
Mithril BlindAI

Security assessment report

Reference 23-03-1142-LIV
Version 1.1

Date 2023/26/05

Quarkslab SAS
10 boulevard Haussman

75009 Paris
France

Contents

1 Project Information 1

2 Executive summary 2
2.1 Disclaimer . 3
2.2 Findings summary . 4

3 Context and scope 5
3.1 BlindAI . 5
3.2 SGX . 7

3.2.1 Overview . 7
3.2.2 Key concepts and definitions . 7

3.3 AI Inference . 10
3.4 Audit Scope . 11

3.4.1 Virtual Machine . 11
3.4.2 Server . 11
3.4.3 Client . 11

4 Discovery 13
4.1 State of the Art on Intel SGX . 13

4.1.1 Background on Intel SGX . 13
4.1.2 List of known attacks on Intel SGX . 15
4.1.3 List of found tools for Intel SGX studies . 19

4.2 Discovery . 21
4.2.1 Build . 21
4.2.2 Run . 22
4.2.3 Code Structure . 23
4.2.4 Client . 23
4.2.5 Server . 24
4.2.6 Tests . 24
4.2.7 Dependencies . 24

4.3 Fortanix . 26
4.4 Code quality . 28

4.4.1 cargo audit . 28
4.4.2 cargo geiger . 30
4.4.3 Improper handling of error conditions . 31
4.4.4 cargo clippy . 32
4.4.5 Nonce set to 0 . 33
4.4.6 Client . 34
4.4.7 CBOR . 35

5 Threat model and methodology 36
5.1 Threat model . 36

5.1.1 Assets . 36
5.1.2 Secure usage hypotheses . 37

5.1.3 Security threat actors . 37
5.1.4 Security Threats . 37

5.2 Methodology . 39

6 Remote attestation 40
6.1 Introduction . 40
6.2 Application in BlindAI . 42

7 Resiliency tests 46
7.1 Man-at-the-End . 46

7.1.1 RDRAND . 46
7.1.2 SGX-Step . 48

7.2 Man-in-the-Middle . 49

8 Conclusion 54

Bibliography 55

A Appendix 62
A.1 Example of QE identity . 62
A.2 Example of TCB info . 63
A.3 Example of client manifest . 65
A.4 Accessing enclave memory from a debugger . 66
A.5 Default parameters of enclave builder lead to a debuggable enclave 70
A.6 Output of cargo geiger . 73
A.7 Output of cargo clippy . 78

1 Project Information

Document history
Version Date Details Authors
1.0 2023/26/05 Initial Version Ramtine Tofighi Shirazi & Damien Aumaitre

& Dahmun Goudarzi
1.1 2023/26/05 Minor revisions Ramtine Tofighi Shirazi & Damien Aumaitre

& Dahmun Goudarzi

Quarkslab
Contact Role Contact Address

Frédéric Raynal CEO fraynal@quarkslab.com
Ramtine Tofighi Shirazi Project Manager mrtofighishirazi@quarkslab.com
Damien Aumaitre R&D Engineer daumaitre@quarkslab.com
Dahmun Goudarzi R&D Engineer dgoudarzi@quarkslab.com

Mithril Security
Contact Role Contact Address

Daniel Huynh CEO daniel.huynh@mithrilsecurity.io
Corentin Lauverjat Head of Security Engi-

neering
corentin.lauverjat@mithrilsecurity.io

Yassine Bargach Security Engineer yassine.bargach@mithrilsecurity.io

Ref: 23-03-1142-LIV 1 Quarkslab SAS

2 Executive summary

This report presents the results of the collaboration between Mithril Security and Quarkslab on
the security audit of the BlindAI-preview1.

BlindAI is an AI inference server with an added privacy layer that aims to protect the data sent to
models. The main objective is to leverage state-of-the-art security to benefit from AI predictions,
without putting users’ data at risk. To that purpose, BlindAI is built on top of the hardware
protection provided by Intel SGX, to provide end-to-end data protection.

The goal of the audit was to define the relevant threat models to the BlindAI, and to perform
security testing based on the latter and within an allocated time frame. To that end, the following
4-step scope of work was defined and agreed upon by Mithril Security and Quarkslab:

• Step 1: study of the state-of-the-art attacks on Intel SGX, andmore broadly in the confidential
computing area;

• Step 2: definition of a threat model to refine a test plan relevant for the BlindAI;

• Step 3: security assessment and testing of the BlindAI based on the previous steps;

• Step 4: reporting and project management.

This audit report starts with introductory sections and in Section 3 a more detailed presentation
of the context and scope of the audit. Then, Section 4 introduces the discovery work performed
by Quarkslab auditors to define the threat model as described in Section 5. Afterward, Section 6
presents Quarkslab auditors’ cartography and assessment methodology as applied on the BlindAI.
The results of the assessment are provided, based on the threat model in Section 7. Finally,
Section 8 provides a conclusion based on the assessment performed on the security of the BlindAI,
with respect to the above-mentioned scope of work.

The security audit was performed from January to March 2023.

1https://github.com/mithril-security/blindai-preview

Ref: 23-03-1142-LIV 2 Quarkslab SAS

https://github.com/mithril-security/blindai-preview

2.1 Disclaimer

This report reflects the work and results obtained within the duration of the audit defined for 40
days on the specified scope and as agreed between Mithril and Quarkslab in 22-06-1001-PRO.
Tests are not guaranteed to be exhaustive and the report does not ensure the code is bug or
vulnerability free.

Warning

The scope of the assessment was modified to the BlindAI-preview instead of the
BlindAI at the beginning of the audit. The BlindAI-preview is based on other
technical modules, such as Fortanix [1] (as opposed to Teaclave [2] for the
BlindAI). Attacks on the client of the BlindAI-preview are only considered during
Man-in-the-Middle attacks, considering an attacker on the server side. Other
scenarios were considered out of scope of this assessment.

Throughout the rest of this report, BlindAI will be use to identify the audited
BlindAI-preview.

Ref: 23-03-1142-LIV 3 Quarkslab SAS

2.2 Findings summary

The following table synthesizes the various findings that were uncovered during the audit. The
severity classification given as informative, low, and medium, reflects a relative hierarchy between
the various findings of this report. It depends on the threat model and security properties
considered.

During the time frame of this assessment, the auditors identified:

• 1 vulnerability rated as low;

• 7 security weaknesses considered as informative only.

ID Description Category Severity
LOW 1 BlindAI does not have a mechanism to offload

to the disk when memory consumption is high,
which makes a denial-of-service attack possi-
ble when multiple models are sent.

CWE-770: Allocation of
Resources Without Lim-
its or Throttling

Low

INFO 1 Enclaves are unsigned prior to running which
is not compliant with Fortanix EDP documen-
tation.

CWE-345: Insufficient
Verification of Data Au-
thenticity

Info

INFO 2 One of the dependencies used by the enclave,
rouille [3] seems to have some issues.

CWE-1104: Use of Un-
maintained Third Party
Components

Info

INFO 3 The code used in BlindAI does not properly
handles errors or exceptional conditions.

CWE-703: Improper
Check or Handling of
Exceptional Conditions

Info

INFO 4 Some functions are using unwrap (which can
cause a panic) when they are supposed to han-
dle errors.

CWE-676: Use of Poten-
tially Dangerous Func-
tion

Info

INFO 5 When the runner requests a quote from the
quoting enclave, it uses a nonce value set to 0
which is not a good practice.

CWE-323: Reusing a
Nonce, Key Pair in En-
cryption

Info

INFO 6 Client uses rapidjson from Tencent which is
known for not taking security issues [4].

CWE-1357: Reliance on
Insufficiently Trustwor-
thy Component

Info

INFO 7 Usage of CBOR to encode data sent and re-
ceived by the enclave which not maintained
anymore [5].

CWE-1104: Use of Un-
maintained Third Party
Components

Info

Ref: 23-03-1142-LIV 4 Quarkslab SAS

https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/345.html
https://cwe.mitre.org/data/definitions/345.html
https://cwe.mitre.org/data/definitions/345.html
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/703.html
https://cwe.mitre.org/data/definitions/703.html
https://cwe.mitre.org/data/definitions/703.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/323.html
https://cwe.mitre.org/data/definitions/323.html
https://cwe.mitre.org/data/definitions/323.html
https://cwe.mitre.org/data/definitions/1357.html
https://cwe.mitre.org/data/definitions/1357.html
https://cwe.mitre.org/data/definitions/1357.html
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/1104.html

3 Context and scope

This chapter presents the context of the assessment, namely, BlindAI and Intel SGX. In order to
get familiar with the context, the auditors present some key concepts and definitions.

Then, the audit settings and scope, with a client and a server, are also introduced.

3.1 BlindAI

BlindAI is an open-source solution offered by Mithril Security for confidential computing of AI
inference on servers. It is based on a Rust server deployed on Azure VMs that have Intel SGX
hardware. Thanks to this specific set of instructions provided by Intel, BlindAI can provide a
space, called enclave, where the AI inference can be made securely and privately.

To interact with the enclave, BlindAI provides as well a Python-based client, which allows a user
to upload, run, and delete models on the server, after establishing secure communication channels
to the server via TLS.

The entire client-server protocol of BlindAI can be seen as follows:

Ref: 23-03-1142-LIV 5 Quarkslab SAS

Figure 3.1: BlindAI Overview

Please note that this overview is taken from a previous version of BlindAI1, but the overall design
rationale is still relevant.

BlindAI has the advantage that it is an open-source project available on GitHub, and can be
deployed on someone’s infrastructure. The BlindAI preview is currently in the beta stage of
development.

1Overview from https://blindai-preview.mithrilsecurity.io/en/latest

Ref: 23-03-1142-LIV 6 Quarkslab SAS

https://blindai-preview.mithrilsecurity.io/en/latest

3.2 SGX

This section provides an introduction to the Intel SGX technology, along with some key concepts
and definitions related to the product and used by the auditors to get acquainted with the BlindAI.

3.2.1 Overview

Intel SGX is a technology that was developed to meet the needs of the Trusted Computing industry,
similar to the ARM TrustZone, but this time for desktop and server platforms. It allows user-land
code to create private memory regions, called enclaves, that are isolated from other processes
running at the same or higher privilege levels. The code running inside an enclave is effectively
isolated from other applications, the operating system, the hypervisor, et cetera.

The implementation of Intel SGX can be summarized in a few points:

• an application is split into two parts: a secure one and a non-secure one;

• the application launches the enclave, which is placed in protected memory;

• when an enclave function is called, only the code within the enclave can see its data, external
accesses are always denied; when it returns, enclave data stays in the protected memory.

The secure execution environment is part of the host process, which means that:

• the application contains its own code, data, and enclave;

• the enclave contains its own code and its own data too;

• SGX protects the confidentiality and integrity of the enclave code and data;

• enclave entry points are pre-defined during compilation;

• multi-threading is supported (but not trivial to implement properly);

• an enclave can access its application’s memory, but not the other way around.

SGXv2 introduces a new set of instructions and hardware features that enables developers to
dynamically manage memory within the SGX environment. It also allows us to extend the sizes
of the pages (from 128 Mo to 16 Gb) to handle bigger data.

3.2.2 Key concepts and definitions

The paragraphs below introduce some key definitions and concepts used by the auditors for the
discovery of the target of evaluation2.

Attestation

Sometimes enclaves need to collaborate with other enclaves on the same platform due to dif-
ferent reasons such as data exchange if the enclave is too small to hold all the information, or
communication with Intel reserved enclaves to conduct specific Intel services.

2Please note that most or some definitions are taken directly from [6], [7], and Intel’s documentations.

Ref: 23-03-1142-LIV 7 Quarkslab SAS

Therefore, the two exchanging enclaves have to prove to each other that they can be trusted. In
other scenarios when an SGX enabled ISV client requests secrets from its ISV client, password
management service, for example, the client has to prove to the server that the client application
is running on a trusted platform that can process the secrets securely. Both of those two conditions
require a proof of secured execution environment, and Intel SGX refers to this proving process as
attestation.
There are two types of attestation concerning the two above-mentioned scenarios:

1. Local Attestation;

2. Remote Attestation.

Sealing

In order to protect and preserve the data outside an enclave, a mechanism is in place which
allows enclave software to retrieve a key unique to that enclave. This key can only be generated
by that enclave on that particular platform. Enclave software uses that key to encrypt data to the
platform or to decrypt data already on the platform. The terms sealing and unsealing are used by
SGX to describe the process of encrypting and decrypting, respectively.

Trusted Computing Base (TCB)

The TBC, also called Enclave Measure, is a cryptographic stamp of all the build activities, which
includes:

• Content: code, data, stack, and heap;

• Location of each page within the enclave;

• Security flags being used.

REPORT

Hardware report generated by the Intel® SGX HW that provides identity and measurement
information of the enclave and the platform. It can be MAC’d with a key available to another
enclave on the same platform.

Quoting Enclave (QE)

A special enclave on every SGX processor which is tasked entirely with handling the remote
attestation. It receives REPORTs from other enclaves, verifies them and signs them with the
attestation key before returning the result, also known as a QUOTE, to the application.

DCAP

DCAP is the software infrastructure provided by Intel for the new ECDSA/PCS-based remote
attestation. It relies on the Flexible Launch Control hardware feature and is intended for a server
environment where you control all the machines.

Ref: 23-03-1142-LIV 8 Quarkslab SAS

AESM client

AESM stands for Architectural Enclave Service Manager, which handles all system services for SGX
enclaves such as the trusted time attestation and monodic counters with the help of the Platform
Service Enclave (PSE).

Provisioning Certification Enclave (PCE)

Intel SGX architectural enclave that uses a PCK to sign QE REPORT structures for Provisioning
or Quoting Enclaves. These signed REPORTS contain the ReportData indicating that attestation
keys or provisioning protocol messages are created on genuine hardware.

Provisioning Certification Key (PCK)

Signing key available to the PCE. The key is unique to the processor package or platform instance
and its TCB. The public part of the key is distributed as a PCK certificate.

SVN

The version number that indicates when security-relevant updates occurred. New versions can
have increased functional versions without incrementing the SVN.

FMSPC

Description of the processor package or platform instance including its Family, Model, Stepping,
Platform type, and customized SKU (Stock Keeping Unit).

Ref: 23-03-1142-LIV 9 Quarkslab SAS

3.3 AI Inference

AI inference is the core component of machine learning algorithm and their operations.

In order to perform such complex operations, machine learning algorithms rely on so-called
tensors, which are vectors and matrices in multi-dimensions containing several sources of infor-
mation used as input or by the model to obtain desired results. They are key building blocks in
the AI inference component and their privacy are of at most importance.

The core building blocks in AI inference are the models used by the algorithm in order to recognize
patterns or make decisions. The model is usually trained on a large dataset in order to obtain
the most accurate values, which can be seen as a set of tensors and weights. The model training
step is a complicated and costly step, highly dependent on the dataset used for training, and
obtaining sound, precise models makes the difference between actors in the field. This is why
holding the privacy of the models is essential for AI actors.

BlindAI uses the ONNX format (see [8]) in order to manipulate tensors and models within their
infrastructure. ONNX is an open framework for AI inference, widely used in the community
and supported by most of the main actors in machine learning. It has the advantage of being
interoperable and having built-in resources for hardware optimizations.

Ref: 23-03-1142-LIV 10 Quarkslab SAS

3.4 Audit Scope

As previously mentioned, the goal of the audit was to define the relevant threat models to the
BlindAI, and to perform security testing based on the latter and within an allocated time frame.
To that end, the following scope of work was define and agreed by Mithril Security and Quarkslab:

• Step 1: study of the state-of-the-art attacks on Intel SGX, andmore broadly in the confidential
computing area;

• Step 2: definition of a threat model to refine a test plan relevant for the BlindAI;

• Step 3: security assessment and testing of the BlindAI based on the previous steps;

• Step 4: reporting and project management.

3.4.1 Virtual Machine

The table below presents the virtual machine details used during the security assessment.

Setup Virtual machine provided by Mithril Security

Host Azure VM DCs4v3

OS Ubuntu 20.04

CPU Intel(R) Xeon(R) Platinum 8370C CPU @ 2.80GHz

3.4.2 Server

The table below provides the version and commit hash used at the time of the audit:

Intel SGX SDK version 2.11

Azure DCAP client 39e0381b7ab7c672b92132f71583a5d565e6b16e

3.4.3 Client

For the client side, the evaluation was made using the pip package release version 0.0.2 from
January 25, 2023. The client also uses an external library developed by Intel for quote verification,
on which a patch was applied, called QvL (Quote Verification Library). The patch can be found
on https://github.com/mithril-security/sgx-dcap-quote-verify-python.

Client (pip package) release version 0.0.2 (Jan. 25, 2023)

QvL (patched) patch repository

In this audit, we assume that the client is used as it is and no modification to its setup can be
made (for instance to its toml files).

Ref: 23-03-1142-LIV 11 Quarkslab SAS

https://github.com/mithril-security/sgx-dcap-quote-verify-python
https://github.com/mithril-security/sgx-dcap-quote-verify-python

Warning

Quarkslab auditors note that the above-mentioned hypothesis is made given the
early development stages of BlindAI. This hypothesis makes some attack scenarios
from the wild not applicable. However, this assumption was done to restrict the
scope of the audit to scale to the given time frame.

Ref: 23-03-1142-LIV 12 Quarkslab SAS

4 Discovery

4.1 State of the Art on Intel SGX

In this section, we describe the different documentations and tools that have been studied by
the auditors to build some knowledge bases on Intel SGX, from its inception to the most recent
known attacks. We first start by listing different sources for understanding better how Intel SGX
works, then give a list of the different known attacks and if possible link to their source codes.
Finally, we describe the two main tools that are currently available to play with Intel SGX, either
for side-channel-based attacks (SGX-Step) or fuzzing (SGX Fuzz).

4.1.1 Background on Intel SGX

Intel Software Guard Extension (SGX) [9] was introduced in 2015 with microprocessors based on
the Skylake micro-architectural family (6th generation). It is a set of operation codes to provide
integrity and confidentiality for secure computing on a computer, where privileged software can
be supposed malicious (kernel, hypervisor, etc.).

In order to provide isolated execution, one of the main features upon which Intel relies is software
attestation. This allows us to prove that communications between the users are made with the
proper piece of trusted hardware, called enclaves. A set of talks and tutorials were given by Intel
to describe their new innovation [10, 11]. Due to the problem that SGX aims to solve, namely
secure computing, this new technology gained interest in the community and started to receive a
lot of scrutiny [12, 13].

One of the core articles about Intel SGX is made by two MITs researcher [14]. They compiled
in a single document every valuable information provided by Intel’s documentation and diverse
research papers into one dense paper that explains in detail how exactly Intel SGX works, from
hardware wires to high-level cryptographic protocols. Since 2016 and its publication, it has served
as a ground basis for many papers or publications involving Intel SGX research. The paper first
starts by describing the security problem Intel SGX tries to tackle: secure remote computation
via a trusted computing device using software attestation. Then, the author provides a very rich
and well-written background on computer architecture and security. Those backgrounds aim to
cover all principles behind Intel’s most popular computer processors, cryptographic primitives
and protocols, software attestation, and known attacks in such context (either at the software or
hardware level). After detailing some other trusted hardware devices such as the ARM TrustZone
or previous attempts from Intel, a deep dive into the Intel SGX programming model and its
analysis is made by the authors. In particular, they provide a very thorough explanation of the
enclaves, the central concept behind SGX.

Following this work, a series of other publications exist in the wild providing a more succinct
overview of Intel SGX. Amongst them, we can find the Quarkslab blog posts [7] or the SGX 101
website [6]. For enclaves in particular, SSLab made an interesting summary of their function-
ing [15].

Intel soon updated their micro-code to SGX2 [16], which introduces a new set of instructions
and hardware features that enables developers to dynamically manage memory within the SGX

Ref: 23-03-1142-LIV 13 Quarkslab SAS

environment. It allows also to extend the sizes of the enclaves to handle bigger data. Intel SGX2
was introduced with Gemini Lake processors, but it is also supported on multiple other processors
such as the Xeon family.

To gain the trust between a remote provider or producer and the hardware entity, Intel relies on
remote attestation. On the one hand, remote attestation ensures to the client that the software is
running inside an SGX enclave and on a fully updated system. On the other hand, the attestation
guarantees to the hardware of the identity of the software being attested, the execution mode,
and if the software was tampered or not. To provide remote attestation, Intel developed two
main attestation methods: Intel EPID and Intel SGX DCAP.

