdt7J4slVtHXlQjcm353dfx0ZqSmtna97qGchznSpYek5/ZNKYDdFYmZvSwU3OGz0DSCkqZ1Nsw2Xvv92W2JqbMTcimAWX4yhpwoj//wX12jmJxOh9zS+p5Mc9tZsNxNzMx0Eu4+khrXQddjcyirmRUdu2XEzKxcvZihmPhD5wh50uVu6N9f5l8KV9sVhLTWntZM3r3QJ4pr03yy+mNHxS44LRjwVJoyprn+6+eLjJWb/V+DI0I4Zo15Dbuus/s7FDQ7+77npp33WszbX59O/ugczqUMGyC/+BfBKEf4josBNavBs3bqBUKnn55Zf1vhRVVVXh7l67nsOBAwdYt24dKSkplJeXo1arqa5u+I8NBwcHFi5cyCeffMKGDRswMTFh0KBBtGrVChOT2pFHvXr1IixMu3vhwrhruoXcKwuLkDnWfqmrLCquN+quLnNbWyoL9Ud6qIqKkZiaYGZt04jc0LqxfiNeDw9E0UU7AsR/7GisLMxIPxtN9zdfRq3SxldRWKQ3/a2yqBiZnfG1cCzsbKko0I9PWROf1EYb3/UN2/Ds2gnfvtqOUltvT6qVSqJ/XE3oyCG6XWqNCe4SgUeon+51dU2sJflF2Lo46I6XFhRjbX//Ye2xJ6LZ9sUqhr86WW+H2LrObD3M0dU7efy9WXgYWHPqrg49wwhsU7uGXFWltvwU5BXj5FobW1F+CXaNWFNI4aHtEPMO9KAwr4RNP+3VddjZO8sxNTXFpM4INw8/V5QVlRQXlGLrUL88RPUKIySsNn5VzVSl/NxiXOrEV5hfUm/U3V15OUWk3Mhk8Qe/s/gDbWeHRq1Bo9Ewottc3v1yBubmpuTlFPH2C9/pzrs78mlEt7ksXTcXL1/9aR9BURF4hPjpXlfX1JHSAv37WlZYjFUj7mvcyWh2frGKoa9O1tsh9kH07deeiMja6ciVNSMWcnIKcXOv7bTMzyvGqYEpWS4u9igUDrrOOoCAAO1aKenpuTg52+HoaMtX37yMUllJQUEJCoUDX33xBx6eznqxfHlFu/jy3bqqvKeuKouKkdkaL2Mye1uU97QllffU1bvUVVWkHD+NT9+e9erntXWbCXxkAJ5dO1NVXoFHVAduHThC2plopHLtdZQFRVjdG9t92pG7IwdrzynRi01mK6frq7OorlRRWVKKhYMd137fgpVLw9OT6mrdNRzvVrX1oaqmPpTkFWFfp8yVFJTUG3VnyJXj0Wz4dDVj5kyut0Os3NG2Xn1V+LiiUlZSVliKtb32cxVWqqhWa3C8Z1q0g9ScAiNrfuUpVfXS29e8vju6plKt5vMriXx1NQkHqTl5ykqGeLtRWlVldC0xNRBfWIKnkQcUAPlFSqqq1fU2jHCytyC3oNzgOdn55aiq1LrOOoCbaUWoqtR4uFhzyciui5fishna299oLPViq1BRpdbgcs9oCSdLKTnl9Rd+r6ujqy3fPxzOkvO3WHvd+Cimca3c2Xczh0Jl06Z9FlRqY3Oy0L9vjhbm9UaONcXUVt5czSthdZx2inJiYRnlF5JY0S+SZTE3ybzP574rX6mNz9lSP+8cLczvO9KsnYst3zwUxrJLt1ifYDzvHtQ/lXfKajUfnE1gwblEnCzMyamoZFSAGyWqKgqUjbtuXvndMqcfm5OlOTllDef93c0AEvLKMJVI+GRAKMvPp1Bdp/cgpWbTlbjcUpytpLzaxc9oh11ztSURjrY4WUhZ1Kn24c7dP733DOpO+4CNJCT/58vFPym/uFLbzt0zbd9JLiOnCRvhXErKZUwvvwbTRCfnMaxL49civpeu3bNseruXXqqEUkjML8NEImFh3xB+iNYvg02KpaCCqio1zk76D26dHC3rjbozZNyoMM5fSicx2fiU/nEjw9h7KJnCJm7UcTefnP9GXU3ML8PERMLHfUP5/uKD59P/dSb/qwu//R8iOuyEFu/u5g+ff/45bm76ayaYmWmLcExMDG+//TYzZszg1VdfxcbGhmPHjrF48eL7Xr9r165s3ryZgoICTE1NkcvlDB48mIEDa9f2sra2xtpauxaQZUEOGo0Gcztb8q9dQ+7vp41TpaIoIRH/saONvpdtYAC5F/WnlxRcu4aNry8mZg13dNWlrqxEUqdD0czSApmtHImpBBtXBRqNBpmdLdlXruMQoI2vulJFblwiYRMeM3pdh6AA0s/rT4HIvhKLvX9tfNX3vDegfd3IX3QyKwu93Ro1Gg3WDrbciI7DI0T75buqUkXK1ST6PTXS2GUAuHbsAju+XMOwVyfRumd7g2n+2nyQo2t28fh7s3S7jBpjaWWht/OrRqPBzknOlbPxus0gKpUq4i4lM+G5+48mrEujUaNS1X4pDI7w59T+C6jVal3ncEZKFjILKXJ7w+tOWVlb6O38qtFocHCSE/1XPCFtauO7Gp3MtBcNx+eksOObtXP0ju3ccJLoM/G8tWgqCndHJBLqpVm1bDclxeU8+9pjuHrUH+1m7L7evBiHe3DtfU29mkTfaQ3f19jjF9j11RqGvDKJ0B6G72tTWFtb6u38qtFocHa24/TJq4RHaHe/VSoruXA+jlfnjDd6nXbtg9m/9yxlpRW6+3DrpnbNFXcP/Y4mmUyKq6sjKlUVB/adY9DgKL1YrLPLdLHcrav2depqXlwircc3XFczDNVVv/ptScb5S1SWlOLTpzv3qlbW1mczS4uatsQGiakEuac7Mjtbsq7E4hBYG1tuXBJhE4xPgXcM9if9nH47l3Xlul47cpep1BxLR3vUVdWknYnGs0sHGstQmbNxsCXxYpxuMwhVpYpbV5MYPH1Eg9eKOXqRDZ+tYcycSYT3alfv575t/Ll0SL++5qRmYS6TYmVXW1+rNBrii0ro4GzP0czaUdodnO05Vud1XdcKipkR6ou5iUS3o2tHZ3tyKpRklOt/ianWaMip2ZX4IXdn/srKb7Dp9Zdbk1xseKdXAFWVmiuJufRo58HuE7d0x3u082DvyVsGzzl/PQtzMxN83OTcrhld4uMmx9zMhDtZxt+rdYAj2XmGOwENxqbWcDWnmO6eDuy5UdsJ2N3Tnn03DHcKAnRys+P7QWF8ffEWK6/W3wjjrggXOa2dbFhwuunrJlapNcTml9DF1YEDqbX3NcrVgUOpxmO7Hwszk3oL1uteN3aYaE181/OK6epmz/7btfF0dbPnzxTD5RCgg8KWr/uGsfzybdbENW3HxqbE9k/k3V3VGg1ZNR0bg7xdOJ6W1+iReyq1hpisYnr5OLAzsTaWXj4O7E5sfGwmEglmJhJMTSRUG+kFMJFIkBpZkgKary2JLyxh5nH9TaumBvsgNzfj62vJ3Ex5sNGozUlVrebKzXx6hrux+2yq7njPcDf2nGv8yKrWvvZkFTTcwdfGx55sIw87GhWrWsOV7GJ6ejuwO7m2zPX0smdPclPKIJiaSDCVSKh+wE0wVFVqrsZm06OLN3sO1LaT3aO82Xeo4XZT4WxF3x6+vPXRIaNpItsoaB3izEefH2t6bHfzycuB3Ul18snboYn5JPnb+SQI/zTRYSe0eP7+/kilUjIyMujc2fA6VpcvX8bFxUVvWmx6uv4TQHNz8wZ3frW3164NcfbsWfLz8+ndu7fRtBKJBM8B/UnZuRsrNzcsXV25vWMXpjIZLl1q172LW/EzAKEzpgHg3rcPaQcPk7T2d9z79KYoMYnME6do9fQM3TnqqirK0tJr/q+isrCIktspmMpkWLpqRzU5to0kZfceLJydsfJ0p+R2Ckl7DuDds4suvsDB/Yjfugcbdzds3BTEb92NqYUMz261eXh++S8AdJw1FQC/fr24sf8wMav/wO+hXuQlJHH72Ck6Pf+U7hy39pEk7T6Avb8PDoH+lGZmE7thO67twnWjd6oqKijNrJkOoFFTnptHZnIqFjZW9aY2SiQSokb04cTv+3DycsXRw4UTv+9DaikjrE9HXbptn68C4NHZUwC4euQ8279YRb+nRuITHkRJzZpppmamWNYstH564wEOr9rBo7On4Oip0KUxk5pjYW181End2AaP7c3WX//Ew1eBm7cLW1fux8JSRvdBtR0Lyz/4DYBZ70wEYN+GY7i4O+Luo71fsZeS2Ln2MANG9dCdM2Bkd/ZvPM6qxVsYOLonOel5bPxxL/1HdW9wWua98T06vjd//PInXn4KPH1c+P2nP7G0lNHn4dqOri/e1cb3r/kTMTMzxTdQf6cxewcbzM3N9I7fm8Zabkl1tbre8YZi6/RoH079ob2vDp4unPpjH+aWMlr3rr2vO7/U3tehr2rv6/Wj59n55Sr6ThuJV5jh+1qtqiInRdtRVlWporSgmMzkVKQWMhw8XBoV26QnHmbFd9vwC3DH18+NH5Zvw8rKgiHDuurSvfVv7QjDjz7WTrUcMrQb3y/fxry3VjDr+ZEUF5fxycI1DBzUWTcy7/KlJLKy8mnVyoeszHyWLd2CWqNh6vQhRmMJeLgfCdu0ddXaXUFCTV31qlNXL373CwDtn5kKaOvqzf2HubL6D3xr6mrKsVN0eO6peu9x69AxnNuEYq2onzeu7SNI3LEXKxcn5J4eFN5KIXH3Qbx7dtFrR+Qerti4uRK3dTdmFjK8ujfcjiTvP8LlVevx79eT3Phkbh89rdeO5CXeoCK/ADtfb8rzCojdtBONRk3QsNoHJVUVFZTotSP5pCWlYiW3wt7AFGmJREKPUX04vG4fLl6uOHu5cGjtPqQWMto+VFvm1n+6GoCxcydr79nhC6z/dBWPzByBX3ggxTVrV5qam2JVU+aihvXk9PZj7Fy+ia7De1GQmceB1bvpMqxnvfq68WYar0cGE1dYwtX8IoZ5u+Ekk7LjtrbMPhXiSys7G147exWAg+nZTAnyZm5EML8lpeJlbcHjAZ6sTqz9IulpZUFreznXC4qxMTdjtJ8HfjZWLIqpXdtscqA3sYXFpJaWY21mxkhfdwLkViy51vAXq5+2XOWzf/XickIO569lMeGRUBSOVvy2WztFac4THYgMceaJt7W7mZ+ITuNKYg4fv9yDD3/Q7or+9swoomOzianp1Jj6aBtSs0pIuJWP1NyUEX0DGNTNl+cWHGwwlnv9fOUOi/qEcjm7mAuZhUxo5YHCSsa6WO3vyH918iPSRc7U3dopv1Hudnw3KJy119PYnpiFs6V29EW1Rjsio67HW7lxo7CMM+mNX9+wrt/i7zA/KoSrecVcyilidKA7LhZSNiZp7/PzEb6EOcp57sgV3Tn+tpaYm5hgLzPH0syEkJqHM/EF2o7OY2l5vNUpiNGBbpzOyMfJQsrs9gFczysh08juqMasir3DR91CuZJbTHR2EWOD3XGxlLGhZtTci+38CHeS88wBbd51Utjx9UNh/BGfzq6bWboRcGqNdsTeXaEO2pitzc1Qa7SvVdUakovuP+Lmn8w7HxsLwpzkXMktRi41Y1KIJwF2Vk2eSrziQipfPtyK6MxizqUVMTnCHVdrGatjtB2Yr3f3p52bnAmbtLtIP9ZKgbJKTWxuKapqDZGucl7v4c+uhGwqazrrprb1IKWogqR8bUdOF087nu7gxaqYhjtFm6MtqahWc7NE/16WVlVhKpFws6QMlervT5O1tpIR6Kd9AG9iIsHb05nINr7kF5SQkma8Q/nv+GlPHJ8904VLyXmcj89mYr8gFPYW/FazGcKcsRG09XdiyqLDADzWww9VtZprt/JRa6B/ew8m9w9i0R+1u4dPHRTCnZxSEu4UYm5mwojuvgzq6MWzS47/vVgv3eGz/qFcyirmfHohE8M8UFjL+O2qtu7O6eJHW4WcKdu1dXdkiLYMxuVpy2CEwoY5XfzZk5RN5d+cD/7zb9Esmj+Ay1czuXApg/Gjw1C4WLN2o7bMzX6+K5Fhrjz53Fa980Y/2pryChW79ycavfbjo8K4cauAMxce7OHAj5dS+bx/K20+ZRQxMcwdhbWMNVe015vb1Z+2CjmTt2nv2cgQBcpqNXG5pajUGiJc5Mzt4s/ue/KptZO2bbGRmqLWaGjtZI1KrSExv/FtnCD8J4kOO6HFs7a2ZtKkSSxevBiNRkP79u0pLy8nJiYGExMTRo0ahY+PD9nZ2ezZs4eIiAhOnTrFvn379K7j7u5Oeno6sbGxuLm5YWVlhVQqZfv27fj6+uLoodru9QAAIABJREFU6EhMTAyff/45EyZMwNfX+NRJ0G78oFapSFyzlqrSMuQB/oT/62XMLGtHfCjz9IeBW7g4E/bKiySv+4P0w0eR2tsROPFxnDvVdv5UFhRwcf6HutcZWdlkHDmKXWgIka/NBiBw4nhubdlK4urfUBUXI7Wzw7dvD0JHDtWdFzR0ENWVKi6vXIeqrAyHAH+6v/Yi5nXiK8/Vj89a4UzXOc9zZc0Gbh44hoW9HRFTxuHRuTa+kBGPABC7cTvleQVI5Ta4tY+g9djajRIKbtzmxIIvda9jN+0gdtMOIvpHMfzVyfXysuvoAaiUKvYuW09FSRkeob6Mf/85vdEzRdn6mwFc3H0CdbWaP3/YxJ8/bNId9wkPYvLHLwFwfucx1FXVbPnkF71zjcVhyLBJ/ahUqvjli42UFZcT2MaH1798Rm8kXk6mfmxqtZp1y3aQk5GPiakJCk8nHp81jP4ju+nSOLk68O8vnmHNN9t4a+pn2DvZ0mdoFCOfNL5rqyGjn3iISqWK5Ys2UVJcTkiYD+9//bTeSLzszObZASvqMe193f+d9r66h/gybn7D9zV6j/a+HlyxiYMrau+rd3gQExZo72tJXiErX1mk+1nBnhwu7Tmhl+Z+pk0fgrKikoUf/EpRURkRkQEsWzFXbyReRrp+/bCytuD7H19j4UermPT4fOS2VvTr35GX/zVWl6ayUsXSxRtJTc3GykpGz96RfPTJ09jaGt+tM7Cmrsb8qq2r9gH+dH3tRb225N66auXiTNSc57m6ZgO3Dh5DZm9H+D11FaA0K5uc6/F0fG46hkRMeZzYjduIWbkOZVExFva2+PXtQegobQdj8LCBVFdWcumX37XtSKAf3V/Xb0fKcvTvobXCmW5zniNm9UZtO+JgR+QTY/GMqu1EVqtUXF+/ndLsHMxkMlzbhdHx2SeRWtdOvclPvs2JBV/pXsdu3EHsxh20HxDFmDmTDH6eXmP7o1Kq2LZ0AxUlZXi18mXagmf1ylzhPRuLnNmpLXM7l29m5/LNuuP+EUHM+FS7mYi9iwNTP3qO3d9v5pvnP0XuIKfjoK70nTCoXgxHMnKwNTdjYqAXjjIpN4vLeOv8NbIqtB0uTjJz3OvEU1ZVzetnr/JimwCWdmtLsaqKDTfS2HCz9kuMqUTCaD8PvKwtqVZriM4r5OW/YsisM2rGxtyMV8ICcZBJKVVVkVRcyr/OXCGusOE1yHYdv4mDrYznxrVF4WhJ/K18Zsz/k7RsbUeIi6MVPnV2J9RoYOb7B5j3dBd+W/gIysoqjkenseDHs7o1lszNTHhjWidcnayoqKwm4XYB09/bz5Hzxke8GbI7ORsHmRnPtvNBYSUlPr+Up/deIa1mSpOLlRRv29o6OyrYFStzU6ZHejM90lt3PLW4gv6/n9G9tjY3ZUiAgm8vGh5F2Bj7U3Kwk5rxVBtvnC2kJBWW8cqxq2TUdKw5W0jxtNGfgvdVrzA86rTNawZp60TnP7Rf8HfczMLKzJRxQe680tafElU157IK+Po+u34bsu9WDvZSc2aG++BsKSWxoJQXDl/RTpsDXCykeNeJ79EAVyzNTHmyjRdPtqldUD6tpIIhW8/qXv8+RL+N6evlVC/N/fwTeWcikTApxBNfuSVVag3nsguZcfAy6U3s6NyekI29pTkvRvlqy1xuKU9ujeFOsfY6CmspPna1Za5KreG5zj7421siQcKd4gpWXk5jxYXakVymEglv9AjAy9aCKrWGW4XlfHzyBqsvN9xR0VxtyT+tQ2QA+/6Yp3s9b/ZY5s0ey6r1R3h69vJ/5D13nknB3kbG88Pb4GJvQcKdQqZ/cYy0XG0njMLOEh+F/nISzz/aBk9na6rVGm5mFPPvH8/q1q8DkJqZ8Mb4trg6WGrbuTtFTP/8KIcv/70pwzuTsrG3MOP5Dj64WEtJyCtl+s7adk9hJcWnTrtXrdYwq4M3fnaWSCTaMrj6aho/XWpae2vIrv2J2NtZ8OxTnVA4WxOflMvMV7aTVjO62sXZCm/P+kuJjHm0Ddv2xFNhZLkBaytzhgwKZumKxrcb99qZmI2DzJwXOvriYq2tq0/tiNH7/XBvPj3bwUc/n66k8eOlVP3rPt5J7/UAf2dSiyrovfqvB45VEP4OSUFBgRj/KbQ4q1evZv369Wzdqn1io9Fo+OOPP9i0aROpqalYW1sTEhLClClT6NJFO6ps6dKlbN26FaVSSZcuXYiKimLRokWcOaP9I72yspJ58+Zx9uxZiouLmTdvHsOGDeObb75hx44dFBUV4e7uzmOPPcbEiRONjnKaHXPR4PHm5ig1PnqwJQhzePC1af5pbeybtn7Rf5OdtOU20ccyHnxHv3/apKDG7bjcXN4+13Kf1JqatNwy19m55bYj38Xdf5285nJjadN2Gf1vMx0R0NwhGGVra3zaYnNTqVpuXTU3b9kLH2Wmt9wNFUJDW+54iuNPf9PcIRjl8VDDy200q66Nm53QXEx/anhjouZUNS38/oma0cVJ9ZfR+L8ki6ZPWW7JFPRq7hCaTHTYCUITiQ67ByM67B6M6LB7MKLD7sGJDrsHIzrsHpzosHswosPuwYkOuwcjOuwekOiwe2Ciw655iQ675tdy/woRBEEQBEEQBEEQBEEQhP8PiQ47QRAEQRAEQRAEQRAEQWhBWu6Ya0EQBEEQBEEQBEEQBOG/TiJpuUsvPJD/wY8jRtgJgiAIgiAIgiAIgiAIQgsiOuwEQRAEQRAEQRAEQRAEoQURHXaCIAiCIAiCIAiCIAiC0IKINewEQRAEQRAEQRAEQRAEHUlzByCIEXaCIAiCIAiCIAiCIAiC0JKIDjtBEARBEARBEARBEARBaEFEh50gCIIgCIIgCIIgCIIgtCBiDTtBEARBEARBEARBEARBR/J/bRE7TXMH0HRihJ0gCIIgCIIgCIIgCIIgtCCiw04QBEEQBEEQBEEQBEEQWhDRYScIgiAIgiAIgiAIgiAILYhYw04QBEEQBEEQBEEQBEHQEaO7mp/osBOEJqqobpmrb9qaq5s7hAZ5WlU3dwhGWZm13BVIPaysmjsEo+Tmlc0dglEZZdnNHUKDTE1a7n31aMF1tbV9VXOHYFRefsttg+0mBpIbX9bcYRiljs5t7hCMymnt2NwhGFVd2XJ/d8msWvbXPLNrOc0dglHlfq7NHYJRHg+NbO4QjEo7tKW5QzDKzXF8c4fQIImfXXOHYJQ6paS5QxCEZtWyf5sKgiAIgiAIf0tL7qwTBEEQBEEQDBMddoIgCIIgCIIgCIIgCILQgogpsYIgCIIgCIIgCIIgCIKOpGWuBPX/FTHCThAEQRAEQRAEQRAEQRBaENFhJwiCIAiCIAiCIAiCIAgtiOiwEwRBEARBEARBEARBEIQWRHTYCYIgCIIgCIIgCIIgCEILIjadEARBEARBEARBEARBEHTEnhPNT4ywEwRBEARBEARBEARBEIQWRHTYCYIgCIIgCIIgCIIgCEILIjrsBEEQBEEQBEEQBEEQBKEFEWvYCYIgCIIgCIIgCIIgCDoSsYhdsxMj7ARBEARBEARBEARBEAShBREddoIgCIIgCIIgCIIgCILQgogOO0EQBEEQBEEQBEEQBEFoQcQadoIgCIIgCIIgCIIgCIKOWMKu+YkRdoIgCIIgCIIgCIIgCILQgogRdoLQSBs2bGDVqlVkZGdj6eGBz+OPIw8ONpq+LDWV22vXUnLzJmbW1rj07o3H0KFI6my3UxQXR8r69ZSnpSG1t8ft4YdR9Omj+3nsZ59RHB9f79oW7u5EzJ+ve11ZUMCJ1Ru5c/EqqooK5Apnukwfj2ub2vg0Gg2XN+wi4eAJKkvKcA7yI+qpcdh7exj/DPmFnF+1ibybKRSnZ+HfK4oezz2hl+bW6Qtc2baf4oxs1NXV2Lq50HpIPwL7dG04Q+vQaDTsWrmXEztPUVZcjl9rH8a9NBoPf3ej5yRcSmTrDzvJSs2iskKFo6sD3Yd0ZcDjD+nSpN1IZ+fKPaQkpJKbnseQJx5m6NTBjY7rbmy/r9jH/q2nKS0uI7iNLzPnPoZPgFujzr8encw7zy/D01fB4t/m6o7fTs5g3Q97uRGXSmZaHuOmD2L8zIebFNvd+L7/diebNhynuKiM8Ag/Xn97PIFBxu8rgEpVxYrvdrNr+19kZxXi6CRnytQBTJjcD4D9e8+z8sd9pKRkU1VVjY+PgolP9GP4iG5Niu3Qmj2c232S8pJyvEJ9Gfb8GFx9jd/XqycucXbnCdKTUqlSVaHwcaP3+IG07hqhS3Nh/19s/uK3eufO2/oZ5lLzRse2+vt97Nr8FyXFZbQK8+H51x/DL7Bx9/VK9A3mPrMMb18Xvv9jrt7PNq89xo4NJ8nKyMfWzppufcKY/uJQLK1kRmOJ3bSTW4dOUFlahkOgH22nPo6tV8P3MOd6PDFrNlJ8Jx0LezuChw3Ev39vvTRJew5y48AxynLykNpY494xkrDxIzGzsADg+sYdxG3epXeOpb2caT8tMPq+Go2Gs7/v5tr+EyhLy3EN9qX3zHE4+hi/r6V5hZxcuZns5BQK07MJ6dOZ/i9O0Uuz5Z3FpF1NrHeug7cbExa/1WBe1I3tn6iv+7ec5vDuc6TcyECt1hAQ4smEpwfTul1Ao65ryNggd6a09sLZUkpyYSmfXUgmOrvIYNqOCjsmhnoS7iTHxtyUlJIKfou7w7bkzAd+/4ZM7uTNM939UMhlxGeV8P7eWM7eLrjveX6OVux4uhsSCYQtPPCfiaWXPzP7B6OwsyA+vYgPN8ZwNin3/rG4WLPt9YeQSCREzN6u97Mpvf2Z0jsQL0cr0vLLWLo3js1nUpoeW7gHT7f3QmElIz6vlA+OJ3E2vdBg2iAHK97vHUywoxVyqRmZpUq2J2az+MxNVGoNAC5WUt7qEUC4ixw/O0s2x2Uy92Bck+PSfc5ID57p5I3CWkZCbinzjyRy5o7h+IIdrfigXzDBjtbIZWZklSrZFpfFl6dq46urs4cdv49tR1JeGQNXnW1ybBPbuDOjrTcKKykJ+aV8dDKJcxmGy3+Uux3TIj2JdJEjl5pxq6iclTF32BCnX/6HB7kws603fnaWlKiqOXknn49PJZNTrmpSbJP7BDBzUIi2zKUV8eEflzibaLjMeTpZcWzBI/WOT11ynKNXtfE93N6Dib0DaONtj8zchMT0YpbuiuXA5fQmxQUwys+NCUFeOFlIuVlcxuKYZC7nGc43qYmEOW2DCLGzwU9uSUxeMS+eiDF67UhHW5b0iOB2SRlPHLrY5Ngm9Qti5pBQFHaWJKQV8sGai5yLzzGY1tPZiqOfD693fNpnRzgakwFAl1Yu/PZGv3ppBv57F8npxU2OrzF6RLXilWeG0SHCHw83R2b+axmrNxz9R96rrsk9/Hj6oSAUthbEZxTzwZYYzibn3fc8P2drts/ui0QC4f/eqTv+6YT2jInyqZe+TFlFWJ10jTFpUAgzRrRBYW9JQmoBH/58jnOx2Q2eM3VIKyYMCsZbYUNBSSWbjyTx6ZpoAFzsLXnjyQ6E+Tvi5y5ny9EbvL70VJNiumtyV1+e6RVQ+7tqx1XO3sy/73l+TlbseLEXEiDsvb0G03TydWDdzK4kZZfy8OJ/vgwIgjGiw074r1Or1XzyySccOHCAoqIili1bRseOHZs7rAbt37+fzz//nNdff51tMhlZhw8Tv2QJ4e+9h8zJqV766vJy4r76CnlwMG3efJOKjAxu/PILplIpboMGAaDMySHh669x7tGDgOnTKUlM5NaaNZjZ2OBYkx9Bzz6LpqpKd111VRVX5s/HsVMn3bGqsjJiFy3Cs3UA/V5/FpmtDSWZOVjYyfViurptP9d2HqD7s1Ow9XAlZuMu/lzwDSO+mIe5pYXBz61WVSGztSb80YEkHDhhMI3UxpqIUYOx83DFxNSU1AtXOPXdmv/H3n3HNXX9jx9/hRX2DnsKCMhQ3Huvqq12u7XVVmur/fTTYW2dndo6ape17rq3rXsP3FtxAMoSZO+wA+T3RzAYSBCsrX4/v/N8PHg8zM25N2/PubnJPXmfczC2NMc1LLh+9bvhCIc3H2PE5CE4ujuw54/9/PzJb0xfNQVjU+2xSU2kdH2pEy7ezhgZGxF7I471CzZjZGxI54EdAVCUKrBztKVZp1B2Lt+j9TiPsn31Uf5af5yJUwfj4ilj8/KDzJq0mJ83TsbETHtsDxTkF/HjF+sJbelLVo0b8dKSMhycbWjbNYT1i/c+VmwAq5YfYM2qQ8z8eiSeXo4s+W0PE976kW27ZmJWR3yffbyMtNQcPp8xDA9PB7Ky8iktqb6psbI2Y8y45/DydsLAQJ/w4xF8OX0NNjYWdOxcv3YN33yYU9uO8tJ/h2Lv5sDRdftZ9dmvvL/kc6Q62jU+4i6NmvnRc1R/TCxMuXb0Iuu/XMabcybiFeyjLmcoNeKD5dM09q1vZx3AplVH2br2BB/OeB13Txlrlh5kyru/s2zrJ5g+ol3l+UV8P2M9Ya18yUzXvPk9su8yy37cxX+mvkZwmDep97OY/+UmykrL+e/017Qe786ug8TsPUzY2yOxcHYkcvseTs/+iR7fz9D53ixMz+TM3F/x6NyOlu+MJis6hmsrN2BkYYFr6zAAEk9f4OaGHTQbOww7f1+K0jO5snQNFQoFzd+q7iwzd3ak4+f/UT92Nqt9c/6wK9sPce2vI3SfOBxrFwcubt7HX7N+ZujP0zDSEW9FeTnGFuY0f7EXNw+e1lqm7ydjqSyvqN5HUc6GD77Ft31YnfE87J96v964fJcOPZsREOqF1NiInRtO8MV/ljDvj//i4iGrd3wP9PKw56MWjZh9MYYrGXm86ufCT12CeXXPJVKLSmuVD7W35G5uIX/cTiKzuIx2zjZ83sqPsopK9iXUfePUUAOCnJjRN4Bpe25z4V4OI1q5s3JYC3r9cork/BKd+xnqSfjp5VDOJ+TQxsvmicTSv7kr014JZfrGa1yMyWJ4Z2+WT2hPn68OkZxTrDsWfQkL32jFhbtZtPaz13huWEdvPhkYzGfrrnA1PpumXjZ8MySMvCIFR26k1j82XxnTO/ow/cQdLqTkMyLYhRXPh9B73QWSC2q3oaKykq1RqdzKKCC/rJxAO3O+7dYYA4mE2WdiATDSl5BTomDR5XsMaaK7A7w+nm8sY2ZXX6YeucOF5DxGhLqwalAoPf44T7K8dnxlFUq23ErjZrqc/NJymsjMmd3THwM9Cd+Ex2qUtZIasKBvAKfu5eBkrv2HiLr085Extb0PM0/e5VJqHkODXFjaL4TnNl0kRUvdNXeyJDq7iCVXk8goKqOTuw1fdm5MaUUlO++qzv/mjpZ83y2A2WdjORSfhb2JITM7+jKvRwCjdunupKqpf0s3pr3elOnrrnDxbhbDuzZi+cSO9Jl5oM5zbtTCk9xOqu7UzissU/+7tZ+MM5HpzPvzJnmFZQxs48Fv77Rj6LzjOjsCtenuYs/7IY2Ydz2G61n5vOjtzNx2QYw4cpm04tr1pieRUFZRyba4ZNo62mJhqPu2z8JQn6nNG3MpMxeZsVG9Y3qgf2t3pg0LY8Yfl7gYncHwHn4s/7AzfabsIyW7SOd+o78/zu3Eh+qtoKxWmT5T9pL7UH1m59f+vz4p5mbG3IpKZN3WEyxdMOEfe52H9W/mwvQXQ5i+5ToXYrMY0dGbFW+3o/fsIyTn1n2d+3FkS87HZtLGR/M698X2CObsuqWxbcukTpyvx48dD+vX3pOpb7Rk5tLzXIxMZ1ifxiz7vDt9P9hJSqb2dv1sVAu6NXdlzurLRN3LxcLUEJmNifp5I0M9cvJLWbzjJoN76k58eJQBIc7MGNCEaX/e4EJ8DiPaerJydGt6LThOcl4dn1X6En4a0pzzcdm08bbVWsbS2ID5rzXjdEwWjpZ1f3cQhH+aGBIr/OtOnTrFzp07mT9/Pnv27CE0NPRvH/P3339n8ODBtbZv376dd955h+7du9O6dWuSk5NrlcnPz2fGjBl069aNbt26MWPGDORyzV/u1q1bx4ABAxg0aBAmzs54DhmCoZUV6cePa40n69w5KsvKaPTGG5i6umLbogXOffuSeugQSqXqZjj9+HEMra3xHDIEE2dnZJ06Yde+PakHD6qPY2BmhqGVlfqv4O5dKktLse/QQV0mdf9+DK2s6PDuKOx9vbBwsMc5JAAr1+qMEqVSSeTeowQP7I1nmzBs3F1oP2EkiuIS4k7p/mXc3MGO1qNfw6drO4zMzbSWcQ72x6NVU6xcnbBwkhHYrxs2Hq6kRcboPO7DlEolR7cep/eQHoR1boqLtzMjPx1KSVEpFw5f1rmfR2N3WnZvjou3M/bOdrTu1ZLAlv7cvV59Y+EZ4MFL7wykVY8WGEkb/gVUqVSya+MJXhrRnXbdQ/H0cWbitCEUF5Vy4sCjf33+5etNdO3XksbBXrWe82viwehJL9C5T3OMHuPL8YP41q0+wugxfejRqzm+fq7M+noURYUl7Nutu13PnLrFubORLFz0Hm3bB+LiakdIqDctWzdWl2ndJoBuPZrh3cgJdw8ZQ0d0x7exK1cu1c6A0hXbmR3H6fRqT4I6NsPRy4WXPxxGaXEp149d0rlf//Ev0/m1Xrj5e2LnIqP7sOdw8XXn9pnrGuUkErCwtdT4qy+lUsmO9eG8NqobnXqE4uXrzMczVe16dN+j23XBl5vo1b8lgSGetZ67dS2egBBPevZvgZOLLc1a+dGzf0sibyTojCVm3xH8nu+Na+swLN1daDF+JOUlJSSd1t2G8UfCMba2oumo17FwdcarW0c8Orbl7p5D6jLZd2Kx8fXCo2MbzGR2yIL8ce/YhpyYeI1jSfT1MLa2Uv+Z1Ojsrxnv9V3HCHupFz7tmmHn6UKPicNRFJdy58RFnftZOtjRaewrBHRvi7G5qdYyxhZmmNpYqv9SbsdQXlpKQI/6ZXX+k+/XD74YTr9XO9LI3w1XTwfGffIyJqZSrpyNrFdsNQ33d2VnbBrbY1KJzy/m+0sxZJaU8Yqf9k6aFbcSWRSRwLXMfO4XlrDlbgpHkzLp7m6vtfzfMbatJ1uuJbPhchIxmYXM3BtJuryU4a3c69zv016NiUwrYM+t+nd6PcqY7r5sPXuPjafjiUmTM2vzdTLyShjWybvO/SYPDCYqOZ89V+7Xem5Qa3c2nopn56UkErOK2HXpPhtOxTO+V2MtR9JtbDM3tkamseFWKjE5RcwMv0t6YSnDgrVnxibklbA1Mo3bWYXcl5dyKD6LHdHptHKxUpe5Ly9lVngMWyPTyC0t13qcesfX3J0tt1JZfyOFu9lFzDimim9EqK74itlyK5Xbmar4DsZmsSMyTSO+B77r5c+WW6lcTtGe2fUob4a4si06jU2RqcTkFvPlqRgyisoYqqOT8rcriSy4EM/ltHwS5SWsu5XCgbhM+nhXn/9hjpakFpayMuI+SfISrqbLWX0zmaYO9f9sABjT04+tpxPYeDKemFQ5szZcU51zXerOps0tLCUzv/pPUVH9w8eXm67x2/5orsfnkJBRyI+7bnMjIYdezerOoq5psK8re+6lszMhjYSCYn6IiCWrpIxBXtoziEsqKpl7PYa/EtLI0NKh97BPm/mxNzGNm9mPl7n2Zl9/tp2MY+PxWGJS5Mxac5mM3BKG9fCpc7/cglIy80rUf4qKylplsvJLNMpUKuv+Uenv2H/0KjO+28j2Peep1JJZ+k8Y29WXrefvseFsAjHpBczcFkF6fgnDOnjVud/k54OITM5nz9Xa9zbyknIy5aXqP097MzztzdhwNr5Bsb05IJBtx2LYePguMffz+WL5RTJyihnWW/v10tvFkhF9/Rn/3TEOXUwiMb2AW/E5HL9SHeP9jEK+XHGRbcdiydXSQV9fYzt5s+VSEhsuJBKTUcDMnTdVn1Vta383e9infQOITMlnT4TuDNfvXm7K1stJXL736Gy9/3V6kv+tv/+LRIed8K9LSkrC3t6e0NBQ7O3tMTSsf1ZMQ5WUlNCmTRveeustnWWmTZtGZGQkCxcuZOHChURGRjJjxgz18wqFgsjISNq0aaOxn1WTJhTGaO+UKoiNxcLXFz2j6o4Yy6AgFLm5lGVlqctYNWlS65hF8fFUlmv/op4RHo5VcDBS2+pfhHKuXsXM25sTPyxj09uT2TX5GyL3HVN3DAIUpGdRnJuPc2igepuBkRGOgb5kRMfprJuGUiqVpEREkpeShmOAb732yUrJIj9bTmBLf/U2I6kRvqGNiLtZ/9gS7yQRezMev6Z1fzlsiLTkbHKz5DRtU/3FRGpsSJNmjYiKiK9z371bTpGbnc8rb/R6YvHUdD8pk6zMfNq2r25XY2Mjwlr4ce2q7g7TY0euERTsydpVh3iuxxQG9ZvOd99spKhI+y+SSqWS82cjSYhPo3nL+rVrTmoWBTn5+DavbldDqRFewT7cu9Wwc660uBSTGp08ijIFc0fN5Pvh01k9YzHJd5PqfbzU+9lkZ8lp0VazXUPCvLl1Pb7OfXduPkV2lpwhY3pqfT64mTcxUcncjlB10KWn5nD2+E1adwjUWr4oI4vSvHwcgquf1zcyws7fl+w7sVr3Aci+E4dDiOYxHUKbkBuXoM5Ss2vsQ15CEtl3VfVdlJlN6uXrODYN0owhPZN9E6dw4INpXPh5GXmp2ocwAeSnZVGUm4970wD1NgOpEc5NfEiNenLXEoBbh07jEdYEC/v6ZWv9m+/XckUFZWUKzC20dz7WxUBPQoCtBWdTNYeYnk3JIdS+/p0LZob6yMv+XqdOTYZ6EoJdLAmP0TwHwmOzaOFmrXO/bn72dPeTMXPf7ScXi76EYHdrwiM1hz2GR6bT3Lt2Zrs6liBHugc7MWvzda3PGxnoUfpQJidAiaKCUE8bDOr5bd5QT0KwzILwRM0haycTc2jhVL829LQypouHDee1rYxQAAAgAElEQVTuP3qocUMZ6kkIcbTgRILmzeaJhBxaaOmA0x6fCV29bDlXYwjtiFAXZGZG/HhO+48Q9YktSGbBySTN2E4m5dDcsf7nv7mRPnkPdWpeSstDZmpEd0/V9yMbYwP6+8g4fu/RwwrVselLCPawJvxWjXPudhrNfXSfcwCLxrfj/Pf92fRxF55r7vrI1zIzNiCvqP5DdQ0kEhpbmXMhQ7PeLmTkENyAH6y0edHLCVtjI1ZFNXxYOIChvh7BXjaE18hQDb+RSnPfun9U+HVSB87/NJBNU3vQt6Wb1jI7ZvbmzMIXWP1JV9oGODxWjM8qQ30JwW5WhEdpZkqfjMqghZf27C+Abk0c6d7EkVnb65c9OritJ1Ep+Vyux3BRdWwGegQ3suXkNc2OrZPXUmjurz2zvGdLNxLTC+jczIUjPw/k2C+D+O7ddthaNjwTt87Y9CUEu1gRfkez3sLvZNDCQ/d3hm7+DnQPcGTmzps6ywxv64nMQspPR+48sXgF4e8QQ2KFf9WsWbPYvVs1d0Lr1q1xdnZmx44drF69mu3bt5OZmYmbmxsjR47kueeq5wT5+eefOXbsGGlpadja2tKjRw/GjRuHVCpl165dLF26VH1MgOnTpzNgwACGDBkCwK1bt9AmLi6OM2fOsGTJEnWm35QpU3j77bdJSEjA09OT3NxcKioqsLXV/OA0sLREcVv7zYkiLw8jG80PDEMLC/VzUnt7FHl5GARq3nAbWlqirKykvKAAI2vNm6OStDTk0dH4TtBM0S/NyCD92DGa9O9Oz4G9yU5I4sKKTQAE9O0KQHGu6lfwmpkzxlYWFGVrn8+mIcqKitn6zmdUlJcj0dOj9Ruv4xoW9OgdgfyqX3MtbDRjs7CxIC/z0bF9/tpMCvIKqKiopN/IPnR6ocMj96mv3CxVvVnbasZmbWtOdobu2BLuprBp2QFmL5uEvv4/97tIVqYqPtsaN/l2dhakp+u+CbyflMnVyzEYGhry3YK3kcuL+f6bjWRm5PHdgrfV5eTyYp7rPoUyhQJ9PT0mfz6YDp3qNxy2IEfVruY12tXc2oL8rPqfc+d2hpOfmUuz7q3U2+zdHHjxP0NxauRCaXEpZ3YcZ+lHP/DuL59g5/roL/PZWarYbOxqtqsFWXW0a9zdFNYsOcjCFRN1tmvXPmHk5xXx0Vu/olQqqaiopEe/FoyZ1F9r+ZJc1etJrTTbUGplSUmO7jYsyctHFhygsU1qZYGyopIyeQHGNla4tWtJWUEh4V/OB5QoKypx79iaoMEvqvex9fWm+dsjMXdxpDS/gKgde9n22XyGLPwcY4vaWbVFVdcSU2vNujO1tqQw+8l1POQmp5N88y7Pfar7x5Za+/yL79d1i/dibCKlVef6Xec04pEaYqAnIatEc+hXdomC1sb1+wGrk4strR2tefPgtQa/fl1sTI0w0NMjs8awtMyCMjp4a7/hkpkbMfv5IMZvvEphWYXWMo8Vi7kUA309MmsMf8vML6GDjptFmaWUb4aG8c6ScxTqyFALv53Oa+082X81mev3cgnxsOb19l4YGehhY25ERj2G29kYq9ows0aHS0aRgg5udWdMb3mpGcEyC6QGeqy/mcz3Z59sRzeArYkqvoyiGu1YVEZH07o7wLe9HkawgwXGBnqsi0hmzsnqHw787cz4T1svBm24zOMmHz2ou6wa88plFZVh76q7U/hh3TxsaedizeA/q8//q2ly/ns4knndA5Dq62Gor8fJxBw+OVr/OQDV55xcyzmno6OoqKScrzdf51JMFhWVlfQIdeHHt9rw0coL/HlOewfYiK6NcLIxYfvZe/WOzarqupFdqllv2SUKWsoe/4fvRhamvOHvwbjwa9TObasfGwsj3e9VK0et+xSVlPPN+qtcupOp+pwMc+XHd9vx8ZLz/Hm66gev3BKmrrxIRFw2hvp6DOrgxerJXRk6+ygXop7sVABPi42Z9nMuQ15Ch8a6r3PfvtaM8SvO67zOPczC2IB+TV34fk/DflCxsaiKrcbw0sy8Etpbm2jdx93RHFd7M/p38GLyL2dQKpV8OrIFv3/ajVc/38eTSo60Ma0652p9VpXSQUcnscxCyuyXQhi/5pLOzyp/Rwve7+7Hi4tOPfY1ThCeNNFhJ/yrPvzwQ5ydnfnrr79YuXIl+vr6LFq0iCNHjvDJJ5/g4eFBREQE33zzDRYWFnTsqJqLzMTEhGnTpiGTyYiLi2P27NkYGRkxfvx4evbsSUxMDCdPnmTRokUAmJub1yueiIgITE1NNYblNm3aFBMTE65fv46nZ3Va9cOLRQA88lOnZnkt22uWeJAVV+u1UGXXGVpZYR0SUnMnTD09aT5kIAC23u4knr/GhVVbuLL+TwC6T37QyVfz/6A7zIYwNJbSf84UyktKSb0RxaXVWzGX2eIcElCr7PlDl1g/f5P68YRvVTfkteJQattY2wcLJ1JaXEr8rQR2LNmFnZMtbXq3euR+2hzfd4nFc7aoH38+b6zW2JR1xKYoK2f+tNWMmvQ8ji51/yLfUHt2neebWdWLLSz8VdWu2qtOd91VViqRSCR8/d2bWFiovnR98tnrvDfuJ7Iy87Gr6gA0M5OyfutnFBWVcv5sFPO/34KLqx2t29Zu12tHLvLXTxvVj4fPGqeKrUYcSpT1XiP+5smr7F/2J69+Ogprx+oOc49AbzwCvTUe//Led5z9K5z+77xc6zhH9l5m4TfV7frlD2Oq/qUtNu3BlZWV881na3jr/edxctXdrtcvxbBu2SHe+/QlAoI9SE7MZNHcP/lj8X5Gje+rjkVRqXqddh+9oy2UByeZztfR6sE1qWq3zNvRRO3YS9PRg7Hx9aIwNYOINZuJ3LqLwFdUk33XzLaz9fXi8H+nE3n0HM1e6E708QscW7xB/Xz/z8dXvYbWN0XD4q3DrYOnMbWxxLOF7g6xp/V+3bXxBAe2n2HmT+MfOd9hXWp9gtSz+praW/JVe3++vxTLzeyCx379uihrRKeqPu2feT+8GMqai4lc0bGYwZMmkUh0fvwuGNWSteFxXK0ji+SnfZHILI3Z/GEXJECmvJRt5+4xrlfjBg+Bq1laItFVS9UmHriNmaE+gfZmTGnvw/jmJSy6/HiZTQ1Vn/je3X0LcyN9AmXmfN7JhwmtPPjlwj2M9CX80r8JX4fHkFjHXIb1pazZiJJHf60C1Vx183sE8NXpGK5nVA/f9LU2ZWoHH365fI/wxBxkpkZMbuvNl539GtRpVxWcZmgSic56yyksY9mh6kyciIRcbM2NGNfbX2uHXd8wFz59OYRJS86TXMfcbvUMTdWmj9mxYKgnYVZLf365GUeKlrkzGx6blnrTEVtOQRnL9lW3S0R8DjYWUt7uF6DusItLlROXWt3GV2KycLM3Zexz/v8zHXYP1L7mSmq/R6osGNaCtafiuJpQv2y5QS3c0deTsP3i411narWrlm0P6OlJkBrp89FPp4ivWhjko59OcejHgYT62HGtAXM21is2LfWm6836w2vNWHMugSuJ2n9cNNLX46chYXyz9zZJdcxXKQj/NtFhJ/yrzM3NMTU1RV9fH3t7e4qLi1m/fj0//vgjYWGqicVdXV25desWW7ZsUXfYjRkzRn0MFxcXRo8ezdq1axk/fjzGxsaYmJioj9kQWVlZWFtba3QqSCQSbGxsyKoaumptbY2+vr768QPlcjmGltqHIRhaWaHI07x5UVTNi/dgH0MrKxT5mvO/lMvlSPT00DfTzGypLC8n88wZZB07ItHXr/VaJi6a86C4Ng8m+UYk/edMUe2vUP0CV5yXj9lDw8tK8uUYW/29oRQAEj09LJ1Uvz7bermTdz+NGzv2a+2wC20fhFfgR+rH5VVDuvKz5dg4VMcmz5VjafPojld7Z9VNtmsjF/Jz5OxZtf+xO+xadwqicVB1J62iqt5ysuTYO1bHlpdTUCuL54GczHwS49L4+auN/PyVqgNLWalEqVTySoePmTp/LM3a+Gvd91G6dAslJNRL/bisqu6yMvNxcq7u0MrOkmNrp3seMnuZJTIHa3VnHYB31SqaqSnZ6g47PT093D1U7eof4E5cbArLl+zT2mEX0DYYt4Dquiuvqjt5dj5Wsuq6K8wtwNxad2wP3Dx5la1z1/DSh8M1VojVRk9fD1c/d7KStX+Bb9u5Cf7B/1U/VpQ9aNd8HJyqMzrysguwsdV+zmVn5nMvNo15X2xk3hea7fpcm0/4auEYWrT1Z+WifXTt3YznBqmG0Hv7OlNSXMaCrzYzfGwvdSzrYlQdPQ+Gv5fm5mNqV92GpflypHXMJWdsZUlpXo2FTPILkOjrYVT1g8XtzTtxa9cSr26qrFMrd1cqSku5smwt/i/2Q6/GtQTAwNgYGw9n8lJUdenVOoTXG3upn6+oateinHyNoapFefJaWXePq0JRTtTRcwT2aq81xgeexvt118YTrFu8j2nzx+IXVHsFvvrILVVQXqnEvsbclbZSQ7JK6h4i18zekoVdg/gtIoEtdxu+wuSj5BSVUV5ZiazGQgJ2Zka1Mhke6NDIjjZeNrzfRTUdgQQJ+noS7k7rxbTdt1l/uf7D1TViKSilvKIS+xpDqewspLWyUR5o7+9Aa197Jj2nukZJJKpYohcOZPqma2w4FU+popLJay/z+for2FtKSc8rYUgHb+TFCrILtf8fa8VWompDmalmZpO9iSGZRXUf48GiCndzitCXSJjdzZ/fryRS8ZidLtpkFz+IT/McszMxqnd8d7JV8c3p5c9vFxNxMJPS2M6Mub0DmNtbVb+qOYEkxL7fhVHbrxNej/meHtSdvZbYsorrjq2FkyVLnwtm4cUE1t3SPP/HhblzPV3O0muq8y0qu5DikxVsGNiM+efjSS18dIdU9Tmn2RFvZyElswGdlFfjsnmlvVet7X3DXJj3Zis+WnGxwSvE5lVdN+xqZOHaSA1rZd3Vl53UCG9LM6aENWZKmGoqgQdteuz5Dnx89iYXMh6dOZ0jL6O8ohKZ1d+rt2sxWbzSyavOMldjsxnQ5vGuvc+inELVOSez0Kw7e3Pd17kOjWW08bFjUh/VZ9OD69yduc8zfet11p/RHK4+uJ0ne68nN2gINkCOvCq2Gtl0dlbGZOlY1CEjpxhFeaW6sw4gPkWOorwSF3uzJ9Zhl1NUdc5p/azSUW++9rTxtuX97qqFLh7U292vnmPanzcIv5NJY0cLvn85lO9fViVy6Ekk6FWVeWPVBcLv6J4y5H/V/9Fp3/6niA474amKi4ujtLSU999/X6PTrLy8HGfn6smHDx8+zIYNG0hMTKS4uJjKykoqKp7M0BttmUhKpVK93dDQkICAAM6fP0/PntXzVuXduoVN8+Zaj2neqBGJ27ZRqVCgVzVHX/6tWxhaW2NUtaqseaNG5F69qrFf/u3bmHp5oWeg+dbMvXqV8oIC7Ks6MDVey9eXklTNeUOKsnKwkNmpO9GUSiUm1pakXL+NvY/qBreiTEF6ZAzNhw3SXTmPSamspELHPHzGpsYaK78qlUosbS24fSkKzwDVlzBFmYKYiFgGjXuhga+rVHcUPQ4TM2ONlSSVSiXWdhZcOx+NXxNVbGWlCm5fjWXkxOe1HsPWwYoFaz/S2LZv62mun4/mkzmjcXDWPSfJo5iZGWus/KpUKrGzt+TcmdsEhXgBUFqq4Orlu7z/4Us6j9MszIdDBy5TVFSCaVVb3EtIB8DZRXd8ykqlupOwJqmpscbKr0qlEnMbS2KuROHmrzrnFGUKEm7E0GfswDr/nxEnrrBt3lpe+nAYwZ2a1Vn2wWulxSXj5K193iBTM2ONTCilUomtnQWXz93BP6i6XW9cjWPspAFaj2HvYMXiDR9qbNu55TSXz91hxvejcKyqt9KSMvRqDKvU09NTp0A8iMW80FQdi9TKkvQbkdj4eAGq92ZWVAxBQ15EF1s/b1Iuag6HTL9xG2tvT/QMVJ1c5WVlSGrMySXR06szxaaiTEFuUhquwaovtEYmxhorvyqVSkytLUm6Fomjn2fV6yhIuR1L+5F1t2t9xZ2/TrG8kMBHLDbxb79f/1p3nA1L9vH5/LEENqt7Avq6lFcqicyW08bJmkOJ1V/+2zhZcyRJ981MmMyShV2C+P3GPdZH1Z5k/ElQVCq5kZxPx0Z27HloHq+OjezYdztN6z69f9VcQbxXgAPvdWrEwCVnSZU/fiaWokLJjcRcOgY4sPehCcs7Bjiw72rtxSQA+n59SONxz1Bn3u3jz4vfHyM1VzOW8kqletuAFm4cvZla70wlRaWSGxlyOrrbsOeh+f46utuwN6b+N3R6VTeM+hIJFU9wIn1FpZKINDmdPG3Y/dAcT508bdh7p/6ZSXoS1ZyL+nqQWlBKzz80F8IZ2dSFTh42vLXzJkn17JhRVCq5mSGng5sN+2Kr66qDqzX743TXXStnK37vG8RPlxJYGVG7/U0M9GotRvCgTus7kkBRoeTGvVw6NnFk7+Xq1+gY6MC+y9rPOW2auFuTXqNDo18LV+aObsVHKy9oHLu+ypVKovMKaCWz4Why9XWilcyGY8mP14mQUVLGiCOai3u95O1MS5k1n52/TaqOeW1rUlRUciM+h47BTuy9UN1B3zHYiX0NyOoK9LQmPbfu12ziYU1GHSun/l+jqFByIymPjv4y9lx76DrXWMbe69qv833mHNF43CvYmXd7+TFowQlSa5x3TT2saeJqxRf1nOtOI7bySm7EZtOhqTN7Hxq+3SHUmf3ntA/nvhSZgaGBHh6O5txLU2WAeziaY2igx/3MwgbHoDO2CiU3kvPo6Cdjz0NzJ3b0s2efjtW+e/+guVBgr0An3uvmy8BfT5KaV0JRWUWtMiPaetHR155xay6KrDvhqREddsJTVVmpmjFj3rx5ODlprnJlUNVpFRERwdSpUxk7diwffPAB5ubmhIeHs3Dhwr/9+nZ2duTk5Gh00CmVSnJzczXmrBs6dCgzZsygSZMmFEulpB8/jiIvD4cuXQBI3LaNwvh4Av6ryuKxbd2a+7t2EbdiBc79+1OSlkbKvn24Dhigfh2HLl1IP3qUexs3IuvcmYK7d8k8fZpGY8fWijPjxAksAwIwltWez8KxZ08iZ88mYvs+PNs1Jyc+ich9xwgbXN3ZJZFICHiuGzd27Fet5ursQMS2fRgYS/HuUJ2NduqXVQB0eHeUelt2vOrLlqK4GImehOz4RPQMDLB2U3WoRmzfh72vF+YO9lSWl3P/yg1iw8/TevRr9WoDiURCt5e7sH/tQZzcHXFwl7FvzUGkJlJa9ajuEF317VoARk0ZBsCxbSewc7bD0V3VKXn3egyHNx3VmMOuXFFOSoLqJlNRVk5+Tj6Jd+8jNTHCwVX73CA1Yxvweme2rjyEm6cDzh4ytqw4hLGplM69w9TlFlYNU31/xlAMDPTx9NFc6c7KxhwDIwON7QpFOUlxD2JTkJstJy76PsYmUpzrufKjRCJh6IjuLP99H17eTnh4ObBs8V5MTKX07V/drtOnrATgi29HA9C3fyuW/raXmVNXM25Cf+T5xcydvYkevZtja6fKrlu2eC/BoV64utmjKCvnZPhNdu86xydTXq93bO0GdeHEhgPYuzti7yrj2PoDGJlICe3aQl1uy9w1ALzy0XAArh+7zNa5q+k7diBewT7Is1VZZPqG+phWzal2ZO1e3AO8sHORUVpUwtk/T5Aal8zz79X/nBs0pBMbVhzG3csBNw971i07jLGJlG59q9v1u+nrAfjkiyEYGOjj5avZrtY25hgaam5v26kJ29adoHGgGwHBHtxPzGLVb/to3bEJ+ga1s8UkEgk+fbsT/ec+LFwcMXdyJOrPvRgYS3FrX92Gl35bCUCL8aMB8OreidiDx7m+ejPe3TuSFR3LvRNnafnum+p9nMJCiNl7BGtvT2x8vChMy+D2ll04hgWrM9durNuKU1gIJna2lObLidqxF0VpGQFdNRfZeTje0AFdubT1ANZujlg7O3Bpy34MjY3w69xSXe7Qwj8A6Pn+SPW2zDjVjVxZcQkSiYTMuCT0DPSxddes11sHT+EW0hgrp4ZlTP+T79cda46y7re9vD9zKC4eMnKq5sszkhpiZq59Lp+6rIm6z5dt/bmZJedqZj6v+DojM5Gy5Y4q6+a9pl4E2VrwzlHVTVYLBysWdgli850U9sanq7NsKpSqjL0naenZBOa/GMK1+3lcTMxleEt3HC2krK268f6khx9NXawYtlq1KnB0huaw3FAXSyqVylrbH8eyI3eZN7Il1+JzuBSbzdCOXjhYGbM2XDXv28cvNKGppw3Df1J1GkanaK5wGeJhQ6VSc7u3gzlNPW24Gp+NpakRY7r70tjFko9W6169WpulV5OY3zOAa2lyLqbmMyzIGQczKetuqm6yP27rTVNHC4b/qVr84sXGDpRWVBKZVYiiUkmogwUft/Vmb0wGZQ8NxQ20V13nLIz0USqVBNqboahQcjenYcMnl15OZEHfQK6myrmYnMfwUBcczaSsqeoEmNzBm2ZOlgzZqur4fynQkdLySiIzC1FUVhLqaMHkjo3YcyeDsqr0v+gszRvurCIFZRXKWtsfZXnEfb7v5s/1dDmXU/MY0sQFBzMp66uy5j5s7UWogwWjdqnO/9bOVix5Lph1t5L560469iaq879SqZrDDeBIQjZfdfZjaBNn9ZDYz9v7cCNDrs4arI9lh+4w741WXIvL5lJMFkM7N8LByoS1J6rOuUFBNPW2ZfiCcFW9tfWgvELJzcRcKpVKeoQ6M7yrD99tq+4gGdDSjXlvtuLbLRGcv5OpzhpVlFc2KOtpw937TGvRmFs5ciKy8xnk5YydsRE74lUdFOMCPQm0seA/p2+o9/GyMMFAooeVkSEmBnr4WqrOr7v5hVQolcTJNc+rnFIFisrKWtsfZfm+KOaOa8O12GwuRWcwtLsvDtbGrDuiWgDro1dDaOptx4jvjqnqrYMXiopKbiXkUKmEHmEuDO/hy3ebqheLGd27MfczC7lzPw9DAz0Gtvekdws33vnxZINiawgzUyk+Vavu6ulJcHe1J7SJJzm5BSQmP9nhnA8sPXaX+cNacC0hh4tx2QzroLrOrTsdD8DH/QNp6mHD8EWnAYhOrXGdc7dWXedSa6/wO6SdF3HpBZyLebzYl++6zdyJ7bl+J4tLUekM6d0YB1sT1h1QDQP/aGgzQn3tGPnFYQBORaRwIzaL2RPa8dUK1WfE1DdacjU6g4iHYgj0UmXBm5sYolSqHivKK7mbVP+pFZaGxzH/tWZcS8zlYkIOw9t44GhhzNqqzsRP+vjT1M2aYcvOARCdVuOzylW14vDD22uWySoopay8stZ2Qfg3iQ474any9vbGyMiI1NRUWrXSPozx+vXryGQyjWGxKSmaQwkMDQ3VnX8NERISQlFREREREep57CIiIiguLtaY165Xr17k5eWxYsUKUjMyMHFxofHEiUirsuUUeXmUZlT/am1gaor/f/5Dwvr13Pr6awxMTXHq1QvHXtUrEErt7fGbOJHETZtIP34cQysrPAYPxrZFdWcGQElGBvlRUfjoWOnW3MsL3wkTSPhrO9e37cXMzpamrw2gce/OGuWCXuhFRZmC88s3UlpYhL2vFz0+ew/Dh7JnCjNrD2fZ/elsjcdJlyIws7flpZ+/VP3fS0o5t2wDRVm56BsZYuXiSIcJo/Du0LLWsXTpNbg7ilIFG3/cQpG8GK9AT977brxGJl5OumZslZVKdvy+k+y0HPT09ZA52zHwrQF0fL69ukxeVj6z356rfnwyOZOTO8/g19SH/yx4r16xvTiiG2WlCn6fu41CeTF+QR5MX/i2RmZPZmrDJ9vPycjnw5Hz1Y9Tk85wYPsZgsJ8+HLRhDr21DTqzd6UliiY/fUG5PlFBId688vvEzUy8VJTNFfJMzU15telk/jum02MGDwbS0tTunZvysQPqjO6iopK+fbL9aSn5SKVGuLl7cQX34ymb7/6Dzfu9GoPyssU7PplCyUFRbj5ezLq63c0MvHyarTrhT2nqKyoZM/i7exZvF293SvElzHfTQSgpKCYP3/cSEF2PsZmJjj7uDHm+0nqTL76eG2Uql1/mbMNubyYgGAPvv35LY1MvIzU+q+m9sDQMT2RSCSs+m0/mem5WFqb0bZTE0ZPeE7nPn4DelFRVsa1lRtRFBVh4+NF+8kTNd6bRTXem2YO9rT7aAIRa7YSfzgcYxsrQke+imvr6o4p/0HPIZFIuL1lJ8XZuUgtzHAKCyHwtepMuOLsXC7+soJSeQFSS3NsfL15efZ/sXDQnWkZ9mJPyssUhP++mdLCIhz9vHh++rsamXgFWq4lmz6co/E4/uINLGS2jFg8S70tLzWTpIg79P7vaJ2vX5d/6v26d8spyssrmDd1tcb2bv1aMnH6kAYf7+C9TKyNDBkT5IG9iRExeYVMOn6D1Kp5pOyNjXAzr475eW9HTAz0GRnoxsjA6pUUkwtKeH7nhVrH/zt23UzF2sSQiZ19kJlLiU6X88bay9yvytxwMJfiadvw1XEfx+7L97ExM+K9vv7ILI2JTsnnzV9Pk1yV6SCzNMbDvvbiKHXRk0gY092XRo7mlFcoOROdwSvzjnO/gfOJ7b6bgY2xIe+19ERmZkR0ViFv7ozgftUwNgdTIzwtqztzy5VK3mnhgZeVCRKJhPvyElbfSGbZVc0hw3te1/zs7OltT1J+CZ1Wn2tQfDujM7A2NmRia08cquIbteN6dXxmUjysHoqvUsmEVh5425ggQRXfqqv3WfqYQ5rrsicmA2upAROae+BgakR0diFv7b1BckF13Xk8VHcv+ztiaqjP2KbujG3qrt6eJC+h27rzAGyLTsPMUJ/hQS582rYR8rJyziXn8d053atta7P7YpLqnOsXgMzKmOjkfN78+ZR6vjmZVe1z7t1+AbjamVJRqUR9R2MAACAASURBVCQ+vYDJf1zUmL9uaOdGGOrrMf31pkx/val6+9moDIbOP1Hv2I4kZ2JlZMAof3fspEbEyYv4+OxN0opV9WZnbIRrjXk1v28bhPNDn7kru6k+Izr++WQ7vXafT8TaXMq7zzdBZm3Mnft5jJkfTnKWqt4crEzwcNCccuLdF5rgam+mqrdUOZ8uu6Cevw5UKzpPGdwURxsTSsoquHM/nzHzTnCsgcOJG6J5aCMObJqufjz9w1eZ/uGrrN58nLc//O0fec3dV5NV51xvf2SWUqJT5Lz5+1nuV13nHCyN8WzgdQ7ATGrAgDBXfjrQwDkcH7LndAI25lImvByMg40J0Ym5jP3mKMlV2XIyGxM8HKunnFAq4a1vjzH9zZas+6I3pWUVnLyewjerLmlkMO/8XnMhrh4t3UhKL6DruzvqHduuiBSszYyY2N0XmYWU6LQC3lh5gftVGZgOFlI87f6dzypB+CdJcnNzxRoowr9qzZo1bN68mT//VC2IsGjRIrZu3cqkSZMICwujuLiYiIgI9PT0ePHFFwkPD+eTTz5hxowZhISEcObMGX7//Xdyc3M5f171RW3fvn18/fXXLFmyBCcnJ0xNTTEyMiIzM5Ps7GxiY2OZPn06CxYsQCaT4ejoiJWVFQDvv/8+6enpfPbZZyiVSr799lucnZ2ZP3++1vjfrTGM9VkRYPlksyyetLYO9Zsb6GlwNn3ctdH+eZ7mz+6XjT2Jz26btpY92++HRZHPbru6mD65lT6ftJ4uz+45N3Kf1dMOQaes6IZPbv9v0st4duNTBj7+NAb/tIqyZ/crvNT0n1sh/UmouPzsLlrg0k/7yqrPgpRtDR/O+29JPlr/zp5/m9PLg592CHXST6qdnfesKPete2Xrp+3ap7WnK/pfUmx0/NGF/g8xKevytENoMJFhJzx148ePx9bWlrVr1zJnzhzMzMxo3LgxI0aMAKBTp04MHz6c+fPnU1paSps2bXj77bf57rvv1Mfo3r07x44d491330UulzN9+nQGDBjAtm3bWLp0qbrcBx98AKB+HuCLL75g3rx5TJo0Sf16H3/88b/13xcEQRAEQRAEQRAEQdAgMuwEoYFEht3jERl2j0dk2D0ekWH3+ESG3eMRGXaPT2TYPR6RYff4RIbd4xEZdo9HZNg9PpFh93SJDLun79n+NBUEQRAEQRAEQRAEQRCE/8+IIbGCIAiCIAiCIAiCIAiCmuRpByCIDDtBEARBEARBEARBEARBeJaIDjtBEARBEARBEARBEARBeIaIDjtBEARBEARBEARBEARBeIaIOewEQRAEQRAEQRAEQRAENYmYxO6pExl2giAIgiAIgiAIgiAIgvAMER12giAIgiAIgiAIgiAIgvAMER12giAIgiAIgiAIgiAIgvAMEXPYCYIgCIIgCIIgCIIgCGpiCrunT2TYCYIgCIIgCIIgCIIgCMIzRHTYCYIgCIIgCIIgCIIgCMIzRHTYCYIgCIIgCIIgCIIgCMIzRHTYCYIgCIIgCIIgCIIgCMIzRCw6IQiCIAiCIAiCIAiCIKiJ7K6nT3TYCcL/CIXyaUdQt8ZWFU87BJ3+uGPytEPQaZBX0dMOQac+boZPOwSd4uTP9rpW3ubP7vsht+zZrTsvC4unHYJOymf4GqwnM37aIdSpsqLyaYegkzKv7GmHoNOz+04FRe6ze40D0C8pf9oh6JQYWfq0Q9DJoK3z0w5BJyfbwU87BJ1St2542iHUyXHM6Kcdgk7FGw497RDq9mnHpx2B8D9OdJoKgiAIgiAIgiAIgiAIwjNEdNgJgiAIgiAIgiAIgiAIwjNEDIkVBEEQBEEQBEEQBEEQ1CTP8twL/58QGXaCIAiCIAiCIAiCIAiC8AwRHXaCIAiCIAiCIAiCIAiC8AwRHXaCIAiCIAiCIAiCIAiC8AwRc9gJgiAIgiAIgiAIgiAIDxGT2D1tIsNOEARBEARBEARBEARBEJ4hosNOEARBEARBEARBEARBEJ4hosNOEARBEARBEARBEARBEJ4hYg47QRAEQRAEQRAEQRAEQU0i5rB76kSGnSAIgiAIgiAIgiAIgiA8Q0SHnSAIgiAIgiAIgiAIgiA8Q0SHnSAIgiAIgiAIgiAIgiA8Q8QcdoIgCIIgCIIgCIIgCIKaRCLyu5420QKCIAiCIAiCIAiCIAiC8AwRHXaCIAiCIAiCIAiCIAiC8AwRQ2KFf11lZSVz5szh8OHD5Ofns2jRIlq0aPG0w3qkLVu2sHr1alIzMjBxccHj9dex8PPTWb4oKYl769dTEB+PgZkZss6dcenfH4mkenns/KgoEjdvpjg5GSNra5z69MGhSxf185Fz5yKPjq51bGNnZ0JmzQLg2pQplGVlcaFGGedmQXSZPEH9WKlUcmPrHmIOn0JRWIStrxct33gNK3cXnf+H4pw8rqzZRk58IgUp6Xh2ak3bd0ZqlMlLTCZiy25y4hMpTM8i6OV+hLzSX+cxtVEqlaz+/QC7t52jQF5EQLAHEye/hJePU732v3Eljg/HLcLDS8aSTR+rt5crKli/4jAHd10iMyMPd08ZYyf1p1X7gAbFdn3LHu4cOUVZQRH2vl60fvM1rOuot6KcPC6t3kZ2fCLylHS8O7WmwwTNeks4e5kbfx1EnppBZUUFlk4yAvt1x6dL23rH9iC+TUsPcPDPsxTKi/Br4snYj1/Co1H96u721Vimv7sIV08HflhXXXf3YlPZuGQ/sVFJpCdn89qY3rz+Vp8GxaYt1iWL9rJjy2nk+cUEhXjy8eev4uPrXOd+CkU5yxfvZ8+uC2Sm52FrZ8nw0d15fViXOvd7VCxblh3g8F9nKcgvwi/Ikzc/fAn3Ourt1pUY1i/aTfK9DEpLypA52dD9hTY8P7Sbukx5eQU7/jjMiT0Xyc7Mw9lDxrAJA2jWtmHn3NkNe4k4cIqSwmKc/TzpNu417D1011NBdh4nVmwnPTaR3JQMAru0os/7IzTKVJRXcGHrAW4dOU9Bdi42rg50GjkQr+ZN6h3bg/iubt5D1OFTlBUUI/PzpO2Y17Fx1x1fUU4eF/7YRlZcEvkp6fh0bk2nd0foLB978iLHf1yJW/Mgen36ToNiW/zrTrZtDkeeX0RwqDefTh2Kj6/u9yuAoqycpYt3s3vnWTLS87Czs2DEG70ZMrwHAH9tP83MqStr7Xfm8i9IpYb1ju9hr/o5MzLQDXsTI2LzCpl7KZYrGflay7ZwsGJYgCtBdhaYG+qTJC9hXdR9/oxNe6zXfpThQS68FeaGg6mU6OxCvjoVw4WUPK1lfW1MmdXZDz8bUyyMDEgrLGXX3QwWXohHUan8+7G08mBcR28czKVEZxTwxd7bXEjIeeR+Xram7HqnAxIg6OuD6u19Ah0Z1sqDIGdLpAZ63M0o4OfjMRyKSm9wbCOauzGurRcycyPuZBQy61AUFxJztZb1szfjyz4B+NqbYSE1IF1eyl+30vghPEajngY2cWJcOy8a2ZoiLy3nVHw2Xx+OJqOw7H8qvuGt3BnX4eF2jeTCvXq26/j2qnb95pB6u8xcytQ+/gQ7W+JlZ8b2a8l8tCOiQTE9MKy7L2/188fByoQ7yXl8ufYKF6MztZZ1tTflxLzna21/Y+5xTkSkAtAmQMa6Kd1rlen16R5iU+QNim1EmCvjWnuq2jSzkFmH73AhSUeb2pnxZS//qjbVJ72gjL9up/HDyVh1m87tF8irIbWvj0VlFQQuONag2LQZFuTMW83ccTA14k5OIV+eiuFiivbrnK+NKbM6+eL74FpSpLqW/Hgh4clcSzp48XY3XxwsjYlOlfPljgguxGY/cj8vezN2ftgViQSCP92t3v79kDBeae1Rq3xRaTlBD5V7kjq0DuA/4wbQPMQbFydb3vrvItZsOfGPvFZdhrd0Z1x7LxwspESnF/DF/kgu3NN+Hj7My9aUXW+3QyKBoG8P/+04Rg9px7tvdsVBZkHU3TSmffsX5y7F6SzftUNjPn6vNwF+jpSWVXDhcjyz5u4iNr76/f3G0Pa8ObQ97q623E/J4YfFR9j856W/HasgPC7RYSf8606dOsXOnTv57bffcHFxwcrK6m8f8/fff+fIkSNs2LBBY/v27ds5cOAAUVFRFBQUsGPHDlxcNL+YLF++nNOnTxMdHU1JSQnnz5+vdfyDBw8yb948Jk+ezF9SKenHjhH9448Ez5yJ1M6uVvmK4mKifvgBCz8/mnz2GSWpqcStXIm+kRFOvXsDUJqZyZ2ffsK+QwcajRlDwd27JKxdi4G5ObZVHZi+77yDsrxcfdzK8nJuzJqFbcuW6m1NPvsMKivxNFcAUJKTz/7P5+DRtrlGTJE7DxK1+zBtxo/AwsWRm1v3cPSbn+k/fzqGJsZa67WivByphRmBL/Qi5vAprWXKyxSYyexwa92MiE07tZZ5lI2rjrJlzQk+nvk6bp4y1iw5yOQJv7Ni2yeYmmmP7QF5fhFzZqwnrJUvWRmaN5QrFu3l0O7L/HfqK3h4O3LxTBQzP1rJwuUT8Q1wrVdsN/86yK3dh2n/zggsXRyJ2LqHQ9/8zMA66q1SUY7U0ozgF3pxR0e9GZmbEfJiX6xcHNHT1yfp8g3OLF6LsaU5rmHB9YoNYMfqo/y1/jjvTR2Mq6eMTcsP8sWkxfy0cTImj6i7gvwifvxiPSEtfcmu0VFQVlKGg7MNbbuGsG7x3nrHU5c/lh9i3aqjTP9qGJ5eDiz9bR8T3/6FzTunYlZHrFM/WUVaag6fTR+Mu6eM7Cw5paWKvxXLX2uOsmvDcSZ8PhhnDxlbVxzk6/8sZsF63fVmbGJE31c74eHjjNTYkKjr8Sz5bgtGUiP6vNwBgI2L9xK+/xJvT34VVy9Hrp2LYu6nK/hy8US8/d3qFdvF7Ye49OcR+kwajo2rA2c37mPbjJ8Z/es0jHS9VxXlmFia0+qlXkQcOK21zOm1u7h97Dw93x2CrZsTCVdu89fspQye/QEOjdzrFRtAxJ+HuLHrCJ0mDMfKxZGrW/ay/6ufePmHOq4linKkFuaEDOpF1CHt74kH5GmZXFizA8dAn3rH9MCqZftZs/Igs74ejae3E0sW7eKdsQvYvvvLOs+xKR8vIS01h6kzR+Dh6UBWVj6lJZrnmLGJEX/t/Vpj2+N21vX2sOejFo2YfSGGqxl5vOrnwk9dg3ll9yVSi0prlW9qb8nd3EJW3Uois7iMds42fN7aj9KKSvYlZDxWDLr095UxraMP00/c4WJqPsODXFg+IIQ+6y+QXFA7NkVFJdsiU7mZWUB+aTmB9uZ827Ux+noS5pyJ/VuxDAh2Yka/QKbtusmFhBxGtPZg5fCW9Po5nOS8Ep37GepL+Om1ZpxPyKaNp63Gc229bDkTl8W8w9HkFisYFOrC4iHNGbziXL06AtWxBToyo5c/U/dHcjExlxEt3Fj1ehg9fz9Dcn7t2MoqKtlyPZmbaXLyS8oJdLRgdr9ADPQkfHv0DgAt3axY8EIwXx+O5kB0OvZmUr7qG8DCgcEMXXe53rE96/ENCHJixnOBTNt966F2bUGvX04+ul1fbaq1XaUGemQXKVh0Mo4hLep3rdWmf2t3pg0LY8Yfl7gYncHwHn4s/7AzfabsIyW7SOd+o78/zu2HOkPzCmp3YPaZspfchzo2s/Nrv5/qMiDAgRk9GjP1YBQXk3IZEebGqleb0nPpWZLltY9VVlHJlhspqjYtLSfQwZzZfava9NhdAGYdimbO8RiN/bYOa8E5HZ2ADdHfR8a0Dj7MCL/LxZQ8hge7sLx/CH02XCRF17UkKu2ha4kZ33RpjIFEwpyzujth6hVLMxemvxjC9C3XuRCbxYiO3qx4ux29Zx8hObdY536G+hJ+HNmS87GZtPGx13jui+0RzNl1S2PblkmdOB+T9bdirYu5mTG3ohJZt/UESxdMePQO/4ABQU7M6BvAtD23uXAvhxGt3Fk5rAW9fjml9drygKGehJ9eDuV8Qg5tvGz+dhwDn2vKV1MG8umX2zh3KZ43hrRj/eIxdHp+LvdTap+/Hq42rPplNEvXnOLdyesxM5Uy/aP+rPttDG37zgFg1OB2TPtvPz6cvoXL1+8RFurOvC9eIS+viAPHbv/tmP9vkjy6iPCPEkNihX9dUlIS9vb2hIaGYm9vj6Hh493w1EdJSQlt2rThrbfe0llGoVDQrVs3Bg8erLPMunXrGDBgAIMGDcLE2RnPIUMwtLIi/fhxreWzzp2jsqyMRm+8gamrK7YtWuDcty+phw6hVKp+JUw/fhxDa2s8hwzBxNkZWadO2LVvT+rB6kwAAzMzDK2s1H8Fd+9SWVqKfYcO6jKGFhYYWllhYq36S756E0MTY9wf6rBTKpVE7T1K4Au9cW8ThrW7C20mjKS8pISEUzVz86qZy+xoMfo1GnVph9TcTGsZOx9Pwoa/hFeHVhgYGek8li5KpZLt68J5fXQ3OvUIxdvXmU9mDaG4qJQj+648cv95X2yi94CWNAn1rPXcod2XeX1UN9p0aoKzmx3Pv9qe1h0C2bJGe7tpiy1y71GCB/bGs00YNu4utJ8wEkVxCXF11ZuDHa1Hv4ZP13YY6ag352B/PFo1xcrVCQsnGYH9umHj4UpaZIzW8rri27XxBC+O6E677qF4+DgzcZqq7sIPPLrufv16E936tcQ/2KvWc75NPBg16QU69WmO1Ljh7aot1g1rjjNyTE+692qGj58L/4+9+w5vqvofOP5OR9I9071LC6UtlFk2sorsoaJMBcSvKIp7fFEZDgREQBQRBReyFBkCZe+9W8oo0En3btM98/sjXWmTkgIKfn/n9Tx9HnJzbvLhnHtuks8959w5n02kqLCUvbu0X7k8c+oG587cZNm30+nS3Q9nF1sC23rSsbP20a26xBL6+zFGTuxHl76qeptRXW8n9muvN28/N3qEtMfN2xF7Z1t6DepI2y6tiAyvS0oc33uRERP60qGHPw4utgx8ojvtu7dm5wbdj7lLO47Q+ckQfLu3Q+7hzKDXJlJWXErksQta97N0sKXvC08R0L8rRuYmGsvcOHKOTk+E4N0pECtHOUGDe+HVwZ+L2w/pFFtNfNdDD9N2VAieXdtj7e5Mr1cmUV5cSvQJ7fGZ29vSdeoYfPt0RWamOT6AqopKjnz1Ex3GDsPcXq61nLbY1q89wORpg+g/sCM+vi7Mmz+FosISdu86q3W/0yevce7MDZZ/9ypdu/vj7CKnTVtvOgW3UisnQYLczlLt715N8HNhR0waW6NTiVUUs+hiNJklZTzlq3mU4o/XE/j2SjzhmQqSCkvYHJXCoYRM+rs1r4508XyQK3/eTGPTjVSic4qYdyKKjMJSJgRqHqUYryjhz5tpRGYVklxQysG4LLbfSqez0/1fjJvW3YvNl5PYeDGR6MxC5obeIL2glImdG49qqe/9kFZEpuYTejW10XPzdt9g5fEYwpPyiM8u4qsjUUQk5zHQz6F5sQV7sPlKMhvDkojKKmTOvpukF5QxsYPmZFF8TjGbI1K4kV5AkqKEA7cz2H41lWA3q9oyHVysSMkvYc35OyTklXA5OY+fLyTQzrn5dfkoxzetuyebw+6xXdPyCb3WeGRpYm4x83bfYHNYErnF935BZ+qgVmw5EcumozFEp+Qz77dLZOSWMKF/0xcQcgtKycwrqf0rr6xqVCZLUaJWpkrZvFFj0zq7s/lqChvDk4nKKmLOgVuqNm2vpU1zi9l8NYUbGdVtGpXJ9uupBLvWtWl+WSUZhWW1fx5WxnhYm7AxPLlZsWkyNciFLTXnktxi5p2IJqOwjAkBms9zjc8l2Wy/nU6nB3Eu6ePDn+fusPFMPNHpBczdEkG6ooQJPTyb3O+94QFEJisIDWtcH/klFWTml9b+echN8ZCbsvFM3H3Hq83ew2HMWbSJraHnqHoAow7vxbSuHmwOT2bjper+uzuS9PxSJnZu+sLf+yEtiUwrIPR64/PyvZj+XG82bbvAb3+c43ZMOrM+205apoLJY7tpLN82wBVDA30+WxJK3J0srkUms/z7Q3h5yLGxUn0vGTOiA79tPsvW0DDiE7PZFhrO2t/P8sq0vhpfUxD+CSJhJ/yj5s2bx9KlS0lNTSU4OJiRI0eiVCr59ddfGT16NL169WLcuHHs3q0+ouebb77hqaeeolevXowcOZLly5dTWqq6Ordz505Wr15NTEwMwcHBBAcHs3PnTgDGjRvH5MmTCQoK0hrTiy++yIQJE2jVqpXG58vLy4mMjKRLly5q2y39/SmM1pxcKYiJwdzHB716CSyLgADKc3Mpy8qqLWPprz4VzdLfn6K4OKrqjaqrL+P4cSwDA5HZ2Gh8XqlUEnPkFJ49O2Mgq3vvwvQsSnIVOLZtXbvNQCrFzs+HzFv3d9XyfqUmZZOdlU+nri1rt8mMDGnT3ovr4XFN7vvX7yfJycpn/PMDND5fXl6BVKY+kFgmM+RqmG7/54L0LIpzFTg1qDeH1j5kPMB6UyqVpEREkpeShoOfj877pSVnk5uVT7su6nXn386bmxFxTe67Z/NJcrMVPDkl5F7DbpbkxCyyMhV0rTcd2chISvuOLbgSrr0ujx6KwD/AnfW/HmZY/494cugnLP58M0UaRiHpKr263toG19WbVGZI6yBvbt2l3uqLvZnIrYg4/NvX/ZArL6vAsMGoK6nUkJtXdDte8tKyKMpR4NGurp4MZFJcA1qQHHl/x1xlRQUGUvX+YCAzJPm67qOgavqEc4M+4djah/Sb9zeaCuDixh2Y2dni26d5U8MBkhIzycxU0K17QO02IyMpHTr5cuWy9tiOHAzDP9CT3345wKB+7zJy8Icsmr+RokL1kQKlpWUMGfA+g/q9y8yXvybyxp1mxwhgoCehtY05ZxqMADiTkkOQ3ELn1zEz1EdRpvmz4l4Z6kkItDPneIL6NLHjCTl0cNAtNg8LI3q7W3Mu+f5G6BjqSwh0suB4tPpUxONRmXR01z46o29LO/q1smdu6HWtZRoykxmQV6J7ksdQT0IbJ3OOxaqPpDkem0XHesmQpnhYG/NYC1vO1JsGeiExF3szGf19VIlYa2NDhvs7cDha83TMf2N8te0a1aBdozPp6KY9tr6+dvRracfc0L9vlIuhvh6BntYcb5DoPX41lQ4+TSfHv53Zg3Nfj+T3D/szqJPmBNq2uQM5/dUI1r7bh65+9s2LTU9CG0dzjsU26Jtx2XR00S2h5WFlzGNetpxJ0D6SdGyQMzczCriYpHkKfHPiVZ1L1N/reGIOHRybcS5xe0DnEldLjt9UH4184mYGHT01f58G6OvvQD9/B+Zt1W1q9diuHtxMUXApTveRuv82hnoSAp01nJdjmj639PWV08/Xjrl7Hkz/NTTUp22AC0dOqi8bdOTkbTq1b3wBHyD8aiLlFZVMeKoLenoSTE1kPD2qE5ev3CE7VzV6Vio1oLRU/XO1pLSc9m3cMDAQaRMBysrK+OKLLwgJCaF379689dZbpKXdfXmSgoICFi9ezJAhQ+jRowdPPPEE++sN0mmKmBIr/KPeeustnJyc+Ouvv/j555/R19dn5cqVHDp0iHfffRd3d3ciIiKYP38+5ubm9OzZEwBjY2M++ugj7OzsiI2NZcGCBUilUqZPn86AAQOIjo7mxIkTrFy5EgAzM7MHFnNubi6VlZXYNEiSGVhYUH5D8wdPeV4eUmv1HxSG5ua1z8nkcsrz8jBo3Vq9jIUFyqoqKgoKkFqpf/CVpKWRf+sWPi9rHwKfGhFJYXoW3n27q++bp5ruaGRprrbdyNKc4pz7+1J2v7KzVOu3WNuox2Zta05muvbYYm+nsPaH/Sz/+VX09TV/iHbq2oot648T1LEFLu5yLp+L4sShCKqqGl/51qQ4V1VvxhrqrSj7/uutrKiYP1+aRWVFBRI9PYKnPINL+4C771gtN0sVn2WDurOyMWs0Pbi++KgUfl+zj8/XzNRadw9aVnWsNrbqsdrYmpPeRDsnJWYSfjkGqdSABUufJz+/mMWfbyYzI48FS56/p1hys1WxWDWoN0sbM7KbqLcaL438GEVuAZWVVTw1dSAho+v6W1CXVoRuOkZA+xY4usm5euE2547qfswVVR9zJlbqsZlYWVCQdX8/WjzatebyjiO4Bvpi7WTHnSu3iDodjrIZV+lr4jNuEJ+xpTmFOfcXX1L4DWJPXWTkov/e0/5ZmdqOMQvS07THlpiYSdilKKRSA75YNp18RTGL5m8gIz2XL5ZNB8DDy4E5nzxHy1ZuFBaVsGHtQaZOXMjGLbNx92jeyCwrmSEGehKyS9SnzGWVlBPsqNuI817ONnR2tGLq/vBmvffdWBupYsssUk9eZRaX08Ok6ZG2fzzRjkC5OTIDPTZcS+aL+5zCZm0ixUBfj8wGU+cyC8voYaY5FjszGQtGBDJ942UKyyp1ep9Jwe44WhixNSypebHp6ZHZYN22jMIyeng2XU9bnu1MgKM5Rgb6rL+cyKLqqYkAl5LymLktgq9GtsHIQA9DfT2OxWTx5o5rOsf2qMdX264NYsssKKOHt0zjPqp2DWD6Jt3b9V5Ym1fH1mCqaqaihB6Wmvt5UUkF8zeEcfF2JpWVVfRv78LyGd1454dzbD8VD0B6bgkf/nyBiNhsDPX1GNXDk7Xv9WH8gsOcv6nblHZrE0PtberR9PTCLRM7EuBQ3aZhSSw6qvlis7lUn6GtHFh0TPeR/lrjrTmXNBjtmFlURo+7JI3/GB1EQPW5ZOP1FBafjbu/WExlqnZtMG04I7+EHi3tNO5jZyHj86fbMf2ncxSW3v3CiLmRAUOCnPnib0woPwpqzy0FGvqvl7b+K2XB8ACmbwp7YP3XxsoUAwN9MrLU14DMyMqndzfNF74TknN4+vkfWL10Egs+GoWenoSIG8mM/8/q2jJHTtxk/JPB7NofQdjVRIICXJnwZBekUgNsrE1Jz2jempPCCiBdjAAAIABJREFU/54lS5Zw7NgxPv30UywtLVm2bBlvvvkmv/76K/r6+hr3qaioYObMmZibmzN//nzs7e1JT09HquPMNJGwE/5RZmZmmJiYoK+vj1wup7i4mA0bNrB8+XLat28PgIuLC9evX2fz5s21Cbvnn6/7Ye7s7MzkyZNZt24d06dPx8jICGNj49rX/LvUv1kEAHebytCwvIbtDUvUTJdt9F6oRtcZWlpi1aaN1reMOXQSmxYe5CWmcHDuktrtvd99uemY/kEHQy+xbP7m2sefflXdtg1iUyqVGusBoKysgs9m/cZ/Xh+Ok0vjNQRrvPzOSJZ+8gfTxnwBEgnOrrYMHNGZfX9pns4ac+IcZ3/YUPu4X+1NOxq2/YOpSkMjGUMX/peKklJSr97k4to/MbOzwamN5hsUHNtzkVUL6+pu1pfTVNFpODS11V15WQVLPlrLszOH4+Csve7u156d5/n84021j5eueLE61obt3HRdKqtUx8EnC5/DzNwYgHdmPcXMF1eSlanAVocRScf3XuSHRXX19v5iVb01atYm6q2+eStnUFJcxu2r8az7dif2Tjb0HqxaV3Ly66NYteB33pywCIlEgoOLLX2GdubILs3H3I2j5zm4sm7tzVEfTq8OrXF/uN+Drs+0JzmwYgO/vvoZIMHKUU5A/65cO3hG6z7Rx89z6vu6PhHy35obQDSID2WjmJujRFHA8W/X8tjMyU1Oma0vdOdZPpv7W+3j5StfUUWm8RjTHptSWYVEIuGzRdMwr55O/N4H45jxn69qj7Ggdi0Ialc3kjKoXQvGPfkxG9cd5t1Z2pdTaErDTxAJd/9YAdV6dp/1aMUXF2K4llVwT+/dXBIax9vQzH03MDXUp7WtKe93b8H0DiWsvJRw3++tqZ60BbPsqbb8dv4Ol3Vcf2uQvwOzBvrx6h9hJDWxdlpzYrtbPc3YegUzmQGt7c2Z1c+Xl7p58u3pOEB144e5A1vx9YkYjsZkYW8mY1Z/Xz4f3LrZSbtHPb6Gx7qkiQ6w7Mm2/HYhgcuJ/8wFRmWDOCQSida+mVNQxpo9N2sfR8TlYG0u4z9D/GoTdrGp+cSm1v3QvxydhavchGmDW+mcsKuNrcFjiUSHNt1+FTOpAa3tzZjV14eXunrw7Zn4RuVGBzihpwdbrqU0K6am421Yl3c/z83cF4mpVHUuea+bNy+2d+O7yw/iXKKpXTUHs3RCR9adjCVMx3UtR3V0Q19PwtYL9x/nv4GmdtV2JC4bXd1/73PUpsY4Gp5H0N5X7eTmLP10DL//dZGtuy5jZirj3Vcf5/ulk3hy8iqUSiVLVh7AXm7OzvWvIJFARlYBm7Zf4NVpfanSMM39/4P7+W73v6agoIC//vqL2bNn1868mzdvHiNGjODcuXN066Z5OvaOHTvIzs5m1apVtUuBNVxTvykiYSc8VLGxsZSWlvLaa6+p/aCqqKjAyalujYuDBw+yceNGEhISKC4upqqqisrKv+8qa31WVlbo6+uTlaU+taQiPx9DC83JAkNLS8rz1D+YyvNVX9Zq9jG0tKRcob7Qf0V+PhI9PfRN1dc9q6qoIPP0aex69kSiJXtfkpdP0oUrdJzyDC4d22Lr41m3f7nq6mBJrgJTW2u1fYwsdZ+C9SB0e8wfvzZv1j4ur57SlZOlwN6x7qprbnYB1jaaR0pmZyqIj0lj8bxNLJ6nSgopq5QolUoeD36Xz756nk7dWmFlbca8JVMoKy1HkVeErZ0Fq7/ehaOL5ikQbh3bItdQb8V5Ckzl9epN8WDqTaKnh4WjalqMjacbeUlpXN22V2vCrnOvAHwD6ob6l1fHl5uVj9yhLr68nIJGo8dq5GQqSIxNY8Wnm1jxqXrdjenxDh8smUa7LpqnhzdHr75tCGjrWfu4rLqdszIVODjWxZqTnY+Nrfa6tLWzxM7esjZZB+BVfSfXtNQcnRJ2nXo2qLcyzfWmyCloNFpRE/vqRKd7Cydys/PZvGZfbcLOwtqMdxZOpay0nAJFEdZyC9Z/uwt7Z83HXIvgNji19Kx9XFHdpoW5Cszt6mIrzstvNOquuUwszRkx6z9UlJVTkl+IqY0lJ379CwsH7Ylb905tsPOti6+ypk/kKjCr3yfyChqN4G2OnIRkinMU7P3km9ptNT+kfh47k9FLPsDSWX2Ey2N9gwhs41X7uKY/ZGUqcHSqq++cbAW2TRxjcrkVdvZWtck6AC9v1edPakq2xmNMX1+P1gGe3Ilv/l1ac0vLqahSYttgbUgbI0Oy7zIts52dBcv7BPDdlXg2Rz24H9U1ckpUsclN1Ef62RobklnU9F1AaxaRj8opQk9PwoI+rfj+cgKV97jMUk5RGRWVVdiZqY/asDWVNhplVKOHt5wuHja81kc1wkIikaCvJyFqzuN8tPM6Gy7W/Zge5O/A0ieCeHPLlWbfITanqIyKqirsTNXbUN5EbDVS8kshv5TbmYXoS2DBUH9WnYmnUqnk5W6ehCUrWHVWlUyJzCigaE8lfz7bmS+ORKn2/ZfHV9eu6rE13a62dPGw5rXHVEnz2nadPZCPdl1nw8XEu76vLnLyq2OzVL9Bja25jMwmFtNvKDw6i6d6eTZZJiwmm2Fdml6zTy22onLNbWqiY5tSyu2sQvQlEhYM9mPV2TtUNshsjA1yZs/NDPJK7n+qfc25xM64QTsbS8ksvku8haVQWH0ukUj4vE9Lfgi7j3NJYamqXc3V21VuJms06q5Gj5Z2dGlhy8zHVd+Hao6524uHM/vPK2w4rZ7wHNvNg91Xkskrur8bYj3qas8tms7LGm60AtX917Ne/6W6/34Uwke7brDhUvP7b3ZuIRUVldjL1b93yG3NGo26qzF1fHeKisr4ZHHdHXxnvLuBsCMf0rm9B+cuxVFSWsHrH/7B23P/xM7WnLQMBZOe7kp+QQlZOdpvOiP8/3Djxg0qKirUlslycHDA09OTiIgIrQm7o0ePEhQUxOLFizl69CiWlpb079+fqVOnYmBw93ScSNgJD1XNNLEvv/wSR0dHtedqDuCIiAg+/PBDpk2bxhtvvIGZmRnHjx/nq6+++kdiNDQ0xM/Pj3PnzjFgQN1aaXnXr2PdoYPGfcy8vUnYsoWq8nL0qjPpiuvXMbSyQlp9V1kzb29yw8LU9lPcuIGJpyd6DTpvblgYFQUFyKtHHGoSe/QMeoYGuHfviKGxkdrdGpVKJUZWFqRG3MC2hSpxUVlWTsbNaNqNH9WM2rh/JqZGand+VSqV2Niac/HsbVoFqL68lpWWczUslhdeG6bxNeR2lny/6S21bTv+OMXFs7eZu/g5HBskR6QyQ+T2llSUV3LiYAS9QzSvaaip3oytLEi5cgN5vXpLj4ymw4QHX29KZRWVWtYvBDA2NVK7g6lSqcTK1pzwc7fw8a+ruxthMTz76nCNr2Fjb8nSdW+rbdvz5ynCz93ivYWTsXPSvp5Lc5iaGqndlVOpVGIrt+Ds6Zv4B6rqsrS0nLBL0bz6pva6DGrnxcF9lykqKsXERPUFMT5O9ePaUcdYtdVbxHn1eosMj2HCK5rrTRulUlmbKKpPKjPExs6SiopKzh65Qrf+7TTuLzU2Urvzq1KpxMTagjthkTj6quqpoqycpOsx9Jo8slmxaWMgNcTM1orKikpunw6jZY/2Wstq6xPJVyKx86mLLy0ymk4T771PyFt4MGrxLLVtlzbupLSwiG7PP42ZfeOkoqZjTC634Mzp6wS08QRUx9jli1G89vaTWt87qH0LDuy7QFFhSe25Kb46EeekJdGqVCq5fSuRljre+be+iiolN7Lz6epkxYGEunWAujhacTBB+90FO9hZ8FWfAFZF3GH9zftfEF6T8iolVzPy6elqze56axT1dLNmT4zu65TpVf+41ZdIGiUFdI6lUsnVFAU9W9gSeq1uTbGeLeTs0bJo+cBvjqs9DvFz4JXeLRj5/SlS6yVchgY48uUTbXlryxV238MC6OVVSiJS8unlZUtoZF2yr6enDbubkfyTSCQY6EnQ14PKSjA21G90I4Kax7qM/v03xFfXrnJCr9clvHt6y9lzQ3MCfOCKE2qPQ/zseaVXC0b+cFqtXe9XeWUVV+Ny6BnoyO7zdUmEnoGO7GnGyKnWHlak5zYdl7+7FRlN3J20UWxVSiJS8+nlaUPozftpU9TatEaQkwUBDuZ8fPCW9p2bofZc4mbN7nrnjp6uVs08l/BgziWJefRsZUdovZtp9Gxpx+4rms+ljy9UvxlTSKATM0J8GbX0GKkNRuMGuVvh72LJxzqudfdvVl6l5Gqygp7etg36r632/vut+p3hVf3Xm5E/nCE1/976b3l5JVeuJfFYd1927L1Su/2x7r7s2qe5HYyNDKlssDxJzWM9PfXzV0VFFSlpqoEXo4YEsf/IDa2jMYX/P7KystDX18eqwbJVNjY2jQb21JeUlMSFCxd4/PHHWbp0KSkpKSxatIji4mJee+21u76vSNgJD5WXlxdSqZTU1FQ6d+6sscyVK1ews7NTmxabkqI+ssDQ0FDnNaLuxfjx45kzZw7+/v4Uy2SkHz1KeV4e9o89BkDCli0UxsXh96Zq5JhNcDBJO3cS+9NPOA0dSklaGil79uAybFjtl1r7xx4j/fBh7mzahF3v3hRERZF56hTe06Y1ev+MY8ew8PPDyE7zWhtKpZKYw6dw79ZR7cd1DYlEQqvBfbm2bS8Wzo6YO9lzfeseDGQyPHrU1fuZb38BoOvLz9Vuy4lTfUktLy4GiYScuAT0DAywdFWNQKmsqECRqGqPyvJySnIV5MQlYGAkw9zx7osqSyQSRo/vxYYfD+LmaY+ru5z1aw5iZCyj36C6RMLC2appee99PA4DQ328fNTvMmZlY4ZUqr79RkQ8mRkKfFo6k5mRx6+r9lGlVPLMc7rd7UkikeA3uC9Xt+1V3c3VyZ6ILXswMJLhVa/eTq5Q1VuPGXX1ll2v3iR6ErKr682qut4itu5B7uOJmb2cqooKki5fJeb4OYInP61TbDXxDXumN3/+fAAXD3uc3e3Y/NMBjExk9BpYV3fL560HYOac8RgY6OPeQr3uLK3NMJQaqG0vL68gMVb15au8rJzc7HxibyVhZCzD6R7uTCmRSBg78TF+/mEfnl4OuHvY8eP3+zA2kfH40I615ebMWgvAvPmTAHh8aCfWrNrLxx+u44WXB1OQX8yShVvoF9Ku0VplzYllyNO92frLAZw97HFys2PLz6p66xlSV2/ffKyqt1dmjwdg9x/HsXe2xdld1Q9vhMWwc/0RBj5Rt4bd7WvxZGfk4enrQnZGHpvX7EWpVDJigu7HXIfhfTj3xz6sXR2wdrbn7B97MTSS4te7U225Pct+BWDQ68/WbkuPUf3ALCsqQSKRkB6TiL6hPrZuqnZNuRVHQVYudl6uFGTlcmbjbpRKJZ1Ga75pi7b4/If05crWvVi6OGDpZE/4lj0YGElp0bMuvmPfqOLr/UpdfFlxqvjKi1XxZcUlom+gj5WrE4ZGMqzd1acHSE2NqaqqbLS9qdjGTxrAmu9D8fRyxMPTgdWrdmFsImPw0LqroR/990cAPvl8KgCDhwazetUu5n74My/OGEG+oojFn29iwMAOtaM/V327gzZtvXH3sKewoIQN6w4SdSuRWR9N0Lnu6lsXmcQn3VpxNSuf8AwFT/o6YWcs48/bqnPpK0GeBNqaM/2Q6odHR3tLlvcJ4I9bKeyOS8fWSHUhqFKpGrH3IK0JT+TL/n6Ep+dzMVXB+AAn7E1lrLuq+mH7TlcvguzNmfiX6kfSqJb2lFZWcTOrkPIqJW3szHmnixe7ozMou8+7GK4+FcuSJ4IIT8zjwp0cJnZ2x8Fcxrrzqht+vDugJUGulkz4WTXl/Fa6+hThts6WVCmVatuHBzqx5Mm2zN8bybn47NqRXmWVSvKacXfR1efiWToikPBkBRcSc5nQwVUVW/VokXf7+NDO2YLx6y8BMDrQidKKSm5mFFBWqaStkwXv9fUhNDKdsuqhQwduZ7BgiD8TO7hyNCYLBzMpswe0IiJFQXIzE1OPcnyrT8Wx5Im2hCfVtKtb43Z1sWTCL7q3K4C/o+ozwUxmQJVS9bissoqojEKdY/txz00Wv9iF8JhsLt7KYHw/H+ytjFh/SLWu29tj2hDkZcukRUcAeKKHJ+WVVVyPz6FKCf3bOzOxvw+Lfq9LIkwe2JKkzEJuJ+VhaKDHyO4eDOzoykvLT2gKQXu9nb/D0mEBhKcouJCUy4R2rjiYSVlXvf7iu71b0M7JgvGbVHc7Hx3gSGlFVXWbVqna9LEWhN7MqG3TGuODnInJLuJMwv2tRVrfj+FJLO7fSnUuScljfIAz9qYy1ldPuX27iydB9uZM2qE6z41qaa+KN7uQ8kolbezNeLuLF3sexLnkSBRLJnQkPD6HC7HZTOjhib2lEetPxQHwztDWBLlbM3HlKQBupaqP0mrjZkWVsvF2gHHdPIlNL+BstPYf7A+KqYmMFp6qAQ56ehLcXOS09fcgJ7eAhOS///0BVp+JZ8noNqr+m5DLxE7V/bc6qf1uf1+CnC2ZsFZ15/hbGQ37r4Wq/2bc35IO3/1yjG8WjOVyRALnLsXx3DNdcbSz4JdNpwH44I3BtG/jxlNTvwfgwNEbvPhcL956OYQt1VNiZ70+mMTkHK5cU50XvT3ldGjrzsXwO1hZGDN9cm/8fB2Z+f4mrXEI/34rV67kp59+umuZe1VVVYW1tTWzZs1CX1+f1q1bk5eXx9KlS5k5c+ZdL3iJhJ3wUJmamjJhwgS++uorlEol7du3p7i4mIiICPT09Bg9ejTu7u5kZGSwZ88e2rRpw+nTp9m3b5/a6zg5OZGSkkJkZCSOjo6YmJgglUrJzMwkOzubO3dUXwJjY2MpKCjAwcEBS0vVXbVSU1NRKBS1ScBbt1RXF11dXTExUU2RCgkJIS8vj59++onUjAyMnZ1p+eqryKpHy5Xn5VGaUbcOiYGJCa1ef534DRu4/tlnGJiY4BgSgkNI3R05ZXI5vq++SsLvv5N+9CiGlpa4jx2LTce65AVASUYGips3afHCC1rrMf/mTfJT0+laL2HUkN/wECrKyrn40ybKCouwbeFJn1mvqCX4CjMbr9Wx978L1B4nX4rARG7DiK8/AaA4J0+tTEHaCaIPnsCutS/9Z7+uNZ76nnmuL2Wl5XyzYAv5+cX4BbqzYMULaiPx0lObf9etsrIKfv52NylJ2RgbSwnu2Zr3PhmnNr3ybgJGhFBZVs65HzdRWliE3MeT/jrU26731est8WIEpnIbnvhGVW/lJaWcXbORoqxc9KWGWDo70OPl5/Dq0anRazVl1CRV3f2weAuF+cX4Brgz+6v/qI0oy0xt/hfwnAwFbz9btw5iauJp9m09TUD7Fny8UvuNT5ry7NQBlJaWs+izP8hXFBHQxoOvV72sNkoqLUW9Lk1MZKz4YQaLP9/M5HGLsbAw4bG+bZjxxoh7iqHGiImqevvxS1W9+fi7M2uper1lNbhRQVWVkvXf7iQjJQc9fT0cXGwZ99JQQkbXDYEvL6tg0/d7SE/OwshYSrturZkxezymzTjmOo0eQEVpOYe+/4PSgiIcW3ryxNwZaiPx8jMaH3Pr3lyo9jjm/FUs7Gx4/od5gGp06Kl1u8hLy8TQSIZXR38GvfEsRjquGVejzcgBVJaVcWbN75RV94nHP2jYJ7Ib7ffXu+p9IuHiVczsbBiz4uNmvX9Tnnv+cUpKy1j46XoUiiIC23rx7Q+vqx1jqSnqsZmYGrFy9Rssmr+BSc98hrmFKX36tWPmm0/UlslXFPHp3LVkZSowMzemlZ8bP/zyDoFtvbgX++5kYikzZFqAO3JjKdF5hcw8cpWU6rsfy42luJrVxTzc2wFjA32e9XflWf+6UX3JBSUM07Im573aFZWBtcyQVzp6YGcq5VZWIVN3RpBcPeXVzkSKu0Xd8VxZpeSlDu54WhojkUhIyi/ht6vJrAm//2mKO6+mYmUs5dXHWmBnbsSt9Hym/Hahdr05e3MZHtbNO34ndHbDUF+POUP8mTOk7k7tZ2KzGPvTOd1ju5GGtbEhr/Twwt5Mxq2MAiZvukxSdeLK3kyGu1VdbJVVSmZ098LT2gSJBJLySvj1YgKrz9XdbXhzRApmMgOe6+jGh/1bkl9awen4bOYfut2s/+OjHt/Oa6lYmRjyau8W2JnLVO267mJdu5o1v10BQl/qofY4xM+exJxiei47qvNr7DqXgJWZjBnD/bGzMuJ2Uh7PLzlOcpZqOpy9pTHu9urLdcwY4Y+L3JTKKiVxqfm8v+Z87fp1AFIDPf47NggHa2NKyiq5naTg+S+PceRK86a174xMV7Vpd0/sTWXcyixg8h/h9dpUiru1et+c0dWjrk0VJfx6KZHVDUYLmkr1Gd7aga9O3t+NYhraFZ2BlZEBMzq4Y2cq5XZ2Ic/vulp7LrHXcC6Z3sFN/VxyLZkfw3W/IYzWWMKSsTaV8srAVthZyLiVks/U78+QlKMa5WhvYYSH3PQur9KYqcyAYe1d+HrfzbsXfgA6tPVm3++zax/PfmsMs98aw9o/jvKft777R2LYeS0VK+Pq/mtW038vqfdfm+b33+bavjscaysTXp/eHwc7CyJvpzJ++hoSq+8qbG9ngYd73ej8E2ejeemd9cx4vg8zpj5GcWk5l8LvMO4/qymqvlijr6fH9Od608LLjoqKSk6ejWbYuBUkJP/v3vn37v7317AbN24cgwcPbrKMo6MjERERVFZWkpubi3W9m0tmZ2fXrsWviVwux8DAQO2mFJ6enpSUlDR6LU0kubm5Ynyn8I/67bff+OOPP9i+fTugGh32+++/s2XLFhITEzE1NaVly5ZMmjSpdo74ihUr2L59O6WlpXTp0oXg4GAWLVrEuXOqL9dlZWXMnj2b8+fPk5+fz+zZsxk2bBjff/89q1evbhRDzfOgWixy165djcqsXLmSjg2SZwAzGkxjfVS0MH+01814vqXuUz/+ab/e1j2Z8k8b5fngpvs8aG6mut3R8mGIzX+0+8OZdN3uDPUw5JY9ul/OXg14dOut1+//zB2X70Vu7qO9WHZV6qO7NpDSSFzbvheS0n9mneF7pR/3z9zA4l5U+P99N1C7XwYWj+7nftWtRzepkvrnxrsXeogcnp/8sEPQqnjjgYcdQpNunfnwYYfw9zLWfmOyf6Xirve8a0FBAQMHDmT27NkMGjQIgLS0NEaMGMGyZcu0rmH37bffsnfvXrZu3Yqenuq74vbt2/nyyy85evToXUfYiYSdIDSTSNjdG5GwuzciYXdvRMLu3omE3b0RCbt7JxJ2/3tEwu7eiYTdvREJu3snEnb3TiTs/mXuI2EHsGDBAo4fP86cOXOwtLRk2bJlKBQKfv3119oRdC+//DIBAQHMmDEDUCX1xo4dy5AhQ3j66adJTk7ms88+Y+DAgcycOfOu7ym+hQiCIAiCIAiCIAiCIAiCFm+88Qb6+vrMmjWL0tJSOnfuzNy5c9WmuyYlJeHg4FD72MHBgeXLl7Ns2TImTpyIjY0Nw4cPZ+rUqTq9p0jYCYIgCIIgCIIgCIIgCLUkkkd39sC9uN+ppTKZjHfeeYd33nlHa5maZb/qa9OmDWvWrLmn9/zfagFBEARBEARBEARBEARB+JcTCTtBEARBEARBEARBEARBeISIhJ0gCIIgCIIgCIIgCIIgPELEGnaCIAiCIAiCIAiCIAhCPZKHHcD/e2KEnSAIgiAIgiAIgiAIgiA8QkTCThAEQRAEQRAEQRAEQRAeISJhJwiCIAiCIAiCIAiCIAiPEJGwEwRBEARBEARBEARBEIRHiLjphCAIgiAIgiAIgiAIglBL8j920wnlww7gHogRdoIgCIIgCIIgCIIgCILwCBEJO0EQBEEQBEEQBEEQBEF4hIiEnSAIgiAIgiAIgiAIgiA8QsQadoIgCIIgCIIgCIIgCEKt/7U17P6NxAg7QRAEQRAEQRAEQRAEQXiEiBF2gvA/Qu8RvwByKs3wYYeglYtp5cMOQStnk0f3fkZ7Ex/d2Ia72zzsEJr0W1TJww5BK1PDqocdglY3cgsedghaGRlZPuwQtNLfFvWwQ2hSZV+Phx2CVuZOsocdglZGRg87Au2qHt3TCADZlY/u55d3m0e3YZPmhD3sELSSeD6652CH5yc/7BCalLbm54cdglYOU5572CEIwkMlRtgJgiAIgiAIgiAIgiAIwiNEjLATBEEQBEEQBEEQBEEQ6hHjux420QKCIAiCIAiCIAiCIAiC8AgRCTtBEARBEARBEARBEARBeISIhJ0gCIIgCIIgCIIgCIIgPELEGnaCIAiCIAiCIAiCIAhCLYlE8rBD+H9PjLATBEEQBEEQBEEQBEEQhEeISNgJgiAIgiAIgiAIgiAIwiNEJOwEQRAEQRAEQRAEQRAE4REi1rATBEEQBEEQBEEQBEEQ6hFr2D1sYoSdIAiCIAiCIAiCIAiCIDxCRMJOEARBEARBEARBEARBEB4hImEnCIIgCIIgCIIgCIIgCI8QsYadIAiCIAiCIAiCIAiCUEsi1rB76MQIO0EQBEEQBEEQBEEQBEF4hIiEnSAIgiAIgiAIgiAIgiA8QsSUWEG4R+lHjpCydy/leXkYOzvj/swzmPv6ai1flJjInQ0bKIiLw8DUFLvevXEeOhSJRDXUuCw3l4TNmymKj6ckPR3brl3xnjJF7TUyjh8n8/RpipOTQanExM0Nl5Ejm3zfGkqlkojNoUQfOklZQRG2Pp50mvo0Vm7OWvcpzsnj0tot5MQlkJ+SjmevYLq9/KxamTtnLnH9r/3kp2ZQVVmJuaMdfkP64f1Y17vGVD+2I+v2cHHPKYoLinFt5cHQl5/C3sNJ6z7XT4ZzIfQkKdGJVJRXYOfmSO+xIfh1bVNb5vL+s2xbur7Rvh9uW4yh1FDn2E5svH8hAAAgAElEQVRs2E343lOUFBTj1NKDgdPHYNdEbDdPhXN59wnSYhKpLK/A1s2R7k8PxLdLXWxhe09x9dA5Mu+kolQqcfB2odeEobgFtNAprvrxrVm5j+1/nkWhKCKgjTtvz3oCbx9HrftcOh/FjOe/a7R9w/Z38fSyB+Dlqd9y+UJMozJeLRxYv/UdnWM7vG4PF3bXteuwGU/h0ETdXTsZzvldde1q765q19b12vXS/rNsXdK4XWdvb167fvftdrb8cRSFopDAtt7898NJ+Pi4NLlfeVkFP6zawc4dp8hIz8XW1oJnpwxi/MSQ2jLr1u7jj02HSUnOwtLKjD592/P6m2MwMTXSGsutrbuIP3KC8sIirFt40ubZsZi7au+bAJmRt7i+fjP5SSkYWVnSYuhAPPv1rn3+1PwlZEXebrSfmYsTfT+fDcCBNz+gODO7URmndgE89t7LWuO9+mco0QdPUl5YhI2PJ52mPI3lXc4ll39TnUsKUtLx6BVM15fUzyXRB08Se/wsisQUlEol1p6utBkzDDs/nybroWFsW37cy6HtZyjML8InwIPJbz6Jq7f2/nDjchSbvgsl5U46pSVlyB1t6Du8C0PH960t8+krK7hxObrRvi6eDixa955OsT3h7ch4X1dsjaTEKor46koM4VkKjWWlehLeae9DKyszPM2NuZKVzyvHI9TKtJdbsqJ3m0b7jtt3kfiCYp1iqjF+eGumjWmDvY0xt+Nz+WzlGS5cTWtyn8mjAxg7zA83B3Ny80vZuv82i3+8UPv88L7evPB0WzxdLCkoKuPU5WQWfH+OzJzmxTapgysvdvHAzkzK7YxC5h24xfnEXI1lfW1N+eTxVvjITTGXGZCeX8pfN9JYdjyG8iolAIuH+jOmbeNjtaisktZfHm5WbM+0cmJKoCt2JlKicgpZeC6GS+ma27SzoyWT/F1oIzfHTKpPgqKEtdeT2BqluZ7b21vw06C2xOYVMXr7pWbFVeMpHycm+bkiN5YSk1fIl5djCMvQfsz9t7MvftZmeFkYE56p4MVDEY3KjfFx4mlfZ5xMZaQVlfLj9QR2xaXfU3xqr+vrxLOt62JdfDGGy1pi7WhvyQQ/FwJszTEz1Ccxv4T1N5PYHtP0MauricHuvNjLC3szGbfSC/g49Abn43Puup+nrQk7X+6BBAj4ZH/t9sf9HZgQ7E6AkwUyAz2i0gv45mg0ByKbX28j3R15xtsFW5mUuIIivrkeS0SO5noy1JPwZmALfC3M8DAz5mpOPm+cvapWxkZmyMutvfC1MMXF1Jj9SeksvBLV7LgAxj8VyPMT22MvN+F2TDbzl5zgQliKxrKvvtCZV/8TrPG5rgN/JDunmAVz+vHEsNaNni8qLqdd7++bHd+EgS2ZNtIfeytjbifm8ulPF7gQmdHkPpOH+DFuoC9u9mbkFpSx9Wg0X6wLA8DOypj/PteBAC8bPJ3M2XYslvdWnG52XJpM7OTGi909sTevPgb3RnL+jubzXn2eNibs/E83JBII+PzgA4lFVz2C/Xj9xWF0aOOFs6MNL7y5kt82H/tb33NiZzde7FHdVzMK+Hh3JOfv6NBXbUzYOb27qq/OP1C73c5MxoePtyLQyQJPW1O2hifz9rbG50FB+CeJhJ3wj6uqqmLhwoUcPHgQhULBypUr6dix48MOq1myzp/nzsaNeEyYgJmPD+lHjnBr+XIC585FZmvbqHxlcTE3ly3D3NcX/1mzKElNJfbnn9GXSnEcOBAAZUUFBmZmOA0eTPoxzR9wips3senUCTMfH/SkUtIOHODWV18R8NFHYGHTZMw3/tpP5K6DdH1pEhbODlz9M5TD879h2JLZGBprTiRUllcgszDFf0QIUQdPaiwjNTMlYPQgLJwd0NPXJ+nSVc6uWofMwgyX9oFNxlTjxOaDnNp6mNFvjMfW1Z6j6/fy6wff8ur3HyAz0RxbXEQUXkG+9Ht2KMbmJlw5fIGNn65hyoJX8QisS3oZyqS8tuYjtX11TeoAnP3zAOe3HWbIaxOwdbXn5IY9bJq9ghdWfqg1tjtXo/Bo25Lek4ZhbGbCtaMX2DJ/NePnz6xNyN2JuE3rXh1wae2FoUzK+e1H+H3OSqYsfxcbZ3ud4/vtp8Ns+PUYH37yDO6edvy4aj+vvfg9G/96F1MtCaIa67e+jYWlSe1jK2uz2n9/vnQyFeUVtY/LyiqY+OSX9B8YpHNsx/84yMkth3nizfHIXe05vH4vv8z6ltd+aLpdvdv5MuA5VbuGH77Ahk/WMHXhq3g2aNc3frz3dv15TShrf97Lx589j6eXI6tW/sVL0xazbdd8TE2Nte73/jvfkZqazUdzJ+Pu4UB2Vh4lJeW1z4fuPM2yL/9gzsdTaN+xJUkJ6cyd/RNlZeXM/WSqxteM3rWP6D0HaPfCs5g5OXBrWyinFy2n38K5GGjpm0UZmZxbvAK33t1p/+IUsm9FE/HrBqTmZjh37gBAp5kvUlVR14ZVFRUcnfUpzsEdarf1mvs+yqqq2seluQqOzfkc9651ZRqK3LGfm7sO0mX6JMydHbhWfS4Z2tS5pKICmbkprUeEEK3lXJJ+4xbu3Tpg17IF+jIpN0MPcWTBCgZ9/l/MnXTrEzvXHSJ0w1Fe/GAsTh72bP1pH5+//h2LN7yPsZb+YGQs4/ExvXDzdkJqZMitiFh+XLQZqZGUkCd6APD6/MlUlFfW7lNeXsH7k76gS/92OsXV30XO6229WRwWTXiWgie8nfiyRwAT9l8irbi0UXk9iYSyyir+jE6mm6MNZobav66N338RRVldO+eWlmstq8mQx7z48KWuzP36FBevpjJ+eGtWf/Y4g6f9SUpGocZ9/vtiF/p2cWPhD+e4FZuDuakUO5u6ftPB354v3n2MBT+c48CpeORWxsx9tTtfvt+H597brXNsw1o7MGdASz7cG8mFxFwmdXDjl2faMeCH0yQrGtdbWVUVmyNSuJaWj6Kkgtb2ZiwY0hoDPQmfH1YlIeYduMnCI+oJiT8ndeJswt1/DNc3yFPO+128+fR0NJfT83jGz5nvQgIZse0iqYWNY2tnZ8HtnEJ+uppIRlEZPVysmdPdl9LKKkJj1ZMGFlID5vdqydmUXOxNpM2Kq0aIm5y3O3iz4EI0YZl5jPFxZnnvQMbsvkhakfZj7vfbyfRwssZc2viYe9LHiVeDvPjs/G2uZuUTYGvOB519UJRVcDy5ceJfVwPd5bzd0ZsF56MJy8hjjK8zX/cJ5KldF0nVEGuQ3IKo3EJ+uZ5IZnEZ3Zys+SBYVZd74ptOwNzNsEBH5gxtzUc7rnE+PodJwe78/GwnQpYfJzmvROt+hvoSvn66Hefisuniqf59rKunDadjsvhy/y1yi8sZFeTMqvEdGLvmrE6JwBp9neS84u/FsmsxRGQrGOnhyMLO/kw+don0krJG5fUlEsqqlGyLT6GLnbXG84ihnh55ZeWsj05imLuDzrE0NCTEhw/e6sm8hce4GJbC+KcC+eGr4Qx5ej0paQWNyq/5LYwNW66pbVv62UCUSiXZ1Un9TxefYPE3Z9TKbFz9BOcvJzc/vu4efDilE3NXn+NCZDoTHm/Jmg/6MeiNHaRkFmncZ9ZzHenbwYWFay9x804u5iaG2FnXneekhnrkKEpZte0aYwfc/cK5roYFODJnkB8fhd7g/J0cJnV24+cJHQlZcZJkRRPHoJ6Er59sy7n4HLp4Wj+weHRlZmrE9ZsJrP/zGKuXar7g9yANC3BkzuDWfLTrel1fndiRkBUn7t5XxwRxLj6bLh7qfVVmoEd2UTkrT8QyrqPr3/1f+JcQEzIfNtECwj/u5MmT7NixgyVLlhAaGkrbtm3v+zW///57xo4d22j71q1beemll+jXrx/BwcEkJ6t/yCcnJ/PJJ58watQoevXqxahRo1ixYgUlJdpP9ABp+/dj2707dr16YezkhMe4cRhaWpJ+9KjG8llnz1JVVob3lCmYuLhg07EjToMGkXrgAEql6qq/TC7HY+xY5N27Y2BqqvF1WkybhkO/fpi6u2Ps6IjHhAnoGRmRd+2axvI1lEolkbsP4z9yIO5d2mPl5kzXl5+lvLiEuJPnte5nZm9Lp8lP492nG1IzzTE5BrbCrXMQli6O1aPr+mLl7kJGZOPRKNpiO7PtKD3HDMC/ZzscPJ0Z/dYESotLuXLkotb9hkx/kl5Ph+DaygNbZzv6ThiMs48bN05fUSsnkYC5jYXan66USiXn/zpK1ycH4NejHXYezgx9YyJlxaVcP6o9tpD/PEm3MSE4t/TA2tmOnuMG49jCjVtn6mIb8fZzdBzWG8cWbti6OvD4y08jNZYRc/FGs+Lb9NtxJk3tS9+QtrTwdeKjT8dRVFjKvtDLd93f2sYcW7lF7Z++ft1HgqWlidpzVy7HUVJcxrDRmq+Ia4rt9Laj9BozgIDqdn1Sh3YdOv1Jetdr135/U7uuW7ufKdOGMGBgJ3x8Xflk/jQKC0vYveuM1v1OnbzK2TPX+ea7N+jWPQAXFzlt2ragc7BfbZnwsCjaBrVg2IjuuLjICe7qz7AR3Ym40ni0Yk0sMXsP4TPscZw7d8DC1YX2/3mOipISEk9r75txh45jZG1Jm2efwdzFCY++PXHr2ZWY0LorxVIzU4ysLGv/sm9FU1Fainvv7rVlZBbmamXSrlzF0NgINy0JO6VSyc3dh2k9YiBu1eeSLi8/S0VJCfFNnUvsbOk4+Wm8H+uGTMu5pNsrU2j5eB+svdywcHag0/NjMTSSkRJ+XevrNoxtz+/HGD6pH8F9g3DzdmL6h+MoKSrl1H7tI5S8/NzoNqA9rt6O2Dvb0vPxTrQJbsXN8Lo2M7MwxcrWovbvVngspSVl9BmqW38Y6+tCaHw6f8WlEZ9fzNLwGLJKyhitZeRfSWUVX4RFsz0ujXQNCb36ckrLya73V9Vk6camPhnIln23+X33TaIT8vjk2zNkZBcxfnjjkS0AXq6WTBrpz0tz9nPw9B0SUvO5Hp3F0fOJtWXa+9uTmlnEz1uukZhaQFhkBmu3XyfIz65ZsU0LdmdzRAobw5OJyipizv6bpBeUMbG95h9S8TnFbI5I4UZ6AUmKEg5EZbL9WirBbla1ZfJLK8koLKv987AyxsPahI1hSc2K7dkAF7ZHpfHn7VRi8or5/Gw0GcVljG2leQTxDxEJfH05nsvpChILSth0M4UD8ZmEeMgblf24hy9/RaUTrmWEmS4m+LmwIzaNbTGpxCmK+eJSNJklZTzlozm+ksoqPr8QxdboVNKLGid/AIZ42rMtJpW9dzJIKixh350Mtkan8lzr+/thO8HPhR0xaWyNTiVWUcyii9Wx+mqO9cfrCXx7JZ7wTAVJhSVsjkrhUEIm/d0a12VzTevhxebLSWy8kEh0RiFzd90gPb+UicHuTe73/sBWRKblE3o1tdFz80JvsPJYDOFJecRnF/HV4SgikvMY2Lp5CbIxXs7sSUxnV0IadwqL+fp6LFmlZYzQMmq9pLKKpVej2ZmQRoaGhB5AWnEpX1+PZW9SOvn1LtI115Tx7di6M5Lft10nOi6HTxYfJyOzkPFPab5wW1RcTmZWUe2fgYEendo58fu2uvN9QWGZWhl3FwvcXS3Vyuhq6rDWbDkSzaaDUUQnKfj4xwtk5BQzYWBLjeW9nC2YNKgV0xcd4cCFRBLSC7gel8PResnCpIxCPvnpAluOxJBb0PR5ujmmdfVgc3gyGy8lEp1ZyNzdkapjsLNbk/u9H9KSyLQCQq83Pgb/CXsPhzFn0Sa2hp6jqnpE899pWndPNoclsfFidT2F3iC9oJSJne/SV0Oq++q1xiNyE3OLmbf7BpvDksgtbt7FL0H4u4iEnfCPS0xMRC6X07ZtW+RyOYaGuo+Kaa6SkhK6dOnCCy+8oPH5+Ph4qqqqeO+999i4cSNvv/02oaGhLFmyROtrVlVUUHjnDpb+/mrbLf39KYzWnKQqiInBvHpUXA2LgADKc3Mpy8q6h/+ZirKiAmV5OfomJk2WK0zPoiRXgVPbuh9gBlIp9q19yLwVe8/v3ygepZLUiEgUKWnY6ziNLSc1i4IcBT4dWtVuM5RJ8QhsQcKN5sVWWlyKsZl6XZSXlbPkubl8OWk26+asIiU6UcvejeWlZVGYo8CrfV1CxlAmxS2gBUmRzYutrLgUIzPt7VRZUUFFeUWTZRpKTsomKzOf4O51XziNjAxp19GLiLC4u+4/ZdwyhvWbxyvTvuPiuaanwGz/8wxde/rh4GjVZLka2trVM7AFd64/mHZd/Nxcvpg4m7VzVpEcpXu7JiVmkJmZR7fuAbXbjIykdOjUkrDL2uvh8MFLBAR6sfaXvQzs9ybDB7/HwvnrKCqsS/C379CSm5F3uBKuOhekJGdx9HAYPXtpvjBRlJFJaZ4C+8C6vqkvlWLbypec29qT3jlRMdgFqidU7Nr4kxsXT1VFpcZ97hw5gX3bAIxtNY/GVSqVJBw9iWfPzhjINI/qqTmXODY4l9j5PdhzCajOtZXlFUhNdesTGcnZ5Gbl0ya47piTyqT4tfPmdkSczu8bdyuR21fj8GunfXr64R1nCOraGluHu49iMJBIaGVlxtl09ZE059JyaNOMRLM2P/Ztx19DglneM5AOcstm7WtooEeAr5wTF9X7z4mLSXTw1zyqcUA3dxJSFPTq7MqhX8Zw+NenWfhOb2ys6kYwXryWjp2NMf26qn5gWlvIGNrHm6PnEnSPTU9CG0dzjsWqf0Yej82io6tu5yEPa2Me87blTBNTyca2c+FmRgEXk/J0js1AT4K/rTmnktRf91RSDkH2urepmVRfbXQkqKbZyo2lrLpyR+fX0RSfn7U5Z1LV4zuTmkNb+b0fc1I9CaWV6inh0soqAmzM0Zfc250EDfQktLYx50xKg1hTcghqRqxmho3rsrkM9SUEOltw/Ham2vbjUZl0dNfe1/u2tKNfK3vm7tQ9kWQmNSCvRPeEgIFEQksLMy5kqtfThcxcAq3MdX6dv4OhgR4BfnacOKPev0+eTaB9W+3LEdQ3ZkRrFPll7D2k/XPv6dH+3IrO4vKV5iWkDA30CPS24US4+vTcE+EpdGil+SLCgE6uJKQX0LudM4e+GcmRFaNYNKMbNhayZr13cxnqVR+D0Q2OwZimz3t9feX087Vj7h7dL/r+mxnqSwh0suB4VIN6is6ko1tT9WRHv5Z2zA39/1FPwv8GMSVW+EfNmzePXbt2ARAcHIyTkxPbtm1j7dq1bN26lczMTFxdXXn22WcZPHhw7X7ffPMNR44cIS0tDRsbG/r378+LL76ITCZj586drF69uvY1AWbPns2wYcMYN24cANeva/4S1a1bN7p161b72MXFhSlTpvDdd98xa9YsjftUFBRAVRWGFupfJA0sLCi/ofkDoDwvD6m1+pc9Q3Pz2udk8nu7Kpy0fTt6MhnWQU1PUyzOVV2lN7JU/1JnZGlOUbbuP1K0KSsqZttLs6isqECip0fnKc/g3D7g7jsCBTn5AJg2+MJpZmWOIkv32M7uOI4iM5egfp1rt8ld7Rn1+ngcvJwpKy7lzPajrHl7GS998y62LnefYldQvS6MSYPYTKzMKWhGbBd3HSM/K5fAvp21ljm2dhdSIym+XXSbRgyQlamqOxtb9fisbc3JTNcen63cgnc+fAL/QHfKyyvYs+Mir76wihVrptO+U+MkxZ24DC5fiGHhV5N1jq2mXc2sH0y7tmvQrqNfH4+jtzOlxaWc3naU1W8vY8YK3do1M1P1/ra2/8fefcc3VfUPHP8kbZPuvfeCUlrKpuy9FBAVURQQFJQl+iiKExBFlgIKj6KIirKl7L1HQfYuFEoLhdLddO+0ye+PlLZpky58pM/vOe/Xy9fL3J4kX+459yT53u89Vzu5YWdnSUqy/suT4h+mcvlSFEYyQxZ9O4Wc7Hzmz11Lakom33w7BYCBT4eSmZnL66/OA6CkpJTBz3TmX9OG63zNoizNGJNVmU/klhYUZuhPMhRlZiMPaqa1TW5pibpURXFuLsbW2v+23MRkFLfu0P6diXpfMzUikvxUBb69OuttU5ilfy4pyHj8uaSy63/uxNBYjlvb6uu06ZKZronNqsqYs7K1ID219tjeenY2OZm5lJaqeP61/vR9Tvd+SHyQQuTlGN6dr/sS56qs5UYYSiVkVPlxnl6kpJ1xw09YKQqLWXg5msiMHIykUgZ6OrK0WzBvnbjOFT1r41VlY2mMoYEURaZ2VbkiowD71rrXJPRwscDNyZzBPX358Jtw1Go1H73ZgRVf9GP4OztRq+FKZArvzTvGog97IpcbYmQo5eTFeKZ/Xff1jGxMjTCUSknL064MSs0rpot3zZeJbhndjiBnC4wNDVh3+SELj+lOxFvIDRjUzImFx+u3ZpdNWZ8qqlQtKQqVdDSpW5/2cLcl1MWa0Xuulm9rYm3K5FaevLL7Co9ToGIt08SXXiW+9EIloU4NH3OnkzIY6uvM0Ydp3EzPJdDGnKG+zhgZSLGWG6KoRwKqPFa57lgVhUo6ONct1m6utrR3tub1g1drb1wDG1MZhgZS0qpc0pyWV0wXc91jzsFczvxng5m47jJ5xbpPllQ1OtQTZytjttajqtNKZoSBVEJGlUveM4qUtLFr2GXTfxcba2MMDaWkpWtfWpqWnk+nDrVXX0okMOyZQLbtuYVSqbtG2NxMxsA+/iz+QX8VvN74LOSafq1ymWRaViGdrXUvgeHhZI6bvRmDunjz4fenNfPcq21Z8VEvhn+6D/V/qIDMxlSmmfdytY+HtNxiuvjoThY6mMuYPySIiRuv1HkM/rerOFZ17CdffftJzvxngpi4se7HqiA0BiJhJ/yjpk2bhouLCzt27GDVqlUYGBiwfPlyjhw5wvTp0/H09OT69evMnTsXCwsLunbtCoCJiQkzZszAwcGBe/fuMX/+fGQyGRMnTqRv377ExMRw8uRJli9fDoC5uXlNYdQoLy8PS8s6nNWteja5tk9vfWefG3hWOunwYVJOnCDg3XcxMDEBKr7E3Tt5jvM/ry9/XLF4fNWYG/z2WoyM5Ty14GNKCotIirjNpdWbMXOwxblFs2ptrx29wM5lG8sfj5w9QRNZlUDUanWdY7t58goHf93OCx+OwdqponrII9AHj0AfrcfL31rI2Z3hPD1xWLXXuXHsPPu+r4ht+EzdsaGm2q7U59apKxz9dTtDp4/FylF3ZdP5Hce4su8UI+a8hdxU//pp+3dfYsEXYeWPv/l+nJ74ag7Qy8cRL5+KxFaLlt4kJmSw7vfjOhN22zefwd7Bks7ddF8iB3D1yAV2VOrXUfr6FXWd992Nk1fY/8t2hn+k3a+egT54VupXz0Afvn9rIWd2hDNoUvV+3b3rNHM+/7388bLl/yqLTbudWq1jX1aiUquRSCTMWzgBCwtN1ddHn45i8puLUKRlYWdvxYXzt/j5xx18MmM0LUJ8iXuQwsJ561j+721MnvpceSzFZb9JOkybrDMW/Ru1GmjHj/456MGxk8itrXBspT8h/ODYKax9vbDxrrjsJvbkOS6srJhLuk+fXMfYHs/tvUeJPnyKXp9MxUjPMXFq/0V++XpT+eMPvh6vM7S6ziUzf3iLwoIiom/cZ8MPu3BwtaPbwHbV2h3dcQZrO0tad9J/POhStXcedw8+yC3gQaWbS0Sk5+BsKuflpm5cOV2/SynVVT+/JBK9o0kilSCXGfL+guPExmve5/0Fxzn423BCAhy4eisVf09rPpvcke/XXSH8wkMcbE358I0OfPlOl3ol7TSxVQuthpGuMWXbdcxlhgQ6mfNJryZM6uTND6djq7V7LsgFqRS2ROheGL/esVF7bKC5ocSC7gHMP3uXiDTN+l5GUglf92jGN+fvEf83XV6na8w9Tp7hlxtx2BvL+LVvS0CTZNsdm8yYQI/HSjCiIy4JtX+tAs16dl91CeDrC3e5oai+VlqDYtHRr/p8OzyENececFnPjVCqGtjciU8GNGPqn1eIz6x5+RWdsdVj6z+u2n6rw8EK9OjshauzBZu26696Gvp0UwykErbvud3w8Kp0rETHtkekUglymQHvLztFbKLmBOT7y05xaOlQQvzsuBrd8Ktj6hRrlR2n+QzTHeu3z4Ww5kIcl+tRJfz/ha7PB30Tx7fDyvbTw/+9/fQ4JI/9bUV4XCJhJ/yjzM3NMTU1xcDAAHt7ewoKCli/fj1Lly6ldevWgKbK7ebNm4SFhZUn7MaNG1f+Gq6urowdO5a1a9cyceJEjI2NMTExKX/Nx5GUlMSaNWsYO3as3jaG5uYglaLM0p7wS3JyqlXdPWJkZVWtvTJH8wVA33NqjPPwYeK3baPp229j7uNT7e/ubUOw9/cuf1xati5JYVY2ZvYVlX6F2TkYWz3+JVkSqRQLZ00CyMbbg+z4ZG5s268zYRcQGoxbgFe12HIzsrFyqIgtLyu3WtWdLjdPXmHLojU8N22U1h1idZEaSHFt4oEiXvei1P4dWvB6U+/yx49uupCXkY1lpdjys3Iws659v906dYVdi1cz+L1RWneIrez8jmOEr9nN8FkTcW3qpbPNI117Nqd5i/fKHyvLLv9RpGVrXaqakZ6LrV39ktZBLTw5uO9Kte1KZQl7d1zgmWEdMTQ00Pv8Zh2DcW9WEf+jfZeTXqVfM3Mxr0O/3jh5hc3frOH5aaO07hCri9RAilsTDxQJuvu1Z69WtGjhW/64uCy2tLQsnF0qbhKTnp6NrZ3+frW3t8LR0aY8WQfg66tZOygxUYGdvRXfL93CwKc78vwLPQBo0tSDgoIiZs/8jTcnPVMey7c3ND/IVWWxFGVla12qWpSdg9xS/36SW1tSVGVOKc7OQWIgRVblhIWqpIS4k2fw7NkVqYHuPizKzibp0lVavKq9Fqhb2xDsKs0lj+ItzMzGzK7SXJL198wloEnWXf9zJ1LCjtIAACAASURBVD0+nKz13lW16RqEX1DFWjUlZWfMM9NztC5Vzc7IrVZ1p4ujq2YsePq5kpWey5Zf9ldL2JUoSwjfe4Fez3TEoIbjobLMIiUlKjW2VarpbORGpDegIqkmN9Nz6Ote93XiMrILKSlVYW+jnRS1szZGoedurqmKfJQlqvJkHUBsfDbKEhUuDmZcvZXKhBEtuXY7lZWbNHfXu30vg4LCv9iwZDCLV10kSc/NLLRiy1dSolLhUKWyyd5UVq2qoqrEnCKgiDuKPAwkEuY/HchPZ+5TWuWH3IhWbuy7nUJWYf0upcwo61N7E+3YbI2NUNSy7lFrR0uW9w3i31fus/F2RaLQwVSGv40ZX3ZtypddNcscSCWam0FcebUrkw9F8FdC3ZJCmcWa+OyMteOzMTZqUBXcI0WlKr44d4evzkdjZ2xEWmExz/m5kKssqffNTspjLdIdq61x7cdHKwdLlvYM4sdr9wmLbljStbKM/GJKSlU4mGtX6NiZyapVPD3Sxc+eUG9b3umlWQZEIpFgIJUQPXsAM3beZP2FistEBzZ3YskLLXlv87V63yE2q1hJqUqNrbz6PFK16u6flpFZSEmJCns77eUL7GxNqlXd6fLic0FcvJpI9F39Ny558dkg9h+9S5aOm83UGl9OkaZfq1TT2VkZo9Bzc4LUjALNPFeWrAOITcxBWaLC1d7sP5awy8gvLpv36jEGfe0I9bbhnR6aE64SysbgjH7M2B3J+kt1XzLkv0XFsao9b9iZ6f986OJrR6hXpf306Fid2Z8Zu2+y/uL/v/0k/P8gEnbCE3Xv3j2Kiop45513tCpbSkpKcHGpWET38OHDbNiwgbi4OAoKClCpVJSW/r3lzAqFgrfffpvQ0FBeeeUVve2khoaYeXqSHRmJbbuKH3NZN29i00b3Qu3mvr7EbdmCSqlEWrZmX/bNmxhZWyPTcVfZmiQdPEj8jh00nToViya670plZGKsdbdGtVqNsbUlSdcisfPTJFVKi5Wk3Iqh9chn6/X+daFWq7TuTlmZ3NRY6w6harUacxtLYi7fxq0sYaUsVvIgIoZ+44bW+D4RJy6zdfFanntvJEFda79bo1qtJjk2AWcftzrHZmZjyb0rt3Epi62kWEncjRh6vVbzfosMv8Tub9cy6F8jadaltc4257YdIXztHobPmlh+99iamJkZa935Va1WY2dvwbnTd2gerElcFBUpuXLpHm+9N7jW16ss6nYC9vbVkxrHj0SQmZnPkOdrXly/pn51D6jo1/sRMQwYX3O/Xj9xmS2L1vL8tJEEd6tjv97T369mZiZad35Vq9XY21tx5vRNgssSeUVFSi5fjOLd91/U+z6tWjfh0IEL5OcVYlrWD/fvaxYtdnXVnCwoLCzGwED7bKRUKi0/4fsoFrO0wvJY5FaWpEZEYu3rDWiOzfTb0QSOeF5vLDb+viRd1E6wpkbcwtrbC2mVRFLSxasU5+bh2UP/pa5x4WeQGhni1lE7QaV3LrmuPZek3o6h1SuPP5fc2n2YiE276P7hZBxqWQfTxMxY686varUaazsLIs5F4ReoOR6Ki5TcunqXV6YMqVccapUKpY4F2C+ciCAnK4+eg0Pr/FolajW3M3Pp4GjD0fiKH3ntHW04lpBWwzPrr4m1ebXLNGuiLFFx404aXdq6sS88tnx7lzZu7D8Zq/M5l26mYGQoxdPFggdlP2Y9XSwwMpSSkKKpcDKRG1RbdLy07HFdz9UrVWquJ+XQzduWPZWSG119bNlbj2SHRCLBUCrBQAqVvza0dLEkyMmCLw5F1fm1HilRqbmpyKGTqzUH7lf0YSdXaw7d1/9Dvq2TJT/0DeKHKw9Yc1P7JlgpecU8u037hjwjmrnQydWGd47cJD637tVYJSo1tzJyCHW25nBcRXyhTtYcefj4iYZStZqUAs046+/pwMmE9AbXeJWo1ESm59DRxZpDlWN1tuZwnP5Y2zhY8l3PIH66/oB1t+t/11BdlKVqIhKy6epvx54bFeukdfW3Z98N3eum9V8arvW4X6ATb/XwY+iPf5FU6Y6eg4KdWTQshGmbr7FXz2vVpEStJio7l3b21hxPqtgvbe2tOZH0n632qo2yRMWNW6l0CfVg3+GKNeg6d/DgwNGab0DmaG9Kzy5efPrVUb1tQpo7EtjUnq8WhettU1t8EXfT6dLShb1nKtaG7BLiwv6zuteKvHgrVTPPOZnzoOwut55O5hgZSolPq/2EQ0MpVWVj0NeOPTcrborQ1deOfZHVb5IA0P8H7Tuv92vmyFvdfBn68xmScupfxfnfQFmqJiIxm65+9lX2k73+/fT9Sa3Hmv3kx9CfT2sdq4LQ2IiEnfBEqVSa68IWLVqEs7P2wrSGhprhef36dT777DPGjx/Pu+++i7m5OeHh4Xz33Xd/WxxpaWlMmTIFX19fPv/88xoviwNw6tePe7/+ipm3N+b+/qQcP44yKwvHHpqqmrgtW8iLjaXZe5pqKNsOHYjftYt7v/2Gy6BBFCYnk7hvH26DB2u9V36c5kxsaWEhEomE/Lg4JAYGmLhq1hJK3L+f+G3b8B03DmMnp/KqPYmREVjqX+tFIpHQ7KleRGzbj6WbMxYujkRs2YeRsRzvLhVrg/31veaywc5TxpRvy4jVxKQsKEAilZARG4fU0BArd01CNWLrPuz9vTF3tKe0pISEyxHcCz9Hu7H6Ex9VY+v4bA/CNxzA3t0JOzcHTmw4gMxETkjPtuXttnyzBoDn3x8FwPXjl9jyzWr6jxuKV7AfOWXrVxkYGWBqobkL5dG1e/Fo5o2tqwNF+YWc3XGC5HsJDJ5S99jaP9ODv/48gJ27E7ZuDvy1URNb8x4Vse1cvBqAIe+NBuDmiYvsWryaXq8/i0ewf/laeAaGBpiUxXZ2y2GOr97FkPdGY+vmWN7GUGaEsZn+y2KrxvfSqG6s+vkw3j6OeHjZs+rnw5iayun/dEWScPYnmksaZ83VrOm4YfUJXNxs8fVzQqksZd/uS5w4EsG8xWOqvcf2sLO0C/XHzb1+iWWJREKnZ3twYsMB7D2csHdz4Nj66v0aVtavL5T167Vjl9j8zWoGjh+Kt55+PVLWr3Zl/Xpm+wmS7iUw5K269+vI0f1YuWIXPj7OeHk78/NPOzE1NeapQR3L23328c8AzJmnuWnN04M68vNPO5j52S9MnPIsOdn5LJy3jr7925VX5nXv2Yo1v++neZAPLUJ8efAghR+WbaV7j5Y6KxQlEgm+A3pzZ8c+zF2cMXNx5M72vRgYy3HvVHFsXv5pFQCtJ4wFwLt3N2IPHiNizZ949epG+p0Y4sJP02Zy9XXV7h8Nx755AGaOuiuv1Go1D46dwi20HYYmxlDDfUYlEgkBT/Xixrb9WLpq5pKbW/dhKJfjVWkuOfODZi7pOFn3XIKk+lwSufMg1zfupOOUMVi4OFKQqZnfDGQyZDVcKl45toEvdmfb74dw9XLE2dOBbasOYmwip3O/ipMpy79cB8CkGZoTM/s3hePgaourp6ZK+NaVGHavP0a/57tUe48jO04T1LYJjm71Ox423IlnZvum3MzI4Zoim+d8NDcW2HZX88N9YpAXzW0sePtkRPlzvC1MMJJKsZYZYWIopYmVZvzfydL8WHzRz5Wk/ELuZudjJJUywNOBHq52fHymfotp/7o5gq+n9+DarVQu3Ujm5cGBONqZsn7XLQCmvd6OkAAHxny4F4BTl+KJuJPGvGnd+Gr5WQA+nRTKlcgUrkdpEi5HzsQx592uvDK4GeEX4nGwNeHTSR2JuJNGYh2q6x5Zee4BS4YEcTUxmwsPMxnZ2h0nczlrL2vW/prew49Wrla8sl5zF+Dngp0pKlFxOyWXYpWaEGcLPuzpx55bKRSXaqeUXmnlxt30PM480L9uZU3+uBHPvG4BRKTlcDklmxcDXHA0lZdXzf2rjTfB9haMP6CpMmzvbMX3fYLYeDuRXXdTsCtb606lKqvYU6uJztSuRkovVFJcqqq2vS7W3orni44B3FDkcDUtm2F+LjiYyNlcVok2JcSbIDsLJh+9Xv4cH0tTjKQSrOVGmBga0NRaM+aiMjV95mlhQrCdBdfTsrGUGTIywB0/K1M+P9vwyxQfxfplpwAiFDlcTc1mWJOyWO9oYn2rpTfBdhZMPKKJta2jFUt7BrEpKpG9sSnYlVWvlqppcKXfIytP3WPxCy25+jCLCw8yGNXeEycLOWvPaxI70/s1paW7FSN/09wVOypF+zLcEDcrVGq11vYhLVxY/EIIc/fd4lxsenlVUHGpmqx63Ily070EPm7ZhMjMXCIysnnG0xl7uYyd9zXzyPgALwKtzJl27kb5c7zMTTCUSLGSGWJiaIBf2edoTE7Fcfhom6mhASq15nGJWsX9XN1Vtrr8tu4KC2f35dqNZC5dTWLEsCAcHcxYv1kTy7QpHQkJcmLM5O1azxv2TCAFhUr2HtS/juRLzwVx734m5y41PDH7665IvpnamWt3FFy8ncLL/ZviaGvCugN3AHj/lVaE+Nvx6heHATh1PZGIuwrmT+7EnN8uAPDZa+24EpXK9ZiKBGmgt6aa29zECLVa81hZoiL6MS67XHnmPoufa8HV+CwuxGUyqp2HZgyWVWtO79OElq5WjFytiSsqtcoYdLXUjMHUv+cS8boyM5Xj5635LSeVSvBwsyekuRcZmbnEJfz9SeWVf8Wy+PkQzX56kMGo9h7ax2rfprR0s2Lk73qOVdfqxypAc2fNyWtzuSEqteZxcamK6Hp8dgnC30kk7IQnysfHB5lMRlJSEu3b616Q/9q1azg4OGhdFpuYqH3pg5GRUXnyr77S0tKYNGkSvr6+zJkzpzxRWBO79u0pzcsjYc8elFlZmLi60nTqVORl1XLKrCyKUisuzzM0NSXgX//i/vr13PzqKwxNTXHu1w+nfv20XvfGl19qPc68dg2ZnR0t52kWsE85dgx1aSkxK1Zox9OpE4HvjKox5sBn+lFSrOT8rxspzsvH3t+bXp+8pVU9k59W/YfL3o/maz2Ov3gdM3tbhv5bE2tJYRHnftlAgSITA5kRlq5OdJo8Bu8u1dd+0qfrC30oKVKy+4cwCnPzcQvwYvScSVoVW1mp2rFd2HMKVamKfSu2sm/F1vLt3i38eW3BVAAK8wrYsXQjuRnZGJuZ4OznzusL3y6v+KqL0GF9URYrOfDjJgpz83Ft6sVLX0zWii27SmyX92piO/zzFg7/vKV8u0ewPyPnvQ3Axd3hqEpK2b5wldZzg3t3YPC7NfdlZaNe60VRoZJv5m4hJ7uA5i08+fbHN7Qq8ZKTtOMrUZaybNFOUlOykMuN8PVzZtH346qtURf/UMHFc9F8sXBkneOprNvwPpQUK9n1vaZf3QO8GPNVlX6tcufM82X9uuenrez5Sbtfxy0s69fcArYv3UhuuqZfXfzcGfd1/fp17LinKSxSMm/OGrKz82gR4sfyn6dpVeIlJmp/wTQ1M+anlR8wf+5aRr30BRaWpvTq3YZ33nuhvM0bE4YgkcD3y7aQkpyBtY053Xu0Yuo71dfWe8RvUH9Ki5Vc/2MDyvx8rH196Dh9alnyTKNAoX2pkKmDPR3en8KNtWHcPxKO3NqK4NEv4tpeu8o3LyWVtMgo2k4ehz6KyCjyklNoPfG1mndamWZDNHPJxd80c4mdnzc9q8wleTrmkv0fa88lCZeuY2pvyzPLNHPJnQMnUJWW8tfSX7XaeXcPpeOkV+sU2+CRvSkuUrJq8Wbycgrwa+7JR99O0KrEU1S5sYhKpWLDD7tIS8pAaiDFyc2OEZMG0+fZTlrtUuIV3LwYzVuzR9cplsoOx6dhJTdkbIAHdsYy7mbn8/6pGyQVaC7vsjOW4VYpRoBFnYNwqbTt9z6aJHznLZoqASOphLda+OBgIqOoVMXd7HymnbrB6RpunKLLnuP3sLY0ZvIrrXC0NSXqfgZvfHagvFrO0dYET5eK6lu1Gt6ccYAZkzuxdtHTFBWXcupSPHN/PFteSbrl4B3MTI0Y9UxzPnozlJy8Ys5eTWThynP1im1XZDI2Jka81dkHR3M5Uam5jP3zCvFl1RCO5nI8K13mVqpSM6WTN942pkgkEJ9VyB8XH7LyvHYVjZnMgCHNnfjuZMPvbLwvNg0ruRFvtvTEwUTGnYw8Jh2KILHshgX2pjI8LCv6b6i/E6ZGBrwW7M5rwRUL8cfnFjIg7HyD49DnYJwmvnFBntgby4jJyuOdExEk5ZfFZyLD3Vx7zH3XIwjXSmNu3UDNfNJug6aySSqBkQFueLXzp0Sl5kJKJuMOXS3/NzfUgQeaWMcHeWJvoon17WMRJOqJdYivEyaGBrza3J1Xm1fsy4TcQgbveLx9uSsiCWtTGVN7+uFgYUxUcg6vrb5Qvt6co4UcL9u6380dYGQHD4wMpMwa1JxZg5qXbz9zT8GIX+p+TBxNTMPSyJDR/u7YymXE5ubz0fmbJBeWzSNyI1xNtft0frvmOFfatrKsar3XnlPVtj3SxcmWpPxCXj6mXfFZkz0Ho7G2MmbS6+1wtDcjKkbBG//aSUKSpgrXwd4UD7fqyya88ExzduyLorBI91UZZqZGPN2/Cd+vfLx+3fPXfWzM5UweFoyjjQlRcZmMn3uUhLJqOQcbEzydtOe5N+YdY+br7Vj3RX+Kiks5eS2Rub9f1FoibefXg7Tep087dx6m5NJzyrYGx7rrRhLWJkZM7e6Hg7mcqJQcXlt7ifisinmvvmPwn9AmxJcDf84sfzxz2nBmThvO6k3HeXPaj3/7++26kYS1adl+sni0ny5q7yeb+u+nPZO0T9b1a+bIw4wCun57/G+J+79NbUUswn+eJDMzs5GsVCr8r1izZg2bNm1i+3bNWbbly5ezefNm3n77bVq3bk1BQQHXr19HKpXy3HPPER4ezvTp05k1axYtWrTg9OnTrFixgszMTM6d03zR2bdvH1999RU///wzzs7OmJqaIpPJSEtLIz09nbt37zJz5kyWLFmCg4MDTk5OWFlZkZqaysSJE3FwcGD27NkYVFrfycbGRuvxI1OuVF/nqzFoYvlk1zCpTYBl/dYI+icVlDbeD6OhXnW/vO2fdii+4Xcb/E8b4vn3rKf2nzLjYuO9/MLMqGEnP/4JQzz/nsX4/xPePmFVe6MnJPXHx6uA+k8r7lX3ZPs/zcJF9x0HGwNj49rbPCkNPIf6j0m/+c9WH9WHT+fG+/kVP6txfgcGUHk33jm4JLjua4s+Ccm/rHrSIejl9Fr1qz8ak6vvdaq90X8xufnNJx3C36oot3ntjRoZUWEnPHETJ07E1taWtWvXsmDBAszMzGjatCmjR2uqGLp168aoUaNYvHgxRUVFhIaG8uabb7Jw4cLy1+jduzfHjh1jypQp5OTkMHPmTAYPHsyWLVtYuXJlebt3330XoPzvZ8+eJS4ujri4OIYM0V7jaNu2bbiWXYoqCIIgCIIgCIIgCILwTxEVdoJQT6LCrmFEhV3DiAq7hhEVdg0nKuwaRlTYNZyosGsYUWHXcKLCrmFEhV3DiAq7hhMVdk+WqLB78kSFnSAIgiAIgiAIgiAIglBJ4y1q+F8hfdIBCIIgCIIgCIIgCIIgCIJQQSTsBEEQBEEQBEEQBEEQBKEREQk7QRAEQRAEQRAEQRAEQWhERMJOEARBEARBEARBEARBEBoRcdMJQRAEQRAEQRAEQRAEoZxE1Hc9caIHBEEQBEEQBEEQBEEQBKEREQk7QRAEQRAEQRAEQRAEQWhERMJOEARBEARBEARBEARBEBoRsYadIAiCIAiCIAiCIAiCUInkSQfwP09U2AmCIAiCIAiCIAiCIAhCIyISdoIgCIIgCIIgCIIgCILQiIiEnSAIgiAIgiAIgiAIgiA0ImINO0EQBEEQBEEQBEEQBKGcRCLWsHvSRIWdIAiCIAiCIAiCIAiCIDQiosJOEP6fyFM27vx7R0flkw5Brw13jZ90CHrdzmq8/TrAvfGedUvIVzzpEGrU1Er2pEPQK62w8Y65plbyJx2CXsXF6icdgl4lQ/2fdAg1yyp+0hHolZNQ+KRD0CvHyOBJh6CXJL3gSYdQI2l64+3Xu1eNnnQIehm8FvykQ9BLFZf7pEPQq2DDoScdQo2cXhvzpEPQK/m33590CDV7r9OTjkD4f67xfisXBEEQBEEQBEEQBEEQhP9BosJOEARBEARBEARBEARBqKTxXk3zv0JU2AmCIAiCIAiCIAiCIAhCIyISdoIgCIIgCIIgCIIgCILQiIiEnSAIgiAIgiAIgiAIgiA0ImINO0EQBEEQBEEQBEEQBKGcRNR3PXGiBwRBEARBEARBEARBEAShEREJO0EQBEEQBEEQBEEQBEFoRETCThAEQRAEQRAEQRAEQRAaEbGGnSAIgiAIgiAIgiAIglCJ5EkH8D9PVNgJgiAIgiAIgiAIgiAIQiMiEnaCIAiCIAiCIAiCIAiC0IiIhJ0gCIIgCIIgCIIgCIIgNCJiDTtBEARBEARBEARBEAShnESsYffEiQo7QRAEQRAEQRAEQRAEQWhERMJOEARBEARBEARBEARBEBoRkbATBEEQBEEQBEEQBEEQhEZErGEnCHUUFhbG6tWrSUpNxcTVFc+XXsKiSRO97fMfPuTB+vXkxsZiaGaGQ/fuuA4ahERSsRZA9u3bxG3aREFCAjJra5wHDMCxR4/yv6tKSkjctw/FX39RnJmJsbMzHs8/j1VwsM73jNqxl8hNO/Dp24MWr77E7a27iT16EmVePjZ+3oSMGYGlu2uN/860yCgi1oWRE5+IsbUV/oP649Onu1abmP1HiD18gvy0dGTmZji3CSFoxHMYGhtrXuPWHWL2HCQz9gGFGVm0fuNVCAzR+55qtZo1Kw6wZ+tZcnPyaRbkyZQPn8fbz7nGWB+JuHKPDyYsx8PLgRV/fqD1t63rw9kV9hcpSRlYWpnRqUcQ46YOwsRUXqfXVqvVXNm0h9uHT1GcW4BDEy86jnsJGw8Xvc/Jz8ji/B9bUNx7SHZiCn7dO9BtymitNneOneHkD2uqPXf0miUYyozqFNuj+Lb9tp/jO86Ql5OPb3MvXn1vGG4++vfdrcvRhK3YQ+KDFIoLi7FztqXH4FCeermXzvZnDl3ix9lraNmpOe8uHF+v2H5evpdtYX+Rk11AUAsvPvh0OH7++vcdgFJZwq8/7WfPrvOkpWRha2fJqLG9eWmk5tiIiU7k5x/2cOvmQxLiFYyfNJA3Jz9d57gexbb25wPsKxtzAUGeTJ7+PF51HHM3rtzjw4maMbd8o/aYy88t5I8f93Hy8DWys/JwcLJmzOSn6N6vVb1irBrv6Q17ubb/L4ryCnBu6kWfCcOx99S/L++cvsrVfSdJufuQkuIS7DycCR3eH//QFg2O41EsV8P2EFV2TNg38SL09dqPiQurNcdETmIKvt070HXyaL3t7566QPjSVbi3CaLPh5PqFdvPP+xha9gpcrLzCWrhzfTPXsTPv+Z5T6ks4Zef9rF35zlSU7KwtbNg1Ng+jBilOSa2hp1iz46z3I1ORKVWE9DMnYlTB9OqjX+dY3vB34XRzdyxN5FxNyuPRZfvciU1W2dbmVTCx+2b0MzGHB9LE66mZTPhyPVq7Yb7u/BiE1dczOQk5xfx6804dsem1DmmR0YFu/Jma3ccTeVEpefx5ckYzidm6Wzrb2PKF92b0MTWFAuZIcl5ReyMTuW7c7EoVWoAHExlfNrFl2AHC7ytTNh6O5kPjtyud1wAo9u4M6GjNw7mMu6k5jH70G3Ox2XqbNvE3owvBzTD394MC7khKTlF7LiZzLfhMeWxAQxt7syETt742pqSU1TCqdh0vjocRWpe8f+b2ABGt3JjQntPTXxpecw+cofz8br7tYmdKV/2DcDfzgwLuQEpucXsuJXMt6fuacVnJJUwtZM3zzd3xtFcTlp+MSvOP2DVpYf1im1URy8mdPPF0UJOVEouX+y6wfnYjFqf521nyq6p3ZAAQZ/v19mmnZcNG97oSExqHgO+O1GvuABG9fDljf5NcbQyJiohmzl/XuV8tEJnWzc7U8LnPlVt+9ilJzlxIxkAB0tjPh3egiBPG7wdzdl65j7Tf79Y77igbMyFelUac1Gcf6hnzNmZ8eWAAO0xF5nMt+F3y/v0m0HNGR5SfX7MLy4lcNHResU2KsiVNyrNI3NO1TyPzO7ehCY2FfPIruhUvjtfZR7p7EvQo3kkKpnpDZxHoHGPubEvd2LK6z1xdLDgdnQyM+bt4OzFe3rb9+zSlA/e6k+zJk4UFZdy/lIss7/Zxd3YtPI2r73Smddf6YyHmy3xiRl8+9MRNm2v/7gb1d6DCV18cDSXE5Wayxd7b3H+QR32m60puyZ21uy3uYfKtzuYy/lsQADBLpZ425mx9WoC72+r/vn2d+rSoRn/mjCYNi18cHW25Y33lrMmrP799L+o8u9W4ckQCTvhH6dSqViwYAGHDx8mOzub5cuX07Zt2ycdVo0OHjzIokWL+PDDD9khl5Ny7BhRS5cS/PnnyO3sqrUvLSjg9rffYtGkCc0/+YTCpCTurVqFgUyGc//+ABSlpXFn2TLsu3TBd9w4cqOjub92LYbm5tiW7Y/47dtRnDmD9+jRGLu4kH3jBneWLyfwww8x8/TUes/06LvcP3oKSw83AKJ3HyB67yHavPkq5s5O3N62h78WLKXPws8xMjHW+e/MS0njzDff49mjM20nvoYiKoZrv69HbmmOa/s2ADz86xw3N2yl1bhR2AX4k5eSypWVa1ApS2j9huYHeGlhERburnh07ciln1bVun///P0om9eeYNqsl/DwcmDNyoN8PGUFv2yejqmZ7lgfycnO5+tZ62nd3p+0FO0vhkf2XeKXpbv412cvEtzah6R4BYu//JPiohLem/lirXEBXN9+iIhdR+g2eRRWrk5cCdvL/jnLGPbtkDNEWAAAIABJREFUTL37sVRZgtzCnBbP9uP2oVN6X9tQLmPYss+1t9UjWQewZ90R9m84zrhPRuDi6cj2VQf4+t0fmbfuI0xMdcdnbCqn77BuePi5IJMbcef6PVZ9E4bMWEaf57potU1JULDxh500belbr7gA/vj1EOt+P8rMOSPx8nZk5Y/7mPrm92za+RlmNfTrZ9N/Jzkpg09mjsDDy4F0RQ5FRcryvxcVFuPiakfPPi35cdnuescFEPbHUbauPcG7s17C3dOBdb8c5NO3VrAirG5jbtGs9bRq74+iypgrKSnl06krMLcw4eN5o7F3tCItJQsjI4MGxfnI+S2HuLDtKAPfGYmtmyOnN+4jbOb3vP7DZ8j09HNcRDQeLZrSZeRgjC1MiTx+gR3zV/LinLdxD/JrcCwROw5xY9cRuk4ehaWLE1c37+XgV8t4bon+Y0L16JgY2o+ow/qPCYCc5DQurtmGY7P6x/jHrwdZ+/thZn01Gk9vJ375cQ9vvfFvwnbNrHHMffrBb5oxN+tlPLwcSVdkU1RYMeYuno+i38A2tGzth9xYxvo/jjB1wvesDfsYTy/HWuPq52HP+218mX8hhitpWQz3d2Vp92CG771Icn5RtfZSiYTiUhV/3kmgi4sNFrLqX9eG+bswtaUPX52/Q4QihyA7Cz5t7092cQnhCel13GMwyN+BmV39mHniDucTsxkd7MpvQ1rQf915EnKrx6ZUqdh8O4mbqblkF5cQaGfOvF5NMZRImH/6LgAyAwkZhUqWX3rAy81rTtDXZHCgE7P6BfDZ/ltciMtkdFt3fn+pNX1XnCYhu7Ba++JSFWHXEriRnEN2YQmBThbMfzoQQ6mEeUfvANDO3YolzwTz1eEoDkSlYG8mZ87AZnw3NJhX1l36fxEbwOAAR2b1bsJnh6K48DCT0a3d+P2FlvT99SwJOdX7tbhUTVhEIjdScskuKiHQwZz5A5pp4jseU95u2ZAgXCyM+ejALWIzCrA3k2FsWL8Ldga3cGHW4ObM2B7B+dgMRnf0YtXYDvRbcpyErOr77hEjAwnLXm7DuXvphPrY6mxjaWzI4hdb8VeMAifLmudyXQa1c2fGSy2Zue4yF6IVjOrpy69TuzLg8wMkZBTofd6Y704SWSlxllUpwSozkpKeW8yP+24zoptPvWN6ZHCgE7P6NtWMuYeZjG7jwe8vtaLvz6dJyNbRpyoVYdcTK8aco3mlMRcNwOxDt1lwLFrreZtHt+OsnsSzPoP8HZhRNo9cSMpmVJArvw5uwYD1euaRUhVbbiVxI61svNmbM69nUwykEhZUmkfSC5X8eOkBI4IaPo9A4x5zQ59qyZyPh/LRl1s4ezGW117uxPqfxtFtyDfEJ1bvB083G37/fiwr15xiyofrMTOVM/P9Qaz7cRwdBy4AYMyITsx472mmzQzj0rUHtA7xYNEXL5CVlc+BY5F1jm1wkDOzngpkxu6bnL+fwegOnqwa1ZZ+35+sfb8Nb8m5++mEemnvN7mhlPR8JctP3uPltu51juVxmJsZc/N2HOs2n2Dlksn/yHsKwt9FXBIr/ONOnTrFzp07Wbx4MXv27CEkRH/lVV2tWLGCESNGVNu+detWJk2aRO/evenQoQMJCQlaf1epVEybNo0hQ4bQtWtXnnrqKWbOnElKinaFwrp16xg8eDDPPvssJi4ueL38MkZWVqQcP64zHsXZs6iKi/F97TVM3dywbdsWl4EDSTp0CLVac+Yw5fhxjKyt8Xr5ZUxcXHDo1g27zp1JOniw4nXOnMF54ECsQ0IwdnDAsWdPrIODtdoAlOTnc3H5b7QaPwojM1PUajUx+47QZPAAXNu3wdLDjTYTxlBSWEj86fN692PskXCMbawIefUlLNxc8O7VFY+uHYneU3FmLP3OXWz8fPDoGoqpgx0OQc3w6BpKRkzFmUCnVsE0f/FZXDu0AUnN04xarWbb+nBeHNOLbn1C8PZ34YPPX6Ygv4ij+y7X+FyAJV/+Sb9B7Qhs4VXtbzevxtKshRd9B7XF2dWWVu2b0HdQO25F3K/1dR/FdnPPUUKe7Yd3x9bYeLrS7a3RKAuKiDl5Qe/zLBzt6Pj6cJr07Ijc3LTG9zC1ttT6rz7UajUH/jzB06N6075nS9x9XXjj05cpzC/izEH9P+68Azzo2Lc1bj7OOLja0XlAO1p0CCDq6l2tdiUlpfz4+WqGvfE0Di7VE9O1xbZhzXFeHdeX3v1a4dfElVlfjSI/r4j9u/Wf4T3zVyTnztzm2x8mEtq5Ga5udgSHeNO2fUU1a/NgL955/1kGDmqHsYmsXnE9im3b+nCGj+lF196aMTdtlmbMHdtf+5j77ss/6TO4Hc10jLmDO86TlZ7LzEWvEdTKBydXW4Ja+dA0yFPHK9U93ks7j9NhWF+adm6FvZcrA98ZRXFBEZEn9O/L3m8MI/SFfrg09cLGxYHOI57Cyc+D6LPXHiuWyD1HaTG0H16hmmOi6xTNMXG3hmPC3NGO0NeG41/LMaEqKeXE0t9oPWIwFk729Y5t/eqjjBnXn979WuPfxJVZX71Kfl4h+3frn/fOnIrk3JlbfLd8MqGdA8vGnA9tOzQtbzNnwWu8+EpPAgI98PZx4qOZIzA1lXP65M06xTaymRs77yWz7W4SsdkFfH0phrTCYl7QU21aWKpi3oVotsYkkZKvu7LqaW9Htt1NYv+DVOLzCjnwIJWtMUmMCazfD6DxrdzZfCuZDTeTiMnI5/PwaFLyihgZrLsq8X5WIZtvJROpyCM+p4hDsQq2RaXQ3tWqvE18ThGzw2PYfCuZzKKSesWjFVsHL8KuJbDhSjzRijxmHbhNSm4xo9ro/jfezygg7HoikSm5xGcXcuhOKtsjkujgYV3epo2bNYk5hfxy/gFxWYVcTshi1YU4WlWK/789NoDx7TwIi0hiw7UEotPzmXX4Dil5xYxq5aY7vswCwm4kEZlaFl9MGtsjk+jgXhFfN29bunjZMnbzVU7ez+BhdiFXErM5U8/kzvhuPoRdfMiG83HEpOby+c4bpOQUMapj9Tm1so8GNuNWYjZ7rifqbbNwWEs2X3rIpTpUAOkyrm8TNv91n40nY4lJymH2hqukZhUyskfNJ60y84pIy674T1laUZUYr8jni41X2Xz6vlYir77Gd/Ak7HoiG64mEK3IZ9bBsjHXuo5jLjqN7Te0x1xOUSmpecXl/3lZm+BlY8qGK/H1im1cS3c2305mY6RmHpl9MprUmuaR7EI2307mliKPhNwiDscq2B6VQnsX7Xnki5MxbL6dTFZhw+cRaNxjbuKY7mzcdoE1m85x524Kn3y1neS0bMaO6KSzfUiQO0aGBny1eA+xDxTcuJXA0hVH8PGyx9Za8/k6/Jk2rAk7y9Y9V7j/MJ1te66y+s+zvDVe95UU+ozv7E3YlXg2XHxITFoen++JJCW3iFHta/5O81G/AG4l57CnrMq0soeZBczeG0nYlXgyC5Q6nv3323/0CrMWbmTrnnOoKlUMC8J/A5GwE/5xDx8+xN7enpCQEOzt7TEyql9FUX0UFhYSGhrKG2+8obdNu3btmDt3Lps2bWLBggXEx8czffr08r8rlUpu3bpFaGio1vOsmjcnLyam6ssBkHv3Lhb+/khlFckEy6AglJmZFCsU5W2smjev9pr5sbGoSjRfTFQlJUgNtSsrJDIZudHaZ0Nj16zBtX0bHIKaAVBSUEhRVjaOLQLL2xjIZNgHNCH9ju6YATKi7+IQHKi1zbFFczLv3UdVUgqAbVM/sh7EkR6tSe7kp6WTdPkaTi11X6Zbm6T4dNIVObTtWPHjWG5sRIvWPty8Flvjc3duOkW6IoeXx/XV+ffgVj7E3E4g8romQZeSlMGZ4zfo0CVQZ/uqclMUFGRm4xpS0d5QJsM50J+U23dreGbdlBYr+XPyDDZO/IyD85ejuBdXr+enJqaTlZ5DcPuA8m0yuYymLX2Jjoit8+vcj3rInYhYAlppVzRtXrEHexdbuj7Vvl5xASQ8VKBIy6Zj52bl24yNZbRu68e1q/ov8zh+5DrNgzxZ98dRBveZwbBBX/LNvDDydVQhNVRSfDoZihzahGqPueDWPkTWMuZ2bTpFhiKHEa/rHnOnj0cQ2NKbH7/exsgBs5nw4kLWrNhPSdnx0xBZyQryMrLxbl2xL43kMtyD/Ei4pX9f6lJcUIRxLUnkmug7JpwC/UmNevxj4tKGnZg72OHfo2O9nxtfNuZCO1fEphlz/ly7on8/HTtylebBXqz9/TCD+nzK809/zjdz/yQ/X3/1gFJZQnFxCRaWte9LQ6mEZjYWnEnSTmqcScogxL5+SfrKZFIJRaUqrW1FpSqCbC0wqOMlLEZSCcEOFoTHaVfknYzLoK1z3WLzsjKmh6cNZ+Prl7SpS2wtXCw4cU/7UsTwewraVkoi1RibjQk9/Ow4U+mH9IWHmTiay+njr0kI25gYMaS5E0dj0vS9zH9VbOXxOVtwIrZKfLHptHWrW/LPy9qEHt52Wsm4Af72XEvKZnw7D85M7Myx8R35vHcTTOtRQWxkICHY1YrwO6nasd1Jpa2njd7n9QpwpHczJz7feUNvm1EdvXCwkLPsyJ06x1MtNk9rwm9qJxnCI5Np41fzSavlEztx7utB/PlBD55qozsp+jjK+/Rxx5yvHWce6D9WR7Ry43ZqLhf1XDqtLzZd80h4XAZtnOo4j1ga093ThnMJf+88Ao18zBkZEBLkxrFTUVrbj526Q7vWupOJVyMeoiwpZeQLoUilEsxM5bz4bDsuX3tAemY+ADKZIUVVTpYUFilp3cIDwzpWxBoZSAh2sSQ8Wnv+CY9Jo62H/jHXq4kDvZs68PmeulfyCYKgn7gkVvhHzZ49m927NZewdejQARcXF7Zt28bq1avZunUraWlpuLu78+qrr/LUUxVrgvz73//m2LFjJCcnY2trS58+fZgwYQJyuZxdu3axcuXK8tcEmDlzJoMHD+bll18G4OZN3VUQUqm0vA2Ai4sLY8aM4f3336eoqAi5XE5mZialpaXY2mqXdBtaWqKM1P1hpMzKQmaj/SXAyMKi/G9ye3uUWVkYBmonjowsLVGrVJTk5iKztsYqKIjkw4exCAjA2NGR7Fu3yLx0qbxKDyA1PJyilBQCp4wp31ZarDmDK7fU/qIkt7KgIEP/l6HCrOzypF/FcyxRl6oozs3F2NoK907tKc7N4+ScxYAadakK9y6hNB/xnN7XrUm6IgcAGzsLre3WthYoUvV/YbwXncianw/y3W9TMTDQ/eWj54DWZGfl8/4bP6BWqyktVdHn6baMe3tQnWLLz9SsL2VirR2biZUFeTXsx7qwcnWky6SR2Hq7oywo5OaeY+yesZihX3+MlUvtl9gBZCk08VnZasdnZWtBRg377pF3n59NTmYupaUqnh3bn97Pdi7/W8S525w7coUvfptWj39VBUVZbLZV+tXWzoKUFP2xxT9M4+rlu8hkhsxfMo6cnAK+mRdGWmoW8xePa1AsVWWUjTnrBoy5dSsPsvhX/WMuKV7B1QvR9BzQms+/HUdyYjrLF2ylML+Y8f8a0qB48zI0+9K0yjg0tbYgV1H3H1WXd58gJy2T5j3rn4B9pKDsmDDWcUzkpz/eMRF/NZLY0xcZsuDjBj1fkaaJzc6++phLrW3MXYpBZmTIgiXjNWNu7iZSU7NYsET3yZ7lS3diaiqne6/a1wO0lhlhKJWQXqhdWZNeqCTUqeEnrE4nZTDU15mjD9O4mZ5LoI05Q32dMTKQYi03RFFYe+WCjbEmtrR87bap+Uq6uNdcvRr2fCuCHSyQG0pZfyOBr8/UL3lca2ymMgylUtKqVCSl5hXTxbvm2La82p4gZwuMDQ1Yd/khCytd8ncpPou3t13nu6EtMDaUYmQg5cRdBe/V8KP8vyk20CT6DKXS6v2aV0wXL/0JCoAtr7QlyMlcE9/VeBaeqDjJ52FtQjs3K4pLVEzcHoGl3JDZfZriZC5n0o6IusVmKsPQQEparva+S8stoou/7qpaBws5859vwcQ1F8kr1n3yI8DJgnd6N+G55adoaAGNjblcE1uVS4bTsgvp0kz353J+YQlfbbrGxRgFpSoVfUJcWfpGKO+vOs/2s/U7CVdjbKZGDR9zo9vpHXOVWcgNGNTMiYXHdf9db2x65pG0AiVdTGuObdPzrQi2/8/NI9C4x5yttRmGhgakln0veSRVkUP3TrrXSI1LyODFcT+zcslo5s94FqlUwvXIBF55c2V5m2Mnb/PKsA7sPnidKxEPaRnkzshhochkhtjamJGSmqPztSsr3295VfdbMV18da8D7WAuZ/4zQUzceFnvfhP+24j6ridNJOyEf9S0adNwcXFhx44drFq1CgMDA5YvX86RI0eYPn06np6eXL9+nblz52JhYUHXrl0BMDExYcaMGTg4OHDv3j3mz5+PTCZj4sSJ9O3bl5iYGE6ePMny5csBMDc3b1B8WVlZ7Nu3j+DgYORy7Q+jaotuqmv5dNZX4VBpe9UWjxJxj97L86WXiP3jDyJmzQKJBGMHB+y7dCHtlGYNqIKkJB5u3YrzgAHsmfg+oEnWObcJ0RmCWg2Sau9aS9xV/p1pkVFEbd9Ly7EjsPHzITc5lYg1f3Jryy4Ch9WekDiy9xLfzQ0rf/zlt4+SMNrvq0atdx8WF5cw95M1vPHOEJzd9J/1vnYxhnW/HOKtj56nWbAnCXFpLP9mO3/8tJ8xEwdWax8Tfp6/Vqwvf9zv40eL3VePrdb9WAvHpr44Nq24xMYxwJftH8wjcu9xOr4+XOdz/jpwkd+/2VT++N0Fum8AodZ0dK0++fdbFBYUEXPjPpt+3IW9ix1dBrYjJzOXlXPXM2HWKMws6laNtW/XeeZ9sbH88ZLvJwDVjxu1/m7V/F2lRiKR8OWCMZhbmADwwScv8PaE5SjSsrFrQEXS0b2XWDavYszNXqIZc1X7UK3W36/K4hIWfLKGcbWMOZVajbWNOW9/OhwDAylNAt3JycxnxZLtjHtncJ0W7408dp6Dyyv25XMzJpT9X9Vjs+Z9WVnUX1c4sWo7g94fi6Wj7nV4dLkbfp7TP1ccE30+mlQWSfV9V+dgdCjMzuXU8tV0nzq21svIH9m76xzzZlfEtuSHR+vSVD1eq23S/nvZmJuz8LVKY+5Fpk74t84xt371UbZuOsX3K6dibm5Sp1jL46hEomNbffxyIw57Yxm/9m0JaBKCu2OTGRPoUe8fj9Vik9Qe29QDkZgZGRBob8bHnf2Y2KaQ5Zf+vgSF3th0bKtqytZrmMsNCXS04JPeTZjUyZsfTscCmps/fN4/gGUn73L8rgJHczmf9GnCvKcC650Ya8yxAVon96CsX2sJcMrOCMxlBgQ6WPBJTz8mhXrxw1lNlbq0bGC8vesGOWU/xmcejmLN8FbYmxpVS9jUGBtVY9M/6L59sRVrzt7nsp5Lb2UGUpa93Jq5eyN5WMM6c3UPrnps+nZbRl4xvxyqqK66fj8TW3MZE/oH/K0JOz2h1elYnbLtOuYyQwKdzPmkl/aYq+y5IBekUtgSof/yz/qoy/Hw9qN5xM6Mj/6D8wg07jFXrV+R6D1WHewtWDJnOH/uuMjW3ZcxN5MzfeoAViwZzbCxP6FWq1m8/BCO9hbsWvcWEgmkKnLZuP0CU8f3QlWlMrvesUl0bCzz7bAQ1lyI4/LDup9MFAShZiJhJ/yjzM3NMTU1xcDAAHt7ewoKCli/fj1Lly6ldevWALi5uXHz5k3CwsLKE3bjxlVU1ri6ujJ27FjWrl3LxIkTMTY2xsTEpPw1G2LZsmVs2rSJwsJCgoODWbx4cfnfrK2tMTAwQKHQvgyhJCcHI0vdyQMjKyuUWdofVsoczdmsR88xsrJCma19h8CSnBwkUikGZmaaNhYWNJkyBZVSSUluLkbW1jzcsgVZ2b8z7+5dSnJzebhlS8WLqNUkXbwKQL4iHRO7ih/nxdk5yK20q08qM7aypDBTO+6i7BwkBlJkZUnQyLAduHVsh1dPTd9YerhRWlTElV/WEPDs00gNar40pmP35gQEv1exX4o1JfsZimwcnStK7LPSc7Gx1Z14TU/L5sHdZBZ9sZFFZUkitUqNWq3mqdDpzPluHG07BrBq+T569m/FU89qLmf28XehsKCYJXM2MWp8PwwMtWP1bNcChybe5Y9LlZrYCjKzMbevqEoozMrFuIb92BBSqRR7P0+yk1L1tmndNQi/5hXrhpQoNT+YstJzsHOqiC87I7da1Z0uDq6axJOHnyvZGbls+20/XQa24+G9JDIV2Xz97o/lbdVlGYDXe77PV39Mx8VTu9qgW68WBIV4lz8uLutXRVo2Ts4VsWWk52Brpz/pZudghYOjVXniBMDHV3Pn1uSkjAYl7EJrGHMOlcdcRi7WdjWMuXvJLPliI0uqjLnBHafzxbfjaNMxAFs7SwwNDbQq8Dx8HCkqVJKdmYeVTe0nE/w6tMA5wLv88aNxmJ+ZjaVDxb7Mz8qp07qHUX9dYe+S1Tz1r1H1vkOsR7sW2Os5JswqHxPZuZg8xjGRGZdAQUY2B+b8u3zbo2TDHy+/zdBFn2Ll6qT1nO69QgjWM+acXSqNOUUOdjWMOXsdY867bMwlJWqPufWrj/Ljsp189+Nkglp4V30p3f+2YiUlKjV2xtqVJjbGRnWqgtOnqFTFF+fu8NX5aOyMjUgrLOY5PxdylSVkFtXtdTMKNbE5mGpX+tmbGJGmZ+28RxLLFpKPzsjHQCJhfq8AVlyOo/RxspCVY8svpkSlwsFMe7/Zm8mqVXxUiy2nCHKKuJOWh4EE5g9qzk9n7lOqVjO5kzdXErL5qSwJdSs1l/x9pWx+tT1fH4vWPPe/ODaAjAKl7vhMZbX3a9l73FHkYyCF+QOa8dO5B5Sq1aTkFpGUW1SerAOIVuQB4GppXKeEXUZ+MSX/x96dh8d0t38cf09WiUT2PZZYYlfUXmprdKGqylNb+VVLI4i1qCW0KG0lCLEvRe2lqCW2amkVUVtsiZ1EEolIIvsy8/tjZGIklDx95kzb+3Vdz3WZcybN55mcOTPnPt/v9y5Q42Kjf1PUqawFSSU0JwB4paozTX0cGdZOu5apSqXC1ETF1WlvMmn7eY5cScLXzZZv3qvHN+9pb1iaqFSYPHrOh6siOHLlz6cVP0jPIb9AjfMTjQOcbC1JKqGRyNOcuZFMtxaVnvv5z+NB5qO/qU0Jf9PnOebI4cr9DO179a2aumPucT3qexEede+F14srPI84P3EecXrB84iJiYqZbf7a8wgY9zGXnJJBfn4Brk+MDHd2sik26q5Q/14tyMzMZeqsoqZbg8es58zPE2ncoCInTt0kOyef4RM3M3rKFlycbElITOOD/zTjYXo29x9k/mkuePx10z/mnJ5xnnulshNNKzowrLV2iRXd6xbUgUm7LrL+jxfrJi2EkIKdUNiNGzfIyclh2LBheiNP8vPz8fAoWoz74MGDbNiwgTt37pCVlYVaraag4K8bav3BBx/QuXNn4uPjWbZsGUFBQcydOxeVSoW5uTk1atTgxIkTvPZa0bpVqRcv4tCwYYn/PZvKlbmzdSvqvDxMHq3Rl3bxIub29lg86iprU7kyKWfO6P1c2qVLWFeqVGzdOhNzcywcHFDn5/Pg1CkcGzUCwL5+fWpPngyAq6X29Ti9dA3Wbs4kXYgi6dIVnHy1Q+oLcvO4H3WV2j27PvV1cKhambg/9DMlnr+MvU9FTB4Vtwpyc1GZ6A+PVpmYPPdQEeuyZfS6cGo0GhydbDl1/ArVHy3Mn5uTx/kzN/g4sFOJ/w1nVzsWb9Cfqvnj90c5dfwKk7/ph5untkiZk52LyRNTF01MTJ56Z9Dcqoxel0uNRoOVfTnunruMS1XtWiL5uXkkXL5Goz5dnu//8HPSaDQ8uHUXx4pPX/vGyrqMXudXjUaDnaMtFyKiqVyz6LWLPned9wNebPqlRq0m/1ExpnKN8kxb9ane/i1L95D5MJMPRr6Hi0fxEVply5bR68Kp0Whwci7H8d+jqFVH+9rl5ORx5tQ1ho58+mv3Un0fDu47TWZmDtbW2i/Xt25qm8C4l/B7n0dJx5yDky2nT1zRNYMoPOY+esox5+Rqx4L1+sfcru+PcvrEFSZ+XXTM1XqpEj/vPY1ardYea0Ds7UQsy5hTzr7sc+W1sC6j1/lVo9FQ1qEct85E4V6t6DiMvXiNV//v2cdh1K+nCJ+7ljeG9cb3lQbP9fsf99T3RORlnB+9Jwpy87h3+Rov9y79e8KpSkU6fzNeb9vpjTvJzcikaf//YONafFTj0465E79fonZd/WMucNTTs9VrUJkD+06RmZmN9aPX/fYt7RpWHp5Fx9zaVQdZPH8ncxYGUL9hyVOVSpKv1nD5wUOauttz8E7RBVxTN3t+irn/jJ98PgUaDfeytBdPHSq48Ovd5OceuZen1nA+8SEtyzuw+7F10lqWd2DPC6ybZvLoosxUpSpWBCitPLWGyLiHtPJxYvflokZQLSs5sifq3jN+Up9KpcLMRIWpCRQUgJW5KeonMhY+fp4RsMaeTZcv/iGtKjmyO7roJlDLio7siS59vpOxqXSs7oq1uSmZj24YVXbQjoiNfc6CVl6BhvN3U2lZzYXd5+OLslVzJvyxx4/rMEe/wZdfTXeGtK3KOwt+JT41m8zcgmLP+aBZJVpWdeaT704+9wiovAIN52+n0LKWG3tOFTVdaFnTlfBTz9+EoVZ5e+49o4Nmaej9TR8/5nwc2XO59H/TQi95lKO2my1fHIh++g8/I9v5xIe09NY/b7Qs70D4dWXPI2Dkx1xeAecuxNK6RTV+3FvUEKp1i2rs2hdZ4s9YlTGnQK0/Sq7wsYmJ/nkiP19NXIL2RnyXt15i/8+Xio28fWq2Ag3n49JoWcWZ3Y+t69iysjPhl4o3kwDoEPar3mNedMIkAAAgAElEQVS/Gq4MaVWFd5b+TvwLFL2FEEWkYCcUpX70ARMcHIy7u7vePrNHRavIyEgmTpzIxx9/zIgRI7CxseHIkSPMnTv3L8thb2+Pvb09FStWpFKlSrz99tucOXNGN+qvV69eTJ48mVq1apFlacm9X34hLzUV19atAbizdSsZN29SY6R2FI9jkybE7tzJjZUr8ejYkeyEBOLCw/HqVDQlzrV1a+4dOsTtjRtxefVV0q9eJenoUSp/XDTNMf36dXJTUrAuX568lBRif/wRNBrcX39d+xpZW2Nmrf2yXM5K+83L1NICSxsbqr71GtHbw7H1dMfG3ZXo7XswLWOJV/Oi9av+WPQtAC/7/x8Aldq14sb+n4n8bhOV2rYi+co1bh/5nUaD++t+xr1BPa7tOYi9TwUcqviQkZDI5e9/xK1+Hd3ouvzsbDISHl0kaNRk3U/mWlQstnbWuLrrr5+jUqno0rMVG1YepHwlV7wrOLNu+UHKWFnS9o2iAsPXQdqpb2O+6ImZmSmVnuiuaO9gg7m5/vZmrWqxdd1hfGt6U6NOBWLv3GfVonCatKxVbHRdSVQqFbXeasu5H/Zi5+WGnYcrZ7eGY1bGgiotG+med3j+agBeHdJXt+3+Te1dxLysbFQqFfdvxmBqZoq9tzbf6c27ca1WiXIeruRmZXNp988k346l+YD3/zTX4/k6/OdVflx9AI+KrriXd2HHqv2UsbKkmV9RMXnJtHUADJzYC4D93x/BxcMR90ej5KLOXmPPhp9p9+4rAFhaWeJdWf/1tbaxQl2gLrb9Wdl69GnNt0v3UcnHjQoVXVixZB9W1pa83vFl3fMmj18DwOdffgDA6x0bsXzxXr6YuJYBAW+S/jCLkK+20s6vvm49vLy8fG5c037Jzs3J437SQ6Ivx2BlbUn5Ci7Pla3wmPOu6IpXBWc2rDiIlZUlbV4vOuZmTdYec6M/L/mYs3Msfsx1fK8FP27+jcXB23m7+yskxD3guyX76NStxQtdcD+Zt+HbrTm+eR+O3m44eLpwbNM+zMtYUvPVotdyz2zta/nmCO1refnwH+yZs4bWH3bBu3ZV3Vp4JmamWNk+X/GwpCw132pL5A97sfN0o5yHK+cevScqP/aeOPLoPdHqsfdE8qP3RG5mNqhUJN+MweTRe8K8jCUOFfS7CVqUtUKjLii2/VnZen7QlpVL9lLRx50KlVxZsTj80TFXdN6b/NkqAD6foV33842OjVi+aA9fTPyOAQFvkZ6WRfDM72nfoYHumFuzYj8LQn/ki5n9qFDJlaQk7QVQGUsLvZF5T7P2cixfNKvOhfsPOZuUxntVPHCxsmTLVe3Us8H1KlHbyZaAQ0UXaD7lrDE3UWFvaY6VmSm+jwq+0SnaEU0VbK2o42RLZFIa5SzM6F3dmyp21kw5HvVcr1ehZWdiCHmtBmcTHnIyPo3etT1wLWvJugvaruqfNvPhJTdb+mzXXky+6+tKToGay/czyFNrqOdqy6fNfNhzLZHcx+bi1nTW5rW1MEWj0VDTuSx5BRquPufoDoBlJ24xu3Mdzt5N42RMCr0beuNma8naU9pjaUybqtT3LEevddqu2O/W8SAnv4CoxHRyCzTU8yjH2LZV2X35HrmPhuwcuJLIzLdq0aehN79cv4+bjQVBr1UnMi6Nuy9wQWnM2QCWnbzD7I61OBuXxsnYVHrX98LNxoK1Z7V/1zGtKlPfoxy9Nmlv0r1by12bLymD3AI19dzLMbZVFXZHJerybb+UQGDzSsx6syazf7uBXRkzJrerxq6oe9x/gemwy47cIOQ/9Tl7J4WTtx7Qp2kF3GzLsPb4bW2216vzkrc9vZcfByA6IV3v5+t5ZaPWaPS2P/mc++k55Oari23/M8sPXCH4w8acvZHMH9fu0+vVyrjaWbH2sHZttU+71OYlH0f6zD4CQNdmFcgv0HDhTgpqjYb29Tzo06YKX2/VL7bU9NY2+7CxMkOt0VDT2468AjVX4/58LbFCy07cZvbbtbV/05gUejfwxs3GkrWntcXEMa2rUN/Tjl7rC485d3Ly1UTdSydXraGeuy1j21TRO+YK9arvxfXkDL0mKC/0up2NIbh9Dc7ee8gf8Wn0enQeWXv+sfOIqy19dmjPI10enUeiHp1H6rrY8mnTEs4jTtrziI2Ftphd06kseeoXO4+AcR9zi1YdZv7MHpyOvMOJUzfp934z3F3KsWrj7wBMGPEmDeqWp1v/JQAc+OUSn/RrxagAP7Y+mhI7fvibxNx9wLkL2vNP5UrONKxXgT/O3sa+nBX+//cqNaq5Ezhu41NzlGTZ0ZuEdK3H2dhUTt5+QJ/G5bXnuYhHr9trvrzkZUfvVdpO7NH3nnjdPO20r9sT22u5az9bbSzNUGu0j3ML1FxNzHihfM+rrLUlVSpprzNNTFSU93KmXq2KPEhJ587d//7G2T/Zf7sEkPjvScFOKMrHxwcLCwvi4+Np3LjkhdDPnTuHi4uL3rTYuDj99TXMzc11xb//VuGdp7y8oi+ffn5+pKamsnLlSuITE7Hy9MR36FAsH42Wy0tNJSex6C62mbU11YcP59b69VycPh0za2vc/fxw8/PTPcfS2ZlqQ4dyZ9Mm7v3yC+Z2dlTo0QPHl4suwNV5ecRu305OYiKmlpbY1a1L5f79dUW6Z6nasQMFuXmcW7WBvMxMHCr70GLMUL3RMln39Tt6lXV1ptnowZxf+z03Dx6hjL0ddT/4D56Ni4o/vu9om4Fc3vIjWckpWNja4N6gLjW7d9Y9J+XGbX77crbu8eWtOwnYCn6dGjF6So9iWf/Try25OXmEfbWVhw+zqFGnAjPmD9AbFZUY/+JfInt99BoqlYpVi/aSdC+FcvZladaqFv8X8Oaf//Ajdd95jYLcXI4t30RuRibOVSvx+oQheq9jRlJysZ/bMWam3uM7f5zHxsWR7mFfAJCbkcVvS9aTlfIQC+syOPp489bnw3GpWumF/j++1asduTl5rAnZQkZ6FlVqVmB0yCd6I/HuJ+i/dmq1mk2LdpIU/wBTUxNcPZ3o7t+Jtu80f6Hf/Wf69n+NnJw8vp6+mYdpmdSuW5F5iwP0RkUlxOlns7a2JGzpYGbN+J7/6zmLcuWsad22LoNHFB1fifdS6dP9a93jmDtJ/LD5Nxo2qsqilYHPla1b37bk5OSx4OutpD/MonrtCkyb998fcy7u9kyfN5Cls3cwpE8IDk62dHi7MT2e0sn4eTXu+hr5uXkcXLyZ7PRMPHwr0u3zAL2ReGlJ+nnP7v0NdYGaQ8u2cmhZ0bR57zpVeX/6871OJanTWfueOL5iEzkZmbhUrYTf+CfeE/eLvyd+HKv/noj54zxlXRzpNv+LUmd5Ut/+fuRk5/H19I3aY65eJeYtGaJ3zMUXO+bKELYskFlfbqJfj6+1x1y7lxgy4h3dczZvOEx+fgHjR6/Q+9mO7zRlyvS+/Jn9d5KwszTno9oVcC5jwbXUDIYdPk/8o+7HzlYWeNvoT8Ob27o2no/lXveG9jzcaIO2UGCigt7VvajYqCr5ag0n76Xw0YGzxGW8WEflXVcTcShjzpBGFXEpa0H0/Qz6/xhJ7KOpka7WFlQsV1SUzNdoGPRyBSrZWaFSqYh9mM2a83dZfkZ/qtPu9xvpPX7Nx5mYtGxarTn+3Nl2XkrAwcqcIa/44GpjSXRiOv+38bRuNJerjSUV7Is+DwvUGga38KGSgzUqFcSmZrP6jzssO3Fb95zvI+OwsTSj38vlmdjel4c5+fx+K5kvX7DLozFnA9gZdU+br3klXMtaEp2Uzv9tOfdEvqK/a4Faw+BmlajkYIUK7Yi51adjWPZH0XpimXkF9N50hs9f8+XHDxqRmp3PvquJzPzl6d3nS8wWGYd9WQuGtquKi60l0QnpfPhtBLEp2lFJrraWVHQqfTfr/8aukzE4lLVgyFs1cLErQ/TdNPrP/427ydoCkYtdGSo469/wGPxWDbycrClQa7h5L52xq08WW79u1yT9z4DXXvIkJimDVyeEP3c23THX4rFjbtOZZ/9Nm1d64piLYVnEbb3/blkLU96u5cbcX0vf8GHX1UQcLM0Z8vJj55Gdkdx9NOXUxdqCCuX0sw1qqH8e+e78XZaf1T+P7HrKeeTV757/PALGfcxt33MWB3trhvu3x82lHJevxNPLfzkxjzrmurqUo2KFolHmvx6/xqBP1zH4ozYM7t+arJw8Tp29Tc+By8jM0l67mJqY4N/vVar4uJCfX8Bvx6/RqWcYd+6+2PeanRfisbc2Z+irVbSv272HfLj2D2JTi465ig4v/rrtHvSK3mO/Gq7EPMii5ROjFv8qDetVZt+mIN3joFHdCRrVnTWbf2HgqEXP+EkhlKdKSUn5C1cJEOLPfffdd2zevJnt27cDsHDhQrZs2UJgYCANGjQgKyuLyMhITExMePfddzly5Ahjxoxh8uTJ1K1bl99//50lS5aQkpLCiRMnAAgPD2f69OksXboUd3d3rK2tsbCwICkpieTkZK5fv05QUBCzZ8/GxcUFNzc37OzsOHfuHFFRUbz00kvY2toSExPD4sWLSUxMZNOmTcUaTwAMfmIaq7HwtDLubkwBNf83d83+Chuul/nzJymktcez139RUi17473nk5RtvK8bwMG7z+6cp6SkbOPtCDaktvHe6W23peSuecbg/v2/5obW/4o61bjfr0bL/M9HiitFlfwXNH/4HzJJNt7peQWV7JSO8FSmdqXvbP2/pr7zYiPbDClr289KR3gmq/+0VzrCUyWsXKV0hGeKj/xnF/xsy/2z1h18mOatdIQXZrxXW+Jfw9/fH0dHR9auXctXX31F2bJl8fX15YMPtNO6WrVqRZ8+fQgJCSEnJ4emTZsycOBAvv66aIRNu3bt+Pnnnxk8eDAPHz4kKCiITp06sXXrVpYtK2pzPmLECADd/jJlyvDTTz+xePFisrKycHZ2pnnz5kyfPr3EYp0QQgghhBBCCCHE/5qMsBPiBckIu9KREXalIyPsSkdG2JWejLArHRlhV3oywq6UZIRdqckIu9KREXalIyPsSk9G2ClLRtgpz3ivtoQQQgghhBBCCCGEAoz3Rum/hfHeRhdCCCGEEEIIIYQQ4l9ICnZCCCGEEEIIIYQQQhgRKdgJIYQQQgghhBBCCGFEZA07IYQQQgghhBBCCKGjUskadkqTEXZCCCGEEEIIIYQQQhgRKdgJIYQQQgghhBBCCGFEpGAnhBBCCCGEEEIIIYQRkTXshBBCCCGEEEIIIcRjZHyX0uQvIIQQQgghhBBCCCGEEZGCnRBCCCGEEEIIIYQQRkQKdkIIIYQQQgghhBBCGBFZw04IIYQQQgghhBBC6KhQKR3hX09G2AkhhBBCCCGEEEIIYUSkYCeEEEIIIYQQQgghhBFRpaSkaJQOIYQQQgghhBBCCCGE0JIRdkIIIYQQQgghhBBCGBEp2AkhhBBCCCGEEEIIYUSkYCeEEEIIIYQQQgghhBGRgp0QQgghhBBCCCGEEEZECnZCCCGEEEIIIYQQQhgRKdgJIf42UlJSOH/+PLm5uUpH+VvLz89XOoIQQgghhBBCiGcwUzqAEMK43blzB1dXVywtLRXLkJGRwbRp0/jpp59QqVRs2bIFLy8vZsyYgZOTEwMHDlQsm7HbuHEjLi4utGvXDoCpU6eye/duvLy8CA4OpmLFigonFKW1f/9+IiIiSE5ORqPR6O0LDg5WKFWRixcvEhsbS8uWLbGysiIrKwtzc3PMzJT96nH//n327NlDTEwM/v7+2Nvbc/bsWZydnfHy8lI0W0nS0tI4cuQIHTt2VCxDZmYmZcqUwcRE/z5vfn4+586do2HDhorkKigoIDY2Fk9PT8zMzMjJyeHQoUPk5ubSsmVLHB0dFcn1NAMHDmTKlCl4enoqHaWY6Ohobt++jbOzMy+99BIqlUqRHKmpqZiZmVG2bFkArl69ytatW4mPj8fDw4OuXbtSpUoVRbKtXbuW9u3b4+7ursjv/zNnzpzhwoULNGnShGrVqnH16lU2bdqEWq2mbdu2vPLKK4rmi4iI4OzZsyQlJWFqaoqnpyetWrWiQoUKiuYqdPv2bc6dO8f9+/dRqVQ4OjpSr149o8lXkqysLC5duqTYOfhZ1Go19+7dU/T9kpeXh7m5ue7x2bNnyc3NpX79+nrbhTBmqpSUFM2fP00I8d+YOnXqcz930qRJ/8Mkz7ZgwQIqVKhAp06d0Gg0DB06lIiICGxsbJg7dy516tRRJNdXX33FlStXGDNmDAMGDGDdunV4eXlx5MgRFi5cyLp16xTJ9bijR4+yefNm7t69S2hoKG5ubmzbtg1PT0+aNGmiWK6uXbsyceJEGjZsyKlTpxg5ciQTJkzg0KFDZGVlMXv2bMWyGaPLly/j6+uLiYkJly9ffuZza9SoYaBUxYWGhrJ+/XoaNWqEs7NzsYvroKAghZJpC2KjR4/m4sWLxQrsFhYWjBo1SrFsly5dYvDgwXh6enL9+nU2b96Ml5cXS5Ys4fbt20ybNk2xbE8THR1N3759OXbsmMF/d2pqKpMmTSIiIgJzc3O6dOnC0KFDdRc69+/fp2PHjopku3nzJkOGDCExMREPDw/CwsIYN24ct2/fRqPRYGFhwfLlyxW5KXHo0KESt48fP57hw4fj6uoKQNu2bQ0ZS2fixIl89tlnlC1blszMTMaOHcuJEycwMTFBrVZTo0YN5s+fj62trcGzDRgwgN69e9OmTRsiIiIIDAykdu3aVKpUidu3b3PhwgXmzp1Lo0aNDJ6tadOmmJiY0LhxY959911effVVTE1NDZ6jJOHh4UyZMgU3NzdSUlKYNm0akydPplatWpiYmBAREUFQUBBvvvmmwbMlJyczatQoLl26hEqlQqPR4OvrS2JiIikpKfTs2ZPAwECD5yqUnp7OlClTOHLkCFZWVjg4OKDRaEhJSSE7O5uWLVsyZcoUbGxsFMv4NEp+PuTk5BASEsKhQ4ewtbWle/fu9OjRQ7dfyc+HxMRExo4dy8WLF6lTpw7BwcEEBQXpsnh5ebF48WJcXFwMnk2IFyUj7IQwgAcPHug9Pn36NCYmJrq7xNevX0etVtOgQQMl4umEh4czffp0QFuAio6OZsWKFYSHhxMWFsbChQsVyXXkyBG+/vprfH199QoTPj4+3L17V5FMjwsPD2fmzJl07tyZkydP6qacqtVq1qxZo2jBLjExUTea49dff6V9+/b4+flRtWpVoxiZmJqaysKFC4mIiODBgwfFRoo97cL3f6Vfv37s2bMHR0dH+vXrp7u4eJJKpVLkS2ih3bt3M23aNNq3b69YhqeZPXs2Tk5O7N+/n86dO+u2t2/fnlmzZimYTFvo7NGjBwMHDqRNmza67c2aNWPnzp2KZIqPj3/m/qSkJAMlKW7RokXcu3eP4OBg0tPTWbx4MVevXiUkJIQyZcoAlPj+MIT58+dTo0YN5syZw44dOxg5ciTly5dn5cqVqNVqPvvsM1asWMHnn39u8Gzjxo176rkjJCQEUPYccuDAAUaOHEnZsmVZtmwZd+7cYeXKldSsWZMrV64wadIkli1bxogRIwye7erVq7rvRkuXLuWDDz4gICBAt3/lypUsWLCAFStWGDwbwOjRozl06BCfffYZ9vb2vP3223Tu3Jny5csrkqfQmjVrGDp0KL179+aXX34hKCiIPn368NFHHwHa0YFr165VpGAXHByMs7MzBw4cwMLCgrlz55KRkcHq1auJiIhg/PjxuLq66hV7DOmbb74hJiaGJUuW8NJLL+ntO3fuHDNnzmTWrFlMmTJFkXzGavny5fz2228MHDiQjIwMVqxYwcWLF5kyZYpuNLaSnw8mJiZ88803hIeHM2rUKExMTPjxxx9Rq9VMmjSJb7/9lk8//VSRfEK8CCnYCWEAhV/QAb799lssLS0JCgrCysoK0A5pnzZtmmLTPAolJyfr7vwfPXqU1157jdq1a1OuXDn69eunWK60tDTs7OyKbc/MzCw2RUsJq1evZvz48XTo0IEdO3bottepU4clS5YomAzKli3LgwcPcHd35/jx43zwwQcAmJmZGcVagNOmTSM6OpouXboYxZ3Obdu24eDgoPu3sVKr1fj6+iodo0QnT54kLCyMcuXK6W338vL60+LU/9rly5eZOHFise3Ozs4kJycrkAjeeeedZ04/1Gg0ik1P/PXXX/niiy90N5OaN2/OyJEjGT58OHPmzAFQLFtkZCTz5s2jatWqDBo0iI0bN/LZZ5/pplz369evxL+1ITRt2hQzMzOCgoKwt7fXbW/evDlr166lcuXKiuQq9PhF9NGjRxk8eDC1atUCwNfXl8DAQEJCQhQp2Gk0Gt1Nr9u3bzN69Gi9/X5+fqxatcrguQq1bduW9957j9jYWLZv386uXbtYs2YNDRo04N1336Vt27aKTLWLiYnRjdh89dVXycnJoXXr1rr9bdq0YenSpQbPBdpjbNmyZboRakOGDKF9+/aMHj2axo0bM3LkSFasWKFYwe7IkSOEhoaWOIukXr16jBs3juHDhyuQTHszyVjt37+f8ePH06JFCwBef/11hg0bxqRJk3Qzi5T6fIiIiOCrr76ibt261KtXjw4dOjBv3jzdNc7AgQP58ssvFckmxIuSgp0QBrZx40bCwsJ0xToAKysr+vfvz+DBg+nfv79i2ezs7IiPj8fNzY1jx44xePBgQLtOkFJ3yQBq1arF4cOH6dmzp972rVu3Uq9ePYVSFblz5w5169Yttt3a2pqMjAwFEhVp2rQpX375Jb6+vsTExNC8eXNAO6rTGNZROnnyJPPmzVNsuvWTPDw8Svy3senSpQt79uwxilGST8rJySlxnbqUlBQsLCwUSFTE0tKStLS0YmvV3bp1S1eoNTQbGxsGDhz41HPZrVu3FBvZkZKSorvAAbC1tWXevHkEBgYSGBio6NTrzMxMXVHYysoKKysrnJ2ddfvd3NwUK8KGhoby3Xff0bdvXz777DPdedeYFF5IJycnFysgVq5cmXv37ikRi7p163L48GF8fHwoX7480dHRejcnoqKiSryBZ2heXl4EBATwySefcPjwYXbs2MHkyZOZNWsW+/btM3gea2trUlJS8PT0JC0tjYKCAlJTU3X7U1NT9b53GtKT532VSoVaraagoADQFsXi4uKUiPZclLwxbGlpSY8ePahevXqJ++/evcv8+fMNnEorKSmJSpUq6R67u7uzYMECAgICmDBhgmJFToCHDx/qPrvs7OwoU6aM3ne68uXLKzp6XYgXIQU7IQwsKyuLpKSkYl+Q79+/T05OjkKptNq2bcukSZOoUKECaWlpuouM6OhoRad7BAQEEBgYyPXr1ykoKGDdunVcv36dixcvsnjxYsVyFXJxceH27dvFCjynT59WfBH7Tz/9lIULF5KQkMDMmTN1FzpRUVF06NBB0WwADg4Oil1EPI+8vDyuXbvGgwcPUKvVevuUXMA7PT2dvXv3cuLECapWrVqsQPbkqBRDql+/Prt27dKbxlZQUMDq1atp3LixYrlAO/Jk2bJlzJgxQ7ft7t27zJs3T7H1xHx9fcnOzqZmzZol7jc1NVXshomHhwc3btzQO4+VKVOGuXPnEhgYqOh0IhcXFxISEnQLmg8ZMkSv6PrgwQNF15zq06cPDRs2ZNKkSbzyyisMHTpUsSwlCQsLo0yZMqhUKpKSkvRG+KekpCh2Xvb39ycwMJDs7Gw6dOhAaGgoMTExujXsNm7cyIcffqhItpJGC5mamtK2bVvatm1LfHy83ih7Q2rSpAlff/013bp14+DBg7Ro0YKwsDAmTJiASqUiNDS02HRPQ3nppZdYvHgxQUFBWFhYMG/ePLy8vHTfR5KTkxVZL7FQq1atmD59OuPHjy928zUyMpIZM2bQqlUrRbL5+vpiZ2enaxz2pOjoaAMnKuLs7ExMTIzezV8nJyfCwsIICAhQdAqxg4MDSUlJuLm5AdC9e3e9Uf8PHz406u+eQjxOCnZCGFjbtm354osvCAwM1I0qOn/+PPPnz9dbU0kJw4cPx8PDg/j4eIYOHar7MEtKSqJr166K5apXrx7Lli3ju+++w8vLi5MnT1K9enWWL19O1apVFctVqEuXLgQHBzNhwgQAEhISOH36NPPmzWPAgAGKZrOxsSnxotpYRmYNGjSIJUuWMHnyZKytrZWOo+f48eNMnjy52BqUoPwadjdu3NCNOrl165ZiOUoydOhQ/P39uXjxIrm5ucydO5fr16+Tnp7OsmXLFM0WGBjIiBEjeP3118nOzmbgwIEkJydTr149Bg0apEimwixP4+TkxMcff2zAREWaNGnCzp07admypd52Kysr5s6dy5AhQxTJBdCoUSNu3LihK0J069ZNb/+JEycUbQwD2tHhq1ev5quvvqJv376KZnlcgwYNiI2NBbSj6Z4c3XT06FHFpu3Wrl2buXPnMmfOHCIjIwHtunWgLdIOGDBAsamTf1Y4d3d3V+yzNTAwkClTpjBr1izq16/P9OnTWbhwIb169UKlUuHl5aXYFPFhw4YxdOhQ/Pz8AO1owMdvmty6dYtOnTopkg20N7gmTpzIxx9/jLW1NQ4ODqhUKpKTk8nKyqJZs2aK3QRr0aIF6enpT91vZ2fHW2+9ZcBERV5++WX27t1bbJ1mZ2dnFixYwCeffKJILtAWOs+fP0/t2rUBin1WnT17VvFliIR4XtIlVggDy87OZu7cufz444/k5+ej0WgwMzOjc+fODBs2TLeQt/h7WbBgAevXr9etC2dhYUHv3r3x9/dXNNf169cxNTXVdUo8fvw4u3btonLlynzwwQeKd7jr2bMncXFxFBQU4OHhUWykmJIdgN977z0aNGjARx99hKOjY7HRFUpP7zRmSUlJbN26lUuXLqHRaKhevTrdu3fXm7KopIiICKKionQdMZVsDNLNkW4AACAASURBVGPM0tLSSExMfOqFTWZmJpcvX6Zhw4YGTvbnYmJiMDc3142wUNru3bs5efIkAQEBRvM+eJrY2FjMzMwUf+0ePHhAbGwsarUaZ2dnxZdxiIuLw93dXbF1uUojNjaW7OxsKlasWOJSBYaSnZ3N2bNnyc3NpW7dunprOxqLmzdvEhkZyf379wHtzZK6devqTfsUReLi4rh58+ZTp/wnJSVx7NgxRYqxhcX1p71XIyMjsbS0NNq1gIV4nBTshFBIVlYWMTExaDQaypcvbzRDs69evcoPP/xATEwMkyZNwtnZmZ9//hkPD4+nrqHxv2bMRaf8/HyOHz9O7dq1KVOmDNevX0ej0eDj42MUI8b69+9Pjx496NChAwkJCXTr1o2XX36Zq1ev8uabb+rWKVTKny2CreQIxTZt2rB27VrFpzU/S05ODjExMQB4e3tjaWmpcCJRWrt27cLPz69YITgvL499+/bRsWNHhZJJttIy5mxg3PkkW+lINiGE+GeRgp0QBjBq1Cg+//xzbGxsGDVq1DOfGxwcbKBUxR07dozRo0fTvHlzjh49yqZNm/Dy8mLt2rWcPn2aWbNmKZLL2ItOLVu2ZNOmTYrf/S9Ju3btWLlyJRUrVmTdunUcOXKEhQsXcvLkSaZOncr27duVjmi0Jk6cyCuvvMKbb76pdJRi8vPzWbBgAZs3byYvLw+NRoOFhQXdu3cnICBA0ZEUp06dKnG7SqXC0tJSb+0iJURFRXHy5MkS1yUMDAxUKJW2G+Du3btxdHTU256SksIbb7yh6BRsyVY6xpwNjDufZCsdyfbXS0tL48iRI0ZZUJRspWPM2YR4kqxhJ4QB2NnZ6YZlG0N3s6dZvHgxw4cPp1u3bnrr6TVs2JC1a9cqluvmzZu60X0HDx6kTp06zJkzR1d0UrpgV61atWIL7xoLtVqNubk5oJ0G2KJFC0A7GkupDop/F+PGjWPSpElcunSJKlWqFCuCKflFb968eezbt4+xY8dSv359AM6cOUNYWBgajYZhw4Yplm3QoEG6892T01I0Gg0mJia0atWKzz//3OAji1evXk1YWBju7u44OTnp7VN6mptGoykxQ0JCgqLNE0CylZYxZwPjzifZSkey/fXi4+OZOnWqURZ3JFvpGHM2IZ4kBTshDCAoKKjEfxub69ev6wo6jytXrhxpaWkKJNIy9qLTgAEDmDNnDgMHDqRmzZrF1iFUskhbuXJltmzZQsuWLTl58qSuuHnv3j3FcrVt25YffvgBe3t72rRp88xCyaFDhwyYTN/vv//OyZMnOXr0qK6bYiGVSqXoF729e/fquk8W8vb2xt7enunTpytasJs9ezahoaF8+OGHeo11Vq1axYABAzAxMWH27NnMnz/f4F1G169fz9ixYxVtovOknj17olKpUKlU+Pv7603xLygoID4+vsTzsmSTbP/EfJJNshlafHz8M/cnJSUZKElxkq10jDmbEC9KCnZCCB1bW1sSExOLjRSLiorC1dVVoVTGWXR63IgRIwAYO3asXlGn8G6yktM8hgwZwpgxY1i7di0dO3bUddU9cuSIrnuWoY0aNUq3vp9SndeeR2hoKN27d2fAgAFGs8ZkoYyMDLy9vYtt9/b2fmZHOUNYtGgRI0eO1Gvk4OXlhYODA/Pnz2f16tWYmJgwa9YsgxfsNBoNjRs3Nujv/DPt2rUD4Nq1a7zyyit6x5q5uTkeHh6650g2yfZXMOZ8kk2yGdo777zzzBuHTxsZaAiSrXSMOZsQL0oKdkIInddff53Q0FC+/PJLVCoV+fn5nDp1irlz5/L2228rlssYi06PW7hwodIRnqphw4bs3buXjIwMypUrp9v+7rvvKtaR+PGOYUp0D3te6enpdO3a1eiKdaCdhr1x40bGjBmjt33Dhg1Uq1ZNoVRaN27cKLHA7+Liwo0bNwCoWrWqIqNju3btyo8//khAQIDBf/fTFDZW8fDwwM/Pz6gah0i20jHmbGDc+SRb6Ui20rOxsWHgwIHUq1evxP23bt1iypQphg31iGQrHWPOJsSLkoKdEEJn0KBBfP7557zzzjtoNBp69OiBRqPh9ddf58MPP1QslzEWnR7XsGFDpSM8k6mpKWq1mvPnz+Pr64uFhYVRrrdnbNq2bcuJEydKHMmmtCFDhjBixAiOHz9O3bp1UalUREZGkpSUxJw5cxTN5uPjw8qVK5kwYYKuG2Bubi7ffvstPj4+gHbNoicXHjeEAQMGMHz4cHr37k3VqlWLrUs4adIkg2cqZMzFa8lWOsacDYw7n2QrHcn24nx9fcnOzqZmzZol7jc1NdWtx2pokq10jDmbEC9KCnZCCB0zMzOmTp3KJ598QlRUFGq1murVq1OhQgWlo2FqaoqlpSXXrl0DtFP/jKXodPny5Wfur1GjhoGSFJeRkcHUqVM5dOgQKpWKLVu24OXlxYwZM3BycmLgwIEGz/Rn69Y9Tsk17Ly8vFi4cCGnT58usbjTu3dvhZJpi8Tff/89mzdv5tatW2g0Gtq3b0+3bt1wcXFRLBfAmDFjGDVqFB07dqRKlSqoVCquXr2KiYkJISEhAMTGxtKtWzeDZ1u4cCHHjx+nevXqpKWlGdWUmLy8PFauXMnevXtJSEggPz9fb7+SU+slW+kYczYw7nySrXQk24t7/fXXyc7Ofup+JycnPv74YwMmKiLZSseYswnxolQpKSlSXhZCGLX8/HwWLFjA5s2bycvLQ6PRYGFhQffu3QkICChWSDG0pk2bolKp9O7WPV4IUPIL8ldffcWVK1cYM2YMAwYMYN26dXh5eXHkyBEWLlzIunXrDJ5p586dz/1cJe/Iv/POO0/dp1Kp2LZtmwHT/L1kZWURHh7OzZs30Wg0+Pj48MYbbyg+vbhdu3Z89tln+Pn5KZqjJPPmzePAgQP069eP2bNn4+/vT1xcHPv37+eTTz5RtFGGZPvnZTP2fJJNsgkhhJARdkL8682aNYvBgwdjZWXFrFmznvlcpRoEzJs3j3379jF27Fjq168PwJkzZwgLC0Oj0SjaERMoVrjJz88nKiqKlStX6hpkKOXIkSN8/fXX+Pr66hURfXx8uHv3riKZjHVazJO2b9+u+3dmZiaArlmGEi5fvoyvry8mJiZGPaoTtAuJV6lShbJly5KXlwfATz/9BKBod11LS0t8fX0V+/3PcuDAAcaNG0fz5s0JDQ2ldevWeHt7U6lSJU6cOKHoxaxk++dlM/Z8kk2yGdquXbvw8/PTLeVQKC8vj3379in62SXZSseYswnxvKRgJ8S/3LVr13TTEgqnmxqbvXv3MmnSJF555RXdNm9vb+zt7Zk+fbriBTsPD49i28qXL4+NjQ3Lli2jRYsWCqTSSktLK7GTbmZmJiYmJgok+ntZv34969atIzExEQBnZ2d69epFz549DT6dsl+/fuzZswdHR0f69etXbFRnIaU7E9+8eZNRo0Zx9+5dNBoNJiYmFBQUYGZmhoWFhaJfkHv27MmGDRsYM2aMUU2HBUhOTtat8WdlZcXDhw8BaN68OWFhYUpGk2ylZMzZwLjzSbbSkWylN3XqVJo3b15sfdXCpUWU/OySbKVjzNmEeF5SsBPiX+7xDqfG2u00IyOjxIX/vb29SU9PVyDR8/H09CQ6OlrRDLVq1eLw4cP07NlTb/vWrVuf2j3LkP5sPTsl17ALDQ1l27Zt9OnTh7p16wIQGRnJ8uXLSUpKIjAw0KB5tm3bhoODg+7fxiokJIQaNWrw3Xff8eabb/Ldd9+Rnp7OV199hb+/v6LZzpw5w+nTp/ntt9/w8fEpNp0+ODhYoWTg7u5OYmIi7u7ueHt7c+zYMWrWrElkZKTiXRUl2z8vm7Hnk2ySzdA0Gk2J30cSEhKwsbFRIFERyVY6xpxNiOclBTshhE5eXh5qtbrYF6ecnBxMTEwwNzdXJFe1atXYuHEjY8aM0du+YcMGqlWrpkimx6Wmpuo91mg03L9/n6VLl1KxYkWFUmkFBAQQGBjI9evXKSgoYN26dVy/fp2LFy+yePFiRbNB8WnW+fn5REdH89NPPynamRhgx44dTJgwgfbt2+u2NW7cmIoVKzJjxgyDF+weH8mpUqlwc3Mr8YtofHy8IWMVU3hsWVlZoVKpKCgooEaNGgwdOpRZs2Ypsm5iIXt7e9q2bavY73+WNm3aEBERQd26denRowcTJ05k27ZtJCYm0qdPH8km2f5V+SSbZDOUwhHzKpUKf39/TE1NdfsKCgqIj49XbKaEZPvnZRPiRUnTCSGEzujRo2nQoEGx7pfr16/njz/++NM17v5XTp06xYgRI3B2dqZu3bqoVCoiIyNJSkpizpw5unXtlFLYdOJxGo0GNzc3pk+frhudpZSrV6/y3XffcfnyZTQaDdWrV6dv375UrVpV0VzPsn37diIiIpg2bZpiGV577TWWL19erOh669Yt+vfvz8GDBxVKBs2aNWP37t3FpnmkpKTwxhtvKDol9rXXXmPVqlV4eXnRtWtXPvvsMxo3bkxMTAw9e/bkyJEjimX7O4mMjOTcuXNUqFCBVq1aKR1Hj2QrHWPOBsadT7KVjmT7c0uXLgVg2bJl9O7dW685krm5OR4eHrRr106Rm9aS7Z+XTYgXJQU7IYSOn58fixYtokqVKnrbr127RkBAAHv37lUoGdy7d4/vv/+eW7du6bpOduvWDRcXF8UyFTp16pTeY5VKhYODA97e3op3sP27io2NpXfv3vz888+KZQgJCUGj0TBq1Khi29VqtWJNWEBbJA4PD9dNkS0UFxfH+++/z+HDhxVKBgMHDqRnz560bduWiRMnkpqayocffsi2bdu4evWqoiPsCsXGxnL9+nVUKhU+Pj54eXkpHUkIIYSCdu7ciZ+fn1FMz32SZCsdY84mxPOSK0khhE52drbesPFCJiYmui6ZSnF1dSUgIEDRDE/TsGFDpSP8qcTERB48eIBardbbrnQ30afZt29fic0y/tceH0VaUFBAeHg4x44do06dOgBcuHCBxMRE3njjDYNnezyfSqUiLCyMMmXK6Pap1WouXLigeBfUDz/8kOzsbAAGDRrEyJEjGTRoEPb29nz55ZeKZktPT2fatGkcOnRI13RFo9Hoiotly5ZVNN/Ro0fZvHkzd+/eJTQ0FDc3N7Zt24anpydNmjSRbJLtX5VPskk2QzLmDvaSrXSMOZsQz0sKdkIInWrVqrFv3z4GDhyot33v3r1UrlxZoVSwadMmbG1tefPNN/W279mzh4yMDLp166ZQMq1Tp05hYWGhK+rs3LmT7du3U7lyZYYNG4a1tbVi2aKioggKCtKNTHyc0t1EgWLdVjUaDcnJyaSlpTF27FiD53myU3JhQbNwXTgnJyecnJy4efOmoaMBRfk0Gg03b97Um85hZmZGjRo1ik1pN7TmzZvr/u3l5cXGjRtJTU2lXLlyindmDQkJ4erVqyxcuFDXdOXs2bPMnDmTkJAQJk2apFi28PBwZs6cSefOnTl58qSue7darWbNmjWKXsxKtn9eNmPPJ9kkm6Hl5eWxcuVK9u7dS0JCgi5fISW/L0m20jHmbEI8LynYCSF0+vfvz6effsqdO3do1KgRABERERw8eJCvv/5asVwbNmxg4sSJxbZ7eHgwdepUxQt2ISEhDBgwANCubzZjxgw6d+7M2bNnCQ0NZdy4cYpl+/LLL3Fzc2PChAk4OzsrXjB5Urt27fQem5iYYG9vz8svv0ylSpUMnsdYOyUXKsz3xRdfMHLkyL9NlzMlRkuW5PDhw3zzzTc0aNBAt+3ll1/ms88+Y8yYMYoW7FavXs348ePp0KEDO3bs0G2vU6cOS5YsUSwXSLbSMuZsYNz5JFvpSLbSW7RoEQcOHKBfv37Mnj2boUOHEhcXx/79+/nkk08km2QTQhFSsBNC6LRs2ZKQkBBWrFhBcHAwANWrVyc4OFjRbkr37t3D3d292HZXV1fu3bunQCJ9sbGxugYOP/30E02aNGHs2LGcP39e0WIdwI0bN1izZo3i3WqfprDQKV5MQEAAGRkZxQp2CQkJmJmZ4eTkpFAy45aTk1Ni8dDOzo7c3FwFEhW5c+dOiQ1qrK2tycjIUCBREclWOsacDYw7n2QrHclWegcOHGDcuHE0b96c0NBQWrdujbe3N5UqVeLEiRN07dpVskk2IQzOROkAQgjj0rx5c5YuXcrhw4c5fPgwS5cuVbz1uZOTE9HR0cW2R0VFGc3InYKCAkA7IrFwSqCTkxOpqalKxqJq1arcv39f0QzP8uDBAx48eKB7XDhdUckGJ38HU6ZM4ffffy+2/dixY0yZMsXwgf4mXnrpJRYvXqxbYw8gKyuLJUuW6KbIKsXFxYXbt28X23769GnFm2JIttIx5mxg3PkkW+lIttJLTk7Gx8cHACsrKx4+fAhovxcfP35cyWiSrZSMOZsQz0sKdkKIEj18+JDU1FS9/ynl9ddfJzg4mOPHj5Ofn09+fj7Hjh0jJCREscX/H1erVi2WL1/O7t27OXPmjK7AGRcXh6Ojo6LZBg0axPz58zlx4gT37983mr9pofHjx3PkyBEAUlJS+OSTT/j555+ZOXMma9euVTid8bp48aLetM5C9evX59KlSwok+nsYMWIEFy5coGPHjnzyySf4+/vTqVMnLly4wIgRIxTN1qVLF4KDgzl79iygHS25c+dO5s2bx3vvvSfZJNtfzpjzSTbJZmju7u4kJiYC4O3trVvfLDIyUvEuo5KtdIw5mxDPS5WSkqL586cJIf4N4uLimDlzJn/88YfewqwajUbRBgX5+flMmTKF/fv363V2bN++PZ9//jlmZsrO7r927RqTJk0iLi6OXr166aZ5fvPNN6SlpTF16lTFsjVt2lT37yebOxhD04nXXnuNJUuWULlyZbZs2cKOHTtYtWoVv/zyC6GhoWzZskXRfMaqdevWLFu2jGrVqultv3LlCh999BGHDx9WKJnxy87OJjw8nJs3b6LRaPDx8eGNN97Q67hrKKdOnaJevXq6c9iCBQtYv369bnquhYUFvXv3xt/fX7JJtn98Pskm2ZQUFhaGlZUV/fv35+DBg0ycOBFXV1cSExPp06cPAQEBkk2yCWFwUrATQugMGjSI9PR0evfujYuLS7EGBQ0bNlQomdbt27eJjo5Go9FQo0YNypcvr2ieP5OTk4OpqamiBcVTp049c7/Sf9NWrVqxefNm3N3dGTduHNWqVeOjjz4iISGBbt266UbfCX0BAQFUqFCh2BqJM2bM4NatWyxatEihZOJFNGvWjN27d+Po6EiXLl349ttvsbS05MaNG7piolJdpiXbPy+bseeTbJLNmERGRnLu3DkqVKhAq1atlI6jR7KVjjFnE+JppOmEEELn4sWLrFixgipVqigdpUQVKlSgQoUKSscoRq1WA+hG/yUlJfHrr79SuXJlxdfFqlWr1lNHDiUkJBg4TXHly5fn0KFDtGvXjuPHj9OnTx8A7t+//7fpgKqEQYMGERAQwJUrV2jcuDEAJ0+eJCoqirCwMIXTGa8FCxbg5uZWbPrVli1bSExMNPgoD1tbW+7evYujoyNxcXFoNBqsrKyoVauWQXNItn9HNjDufJJNshmTunXrltgkwxhIttIx5mxCPI2MsBNC6PTs2ZOgoCBq1qypdBQ9s2bNeub+0aNHGyhJyYYNG0bz5s3p0aMHmZmZ/Oc//yErK4vMzEwmTpxIx44dFc0WHBxcbJRfQkICAQEBik