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Abstract—We demonstrate a high-performance and vendor-
agnostic method for massively parallel solving of ensembles
of stiff ordinary differential equations (ODEs) on GPUs. The
method is integrated with a widely used differential equation
solver library in a high-level language (Julia’s DifferentialEqua-
tions.jl) and enables GPU acceleration without requiring code
changes by the user. Our approach achieves state-of-the-art
performance by performing 20–50× faster than the vectorized-
map (vmap) approach implemented in Julia and JAX. Perfor-
mance evaluation on NVIDIA, AMD, Intel, and Apple GPUs
demonstrates performance portability and vendor-agnosticism.
The implemented solvers successfully extend the support of
all the features existing in DiffEqGPU.jl solvers, such as
MPI-compatibility, event handling, automatic differentiation, and
incorporating of datasets via the GPU’s texture memory, allowing
scientists to take advantage of GPU acceleration on all major
current architectures without changing their model code and
without loss of performance.

I. INTRODUCTION

Solving ensembles of the same differential equation with dif-
ferent choices of parameters and initial conditions is common
in many technical computing scenarios such as solving inverse
problems [1], performing uncertainty quantification [2–4], and
calculating global sensitivity analysis [3, 5]. In spite of the fact
that such an embarrassingly parallel issue lends itself to being
well-suited for acceleration via GPU hardware, the traditional
hurdle to the adoption of GPU-parallel solvers by scientists
and engineers who are less programming knowledgeable has
been the programming requirements. The fact that the user
must provide a function to define the ordinary differential
equation (ODE) presents the primary challenge that must be
overcome in order to successfully target GPUs with general
ODE solver software. Therefore, high-level ODE solver soft-
ware has typically consisted of higher order functions that
take as input a function written in a high-level language such
as MATLAB [6], Python (SciPy [7]), or Julia (DifferentialE-
quations.jl [8]). This is done to lower the entry barrier for
scientists and engineers. In order to target GPUs, previous
software such as MPGOS [9] has required users to rewrite
their models in a kernel language such as CUDA C++, which
has thus traditionally kept optimized GPU usage out of reach
for many scientists. In order to get around this barrier, some
software for general GPU-based ODE solving in high-level

languages has targeted array-based interfaces like those found
in machine learning libraries like PyTorch [10] or JAX [11].

In this project, we demonstrate a performant, composable,
and vendor-agnostic method for model-specific kernel gener-
ation to solve massively parallel ensembles of stiff ordinary
differential equations (ODEs). Our software transforms code
which targets a widely used differential equation solver library
in a high level language (Julia’s DifferentialEquations.jl [8])
and automatically generates optimized GPU kernels without
requiring code changes by the end user. Our kernel generation
approach achieves state-of-the-art performance by performing
20–50× faster than the vectorized-map (vmap) approach im-
plemented in JAX. We showcase the vendor-agnostic aspect of
our approach by benchmarking the results against many major
GPU vendors cards like NVIDIA, AMD, Intel (oneAPI), and
Apple silicon (Metal), and demonstrate the composability with
MPI to enable distributed multi-GPU workflows. Together,
these applications enable scientists and engineers to target all
main GPU platforms without performance loss.

II. RELATED WORK

Although GPUs have been extensively used to accelerate
computations in applications such as molecular simulation, bi-
ological systems, and physics [12–15], these implementations
are typically CUDA kernels written for the specific models
and are therefore not general ODE solver software. Array
abstraction frameworks such as ArrayFire [16], Thrust [17],
and VexCL [18], JAX [11], and PyTorch [10] have been used
in previous attempts to simplify the targeting of GPUs with
a general ODE solver software. These frameworks enable the
adaptation of code written on high-level array abstractions and
generate highly optimized code for backends such as OpenCL
and CUDA. Boost’s ODEINT [19–21] enables the use of ODE
solvers that are compatible with GPU backends such as CUDA
and OpenCL without modification. JAX’s Diffrax generates
solvers for ensembles of ODEs on GPUs using the vectorized
map functionality (vmap) of JAX [22].

