{
"cells": [
{
"cell_type": "markdown",
"id": "5b41ceb6-d385-4837-b5e0-5e21e643d6e6",
"metadata": {},
"source": [
"# Two-way ANOVA\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3a91e1db-04f3-4c28-9707-e0a7c6df2d6a",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import statsmodels.formula.api as smf "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6e1aa2b2-ce9b-420f-8813-e0d0f9ac327a",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'"
]
},
{
"cell_type": "markdown",
"id": "2030c8e7-a0d8-4a4d-b227-a0a81f11e02d",
"metadata": {},
"source": [
"$\\def\\stderr#1{\\mathbf{se}_{#1}}$\n",
"$\\def\\stderrhat#1{\\hat{\\mathbf{se}}_{#1}}$\n",
"$\\newcommand{\\Mean}{\\textbf{Mean}}$\n",
"$\\newcommand{\\Var}{\\textbf{Var}}$\n",
"$\\newcommand{\\Std}{\\textbf{Std}}$\n",
"$\\newcommand{\\Freq}{\\textbf{Freq}}$\n",
"$\\newcommand{\\RelFreq}{\\textbf{RelFreq}}$\n",
"$\\newcommand{\\DMeans}{\\textbf{DMeans}}$\n",
"$\\newcommand{\\Prop}{\\textbf{Prop}}$\n",
"$\\newcommand{\\DProps}{\\textbf{DProps}}$"
]
},
{
"cell_type": "markdown",
"id": "e41da4dc-40bc-4074-b3ca-5f2a2534fdcf",
"metadata": {},
"source": [
"## Definitions"
]
},
{
"cell_type": "markdown",
"id": "442020c3-458a-469b-a82e-c7f3beafb812",
"metadata": {},
"source": [
"## Formulas"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28207dfa-61a8-47a3-8fe1-9168cbc2f096",
"metadata": {},
"outputs": [],
"source": [
"\n"
]
},
{
"cell_type": "markdown",
"id": "60311b0a-7c91-4df0-be4a-accc69028d8c",
"metadata": {},
"source": [
"## Example"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "55e6cea6-edd2-4d6c-bcbf-7f0e25b9b5b3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" gender | \n",
" education_level | \n",
" score | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 1 | \n",
" male | \n",
" school | \n",
" 5.51 | \n",
"
\n",
" \n",
" | 1 | \n",
" 2 | \n",
" male | \n",
" school | \n",
" 5.65 | \n",
"
\n",
" \n",
" | 2 | \n",
" 3 | \n",
" male | \n",
" school | \n",
" 5.07 | \n",
"
\n",
" \n",
" | 3 | \n",
" 4 | \n",
" male | \n",
" school | \n",
" 5.51 | \n",
"
\n",
" \n",
" | 4 | \n",
" 5 | \n",
" male | \n",
" school | \n",
" 5.94 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id gender education_level score\n",
"0 1 male school 5.51\n",
"1 2 male school 5.65\n",
"2 3 male school 5.07\n",
"3 4 male school 5.51\n",
"4 5 male school 5.94"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jobsatisfaction = pd.read_csv(\"../datasets/exercises/jobsatisfaction.csv\")\n",
"jobsatisfaction.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "84594218-7472-4e29-bca8-021b872f76ce",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABFQAAANiCAYAAABPeZ1uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AADfDklEQVR4nOzdd3hUZd7G8e+Q0HsXpVlAV1BEsK4VARVEsCCKLsXu2tf22rurq+iiWLAAdgERERFEwIJYKRbEjggoSBXpkGTePwaymZMACSTnTJLv57q4iPecmXOD4mV+nud5YvF4PI4kSZIkSZLyrUzUBSRJkiRJkoobByqSJEmSJEkF5EBFkiRJkiSpgByoSJIkSZIkFZADFUmSJEmSpAJyoCJJkiRJklRADlQkSZIkSZIKyIGKJEmSJElSATlQkSRJkiRJKiAHKpIkSZIkSQXkQEWSJEmSJKmAHKhIkiRJkiQVkAMVSZIkSZKkAnKgIkmSJEmSVEAOVCRJkiRJkgrIgYokSZIkSVIBpUddoLRat24dX3/9NQB169YlPd2/FZIkSZIkFbaMjAwWL14MwD777EOFChUK5XP9Lj4iX3/9NQceeGDUNSRJkiRJKjU+++wzDjjggEL5LJf8SJIkSZIkFZBPqESkbt262V9/9tlnNGjQIMI2kiRJkiSVTAsWLMheIZLze/Ed5UAlIjn3TGnQoAENGzaMsI0kSZIkSSVfYe5f6pIfSZIkSZKkAnKgIkmSJEmSVEAOVCRJkiRJkgrIgYokSZIkSVIBOVCRJEmSJEkqIAcqkiRJkiRJBeRARZIkSZIkqYAcqEiSJEmSJBWQAxVJkiRJkqQCcqAiSZIkSZJUQOlRF9COycrKYtWqVfz1119s2LCBzMzMqCtJRSotLY1y5cpRrVo1qlSpQpkyzoUlSZIkhc+BSjG2cuVKfvvtN+LxeNRVpNBkZGSwfv16Vq5cSSwWY5dddqFq1apR15IkSZJUyjhQKabyGqbEYjHS0tIibCUVvczMzOx/7uPxOL/99ptDFUmSJEmhc6BSDGVlZSUNU6pUqUKtWrWoVKkSsVgs4nZS0YrH46xZs4Zly5axatWq7KFK8+bNXf4jSZIkKTR+91EMbf4mEhLDlIYNG1K5cmWHKSoVYrEYlStXpmHDhlSpUgVIDFlWrVoVcTNJkiRJpYkDlWLor7/+yv66Vq1aDlJUKsViMWrVqpX91zn/XEiSJElSUXOgUgxt2LABSHxDWalSpYjbSNHJucxt858LSZIkSQqDA5ViaPPRyGlpaT6dolIt50bMHhkuSZIkKUwOVCRJkiRJkgrIgYokSZIkSVIBOVCRJEmSJEkqIAcqkiRJkiRJBeRARZIkSZIkqYAcqEgRmDNnDrFYjFgsxpAhQ6KuI0mSJEkqIAcqkiRJkiRJBeRARZIkSZIkqYAcqEiSJEmSJBWQAxVJkiRJkqQCcqAiSZIkSZJUQA5UlDKWLl3Ktddey5577knFihWpX78+HTp0YOTIkQAMGTIk+2ScOXPm5PkZ69atY8CAARxzzDHstNNOlCtXjnr16tG+fXueeeYZMjIytnj/pk2bEovF6NOnDwDff/895513Hk2bNqV8+fLUr1+fk046iU8++WSbv5bMzEwee+wxDjroIKpVq0b16tXZf//9eeCBB1i/fn2Bfl9ef/11unfvTuPGjalQoQI1atSgbdu23H777SxfvnyL7+vTpw+xWIymTZsCsGDBAq677jpatGhB1apVicVivPfeewXqIkmSJElKSI+6gATw9ddf06FDB/7444/sbN26dUyYMIEJEyZw/vnnc8ghh2z1M7788ku6du3Kr7/+mpQvXryYiRMnMnHiRAYOHMjo0aOpX7/+Vj9r5MiRnHXWWaxZsyY7W7RoEa+//jqjR4/mxRdfpEePHnm+d9WqVXTq1InJkycn5TNmzGDGjBm8/PLLPP3001u9P8Dy5cs59dRTmTRpUlK+fv16pk2bxrRp03jssccYNWoUBx988FY/65NPPqFLly4sWbJkm/eVJEmSJG2bAxVF7s8//+S4447LHqb84x//oGfPntStW5effvqJ/v378+STT/Lll19u8TN++uknjjzySFasWEG1atW4+OKLOfDAA2nUqBFLly7ljTfeYODAgXz++ed07dqVyZMnU7Zs2Tw/6+uvv2bo0KE0aNCAq666irZt2xKPx3n77be59957WbduHeeffz7t2rWjbt26ud5/1llnZQ9TDjzwQK688kqaNWvGH3/8wZAhQxg+fDgXXHDBVn9P1q9fT/v27Zk+fTppaWn07NmTTp06seuuu7Jx40Y++OADHnzwQRYtWkSnTp2YMWMGTZo0yfOzVq1axSmnnMK6deu48cYb6dChA5UqVeLrr7+mQYMGW+0hSZIkScqbAxVF7vbbb+f3338H4L///S+XX3559mtt2rTh1FNP5ZRTTmHUqFFb/IzevXuzYsUKWrduzfjx46lTp07S6x07duSEE06gc+fOfPrppwwZMoTzzjsvz8+aPn06bdq0YdKkSVSrVi07P/jgg9ljjz0466yz+Ouvv3jhhRe48sork947ZsyY7J6dOnVi1KhRpKf/749Zp06duOOOO7j11lu3+ntyxx13MH36dGrUqMGECRNo06ZN0uuHHXYYZ555JocccggLFizghhtu4MUXX8zzs5YuXUqVKlX48MMPadWqVXZ+wAEHbLWDJEmSJGnL3ENFkVq/fj1DhgwBEt/g5xymbJaWlsbAgQOpUKFCnp8xefJkPvroIwCeffbZXMOUzY477jhOPfVUgOx7bsmgQYOShimb9ezZk5133jn7vkGPPfYYAOXLl+epp55KGqZsdtNNN9GyZcst3nvVqlU8+uijANx55525himbNWnShJtvvhmA4cOHs3r16i1+5rXXXps0TJEkSZIk7RgHKorU1KlT+fPPP4HEUpktqV+/Pscee2yer73xxhsA7Lnnnuyzzz5bvd8RRxwBwOeff77FDWr32Wcf9t133zxfi8VitG7dGoDZs2cnvZaZmZm9yWvHjh2zBy9BZcqUoXfv3lvs+P7777NixQqA7AHQlmz+9WzcuJFp06Zt8bozzzxzq58jSZIkSSoYl/woUjNnzsz+ektPYmzWtm3bPJf9TJ06FUicyhOLxfJ1340bN7Js2TLq1auX67W99tprq++tVasWACtXrkzKf/755+xNbLe1nObAAw/c4mubfz1AgfY4WbhwYZ55lSpV2G233fL9OZIkSZKkbfMJFUUq57G/eW3wmtOWXl+0aNF23TvnCT45VapUaavvK1Mm8ccmMzMzKV+2bFn213kNanLa2ilDhf3rqVGjxnZ9niRJkiRpy3xCRcXe5sFGq1ateOGFF/L9vl122aWoKuX7SZm85BzUTJ8+fYunEQU1bNgwzzwtLW27u0iSJEmS8uZARZGqWbNm9teLFy+mefPmW7x28eLFeea1a9cGEpu5bm2z16KW89ey+QjoLdna65t/PZB4KmdLgxJJkiRJUnRc8qNItWjRIvvrrW2qCsl7i+SUc5PYLe0jEobdd9+dihUrAolNb7dma69v/vUATJkypXDKSZIkSZIKlQMVRapt27ZUr14dYKvLdf744w/efvvtPF878cQTAYjH4/Tv37/wS+ZTeno6Rx11FADjx49nwYIFeV6XlZXFs88+u8XPad++ffY+Lg8//DDxeLzQu0qSJEmSdowDFUWqQoUK9OrVC0g8tZHXQCQrK4sLLriAdevW5fkZHTt2zD415/7772fYsGFbvefXX3/N6NGjd7B53i666CIA1q9fzwUXXJBr41qAf//733z99ddb/IwaNWpwySWXAPDRRx9x5ZVXkpWVtcXr//jjD55++ukdbC5JkiRJKggHKorcbbfdxk477QTAFVdcQa9evXj77beZPn06w4YN4/DDD2fUqFFJRw0HN3196aWXqFWrFpmZmfTo0YMTTzyRF198kc8++4xp06YxduxY7rnnHg455BD23Xdf3n///SL5tXTp0oUuXboAMHr0aP7+978zdOhQpk+fzrhx4zj99NO56aabaNu27VY/54477uCggw4CoH///uy///48+uijTJkyhS+++IJ3332XAQMG0K1bNxo3bswTTzxRJL8eSZIkSVLe3JRWkatVqxbjxo2jQ4cOLF68mOeff57nn38+6Zo+ffpw+OGH89lnnwGJJ1ty2n333fn444855ZRTmDlzJqNHj97qUyjVqlUr/F/IJi+++CLHH388U6ZM4dNPP+X0009Per1169YMHDiQNm3abPEzypcvzzvvvEOfPn147bXX+PLLL7OfWslLUf56JEmSJEm5+YSKUkKrVq2YNWsWV111Fc2aNaN8+fLUqVOHo48+mpdeeonBgwfz119/ZV+/ed+VnJo3b84XX3zBSy+9xCmnnELjxo2pWLEi5cqVo0GDBhx11FHcdNNNTJs2jVtuuaXIfi1Vq1blvffe45FHHuGAAw6gSpUqVK1alf32249///vffPTRR9SqVStfnzNixAgmT57Mueeey5577knVqlVJT0+nVq1aHHDAAVx88cW89dZbvPPOO0X265EkSZIk5RaLu+NlJObPn0+jRo0AmDdvXoGOxv3xxx/JyMggPT2dZs2aFVXFlHPuuefyzDPP0LBhQ+bNmxd1HaWI0vrnQZIkSVL+7Mj331vjEyoqFtauXcuoUaMAOPjggyNuI0mSJEkq7RyoKCX8/PPPWzweODMzk4suuoglS5YA0Lt37zCrSZIkSZKUi5vSKiXceeedfPbZZ5x++ukcdNBB1KtXj7Vr1/LVV1/x1FNPMX36dADat29P586dI24rSZIkSSrtHKgoZXz77bfceuutW3z973//O6+88kquI5MlSZIkSQqbAxWlhOuvv57mzZszYcIE5syZw+LFi9m4cSO1a9embdu29OjRg9NPP50yZVylJkmSJEmKngMVpYQ999yTG264gRtuuCHqKpIkSZIkbZP/u1+SJEmSJKmAHKhIkiRJkpSisoDVm35WanGgIkmSJElSivkS6A1UBaps+rn3plypwYGKJEmSJEkp5GWgLfAcsGZTtmbTX7fd9Lqi50BFkiRJkqQU8SXQC8jYwusZm173SZXoOVCRJEmSJClFPMiWhymbZQAPhdBFW+dARZIkSZKkFJAFvJrPa4fjRrVRc6AiSZIkSVIKWMv/9kzZljWbrld0HKhIkiRJkpQCKgKV8nltpU3XKzoOVCRJkiRJSgFlgHr5vLY7fkMfNX//JUmSJElKAa8Cc/JxXTpwZdFWUT44UJEkSZIkKWKLgIvycV068BzQqmjrKB8cqEiSJEmSFKE48E9gSSA/nP/tqVIJ6A1MBc4Ir5q2woGKVABz587lggsuYPfdd6dChQrEYjFisRivv/561NUicdttt2X/HkiSJEnaPsOAEYHsJOB9YCWwatPPQ/DJlFSSHnUBqbiYO3cubdq0YcmS4NxYkiRJkrbPH8DFgaw28DgQ2/SjctillC8OVKR8uuuuu1iyZAnp6encfffdHHHEEVSpUgWAJk2aRNxOkiRJUnETJ7FvytJA/ihQP/w6KiAHKlI+TZgwAYBu3bpx7bXXRtxGkiRJUnH3MjAykJ0KnBZBFxWce6hI+fTbb78B0Lx584ibSJIkSSruFgCXBLK6wGMklvko9TlQUeHKyoLVqxM/lzAbNmwAoGzZshE3kSRJklScxYELgOWB/HESQxUVDw5UVDi+/BJ694aqVaFKlcTPvXsn8mJsyJAhuU6xuf3227OzWCxGnz59kt6TmZnJs88+ywknnMDOO+9M+fLlqV27NocddhgPPvgga9eu3eL9jjrqKGKxGEcddRQAP/30ExdeeCG77bYbFStWpGnTppxzzjn8+uuvSe+bOXMmffv2ZbfddqNChQo0atSIiy66iEWLFm311/fJJ59w0003cdRRR7HTTjtRrlw5qlWrxt57781FF13ErFmzCvYbtgXr1q1jwIABHHPMMdn3qVevHu3bt+eZZ54hIyOjUO4jSZIkFQcvAKMDWQ/glAi6aPu5h4p23MsvQ69ekPOb4jVr4Lnn4KWXEj+fUTpOSp87dy4nnngiXwYGScuWLWPKlClMmTKFxx9/nDFjxmxz6dCECRM4+eSTWblyZXb266+/MmjQIN58803ef/999tprL15++WX69OmT/QQNwPz583niiScYO3YsH330ETvvvHOuzx8yZAh9+/bNlW/cuJFvv/2Wb7/9lqeeeoqHH36Yf/7znwX9rcj25Zdf0rVr11xDoMWLFzNx4kQmTpzIwIEDGT16NPXru/WWJEmSSrbfgMsCWT1gQARdtGMcqJRUWVmwNLhXdBGYOTP3MCWnjIzE6zvtBC1bFm2X2rWhTOE+dNWtWzfatm0LwD777APARRddlDRgqFmzJgBLly7lsMMOY968eZQvX57zzjuPI488kqZNm7Jq1SrGjx9P//79+emnnzj++OOZPn061atXz/O+v//+O6eddho1atTgnnvu4cADD2TDhg2MGDGC/v37s2jRIs4991weeughevXqRbNmzbjqqqvYd999Wb16NYMGDeL555/n119/5V//+hevvPJKrntkZGRQs2ZNunbtyhFHHEGzZs2oXLkyv//+O9OnT+fhhx9myZIlXHLJJey11160a9euwL9/P/30E0ceeSQrVqygWrVqXHzxxRx44IE0atSIpUuX8sYbbzBw4EA+//xzunbtyuTJk11SJUmSpBIrDpwP/BnInwDqhN5GOyyuSMybNy9O4s9TfN68eQV67w8//BCfNWtW/IcfftjyRYsWxeNQun4sWrSDf1e2bvPfr1tvvTXP13v27BkH4k2aNInPnj07z2umT58er1y5chyI33DDDbleP/LII7Pv06xZs/iiPH5NV199dfY1devWjR966KHx1atX57que/fucSCenp6e5+fMnz8/z/dt9ueff8b33XffOBA/7LDD8rzm1ltvze6Sl0MPPTQOxFu3bh1fvHhxnteMHTs2XqZMmTgQf/LJJ7fYZ0vy9edBkiRJSgGD4vE4gR9nRtqodNiR77+3xj1UpEIwZ84chg4dCsCAAQPYdddd87yudevWXHzxxUBiyc3WPPzww9Stm3tLqpxPxyxZsoSnn36aSpUq5bruoosuAhJPonz88ce5Xt9ll13yfN9m1atX54477gDgww8/ZGkBn3iaPHkyH330EQDPPvssderkPXM/7rjjOPXUU4Ft/55IkiRJxdV84IpAthPwcPhVVEgcqEiFYMyYMWRmZlKpUiWOP/74rV57xBFHAIllPXPnzs3zmho1anDsscfm+dquu+5K1apVAdh3333529/+lud1rVq1yv569uzZ2/w1rF69mjlz5vDNN98wc+ZMZs6cmbT8JrgvzLa88cYbAOy5557Zy6W2ZPPvyeeff+4GtZIkSSpx4sC5wF+BfCBQK/w6KiTuoSIVgqlTpwKwZs0a0tPz/8dq4cKFNG7cOFferFmzpJOFgmrUqMHKlSu3urFtjRo1sr/OubFtTkuWLOHBBx9kxIgR/Pjjj8Tj8S1+3pIlS7b4Wl42/558//33W/215LRx40aWLVtGvXr1CnQvSZIkKZU9A7wdyHoBJ0bQRYXHgUpJVbs2bOPI3EJxySUwbNi2r+vRAx55pGi71K5dtJ+/Fds6nnhL1qxZk2e+taU4AGU2bb67tevK5NigNzMzM9fr06ZN49hjj833Up6tHfecl8L+PZEkSZKKo7nAvwLZzsB/w6+iQuZApaQqUwby2H+j0N1wA7z22pZP+QFIT4frrw+nT0Q2Dyzq1KnDu+++m+/3bWmvlaK2YcMGTjvtNJYuXUrZsmW59NJL6dq1K82bN6dmzZqUL18eSCwV2n333QG2+vRKXjb/nrRq1YoXXngh3+/bZZddCnQfSZIkKVXFgXOA4PPiTwE1w6+jQuZARTumVSt47rktH52cnp54Pcd+HiVR7U1Px6xcuZK//e1vpKWlRdxo6yZNmpS9r8pjjz3Gueeem+d1y5Yt2+57bP49WbVqFS2L+shsSZIkKQU9CUwIZH2BThF0UeFzU1rtuDPOgKlToXdv2LwEpVKlxF9PnZp4vYRr3bo1AOvXr8/eOySVffPNN9lf9+jRY4vX7civZfPvyezZs1m4cOF2f44kSZJUHP0CXBXIGgIPRtBFRcOBigpHq1YwZAisXAmrViV+HjKkxD+ZslmXLl2yN17973//G22ZfMh5ks7q1avzvCYrK4unnnpqu+9x4omJLbbi8Tj9+/ff7s+RJEmSipssEkt9gv+l/TRQI/Q2KioOVFS4ypSBypUTP5cie+65J927dwfglVde4cEHtz53/uWXX3j55ZfDqJanZs2aZX89ZMiQPK+5/vrrmT59+nbfo2PHjhx44IEA3H///QzbxubFX3/9NaNHj97u+0mSJEmp4gkguLPiecCxEXRR0XEPFamQPP7440ydOpXZs2dz1VVXMWrUKHr16kWLFi0oX748S5cu5csvv2TcuHFMmjSJk046iTMiWg517LHHUq9ePRYtWsRNN93EnDlzOOmkk6hTpw4//fQTTz31FBMnTuTvf/87U6ZM2e77vPTSSxx44IEsW7aMHj168MILL9CjRw+aNWtGWloaixYtYsaMGYwePZpPPvmEq666ii5duhTir1SSJEkK12zgmkDWGHgggi4qWg5UpEJSq1YtpkyZwmmnncbkyZP54IMP+OCDD7Z4fbVq1UJsl6xy5co899xzdOvWjXXr1jFw4EAGDhyYdM1RRx3FgAEDdmhD2d13352PP/6YU045hZkzZzJ69OitPoUS5e+JJEmStKOySGw6uyaQPwP4X7oljwMVqRDttNNOfPDBB4wZM4aXX36Zjz/+mIULF7Jx40Zq1KhBs2bNOOSQQzjxxBM54ogjIu167LHHMnXqVO69914mTZrE4sWLqVGjBnvvvTdnnnkm55xzDnPnzt3h+zRv3pwvvviCYcOGMWLECD7//HMWL15MZmYmtWvXZs899+Swww7jpJNOYv/99y+EX5kkSZIUjQFA8H+pXgi0j6CLil4sHo/Hoy5RGs2fP59GjRoBMG/ePBo2bJjv9/74449kZGSQnp6etBeGVBr550GSJEmp4EegFbA2R9YU+AqoGkUhZduR77+3pnTtHCpJkiRJUiHLJLHUZ20gH4TDlJLMgYokSZIkSTvgYSB4lMPFwNERdFF4HKhIkiRJkrSdvgduCGS7AfdG0EXhcqAiSZIkSdJ22LzUZ10gHwxUCb+OQuZARZIkSZKk7fAQ8HEguxyI9jxPhcWBiiRJkiRJBfQtcFMg2wO4J4IuioYDFUmSJEmSCiAD6AOsz5HFSCz1qRRFIUXCgYokSZIkSQXwAPBZILsSOCyCLopOqR+orFu3jscee4xjjjmGunXrUq5cOXbeeWc6derEK6+8EnU9SZIkSVIKmQncGsiaA3dF0EXRSo+6QJS+//57unbtyvfff5+UL1iwgAULFjB27FgGDx7MiBEjqFLFPZolSZIkqTTbSGKpz4YcWRngWaBiFIUUqVL7hMqiRYvo0KFD9jCle/fuvPnmm0yfPp0333yT7t27AzB+/HhOP/30KKtKkiRJklLAf4Bpgewq4OAIuih6pXagcscddzBv3jwAbr31VoYNG0bnzp1p3bo1nTt3ZtiwYdxyyy0AjBkzhldffTXKupIkSZKkCH0F3B7I9gLuiKCLUkOpHKhkZmbywgsvANCkSRNuvvnmPK+75ZZbaNy4MQD33ntvaP0kSZIkSalj81KfjTmyzUt9KkRRSCmhVA5UfvzxR1asWAFAhw4dSEtLy/O6tLQ0OnToAMC0adP45ZdfQusoSZIkSUoN/wZmBLLrgAMj6KLUUSoHKkuXLs3+un79+lu9NufrkydPLrJOkiRJkqTU8wVwZyBrQe6TflT6lMpTfnKe2LP5SZUtyfn6rFmz8n2P+fPnb/X1BQsW5PuzJEmSJEnh2wD0BjJyZGnAEKB8FIWUUkrlQGWPPfagbNmybNy4kQ8++GCr1+Z8fe7cufm+R6NGjba7nyRJkiQpeneR2Iw2p+uBthF0UeoplUt+KleuTLt27QD46quvePnll/O87uWXX+brr7/O/uuVK1eG0k+SJEmSFK1pwD2BbF8g7yNNVBqVyidUAG677TYmTpxIRkYGvXv35ueff6ZXr140aNCABQsW8Nxzz3HHHXdQrlw5NmzYAMDatWvz/fmbj2TekgULFnDggW5hJEmSJEmpZj2JU30yc2TpJJb6lIugj1JTqXxCBeDggw9m4MCBpKens3HjRm6++WaaNGlCuXLlso9STk9P58EHH8x+T9WqVfP9+Q0bNtzqjwYNGhTFL0vivffeIxaLEYvFeO+996KuI0mSJBU7dwAzA9mNQOsIuih1ldqBCsDZZ5/Np59+ykknnUTlypWz8/T0dE488USmT59O27b/Wx1Xs2bNKGpKkiRJkkLyOXBvINsPuCH8KkpxpXbJz2b7778/r732GhkZGSxYsIANGzawyy67UKFCBQBeeOGF7GtbtGgRVU1JkiRJUhFbR+JUn6wcWVlc6qO8lfqBymbp6el5nswzbdq07K/d80SSJEmSSq7bgG8D2S1Aq/CrqBgo1Ut+tiUzM5PXXnsNSByDfOihh0bcSJIkSZJUFD4B7g9k+wPXRdBFxYMDla145plnmDt3LgAXXHABaWlpETdKfVnAapIfkZMkSZKkVLaWxKk+waU+z276WcpLqR6o/Pbbb1t8bdKkSVxxxRUANG/enKuuuiqkVsXTlyTWGlYFqmz6ufemvCS47bbbsk/OAfjrr7+47bbb2GeffahSpQr16tWjU6dOfPTRR0nvW7RoETfddBMtWrSgcuXK1K5dm65duzJjxowt3mv27Nn069ePLl260LRpUypWrEjFihVp0qQJPXr0YNy4cYX263r99dfp3r07jRs3pkKFCtSoUYO2bdty++23s3z58kK7jyRJkpTKbga+D2S3Ay0j6KLio1TvodKyZUuOPPJIOnfuTIsWLShfvjxz585l5MiRvPjii2RlZVGrVi2GDRuWvUmtcnsZ6AVk5MjWAM8BL236+YwIehWVefPm0b59e3744YfsbPXq1YwdO5bx48fz8ssv0717d7766is6deqUNLhbs2YNb7zxBm+//TZjx47l6KOPTvrsX375hd133z3P+86dO5e5c+cybNgwzjrrLAYPHkx6+vb9EV6+fDmnnnoqkyZNSsrXr1/PtGnTmDZtGo899hijRo3i4IMP3q57SJIkScXBFODBQHYAcE0EXVS8lOqBysaNGxk1ahSjRo3K8/UWLVrw4osv0qpV8duCKAtYGsJ9ZpJ7mJJTxqbXd6Lop7u1CeeRq+7duzN//nyuv/56jjvuOCpVqsSHH37Irbfeyl9//cU555xD27ZtOeGEE1i7di133303Rx55JGXLlmXcuHHcfffdrF+/nj59+vDjjz9Srtz/9gvPzMykXLlyHHvssXTo0IG9996bWrVqsWzZMn744QceffRRvvnmG1544QV22203br/99gL3X79+Pe3bt2f69OmkpaXRs2dPOnXqxK677srGjRv54IMPePDBB1m0aBGdOnVixowZNGnSpDB/CyVJkqSUsAboC8RzZOVJnOpTqr9ZVr6U6n9Gnn76acaPH89nn33GggULWLVqFXXr1mXfffele/funHXWWZQtWzxXzC0F6kVdYpMMoF0I91kE1A3hPl988QXvv/8+Bx10UHbWtm1bmjVrxgknnMDKlSs56KCDiMfjfPbZZ0lPnBx44IHUqVOHiy++mLlz5zJmzBhOOumk7NcbNGjAnDlzaNCgQa77HnPMMVx44YWcffbZDBkyhH79+vGvf/2L6tWrF6j/HXfcwfTp06lRowYTJkygTZs2Sa8fdthhnHnmmRxyyCEsWLCAG264gRdffLFA95AkSZKKgxuBHwPZHcDeEXRR8VOq91A5/fTTGTRoEDNnzmTp0qWsX7+e+fPn89Zbb9G3b99iO0xR0briiiuShimbde7cOftJjsWLF3PnnXfmuXynb9++2UvIJk+enPRa5cqV8xymbBaLxejXrx9paWmsXr2aCRMmFKj7qlWrePTRRwG48847cw1TNmvSpAk333wzAMOHD2f16tUFuo8kSZKU6j4A+geygwF3z1R+leqBirQ9Tj/99C2+tu+++wKJwUePHj3yvKZixYo0a9YMSGxAuzUbN25k/vz5fPvtt8ycOZOZM2fy+++/U7t2bQC+/LJg2/6+//77rFixAoBTTz11q9ceccQR2R2mTZtWoPtIkiRJqWw1uZf6VCCx1MezXZVfpXrJj7Q9mjdvvsXXatSoAUCdOnWoWbPmNq9buXJlrtc2btzIk08+yfPPP8+MGTPYsGHDFj9nyZIl+Su9ydSpU7O/3tqTMEELFy4s0H0kSZKkVHY9EPxfm3cDe0bQRcWXA5USqjaJPUWK2iXAsHxc1wN4pIi71C7iz9+sUqVKW3ytTJky27wm53WZmZlJ+bJly+jYsWO+nwhZu3Ztvq7bbNGi7funYs2aNdv1PkmSJCnVvEfu703+DlwefhUVcw5USqgyhLNB6w3Aa2z5lB9I/EN2fUh9irvLL788e5jSrVs3zj77bPbdd1/q1atHhQoViMViADRu3Jh58+YRj8e39nG55BzgTJ8+Pd/7BDVs2LBA95EkSZJS0SoSS31yqggMwqU+KjgHKtohrYDn2PLRyembXi9+B0+H76+//mLo0KEAnHnmmbzwwgtbvHb58uXbdY/Ne68A1K1b10GJJEmSSpVrgTmB7N/Alhf1S1vmprTaYWcAU4HewOaFLpU2/fXUTa9r23788Uc2btwIsMUNbQG+++47Vq1atV33aN26dfbXU6ZM2a7PkCRJkoqjicDjgexw4NIIuqhkcKCiQtGKxI7YK0k8Rrdy01/7ZEr+ZWT87xmfrR1T/MQTT2z3Pdq3b5+9v8vDDz9c4CVDkiRJUnH0F3B2IKsEDMZvirX9/GdHhaoMUBn/wdoee+yxR/YeKc8++2yew47Ro0czYMCA7b5HjRo1uOSSSwD46KOPuPLKK8nKytri9X/88QdPP/30dt9PkiRJSgXXAHMD2X3A7hF0Ucnh971SiqhduzadOnUCYNy4cXTs2JHXXnuNadOmMXbsWM4991xOOukkdtttN+rW3f4tfu+44w4OOuggAPr378/+++/Po48+ypQpU/jiiy949913GTBgAN26daNx48Y79ESMJEmSFLXxwJOB7Cjgn+FXUQnjprRSCnn88cc57LDDmDt3LhMmTGDChAlJrzdu3JjXX389e/CyPcqXL88777xDnz59eO211/jyyy+zn1rJS7Vq1bb7XpIkSVKUVgDnBLLKJE718ekC7SgHKlIKadSoEdOnT+e+++5j1KhR/Prrr1SoUIGmTZvSrVs3Lr/8cmrWrLnD96latSojRozgww8/5Nlnn2Xy5Mn8/vvvrF27lmrVqrH77rtz4IEH0rlzZzp27FgIvzJJkiQpfFcB8wPZA8CuEXRRyROLuytlJObPn0+jRo0AmDdvXoGOr/3xxx/JyMggPT2dZs2aFVVFqVjwz4MkSZLyMhYIPtd9DPAOEAu/jiK0I99/b41POUmSJEmSSpTlwLmBrArwDA5TVHgcqEiSJEmSSpQrgd8D2YNAkwi6qORyoCJJkiRJKjHeBJ4NZB3J/cSKtKMcqEiSJEmSSoRlwPmBrBrwNC71UeFzoCJJkiRJKhEuBxYEsoeARhF0UcnnQEWSJEmSVOy9DrwQyI4H+oZfRaWEAxVJkiRJUrG2FLgwkFUHnsKlPio6DlQkSZIkScXapcAfgexhYJcIuqj0cKAiSZIkSSq2RgAvB7ITgH9E0EWliwMVSZIkSVKxtBi4KJDVBAbiUh8VPQcqkoq1eDwedQVJkiRF5GISQ5WcHgF2jqCLSh8HKsVQWloaABkZGWRmZkbcRopOZmZm9p+BzX8uJEmSVDoMA4YHsm5Az/CrqJRyoFIMVapUKfvrP//8M7oiUsRy/vOf88+FJEmSSrY/gH8GslrA47jUR+FJj7qACq5GjRosX74cgEWLFpGZmUm1atUoX748sZj/+lDJFo/HWb9+PX/99RdLly7NzmvWrBlhK0mSJIUlTmLflKWB/FFgp/DrqBRzoFIMVahQgerVq7NixQoAli5dytKlS4nFYi57UImXmZmZa9+U6tWrU758+YgaSZIkKUyvACMD2SlAjwi6qHRzoFJMNWjQgHLlyrF48f+2YIrH42RkZETYSgpf3bp1qV27dtQ1JEmSFIKFwCWBrA7wGC71UfgcqBRTsViMOnXqUK1aNVatWsXq1avZsGEDWVlZUVeTilSZMmUoV64clStXpkqVKpQrVy7qSpIkSQpBHLgQWBbIHwPqhV9HcqBS3JUrV45atWpRq1atqKtIkiRJUpF5ERgVyE4DukfQRQJP+ZEkSZIkpbjfgUsDWT0SG9FKUXGgIkmSJElKWXHgfODPQP4Eif1TpKg4UJEkSZIkpazngDGBrCdwUgRdpJwcqEiSJEmSUtJ84PJAVh94OIIuUpADFUmSJElSyokD5wErAvlAoHb4daRcHKhIkiRJklLOIGBcIPsH0DWCLlJeHKhIkiRJklLKXODKQNYA6B9BF2lLHKhIkiRJklJGHDgXWBnInwJqhl9H2iIHKpIkSZKklPEU8E4g6wN0Dr+KtFUOVCRJkiRJKWEOcFUg2wV4KPwq0jY5UJEkSZIkRS4LOAdYFcifBmqE3kbaNgcqkiRJkqTIDQQmBbJzgeMi6CLlhwMVSZIkSVKkZgPXBLJGQL8Iukj55UBFkiRJkhSZLOBsYHUgfwaoFn4dKd8cqEiSJEmSIvMo8H4guwDoEEEXqSAcqEiSJEmSIvET8H+BrAlwfwRdpIJyoCJJkiRJCl0W0BdYE8gHAVXDryMVmAMVSZIkSVLoHgY+DGT/BNpF0EXaHg5UJEmSJEmh+gG4PpDtCtwXQRdpezlQkSRJkiSFJhPoA6wL5IOBKqG3kbafAxVJkiRJUmj+C3wcyC4Djgy/irRDHKhIkiRJkkLxHXBjINsduCeCLtKOcqAiSZIkSSpyGUBvYH2OLEZiqU/lSBpJO8aBiiRJkiSpyPUDPgtkVwCHh19FKhQOVCRJkiRJRWoWcEsgaw7cFUEXqbA4UJEkSZIkFZnNS3025Mg2L/WpFEkjqXA4UJEkSZIkFZn/AFMD2VXAoRF0kQqTAxVJkiRJUpH4GrgtkO0F3BF+FanQOVCRJEmSJBW6jSSW+mzMkZUBhgAVoygkFTIHKpIkSZKkQncvMCOQXQscFEEXqSg4UJEkSZIkFaovyL2sZ29yL/+RijMHKpIkSZKkQrMB6EPidJ/N0kgs9SkfQR+pqDhQkSRJkiQVmruBLwPZ/wEHRNBFKkoOVCRJkiRJhWI6cE8g2we4OYIuUlFzoCJJkiRJ2mHrcamPShcHKpIkSZKkHXYn8HUguxHYP4IuUhgcqEiSJEmSdsjnJI5JzqkViYGKVFI5UJEkSZIkbbd1JJb6ZObI0oFngXJRFJJC4kBFkiRJkrTdbgdmBbJbSDyhIpVkDlQkSZIkSdvlU+A/gWx/EsckSyWdAxVJkiRJUoGtJbHUJytHVpbEqT5lI+gjhc2BiiRJkiSpwG4BvgtktwH7hF9FioQDFUmSJElSgXwE9AtkbYFrI+giRcWBiiRJkiQp39aQWOoTz5GVI3GqT3oUhaSIOFCRJEmSJOXbTcCPgewOYO8IukhRcqAiSZIkScqXycB/A9lBwFXhV5Ei50BFkiRJkrRNq4G+JC/1KU/iVB+X+hShrCxYvTrxs1KKAxVJkiRJ0jbdAPwcyO4G9oqgS6nw5ZfQuzdUrQpVqiR+7t07kSslOFCRJEmSJG3V+8DDgexQ4Irwq5QOL78MbdvCc8/BmjWJbM2axF+3bZt4XZFzoCJJkiRJ2qJVJJb65FQBGAykhV+n5PvyS+jVCzIy8n49IyPxuk+qRM6BiiRJkiRpi64Dfglk/waaR9ClVHjwwS0PUzbLyICHHgqnj7bIgYokSZIkKU+TgMcC2eHAZRF0KRWysuDVV/N37fDhblQbMQcqkiRJkqRcVgJnB7KKwCD8RrLIrF37vz1TtmXNmsT1iox/DiRJkiRJuVwD/BrI7gP2iKBLqZGeDmn53JmmUiWoWLFo+2irHKhIkiRJkpKMBwYGsiOBiyPoUmpkZkKfPomf86N7dyjjt/RR8ndfkiRJkpRtBXBuIKuMS32KVFYWnH02vPJK/q5PT4crryzaTtom/zxIkiRJkrJdDcwLZPcDu0XQpVTIyoILLoDnnsvf9enpiWtbtSraXtomByqSJEmSJADGAU8HsnbABRF0KRXicbj0Ung68Ltevjw8/jj07p3YKwUSP/fuDVOnwhlnhN9VuaRHXUCSJEmSFL0/yb3UpwrwDP6f+CIRj8O//gWPBQ6mLlsWXnsNOnWCCy+EQYMSp/lUrOieKSnGgYokSZIkiSuB3wJZP6Bp+FVKvngcrr8e/vvf5Dw9HYYPTwxTNitTBipXDrWe8sfxliRJkiSVcmOAIYGsA3Be+FVKh9tug/vuS87KlIGXXoKuXSOppIJzoCJJkiRJpdhycg9OqpLYSyUWfp2S75574I47krNYDJ5/PnEUsooNByqSJEmSVIpdDiwIZA8BjSPoUuL16wc33pg7f+YZ6Nkz/D7aIQ5UJEmSJKmUegN4PpAdB5wdQZcS75FH4Oqrc+dPPAF9+4bfRzvMgYokSZIklUJLyX0ccnXgKVzqU+iefBIuuyx3/vDDcIGHUhdXDlQkSZIkqRS6DFgYyPoDDSPoUqINHpz30OSBB+DSS8Pvo0LjQEWSJEmSSpnXgJcCWWegVwRdSrQXX4Rzzsmd3303XHVV+H1UqByoSJIkSVIpshi4MJDVAJ7EpT6Favhw6NUL4vHk/JZb4IYboumkQuVARZIkSZJKkUtIDFVyegTYOYIuJdaoUYlTe7KykvPrroPbboukkgqfAxVJkiRJKiWGA8MCWVfgzAi6lFhvvQXdu0NGRnJ+xRXw739DzOeASgoHKpIkSZJUCiwC/hnIagFP4FKfQvPOO3DyybBxY3L+z3/Cgw86TClhHKhIkiRJUgkXJzFMWRLIBwA7hV+nZHr/fejaFdavT87PPRceecRhSgnkQEWSJEmSSrihwIhAdjJwegRdSqQpU6BzZ1i7Njnv1QsGDoQyfutdEvl3VZIkSZJKsIXAxYGsDvA4LvUpFJ9+CscfD6tXJ+ennw6DBjlMKcH8OytJkiRJJVScxBHJywL5o0C98OuUPNOnw7HHwsqVyfnJJ8Nzz0FaWjS9FAoHKpIkSZJUQr0EjApk3YHTIuhS4nz1FXToACtWJOddusDLL0PZstH0UmgcqEiSJElSCfQ7cGkgq0vi6RTtoFmzoH17WBZ49ufYY2H4cChXLppeCpUDFUmSJEkqYeLABcDyQP44iaGKdsAPP8Axx8Dixcl5u3YwciSULx9NL4XOgYokSZIklTDPA28GsjOAUyLoUqLMnp0YnCxcmJwffji88QZUrBhNL0XCgYokSZIklSC/AZcFsvrAIxF0KVF+/TUxTPntt+T8kENgzBioXDmaXoqMAxVJkiRJKiHiwHlAYJtUBgK1w69Tcsyfnxim/Pprct62LYwdC1WrRtNLkXKgIkmSJEklxGBgbCA7C+gaQZcSY8GCxJ4ps2cn5/vtB2+/DdWrR1JL0XOgIkmSJEklwDzgykDWAOgfQZcSY/HixGk+P/yQnLdoAe+8A7VqRdNLKcGBiiRJkiQVc3HgXOCvQP4k4Lf822np0sQwZdas5HzPPWHiRKhTJ5peShkOVCRJkiSpmHsaGB/IegMnRNClRPjzT+jYEb76KjnffffEMKV+/UhqKbU4UJEkSZKkYuxX4F+BbGfgv+FXKRn++guOOw6mT0/OmzaFSZNgl10iqaXU40BFkiRJkoqpOHAOsCqQPw3UCL1NCbBqFXTuDJ9+mpw3apQYpjRuHE0vpSQHKpIkSZJUTA0EJgayc4DjI+hS7K1ZA126wIcfJucNGiSGKbvuGk0vpSwHKpIkSZJUDP0CXB3IGgL9IuhS7K1bB926wXvvJef16iWGKXvsEUUrpTgHKpIkSZJUzGQBZwOrA/kzQPXw6xRvGzbAqacmjkHOqXbtxAa0e+0VTS+lPAcqkiRJklTMPAa8F8jOBzqGX6V427gRevSAMWOS8xo1EgOWli0jqaXiwYGKJEmSJBUjPwPXBbImwAMRdCnWMjLgrLPg9deT82rVYPx4aN06kloqPhyoSJIkSVIxkQX0BdYE8meAquHXKb4yM6FvXxg2LDmvUgXGjoUDDoiml4oVByqSJEmSVEw8AkwOZBcBx0TQpdjKyoLzz4cXXkjOK1VKLP059NBoeqnYcaAiSZIkScXAD8D1gawp8J/wqxRf8ThcfDEMGpScV6gAb7wBRxwRTS8VSw5UJEmSJCnFZZJY6