Intel Enhanced Privacy ID (Intel EPID) [17] is the Intel security technology to handle anonymity
and membership revocation. It is now deprecated for server environments, which means depre-
cated for Intel SGX (as Intel SGX is only approved for server/cloud usage).

Intel SGX Data Center Attestation Primitive (Intel SGX DCAP) [18] is the software infrastructure
provided by Intel for the new ECDSA/PCS-based remote attestation. It relies on Flexible Launch
Control hardware feature. It is intended for a server environment where you control all the
machines.

More details on how the remote attestation work are given in Section 6.

Due to the wide number of attacks on Intel SGX via side-channel attacks, Intel SGX solutions
have been declared deprecated for the 11th and 12th generation of processors. Intel continues
development for the Xeon family where the usage of the secure enclave should only be made in
cloud and enterprise scenarios, namely when the attacker cannot get direct access to the devices.

In recent years, developers have started implementations on Intel SGX targets for cloud usage
in order to tackle different problems answered by secure computing. A good starting point
to understand how to develop on SGX target and the different problematics inherent to SGX
programming is INRIA’s lesson on SGX basics [19]. It provides a good overview on how SGX and
its different component works at the software level, the basics on how to configure an enclave and
define the ECALLs and OCALLs, and some exercises on running sensitive data inside an enclave
from scratch. A more industrial project on SGX development is the Gramine project, which offers
a dedicated OS for cloud deployment to run applications in an isolated environment such as
SGX [20]. The project is open source and written mostly in C. More recently, several developments
have been provided by the Rust community to propose memory-safe enclave programming [21].
The most notable Rust project is Fortanix [22]. Fortanix-EDP is the main building block of the
BlindAI and we provide in the following a more in-depth description and analysis (see Section
4.3).

In the following, we give an overview of most of the attacks published on Intel SGX in the last
couple of years. Some notable papers that list several of those attacks, mostly the ones based
on side-channel are the SGX Fail paper [23] and a survey made by a couple of academics on
ArXiv [24]. To the best of our knowledge, most of the attacks have been thwarted by Intel via
security patches and countermeasures.

Ref: 23-03-1142-LIV 14 Quarkslab SAS

4.1.2 List of known attacks on Intel SGX

There exists a certain number of attacks on Intel SGX since its release in 2015. Most of them
are based on side-channel attacks, where an attacker can extract or recover viable information
via controlled channel attacks, cache attacks, speculative execution attacks, branch prediction
attacks, rogue data cache loads, micro-architectural data sampling and software-based fault
injection attacks. We summarized a list of known attacks we could find from various sources.
Please note that we might have not been fully exclusive on them and the table was made during
the allocated time frame.

Ref: 23-03-1142-LIV 15 Quarkslab SAS

Publication Summary Source Year
Controlled channel attacks

Controlled-Channel [25] Memory access monitoring via
page fault

N/A 2015

Stealthy Page Table-Based [26] Observe enclave page accesses by
exploiting the address translation
process.

[27] 2017

SGX-Step [28] Configure APIC timers and tracks
page table entries directly from
user space

[29] 2017

Nemesis [30] Leak micro-architectural instruc-
tion timings from enclaved execu-
tion environments

[31] 2018

Off-Limits [32] Exploitation of the memory seg-
mentation feature in 32-bit legacy
mode

N/A 2018

Leaky Cauldron [33] Exploiting risk in memory manage-
ment, from TLB to DRAM modules

[34] 2017

CopyCat [35] Controlled-channel attack that de-
terministically counts the number
of instructions executed within a
single enclave code page

N/A 2020

Cache attacks
CacheZoom [36] Cache side-channel attack to virtu-

ally track all memory accesses of
SGX enclaves

[37] 2017

Cache Attacks on Intel SGX [38] Access-driven cache-timing attack
on AES when running in an Intel
SGX enclave

N/A 2017

Malware Guard Extension [39] Prime+Probe cache attack on a co-
located SGX enclave

N/A 2017

Software Grand Exposure [40] Cache attack on SGX enclave that
is claimed easier to deploy and less
detectable

N/A 2017

CacheQuote [41] Implementation weakness of the
EPID protocol that leaks informa-
tion via cache side-channel

N/A 2018

MemJam [42] Exploits false dependency of mem-
ory read-after-write

N/A 2017

Rogue Data Cache Loads
FORESHADOW [43] Software micro-architectural at-

tack to dismantle SGX’s security ob-
jectives

[44] 2018

Figure 4.1: List of known attacks on SGX - Part 1

Ref: 23-03-1142-LIV 16 Quarkslab SAS

Publication Summary Source Year
Speculative Execution Attacks

SgxPectre [45] SGX-variants of Spectre attacks [46] 2019
Spectre Returns [47] Spectre-like attack that exploits re-

turn stack buffer instead of branch
predictor unit

N/A 2018

SGXSpectre Sample code demonstrating a
Spectre-like attack against an Intel
SGX enclave

[48] 2018

Branch Prediction Attacks
Fine-grained Control Flow [49] Reveals fine-grained control flows

in an enclave with branch shadow-
ing

N/A 2017

BranchCode [50] Infer the direction of an arbitrary
conditional branch instruction

N/A 2018

Bluethunder [51] Bypass existing protection and re-
veal the secret information inside
an enclave with a new pattern his-
tory table based side-channel at-
tack

N/A 2019

Micro-architectural Data Sampling
RIDL [52] Leak arbitrary data across address

spaces and privilege boundaries via
speculative unprivileged and con-
strained attacks

[53] 2019

ZombieLoad [54] Meltdown-type attack that faults
load instructions

[55] 2019

CacheOut [56] Speculative execution attacks to
leak data from OS kernel

[57] 2021

SGXAxe [58] Follow-up of CacheOut [57] 2021
CROSSTALK [59] Combination of micro-coded in-

structions for off-core requests and
MDS to reveal internal CPU state

[60] 2021

Software-based Fault Injection Attacks
Plundervolt [61] Exploitation of an undocumented

Intel Core voltage scaling interface
to corrupt integrity of SGX enclave
computations

[62] 2020

VOLTpwn [63] Software-based attack that affects
the integrity of computation on x86
platform by targeting a physical
core to force non-recoverable hard-
ware faults

[64] 2020

Figure 4.2: List of known attacks on SGX - Part 2

Ref: 23-03-1142-LIV 17 Quarkslab SAS

Publication Summary Source Year
Software-based attacks

AsyncShock [65] Hijack enclave control flow or by-
pass access control by exploiting
use-after-free and time-of-check-to-
time-of-use

N/A 2016

Game of threads [66] Schedule asynchronous threads to
bypass enclave protections

[67] 2020

SmashEx [68] Exploitation of asynchronous ex-
ceptions in SGX to expose enclave
private memory and ROP attacks,
without memory errors, side chan-
nels, or logic flaws

[69] 2021

A Tale of Two Worlds [70] Sanitization vulnerabilities at the
ABI and API level to exploit mem-
ory safety and side-channel attacks
in the compiled enclave

[71] 2019

The Guard’s Dilemma [72] Two code-reuse attacks against en-
clave that provide full control of
the CPU’s general-purpose register
without kernel privileges

N/A 2018

MicroScope [73] Micro-architectural replay attack
by inducing pipeline flushes which
can denoise the port contention
channel of execution units

[74] 2020

Platypus [75] Software-based power side-
channel attacks to exploit unprivi-
leged access to the Intel Running
Average Power Limit interface

[76] 2021

Figure 4.3: List of known attacks on SGX - Part 3

We described hereafter some of the most notable attacks.

RDRAND [77]

RDRAND is an Intel instruction that allows to grant access to a FIPS-validated random number
generator. Most of the Intel SGX platform uses it as a source of fresh randomness. In mid-2020, a
CVE was published where the authors were able to get an output of the RDRAND instructions due
to some shortcut taken by Intel inside the core of the chip regarding speculative execution. This
CVE has a tremendous impact since leaking the output of the RDRAND instruction can directly
lead to the knowledge of the session’s encryption keys.

Intel has since then released a series of microcode updates for the affected platforms.

Ref: 23-03-1142-LIV 18 Quarkslab SAS

LVI Attack [78]

LVI (Load Value injection) is an attack published at S&P 2020 [79] based on speculative execution
to leak secret data. The attack is based on a micro-architectural flaw to inject malicious data
through hidden processor buffers, by inducing a faulting load in the victim program and then
recovering secret-dependent traces via side channels on the load value that has been transiently
injected into code gadgets. This attack uses the SGX-Step framework. A demo is available on the
webpage [78].

Intel has since then released microcodes updates for the affected platforms and future hardware
products can mitigate this attack with silicon fixes.

SGXAxe [57]

CacheOut and its evolution SGXAxe are attacks published at S&P 2021 [56] based on speculative
execution attacks to leak data from OS kernel, co-resident virtual machines, and SGX enclaves
even when side-channel countermeasures are applied. Contrary to the previous attack, it has
the advantage of selecting which data to leak instead of waiting for the data to be available. To
do so, the authors propose a micro-architectural attack that bypasses Intel’s buffer overwrite
countermeasures by observing that when data is evicted from the CPU L1’s cache, it is often
transferred back to the leaky CPU buffer. A demo is available on the webpage [57].

Intel has since then released micro-code updates and BIOS updates to mitigate the attack.

AEPIC Leak [80]

AEPIC Leak is an attack published at USENIX 2022 [81] targeting most 10th, 11th and 12th
generation Intel CPUs. The attack is based on an architectural bug where the attacker managed
to recover sensitive data that has been directly in the cache due to an incorrectly defined range
in the APIC MMIO. In order to mount the attack, one requires to be an administrator or root to
access the APIC MMIO. This attack uses the SGX-Step framework. A demo is available on the
webpage [80].

Intel has since then released microcode and SGX SDK updates to mitigate this attack.

4.1.3 List of found tools for Intel SGX studies

In this section, the auditors present some of the most notable tools related to Intel SGX state-of-
the-art presented before.

SGX-Step

SGX-Step [82] is an open-source framework that allows to perform side channel attacks on Intel
SGX platforms. It is based on the development of a malicious tool that allows to deploy a kernel
module that will help researchers gather precious information on a targeted enclave via different
entry points. It has been the entry point for several attacks and their GitHub repository lists and
gives access to most of them: Plundervolt, AEPIC leak, LVI, a tale of two worlds, and so on.

Ref: 23-03-1142-LIV 19 Quarkslab SAS

The framework can be found on GitHub [29]. Their README details a certain number of known
projects that uses SGX-Step. Please note that all Intel CPUs are supported for the framework [83].

SGX Fuzzer

At USENIX 2022, researchers presented a tool to perform fuzzing on Intel SGX platforms to
expose enclave vulnerabilities even without source-code access [84]. With their open-source tool
SGXFuzz [85], they were able to obtain several results on Intel SGX enclaves:

• Enclave dumping: automatically extracts executable enclave code;

• Enclave runner coverage: execution of enclave code outside SGX to retrieve code coverage
feedback;

• Memory Location Havoc: analysis of the enclave memory to detect trust-boundary attacks;

• Fuzz analysis: security analysis of several enclaves which lead to 79 bugs or vulnerabilities
found.

In order to make the tool work, an Intel PT-enabled CPU is required for the fuzzing setup. We
discovered this tool during the state-of-the-art write-up and did not have access to such equipment
in the time frame of this audit.

Ref: 23-03-1142-LIV 20 Quarkslab SAS

4.2 Discovery

4.2.1 Build

In this section, we describe the different steps we followed in order to build and run the BlindAI
server and client. For the server, we followed the instructions provided in [86]. For the client, we
followed the instructions provided in [87] (pip install) and [88] (client SDK installation).

Server

In order to build BlindAI on the server side, one simply needs to run the following commands:

$ just build

In order to understand what the build instruction does, we took a closer look at the just file.
Here are the different steps performed in order to produce a functioning server build. Please note
that some SGX-specific terms are employed, which are detailed in more depth in the next sections
of the report. We focus here on the build process.

The just file first starts by building the Rust project for the SGX target:

$ cargo build -target x86_64-fortanix-unknown-sgx --release

Then, the initialization of the enclave is made via an SGX stream format command. This allows
us to get a proper description of the basics of the enclave, and combined with a signature and
initialization token, to produce the MRENCLAVE. In fact, one simply needs to compute the hash
SHA-256 of the output of the format command done in the just file:

$ ftxsgx-elf2sgxs "$binpath" \
--heap-size 0xFBA00000 \
--ssaframesize 1 \
--stack-size 0x20000 \
--threads 20

Then, the manifest file is generated by applying a hash on the output of the previous command
which is saved into a TOML file as follows:

just generate-manifest-dev "$binpath.sgxs"
cp manifest.dev.toml client/blindai_preview/manifest.toml

just generate-manifest-prod "$binpath.sgxs"

Finally, the server’s runner is built as follows:

$ (cd runner && cargo build --release)

Ref: 23-03-1142-LIV 21 Quarkslab SAS

Client

BlindAI’s client only requires Python 3.8 or greater, wget and pip for its installation. Then, one
can simply run the following command:

$ pip install blindai-preview

For the client SDK, it can be installed from the source code project simply as follows:

$ cd client
$ poetry install
$ poetry shell

4.2.2 Run

Server

The server can be started as follows:

$ just run

Then to run the enclave, one just needs to launch the runner with the following command:

$./runner/target/release/runner "$binpath.sgxs"

Client

The client can operate three operations on models with the server for AI inference: upload, run,
and delete. This can simply be done in Python using the following template:

import blindai_preview

Server connection
client = blindai_preview.connect(addr="YOUR_SERV_ADRESS", simulation_mode=True,

hazmat_http_on_untrusted_port=True)↪→

Upload model to server
response = client_1.upload_model(model="./YOUR-MODEL.onnx")
MODEL_ID = response.model_id

Data owner runs model by providing model_id and uploading data
pos_ret = client.run_model(MODEL_ID, data)

AI company deletes model after use
client_1.delete_model(MODEL_ID)

Ref: 23-03-1142-LIV 22 Quarkslab SAS

Disconnect from sever
client.close()

4.2.3 Code Structure

Figure 4.4: Code Structure Overview

The BlindAI-preview source code is composed of three main components:

1. a client;

2. a server;

3. and integration tests.

It is also composed of different dependencies such as a crate for cryptographic operations or
model inference. The overall code structure is illustrated in Figure 4.4.

4.2.4 Client

The client source code is a Python based implementation. It is composed of three subfolders:
blindai-preview, examples, and test.

In blindai-preview, the tensor and model classes are defined, on top of their respective methods
for manipulations, computations, and serializations. It is also composed of functions for server
connection, both on the untrusted and trusted ports. Finally, the three actions that a client can
perform on a model are implemented: upload, run, and delete. The folder also contains the Intel
provisioning root CA certificate for attestation.

In examples and tests, you can find some unfinished code most likely used for testing purposes
and verification during the ongoing development.

Ref: 23-03-1142-LIV 23 Quarkslab SAS

4.2.5 Server

The server source is a Rust-based implementation. It is composed of two main subfolders: src
and runner.

Source

In the src files, the main functions to perform remote attestation are implemented. Based on
external dependencies, the server’s code also implements functions for client requests handling
and secure computation evaluation. Threads are defined to listen to clients’ requests on the
trusted port and schedule them. Functions for model inference (and storage) on ONNX-based
model are developed on enclaves. There is also a function for the generation of the TLS certificate
for secure SSL establishment with a client.

Runner

The runner folder is composed of two subfolders: a source one to implement a function for
enclave initialization and running, and subfolder for generation and verification of quotes for
remote attestation on Intel SGX.

4.2.6 Tests

Overall test of the blindai-preview features, to connect, upload, run, and delete the different
models and then check the correctness of the inference results made via secure computing on
SGX.

4.2.7 Dependencies

BlindAI is based on several external crates, listed hereafter.

Ring

Ring is a well-established Rust crate for cryptographic operations.

Rouille

rouille is a Rust crate allowing to create listening sockets and handling HTTP requests from the
client.

tiny-http

tiny-http is a Rust crate to build HTTP server. To provide HTTPS, the crate relies either on
OpenSSL or Rustls.

Ref: 23-03-1142-LIV 24 Quarkslab SAS

Tract

Tract is a well-known crate of ONXX format-based model inference.

Warning

We would like to point out that some dependencies used in BlindAI are not the
most robust ones. In fact, rouille and tiny-http are crates that do not have
proper maturity and scrutiny, or are not properly maintained. The audits of the
external dependencies are out of the scope of this report.

• rouille: to the best of our knowledge there is no proper audit of this crate.
Moreover, it seems to be maintained by a singular individual working on the
crate once or twice per year for new releases.

• tiny-http: to the best of our knowledge there is no proper audit of this
crate. Moreover, the latest version had failing CI since January 2019.

• cbor: there is no more maintenance on the cbor crate. However, the auditors
note that Mithril Security provides internal supports to cbor and uses their
own fork of the project.

Please note that all of those external dependencies (except ring and tract) were not
required in BlindAI.

Ref: 23-03-1142-LIV 25 Quarkslab SAS

4.3 Fortanix

One of the main differences between BlindAI and BlindAI preview is the switch from tea-
clave [2] to Fortanix EDP [1].

Teaclave is using bindings to Intel SDK libraries, which means that, under the hood, you are still
using Intel SDK libraries. Hence, the design of your application is dictated by the usage of this
SDK. For example, you need to split your application into two: the trusted part, also called the
enclave and the untrusted part, called the app. You also need to write an EDL to specify which
ECALLs and OCALLs will be used, as well as other required features.

On the contrary, Fortanix EDP (Enclave Development Platform) applications are just like native
Rust applications (4.5). They have a main function, can have multiple threads, and can make
network connections.

Figure 4.5: EDP architecture
source https://edp.fortanix.com/docs/concepts/architecture/

You do not have to write any "untrusted" code that runs outside the enclave since all the features
are provided for you. You just need to compile for the x86_64-fortanix-unknown-sgx target
[89] as Fortanix EDP is fully integrated with the Rust compiler.

Outside the enclave, the enclave-runner crate takes care of loading the enclave. Once the
enclave is loaded, it provides a shim layer between the usercalls coming from the enclave, and
the system calls needed to talk to the outside world.

Just like a normal OS, the Fortanix EDP defines an API and ABI [90] that applications use to
interact with the environment.

The usercall API [91] has been specifically designed for use with SGX and consists of less than
20 different calls. Common patterns such as buffer-passing are implemented consistently across
all the calls. The interface is kept small intentionally to aid security audits.

In particular, the Fortanix interface has been designed to avoid known attacks on enclave interfaces,
such as Iago attacks and information leakage through structure padding. In addition, the Rust type
system is used to disallow direct access to user memory from the enclave and avoid time-of-check
to time-of-use (TOCTTOU) issues.

The native format for SGX enclaves is the SGX stream (SGXS) format [92]. The Rust compiler
(normally invoked via Cargo) produces a binary in the ELF format. To run it, it must be converted
into the processor’s native enclave format.

All enclaves must be signed prior to running. The signing key is a security principal in remote
attestation and when using MRSIGNER-based sealing. Also, on platforms without Flexible Launch

Ref: 23-03-1142-LIV 26 Quarkslab SAS

https://edp.fortanix.com/docs/concepts/architecture/

Control, the signing key may determine which enclaves can be run in production mode.

There are several differences with traditional enclaves, for example, it’s not straightforward to see
where ECALLS/OCALLS are made (no EDL), EPC handling is masked because everything goes
through the Rust allocator, and so on.

Also, Fortanix EDP seems to only support SGX1 (for now, support for SGX2 is tracked in [93]). It
means that Fortanix EDP work well on a processor with SGX2 support but it will not use the new
features (for example there is no support for dynamic memory).

It is to be noted that Fortanix EDP seems quite robust according to [70], [68], and [94]. Nev-
ertheless, as we can see on the appendix A.5, some default parameters can lead to a situation
where an enclave can be in debug mode without specifying it. Obviously, it will be detected by
the client but it’s something that needs to be checked in a production setup.

INFO 1 Enclaves are unsigned prior to running which is not compliant with Fortanix EDP
documentation.

Category CWE-345: Insufficient Verification of Data Authenticity

Rating Impact: Code quality Exploitability: None

Recommendation

Fortanix EDP documentation specifies that all enclaves must be signed prior to
running. The signing key is a security principle of remote attestation. Quarkslab
auditors recommend using a production signing key as well as storing it securely.