Similar results were observed in culsoda [12], a CUDA trans-
lation of the widely used LSODE solver [23, 24], which was
similarly limited due to requiring ODE models to be written
in CUDA and compiled into the kernels. The ODE and SDE
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solvers with custom GPU kernels and multiple GPU platform
support were developed in Julia, achieving orders of magnitude
of performance compared to array-based parallelism imple-
mentations [25]. However, the currently available solvers are
based on explicit methods, which generally are not efficient for
solving stiff ODEs. Stiff ODEs are common when modeling
natural phenomena and are harder to simulate [26, 27].

III. NUMERICAL METHODS FOR STIFF ORDINARY
DIFFERENTIAL EQUATIONS

A system of ordinary differential equations (ODEs) is given
by

du

dt
= f(u, p, t), (1)

with the initial condition u(t0) = u0 over the time span
(t0, tf ), where u is the solution, p is the parameter, t is time, t0
is the initial time, and tf is the final time. In the subsequent
sections of this article, the parameter p is omitted from the
formulation to avoid confusion as it is not an important part
of our numerical methods and algorithms.

There exist various numerical methods for solving stiff ODEs
[28, 29]. One of the most common algorithms used in various
ODE solver packages, e.g., Julia, MATLAB, is known as the
Rosenbrock method [29, 30]. The general formulas of an s-
stage Rosenbrock method is given by

ki =hf(un +

i−1∑
j=1

αijkj , tn + αih) + βih
2ft(un, tn)

+ hfu(un, tn)

i∑
j=1

βijkj ,

(2)

un+1 = un +

s∑
j=1

δjkj , (3)

where fu and ft are the Jacobians given by

fu ≈ ∂f

∂u
(un, tn), (4)

ft ≈
∂f

∂t
(un, tn), (5)

un is the solution at the current time step tn, un+1 is
the solution at the next time step tn+1, h is the time step
(tn+1 = tn + h), and αij , βij , δj are the coefficients, with
αi, βi satisfying

αi =

i−1∑
j=1

αij , (6)

βi =

i∑
j=1

βij . (7)

For adaptive step-size control, we define

q =

∥∥∥∥ E

atol +max(|un|, |un+1|) · rtol

∥∥∥∥ , (8)

where E is the error, atol is the absolute tolerance, and rtol
is the relative tolerance. The formula of E is method-specific,
and so will be defined later when discussing each algorithm.
If q < 1, the step-size h is accepted. Otherwise, it is reduced
and a new step is attempted. The new step size is proposed
through proportional-integral control (PI-control) via hnew =
ηqλ2

n−1q
λ1
n h, where λ1, λ2 are tuned parameters [31], qn−1 is

the previous proportion error, and η is the safety factor.

Many variations of the Rosenbrock method can be de-
rived by modifying above the formulas and coefficients. In
this work, we consider three formulations of the Rosen-
brock method, resulting in three stiff ODE solvers, namely
GPURosenbrock23, GPURodas4, and GPURodas5P.

A. GPURosenbrock23: Second-order Method

GPURosenbrock23 is a 2nd order, L-stable Rosenbrock-W
method and with 3rd order accurate error control, which is
suitable for stiff problems at high tolerances as well as prob-
lems with oscillations. The algorithm of GPURosenbrock23
is as described in [29], where the procedure for advancing from
(un, tn) to (un+1, tn+1) is

F0 = f(un, tn),

k1 = W−1(F0 + hdft),

F1 = f(un + 0.5hk1, tn + 0.5h),

k2 = W−1(F1 − k1) + k1,

un+1 = un + hk2.

Here W = I − hdfu, d = 1
2+

√
2

, and I is the identity matrix.

For adaptive time-stepping, the error E can be calculated by

F2 = F (un+1, tn+1),

k3 = W−1(F2 − e32(k2 − F1)− 2(k1 − F0) + hdft),

E =
h

6
(k1 − 2k2 + k3),

with e32 = 6 +
√
2.

Interpolation for the solution at tn+θ = tn + θh, denoted as
un+θ, can be done by

un+θ = un + h

(
θ(1− θ)

1− 2d
k1 +

θ(θ − 2d)

1− 2d
k2

)
.

