
UNCLASSIFIED
CSAR Playbook September 2017

 DARPA CASCADE
Clausewitzian Chess: Companion Guide

2019

FRICTION, FOG OF WAR CHESS VARIANT: DESIGN AND GUIDE
MAY 2019

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Defense Advanced Research Projects Agency under
Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency.

© 2019 Massachusetts Institute of Technology.

MIT Proprietary, Subject to FAR52.227-11 Patent Rights - Ownership by the contractor (May 2014)

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014
(Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as
specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Page i

Table of Contents
Executive Summary ... 1

Purpose ... 1

Findings ... 1

Known Issues / Next Steps .. 1

Background ... 2

Program Overview .. 2

Game Purpose ... 2

Technology Transition ... 3

Deployment Options ... 3

Installation / Dependencies .. 3

Install Project Files .. 3

Dependencies .. 3

Cleanup ... 5

Running the Server .. 5

Manual .. 5

Scripted ... 6

Running the Game .. 6

Trouble Shooting ... 6

Accessing the Data .. 7

Shutting Down ... 7

Game Elements and Design .. 7

Basic Principles .. 7

Core Game Mechanics .. 8

Game Element Walkthrough ... 8

Login System ... 8

Lobby System .. 9

Players ... 9

Game Invites ... 9

Flow Control .. 10

Chat System .. 11

Game Setup: Piece Configuration ... 12

Page ii

Game Setup: Admin Configuration ... 14

Piece Composition .. 15

Victory Conditions ... 17

Number of Turns ... 18

Friction Pieces ... 18

Turn Indicator.. 20

Chess Board and Gameplay .. 22

Game Status: Turns and Gameplay ... 24

Game Status: Friction Pieces ... 24

Game Status: Scoring .. 24

Game Over .. 25

Special Rules / Considerations .. 28

Findings ... 28

Known Issues ... 30

Next Steps ... 32

MIT Lincoln Laboratory Clausewitzian Chess Team .. 33

Page 1 of 33

Executive Summary

Purpose
This document serves as a companion to the Clausewitzian chess software tool. This tool is a chess
variant designed to demonstrate the possibility of modeling complex cognitive concepts in simple, well-
known games. More specifically, the effort that led to the tool’s creation focused on understanding the
complications that arise in complex systems of systems. It is important to note that in its current form
the tool is an engineering prototype. We leave further polishing to future efforts and/or to the open
source community.

We vary the standard rules and play of chess to directly model fog of war, friction, and asymmetric ends
(limited versus total warfare). In this context, we define fog of war as hidden or uncertain information
about one’s self or one’s adversary. Likewise, we define friction as the inability to receive or execute an
order as desired. Chance heavily influences both of these notions. Finally, we have altered the notion of
victory in the game of chess so that our variant is no longer a zero-sum game (both sides can now
simultaneously win or lose). The Game Element Walkthrough section details these concepts.

This document describes all major game elements and includes a discussion of how each element
manifests in the game and why it was included in the design. In addition, this document contains
instructions on how to run the software tool and how to play the game, given the reader has access to
the source code. Finally, the document discusses our findings from internal playtesting, known issues,
and recommendations for next steps.

Findings
We have had multiple internal play testing efforts, both to find bugs and to gauge the types of gameplay
that players experience. In total, our play testing incorporated more than 12 unique individuals who
played collectively more than 25 games. While certainly not large, this sample size is enough for us to
gain some insights into the game and its implementation. The primary findings from players were: 1) the
fog of war component was reasonable and significantly changed how they played chess, 2) the friction
component was “frustrating” and may even need to be relaxed in future versions, and 3) the
asymmetric victory conditions and non-zero-sum outcomes successfully captured the dynamics of
competing under conflicting ends, leading to different play styles and strategies for different
combinations of victory conditions. Our conclusion is that we have successfully modeled fog of war,
friction, and asymmetric ends within the game of chess. Additionally, we hypothesize that incorporating
concepts into known games reduces some barriers for players to learn, exercise, or experience these
concepts.

Known Issues / Next Steps
We categorize future efforts along three main lines. The first is fixing errors and problems that exist in
the code base. The second is improving, adjusting, or balancing existing game elements. Finally, the third
category is progressing on additional features that do not exist. As a general note, the tool would benefit
significantly from polishing and user interface improvements; unfortunately, this was out of scope for
the current effort.

Page 2 of 33

Background

Program Overview
The Defense Advanced Research Projects Agency’s (DARPA) Defense Sciences Office (DSO) has a number
of research projects designed to advance the state of the art for the design, implementation, and
management of complex systems. Specifically, the Complex Adaptive System Composition and Design
Environment (CASCADE) program sought to “change how systems are designed for real-time resilient
response to dynamic, unexpected contingencies.” Furthermore, “The goal of CASCADE is to provide a
unified view of system behavior, allowing understanding and exploitation of these complex interactions
and a formal language for complex adaptive system composition and design. This unified view of system
behavior, enabled by appropriate mathematical foundations, may also enable adaptation to
unanticipated environments using arbitrary system components by providing a framework to
dynamically identify and correct deficient system capabilities.”1

To support this vision and provide a proving ground for advancements, we leveraged wargaming and
other gaming approaches to investigate specific cases that test complex systems. Our earliest efforts
often made simplifying assumptions, such as instantaneous and error-free communications, perfect
order execution, and complete knowledge of the world state. In addition, the motivations of the
adversary, when present, were typically worst-case obstructions of blue forces.

While these assumptions are all understandable and appropriate in context, we wanted to remove them
from our game constructs. As such, we began modeling some of the real world complications that
plague complex systems. Our initial efforts focused on domain and problem specific concepts, such as
communication delays and coordination within specific command hierarchies. We found this was
successful for specific games but not easily extensible to other problems and game structures.

The work described here is the outcome of our efforts to generalize our models. This work allowed us to
capture the complications that arise in complex systems of systems and incorporate them into a simple
game with which most people have some familiarity. We found that the Clausewitzian principles of fog,
friction, chance, and total versus limited war2 were well suited as a model framework. For the purposes
of this report, we define fog of war as hidden or uncertain information about friendly and adversary
units and friction as the inability to receive or execute an order as desired. For example, the effects of
imperfect communication can be described in terms of the uncertainty (fog of war) created by the
inability to communicate intention, position, or status as well as the inability to subsequently receive,
and therefore perform, an order (friction).