Ref: 23-03-1142-LIV 27 Quarkslab SAS

https://cwe.mitre.org/data/definitions/345.html

4.4 Code quality

One of the first things we like to do when we encounter a Rust project is to have some ideas about
the code quality. To do so several tools from the Rust ecosystem help.

4.4.1 cargo audit

Running cargo audit gives some hints on the state of the dependencies.

azureuser@blindai-preview:~/blindai-preview$ cargo audit
Fetching advisory database from `https://github.com/RustSec/advisory-db.git`

Loaded 537 security advisories (from /home/azureuser/.cargo/advisory-db)
Updating crates.io index
Scanning Cargo.lock for vulnerabilities (221 crate dependencies)

Crate: remove_dir_all
Version: 0.5.3
Title: Race Condition Enabling Link Following and Time-of-check Time-of-use

(TOCTOU)↪→

Date: 2023-02-24
ID: RUSTSEC-2023-0018
URL: https://rustsec.org/advisories/RUSTSEC-2023-0018
Solution: Upgrade to >=0.8.0
Dependency tree:
remove_dir_all 0.5.3

tempfile 3.3.0
multipart 0.18.0

rouille 3.6.1
blindai_server 0.0.1

Crate: buf_redux
Version: 0.8.4
Warning: unmaintained
Title: buf_redux is Unmaintained
Date: 2023-01-24
ID: RUSTSEC-2023-0028
URL: https://rustsec.org/advisories/RUSTSEC-2023-0028
Dependency tree:
buf_redux 0.8.4

multipart 0.18.0
rouille 3.6.1

blindai_server 0.0.1

Crate: twoway
Version: 0.1.8
Warning: unmaintained
Title: Crate `twoway` deprecated by the author
Date: 2021-05-20
ID: RUSTSEC-2021-0146
URL: https://rustsec.org/advisories/RUSTSEC-2021-0146
Dependency tree:
twoway 0.1.8

Ref: 23-03-1142-LIV 28 Quarkslab SAS

multipart 0.18.0
rouille 3.6.1

blindai_server 0.0.1

error: 1 vulnerability found!
warning: 2 allowed warnings found

One of the dependencies used by the enclave, rouille [3] seems to have some issues. None of
them are really problematic. Nevertheless, it would be best to look for other frameworks with
better support.

INFO 2 One of the dependencies used by the enclave, rouille [3] seems to have some
issues.

Category CWE-1104: Use of Unmaintained Third Party Components

Rating Impact: Supply chain Exploitability: None

Ref: 23-03-1142-LIV 29 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1104.html

4.4.2 cargo geiger

cargo geiger checks if dependencies used unsafe code. The output is quite long (it can be seen
in the appendix A.6). We can notice that several dependencies are using unsafe code. It is to be
noted that the #![forbid(unsafe_code)] rule forbids unsafe code in the current crate, but it
doesn’t verify that dependencies do not use unsafe code.

The usage of unsafe code doesn’t mean that the code is inherently unsafe, it just highlights the
part of the code that can be troublesome.

Ref: 23-03-1142-LIV 30 Quarkslab SAS

4.4.3 Improper handling of error conditions

Another thing we notice is that the code used in BlindAI-preview seems to be less mature that
the code used in BlindAI.

For example, the API endpoints are not quite user-friendly. If an error occurs during the request
handling, they only return a 500 error code without any diagnostics.

$ restish POST https://localhost:9924/delete --rsh-insecure
WARN: Disabling TLS security checks
HTTP/1.1 500 Internal Server Error
Content-Length: 382
Content-Type: application/cbor
Date: Tue, 31 Jan 2023 15:29:23 GMT
Server: tiny-http (Rust)

EOF while parsing a value

Stack backtrace:
0: <unknown>
1: <unknown>
2: <unknown>
3: <unknown>
4: <unknown>
5: <unknown>
6: <unknown>
7: <unknown>
8: <unknown>
9: <unknown>

10: <unknown>
11: <unknown>
12: <unknown>
13: <unknown>
14: <unknown>
15: <unknown>
16: <unknown>
17: <unknown>
18: <unknown>
19: <unknown>
20: <unknown>

INFO 3 The code used in BlindAI does not properly handles errors or exceptional condi-
tions.

Category CWE-703: Improper Check or Handling of Exceptional Conditions

Rating Impact: Code quality Exploitability: None

Ref: 23-03-1142-LIV 31 Quarkslab SAS

https://cwe.mitre.org/data/definitions/703.html

4.4.4 cargo clippy

Running cargo clippy with some additional lints gives also the same feeling about the code
quality as it can be seen in the appendix A.7. For example, some functions are using unwrap
(which can cause a panic) when they are supposed to handle errors.

INFO 4 Some functions are using unwrap (which can cause a panic) when they are
supposed to handle errors.

Category CWE-676: Use of Potentially Dangerous Function

Rating Impact: Availability Exploitability: None

Ref: 23-03-1142-LIV 32 Quarkslab SAS

https://cwe.mitre.org/data/definitions/676.html

4.4.5 Nonce set to 0

When the runner requests a quote from the quoting enclave, it uses a nonce value set to 0.

pub fn get_quote(&self, report: Report) -> Result<Vec<u8>> {
let ecdsa_key_id = self.ecdsa_key_id.clone();
let quote_result = self

.aesm_client

.get_quote_ex(ecdsa_key_id, // key ID
report.as_ref().to_owned(), // report
None, // target info
vec![0; 16]) // nonce

.unwrap();

Ok(quote_result.quote().to_vec())
}

We did not have time to investigate exactly the impact of this parameter but reusing nonces is not
a good practice. In the Intel source code [95], we can find some information about the impact.

The caller can request a REPORT from the QE using a supplied nonce. This will allow
the enclave requesting the quote to verify the QE used to generate the quote. This
makes it more difficult for something to spoof a QE and allows the app enclave to
catch it earlier. But since the authenticity of the QE lies in the knowledge of the
Quote signing key, such spoofing will ultimately be detected by the quote verifier.
QE REPORT.ReportData = SHA256(*p_{nonce}||*p_{quote})||0x00)

INFO 5 When the runner requests a quote from the quoting enclave, it uses a nonce value
set to 0 which is not a good practice.

Category CWE-323: Reusing a Nonce, Key Pair in Encryption

Rating Impact: Code quality Exploitability: None

Ref: 23-03-1142-LIV 33 Quarkslab SAS

https://cwe.mitre.org/data/definitions/323.html

4.4.6 Client

Even if the client is written in Python, most of the code used to verify if the quote and the collateral
are correct are done in a library written in cpp with a binding [96]. This library is maintained by
Intel [97].

A quick look at this library shows that its main dependencies are openssl and rapidjson.
rapidjson is a library from Tencent that is known for not taking security issues [4].

Since Rust is already used for the enclave and since Fortanix EDP has some of the features required
to parse the quote and the collateral, from a security perspective it could be best to rewrite parts
of the client in Rust to have better control of the dependencies.

INFO 6 Client uses rapidjson from Tencent which is known for not taking security issues
[4].

Category CWE-1357: Reliance on Insufficiently Trustworthy Component

Rating Impact: Supply chain Exploitability: None

Ref: 23-03-1142-LIV 34 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1357.html

4.4.7 CBOR

Both the untrusted and trusted servers use CBOR to encode data sent and received by the enclave.
The library is not maintained anymore [5]. However, the auditors note that Mithril Security
internally supports this dependency and uses their own fork of the project.

Going back to using GRPC like it was the case in BlindAI may be better.

INFO 7 Usage of CBOR to encode data sent and received by the enclave which is not
maintained anymore [5].

Category CWE-1104: Use of Unmaintained Third Party Components

Rating Impact: Supply chain Exploitability: None

Ref: 23-03-1142-LIV 35 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1104.html

5 Threat model and methodology

This section presents the threat model defined by Quarkslab auditors and agreed upon with
Mithril Security experts. The threat model definition aims to provide priorities and formal scope
for the audit of the BlindAI.

Based on the latter, the auditors defined their security testing methodology, as provided at the
end of this section.

5.1 Threat model

The below sections present the threat model defined for the scope of this audit. The threat model
includes the following:

• Assets considered sensitive and that must be protected (identified by AX);

• Hypothesis related to the BlindAI preview and its environment to take into account for the
security tests (identified by HX);

• Threat actors that can potentially target BlindAI (identified by EX);

• Threats that can be applied by threat actors to retrieve or harm sensitive assets (identified
by TX).

Each item is detailed in the paragraphs below.

5.1.1 Assets

Assets are elements that must be protected against specific threats in order to ensure the security
of the product, for a given perimeter.

A1: Enclave’s Identity Private Key

The private key used by the enclave to produce the self-signed certificates in order to establish
secure communication channels.

A2: Serialized tensor vector

The serialized vector contains the tensor information. It contains the sensitive data of the client
and needs to be processed without any exposure.

A3: AI Model

The model deployed on the VM and on which a client can do inference. It contains the IP data of
the client.

A1 and A2 are more sensitive and therefore will require a higher level of protection than A3.

Ref: 23-03-1142-LIV 36 Quarkslab SAS

5.1.2 Secure usage hypotheses

This part of the threat model defines some hypotheses made on the usage and environment of
the BlindAI.

H1: Secure Client environment

For the client, we assume that its machine is trusted and that the Python client code (and all of
its dependencies) has not been altered or tampered.

5.1.3 Security threat actors

This part of the threat model introduces some threat actors that may target some assets of the
BlindAI.

E1: Attacker compromising an enclave (MATE attack)

For this threat, we have an attacker that has full control over the OS where the enclave is deployed.
This is the ultimate attacker in terms of power (he is able to perform man-at-the-end attacks).

E2: Attacker compromising the network transmission via MITM attacks

For this threat, we have an attacker that is the usual antagonist, performing interception of
the transmission between the client and the enclave (man-in-the-middle attacks) and tries to
compromise the secure channel established via TLS.

5.1.4 Security Threats

Concerning the aforementioned threat actors, the paragraphs below present some threats that
can be enforced by malicious actors to harm or retrieve the BlindAI assets.

Threats related to confidentiality

T1: Asset leakages

• A1: Case where the enclave’s private key leaks to the adversary;

• A2: Case where the tensor’s vector leaks to the adversary;

• A3: Case where the AI model leaks to the adversary.

T2: Inference results leaking

Case where the adversary is able to intercept the results of the inference done on the enclave.

Ref: 23-03-1142-LIV 37 Quarkslab SAS

T3: Enclave’s data leaking

Case where the adversary manages to recover information on the enclave’s internal data.

Threats related to integrity

T4: Tensor’s corruption

Case where the adversary is able to alter the serialized tensor vector’s data that is going to be
inferred on the enclave.

T5: Model’s corruption

Case where the adversary is able to alter the model deployed on the enclave.

T6: Inference results corruption

Case where the adversary is able to alter the results of the inference done on the enclave.

T7: Enclave compromission

Case where the internal data of the enclave is altered by an adversary.

Threats related to authenticity

T8: Malicious enclave trust

Case where the client trusts and attests a malicious enclave.

Ref: 23-03-1142-LIV 38 Quarkslab SAS

5.2 Methodology

The taken approach and methodology can be summarized as a simple question: As an attacker
what do we control and what can we target? To answer this question, and based on the above-
mentioned threat model, we observe that an attacker can first attack code running the enclave:

• by fuzzing inputs used by the enclave (for example models);

• by acting as a malicious operation system and conduct iago attacks;

• by acting as a malicious client and try to exhaust the resources used by the enclave.

The auditors note that they did not try to fuzz the models, as it didn’t seem like a relevant thing
to do. The enclave is written in Rust and do not use any unsafe code so the probability of finding
a vulnerability leading to remote code execution is low.

Note

The auditors underline that during the allocated time frame of the audit, iago
attacks were not put in place, but some of them were tackled in [70].

Fortanix EDP user-calls interface is very tight and clearly written with an adversary state of mind.

Second, the initial questions can be answered with the fact that an attacker can target the code
running on the client:

• we can alter the information returned to the client by the untrusted port (for example the
enclave public certificate, the quote or the collateral);

• since the client has all the sensible data, a vulnerability in a library used to parse or validate
these information can be catastrophic.

Based on the introduced threat model and methodology, security tests were defined and made on
the BlindAI in order to evaluate its resiliency within the defined perimeter.

Ref: 23-03-1142-LIV 39 Quarkslab SAS

6 Remote attestation

To gain the trust between a remote provider or producer and the hardware entity, Intel relies on
the remote attestation. On the one hand, it ensures to the client that the software is running inside
an SGX enclave and on a fully updated system. On the other hand, the attestation guarantees
to the hardware of the identity of the software being attested, the execution mode, and if the
software was tampered or not. This section presents the remote attestation as observed in BlindAI.

6.1 Introduction

Generally speaking, the goal of Remote Attestation [98] is for a hardware entity or a combination
of hardware and software to gain the trust of a remote service provider, such that the service
provider can confidently provide the client with the secrets requested. With Intel SGX, Remote
Attestation software includes the application’s enclave and the Intel-provided Quoting Enclave
(QE) and Provisioning Enclave (PvE). The attestation hardware is the Intel SGX-enabled CPU.
Remote attestation provides verification for three things: the application’s identity, its integrity
(that it has not been tampered with), and that it is running securely within an enclave on an
Intel SGX-enabled platform. In order to allow a secured SGX executing environment, several
Architectural Enclaves (AE) are involved.

One of the AE is the Quoting Enclave (QE). Quoting Enclave is responsible for providing trust
in the enclave identity and its execution environment during the remote attestation process.
In order to transform a local REPORT into a remotely verifiable QUOTE, Quoting Enclave uses a
platform’s unique asymmetric attestation key. The QUOTE can then be verified by a remote party
using the corresponding public key. Attestation keys are the core assets in the SGX ecosystem.
Relying parties trust valid attestation signatures as an Intel-signed certificate that guarantees the
platform’s authenticity. In order to facilitate SGX provisioning services, Intel operates a dedicated
online provisioning infrastructure [99].

Application Enclaves communicate with Architectural Enclaves through Intel SGX AESM, the
Application Enclave Service Manager. In more detail, AESM is the system services management
agent for SGX-enabled applications. Those services include various components of the SGX system,
such as launch approval, remote attestation quote signing, etc. They are implemented as Intel-
provided enclaves, i.e. Architectural Enclaves (above-mentioned), and access to those enclaves is
given by AESM. AESM runs as a daemon process aesmd when the system starts. aesmd provides
an untrusted API to communicate with Architectural Enclaves using a domain socket, whose path
is hard-coded at /var/run/aesmd/aesm.socket.

Intel Software Guard Extensions Data Center Attestation Primitives (Intel SGX DCAP [100])
provides SGX attestation support targeted at data centers, cloud services providers and enterprises
via elliptic curve digital signature algorithm (ECDSA) to protect keys, isolate encrypted modules,
confidential computing, etc. One of the strengths of Intel Software Guard Extensions Data Center
Attestation Primitives (Intel SGX DCAP) is that it allows data centers to own their attestation
infrastructure. The attestation collateral needed to both generate and verify quotes is contained
completely on-premise, which eliminates runtime dependencies on external services and enables

Ref: 23-03-1142-LIV 40 Quarkslab SAS

trust decisions to be made in-house. Attestation collateral including TCB Information, Certificate
Revocation Lists and QE/QvE Identities. The essence of having such robustness relies on the
complete certificate chain, which connects the whole attestation system, from beginning to end.
The certification chain allows to verify the identity of the data owner, making sure that no data is
tampered with.

Ref: 23-03-1142-LIV 41 Quarkslab SAS

6.2 Application in BlindAI

For BlindAI, this means the following. When the enclave starts, it creates two servers: one on
port 9923 (named untrusted server) and one on port 9924 (named trusted server) (see Figure
6.1). It also generates a self-signed certificate which is used by the client when it connects to the
trusted server and to a runner listening on port 11000.

Figure 6.1: Architecture

The untrusted server has 3 endpoints which all return CBOR-encoded data [101]:

• /: return the self-signed certificate

• /quote: return the quote of the enclave

• /collateral: return the collateral

The trusted server also has 3 endpoints:

• /upload: to upload a model

Ref: 23-03-1142-LIV 42 Quarkslab SAS

• /run: to run an inference with a previously stored model

• /delete: to delete a model

As of now, all the uploaded models are stored in memory only.

As explained earlier, Fortanix EDP does not support SGX2 at the moment. It means that the
enclave memory is allocated when the enclave starts. BlindAI preview does not have a mechanism
to offload to the disk when memory consumption is high.

It’s quite trivial to have a denial-of-service by sending multiple models.

import random

from blindai_preview.client import *
import numpy as np
import onnx
from transformers import DistilBertTokenizer

For test purpose, we want to avoid setting a TLS reverse proxy on top of
the untrusted port. We pass the hazmat_http_on_untrusted_port = True argument
to allow connecting to the untrusted port using plain HTTP instead of HTTPS.
This option is hazardous therefore it starts with hazmat_
Those options should generally not be used in production unless you
have carefully assessed the consequences.
client_v2 = connect(addr="localhost", hazmat_http_on_untrusted_port=True)

model = "distilbert-base-uncased.onnx"
onnx_model = onnx.load(model)

tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
sentence = "I love AI and privacy!"
inputs = {"input": tokenizer(sentence, padding = "max_length", max_length = 8,

return_tensors="np")["input_ids"]}↪→

steps = 13
for i in range(steps):

iid = random.randint(1, 100000)
print("======")
print(f"modifying model { i} : { iid} ")
onnx_model.doc_string = f"{ iid} "
model = onnx_model.SerializeToString()
print("model length {} ".format(len(model)))
print(f"upload model { i} ")
response = client_v2.upload_model(model=model, model_name="bytes")
print(f"done")

print(f"model_id for { i} : { response.model_id} ")
run_response = client_v2.run_model(

model_id=response.model_id,
input_tensors=inputs,

)

Ref: 23-03-1142-LIV 43 Quarkslab SAS

print("Run successful, got", run_response.output[0].as_numpy())

LOW 1 BlindAI does not have a mechanism to offload to the disk when memory con-
sumption is high, which makes a denial-of-service attack possible when multiple
models are sent.

Category CWE-770: Allocation of Resources Without Limits or Throttling

Rating Impact: Denial-of-Service Exploitability: High

Recommendation

Despite Denial-of-Service attacks being considered out-of-scope for this assessment
by Mithril Security, Quarkslab auditors recommend better control of memory usage.

Obviously, the goal of the client is to verify the enclave with the information returned by the
untrusted server before connecting to the trusted server (see Figure 6.2).

Figure 6.2: Communications

Ref: 23-03-1142-LIV 44 Quarkslab SAS

https://cwe.mitre.org/data/definitions/770.html

The client first starts by fetching the certificate of the enclave, the quote and the collateral from
the untrusted port. BlindAI binds the certificate used by the trusted server to the enclave report
by using a scheme similar to the one described in [102]. When an enclave is built and initialized,
Intel SGX will generate a cryptographic log of all the build activities, including the following
content: code, data, stack, heap, and location of each page within the enclave with the security
flags being used. This Enclave Identity, which is a 256-bit hash digest of the log, is stored as
MRENCLAVE as the enclave’s software TCB. Then, all the information needed by the client to check
the enclave is stored in a manifest (A.3). As previously explained, quotes (see Figure 7.1) are
reports that can be remotely verified.

The verification collateral is the data required by the client to complete the quote verification. It
includes:

• The root CA CRL;

• The PCK Cert CRL;

• The PCK Cert CRL signing chain;

• The signing cert chain for the TCBInfo structure;

• The signing cert chain for the QEIdentity structure;

• The TCBInfo structure;

• The QEIdentity structure.

The TCB info (A.2) is a json-encoded structure containing in a way the patch level of the platform
TCB. Among other things, it also contains the FMSPC. The QE identity (A.1) identifies the enclave
used to attest the report of the enclave.

It is to be noted that some information contained in the collateral are also stored in the PCK
certificate or the quote.

Ref: 23-03-1142-LIV 45 Quarkslab SAS

7 Resiliency tests

This section presents the security tests applied on the BlindAI, with respect to the previously
made discovery, cartography, and threat modeling.

7.1 Man-at-the-End

This section presents the tests and related results performed on the BlindAI related to Man-at-
the-End attacks, as detailed in Section 5.

7.1.1 RDRAND

RDRAND is an Intel instruction to produce hardware based randomness on Intel on-chip. The
entropy source is seeded on-chip as well. The random number generator is NIPS SP 800-90A and
FIPS 140-2 compliant. The RDRAND instruction is used by the ring-fortanix crates to produce
fresh randomness in ring-fortanix/src/rand.rs and the source code contain a version for
Intel SGX target.