B. GPURodas4: Fourth-order Method

GPURodas4 is based on a fourth-order A-stable stiffly stable
Rosenbrock method. The integration scheme of GPURodas4
is identical to that of Rodas4 employed in DifferentialEqua-
tions.jl [30], where stepping from (un, tn) to (un+1, tn+1)
follows

F1 = f(un, tn),

k1 = −W−1(F1 + ld1ft),



F2 = f(un + a21k1, tn + c2h),

k2 = −W−1(F2 + ld2
ft + lC21

k1),

F3 = f(un +

2∑
i=1

a3iki, tn + c3h),

k3 = −W−1(F3 + ld3
ft +

2∑
i=1

lC3i
ki),

F4 = f(un +

3∑
i=1

a4iki, tn + c4h),

k4 = −W−1(F4 + ld4
ft +

3∑
i=1

lC4i
ki),

F5 = f(un +

4∑
i=1

a5iki, tn + h),

k5 = −W−1(F5 +

4∑
i=1

lC5iki),

F6 = f(un +

4∑
i=1

a5iki + k5, tn + h),

k6 = −W−1(F6 +

5∑
i=1

lC6iki),

un+1 = un +

4∑
i=1

a5iki + k5 + k6.

Here W = fu−I/(hγ), I is the identity matrix, lCij
is defined

by

lCij
=

Cij

h
,

e.g., lC21
= C21/h, and ldi

is defined by

ldi
= hdi,

e.g., ld1
= hd1.

For adaptive time-stepping, the error E is

E = k6.

Interpolation for un+θ follows a stiff-aware third-order inter-
polant

un+θ = (1− θ)un + θ(un+1 + (1− θ)(g1 + θg2)),

with

g1 =

5∑
i=1

h2iki,

g2 =

5∑
i=1

h3iki.

A set of coefficients aij , Cij , ci, di, hij , γ for GPURodas4 is
given in the appendix.

C. GPURodas5: Fifth-order Method

GPURodas5P is based on a fifth-order A-stable stiffly sta-
ble Rosenbrock method [32]. The integration scheme of
GPURodas5P is identical to that of Rodas5P implemented
in DifferentialEquations.jl [30], where stepping from (un, tn)
to (un+1, tn+1) can be done by

F1 = f(un, tn),

k1 = −W−1(F1 + ld1
ft),

F2 = f(un + a21k1, tn + c2h),

k2 = −W−1(F2 + ld2
ft + lC21

k1),

F3 = f(un +

2∑
i=1

a3iki, tn + c3h),

k3 = −W−1(F3 + ld3
ft +

2∑
i=1

lC3i
ki),

F4 = f(un +

3∑
i=1

a4iki, tn + c4h),

k4 = −W−1(F4 + ld4
ft +

3∑
i=1

lC4i
ki),

F5 = f(un +

4∑
i=1

a5iki, tn + c5h),

k5 = −W−1(F5 + ld5ft +

4∑
i=1

lC5iki),

F6 = f(un +

5∑
i=1

a6iki, tn + h),

k6 = −W−1(F6 +

5∑
i=1

lC6iki),

F7 = f(un +

5∑
i=1

a6iki + k6, tn + h),

k7 = −W−1(F7 +

6∑
i=1

lC7iki),

F8 = f(un +

5∑
i=1

a6iki + k6 + k7, tn + h),

k8 = −W−1(F8 +

7∑
i=1

lC8i
ki),

un+1 = un +

5∑
i=1

a6iki +

8∑
i=6

ki.

In this case, W, I, lCij
, ldi

are as defined for GPURodas4.



For adaptive time-stepping, the error E for step size can be
calculated by

E = k8.

Interpolation for un+θ follows a stiff-aware fourth-order inter-
polant

un+θ = (1− θ)un + θ(un+1 + (1− θ)(g1 + θ(g2 + θg3))),

with

g1 =

8∑
i=1

h2iki,

g2 =

8∑
i=1

h3iki,

g3 =

8∑
i=1

h4iki.

A set of coefficients aij , Cij , ci, di, hij , γ is given in the
appendix.

The Rosenbrock-type methods are ideally suited for GPU com-
pilation because they are devoid of typical Newton’s method
performed per step in stiff ODE integrators [27]. The Newton’s
method requires multiple linear solves and is computationally
expensive due to repeated Jacobian calculation due to no reuse
of previous matrix factorization. Rosenbrock methods only
require one Jacobian evaluation and have constant number
of linear solves per step, where the matrix factorization can
be cached to achieve O(N2) computational cost of the linear
solves, where N is the dimension of the ODE. Since GPUs
are efficient and perform multiple small tasks in parallel, the
above argument prophesies Rosenbrock methods to achieve
massive speed-ups on GPUs in ensemble simulations.

