Perception-Aware Multiagent Trajectory Planner for UAVs Using Imitation Learning

Kota Kondo, AeroAstro

kkondo@mit.edu

May 8, 2023

Background 1: What are UAVs?

- UAVs (Unmanned Aerial Vehicles) and Drones
 - Commercial use
 - Video/photo
 - Package delivery
 - New mobility?
- Trajectory Planner
 - Control where they will go
 - Complex problem
 - Surrounding environment changes
 - More agents more complex

Background 2: Multiagent & Perception-aware

- Multiagent traj. planning
 - Decentralized vs. Centralized
 - Asynchronous vs. Synchronous

Table 1. Multiagent Trajectory Planner Category

	Synchronous	Asynchronous		
Centralized	Not Scalable	Not Possible		
Decentralized	Somewhat Scalable	Most Scalable (our approach)		

- Perception-aware algorithm
 - Onboard sensing
 - Plans traj. depending on the env.

Background 2: Multiagent & Perception-aware

Table 2. State-of-the-art UAV Trajectory Planners

Method	Multiagent	Perception-aware	
EGO-Swarm [31]			
DMPC [10]	_		
MADER [22]	Yes	No	
decMPC [26]	_		
RMADER [9]	_		
Raptor [30]			
Time-opt [19]	_		
PANTHER [23]	No	Yes	
PA-RHP [29]	_		
Deep-PANTHER [24]	_		
Proposed approach	Yes	Yes	

Background 3: Opt-based vs. IL-based

- Optimization-based
 - Solve optimization problem
 - Optimal traj. generation
 - Slow
 - Not scalable
- Imitation Learning (IL)-based
 - Imitate expert (usually opt-based) trajectory planner
 - Close-to-optimal
 - Fast
 - Scalable

Background 3: Opt-based vs. IL-based

Table 3. State-of-the-art Perception-aware Obstacle Tracking Trajectory Planners

Method	Tracking Multi- obstacles	Multi- agents	Trajectory	Planning	
[21]	No	No	Only Position	Optimization-based (slow & not scalable)	
[14]	No	No	Position & Yaw	Optimization-based (slow & not scalable)	
PANTHER / PANTHER* [23, 24]	No	No	Position & Yaw	Optimization-based (slow & not scalable)	
Deep- PANTHER [24]	No	No	Only Position ¹	IL-based (faster & scalable)	
Expert	Yes	Yes	Position & Yaw	Optimization-based (slow & not scalable)	
Student (proposed)	Yes	Yes	Position & Yaw	IL-based (faster & scalable)	

Motivation

- Want to create the first "Perception-aware Multiagent traj. Planner using Imitation Learning"
 - Perception information
 - Flexible trajectory planning in real-world
 - Multiagent
 - Large-scale task
 - Imitation Learning
 - Fast

Julia MPI for IL (Behavior Cloning)

- MPI for fast data (trajs) collection
 - Parallelize data collection process for trajectory behavior cloning
 - Each processor generates expert trajectories
 - Collected 10K trajs (48606 seconds)

Julia MPI for IL (Behavior Cloning)

- Performance Comparison
 - Logged 100 trajectories collection speed

Table 2. Data Collection Time for 100 trajectories

		Data Collection Time [s]		
Not Parallelized		-1.75 times 320.4		
MPI Parallelized	2 processors	3.68 times		
	5 processors	86.8		

Planner Framework 1

- Multiagent in Neural Net
 - Issue: Fully-connected (FC) layers have a fixed input size
 - Solution: Use RNN: Long Short-Term Memory (LSTM)
- NN details
 - 4 FC layers with 1024 neurons
 - ReLu
 - Adam optimizer
 - Learning rate decay
 - BC / DAgger

Planner Framework 2

Fig. 3. Student Planning and Sharing Trajectory Architecture

Simulation Results 1: Student Policy Analysis

- BC is not so great to train student -> Data Aggregation (DAgger)
 - Trajectory Cost: FOV + Terminal Goal + Obst. Avoidance + Dyn. Limit. Constr.

Table 5. Expert vs. Student

	Avg. Cost	Computation Time [ms]
Expert	1317.0	5363.4
Student (BC)	2055.4	0.5634
$egin{array}{c} ext{Student} \ ext{(BC + DAgger)} \end{array}$	1550.3	0.8978

Fig. 5. Student single-agent, single-obstacle, simulation result: We made the Student agent fly around a trefoil-trajectory dynamic obstacle. The agent started at the top-right corner and was commanded to fly to the down-left.

Simulation Results 2: Benchmarking

Table 6. Benchmarking

Env.	Method	Compu. Time [ms]	$\begin{array}{c} \mathbf{Success} \\ \mathbf{Rate} \\ [\%] \end{array}$	Travel Time [s]	FOV Rate [%]	# Conti. FOV De- tection Frames	Dyn. Constr. Violation Rate [%]
1 agent + 2 obst. —	Expert	3456.13	100.0	7.87	29.0	19.8	0
	Student	57.11	100.0	4.45	28.0	31.0	10.3
3 agents + 2 obst.	Expert	6212.13	0.0	13.00	19.6	65.7	0.0
	Student	119.82	80.0	5.83	25.0	35.3	5.4

Simulation Results 2: Benchmarking (videos)

Student 3 agents + 2 obsts

Student 3 agents + 2 obsts w/o FOV

Conclusions & Future work

- First Multiagent Perception-aware traj. Planner using IL
 - Decentralized
 - Asynchronous
 - RNN (LSTM) -> multi-obstacles + multiagent
- Fast training done parallelly using Julia MPI
- Benchmarking with multiple obstacles and agents
 - Faster Computation with good performance
- Hardware flight experiments