#[cfg(all(target_env = "sgx", target_feature = "rdrand"))]
mod rdrandom {

use crate::{bssl, error};

fn rdrand_loop() -> Result<[u8; 8], error::Unspecified> {
extern "C" {

fn CRYPTO_rdrand(out: &mut [u8; 8]) -> bssl::Result;
}

for _ in 0..10 {
let mut buf = [0u8; 8];
match Result::from(unsafe { CRYPTO_rdrand(&mut buf) }) {

Ok(()) => return Ok(buf),
Err(_) => continue

}
}
Err(error::Unspecified)

}

pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
for dst in dest.chunks_mut(8) {

let src = rdrand_loop()?;
let dst_len = dst.len();
dst.copy_from_slice(&src[..dst_len])

}

Ok(())
}

Ref: 23-03-1142-LIV 46 Quarkslab SAS

}

The CRYPTO_rdrand function is implemented in assembly in the fips module part of the crate
under the path ring-fortanix/crypto/fipsmodule/randasm/rdrand-86_64.

CRYPTO_rdrand writes eight bytes of random data from the hardware RNG to
|out|. It returns one on success or zero on hardware failure.
int CRYPTO_rdrand(uint8_t out[8]);
.globl CRYPTO_rdrand
.type CRYPTO_rdrand,\@function,1
.align 16
CRYPTO_rdrand:
.cfi_startproc

xorq %rax, %rax
This is rdrand %rcx. It sets rcx to a random value and sets the carry
flag on success.
.byte 0x48, 0x0f, 0xc7, 0xf1
An add-with-carry of zero effectively sets %rax to the carry flag.
adcq %rax, %rax
movq %rcx, 0(%rdi)
retq

.cfi_endproc

In the case of Man-at-the-End attacks, we want to explore the impact of an attacker that has
control over the hypervisor and can intercept calls from the BlindAI software to the Intel chip. In
such a scenario, the attacker could tamper with RDRAND calls and return biased randomness
instead. With such control over randomness, an attacker could have a tremendous impact on
the different protocols used in Intel DCAP and remote attestation. In fact, in 2020, a CVE (CVE-
2020-0543 [103]) was released where RDRAND was targeted via side-channel attacks, and the
researchers were able to extract a full ECDSA key from an SGX enclave after only one signature
operation.

After careful code review, we did not find any way to exploit interception at the hypervisor level.
Moreover, most cryptographic libraries implement safe-guards for such scenario by combining the
output of the random number generator with other inputs, that is then hashed for randomness
production inside cryptographic implementations (see for instance OpenSSL nonce generation
for ECDSA [104]).

Ref: 23-03-1142-LIV 47 Quarkslab SAS

7.1.2 SGX-Step

Most of the relevant attacks on Intel SGX (described in 4.1) are based on a tool called SGX-step:
AEPIC attacks, LVI attacks, etc. This framework allows to build a malicious SGX driver, then
loading it to the kernel to replace the correct driver.

Following the steps to install SGX-Step, we noticed that the code of the SGX malicious driver had
an integer shifting error which did not allow the insmod instruction to load the kernel module.
This is a somewhat expected issue since the CPU used on the virtual machine is not part of the
list of the supported CPUs by SGX-Step. In order to test this framework, a proper fix should be
added to the implementation of the malicious driver and could not be done in the time frame of
this audit.

Ref: 23-03-1142-LIV 48 Quarkslab SAS

7.2 Man-in-the-Middle

This section presents the tests and related results performed on the BlindAI related to Man-in-
the-Middle attacks, as detailed in Section 5.

In our threat model, we can, as an attacker able to do a Man-in-the-Middle, modify the following
inputs:

• the public enclave certificate;

• the quote;

• the collateral.

Our goal is to make the client trusts us either by bypassing its checks or by exploiting a vulnerability
in the parsing.

Even if the code of the client is not in the scope of this audit and the client is trustworthy, we
need to take a look on what could happen on the client side with the inputs controlled by the
attacker. Most of the work to check if the quote and the collateral are valid is done by the QVL
(Quote Verification Library). This library is written in C++ by Intel.

To verify that the enclave is genuine, after fetching the certificate, the quote, and the collateral,
the client does the following steps:

• Set root CA to Intel_SGX_Provisioning_Certification_RootCA.pem;

• Call sgx_dcap_quote_verify ([105]);

• Check PCK cert;

• Check TCB info;

• Check QE identity;

• Check Quote;

• Check enclave report (which contains the SHA256 of enclave cert);

• Check MRENCLAVE;

• Check enclave attributes (including debug mode);

• Check enclave XFRM;

• Check enclave MISCSELECT.

As we can see, the client manifest is paramount to security. If an attacker is able to modify it (for
example by allowing a debugging enclave), it is quite simple to bypass all these checks.

Warning

Quarkslab auditors recommend hardening the client in order to provide a way to
detect a broken manifest.

Ref: 23-03-1142-LIV 49 Quarkslab SAS

It is quite straightforward to replace the enclave certificate with our own self-signed certificate.
But since the enclave certificate hash is contained in the quote, any modification will be detected.
We did not find any problems regarding the generation of the key pair used by the certificate.

$ openssl x509 -inform DER -text -in cert.der
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 5322704629645425893 (0x49de0ba8e657bce5)
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN = rcgen self signed cert
Validity

Not Before: Jan 1 00:00:00 1975 GMT
Not After : Jan 1 00:00:00 4096 GMT

Subject: CN = rcgen self signed cert
Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:

04:4f:b2:23:f2:dc:d5:96:27:f3:41:3c:b3:fd:00:
f9:3d:cb:84:43:6b:3e:91:74:6b:55:be:36:46:f9:
3a:83:4d:33:3f:df:84:ee:fb:a3:57:b7:03:52:58:
5a:a3:4c:01:72:7f:5b:05:dc:f7:a1:61:7a:1b:d0:
f5:3d:4e:c6:a1

ASN1 OID: prime256v1
NIST CURVE: P-256

X509v3 extensions:
X509v3 Subject Alternative Name:

DNS:blindai-srv
Signature Algorithm: ecdsa-with-SHA256

30:45:02:21:00:ba:ad:2f:8c:14:86:d7:d8:56:c9:46:5e:f3:
02:a1:48:17:c5:7a:a8:8b:87:22:bc:80:99:96:32:65:68:5a:
5a:02:20:4a:41:68:e8:02:99:e2:12:e5:f5:0a:d5:7a:95:c8:
ca:66:8a:6b:2d:6c:75:7a:28:38:5f:bc:0c:7d:b6:3d:fb

If we take a closer look at the quote (See Figure 7.1), the only parameter that is not part of any
signature is a field that we called remaining byte size.

Ref: 23-03-1142-LIV 50 Quarkslab SAS

Figure 7.1: Quote

Ref: 23-03-1142-LIV 51 Quarkslab SAS

We can not modify this field, the Intel QVL library checks that it has a proper value:

$ python proxy.py
Traceback (most recent call last):
File "proxy.py", line 5, in <module>
client_v2 = connect(addr="localhost", hazmat_http_on_untrusted_port=True,

untrusted_port=8923, attested_port=8924)↪→

File "/home/azureuser/blindai-preview/client/blindai_preview/client.py", line 712,
in connect↪→

return BlindAiConnection(*args, **kwargs)
File "/home/azureuser/blindai-preview/client/blindai_preview/client.py", line 527,

in __init__↪→

self._connect_server(
File "/home/azureuser/blindai-preview/client/blindai_preview/client.py", line 572,

in _connect_server↪→

validate_attestation(quote, collateral, cert, manifest_path=manifest_path)
File

"/home/azureuser/blindai-preview/client/blindai_preview/_dcap_attestation.py",
line 150, in validate_attestation

↪→

↪→

raise QuoteValidationError(
blindai_preview._dcap_attestation.QuoteValidationError: Invalid quote status

STATUS_UNSUPPORTED_QUOTE_FORMAT↪→

Modifications to other parts of the quote are also detected during the verification of the quote:

$ python proxy.py
Traceback (most recent call last):
File "proxy.py", line 5, in <module>
client_v2 = connect(addr="localhost", hazmat_http_on_untrusted_port=True,

untrusted_port=8923, attested_port=8924)↪→

File "/home/azureuser/blindai-preview/client/blindai_preview/client.py", line 712,
in connect↪→

return BlindAiConnection(*args, **kwargs)
File "/home/azureuser/blindai-preview/client/blindai_preview/client.py", line 527,

in __init__↪→

self._connect_server(
File "/home/azureuser/blindai-preview/client/blindai_preview/client.py", line 572,

in _connect_server↪→

validate_attestation(quote, collateral, cert, manifest_path=manifest_path)
File

"/home/azureuser/blindai-preview/client/blindai_preview/_dcap_attestation.py",
line 150, in validate_attestation

↪→

↪→

raise QuoteValidationError(
blindai_preview._dcap_attestation.QuoteValidationError: Invalid quote status

STATUS_INVALID_QUOTE_SIGNATURE↪→

The verification collateral is the data required by the client to complete the quote verification.

• The root CA CRL;

• The PCK Cert CRL;

Ref: 23-03-1142-LIV 52 Quarkslab SAS

• The PCK Cert CRL signing chain;

• The signing cert chain for the TCBInfo structure;

• The signing cert chain for the QEIdentity structure;

• The TCBInfo structure;

• The QEIdentity structure.

Several typical elements from the above:

• Root CA Certificate: Root Certificate, issue Intel SGX-related certificates;

• PCK Platform CA Certificate: Intermediate Certificate, issue Intel SGX PCK certificate and
its corresponding revocation list for multi-package platforms;

• PCK Processor CA Certificate: Intermediate Certificate, issue Intel SGX PCK certificate and
its corresponding revocation list for single-package platforms;

• PCK Certificate: User Certificate, sign Intel SGX TCB data for Intel platforms (both multi-
package and single-package).

Here is the clear relationship among certificates on the certificate chain:

• Root CA→ PCK platform/Processor CA (Intermediate)→ PCK Certificate;

• Root certificate issues the intermediate certificate and the intermediate certificate issues
the user certificate.

To ensure that the quote is genuine, Intel SDK does the following steps:

• Check if the subject of the pckCert is from Intel;

• Check if CRL issuer and pkcCert issuer match;

• Check if pckCert is not revoked in CRL;

• Check if TCB info and quote header have the same teeType (SGX or TDX);

• Check if FMSPC of pckCert and TCB info match;

• Check if PCEID or pckCert and TCB info match;

• Check if quote cert is valid;

• Check if quote QE report signature is valid;

• Check if QE report reportData is a valid sha256 digest of attestpubkey and qeauthdata;

• Check if QE identity ID matches a known enclave ID;

• Check if QE identity match QE report;

• Check if quote signature is valid;

• Check if TCB levels in TDB info match TCB levels in pckCert and in quote.

We did not find a way to bypass all these checks.

Ref: 23-03-1142-LIV 53 Quarkslab SAS

8 Conclusion

To conclude, Quarkslab made a state-of-the-art and complete discovery of Intel SGX and related
modules linked to the BlindAI. Based on the latter, a cartography and threat modeling were
defined in order to focus the security audit on relevant items within the allocated time frame.

Using the defined security perimeter and tests, the audit unveiled some low andmostly informative
issues in the codebase, but nothing critical or exploitable in the end.

However, Quarkslab auditors note that the client of the BlindAI preview should also be hardened
as, despite being considered out-of-scope for this audit, it can easily become an entrypoint for
malicious actors.

Overall, it was a pleasure to work with Mithril Security experts and maintainers on this audit,
they were very helpful, security-minded, and willing to make the project more resilient.

Ref: 23-03-1142-LIV 54 Quarkslab SAS

Bibliography

[1] GitHub - fortanix/rust-sgx: The Fortanix Rust Enclave Development Platform. url: https:
//github.com/fortanix/rust-sgx (visited on Mar. 22, 2023) (cit. on pp. 3, 26).

[2] GitHub - apache/incubator-teaclave-sgx-sdk: Apache Teaclave (incubating) SGX SDK helps
developers to write Intel SGX applications in the Rust programming language, and also known
as Rust SGX SDK. url: https://github.com/apache/incubator-teaclave-sgx-sdk
(visited on Mar. 22, 2023) (cit. on pp. 3, 26).

[3] GitHub - tomaka/rouille: Web framework in Rust. url: https://github.com/tomaka/
rouille (visited on Mar. 29, 2023) (cit. on pp. 4, 29).

[4] Where to report security issues? - Issue #1984 - Tencent/rapidjson - GitHub. url: https:
//github.com/Tencent/rapidjson/issues/1984 (visited on Mar. 29, 2023) (cit. on
pp. 4, 34).

[5] GitHub - pyfisch/cbor: CBOR support for serde. url: https://github.com/pyfisch/cbor
(visited on Mar. 29, 2023) (cit. on pp. 4, 35).

[6] SGX 101. url: https://sgx101.gitbook.io/sgx101/ (visited on Mar. 29, 2023)
(cit. on pp. 7, 13).

[7] Overview of Intel SGX - Part 1 and 2. url: https://blog.quarkslab.com/tag/intel-
sgx.html (visited on Mar. 29, 2023) (cit. on pp. 7, 13).

[8] Open Neural Network Exchange · Web page. url: https://onnx.ai/ (visited on Mar. 29,
2023) (cit. on p. 10).

[9] Software Guard Extensions. url: https://en.wikipedia.org/wiki/Software_Guard_
Extensions (visited on Mar. 29, 2023) (cit. on p. 13).

[10] "Intel Software Guard Extensions: Innovative Instructions for Next Generation Isolated
Execution". url: https : / / www . youtube . com / watch ? v = mPT _ vJrlHlg (visited on
Mar. 29, 2023) (cit. on p. 13).

[11] Intel SGX Web-Based Training. url: https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-sgx-web-based-training.html (visited on
Mar. 29, 2023) (cit. on p. 13).

[12] Introduction to Intel Software Guard Extensions · Linkedin. url: https://www.linkedin.
com/pulse/introduction-intel-software-guard-extensions-esmond-dsouza/
(visited on Mar. 29, 2023) (cit. on p. 13).

[13] Intro to SGX: from HTTP to enclaves · Medium. url: https://medium.com/corda/intro-
to-sgx-from-http-to-enclaves-1bf38a3bf595 (visited on Mar. 29, 2023) (cit. on
p. 13).

[14] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive, Paper
2016/086. 2016 (cit. on p. 13).

[15] Enclave Layout. url: https://gts3.org/pages/enclave-layout.html (visited on
Mar. 29, 2023) (cit. on p. 13).

[16] Intel Software Guard Extensions SGX2. url: https : / / caslab . csl . yale . edu /
workshops/hasp2016/HASP16- 16_slides.pdf (visited on Mar. 29, 2023) (cit. on
p. 13).

[17] Intel Enhanced Privacy ID (EPID) Security Technology. url: https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-enhanced-privacy-
id-epid-security-technology.html (visited on Mar. 29, 2023) (cit. on p. 14).

Ref: 23-03-1142-LIV 55 Quarkslab SAS

https://github.com/fortanix/rust-sgx
https://github.com/fortanix/rust-sgx
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/tomaka/rouille
https://github.com/tomaka/rouille
https://github.com/Tencent/rapidjson/issues/1984
https://github.com/Tencent/rapidjson/issues/1984
https://github.com/pyfisch/cbor
https://sgx101.gitbook.io/sgx101/
https://blog.quarkslab.com/tag/intel-sgx.html
https://blog.quarkslab.com/tag/intel-sgx.html
https://onnx.ai/
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://www.youtube.com/watch?v=mPT_vJrlHlg
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-web-based-training.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-web-based-training.html
https://www.linkedin.com/pulse/introduction-intel-software-guard-extensions-esmond-dsouza/
https://www.linkedin.com/pulse/introduction-intel-software-guard-extensions-esmond-dsouza/
https://medium.com/corda/intro-to-sgx-from-http-to-enclaves-1bf38a3bf595
https://medium.com/corda/intro-to-sgx-from-http-to-enclaves-1bf38a3bf595
https://gts3.org/pages/enclave-layout.html
https://caslab.csl.yale.edu/workshops/hasp2016/HASP16-16_slides.pdf
https://caslab.csl.yale.edu/workshops/hasp2016/HASP16-16_slides.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-enhanced-privacy-id-epid-security-technology.html

[18] Intel® SGX Data Center Attestation Primitives (Intel® SGX DCAP). url: https : / /
download.01.org/intel- sgx/sgx- dcap/1.9/linux/docs/Intel_SGX_DCAP_
ECDSA_Orientation.pdf (visited on Mar. 29, 2023) (cit. on p. 14).

[19] SGX Basics · INRIA. url: https://gitlab.inria.fr/abaud/sgx-basics (visited on
Mar. 29, 2023) (cit. on p. 14).

[20] Gramine · GitHub. url: https://github.com/gramineproject/gramine (visited on
Mar. 29, 2023) (cit. on p. 14).

[21] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan, Long Li, Yu-
long Zhang, Tao Wei, and Zhiqiang Lin. “Towards Memory Safe Enclave Programming
with Rust-SGX”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019 (cit. on p. 14).

[22] Fortanix EDP. url: https://edp.fortanix.com/ (visited on Mar. 29, 2023) (cit. on
p. 14).

[23] SGX.Fail. url: https://sgx.fail/ (visited on Mar. 29, 2023) (cit. on p. 14).
[24] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. “A Survey of Published

Attacks on Intel SGX”. In: ArXiv (2020) (cit. on p. 14).
[25] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel Attacks: Deter-

ministic Side Channels for Untrusted Operating Systems”. In: 2015 IEEE Symposium on
Security and Privacy. 2015 (cit. on p. 16).

[26] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx.
“Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on Enclaved
Execution”. In: 26th USENIX Security Symposium (USENIX Security 17). 2017 (cit. on
p. 16).

[27] Stealthy Page Table-Based Attacks on Enclaved Execution Source Code · GitHub. url: https:
//github.com/jovanbulck/sgx-pte (visited on Mar. 29, 2023) (cit. on p. 16).

[28] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A Practical Attack Framework
for Precise Enclave Execution Control”. In: Proceedings of the 2nd Workshop on System
Software for Trusted Execution. 2017 (cit. on p. 16).

[29] SGXStep Framework · jovanbulck/sgx-step · GitHub. url: https : / / github . com /
jovanbulck/sgx-step (visited on Mar. 28, 2023) (cit. on pp. 16, 20).

[30] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Nemesis: Studying Microarchitectural
Timing Leaks in Rudimentary CPU Interrupt Logic”. In: 2018 (cit. on p. 16).

[31] Nemesis · GitHub. url: https://github.com/jovanbulck/nemesis (visited on Mar. 29,
2023) (cit. on p. 16).

[32] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Off-Limits: Abusing
Legacy x86 Memory Segmentation to Spy on Enclaved Execution”. In: Engineering Secure
Software and Systems. 2018 (cit. on p. 16).

[33] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent
Bindschaedler, Haixu Tang, and Carl A. Gunter. “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 2017 (cit. on p. 16).

[34] Leaky Cauldron on the Dark Land Source Code · GitHub. url: https://github.com/
heartever/SPMattack (visited on Mar. 29, 2023) (cit. on p. 16).

[35] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. “CopyCat:
Controlled Instruction-Level Attacks on Enclaves”. In: USENIX Security Symposium. 2020
(cit. on p. 16).

Ref: 23-03-1142-LIV 56 Quarkslab SAS

https://download.01.org/intel-sgx/sgx-dcap/1.9/linux/docs/Intel_SGX_DCAP_ECDSA_Orientation.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.9/linux/docs/Intel_SGX_DCAP_ECDSA_Orientation.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.9/linux/docs/Intel_SGX_DCAP_ECDSA_Orientation.pdf
https://gitlab.inria.fr/abaud/sgx-basics
https://github.com/gramineproject/gramine
https://edp.fortanix.com/
https://sgx.fail/
https://github.com/jovanbulck/sgx-pte
https://github.com/jovanbulck/sgx-pte
https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/nemesis
https://github.com/heartever/SPMattack
https://github.com/heartever/SPMattack

[36] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. “CacheZoom: How SGX
Amplifies the Power of Cache Attacks”. In: Cryptographic Hardware and Embedded Systems
– CHES 2017. 2017 (cit. on p. 16).