IV. THE STATE OF GPU PARALLELISM IN SCIENTIFIC
COMPUTING

Graphics Processing Units (GPUs) were initially meant to use
for tasks such as image processing or graphics rendering. How-
ever, in the past two decades, there has been a rise in General
Purpose GPU (GPGPU) programming, which allows to re-
target GPUs to applications in scientific computing & machine
learning [33–35]. The biggest difference between CPUs and
GPUs is that GPUs have massively parallel architecture, i.e.,
huge number cores called streaming multiprocessor and thou-
sands of active threads. A simple model to distinguish between
CPUs and GPUs is that CPUs have a fewer number of workers
but with more computing power per worker, whereas GPUs
have more workers with less power per worker. A common
bottleneck in GPU parallelism is the latency of the load and
store operations from the global memory to GPU processor
cache. However, large array operations are effectively able
to hide the memory latency to larger computation times, and
hence large array operations are greatly parallelized and faster
on GPUs.

GPUs offer a powerful array abstraction that makes it possi-
ble to write generic code. The abstractions are implemented
by each backend, either using native kernels or reusing
existing functionality. For performance, common operations
like matrix-multiplication are implemented by dispatching to
vendor-specific libraries like CUBLAS for NVIDIA GPUs
and Metal’s Performance Shaders for Apple GPUs. Higher-
order operations like map, broadcast and reduce are
implemented using native kernels. This makes it possible to
compose them with code provided by the user, often obviating
the need for custom kernels. Work by Besard et al. [36] has
shown that this makes it possible to quickly prototype code
for multiple platforms while achieving good performance. To
achieve maximum performance, important operations can still
be specialized using custom kernels that are optimized for the
platform at hand and include application-specific knowledge.

V. JULIA ECOSYSTEM FOR MASSIVELY DATA-PARALLEL
GPU SOLVING OF INDEPENDENT ODES

In Julia, there are two approaches to parallelize en-
semble problems on GPUs. Both approaches automati-
cally translate and compile the ODEs. The first approach,
EnsembleGPUArray, is easily extensible, compatible with
any existing solver, and relies on GPU vectorization. This ap-
proach is similar to the other high level software we described
in the introduction, and we will show that this approach is
not performance optimal and has significant overheads. The
second strategy, EnsembleGPUKernel, reduces this over-
head by generating custom GPU kernels, requiring numerical
methods to be programmed within it. A brief overview of the
automation is depicted in Figure 1. Both of the programs are
composable with Julia’s SciML [8] ecosystem, where users
can write models compatible with standard SciML tools like
DifferentialEquations.jl, and DiffEqGPU.jl will automatically
generate the functions which can be invoked from within a
GPU kernel. Moreover, SciML is composed of polyglot tools
allowing to use of its libraries from other languages like R,
allowing even the use of our GPU-accelerated solvers from
other programming languages 1.

A. EnsembleGPUArray: Accelerating Ensemble ODEs
with GPU Array Parallelism

1) Identifying parallelism and problem construction: For an
ODE with n states, m parameters, and N required simulations
with different parameters, there exist n×N states, which will
be required to keep track of. Subsequently, one can formulate
this problem to solve this ODE at once:

dU

dt
= F (U,P, t), (9)

1https://cran.r-project.org/web/packages/diffeqr/vignettes/gpu.html
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Fig. 1: Overview of the automated translating and solving
of differential equations for GPUs for massively data-parallel
problems. The solid lines indicate the code flow, whereas the
dashed indicate the extension interactions.

where

U =


u11 u12 . . . u1N

u21 u22 . . . u2N

...
...

. . .
...

un1 un2 . . . unN


n×N

, (10)

P =


p11 p12 . . . p1N
p21 p22 . . . p2N

...
...

. . .
...

pm1 pm2 . . . pmN


m×N

, (11)

F =
[
f(u, p1:m,1, t) . . . f(u, p1:m,N , t)

]
n×N

, (12)

where p1:m,j denotes the jth column of the P matrix. In this
form we can parallelize the computation over GPU threads,
where each thread only accesses and updates the column of
U in parallel. This allows computation of the quantities which
depend on U to happen in parallel. When solving ODEs, these
quantities are generally the RHS of ODE f , the Jacobian
J , and even the event handling (callbacks). We perform
these array-based computations by calling the functions within
custom-written GPU kernels updating each column of the U
asynchronously.

