
1

18.337 Final Project - Universal Differential
Equations for Cable Tension Modelling in a

Multi-Quadrotor Slung Load System
Harvey Merton

CONTENTS

I Introduction 1
I-A Current approaches to modelling

quadrotor slung load dynamics . . . . . 1
I-B Universal differential equations . . . . . 2
I-C Goals and paper structure . . . . . . . . 2

II Mathematical Modelling 2
II-A Dynamics modelling . . . . . . . . . . . 2
II-B Cable tension modelling . . . . . . . . . 3

III Julia implementation 3
III-A UDE system . . . . . . . . . . . . . . . 3
III-B Solver and loss functions . . . . . . . . 4
III-C Training data generation . . . . . . . . . 4

IV Results and discussion 7
IV-A UDE system . . . . . . . . . . . . . . . 7
IV-B Directly training tension approximation

function . . . . . . . . . . . . . . . . . 7

V Conclusions 8

VI Future Work 8

I. INTRODUCTION

Quadrotors have been utilized for load carrying across a
variety of different industries. From cameras in film and
TV [1], spraying devices in agriculture [2], to urgent supply
delivery in medicine [3]. Unfortunately, individual quadrotors
tend to be small and as such, can only carry payloads of limited
sizes. Carrying cable-suspended payloads with multiple drones
(see an example in Fig. 1) offers a way to overcome this
barrier.

A. Current approaches to modelling quadrotor slung load
dynamics

Model-based approaches can very successfully model tradi-
tional quadrotor dynamics. Such approaches generally take one
of two methods to deal with additional slung loads: treating the
additional mass as uncertainty and applying robust controller
synthesis techniques, or adapting the underlying mathematical
model [4]. The former approach is explored through adaptive
robust control in [5], and through passivity-based control in
[6, 7]. Although these methods show stability under a range of

Fig. 1: Three x500 quadrotors and a slung load in a Gazebo
simulation.

conditions, the lack of a complete explicit model for the load
makes it harder to optimize for a minimum swing trajectory.

Modelling through adapting the underlying mathematical
model is addressed by [8] and [9]. The latest of these, [9],
demonstrates the successful generation of trajectories that
consider payload dynamics (with non-negative cable tensions)
by modelling the system as a differentially flat hybrid system.
They show that their method results in a load tracking error
300-400% lower than that generated by the quasi-static models
(which don’t consider payload dynamics) that proceeded in
[10, 11], thus modelling payload dynamics is useful.

A major problem with adapting the underlying mathematical
model is the complexity required to capture general slung load
dynamics. These include the case of zero cable tension (which
[9] captures with hybrid system switching dynamics), non-
rigid-body masses, cables with non-negligible mass, elastic
cables, loads and cables where aerodynamic effects are non-
negligible and cables not attached at a drone’s center of mass.
Ignoring cable dynamics (by assuming a massless cable) is
particularly common due to the large variety and complexity
of cable modelling techniques [12]. This simplification quickly
becomes limiting when working with larger and heavier loads
that require longer and stronger cables.

To address some of the difficulties in mathematical mod-
elling, reinforcement learning has been applied in recent years
[13, 14, 15, 16]. Although the results show some promise ([14]
still notes significant instability under particular conditions),
reinforcement learning poses its own suite of challenges, such
as gathering a sufficient quantity of good quality training data,
designing reward functions and tuning training parameters.
Further, such approaches completely disregard the earlier
modelling work proven to be successful for a range of cases.



2

B. Universal differential equations

Neural ordinary differential equations (NODEs), like Equa-
tion 1, are simply ordinary differential equations (ODEs)
where the right-hand side is defined by a neural network.

u̇ = NNθ(u, t) (1)

Universal differential equations (UDEs) are extensions of
NODEs where differential equations are defined in full or
part by a universal approximator (e.g. neural network) [17].
The Lotka-Volterra equations (Equation 2) provide a simple
example, where U1 and U2 represent universal approximators.

ẋ = αx+ U1(θ, x, y)

ẏ = −θ1y + U2(θ, x, y)
(2)

This allows known physics models to be easily expanded
to account for some effects that are difficult to model, whilst
requiring a much smaller quantity of data to train than a tradi-
tional neural network (or alternative function approximator).

