# 🚀 No Time to Train!
### Training-Free Reference-Based Instance Segmentation
[](https://github.com/miquel-espinosa/no-time-to-train)
[](https://miquel-espinosa.github.io/no-time-to-train/)
[](https://arxiv.org/abs/2507.02798)
**State-of-the-art (Papers with Code)**
[**_SOTA 1-shot_**](https://paperswithcode.com/sota/few-shot-object-detection-on-ms-coco-1-shot?p=no-time-to-train-training-free-reference) | [-21CBCE?style=flat&logo=paperswithcode)](https://paperswithcode.com/sota/few-shot-object-detection-on-ms-coco-1-shot?p=no-time-to-train-training-free-reference)
[**_SOTA 10-shot_**](https://paperswithcode.com/sota/few-shot-object-detection-on-ms-coco-10-shot?p=no-time-to-train-training-free-reference) | [-21CBCE?style=flat&logo=paperswithcode)](https://paperswithcode.com/sota/few-shot-object-detection-on-ms-coco-10-shot?p=no-time-to-train-training-free-reference)
[**_SOTA 30-shot_**](https://paperswithcode.com/sota/few-shot-object-detection-on-ms-coco-30-shot?p=no-time-to-train-training-free-reference) | [-21CBCE?style=flat&logo=paperswithcode)](https://paperswithcode.com/sota/few-shot-object-detection-on-ms-coco-30-shot?p=no-time-to-train-training-free-reference)
---
> 🚨 **Update (22nd July 2025):** Instructions for custom datasets have been added!
>
> 🔔 **Update (16th July 2025):** Code has been updated with instructions!
---
## 📋 Table of Contents
- [🎯 Highlights](#-highlights)
- [📜 Abstract](#-abstract)
- [🧠 Architecture](#-architecture)
- [🛠️ Installation instructions](#️-installation-instructions)
- [1. Clone the repository](#1-clone-the-repository)
- [2. Create conda environment](#2-create-conda-environment)
- [3. Install SAM2 and DinoV2](#3-install-sam2-and-dinov2)
- [4. Download datasets](#4-download-datasets)
- [5. Download SAM2 and DinoV2 checkpoints](#5-download-sam2-and-dinov2-checkpoints)
- [📊 Inference code: Reproduce 30-shot SOTA results in Few-shot COCO](#-inference-code)
- [0. Create reference set](#0-create-reference-set)
- [1. Fill memory with references](#1-fill-memory-with-references)
- [2. Post-process memory bank](#2-post-process-memory-bank)
- [3. Inference on target images](#3-inference-on-target-images)
- [Results](#results)
- [🔍 Custom dataset](#-custom-dataset)
- [0. Prepare a custom dataset ⛵🐦](#0-prepare-a-custom-dataset)
- [0.1 If only bbox annotations are available](#01-if-only-bbox-annotations-are-available)
- [0.2 Convert coco annotations to pickle file](#02-convert-coco-annotations-to-pickle-file)
- [1. Fill memory with references](#1-fill-memory-with-references)
- [2. Post-process memory bank](#2-post-process-memory-bank)
- [📚 Citation](#-citation)
## 🎯 Highlights
- 💡 **Training-Free**: No fine-tuning, no prompt engineering—just a reference image.
- 🖼️ **Reference-Based**: Segment new objects using just a few examples.
- 🔥 **SOTA Performance**: Outperforms previous training-free approaches on COCO, PASCAL VOC, and Cross-Domain FSOD.
**Links:**
- 🧾 [**arXiv Paper**](https://arxiv.org/abs/2507.02798)
- 🌐 [**Project Website**](https://miquel-espinosa.github.io/no-time-to-train/)
- 📈 [**Papers with Code**](https://paperswithcode.com/paper/no-time-to-train-training-free-reference)
## 📜 Abstract
> The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).

## 🧠 Architecture

## 🛠️ Installation instructions
### 1. Clone the repository
```bash
git clone https://github.com/miquel-espinosa/no-time-to-train.git
cd no-time-to-train
```
### 2. Create conda environment
We will create a conda environment with the required packages.
```bash
conda env create -f environment.yml
conda activate no-time-to-train
```
### 3. Install SAM2 and DinoV2
We will install SAM2 and DinoV2 from source.
```bash
pip install -e .
cd dinov2
pip install -e .
cd ..