Game Purpose
The purpose of the Clausewitzian chess variant is to show that it is possible to model complex concepts
such as fog of war, friction, chance, and asymmetric ends simply in a known game structure. There are
two implicit elements to this goal. The first is to show that we can model these concepts in a simple and
generic way, which is helpful in understanding the concepts and demonstrating that it is possible to
provide system analysis with these factors represented. The second is to show that we can build these
models into existing games. Demonstrating this is important, as it shows that our models of fog, friction,

1 https://www.darpa.mil/program/complex-adaptive-system-composition-and-design-environment
2 Clausewitz, C., & Maude, F. N. (1982). On war. Penguin UK.

https://www.darpa.mil/program/complex-adaptive-system-composition-and-design-environment

Page 3 of 33

and asymmetric ends are flexible and compatible with new and existing games as well as modeling and
simulation efforts.

To achieve these ends, we vary the standard rules and play of chess to directly model fog of war,
friction, chance, and asymmetric ends (limited versus total warfare). In addition, we have altered the
notion of victory so that our variant is no longer a zero-sum game (both sides can now simultaneously
win or lose). The Game Element Walkthrough section details these concepts.

It is important to note that in its current form, the tool is an engineering prototype; therefore, one
should expect to encounter some bugs and lack of beauty in the user interface. We leave further
polishing to future efforts and/or the open source community.

Technology Transition

Deployment Options
In this section, we provide two sets of instructions in parallel. The first is for a Windows environment;
for this platform, we provide a deeper level of detail and some additional help, such as scripts. Secondly,
we provide some guidance on how to deploy on a Linux based machine in a cloud environment. We
provide fewer details for this option.

These instructions highlight the two deployment options we are targeting. The first is a Windows based
off-line environment designed for a security aware environment. In this setup, a Windows machine will
run the server and connect to a router (wired or wireless). Client machines connected to the router can
then navigate to the IP address of the server via a browser to play the game. The server machine stores
all data. The second deployment option presented is a Linux cloud based environment such as a
networked VM or Amazon Web Services. As this option is more advanced and specific to the actual
deployment environment, we provide fewer details. For this option, we recommend consulting with
someone who has the requisite skills to assist. For additional guidance or clarification, please contact the
MIT LL team.

Installation / Dependencies
Install Project Files
The first step is to download the correct project files. If the source code is directly accessible as a zip file,
unzip the files into the desired directory. If installing from Github, there are myriad options for
downloading the project files, including downloading the source as a zip file or cloning the repository.
For help with the latter, we suggest referring to the latest Git help documentation.

Dependencies
The second step is to install and configure all required dependencies. There are two primary required
dependencies and a third optional dependency that is most useful for the cloud deployment option. In
either case, it is helpful but optional for both deployment options.

The first dependency is the Node.js and npm environments (latest or LTS version). For Windows, one can
download these and install using all default settings at the same time from the official Node.js website
(https://nodejs.org/en/). To install in a Linux environment (e.g., Ubuntu), use the following commands in
the terminal:

https://git-scm.com/book/en/v1/Git-Basics-Getting-a-Git-Repository
https://nodejs.org/en/

Page 4 of 33

sudo apt install nodejs npm

Once complete, in both Windows and Linux, one can check the versions of each to verify installation. For
Windows and Linux, one can run the following commands from a terminal.

node -v

npm -v

For Windows, we provide a script in the source code called “checknode.bat” which will show the
versions of Node.js and npm if installed correctly. If installed correctly, double clicking on this script will
pop up a command prompt window, show two different version numbers, and pause before closing.

Once this test passes, use npm to install the external dependencies for the project (requires internet
connection). Running the following command in a terminal from the main directory containing the
source code completes this step:

npm install

For Windows, we provide a script in the source code called “nodeinstall.bat” which, when double
clicked, executes the command above. If the installation times out, the most likely cause is a proxy. If
this is the case, please follow the instructions provided here to resolve and then retry running the
script/command. To configure npm proxy settings, run the following commands from a command
prompt / terminal:

npm config set proxy http://proxy.company.com:8080

npm config set https-proxy http://proxy.company.com:8080

The second required dependency is the database management system MongoDB. For Windows, one can
download MongoDB from the following website: https://www.mongodb.com/download-
center/community. Their website also offers detailed installation instructions:
https://docs.mongodb.com/v3.2/tutorial/install-mongodb-on-windows/. Choose the complete setup
and use all defaults. Note, this should automatically download and install the MongoDB Compass tool,
which is covered in more detail in the Accessing the Data section of this report.

To install MongoDB on Linux (Ubuntu) run the following command.

sudo apt install mongodb

Once installed, the next step is to configure the database for the server. To configure manually on both
Windows and Linux, run the following commands to create the database and add the appropriate user
for the server.

mongo

use dcchess;

db.createUser({user:"mongouser", pwd:"mongopass", roles: [{role: "readWrite", db: "dcchess"}]});

show users;

For Windows, we provide a script in the source code called “dbconfig.bat” that provides this
functionality. If the script completed successfully, it will show a message echoing the addition of the
user. If run multiple times, the script will show an error saying that it was unable to add the user as the
user already exists.

https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://docs.mongodb.com/v3.2/tutorial/install-mongodb-on-windows/

Page 5 of 33

For further configuration testing and instructions on how to access the data stored within, refer to the
Accessing the Data section of this report.

The final and optimal dependency is a Node.js process manager named pm2. pm2 starts, stops, and
manages the server while it is running. It provides monitoring and handling to handle cases where the
server may shut down. For more details, see their website: http://pm2.keymetrics.io/. While optional,
we strongly recommend the use of pm2 for the cloud deployment option. It is helpful in the Windows
environment but not necessary.

In both Windows and Linux, one can install pm2 using the following command:

npm install pm2 -g

For Windows, we include a script that will handle the install called “pm2install.bat.” pm2 usage and help
scripts will be covered in the Running the Server section of this report.

Cleanup
To ensure proper installation and caching, run the following command after installing and configuring all
dependencies.

npm install

For Windows, running the “npminstall.bat” script completes this action.

Running the Server
The general workflow for starting the server is to ensure the database is running and then launching the
web application. In this section, we will show how to manually execute these steps as well as provide an
overview of the help scripts for the Windows environment.

Manual
The first step is to ensure the MongoDB client is running. There are many ways to start the database.
The MongoDB documentation includes full instructions. At a minimum, one can ensure the database is
started (provided the default installation directions were followed) by starting the mongo.exe in
Windows located by default in “C:\Program Files\MongoDB\Server\4.0\bin”.