UDEs have been applied across a range of different fields to
huge success [17], but have not yet become a cornerstone tool
in mechanical engineering. This is will likely change in the
coming years as researchers attempt to bridge the gap between
model-based and model-free (such as reinforcement learning)
dynamics and control techniques.

As discussed above, the multi-quadrotor slung load system
is a perfect example of a mechanical system where researchers
have jumped directly to model-free techniques to overcome
limiting model-based assumptions. One of the main motiva-
tions of this project is to provide an example of a complex
mechanical system where UDEs can overcome such limiting
assumptions.

C. Goals and paper structure

The goal of this project is to capture the effects of cable
tension on the drones and load in a multi-drone slung load
system, using UDEs. The intention is to allow the prediction
of tension vectors acting on both ends of the cables for
cables with different masses. This combats the commonly-
used ‘massless cable’ assumption (discussed in Section II-A)
holding back model-based methods in slung load systems.

This paper first discusses the most popular mathematical
model of the multi-drone slung load system. It points out the
effect of the massless cable assumption, and how the formu-
lation can be augmented with a UDE to capture the effects
of cable mass. The discussion then moves to how the system
is implemented in the Julia programming language, and how
the embedded function approximators are trained. The training
and prediciton results are presented for the full UDE system,
as well as for the isolated function approximator. Discussion
concludes with next steps for better training convergence. Key
performance considerations and areas for future improvement
are mentioned throughout.

Fig. 2: Three quadrotors carrying a rigid body slung load [9].

II. MATHEMATICAL MODELLING

A. Dynamics modelling

A complete dynamics model for the multi-drone rigid-body
slung load system is developed in [9]. This model, based on
the Euler-Newton method, is presented here. Fig. 2 illustrates
the specific case when three drones are used, which is the
case developed throughout the rest of this paper. The system
of equations 3 completely describes the motion of this system,
where the symbols used are defined in Table I. The symbols
are selected to be consistent with those used in [9].

miẍi = fRie3 −mige3 +RLTiqi

JiΩ̇i +Ωi × JiΩi = Mi

mLẍL = −
∑

RLTiqi −mLge3

JLΩ̇L +ΩL × JLΩL =
∑

ri ×−Tiqi

(3a)

(3b)

(3c)

(3d)

Equations 3a and 3b describe the dynamics of drone i
(where i ∈ {1, 2, 3} for the 3-drone case). Similarly, equations
3c and 3d describe the load dynamics. Equations 3a and 3c
simply represent the sum of forces acting on the drone and
load respectively, whilst equations 3b and 3d represent the
sum of moments on the same.

Several assumptions (also discussed in [9]) are made in
deriving this system. These include:

1) The cables are massless.
2) The cables are constant length.
3) The cables are attached to the quadrotors at their centres

of mass.
4) Aerodynamic drag acting on the quadrotors, load, and

cables, is negligible.
5) The cables are always taut. The hybrid dynamics case

that can handle slack cables is discussed in [9], but is
not presented here.

The key assumption addressed in this paper is assumption
1 - the ‘massless cable’ assumption. A massless cable, when
under positive tension, will draw a straight line between its
two connection points. This means that the tension vectors
acting on the connection points can be assumed to be equal
and opposite. The effect of this assumption is seen in equations
3, where the tension vector Tiqi has equal magnitude but acts
in the opposite direction on drone i (equation 3a) and the load
(equations 3c and 3d).



3

In reality, a cable will have mass and thus be subject to
the effects of gravity. This results in the cable hanging in
an approximately caternary shape. Fig. 3 illustrates that the
tension vectors acting on the drone and load connection points
are no longer equal and opposite. This can have a large effect
on the system dynamics and render the model useless for
cables with greater mass.

Fig. 3: Tension vectors at either end of a cable hanging in a
caternary shape. The cable in question is connected to drone
i at xi and to the load at connection point xLi

.

B. Cable tension modelling

We can use a neural network to capture the cable tension
vectors acting on the drone and load respectively. Starting with
the simple massless cable case, it is hypothesized that the
model shown in Equations 4 and 5 can capture the tension
vectors.

