PONG

Pong is a simple game, which
consists of @ paddle
(controlled @ by the user)
and a ball. The ball
bounces off the paddle
and Thre\ walls. If the ball
hits the paddle, the user gains
points. If the pball hits
behind the paddle, the

game is OVer.

Getting Started

> Prerequisites
o Set-up App Inventor on computer and phone

@l @ 10:16m o Complete HelloPurr, Magic8Ball, and PaintPic tutorials

Screeni

e i > Learning Goals
L lﬁ.‘:“...l Ia%l After completing this tutorial, students will be able to:

o Operate within the Aplp Inventor environment (designer, block editor,
emulator and/or mobile phone)

o Associate App Inventor components (canvas, buttons, labels,
animation sprites, procedures with no parameters, global variables,
and conditionals) with their corresponding functions

o Create an interactive gfome with user input](’rouch) and computer
generated outputs (ball heading, score, text prompt)

> Materials

ko Images & Sounds
http://appinventor.mit.edu/teach/curriculum/media-library.html
oprionato MIT Quick Reference Guide, MIT App Inventor Development Guide
http://appinventor.mit.edu/teach/curriculum/getting-started-
quide.html
optionao Video (snippets to assist students through this lesson)
hitp://www.valdosta.edu/~kroy/ai-tutorials.html

> Set-up
o Open App Inventor Designer window
http://beta.appinventor.mit.edu
o Signin with Google ID

o Download and save image of paddle and ding sound file af
http://appinventor.mit.edu/teach/curriculum/media-library.html (look
for Pong media files)

1

Brainstorm, Plan, and Sketch

What will your game look likee What will each component do?
What are the constraints or rules of the game? In the space
provided below and on the left, draw and write out your ideas
for PONG. Think about it from a programmer’s perspective.

How 1o use this tutorial > Design

(if you are familiar with App Inventor and want to start making
PONG, skip to page 9)

Save || Save

Palette 1 Viewer

Basic Screent
Button

7 Canvas

& CheckBox

Clock

@ Image
Label 2

ListPicker 3

PasswordTextBax
TextBox
TinyDB
Media
Animation
Social
Sensors
Screen Arrangement
LEGO® MINDSTORMS®

Other stuff

As || Checkpoint || Add Screen

Display hidden com

ponents in Vie

Ml @ 5:09PM

Score

Components

Design Screenshot

Screent

Label1

Upload new.

Package for Phone v

Properties 5

BackgroundColor
0O Nene

FontBold

Fontltalic

FontSize
18

FontTypeface
default

Text

Score

TextAlignment
left

TextColor

B Black

Visible
showing +

Width
150 pixels...
Height

30 pixels...

Step|Palette Group |Component Type |Action What You'll Rename It|Properties
(in Components
L lpane)
1|Basic Label Drag to Viewer ScoreLabel | Font size: 18
Text: Score
Width: 150 pixels
Height: 30 pixels
1—> 2=> 3—> 4 5
2|Basic Button Drog to Viewer StartButton Text: Start
3|Basic Button Drag to Viewer ResetButton Text: Reset
4|Screen Arrcngement |Horizontal Arangement |Drag to Viewer DEFAULT
{HorizontalArangement1)

Design Tutorial Table

To use this tutorial to design
an app, start with step 1 (first
column) of the tutorial. The
“Palette Group” column in
the Table corresponds to the
Palette Group in the App
Inventor Design Window.

Within the palette group,
you'll see a palette called
“Basic,” within which you will
find the component called
“Label.”

