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Gaussian Process (GP) for uncertainty 
quantification
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Hie et al, Cell Systems (2020)
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Active learning using GP 18.337 Presentation
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Active learning using GP reduces overall 
uncertainty
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Random



Experiments
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Gaussian Processes in Julia



Types of uncertainty



Application 1: Single cell RNA-seq

• Captures cell-type transcriptomic 
heterogeneity in health and disease

• Quantifying uncertainty may
– Identify batch effects
– Identify rare condition-specific cell 

populations

18.337 Presentation

05/10/2023



Gaussian Processes reveals epistemic uncertainty

• Due to data hold out in training set (B cells)
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• Nominate new cells for acquisition
– Dominated by held out cells

• In practice can guide new sample 
acquisition for expensive/hard-to 
obtain samples, e.g. 
– Perturb-seq
– Tumor core-needle biopsy
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• Active learning out-performs 
random

• In practice can guide new sample 
acquisition for expensive/hard-to 
obtain samples, e.g. 
– Perturb-seq
– Tumor core-needle biopsy



Application 2: Metabolomics

• Notoriously difficult in machine learning
• 90% compounds unannotated
• Motivating problem:

– Quantify uncertainty to nominate low 
confidence compounds

– Generate reference spectra 
experimentally subjected to 
experimental budget
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Gaussian Processes reveals aleatoric uncertainty

• Due to high intrinsic noise in data and/or poor data labelling
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Application of Gaussian Processes

• Good classification performance 
despite low data quality

• Comparable with SVM
– Standard practice in metabolomics
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Application of Gaussian Processes

• Good classification performance 
despite low data quality

• Comparable with SVM
– Standard practice in metabolomics

• Computationally expensive and 
numerically unstable

• Active learning out-perform random
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• Formulate as Bayesian optimization

• In-domain kernel design 

• Explore different native Julia implementations

• Better delineate uncertainty in active learning
– epistemic uncertainty vs aleatoric uncertainty 
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