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Gaussian Process (GP) for uncertainty 18.337 Presentation
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Evidential active learning
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Active learning using GP
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Active learning using GP reduces overall

uncertainty

Gaussian Process Regression (size = 16)
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Gaussian Processes in Julia

Feature AGPjl Stheno.j GPjl

Sparse GP v ®

Custom prior Mean v v
Hyperparam. Opt.
MultiOutput

Online




Types of uncertainty
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Application 1: Single cell RNA-seq

Captures cell-type transcriptomic
heterogeneity in health and disease

Quantifying uncertainty may
— ldentify batch effects

— Identify rare condition-specific cell
populations
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Gaussian Processes reveals epistemic uncertainty

Due to data hold out in training set (B cells)
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Uncertainty

Active learning

Nominate new cells for acquisition
— Dominated by held out cells
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Active learning

Active learning out-performs
random

In practice can guide new sample
acquisition for expensive/hard-to
obtain samples, e.g.

— Perturb-seq
— Tumor core-needle biopsy

Uncertainty
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Application 2: Metabolomics
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 Notoriously difficult in machine learning ® Benzenoids
Lipids and lipid-like molecules
e 90% compou nds unannotated Organic acids and derivatives
] ) Organoheterocyclic compounds
* Motivating problem: Other

Phenylpropanoids and polyketides
@® Unknown

— Quantify uncertainty to nominate low
confidence compounds

— Generate reference spectra
experimentally subjected to 2
experimental budget
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Gaussian Processes reveals aleatoric uncertainty " .o
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Due to high intrinsic noise in data and/or poor data labelling
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Application of Gaussian Processes

Good classification performance
despite low data quality

Comparable with SVM
— Standard practice in metabolomics

True Positive Rate
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Application of Gaussian Processes 051012023

Good classification performance

despite low data quality . ___
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Future work

Formulate as Bayesian optimization

In-domain kernel design

Explore different native Julia implementations

Better delineate uncertainty in active learning
— epistemic uncertainty vs aleatoric uncertainty
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