Once the database is running, one can start the web application server in one of two ways. The first is
without pm2. To achieve this, execute the following command in a terminal in the project’s main
directory.

node app.js

The second is with pm2, as shown below. To achieve this, execute the following command in a terminal
in the project’s main directory.

pm2 start app.js

We recommend using pm2 as it provides extra monitoring and handling of the web application.
Additional pm2 commands for listing, monitoring, starting, stopping, restarting, and inspecting the web
application are provided below in respective order. When “0” is used, it is referring to the application’s
id in the pm2 reference list.

pm2 list

http://pm2.keymetrics.io/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/

Page 6 of 33

pm2 monit

pm2 start app.js

pm2 stop 0

pm2 restart 0

pm2 show 0

Scripted
For the Windows deployment option, we provide some scripts to automate this process. These are as
follows:

- startdb.bat -> makes sure the MongoDB database is running
- startapp_node.bat -> starts the server without pm2
- startapp_pm2.bat -> starts the server with pm2
- restartapp_pm2.bat -> restarts the server with pm2
- monitorapp_pm2.bat -> monitors the server with pm2
- stopapp_pm2.bat -> stops the server with pm2

The recommended use case when not using pm2 is to first run startdb.bat followed by
startapp_node.bat. This will result in two separate command prompts / terminals being open while the
server is running. Similarly, the recommended use case when using pm2 is to first run startdb.bat
followed by startapp_pm2.bat.

Running the Game
When the server is successfully up and running, clients are able to connect to the server using port 3000.
To run the game on the server machine, open a web browser, and type the following into the address
bar “localhost:3000”. This will load the web application if the server is successfully running. Note, it is
possible to connect more than once from the same machine using different browser windows or tabs.
Using this approach, it is possible to play the game completely from a single machine fully offline.

Other machines can also serve as clients and run the game, provided they can make a connection to the
server machine. If the server and client machines are all connected to a router (no internet connect
required), the clients can make a connection by opening a browser and typing the following into the
address bar “[server IP address]:3000” where [server IP address] must be replaced with the IP address of
the server. One can detect their local IP address by running the “ipconfig” command from the Window’s
command prompt or “ifconfig” on a Linux machine. For offline/local play, the IP address will most likely
resemble “192.168.X.X”.

We do not provide advanced instructions for configuration in a cloud environment. However, common
steps are configuring the cloud to run the server, obtain a domain name, and configuring the system to
link webserver to the domain name. There are numerous resources online to aid in this deployment
option.

Trouble Shooting
If there are issues, the best course of action is usually to restart the server. If using pm2, one can restart
the server by double clicking on the restartapp_pm2.bat or executing the following command:

pm2 restart 0

Page 7 of 33

If not using pm2, close all terminal windows. This will shut down the server started using the
startapp_node.bat script. One can then start the server again by re-running the startapp_node.bat script
or the following command:

node app.js

In addition, it is often helpful to have clients close their browser and reconnect. This solves most client
side issues without requiring a server restart.

Accessing the Data
The database used for this application is MongoDB, which has a different storage and query style than
traditional relational database management systems, such as MySQL or Microsoft Access. As such,
standard SQL queries are not used. For an intro into the use of MongoDB, we suggest the following
tutorial: https://docs.mongodb.com/manual/tutorial/.

To make queries against the database manually, first start the database and then execute commands in
the prompt. For Windows users, we provide a script to start the database named “startdb.bat” that will
load the MongoDB interface for querying. This can be done manually by starting mongo or running the
mongo.exe executable from “C:\Program Files\MongoDB\Server\4.0\bin”.

It is possible to access and query the data through a user interface, which might reduce the complexity.
This interface tool is MongoDB Compass. The tool is available for download here
https://www.mongodb.com/download-center/compass. For full installation instructions, refer to the
MongoDB documentation here: https://docs.mongodb.com/compass/master/install/.

For additional help with custom queries or analytics contact the MIT LL Team.

Shutting Down
For the offline/local Windows deployment option, one should shut down the server when finished. If the
server was started without pm2, this can be achieved by pressing “Ctrl+C” in the command prompt or
terminal running the server. Alternatively, one can close this terminal severing the connection. If using
pm2, one can stop the server by running the “stopapp_pm2.bat” script or the following command:

pm2 stop 0

For the cloud-based deployment, there is no need to stop the server.

Game Elements and Design

Basic Principles
This section will detail each game element. We will highlight where each element manifests itself in the
tool, provide a brief description of how it works, and discuss our design rationale. In general, we will
discuss game elements in terms of how they differ from the ones employed in a traditional chess game.
We assume the reader has at least an introductory knowledge of chess. If this is not the case, we
strongly recommended that the reader do some research to understand the basics of chess, including
the pieces, how pieces move, the traditional layout, capture, combat, win conditions, and introductory
tactics. LiChess provides an excellent free tutorial (at the time of publication) at this location:
https://lichess.org/learn#/.

https://docs.mongodb.com/manual/tutorial/
https://www.mongodb.com/download-center/compass
https://docs.mongodb.com/compass/master/install/
https://lichess.org/learn#/

Page 8 of 33

The flow of Clausewitzian chess is simple. First, log in and join a game. Second, setup the pieces within a
budget (we refer to this mechanic as piece composition). Third, gameplay (chess with fog and friction
present). Fourth, determine a winner (chess with asymmetric ends present).

Core Game Mechanics
There are four major mechanics that diverge from traditional chess. The first is in how the game begins.
In traditional chess the board starts with a fixed layout; the player does not have the ability to modify
their starting position. Some chess variants begin with randomized positions, but Clausewitzian chess
allows for full player customization within a fixed budget (piece composition). Second is the inclusion of
friction. In traditional chess, players always have full control over their pieces and can move them
perfectly as long as the move is valid. In Clausewitzian chess, players sometimes have no control over
some of their pieces (friction). The third is the inclusion of fog of war. In traditional chess, players always
have full visibility of the board, including their own and their opponent’s pieces. In Clausewitzian chess
they do not have full visibility of their opponent’s pieces (fog of war). Finally, traditional chess ends with
King Capture. There is no maximum number of turns and the game is zero-sum, that is, if one player
wins, the other must have lost (it is also possible to end in a draw). In Clausewitzian chess, there are
multiple victory conditions and the game is no longer zero-sum. This means that both players can win
and both players can lose (there are no draws allowed).

All game elements that differ from traditional chess are a result of one of these departures. These
departures, however, result in the emergence of interesting gameplay.

Game Element Walkthrough
Login System
The login system is the first thing the user sees. The portrait shown is of Carl Von Clausewitz, the person
after which we named the game. The login system does not provide authentication; it simply associates
a connection to the server with the username provided allowing the player to be identified in the game
and chat. We leave any authentication into the system to the reader. The figure below shows the login
feature.

Figure 1: Login System

Page 9 of 33

Lobby System
Upon logging in, the player will see the lobby system. They will see their username and a “Logout”
button, which will bring them back to the login system. In addition, they can see a list of active games
and a list of players who are online and available for play. To begin play with a player, click on their
name.