The "Action” column tells
you what to do with the
component. The two
columns on the right (“What
You'll Rename It and
“Properties”) correspond to
the "Components” and
“Properties” area of the
Design Window. These two
columns tell you what to
rename the components
and what parameters to
input for each component
type. 3

How to use this tutorial > Build

Built-In | My Blocks

Advanced

My Definitions

Ball1
Button1
Canvas1
ImageSprite1
Label1
Screen1

Sound1

§ren Balll EdgeReached edgs [’

o

.\\

“‘M" Ball1.NoLongerCollidingWith other ("

yen Balll.EdgeReached edgs q nams g o |

o

do l :
"
“" BamBounce °“®'7 "% edge

Build Screenshot

“‘m" Ball1.Touched

“" Balln.Bounce

|

Build Tutorial Table

Step |Palette (Drawer Block Action
1|My Blocks |Canvasl [when Canvasl.Touched] Drag into work area
2|(My Blocks |ImageSpritel |[set ImageSpritel.x] Drag into "do" socket of [when Canvasl.Touched]
3[My Blocks [My Definitions |[value x] Drag into edge of [set ImageSprite1.x]
4|My Blocks [Balll [when Balll.EdgeReached | Drag into work area
5[My Blocks [Balll [call Balll.Bounce] Drag into [Balll.EdgeReached |
6|My Blocks [My Definitions |[value edge Insert into socket of [Balll.Bounce |
7|My Blocks [StartButton [when StartButton.Click] Drag to the work area
8|My Blocks [Balll [set Balll.Heading] Insert into "do" section of [startButton.Click]
Drop into socket of [set Balll.Heading 1, replace default number

You can use this tutorial to build
an app in the same way that you
use it to design an app. The
“Palette Group” column in the
table corresponds to the three
Palette Group tabs in the App
Inventor Build Window.

The screenshot to the left
demonstrates how to perform
steps 4-6 of the tutorial. Step 4
directs you to the “My Blocks”
palette group to find a drawer

called *“Balll”. Within “Balll”,
locate the “when
Balll.EdgeReached” block (all
blocks are annotated using

brackets []). Drag the block into
the work area. Then locate the
“call Balll.Bounce” block and
drag into “Balll.EdgeReached”.

Continue to follow along with the
instructions in the “Action”
column. If you are ever
confused about the steps, look
at the “Purpose” column for an
explanation of the step. 4

Before we start building, let’s
add a few tools to your toolkit

REQUIKED TOOLS

O Yover over blocks
O C//‘C/,é Zo select

O Dec/wtter work area
QA Blocks shordced

Q Copy and paste blocks
Q ﬁpeé/océ '1g

Some technigues and shortcuts that
make life easier in App Inventor

i HOVER OVER BLOCKS

y |, name

w"hen Canvas1.Touched

y

When the user touches the puehedSprite 4 9™ touchedSprite |
canvas and then
immediately lifts finger: ('J i
o X
RS

provides the (x,y) position fite1.X ©
of the touch, relative to the
““| upper left of the canvas.

TouchedSprite is true if the
same touch also touched a

M sprite, and f herwise. r‘
‘spute and false otherwise.| edge [, name edge |

ﬁl d Il
If you ever want to know more about
what a particular block does,

especially if you are using that block for
the first time, you can hover your
pointer over the block and a text box
with explanation will appear.

In programming, syntax and accuracy
matters. The computer recognizes a lower
case letter and an upper case letter as
different entities (ex: imagespritel vs.
imageSpritel). Be consistent in inputting
variables. This includes spaces, colons,
underscores, upper case, and lower case.
Minor differences may seem insignificant to
us, but they mean different things to App
Inventor.

S CLICK TO SELECT

Although the instructions in this tutorial tell you to “drag”
blocks into the work area or into other blocks, you can
also select a block without dragging it by simply clicking
on it once. This will make the block appear in your work
area, at which point you can drag it anywhere you
want.

* DECLUTTER WORK AREA

~ ; :
when Ball1 CollidedWith otherc: name 1 aceSprite]
90 [et o (‘)r}b—
Ball1.Headin v D - h :)
9 [360 when Ball1.CollidedWith
P
call scorevalue {:_‘ -
updateScore 1 global ceore | +
. — |

As you work on increasingly complex projects, you may
find that you don’t have much room in the work area.
You can solve this dilemma by minimizing a block that
you aren't using. There is a black triangle on the upper
left hand corner of the block. If you click on this triangle,
the block will minimize and the triangle will turn upside
down. If you click on it again, the block will maximize to
its original appearance.

