
Better Parallelism in Python 
with YieldTasks

Marc Davis



Map: A Core Parallelism Primitive

• Run a function on many different inputs


• Frequently parallel code involves parallelizing a map operation


• Many other models of parallelism (e.g. MapReduce) can be written in 
terms of a parallel map operation


• Its NOT everything, but its a good place to start.



Case Study: Qsearch
What it does:

How it works:



Case Study: Qsearch

Opportunities for Parallelism:

• Nested loops (one of which can’t be parallel)

• Difficult to wrap into one loop

• Data transferred is “small” (KB)

• Smallest level of computation is “large” (0.01s-5s)

Even Simpler Pseudocode

Pseudocode

Written in:
User facing code (Python is the industry standard for Quantum Computing right now)

Numerical optimization of quantum circuits



Oversubscription vs Undersubscription

Oversubscription Undersubscription

• Parallelize at every layer 
• Rely on the OS scheduler to sort things out 
• Performance lost due to context switching 
• Sub-processes of sub-processes

• Pick one layer to focus on 
• Keep things simple 
• Performance lost due to underutilized CPU 
• One sub-process per hardware thread (usually)



Expression vs Implementation of Parallelism
Pros: 
- very simple

- lightweight

Cons:

- single-node

- no GPU

Pros: 
- powerful

Cons:

- complex

- can have very poor 

performance if not 
configured well

Pros: 
- similar API to other 

popular libraries

Cons:

- requires converting 

your data to 
TensorFlow formats

Release Qsearch: 
• both over and under subscription (in different places)

• multiprocessing

BQSKit (Successor to Qsearch):

• undersubscription

• dask



Introducing Yieldtasks

1. Task is requested 2. Task is assigned
3. Task is run

4. Task requests subtasks and waits 5. Task returnsOR

6. Return value sent to TaskQueue

7. Return value sent to user OR 8. Waiting task is reawoken

TaskQueue
WorkerQueue

User Code

Makes a function return a Generator, which will store the intermediate state of that function while it waits for more data.
(This is a way of implementing coroutines in Python)

TaskQueue and WorkerQueue can be re-implemented in different backends without modifying user code.



Converting to Yieldtasks

• Parallelized at every level

• Neither over nor under subscribes

• Switching backend can be done by changing a single line



Performance Comparison

Qsearch 
16 Multistarts 

Benchmark List x10

Undersubscribe 19m 58s

Oversubscribe 8m 21s

Yieldtasks 5m 32s

Processor: AMD 5950X (32 threads)

Task: Perform 8 unitary synthesis tasks.


Comparison: Original Qsearch from PyPy vs Qsearch implemented with Yieldtasks

(Then repeat 10x to average out randomness)



Summary
Yieldtasks Can:


• Enable nested parallel map operations

• Without oversubscribing or undersubscribing

• Potential to switch backends with 1 line of code

Implemented So Far:

• Working Yieldtasks implementation with a multiprocessing backend

• Qsearch built on Yieldtasks outperforms original implementation

Next Steps and Future Goals:

• Polish and release Yieldtasks implementation

• Improve error handling

• Implement other backends


• Multiple computers on a network?

• Multiple nodes in a cluster?

• Dask?

• GPU? (Since GPUs don’t run Python, special handling will be needed…)


• Move to a syntax based on async/await