Figure 2: Lobby System

Players
The game is currently a two-player, human versus human game. Therefore, one must pair up with
another user to launch a game. Note, it is possible to play with a single player, but in order to do so, one
must open two different browser tabs or windows, log in twice using two different names, and launch a
game. To reiterate, to begin a game with another player, click on their name.

Figure 3: Player Selection

Game Invites
Once a player has initiated a game with another player, both players will receive a pop-up. The player
who sent the invite will see the following:

Page 10 of 33

Figure 4: Sent Invite

The player who received the invite will see the following:

Figure 5: Received Invite

The reason we implemented an invite system instead of automatically joining was to allow users more
control over selection of their opponent. In addition, rescinding invites allows for better error handling
and correction of accidental invitations.

Flow Control
Once in the game, a player has the ability to exit in one of two ways. The first is Logout (which is also
available from the lobby system). The second is the Resign button. Both result in losing the game. In
addition, if a player closes the browser tab or window, this will have the same effect as resigning and
then logging out. We recommended players Resign and/or Logout instead of directly closing the browser
tab or window. The figure below shows these controls.

Page 11 of 33

Figure 6: Logout and Resign Buttons

Currently there is no way to re-join a game once a player has exited. This may be included in future
iterations.

Chat System
The chat system provides a means of communication between players. Currently the game setup
assumes some level of coordination and trust between players. Players should discuss and agree on
both piece configurations and admin configurations before making changes. Players may do this outside
of the game or have someone provided configuration instructions to them (as in a classroom setting).
However, should players be separated by distance, the chat feature allows them to settle on the rules of
the game together.

Page 12 of 33

Figure 7: Chat Area

Game Setup: Piece Configuration
There are myriad possible configurations for gameplay. The game options associated with the values
and operations of pieces is located in the Piece Configuration Panel. Clicking on the “Piece
Configuration” button shown below activates the panel.

Figure 8: Piece Configuration Button

Page 13 of 33

Within this panel, one can change the attributes of pieces for both sides as shown below.

Figure 9: Piece Configuration Panel

Each row controls a class of pieces. For example, “White Pawns” sets the values for all white pawns, not
just a particular one. Similarly, “Black Rook” changes the values for all black rooks on the board. The last
row sets values for the entire column (all pieces of both colors).

Each column represents a different property. The “View Range” property identifies how many squares
the specified pieces can see in terms of distance. This includes all directions including diagonals. The
“Sight Strength” property identifies the level of resistant to jamming for the specified pieces. The
“Jamming” property identifies the jamming ability for the specified pieces. An opponent’s piece is visible
on the board if 1) the piece is within the “View Range” of a friendly piece, 2) if the “Sight Strength” of
the “in-range” friendly piece is greater than the “Jamming” value of the opponent’s piece. In addition,
the “See Inward Threats” checkbox makes visible all pieces that are attacking friendly pieces. Similarly,

Page 14 of 33

the “See Outward Threats” checkbox makes visible all pieces that friendly pieces are attacking. The
“Friction” checkbox signifies if pieces are vulnerable to friction. The final attribute, “Value” is how much
material the pieces are worth. That is, if a player captures a piece with value of three, this counts as
capturing three material.

It is important to note that the game synchronizes changes made between both players in the game. In
addition, the game updates the configuration panels immediately. If a player makes changes, the other
player can easily see the changes by opening the Piece Configuration panel.

It is also important to note that either player can change settings for both players at any point in the
game, even after gameplay has started. We chose this approach to configuration to allow maximum
flexibility under a use case in which players are approaching the game in good faith. For some online
environments or those where there is an incentive to cheat, one may desire to implement additional
controls to ensure a fair and equitable handling of the configurations.

Game Setup: Admin Configuration
The Admin Configuration game element is very similar to the Piece Configuration element except it
contains game options that deal with general gameplay, not pieces. The same caveats and reasoning
apply in terms of who can make updates and why there are so few controls restricting the ability to edit
settings. To open the admin panel, click on the “Admin Configuration” button as shown below.

Figure 10: Admin Configuration Button

The figure below shows the game options available.

Page 15 of 33

Figure 11: Admin Configuration Panel

The first option sets the “Maximum Turns” in the game. The second sets the “Maximum Budget”, which
is used in the Piece Composition game mechanic. The “Victory Condition” option allows a user to
overwrite their own victory condition. Note, this is the only option that the game does not synchronize
with the opponent; that is, changing the victory condition using the Admin Configuration will only
update a player’s victory condition. The remaining check boxes control the information shown below the
game board during gameplay. “Show Scores” displays the current scores for the different victory
conditions. “Show Current Friction” shows the current friction piece. The “Show Next Friction” shows
the friction pieces for the next turn. “Show Captured Pieces” shows a running list of the pieces captured.
Finally, “Show Adversary Scores” shows the opponent’s scores for each victory condition.

Piece Composition
The Piece Composition game mechanic allows a player to set their own custom starting position. We
included this feature to enrich the player’s choices and capture the notion of “composition” as used in
the CASCADE program. In short, players can compose their forces (composition), control their execution
(orchestration), and adapt their plans on the fly (limited adaptation; not able to re-compose pieces mid-
game).

After joining a game, the game places the player directly into the Piece Composition view as shown
below. Note how there is a row of spare pieces along the bottom.

Page 16 of 33

Figure 12: Piece Composition (Setup)

There are a few key things to highlight in this figure. First, the Status above the board the player’s piece
color. Second, there is some help text below the board, which provides the basic instructions for placing
pieces. Third, within help text below the board shows the player’s current Victory Condition and the
current budget. Knowing the victory condition will most likely change how a player deploys their pieces.

The basic controls of Piece Composition are dragging and dropping pieces. To add pieces to the board,
drag them from the spare pieces below the board onto the board in the desired location. Once on the
board, the player can drag pieces to alternate locations. To remove a piece, drag it off the board. The
rules for piece composition are simple. Each piece has a value, which is set in the Piece Configuration
panel. When a player places a piece, the piece’s value counts against the total budget, which is set in the

Page 17 of 33

Admin Configuration panel. Players can only place pieces in the bottom two ranks; if a player tries to
place a piece elsewhere on the board, the piece will snap back to its original position. If placing a piece
would exceed the total budget, one cannot drag the piece from the spare piece location. The only
requirements for Piece Composition are that each player must remain under budget, players can only
place pieces in the back two rows, and that each player must place their King. Finally, if a player would
like to play with the standard chess layout, one can simply begin by clicking the “Start” button, shown
below.

Once satisfied with the piece composition, click the “Start” button shown below to begin the game.

