
Shapley Effects for Global 
Sensitivity Analysis

Devang Sehgal and Anurag Vaidya 
Department of Health Science and Technology, MIT

5/19/2023

Code: https://github.com/ajv012/shapley_julia



Suppose you have a Plant …

How does the output of a model generally change with a change in the 
input? 

Global Sensitivity Analysis!

C. Rackauckas, SciML/scimlbook https://book.sciml.ai/ 

PLANT 
.
.
.

X1
X2

Xn

YInputs: raw material, 
flow rates etc.

Output: 
Production

Sensitive inputs Sparsify Robustness

https://book.sciml.ai/


GlobalSensitivity.jl

● SciML implementation for Global Sensitivity Analysis.
res = gsa(f, method, param_range; samples)

● Several methods implemented - derivative based, morris, regression etc.
● State of the art method in library: Sobol.

○ First order effects

○ Total effects

● Limitations:
○ Methods cannot take into account dependent inputs 
○ Sobol may not characterise overall variance correctly 

V. Dixit and C. Rackauckas, GlobalSensitivity.jl, 2022, https://github.com/SciML/GlobalSensitivity.jl 

https://github.com/SciML/GlobalSensitivity.jl


Shapley Effects

● Based on Shapley values from game theory
● Attributes total variance to individual inputs or ‘players’ - interpretable.
● Can handle dependencies between features/ inputs.
● Computationally expensive but tractable with Monte Carlo methods.
● Aim of our project to implement this for GlobalSensitivity.jl .

E. Song, B. Nelson, and J. Staum, SIAM, 2016



Details of our implementation

Generate the sample, X Get y = f(X)

f can be parametric function (fire spread) 
or ODE solution (prey-predator system)

Compute Shapley 
effects (sum to 1)

What are the 
inputs?

Function f to be 
tested

Marginal 
distribution of 
each feature

How do the 
marginals relate 

(Copula)



How to generate the sample X
Goal: Given a payout (function output), what is the contribution of each player (feature)?

Solution: To find contribution of player P, find the payout with and without P in the coalition

Coalition with P Coalition without P

P A B C

Sample from joint distribution 
of players P, A, B, C

P A B C

Sample from 
distribution of P

Sample from joint 
distribution of 

players A, B, C

Repeat over all permutations of players and all coalitions to get X



Key results of our implementation

● Demonstrated correctness of our Julia shapley-effects implementation with use of 
Ishigami and Linear functions, comparing with Sobol and theory.

● Demonstrated utility of shapley-effects over Sobol in interpretability and when inputs 
are dependent by application on Jackson factory model.

● Demonstrated the functioning of random permutation implementation which makes 
the problem computationally tractable in higher dimensions.

● Demonstrated versatility of implementation in use with Lotka-Volterra Differential 
Equations.

● Performance engineering - made code type-stable, reduced allocations and 
parallelized. 

○ Fastest serial implementation is 9x faster than equivalent python-numpy implementation.
○ Parallel implementation 20x faster than equivalent python-numpy on 4 threads. 

● Showed impact of hyperparameters on correctness and performance of our code.



Salient features of implementation

● Decouple the sample generation from Shapley effect calculations
○ Benefit: high performance engineering of each step can be done separately 

● All permutations of players infeasible for large number of players (think 10!)
○ Implement two models:

■ random permutation = sample from all permutations
■ Exact permutation = consider all permutations

● Report the median Shapley effect and 95% confidence interval



Correctness experiments

For simple functions, 
Shapley effects 
match with Sobol 
indices. Redundant 
features are given ~0 
attribution by both 
methods



Applying our algorithm to Jackson model of a 
manufacturing plant

With greater 
correlation, we 
see 
discrepancies 
in the Sobol 
indices but not 
Shapley effects



Effect of different hyperparams on the memory and time 
complexity of Shapley algorithm



Breaking down the effect of hyperparams on different parts 
of the algorithm 



We make Shapley effects algorithm tractable for functions 
with many inputs by randomly sampling permutations of 
features



Shapley effects can be applied to time-dependent systems, 
like the Lotka–Volterra equations
 Shapley effects have better 

interpretability because 
they can be seen as 
percentages of total 
variance. Easier to interpret 
system and see how 
importance changes at 
different time points.

Total and First order Sobol 
cannot be compared 
against each other because 
they do not sum up to the 
total variance.



Significant performance gains made by Julia over python 
(tested over the Ishigami function)



Next steps: Integrate Shapley effects in 
GlobalSensitivity.jl. Check out PR at: 
https://github.com/SciML/GlobalSensitivity.jl/pull/105



Archive slides



Linear (Shapley and Sobol)

No interpretation can be made99.9% of payout accounted by feature 1 (0.7)



Ishigami (Shapley and Sobol)

First order and Total order 
Sobol are inconsistent

Redundant 
feature 

given ~0 
attribution



Next Steps

● Develop Randperm - implementation to generate and use randomly samples 
permutations

● Performance Engineering - improve and characterise performance
● Application to other systems - Jackson manufacturing network model.