[37] CacheZoom Source Code · GitHub. url: https://github.com/vernamlab/CacheZoom
(visited on Mar. 29, 2023) (cit. on p. 16).

[38] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. “Cache Attacks
on Intel SGX”. In: Proceedings of the 10th European Workshop on Systems Security. 2017
(cit. on p. 16).

[39] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: Detection of
Intrusions and Malware, and Vulnerability Assessment. 2017 (cit. on p. 16).

[40] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun,
and Ahmad-Reza Sadeghi. “Software Grand Exposure: SGX Cache Attacks Are Practical”.
In: 11th USENIX Workshop on Offensive Technologies (WOOT 17). 2017 (cit. on p. 16).

[41] Fergus Dall, Gabrielle Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Daniel
Moghimi, and Yuval Yarom. “CacheQuote: Efficiently Recovering Long-term Secrets of
SGX EPID via Cache Attacks”. In: 2018 (cit. on p. 16).

[42] Daniel Moghimi, Thomas Eisenbarth, and Berk Sunar. “MemJam: A False Dependency
Attack Against Constant-Time Crypto Implementations in SGX”. In: Topics in Cryptology –
CT-RSA 2018. 2018 (cit. on p. 16).

[43] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”.
In: 27th USENIX Security Symposium (USENIX Security 18). 2018 (cit. on p. 16).

[44] FORESHADOW Source Code · GitHub. url: https://github.com/jovanbulck/sgx-
step/tree/master/app/foreshadow (visited on Mar. 29, 2023) (cit. on p. 16).

[45] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H. Lai.
“SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Speculative Execution”. In: 2019
IEEE European Symposium on Security and Privacy (EuroS&P). 2019 (cit. on p. 17).

[46] SgxPectre Source Code · GitHub. url: https://github.com/OSUSecLab/SgxPectre
(visited on Mar. 29, 2023) (cit. on p. 17).

[47] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael Abu-
Ghazaleh. “Spectre Returns! Speculation Attacks using the Return Stack Buffer”. In: 12th
USENIX Workshop on Offensive Technologies (WOOT 18). 2018 (cit. on p. 17).

[48] Spectre Attack Source Code · GitHub. url: https://github.com/lsds/spectre-attack-
sgx (visited on Mar. 29, 2023) (cit. on p. 17).

[49] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
“Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing”. In:
26th USENIX Security Symposium (USENIX Security 17). 2017 (cit. on p. 17).

[50] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Ponomarev.
“BranchScope: A New Side-Channel Attack on Directional Branch Predictor”. In: Proceed-
ings of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems. 2018 (cit. on p. 17).

[51] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai, and
Mingshu Li. “Bluethunder: A 2-level Directional Predictor Based Side-Channel Attack
against SGX”. In: 2019 (cit. on p. 17).

Ref: 23-03-1142-LIV 57 Quarkslab SAS

https://github.com/vernamlab/CacheZoom
https://github.com/jovanbulck/sgx-step/tree/master/app/foreshadow
https://github.com/jovanbulck/sgx-step/tree/master/app/foreshadow
https://github.com/OSUSecLab/SgxPectre
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx

[52] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze,
Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “RIDL: Rogue In-Flight Data Load”.
In: 2019 IEEE Symposium on Security and Privacy (SP). 2019 (cit. on p. 17).

[53] RIDL Source Code · GitHub. url: https://github.com/vusec/ridl (visited on Mar. 29,
2023) (cit. on p. 17).

[54] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. “ZombieLoad: Cross-Privilege-Boundary Data Sampling”. In:
CCS. 2019 (cit. on p. 17).

[55] ZombieLoad Web Page. url: https://zombieloadattack.com/ (visited on Mar. 29,
2023) (cit. on p. 17).

[56] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
“CacheOut: Leaking Data on Intel CPUs via Cache Evictions”. In: S&P. 2021 (cit. on pp. 17,
19).

[57] CacheOut and SGXAxe attacks. url: https://sgaxe.com/ (visited on Mar. 29, 2023)
(cit. on pp. 17, 19).

[58] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. SGAxe: How SGX
Fails in Practice. https://sgaxeattack.com/. 2020 (cit. on p. 17).

[59] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“CrossTalk: Speculative Data Leaks Across Cores Are Real”. In: 2021 IEEE Symposium on
Security and Privacy (SP). 2021 (cit. on p. 17).

[60] CROSSTALK Source Code · GitHub. url: https://github.com/tristan- hornetz/
crosstalk (visited on Mar. 29, 2023) (cit. on p. 17).

[61] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. “Plundervolt: Software-based Fault Injection Attacks against Intel SGX”. In:
2020 IEEE Symposium on Security and Privacy (SP). 2020 (cit. on p. 17).

[62] Plundervolt Source Code · GitHub. url: https://github.com/KitMurdock/plundervolt
(visited on Mar. 29, 2023) (cit. on p. 17).

[63] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-Reza Sadeghi.
“V0LTpwn: Attacking x86 Processor Integrity from Software”. In: 29th USENIX Security
Symposium (USENIX Security 20). 2020 (cit. on p. 17).

[64] V0LTpwn Source Code · GitHub. url: https://github.com/zkenjar/v0ltpwn (visited
on Mar. 29, 2023) (cit. on p. 17).

[65] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. “AsyncShock: Ex-
ploiting Synchronisation Bugs in Intel SGX Enclaves”. In: Computer Security – ESORICS
2016. 2016 (cit. on p. 18).

[66] Jose Rodrigo Sanchez Vicarte, Benjamin Schreiber, Riccardo Paccagnella, and Christopher
W. Fletcher. “Game of Threads: Enabling Asynchronous Poisoning Attacks”. In: Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 2020 (cit. on p. 18).

[67] Game of Threads Source Code · GitHub. url: https://github.com/FPSG-UIUC/hogwild_
pytorch (visited on Mar. 29, 2023) (cit. on p. 18).

[68] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Prateek Saxena, and Zhiping Cai.
“SmashEx: Smashing SGX Enclaves Using Exceptions”. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 2021 (cit. on pp. 18, 27).

[69] SmashEx PoC Exploits for Intel SGX Frameworks based on Intel SGX SDK · GitHub. url:
https://github.com/cimcs/poc-exploits-of-smashex (visited on Mar. 29, 2023)
(cit. on p. 18).

Ref: 23-03-1142-LIV 58 Quarkslab SAS

https://github.com/vusec/ridl
https://zombieloadattack.com/
https://sgaxe.com/
https://sgaxeattack.com/
https://github.com/tristan-hornetz/crosstalk
https://github.com/tristan-hornetz/crosstalk
https://github.com/KitMurdock/plundervolt
https://github.com/zkenjar/v0ltpwn
https://github.com/FPSG-UIUC/hogwild_pytorch
https://github.com/FPSG-UIUC/hogwild_pytorch
https://github.com/cimcs/poc-exploits-of-smashex

[70] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia, and
Frank Piessens. “A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shield-
ing Runtimes”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019 (cit. on pp. 18, 27, 39).

[71] A tale of two worlds Source Code · GitHub. url: https://github.com/jovanbulck/
0xbadc0de (visited on Mar. 29, 2023) (cit. on p. 18).

[72] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
“The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel SGX”. In: 27th USENIX
Security Symposium (USENIX Security 18). 2018 (cit. on p. 18).

[73] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Torrellas,
and Christopher W. Fletcher. “MicroScope: Enabling Microarchitectural Replay Attacks”.
In: Proceedings of the 46th International Symposium on Computer Architecture. 2019 (cit.
on p. 18).

[74] MicroScope Source code · GitHub. url: https://github.com/dskarlatos/MicroScope
(visited on Mar. 29, 2023) (cit. on p. 18).

[75] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio
Canella, and Daniel Gruss. “PLATYPUS: Software-based Power Side-Channel Attacks on
x86”. In: 2021 IEEE Symposium on Security and Privacy (SP). 2021 (cit. on p. 18).

[76] Platypus: with great power comes great leakage · Web page. url: https : / /
platypusattack.com/ (visited on Mar. 29, 2023) (cit. on p. 18).

[77] RDRAND · Wikipedia. url: https://en.wikipedia.org/wiki/RDRAND (visited on
Mar. 29, 2023) (cit. on p. 18).

[78] Load Injection Value. url: https://lviattack.eu/ (visited on Mar. 29, 2023) (cit. on
p. 19).

[79] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. “LVI: Hijacking
Transient Execution through Microarchitectural Load Value Injection”. In: 41th IEEE
Symposium on Security and Privacy (S&P’20). 2020 (cit. on p. 19).

[80] AEPIC Leak. url: https://aepicleak.com/ (visited on Mar. 29, 2023) (cit. on p. 19).
[81] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and Michael

Schwarz. “ÆPIC Leak: Architecturally Leaking Uninitialized Data from the Microarchitec-
ture”. In: 31st USENIX Security Symposium (USENIX Security 22). 2022 (cit. on p. 19).

[82] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A Practical Attack Framework
for Precise Enclave Execution Control”. In: 2nd Workshop on System Software for Trusted
Execution (SysTEX). 2017 (cit. on p. 19).

[83] SGXStep Framework · jovanbulck/sgx-step · GitHub. url: https : / / github . com /
jovanbulck/sgx-step (visited on Mar. 28, 2023) (cit. on p. 20).

[84] Tobias Cloosters, Johannes Willbold, Thorsten Holz, and Lucas Davi. “SGXFuzz: Efficiently
Synthesizing Nested Structures for SGX Enclave Fuzzing”. In: 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022. 2022 (cit. on
p. 20).

[85] SGXFuzz Source Code · uni-due-syssec/sgxfuzz · GitHub. url: https://github.com/uni-
due-syssec/sgxfuzz (visited on Mar. 28, 2023) (cit. on p. 20).

[86] justfile overview · mithril-security/blindai-preview/ · GitHub. url: https://github.com/
mithril-security/blindai-preview/tree/v0.0.2#justfile-overview (visited on
Jan. 25, 2023) (cit. on p. 21).

Ref: 23-03-1142-LIV 59 Quarkslab SAS

https://github.com/jovanbulck/0xbadc0de
https://github.com/jovanbulck/0xbadc0de
https://github.com/dskarlatos/MicroScope
https://platypusattack.com/
https://platypusattack.com/
https://en.wikipedia.org/wiki/RDRAND
https://lviattack.eu/
https://aepicleak.com/
https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step
https://github.com/uni-due-syssec/sgxfuzz
https://github.com/uni-due-syssec/sgxfuzz
https://github.com/mithril-security/blindai-preview/tree/v0.0.2#justfile-overview
https://github.com/mithril-security/blindai-preview/tree/v0.0.2#justfile-overview

[87] Installing overview · blindai/ · Pypi. url: https://pypi.org/project/blindai/ (visited
on Mar. 28, 2023) (cit. on p. 21).

[88] install client sdk · mithril-security/blindai-preview/ · GitHub. url: https://github.com/
mithril-security/blindai-preview/tree/v0.0.2#getting-started (visited on
Jan. 25, 2023) (cit. on p. 21).

[89] rust/library/std/src/sys/sgx at master · rust-lang/rust · GitHub. url: https://github.
com/rust-lang/rust/tree/master/library/std/src/sys/sgx (visited on Mar. 22,
2023) (cit. on p. 26).

[90] rust-sgx/FORTANIX-SGX-ABI.md at master · fortanix/rust-sgx · GitHub. url: https://
github.com/fortanix/rust-sgx/blob/master/doc/FORTANIX-SGX-ABI.md (visited
on Mar. 22, 2023) (cit. on p. 26).

[91] rust/mod.rs at master · rust-lang/rust · GitHub. url: https://github.com/rust-
lang/rust/blob/master/library/std/src/sys/sgx/abi/usercalls/mod.rs
(visited on Mar. 22, 2023) (cit. on p. 26).

[92] rust-sgx/SGXS.md at master · fortanix/rust-sgx · GitHub. url: https://github.com/
fortanix/rust-sgx/blob/master/doc/SGXS.md (visited on Mar. 22, 2023) (cit. on
p. 26).

[93] SGX2 support - Issue #104 - fortanix/rust-sgx - GitHub. url: https://github.com/
fortanix/rust-sgx/issues/104 (visited on Mar. 22, 2023) (cit. on p. 27).

[94] Verifying Correctness of Intel SGX Software Mitigations in Fortanix EDP | Fortanix. url:
https://www.fortanix.com/blog/2022/07/verifying-correctness-of-intel-
sgx-software-mitigations-in-fortanix-edp (visited on Mar. 22, 2023) (cit. on
p. 27).

[95] linux-sgx/sgx_uae_quote_ex.h at 26c458905b72e66db7ac1feae04b43461ce1b76f -
intel/linux-sgx - GitHub. url: https : / / github . com / intel / linux - sgx / blob /
26c458905b72e66db7ac1feae04b43461ce1b76f/common/inc/sgx_uae_quote_ex.h#
L158 (visited on Mar. 29, 2023) (cit. on p. 33).

[96] sgx-dcap-quote-verify-python - PyPI. url: https://pypi.org/project/sgx- dcap-
quote-verify-python/ (visited on Mar. 29, 2023) (cit. on p. 34).

[97] SGXDataCenterAttestationPrimitives/QuoteVerification/QVL at master - in-
tel/SGXDataCenterAttestationPrimitives - GitHub. url: https://github.com/intel/
SGXDataCenterAttestationPrimitives / tree / master / QuoteVerification / QVL
(visited on Mar. 29, 2023) (cit. on p. 34).

[98] Attestation - SGX 101. url: https://sgx101.gitbook.io/sgx101/sgx-bootstrap/
attestation (visited on Mar. 15, 2023) (cit. on p. 40).

[99] Intel® Trusted Services API Management Developer Portal. url: https://api.portal.
trustedservices . intel . com / documentation # register - platform (visited on
Mar. 15, 2023) (cit. on p. 40).

[100] Demystify Remote Attestation: Explore the DCAP Certificate Chain - Safeheron. url: https:
//blog.safeheron.com/blog/insights/safeheron-originals/demystify-remote-
attestation- explore- the- dcap- certificate- chain (visited on Mar. 15, 2023)
(cit. on p. 40).

[101] CBOR — Concise Binary Object Representation | Overview. url: https://cbor.io/
(visited on Mar. 15, 2023) (cit. on p. 42).

[102] Integrating Intel SGX Remote Attestation with Transport Layer Security. url: https :
//arxiv.org/ftp/arxiv/papers/1801/1801.05863.pdf (visited on Mar. 15, 2023)
(cit. on p. 45).

Ref: 23-03-1142-LIV 60 Quarkslab SAS

https://pypi.org/project/blindai/
https://github.com/mithril-security/blindai-preview/tree/v0.0.2#getting-started
https://github.com/mithril-security/blindai-preview/tree/v0.0.2#getting-started
https://github.com/rust-lang/rust/tree/master/library/std/src/sys/sgx
https://github.com/rust-lang/rust/tree/master/library/std/src/sys/sgx
https://github.com/fortanix/rust-sgx/blob/master/doc/FORTANIX-SGX-ABI.md
https://github.com/fortanix/rust-sgx/blob/master/doc/FORTANIX-SGX-ABI.md
https://github.com/rust-lang/rust/blob/master/library/std/src/sys/sgx/abi/usercalls/mod.rs
https://github.com/rust-lang/rust/blob/master/library/std/src/sys/sgx/abi/usercalls/mod.rs
https://github.com/fortanix/rust-sgx/blob/master/doc/SGXS.md
https://github.com/fortanix/rust-sgx/blob/master/doc/SGXS.md
https://github.com/fortanix/rust-sgx/issues/104
https://github.com/fortanix/rust-sgx/issues/104
https://www.fortanix.com/blog/2022/07/verifying-correctness-of-intel-sgx-software-mitigations-in-fortanix-edp
https://www.fortanix.com/blog/2022/07/verifying-correctness-of-intel-sgx-software-mitigations-in-fortanix-edp
https://github.com/intel/linux-sgx/blob/26c458905b72e66db7ac1feae04b43461ce1b76f/common/inc/sgx_uae_quote_ex.h#L158
https://github.com/intel/linux-sgx/blob/26c458905b72e66db7ac1feae04b43461ce1b76f/common/inc/sgx_uae_quote_ex.h#L158
https://github.com/intel/linux-sgx/blob/26c458905b72e66db7ac1feae04b43461ce1b76f/common/inc/sgx_uae_quote_ex.h#L158
https://pypi.org/project/sgx-dcap-quote-verify-python/
https://pypi.org/project/sgx-dcap-quote-verify-python/
https://github.com/intel/SGXDataCenterAttestationPrimitives/tree/master/QuoteVerification/QVL
https://github.com/intel/SGXDataCenterAttestationPrimitives/tree/master/QuoteVerification/QVL
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/attestation
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/attestation
https://api.portal.trustedservices.intel.com/documentation#register-platform
https://api.portal.trustedservices.intel.com/documentation#register-platform
https://blog.safeheron.com/blog/insights/safeheron-originals/demystify-remote-attestation-explore-the-dcap-certificate-chain
https://blog.safeheron.com/blog/insights/safeheron-originals/demystify-remote-attestation-explore-the-dcap-certificate-chain
https://blog.safeheron.com/blog/insights/safeheron-originals/demystify-remote-attestation-explore-the-dcap-certificate-chain
https://cbor.io/
https://arxiv.org/ftp/arxiv/papers/1801/1801.05863.pdf
https://arxiv.org/ftp/arxiv/papers/1801/1801.05863.pdf

[103] CVE - Incomplete cleanup from specific special register read operations. url: https://nvd.
nist.gov/vuln/detail/CVE-2020-0543 (visited on Mar. 28, 2023) (cit. on p. 47).

[104] openssl/openssl/blob/master/crypto/bn/bn_rand.c at ligne 249 ·
openssl/openssl/blob/master/crypto/bn/ · OpenSSL. url: https : / / github . com /
openssl/openssl/blob/master/crypto/bn/bn_rand.c (visited on Mar. 28, 2023)
(cit. on p. 47).

[105] sgx-dcap-quote-verify-python/_core_wrapper.py at v0.0.2 · mithril-security/sgx-dcap-quote-
verify-python · GitHub. url: https://github.com/mithril-security/sgx-dcap-
quote-verify-python/blob/v0.0.2/sgx_dcap_quote_verify/_core_wrapper.py#
L65 (visited on Mar. 15, 2023) (cit. on p. 49).

[106] Debugging Manual | Rust EDP. url: https : / / edp . fortanix . com / docs / tasks /
debugging/ (visited on Mar. 28, 2023) (cit. on p. 66).

[107] GDB script doesn’t work with Linux Augusta loader · Issue #301 · fortanix/rust-sgx · GitHub.
url: https://github.com/fortanix/rust- sgx/issues/301 (visited on Mar. 28,
2023) (cit. on p. 66).

Ref: 23-03-1142-LIV 61 Quarkslab SAS

https://nvd.nist.gov/vuln/detail/CVE-2020-0543
https://nvd.nist.gov/vuln/detail/CVE-2020-0543
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_rand.c
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_rand.c
https://github.com/mithril-security/sgx-dcap-quote-verify-python/blob/v0.0.2/sgx_dcap_quote_verify/_core_wrapper.py#L65
https://github.com/mithril-security/sgx-dcap-quote-verify-python/blob/v0.0.2/sgx_dcap_quote_verify/_core_wrapper.py#L65
https://github.com/mithril-security/sgx-dcap-quote-verify-python/blob/v0.0.2/sgx_dcap_quote_verify/_core_wrapper.py#L65
https://edp.fortanix.com/docs/tasks/debugging/
https://edp.fortanix.com/docs/tasks/debugging/
https://github.com/fortanix/rust-sgx/issues/301

Appendix A

Appendix

A.1 Example of QE identity

The QE identity (A.1) identifies the enclave used to attest the report of the enclave. This appendix
provides an example of the QE identity as observed during the assessment.

