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Background: Neural ODEs

● NODEs learn a mapping from input x to output Φ(x) = h(T) by solving an IVP:

where f is a differentiable, dimension-preserving neural net function,

and we adjust f’s weights to fit true output labels.

● Continuous, dynamics-based analog to 
residual networks

● Can do regression or classification by 
adding linear layer



Motivation: limitations of Neural ODEs

● Problem: NODE representations preserve 
topology of input space, so there are many 
functions it cannot represent

○ ODE flows (trajectories of h(t) over time) for 
different inputs x can’t intersect

● Example 1: g(-1) = 1 and g(1) = -1

● Example 2: concentric 
circles, mapping blue to 1 
and red to -1



Augmented Neural ODEs (Dupont et al 2019)

● Key idea: augment input space from d to (d+p) dimensions via zero-padding, 
so ODE flows are “lifted” to higher dimensions and don’t intersect

● ANODEs have smoother and simpler flows, “empirically more stable, 
generalize better and have a lower computational cost” than NODEs 

● Performance metrics: loss, number of function evaluations, convergence



Experiments: learning the sine curve

● ANODE fits sine data, while NODE doesn’t converge (flows would intersect)
● Params: augmentation dim p=3; two-layer neural net, hidden dim 20 



Experiments: 2D classification of concentric circles

● Goal: classify inner circle points with 1 and outer ring with -1
● Params: augmentation dim p=5; three-layer neural net with hidden dim 64

● ANODE predicted labels converge to expected contours, while NODE doesn’t



Experiments: 2D classification of concentric circles

● Visualize features Φ(x), which are final location of ODE flows h(T)
● In ANODE, higher dimensionality allows classes to “lift out” and become 

linearly separable without intersecting flows



Experiments: 2D classification of concentric circles
● Increasing augmentation dimension allows convergence in fewer iterations



Next steps

● Experiment with ANODEs on image classification (e.g. MNIST), padding an 
extra channel of zeros

● Potential performance improvements:
○ “Input layer augmentation” with initial condition h(0) trained as an neural net that maps input x 

from d to (d+p) dimensions [Massaroli et al, 2020]
○ Regularization via randomly sampling ODE end time T [Ghosh et al, 2020]
○ Second order ANODEs [Norcliffe et al, 2020]



Takeaway

● Augmenting the space on which we solve neural ODE increases expressivity 
of the model, resulting in simpler flows for more complicated learning 
problems
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