Figure 13: Start Button

Victory Conditions
In the current version of the game there are four victory conditions, summarized in the following table.

Table 1: Victory Conditions

Condition Definition
King Capture To achieve victory one must actually capture the other player’s King. Unlike in

normal chess where one would move into checkmate to end the game, this game
does not observe the normal rules of check and checkmate. That is, the game does
not notify players if they are in check and they are not required to move out of
check. Capture the opponent’s King just like any other pieces to win. Hardest to
achieve of the four existing victory conditions.

Most Pieces To achieve victory, one must have captured the greatest number of pieces
(regardless of value/material) by the end of the game. Moderate difficulty.

Most Material To achieve victory one must have captured the most material (regardless of the
number of pieces captured) by the end of the game. Moderate difficulty.

Page 18 of 33

Condition Definition
Three Check To achieve victory one must place the other player’s King in check three times

before the game ends. Note that this game does not observe the normal rules for
check, that is, the game does not notify players if they are in check and they are not
required to move out of check. While able, a player should NOT capture the
opponent’s King under this victory condition until they have checked it three times,
otherwise, it is impossible to win. Easiest to achieve.

Each player begins the game with a random victory condition. This implies that each player has a good
chance of having a different victory condition than their opponent. As such, the game is no longer zero-
sum. That is, both players can simultaneously win or lose. For example, if player A has “Three Check”
and player B has “Most Pieces,” both can lose if player A fails to check player B three times and if Player
A captures more pieces than player B. Similarly, if player A checks player B four times and Player A
captures the most pieces, both players would win. Note that most of the victory conditions are in terms
of the “end of the game,” see the Number of Turns section for more details.

There is a special case when both players randomly select “King Capture.” When this happens, the game
goes into a special mode in which the maximum number of turns is set to infinity. Play will continue until
one of the players physically captures the other player’s King. When this happens, the game will
automatically end. In all other cases, play continues when a player captures a King until the game
reaches the maximum number of turns.

We chose these victory conditions to provide interesting combinations for games while allowing for
asymmetric goals. In addition, the victory conditions provide an acceptable initial game balance. “Three
Check” is probably the easiest of the victory conditions to achieve, but it is also the easiest to detect.
The other victory conditions are more difficult to achieve but are harder to detect, reducing the ability of
an opponent to frustrate a player’s path to victory. In addition, having “King Capture” present models
how different actors can have different goals of different difficulty in conflicts. These victory conditions,
which are a small subset of what is possible, seemed the most balanced, interesting in combination, and
exposed the player to dilemmas we desired to achieve.

Number of Turns
Unlike traditional chess, Clausewitzian chess has a maximum number of turns (with the exception of
dual King Captures as outlined in the Victory Conditions section of this report). The maximum number of
turns is defaulted to 20, but players can adjust this value in the Admin Configuration panel. A turn
consists of a move by both players. Since white always begins, black always has the last move.

This system was necessary to break the zero-sum nature of chess and allow for more expressive and
interesting asymmetric goals between players. In addition, a limit on turns induces a desirable pressure
on players so they are constantly working toward a victory condition, which motivates interesting
conflict on the board. Without this pressure, both sides could sit back and wait for the other side to
make a mistake or reveal information.

Friction Pieces
The inclusion of friction pieces is one of the main game elements in Clausewitzian chess. Each turn a
class of pieces is unavailable for the player to move. In some configurations (including the default), the

Page 19 of 33

game also shows the friction piece for the following move, allowing the player to make plans for their
future turns. In the example shown below, the player is unable to move their Pawns this turn and next
turn will be unable to move their King.

Figure 14: Friction Pieces

It is possible to hide all friction piece hints as well as to show any combination of the friction pieces for
the current and next turn in the Admin Configuration panel. In addition, players can configure the game
using the Piece Configuration panel so that some pieces are immune to friction. The friction status will
show “Active” if the pieces shown are vulnerable to friction and “Immune” if the pieces shown are
immune.

There are a few important things to note with regard to friction pieces. The first is that if a player
attempts to move a piece experiencing friction, the game will allow the player to select the piece and
drag it as if moving it. However, when a player attempts to place the piece at the new location, it will
snap back and the player will see an updated status stating they cannot move friction pieces. The Game
Status section of this report details and shows this status. The second thing to note is that the game
selects friction pieces at random without constraint. The result is that a player may have the same
friction piece for multiple turns in a row. In addition, the player may experience friction on a set of
pieces that they do not have on the board. Finally, as a point of clarification, friction applies to all pieces
of that type for a player. Therefore, if a player has three rooks on the board and “Rook” comes up as the
friction piece, they will be unable to move any of the rooks if their rooks are vulnerable to friction.

Page 20 of 33

We implemented friction pieces this way for specific reasons. Firstly, this method roughly captures real
world friction. We define friction as the inability to receive or execute an order as desired. In the initial
implementation, we model friction by prohibiting the execution of orders on pieces. A real world
equivalent could be lost communications for which a desired unit does not receive an order. In future
iterations of the game, we would like to expand piece friction so that there is a chance for friction pieces
to execute the move desired with a delay and/or execute a slightly altered move. The second reason for
implementing friction pieces this way is to minimize the indication of which pieces are under friction. In
fact, the ideal setup may be with no indicators of friction present at all (although this may degrade the
player’s experience to an unacceptable level). This is important because we want players to consider all
possible moves without providing an obvious framing. For example, if we highlighted the friction pieces
on the board, players would obviously ignore considering those moves. The player fully experiences
friction as intended when they have decided that a particular course of action is best and then are
unable to execute against it. Instead, the players must adapt their plan and select a different move to
work around the constraint. We believe our implementation of friction achieves this effect.

Turn Indicator
Once both players have chosen their force composition by setting their initial board layout, the game
will start. As with traditional chess, the white player always moves first. The game status message above
the board indicates the player’s color.

To help players understand when it is possible for them to select a move, we have implemented simple
turn indicators. These are to the left of the board under to play control buttons. When it becomes the
player’s turn, their color’s turn indicator will flash at them for a few seconds. This is to help direct the
player’s attention back to the game since they were previously waiting on the opponent to make a
move. The figures below show the white and black turn indicators respectively.