{
"enclaveIdentity": {

"attributes": "11000000000000000000000000000000",
"attributesMask": "FBFFFFFFFFFFFFFF0000000000000000",
"id": "QE",
"issueDate": "2021-07-01T23:45:00Z",
"isvprodid": 1,
"miscselect": "00000000",
"miscselectMask": "FFFFFFFF",
"mrsigner":
"8C4F5775D796503E96137F77C68A829A0056AC8DED70140B081B094490C57BFF",↪→

"nextUpdate": "2021-07-31T23:45:00Z",
"tcbEvaluationDataNumber": 10,
"tcbLevels": [

{
"tcb": {

"isvsvn": 5
},
"tcbDate": "2020-11-11T00:00:00Z",
"tcbStatus": "UpToDate"

},
{

"tcb": {
"isvsvn": 4

},
"tcbDate": "2019-11-13T00:00:00Z",
"tcbStatus": "OutOfDate"

},
{

"tcb": {
"isvsvn": 2

},
"tcbDate": "2019-05-15T00:00:00Z",
"tcbStatus": "OutOfDate"

},
{

"tcb": {
"isvsvn": 1

Ref: 23-03-1142-LIV 62 Quarkslab SAS

},
"tcbDate": "2018-08-15T00:00:00Z",
"tcbStatus": "OutOfDate"

}
],
"version": 2

},
"signature": "c6142237e9f3694d8bad441b9dce64c6a5b6eb8e160647ba8ed0543adca7732c0 ⌋

db088b8b8307e9350ee1511a366a79e32a3db3d1a1c90cbbdccb386f0104211"↪→

}

A.2 Example of TCB info

The TCB info (A.2) is a json-encoded structure containing in a way the patch level of the platform
TCB. The appendix below provides an example observed during the assessment.

{
"signature": "b956dfd032434a1d638b11d007a947c5bf0573a320252b6589b9d985421cfb0a6 ⌋

d748a2b9d05c3e29b65c38e41ee2e17522ec92bfa13eb4009a7cf99b3831f4d",↪→

"tcbInfo": {
"fmspc": "00606a000000",
"issueDate": "2021-04-20T18:27:52Z",
"nextUpdate": "2021-05-20T18:27:52Z",
"pceId": "0000",
"tcbEvaluationDataNumber": 10,
"tcbLevels": [

{
"tcb": {

"pcesvn": 10,
"sgxtcbcomp01svn": 4,
"sgxtcbcomp02svn": 4,
"sgxtcbcomp03svn": 3,
"sgxtcbcomp04svn": 3,
"sgxtcbcomp05svn": 255,
"sgxtcbcomp06svn": 255,
"sgxtcbcomp07svn": 0,
"sgxtcbcomp08svn": 0,
"sgxtcbcomp09svn": 0,
"sgxtcbcomp10svn": 0,
"sgxtcbcomp11svn": 0,
"sgxtcbcomp12svn": 0,
"sgxtcbcomp13svn": 0,
"sgxtcbcomp14svn": 0,
"sgxtcbcomp15svn": 0,
"sgxtcbcomp16svn": 0

},
"tcbDate": "2020-11-11T00:00:00Z",
"tcbStatus": "UpToDate"

},
{

Ref: 23-03-1142-LIV 63 Quarkslab SAS

"tcb": {
"pcesvn": 10,
"sgxtcbcomp01svn": 3,
"sgxtcbcomp02svn": 3,
"sgxtcbcomp03svn": 3,
"sgxtcbcomp04svn": 3,
"sgxtcbcomp05svn": 255,
"sgxtcbcomp06svn": 255,
"sgxtcbcomp07svn": 0,
"sgxtcbcomp08svn": 0,
"sgxtcbcomp09svn": 0,
"sgxtcbcomp10svn": 0,
"sgxtcbcomp11svn": 0,
"sgxtcbcomp12svn": 0,
"sgxtcbcomp13svn": 0,
"sgxtcbcomp14svn": 0,
"sgxtcbcomp15svn": 0,
"sgxtcbcomp16svn": 0

},
"tcbDate": "2020-06-10T00:00:00Z",
"tcbStatus": "OutOfDate"

},
{

"tcb": {
"pcesvn": 5,
"sgxtcbcomp01svn": 3,
"sgxtcbcomp02svn": 3,
"sgxtcbcomp03svn": 3,
"sgxtcbcomp04svn": 3,
"sgxtcbcomp05svn": 255,
"sgxtcbcomp06svn": 255,
"sgxtcbcomp07svn": 0,
"sgxtcbcomp08svn": 0,
"sgxtcbcomp09svn": 0,
"sgxtcbcomp10svn": 0,
"sgxtcbcomp11svn": 0,
"sgxtcbcomp12svn": 0,
"sgxtcbcomp13svn": 0,
"sgxtcbcomp14svn": 0,
"sgxtcbcomp15svn": 0,
"sgxtcbcomp16svn": 0

},
"tcbDate": "2018-01-04T00:00:00Z",
"tcbStatus": "OutOfDate"

}
],
"tcbType": 0,
"version": 2

}
}

Ref: 23-03-1142-LIV 64 Quarkslab SAS

A.3 Example of client manifest

The appendix below provides an example of the client manifest as observed during the assessment.

Enclave manifest file for production
Determines which enclaves are to be accepted by
the client

Enclave measurement
MRENCLAVE represents the enclave's contents and build process
mr_enclave = "2bf473aa6a74217707635b95704ccda29ee9b2a2c2906b1abbee5c8338c4bc3b"

Set to true to allow enclave running in DEBUG mode
A production service should never allow debug-mode enclaves
allow_debug = false

Enclave attributes are formed of :
* attributes_flags
* attributes_xfrm (XFRM for XSAVE Feature Request Mask)
The allowed attributes are described by bitmasks.
The layout of the structures are described in Intel documentation
See <https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia ⌋

-32-architectures-software-developer-vol-3d-part-4-manual.pdf>↪→

ATTTRIBUTE default : 0x4
0x4 == MODE64BIT
attributes_flags_hex = "0x4"
ATTTRIBUTEMASK default : ~0x2 = 0xfffffffffffffffd
Check everything match the selected attributes
except for the DEBUG field
The DEBUG field value is checked separately
via the `allow_debug` parameter
attributes_mask_flags_hex = "0xfffffffffffffffd"
ATTRIBUTES.XFRM default : 0x3
Intel documentation
> Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
> * XFRM[1:0] must be set to 0x3.
attributes_xfrm_hex = "0x3"
ATTRIBUTEMASK.XFRM default : ~0x0 = 0xffffffffffffffff
For our usage we need to allow CPU features related to AVX2/AVX512
So we disable the checks for the following bitfield :
* 2 => AVX (AVX enable, and XSAVE feature set can be used to manage YMM regs)
* 5 => opmask (AVX-512 enable, and XSAVE feature set can be used for AVX

opmask, AKA k-mask, regs)↪→

* 6 => ZMM_hi256 (AVX-512 enable, and XSAVE feature set can be used for
upper-halves of the lower ZMM regs)↪→

* 7 => Hi16_ZMM (AVX-512 enable, and XSAVE feature set can be used for the
upper ZMM regs)↪→

Compute mask : ~(1 << 2 | 1 << 5 | 1 << 6 | 1 << 7) == 0xffffffffffffff1b
May need to be change according to the platform it's running on
but be careful it can impact the security of the enclave
You can always disable the uneeded feature at launch to

Ref: 23-03-1142-LIV 65 Quarkslab SAS

satisfy the mask, so there is actually very few reasons to change this mask :
attributes_mask_xfrm_hex = "0xffffffffffffff1b"

From <https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_ ⌋

reference_for_linux_os_pdf.pdf>↪→

> MiscSelect and MiscMask are for future functional extension.
> Currently, MiscSelect must be 0.
> Otherwise the corresponding enclave may not be loaded successfully
Note this is changing with SGX2, the MISCSELECT[0] bit will indicate
whether exception information on #GP or #PF that occurred inside
an enclave can be written to the EXINFO structure
misc_select_hex = "0x0"
misc_mask_hex = "0xffffffff"

A.4 Accessing enclave memory from a debugger

All the following tests have been done with a dummy enclave using Fortanix quickstart.

To debug, the auditors followed these instructions in [106].

$ gdb --args ftxsgx-runner <path_to_sgxs_file>
(gdb) source <path_to_gdb.py>

It is to be noted that the script provided by Fortanix is not working with Montgomery SGX driver
(as highlighted in [107]).

When we look at the mappings, we noticed that some areas belong to the enclave:

(gdb) info proc mappings
process 354007
Mapped address spaces:

Start Addr End Addr Size Offset objfile
0x555555554000 0x555555570000 0x1c000 0x0

/home/azureuser/.cargo/bin/ftxsgx-runner↪→

0x555555570000 0x5555556c4000 0x154000 0x1c000
/home/azureuser/.cargo/bin/ftxsgx-runner↪→

0x5555556c4000 0x55555572e000 0x6a000 0x170000
/home/azureuser/.cargo/bin/ftxsgx-runner↪→

0x55555572e000 0x55555573e000 0x10000 0x1d9000
/home/azureuser/.cargo/bin/ftxsgx-runner↪→

0x55555573e000 0x55555573f000 0x1000 0x1e9000
/home/azureuser/.cargo/bin/ftxsgx-runner↪→

0x55555573f000 0x555555781000 0x42000 0x0 [heap]
0x7fffd8000000 0x7fffd8021000 0x21000 0x0
0x7fffd8021000 0x7fffdc000000 0x3fdf000 0x0
0x7fffe0000000 0x7fffe0021000 0x21000 0x0
0x7fffe0021000 0x7fffe4000000 0x3fdf000 0x0

Ref: 23-03-1142-LIV 66 Quarkslab SAS

0x7fffe4000000 0x7fffe4021000 0x21000 0x0
0x7fffe4021000 0x7fffe8000000 0x3fdf000 0x0
0x7fffe8000000 0x7fffe8021000 0x21000 0x0
0x7fffe8021000 0x7fffec000000 0x3fdf000 0x0
0x7fffec000000 0x7fffec021000 0x21000 0x0
0x7fffec021000 0x7ffff0000000 0x3fdf000 0x0
0x7ffff0000000 0x7ffff000f000 0xf000 0x0 /dev/sgx_enclave
0x7ffff000f000 0x7ffff0034000 0x25000 0x0 /dev/sgx_enclave
0x7ffff0034000 0x7ffff2038000 0x2004000 0x0 /dev/sgx_enclave
0x7ffff2038000 0x7ffff2048000 0x10000 0x2771000 /dev/zero (deleted)
0x7ffff2048000 0x7ffff206b000 0x23000 0x0 /dev/sgx_enclave
0x7ffff206b000 0x7ffff207b000 0x10000 0x27a4000 /dev/zero (deleted)
0x7ffff207b000 0x7ffff209e000 0x23000 0x0 /dev/sgx_enclave
0x7ffff209e000 0x7ffff20ae000 0x10000 0x27d7000 /dev/zero (deleted)
0x7ffff20ae000 0x7ffff20d1000 0x23000 0x0 /dev/sgx_enclave
0x7ffff20d1000 0x7ffff20e1000 0x10000 0x280a000 /dev/zero (deleted)
0x7ffff20e1000 0x7ffff2104000 0x23000 0x0 /dev/sgx_enclave
0x7ffff2104000 0x7ffff4000000 0x1efc000 0x283d000 /dev/zero (deleted)
0x7ffff6eb9000 0x7ffff6eba000 0x1000 0x0
0x7ffff6eba000 0x7ffff6ebc000 0x2000 0x0
0x7ffff6ebc000 0x7ffff6ebd000 0x1000 0x0
0x7ffff6ebd000 0x7ffff70bd000 0x200000 0x0
0x7ffff70bd000 0x7ffff70be000 0x1000 0x0
0x7ffff70be000 0x7ffff70c0000 0x2000 0x0
0x7ffff70c0000 0x7ffff70c1000 0x1000 0x0
0x7ffff70c1000 0x7ffff72c1000 0x200000 0x0
0x7ffff72c1000 0x7ffff72c2000 0x1000 0x0
0x7ffff72c2000 0x7ffff72c4000 0x2000 0x0
0x7ffff72c4000 0x7ffff72c5000 0x1000 0x0
0x7ffff72c5000 0x7ffff74c5000 0x200000 0x0
0x7ffff74c5000 0x7ffff74c6000 0x1000 0x0
0x7ffff74c6000 0x7ffff76c6000 0x200000 0x0
0x7ffff76c6000 0x7ffff76c7000 0x1000 0x0
0x7ffff76c7000 0x7ffff78c9000 0x202000 0x0
0x7ffff78c9000 0x7ffff78eb000 0x22000 0x0

/usr/lib/x86_64-linux-gnu/libc-2.31.so↪→

0x7ffff78eb000 0x7ffff7a63000 0x178000 0x22000
/usr/lib/x86_64-linux-gnu/libc-2.31.so↪→

0x7ffff7a63000 0x7ffff7ab1000 0x4e000 0x19a000
/usr/lib/x86_64-linux-gnu/libc-2.31.so↪→

0x7ffff7ab1000 0x7ffff7ab5000 0x4000 0x1e7000
/usr/lib/x86_64-linux-gnu/libc-2.31.so↪→

0x7ffff7ab5000 0x7ffff7ab7000 0x2000 0x1eb000
/usr/lib/x86_64-linux-gnu/libc-2.31.so↪→

0x7ffff7ab7000 0x7ffff7abb000 0x4000 0x0
0x7ffff7abb000 0x7ffff7ac8000 0xd000 0x0

/usr/lib/x86_64-linux-gnu/libm-2.31.so↪→

0x7ffff7ac8000 0x7ffff7b6f000 0xa7000 0xd000
/usr/lib/x86_64-linux-gnu/libm-2.31.so↪→

0x7ffff7b6f000 0x7ffff7c08000 0x99000 0xb4000
/usr/lib/x86_64-linux-gnu/libm-2.31.so↪→

Ref: 23-03-1142-LIV 67 Quarkslab SAS

0x7ffff7c08000 0x7ffff7c09000 0x1000 0x14c000
/usr/lib/x86_64-linux-gnu/libm-2.31.so↪→

0x7ffff7c09000 0x7ffff7c0a000 0x1000 0x14d000
/usr/lib/x86_64-linux-gnu/libm-2.31.so↪→

0x7ffff7c0a000 0x7ffff7c0c000 0x2000 0x0
0x7ffff7c0c000 0x7ffff7c12000 0x6000 0x0

/usr/lib/x86_64-linux-gnu/libpthread-2.31.so↪→

0x7ffff7c12000 0x7ffff7c23000 0x11000 0x6000
/usr/lib/x86_64-linux-gnu/libpthread-2.31.so↪→

0x7ffff7c23000 0x7ffff7c29000 0x6000 0x17000
/usr/lib/x86_64-linux-gnu/libpthread-2.31.so↪→

0x7ffff7c29000 0x7ffff7c2a000 0x1000 0x1c000
/usr/lib/x86_64-linux-gnu/libpthread-2.31.so↪→

0x7ffff7c2a000 0x7ffff7c2b000 0x1000 0x1d000
/usr/lib/x86_64-linux-gnu/libpthread-2.31.so↪→

0x7ffff7c2b000 0x7ffff7c2f000 0x4000 0x0
0x7ffff7c2f000 0x7ffff7c31000 0x2000 0x0

/usr/lib/x86_64-linux-gnu/librt-2.31.so↪→

0x7ffff7c31000 0x7ffff7c35000 0x4000 0x2000
/usr/lib/x86_64-linux-gnu/librt-2.31.so↪→

0x7ffff7c35000 0x7ffff7c37000 0x2000 0x6000
/usr/lib/x86_64-linux-gnu/librt-2.31.so↪→

0x7ffff7c37000 0x7ffff7c38000 0x1000 0x7000
/usr/lib/x86_64-linux-gnu/librt-2.31.so↪→

0x7ffff7c38000 0x7ffff7c39000 0x1000 0x8000
/usr/lib/x86_64-linux-gnu/librt-2.31.so↪→

0x7ffff7c39000 0x7ffff7c3c000 0x3000 0x0
/usr/lib/x86_64-linux-gnu/libgcc_s.so.1↪→

0x7ffff7c3c000 0x7ffff7c4e000 0x12000 0x3000
/usr/lib/x86_64-linux-gnu/libgcc_s.so.1↪→

0x7ffff7c4e000 0x7ffff7c52000 0x4000 0x15000
/usr/lib/x86_64-linux-gnu/libgcc_s.so.1↪→

0x7ffff7c52000 0x7ffff7c53000 0x1000 0x18000
/usr/lib/x86_64-linux-gnu/libgcc_s.so.1↪→

0x7ffff7c53000 0x7ffff7c54000 0x1000 0x19000
/usr/lib/x86_64-linux-gnu/libgcc_s.so.1↪→

0x7ffff7c54000 0x7ffff7ccc000 0x78000 0x0
/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1↪→

0x7ffff7ccc000 0x7ffff7e68000 0x19c000 0x78000
/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1↪→

0x7ffff7e68000 0x7ffff7ef9000 0x91000 0x214000
/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1↪→

0x7ffff7ef9000 0x7ffff7f25000 0x2c000 0x2a4000
/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1↪→

0x7ffff7f25000 0x7ffff7f27000 0x2000 0x2d0000
/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1↪→

0x7ffff7f27000 0x7ffff7f2b000 0x4000 0x0
0x7ffff7f2b000 0x7ffff7f47000 0x1c000 0x0

/usr/lib/x86_64-linux-gnu/libssl.so.1.1↪→

0x7ffff7f47000 0x7ffff7f96000 0x4f000 0x1c000
/usr/lib/x86_64-linux-gnu/libssl.so.1.1↪→

Ref: 23-03-1142-LIV 68 Quarkslab SAS

0x7ffff7f96000 0x7ffff7fb0000 0x1a000 0x6b000
/usr/lib/x86_64-linux-gnu/libssl.so.1.1↪→

0x7ffff7fb0000 0x7ffff7fb1000 0x1000 0x85000
/usr/lib/x86_64-linux-gnu/libssl.so.1.1↪→

0x7ffff7fb1000 0x7ffff7fba000 0x9000 0x85000
/usr/lib/x86_64-linux-gnu/libssl.so.1.1↪→

0x7ffff7fba000 0x7ffff7fbe000 0x4000 0x8e000
/usr/lib/x86_64-linux-gnu/libssl.so.1.1↪→

0x7ffff7fbe000 0x7ffff7fbf000 0x1000 0x0
/usr/lib/x86_64-linux-gnu/libdl-2.31.so↪→

0x7ffff7fbf000 0x7ffff7fc1000 0x2000 0x1000
/usr/lib/x86_64-linux-gnu/libdl-2.31.so↪→

0x7ffff7fc1000 0x7ffff7fc2000 0x1000 0x3000
/usr/lib/x86_64-linux-gnu/libdl-2.31.so↪→

0x7ffff7fc2000 0x7ffff7fc3000 0x1000 0x3000
/usr/lib/x86_64-linux-gnu/libdl-2.31.so↪→

0x7ffff7fc3000 0x7ffff7fc4000 0x1000 0x4000
/usr/lib/x86_64-linux-gnu/libdl-2.31.so↪→

0x7ffff7fc4000 0x7ffff7fc6000 0x2000 0x0
0x7ffff7fc6000 0x7ffff7fc7000 0x1000 0x0
0x7ffff7fc7000 0x7ffff7fc9000 0x2000 0x0
0x7ffff7fc9000 0x7ffff7fca000 0x1000 0x0
0x7ffff7fca000 0x7ffff7fcc000 0x2000 0x0
0x7ffff7fcc000 0x7ffff7fcd000 0x1000 0x0
0x7ffff7fcd000 0x7ffff7fcf000 0x2000 0x0
0x7ffff7fcf000 0x7ffff7fd0000 0x1000 0x0

/usr/lib/x86_64-linux-gnu/ld-2.31.so↪→

0x7ffff7fd0000 0x7ffff7ff3000 0x23000 0x1000
/usr/lib/x86_64-linux-gnu/ld-2.31.so↪→

0x7ffff7ff3000 0x7ffff7ffb000 0x8000 0x24000
/usr/lib/x86_64-linux-gnu/ld-2.31.so↪→

0x7ffff7ffc000 0x7ffff7ffd000 0x1000 0x2c000
/usr/lib/x86_64-linux-gnu/ld-2.31.so↪→

0x7ffff7ffd000 0x7ffff7ffe000 0x1000 0x2d000
/usr/lib/x86_64-linux-gnu/ld-2.31.so↪→

0x7ffff7ffe000 0x7ffff7fff000 0x1000 0x0
0x7ffffffdc000 0x7ffffffff000 0x23000 0x0 [stack]
0x8000001f0000 0x8000001f4000 0x4000 0x0 [vvar]
0x8000001f4000 0x8000001f6000 0x2000 0x0 [vdso]
0xffffffffff600000 0xffffffffff601000 0x1000 0x0 [vsyscall]

When we look at the enclave stream (sgxs):

azureuser@blindai-preview:~/enclave-playground$ sgxs-info info
target/x86_64-fortanix-unknown-sgx/debug/enclave-playground.sgxs↪→

0- efff Reg r-- (data) meas=all
f000- 33fff Reg r-x (data) meas=all
34000- 36fff Reg rw- (data) meas=all
37000- 37fff Reg rw- (empty) meas=all
38000-2037fff Reg rw- (empty) meas=none
2038000-2047fff (unmapped)
2048000-2067fff Reg rw- (empty) meas=none

Ref: 23-03-1142-LIV 69 Quarkslab SAS

2068000-2068fff Reg rw- (data) meas=all
2069000-2069fff Tcs --- (data) meas=all [oentry=0xfea8, ossa=0x206a000,

nssa=1]↪→

206a000-206afff Reg rw- (empty) meas=none
206b000-207afff (unmapped)
207b000-209afff Reg rw- (empty) meas=none
209b000-209bfff Reg rw- (data) meas=all
209c000-209cfff Tcs --- (data) meas=all [oentry=0xfea8, ossa=0x209d000,

nssa=1]↪→

209d000-209dfff Reg rw- (empty) meas=none
209e000-20adfff (unmapped)
20ae000-20cdfff Reg rw- (empty) meas=none
20ce000-20cefff Reg rw- (data) meas=all
20cf000-20cffff Tcs --- (data) meas=all [oentry=0xfea8, ossa=0x20d0000,

nssa=1]↪→

20d0000-20d0fff Reg rw- (empty) meas=none
20d1000-20e0fff (unmapped)
20e1000-2100fff Reg rw- (empty) meas=none
2101000-2101fff Reg rw- (data) meas=all
2102000-2102fff Tcs --- (data) meas=all [oentry=0xfea8, ossa=0x2103000,

nssa=1]↪→

2103000-2103fff Reg rw- (empty) meas=none
2104000-3ffffff (unmapped)

We notice a clear mapping between the process in memory and the SGXS stream.

