# This program demos how to connect to Milvus vector database, # create a vector collection, # insert 10 vectors, # and execute a vector similarity search. import random from milvus import Milvus, IndexType, MetricType, Status # Milvus server IP address and port. # You may need to change _HOST and _PORT accordingly. _HOST = '127.0.0.1' _PORT = '19530' # default value # _PORT = '19121' # default http value # Vector parameters _DIM = 8 # dimension of vector _INDEX_FILE_SIZE = 32 # max file size of stored index def main(): # Specify server addr when create milvus client instance # milvus client instance maintain a connection pool, param # `pool_size` specify the max connection num. milvus = Milvus(_HOST, _PORT) # Create collection demo_collection if it dosen't exist. collection_name = 'example_collection_' status, ok = milvus.has_collection(collection_name) if not ok: param = { 'collection_name': collection_name, 'dimension': _DIM, 'index_file_size': _INDEX_FILE_SIZE, # optional 'metric_type': MetricType.L2 # optional } milvus.create_collection(param) # Show collections in Milvus server _, collections = milvus.list_collections() # Describe demo_collection _, collection = milvus.get_collection_info(collection_name) print(collection) # 10000 vectors with 128 dimension # element per dimension is float32 type # vectors should be a 2-D array vectors = [[random.random() for _ in range(_DIM)] for _ in range(10)] print(vectors) # You can also use numpy to generate random vectors: # vectors = np.random.rand(10000, _DIM).astype(np.float32) # Insert vectors into demo_collection, return status and vectors id list status, ids = milvus.insert(collection_name=collection_name, records=vectors) if not status.OK(): print("Insert failed: {}".format(status)) # Flush collection inserted data to disk. milvus.flush([collection_name]) # Get demo_collection row count status, result = milvus.count_entities(collection_name) # present collection statistics info _, info = milvus.get_collection_stats(collection_name) print(info) # Obtain raw vectors by providing vector ids status, result_vectors = milvus.get_entity_by_id(collection_name, ids[:10]) # create index of vectors, search more rapidly index_param = { 'nlist': 2048 } # Create ivflat index in demo_collection # You can search vectors without creating index. however, Creating index help to # search faster print("Creating index: {}".format(index_param)) status = milvus.create_index(collection_name, IndexType.IVF_FLAT, index_param) # describe index, get information of index status, index = milvus.get_index_info(collection_name) print(index) # Use the top 10 vectors for similarity search query_vectors = vectors[0:10] # execute vector similarity search search_param = { "nprobe": 16 } print("Searching ... ") param = { 'collection_name': collection_name, 'query_records': query_vectors, 'top_k': 1, 'params': search_param, } status, results = milvus.search(**param) if status.OK(): # indicate search result # also use by: # `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]` if results[0][0].distance == 0.0 or results[0][0].id == ids[0]: print('Query result is correct') else: print('Query result isn\'t correct') # print results print(results) else: print("Search failed. ", status) # Delete demo_collection status = milvus.drop_collection(collection_name) if __name__ == '__main__': main()