And a few more for good measure...

i? BLOCKS SHORTCUT
I:Cld. Screen1.Width I / C'I number , IJ ,]
., amrroreerdi Lists | _Math | ogies| Control| (COIrS
I e S e |
- false

not
reeniWidth | / W ‘

and [1.Radius
or » true |

Blocks shortcut is a time and effort-saving feature that
allows you to create blocks without having to access
the palette and drawer on the left side of the build
browser. By clicking once anywhere within the work
areqa, you bring up a drawer menu from which to
choose blocks. In the example above, we can call on
the “true” block by simply clicking once in the work
area, choosing “Logic” from the menu blocks and
choosing “true” from the dropdown menu.

* COPY AND PASTE BLOCKS

Did you know that App Inventor has a copy and
paste functione By clicking on the block or group of
blocks and pressing CIRL+C (or CMD+C for Mac
users), you can copy blocks. Pressing CTRL+V (or
CMD+V for Mac users) pastes the block in the work
areaq.

i% TYPEBLOCKING

x C'rl' Definl[Text [Lists | Mam] Logic'| Control| [Colors |
|'4_ScreentWidth |7 { =

11.MoveTo

y C,_BaIH.Radius

v

number '—_l
”~

b | (' b
I 'l numober 2

Typeblocking is another time and effort-
saving feature built into App Inventor. By
simply typing a number or text, you can
create a corresponding number or text
block. In the example above, we want to
insert a number block into the second socket
of the division block. By simply clicking at the
empty socket and typing "“2,” you can
create a “number 2" block. You will,
however, have to drag the block into the
socket to complete the action.

If you were building a house,
the DESIGN process is like your
blueprint

P NEXT STEPS

d Open App Iwertor
De&gn Windoeo

L Create a neco pro{/adZ‘
called ” pong "

Q Start with step | of
Che tultorial

Step|Palette Group Component Type |Action What You'll Rename It|Properties Purpose
(in Components
pane)
SUBGOAL #1: Create a score label, start button, and reset button.
1|Basic Label Drag to Viewer Scorelabel Font size: 18 Label will populate with the
Text: Score score during the game.
Width: 150 pixels
Height: 30 pixels
2|Basic Button Drag to Viewer StartButton Text: Start Button starts the game.
3|Basic Button Drag to Viewer ResetButton Text: Reset Button resets the game
and the score.
4|Screen Arrangement [Horizontal Arrangement [Drag to Viewer HorizontalArrangement1 This function arranges

(Default)

buttons horizontally across
the screen.

SUBG

OAL #2: Arrange the score label, start button, and reset button along the top of the screen, adjacent to one another.

5[*Viewer ScorelLabel (1) Drag into Horizontal Arangement start Includes button in
StartButton (2) Drag into Horizontal Arrangement | | Reset | @ horizontal arrangement.
(to the right of ScoreLabel) l @ (3)
ResetButton (3) Drag into Horizontal Arrangement | F°°x | ‘ \
(to the right of ResetButton) (1) | o (2) oyl [stat | [Rosat |
SUBGOAL #3: Incorporate a background, ball, and paddle into the game.
6|Basic Canvas Drag to Viewer Canvasl Background Color: Your choice |The canvas serves as the
(Default) Width: 300 pixels background, or pong
Height: 390 pixels table.
7|Animation Ball Drag into Canvas component Balll Heading: 30 This is the ball the player
(Default) Interval: 50 will hit to gain points.
Paint Color: Your choice
Radius: 20
Speed: 5
8|Animation ImageSprite Drag into Canvas component ImageSpritel Interval: 1000 This is the paddle the
(Default) Picture: Paddle.gif player will use to hit the
Y: 350 (you can adjust this ball.
number to move the paddle up
or down on the screen)