0x7ffff0000000 0x7ffff000f000 0xf000 0x0 /dev/sgx_enclave
0x7ffff000f000 0x7ffff0034000 0x25000 0x0 /dev/sgx_enclave
0x7ffff0034000 0x7ffff2038000 0x2004000 0x0 /dev/sgx_enclave
0x7ffff2038000 0x7ffff2048000 0x10000 0x2771000 /dev/zero (deleted)
0x7ffff2048000 0x7ffff206b000 0x23000 0x0 /dev/sgx_enclave
0x7ffff206b000 0x7ffff207b000 0x10000 0x27a4000 /dev/zero (deleted)
0x7ffff207b000 0x7ffff209e000 0x23000 0x0 /dev/sgx_enclave
0x7ffff209e000 0x7ffff20ae000 0x10000 0x27d7000 /dev/zero (deleted)
0x7ffff20ae000 0x7ffff20d1000 0x23000 0x0 /dev/sgx_enclave
0x7ffff20d1000 0x7ffff20e1000 0x10000 0x280a000 /dev/zero (deleted)
0x7ffff20e1000 0x7ffff2104000 0x23000 0x0 /dev/sgx_enclave
0x7ffff2104000 0x7ffff4000000 0x1efc000 0x283d000 /dev/zero (deleted)

A.5 Default parameters of enclave builder lead to a debuggable
enclave

The default setup of EnclaveBuilder keeps the DEBUG attributes in the enclave.

// Running the enclave
let file = parse_args().unwrap();
let aesm_client = AesmClient::new();
let mut device = IsgxDevice::new()

Ref: 23-03-1142-LIV 70 Quarkslab SAS

.unwrap()

.einittoken_provider(aesm_client)

.build();
let enclave_builder = EnclaveBuilder::new(file.as_ref());

let enclave = enclave_builder.build(&mut device).unwrap();

The build function calls the load function

pub fn build<T: Load>(mut self, loader: &mut T) -> Result<Command, Error> {
let args = self.cmd_args.take().unwrap_or_default();
let c = self.usercall_ext.take();
self.load(loader)
.map(|(t, a, s, fp)| Command::internal_new(t, a, s, c, fp, args))

}

Which calls the generate_dummy_signature function if no signature has been found (which is
the case for this assessment).

fn load<T: Load>(
mut self,
loader: &mut T,
) -> Result<(Vec<ErasedTcs>, *mut c_void, usize, bool), Error> {

let signature = match self.signature {
Some(sig) => sig,
None => self
.generate_dummy_signature()
.context("While generating dummy signature")?,

};
let attributes = self.attributes.unwrap_or(signature.attributes);
let miscselect = self.miscselect.unwrap_or(signature.miscselect);
let mapping = loader.load(&mut self.enclave, &signature, attributes,
miscselect)?;↪→

let forward_panics = self.forward_panics;
if mapping.tcss.is_empty() {

unimplemented!()
}

Ok((
mapping.tcss.into_iter().map(ErasedTcs::new).collect(),
mapping.info.address(),
mapping.info.size(),
forward_panics,
))

}

The generate_dummy_signature use a default attribute with the DEBUG flag set.

fn generate_dummy_signature(&mut self) -> Result<Sigstruct, Error> {
fn xgetbv0() -> u64 {

unsafe { arch::x86_64::_xgetbv(0) }

Ref: 23-03-1142-LIV 71 Quarkslab SAS

}

let mut enclave = self.enclave.try_clone().unwrap();
let hash = match self.hash_enclave.take() {

Some(f) => f(&mut enclave)?,
None => return Err(format_err!("either compile with default features or

use with_dummy_signature_signer()"))↪→

};
let mut signer = Signer::new(hash);

let attributes = self.attributes.unwrap_or_else(|| Attributes {
flags: AttributesFlags::DEBUG | AttributesFlags::MODE64BIT,
xfrm: xgetbv0(),

});
signer
.attributes_flags(attributes.flags, !0)
.attributes_xfrm(attributes.xfrm, !0);

if let Some(miscselect) = self.miscselect {
signer.miscselect(miscselect, !0);

}

match self.load_and_sign.take() {
Some(f) => f(signer),
None => Err(format_err!("either compile with default features or use

with_dummy_signature_signer()"))↪→

}
}

This means that the enclave can be debugged. It’s quite straightforward to confirm that as shown
below.

azureuser@blindai-preview:~/blindai-preview$ sudo gdb -p 482872
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04.1) 9.2
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
Attaching to process 482872

[New LWP 482873]
[New LWP 482897]
[New LWP 482898]

Ref: 23-03-1142-LIV 72 Quarkslab SAS

[New LWP 482899]
[New LWP 482900]
[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
0x00007f7bf041146e in epoll_wait (epfd=8, events=0x561384541110, maxevents=1024,

timeout=8) at ../sysdeps/unix/sysv/linux/epoll_wait.c:30↪→

30 ../sysdeps/unix/sysv/linux/epoll_wait.c: No such file or directory.
(gdb) x/10x 0x7f7afcc82cb8
0x7f7afcc82cb8: 0x01255ab0 0x00007f7a 0x00000001 0x00000000
0x7f7afcc82cc8: 0x0127a380 0x00007f7a 0x0127af80 0x00007f7a
0x7f7afcc82cd8: 0x00000000 0x00000000

The fix is quite simple, one just needs to set up the correct attributes before calling the build
function (or use a .sig as Fortanix EDP documentation suggests).

let mut enclave_builder = EnclaveBuilder::new(file.as_ref());

let attributes = Attributes {
flags: AttributesFlags::MODE64BIT,
xfrm: xgetbv0(),

};

enclave_builder.attributes(attributes);

let enclave = enclave_builder.build(&mut device).unwrap();

By doing so, the auditors can attach a debugger. However, it is not possible to access the memory
of the enclave (which is expected).

(gdb) x/10xg 0x7f7afcc82cb8
0x7f7afcc82cb8: Cannot access memory at address 0x7f7afcc82cb8

A.6 Output of cargo geiger

$ CARGO_BUILD_TARGET="x86_64-fortanix-unknown-sgx" cargo geiger --output-format
Ascii↪→

Metric output format: x/y
x = unsafe code used by the build
y = total unsafe code found in the crate

Symbols:
:) = No `unsafe` usage found, declares #![forbid(unsafe_code)]
? = No `unsafe` usage found, missing #![forbid(unsafe_code)]
! = `unsafe` usage found

Functions Expressions Impls Traits Methods Dependency

Ref: 23-03-1142-LIV 73 Quarkslab SAS

19/567 7981/32405 26/516 5/62 101/720 ! blindai_server 0.0.1
15/18 453/460 3/3 0/0 12/12 ! |-- anyhow 1.0.68
24/24 690/744 11/13 1/1 16/20 ! |-- bytes 1.3.0
0/0 5/5 0/0 0/0 0/0 ! | `-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 ? | `-- serde_derive

1.0.152↪→

0/0 15/15 0/0 0/0 3/3 ! | |-- proc-macro2
1.0.50↪→

0/0 4/4 0/0 0/0 0/0 ! | | `--
unicode-ident 1.0.6↪→

0/0 0/0 0/0 0/0 0/0 ? | |-- quote 1.0.23
0/0 15/15 0/0 0/0 3/3 ! | | `-- proc-macro2

1.0.50↪→

0/0 69/69 3/3 0/0 2/2 ! | `-- syn 1.0.107
0/0 15/15 0/0 0/0 3/3 ! | |-- proc-macro2

1.0.50↪→

0/0 0/0 0/0 0/0 0/0 ? | |-- quote
1.0.23↪→

0/0 4/4 0/0 0/0 0/0 ! | `--
unicode-ident 1.0.6↪→

0/0 0/0 0/0 0/0 0/0 :) |-- digest 0.10.6
0/0 16/16 0/0 0/0 0/0 ! | |-- block-buffer 0.10.3
1/1 285/285 20/20 8/8 5/5 ! | | `-- generic-array

0.14.6↪→

0/0 5/5 0/0 0/0 0/0 ! | | |-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 :) | | |-- typenum 1.16.0
1/1 22/22 0/0 0/0 0/0 ! | | `-- zeroize 1.5.7
0/0 5/5 0/0 0/0 0/0 ! | | `-- serde

1.0.152↪→

0/0 0/0 0/0 0/0 0/0 :) | `-- crypto-common 0.1.6
1/1 285/285 20/20 8/8 5/5 ! | |-- generic-array

0.14.6↪→

0/0 2/2 0/0 0/0 0/0 ! | |-- rand_core 0.6.4
2/4 42/175 0/1 0/0 0/3 ! | | |-- getrandom 0.2.8
0/0 0/0 0/0 0/0 0/0 ? | | | |-- cfg-if

1.0.0↪→

0/24 0/444 0/2 0/0 0/45 ? | | | `-- libc
0.2.139↪→

0/0 5/5 0/0 0/0 0/0 ! | | `-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 :) | `-- typenum 1.16.0
0/0 0/0 0/0 0/0 0/0 ? |-- env_logger 0.10.0
1/1 16/18 1/1 0/0 0/0 ! | |-- log 0.4.17
0/0 0/0 0/0 0/0 0/0 ? | | |-- cfg-if 1.0.0
0/0 5/5 0/0 0/0 0/0 ! | | `-- serde 1.0.152
0/0 34/34 1/2 0/0 2/2 ! | `-- regex 1.7.1
19/19 678/678 0/0 0/0 22/22 ! | |-- aho-corasick 0.7.20
36/37 2067/2144 0/0 0/0 21/21 ! | | `-- memchr 2.5.0
0/24 0/444 0/2 0/0 0/45 ? | | `-- libc

0.2.139↪→

36/37 2067/2144 0/0 0/0 21/21 ! | |-- memchr 2.5.0
0/0 0/0 0/0 0/0 0/0 :) | `-- regex-syntax 0.6.28
1/1 16/18 1/1 0/0 0/0 ! |-- log 0.4.17

Ref: 23-03-1142-LIV 74 Quarkslab SAS

0/0 0/0 0/0 0/0 0/0 ? |-- num-derive 0.3.3
0/0 15/15 0/0 0/0 3/3 ! | |-- proc-macro2 1.0.50
0/0 0/0 0/0 0/0 0/0 ? | |-- quote 1.0.23
0/0 69/69 3/3 0/0 2/2 ! | `-- syn 1.0.107
0/0 6/12 0/0 0/0 0/0 ! |-- num-traits 0.2.15
0/0 8/8 0/0 0/0 0/0 ! | `-- libm 0.2.6
0/0 32/32 0/0 0/0 0/0 ! |-- rand 0.8.5
0/24 0/444 0/2 0/0 0/45 ? | |-- libc 0.2.139
1/1 16/18 1/1 0/0 0/0 ! | |-- log 0.4.17
0/0 0/0 0/0 0/0 0/0 ? | |-- rand_chacha 0.3.1
2/2 636/712 0/0 0/0 17/25 ! | | |-- ppv-lite86 0.2.17
0/0 2/2 0/0 0/0 0/0 ! | | |-- rand_core 0.6.4
0/0 5/5 0/0 0/0 0/0 ! | | `-- serde 1.0.152
0/0 2/2 0/0 0/0 0/0 ! | |-- rand_core 0.6.4
0/0 5/5 0/0 0/0 0/0 ! | `-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 ? |-- rcgen 0.10.0
1/1 471/471 13/13 5/5 1/1 ! | |-- ring 0.16.20
0/24 0/444 0/2 0/0 0/45 ? | | |-- libc 0.2.139
1/1 92/138 5/9 0/0 2/4 ! | | |-- once_cell 1.17.0
0/0 49/49 6/6 0/0 3/3 ! | | |-- spin 0.5.2
0/0 0/0 0/0 0/0 0/0 :) | | `-- untrusted 0.7.1
0/1 4/32 0/0 0/0 0/0 ! | |-- time 0.3.17
0/0 7/7 0/0 0/0 0/0 ! | | |-- itoa 1.0.5
0/24 0/444 0/2 0/0 0/45 ? | | |-- libc 0.2.139
0/0 32/32 0/0 0/0 0/0 ! | | |-- rand 0.8.5
0/0 5/5 0/0 0/0 0/0 ! | | |-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 ? | | |-- time-core 0.1.0
0/0 0/0 0/0 0/0 0/0 ? | | `-- time-macros 0.2.6
0/0 0/0 0/0 0/0 0/0 ? | | `-- time-core 0.1.0
0/0 0/0 0/0 0/0 0/0 :) | |-- yasna 0.5.1
0/0 4/4 0/0 0/0 2/2 ! | | |-- bit-vec 0.6.3
0/0 5/5 0/0 0/0 0/0 ! | | | `-- serde 1.0.152
0/0 6/11 0/0 0/0 0/0 ! | | |-- num-bigint 0.4.3
0/0 0/0 0/0 0/0 0/0 ? | | | |-- num-integer

0.1.45↪→

0/0 6/12 0/0 0/0 0/0 ! | | | | `-- num-traits
0.2.15↪→

0/0 6/12 0/0 0/0 0/0 ! | | | |-- num-traits
0.2.15↪→

0/0 32/32 0/0 0/0 0/0 ! | | | |-- rand 0.8.5
0/0 5/5 0/0 0/0 0/0 ! | | | `-- serde 1.0.152
0/1 4/32 0/0 0/0 0/0 ! | | `-- time 0.3.17
1/1 22/22 0/0 0/0 0/0 ! | `-- zeroize 1.5.7
1/1 471/471 13/13 5/5 1/1 ! |-- ring 0.16.20
0/0 0/0 0/0 0/0 0/0 ? |-- rouille 3.6.1
0/0 0/0 0/0 0/0 0/0 :) | |-- base64 0.13.1
0/0 0/48 2/2 0/0 0/0 ! | |-- chrono 0.4.23
0/2 1/147 0/0 0/0 0/1 ! | | |-- iana-time-zone

0.1.53↪→

0/0 0/0 0/0 0/0 0/0 ? | | |-- num-integer 0.1.45
0/0 6/12 0/0 0/0 0/0 ! | | |-- num-traits 0.2.15
0/0 5/5 0/0 0/0 0/0 ! | | `-- serde 1.0.152

Ref: 23-03-1142-LIV 75 Quarkslab SAS

0/0 0/0 0/0 0/0 0/0 ? | |-- multipart 0.18.0
0/0 80/100 0/0 0/0 6/8 ! | | |-- buf_redux 0.8.4
36/37 2067/2144 0/0 0/0 21/21 ! | | | |-- memchr 2.5.0
0/0 15/15 0/0 0/0 0/0 ! | | | `-- safemem 0.3.3
14/14 273/273 0/0 0/0 4/4 ! | | |-- httparse 1.8.0
0/0 7/7 1/1 0/0 0/0 ! | | |-- lazy_static 1.4.0
0/0 49/49 6/6 0/0 3/3 ! | | | `-- spin 0.5.2
1/1 16/18 1/1 0/0 0/0 ! | | |-- log 0.4.17
0/0 0/2 0/0 0/0 0/0 ? | | |-- mime 0.3.16
0/0 0/0 0/0 0/0 0/0 ? | | |-- mime_guess 2.0.4
0/0 0/2 0/0 0/0 0/0 ? | | | |-- mime 0.3.16
0/0 0/0 0/0 0/0 0/0 ? | | | `-- unicase 2.6.0
0/0 0/0 0/0 0/0 0/0 ? | | |-- quick-error 1.2.3
0/0 32/32 0/0 0/0 0/0 ! | | |-- rand 0.8.5
0/0 15/15 0/0 0/0 0/0 ! | | |-- safemem 0.3.3
0/0 0/71 0/0 0/0 0/0 ? | | |-- tempfile 3.3.0
0/0 0/0 0/0 0/0 0/0 ? | | | |-- cfg-if 1.0.0
0/0 0/0 0/0 0/0 0/0 :) | | | |-- fastrand 1.8.0
0/24 0/444 0/2 0/0 0/45 ? | | | |-- libc 0.2.139
0/0 0/79 0/0 0/0 0/0 ? | | | `-- remove_dir_all

0.5.3↪→

0/3 0/162 0/0 0/0 0/0 :) | | `-- twoway 0.1.8
36/37 2067/2144 0/0 0/0 21/21 ! | | `-- memchr 2.5.0
0/0 65/72 0/0 0/0 0/0 ! | |-- num_cpus 1.15.0
0/24 0/444 0/2 0/0 0/45 ? | | `-- libc 0.2.139
0/0 3/3 0/0 0/0 0/0 ! | |-- percent-encoding 2.2.0
0/0 32/32 0/0 0/0 0/0 ! | |-- rand 0.8.5
0/0 5/5 0/0 0/0 0/0 ! | |-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 ? | |-- serde_derive 1.0.152
0/0 4/7 0/0 0/0 0/0 ! | |-- serde_json 1.0.91
0/0 7/7 0/0 0/0 0/0 ! | | |-- itoa 1.0.5
7/9 579/715 0/0 0/0 2/2 ! | | |-- ryu 1.0.12
0/0 5/5 0/0 0/0 0/0 ! | | `-- serde 1.0.152
1/1 83/83 0/0 0/0 0/0 ! | |-- sha1 0.10.5
0/0 0/0 0/0 0/0 0/0 ? | | |-- cfg-if 1.0.0
0/1 0/14 0/0 0/0 0/0 ? | | |-- cpufeatures 0.2.5
0/0 0/0 0/0 0/0 0/0 :) | | `-- digest 0.10.6
0/0 0/0 0/0 0/0 0/0 ? | |-- threadpool 1.8.1
0/0 65/72 0/0 0/0 0/0 ! | | `-- num_cpus 1.15.0
0/1 4/32 0/0 0/0 0/0 ! | |-- time 0.3.17
0/0 0/0 0/0 0/0 0/0 :) | |-- tiny_http 0.12.0
0/0 180/180 0/0 0/0 28/28 ! | | |-- ascii 1.1.0
0/0 5/5 0/0 0/0 0/0 ! | | | `-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 ? | | |-- chunked_transfer

1.4.1↪→

0/0 0/0 0/0 0/0 0/0 :) | | |-- httpdate 1.0.2
1/1 16/18 1/1 0/0 0/0 ! | | |-- log 0.4.17
0/0 0/5 0/0 0/0 0/0 :) | | |-- rustls 0.20.8
1/1 16/18 1/1 0/0 0/0 ! | | | |-- log 0.4.17
1/1 471/471 13/13 5/5 1/1 ! | | | |-- ring 0.16.20
0/0 0/0 0/0 0/0 0/0 :) | | | |-- sct 0.7.0