Tdrone = NNp(xi/Li
, ẋi/Li

, ẍi/Li
) (4)

Tload = −Tdrone (5)

Equation 4 suggests that a neural network with parameters
‘p’ (refered to throughout as the ‘tension-predicting neural net-
work’ and ‘the neural network’) can capture the tension vector
(a 3x1 output) acting on the drone. It takes only the relative
motion of the two cable attachment points as inputs to make
the prediction: xi/Li

is the position of the attachment point
of a cable on drone i relative to its corresponding attachment
point on the load Li, similarly with relative velocity ẋi/Li

and
acceleration ẍi/Li

. This gives a total of 9 inputs (each input
is a 3x1 vector).

The relative motion of the cable attachment points are used
to make the tension predictions independent of where the slung
load system is relative to the inertial frame. This has a similar
effect to data normalization. As the massless cable assumption
is used, the tension vector acting on the load is equal and
opposite to that acting on the drone (Equation 5).

To extend beyond the simple massless cable case, it is
hypothesized that a separate neural network will be required
to model the tension on the drone and the load respectively.
To allow generalization between cables of different mass, the
cable mass would also likely have to be an input. To capture
the effects of varying other cable parameters such as elas-
ticity, damping and aerodynamic effects (umong others), the

key quantities defining these effects (perhaps cable stiffness,
damping ratio, radius and coefficient of drag), would also have
to be inputs. As a proof of concept however, this paper only
deals with trying to replicate the simple massless case and so
we proceed with the formulation in Equations 4 and 5.

It may be noted that it is possible to train the neural network
proposed in Equation 4 without embedding it in a UDE. This is
indeed done in Section IV-B. The problem with this however is
that it is difficult to measure the exact orientation of the tension
vectors Tdrone and Tload on a physical system. Embedding the
tension-approximating neural network in a UDE means we can
train directly on drone and load trajectory data, which is much
easier to obtain in a physical system or simulator.

III. JULIA IMPLEMENTATION

All code for this project was implemented in the Julia
programming language. Julia was used due to its support for
fast scientific machine learning tools that are extremely useful
for training and solving UDE systems. Some key aspects of the
implementation are discussed below, and the full source code
can be found on GitHub here: https://github.com/hmer101/18.
337 project. All experiments involving timing were conducted
on a Dell XPS 15 containing an Intel(R) Core(TM) i9-9980HK
CPU clocked at 2.40GHz.

A. UDE system

The core of the project is the UDE system that implements
the system of equations 3. These equations are implemented as
a system of first order UDEs with the state space ‘u’ defined
by Equation 7. x⃗i used here represents the state space of drone
i, where i ∈ 1, 2...n and n = 3, where all other terms are again
defined in Table I.

x⃗i =
(
xi ẋi θi θ̇i

)T
(6)

u⃗ =
(
x⃗i ... x⃗n xL ẋL θL θ̇L

)T
(7)

Julia’s DifferentialEquations.jl package requires a function
of the form f1!(du, u, p, t) to pass into a differential equation
solver. The mutating in-place form ‘f1!’ is deliberately used
over the out-of-place form so that du need not be re-allocated
on every iteration of the solver. As many solver iterations
are required to solve the system over a given time-span, this
significantly reduces the number of allocations required during
solving. This in turn significantly reduces the solve time, and
so makes training tractable (many full solves over the entire
timespan are required during training).

˙⃗xi =
(
ẋi ẍi θ̇i θ̈i

)T
(8)

d⃗u =
(
˙⃗xi ... ˙⃗xn ẋL ẍL θ̇L θ̈L

)T
(9)

Equations 8 and 9 show where the drone and load accelera-
tion terms appear in the du calculations. From Equations 3a, 3c
and 3d, we can see that tension vector estimates (Tiqi) appear
when calculating ẍi, ẍL and Ω̇L. These estimates are found
using Equations 4 and 5 defined earlier and thus represent the
embedded universal approximator part of the UDE system.

https://github.com/hmer101/18.337_project
https://github.com/hmer101/18.337_project