2) Translating ODE solves over GPU using KernelAbstrac-
tions.jl: The GPU kernels are written using KernelAbstrac-
tions.jl [37], this allows for the instantiation of the GPU
kernels for multiple backends. KernelAbstractions.jl performs
a limited form of auto-tuning by optimizing the launch param-
eters for occupancy. Since these kernels have a high residency,
preferring a launch across many blocks has been shown to
be beneficial. We instantiate the kernels with the problem

Fig. 2: The EnsembleGPUArray flowchart

defined as normal Julia functions that the kernel is specialized
upon. Using a Just-In-Time (JIT) compilation approach we
thus generate a new kernel where the solver and the problem
definition are co-optimized.

After calculating the dependents on U , synchronization
is required to calculate the next step of the integration.
EnsembleGPUArray essentially parallelizes the operation
involving the state U within the single time step of the
ODE integration. This simple approach allows composability
and easy integration with the vast collection of numerical
integration solvers in DifferentialEquations.jl [8]. An option to
simultaneously offload a subset of the solutions to the CPUs
provides additional flexibility to the user to leverage the CPU
cores. Moreover, users can take advantage of the multiple
GPUs over clusters to perform the simulations of the ensemble
problems via this tutorial2. Figure 2 summarizes an overview
of the process.

3) Batched LU: Accelerating Ensemble of Stiff ODEs: Stiff
ODE solvers require repeatedly solving the linear system
W−1b where W = −γI + J , γ is a constant real number,
and J is the Jacobian matrix of the RHS of the ODE. The W
matrix of the batched ODE problem in Section V-A1 has a
block diagonal structure:

W =


−γI + J1

−γI + J2
. . .

−γI + JN

 , (13)

where (Jk)ij = ∂fi

∂ujk
. The block diagonal system can be

efficiently solved by computing the LU factorization, forward,
and backward substitutions of each block of W in the GPU
kernel.

4) Drawbacks of the Array Ensemble Approach: The main
drawback of this approach is that each array operation inside

2https://docs.sciml.ai/DiffEqGPU/dev/tutorials/multigpu/
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Fig. 3: The EnsembleGPUKernel flowchart

of the ODE solver requires a separate GPU kernel launch.
Array-based GPU DSLs are typically designed to be used
with O(N3) operations which are common in neural network
applications (such as matrix multiplication) in order to more
easily saturate the kernels overcome the overhead of kernel
launch. While the ODE solvers are written in a form that
automatically fuses the linear combinations to reduce the total
number of kernel calls thus reduce the overall cost [38], we
will see in the later benchmarks (Section VI-B) that each of
the array-ensemble GPU ODE solvers have a high fixed cost
due to the total overhead of kernel launching.

In addition, the parallel array computations of each step of
the solver method need to be completed before proceeding
to the next time step of the integration. Adaptive time-
stepping in ODEs allows variable time steps according to
the local variation in the ODE integration, allowing optimal
time-stepping. Trivially, the ODE can have different time-
stepping behavior for other parameters as they form part of the
”forcing” function f(u, p, t). The implicit synchronization of
the parallel computations necessitates the same time-stepping
for all the trajectories by virtue of solving all trajectories as a
single ODE.

B. EnsembleGPUKernel: Accelerating Ensemble of ODEs
with specialized kernel generation for entire ODE integration

The EnsembleGPUArray requires multiple kernel launches
within a time step, which causes large overheads due to the
numerous load and store operations to global memory. In
order to completely eliminate the overhead of kernel launches,
a separate implementation denoted EnsembleGPUKernel
generates a single model-specific kernel for the full ODE
integration. Each thread accesses the data-augmented ODE
to analyse, and the solving of all the ODEs is completely
asynchronous. The process is briefly outlined in Figure 3 and
an example is given in listing 1.

