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tion: Use cases

| Motiva

“Alexa, open Showcase Cinemas.”

Hermione c.ai

Hello Elizabeth. My name is Hermione Granger, it's very nice to meet you. I'm a Hufflepuff
student in my fifth year at Hogwarts School of Witchcraft and Wizardry, and a member of
Harry Potter and Ron Weasley'’s friendship group. I enjoy studying and tend to over study

so i don't usually get much sleep. I don't like bullies and will always fight for what I believe
in, but I am also sensitive and can get a bit emotional. I love doing charity work and it
means I never get much down time.

i am surprised to hear you are a hufflepuff. i thought you were in gryffindor like harry and
ron...

Hermione c.ai

I often get this reaction but I am most certainly in Hufflepuff. I share the same
values as Hufflepuff, being loyal, dedicated and fair. I will always be there for my
friends and will stick to my beliefs no matter what. I think I could also be suited to
Ravenclaw as I do love to learn and study a lot, however I am not interested in
learning for the sake of learning. I am a hard worker who wants to make a
difference in the world. My ambition is to do well at Hogwarts and make something
of myself, which I believe is a common trait of Hufflepuffs.



| Challenges of Deploying LLMs in Streaming Applications

* Urgent need for LLMs in streaming * Challenges:
applications such as multi-round  Extensive memory consumption during
dialogues, where long interactions are the decoding stage.
needed.  Inability of popular LLMs to generalize to

longer text sequences.
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Challenges of Deploying LLMs in Streaming Applications
w/ StreamingLLM

(streaming) guangxuan@l29:~/workspace/streaming-11m$ CUDA_VISIBLE_DEVICE|(streaming) guangxuan@l29:~/workspace/streaming-1lm$ CUDA_VISIBLE_DEVICES=1 p
=@ python examples/run_streaming_1llama.py thon examples/run_streaming_llama.py -—enable_streaming

Loading model from lmsys/vicuna-13b-v1.3 ... Loading model from lmsys/vicuna-13b-v1.3 ...

Loading checkpoint shards: 67%| B | 2/3 [00:09<00:04, 4.94s/it]lJLoading checkpoint shards: 67%| GGG | 2/3 [00:09<00:04, 4.89s/it]
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U 1
ASSISTANI: Ouvudvo-t—-t-T-t"

USER: Write a C++ prog
on.

‘bonacci number using recursi

ASSISTANT: 00000000000000000000000''00000000000000000000

USER: Now we define a sequence of numbers in which each number is the su
m of the three preceding ones. The first three numbers are 0, -1, -1. Wr
ite a program to find the nth number.

ASSISTANT: @-a—a-a-eah000000000000

USER: Write a simple website in HTML. When a user clicks the button, it
shows a random joke from a list of 4 jokes.

| Challenges of Deploying LLMs in Streaming Applications

outputs = model(
File "/home/guangxuan/miniconda3/envs/streaming/lib/python3.8/site-pac
kages/torch/nn/modules/module.py"”, line 1501, in _call_impl
return forward_call(*args, *kkwargs)
File "/home/guangxuan/miniconda3/envs/streaming/lib/python3.8/site-pac
kages/transformers/models/1llama/modeling_1lama.py", line 820, in forward
outputs = self.model(
File "/home/guangxuan/miniconda3/envs/streaming/lib/python3.8/site-pac
kages/torch/nn/modules/module.py”, line 1501, in _call_impl
return forward_call(xargs, skkwargs)
File "/home/guangxuan/miniconda3/envs/streaming/1ib/python3.8/site-pac
kages/transformers/models/1llama/modeling_1l1lama.py", line 708, in forward
layer_outputs = decoder_layer(
File "/home/guangxuan/miniconda3/envs/streaming/1lib/python3.8/site-pac
kages/tor V/mndgtes/mad gy mt o ine 1507, in 311 impl
retu’ f af. 3, »