```
### 4. Download datasets
Please download COCO dataset and place it in `data/coco`
### 5. Download SAM2 and DinoV2 checkpoints
We will download the exact SAM2 checkpoints used in the paper.
(Note, however, that SAM2.1 checkpoints are already available and might perform better.)
```bash
mkdir -p checkpoints/dinov2
cd checkpoints
wget https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt
cd dinov2
wget https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth
cd ../..
```
## 📊 Inference code
⚠️ Disclaimer: This is research code — expect a bit of chaos!
### Reproducing 30-shot SOTA results in Few-shot COCO
Define useful variables and create a folder for results:
```bash
CONFIG=./no_time_to_train/new_exps/coco_fewshot_10shot_Sam2L.yaml
CLASS_SPLIT="few_shot_classes"
RESULTS_DIR=work_dirs/few_shot_results
SHOTS=30
SEED=33
GPUS=4
mkdir -p $RESULTS_DIR
FILENAME=few_shot_${SHOTS}shot_seed${SEED}.pkl
```
#### 0. Create reference set
```bash
python no_time_to_train/dataset/few_shot_sampling.py \
--n-shot $SHOTS \
--out-path ${RESULTS_DIR}/${FILENAME} \
--seed $SEED \
--dataset $CLASS_SPLIT
```
#### 1. Fill memory with references
```bash
python run_lightening.py test --config $CONFIG \
--model.test_mode fill_memory \
--out_path ${RESULTS_DIR}/memory.ckpt \
--model.init_args.model_cfg.memory_bank_cfg.length $SHOTS \
--model.init_args.dataset_cfgs.fill_memory.memory_pkl ${RESULTS_DIR}/${FILENAME} \
--model.init_args.dataset_cfgs.fill_memory.memory_length $SHOTS \
--model.init_args.dataset_cfgs.fill_memory.class_split $CLASS_SPLIT \
--trainer.logger.save_dir ${RESULTS_DIR}/ \
--trainer.devices $GPUS
```
#### 2. Post-process memory bank
```bash
python run_lightening.py test --config $CONFIG \
--model.test_mode postprocess_memory \
--model.init_args.model_cfg.memory_bank_cfg.length $SHOTS \
--ckpt_path ${RESULTS_DIR}/memory.ckpt \
--out_path ${RESULTS_DIR}/memory_postprocessed.ckpt \
--trainer.devices 1
```
#### 3. Inference on target images
```bash
python run_lightening.py test --config $CONFIG \
--ckpt_path ${RESULTS_DIR}/memory_postprocessed.ckpt \
--model.init_args.test_mode test \
--model.init_args.model_cfg.memory_bank_cfg.length $SHOTS \
--model.init_args.model_cfg.dataset_name $CLASS_SPLIT \
--model.init_args.dataset_cfgs.test.class_split $CLASS_SPLIT \
--trainer.logger.save_dir ${RESULTS_DIR}/ \
--trainer.devices $GPUS
```
If you'd like to see inference results online (as they are computed), add the argument:
```bash
--model.init_args.model_cfg.test.online_vis True
```
To adjust the score threshold `score_thr` parameter, add the argument (for example, visualising all instances with score higher than `0.4`):
```bash
--model.init_args.model_cfg.test.vis_thr 0.4
```
Images will now be saved in `results_analysis/few_shot_classes/`. The image on the left shows the ground truth, the image on the right shows the segmented instances found by our training-free method.
Note that in this example we are using the `few_shot_classes` split, thus, we should only expect to see segmented instances of the classes in this split (not all classes in COCO).
#### Results
After running all images in the validation set, you should obtain:
```
BBOX RESULTS:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.368
SEGM RESULTS:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.342
```
---
## 🔍 Custom dataset
We provide the instructions for running our pipeline on a custom dataset. Annotation format are always in COCO format.
> **TLDR;** To directly see how to run full pipeline on *custom datasets*, find `scripts/matching_cdfsod_pipeline.sh` together with example scripts of CD-FSOD datasets (e.g. `scripts/dior_fish.sh`)
### 0. Prepare a custom dataset ⛵🐦
Let's imagine we want to detect **boats**⛵ and **birds**🐦 in a custom dataset. To use our method we will need:
- At least 1 *annotated* reference image for each class (i.e. 1 reference image for boat and 1 reference image for bird)
- Multiple target images to find instances of our desired classes.
