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Ray Tracing: Basic Idea

Track the paths of millions of light rays as they interact with the environment

Source: https://si-ashbery.medium.com/raytracing-309fc44307e6
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Optical Simulation
Cast from light sources

3D Renderer
Cast from the camera
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Scientific Applications

In climate modeling, we solve radiative equilibrium problems involving integrals
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Every layer has a temperature, pressure, composition, opacity, etc
All coupled through radiation!
(and convection)
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Scientific Applications

It turns out to be a scalable Monte Carlo integrator for 3D radiation problems!
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Parameterized Geometry

Light rays are modeled with a parameterized equation
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Parameterized Geometry

Light rays are modeled with a parameterized equation

-

x(t)=xp+t-d

Shape intersections come from implicit equations, where you solve for t
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Being solved on every thread (need to be careful with register use!)
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Moller-Trumbore Method

Transforming to barycentric coordinates greatly simplify triangle intersections
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Source: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection.html
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Intferactions

At each intersection, we may create a new ray (a “bounce”) based on effects like

Diffuse Reflections Specular Reflections
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“Matte” materials “Glossy” materials

Currently implementing refraction (transparency) and absorption (heating)



Results




Results

Color blending from
bounce lighting
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Results

Reflections of reflections
(of reflections, of...)




Current Performance

Vastly faster than CPU ray tracing, but not as fast as commercial solutions

1. Handles ~25 million rays per second
* | gave up on my CPU implementation after a few minutes

2. Need to manage registers more carefully
* Had to reduce thread count to 256, but | hope to get it up to 512

3. Inefficient intersections (collision detection)
* | currently check every object, but there are much smarter solutions
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Short-Term Plan

In the next two weeks, | hope to

1. Add a bit more physics into the model

Most importantly, refraction and thermal absorption (and maybe scattering?)

2. Build an atmospheric model with this infrastructure
* Model the radiative transfer of a simple theoretical planet

3. Examine some cool physical phenomena
Show how runaway greenhouse effects and ice-albedo feedbacks emerge from these models




Long-Term Plan

Over the course of my thesis, | hope to

1. Add way more physics to the model

» 3D effects like clouds and exotic effects like molecular spectra, pressure broadening, etc

2. Switch to Nvidia’s Optix library for fast intersections
* Should give 1000x better performance for the current computational bottleneck

3. Integrate with data from data from telescopes and advanced models
* Model exoplanets using general circulation models (GCM) and real data from stars



Call for Collaboration

If anyone is interested in getting state-of-the-art ray tracing in Julia

1. Nvidia’s Optix library is extremely well optimized
» Uses fast collision detection and specialized hardware (RT cores)

2. Currently accessible only in C/C++
* Fine for game engines, but a hindrance to scientific computing

3. A proof-of-concept Optix.jl interface exists
* Not an actual library (yet) - let's make it one!