Page 21 of 33

Figure 15: White Turn Indicator

Figure 16: Black Turn Indicator

Page 22 of 33

Chess Board and Gameplay
Once the game begins, gameplay progresses like traditional chess with players exchanging moves. There
are a few notable exceptions. First, traditional chess has special moves for pawns and castling. The
Special Rules section of this report discusses how Clausewitzian chess handles these special rules.
Second, due to fog of war, pieces may unknowingly collide. This can happen if a player tries to move a
piece like a Rook or Bishop multiple squares and there is a hidden piece that could block movement. In
this case, if a player’s move encounters a blocking piece, the moved piece will “bounce back” one square
and land in the square in front of the blocking piece. In the special case that the move ends on a square
with hidden piece with no blocking pieces in between, the player captures the hidden piece even though
the piece was not visible. Third, gameplay continues to the maximum number of turns, as described in
the Number of Turns section. This means that play continues after King Capture, there are no
stalemates, checkmates, or other halts to gameplay. In many ways, this actually simplifies the rules of
chess. Fourth, it may be necessary for a player to pass on their turn if no moves are available. This can
happen by friction and in some other rare cases. It is important to note that a player will only be able to
pass on their turn and that this action constitutes their full turn. We recommend players avoid passing
unless necessary as players have limited tempo with which to achieve their victory conditions. The figure
below shows the pass button. Note that the button is enabled (able to be clicked) as it is white’s turn.

Figure 17: Pass Action

The flexibility provided by the Piece Configuration and Admin Configuration settings is important. Using
different configurations, it is possible to play a game very similar to traditional chess. If the players set
the “View Range” to eight and “Jamming” to zero, this will show the full board to both players
throughout the game. This effectively “turns off” fog. Similarly, players can set “Friction” to unchecked
for all pieces allowing the player to move all pieces even if they are friction pieces. This effectively “turns

Page 23 of 33

off” friction. Lastly, if players both override their victory conditions to “King Capture” the players will be
competing for the same symmetric victory condition as traditional chess. With all of these settings taken
together, the only different between Clausewitzian chess and traditional chess is the ability to castle,
check enforcement, literal King capture in lieu of checkmate, and no special outcomes like draw and
stalemate. The flexibility of configuration also allows us to set up interesting experiments and control
many variables. For example, it may be worth running an experiment in which fog and friction are both
“turned off” to explore just the impacts of asymmetric victory conditions without confounders.

In addition to the flexibility provided by the configurations, different settings have drastic impacts on
gameplay. Optimal play is extremely less obvious compared to traditional chess. In many cases, the best
moves for traditional chess given the same board setup are terrible moves in Clausewitzian chess. This is
partly due to fog and friction but mostly a result of differing and asymmetric victory conditions. The
figure below shows the game board after the first turn; note that the turn indicator shows that it is
black’s turn to move.

Figure 18: Gameplay

Page 24 of 33

Game Status: Turns and Gameplay
During gameplay, the game will provide the player with basic status messages. Most commonly this will
include feedback for successful moves, changes in configuration, or when a player attempted to make
an illegal move. Most status messages should include the current turn and the maximum number of
turns.

The text above the game board shows the general status of the game. As shown below, this includes a
bolded header that tells the player what color they are playing followed by a line of text below it with a
status message in blue text.

Figure 19: Status - Turns

Game Status: Friction Pieces
The text below the game board shows specific status updates for gameplay. The red text directly below
the game board shows the status message of friction pieces.

Figure 20: Status - Friction Pieces

Here we note that the status shows both the current and next friction pieces as well as if they are
vulnerable to friction (“Active”) or immune (“Immune”). See the Friction Pieces section for a full
discussion on their role in the game. Note that in some configurations, the current or next (sometimes
both) friction pieces may not be shown here. If this is the case, the red “Friction Pieces:” text will be
visible but the red text below it indicating the friction moves will not be present.

Game Status: Scoring
The black text directly below the Friction Pieces status shows the he current scoring. At a minimum, the
status includes the player’s victory condition. Some configurations (settable in the Admin Configuration
panel) can change the type and amount of information provided in this status section. The figure below
shows the default setting. In this case, the status only shows the player’s score information. Note that
the status shows progress toward all victory conditions regardless of the player’s actual victory
condition.

Page 25 of 33

Figure 21: Status - Scoring (Standard)

In some cases it may be useful to show the adversary’s score status as well. We include this option since
this information is knowable to both players; tracking and showing the status is simply a memory aid.
Technically, tracking and showing the score is not necessary as players can observe and deduce all
captures and checks. Therefore, showing the player’s and adversary’s score status does not reveal any
hidden information. Note, showing the adversary’s score status does not reveal their victory condition;
this always remains hidden. The figure below shows the score status that includes the adversary’s
scores, shown in brackets.

Figure 22: Status - Scoring (Show Adversary Scores)

Game Over
How the game ends is another key difference between traditional chess and Clausewitzian chess. In
traditional chess, the game ends upon checkmate (King Capture is actually prohibited). In addition,

Page 26 of 33

traditional chess has notions of stalemate and draw scenarios (insufficient mating material, threefold
repetition, the 50-move rule, etc.). In addition to these standard gameplay ends, the player may also
offer a draw or resign (conceding victory).

In Clausewitzian chess, the game over logic is simplified. During gameplay there are only two possible
ways for the game to terminate. The first is the standard rule, which is when the game reaches
maximum number of turns. For more details, refer to the Number of Turns section. The second is a rare
special case in which the game randomly assigns both players the “King Capture” victory conditions. In
this case, the maximum number of turns is set to infinity and the game ends as soon as either player
captures a King. These are the only ways the game can end from gameplay. Except for in the second rare
case, play continues past King Capture and the game does not allow stalemates, draws, etc.

In addition to the two possible ways for a game to terminate through gameplay, there is only one way to
end the game outside of gameplay. Players can resign. Offering a draw is not possible. In this game,
resigning ends the game without a clear determination of victory. As the game is not zero-sum, there is
no inference that if player A resigns, player B automatically wins. Instead, the game assumes that the
player that resigned lost. For the player who did not resign, the current convention is to check the status
of their victory conditions at the time of resign. We declare the player not resigning as a “possible
winner” or “possible loser” as supported by their score status and victory condition since the scores
would have likely changed had play continued to the maximum number of turns. Alternatively, if the
game is part of an experiment, we disregard the entire game and do not include the data in our findings.
Clicking the Logout button does the same action in game as resigning except it brings the player back to
the login screen instead of the game lobby. The figure below shows the “Logout” and “Resign” buttons.

Figure 23: Logout, Resign Buttons

The figures below show the resign messages a player would experience if they initiate the resign or
receive it, respectively.

Page 27 of 33

Figure 24: Game Over - Initiate Resign

Figure 25: Game Over - Receive Resign

Finally, when the game concludes during normal play, the Score Status section shows the outcome of
the game, as shown in the figure below. Both the player and opponent are assigned an outcome (no
victory, victory, total victory) based on whether they achieved their victory condition. The status shows
the opponent’s outcome and scores in brackets.

