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Abstract

This project will involve accelerating the train-
ing of interatomic potentials in a Julia package
titled PotentialLearning.jl. This will be done
using a GPU and the package Flux.jl, and we
will in particular make use of Flux abstractions.
Furthermore, we will explore adding paralleli-
sation using threading, alternative neural net-
work architectures, and heuristic weight initial-
ization methods among other techniques to aid
accelerate convergence.

1 Introduction

The CESMIX (Center for Exascale Simulation
of Materials in Extreme Environments) is
a group at MIT that is working to advance
the state-of-the-art in predictive simulations
by connecting quantum and molecular
simulations of materials with cutting-edge
computational and high-performance tech-
niques. One particular interest of the group
is accelerating force calculations in atomistic
simulations; simulations can take several
months and force calculations can take up to
90% of that time. In CESMIX, a simulation
can require between 3K and 100K atoms, and
between 100K and 50M time steps hence why
a simulation can take a large amount of time.

The Julia programming language is being used
to aid accelerating these simulations, and there
are two Julia packages being developed in
particular which are important for our project.

The first of these packages is InteratomicBa-
sisPotentials.jl [1]. This provides access
to implementations of the Atomic Cluster
Expansion (ACE) and the Spectral Neighbor
Analysis Potential (SNAP) - two powerful

machine learning potentials, popular in compu-
tational modeling of materials. Potentials here
refer to mathematical models that describe the
interaction between atoms or molecules in a
material system, which can then be used to
calculate the total energy or forces acting on
each atom or molecule. ACE and SNAP are
designed to learn the energy and force fields
from a large dataset of atomic configurations,
which allows them to then accurately predict
behaviour between the atoms/molecules.

The second package, which is what the
majority of the code for this project will be
written for, is called PotentialLearning.jI[2].
This package is being developed to simplify
the training of these potentials (as well as a
few other tasks). It does this by incorporating
elements of bayesian inference, machine
learning, differentiable programming, soft-
ware composability, and high-performance
computing. For this package we use ACE
rather than SNAP.

If we wanted to get an exact description of
how the particles interact, we would need to
use the Schrodinger equation for example.
However, the Schrodinger equation for more
than a few particles becomes very difficult
to solve, and the system is chaotic even for
3 particles! (see the three body problem).
And we want to use thousands or hundreds of
thousands of particles in our simulations.

Hence, in many cases, calculations are carried
out using Density Functional Theory (DFT)
in order to get very accurate predictions as
shown in [4]. These calculations are very



expensive however, and so surrogate models
(such as machine learning potentials) are used
to mimic the behaviour of these tasks trained
on DFT data (which contains information
such as energies, forces, and stresses). Despite
the success of this approach, there can still
be performance limitations during training
such as if the training dataset is sufficiently
large. In the last few years, Sivaraman et al.
(10.1038/s41524-020-00367-7, Methods/Ac-
tive Learning section) [5] proposed an active
learning (AL) scheme, based on a clustering
algorithm, to automatically obtain a minimal
training dataset. In that work, AL is defined as
a ML strategy in which a learning algorithm
iteratively queries a very large set of unlabeled
data to extract a minimum number of training
data leading to a supervised ML model with
superior accuracy compared to a training
model with educated manual selection.

Hence, the core idea of the Potential-
Learning.jl package is to show how key
features of Julia, such as composability
through multiple dispatch or the latest
developments in HPC abstractions, impact
these methods and implementations and in
particular, studying how to accelerate ACE
model training using a Julia-based AL scheme.

The current code does not use any GPU ac-
celerated methods. However, considering the
large size of data needed for these simulations
and the nature of how neural networks operate,
training involves many matrix multiplications,
hence why I believe we should be able to gain
significant speed-up from GPU parallelization.
In fact, a member of the group has already
shown that GPU parallelization helps on a
simpler case that uses the Lennard-Jones
potential instead of ACE. The ACE potential
i1s more complicated than the Lennard-Jones
potential as Lennard-Jones only assumes
pairwise interactions. The code can be found
in this notebook: shorturl.at/oxFJV.

2 Baseline results

We tested running the current learning
function in PotentialLearning.jl, that does
not utilise any GPU accelerations, on the
a-Hf02-300K-NVT-6000 dataset from the
paper "Machine-learned interatomic potentials
by active learning: amorphous and liquid
hafnium dioxide"[5], which contains approxi-
mately 588,000 lines of data. The pipeline
consists of four parts.

The first two parts are to calculate the force
and energy descriptors of the dataset. These
are necessary to put the energy and forces in a
form that can then be learned from. The initial
code does not have any parallelisation or (any
other methods of acceleration) implemented.
When we time how long it takes for the energy
and force descriptors to be calculated, we get
the results seen in figure 1 and figure 2.
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Figure 1: Time taken to calculate energy descriptors
with no parallelisation

As you can see, without any acceleration com-
puting the descriptors does not take too much
time: the energy descriptors were calculated
in a median time of approximately 14 seconds
whereas the force descriptors took a median
time of about 2.45 seconds. Nevertheless, we
will still see if any parallelisation we add can
speed up the computations.