Here's a screen shot of the Design

window once all 8 steps are complete

= - [

Palette Viewer Components Properties
aae saont © s
em . AlignHorizontal
(] Bution ? [Display hidden components in Viewer - HorizontalArrangement1 Leoft
! A
|74 Canvas “ﬂ- 5:09 PM ScoreLabel AlignVertical
Screent [startsutton -E
v 4 BackgroundColo
Score ResetButton r r
QY Coc _Stant | Aesat | —_— [] whte
" \-# Canvas1
G 'mage DBan Backgroundimage
[None...
| Label % | mageSprite1 ne
s CloseScreenAnimation
--| ListPicker Default s
+s/ PasswordTextBox —
1| TextBox None...
<= TinyDB OpenScreenAnimation
Default :
Media ScreenOrientation
| Unspecified =+ |
Ainmaton Scrollable
Social
Title
Sensors et
Screen Arrangement Renam Delets VersionCode
m 1
LEGO® MINDSTORMS® S
R Paddle.gif ’10—‘

Not ready for prime time

Give yourself a pat on the back. You are done designing.

throughout the design (and build) process.

Be sure to save your work periodically

10

Now let’'s BUILD

NEXT STEPS

O C//cé on ’ 0/98_/7 Zhe
Blocks Editor’ butdon
on the upper rig/t
hand corner of Zhe
o/es{gn browSer

Q Dowon/oad and open
Java File 2o run
Blocks &ditor

L Connect yoé(r /9/70/78
or open Lhe eriutlator
So Yol can-See yYoilr
roork-as you-betild

11

Step |Palette [Drawer

Block

Action

Purpose

SUBGOAL #4: Program the position of the paddle when the

user touches the screen.

This block will contain the set of commands that

1|My Blocks |Canvas] [when Canvasl.Touched] Drag info work area App Inventor executes when the user fouches the
canvas.

2|My Blocks [ImageSpritel |[set ImageSpritel.x] Drag info "do" socket of [when Canvasl.Touched]
Sets the image sprite (paddle) to the x value (along
x,y plane) of the user's touch input.

3|My Blocks |My Definitions |[value x] Drag intfo edge of [set ImageSpritel.x]

SUBGOAL #5: Make the ball bounce whenever it reaches the edge of the screen.

This block will contain the set of commands that

4|My Blocks |Balll [when Balll.EdgeReached] Drag info work area App Inventor will execute when the ball reaches the
edge of the canvas.

5|My Blocks |Balll [call Balll.Bounce] Drag into [Balll.EdgeReached]
Bounces the ball whenever it reaches the edge of
the canvas.

6|My Blocks |My Definitions | [value edge] Insert into socket of [Balll.Bounce]

SUBGOAL #6: Set the ball in motion at a random heading a

nd fixed speed whenever the user touches the Start Button.

This block will contain the set of commands that

7 |My Blocks |StartButton [when StartButton.Click] Drag to the work area App Inventor will execute when the user clicks (or
touches) the start button.
8|My Blocks |Balll [set Balll.Heading] Insert into "do" section of [when StartButton.Click]
- - Makes ball take on a random heading between 225
Drop info socke’r"o”f.[set Balll .Heodllng”], ref)loce and 315 degrees when the start button is clicked.
9|Built-In Math [call random integer | default number "1"in [number 1] with "225" and
default number "100" in [number 100 | with "315" by
clicking exisithg number and typing new number.
10|My Blocks [Balll [set Balll .Speed | Place under [set Balll.Heading | Tells App Inventor fo sef ball speed once user clicks
the start button.
. Moves the ball 5 pixels in the direction of its heading
11|Built-In Math [number 123] Plug into [sef Balll Speed] socket and replace each time its internal clock ticks. The internal clock

default number "123" with "5"

of an object is called its interval.