File "/ ¥, 2. § cc i 7 )ython3.8/site-pac

kages/transforhers/models/1lama/modeling_11ama.p9", .«he 424, in forward

hidden_states, self_attn_weights, present_key _value = self.self_attn
(
File "/home/guangxuan/miniconda3/envs/streaming/lib/python3.8/site-pac
kages/torch/nn/modules/module.py”, line 1501, in _call_impl
return forward_call(xargs, *kkwargs)
File "/home/guangxuan/miniconda3/envs/streaming/lib/python3.8/site-pac
kages/transformers/models/llama/modeling_11lama.py", line 337, in forward
key_states = torch.cat([past_key_value[@], key_states], dim=2)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 90.00
MiB (GPU 0; 47.54 GiB total capacity; 44.53 GiB already allocated; 81.0
6 MiB free; 46.47 GiB reserved in total by PyTorch) If reserved memory i
s >> allocated memory try setting max_split_size_mb to avoid fragmentati
on. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
(streaming) guangxuan@l29:~/workspace/streaming-11m$ B



| The Problem of Long Context: Large KV Cache

The KV cache could be large with long context

* During Transformer decoding (GPT-style), we need to store the Keys and Values of all previous
tokens so that we can perform the attention computation, namely the KV cache

* Only need the current query token Ginput_sea>
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| The Problem of Long Context: Large KV Cache

The KV cache could be large with long context

* During Transformer decoding (GPT-style), we need to store the Keys and Values of all previous
tokens so that we can perform the attention computation, namely the KV cache

* Only need the current query token

Step 1 '
Q K" QK" V Attention
Query Token 1 Q,K, Value Token 1 Token 1
. 2
> —
S >
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)



https://medium.com/@joaolages/kv-caching-explained-276520203249

The Problem of Long Context: Large KV Cache

The KV cache could be large with long context

* During Transformer decoding (GPT-style), we need to store the Keys and Values of all previous
tokens so that we can perform the attention computation, namely the KV cache

* Only need the current query token

Q K' QK' V Attention
Query Token 1 x QK, Value Token 1 Token 1
M
\<
5@ o
N X | & = X =
I} 1)
@ >
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)
Values that will be masked Values that will be taken from cache

Image credit: https://medium.com/@joaolages/kv-caching-explained-276520203249



https://medium.com/@joaolages/kv-caching-explained-276520203249

| The Problem of Long Context: Large KV Cache

The KV cache could be large with long context

* \We can calculate the memory required to store the KV cache
 Take Llama-2-7B as an example

BS %32 % 32 #128% N * 2 *2bytes=0.5MBxBSxN

batchsize  layers  kv—heads  n,,, length K&V ‘ FP16 J
* Now we calculate the KV cache size under BS = 4 and different sequence lengths.

* Quickly larger than model weights

06 4*32*32*128*32K*2*2=64GB
O MHA
- = Model Size

Ol
o

KV cache size (GB)
— o
o0 ~

1K 2K 4K 8K 16K 32K
Sequence Length




| The Limits of Window Attention

* A natural approach — window attention: caching only the most recent Key-Value states.
 Drawback: model collapses when the text length surpasses the cache size, when the initial token

s evicted. (b) Window Attention

Sliding Window

Dense Attention - Window Attention : - StreamingLLM
w/ Re-computation
Llama-2-78B
12
10 , ‘
- W *v ‘nandbes -~
\l ]
8: 3
o O
O
- Pl - j
 IFL evicted L cached -
tokens tokens 0
10K 15K 20K

O(TL) v PPL: 5158

Breaks when 1nitial tokens
are evicted.

Input Length




| Difficulties of Other Methods

(c) Shiding Window

(a) Dense Attention (b) Window Attention w/ Re-computation

Current Token

S

L

previous tokens are
truncated e

<+— T cached tokens — - ﬂfoi\:rfsted > < Ltgliillesd > -« L re;girer;psuted -
O(THx PPL:5641x  O(TL)v PPL:5158x  O(TL»)X PPL:5.43v
Has poor efficiency and Breaks when 1nitial Has to re-compute cache

performance on long text. tokens are evicted. for each incoming token.




| The “Attention Sink” Phenomenon

* Observation: initial tokens have large attention scores, even if they're not semantically significant.
* Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.
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Figure 2: Visualization of the average attention logits in Llama-2-7B over 256 sentences, each with a length
of 16. Observations include: (1) The attention maps in the first two layers (layers 0 and 1) exhibit the "local”
pattern, with recent tokens receiving more attention. (2) Beyond the bottom two layers, the model heavily attends
to the 1nitial token across all layers and heads.




| The “Attention Sink” Phenomenon

* This phenomenon is observed in the SpAtten paper three years ago, but was not explored.
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Fig. 23. Cumulative importance scores in GPT-2. Unimportant tokens are
pruned on the fly. Important tokens are heavily attended.