Figure 26: Game Over - Full Game

Page 28 of 33

Special Rules / Considerations
The inclusion of fog, friction, and piece composition game elements forces some special rules for chess
pieces. This section will cover special pawn moves and castling and how they are adapted for
Clausewitzian chess.

The first special move that is different from traditional chess is castling. In short, Clausewitzian chess
does not support castling. The first reason is that the rules of castling become burdensome and complex
when we allow full customization of piece setup. The standard chess layout allows for fixed and
straightforward rules for castling. The same rules only apply to some limited cases when setup is
customized (notably, King must be between two Rooks). The second reason castling is not supported is
that special exceptions would be needed to handle check enforcements and play continuation post King
Capture. In traditional chess, players cannot castle if they have moved their King or Rook, if they would
be moving their King through at attack, or if their King is in check. Clausewitzian chess does not enforce
these rules and the ideal rules and resolution of castling is debatable. Finally, the inclusion of custom
setups allows players to generally “castle for free” anyway as they can pre-arrange their pieces as if
castled.

The remaining special moves all concern pawns. In traditional chess, pawns have a number of special
moves mainly included to speed up the game. First is the initial double pawn move when moving the
pawn from its original position. The second is that pawns can attack diagonally only. The third is en
passant capturing. Finally, pawns can promote to any major piece (non-pawn).

Piece composition allows players to place pawns in either of the back two ranks. This forces some
changes to the special pawn moves. First is the pawn’s double pawn move. We still allow this for pawns
on the second rank (where pawns traditionally start). The problem is handling the case where a pawn is
on the back rank. Some variants allow a double (or triple) pawn move from this location. In the current
implementation of Clausewitzian chess, we only allow a single pawn move from the back rank.
Subsequently, since the player has moved the pawn, they are unable to perform a double pawn move
once they reside on the second rank. The primary reason we include this rule is that is makes it less
appealing to “fill out” the rest of the budget by placing pawns in the back row.

The remaining pawn moves remain intact. All pawns still only attack diagonally as in traditional chess. En
passant capturing is the same as in traditional chess except that it is only available for pawns that start
in the second rank (traditional starting place pawns). Finally, to simplify implementation, we only allow
promotion to Queen.

Findings
Our findings are limited to observations made by the game designers and play testers. We did not
conduct any experimentation on different parameters or scenarios. As such, the findings discussed here
are anecdotal and subject to change. Future efforts should include a more rigorous exploration of how
different levels of fog, friction, chance, and asymmetric ends impact player behavior and cognition. In
addition, it is possible to run experiments to test specific hypotheses. For example, we could test player
performance over different levels of fog to determine if there is an inflection point at which player
performance fully degrades regardless of player skill.

Page 29 of 33

During our play testing, we noted three primary findings. First, the fog of war component was
reasonable and significantly changed how the players played chess. Second, the friction component was
“frustrating” and may even need to be relaxed in future versions. Finally, the asymmetric victory
conditions and non-zero-sum outcomes successfully captured the dynamics of competing under
conflicting ends, leading to different play styles and strategies for different combinations of victory
conditions. In total our play testing incorporated more than 12 unique individuals who played
collectively more than 25 games.

The first finding regarding modeling fog of war was important in two ways. First, we should expect
players to behave differently in the game under uncertainty. Secondly, their behavior was consistent
with real world observations of operating under limited and uncertain information. For example, with
full knowledge of the game board, players are more willing to advance their more capable pieces since
they fully understand the risks of that action. However, when unsure of those risks, players were likely
to hold their more capable pieces in reserve unless they were willing to sacrifice that piece outright. We
see this in the real world as well; military operations typically hold back critical assets until the area is
secure via maritime superiority and/or air supremacy. We were very encouraged to see player behavior
change under our fog of war model and even more so that the new behavior was consistent with real
world behavior in some cases.

The second finding noted that while frustrating, friction forced players to change their behavior and
gameplay. In this case, the most interesting discussion surrounding this finding is how the friction pieces
interrupted the player’s cognitive process of selecting appropriate moves. Since this implementation
minimized the player’s awareness of which pieces the game is holding in friction, players often found
themselves considering moves, and eventually attempting to play moves, that involved friction pieces.
When the move failed, the players had to adapt their reasoning about selecting their next move. Other
approaches to modeling friction may make the friction pieces too obvious, removing the cognitive
disruption our approach provides. It may not be an easy balance to strike, but having friction induce
some level of frustration on the player resulted in interesting player behavior. In addition, we
recommend readers attempt to play a game in which they cannot see either the current and next
friction piece. This case is particularly interesting as it is probably the most realistic model of friction
available in the game.

The third finding regarding asymmetric ends was important in two ways. First, changing the structure of
the game of chess so that it is not zero-sum led to interesting in-game phenomena such as players
attempting to deduce their opponent’s victory condition and attempting deceitful maneuvers to
obfuscate their own. While this kind of behavior is common in the real world, it is certainly not as
common in games like chess. This finding is also interesting as it models victory conditions of various
difficulty resulting in a game that is not always fair. For example, the “Three-Check” victory condition is
often the easiest to succeed at and the most difficult to defend against. The “Most Pieces” and “Most
Material” conditions are close in terms of difficulty but are usually slightly more difficult. In addition,
they are both much easier to defend against than “Three-Check.” This means that if a player can deduce
their opponent’s victory condition, they can actively frustrate their opponent’s efforts. The opposite is
also true. Finally, the “King Capture” victory condition models a total war scenario that is significantly
more challenging than the other victory conditions. Players often cited a lack of fairness when they had
“King Capture” and their opponent had one of the others. This is true in reality; nations have differing

Page 30 of 33

levels of interest at stake in conflicts. Having this emerge from the models was encouraging. We leave
teasing out these concepts to future work.

Our conclusion is that we have successfully modeled fog of war, friction, and asymmetric ends within
the game of chess. Additionally, we hypothesize that incorporating concepts into known games reduces
some barriers for players to learn, exercise, or experience these concepts. This hypothesis, while
unsupported in this document, is an interesting one we believe our other efforts support and we leave
exploring this hypothesis to future work.

Known Issues
In this section we will attempt to list some of the known issues present in the Clausewitzian chess tool.
This list will range from bugs to game elements that could use improvement.

Table 2: List of Known Issues by Category

Category Name Short Description

User Interface Polish The user interface is rough; utilize human factors and
front-end developer expertise.

User Interface Vague Status
Some of the status messages in the UI are vague and do
not provide enough detail. In addition, some status
messages overwrite helpful status messages.

User Interface Improved Dashboard

The current dashboard is limited. Expanding the
functionality would add value to those tracking multiple
games; for example, clicking on a game and having a
person join as an observer would be helpful. Also being
able to hide and expand certain games would be helpful.

User Interface Refactor / Structure

Certain UI elements (forms, page layout) could use
refactoring into more flexible and reactive structures so
that the game can run on a number of platforms, not
just a standard desktop web browser.

Game Play Continuation

There are game states in which it is a player’s turn and
they are unable to move. The current resolution is they
can either pass their turn or resign. This requires further
design.

Game Pawn Moves

With the custom layout (piece composition), pawns can
start in both the back rank and their normal second
rank. Pawns have their standard single or double pawn
move and en passant only from their normal second
rank. How to expand these rules to pawn on the back
rank needs design and implementation.

Game Castling

With the custom layout (piece composition), the game
does not support castling. It is unclear what castling
rules we should allow based on the minimalist
requirements for a valid starting position. This requires
design and implementation.

Page 31 of 33

Category Name Short Description

Game Chess Clock / Timed
Turns

Add in a traditional chess clock so that players know
how much time each has taken in the game. This may
allow extensions to where victory conditions can
incorporate move time.

Game Expanding / Generalizing
Victory Conditions

Generalize victory conditions such that there are two
tiers, easy and difficult. Right now, all victory conditions
are easy except King Capture, which is difficult.
Generalizing in this way will allow for expanding the
available victory conditions in a meaningful way.

Game Expanding Vision
Modifiers

Currently vision is distance-based only with a limited
notion of jamming. It would be interesting to expand
this beyond distance-based approaches to be able to
model different spectrum/domains.

Game Expand Friction

Currently friction only prohibits a move, simulating a
missed or dropped order. Instead, there should be a
chance for move perturbation, resulting in a move 1-2
squares off from desired. This requires design, balance,
and implementation.

Software Documentation

The current version is an engineering prototype; we may
not have documented all of the code as recommended
by traditional open software standards and best
practices.

Software Refactoring / Structure
The current version is an engineering prototype; the
code’s structure may not be as recommended by
traditional open software standards and best practices.

Software Accessible Chat / Status
Low priority bug. Some users wanted the ability to load
chat and status directly to the clipboard for pasting into
other applications.

Software Information History

Some users wanted to be able to view board history.
While we do not intend memory to be a core mechanic,
there is some dependence on information recall in the
current version. Being able to cycle back and see past
information would alleviate the memory pressure.

Software Game Playback Feature

Some users wanted the ability to load a finished game
and cycle through moves and perform standard chess
analysis on different potential lines of play. This is a
standard feature in chess applications. We do currently
record the full FEN3 for each move so that
reconstructing any game is already feasible.

3 Forsyth–Edwards Notation https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation

https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation

Page 32 of 33

Category Name Short Description

Software Hooks to AI / Chess
Engine

Provide easy accessibility to different chess engines and
potential AI engines. Currently the game only supports
2-player human vs human play. Enabling chess engine
and AI play would allow single player mode. In addition,
providing an easy interface would encourage the
development of general chess engines and decision
support tools for environments that incorporate fog and
friction.

Software Dashboard Analytics

The dashboard is limited in showing only the current
status of ongoing games. Having some functionality in
the dashboard to track user progress and performance
would be interesting.

Software Game Spectating

This is a basic functionality in many chess applications
that allows people to join the game but not as a player
on either side. The software does not currently support
spectating in this version.

Software Database Organization

The current database system (MongoDB) stores records
in different data collections. These are currently not very
well organized which can result in awkward and
inefficient data queries.

On a general note, the tool would benefit significantly from polishing and user interface improvements;
unfortunately, this was out of scope for the current effort.

Next Steps
There are some obvious next steps associated with any tool first released in prototype form. This
includes continued iteration and improvement of game systems and software implementations as well
as tackling the list of known issues. Generally speaking: we divide our next steps into three categories.

The first is bug fixes that exist within the current game. The Known Issues section of this report details
most of the major bugs that remain. As with all software, there are likely addition bugs currently
unknown. Further testing and bug fixing is a necessary component of future work.

The second category is expanding and improving upon existing game elements. The Known Issues
section of this report details most of our desired extensions. These include improving, adjusting, or
balancing game systems. In addition, we include in this category engaging with stakeholders in order to
1) understand their feedback of the tool, and 2) prioritize, and define the list of development items
needed to improve the existing elements of the game. Finally, as mentioned in the Known Issues
section, future work should integrate AI components as both a player assistant (decision support, Course
of Action advisor, etc.) and an adversary (super human play, tunable difficulties, etc.).

The third category covers all new items and future directions, including programmatic functions. The
highest priority item in this category is the inclusion of human factors experts to help adjust the user
interface and cognitive experience to improve our models. The first version of this tools shows that

Page 33 of 33

there are interesting implications on player cognition; future work should inspect this aspect in a more
rigorous fashion. Other items left for future work include front-end development (UI polish), running
targeted experiments, and testing our hypothesis that building upon known games helps reduce the
cognitive burden of players.

MIT Lincoln Laboratory Clausewitzian Chess Team

Joel Kurucar, Game Designer, Game Developer
joel.kurucar@ll.mit.edu

Andrew Uhmeyer, Game Designer, Game Developer
andrew.uhmeyer@ll.mit.edu

Jared Pullen, Game Developer
jared.pullen@ll.mit.edu

Robert Seater, Game Designer
robert.seater@ll.mit.edu

Sean Winkler, MIT LL Team Lead
sean@ll.mit.edu

	Clausewitzian_Chess_v6
	Executive Summary
	Purpose
	Findings
	Known Issues / Next Steps

	Background
	Program Overview
	Game Purpose

	Technology Transition
	Deployment Options
	Installation / Dependencies
	Install Project Files
	Dependencies
	Cleanup

	Running the Server
	Manual
	Scripted
	Running the Game
	Trouble Shooting

	Accessing the Data
	Shutting Down

	Game Elements and Design
	Basic Principles
	Core Game Mechanics
	Game Element Walkthrough
	Login System
	Lobby System
	Players
	Game Invites
	Flow Control
	Chat System
	Game Setup: Piece Configuration
	Game Setup: Admin Configuration
	Piece Composition
	Victory Conditions
	Number of Turns
	Friction Pieces
	Turn Indicator
	Chess Board and Gameplay
	Game Status: Turns and Gameplay
	Game Status: Friction Pieces
	Game Status: Scoring
	Game Over
	Special Rules / Considerations

	Findings
	Known Issues
	Next Steps
	MIT Lincoln Laboratory Clausewitzian Chess Team

	Chess_Demo_RAMS.pdf
	Slide Number 1