Step |Palette |Drawer Block Action Purpose
12|My Blocks |Balll call Balll.MoveTo Place under [set Balll.Speed
Y [] v [P] This series of steps moves the ball to a specified (x,y) position
on the canvas. In this case, you are telling App Inventor to
13|Built-In Math [/] (division block) Putin X" socket of [call Balll.MoveTo | move the ball to an x position, which is half of the screen width
(x=150) and a y position with is half of the radius (y=10).
Drag and drop into first blank area of [/] and TYPEBLOCK "2"in Essentially, the ball will _be pgsiﬂoned at the top and centered
14|My Blocks |Screenl [screenl.Width] the second blank area of [/]. If you are not familiar with between the left and right side of the screen.
TYPEBLOCKING, refer to page 7 of this tutorial.
15|My Blocks |Balll [Balll.Radius] Drag and drop into "y" area of [Balll.MoveTo] S.TO”S fhe ball 'n.fhe middle of the screen near fhe fop each
time a player clicks the start button.
Drag into [when StartButton.Click | above [set Balll.Heading],
16|My Blocks |Balll [set Balll.Enabled] use BLOCKS SHORTCUT to choose "Logic," then click on "true" |Starts the ball moving when user clicks on start button.
and drag into socket.
17|My Blocks |Balll [set Balll.Interval | Drag info [when StartButton.Click] below [sef Balll Enabled] gr?LsJTS;ST rfﬂtc))i" flfr)\I/?I?r\;\isg?[wye]guﬂﬂﬁ%?n?;eﬁiezg;gdcszs
Y ’ and TYPEBLOCK "10" into "to" socket of [set Balll.Interval | W . M P P
the "speed property.
SUBGOAL #7: Make the paddle move when the user touches or simulates a dragging motion on the screen.

This block will contain the set of commands that App Inventor

18|My Blocks |ImageSpritel |[when ImageSpritel.Dragged] |Drag and drop into the work area will execute when the user drags the image sprite (paddie).
X . Drag and drop info "do" section of [when . .

19|My Blocks |ImageSpritel |[call ImageSpritel.MoveTo | ImageSprite].Dragged | Tells App Inventor to move the image sprite (paddle).

20|My Blocks |My Definitions |[value currentx] Drag and drop info "x" slof
Moves the paddle in x (horizontally) when you drag it on the
fouch screen, but not move it iny (vertically).

21|My Blocks |ImageSpritel |[ImageSpritel.Y] Drag and drop into "y" slot

SUBGOAL #8: Make the ball bounce whenever it touches the paddle.

Drag and drop in work area. Click on word "other" in [name

This block will contain the set of commands that App Inventor

22|My Blocks Balll [when Balll CollidedWith] other] and type "ImageSprite1" will execute when the ball collides with specified object.
. Drag out and drop into "do" section of [when .
26 |My Blocks |Balll [set Balll.Heading] Balll.ColidedWith | Tells App Inventor fo set ball heading.
T) . Drag and drop info "to" socket of [set Balll.Heading] and
27, Built-In Math [-] subfraction block) TYPEBLOCK "360" info first socket of | -] Sets ball heading based on the difference between 360 and
and the current ball heading. Reverses the ball when it hits the
28|My Blocks |Balll [Balll.Heading | Drag and drop in second blank area of [-] paddie.

We're about halfway done.
Let’s Take a break and see |if
we're on track.

14

While you are taking a well-
deserved break...

yhen Canvas1.Touched x (;' name

y |, name

y
touchedSprite LI name touchedSprite |

do set t r‘ K
ImageSprite1.X 4 " x

yen Ball1 EdgeReached edge (;: nams g o |

£ call r} !
Balll.Bounce °°%° 7 ““° edge
- :

";heﬂ StartButton.Click
do

t

*" Balll.Enabled ° dl true |
set

Ballt.interval ° cl TR 40w

set to C' call

Ball1.Heading

random integer

t
* Balll.Speed C: numoer 5

en ImageSprite1.Dragged startX C’ name

startX

startY a name startY

prevX C name prevX

prevY

A "M prevy

currentX n

4 "™ currentX
currentY "| name currentY

do
— * c vale currentX
ImageSprite1.MoveTo
¥ 11 ImageSprite1.Y

—

i

shen Ball1.CollidedWith otherc' S — |

do [¢
to L, number -
Ball1.Heading |'| 360
——eee

i

4 _Ball1.Heading |

from c number 225

to '| number 315

cal x

—5

C Screen1.Width | /

r'l number 2 | ‘

Ball1.MoveTo
y CrBaln .Radius

Take a step back and
examine your work.
Computer programmers

often build their program in
manageable chunks and
test regularly to identify and
fix bugs. If you tested the
app right now, what would
happen?