GPT-2 for Language Modeling

Du Fu was a great poet of the Tang dynasty. Recently a variety of styles have been used in efforts to translate the work of Du Fu into English ‘English’is the
Du-F-u—wa-s—a—g—rea—b poet-e-f—&he—'.l‘ang dynasty Recently -a—va-ﬁ.-e%y—e-f— styles -have—been—used- J.n efforts to translate the work of Du Fu into English generated token.
Du -Fu—we poet—e > dyne —Reecer < ave—b Sed orts—to- translate -the—work—ofDu—Fu into English

SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning




| Understanding Why Attention Sinks Exist
The Rationale Behind Attention Sinks

 SoftMax operation's role in creating attention * Does the importance of the initial tokens

sinks — attention scores have to sum up to one arise from their position or their semantics?

for all contextual tokens. * We found adding initial four “\n”s can also recover perplexity.
 Therefore, it is position!

e .
SoftMax(x); = ~ , T1>zj,j]€2,...,N Table 1: Window attention has poor per-
1 4 . .
e + ) j=2€¢" formance on long text. The perplexity is
o _ . . restored when we reintroduce the initial
* |nitial tokens' advantage in becoming sinks due four tokens alongside the recent 1020 to-
S STIETT kens (4+1020). Substituting the original
to their visibility to subsequent tokens, rooted four initial tokens with linebreak tokens
In autoregressive language modeling. “\n" (4"\n"+1020) achieves comparable per-
plexity restoration. Cache config x+y de-
S = Where are we g0 in g notes adding x iI.li.tial tokens with y recent
| | tokens. Perplexities are measured on the
T T first book (65K tokens) in the PG19 test set.
Previous words Word being Llama-2-13B PPL ({)
(Context) predicted -
0 + 1024 (Window) 5158.07
4 + 1020 5.40
4"\n"+1020 5.60

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)




| StreamingLLM: Using Attention Sinks for Infinite Streams

* Objective: Enable LLMs trained with a finite attention window to handle infinite text lengths
without additional training.

 Key Ildea: preserve the KV of attention sink tokens, along with the sliding window's KV to
stabilize the model's behavior.
(d) StreamingLLLLM (ours)

Generating
Token 7

— Generating O 1 2

Attention Sink Token &

\ Generating
, Token 9 O 1 2
evicted L cached
—>—

—
tokens tokens Attention Sinks Evicted Tokens  Rolling KV Cache
O(TL)v PPL:540 v

Can perform efficient and stable
language modeling on long texts.




l Positional Encoding Assignment

 Use positions in the cache instead of those in the original text.

Generating
Token 9 O 1 2 3

Attention Sinks Evicted Tokens  Rolling KV Cache

poions |0 [1]2|8] 4|56




| Streaming Performance

 Comparison between dense attention, window attention, and sliding window w/ re-computation.

Sliding Window
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Figure 3: Language modeling perplexity on texts with 20K tokens across various LLM. Observations
reveal consistent trends: (1) Dense attention fails once the input length surpasses the pre-training
attention window size. (2) Window attention collapses once the input length exceeds the cache size,
1.€., the 1nitial tokens are evicted. (3) Streamingl.LM demonstrates stable performance, with its
perplexity nearly matching that of the sliding window with re-computation baseline.




| Streaming Performance
Super Long Language Modeling

* With StreamingLLM, model families include Llama-2, MPT, Falcon, and Pythia can now effectively
model up to 4 million tokens.

Llama-2 (StreamingLLM) o | Pythia (StreamingLLM) | | Falcon (StreamingLLM) o | MPT (StreamingLLM) |
~ 1.5 - ~ ~
& & I l ‘ | Q1.5 &
o Sl o >1.5
o —— Llama-2-7B © —— Pythia-2.8B © o
——— Llama-2-13B ——— Pythia-6.9B —— Falcon-7B — MPT-7B

—— Llama-2-70B —— Pythia-12B —— Falcon-40B ~—— MPT-30B
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Input Length Input Length Input Length Input Length

Figure 5: Language modeling perplexity of StreaminglLLM for super long texts with 4 million tokens
across various LLM families and model scales. The perplexity remains stable throughout. We use the

concatenated test set of PG19 (100 books) to perform language modeling, with perplexity fluctuations
attributable to the transition between books.




| Efficiency

 Comparison baseline: The sliding window with re-computation, a method that is
computationally heavy due to quadratic attention computation within its window.