4

mL ∈ R Mass of load.
JL ∈ R3×3 Inertia matrix of the load with respect to the body-fixed frame.
RL ∈ SO(3) The rotation matrix of the load from the body-fixed frame to the inertial frame.
θL ∈ R3 Orientation of the load as roll-pitch-yaw (RPY) angles in the inertial frame. This is RL converted to RPY Euler angles.
ΩL ∈ R3 Angular velocity of the load in the body-fixed frame.
xL ∈ R3 Position vector of the center of mass of the load in the inertial frame.
mi ∈ R Mass of ith quadrotor.
Ji ∈ R3×3 Inertia matrix of the ith quadrotor with respect to the body-fixed frame.
Ri ∈ SO(3) The rotation matrix of the ith quadrotor from the body-fixed frame to the inertial frame.
θi ∈ R3 Orientation of the ith quadrotor as roll-pitch-yaw (RPY) angles in the inertial frame. This is Ri converted to RPY Euler angles.
Ωi ∈ R3 Angular velocity of the ith quadrotor in the body-fixed frame.
xi ∈ R3 Position vector of the center of mass of the ith quadrotor in the inertial frame.
fi ∈ R Thrust produced by the ith quadrotor.
Mi ∈ R3 Moment produced by the ith quadrotor.
ψi ∈ R Yaw angle of the ith quadrotor.
qi ∈ S2 Unit vector from the ith quadrotor to its attachment point on the load in body-fixed frame of the load.
Li ∈ R Length of the cable between the ith quadrotor and the load.
xi/Li

∈ R3 Relative position of the ith quadrotor to its attachment point on the load (xLi
) in the body-fixed frame of the load. Equivalent to −Liqi.

ri ∈ R3 Vector from the center of mass of the load to the attachment point of the ith quadrotor to the load.
Ti ∈ R Tension in the the cable between the ith quadrotor and the load.
e1, e2, e3 ∈ R Standard unit vector along x, y, z axes in the world frame.

Table I: VARIOUS SYMBOLS USED THROUGHOUT

Again, Julia’s DifferentialEquations solver limits the UDE
system function to the form f1!(du, u, p, t). As we only wish
to find the sensitivity of the system to changes in parameters of
the tension-approximating neural network, only the flattened
parameters of the neural network are passed into f1!’s ‘p’.
This saves computation time when finding the gradient of f1!,
which is very relevant when training the neural network; there
is no need to find the sensitivity of the system to additional
parameters we are not optimizing. All additional parameters
required in the UDE system computation are defined in a mu-
table structure ‘DroneSwarmParams’ which wraps f1!. This
results in the UDE system being defined as a callable struc-
ture: (params::DroneSwarmParams)(du,u,p,t) .
A callable structure is used rather than a closure as it allows
the UDE system to more easily be called in a variety of testing
code blocks.

The UDE system’s state space is comprised of 16 3x1
vectors in the three-drone case (Equations 6 and 7). Julia’s
differential equations solver requires ‘u’ and ‘du’ to be in
flattened form. Rather than flattening the 16x3 matrix, array
partitions were used. This allows the individual components
to be accessed without having to unflatten parts of the array,
which was particularly useful when rotation matricies, rather
than roll-pitch-yaw Euler angles, were used to define the
orientations of the drones and load.

B. Solver and loss functions

The UDE is solved using DifferentialEquations.jl’s Tsit5
solver. Using the adaptive solver, it was found that timesteps
were taken on the order of 1e−4 sec, which is magnitudes
smaller than the timescale this system is expected to operate
on (no less than 1e−3 s). This resulted in infeasibly long solve
times of around 6 hours for a single trajectory 2.5 s long.
Switching to a fixed timestep solver with a step of 0.1 s gave
similar trajectory results (down to 2 decimal places), but with
a solve time of 5 sec, thus the fixed time-step solver was
used. It is of interest in the future to compare Julia’s different

solvers to verify the correctness of the solutions and potentially
achieve faster solve times in this system.

The loss function for the full UDE is defined as the mean
squared error (MSE) between the full state space’s trajectory
data and the full state space predicted by the UDE solver.
Similarly, MSE between the tension data and predicted tension
over a trajectory is used when training the tension-predicting
neural network directly.