What would your app do
and what would it NOT do?
Look at how many events
you've created and what
they actually mean.

Can you think of any other
events that we have not yet
covered for PONG to be a
fully-functional game?
Once you've identified
these events, you're ready
to move on.

"*9|pped Jo aounoq ||IM ||eg (¢ ‘©3ueJ pauyap ulyiim Suipeay wopues pue paads 195 18 9AOW pue PaydI|d Uo}\NQg 14e1s UsyM Uuaa.ds
J0 J31uad doy ay3 03 uouisod |[IM [|eg (€ ‘U9242S aY3 0 S33Pa N0y ||e JO dunoq [|Im |jeg (g ‘pad8esp uaym anow ||Im pue (93euipiood
-A 10U 1nQ ‘X) yonoy J4asn Jo julod 01 uonisod ||IMm d|pped (T :S)ser Suimol o4 oyl wuoyiad ued dde unoA quiod siyl 1y 1amsuy 15

One more thing you should know...

Edge=1

Before you start on part 2 of PONG, there's something
you should know that will help you understand the
mechanics of ball movement on the screen.

App Inventor assigns numeric values to the edges of the
canvas as follows:

Top =1
Right =3
Bottom = -1
Left =-3

This is important if you want to differenfiate what the
game does when the ball touches the left and right
edges, as opposed to the bottom edge.

Also, heading values for animated objects go in full
circle like a compass, with values between 0 and 360
degrees. An object moving toward the top of the
screen is said to have a heading of 90 degrees.

In part 1 of the tutorial, what ball heading range did
you specify when the user clicks the start buttone How
does that translate into where the ball will actually
movee Can you see how the ball will bounce back in
reverse when it collides with the paddle?

Siep\PaIeﬂe |Drc1wer |Block

|Acﬂon

|Purpose

SUBGOAL #9: Stop the ball and end the game when the ball reaches the southern edge of the screen.

29 |Built-In Control [Ifelse] Drag out
This set of blocks tells App Inventor what to do when the ball
reaches an edge. In this case, we want App Inventor to test if
- _ . N the edge reached is the southern (or bottom) edge. If the ball
30|Built-In Math [=] (equal block) Drag out and drop info "test" socket of [Ifelse] has reached the bottom edge of the canvas, then App
Inventor should execute a certain action (end the game), but if
b dd o first ; f=1, click d the ball reaches any other edge, then it should bounce.
. rag and drop into first empty area of [=], click on secon
31|My Blocks | My Definitions |[value edge] empty area and TYPEBLOCK "-1" into second empty area.
Drag and drop in the "then-do" area of [Ifelse]. Click to the
32|My Blocks |Balll [set Balll.Enabled] right of the block to get the popup menu, then click "Logic" and [Stops the ball from moving when it gets past the paddle.
choose "false." Drag [false] intfo socket
33|My Blocks [ScorelLabel [set scoreLabel.Text | Qﬂ[‘iclsr;'yg}?ememh [set Balll.Enabled |" then-do" socket (not
Makes the text "Game Over!" appear on the screen in the
Drag out and drop after "to" of [set ScoreLabel.Text] (you can Scorelabel when the ball gets past the paddle.
34|Built-In Text [fext text] also click the work area to get the blocks shortcut menu and
choose text). Click the text and change to "Game Over!"
Find [when Balll.EdgeReached] from earlier (step 4), drag [
35*work area [when Balll.EdgeReached | call Balll.Bounce] out from [when Balll.EdgeReached], and |This entire [Ifelse] will cause the ball to bounce off of all edges

drop into "else-do" socket of [Ifelse]. Drag [Ifelse] into [when
Balll.EdgeReached edge |

except the bottom (southern) one.