85PXToEBMnTqSgoIDGjRszb948AFasWMG5c+eYM2eOovmMWXR0NGvWrNE1ZKlevTp9+vTB19dX4WTG6+2332bGjBnUqVNHb/vFixcZN24cO3bsMGieGTNmsGvXLpycnEhISMDV1VVX+H/Stm3bJJtk+68Zcz7JJtmUdvToUTZv3szdu3cJDQ3Fzc2Nbdu24enpSZMmTSSbZBPC4GSEnRBCZ+TIkSxYsIAxY8YY1XTTa9eu6T3Oz8/n5s2bFBQUUL16dYVSFbl8+TJDhw4FtAWosmXLsm3bNsLDw1m7dq2iBbuMjAymTJnCtGnTdNsSEhLw9/dXfPQfQNu2bdmxYwdJSUl667E1adKEdu3aKZjM+Pn6+iq6PuLf0YMHD3BwcCi23c7OjuTkZIPnGTduHK1ateLOnTvMmTOHTp06UbZsWYPnKIlkKx1jzgbGnU+ylY5k+2uEh4czc+ZMOnfuzMmTJ3VrOavVatasWaNocUey/fOyCfG8pGAnhND59NNPyc3NpXv37pibmxcblXXo0CFFci1cuLDYtpycHKZNm0b9+vUVSKQvMzMTW1tbAI4fP07r1q0xMzOjUaNGfP3114pmCwkJwd/fn2+++YZPP/2U+Ph4Bg0aRL169ZgyZYqi2Qo5OTnh5OSkt+3JEVCiZImJiTx48EA3LbtQjRo1FEpk3Nzc3Dh9+jReXl5620+fPo2rq6vB86hUKlq2bAloG4b07t3baC5mJVvpGHM2MO58kq10JNtfY/Xq1YwfP54OHTrojbauU6cOS5YsUTCZZCstY84mxPOSgp0QQkfpqaUvwtLSkg8//JDAwMBi61EZmpubG2fPnqVVq1YcO3aMGTNmAJCWlqZI58nHlStXjtDQUAYMGMA333zD0aNHdcW6J5uKKGX//v1ERESQnJyMRqO/SkNwcLBCqYxbVFQUQUFB3Lp1q9hrZgzdf41V165dmTNnDvn5+TRq1AiAiIgIwsLC6Nu3r6LZgoKCFP39zyLZSseYs4Fx55NspSPZSu/OnTslrm9mbW1NRkaGAomKSLbSMeZsQjwvKdgJIXQ6deqkdIQXkpKSQlZWltIx6NWrF5MnT8ba2hp3d3caNGgAaEftGEMDD2dnZ+bNm8eAAQNo1qwZkydPVjqSTmhoKOvXr6dRo0Y4OzsbTRHR2H355Ze4ubkxYcIEed1eQO/evUlJSSE4OJi8vDwAzM3Nef/99/nggw8UTieEEEIpLi4u3L59Gw8PD73tJY3KNjTJVjrGnE2I5yUFOyFEiZKSknRrPRRyd3dXJMvatWuLbUtKSiI8PJwWLVookEhf165dqVGjBgkJCTRt2lS3oLKXl5fBu04CtGnTpsQCTm5uLj/99BM///yzbptS05wL7d69m2nTptG+fXtFc/zd3LhxgzVr1lCxYkWlo/ztDB48mP79+3Pjxg00Gg0+Pj5YW1srHUsIIYSCunTpQnBwMBMmTAC06/2ePn1ad8NTskk2IZQgXWKFEDrp6enMmjWLgwcP6kafPE6paXbvvPOO3mMTExMcHBxo1KgR/fr1M9r1UJSyc+fO536u0qMqO3TowPLly42qycnfQf/+/RkyZAgNGzZUOsrfytSpUxk5cmSxc0ZWVhazZs1i0qRJCiUTQghhaKdOnaJevXq6NZsXLFjA+vXryc3NBcDCwoLevXsrcvNVsv3zsglRGlKwE0LoTJ8+nYsXLzJkyBDGjh3LpEmTuHfvHhs3bmTYsGEyCuoZvv/+e13b+A0bNuDl5cWqVavw9PTEz89P6XhGa8GCBZiZmTFw4EClo/ytREREsHDhQvz9/alSpUqxBjF2dnYKJTNuzZo1Y/fu3Tg6OuptT0lJ4c033+T3339XKJkQQghDe/wzoUuXLnz77bdYWloaxQhsyfbPyyZEaciUWCGEzu+//87UqVNp0KABpqam1KhRAz8/P5ydnfnhhx+kYPcU69evZ82aNfTt25ewsDDddhcXFzZv3qxowe7AgQOYm5vTunVrve2//PIL+fn5iv9N09PT2bt3LydOnKBq1arFCk9/p0YohjRkyBAAhg4dqjf9WaPRSNOJEqSmpqLRaNBoNDx8+BBTU1PdPrVazW+//VasiCeEEOKfzdbWlrt37+Lo6EhcXBwajQYrKytq1aqldDTJ9g/MJkRpSMFOCKHz8OFD3cKsZcuWJTU1lfLly1O3bl2mT59u0CyzZs167ucqXdTZunUr48ePp2XLlixatEi3vXr16ly/fl3BZLB06VKGDx9ebLuVlRUhISGKF+xu3LiBr68vALdu3VI0y9/JwoULlY7wt9KhQwdUKhUqlYr333+/2H6VSiXr2QghxL9Mu3bt8Pf3x8nJCZVKRb9+/XTrED9p27Ztkk2yCWFwUrATQuh4eXkRGxuLu7s7Pj4+7Nu3j9q1a3Po0CHKlStn0CzXrl0z6O/7b8THx5fYDdbMzIycnBwFEhW5e/duiY0JvL29iY2NVSCRPik8lY6sXfdiFi5ciEajISAggJkzZ+pNGTYzM8PDwwMXFxcFEwohhDC0cePG0apVK+7cucOcOXPo1KmT0ayLLNlKx5izCVEaUrATQuh06tSJq1ev8vLLL9O3b19GjhzJ5s2b0Wg0jBw50qBZ/k6FHE9PTy5fvlysbfzRo0fx8fFRKJWWra0td+7cwdPTU2/77du3FfsCM2rUKD7//HNsbGwYNWrUU5+nUqleaKTlv8nly5efub9GjRoGSvL3UFjg3LZtG+7u7iV2URZCCPHvolKpaNmyJQBXrlyhd+/eRlPckWylY8zZhCgNKdgJIXR69eql+3fjxo3ZvHkzly5donz58lStWlWxXFOnTn3qPktLS7y9vfHz81NshEyfPn2YNWsWOTk5aDQaIiMj2b17N2vWrFG86+Srr77K7Nmz+eqrr3Qj7W7dusWcOXOKrWtnKHZ2drqCiTRHKJ1+/fqhUqnQaIr6Rj1ehJI17EqWmppKamrqU/dLoVMIIf6dgoKClI7wVJKtdIw5mxDPS7rECiGM3siRIzlz5gwmJiZUrlwZgOvXr/P/7d17UJZ1/v/x14UgN54VzQOgooQsGZltYmbfcCwPHdRtbCfTpU2lUVkPq+6mlnhM1s1UPOBoZuaxg5ptVlqadphNJ9NcD2HqrRQpLiDkqHAbcP/+8Ne1S1iJ3PK5L/b5+Ou+3/c1w2uaBuTF5+D1ehUTEyO3263CTZFkXAAAIABJREFUwkItW7bMPg+tqm3evFkrVqzQ2bNnJV25cCIpKUl9+/Y1kudHFy9e1OjRo3X48GGFhoZKkvLy8hQbG6u0tDTVqVPHaD5cnzNnzpR5X1xcrKNHj+rll19WcnKyunTpYiiZf4uPj6foBAAAgCNQ2AEo49ChQ/r888+Vn5+v0tLSMp+ZutzhlVde0bFjx/Tss8/K5XJJkoqKivTcc8/p5ptv1oABAzR16lTl5+crPT29SrMVFxdr8+bNuvfee9WkSRMVFBSotLTU726c3LNnj77++mu75LzzzjvZFlgN7d69W8uXL9fy5ctNR/FLFJ0AAABwCrbEArCtWbNGCxcuVHh4uJo0aeI3hc6rr76q9PR0u6yTJJfLpSeffFLJyclKTExUYmKikpOTqzxbYGCgFixYoLvvvluS1KBBgyrPcC3i4+MVHx9vOgZusBYtWujrr782HcNv/fScSUmKiIhQnTp1tHz5cgo7AAAA+A0KOwC2V199VePGjdPvf/9701HKKCwsVG5ubrkLHPLy8lRYWChJql27tkpKSkzEU/v27a966YQpa9euVf/+/RUcHKy1a9f+4rMDBw6solTwpZ+ew+b1epWXl6cXX3zxqrcC45dRdAIAAMDfUNgBsF28eNFeKeZP7r33Xs2cOVMjR45UbGysLMvS4cOHtXDhQiUkJEiSDh8+rJYtWxrJ169fP6WlpSk7O1sxMTEKCQkp83lVH2T/+uuv68EHH1RwcLBef/31n33OsiwKO4fq0aNHuRWwXq9XTZs21XPPPWcolf+j6AQAAIBTcIYdAFtqaqpuvvlm9e/f33SUMoqKijRv3jxt2bLFXkVXo0YNPfzwwxo9erRCQkLs1TEmLp34pa2mlmVxkD18bt++fWXeW5alhg0bKjw8XIGB/C3u5/x46cR/+++i89ZbbzWUDAAAACiLwg6AbcWKFXr11VcVHx+vqKiocr/4m16NVVhYqKysLHm9XkVERJRbyWbKTw+y/yl/2SoLZxs+fLj+/ve/q27dunrnnXd0//33q2bNmqZjOQpFJwAAAJyCwg6ArW/fvj/7mWVZ2rx5cxWmga/4482/qLi7775bmzdvVpMmTdS5c2e9++67fncbsRPk5eVpw4YNOnnypCSpTZs26t+/P/8tAQAA4Ff4czIA21tvvWU6gmNlZGRo/fr1dgkQGRmpAQMGVPn5dT/lrzf/ouJatWql9PR03XHHHfJ6vdq+fbtq16591WcffPDBKk7nDAcOHNCYMWPUsGFDe/vr1q1btX79eqWlpSkuLs5wQgAAAOAKVtgBQCVt3bpVU6dO1W9/+1u7BDh06JD27t2rlJQU9e7d21i2hx56SImJiX538y8q7l//+pdeeOEFZWVl6eLFiwoODr5qAWtZlnbu3Gkgof8bPHiwoqKiNGHCBAUEBEiSSktL9be//U0nTpzQSy+9ZDghAAAAcAWFHQDbjBkzfvaz4OBghYeH6/7771eTJk2qMJX/69u3r/r166cnn3yyzHzlypV68803ja5c7Natm9asWaOwsDBjGeB78fHxeu+999jGWUH33HOP1qxZU+5G2FOnTukPf/iDPvnkE0PJAAAAgLICTAcA4D/y8/O1c+dOffTRR/r222/17bff6qOPPtKuXbuUmZmp1atX69FHH7VvZMUV+fn5uu+++8rNu3fvrnPnzhlI9B89evTQZ599ZjQDfG/z5s1q2LDhrz43e/ZsFRQUVEEiZ6hdu7ZOnz5dbn769GnVqVPHQCIAAADg6jjDDoDttttuU61atfTss8/K5XJJkoqKivTcc8/p5ptv1vz58zV16lTNnz9f6enphtP6jzvuuENffPGFIiIiysy/+OILdezYscrzrF271n7dtGlTLVu2TAcOHPDLm39xfa715uGtW7dq0KBBatCgwQ1O5Aw9evTQzJkzNXLkSN16662yLEsHDhzQ4sWL1aNHD9PxAAAAABtbYgHYevfurfT0dEVGRpaZu91uJScn67333tPRo0eVnJys7du3G0rpf9544w29+OKL6tatm32G3cGDB7Vr1y4lJSUpNDTUfrZbt243PM8v3fb737j5t/pLSEjQ2rVr2RL9//3www9asGCBNm3apJKSEklSYGCgHnnkEY0cOVJBQUGGEwIAAABXsMIOgK2wsFC5ubnlCru8vDwVFhZKurKl7MdfdHHFnDlzJF3ZpvjTAuz555+3X1uWpd27d9/wPNz2C1xdUFCQxo0bp+TkZGVlZcnr9SoiIsJeUQwAAAD4Cwo7ALZ7773X3i4WGxsry7J0+PBhLVy4UAkJCZKkw4cPq2XLlmaD+pk9e/aYjvCzli9frkGDBpUrJIqKirRmzRoNHTrUUDLAHJfLpaioKNMxAAAAgJ/FllgAtqKiIs2bN09btmyxV9HVqFFDDz/8sEaPHq2QkBD7wono6GiTUR1pwIABmj9/vpo2bVplX7Nz58569913y90mWlBQoF69elXJij+Yw5ZYAAAAwJlYYQfA5nK5NHHiRI0ZM6bMdrGQkBD7GYq663fmzBkVFxdX6df0er2yLKvc/Ouvv1a9evWqNAsAAAAA4NpQ2AEox+PxyOPxKDo6WjVr1jQdB9chISFBlmXJsiz97ne/K1PalZSU6PLly3rkkUcMJkRV6NWrl2rXrm06BgAAAIAKorADYLt48aJmzJihnTt3yrIsbdy4UWFhYUpNTVVoaKieeuop0xFxjcaPHy9JmjFjhoYPH16mtAkKClLz5s0VFxdnKh584Pjx43rzzTeVlZWlyZMnq3Hjxtq1a5eaN2+udu3aSZImTJhgOCUAAACA60FhB8C2aNEi5ebmavXq1UpKSrLnXbt21ZIlSyjsHOShhx6SJLVo0UJxcXEKDPzlb/evvPKKHnnkEdWtW7cq4qGSdu/erfHjx+uuu+7S3r175fF4JEnfffedtmzZYt9cDAAAAMCZAkwHAOA/PvnkE40dO1bR0dFltlBGRkbq9OnTBpPhenXs2PFXyzpJWrlypc6fP18FieALS5cu1ZgxY/T8888rKCjInnfs2FFHjhwxmAwAAACAL1DYAbCdP39e9evXLze/dOmSAgL4dlGdeb1cGO4kbrdbXbp0KTevV68exSsAAABQDfAbOABbbGysPv7443LzTZs2cd6ZD0yYMEGNGjUyHQPVQN26dZWTk1NufvToUd10000GEgEAAADwJc6wA2AbMWKERo0aJbfbrZKSEq1bt05ut1tHjhzR0qVLTcfzK8uXL7/mZ4cOHSrpyo2dgC/07NlTCxYs0KxZs2RZloqLi7Vv3z6lpaXp4YcfNh0PAAAAQCVZBQUF7IMCYDtx4oRWr16tjIwMeb1etWvXTomJiYqKijIdza8MGDCgzPvs7GwVFRWpcePGkqTc3Fy5XC41b95c69atMxGxQhISErR27VqFhYWZjoJrUFxcrGnTpumDDz6Q1+tVQECAvF6vevbsqZSUFNWoUcN0RAAAAACVQGEHQNKVAiAlJUUjRoxQeHi46TiO8vbbb+vdd9/VlClT1KxZM0lXCrzp06erV69e6tOnj+GEv47CzpmysrJ09OhRlZaWql27dmrZsqXpSAAAAAB8gDPsAEiSAgMDtWfPnjK3w+LaLF++XH/+85/tsk6SmjVrpjFjxlRo66xJHTp0UHBwsOkYqKDw8HB16NBB3bt3p6wDAAAAqhHOsANgS0hI0M6dOzVo0CDTURzl3Llz8ng85eYej0cFBQUGEpWXk5Oj/Px8lZaWlpnHxMRIkubPn28iFq5TcXGx0tPTtWnTJnk8Hm3YsEFhYWFauHChmjdvrv79+5uOCAAAAKASKOwA2Jo1a6YVK1boyy+/1G9+8xu5XK4ynw8cONBQMv8WHx+vWbNmadKkSYqNjZUkHTlyRKmpqerUqZPRbEePHlVKSooyMzPl9ZY9AcGyLO3evdtQMlTGiy++qE8//VTTpk3T5MmT7fktt9yiVatWUdgBAAAADkdhB8C2ZcsW1a1bV8eOHdOxY8fKfGZZFoXdz3jmmWc0bdo0DR06VAEBV04a8Hq96ty5s5555hmj2WbNmqWmTZvqmWeeUePGjdnyXE28//77mjx5sjp27Gj/PydJbdu21TfffGMwGQAAAABfoLADYHvrrbfs15cuXZIk1apVy1Qcx2jYsKHmz5+vzMxMeyVb69at1apVK9PRdPLkSa1evdovssB3cnNzy5yZ+KPi4mKVlJQYSAQAAADAlyjsAJSxfv16rVu3Tjk5OZKkxo0b6/HHH9eAAQNYnfUrWrVqpSZNmsiyLIWEhJiOI0mKiopSXl4ehV01ExkZqf3796tFixZl5jt27LDPJQQAAADgXBR2AGwLFizQ5s2bNWjQIN16662SpIMHD+qll15Sbm6uRo0aZTih/3rjjTe0atUqu+i86aablJiYaPwsseHDh2vRokUaNmyY2rZtq8DAst/269evbygZKiMpKUkpKSk6e/asSkpKtH37dmVmZmrbtm2aN2+e6XgAAAAAKskqKCjw/vpjAP4X3HfffZo4caK6d+9eZr5jxw6lpqZq+/bthpL5t5dfflmvvPKKBg4cqNtuu02S9OWXX2r9+vX64x//qCeeeMJYtvj4ePv1f6+Q9Hq9XDrhcJ999plWrlypjIwMlZaWKiYmRkOGDFHnzp1NRwMAAABQSaywA1BGVFTUVWc/vWEU/7Fp0yZNnDhRPXv2tGedOnVSy5YtlZ6ebrSwW7JkibGvjRujuLhY6enpevTRR7V06VLTcQAAAADcABR2AGwPPPCANmzYoHHjxpWZb9y4Ub179zaUyv/l5+crNja23Dw2Nlbnzp0zkOg/OnbsaPTrw/cCAwO1ceNG49utAQAAANw4FHYAbJcvX9a2bdu0e/dutW/fXpJ0+PBh5eTkqFevXpozZ4797Pjx403F9DstW7bUtm3bNHTo0DLzbdu2qWXLllWeJyMjQ9HR0QoICFBGRsYvPssFBc7UuXNn7d27V3369DEdBQAAAMANQGEHwJaZmWkXONnZ2ZKk0NBQhYaG6tSpUwaT+bekpCRNmjRJ+/fvt8+wO3DggPbt26fU1NQqz/PEE0/ovffeU6NGjfTEE0/IsqyrbmnmDDvnuvPOO5Wenq7jx48rJiam3K3E3bp1M5QMAAAAgC9w6QQA+MBXX32l9evX69SpU/J6vYqMjNTAgQPVrl27Ks9y5swZNWvWTJZl6cyZM7/4bPPmzasoFXzpvy8T+SmKWAAAAMD5KOwAoBorKiqSy+W66mdnz55V06ZNqzgRAAAAAODXBJgOAADVweXLl/WPf/xDaWlpWrBggbZs2aLLly+bjqWnn35axcXF5eZnz57ViBEjDCQCAAAAAPwaVtgBQCW53W6NHj1aFy9eVNu2bSVJJ06cUJ06dZSWlqbIyEhj2YYOHapmzZpp5syZ9uzs2bMaNmyY4uLiNG3aNGPZcP2WL19+1bllWapZs6bCw8N11113/ezqSgAAAAD+jcIOACrpT3/6k1wul6ZOnao6depIki5cuKApU6bo8uXLWrhwobFs58+f17Bhw3T77bfrL3/5i7KzszV8+HDFxcVp6tSpsizLWDZcvwEDBig7O1tFRUVq3LixJCk3N1cul0sNGzbU2bNn1bBhQy1dulRhYWGG0wIAAACoKAo7AKike+65RytXrrRX1/3o+PHjGjx4sD7++GNDya7Izc1VUlKSunTpon/+85+UddXAli1b9N577yklJcU+h/Ds2bOaOXOmevXqpbvvvluTJk1SrVq1NGfOHMNpAQAAAFQUZ9gBQCUFBwfrwoUL5eYXLlxQzZo1DSQqq3Hjxlq4cKE+/PBDdejQQdOmTaOsc7gXX3xRY8aMKXNpSNOmTTVy5EgtW7ZMDRo00PDhw3Xo0CGDKQEAAABcr0DTAQDA6bp27apZs2Zp0qRJat++vSTp4MGDSk1N1f/93/9VeZ6EhISrFnKXL1/Whx9+qF27dtmznTt3VmEy+Mq5c+eueqnJ5cuXde7cOUlSo0aNVFRUVNXRAAAAAPgAhR0AVNK4ceM0bdo0PfXUUwoIuLJw2ev16p577tHYsWOrPM/48eOr/GuianXq1EmpqamaNGmSYmJiJEkZGRmaPXu24uPjJV25+KRFixYmYwIAAAC4TpxhBwA+8s033ygzM1Ner1eRkZGKiIgwHUlut1s1atRQq1atJEl79uzRO++8o8jISCUmJqpGjRqGE+J6nDt3TlOnTtWePXvKlMTx8fGaMmWKGjVqpL1796q4uFidO3c2nBYAAABARVHYAUA1NnjwYD322GPq0aOHzp49q0cffVQdO3bU8ePH1bt3byUnJ5uOiErIzMy0S+LWrVvbxSwAAAAAZ2NLLABch4rcvGlyi+qpU6fUrl07SdKOHTt0yy23aP78+dq7d69mzJhBYedwrVq1oqQDAAAAqiEKOwC4DidOnDAd4ZqUlpYqKChIkvT555+rS5cukqTw8HD7cgI4w5w5c5ScnKyQkJBfLYw5xxAAAABwNgo7ALgOS5Ysuer80qVLkqRatWpVZZyf1aZNG23cuFFdu3bV3r177RV1//73v1W/fn3D6VARJ06cUHFxsf0aAAAAQPXFGXYA4APr16/XunXrlJOTI0lq3LixHn/8cQ0YMECWZRnLtW/fPv31r3/VhQsX9OCDD2ry5MmSpMWLF+ubb77R7NmzjWUDAAAAAFwdhR0AVNKCBQu0efNmDRo0SLfeeqsk6eDBg1q7dq369u2rUaNGGc1XUlKiixcvql69evbs9OnTcrlcatSokcFkAAAAAICrobADgEq67777NHHiRHXv3r3MfMeOHUpNTdX27dsNJUN1MmPGjGt+9seVlAAAAACciTPsAMAHoqKirjrzevmbCHwjPz+/zPv9+/crICBAbdu2lSS53W6Vlpbq9ttvNxEPAAAAgA9R2AFAJT3wwAPasGGDxo0bV2a+ceNG9e7d21AqVDdz5861X69cuVLBwcFKSUlRSEiIJKmwsFAzZ860CzwAAAAAzkVhBwDXYc6cOfbrkpISbd26Vbt371b79u0lSYcPH1ZOTo569eplKiKqsddee02LFy+2yzpJCgkJ0eDBg5WcnKzBgwcbTAcAAACgsijsAOA6nDhxosz7mJgYSVJ2drYkKTQ0VKGhoTp16lRVR8P/gMLCQuXm5qpNmzZl5nl5efJ4PIZSAQAAAPAVCjsAuA5LliwxHQH/w7p166bp06dr1KhR9qrOQ4cOadGiRUpISDAbDgAAAEClcUssAAAOU1RUpLS0NL399tsqLi6WJNWoUUN9+vTR6NGj5XK5DCcEAAAAUBkUdgAAOFRhYaGysrLk9XoVERFR5kw7AAAAAM4VYDoAAAC4Ph6PRx6PR61bt6asAwAAAKoRCjsAABzm4sWLmjBhgnr27KmhQ4cqJydHkpSamqply5YZTgcAAACgsijsAABwmEWLFik3N1erV69WcHCwPe/atat27dplLhgAAAAAn6CwAwDAYT755BONHTtW0dHRsizLnkdGRur06dMGkwEAAADwBQo7AAAc5vz586pfv365+aVLlxQQwI92AAAAwOn4Vz0AAA4TGxurjz/+uNx806ZNiouLM5AIAAAAgC8Fmg4AAAAqZsSIERo1apTcbrdKSkq0bt06ud1uHTlyREuXLjUdDwAAAEAlWQUFBV7TIQAAQMUcP35ca9asUUZGhrxer9q1a6fExERFRUWZjgYAAACgkijsAAAAAAAAAD/CllgAABzI4/Fo27ZtOnnypKQrN8T26NFDLpfLcDIAAAAAlcUKOwAAHCYjI0Njx46Vx+NR27ZtJUlut1tBQUGaN2+eYmJiDCcEAAAAUBkUdgAAOExiYqLCwsKUkpKikJAQSVJhYaFmzJihrKwsrVq1ynBCAAAAAJURYDoAAAComJMnTyopKcku6yQpJCREQ4YMsbfIAgAAAHAuCjsAABymVatWys3NLTfPy8tTRESEgUQAAAAAfIktsQAAOMynn36qhQsXasiQIWrfvr0k6dChQ1qxYoWSk5MVFxdnP1u/fn1TMQEAAABcJwo7AAAcJj4+3n5tWZYkyev1lntvWZZ2795d9QEBAAAAVEqg6QAAAKBilixZYjoCAAAAgBuIwg4AAIfp2LHjNT03e/ZstWnTRg0aNLjBiQAAAAD4EpdOAABQTW3dulUXL140HQMAAABABVHYAQBQTf14rh0AAAAAZ6GwAwAAAAAAAPwIhR0AAAAAAADgRyjsAAAAAAAAAD9CYQcAAAAAAAD4EQo7AACqqV69eql27dqmYwAAAACoIKugoIAr5AAAcJB9+/apZs2aat++vSRpy5Yteuutt9SmTRuNHj1atWrVMpwQAAAAQGWwwg4AAIeZO3eu8vLyJEmZmZlKTU1VVFSUDh48qAULFhhOBwAAAKCyAk0HAAAAFfPdd98pKipKkvThhx+qU6dOevrpp3Xo0CFNmDDBcDoAAAAAlcUKOwAAHKikpESS9Pnnn+uuu+6SJIWGhur77783GQsAAACAD1DYAQDgMLGxsXrppZf07rvv6ssvv1SXLl0kSWfOnFGjRo0MpwMAAABQWRR2AAA4zNixY3Xs2DE9//zzevLJJxUeHi5J2rFjh+Li4gynAwAAAFBZ3BILAEA14fF4VKNGDQUGckQtAAAA4GSssAMAwKGOHDmiDz74QIWFhZKk0tJSw4kAAAAA+AJ/ggcAwGHy8vI0fvx4HTlyRJZlaePGjQoLC9P8+fNVs2ZNjRs3znREAAAAAJXACjsAABxm3rx5Cg0N1QcffCCXy2XPu3fvrj179hhMBgAAAMAXKOwAAHCYvXv3avjw4apXr16ZeVhYmLKzsw2lAgAAAOArFHYAADiMx+O56sUSBQUFqlmzpoFEAAAAAHyJwg4AAIfp0KGD3nnnnTKzkpISrVq1SnfeeaehVAAAAAB8xSooKPCaDgEAAK6d2+3WsGHDFB0drX379qlr165yu926cOGCli9frvDwcNMRAQAAAFQChR0AAA6Um5urTZs26auvvpLX61W7du306KOPqnHjxqajAQAAAKgkCjsAABwmOztbTZs2lWVZV/2sWbNmBlIBAAAA8BXOsAMAwGH69eun/Pz8cvOCggL169fPQCIAAAAAvkRhBwCAw3i93quurissLOSWWAAAAKAaCDQdAAAAXJs5c+ZIkizL0uLFi+VyuezPSktLdfjwYUVHR5uKBwAAAMBHKOwAAHCIEydOSLqywu7UqVMKCgqyPwsMDFRMTIwGDhxoKh4AAAAAH+HSCQAAHGb69OkaO3as6tSpYzoKAAAAgBuAwg4AAIcqKChQVlaWoqOjObsOAAAAqEa4dAIAAIe5dOmSJk6cqJ49e2ro0KHKycmRJKWmpmrZsmWG0wEAAACoLAo7AAAcZuHChcrJydHq1asVHBxsz7t27apdu3aZCwYAAADAJyjsAABwmE8++URjx45VdHS0LMuy55GRkTp9+rTBZAAAAAB8gcIOAACHOX/+vOrXr19ufunSJQUE8KMdAAAAcDr+VQ8AgMPExsbq448/LjfftGmT4uLiDCQCAAAA4EuBpgMAAICKGTFihEaNGiW3262SkhKtW7dObrdbR44c0dKlS03HAwAAAFBJVkFBgdd0CAAAUDHHjx/XmjVrlJGRIa/Xq3bt2ikxMVFRUVGmowEAAACoJAo7AAAAAAAAwI+wJRYAAAfyeDzatm2bTp48KenKDbE9evSQy+UynAwAAABAZbHCDgAAh8nIyNDYsWPl8XjUtm1bSZLb7VZQUJDmzZunmJgYwwkBAAAAVAaFHQAADpOYmKiwsDClpKQoJCREklRYWKgZM2YoKytLq1atMpwQAAAAQGUEmA4AAAAq5uTJk0pKSrLLOkkKCQnRkCFD7C2yAAAAAJyLwg4AAIdp1aqVcnNzy83z8vIUERFhIBEAAAAAX+LSCQAAHOD777+3Xw8bNkwvvPCChgwZovbt20uSDh06pBUrVig5OdlURAAAAAA+whl2AAA4QHx8vCzLst97vVd+fP84++/3u3fvrvqAAAAAAHyGFXYAADjAkiVLTEcAAAAAUEVYYQcAAAAAAAD4EVbYAQDgUDk5OcrOztYPP/xQZt6xY0dDiQAAAAD4AoUdAAAOk5OTo8mTJ2v//v2yLEter7fM+XacYQcAAAA4W4DpAAAAoGLmzp2rgIAAvfbaa3K5XFq2bJlSU1PVunVrpaWlmY4HAAAAoJJYYQcAgMPs379fc+fOVevWrWVZlho0aKDbbrtNQUFBWrp0qeLj401HBAAAAFAJrLADAMBhPB6PGjRoIEmqV6+e8vPzJUmRkZE6duyYyWgAAAAAfIDCDgAAh2nVqpUyMzMlSTfffLM2bdqkM2fOaMOGDbrpppsMpwMAAABQWWyJBQDAYR577DHl5eVJkoYOHarRo0fr/fffV1BQkKZMmWI4HQAAAIDKsgoKCrymQwAAgOtXVFSkU6dOqVmzZvZWWQAAAADORWEHAAAAAAAA+BG2xAIA4ABz5sxRcnKyQkJCNGfOnF98dvz48VWUCgAAAMCNQGEHAIADnDhxQsXFxfZrAAAAANUXW2IBAAAAAAAAP8IKOwAAHGDGjBnX/OzkyZNvYBIAAAAANxqFHQAADpCfn1/m/f79+xUQEKC2bdtKktxut0pLS3X77bebiAcAAADAhyjsAABwgLlz59qvV65cqeDgYKWkpCgkJESSVFhYqJkzZ9oFHgAAAADnCjAdAAAAVMxrr72mpKQku6yTpJCQEA0ePFivv/66wWQAAAAAfIHCDgAAhyksLFRubm65eV5enjwej4FEAAAAAHyJLbEAADhMt27dNH36dI0aNUrt27eXJB06dEiLFi1SQkKC2XAAAAAAKs0qKCjwmg4BAACuXVFRkdLS0vT222+ruLhYklSjRg316dNHo0ePlsvlMpwQAAAAQGVT0+UbAAAAYUlEQVRQ2AEA4FCFhYXKysqS1+tVREREmTPtAAAAADgXhR0AAAAAAADgR7h0AgAAAAAAAPAjFHYAAAAAAACAH6GwAwAAAAAAAPwIhR0AAAAAAADgRyjsAAAAAAAAAD/y/wDqP5/VNCvFeAAAAABJRU5ErkJggg==\n"},"metadata":{}}]}],"metadata":{"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.7.6","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat":4,"nbformat_minor":4}