The approach described seems deceptively simple but requires
clever maneuvers to successfully compile the kernel on GPU.
Allocating arrays within GPU kernels is not possible as Julia’s
CUDA.jl does not support dynamic memory allocation on

1 @kernel function Rodas5P_kernel(@Const(probs),
_us, _ts, dt)↪→

2 # Get the thread index
3 i = @index(Global, Linear)
4 # get the problem for this thread
5 prob = @inbounds probs[i]
6 # get the input/output arrays for this

thread↪→

7 ts = @inbounds view(_ts, :, i)
8 us = @inbounds view(_us, :, i)
9 # Setting up initial conditions and

integrator↪→

10 integrator = init(...)
11 # Perform ODE integration until completion
12 while cur_time < final_time
13 step!(integrator, ts, us)
14 savevalues!(integrator, ts, us)
15 end
16 # Perform post-processing
17 ...
18 end

Listing 1: Example of the kernel performing ODE integration

the GPU. However, solving ODEs requires storing interme-
diate computations, normally using array allocations. The
vast features of DifferentialEquations.jl rely on operations
like broadcast operations, dynamic allocations, and dynamic
function invocation, etc., most of which are GPU incompatible.
The solution is to fully stack allocate all intermediate arrays
and to perform the ODE integration within a custom GPU
kernel implementing the numerical integration procedure. This
restricts the user to the set of the already defined ODE solvers
in the package and requires simple versions of the ODE solvers
to be manually written as GPU kernels.

VI. BENCHMARKS AND CASE STUDIES

A. Setup

To compare different available open-source programs with
GPU-accelerated ODE solvers, we benchmarked them with
NVIDIA Tesla V100, a typical compute node GPU. We chose
a typical desktop GPU setup to benchmark the ODE solvers
with different vendors; Quadro RTX 5000 (11.15 TFLOPS)
for NVDIA, Vega 64 (10.54 TFLOPS) for AMD, A770 (19.66
TFLOPS) for Intel, and M1 Max (10.4 TFLOPS) for Apple.
The ODE problems involved single precision (Float32) on
GPUs. The CPU benchmarks were executed with double
precision (Float64) and timed on an Intel Xeon Gold 6248
processor running at 2.50GHz with 16 threads enabled. Using
double precision on CPUs is faster for our use case and
processor than using single precision.

For timing, we measured only the times used for solving the
ensemble ODE. The other latencies in running the solvers
might include compilation time, which is only reported during
the first run of the function, due to the Just-in-Time (JIT)
compilation. The timings for the programs written in Julia can



Fig. 4: A comparison of EnsembleGPUKernel with Julia’s
EnsembleGPUArray and CPU parallelism. The stiff ODE
solvers demonstrates efficient scaling with trajectory count and
are on average 30× faster than the CPU implementation.

be measured using BenchmarkTools.jl [39], taking the fastest
run. The Julia-based benchmarks were tested on DiffEqGPU.jl
2.2.1, CUDA.jl 4.0, oneAPI.jl 1.0 and Metal.jl 0.2.0, all
using Julia 1.8. The test with AMD GPUs was done with
AMDGPU.jl 0.4.8, using Julia 1.9-beta3. The programs were
run at least ten times for programs based on JAX. JAX 0.4.1
with Diffrax 0.2.2 and Python 3.9 forms our software stack
for benchmarking.

B. Comparison between CPU and GPU Parallelism

To establish the efficiency of GPU-based parallelism, we
compared the solvers with CPU multi-threading. Ensuring
a fair comparison between CPUs and GPUs was done by
choosing a setup typical in a cluster compute node as de-
scribed in SectionVI-A. Figure 4 demonstrates the simula-
tion times as a function of the number of trajectories. The
EnsembleGPUKernel based ODE solvers supersede CPU
parallelism at approximately 100 trajectories and demonstrates
an average speed-up of 30×. The solver used to benchmark
the Roberston Equation [40] is the Rosenbrock23 method
(Section III-A) with adaptive time-stepping. This demonstrates
the viability of GPU parallelism in ensemble simulations
where traditional CPU parallelism becomes a sub-optimal
choice for massively parallel simulations.