SUBGOAL #10: Increase the score count by 1 everytime the

ball bounces off the paddie.

Drag and drop into open area. Click on "variable" and type

36 |Built-In Definition [def variable] "core.” Changes the name of the variable to "score".
37|Built-In Math [number 123] Put into "as" socket of [def score] and replace "123" with "0" Creates a variable named "score" and sefs its value to 0.
38|Built-In Definition [fo procedure] Drag ou’(Cf‘,nd drop in op“en area, click on “procedure” and Creates a procedure called "updateScore”
rename it "updateScore!
. . " " Creates a parameter for the procedure that is named
Drag out and drop in open area, click on "name" and type "scorevalue." A parameteris a temporary variable that holds a
39 |Built-In Definition [name name] "scorevalue." Move this piece ininto [to update Score | "arg" i P porary

socket

value for a procedure. The value is specified when the
procedure is called.

Step |Palette |Drawer Block Action Purpose
40|My Blocks |My Definitions |[set global score] Drag and drop in "do" area of [to updateScore |
41|My Blocks |My Definitions |[value scorevalue | Drag and drop in "to" area of [set globalscore | This set of blocks sets the score label and updates the
score variable. The global score is the current (or old
42|My Blocks |ScorelLabel [set scoreLabel.Text | Drag and drop under [set globalscore] score), whereas the scorevalue is the new score when
the player successfully bounces the ball off the paddle.
Drag and drop into "to" socket of [set ScoreLabel.Text]
43 (Built-In Text [join] and use blocks shortcut menu to make the first blank
area [fext], which reads "Score: "
Sets the text of the score label to a string that joins
44|My Blocks [My Definitions |[global score] Drag and drop info the second empty area of [join] together "Score:" and the actual value of the score
variable.
Drag and drop at the bottom of [startButton.Click]
45|My Blocks [My Definitions |[call updateScore | below [call Balll.MoveTo]. TYPEBLOCK "0" into Updates the score to 0.
"scorevalue" socket.
46|My Blocks [My Definitions |[call updateScore | Drag and plrop in [Balll.CollidedWith] below [set
BalllHeading]
- o Drag and drop into [call UpdateScore] "scorevalue” Updates the score by +1 everytime the ball hits the
47|Built-in Math [+] {addifion block] socket of [when Ball1.CollidedWith] paddie.
48|My Blocks |My Definitions |[global score | Drag and drop into first empty area, click on second

empty area and TYPEBLOCK "1" and drag info socket.

SUBGOAL #11: Program the sequence of action when

the user touches the Reset button. Reposition the ball to its start position and reset the score to 0.

This block will contain the set of commands that App

49|My Blocks [ResetButton |[when ResetButton.Click] |Drag to open area Inventor will execute when the user clicks on the reset
button.
Go to set of blocks inside [startButton.Click] that you
50|*Work area created previously and highlight [Balll.Move to] by Copies the the entire procedure within [Balll.Move].
clicking the block and hitting CTRL+C (or CMD+V)
Click anywhere in open area and hit CTRL+V (or .
51[*Work area CMD+V), then drag the whole procedure block in | POST?S the blocks yog cople? ond”moves the ball fo start
) position when user clicks on "Reset" button.
ResetButton.Click]
52|My Blocks |ScoreLabel [set ScoreLabelText | Drag and ploc_e under [call Balll.MoveTo | within [when
ResetButtonClick] .
Drag and drop into "to" socket of [set ScoreLabel.Text], Moves the ball back fo the start posmon.(ot the fop of
set the first emoty area fo text "Score: " by using blocks the screen, centered between left and right side) and
53|Built-In Text [join] Pty Y 9 resets the score to "0".

schortcut menu (click "text" twice and type "Score: ") and
TYPEBLOCKING "0"into second empty area.

