
Parallelized MAXCUT
Jonathan Edelman



What is MAXCUT?

Given a graph G(V,E), partition the vertices into

V1 and V2 s.t. the number of edges between

V1 and V2 is maximized i.e.



MAXCUT as an optimization problem

wij = 0 if (i,j) is not in E.

Otherwise it is the weight of edge (i,j)

This is NP-hard.



Relaxation of MAXCUT

Convex optimization (an SDP):

Rank constraint (no longer convex).



Mixing Method

If all other vj are fixed, the last vi is optimized with:

Just keep looping through vi until convergence.



Parallelization

Initial hypothesis: We can loop over all vi to find the one that minimizes wrt to the 
other vj in parallel.



Where I’m currently at

With n=30, k=4

SDP solver (way overkill, way too long): 64.722 ms (31442 allocations: 2.31 MiB)

Serial Mixing Method (a lot faster!): 1.756 ms (4762 allocations: 762.50 KiB)

Parallel Mixing Method is not working at the moment: doing the for loop in parallel 
does updates each vector independently, whereas when it is done serially the 
vectors actually converge. Instead it finds a v s.t. vTv = J, the matrix of all 1s.

If this can be fixed, I think a n-times speedup could occur (where n is the number 
of processors)

Still working on this! Hoping to try to make even faster.



With n=100, k=16

SDP Solver: 1.125 s (311671 allocations: 25.15 MiB)

serial: 62.123 ms (47440 allocations: 19.51 MiB)

It seems the mixing method is still faster, but it may not scale as well with n as the generic 
solver? It is still better for smaller graphs.

Could also be an issue with implementation. Mixing method doesn’t seem to scale well with k.