C. Training data generation

It was initially intended that trajectory training data would
be generated in simulation. However, the simulator being built
in parallel is not yet in a functional form. The data is instead
generated using a prescribed load trajectory and, using the
property of differential flatness discussed in [9], along with
the system of dynamics equations 3, the corresponding drone
trajectories can be solved. This gives a full time-history of the
state space required to train the neural network embedded in
the full UDE. Saving the cable tensions at the same datapoints
as as the trajectories, a full set of training data becomes
available for training the neural network directly, rather than
when it is embedded in the UDE.

The load trajectory is selected to be the load moving in a
circle of constant 2 m radius with a period of 2.5 s. The load
does not rotate relative to the inertial frame during motion,
thus giving a constant linear acceleration towards the center
of the revolution, and no angular velocity or acceleration. This
is the simplest case containing some varying cable tensions
throughout the trajectory. The load and drones’ linear motions
can be found as datapoints in Figs. 4a and 4b respectively.
Similarly, the relative motion of the cable attachment points
and the corresponding cable tensions can be found in Figs.
5a and 5b. All angular motions (orientation, angular velocity
and angular acceleration) of the load and drones remain at
zero for the full extent of the trajectory. This information fully
describes the slung load and drone system trajectory.

As only the drone positions are directly constrained by the
cable, data for the drones’ linear velocities and accelerations



5

(a) Linear trajectory data and predictions - load.

(b) Linear trajectory data and predictions - drones. Legend corresponds to all graphs - excluding the dot for the
first graph, and adding a dot for the last graph.

Fig. 4: Training data (points) and post-training predictions (lines) for a three-drone rigid-body load system. The load travels
anti-clockwise in a circle without vertical motion. The drones remain arranged in a way such that neither the load nor the
drones rotate over the trajectory. The first ‘x’ in the labels represents state while L, 1, 2 & 3 index the load and the drones.
Data is split into x,y and z components relative to the inertial frame as identified by the trailing ‘x’,‘y’ or ‘z’. Data points for
cables that appear to be missing are directly under the corresponding data points for another cable.



6

(a) Relative motion of cable attachment points.

(b) Cable tensions throughout trajectory.

Fig. 5: Cable tension and relative cable attachment point motion data and predictions from the same trajectory as Fig. 4.
Predictions come from training the neural network embedded in the UDE.



7

has to be generated by a finite backwards difference (otherwise
the dynamics could be over-constrained). This gives poor
initial estimations of drone velocity for the first timestep,
and poor estimates of the drone acceleration for the first two
timesteps. Rather than hard-coding the initial values for these
quantities, the training data is simply trimmed to exclude the
first three timesteps.

IV. RESULTS AND DISCUSSION

Initially, for the reasons discussed in Section II-B, the neural
network was trained whilst embedded in the UDE system.
When this did not converge after extensive debugging, the
cable tension-predicting neural network was trained directly
on tension, and relative motion of the cable attachment points,
data. The results of both approaches are discussed below.

A. UDE system

Julia’s Optimization.jl package is used to train the system
due to the relative ease of switching between methods of
finding gradients in the back end. This is useful because it was
initially intended to use automatic differentiation (AD) to find
the gradients required for training. However, it was discovered
too late that ForwardDiff, ReverseDiff, Zygote and Tracker all
have difficulty functioning with pre-allocated caches used in
a function solved by a UDE solver. As pre-allocated caches
are included in the callable structure that surrounds the UDE
system, AD was unable to be used without the use of the
PreallocationTools.jl package. Implementing this when the
issue was discovered would have taken too long, so it is left
for future work.

Instead, FiniteDiff.jl was used to find the gradient of the loss
function (with respect to neural network parameter changes),
using finite differences. This is significantly slower and less
accurate than the ideal source-to-source AD from Zygote.jl.