The Big Picture

— —
'xhe" Canvas1.Touched x d name \xhen ImageSprite1.Dragged startX {;‘ name <o rX
y (. name y startY a name startY
touchedSprite 4 name touchedSprite | prevX C_‘ name prevX
do Y name
set previ L revY
ImageSprite1 X ' () vawe x P
currentX | name currentX
yhen Balll EdgeReached edge (;: name e | ST (,JI nama rrenty
— do
do []
. fest C‘r‘ value I = (J number | | - * C" D currentX
[edge | = 4 S i ImageSprite1.MoveTo)
thendo [T ‘ c 4 ImageSprite1.Y
Balll .Enabled] false | o .
t wh
“ ¢ oroLabelToxt C et game overt when Ball1 CollidedWith oum{;'l L R— |
[-v ol “ ¢
else-do o
1 "' number | - la - | |
cal Bali1.Bounce edge [, value edge Ball1.Heading |l 360 1 _Ball1.Heading |
call 1 r‘
e ———————— scorevalue | _
' updateScore |d 9903l score | + C:"“mbe' 1 | ‘
yhen StartButton.Click | — T
do
set
Balll.Enabled dl true + score *° c numoer g
set to r’ number
Ball1.Interval 'l 10 2 updateScore arg [name scorevalue
set to C call from f:l number 225 arg)
random integer &=
Ball1.Heading ger [, number 345 i‘j“"""'sc—MM,
t Rt to [,/ - J
* Ball1.Speed '°C' number g ScoreLabel.Text |rq = score: I join (q gobal seore |
_— i
call o '(1 (1 N
|1_Screen1.width | = | when ResetButton.Click
Ball1.MoveTo rl_] A
¥ L1 Ball1.Radius do | a1 . s
. 'I(’. Screen1.Width | [oumber 5 |
cal scorevalue [, number Ball1.MoveTo]
LT]—0, v 0 Bait Radius
_——
t | EE— S |
= o "(text . i (number
ScoreLabel.Text 14 Score: join 1, 0
| |

Great job getting to the
end of this tutoriall If you've
followed all the steps in the
design and build processes,
these are the blocks you
should see in your build
window.

Now is a good time to
examine the blocks and
think about how each step
relates to what's happening
on your phone (or
emulator).

Do you understand what
each block does in your
appe Once you've had a
chance to step back, look
at the big picture, and test
your app a few times,
you're ready to move on to
packaging the app and
tackling some additional
challenges!

19

Congratulations! You've built

Package App J

Notice that your app disappears when
you unplug your phone from the USB
cable or disconnect from wifi. This is
because the app is still stored in the
App Inventor server and not in your
phone. To learn how to package your
app to your phone, go to:
http://appinventor.mit.edu/teach/
curriculum/packaging-apps.html

Challenge 1 J

Increase the speed of the ball and
decrease the size of the ball when the
score increases an increment of 10.
(Hint: Under the Math drawer, the |
remainder| (a,b) returns the result of
dividing a by b and taking the
remainder.

PONG!

K Return to Module 1 J

Challenge 2

Download audio file from the App
Inventor Media Library page and
upload them to the Designer. Make
the “noink” sound play when the ball
hits the edge of the wall, the “ta-da”
sound when the speed of the ball
increases, and the buzzer sound when
the ball hits behind the paddle.

Even More Challenges

http://appinventor.mit.edu/

Feel free to send comments or feedback about
this tutorial to: pearl.phaovisaid@gmail.com

teach/curriculum/
module-1.html

U Give the player 3 lives so they get 3
tries before “Game Over!”

O With multiple lives, decrease the
score by 1 each time the player loses a
life

U Investigate what happens if you
change the range of random numbers
for the start heading when the start
button is clicked

U Make the app respond to tilting of
the phone instead of dragging the
paddle.

20