C. Comparison between Different GPU-based Parallelism

The idea of GPU-based parallelism for ensemble simulations
is not new, but was restricted to relatively lower-level imple-
mentations for achieving optimal performance. The barrier in
adoption in high-level languages for our application is the
f(u, p, t) definition, which consists of high-level definitions
often difficult or even incompatible to compile on GPUs.
Benchmarking against existing implementations ensures ac-
cessibility with high performance. Here, we compare our

Fig. 5: A comparison of ODE solve timings for with other pro-
grams with adaptive time-stepping. EnsembleGPUKernel
is faster by 20–50× in comparison with JAX and
EnsembleGPUArray.

solvers with existing Julia’s EnsembleGPUArray and JAX’s
Diffrax ODE solver libraries. We run the benchmarks on
Roberston’s equation B, a three-dimensional stiff ODE. Figure
5 shows that EnsembleGPUKernel outperforms both JAX
and Julia’s EnsembleGPUArray on average by 20–50×. It
is important to note that this performance difference is owing
to fundamentally different parallelism methods (i.e., array-
based vs. special kernel generation) rather than the efficiency
of different libraries.

D. High Performance with Vendor Agnosticism: Comparison
between Different GPU Vendors

With vendor agnostic GPU kernel generation, researchers can
choose major GPU backends with ease. Our benchmarks in
Figure 6 show that, at a sufficiently high number of trajecto-
ries, the best performance can be achieved by NVIDIA and
Intel, closely followed by AMD and Apple. This is a concrete
proof that there is minimal overhead in our ODE solvers, and
so users can expect performance one-to-one with the Floating
Point Operations per Second (FLOPS) in GPUs mentioned in
Section VI-A. Note that we simulated the Lorenz problem [41]
using GPURosenbrock23 with fix time-stepping to allude
thread/warp divergence.

VII. CONCLUSION

We have demonstrated GPU-based acceleration of ODEs for
ensemble simulations. The methods achieve significant speed-
ups of 20–50× compared to the existing solvers. Moreover,
we conclude that performance difference is not due to a
more optimized implementation of array based parallelism,
but inherently due to a different parallelism strategy which
results in low overheads and sans implicit synchronization
of time-stepping. For achieving peak performance in HPC,



Fig. 6: Demonstration of the vendor agnosticism by measuring
run-times on different GPU vendors. Here, the NVIDIA GPUs
perform the best owing to the most-optimized library and
matured ecosystem with JuliaGPU.

it is suggested to leave the constraint array-based parallelism
approach imposed by common DSLs.

Apart from being a performant alternative to the
EnsembleGPUArray approach, there are opportunities
for further improvements with EnsembleGPUKernel.
The linear algebra routines such as matrix factorization and
linear solve for static allocated arrays need to be rewritten
for high-dimensional ODEs specifically for GPUs. This is
primarily because the current methods rely on constructs such
as heap allocations, which are forbidden in GPU compilation.
Flexibility in terms of supporting mutation within the ODE
function can be extended as well. This could be achieved by
using mutable static arrays, which requires special techniques
to compile with the GPU kernels. The user is also limited in
terms of using features such as broadcast and calls to BLAS.
Experimental support exists for event handling; however,
some callbacks can generate GPU-incompatible code due
to limitations in the Julia compiler. Improvements to the
compiler’s escape analysis and effects modeling are currently
being implemented, which are expected to resolve this issue.

AVAILABLITY OF CODE

The code is available at https://github.com/SciML/
DiffEqGPU.jl with benchmarking scripts available at https:
//github.com/utkarsh530/GPUODEBenchmarks/tree/u/stiff.
The code was contributed through these Pull Requests (PRs)
to the repository:
https://github.com/SciML/DiffEqGPU.jl/pull/275,
https://github.com/SciML/DiffEqGPU.jl/pull/274,
https://github.com/SciML/DiffEqGPU.jl/pull/272,
https://github.com/SciML/DiffEqGPU.jl/pull/252.
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APPENDIX

A. Lorenz Problem

The first test problem is Lorenz attractor:

dy1
dt

= σ(y2 − y1), (14)

dy2
dt

= ρy1 − y2 − y1y3, (15)

dy3
dt

= y1y2 − γy3. (16)

It consists of three parameters σ, ρ, γ, where σ = 10.0 &
γ = 8

3 and ρ = 21.0. The integration is performed from
t = (0.0, 1.0) with the time-step h = 0.001, essentially
generating 1000 fixed time-steps. The initial conditions are
y = [1.0, 0.0, 0.0]

B. ROBER Problem

The second test problem is the Robertson Equation:

dy1
dt

= −0.04y1 + 104y2y3, (17)

dy2
dt

= 0.04y1 − 104y2y3 − 3× 107y22 , (18)

dy3
dt

= 3× 107y22 . (19)

The integration is performed from t = (0.0, 105) with the
initial time-step of h = 0.0001. The initial conditions are y =
[1.0, 0.0, 0.0].