Ref: 23-03-1142-LIV 76 Quarkslab SAS

1/1 471/471 13/13 5/5 1/1 ! | | | | |-- ring
0.16.20↪→

0/0 0/0 0/0 0/0 0/0 :) | | | | `-- untrusted
0.7.1↪→

0/0 0/0 0/0 0/0 0/0 ? | | | `-- webpki 0.22.0
1/1 471/471 13/13 5/5 1/1 ! | | | |-- ring

0.16.20↪→

0/0 0/0 0/0 0/0 0/0 :) | | | `-- untrusted
0.7.1↪→

0/0 0/0 0/0 0/0 0/0 :) | | |-- rustls-pemfile
0.2.1↪→

0/0 0/0 0/0 0/0 0/0 :) | | | `-- base64 0.13.1
1/1 22/22 0/0 0/0 0/0 ! | | `-- zeroize 1.5.7
0/0 0/0 0/0 0/0 0/0 ? | `-- url 2.3.1
0/0 2/2 0/0 0/0 0/0 ! | |-- form_urlencoded

1.1.0↪→

0/0 3/3 0/0 0/0 0/0 ! | | `--
percent-encoding 2.2.0↪→

0/0 0/0 0/0 0/0 0/0 ? | |-- idna 0.3.0
0/0 0/0 0/0 0/0 0/0 :) | | |-- unicode-bidi

0.3.10↪→

0/0 5/5 0/0 0/0 0/0 ! | | | `-- serde
1.0.152↪→

0/0 20/20 0/0 0/0 0/0 ! | | `--
unicode-normalization 0.1.22↪→

0/0 0/0 0/0 0/0 0/0 :) | | `-- tinyvec
1.6.0↪→

0/0 5/5 0/0 0/0 0/0 ! | | |-- serde
1.0.152↪→

0/0 0/0 0/0 0/0 0/0 ? | | `--
tinyvec_macros 0.1.0↪→

0/0 3/3 0/0 0/0 0/0 ! | |-- percent-encoding
2.2.0↪→

0/0 5/5 0/0 0/0 0/0 ! | `-- serde 1.0.152
0/0 5/5 0/0 0/0 0/0 ! |-- serde 1.0.152
0/0 16/16 0/0 0/0 0/0 ! |-- serde_bytes 0.11.8
0/0 5/5 0/0 0/0 0/0 ! | `-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 ? |-- serde_cbor 0.11.2
10/10 239/239 0/0 0/0 0/0 ! | |-- half 2.2.1
18/18 414/414 128/129 9/9 0/0 ! | | |-- bytemuck 1.13.0
0/0 6/12 0/0 0/0 0/0 ! | | |-- num-traits 0.2.15
0/0 5/5 0/0 0/0 0/0 ! | | `-- serde 1.0.152
0/0 5/5 0/0 0/0 0/0 ! | `-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 ? |-- serde_derive 1.0.152
0/0 4/7 0/0 0/0 0/0 ! |-- serde_json 1.0.91
0/0 51/51 0/0 0/0 0/0 ! |-- sgx-isa 0.4.0
0/0 0/0 0/0 0/0 0/0 ? | |-- bitflags 1.3.2
0/0 5/5 0/0 0/0 0/0 ! | `-- serde 1.0.152
0/0 0/0 0/0 0/0 0/0 :) |-- tiny_http 0.12.0
0/0 0/0 0/0 0/0 0/0 :) |-- ureq 2.6.2
0/0 0/0 0/0 0/0 0/0 :) | |-- base64 0.13.1
0/2 41/118 0/2 0/0 0/2 ! | |-- flate2 1.0.25

Ref: 23-03-1142-LIV 77 Quarkslab SAS

5/6 108/156 0/0 0/0 0/0 ! | | |-- crc32fast 1.3.2
0/0 0/0 0/0 0/0 0/0 ? | | | `-- cfg-if 1.0.0
0/0 0/0 0/0 0/0 0/0 :) | | `-- miniz_oxide 0.6.2
0/0 0/0 0/0 0/0 0/0 :) | | `-- adler 1.0.2
1/1 16/18 1/1 0/0 0/0 ! | |-- log 0.4.17
1/1 92/138 5/9 0/0 2/4 ! | |-- once_cell 1.17.0
0/0 0/5 0/0 0/0 0/0 :) | |-- rustls 0.20.8
0/0 5/5 0/0 0/0 0/0 ! | |-- serde 1.0.152
0/0 4/7 0/0 0/0 0/0 ! | |-- serde_json 1.0.91
0/0 0/0 0/0 0/0 0/0 ? | |-- url 2.3.1
0/0 0/0 0/0 0/0 0/0 ? | |-- webpki 0.22.0
0/0 0/0 0/0 0/0 0/0 ? | `-- webpki-roots 0.22.6
0/0 0/0 0/0 0/0 0/0 ? | `-- webpki 0.22.0
0/0 46/46 0/0 0/0 0/0 ! `-- uuid 1.2.2
2/4 42/175 0/1 0/0 0/3 ! |-- getrandom 0.2.8
0/0 32/32 0/0 0/0 0/0 ! |-- rand 0.8.5
0/0 5/5 0/0 0/0 0/0 ! `-- serde 1.0.152

177/767 15921/42041 220/723 28/85 249/935

error: Found 26 warnings

A.7 Output of cargo clippy

$ azureuser@blindai-preview:~/blindai-preview$ cargo clippy --no-deps --target
x86_64-fortanix-unknown-sgx -- -A clippy::all -W clippy::integer_arithmetic
-W clippy::string_slice -W clippy::expect_used -W clippy::fallible_impl_from -W
clippy::get_unwrap -W clippy::index_refutable_slice -W
clippy::indexing_slicing -W clippy::match_on_vec_items -W
clippy::match_wild_err_arm -W clippy::missing_panics_doc -W clippy::panic -W
clippy::panic_in_result_fn -W clippy::unreachable -W clippy::unwrap_in_result
-W clippy::unwrap_used

↪→

↪→

↪→

↪→

↪→

↪→

↪→

warning: unused import: `std::fs`
--> rouille/src/assets.rs:10:5
|

10 | use std::fs;
| ^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default

warning: unused variable: `response`
--> rouille/src/content_encoding.rs:131:9
|

131 | fn gzip(response: &mut Response) {}
| ^^^^^^^^ help: if this is intentional, prefix it with an underscore:
`_response`↪→

|
= note: `#[warn(unused_variables)]` on by default

warning: unused variable: `response`

Ref: 23-03-1142-LIV 78 Quarkslab SAS

--> rouille/src/content_encoding.rs:150:11
|

150 | fn brotli(response: &mut Response) {}
| ^^^^^^^^ help: if this is intentional, prefix it with an
underscore: `_response`↪→

warning: unused variable: `request`
--> rouille/src/assets.rs:143:32
|

143 | pub fn match_assets<P: ?Sized>(request: &Request, path: &P) -> Response
| ^^^^^^^ help: if this is intentional, prefix
it with an underscore: `_request`↪→

warning: unused variable: `path`
--> rouille/src/assets.rs:143:51
|

143 | pub fn match_assets<P: ?Sized>(request: &Request, path: &P) -> Response
| ^^^^ help: if this is
intentional, prefix it with an underscore: `_path`↪→

warning: `rouille` (lib) generated 5 warnings (run `cargo clippy --fix --lib -p
rouille` to apply 5 suggestions)↪→

Checking blindai_server v0.0.1 (/home/azureuser/blindai-preview)
warning: integer arithmetic detected

--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
201 | impl_vec_from_to_le_bytes!(u8);

| ------------------------------ in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: requested on the command line with `-W clippy::integer-arithmetic`
= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
201 | impl_vec_from_to_le_bytes!(u8);

| ------------------------------ in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

Ref: 23-03-1142-LIV 79 Quarkslab SAS

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
202 | impl_vec_from_to_le_bytes!(u16);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
202 | impl_vec_from_to_le_bytes!(u16);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
203 | impl_vec_from_to_le_bytes!(u32);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

Ref: 23-03-1142-LIV 80 Quarkslab SAS

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
203 | impl_vec_from_to_le_bytes!(u32);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
204 | impl_vec_from_to_le_bytes!(u64);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
204 | impl_vec_from_to_le_bytes!(u64);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
205 | impl_vec_from_to_le_bytes!(i8);

| ------------------------------ in this macro invocation
|

Ref: 23-03-1142-LIV 81 Quarkslab SAS

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
205 | impl_vec_from_to_le_bytes!(i8);

| ------------------------------ in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
206 | impl_vec_from_to_le_bytes!(i16);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
206 | impl_vec_from_to_le_bytes!(i16);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

Ref: 23-03-1142-LIV 82 Quarkslab SAS

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
207 | impl_vec_from_to_le_bytes!(i32);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
207 | impl_vec_from_to_le_bytes!(i32);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
208 | impl_vec_from_to_le_bytes!(i64);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
208 | impl_vec_from_to_le_bytes!(i64);

| ------------------------------- in this macro invocation
|

Ref: 23-03-1142-LIV 83 Quarkslab SAS

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
209 | impl_vec_from_to_le_bytes!(f32);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
209 | impl_vec_from_to_le_bytes!(f32);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected
--> src/model.rs:183:54
|

183 | let mut v = Vec::<$t>::with_capacity(bytes.len() /
std::mem::size_of::<$t>());↪→

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^↪→

...
210 | impl_vec_from_to_le_bytes!(f64);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: integer arithmetic detected

Ref: 23-03-1142-LIV 84 Quarkslab SAS

--> src/model.rs:184:20
|

184 | if bytes.len() % std::mem::size_of::<$t>() != 0 {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
210 | impl_vec_from_to_le_bytes!(f64);

| ------------------------------- in this macro invocation
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

= note: this warning originates in the macro `impl_vec_from_to_le_bytes` (in
Nightly builds, run with -Z macro-backtrace for more info)↪→

warning: indexing may panic
--> src/model.rs:322:37
|

322 | node_name: Some(output_names[i].clone()),
| ^^^^^^^^^^^^^^^
|
= help: consider using `.get(n)` or `.get_mut(n)` instead
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing↪→

= note: requested on the command line with `-W clippy::indexing-slicing`

warning: used unwrap or expect in a function that returns result or option
--> src/model_store.rs:49:5
|

49 | / pub fn add_model(
50 | | &self,
51 | | model_bytes: &[u8],
52 | | model_name: Option<String>,
... |
110 | | Ok((model_id, model_hash))
111 | | }

| |_____^
|
= help: unwrap and expect should not be used in a function that returns result
or option↪→

note: potential non-recoverable error(s)
--> src/model_store.rs:63:30
|

63 | let mut models = self.inner.write().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_in_result↪→

= note: requested on the command line with `-W clippy::unwrap-in-result`

warning: used `unwrap()` on a `Result` value
--> src/model_store.rs:63:30
|

63 | let mut models = self.inner.write().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^

Ref: 23-03-1142-LIV 85 Quarkslab SAS

|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

= note: requested on the command line with `-W clippy::unwrap-used`

warning: integer arithmetic detected
--> src/model_store.rs:72:21
|

72 | *num += 1;
| ^^^^^^^^^
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

warning: used unwrap or expect in a function that returns result or option
--> src/model_store.rs:113:5
|

113 | / pub fn use_model<U>(&self, model_id: Uuid, fun: impl
Fn(&InferenceModel) -> U) -> Option<U> {↪→

114 | | // take a read lock
115 | | let read_guard = self.inner.read().unwrap();
116 | |
117 | | read_guard.models_by_id.get(&model_id).map(fun)
118 | | }

| |_____^
|
= help: unwrap and expect should not be used in a function that returns result
or option↪→

note: potential non-recoverable error(s)
--> src/model_store.rs:115:26
|

115 | let read_guard = self.inner.read().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_in_result↪→

warning: used `unwrap()` on a `Result` value
--> src/model_store.rs:115:26
|

115 | let read_guard = self.inner.read().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

warning: used unwrap or expect in a function that returns result or option
--> src/model_store.rs:120:5
|

120 | / pub fn delete_model(&self, model_id: Uuid) -> Option<InferenceModel> {
121 | | let mut write_guard = self.inner.write().unwrap();

Ref: 23-03-1142-LIV 86 Quarkslab SAS

122 | |
123 | | let model = match write_guard.models_by_id.entry(model_id) {
... |
139 | | Some(model)
140 | | }

| |_____^
|
= help: unwrap and expect should not be used in a function that returns result
or option↪→

note: potential non-recoverable error(s)
--> src/model_store.rs:121:31
|

121 | let mut write_guard = self.inner.write().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_in_result↪→

warning: used `unwrap()` on a `Result` value
--> src/model_store.rs:121:31
|

121 | let mut write_guard = self.inner.write().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

warning: integer arithmetic detected
--> src/model_store.rs:133:13
|

133 | *i -= 1;
| ^^^^^^^
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

warning: used unwrap or expect in a function that returns result or option
--> src/client_communication.rs:89:5
|

89 | / pub fn send_model(&self, request: &rouille::Request) ->
Result<SendModelReply, Error> {↪→

90 | | let upload_model_body: UploadModel = {
91 | | let mut data: Vec<u8> = vec![];
92 | | request
... |
130 | | })
131 | | }

| |_____^
|
= help: unwrap and expect should not be used in a function that returns result
or option↪→

note: potential non-recoverable error(s)

Ref: 23-03-1142-LIV 87 Quarkslab SAS

--> src/client_communication.rs:92:13
|

92 | / request
93 | | .data()
94 | | .expect("Could not get input")

| |__^
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_in_result↪→

warning: used `expect()` on an `Option` value
--> src/client_communication.rs:92:13
|

92 | / request
93 | | .data()
94 | | .expect("Could not get input")

| |__^
|
= help: if this value is `None`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#expect_used↪→

= note: requested on the command line with `-W clippy::expect-used`

warning: used unwrap or expect in a function that returns result or option
--> src/client_communication.rs:133:5
|

133 | / pub fn run_model(&self, request: &rouille::Request) ->
Result<RunModelReply, Error> {↪→

134 | | let max_input_size = self.max_input_size;
135 | |
136 | | let mut data_stream = request.data().expect("Could not get the

input");↪→

... |
185 | | Ok(RunModelReply { outputs })
186 | | }

| |_____^
|
= help: unwrap and expect should not be used in a function that returns result
or option↪→

note: potential non-recoverable error(s)
--> src/client_communication.rs:136:31
|

136 | let mut data_stream = request.data().expect("Could not get the
input");↪→

|
^^↪→

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_in_result↪→

warning: used `expect()` on an `Option` value
--> src/client_communication.rs:136:31
|

Ref: 23-03-1142-LIV 88 Quarkslab SAS

136 | let mut data_stream = request.data().expect("Could not get the
input");↪→

|
^^↪→

|
= help: if this value is `None`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#expect_used↪→

warning: integer arithmetic detected
--> src/client_communication.rs:142:12
|

142 | if run_model_body.inputs.len() * size_of::<u8>() > max_input_size
| ^^^
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

warning: integer arithmetic detected
--> src/client_communication.rs:143:16
|

143 | || run_model_body.inputs.len() * size_of::<u8>() >
max_input_size↪→

| ^^^
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

warning: used unwrap or expect in a function that returns result or option
--> src/client_communication.rs:188:5
|

188 | / pub fn delete_model(&self, request: &rouille::Request) -> Result<()> {
189 | | let mut data_stream = request.data().expect("Could not get the

input");↪→

190 | | let mut data: Vec<u8> = vec![];
191 | | data_stream.read_to_end(&mut data)?;
... |
206 | | Ok(())
207 | | }

| |_____^
|
= help: unwrap and expect should not be used in a function that returns result
or option↪→

note: potential non-recoverable error(s)
--> src/client_communication.rs:189:31
|

189 | let mut data_stream = request.data().expect("Could not get the
input");↪→

|
^^↪→

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_in_result↪→

Ref: 23-03-1142-LIV 89 Quarkslab SAS

warning: used `expect()` on an `Option` value
--> src/client_communication.rs:189:31
|

189 | let mut data_stream = request.data().expect("Could not get the
input");↪→

|
^^↪→

|
= help: if this value is `None`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#expect_used↪→

warning: used `unwrap()` on a `Result` value
--> src/client_communication.rs:217:17
|

217 | serde_cbor::to_vec(&reply).unwrap(),
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

warning: used `unwrap()` on a `Result` value
--> src/client_communication.rs:221:17
|

221 | serde_cbor::to_vec(&format!("{:?}", &e)).unwrap(),
| ^^^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

warning: integer arithmetic detected
--> src/client_communication.rs:238:23
|

238 | let elapsed = start.elapsed().as_micros() / repeats as u128;
| ^^^
|
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#integer_arithmetic↪→

warning: used `unwrap()` on a `Result` value
--> src/main.rs:107:17
|

107 | serde_cbor::to_vec(&format!("{:?}", &e)).unwrap(),
| ^^^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

Ref: 23-03-1142-LIV 90 Quarkslab SAS

warning: slicing may panic
--> src/main.rs:134:13
|

134 | / rouille::router!(request,
135 | | (GET)(/) => {
136 | | debug!("Requested enclave TLS certificate");
137 | | respond(Bytes::new(&enclave_cert_der))
... |
149 | | },
150 | |)

| |_____________^
|
= help: consider using `.get(..n)`or `.get_mut(..n)` instead
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing↪→

= note: this warning originates in the macro `rouille::router` (in Nightly
builds, run with -Z macro-backtrace for more info)↪→

warning: used `expect()` on a `Result` value
--> src/main.rs:154:28
|

154 | let untrusted_server = rouille::Server::new("0.0.0.0:9923", router)
| ____________________________^

155 | | .expect("Failed to start untrusted server")
| |___^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#expect_used↪→

warning: slicing may panic
--> src/main.rs:161:9
|

161 | / rouille::router!(request,
162 | | (POST) (/upload) => {
163 | | let reply = exchanger_temp.send_model(request);
164 | | exchanger_temp.respond(request, reply)
... |
177 | | _ => rouille::Response::empty_404()
178 | |)

| |_________^
|
= help: consider using `.get(..n)`or `.get_mut(..n)` instead
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing↪→

= note: this warning originates in the macro `rouille::router` (in Nightly
builds, run with -Z macro-backtrace for more info)↪→

warning: used `expect()` on a `Result` value
--> src/main.rs:183:34
|

183 | let trusted_server = rouille::Server::new_ssl(

Ref: 23-03-1142-LIV 91 Quarkslab SAS

| __________________________________^
184 | | "0.0.0.0:9924",
185 | | router,
186 | | tiny_http::SslConfig::Der(tiny_http::SslConfigDer {
... |
190 | |)
191 | | .expect("Failed to start trusted server");

| |___^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#expect_used↪→

warning: used `unwrap()` on a `Result` value
--> src/main.rs:193:13
|

193 | _trusted_handle.join().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

warning: used `unwrap()` on a `Result` value
--> src/main.rs:197:5
|

197 | _untrusted_handle.join().unwrap();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: if this value is an `Err`, it will panic
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#unwrap_used↪→

warning: `blindai_server` (bin "blindai_server") generated 47 warnings
Finished dev [unoptimized + debuginfo] target(s) in 0.65s

```

Ref: 23-03-1142-LIV 92 Quarkslab SAS


	Project Information
	Executive summary
	Disclaimer
	Findings summary

	Context and scope
	BlindAI
	SGX
	Overview
	Key concepts and definitions

	AI Inference
	Audit Scope
	Virtual Machine
	Server
	Client


	Discovery
	State of the Art on Intel SGX
	Background on Intel SGX
	List of known attacks on Intel SGX
	List of found tools for Intel SGX studies

	Discovery
	Build
	Run
	Code Structure
	Client
	Server
	Tests
	Dependencies

	Fortanix
	Code quality
	cargo audit
	cargo geiger
	Improper handling of error conditions
	cargo clippy
	Nonce set to 0
	Client
	CBOR


	Threat model and methodology
	Threat model
	Assets
	Secure usage hypotheses
	Security threat actors
	Security Threats

	Methodology

	Remote attestation
	Introduction
	Application in BlindAI

	Resiliency tests
	Man-at-the-End
	RDRAND
	SGX-Step

	Man-in-the-Middle

	Conclusion
	Bibliography
	Appendix
	Example of QE identity
	Example of TCB info
	Example of client manifest
	Accessing enclave memory from a debugger
	Default parameters of enclave builder lead to a debuggable enclave
	Output of cargo geiger
	Output of cargo clippy


