GPU-Accelerated Ray Tracing

By: Zeyad Al Awwad

Ray Tracing: Basic Idea

Track the paths of millions of light rays as they interact with the environment

Source: https://si-ashbery.medium.com/raytracing-309fc44307e6

Ray Tracing: Basic Idea

Track the paths of millions of light rays as they interact with the environment

Optical Simulation
Cast from light sources

3D Renderer
Cast from the camera

Source: https://si-ashbery.medium.com/raytracing-309fc44307e6

Scientific Applications

In climate modeling, we solve radiative equilibrium problems involving integrals

C)G

¢S

) G

Every layer has a temperature, pressure, composition, opacity, etc
All coupled through radiation!
(and convection)

Scientific Applications

In climate modeling, we solve radiative equilibrium problems involving integrals

Every layer has a temperature, pressure, composition, opacity, etc
All coupled through radiation!
(and convection)

Scientific Applications

It turns out to be a scalable Monte Carlo integrator for 3D radiation problems!

C 200G)

Every layer has a temperature, pressure, composition, opacity, etc
All coupled through radiation!
(and convection)

Parameterized Geometry

Light rays are modeled with a parameterized equation

-

x(t) =Xxo+t-d

d
Ml)

Parameterized Geometry

Light rays are modeled with a parameterized equation

d
M 1)

-

Parameterized Geometry

Light rays are modeled with a parameterized equation

-

x(t)=xp+t-d

Shape intersections come from implicit equations, where you solve for t

Circles
2d-d+12d- AR+ AR - AX = r? (X, — T}
Ya — Yb
Za — <b

Being solved on every thread (need to be careful with register use!)

Triangles
aja - xc ﬂjd-
Ya — Ye Yd
Za — Rc¢ Zd

+ 2 ®

Lq ZIJP
Ya — yp
Za Zp

Parameterized Geometry

Light rays are modeled with a parameterized equation

Shape intersections come from implicit equations, where you solve for t

Circles

-

)_C)(l‘):)_c)()+l‘°d

-dHt

Ya — Yb
Za — Rb

La

Ya —

Za

_ajc

Triangles
a:d_
Ye Yd
Zd

@

~+ 2

Lq ZIJP
Ya — yp
Za Zp

Moller-Trumbore Method

Transforming to barycentric coordinates greatly simplify triangle intersections

- — (T x E
:C A Q=1) \\
7
translatlon

Source: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html

Moller-Trumbore Method

Transforming to barycentric coordinates greatly simplify triangle intersections

- = (T x E
:C A Q=1 % \\
_ h|

t] Q- Ey] 0-VO ‘vi |ty

1 P.T translation
ul = .
P-FE

' lQ-D.

Source: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html

Intferactions

At each intersection, we may create a new ray (a “bounce”) based on effects like

Diffuse Reflections Specular Reflections

[/ 7/)7 VNNV

“Matte” materials “Glossy” materials

Currently implementing refraction (transparency) and absorption (heating)

Results

Results

Color blending from
bounce lighting

Results

Results

Reflections of reflections
(of reflections, of...)

Current Performance

Vastly faster than CPU ray tracing, but not as fast as commercial solutions

1. Handles ~25 million rays per second
* | gave up on my CPU implementation after a few minutes

2. Need to manage registers more carefully
* Had to reduce thread count to 256, but | hope to get it up to 512

3. Inefficient intersections (collision detection)
* | currently check every object, but there are much smarter solutions

Current Performance

Vastly faster than CPU ray tracing, but not as fast as commercial solutions

1. Handles ~25 million rays per second

* | gave up on my CPU implementation after a few minutes

2. Need to manage registers more carefully
* Had to reduce thread count to 256, but | hope to get it up to 512

3. Inefficient intersections (collision detection)
* | currently check every object, but there are much smarter solutions

Short-Term Plan

In the next two weeks, | hope to

1. Add a bit more physics into the model

Most importantly, refraction and thermal absorption (and maybe scattering?)

2. Build an atmospheric model with this infrastructure
* Model the radiative transfer of a simple theoretical planet

3. Examine some cool physical phenomena
Show how runaway greenhouse effects and ice-albedo feedbacks emerge from these models

Long-Term Plan

Over the course of my thesis, | hope to

1. Add way more physics to the model

» 3D effects like clouds and exotic effects like molecular spectra, pressure broadening, etc

2. Switch to Nvidia’s Optix library for fast intersections
* Should give 1000x better performance for the current computational bottleneck

3. Integrate with data from data from telescopes and advanced models
* Model exoplanets using general circulation models (GCM) and real data from stars

Call for Collaboration

If anyone is interested in getting state-of-the-art ray tracing in Julia

1. Nvidia’s Optix library is extremely well optimized
» Uses fast collision detection and specialized hardware (RT cores)

2. Currently accessible only in C/C++
* Fine for game engines, but a hindrance to scientific computing

3. A proof-of-concept Optix.jl interface exists
* Not an actual library (yet) - let's make it one!

