18.337 Presentation 05/10/2023

Uncertainty Quantification in High-throughput biological datasets with Gaussian Process

Thomas Cheng & Davy Deng

18.337 - Parallel Computing and Scientific Machine Learning

Gaussian Process (GP) for uncertainty quantification

Hie et al, Cell Systems (2020)

Evidential active learning

Active learning using GP

Active learning using GP reduces overall uncertainty

18.337 Presentation 05/10/2023

Random

18.337 Presentation

05/10/2023

Experiments

Gaussian Processes in Julia

Feature	AGP.jl	Stheno.jl	GP.jl	
Sparse GP	\checkmark	×	\checkmark	
Custom prior Mean	 ✓ 	✓	✓	
Hyperparam. Opt.	~	?	~	
MultiOutput	~	\checkmark	*	
Online	\checkmark	×	×	

Types of uncertainty

SMILLIE LAB

Application 1: Single cell RNA-seq

- Captures cell-type transcriptomic heterogeneity in health and disease
- Quantifying uncertainty may
 - Identify batch effects
 - Identify rare condition-specific cell populations

Gaussian Processes reveals epistemic uncertainty

18.337 Presentation 05/10/2023

Due to data hold out in training set (B cells)

Active learning

- Nominate new cells for acquisition
 - Dominated by held out cells

Active learning

- Active learning out-performs random
- In practice can guide new sample acquisition for expensive/hard-to obtain samples, e.g.
 - Perturb-seq
 - Tumor core-needle biopsy

Application 2: Metabolomics

- Notoriously difficult in machine learning
- 90% compounds unannotated
- Motivating problem:
 - Quantify uncertainty to nominate low confidence compounds
 - Generate reference spectra experimentally subjected to experimental budget

18.337 Presentation

Gaussian Processes reveals aleatoric uncertainty

• Due to high intrinsic noise in data and/or poor data labelling

Application of Gaussian Processes

- Good classification performance despite low data quality
- Comparable with SVM
 - Standard practice in metabolomics

Application of Gaussian Processes

- Good classification performance despite low data quality
- Comparable with SVM
 - Standard practice in metabolomics
- Computationally expensive and numerically unstable
- Active learning out-perform random

18.337 Presentation 05/10/2023

Future work

- Formulate as Bayesian optimization
- In-domain kernel design
- Explore different native Julia implementations
- Better delineate uncertainty in active learning
 - epistemic uncertainty vs aleatoric uncertainty

Extra Slides