/* CRT shader Copyright (C) 2010, 2011 cgwg, Themaister and DOLLS This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. (cgwg gave their consent to have the original version of this shader distributed under the GPL in this message: http://board.byuu.org/viewtopic.php?p=26075#p26075 "Feel free to distribute my shaders under the GPL. After all, the barrel distortion code was taken from the Curvature shader, which is under the GPL." ) modified by slime73 for use with love2d and mari0 */ extern vec2 inputSize; extern vec2 outputSize; extern vec2 textureSize; #define SCANLINES // Comment the next line to disable interpolation in linear gamma (and gain speed). #define LINEAR_PROCESSING // Compensate for 16-235 level range as per Rec. 601. #define REF_LEVELS // Enable screen curvature. #define CURVATURE // Controls the intensity of the barrel distortion used to emulate the // curvature of a CRT. 0.0 is perfectly flat, 1.0 is annoyingly // distorted, higher values are increasingly ridiculous. #define distortion 0.2 // Simulate a CRT gamma of 2.4. #define inputGamma 2.4 // Compensate for the standard sRGB gamma of 2.2. #define outputGamma 2.2 // Macros. #define FIX(c) max(abs(c), 1e-5); #define PI 3.141592653589 #ifdef REF_LEVELS # define LEVELS(c) max((c - 16.0 / 255.0) * 255.0 / (235.0 - 16.0), 0.0) #else # define LEVELS(c) c #endif #ifdef LINEAR_PROCESSING # define TEX2D(c) pow(LEVELS(checkTexelBounds(_tex0_, (c))), vec4(inputGamma)) #else # define TEX2D(c) LEVELS(checkTexelBounds(_tex0_, (c))) #endif vec2 bounds = vec2(inputSize.x / textureSize.x, 1.0 - inputSize.y / textureSize.y); vec2 radialDistortion(vec2 coord, const vec2 ratio) { float offsety = 1.0 - ratio.y; coord.y -= offsety; coord /= ratio; vec2 cc = coord - 0.5; float dist = dot(cc, cc) * distortion; vec2 result = coord + cc * (1.0 + dist) * dist; result *= ratio; result.y += offsety; return result; } #ifdef CURVATURE vec4 checkTexelBounds(Image texture, vec2 coords) { vec2 ss = step(coords, vec2(bounds.x, 1.0)) * step(vec2(0.0, bounds.y), coords); return Texel(texture, coords) * ss.x * ss.y; // return texcolor; } #else vec4 checkTexelBounds(Image texture, vec2 coords) { return Texel(texture, coords); } #endif // Calculate the influence of a scanline on the current pixel. // // 'distance' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. vec4 scanlineWeights(float distance, vec4 color) { // The "width" of the scanline beam is set as 2*(1 + x^4) for // each RGB channel. vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); // The "weights" lines basically specify the formula that gives // you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. vec4 weights = vec4(distance / 0.3); return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); } vec4 effect(vec4 vcolor, Image texture, vec2 texCoord, vec2 pixel_coords) { vec2 one = 1.0 / textureSize; float mod_factor = texCoord.x * textureSize.x * outputSize.x / inputSize.x; // Here's a helpful diagram to keep in mind while trying to // understand the code: // // | | | | | // ------------------------------- // | | | | | // | 01 | 11 | 21 | 31 | <-- current scanline // | | @ | | | // ------------------------------- // | | | | | // | 02 | 12 | 22 | 32 | <-- next scanline // | | | | | // ------------------------------- // | | | | | // // Each character-cell represents a pixel on the output // surface, "@" represents the current pixel (always somewhere // in the bottom half of the current scan-line, or the top-half // of the next scanline). The grid of lines represents the // edges of the texels of the underlying texture. // Texture coordinates of the texel containing the active pixel. #ifdef CURVATURE vec2 xy = radialDistortion(texCoord, inputSize / textureSize); #else vec2 xy = texCoord; #endif #ifdef SCANLINES // Of all the pixels that are mapped onto the texel we are // currently rendering, which pixel are we currently rendering? vec2 ratio_scale = xy * textureSize - 0.5; vec2 uv_ratio = fract(ratio_scale); // Snap to the center of the underlying texel. xy = (floor(ratio_scale) + 0.5) / textureSize; // Calculate Lanczos scaling coefficients describing the effect // of various neighbour texels in a scanline on the current // pixel. vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); // Prevent division by zero. coeffs = FIX(coeffs); // Lanczos2 kernel. coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); // Normalize. coeffs /= dot(coeffs, vec4(1.0)); // Calculate the effective colour of the current and next // scanlines at the horizontal location of the current pixel, // using the Lanczos coefficients above. vec4 col = clamp(mat4( TEX2D(xy + vec2(-one.x, 0.0)), TEX2D(xy), TEX2D(xy + vec2(one.x, 0.0)), TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs, 0.0, 1.0); vec4 col2 = clamp(mat4( TEX2D(xy + vec2(-one.x, one.y)), TEX2D(xy + vec2(0.0, one.y)), TEX2D(xy + one), TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs, 0.0, 1.0); #ifndef LINEAR_PROCESSING col = pow(col , vec4(inputGamma)); col2 = pow(col2, vec4(inputGamma)); #endif // Calculate the influence of the current and next scanlines on // the current pixel. vec4 weights = scanlineWeights(uv_ratio.y, col); vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); vec4 mul_res_f = (col * weights + col2 * weights2); vec3 mul_res = mul_res_f.rgb; #else vec4 mul_res_f = TEX2D(xy); vec3 mul_res = mul_res_f.rgb; #endif // dot-mask emulation: // Output pixels are alternately tinted green and magenta. vec3 dotMaskWeights = mix( vec3(1.0, 0.7, 1.0), vec3(0.7, 1.0, 0.7), floor(mod(mod_factor, 2.0)) ); mul_res *= dotMaskWeights; // Convert the image gamma for display on our output device. mul_res = pow(mul_res, vec3(1.0 / outputGamma)); // Color the texel. return vec4(mul_res * 1.0, 1.0); }