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What are Neural Ordinary Differential Equations
(Neural ODEs)?

Neural ODEs is a class of neural networks that, instead of
modeling the data directly, it models the derivative of
the data.

e An ODE solver is required to the predicted data from the
modeled derivative.

e They can be understood as the continuum limit of
Recurrent Neural Networks (RNNs).

%u( t) = NN(u,t,0)

u(t) = ODESolver(NN, ug, t)



Why are they useful?

e They are useful to model continuous time-series data.

e Neural ODEs do not “learn the data”, which could be
complicated, they “learn” the latent dynamics of the
system. That's how physics works!

e Useful in modeling physical, financial, and biological
systems when theory-driven models are lacking or
non-existent.



Backpropagation

e \We really do not want to backpropagate through the steps
of the ODE solver: too expensive!

e Instead, we can use the adjoint method to compute the
gradient of the cost w/r to weights.

d Cost:

—-u(t) = NN(u, ,0) -
G(u,0) = / g(ut,0)) dt
u(t) = ODESolver(NN, ug, t) 0



T
Backpropagation Cost: G(u,0) = / g(u(t,0))dt
0

e First, we solve the ODE forward, from 0 to T.
e Second, we solve the adjoint ODE backwards, from T to
0.
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My project

e | implemented my own Neural ODE adjoint solver
from scratch, fully compatible with Flux.jl

e In the next slides I'll present some examples of
Interests.



Example 1: Linear system

e Trained the NN for a fixed interval [0,1] and various
random initial conditions.

e NN: 1 hidden layer, 64 hidden units

% u(t) = Au(t),

dt
A — —i{J.1 2
-2 —0.1



Example 1: Linear system
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Example 1: Linear system

Extrapolation
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Example: Lotka-Volterra egs.

e Trained the NN for a fixed interval and initial cond.
e This is a nonlinear system with periodic behavior.

d

2 _ oz - po,
dy

— = 0Ty — VY,

dt



Example: Lotka-Volterra egs.
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Example: Lotka-Volterra egs.
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Example: Lotka-Volterra egs., with noise
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Example: Lotka-Volterra egs., with noise
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Example: double pendulum

e Trained the NN for a fixed interval and initial cond.
e This is a nonlinear system with aperiodic behavior.
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Example: double pendulum
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Example
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Example: double pendulum
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Solution: Hamiltonian Neural Networks (HNNs)!

e The NN models the Hamiltonian instead of the derivative
of the system.
e | implemented HNNs using DiffEgFlux.jl.



Example: double pendulum with HMMn
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Example: double pendulum with HMMn
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