We have prepared a toy script to create a custom dataset with coco images, for a **1-shot** setting.
```bash
mkdir -p data/my_custom_dataset
python scripts/make_custom_dataset.py
```
This will create a custom dataset with the following folder structure:
```
data/my_custom_dataset/
├── annotations/
│ ├── custom_references.json
│ ├── custom_targets.json
│ └── references_visualisations/
│ ├── bird_1.jpg
│ └── boat_1.jpg
└── images/
├── 429819.jpg
├── 101435.jpg
└── (all target and reference images)
```
**Reference images visualisation (1-shot):**
| 1-shot Reference Image for BIRD 🐦 | 1-shot Reference Image for BOAT ⛵ |
|:---------------------------------:|:----------------------------------:|
|
|
|
### 0.1 If only bbox annotations are available
We also provide a script to generate instance-level segmentation masks by using SAM2. This is useful if you only have bounding box annotations available for the reference images.
```bash
# Download sam_h checkpoint. Feel free to use more recent checkpoints (note: code might need to be adapted)
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -O checkpoints/sam_vit_h_4b8939.pth
# Run automatic instance segmentation from ground truth bounding boxes.
python no_time_to_train/dataset/sam_bbox_to_segm_batch.py \
--input_json data/my_custom_dataset/annotations/custom_references.json \
--image_dir data/my_custom_dataset/images \
--sam_checkpoint checkpoints/sam_vit_h_4b8939.pth \
--model_type vit_h \
--device cuda \
--batch_size 8 \
--visualize
```
**Reference images with instance-level segmentation masks (generated by SAM2 from gt bounding boxes, 1-shot):**
Visualisation of the generated segmentation masks are saved in `data/my_custom_dataset/annotations/custom_references_with_SAM_segm/references_visualisations/`.
| 1-shot Reference Image for BIRD 🐦 (automatically segmented with SAM) | 1-shot Reference Image for BOAT ⛵ (automatically segmented with SAM) |
|:---------------------------------:|:----------------------------------:|
|
|
|
### 0.2 Convert coco annotations to pickle file
```bash
python no_time_to_train/dataset/coco_to_pkl.py \
data/my_custom_dataset/annotations/custom_references_with_segm.json \
data/my_custom_dataset/annotations/custom_references_with_segm.pkl \
1
```
### 1. Fill memory with references
First, define useful variables and create a folder for results. For correct visualisation of labels, class names should be ordered by category id as appears in the json file. E.g. `bird` has category id `16`, `boat` has category id `9`. Thus, `CAT_NAMES=boat,bird`.
```bash
DATASET_NAME=my_custom_dataset
DATASET_PATH=data/my_custom_dataset
CAT_NAMES=boat,bird
CATEGORY_NUM=2
SHOT=1
YAML_PATH=no_time_to_train/pl_configs/matching_cdfsod_template.yaml
PATH_TO_SAVE_CKPTS=./tmp_ckpts/my_custom_dataset
mkdir -p $PATH_TO_SAVE_CKPTS
```
Run step 1:
```bash
python run_lightening.py test --config $YAML_PATH \
--model.test_mode fill_memory \
--out_path $PATH_TO_SAVE_CKPTS/$DATASET_NAME\_$SHOT\_refs_memory.pth \
--model.init_args.dataset_cfgs.fill_memory.root $DATASET_PATH/images \
--model.init_args.dataset_cfgs.fill_memory.json_file $DATASET_PATH/annotations/custom_references_with_segm.json \
--model.init_args.dataset_cfgs.fill_memory.memory_pkl $DATASET_PATH/annotations/custom_references_with_segm.pkl \
--model.init_args.dataset_cfgs.fill_memory.memory_length $SHOT \
--model.init_args.dataset_cfgs.fill_memory.cat_names $CAT_NAMES \
--model.init_args.model_cfg.dataset_name $DATASET_NAME \
--model.init_args.model_cfg.memory_bank_cfg.length $SHOT \
--model.init_args.model_cfg.memory_bank_cfg.category_num $CATEGORY_NUM \
--trainer.devices 1
```
### 2. Post-process memory bank
```bash
python run_lightening.py test --config $YAML_PATH \