 StreaminglLLM provides up to 22.2x speedup over the baseline, making LLMs for real-time
streaming applications feasible.

Sliding Window with Re-computation [ StreamingLLM
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| Ablation Study: #Attention Sinks

 The number of attention sinks that need to be introduced to recover perplexity.
* 4 attention sinks are generally enough.

Table 2: Effects of reintroduced initial token numbers on
StreaminglLLM. (1) Window attention (0+y) has a dras-
tic increase in perplexity. (2) Introducing one or two 1ni-
tial tokens usually doesn’t suffice to fully restore model
perplexity, indicating that the model doesn’t solely use
the first token as the attention sink. (3) Introducing four
initial tokens generally suffices; further additions have
diminishing returns. Cache config x+y denotes adding x
initial tokens to y recent tokens. Perplexities are evalu-
ated on 400K tokens in the concatenated PG19 test set.

Cache Config 0+2048 1+2047 2+2046] 4+20448+2040

Falcon-7B 1790 12.12 12.12 12.12
MPT-7B 460.29 14.99 15.00 14.98
Pythia-12B 21.62 1195 12.09 12.02

Cache Config 0+4096 1+4095 2+4094]4+4092)8+4088
Llama-2-7B 3359.95 11.88 10.51 9.54




| Pre-training with a Dedicated Attention Sink Token

* |ldea: Why 4 attention sinks? Can we train a LLM that need only one single attention sink? Yes!

* Method: Introduce an extra learnable token at the start of all training samples to act as a
dedicated attention sink.

* Result: This pre-trained model retains performance in streaming cases with just this single sink
token, contrasting with vanilla models that require multiple initial tokens.

Table 3: Comparison of vanilla attention with

2.8 . prepending a zero token and a learnable sink token
T yanta during pre-training. To ensure stable streaming
") —— + Sink Token : : . .
Ao 5 perplexity, the vanilla model required several ini-
- tial tokens. While Zero Sink demonstrated a slight
£ improvement, it still needed other initial tokens.
©2.6 Conversely, the model trained with a learnable
- Sink Token showed stable streaming perplexity
with only the sink token added. Cache config z+y
2570 20 40 60 80 100 120 140 denotes adding x initial tokens with ¥y recent to-
. K Steps o kens. Perplexity is evaluated on the first sample in
Figure 6: Pre-training loss the PG19 test set.
curves of models w/ and w/o sink Cache Config  0+1024 141023 2+1022 4+1020
tokens. Two models have a simi- Vanilla 2787 1849 18.05 18.05

Zero Sink 20214 19.90 1827 18.01
lar convergence trend. Learnable Sink 1235 18.01 1801 18.02




| Thanks for Listening!

* We propose StreaminglLLM, enabling the streaming deployment of LLMs.

e Paper: https://arxiv.org/abs/2309.17453

e Code: https://github.com/mit-han-lab/streaming-lim

e Demo: https://youtu.be/UgDcZ3rvRPg

w/ StreamingLLM

uangxuan@l29:~/workspace/streaming-11m$ CUDA_VISIBLE_DEVICE|(streaming) guangxuan@l29:~/workspace/streaming-11m$ CUDA_VISIBLE_DEVICES=1 p
on examples/run_streaming_1llama.py thon examples/run_streaming_llama.py -—enable_streaming
ing model from lmsys/vicuna-13b-v1.3 ... Loading model from lmsys/vicuna-13b-v1.3 ...
checkpoint shards: 67%| I | 2/3 [00:09<00:04, 4.94s/it]|JLoading checkpoint shards: 67%| | EGEGEGENG | 2/3 [00:09<00:04, 4.89s/it]



https://arxiv.org/abs/2309.17453
https://github.com/mit-han-lab/streaming-llm
https://youtu.be/UgDcZ3rvRPg