The tension-predicting neural network is modelled with 1
hidden layer containing 20 nodes. When this was trained using
the ADAM optimizer, a learning rate of 0.01 and a maximum
of 1000 iterations, convergence was not reached (see Fig.
6). Observing the plateau at the end of the loss history, it
was hypothesised that perhaps the training had stabilized and
needed more iterations to converge. Increasing the iteration
cap to 10,000 however, did not help. Increasing the learning
rate to 0.02 lead to an even further unstable loss history, and
decreasing it lead to a similar shallow training gradient as seen
at the end of Fig. 6. Increasing the number of hidden layers
and hidden nodes did not help either, and given the results in
IV-B, it is not expected to do so.

Testing the gradient found from the FiniteDiff.jl and that
found from the FiniteDifference.jl packages, it is found that
a significant discrepancy exists (on the order of 1-10% for
different parameters). This is concerning and suggests that the
finite difference methods may have significant error build-up
that results in lack of accurate gradients. This would be the
leading theory for lack of convergence if not for the discussion
at the end of Section IV-B. It will however be addressed when
implementing the preallocationTools fix discussed above as
AD avoids finite differencing’s error accumulation.

Fig. 6: Loss history from training the neural network embed-
ded in the UDE.

Training takes on the order of 10 minutes when trained
on the CPU with GPU training not attempted due to lack
of initial convergence. Comprehensive benchmarking will be
completed once convergence is achieved, and reverse-mode
AD is able to be performed on the UDE (training is expected
to be significantly faster).

The trajectory predictions using the non-converged neural
network tension estimator are shown in Fig. 4.

B. Directly training tension approximation function

Fig. 7: Loss history while training the neural network directly.

It was hypothesised that perhaps the tension-approximating
neural network was unable to capture the tension data with
only knowledge of the relative motion of the cable attachment
points. To test this hypothesis, the tension-predicting neural
network was trained directly on the cached tension and relative
cable attachment point motion data. The neural network re-
mained the same as used in Section IV-A (1 hidden layer with
20 nodes), as did the hyperparameters. Without the callable
structure’s caching causing issues, source-to-source reverse-
mode AD was able to be used to find the gradients for training.
This, combined with the lack of need to solve the UDE system,



8

resulted in a training time of under 5 s. Convergence is shown
to occur in < 200 iterations in Fig. 7.

Fig. 8 shows the tension prediction results before and after
training, showing that the neural network is successfully able
to predict cable tensions given knowledge of only the relative
motion of the cable connection points. To cement this proof,
the trained neural network would need to be tested on tension
data generated from another trajectory. This has not yet been
performed as the main purpose of training the neural network
directly was to attempt to debug the UDE system. This will
be completed in the future however.

(a) Cable tensions throughout trajectory - pre-training.

(b) Cable tensions throughout trajectory - post-training.

Fig. 8: Cable tension and relative cable attachment point
motion data and predictions from the same trajectory as Fig.
4. Trained predictions come from training the neural network
directly.

Even when using this trained neural network, the full UDE
is unable to correctly predict drone and load trajectories. This
suggests that the error is not in the neural network training,
but rather in the UDE system itself, or in the solver. Perhaps
the solver is incorrectly selected for the task, or the system is
chaotic. Further investigation into both of these is required.

It is interesting to note that when warm-starting the UDE
system training with the already trained neural network param-
eters, convergence was again not achieved. This is expected as

it has been determined that an issue exists in the UDE solver
which affects the training process (the UDE is solved when
calculating the loss, which is required to train).

V. CONCLUSIONS

Universal Differential Equations provide a new avenue to
remove limiting assumptions in model-based dynamics and
controls applications. This paper presents a method to address
the massless cable assumption in a multi-quadrotor slung
load system. It was shown that a simple (1 hidden layer
with 20 nodes) neural network is capable of predicting cable
tensions in the massless cable case, given only the relative
position, velocity and acceleration of the attachment points of
the cable. When this neural network was embedded in a full
UDE system to predict load and drone trajectories however,
the estimates were wild. This suggests that this methodology
shows some promise, and with more work on selecting UDE
solvers and debugging the UDE implementation, may be able
to provide good trajectory estimations. This work is intended
to be continued and should it be completed, will provide a
practical full-scale example of how UDEs can be successfully
used in mechanical systems.

VI. FUTURE WORK

Future work includes:
• Debugging the UDE system to achieve accurate trajectory

predictions with the trained neural network. This will
involve investigating if the system is chaotic, if the cor-
rect differential equation solver is being used (including
adaptive solver and step size parameters), and if the rest
of the implementation is performing as expected.