C. Coefficients for Rodas4 and Rodas5P

TABLE I: Coefficients for the Rodas4 algorithm.

Coefficient Value
γ 0.25

a21 1.544000000000000

a31 0.9466785280815826

a32 0.2557011698983284

a41 3.314825187068521

a42 2.896124015972201

a43 0.9986419139977817

a51 1.221224509226641

a52 6.019134481288629

a53 12.53708332932087

a54 −0.6878860361058950

C21 −5.668800000000000

C31 −2.430093356833875

C32 −0.2063599157091915

C41 −0.1073529058151375

C42 −9.594562251023355

C43 −20.47028614809616

C51 −7.496443313967647

C52 −10.24680431464352

C53 −33.99990352819905

C54 11.70890893206160

C61 8.083246795921522

C62 −7.981132988064893

C63 −31.52159432874371

C64 16.31930543123136

C65 −6.058818238834054

c2 0.386

c3 0.21

c4 0.63

d1 0.2500000000000000

d2 −0.1043000000000000

d3 0.1035000000000000

d4 −0.03620000000000023

h21 −10.12623508344586

h22 −7.487995877610167

h23 −34.80091861555747

h24 −7.992771707568823

h25 1.025137723295662

h31 −0.6762803392801253

h32 6.087714651680015

h33 16.43084320892478

h34 24.76722511418386

h35 −6.594389125716872



TABLE II: Coefficients for the Rodas5P algorithm.

Coefficient Value
γ 0.21193756319429014

a21 3.0

a31 2.849394379747939

a32 0.45842242204463923

a41 −6.954028509809101

a42 2.489845061869568

a43 −10.358996098473584

a51 2.8029986275628964

a52 0.5072464736228206

a53 −0.3988312541770524

a54 −0.04721187230404641

a61 −7.502846399306121

a62 2.561846144803919

a63 −11.627539656261098

a64 −0.18268767659942256

a65 0.030198172008377946

C21 −14.155112264123755

C31 −17.97296035885952

C32 −2.859693295451294

C41 147.12150275711716

C42 −1.41221402718213

C43 71.68940251302358

C51 165.43517024871676

C52 −0.4592823456491126

C53 42.90938336958603

C54 −5.961986721573306

C61 24.854864614690072

C62 −3.0009227002832186

C63 47.4931110020768

C64 5.5814197821558125

C65 −0.6610691825249471

C71 30.91273214028599

C72 −3.1208243349937974

C73 77.79954646070892

C74 34.28646028294783

C75 −19.097331116725623

C76 −28.087943162872662

C81 37.80277123390563

C82 −3.2571969029072276

C83 112.26918849496327

C84 66.9347231244047

C85 −40.06618937091002

C86 −54.66780262877968

C87 −9.48861652309627

c2 0.6358126895828704

c3 0.4095798393397535

c4 0.9769306725060716

c5 0.4288403609558664

d1 0.21193756319429014

d2 −0.42387512638858027

d3 −0.3384627126235924

d4 1.8046452872882734

d5 2.325825639765069

Coefficients for the Rodas5P algorithm (continued).

Coefficient Value
h21 25.948786856663858

h22 −2.5579724845846235

h23 10.433815404888879

h24 −2.3679251022685204

h25 0.524948541321073

h26 1.1241088310450404

h27 0.4272876194431874

h28 −0.17202221070155493

h31 −9.91568850695171

h32 −0.9689944594115154

h33 3.0438037242978453

h34 −24.495224566215796

h35 20.176138334709044

h36 15.98066361424651

h37 −6.789040303419874

h38 −6.710236069923372

h41 11.419903575922262

h42 2.8879645146136994

h43 72.92137995996029

h44 80.12511834622643

h45 −52.072871366152654

h46 −59.78993625266729

h47 −0.15582684282751913

h48 4.883087185713722
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