--model.test_mode postprocess_memory \
--ckpt_path $PATH_TO_SAVE_CKPTS/$DATASET_NAME\_$SHOT\_refs_memory.pth \
--out_path $PATH_TO_SAVE_CKPTS/$DATASET_NAME\_$SHOT\_refs_memory_postprocessed.pth \
--model.init_args.model_cfg.dataset_name $DATASET_NAME \
--model.init_args.model_cfg.memory_bank_cfg.length $SHOT \
--model.init_args.model_cfg.memory_bank_cfg.category_num $CATEGORY_NUM \
--trainer.devices 1
```
#### 2.1 Visualise post-processed memory bank
```bash
python run_lightening.py test --config $YAML_PATH \
--model.test_mode vis_memory \
--ckpt_path $PATH_TO_SAVE_CKPTS/$DATASET_NAME\_$SHOT\_refs_memory_postprocessed.pth \
--model.init_args.dataset_cfgs.fill_memory.root $DATASET_PATH/images \
--model.init_args.dataset_cfgs.fill_memory.json_file $DATASET_PATH/annotations/custom_references_with_segm.json \
--model.init_args.dataset_cfgs.fill_memory.memory_pkl $DATASET_PATH/annotations/custom_references_with_segm.pkl \
--model.init_args.dataset_cfgs.fill_memory.memory_length $SHOT \
--model.init_args.dataset_cfgs.fill_memory.cat_names $CAT_NAMES \
--model.init_args.model_cfg.dataset_name $DATASET_NAME \
--model.init_args.model_cfg.memory_bank_cfg.length $SHOT \
--model.init_args.model_cfg.memory_bank_cfg.category_num $CATEGORY_NUM \
--trainer.devices 1
```
PCA and K-means visualisations for the memory bank images are stored in `results_analysis/memory_vis/my_custom_dataset`.
### 3. Inference on target images
If `ONLINE_VIS` is set to True, prediction results will be saved in `results_analysis/my_custom_dataset/` and displayed as they are computed. NOTE that running with online visualisation is much slower.
Feel free to change the score threshold `VIS_THR` to see more or less segmented instances.
```bash
ONLINE_VIS=True
VIS_THR=0.4
python run_lightening.py test --config $YAML_PATH \
--model.test_mode test \
--ckpt_path $PATH_TO_SAVE_CKPTS/$DATASET_NAME\_$SHOT\_refs_memory_postprocessed.pth \
--model.init_args.model_cfg.dataset_name $DATASET_NAME \
--model.init_args.model_cfg.memory_bank_cfg.length $SHOT \
--model.init_args.model_cfg.memory_bank_cfg.category_num $CATEGORY_NUM \
--model.init_args.model_cfg.test.imgs_path $DATASET_PATH/images \
--model.init_args.model_cfg.test.online_vis $ONLINE_VIS \
--model.init_args.model_cfg.test.vis_thr $VIS_THR \
--model.init_args.dataset_cfgs.test.root $DATASET_PATH/images \
--model.init_args.dataset_cfgs.test.json_file $DATASET_PATH/annotations/custom_targets.json \
--model.init_args.dataset_cfgs.test.cat_names $CAT_NAMES \
--trainer.devices 1
```
### Results
Performance metrics (with the exact same parameters as commands above) should be:
```
BBOX RESULTS:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.478
SEGM RESULTS:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.458
```
Visual results are saved in `results_analysis/my_custom_dataset/`. Note that our method works for false negatives, that is, images that do not contain any instances of the desired classes.
*Click images to enlarge ⬇️*
| Target image with boats ⛵ (left GT, right predictions) | Target image with birds 🐦 (left GT, right predictions) |
|:----------------------:|:----------------------:|
|  |  |
| Target image with boats and birds ⛵🐦 (left GT, right predictions) | Target image without boats or birds 🚫 (left GT, right predictions) |
|:---------------------------------:|:----------------------------------:|
|  |  |
## 📚 Citation
If you use this work, please cite us:
```bibtex
@article{espinosa2025notimetotrain,
title={No time to train! Training-Free Reference-Based Instance Segmentation},
author={Miguel Espinosa and Chenhongyi Yang and Linus Ericsson and Steven McDonagh and Elliot J. Crowley},
journal={arXiv preprint arXiv:2507.02798},
year={2025},
primaryclass={cs.CV}
}
```