Better Parallelism in Python
with YieldTasks

Marc Davis

Map: A Core Parallelism Primitive

results = []
for data in list of data:
results.append(f(data))

results = [f(data) for data in list of data]

results = map(f, list of data)

 Run a function on many different inputs
* Frequently parallel code involves parallelizing a map operation

 Many other models of parallelism (e.g. MapReduce) can be written in
terms of a parallel map operation

* |ts NOT everything, but its a good place to start.

Case Study: Qsearch

Unitary Circuit

\
0 1 g 8 "
What it does: Uaor={ 0 0 0 1 ﬁ N)
O 01 O 0) T H T H T z HA
\- / N ~
mi
ull Circuit T E E E Parameterized Circuit
utl Circuit iree UG = (@ @ @ Us (7)) 1T, () ® (CNOT(Us () ® Us (i) ® Lo (i)
q represents the number of qubits and n represents the total number of single-qubit gates
—{v}] {u} I; (i) and I, (i) are functions that represent the needed placements of identities to create the specified structure.
- —{Y} (V—d—Y]
g - , E & —Y l Y} l (] l U}
9 <ﬂ\u ﬂl@wgl@w@l@wgl@
] —{Y} (Y] —[O—&—{v] d—0] H—u] d—v]
How it works: A Leaf Node:
mi —{Y} S—Y] . . « . .
Expand tree by Any circuit structure that the optimizer can find
adding blocks 0 parameters for such that the distance to the
0@ target is near zero.
mi

* By continuing to add layers, we can represent any circuit, somewhere in our tree.
 The lowest-depth leaf node represents a minimal-CNOT length circuit solution

Case Study: Qsearch

P pUthOn User facing code (Python is the industry standard for Quantum Computing right now)

Written in:
@ust Numerical optimization of quantum circuits

Pseudocode

output = []
0or unitary in unitaries_to_synthesize: # Could be parallelized

output.append(synthesize(unitary)) Even Slmpler Pseudocode

0r unitary in unitaries_to_synthesize:
| t is_solution(best _ansatz): # This loop can't be parallelized

f synthesize(unitary):
best _ansatz = prepare()
| t is_solution(best_ansatz):
ansatz_list = get_list_of next_ansatzs()
o . result_list = []
Opportunltles for Parallelism: for new_ansatz in ansatz_list: # Could be parallelized

result_list.append(evaluate ansatz(new_ansatz))

'or new_ansatz in get list of next_ansatzs():
or starting_point in starting_points:
call_into_optimization_library()

* Nested loops (one of which can’t be parallel)
e Difficult to wrap into one loop
» Data transferred is “small” (KB)

f 3:::u:thansatz(new_ansatz): « Smallest level of computation is “large” (0.01s-5s)

starting points = generate_random_starting points()
'or starting_point in starting_points: # (Could be parallelized
data.append(optimize(new_ansatz, starting point))

best _ansatz = choose best ansatz(result list)

n best_ansatz

best data = evaluate data(data)
| n best _data

Oversubscription vs Undersubscription

Oversubscription Undersubscription
 Parallelize at every layer * Pick one layer to focus on
* Rely on the OS scheduler to sort things out Keep things simple
 Performance lost due to context switching Performance lost due to underutilized CPU

 Sub-processes of sub-processes One sub-process per hardware thread (usually)

Expression vs Implementation of Parallelism

Pros:
multiprocessing - very simple
- lightweight
results = pool.imap unordered(f, data) el]ir

- single-node
- no GPU

rr dask Pros:
- powerful
=g results = data.applymap(f) Jeryee

- complex
- can have very poor
performance if not

TensorFlow configured well

results = parallel map(f, data)

results = data.map(f) Pros:

- similar API to other
Release Qsearch: - popular libraries
* both over and under subscription (in different places) Cons:
. mult_lprocessmg - requires converting
BQSKit (Successor to Qsearch): your data to
e undersubscription TensorFlow formats

e dask

Introducing Yieldtasks

results = taskqueue.map(f, data)

results = taskmap(f, data)

li%%iiii%!%'

2. Task Iis assigne

results = taskqueue.map(f, data)

1. Task is requested

lIiHHH%HHHHHHI

3. Task is run

results = taskmap(f, data)

4. Task requests subtasks and waits OR 5. Task returns

lIIHHHIHHHHHIII

6. Return value sent to TaskQueue

|
7. Return value sentto user OR 8. Waiting task is reawoken

- Makes a function return a Generator, which will store the intermediate state of that function while it waits for more data.
(This is a way of implementing coroutines in Python)

taskqueue = DaskTaskQueue()

TaskQueue and WorkerQueue can be re-implemented in different backends without modifying user code. Pt et T Tl o0

to Yieldtasks

Convertin

output = []
for unitary in unitaries_to_synthesize: # Could be parallelized

output.append(synthesize(unitary)) taskqueue = MultiprocessingTaskQueue()

output = taskqueue.map(synthesize, unitaries_to_synthesize)
~ synthesize(unitary):
best ansatz = prepare()
hil t is_solution(best_ansatz):
ansatz_list = get list_of next_ansatzs()
result _list = []
'0or new_ansatz in ansatz_list: # Could be parallelized
result list.append(evaluate ansatz(new ansatz))

~ synthesize(unitary):
best ansatz = prepare()
hil t is_solution(best _ansatz):
ansatz list = get list of next_ansatzs()
result list = yield taskmap(evaluate ansatz, ansatz 1list)
best ansatz = choose best ansatz(result list)

best ansatz = choose_best ansatz(result list)
rn best _ansatz

turn best_ansatz

 evaluate_ansatz(new_ansatz):
starting points = generate _random starting points()
data = yield taskmap(optimize, starting point)
best data = evaluate data(data)
return best data

f evaluate ansatz(new ansatz):
data = []
starting points = generate random starting points()
or starting point in starting points: # Could be parallelized
data.append(optimize(new _ansatz, starting point))

best data = evaluate data(data)
return best_data

 Parallelized at every level
* Neither over nor under subscribes
* Switching backend can be done by changing a single line

Performance Comparison

Processor: AMD 5950X (32 threads)
Task: Perform 8 unitary synthesis tasks.
Comparison: Original Qsearch from PyPy vs Qsearch implemented with Yieldtasks
(Then repeat 10x to average out randomness)

Qsearch
16 Multistarts

Benchmark List x10

Undersubscribe 19m 58s

Oversubscribe 8m 21s

Yieldtasks 5m 32s

Summary

Yieldtasks Can:
 Enable nested parallel map operations
* Without oversubscribing or undersubscribing
 Potential to switch backends with 1 line of code

Implemented So Far:
* Working Yieldtasks implementation with a multiprocessing backend
* Qsearch built on Yieldtasks outperforms original implementation

Next Steps and Future Goals:

Polish and release Yieldtasks implementation
mprove error handling
mplement other backends

 Multiple computers on a network?

 Multiple nodes in a cluster?

e Dask?

« GPU? (Since GPUs don’t run Python, special handling will be needed...)
Move to a syntax based on async/await