• Use Julia’s preallocationTools to allow automatic differ-
entiation to be used to find gradients of the UDE system.
This will give faster and more accurate gradients for
training.

• Investigate if the trained neural network can generalize
predictions to unseen trajectories.

• Training across varied cable masses to capture the non-
massless cable case.

• Streamlining implementation to make extensions and
maintenance easier.

REFERENCES

[1] Kenneth C. W Goh et al. “Aerial filming with syn-
chronized drones using reinforcement learning”. In:
Multimedia Tools and Applications 80.12 (May 2021),
pp. 18125–18150. ISSN: 1380-7501, 1573-7721. DOI:
10.1007/s11042-020-10388-5.

[2] Himanshu Pathak. “Use of Drones in Agriculture: Po-
tentials, Problems and Policy Needs”. In: ICAR-NIASM
300 (Aug. 2020), pp. 13+i.

[3] KarthikBalajee Laksham. “Unmanned aerial vehicle
(drones) in public health: A SWOT analysis”. In:
Journal of Family Medicine and Primary Care 8.2
(2019), p. 342. ISSN: 2249-4863. DOI: 10.4103/jfmpc.
jfmpc 413 18.

https://doi.org/10.1007/s11042-020-10388-5
https://doi.org/10.4103/jfmpc.jfmpc_413_18
https://doi.org/10.4103/jfmpc.jfmpc_413_18


9

[4] Aldo Enrique Vargas Moreno. “Machine Learning Tech-
niques to Estimate the Dynamics of a Slung Load
Multirotor UAV System”. In: (2017).

[5] Nasim Ullah et al. “A computationally efficient adaptive
robust control scheme for a quad-rotor transporting
cable-suspended payloads”. In: Proceedings of the In-
stitution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering 236.2 (Feb. 2022), pp. 379–
395. ISSN: 0954-4100, 2041-3025. DOI: 10 . 1177 /
09544100211013617.

[6] Keyvan Mohammadi, Shahin Sirouspour, and Ali Gri-
vani. “Control of Multiple Quad-Copters With a
Cable-Suspended Payload Subject to Disturbances”. In:
IEEE/ASME Transactions on Mechatronics 25.4 (Aug.
2020), pp. 1709–1718. ISSN: 1083-4435, 1941-014X.
DOI: 10.1109/TMECH.2020.2995138.

[7] Keyvan Mohammadi, Shahin Sirouspour, and Ali Gri-
vani. “Passivity-Based Control of Multiple Quadrotors
Carrying a Cable-Suspended Payload”. In: IEEE/ASME
Transactions on Mechatronics 27.4 (Aug. 2022),
pp. 2390–2400. ISSN: 1083-4435, 1941-014X. DOI: 10.
1109/TMECH.2021.3102522.

[8] Koushil Sreenath, Nathan Michael, and Vijay Kumar.
“Trajectory generation and control of a quadrotor with
a cable-suspended load - A differentially-flat hybrid
system”. In: 2013 IEEE International Conference on
Robotics and Automation. 2013 IEEE International
Conference on Robotics and Automation (ICRA). Karl-
sruhe, Germany: IEEE, May 2013, pp. 4888–4895.
ISBN: 978-1-4673-5643-5 978-1-4673-5641-1. DOI: 10.
1109/ICRA.2013.6631275.

[9] Koushil Sreenath and Vijay Kumar. “Dynamics, Control
and Planning for Cooperative Manipulation of Payloads
Suspended by Cables from Multiple Quadrotor Robots”.
In: Robotics: Science and Systems IX. Robotics: Science
and Systems 2013. Robotics: Science and Systems
Foundation, June 23, 2013. ISBN: 978-981-07-3937-9.
DOI: 10.15607/RSS.2013.IX.011.

[10] Jonathan Fink et al. “Planning and control for coopera-
tive manipulation and transportation with aerial robots”.
In: The International Journal of Robotics Research
30.3 (Mar. 2011), pp. 324–334. ISSN: 0278-3649, 1741-
3176. DOI: 10.1177/0278364910382803.