rM2kA8GqoRfp3iKx+GKK+CJJ5LzcuVg5Eg4xud8VDAOVCRJkiQpxfUHPgpklwJHhV+leIrH4brr4OGHk/P0dHj1VTjuuGh6qVhzoCJJkiRJKew74MZAtjvw7wi6FFu33AL335+cpaXBK69Aly7RdFKx50BFkiRJklJUJtAHWJcji5FY6lM5ikLF0V13JX7kVKYMPP88nHJKNJ1UIjhQkSRJkqQU1Q/4NJBdDhweQZdi6f774eabk7NYLLEp7RlnRNNJJYYDFUmSJElKQbOAWwJZM+DuCLoUS/37w7XX5s6ffBJ69w6/j0ocByqSJEmSlGIySCz1WZ8j27zUp1IUhYqbxx9PnOgTNGAAnHtu6HVUMjlQkSRJkqQUcz/weSD7F/D3CLoUO888A//8Z+78wQfh4ovD76MSy4GKJEmSJKWQmcCtgWxP4M4IuhQ7zz8P552XO//3v+HKK8PvoxLNgYokSZIkpYiNJJb6bMyRlQGGABUj6FOsDB0KffpAPJ6c33Yb/N//RdFIJZwDFUmSJElKEfcB0wLZNcDBEXQpVkaOhDPPhKys5Pz66+GW4Na+UuFwoCJJkiRJKeBL4I5AtjdwW/hVipc334QePSAzMzm/6iq4++7EMclSESj1A5UNGzbw9NNPc+yxx9KgQQPKly9PlSpV2HPPPenbty8fffRR1BUlSZIklXAbyL3UJ43EUp8KEfQpNt5+G045BTZuTM4vvRTuv99hiopUetQFovTrr7/SuXNnvvnmm6R8w4YN/PDDD/zwww8MGTKESy+9lP79+xPzD6MkSZKkInAP8EUguw44IPwqxcekSdCtG2zYkJyffz707+8wRUWu1D6hsnHjxqRhyr777suQIUP4+OOPGT9+PLfccguVK1cG4JFHHuG+++6Lsq4kSZKkEmoGcHcgawm488dWTJ4MXbrAunXJeZ8+8PjjDlMUilg8HtwCuXR49dVX6d69OwCHHHIIkydPJi0tLemaadOmccghh7Bx40Zq1KjB4sWLSU8vnId65s+fT6NGjQCYN28eDRs2LJTPlSRJklR8bADaAl/nyNKAT4E2kTQqBj75BDp0gFWrkvOePeG55yDwfZ1UVN9/l9onVHLujXL99dfnGqYAtGnThhNOOAGAP//8k2+//Ta0fpIkSZJKvjtJHqYA3IDDlC2aNg2OOy73MOXUU+HZZx2mKFSldqCyIcc6u912222L1+2+++55vkeSJEmSdsRU4N+BbF/gpgi6FAtffpl4MmXFiuT8xBPhpZegkFYTSPlVagcqe+65Z/bXs2fP3uJ1P//8MwCxWIxmzZoVeS9JkiRJJd96Eqf65DzoNx14FigXRaFU98030L49LF+enB9/PAwbBmXLRtNLpVqpHaicccYZVKtWDYD77ruPzOCZ5cCMGTMYM2YMAD179sy+XpIkSZJ2xO3AN4HsZmC/8Kukvu+/h2OOgSVLkvP27eG116B8+Wh6qdQrtc9E1alTh+eff54zzjiDKVOmcMABB3DFFVfQvHlzVq1axZQpU+jXrx8bNmxg//33p1+/fgX6/Pnz52/19QULFuxIfUmSJEnF1GdA8AzR1sD1EXRJeT/9BO3awR9/JOdHHgmjRkGFCtH0kijFp/xs9t1339GvXz+eeeYZgr8V9evX5/rrr+e8886jUqVKBfrcWAGO6fKUH0mSJKl0WEdiePJdjqwsif1U9o2kUQqbMweOOALmzUvODz0U3n4bqlSJpJaKH0/5KQIbNmzgueeeY9SoUbmGKQB//PEHL7zwAhMmTIignSRJkqSS5haShykAt+IwJZd58xJPpgSHKQccAG+95TBFKaHUDlRWr15N+/bt+fe//82yZcu49tpr+fbbb1m/fj0rVqxg/PjxHHbYYUydOpVu3brx4IMPFujz582bt9Ufn332WRH9yiRJkiSloo+B4EYCbYDrIuiS0hYsSOyZ8ssvyXnr1oknU6pXj6aXFFBql/xcc801PPDAAwAMGTKE3r1757omIyODjh078u6771KmTBmmT59Oq1atCuX+RfXIkSRJkqTUs5bEhrM/5MjKAdOBFlEUSlWLFsFRR8G33ybn++wDkyZBnTqR1FLx5pKfQhSPxxk0aBAAzZs3z3OYApCens6dd94JQFZWFkOGDAmroiRJkqQS5CaShymQOOnHYUoOS5cmTu4JDlP+9jeYMMFhilJOqRyo/PHHHyxbtgyA1q1bb/XaNm3aZH/93XfB1Y6SJEmStHUfAg8FsgOBqyPokrKWL4cOHeDrr5PzZs1g4kSoVy+aXtJWRDZQycrKYsmSJcydO5fMzMxQ752e/r/TojMyMrZ67caNG/N8nyRJkiRtyxqgL5Bzn4XywBDA7y42WbECjj0WZsxIznfdNbHMp0GDaHpJ2xDqQCUzM5NnnnmGww8/nEqVKlG/fn122203vv/++6Tr3nzzTa699lruvvvuIulRq1YtqlWrBsDHH3+81aHK+++/n/31rrvuWiR9JEmSJJVMNwA/BbK7gL9F0CUlrVwJnTrB558n540bJ4Yp7jWpFBbaQGXRokUcfvjhnH/++UyZMoUNGzYQj8fzPK64adOmPPDAA9xyyy188cUXhd6lTJkydO7cGYDff/99i4Ob5cuXc911/9tz+4QTTij0LpIkSZJKpveB/oHsEODKCLqkpDVroEsX+Oij5HznnRPDlKZNI6kl5VcoA5XMzEy6dOnCJ598QiwW47TTTmPAgAFbvL5ly5YcdNBBAIwcObJIOt1yyy1UqlQJgNtuu40TTzyRESNGMGPGDD7++GMeeugh9ttvP2bNmgXAMcccQ8eOHYukiyRJkqSSZRVwdiCrAAwG0sKvk3rWrYOuXSHHigAA6tdPDFN23z2aXlIBhLJs79lnn+Xzzz+nbNmyvPHGGxx77LEAXHLJJVt8z4knnsinn37Khx9+WCSd9tprL0aNGsUZZ5zBkiVLGD16NKNHj87z2nbt2jF8+PAi6SFJkiSp5Pk/YHYguwfYM4IuKWf9ejj55MTJPTnVqZPYgHZPf5dUPIQyUHn55ZeJxWJccMEF2cOUbdl8+k5wf5XC1L59e7777jueeeYZxo4dyzfffMOff/5Jeno6O+20EwcccAA9e/bkxBNPJBaLFVkPSZIkSSXHu8Cjgeww4LIIuqScjRuhRw8YOzY5r1kzMWBp4UHSKj5CGah89dVXQOKpk/yqt+lYrKVLlxZJp81q167Ntddey7XXXluk95EkSZJU8q0k91KfirjUB4CMDOjZE0aNSs6rV4d33oFWraLpJW2nUPZQ+fPPP4HE8CK/Nh+lnJZW6v+1I0mSJKmYuBaYE8juBfYIv0pqycyE3r3h1VeT8ypVYNw4aNMmml7SDghloFKrVi0A5s2bl+/3/PjjjwDUrVu3SDpJkiRJUmGaADwRyI4AtrxzZCmRlQXnngsvvZScV6qUWPpz8MHR9JJ2UCgDlRab1sF9HjxbfCuGDh1KLBbjgAMOKKpakiRJklQo/gLOCWSVSSz1CeWbrlQVj8NFF8GQIcl5hQowejQcdlgktaTCEMqf7W7duhGPxxkwYADLly/f5vWvvvpq9ok7p5xySlHXkyRJkqQdcjUwN5DdB+wWQZeUEY/DZZfBk08m5+XKweuvQ7t2kdSSCksoA5XzzjuPxo0b89dff9GxY0dmzZqV53WLFi3ixhtvpGfPnsRiMVq2bMlpp50WRkVJkiRJ2i5vA08FsqOBiyLokjLicbjmGhgwIDkvWxZGjIB8nv4qpbJQTvkpX748o0aN4qijjmLatGnss88+7JnjbPGzzjqLVatWMXv2bOLxOPF4nNq1azNixAiPK5YkSZKUsv4k91KfKsAgSvFSn3gcbroJ+vVLztPSYOhQOOGEaHpJhSy0P+OtWrXi888/55BDDiEej/Pdd99lv/bll1/y008/kZWVRTwe58ADD+TTTz9ljz1K/V7YkiRJklLYv4DfAtkDQNPwq6SOO++Ee+5JzsqUSWxKe9JJ0XSSikAoT6hstsceezBlyhQ+/PBD3njjDaZOncqiRYvIzMykdu3atG7dmhNPPJEOHTqEWUuSJEmSCuwtEpvO5tQeOD+CLinj3nvh1luTs1gMnn0W3M5BJUwoA5W5cxPbM1WpUoVatWpx2GGHcZi7OUuSJEkqppYD5wWyqsAzQKndtOChh+D663PnTz8NZ50Vfh+piIWy5Kdp06bsuuuuvPLKK2HcTpIkSZKK1BXA74HsQaBx+FVSw6OPwr/+lTt/7DE4++zw+0ghCGWgUrFiRQAOOOCAMG4nSZIkSUVmNPBcIDuW3JvTlhpPPQWXXJI7/+9/4aJSfdaRSrhQBiq77LILAJmZmWHcTpIkSZKKxDJy75FSHXiaUrrU59ln4YILcuf/+Q9cfnn4faQQhTJQ6dixIwAffvhhGLeTJEmSpCJxGbAwkD0ENIygS+ReeSWxnCceT87vvBOuuSaaTlKIQhmoXH755VSsWJEHHniA334LHiomSZIkSalvJPBiIOsE9Am/SvRGjEhsNJuVlZzfdFPih1QKhDJQadasGS+99BJr1qzh4IMP5qWXXmLDhg1h3FqSJEmSdtgS4MJAVgN4klK41Gf0aDj9dAhu6XDNNXDHHdF0kiIQyrHJ7dq1A6Bu3br88ssv/OMf/+Ccc86hWbNm1KxZk7S0tC2+NxaLMXHixDBqSpIkSVKeLgUWBbKHgV0i6BKpcePg1FMhIyM5v/xyuO8+iJW68ZJKsVAGKu+99x6xHH+w4vE469evZ+bMmVt8TywWIx6PJ71PkiRJksL2KvBKIDsROCuCLpGaOBG6dYPgaoMLL4SHHnKYolInlIHKEUcc4WBEkiRJUrGzCAge/FsTeIJSttTngw+gSxdYvz45P/tsePRRhykqlUJ7QkWSJEmSipM48E8S+6fkNABoEH6d6Hz8MXTuDGvXJudnnQVPPgllQtmaU0o5/pMvSZIkSXkYBowIZCcBZ0TQJTKffw7HHQerViXnp50GgwfDVvbDlEo6ByqSJEmSFPAHcHEgqw08Tila6vPFF9CxI/z1V3J+0knwwguQHsqCByllRfYnIB6PM3v2bJYtWwZArVq12G233dxrRZIkSVKk4iT2TVkayB8F6odfJxozZ0L79vDnn8l5587wyitQtmwktaRUEvpA5e2332bAgAG89957rFmzJum1SpUqcfTRR3PJJZfQsWPHsKtJkiRJEi8DIwPZqcBpEXSJxHffwTHHwNLASKljR3j1VShXLppeUooJbcnPhg0b6NmzJ506deKtt95i9erVxOPxpB+rV69mzJgxHH/88fTs2ZMNweO4JEmSJKkILQAuCWR1gccoJUt9fvwR2rWDRYuS86OPhpEjoUKFaHpJKSi0J1R69uzJyJEjicfjpKen06FDBw466CB22mknABYuXMhnn33GO++8w8aNGxk6dCgZGRkMGzYsrIqSJEmSSrE4cAGwPJA/TmKoUuL98ktimLJgQXL+97/DG29ApUrR9JJSVCgDlTFjxvDaa68Ri8U4+uijGTRoEE2aNMnz2rlz53L22WczadIkRowYwVtvvUWnTp3CqClJkiSpFHsBGB3ITgdOiaBL6ObOTQxT5s9Pzg86CN56C6pUiaaXlMJCWfIzZMgQAFq1asW4ceO2OEwBaNy4MWPHjmW//fYDYPDgwSE0lCRJklSa/QZcFsjqAY9E0CV0v/+eGKbMmZOct2kD48ZBtWqR1JJSXSgDlU8++YRYLMZVV11F2XzsBl22bFmuvvpq4vE4n3zySQgNJUmSJJVWceB84M9A/gRQJ/Q2Ifvjj8QGtD//nJzvuy+MHw81akRSSyoOQhmoLF68GIC999473+/Za6+9AFiyZEmRdJIkSZIkgCHAW4HsTOCk8KuEa/HixDDlu++S8733hgkToFataHpJxUQoA5XKlSsDsDR47NZWLF+e2AqqkhsfSZIkSSoi84ErAtlOwMPhVwnXsmXQoQN8801y3rw5TJwIdUvFNrzSDglloLLnnnsCMHTo0Hy/Z/O1m98rSZIkSYUpDpwL/BXInwRK9LMZK1bAscfCl18m57vtBpMmwaaTWCVtXSgDlRNPPJF4PM7gwYOzN6jdmueff55BgwYRi8Xo1q1bkfeTJEmSVPo8A7wdyHoBXSLoEpqVK+G442Dq1OS8cePEMGWXXaLpJRVDsXg8Hi/qm6xevZrmzZuzcOFCAI4//njOPvtsDjroIOrVq0csFuOPP/7g008/ZdCgQYwdO5Z4PM4uu+zC999/XyKX/cyfP59GjRoBMG/ePBo2bBhxI0mSJKn0mAu0BFbmyHYGZgI1I2kUgtWr4fjjYfLk5HyXXeCDDxJPqEglUFF9/51eKJ+yDZUrV+bNN9+kffv2LF++nLFjxzJ27NgtXh+Px6lZsyZvvvlmiRymSJIkSYpOHDiH5GEKwFOU4GHK2rVw4om5hyk77QTvvuswRdoOoSz5AWjdujVff/01p5xyCmXKlCEej+f5o0yZMpx66ql89dVXtGrVKqx6kiRJkkqJJ4EJgexsoFMEXUKxfj2cfHJiSU9OdesmNqBt1iyaXlIxF8oTKpvtvPPODB8+nAULFvDee+8xc+ZMli1bBkCtWrVo2bIlRx11FA0aNAizliRJkqRS4hfgqkDWEHgwgi6h2LABuneHceOS81q1Ekcj7713NL2kEiDUgcpmDRo04Iwzzoji1pIkSZJKqSwSS31WB/Kngerh1yl6GzfCGWfA6NHJeY0a8M47sO++kdSSSorQlvxIkiRJUpQeB94NZOcBx0bQpchlZkKvXvDaa8l51arw9tuw//7R9JJKkNCeUJk7dy4A9evXp3z58lu9dt26dSxatAiAxo0bF3k3SZIkSSXbbODaQNYYeCCCLkUuKwvOPhteeSU5r1wZxo6FAw+MppdUwoTyhMr48ePZdddd2WeffVizZs02r1+zZg0tWrRgt91247333iv6gpIkSZJKrCygLxD8TuQZoFr4dYpWVhZccAE891xyXrEijBkDf/97NL2kEiiUgcrw4cOJx+N069aNmjW3fRBZrVq1OOWUU8jKymLo0KEhNJQkSZJUUg0APghkFwLtI+hSpOJxuPRSePrp5Lx8eXjjDTjyyGh6SSVUKAOVjz/+mFgsRseOHfP9nmOPPTb7vZIkSZK0PX4E/i+QNQX+E36VohWPw1VXwWOPJedlyyb2UWlf4sZHUuRCGajMmTMHgObNm+f7PXvssQcAv/zyS1FUkiRJklTCZZJY6rM2kA8CqoZfp+jE43D99fDQQ8l5ejoMHw6dOkXTSyrhQhmoZGRkAJCWlpbv92y+dt26dUXSSZIkSVLJ9jAwJZBdAhwdQZciddttcN99yVmZMvDSS9C1aySVpNIglIFKnTp1AJg9e3a+37P52lq1ahVJJ0mSJEkl1/fADYFsN+DeCLoUqXvugTvuSM5iMXj+eejePZpOUikRykBlv/32AyjQBrOvbDriq2XLlkVRSZIkSVIJlQn0AYLPug8GKofepgj16wc33pg7HzQIevYMv49UyoQyUOnatSvxeJzXXnuN4cOHb/P6YcOG8dprrxGLxejWrVvRF5QkSZJUYjwIfBLILgeOiKBLkXnkEbj66tz5wIHQp0/odaTSKJSBSu/evWnatCnxeJyePXty9dVXM2/evFzXzZs3j3/961+ceeaZxGIxGjVqxLnnnhtGRUmSJEklwLfAzYFsD+CeCLoUmSefhMsuy50/8gicf374faRSKhaPx+Nh3OiLL77giCOOYNWqVcRiMQAaN25MgwYNAFiwYAFz584FIB6PU6VKFd5//31at24dRr3QzZ8/n0aNGgGJQVLDhg0jbiRJkiQVbxnA34HPcmQxYPKmvEQYMgT69s2dP/BA4thkSbkU1fffoTyhAol9VD799FNat25NPB4nHo/z66+/8umnn/Lpp5/y66+/Zudt2rThs88+K7HDFEmSJEmF7wGShykAV1KChikvvghnn507v/tuhylSBNLDvNnf/vY3pk2bxjvvvMObb77JjBkzWLJkCZA4CWj//fenS5cuHHPMMWHWkiRJklTMzQRuDWTNgbsi6FIkhg+HXr0guMDgllvghuB5RpLCEOpAZbMOHTrQoUOHKG4tSZIkqYTZSOJUnw05sjLAs0DFKAoVtlGjEqf2ZGUl59ddB7fdFkklSSEu+ZEkSZKkovAfYFoguwo4OIIuhe6tt6B7d8jISM6vvBL+/W/YtD+lpPBF8oTKlvz8888sWbKEpk2bUr9+/ajrSJIkSUpxXwG3B7K9gDsi6FLo3nkHTj4ZNm5Mzi++GPr1c5giRSyUJ1QWLVrEY489xmOPPcaKFStyvf7TTz/Rpk0bmjdvzqGHHsouu+zCKaecwvLly8OoJ0mSJKkY2rzUJ+e4YfNSnwpRFCpM778PXbvC+vXJ+bnnwsMPO0yRUkAoA5XXXnuNSy65hP79+1O9evWk19avX8/xxx/PF198kX3KT1ZWFq+//jpdu3YNo54kSZKkYujfwIxAdh1wYARdCtWUKdC5M6xdm5z36gUDB0IZd26QUkEofxLHjx9PLBbjpJNOyvXakCFD+PnnnwE48cQT6d+/P126dCEejzNlyhSGDh0aRkVJkiRJxcgXwJ2BrAW5T/opdj77DI4/HlavTs5PPx0GDXKYIqWQUP40fv/99wAcfHDubaFeeuklANq1a8frr7/OpZdeyqhRo2jfvj3xeJxXXnkljIqSJEmSiokNQG8g5zataSSW+pSPpFEhmT4dOnaElSuT85NPhueeg7S0aHpJylMoA5XFixcD0LBhw6R87dq1fPLJJ8RiMc4///yk184++2wApk+fHkZFSZIkScXEXSQ2o83peqBNBF0KzVdfQYcOENxzsksXePllKFs2ml6StiiUgcqff/6ZuFng8bRPPvmEjRs3EovFaN++fdJru+66K5DY0FaSJEmSIHE88j2BbF/g5gi6FJpZs6B9e1i2LDk/7jgYPhzKlYuml6StCmWgUqVKFQAWLlyYlL/33nsA7L333tSsWTPptbKbJrDp6Sl1srMkSZKkiKwncapPZo4sHRgCFNuRww8/wDHHwKan+rMdcwy89hqUL9aLmKQSLZSByl577QXAuHHjkvIRI0YQi8U48sgjc71n8/Clfv36RV9QkiRJUsq7A5gZyG4EWkfQpVDMng3t2kHgfzxz+OEwahRUrBhNL0n5EsrjH507d+aTTz7hySef5G9/+xuHH344Q4YMYdasWcRiMU4++eRc79m8d8ouu+wSRkVJkiRJKexz4N5Ath9wQ/hVCsevvyaGKb/9lpwfcgiMGQOVK0fTS1K+hTJQueSSS3jsscdYsGABl1xySdJrhxxyCEcffXSu94wePZpYLMYBBxwQRkVJkiRJKWodiVN9snJkZSnGS31++y0xTPn11+S8bVsYOxaqVo2ml6QCCWXJT/Xq1ZkwYQL7778/8Xg8+8fhhx/OsGHDcl3/5Zdf8vnnnwPQoUOHMCpKkiRJSlG3Ad8GsluAVuFX2XELFiSGKbNnJ+f77Qdvvw3Vq0dSS1LBhbbj69/+9jemTp3KL7/8wsKFC2nQoAFNmzbd4vWDBw8GoF27diE1lCRJkpRqPgHuD2RtgOsi6LLDFi9OnObzww/JeYsW8M47UKtWNL0kbZfQj9DZdddds49E3pJWrVrRqlWxnDdLkiRJKiRrSZzqk3OpTzkSS33KRtBnhyxdmhimzJqVnO+1F0ycCHXqRNNL0nYLZcmPJEmSJBXUzcD3gew2oGX4VXbMn39Cx47w1VfJ+R57JIYpnmwqFUsOVCRJkiSlnCnAg4HsAOCaCLrskL/+guOOg02nmGZr2hQmTYKdd46klqQd50BFkiRJUkpZA/QF4jmy8iSW+oS+Z8GOWLUKOneGTz9Nzhs1SgxTGjWKppekQuFARZIkSVJKuRH4MZDdAewdQZfttmYNnHgifPhhct6gQWKYso19JSWlPgcqkiRJklLGB0D/QHYwcFUEXbbbunXQrRu8+25yXq9eYpiyxx6R1JJUuByoSJIkSUoJq8m91KcCiaU+aVEU2h4bNsCppyaOQc6pdu3EBrR77RVNL0mFzoGKJEmSpJRwPTA7kN0N7BlBl+2ycSP06AFjxiTnNWvChAnQstidTyRpKxyoSJIkSYrce8AjgezvwOXhV9k+GRlw1lnw+uvJebVqMH487LdfFK0kFaFCHajsv//+tGnThl9++SUpnzt3LnPnziUzM7MwbydJkiSpBFhFYqlPThWBwRSTpT6ZmdC3LwwblpxXqQLjxkHbttH0klSkCvXUsS+++IJYLMbatWuT8qZNm1KmTBm++uor9t67WO3NLUmSJKmIXQvMCWT/BpqFX6XgsrLg/PPhhReS80qVEkt/Djkkml6SilyhPqESi8UAyMrKyvVaPB7PlUmSJEkq3SYCjweyw4FLI+hSYPE4XHwxDBqUnFeoAG+8AUccEU0vSaEo1IFK9erVAZg3b15hfqwkSZKkEugv4OxAVonEUp+U3+wxHocrroAnnkjOy5WDkSPhmGMiqSUpPIX676l99tkHgLvuuovvvvsu154pm59gkSRJkqRrgLmB7D5g9wi6FEg8DtddBw8/nJynp8Orr8Jxx0XTS1KoCnWgcu655xKPx/nkk09o0aIF5cqVIy0tsY1UPB6nZcuWpKWlFehHenqhbvMiSZIkKQWMB54MZEcB/wy/SsHdcgvcf39ylpYGQ4dCly7RdJIUukIdqPzjH//g6quvpkyZMsTj8ewfm+XMCvJDkiRJUsmxAjgnkFUGBlEMlvrcdVfiR05lyiQ2pT355Gg6SYpEoT/+8Z///IfLLruMd999l99++43169dz++23E4vFuPDCC6lXr15h31KSJElSMXIVMD+QPQDsGkGXArn/frj55uQsFoPBg+H006PpJCkysXgIj4CUKVOGWCzG119/7bHJm8yfP59GjRoBiU18GzZsGHEjSZIkqeiNBToFsvYklgCl9I6L/fsnNqENeuopOPfc0OtIyr+i+v47lA1KGjduTCwWo1y5cmHcTpIkSVIKWg4ERw9VgadJ8WHK44/nPUwZMMBhilSKhTJQmTNnThi3kSRJkpTCrgR+D2T9gCYRdMm3Z56Bf+axVe6DD8LFF4ffR1LKSPk9nyRJkiQVf6OBZwNZR3I/sZJSnn8ezjsvd37vvXDlleH3kZRSQj+TeNmyZQwePJgJEyYwc+ZMli1bBkCtWrVo2bIl7du3p2/fvtSqVSvsapIkSZKKwDLggkBWjRRf6jN0KPTpA8EtJ2+/Ha67LpJKklJLqAOVgQMHcvXVV7NmzRqApCORf/vtN37//XfGjx/PbbfdRr9+/Tj//PPDrCdJkiSpCFwOLAhkDwGNIuiSLyNHwplnQlZWcn7DDblP+ZFUaoU2ULn33nu58cYbs4co1atXp3Xr1uy0004ALFy4kBkzZrBixQpWr17NRRddxJ9//sm1114bVkVJkiRJhex14IVAdjzQN/wq+fPmm9CjB2RmJudXXQV33ZU4JlmSCOnY5JkzZ9K6dWsyMzNp0KAB999/P927d6ds2bJJ12VkZDB8+HCuueYafv/9d9LT05kxYwYtWrQo6oqh89hkSZIklXRLgRbAHzmy6sA3wC6RNNqG8eOhSxfYsCE5v/TSxLHJDlOkYqmovv8OZVPaAQMGkJmZSd26dfn444/p2bNnrmEKQHp6OmeccQYff/wx9erVIzMzkwEDBoRRUZIkSVIhu5TkYQrAw6ToMGXSJOjaNfcw5fzzHaZIylMoA5VJkyYRi8W4/vrrady48Tavb9SoEddddx3xeJyJEyeG0FCSJElSYRoBvBzIugD/iKDLNk2enHgyZd265LxPH3j8cYcpkvIUykDlt99+A+DQQw/N93v+/ve/A/D778GT6iVJkiSlssXARYGsJjCQFDzV55NPoFMn2HRwRraePeHpp6FMKN8ySSqGQvm3Q1paGpDYIyW/MjdtAlXGf4FJkiRJxcrFJIYqOT0CNIigy1ZNmwbHHQerViXn3bvDs8/Cpu9jJCkvoUwrNi/zKcjync3X5meJkCRJkqTUMAwYHsi6AT3Dr7J1X34JHTrAihXJedeu8OKLkB7agaiSiqlQBiodOnQgHo/zwAMP8PXXX2/z+pkzZ3L//fcTi8Xo2LFjCA0lSZIk7ag/gH8GstrAE6TYUp9vvoH27WH58uS8UycYOhTyOEBDkoJCGahcccUVlC9fnlWrVnHYYYfxwAMPsHTp0lzXLV26lAceeIDDDz+clStXUr58ea644oowKkqSJEnaAXES+6YE/yt/AFA//Dpb9v33cMwxsGRJct6+PYwYAeXLR9NLUrETi8fj8TBu9Nxzz9G3b9//3TgWY9ddd6VevXrEYjH++OMPfvnlF+LxOPF4nFgsxpAhQ/jHP1JyH/AdVlTnYEuSJElReJncy3pOIbH8J2WeTvnpJzjySAgefHHkkfDWW1CpUjS9JBWpovr+O7SFgb169aJ27dpccMEF/P7778TjcX7++Wdmz54NQM65zs4778yTTz5Jp06dwqonSZIkaTstBC4JZHWAx0ihYcqcOdCuXe5hyqGHwptvOkyRVGCh7rTUuXNn5syZw8iRI5kwYQIzZ85k2bJlANSqVYuWLVvSvn17unXrRlnXLUqSJEkpLw5cCCwL5I8B9cKvk7d58xLDlHnzkvMDD0w8mVKlSjS9JBVroW9dnZ6eTvfu3enevXvYt5YkSZJUyF4ERgWy04CU+a/9BQsSe6b88kty3ro1jBsH1atH00tSsRfKprSSJEmSSp7fgUsDWT3g0Qi65GnRosQw5ccfk/N99oF33oGaNaPpJalEcKAiSZIkqcDiwPnAn4H8CRL7p0Ru6dLEyT3ffpuc/+1vMGEC1K4dTS9JJYYDFUmSJEkF9hwwJpD1BE6KoEsuy5dDhw7w9dfJebNmMHEi1EuZ3V0kFWMOVCRJkiQVyHzg8kC2E/BwBF1yWbECjj0WZsxIznfdFSZNggYNouklqcRxoCJJkiQp3+LAecCKQD4QiHwRzcqV0KkTfP55ct64cWKY0rBhNL0klUgOVCRJkiTl2yBgXCD7B3BiBF2SrFkDXbrARx8l5zvvnBimNG0aSS1JJZcDFUmSJEn5Mhe4MpA1APpH0CXJunXQtSu8/35yXr9+Ypiy++7R9JJUojlQkSRJkrRNceBcYGUgfwqI9PDh9evh5JMTJ/fkVKdOYgPaPfeMppekEs+BiiRJkqRtegp4J5D1ATqHX+V/Nm6EHj1g7NjkvGbNxIClRYtoekkqFRyoSJIkSdqqOcBVgWwX4KHwq/xPRgb07AmjRiXn1avDO+9Aq1bR9JJUajhQkSRJkrRFWcA5wKpA/jRQI/Q2m2RmQu/e8OqryXmVKjBuHLRpE00vSaVKetg3zMrKYtasWcyePZuVK1eSmZm5zff06tUrhGaSJEmSggYCkwLZucBxEXQBICsLzj0XXnopOa9UKbH05+CDo+klqdQJbaCydu1a7rrrLp566imWLl2a7/fFYjEHKpIkSVIEZgPXBLJGQL8IugAQj8NFF8GQIcl5hQrw5ptw2GGR1JJUOoUyUFm7di3t2rXjs88+Ix6Ph3FLSZIkSTsgCzgbWB3InwGqhV8nMUy57DJ48snkvFy5xD4qRx8dRStJpVgoA5WHHnqITz/9FICWLVtyySWX0KZNG2rVqkWZMm7jIkmSJKWaR4H3A9kFQIcIuhCPwzXXwIAByXnZsvDaa9CxYxStJJVyoQxUhg4dCsChhx7KpEmTKFeuXBi3lSRJkrQdfgKuC2RNgPsj6EI8DjfdBP0CC43S0mDoUOgc6cHNkkqxUB4P+fnnn4nFYlx77bUOUyRJkqQUlgX0BdYG8kFA1fDrwJ13wj33JGdlyiQ2pT3ppCgaSRIQ0kBl8xClcePGYdxOkiRJ0nZ6GPgwkP0TaBdBF+67D269NTmLxeDZZ+G006JoJEnZQhmo7LXXXgAsXLgwjNtJkiRJ2g4/ANcHsl2B+yLowkMPwf/9X+786afhrLPC7yNJAaEMVPr06UM8Hmf48OFh3E6SJElSAWUCfYB1gXwwUCXsMo8+Cv/6V+788cfh7LPDbiNJeQploHLeeefRrl07nnvuOV5++eUwbilJkiSpAP4LfBzILgOODLvIU0/BJZfkzvv3hwsvDLuNJG1RKKf8zJs3j0ceeYTzzjuPs846i5EjR9KzZ0/22msvKlWqtM33u/eKJEmSVHS+A24MZHsA9+RxbZF69lm44ILc+X/+A5ddFnYbSdqqUAYqTZs2JRaLARCPxxkxYgQjRozI13tjsRgZGRlFWU+SJEkqtTKA3sD6HFmMxFKfymEWeeWVxHKeeDw5v/NOuOaaMJtIUr6EMlCBxCAlr68lSZIkRacf8FkguwI4LMwSI0YkNprNykrOb7op8UOSUlAoA5XBgweHcRtJkiRJBfANcEsgaw7cFWaJ0aPh9NMhMzM5v+YauOOOMJtIUoGEMlDp3bt3GLeRJEmSlE8ZJE712ZAjKwMMAba9y2EhGTcOTj0Vgkv8L78c7rsPNm0bIEmpKJRTfiRJkiSllv8AUwPZv4BDwiowcSJ06wYbNiTnF10EDz3kMEVSynOgIkmSJJUyXwO3BbK9gNAW2HzwAXTpAuvXJ+fnnAMDBjhMkVQsOFCRJEmSSpGNJE712Zgj27zUp2IYBT7+GDp3hrVrk/N//AMGDoQyfosiqXgI7ZSfzVauXMmECRP48ssvWbJkCWvXrt3qqT+xWIxnnnkmxIaSJElSyXUvMCOQXQscFMbNP/8cjjsOVq1Kzk87DQYNgrS0MFpIUqEIbaCSlZXFnXfeSb9+/Vi9enW+3hOPxx2oSJIkSYXkC3Iv62lB7uU/RXPzL6BjR/jrr+T8pJPghRcgPfT/1ytJOyS0f2v16dOHF198kXg8TlpaGrVr12bRokXEYjEaNmzI8uXLWbVpUh2LxahTpw6VKoW2v7gkSZJUom0gcapPzvN00kgs9Slf1DefORPat4c//0zOO3eGV16BsmWLuoEkFbpQFii+/fbbvPDCC0BisLJo0SImTJiQ/fqvv/7KX3/9xbfffstll11GmTJlqFmzJmPHjuWXX34Jo6IkSZJUot0NfBnI/g9oW9Q3/u47OOYYWLo0Oe/YEV59FcqVK+oGklQkQhmoDB48GIAWLVowaNAgatasSSyPnbv33HNP/vvf//Laa6/x888/06lTJ1asWBFGRUmSJKnEmk5ioJLTPsDNRX3jH3+Edu1g0aLk/Oij4fXXoUKFom4gSUUmlIHKJ598QiwW4+KLL87X9V26dKF37978+uuvPPzww0XcTpIkSSq51pNY6pOZI0snhKU+v/ySGKYsWJCcH3YYjB4NFUM5U0iSikwoA5VFmybSzZs3z87ScuzgvT54/jxw6qmnEo/HGTlyZNEXlCRJkkqoO4GvA9kNwP5FedO5cxPDlPnzk/ODDoIxY6By5aK8uySFItRD3mvVqpX9ddWqVbO/XhR8BBCoV68eAHPmzCn0HkcddRSxWKxAP957771C7yFJkiQVpc9JHJOcUyvgxqK86e+/J4Ypwf+Ob9MGxo2DatWK8u6SFJpQBir169cHYNmyZUlZuU0bUH311Ve53vPrr78CsG7duhAabl2ZMmVo1qxZ1DUkSZKkfFtH3kt9ngWKbBvYP/5IbED788/J+b77wvjxUKNGUd1ZkkIXyrHJ++yzD3PnzmXWrFkcffTRiRunp9O6dWs+++wzBg8eTOfOnZPe8/jjjwPQpEmTQu8zePBgVq9evdVrZs2aRY8ePQA45phj2GWXXQq9hyRJklRUbgdmBbJbSDyhUiSWLEkcjfzdd8n53nvDhAmQ42l1SSoJQhmoHHXUUbz55ptMmDAhaWPas846i08//ZSRI0fSu3dvTjvtNFavXs2zzz7LhAkTiMVidO3atdD77Lrrrtu85vnnn8/+ulevXoXeQZIkSSoqnwL/CWT7kzgmuUgsWwYdOsDMmcl58+YwcSLUrVtUd5akyMTi8Xi8qG/yyy+/sPvuu1O+fHnmzJmTvQQoIyODgw8+mOnTp+c6Rjkej9OkSROmT59OzZo1i7pikqysLBo3bsxvv/1GlSpV+OOPP6hUqVKh3mP+/Pk0atQIgHnz5tGwYcNC/XxJkiSVTmtJDE9yPidSFphG4qjkQrdiReLJlKlTk/Pdd4f33wef9JYUsaL6/juUPVR23XVXZs+ezcyZM6mWYxOq9PR03nnnHc4880zS09OJx+Nsnu907tyZyZMnhz5MAZg4cSK//fYbkDhtqLCHKZIkSVJRuYXkYQrAbRTRMGXlSjjuuNzDlCZNYNIkhymSSrRQlvwANG3aNM+8Zs2aPP/88zz22GP8+OOPZGRksMceeySdCBS25557Lvtrl/tIkiSpuPgI6BfI2gLXFsXNVq+Gzp3hk0+S84YNE8OUxo2L4q6SlDJCG6hsS9WqVdl///2jrsGqVasYOXIkkNgQ96ijjtquz5k/f/5WX1+wYMF2fa4kSZKUlzUkTvXJuZ6/HIlTfQr9P/rXroUTT4TJk5PznXZKDFN2262w7yhJKSdlBiqpYsSIEdknAJ111lm59nbJr83rsyRJkqQw3AT8GMjuAPYu7ButXw8nn5wYnORUt25iA9pmzQr7jpKUkkIfqGRlZfHuu+/y8ccfs3DhQtasWcPdd99NgwYNsq/ZsGEDGRkZpKWlUb58+VD7udxHkiRJxc1k4L+B7CDgqsK+0YYN0L07jBuXnNeqlTgaee9CH99IUsoKdaDy5ptvctlll/Hrr78m5VdffXXSQOXpp5/m0ksvpUqVKvz+++9Urlw5lH7z58/nvffeA+Dggw+mefPm2/1Z8+bN2+rrCxYs4MADD9zuz5ckSZIAVgN9SV7qUx4YQiH/x/7GjXDGGTB6dHJeowa88w7su29h3k2SUl5oA5WnnnqKCy+8MPsUnzp16rBkyZI8l9Sce+653HTTTaxYsYKRI0dy1llnhdLxhRdeICsrC4DevXvv0Gd5DLIkSZLCcAPwcyC7G9irMG+SmQm9esFrryXnVavC229DCuyFKElhC+XY5B9//JGLL74YgHbt2jFr1iwWLVq0xevLlSvHKaecQjweZ/z48WFUBOD5558HoHz58vTo0SO0+0qSJEnb433g4UB2KHBFYd4kKwvOPhteeSU5r1w5sfTHp64llVKhDFQeeughMjIyaNGiBW+99RZ77bXtefnhhx8OwIwZM4q6HgBTp05l1qxZAJxwwgnUrFkzlPtKkiRJ22MViaU+OVUABgNphXWTrCy44ALIsc8gABUrwpgxcOihhXUnSSp2QhmoTJo0iVgsxhVXXEG5cuXy9Z499tgD2PZeJIUl52a0O7rcR5IkSSpq1wG/BLJ/A9u/C2BAPA6XXgpPP52cly8Pb7wBRx5ZWHeSpGIplIHK/PnzAWjVqlW+37N5I9o1a9YUSaecNm7cyCubHmGsW7cuxx9/fJHfU5IkSdpek4DHAtnhwGWFdYN4HK66Ch4L3KVs2cQ+Ku3bF9adJKnYCmWgsnnj2YIMR5YuXQpA9erVi6RTTmPHjmXx4sUA9OzZk/T00E+TliRJkvJlJXB2IKsEDKKQ/uM+HocbboCHHkrO09Nh+HDo1Kkw7iJJxV4oA5VddtkFgNmzZ+f7PR9++CEAu+22W5F0yinncp9evXoV+f0kSZKk7XUN8GsguxfYo7BucPvtcO+9yVlaGrz8MnTtWlh3kaRiL5SBylFHHUU8HufZZ5/N1/UrVqzgiSeeIBaL0a5duyLttnz5ct58800AWrZsyf4e+SZJkqQUNR4YGMiOBC4urBvcc09ioJJTLJbYlPbUUwvrLpJUIoQyULnggguIxWK8//77DBkyZKvXLl26lG7durFw4ULS09O58MILi7Tb0KFDWb9+PeDTKZIkSUpdK4BzA1llCnGpT79+cOONufNBg6Bnz8K4gySVKKEMVFq3bs3ll19OPB7nnHPOoUePHgwbNiz79Y8++oiXXnqJiy++mD322IMPPviAWCzGzTffTJMmTYq02/PPPw9AWloaZ555ZpHeS5IkSdpeVwPB8y/vBwplgfwjj8DVV+fOBw6EPn0K4w6SVOLE4vF4PIwbxeNxLrnkEh5//PHsTWq3dB3AFVdcwYMPPhhGtUjMnz+fRo0aAYmjoRs2bBhxI0mSJKWqcUDwHMp2wDsUwv8hffJJuOCC3Pkjj8All+zop0tS5Irq++9QnlCBxEk/jz76KG+//TZHHXUUsViMeDye9APgkEMOYcyYMSV6mCJJkiTl15/kXupTBXiGQviP+SFD8h6mPPCAwxRJ2obQzwfu0KEDHTp0YOXKlcyYMYNFixaRmZlJ7dq12W+//ahTp07YlSRJkqSUdSXwWyDrBzTd0Q9+6SU4O3gAM4mNaa+6akc/XZJKvNAHKptVrVqVI444IqrbS5IkSSlvDDAkkHUAztvRDx4+HHr1guDq/1tvheuv39FPl6RSIbQlP5IkSZLybzm5ByfVSCz12fKOhPkwalTi1J7MzOT8//4vMVCRJOWLAxVJkiQpBV0OLAhkDwKNduRD33oLuneHjIzk/MorE0t9tnJ4hCQpWahLfjIyMhgzZgyTJ09m9uzZrFy5kszgZDwgFosxceLEkBpKkiRJ0RsFPB/IjgPy2PEk/955B04+GTZuTM4vvhj69XOYIkkFFNpA5f3336dPnz7MnTs3O9vaic2bTwHa2hHLkiRJUkmzFAieu1MdeIodWOrz/vvQtSusX5+cn3suPPywwxRJ2g6hDFS++OILjjvuODZs2EA8HqdChQo0a9aMGjVqUKaMq44kSZKkzS4D/ghk/YGG2/uBU6ZA586wdm1y3qsXDBwI/ve4JG2XUAYqt912G+vXr6d8+fI8+OCD9O3blwoVKoRxa0mSJKnYeA14KZB1Bnpt7wd+9hkcfzysXp2cn3EGDBrkMEWSdkAoA5UPP/yQWCzGjTfeyEUXXRTGLSVJkqRiZTFwYSCrATzJdi71mT4djj0WVq5Mzk85BZ57DtLStudTJUmbhDKSXrduHQDHHXdcGLeTJEmSip1LSAxVcnoE2Hl7Puyrr6BDB/jzz+S8Sxd46SVID/VsCkkqkUIZqDRt2hSAjcEdxSVJkiQxHBgWyLoCZ27Ph82aBe3bw7Jlyflxx8Hw4VCu3HZ1lCQlC2Wg0q1bNwA++OCDMG4nSZIkFRuLgH8GslrAE2zHUp8ffoBjjoHFgWddjjkGXnsNypff3pqSpIBQBiqXX345DRo04IEHHmDOnDlh3FKSJElKeXESw5QlgXwAsFNBP2z2bGjXDhYuTM4PPxxGjYKKFbe3piQpD6EMVOrWrctbb71FxYoVOeigg3jqqadYsWJFGLeWJEmSUtZQYEQgOxk4vaAf9OuviWHKb78l54ccAmPGQOXK291RkpS3WDwej4d1szlz5nDQQQexZMkSYrEYderUoVKlSlt9TywW4+effw6pYXjmz59Po0aNAJg3bx4NGzaMuJEkSZLCtBBoAeTc6aQO8A1QryAf9NtvcMQRiSdUcmrbFiZMgOrVd7CpJBVvRfX9d2jbe48YMYJzzjmHlStXEo/HicfjLFq0aJvvi8W265A4SZIkKWXFSRyRHNg2lsco4DBl4cLEkynBYcp++8H48Q5TJKkIhTJQ+fjjjzn99NPJzMwEoEmTJuy7777UqFGDMmVCWXUkSZIkpYyXgFGBrPumH/m2eHFis9kffkjOW7aEd96BmjV3qKMkaetCGajcddddZGZmUr16dV588UU6deoUxm0lSZKklPM7cGkgqws8WpAPWbo0cTTyrFnJ+V57JZb51KmzQx0lSdsWyuMhU6dOJRaLcfvttztMkSRJUqkVBy4Algfyx0kMVfLlzz+hY0f46qvkfI89YOJEqF9/B1tKkvIjlIHKmjVrADjssMPCuJ0kSZKUkp4H3gxkZwCn5PcD/voLjjsOpk9Pzps2hUmTYOedd7SiJCmfQhmo7LrrrsD/BiuSJElSafMbcFkgqw88kt8PWLUKOneGTz9Nzhs1SgxTNp1gIUkKRygDlZNPPpl4PM7bb78dxu0kSZKklBIHzgNWBPKBQO38fMCaNXDiifDhh8l5gwaJYcqm/4EpSQpPKAOVq666imbNmvHf//6XqVOnhnFLSZIkKWUMBsYGsrOArvl587p1cNJJ8O67yXn9+olhyh57FEpHSVLBhDJQqVq1KhMnTqRly5YcccQR3HjjjXz11VesW7cujNtLkiRJkZkHXBnIGgD98/PmDRvg1FNh/PjkvHbtxGk+e+1VKB0lSQUXyrHJaWlp2V/H43Huvfde7r333ny9NxaLkZGRUVTVJEmSpCITB84F/grkTwK1tvXmjRuhRw8YMyY5r1kzMUxp2bKwakqStkMoA5V4PL7Vv5YkSZJKoqeBwLMl9AZO2NYbMzLgrLPg9deT82rVEk+r7LdfITWUJG2vUAYqt956axi3kSRJklLGr8C/AtnOwH+39cbMTOjbF4YNS86rVIFx46Bt28KqKEnaAQ5UJEmSpEIWB84BVgXyp4EaW3tjVhacfz688EJyXqlSYunPIYcUYktJ0o4IZVNaSZIkqTQZCEwMZOcAx2/tTfE4XHIJDBqUnFeoAG+8AUccUagdJUk7xoGKJEmSVIh+Aa4OZI2Aflt7UzwOV14Jjz+enJcrl9hH5ZhjCrOiJKkQOFCRJEmSCkkWcDawOpA/DVTf0pvicbjuOugfOEg5PR1efRWOPbawa0qSCoEDFUmSJKmQPAa8F8jOBzpu7U233AL335+cpaXB0KHQpUth1pMkFSIHKpIkSVIh+Bm4LpA1AR7Y2pvuuivxI6cyZRKb0p58cqH2kyQVLgcqkiRJ0g7KAvoCawL5M0DVLb3p/vvh5puTs1gMBg+G008v7IqSpELmQEWSJEnaQY8AkwPZRcAWt5Lt3x+uvTZ3/uST0KtXoXaTJBUNByqSJEnSDvgBuD6QNQX+s6U3PPEEXHFF7vzRR+HccwuxmSSpKDlQkSRJkrZTJomlPmsD+WCgSl5vGDQILrood/7QQ/DPfxZ2PUlSEXKgIkmSJG2n/sBHgexS4Ki8Ln7++byfQLn33ryfWJEkpTQHKpIkSdJ2+A64MZDtDvw7r4uHDoU+fSAeT85vvx2uC54NJEkqDhyoSJIkSQWUCfQB1uXIYiSW+lQOXjxyJJx5JmRlJec33JD7lB9JUrHhQEWSJEkqoH7Ap4HscuDw4IVvvgk9ekBmZnJ+1VVw112JY5IlScWSAxVJkiSpAGYBtwSyZsDdwQvHj4dTToGNG5PzSy+F++93mCJJxZwDFUmSJCmfMkgs9VmfI4sBQ4BKOS98913o2hU2bEj+gAsugP79HaZIUgngQEWSJEnKp/uBzwPZv4BDcwaTJ8MJJ8C6dckX9u0Ljz3mMEWSSggHKpIkSVI+fA3cGsj2BO7MGXzyCXTqBGvWJF945pnw1FNQxv/8lqSSwn+jS5IkSduwkcRSn5y7oZQhsdSn4uZg2jQ47jhYtSr5zd27w5AhkJZW1DUlSSFyoCJJkiRtw33A9EB2DXDw5r/48kvo0AFWrEi+qGtXePFFSE8v8o6SpHA5UJEkSZK24kvgjkC2N3Db5r/45hto3x6WL0++qFMnGDoUypYt6oqSpAg4UJEkSZK2YAO5l/qkkVjqUwHg++/hmGNgyZLkN3boACNGQPnyofSUJIXPgYokSZK0BfcAXwSy64ADAH7+Gdq1gz/+SL7gqKPg9dehQoWiLyhJiowDFUmSJCkPM4C7A1lL4BaAOXMSw5Tff0++4O9/h9GjoVKlMCpKkiLkQEWSJEkK2AD0BjJyZGnAs0D5efMSw5S5c5PfdOCB8NZbUKVKaD0lSdFxoCJJkiQF3Al8HchuAPZfsCCxZ8ovvyS/2Lo1jBsH1aqF1FCSFDUHKpIkSVIOU4F/B7J9gZsWLUoMU378MfnFffaBd96BmjVDaihJSgUOVCRJkqRN1pM41SczR5YOPPvnn5Rr3x6+/Tb5DX/7G0yYALVrh9ZRkpQaHKhIkiRJm9wOfBPIbl67lv3atYOvA4uAmjWDiROhXr2w6kmSUogDFUmSJAn4DLgvkLXOzOT6Y46BGTOSX9htN5g0CRo0CKueJCnFOFCRJElSqbeOxKk+WTmysvE4Q/r2pezHHydf3LhxYpjSsGGIDSVJqcaBiiRJkkq9W4DvAtmtzzzDvs8/nxzusktimNKkSVjVJEkpyoGKJEmSSrWPgX6BrM0PP3DdhRcmh/XrJ/ZM2X33sKpJklKYAxVJkiSVWmtJnOqTc6lPuY0befakk0jPzHHWT506iWHKnnuGW1CSlLIcqEiSJKnUugn4IZDdfvPNtJg1639BzZqJo5FbtAizmiQpxTlQkSRJUqn0IfBQIDvw00+5+oEH/hdUrw7vvAOtWoVZTZJUDDhQkSRJUqmzBugLxHNk5detY0ifPv9b6lO1Krz9NrRpE0FDSVKqc6AiSZKkUucG4KdAdtdNN/G37zad9VO5Mrz1Fhx0UNjVJEnFhAMV6f/bu+/4qKr8/+OvhIQqvQmoFBUbiFhAVAREAbFgQdeOdVfX1VV/dl3Rr65bsLd1XRUrdlFQaSKCFKUrgouwIAqiIii9JvP745iZ9MxAhiST1/PxyEM49557T0LMzbznnM+RJEmVynjg4XxtXSZP5toHf1sAVL06DB8ORx21s4cmSapADFSUGrKzYf368F9JkqQirAMuztdWfeNGBl90EVWys6FqVXj3XejRoyyGJ0mqQAxUVLF9/jkMGBDWOO+yS/jvgAGhXZIkKZ+bgUX52u699Vb2+fpryMyEt9+GXr3KYmiSpArGQEUV1yuvwKGHwgsvwIYNoW3DhvD3Qw8NxyVJkn4zDng8X9tRn3zC1Y88AlWqwGuvwQknlMXQJEkVkIGKKqbPP4cLLoBt2wo/vm1bOO5MFUmSBKyl4FKfGhs2hKU+AEOGwKmn7vyBSZIqLAMVVUwPPFB0mJJj27ZwniRJqvRuBL7J1/b3m29mr0WLwuzWM88sg1FJkiqyjLIegJSw7Gx48834zn3hBdi0Cfr0gd69oXnz5I5NkiSVOx8CT+ZrO3r8eP702GPw9NNw7rllMSxJUgVnoKKKZ+PGWM2UeLz+evgAaN8+BCu9e4etEKtXT84YJUlSubAGuGTt2lC4/je11q1j8EUXkf7EE3Bx/oVAkiTFxyU/qnhq1ICaNbev75w5cN99cNxx0KBBKDz3yCMwfz5EIqU7TkmSVOau/+orvs0VpgD888YbaXPNNXD55WUzKElSSjBQUcWTng79++/4dTZuhA8+gD//GfbdF1q3Dr9YDR0Kq1fv+PUlSVKZGjVmDP/Zb788bT0++ojLW7eGq68uo1FJklKFgYoqpuuug4wSVqxlZMAdd4TwpV69kq+5ZAn8+99w2mnQsCF07Qp//StMnx7qtkiSpArj17fe4pJ8Ycoua9fy7Ny5pN9wQxmNSpKUSqyhooqpQ4dQcLaorZMzMsLxs88Of9+2DaZOhVGjwsfUqcUv8cnKgokTw8ftt0OjRmGZUJ8+0KsX7Lprcj4vSZK04956i+vWrGHZbrvlab5v3DhaXXVVGQ1KkpRq0iIRC0eUhaVLl7L77rsD8N1337Fbvge+4vT55/Dgg/DGG6FQbc2acMYZcO21IXQpysqV8OGHsYDl++8Tu2+HDqGwbZ8+cOSRULXqjn0ekiSpdAwfzgdPPcUJw4fnaT52wQJG77UXaWlpZTQwSVJZSdbrbwOVMmKgUsqys0NNlBo1Qo2VREQiMHcujBwZwpUJE2DLlvj716oFPXrEtmbea6/E7i9JkkrHyJH8MmAA7WbO5PsWLaLNtTdt4stq1djDMEWSKqVkvf52yY9SQ3p6CDa2R1oatGsXPq6/Htavh/HjY7NX5s8vvv/69fDee+EDoE2b2OyVHj3ybNMoSZKSZOxYOPVUrnnyyTxhCsADhimSpCRwhkoZcYZKBfLNN7FwZexYWLMm/r6ZmXDEEbGApUOHxGfQSJKk4k2YAH36MLxnT07Ot9SndyTCiLQ0jFMkqfJyyU+KMVCpoLZuhc8+iy0PmjGj+OK2+TVpEora9u4d/tukSfLGKklSZTBlCvTqxarMTA6YO5cfmjWLHqobifBlWhr+liVJlVuyXn/7VrmUiMxMOOoouOcemDYNfvwRhgwJuw3Fs/PPTz/BSy/B+edD06ZwyCFw663hnbWtW5M/fkmSUsm0aWEG6Lp1XP3II3nCFICHDFMkSUnkDJUy4gyVFBSJwBdfhJkrI0eGLZcTCUlq14ZjjgmzV3r3DrVYJElS4WbPDrXKfv2VoaecwmlDh+Y5fAIwHFzqI0lyyU+qMVCpBNatg48/jgUsCxcm1n/vvWPhSvfusMsuyRilJEkVz5dfhmfjypX83LAhB8ydy09Nm0YP1wO+BFoU0V2SVLm4y49U0eyyC5x4YvgAWLQoFq589FEIXIqzYEH4eOwxqFo1LDXKCVgOPDDsTiRJUmXz3/9Cz56wciUAf3rssTxhCsAjGKZIkpLPGSplxBkqldyWLaGIXk7AMmtWYv2bNYsVtz3uOGjUKDnjlCSpPFmwALp1g+XLAXjz9NM5480385xyMvAOLvWRJMW45CfFGKgojx9/hDFjQrgyejSsWBF/37Q0OPTQ2OyVww+HDCefSZJSzOLFcPTRsHQpAD81bswBc+fyc+PG0VPqA3OBZoVfQZJUSRmopBgDFRUpOzsU2hs1KnxMmgTbtsXfv27dMBU6J2Bp2TJpQ5Ukaaf49tswM+WbbwCIAGe88QZv9e+f57SXgXN2+uAkSeWdgUqKMVBR3NasgXHjYsuDFi9OrP+++8bClW7doGbN5IxTkqRk+P77MDPlf/+LNr125pmc9dpreU47FXgLl/pIkgoyUEkxBiraLpFI2C0oZ/bKRx/Bhg3x969WLfxSmhOwHHCAxW0lSeXXjz+G3Xz++99YU5MmHPDf/7Kyfv1oW0PCUp+mBS4gSZKBSsoxUFGp2Lw5LAnKCVg+/zyx/i1axMKVY4+FBg2SM05JkhL188/Qo0fYIvk3EeD0MWMYeuyxeU59DThz545OklSBGKikGAMVJcXy5aGo7ahR4b+/bSkZl/R0OOww6NMnBCyHHWZxW0lS2Vi1KtQDmz07T/OQ667j3Pvvz9PWH3hj541MklQBGaikGAMVJV1WFsycGZu9MmVKaItXvXphS+acGSx+j0qSdobVq8OsyenT8zQvP/xwDpg0iV/S06NtjQlLfRojSVLRDFRSjIGKdrrVq2Hs2FjAsmRJYv333z82e6VrV6hRIznjlCRVXmvXQq9e8OmneZojLVvSb948hucrrP4mcPpOHJ4kqWIyUEkxBioqU5EIzJ8fC1c+/hg2boy/f/XqYcegnIBl330tbitJ2jHr18Pxx8Mnn+Rt3203XpwxgwuaNMnTfBbwys4bnSSpAjNQSTEGKipXNm0Kv8DmBCy5CgDGZffdY+FKz55huZAkSfHauBFOPDHsXpdbs2YsmziRdm3a8Guu5iaEpT6Ndt4IJUkVmIFKijFQUbm2dGmsuO2YMfDLL/H3rVIFOncO4UqfPnDIIaFNkqTCbN4Mp5wCI0fmbW/ShMjHH3PifvvxQb4ubwOn7qThSZIqPgOVFGOgogojKwumTYvNXvnsM8jOjr9/gwahuG2fPmFdfPPmyRurJKli2bIF+veH4cPztjdsCOPGMbh9ey7O1+Vc4KWdNT5JUkowUEkxBiqqsH75BT78MBawLF2aWP/27WOzV446CqpVS844JUnl27ZtcNZZ8NZbedvr1YOPPmJpx44cAKzJdWhXwlKfBjttkJKkVGCgkmIMVJQSIhH46qswTXvUKBg/PkzdjlfNmtC9eyxg2Xtvi9tKUmWQlQXnnQevvpq3vXZt+PBDIp06cTwwKl+3YcBJO2mIkqTUkazX3xmlchVJlVNaWthOef/94brrQlHBCRNiActXXxXff8MG+OCD8AHQqlUIV3KK29apk/RPQZK0k2Vnw8UXFwxTatUKz49OnXiGgmHKBRimSJLKF2eolBFnqKhS+PbbUNx25MiwTGj16vj7ZmRAly6xgOXggyE9PXljlSQlX3Y2/OEP8PTTedtr1IARI6BbN5YA7YG1uQ43B74E6u+0gUqSUolLflKMgYoqnW3bYOrU2OyVadPCkqF4NW4citv27h2K2+66a/LGKkkqfZEI/OlP8MQTedurVYP33oNjjyUC9AI+zNf1faDvzhmlJCkFGaikGAOV0pUNbARqAM5hqCBWrgyzVnICluXLE+t/0EGx2StHHglVqyZlmJKkUhCJwP/7f/Dgg3nbq1aFd96B448H4N/A5fm6Xgw8sxOGKElKXQYqKcZApXR8DjwAvAlsAGoC/YHrgA5lOC4lKBKBL78MwcrIkfDJJ2ErzXjtsgv06BELWPbaK3ljlSQlJhKBW2+Fv/89b3tGRtjh5+STAVhMWOqzPtcpuxGW+tTdOSOVJKUoA5UUY6Cy414hFKjbVsixDOAF4OydOiKVmvXrw45BOQHL118n1n/PPWPhSo8eYdcISVLZuPNOuOuuvG1VqoSitP37A2Gm6bHAuHxdRwK9kz9CSVKKM1BJMQYqO+Zz4FAKD1NyZADTcaZKSvjmm1i4MnYsrF1bYpeozMywJCgnYOnQweK2krSz3Hsv3HZb3ra0NHjpJTjnnGjT48Cf8nW9DHgq2eOTJFUKBiopxkBlxwwgzECJ57znkjsU7Wxbt8Knn8YClhkzEuvftGkoatu7dyhy26RJcsYpSZXd/ffD9dcXbB88GC68MPrXRYSlPhtynbIHMAeok9QBSpIqCwOVFGOgsv2ygdrk/cWrKBnA28BxQPVkDkplZ8UKGDMmBCyjRsGPPybW/5BDYrNXunQJM1okSTvm0Ufh6qsLtv/73/D730f/mg30ACbkO20MYQmQJEmlwUAlxRiobL/1wC4J9qlF2IaxH3AC0Ki0B6XyITsbvvgiFq5MnBhmtMSrdm3o2TMWsLRunbyxSlKqeuop+MMfCrY/+mjYNjmXR4A/5zvtcuBfyRqbJKlSMlBJMQYq2y+RGSqFSQeOJIQr/QD3g0lh69bBuHGxgGXhwsT677039OkTwpXu3aFWraQMU5JSxnPPwUUXFWy//3647ro8TQsIdc425mprBXxBeM5LklRaDFRSjIHKjom3hko89iMEKycDnQmBi1LU//4XC1fGjg27CcWralU46qhYwNK+fSisKEkKhgyB884L2yTndu+9cMsteZqygG7ApHyX+IiwBEiSpNJkoJJiDFR2TDy7/KQT3vn6nDCrJR5NgZMI4cqxQI0dGKPKuS1bYPLkWMAya1Zi/Zs1iy0NOu44aNgwOeOUpIrgzTfhrLMgKytv+8CBYdvkfB4ErsvX9ifg0SQNT5JUuRmopBgDlR33CnABhYcqGYQZLGcDK4D3gWHAKOJfKlSTUHflZOBEoPEOjlfl3I8/wujRIVwZPToUu41XWhocemhs9krnzpCRkbyxSlJ58u670L8/bMv3RL755jA7Jd9svvnAQcCmXG1tCEt9XFgpSUoGA5UUY6BSOj4nvMv1BiEoqQmcAVxLmJ2S30ZgLCFcGQbEux9MGnAEsborbXdo1Cr3srPDjJWc2SuTJxd8oVCcunVDcducgGWPPZI3VkkqSx98AKecUrAA+LXXhrop+cKULOAo4NN8lxkPHJ28UUqSKjkDlRRjoFK6sglhSQ3ir4GSDUwD3v3tY14C99uHWLjSGaiSQF9VQGvWwEcfxQKWxYsT67/vviFY6dMHjj4aatZMzjglaWcaMwZOOgk2b87bfuWVYUefQupMDQJuzNf2Z+ChJA1RkiQwUEk5Birlz0LCrJV3gYnEX3elCWFJUD9C3RVfKqe4SCTsFjRyZAhXxo2DDQnsOVWtWghVcmav7L+/xW0lVTzjx8Pxx8PGjXnbL7sMnnwS0gu+vfEV0BHIHb/sRZht6rNTkpRMBiopxkClfFtJqLvyLqHuSrx7wdQAjiPUXTmJELYoxW3eDBMnxmavfPFFYv132w169QoBy7HHQv36yRmnJJWWSZNCIJx/p7QBA+DZZwsNU7YBRwJTc7WlAZ/81i5JUjIZqKQYA5WKYxNhG8d3geHA8jj7pQFdCOFKP2DfpIxO5c7338eK244ZAytXxt83PR06dYrtHtSpE1RxQZmkcmTq1BD+rl2bt/3ss+HFF4v8mfV34JZ8bdcB9ydjjJIk5WOgkmIMVCqmbGA6saVBXybQty2xcKUL1l2pFLKyYObM2PKgTz8tuKVocerXDy9ccgIWf05IKkszZ4aC27/+mrf99NPh1VeL3N3sS+AQYEuutrbAbMLMTkmSks1AJcUYqKSGRcTClU8IuxfEoxGxuivH4TaRlcavv8LYsbHlQd9+m1j/Aw6IhStHHw3VqydlmJJUwBdfQI8esGpV3vaTToI334SqVQvttpXwJsKMXG3pwCTg8OSMVJKkAgxUUoyBSupZBXxACFdGAuvi7FedUMy2HyFk2TUpo1O5E4nA/PkhWBk5MhR4zF/csTg1akC3brHdg/bZx+K2kpJj3jzo3h1WrMjb3qcPvPNOKLZdhL8Ct+druxH4R+mOUJKkYhmopBgDldS2GRhHCFeGAd/H2S+NsA1zztKg/X5rUyWwaRN88klsedDcuYn132OP2OyVnj2hXr2kDFNSJfP11yG8/eGHvO09e8Lw4SHcLcIXwKGEWSo59gNmEt5MkCRpZzFQSTEGKpVHhDDVOSdcSWQPmL2IhStHAIWvTldKWro0FLcdORI+/BB++SX+vlWqwOGHxwKWQw6xuK2kxC1aFJYXLluWt/3oo2HECKhZ9GbHW4FOhDopOdKBKb+1S5K0MxmopBgDlcprMSFYGQaMJ/66Kw2BEwjhSi9gl6SMTuVSVhZMmxZbHjR1KmRnx9+/YUM47rhYwNKsWfLGKik1LFkSZqYsWZK3vUuX8LOodu1iu98F3Jmv7Rbg3lIcoiRJ8TJQSTEGKgL4BRhBmL0yAlhb/OlR1YCehHDlJMCXx5XMqlWhuG3O8qD87x6X5MADY+HKUUcVW/9AUiW0bFmYhbJoUd72ww4L28HXrVts99nAYcC2XG0HEGZr+tNGklQWDFRSjIGK8ttMmLGSszRoaQJ9OxHClZMJv7Rad6USiURCwcicnYPGj4fNm+PvX7Nm2LkjJ2DZe2+L20qV2Q8/hJkpX3+dt/2gg+Cjj8J27sXYQghTci9vrQJ8Rtg6WZKksmCgkmIMVFScCDCLEK68C3yeQN82xMKVo7DuSqWzYQNMmBBbHvTf/ybWv1WrsHNH795wzDFQp05ShimpHFqxIuzmM29e3vZ27WDcOGjUqMRL3AHcna/t9kLaJEnamQxUUoyBihKxhFjdlY/JO426OA0IdVdOBnoDxa94V0r69tvY7JUPP4TVq+Pvm5EBRxwRm73SsSOkpydvrJLKzsqVIUT9Il/p9H33hY8/hqZNS7zEDMJOdblrgx0ITAOqltpAJUlKnIFKijFQ0fb6lVBvZRjwAbAmzn5VgWOIzV5pnozBqXzbtg0++yw2e2X69LBkKF6NG0OvXiFc6dUrrhdYkiqAX38N2yDPnJm3fa+9wjLC5iU/MTYTtkj+MldbBjAV6FhqA5UkafsYqKQYAxWVhi2EuivDCEuDvkug76GEcKUf0A7rrlRKP/8cZq3kzGBZvjyx/gcdFFsedMQRUNX3oKUKZ82aEJB+9lne9tatQ5jy2+8qJbmNgjv43AkMLIUhSpK0owxUUoyBikpbhLCzQk64MiuBvq0Js1b6EequZJb24FT+RSIwZ04sXPnkE9iyJf7+u+wSitvmBCx77pm8sUoqHevWwfHHw8SJedt33z3UYmrVKq7LTAMOB3Jv5n4QYXaKzxNJUnlgoJJiDFSUbN8RC1c+BrbG2a8+0JcQsPQBLElaSa1fH+om5AQs+Xf8KMmee8bClR49QuAiqfzYsAFOPDEUm82tefMwM2WvveK6zCbgYOCrXG2ZhJClQ+mMVJKkHWagkmIMVLQzrQZGEsKVD377ezwyCXVXTv7tw+/SSmzx4li4MnYsrF0bf9/MTDjyyFjA0qGDWzNLZWnTJujXD0aPztvetGkIUvfdN+5L3QT8M1/b3YSdfSRJKi8MVFKMgYrKylZgAiFcGUbYQShehxBbGnQg1l2ptLZuhSlTYgHLjBmJ9W/aNNRs6NMHjjsuFLuVtHNs2QKnnQbvv5+3vWHDEKa0axf3pT4FjiTvUp9DgCm41EeSVL4YqCTZt99+yzPPPMP777/PkiVLWLt2LY0bN6ZVq1b06NGDM888k3YJ/JJREgMVlQcR4AtiS4MSeVnckli4cjT+8lyp/fQTjBkTwpXRo+HHH+Pvm5YGBx8cZq706QOHHx5mtEgqfVu3wplnwjvv5G2vXx8++igUmo7TRsLuPfNztVUlPEdK77clSZJKh4FKEj366KPccsstrF+/vshz/vznP/PQQw+V2j0NVFQeLQWGE8KVj4i/7kpdQt2VfoS6K3WTMjpVCNnZ8PnnsdkrkyaFF3HxqlMHjjkmBCy9e4edRiTtuG3b4Nxz4fXX87bXqROW8R16aEKXux64P1/bvcAtOzJGSZKSxEAlSe655x7+8pe/ANC2bVsuu+wyDjvsMOrWrcvKlSuZNWsWQ4cOpXPnzjzwwAOldl8DFZV3a4BRhHDlfeDXOPtlAt0J4cpJwB5JGJsqkLVrQ9HLnIDlf/9LrH/btrHZK926Qa1ayRmnlMqysuDCC+Gll/K277JLmF12+OEJXW4S0JUwyzHHYcBkIGOHBipJUnIYqCTB2LFjOfbYYwG44IILePrpp8ksYqr5li1bqFq1aqnd20BFFclWYCIhXHkX+CaBvh0J4crJhG00rbtSyS1cGAtXPvoo7CYUr6pVoWvXWMDSrp3FbaWSZGfDZZfBs8/mba9ZE0aODP9PJWAD4Wf5glxt1YCZwP47NFBJkpLHQKWUZWdns++++7JgwQI6dOjA9OnTycjYee+rGKiooooAXxIrajstgb67E6u70o2w3l6V2JYtMHlyeFE3ahTMnp1Y/+bNQ3Hb3r1DcduGDZMyTKnCikTgyivhX//K2169eihKe8wxCV/yWuChfG3/BG7YziFKkrQzGKiUspEjR3L88ccDMGTIEM4+++yden8DFaWKZYS6K8OAscCWOPvVAY4nhCvHA/WSMThVLD/8EJYfjBwZitv+/HP8fdPS4LDDYrVXOneGnRiSS+VOJALXXgsPP5y3vWpVGDYs/H+SoAmEJZ25f3E8nDCDscp2D1SSpOQzUClll1xyCc8++yxpaWmsXr2a2rVrA7Bq1SpWrlxJw4YNadCgQdLub6CiVLQWGE2s7sqqOPtlEGas5CwNapmU0alCyc6GWbNis1emTAlFNeNVty4ce2wsYNnDaj6qRCIRuOkmGDQob3tGBrz9Npx0UsKXXA8cCCzK1VYdmA3ss90DlSRp5zBQKWUHHHAA8+bNo3Xr1ixatIghQ4bwt7/9jS+//DJ6Tk6R2quuuopq1aoldP2lS5cWe3z58uV06tQJMFBRatpGKFyYU3dlUfGn59GBWLhyMNZdEbBmTai5khOwfPNNYv332y8WrnTrBjVqJGWYUrnwl7/APffkbatSJezwc9pp23XJq4DH8rXdD1y3XVeTJGnnMlApRdnZ2WRmZpKdnc1hhx1Gly5deOSRR4o8/4gjjuD999+nXr16cd8jLYFCiQYqSnURYB6xcGVqAn13IwQrJxOmmicWbSolRSKwYEEIVkaOhI8/hg0b4u9frVoIVXIClv33t7itUsc994RAJbf0dHj5ZTjrrO265MdAj3xtRwLjcamPJKliMFApRb/88kt0OU/16tXZtGkTzZo1Y9CgQfTt25fq1aszbdo0brrpJj799FMATj31VN5+++2472GgIhVtOaHuyruEuiub4+xXG+hDmL3SF6iflNGpwtm8GSZOjAUsc+Yk1n+33WLhyrHHQn2/s1RBDRoEN96Yty0tDZ5/Hs4/f7suuQ5oT97d3WoAnwN7b9cVJUna+QxUSlHuLyZAzZo1mTlzJvvsk3cV8MaNG+nSpQuff/45AJ9++imdO3eO+x7FccmPFKwj1F0ZBrwHrIyzXxXgaGJLg1onZXSqkL7/PhS1HTkyFLldFW81H8I7+Z07xwKWww4LSyWk8u7hh+Gaawq2P/00XHLJdl/2j0C+PYJ4CPjzdl9RkqSdz0ClFP388880btw4+verr76ah/NXwf/N+++/z4knngjAtddeywMPPFAqY7AorVTQNmAyIVx5F1iYQN/2hHClH6HuSnqpj04VUlYWzJgRm73y6aeh4G286tcPWzLnBCwtWiRvrNL2evJJuOKKgu2PPw5//ON2X3YscGy+tq6EJUD+jJUkVSQGKqVo8+bNVK9ePfr39957jxNOOKHQczdt2kTt2rXZtm0bRx11FJ988kmpjMFARSpeBPiKWLjyGXm36ixOc8KslX6Edf/WXVHUr7/C2LGxgOW77xLrf8AB0KdPCFe6doVczxKpTDz7bOEzUB58sPAZK3FaQwiqv83VVhP4Athzu68qSVLZSNbr70r5BkO1atXyzFDJvfwnv+rVq9OoUSMAVqxYkfSxSQrSgP2Bm4EpwPfAf4ATCVt1Fud74EngeKARcAbwIvFv46wUVq8enH46PPUULFkC8+aFF559+sQXjsydC/ffD716QYMG0LdvWGrx3/+GYrnSzvTSS3DppQXb//73HQpTAG4gb5gC8E8MUyRJyq1SBioQtk3OkZWVVey5OcczMjKSOiZJRdsVuJRQzPZnYChwESEwKc464E3gAqAJYcbKgyS2jbNSVFpa2E75mmtgxIhQa2XUKLjuujATpSQbN4Z+11wTrtOqFfzhD/D227B6dZIHr0rvtddgwICCQd5dd8FNN+3QpUcDT+Vr6w4UsqhIkqRKrdIGKkcffXT0z4sWFf3Sas2aNfz8888AtHDtvFQu1AJOAZ4FfgA+Ibyb2raEflmEtf/XEd5lbQ/cRtjGOYGqGkpVNWqEmSf33w9ffgnffhsKep5xRpjZUpJvvw0zX04/HRo2hKOOClvYTpuWWN0WqSRDh8K55xb8vrrttoJbJidoNZB/AVEtws/bSvtLoyRJRai0z8bTTz89+uehQ4cWed7QoUPJKTPTtWvXpI9LUmKqAEcRpqLPJ9Rd+QdwBGHZUHG+BO4FOgO7AX8APgA2JWuwqlh23z3Upnj9dVixAiZPhoED4fDDw25AxcnKgkmTwovbTp2gSRM4++ywfe3y5Ttn/EpN770Hv/td+B7L7frr4e67w8yrHfD/gPz7FN6HO6lJklSYSlmUNkffvn0ZMWIE6enpjB49mp49e+Y5/sMPP3DYYYexdOlSqlatyqJFi0ptlopFaaXk+xF4n1DUdgywMc5+tYDehKK2fSl5WZEqoVWr4MMPwxKhUaNg2bLE+h94YChs26cPHHkkVLN0suIwejScdBJs2ZK3/eqr4aGHdjhMGUH4mZfbsYQlQDt2ZUmSypa7/CTB119/TefOnfn111+pXr0611xzDX379qVGjRpMnTqVv/3tbyxdGt6n+cc//sGNN95Yavc2UJF2rg3Ah4RwZTgQb4npdMIMmJxdg/ZKyuhUoUUioVhtTrgyYQJs3hx//5o1oUePWMCy1147/MJYKWjcuFAEeVO+OXR/+AP86187/D3zC9COUNQ7R21gDtByh64sSVLZM1BJkokTJ9K/f39+/PHHQo+npaVx2223cffdd5fqfQ1UpLKTRdiG+V3Ctsz/TaDv/sTClU5U4nWTKtqGDTB+fCxg+W8i32FA69axcOWYY6B27eSMUxXHxInhe2LDhrztF10U6vyUtAQtDhcCz+drewq4bIevLElS2TNQSaKVK1fy6KOP8s4777B48WK2bNlCs2bN6N69O1dddRUdO3Ys9XsaqEjlx9fEwpVJQLw/FJsCJxHClZ5AjaSMThXekiWxcOXDD2HNmvj7ZmTAEUfEApaDDiqVF8+qQD79NBRLXrs2b/u554aaPFWq7PAthhOC4tx6ASNxqY8kKTUYqKQYAxWpfFpBrO7KaMJSoXjUJLwA6QeciHVXVIRt2+Czz2DkyBCwTJ9ecNvb4jRuHF5c9+kT/tukSfLGqrI3Ywb07FlwG+4zzoAhQ0LgtoNWEZb65C6VXIdQtHv3Hb66JEnlg4FKijFQkcq/jcBYYnVXCl8YWFA6YZehfoR3fUvazlmV2M8/w5gxsRksP/yQWP+OHWOzV7p0gapVkzNO7Xyffx5q6/zyS972U04JO09lZpbKbc4HXsrX9ixwUalcXZKk8sFAJcUYqEgVSzYwlRCuvEvYnjle+xILVzoTtnqWCohEYM6c2OyViRML7uZSnF12CTVXevcOH3vumbyxKrnmzoXu3UPgllvfvvD226W2K9Q7wKn52voC7+FSH0lSajFQSTEGKlLFtoBQc2UYMJEQuMSjCaHuysmE7UhrJmV0Sgnr1sHHH8dmryxYkFj/vfaKhSs9eoTAReXf/PnQrRvkL5Z/3HEwbBhUr14qt1kJHEDemXd1gblAi1K5gyRJ5YeBSooxUJFSx8+EuivDgFHA+jj71QCOI1Z3xWoYKtaiRbFw5aOPChYpLU5mJhx1VCxg6dDBrZnLo//9D44+Gr7/Pm979+7w/vthi+1Scg7wSr6254ELSu0OkiSVHwYqKcZARUpNmwh1V3Jmr8RbESMN6EIIV/oB+yRldEoZW7fClCmx5UEzZybWf9ddQ1Hb3r3DzIfGjZMzTsVvyZIQpnz7bd72I48M/86lOMPoLaB/vraTCMsZjdkkSanIQCXFGKhIqS8bmEYIVt4lTKWPV1ti4crhWHdFJfjpp1DcduRIGD06/D1eaWlwyCGx2SuHH15qBU8Vp6VLQ5iyeHHe9k6dwr9rnTqldqsVhKU+K3K11Sf8fGpWaneRJKl8MVBJMQYqUuXzP2LhyifEX3elMWFJ0MmErZmtu6JiZWeHHWJGjQoBy6RJYbvmeNWpE7bqzQlYWrVK2lAFLF8eaqbkr5Fz8MHw4YdQv36p3u5M4I18bS8B55bqXSRJKl8MVFKMgYpUua0EPiCEKyOJv+5KdULdlZMJU/SbJmV0Silr18K4cbHlQYsWJdZ/n31i4Ur37qVax6PS++mn8DX9Kt++YQceGOrkNGxYqrd7HfhdvrZTgLdxqY8kKbUZqKQYAxVJOTYB4wjhyjBgeZz90gjLgU4mLA3aF18UKQ4LF8Zmr4wbB+vjjfOAqlXD0pScgKVdO4vbbq+VK8PuS3Pm5G3ff//w79KkdMtU/0hY6rMyV1tDwlIfg1lJUqozUEkxBiqSCpMNzCC2NGhO8afnsTexcOUIrLuiOGzeDJMnxwKWzz9PrH/z5rFw5dhjS31GRcr65ZewrGrWrLzte+8N48dDs9KtZhIBTgeG5mt/lYIzViRJSkUGKinGQEVSPBYBwwnhygQgK85+DQl1V/oR6q7USsrolHJ++CEUtR01Kvz355/j75uWBocdBn36hIClUyfIyEjeWCuqNWvCzkpTp+Ztb9MmhClJ+H3gFcI2ybmdTqil4vwiSVJlYKCSYgxUJCVqFTCCEK6MANbF2a8acCwhXDkRd/JQnLKzw3bMo0aFj8mTISveSA+oVy/MWsmZwfLbM69SW7cufC0mT87bvsceMGECtGxZ6rf8gbDUZ1WutkaEpT6lu6hIkqTyy0AlxRioSNoRm4GPidVdWZZA387Elgbtj+9QK06rV4dCqTnLg5YsSaz/fvuFMKFPn1CHpUaN5IyzvNqwAU44AT7+OG97ixZhZsqee5b6LSPAqYSfE7m9DpxR6neTJKn8MlBJMQYqkkpLBJhJLFxJpArGnsTClSMBF2goLpEIfP11bPbKuHGwcWP8/atXD6FKzvKg/fZL7eK2mzbBSSeFbZBz23XXELDss09SbvsScH6+tt8RaqdIklSZGKikGAMVScnyDSFYGQaMB7bF2a8BcAIhXOkN7JKMwSk1bdoEEyfGApb8O9eUZLfdYrNXevaE+vWTM86ysHkznHoqjBiRt71x4xCm7L9/Um77PWGpz6+52poQlvo0SsodJUkqvwxUUoyBiqSd4RdCvZVhv/13TZz9qgI9CeHKSUDzpIxOKWvZslhx2zFjYNWqkvvkSE+Hzp1js1cOPRSqVNA9q7ZuhTPOgHfzLbpp0CDM6jnwwKTcNkL4//b9fO1vE5YASZJU2RiopBgDFUk72xbCjJWcpUHfJdD3MEK4cjLQDuuuKAFZWTB9emz2yqefhoK38WrQIBS37dMHevUKNUcqgm3b4Oyz4c0387bXrRtq0Rx8cNJu/RxwUb62c4CXk3ZHSZLKNwOVFGOgIqksRYDZhHDl3d/+HK/WxMKVrlh3RQn65RcYOzYWsHyXSLQHtGsXWx501FGhHkt5k5UFF1wAQ4bkba9dO8zY6dw5abdeSgg9V+dq2xX4krCduiRJlZGBSooxUJFUnnxLrO7KOOKvu1KfUHflZKAPUDspo1PKikTgq69i4cr48aEeS7xq1IDu3WMBS9u2ZV/cNjsbLrkEnnsub3utWmF3pKOOStqtI0BfYGS+9ncJ/49KklRZGaikGAMVSeXVamJ1Vz4g7zvdxakK9CA2e6WCLMxQebJxI0yYEAtY5s1LrH/LliFc6d07FLetWzc54yxKJAJXXAH//nfe9urV4YMPoEePpN7+GeDSfG3nAy8k9a6SJJV/BiopxkBFUkWwBZhACFfeJcxkidchhHClH9Ae665oO3z3XSxc+fBD+PXX+PtWqQJdusQClkMOCQVvkyUSgT//GR59NG97tWowbFio/5JE3xKW+qzN1daMsKtPCu2ZJEnSdjFQSTEGKpIqmgjwBbG6KzMT6NuKMGulH6HuSmZpD06pb9s2mDYtLJsZNQqmTg0hRrwaNYLjjgvhSq9e0KxZ6Y0tEoEbboD778/bnpkJ77wDffuW3r0Kuz1hq/Mx+drfIyzJkySpsjNQSTEGKpIquu+A4YRwZRywNc5+9Qh1Hk4GjgfqJGNwSn2rVoVZKzkBy/ffJ9a/Q4fY7JUjjwwzSbZHJAK33w733pu3PSMD3ngDTjll+66bgKeAP+Rruwh4Nul3liSpYjBQSTEGKpJSyRpCIcx3CXVXfo2zXyah7srJv33snozBKfVFIjB3bixcmTABtmyJv3+tWqG+SU5x2732Kv787OxQ76VGDbjnHhg4MO/x9HR49VU444zEP5cEfUNYUrcuV1sLwq4+9ZJ+d0mSKgYDlRRjoCIpVW0FPiG2NGhJAn07Equ70gHrrmg7bdgQdgzKCVjmz0+sf5s2sdkrxxwTtjsG+PxzeOABePPNcI/MTNiab25WWhq8+CKce27pfC7FyAaOAz7K1z6CsOuWJEkKDFRSjIGKpMogAswhVtR2egJ99yBWd+Vowi5C0nZZsiQEKyNHwtixsGZN/H0zMsKSoF13DUFKVlbx5z/zDFx88Y6NN05PAFfma7sU+M9OubskSRWHgUqKMVCRVBktI1Z35SPCLkLxqEuot9KP8M57vWQMTpXD1q3w2Wex2SszZiRW3LY4t90WlgDtBIuAA4H1udp2Jyz1sS6RJEl5Jev1dxL3D5QkKa8WwOWEJQk/A28A51Hytq6rgVeBs4HGhGUOj5LYciIJCMt0jjoqBB/TpsFPP8GQIXDBBWEWyo5YurR0xliCbOBi8oYpAM9gmCJJ0s7kDJUy4gwVSYrZBkwkVndlcQJ9DyK2NKgj1l3RDohE4IsvYsuDJk4sWCOlODVrwtq1oShtEj0KXJ2v7Q/Ak0m9qyRJFZdLflKMgYokFS4CzCUEK8OAqQn03Y1YuNId665oB61bF4KVRHbrWbcu7BqUJAsJS3025mprSahVVDtpd5UkqWJzyY8kqVJIA9oBtwGfEequPAn0BaqV0HcpoVBnb6AR8DtgCPBLsgar1LbLLnDaaWHmSTxq1gxbKSdJNnARecMUgGcxTJEkqSwYqEiSyrXmhOUM7xPqrrwJXAA0KKHfWuB14FygCdATeAT4JlkDVWpKT4f+/eM794wzkrrc5xHC0rjcrgSOSdodJUlScQxUJEkVxi7A6cDzwI/AeOA6YM8S+m0j7Cr0Z6A10AG4g7CNs+teVaLrrgvbJxcnIwOuvTZpQ/gauCVfW2vg70m7oyRJKomBiiSpQsoAjgbuBxYQ6q7cC3SOo+8XwN3AYYStZq8ARgKbkzJSVXgdOsALLxQdqmRkhOMdOiTl9lnAhcCmfO2DCSGjJEkqGwYqkqQKLw3Yn/AO/qfAcuAp4ERKrruSU6PleELdlTOAl4BVyRqsKqazz4bp02HAgFhNlZo1w9+nTw/Hk+RBYEq+tquBbkm7oyRJioe7/JQRd/mRpJ1jPTCasGPQe4Q6LPGoAnQl7BjUj7C8QgIgOxs2bgwFaJO8RfJ/CVuD5549tRcwG0jeXkKSJKUWd/mRJGk71AJOJSyP+AGYAFwP7F1CvyzgY+BaoA3QHrgdmEbYbUWVWHp62Bo5yWHKNmAAecOUNML3smGKJEllz0BFklRp5Mw6GQTMB+YRinp2IbxQLc6XwF+BToS6K5cDH1CwroVUWu4HpuZruwY4aucPRZIkFcJARZJUKaUB+wE3AZMJdVeeBk4CqpfQ93vg38AJhLor/YEXgJXJGqwqnbmEnahyawvcUwZjkSRJhTNQkSQJaApcQqi1shJ4B7gIaFxCv/XAW4SlGU2B7sADwP+SNE6lvm2EXX225GpLB54DapbBeCRJUuEMVCRJyqcmoRDts4SZKxOBG4B9SuiXBYwH/h+hcOgBwK3AZ1h3RfH7JzA9X9v/IyxNkyRJ5YeBiiRJxagCHEl4kfvf3z7++VtbSXVX5gF/Aw4HWgC/B94HNiZrsKrw5gB35mvbF/i/nT8USZJUAgMVSZISsA9htspEwq5BzxJms9Qood8PwH+AEwl1V04Dnif+bZyV+rYSlo5tzdWWs9SnpLo+kiRp5zNQkSRpOzUh1Fl5hxCMDCPUYWlSQr8NwFBCnYymwNGEHV0WJGmcqhj+DszK13Yj0LkMxiJJkkpmoCJJUimoSdgh6GnCLkCTCTsI7VdCv2zgE+B6wi4u+wM3A1Ow7kplMpuCy3oOoODyH0mSVH4YqEiSVMqqEAqI/p1QR+VrYBDQlZIfvF8B/wCOAJoBlwLDse5KKttCmK20LVdbFcJSn2plMB5JkhQfAxVJkpJsb8IMlAmEWiqDgVMpeQvcn4BngJOBhsApv/X9KVkDVZn4K/B5vrabgUPLYCySJCl+BiqSJO1EjQmzEd4m1F15D7iMUEulOBuBd4GLgV2BowizXuYna6DaKWYSApXc2gN/KYOxSJKkxBioSJJURmoAJwBPEequfArcQqijUpwIMIlQsHTf3z5u+q0tK1mDVanbTAjXcv+bZeBSH0mSKgoDFUmSyoF0wm4u9wJzCTv+3E/YAaikh/V84J+EWSvNCLNY3iXsJqTy625gTr6224CDy2AskiQpcQYqkiSVQ3sB1wHjCTVTngdOA2qV0G8Foc7KKYS6KycT6rD8mKyBartMIxQtzq0DcGsZjEWSJG0fAxVJksq5hsAFwFuEuivvA38gzEYpzibCDkGX/nbuEYQdhP5LWDaksrGJwpf6PA9ULYsBSZKk7WKgIklSBVId6As8CSwFPiMsE2lXQr8IMIWwe8x+wD7ADcBErLuys91F2E47tzsIM1QkSVLFYaAiSVIFlQ50Au4h1OL4H/Ag0B2oUkLfBcB9QFfCrkEXAUOB9Ukaq4LPCPVucjuYEHRJkqSKxUBFkqQU0Qa4BhhHqLvyItAf2KWEfj8TdpY5DWgEnAT8B/ghSeOsrDYSlvpk52rLJHztM8tgPJIkaccYqEiSlIIaAOcBbxACkxHA5UDzEvptAt4Dfv/buV2AvxGWqFh3ZcfcQahfk9udQPudPxRJklQKDFQkSUpx1YA+wL8IdVemAX8BDiyhXwT4lLDzzAHA3sD/AyYA25I12BQ1mbANdm6HAjeWwVgkSVLpMFCRJKkSSSO8kP8/4HNgEfAwcAwl1135H/AA0I1Qd2UA8DawLlmDTREbCEt9cs/wqUrY1SejLAYkSZJKhYGKJEmVWGvgamAssAJ4GTgTqF1Cv5XAC8DphLorJwD/BpYnbaQV1+2EIsC53Q3sXwZjkSRJpcdARZIkAVAfOAd4jRCujAL+COxWQr/NwAfEarR0Bv4KfIl1Vz4BHsrX1pmwdEqSJFVsBiqSJKmAakAv4HHgW2AGoajqQXH0nUqYldEe2Au4FviYyld3ZT1hO+rcoVI1wq4+JS2vkiRJ5Z+BiiRJKlYacDBwFzAL+AZ4BDiWkmuALCLM0OgBNAHOB94E1iZnqOXKrYS6M7n9Fdi3DMYiSZJKn4GKJElKSEvgKmAMYWnQEOAsoE4J/X4BXgLOINRdOR54EliWtJGWnfGE0Cm3I4Brdv5QJElSkhioSJKk7VYPOBt4hRCujAH+BOxeQr8twEjgCkKNlsOAe4AvqPh1V9YRlvrkVh0YjEt9JElKJQYqkiSpVFQlLAN6FFhCWB50J9Axjr7Tgb8AHYA2hJkcHwFbkzDOZLsJWJyv7W9A2zIYiyRJSh4DFUmSVOrSCAVsBwIzCYVtHyMUus0soe83wMNAT0LdlXOB14E1yRlqqfoIeCJfW1fC1tSSJCm1GKhIkqSk2x24krAV8wrgVcIWzXVL6PcroUbL7wh1V3oTAoulyRroDlgLXJyvrSbwLP7CJUlSKvL5LkmSdqq6hIDkZUK48iFhBkfLEvptBUYTgpndgUOA/wNmUz7qrtxAWOqU2z8IW0dLkqTUY6AiSZLKTCZhac/DhLojswkhySFx9J1JWFLUEWhNCGU+pGzqrowG/p2vrTvwx50/FEmStJMYqEiSpHIhjVCU9i+EIrXfEZb39KbkuitLCMVwjwMaE5YTvQqsTtZgc1kNXJqvrRbwDP6iJUlSKvM5L0mSyqXdCNsqjwR+JhSmPZewVXNxVhO2cT6bEK70IhTE/TZJ47yeEP7kNoiwW5EkSUpdBiqSJKncqwOcAbwE/ETYTefPQKsS+m0FxgBXEWq0HEzYynkWpVN3ZSTwdL62nsAfSuHakiSpfDNQkSRJFUom0AN4CFgEfAHcAxwWR99ZwF2EYKUl8CdC4LJlO8bxKwWX+uyCS30kSaosfN5LkqQKKw1oD9wGTCVsp/wkcDxQtYS+3wGPE5YENQbOIiwV+rWEftnAeuAaYFm+Y/dT8m5FkiQpNRioSJKklNGCsNzmA0LdlTeB84EGJfRbA7xGKGbbGDgWeIS82yB/DgwAahNmojyf7xrHAZft2PAlSVIFklHWA5AkSUqG2sDpv31sAyYB7/72saiYftuAsb99/Jmw81AbYBiQVUSfGoSlPmmlMXBJklQhOENFkiSlvAygG/AAsBD4Evgr0DmOvp8DQyk6TIFQg2XVDo5RkiRVLAYqkiSpUkkDDgBuBT4Fvgf+DZwAVNvOa2YBD5bK6CRJUkVhoCJJkiq1ZsDvgfcIdVfeItRKaZjgdd4gFKyVJEmVg4GKJEnSb3YBTgOeA34ARiXQdwOwMQljkiRJ5ZOBiiRJUiEyCLv91Izz/JqE4rSSJKlyMFCRJEkqQjrQP85zz8BfrCRJqkx87kuSJBXjOsJsleJkANfuhLFIkqTyw0BFkiSpGB2AFyg6VMn47XiHnTYiSZJUHhioSJIkleBsYDph95+cmio1f/v79N+OS5KkyqWkGaySJEkizEB5DniWsJtPDXxnSpKkysxARZIkKQHpQK2yHoQkSSpzvrEiSZIkSZKUIAMVSZIkSZKkBBmoSJIkSZIkJchARZIkSZIkKUEGKpIkSZIkSQkyUJEkSZIkSUqQgYokSZIkSVKCDFQkSZIkSZISZKAiSZIkSZKUIAMVSZIkSZKkBBmoSJIkSZIkJchARZIkSZIkKUEGKpIkSZIkSQkyUJEkSZIkSUqQgYokSZIkSVKCDFQkSZIkSZISZKAiSZIkSZKUIAMVSZIkSZKkBBmoSJIkSZIkJchARZIkSZIkKUEGKpIkSZIkSQkyUJEkSZIkSUqQgYokSZIkSVKCDFQkSZIkSZISZKAiSZIkSZKUIAMVSZIkSZKkBBmoSJIkSZIkJchARZIkSZIkKUEGKpIkSZIkSQkyUJEkSZIkSUqQgYokSZIkSVKCDFQkSZIkSZISZKAiSZIkSZKUIAMVSZIkSZKkBBmoSJIkSZIkJchARZIkSZIkKUEGKpIkSZIkSQkyUJEkSZIkSUqQgYokSZIkSVKCDFQkSZIkSZISZKAiSZIkSZKUIAMVSZIkSZKkBBmoSJIkSZIkJchARZIkSZIkKUEGKpIkSZIkSQkyUJEkSZIkSUqQgYokSZIkSVKCDFQkSZIkSZISZKAiSZIkSZKUIAMVSZIkSZKkBBmoSJIkSZIkJSijrAdQWW3bti365+XLl5fhSCRJkiRJSl25X3Pnfi2+owxUysiKFSuif+7UqVMZjkSSJEmSpMphxYoVtGrVqlSu5ZIfSZIkSZKkBKVFIpFIWQ+iMtq0aRNz5swBoHHjxmRkOFloey1fvjw6y2fq1Kk0a9asjEckSUpVPnMkSTuTz53SsW3btugqkfbt21O9evVSua6v4stI9erVOeyww8p6GCmnWbNm7LbbbmU9DElSJeAzR5K0M/nc2TGltcwnN5f8SJIkSZIkJchARZIkSZIkKUEGKpIkSZIkSQkyUJEkSZIkSUqQgYokSZIkSVKCDFQkSZIkSZISZKAiSZIkSZKUoLRIJBIp60FIkiRJkiRVJM5QkSRJkiRJSpCBiiRJkiRJUoIMVCRJkiRJkhJkoCJJkiRJkpQgAxVJkiRJkqQEGahIkiRJkiQlyEBFkiRJkiQpQQYqkiRJkiRJCTJQkSRJkiRJSpCBiiRJkiRJUoIMVFRufPzxx6SlpZGWlsbHH39c4Pidd94ZPS5JUmnp3r07aWlpdO/evayHssNKepZKkhL3zTffRH+2Pvfcc2U9nDKX87W48847y3ooZc5ARZIkSZIkKUEGKpIkSZIkaYdVtpmSGWU9AEmSJEmSyqtWrVoRiUTKehjlhl+LGGeoSJIkSZIkJchARZIkSZIkKUEGKirSpEmTuPTSS9lnn32oU6cOVatWZbfdduPEE0/k8ccf59dffy203/Dhw+nfvz+77bYb1apVo2HDhnTp0oW///3vrFu3Lunj3rRpE4899hg9e/Zk1113pWrVqjRp0oRjjz2WZ555hm3btpV4jYkTJ3L66aez6667Ur16ddq0acPll1/OwoULgfh3hFi4cCHXXnst7du3p27dutSoUYM2bdpw4YUXMn369NL4dCUp5Xz//ffcfPPNHHzwwdStW5fMzEyaNm1K+/btOfvss3nuuedYs2ZNoX3Xrl3L/fffzzHHHBN9BtSpU4eOHTty1VVXMWnSpBLvv2zZMq677jr22msvatSoQcOGDenduzcjRoyIa/wTJ07k/PPPp1WrVlSvXp169erRsWNHbr/9dlasWBHXNcr6WSpJ5cGFF15IWloarVq1Kva85557Llq345tvvslzrFWrVqSlpXHhhRcCMH/+fC677DJatWpFtWrVaNq0KaeeeiqffvppkdcvapefDRs2ULt2bdLS0jj33HNL/HymTJkSvc4TTzxR6Dk//PADt912G4ceeigNGjSgWrVq7L777px55pl8+OGHCY3x7bffpm/fvjRv3pyMjIwCr12+/vprrrrqKtq1a0ft2rWpWrUqzZs356CDDuLiiy/mtddeY/PmzQXuVdguPzn379GjR7StR48e0XNzj23r1q3suuuupKWl0adPnxK/bl9++WW0/z//+c8Sz9+pIlI+GzZsiJx99tkRoNiPgQMH5um3cePGyKmnnlpsn+bNm0dmzZpV6H3HjRsXPW/cuHEFjg8cODB6vCizZ8+OtGzZstgxHHbYYZEffvihyGv8/e9/j6SlpRXat3bt2pFRo0ZFunXrFgEi3bp1K/I6gwYNimRmZhY5jrS0tMhf/vKXIvtLUmU0YcKESJ06dUp8Bg0fPrxA3zFjxkQaNWpUYt/8cv9MnzhxYrHXGDRoUJFjz8rKilx55ZXF3rtu3bqR0aNHF3mNZD9LJakiGTBgQASItGzZstjzBg8eHP3Zt3jx4jzHcl4bDBgwIPL2229HatasWejP1ipVqkReffXVQq+/ePHi6HmDBw/Oc+y8886LAJFatWpF1q1bV+w4c54RGRkZkRUrVhQ4/tJLL0Vq1apV7DPgkksuiWzdurXYMT777LOR888/v0Df3K9dXn/99UjVqlVLfGbOmTOnwL0Kez2Y+/7FfeR8/W644YYIEElPT48sXbq02K/btddeG/26LV++vNhzdzZnqCiP7Oxs+vXrxyuvvALA3nvvzYMPPsgnn3zCjBkzeO+997j11lvZa6+9CvQdMGAAQ4cOBaBDhw688MILTJs2jVGjRnHRRReRlpbG999/T8+ePVm2bFmpj33hwoV069aNJUuWUKdOHW655RaGDh3K9OnTGTVqFFdeeSUZGRlMmzaNfv36sXXr1gLXeP3117n55puJRCI0aNCAf/zjH0yePJnJkyfzj3/8g4yMDM466yyWL19e7FgGDRrEDTfcwNatWznwwAP517/+xYcffsj06dN5+eWX6dKlC5FIhLvvvptHHnmk1L8WklQRbd68mbPOOos1a9ZQu3ZtbrzxRkaMGMGMGTOYMmUKQ4YM4U9/+hMtWrQo0HfcuHEcf/zx/Pzzz1SpUoULL7yQoUOHMmPGDCZNmsR//vMfTjvtNDIzM4u8//LlyznllFNIT0/n73//OxMnTmTq1Kk88MAD1KtXD4BbbrmFuXPnFtr/5ptv5vHHHwegdevWPPnkk0ydOpVx48Zx7bXXkpmZyerVqznxxBP5/PPPC71GWT9LJSlVzZkzh3POOYemTZvy2GOP8emnnzJlyhTuvPNOqlevTlZWFr///e/jnkmYI2dmyvr163n33XeLPG/btm288cYbAPTu3ZtGjRrlOf76669z/vnns379etq0acMDDzzAyJEjmTFjBm+99RZ9+/YF4JlnnuHGG28sdkwPPfQQL774Il27dmXIkCFMnz6dDz/8kPPPPx+AH3/8kYsuuogtW7bQpEkT/u///o/Ro0czc+ZMJk2axPPPP8/FF19MgwYN4v46tGjRgjlz5vDss89G25599lnmzJmT5+OUU04B4NJLLwXC688XXnihyOtu3bqVl156CYDjjz+eXXfdNe4x7RRlneiofHn44Yej6eGpp54a2bRpU6HnZWVl5UkS33vvvWi/nj17RjZv3lygz1NPPRU958wzzyxwfEdnqBxxxBERINKxY8dCE99IJBIZMWJEJD09PQJEnnrqqTzHNm3aFGnatGkEiDRq1CiyYMGCAv3nz58fadCgQaEpb465c+dGZ6YMHDgwkp2dXeCcrKysaJq9yy67RFatWlXoeCWpMhk7dmyxM1BybN26NbJ69ero3zdu3Bhp3rx5BIjUrFmz2JkZ3377bYG2nBkq/PYuaGHvlH3yySfR2YtXX311geNffPFF9PnSrl27yC+//FLgnNzPoE6dOhU4vjOepZJUkZTmDBUgcsghh+R5fuR46aWXouc88MADBY4XN0Nl69atkSZNmkSAyAknnFDkGEeMGBG9xpAhQ/IcW7FiRaRu3boRIHLxxRcXOgMlEolEbr311uisjv/+979FjhGIXHDBBYW+DolEIpFnnnmm2BkoOTZs2BDZsGFDgfacvvlXLEQiiT2HunbtGgEibdu2LfKct99+O3q9oUOHFnu9suAMFUVlZ2czaNAgAHbbbTdeeOEFqlWrVui56enped4hzHlHLjMzk8GDB1O1atUCfS677DKOPfZYIKznK2mWRyI++eQTJk+eDMDzzz9fIPHN0adPH/r37w+QZ/0jwDvvvMOPP/4IwJ133lnoLJy2bdsycODAYsdy//33s3XrVg499FAGDhxIWlpagXPS09N59NFHqVatGuvWrePNN98s8XOUpFT3ww8/RP989NFHF3leRkYGderUif79hRde4Pvvvwfg3nvvLba+1e67717sGB599NFCZ8AcddRRdO7cGQjPnPz+9a9/kZ2dDcDTTz8dndGSW58+fbj44osBmDp1KtOmTctzvKyfpZKU6p599tk8z48c55xzDs2bNwcK/xlfnIyMDH73u98BMHr0aFauXFnoeS+//DIAu+yyC/369ctz7F//+herV6+mRYsWPPHEE2RkZBR6jbvuuosWLVqUOKujXr16PPbYY4W+DoHY87Z+/fq0a9euyOvUqFGDGjVqFHl8R+XMUvn666+LrHE2ePBgAJo0acKJJ56YtLFsLwMVRc2ePZulS5cC4Re2XXbZJa5+27ZtY/z48QD06tWr2F9WL7vssmifjz/+eMcGnMuwYcMA2GeffWjfvn2x5+b8kj5t2rQ8BWpzijylp6cXW1TqvPPOK/KHE4RCggCnn356sefVq1cvOtYpU6YUO2ZJqgyaNWsW/XPOL1DxeO+99wCoVatW9DmzPerVq8cJJ5xQ5PFDDjkEgEWLFhU4lvMMOeCAA6LBS2Fyjy93ccHy8CyVpFTWvn17DjzwwEKPpaWl0bFjR6Dwn/ElyXntsHXrVl5//fUCxzdu3Mg777wDwCmnnELNmjXzHM95LXPiiScW+YY2hPCmS5cuQPGvH0466SRq165d5PGc5+0vv/xS7DKlZDvjjDOoW7cuUPhz/8cff4wWhD///POLDJrKkoGKombNmhX9c9euXePut2jRIjZs2ABQ7C+R+Y9/+eWXCY6waDk75syfP79AJen8H3/605+A8ANv1apVBcbTpk2bQt9ZzNGgQQPatGlT6LElS5ZE113ecsstJY4lZ9y535WVpMrqqKOOiv58veaaa+jUqRN/+9vfmDRpElu2bCmyX87z65BDDinwS2oi9t57b9LTi/7VKGct+dq1a/O0b968mQULFgAlPwc7duwYreOS+zlYHp6lkpTK9t1332KPF/UzPh6dO3dmzz33BGIzUXIbNmxYdIe2/G/cZmVlMXv2bAD+/e9/l/j6IWdme3GvH4oKjnKcfPLJ0dc7p556KscccwwPPvggM2bMICsrK67PuTTUqFGDc845Bwg1ZHKegzlefPHF6BvgOTM8yxsDFUX9/PPP0T/nfpewJLlDiSZNmhR7bu4iQrn77aiffvppu/rl/p/2l19+AaBx48Yl9ivqnNIYhyRVVpmZmQwfPpz99tsPCDMJb731Vo466ijq1atHnz59GDJkSIFf9nKeX4k8uwpTUhiTE7bkLO3JkfP8gJKfg5mZmTRs2BDI+xwsD89SSUpl8f6M395AIScomTx5coGtm3NCliZNmkSXbeZYtWpVnlnz8Sru9UP9+vWL7duwYUOGDRtGixYtiEQijBs3juuuuy66VfNpp50Wnf2ZbDnLftauXVugDELOrJXOnTuz//7775TxJKr8zZlRhVbcEpdkyvnB16FDh2gV6HgUtk6+NMYBcMcdd3DGGWfE1a9WrVqlOg5Jqqj2339/5syZw/Dhwxk+fDgTJkxg4cKFbNy4kVGjRjFq1CgeeOABPvjggxKDh7JQGs/BsnqWSpK237nnnsv//d//EYlEeOWVV7jllluAEJiMGjUKgN/97ncFlq3kfv1w6aWX8uc//zmu+xVWZytHlSpVSuzftWtXFi5cyFtvvcUHH3zAhAkTWLp0KWvWrGHo0KEMHTqU3r178/bbb+/Q7M+SHHzwwXTs2JFZs2YxePBgLrjgAgA+++wz5s2bB5Tf2SlgoKJcchdyXb58eYnT4nLk3k4rp6hrUXJPTUtkG66S5Lzbt27dumILKxUnJ8mNZ6u0os7JGQeEdyG3dyySVJlVqVKFU045Jbq14vLlyxk5ciSPP/44M2bMYMaMGfzhD3+Ibi/cqFEjli5dWmYFWnO/E1jSc3Dbtm3RgoW5n4Pl4VkqSeVNUTMD81u/fv3OGE6x2rZty6GHHsr06dMZMmRINFB58803o8tWC6vTmPvneCQS2amvH6pXr865554bHdfixYt5//33efTRR/n6668ZNWoUt912Gw8++GBSx3HppZdy5ZVXMn78eBYvXkzr1q2js1Nq1qzJWWedldT77wiX/Cjq4IMPjv55woQJcfdr06ZNNLX87LPPij136tSp0T+X5g+L3EWktrceyQEHHBC9Ru7p2/mtWrWqyGJVbdq0iRZWKqpStSQpMc2aNeOiiy5iypQp0WfVe++9x8aNG4HY82v69OllsoSyWrVq7L333kDJz8FZs2axdetWIO9zsDw8SyWpvMkprPrrr78We97XX3+9E0ZTspxg4ssvv+SLL74AYst99txzz0JrZFWtWjX6OqSsXz+0bt2aP/3pT0ybNo3ddtsNoNAiu8XZnlmW5557LjVq1CASifDcc8+xceNGXn31VSBs9FHYzkzlhYGKojp06BDdVeDpp5+OFk4qSUZGBt26dQNgzJgx0Z2CCvP0009H+xS3rWWiTj75ZCCkug8//PB2XaNnz55ASMCHDBlS5HkvvfQSkUik0GNVqlShb9++QNg27auvvtqusUiSCsrMzIw+b7Zt2xb9Bfukk04Cwnryp556qkzGlrMmfu7cuXkCj/xynoO5+0D5eJZKUnnTunVrINTXmD9/fqHnbNmyhbfeemtnDqtIZ511VnS5zcsvv8zSpUuj2zAXt4tozmuZ//73v9HlQWWpTp06HHbYYUDeOpvxqF69evTPmzdvjqtP3bp16d+/PwDPP/88b775JqtXrwbK93IfMFBRLunp6dxwww0ALF26lAsuuKDIXRWys7P5/vvvo3+/8sorgfAD7ZJLLom++5bbs88+y+jRowE47bTTdrh4YG69evWiU6dOAAwaNKjEJDVnfX5up556anQ9/p133sn//ve/Av0WLFjAXXfdVey1b7nlFqpUqUJ2djb9+/cv9pfirKys6A9bSarsPvnkExYuXFjk8S1btkS3Ft5ll12iBcLPO++8aE2s2267LXpOYZL18/aKK66ITk3//e9/z5o1awqcM3r0aJ555hkAOnXqFP1lNUdZP0slqbzJCZoB7r///kLPue6661i2bNnOGlKxdt11V4455hgAXnnlFYYMGRJ9I7a4QOXPf/4zu+yyCwAXXXQRc+fOLfY+77//fnQGzPYYNWpUsctkV69eHX1zICfUilfu51Jhr6eKklOcdsmSJdx4441AmNWT+3ugPDJQUR5XXnklxx13HABDhw6lffv2PPzww0yaNIlZs2YxYsQIBg4cyL777pvnXcATTjghWoB19OjRHH744bz88svMmDGDDz/8kEsvvTT6P0mDBg144IEHSn3sQ4YMoUGDBmRlZfG73/2Ok08+mZdffpmpU6cyY8YMRowYwb333kuXLl048MADC/zCXb16dR566CEgJLGdO3dm0KBBfPrpp3z66af885//5PDDDyc7Ozs6tbuwKW3t27fnvvvuA2DevHm0a9eOG2+8kZEjRzJr1iymTJnCK6+8wtVXX83uu+/OeeedV+I0RkmqDMaOHcs+++xD9+7dGTRoEKNGjWLmzJlMmjSJwYMH07VrV2bOnAnAJZdcEi3sV716dV588UUyMjLYsGEDxx57LBdffDHDhg1j5syZTJkyhcGDB3PGGWdEt7Usbe3bt+f//b//B8Dnn3/OwQcfzH/+8x+mT5/O+PHjuf766znxxBPJysqiatWq/Pvf/y5wjfLwLJWk8qRjx4506dIFgP/85z9ceOGFjBs3jpkzZ/Laa6/Rs2dPHn/8cY444ogyHmlMTnDy3Xff8be//Q2AQw89lLZt2xbZp2nTpjz//POkpaWxfPlyDj30UK644oroc+yzzz7jrbfe4qabbmLPPffkxBNP5Ntvv93uMb7yyiu0bNmSE044gYcffpixY8cya9YsJkyYwBNPPEGXLl2iIdXll1+e0LX32GOP6HKh++67j2HDhjF//nwWLlzIwoULi9yW+uijj45+jXJKOFx44YXlv1B7RMpn/fr1kf79+0eAYj8GDhyYp9/GjRsjp556arF9mjdvHpk1a1ah9x03blz0vHHjxhU4PnDgwOjxosyfPz/Srl27EscORO66665Cr3HPPfdE0tLSCu1Ts2bNyPvvvx/p2rVrBIj06dOnyLE89dRTkZo1a5Y4jqpVq0YWLFhQ5HUkqbLI/XO+uI9+/fpFNmzYUKD/yJEjI/Xr1y+xf37dunWLAJFu3brFPb7CZGVlRf74xz8We++6detGRo0aVeQ9kv0slaSK5quvvoo0adKkyJ+J119/fWTw4MHRvy9evDhP/5YtW0aAyIABA4q9z4ABAyJApGXLlgWOLV68OHr9wYMHF3udNWvWRGrUqJFnjA8++GBcn+uwYcMiDRo0KPE5lp6eHvnoo4+2e4w5n2tJH5dffnkkKyurQP+iXg/meOKJJ4q8ZnFj+8c//pHnc/zuu+9K+pKVOWeoqICaNWvyxhtv8NFHH3H++efTunVratSoQdWqVdl999056aST+Pe//x19Jy5H9erVefvttxk2bBinnXYazZs3p2rVqtSvX5/OnTvzt7/9jfnz53PQQQclbext27Zl9uzZDBkyhNNPP5099tgjOvZmzZrRvXt3br/9dmbMmMEdd9xR6DVypoufcsopNGnShGrVqtGyZUsuvvhipk+fTt++faNTuXMK0BbmsssuY9GiRdx1110ceeSRNGrUiIyMDGrVqkXbtm05/fTTefLJJ1m2bBl77bVXUr4eklSRXH/99bz11ltcccUVHH744eyxxx5Ur16d6tWr06pVK84880zee+893nnnHWrUqFGgf+/evVm0aBH33nsvRxxxBA0bNqRKlSrUqVOHgw8+mGuuuabY+iY7Kj09nccff5wJEyZw7rnnsscee1CtWjXq1KnDQQcdxK233sqCBQvo1atXkdcoD89SSSpP9t13X2bOnMkVV1xBy5YtqVq1Ko0bN6ZPnz68//77DBo0qKyHmEft2rWjtb0g1FiMd5eak046icWLF3PfffdxzDHH0LRpUzIzM6lRowatW7fmxBNP5IEHHuCbb76hR48e2z3GBx98kJdeeomLL76YQw89lBYtWlC1alVq1KhB27ZtGTBgAJ988gn/+te/ostZE3HFFVfw1ltv0atXL5o0aVJgq+iinH/++dE/H3fccdGZLuVZWiRSRHVNSYXaunUrdevWZePGjdx+++3cfffdZT0kSZIkSarQxowZE33T4bXXXuPMM88s4xGVzBkqUoLeeeed6Fadhx9+eBmPRpIkSZIqvmeffRaAhg0b0q9fvzIeTXwMVKR8itth4ptvvuG6664DQvGo3r1776xhSZIkSVJK+t///sebb74JhJ2OqlWrVsYjik98i5mkSmTfffelb9++nHjiiRxwwAHUqlWLn376iXHjxvHkk09Gd+S577774l4PKEmSJEmKWbZsGRs2bGDRokXcdNNNbNu2jerVq3PttdeW9dDiZg0VKZ+StuZKT0/nnnvu4ZZbbtlJI5IkSZKk1NK9e3fGjx+fp23QoEFcf/31ZTSixPn2upTP8OHDGTFiBJMnT+bHH39k5cqVVKtWjRYtWtC9e3euvPJK2rVrV9bDlCRJkqQKr2bNmrRt25ZrrrmGAQMGlPVwEuIMFUmSJEmSpARZlFaSJEmSJClBBiqSJEmSJEkJMlCRJEmSJElKkIGKJEmSJElSggxUJEmSJEmSEmSgIkmSJEmSlCADFUmSJEmSpAQZqEiSJEmSJCXIQEWSJEmSJClBBiqSJEmSJEkJMlCRJKkSeu6550hLSyMtLY1vvvmmrIdTLuR8Pe68886yHkpStGrVirS0NC688MKyHkpSde/enbS0NLp3717WQ5EkpTgDFUmSJEmSpAQZqEiSpJRVWWZlSJKknS+jrAcgSZJUHkQikbIegiRJqkCcoSJJkiRJkpQgAxVJkiRJkqQEGahIklROjRs3jgEDBtCmTRtq1qxJnTp1aN++PTfccAPff/99sX1/+eUXbr75Zvbdd19q1KhBkyZNOPbYY3njjTfiune8O97Eu6PKN998w0033cQhhxxCw4YNyczMpFGjRnTt2pU777yTRYsWFeizfv16XnvtNS699FIOOugg6tatS2ZmJo0bN6Zbt27cd999rFu3rthxLVmyBIDnn38++jnlfOQfczyfc3Z2Ni+99BJ9+/Zl1113pWrVqjRu3JgePXrwxBNPsGXLliL73nnnndF7AGzatIlBgwZx8MEHU7t2bWrXrk2nTp147LHH2LZtW7Ffz2RauHAh1157Le3bt6du3brUqFGDNm3acOGFFzJ9+vRC+xxzzDGkpaWx++67l7h0atOmTdStW5e0tDTOPPPMIs957LHH6NmzZ/TrnPM9/Mwzz5Tp10eSpKiIJEkqVzZu3Bg566yzIkCRH7Vq1YoMGzas0P7z5s2LNG/evMi+F110UWTw4MHRvy9evLjANXKODRw4sNixduvWLQJEunXrVuQ5gwYNimRmZhb7+RTWP+faxX20bt068tVXX21X3/z3LOlzXrlyZeTII48s9pr77bdf5Jtvvim0/8CBA6Pn/fDDD5GDDjqoyOucdNJJkaysrCK/ptujZcuWESAyYMCAIs8p6d8qLS0t8pe//KVAv6effjp6zscff1zsON54443oue+8806B47Nnz46OtaiPww47LPLDDz8Uev14viclSSoNzlCRJKkciUQi9O/fn1dffRWAk046iRdffJFJkyYxZcoUHn74YfbYYw/Wr19P//79C8wYWLNmDb17947OYPnd737HBx98wPTp0xkyZAiHHnoogwcP5oknntgpn8/dd9/NDTfcwNatW6lXrx633norY8aMYebMmXz00Ufcd999HHHEEdFZG7lt27aN9u3bc9tttzF06FA+++wzPv30U1577TXOOuss0tPTWbx4MaeccgqbNm3K03fw4MHMmTOH5s2bA9CvXz/mzJmT52Pw4MFxfx5ZWVmceOKJTJo0CYBu3brxxhtvMH36dIYNG8Ypp5wCwFdffUXPnj2LnDmT47TTTmPevHlcffXVjBkzhhkzZjBkyBD2228/AIYPH85//vOfuMdXGgYNGhT9tzrwwAP517/+xYcffsj06dN5+eWX6dKlC5FIhLvvvptHHnkkT9/TTz+datWqAfDyyy8Xe58hQ4YAUL9+fY4//vg8xxYuXEi3bt1YsmQJderU4ZZbbmHo0KFMnz6dUaNGceWVV5KRkcG0adPo168fW7duLcWvgCRJCSrrREeSJMU89dRTESCSmZkZGTFiRKHnrFq1KnLAAQdEgMiRRx6Z59j1118ffRf/3nvvLdB3y5YtkV69euV5tz9ZM1RmzpwZSU9PjwCRtm3bRr777rsir/Ptt98WaPv666+LvfeYMWOi13/66acLPSeeWRk5ivucH3vssejxCy64IJKdnV3gnFtvvTV6zo033ljgeO4ZKpmZmZFx48YVOGflypWRpk2bRoDIgQceWOKYE1Hc12Lu3LnRmSkDBw4s9PPLysqKnHfeeREgsssuu0RWrVqV5/hpp50WASL169ePbN68udAx/Prrr5Fq1apFgMjvf//7AsePOOKICBDp2LFjZMWKFYVeY8SIEdF/96eeeqrAcWeoSJJ2FmeoSJJUTkQiEf7xj38AcPXVV9OnT59Cz6tfvz6DBg0CYNKkSSxYsACALVu28MwzzwBw4IEHcvPNNxfom5mZyTPPPENmZmYyPoU8Bg0aRHZ2Nmlpabz66qvstttuRZ67++67F2jbe++9i73+sccey8knnwzAO++8s0NjLcnjjz8OQOPGjXnssccKnVFz1113se+++wLwn//8h82bNxd5vauuuqrQujMNGjTgoosuAmDOnDmsXr26FEZfsvvvv5+tW7dy6KGHMnDgwEI/v/T0dB599FGqVavGunXrePPNN/McP/fcc4FQv2fEiBGF3ufNN9+Mfl1yzs/xySefMHnyZCDUvGnUqFGh1+jTpw/9+/cH4Lnnnov/k5QkqZQZqEiSVE7MmzeP//3vfwDRF4xFOfroo6N/njJlCgAzZszgl19+AWDAgAGFvigG2G233ejVq1dpDLlI2dnZ0RfV3bt3p2PHjjt8zRUrVrBgwQK+/PLL6Efjxo0B+Pzzz3f4+kX5/vvv+eqrrwA488wzqV27dqHnZWRkRMOQX375hZkzZxZ5zfxhQm6HHHIIEAK2xYsXb++wEzJ8+HAgLN0p6vsGoF69erRv3x6Ifd/lOOGEE6hbty4QW9aTX077HnvsQdeuXfMcGzZsGAD77LNP9B5Fyfn+nzZtmgVqJUllJqOsByBJkoLc9VC6dOkSd78ffvgBCDMachx22GHF9unUqRPvv/9+giOM3+LFi/n1118BCrxwTsSkSZN45JFH+PDDD1m1alWR5/3888/bfY+SfPnll9E/d+7cudhzcx//8ssvi/x3zJnJUpgGDRpE/7x27dp4h7ndlixZwooVKwC45ZZbuOWWW+Lql/N9l6NatWr079+fZ555huHDh7N27do84dP333/Pxx9/DMDZZ59dILjJ+f6fP39+saFOblu3bmXVqlU0adIkrvMlSSpNzlCRJKmc+Omnn7ar34YNGwDyBA4lvcBs2rTpdt0rXrkDjmbNmm3XNe68806OOuooXn/99WLDFICNGzdu1z3ikcjXdddddy20X341a9Ys8lh6euzXs6ysrHiGuEN29Psut5yZNxs3buTtt9/Oc+zVV18lOzs7z3nJGockSTuDM1QkSSoncr94Hj58OK1atYqrX2Ev8uN9h7+8Gjt2LHfddRcAbdq04frrr+eoo45ijz32oFatWmRkhF9h7rjjDu6+++6dNq6K/nUtTO7vuzvuuIMzzjgjrn61atUq0NatWzdatGjBsmXLGDJkCAMGDIgey1nu0759+0KX9OSMo0OHDrz00ktxj79FixZxnytJUmkyUJEkqZxo2LBh9M/16tWjXbt2CfWvX79+9M8//vgjbdu2LfLcH3/8sdhrpaWlEYlEojMKirJ+/fpC23MXFF2+fHmx1yhMzpbB9evX59NPP43WSsmvpJkrpSH3EpySvm65l8Hk7lee5f6+y8zMTPj7Lrf09HTOPvts7rvvPsaOHcuPP/5I06ZN+frrr5kxYwZQdP2YnHGsW7duh8YgSdLO4pIfSZLKidyFWydNmpRw/9zv+k+bNq3Yc0s6nlP7IqfIbWEikQgLFy4s9Fjr1q2pV68eABMmTCj2XoWZO3cuAD169CgyTIG8dWcKUxozSnK/uP/ss8+KPXfq1KmF9ivP2rRpEy0muz3fd/nlBCZZWVm89tprALz88stA+Pc4++yzC+2X8/2/aNGiAvVZJEkqjwxUJEkqJw4++ODo1sJPPfUUmzZtSqj/IYccEp2l8uKLLxKJRAo9b9myZYwePbrYa7Vu3RooPrAYMWJEtPBsfunp6ZxwwgkAjB8/nlmzZpU0/Dxydm4pagYMwKxZs0oMOKpXrw5Q7BbGJWnevDn77bcfAK+//jrr1q0r9LysrKzoNr7169fn4IMP3u577kxVqlShb9++AIwePTq6o9H2Ouigg9h///2BWJDyyiuvAKFA8R577FFov5wtsCORCA8//PAOjUGSpJ3BQEWSpHIiPT2dW2+9FQjv0l9wwQXFBgFr1qzhsccei/69WrVq0W17Z8+ezaBBgwr02bZtG5dddhlbtmwpdizdunUDwoyMwmYt/PDDD1x11VXFXuP6668nPT2dSCTCWWedxdKlS4s8N/+xvffeG4CJEycWOgtmxYoVnH/++cXeH2IFcXO2o95eV155ZfS+V199daHn3HXXXcybNw+Ayy67jGrVqu3QPXemW265hSpVqpCdnU3//v2L/bfKysri5ZdfLvacnFkqU6dO5ZVXXmHBggV52gvTq1cvOnXqBMCgQYN4/fXXix3znDlzots9S5JUFgxUJEkqRy6//HJOPfVUAN544w0OOOAABg0axPjx45k9ezYTJkzgqaee4pxzzqF58+bceeedefrfcccd0VkuN910E+eccw4jR45k5syZvPrqqxxxxBGMGDGCQw89tNhx/P73vycjI4NIJMJJJ53EQw89xPTp05k8eTKDBg2iY8eOrF69Ohp8FOaggw6KFpb9+uuvad++Pbfffjtjx45l9uzZfPzxxzz00EMcffTRBcKRCy64AAgzVLp168ajjz7K5MmTmTx5Mvfddx8dOnRg3rx5JW4vfcQRRwBhidPf//53Pv/8cxYuXMjChQtZtmxZsX1zu/zyy6P3Gjx4MD179uStt95i5syZvP/++5x++unR4rh77rknf/nLX+K+dnnQvn177rvvPgDmzZtHu3btuPHGGxk5ciSzZs1iypQpvPLKK1x99dXsvvvunHfeeUXOTgI455xzosut/vjHPwJQtWrVEgveDhkyhAYNGpCVlcXvfvc7Tj75ZF5++WWmTp3KjBkzGDFiBPfeey9dunThwAMPZPz48aXzBZAkaXtEJElSubJly5bIFVdcEUlLS4sAxX60bt26QP8vv/wysuuuuxbZ58ILL4wMHjw4+vfFixcXOo4HHnigyGs0aNAgMmHChEi3bt0iQKRbt25Ffj5//etfIxkZGcV+HoX1v+iii4o8v0qVKpGHHnooMnDgwGhbYZYuXRpp0KBBXPfMaR84cGCh11q5cmXkyCOPLPbz2G+//SLffPNNof1LGmuOcePGRc8bN25csecmomXLlhEgMmDAgCLPeeqppyI1a9Ys8fuuatWqkQULFhR7v/xfq379+sU1zvnz50fatWtX4hiAyF133VWgfzzfk5IklQZnqEiSVM5kZmbyxBNP8Pnnn3PVVVfRvn176tatS5UqVahbty4HHXQQl1xyCW+++Wah9S4OOOAA5s6dy4033sjee+9NtWrVaNSoET169GDIkCEMHjw4rnFce+21jBw5kt69e1O/fn2qVatG69atufLKK5k1axZdu3aN6zq33nor8+bN45prrqFdu3bUqVOHjIwMGjduTLdu3bjnnnt48cUXC/R79tlnefHFF+natSu1a9emWrVqtGzZkvPPP5/Jkyfz5z//ucR7t2jRgqlTp3LJJZew1157RWuqbI8GDRowYcIEXnjhBfr06UPTpk3JzMykYcOGdO/enccee4zZs2fTsmXL7b5HWbvssstYtGgRd911F0ceeSSNGjUiIyODWrVq0bZtW04//XSefPJJli1bxl577VXstfIv7yluuU9ubdu2Zfbs2QwZMoTTTz+dPfbYgxo1alC1alWaNWtG9+7duf3225kxYwZ33HHHdn+ukiTtqLRIpIiKdZIkSZIkSSqUM1QkSZIkSZISZKAiSZIkSZKUIAMVSZIkSZKkBGWU9QAkSZJUvGXLlvHLL78k3K9WrVq0bt06CSOSJEkWpZUkSSrnLrzwQp5//vmE+3Xr1o2PP/649AckSZJc8iNJkiRJkpQoZ6hIkiRJkiQlyBkqkiRJkiRJCTJQkSRJkiRJSpCBiiRJkiRJUoIMVCRJkiRJkhJkoCJJkiRJkpQgAxVJkiRJkqQEGahIkiRJkiQlyEBFkiRJkiQpQQYqkiRJkiRJCTJQkSRJkiRJSpCBiiRJkiRJUoIMVCRJkiRJkhJkoCJJkiRJkpQgAxVJkiRJkqQEGahIkiRJkiQlyEBFkiRJkiQpQQYqkiRJkiRJCTJQkSRJkiRJStD/B4eqKRyqnZMzAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {
"image/png": {
"height": 433,
"width": 554
}
},
"output_type": "display_data"
}
],
"source": [
"from statsmodels.graphics.factorplots import interaction_plot\n",
"\n",
"js = jobsatisfaction\n",
"interaction_plot(js[\"education_level\"], js[\"gender\"], js[\"score\"]);"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7a174cac-05da-4c30-8023-ca661360ab56",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" sum_sq | \n",
" df | \n",
" F | \n",
" PR(>F) | \n",
"
\n",
" \n",
" \n",
" \n",
" | education_level | \n",
" 113.684117 | \n",
" 2.0 | \n",
" 187.892103 | \n",
" 1.600455e-24 | \n",
"
\n",
" \n",
" | gender | \n",
" 0.225297 | \n",
" 1.0 | \n",
" 0.744721 | \n",
" 3.921154e-01 | \n",
"
\n",
" \n",
" | education_level:gender | \n",
" 4.439794 | \n",
" 2.0 | \n",
" 7.337895 | \n",
" 1.559245e-03 | \n",
"
\n",
" \n",
" | Residual | \n",
" 15.731300 | \n",
" 52.0 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" sum_sq df F PR(>F)\n",
"education_level 113.684117 2.0 187.892103 1.600455e-24\n",
"gender 0.225297 1.0 0.744721 3.921154e-01\n",
"education_level:gender 4.439794 2.0 7.337895 1.559245e-03\n",
"Residual 15.731300 52.0 NaN NaN"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lm_2way_anova = smf.ols(\"score ~ education_level*gender\", data=jobsatisfaction).fit()\n",
"\n",
"from statsmodels.stats.anova import anova_lm\n",
"anova_lm(lm_2way_anova, typ=\"II\")"
]
},
{
"cell_type": "markdown",
"id": "ec92ec55-850c-4c57-8ed0-f5f8520e49f4",
"metadata": {},
"source": [
"\n",
"Same results using R\n",
"\n",
"```\n",
"> js = read.csv(\"/Users/ivan/Projects/Minireference/STATSbook/noBSstatsnotebooks/datasets/exercises/jobsatisfaction.csv\")\n",
"> two_way_anova <- aov(score ~ gender*education_level, data = js)\n",
"> library(car)\n",
"> Anova(two_way_anova, type=2)\n",
"Anova Table (Type II tests)\n",
"\n",
"Response: score\n",
" Sum Sq Df F value Pr(>F) \n",
"gender 0.225 1 0.7447 0.392115 \n",
"education_level 113.684 2 187.8921 < 2.2e-16 ***\n",
"gender:education_level 4.440 2 7.3379 0.001559 ** \n",
"Residuals 15.731 52 \n",
"---\n",
"Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "530d6514-08dc-46f3-8075-609ca42029c5",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Source | \n",
" SS | \n",
" DF | \n",
" MS | \n",
" F | \n",
" p-unc | \n",
" np2 | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" gender | \n",
" 0.225297 | \n",
" 1.0 | \n",
" 0.225297 | \n",
" 0.744721 | \n",
" 3.921154e-01 | \n",
" 0.014119 | \n",
"
\n",
" \n",
" | 1 | \n",
" education_level | \n",
" 113.684117 | \n",
" 2.0 | \n",
" 56.842059 | \n",
" 187.892103 | \n",
" 1.600455e-24 | \n",
" 0.878443 | \n",
"
\n",
" \n",
" | 2 | \n",
" gender * education_level | \n",
" 4.439794 | \n",
" 2.0 | \n",
" 2.219897 | \n",
" 7.337895 | \n",
" 1.559245e-03 | \n",
" 0.220107 | \n",
"
\n",
" \n",
" | 3 | \n",
" Residual | \n",
" 15.731300 | \n",
" 52.0 | \n",
" 0.302525 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Source SS DF MS F \\\n",
"0 gender 0.225297 1.0 0.225297 0.744721 \n",
"1 education_level 113.684117 2.0 56.842059 187.892103 \n",
"2 gender * education_level 4.439794 2.0 2.219897 7.337895 \n",
"3 Residual 15.731300 52.0 0.302525 NaN \n",
"\n",
" p-unc np2 \n",
"0 3.921154e-01 0.014119 \n",
"1 1.600455e-24 0.878443 \n",
"2 1.559245e-03 0.220107 \n",
"3 NaN NaN "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pingouin as pg\n",
"pg.anova(jobsatisfaction, dv=\"score\", between=[\"gender\", \"education_level\"], ss_type=2, detailed=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "78e02101-66fe-4a1d-b965-bdd3d02f2c25",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 7,
"id": "18216c1b-4a0c-47cb-9228-8333dd341176",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(7.3378954880948015, 0.0015592449536140215, 2.0)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Interaction term is the same as F-test for submodel with no-interaction term\n",
"lm_noint = smf.ols(\"score ~ education_level + gender\", data=jobsatisfaction).fit()\n",
"lm_2way_anova.compare_f_test(lm_noint)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3685c8d4-bbb6-4480-b313-4ea55db1fc41",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "2edd0ff1-e544-41a3-845a-c0471e345d41",
"metadata": {},
"source": [
"## Explanations"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3c2d5752-29b7-4e9d-a25d-60c7513be442",
"metadata": {},
"outputs": [],
"source": [
"# SUM coding (requied if want to do type III ANOVA)\n",
"# lm_2way_anova_sum = smf.ols(\"score ~ C(education_level,Sum)*C(gender,Sum)\", data=jobsatisfaction).fit()\n",
"# anova_lm(lm_2way_anova_sum, typ=\"III\")"
]
},
{
"cell_type": "markdown",
"id": "bf5f1bcf-d993-47e8-9f1b-52902c63c9e3",
"metadata": {},
"source": [
"## Discussion\n",
"\n",
"\n",
"2-way ANOVA types: https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/\n",
"\n",
"Py from scratch https://www.pybloggers.com/2016/03/three-ways-to-do-a-two-way-anova-with-python/\n",
"\n",
"more Py examples https://www.kaggle.com/code/alexmaszanski/two-way-anova-with-python\n",
"\n",
"same data but gets different results https://rpubs.com/Corvinus/917307\n",
"\n",
"https://www.statsmodels.org/dev/examples/notebooks/generated/interactions_anova.html\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6a4ed5d-f7a5-45ef-9a03-4df3ca3b62f2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}