[11] Nathan Michael, Jonathan Fink, and Vijay Kumar. “Co-
operative manipulation and transportation with aerial
robots”. In: Autonomous Robots 30.1 (Jan. 2011),
pp. 73–86. ISSN: 0929-5593, 1573-7527. DOI: 10.1007/
s10514-010-9205-0.

[12] Naijing Lv et al. “A review of techniques for modeling
flexible cables”. In: Computer-Aided Design 122 (May
2020), p. 102826. ISSN: 00104485. DOI: 10.1016/j.cad.
2020.102826.

[13] Aleksandra Faust et al. “Automated aerial suspended
cargo delivery through reinforcement learning”. In: Ar-
tificial Intelligence 247 (June 2017), pp. 381–398. ISSN:
00043702. DOI: 10.1016/j.artint.2014.11.009.

[14] Xiaoxuan Li, Jianlei Zhang, and Jianda Han. “Tra-
jectory planning of load transportation with multi-

quadrotors based on reinforcement learning algorithm”.
In: Aerospace Science and Technology 116 (Sept. 2021),
p. 106887. ISSN: 12709638. DOI: 10.1016/j.ast.2021.
106887.

[15] Shuai Li and Damiano Zanotto. “Multi-UAV Cooper-
ative Transportation Using Dynamic Control Alloca-
tion and a Reinforcement Learning Compensator”. In:
Volume 9: 17th International Conference on Multibody
Systems, Nonlinear Dynamics, and Control (MSNDC).
ASME 2021 International Design Engineering Tech-
nical Conferences and Computers and Information
in Engineering Conference. Virtual, Online: Ameri-
can Society of Mechanical Engineers, Aug. 17, 2021,
V009T09A034. ISBN: 978-0-7918-8546-8. DOI: 10 .
1115/DETC2021-71797.

[16] Fotis Panetsos, George C. Karras, and Kostas J. Kyr-
iakopoulos. “A Deep Reinforcement Learning Motion
Control Strategy of a Multi-rotor UAV for Payload
Transportation with Minimum Swing”. In: 2022 30th
Mediterranean Conference on Control and Automa-
tion (MED). 2022 30th Mediterranean Conference on
Control and Automation (MED). Vouliagmeni, Greece:
IEEE, June 28, 2022, pp. 368–374. ISBN: 978-1-66540-
673-4. DOI: 10.1109/MED54222.2022.9837220.

[17] Christopher Rackauckas et al. Universal Differential
Equations for Scientific Machine Learning. Nov. 2,
2021. arXiv: 2001.04385[cs,math,q-bio,stat].

https://doi.org/10.1177/09544100211013617
https://doi.org/10.1177/09544100211013617
https://doi.org/10.1109/TMECH.2020.2995138
https://doi.org/10.1109/TMECH.2021.3102522
https://doi.org/10.1109/TMECH.2021.3102522
https://doi.org/10.1109/ICRA.2013.6631275
https://doi.org/10.1109/ICRA.2013.6631275
https://doi.org/10.15607/RSS.2013.IX.011
https://doi.org/10.1177/0278364910382803
https://doi.org/10.1007/s10514-010-9205-0
https://doi.org/10.1007/s10514-010-9205-0
https://doi.org/10.1016/j.cad.2020.102826
https://doi.org/10.1016/j.cad.2020.102826
https://doi.org/10.1016/j.artint.2014.11.009
https://doi.org/10.1016/j.ast.2021.106887
https://doi.org/10.1016/j.ast.2021.106887
https://doi.org/10.1115/DETC2021-71797
https://doi.org/10.1115/DETC2021-71797
https://doi.org/10.1109/MED54222.2022.9837220
https://arxiv.org/abs/2001.04385 [cs, math, q-bio, stat]

	Introduction
	Current approaches to modelling quadrotor slung load dynamics
	Universal differential equations
	Goals and paper structure

	Mathematical Modelling
	Dynamics modelling
	Cable tension modelling

	Julia implementation
	UDE system
	Solver and loss functions
	Training data generation

	Results and discussion
	UDE system
	Directly training tension approximation function

	Conclusions
	Future Work