Learning the forces and energies is what takes
the vast majority of the time. Before timing
the training process we first determine a good
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Figure 2: Time taken to calculate force descriptors with
no parallelisation

learning rate of Adam to use in our model.
Nevertheless, as training in this setting can take
some time, we use a relatively small model as
suggested by the group: a two layer neural
network. The first layer has an input size of
26 and output size of 8 with a ReL U activation
function, whereas the second layer has an input
of size 8 and a single output. I tested neural
networks with 4, 8, 16, and 32 neurons in the
first layer, and found that 8 was a good choice
considering time of computation and accuracy.
I trained for 10 epochs with a learning rate of
0.01 and 0.001, and achieved the following
results in figure 3:
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Figure 3: Times to train and minimum loss achieved
under baseline

Clearly, a learning rate of 0.01 is superior and
leads to a rapid change in loss.

I continued to train the ADAM(0.01) model
for 60 epochs, and as the plot below demon-
strates, even after 60 epochs the loss is still

decreasing at a rapid rate:
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Figure 4: Training loss of ADAM(0.01) after 60 epochs

In order to time the training, I ran the training
function 5 times for 2 epochs each time in
order to determine how long the function takes
to run.

Run time
run 1 150.6
run 2 104.7
run 3 117.6
run 4 114.4
run 5 112.5
mean 120

Figure 5: Times to train and minimum loss achieved
under baseline

The mean time for 2 epochs is 2 minutes (i.e.
an epoch a minute). Since in reality this model
would be run for 500 or even 1000 epochs, it
is important to try and accelerate the learning
as much as possible.

3 Energy and Force Descriptors

We first look at accelerating the energy and
force descriptors by using threading. There
are two different ways that we can parallelise:
we can either parallelise the energy and force
computations separately and then run one
after the other, or we could calculate both
descriptors at the same time. I implemented
both methods and tested the results on 2, 4,



and 8 threads:
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Figure 6: Time to calculate energy descriptors after
parallelisation
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Figure 7: Time to calculate force descriptors after paral-
lelisation

As can be seen in the figures 6, 7, and 8,
we achieve the best results when we run the
parallelised descriptor functions one after the
other. If we run the functions using 8 threads,
the energy descriptors achieves a median time
of approximately 4 seconds, whereas the force
descriptors calculation achieves a median of
0.5 seconds, leading to a total average time of
4.5 seconds. This is a big improvement over
the baseline results, which had a total median
time of approximately 13.95 seconds.

After we compute the descriptors, we can
also apply PCA to reduce the number of
descriptors and the time taken to train, while
not drastically impacting accuracy. The
plots below, produced by another person
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Figure 8: Time to calculate descriptors when paral-
lelised together

in the CESMIX group, show the impact of
accuracy when we apply to PCA to maintain
50 descriptors and then 20 descriptors - the
original data set contains 100 descriptors:
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Figure 9: Accuracy obtained when training with 50
descriptors

As can be seen in figure 9 and 10, in both
cases our predicted energies and forces lie rel-
atively close to the y=x line, and decreasing
the number of descriptors from 50 to 20 does
not drastically affect the accuracy. But, going
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Figure 10: Accuracy obtained when training with 20
descriptors

from 50 descriptors to 20 descriptors reduces
the time taken to train with 5 epochs from ap-
proximately 153 seconds to 74 seconds.

4 Training energies and forces

When training the energies and forces, we
make use of two different types of descriptors:
global descriptors and local descriptors.
Global descriptors summarize information on
the whole system (or at least a large part of it).

We define a global descriptor as Global
descriptors, on the other hand, summarize
larger-scale or whole-system information.
They might include statistical properties of
the entire system, such as the overall density
of atoms, or distribution of different types of
atoms among other metrics. Local descriptors,
on the other hand, describe properties specific
to individual atoms or a small group of atoms,
for example, the types and arrangement of an
atom’s nearest neighbors.

When we are using ACE to compute the
energies in our system, ACE computes the

predicted energies as a linear combination of
the global descriptors:

EACE,S
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Figure 11: Equation for calculating energies using ACE
in a non-neural network setting

In this equation, R® represents a data set of
atomic configurations and B(R?®) represents
the global descriptors. The vector [ is
arbitrary in this case and is just used to denote
a linear function.

We can use a neural version of ACE to calcu-
late the energies either as a non-linear function
of the global descriptors, or as a non-linear
function of local descriptors.

ENACES = NN(B(R®),w) (2

Figure 12: Non linear neural equation for calculating
energies using global descriptors

ENACEs — NN(B(R®),w) (3)

Figure 13: Non linear neural equation for calculating
energies using local descriptors

In equation (3), B;(R?®) indexes the local
descriptors.

We time both of these two methods to see
which one is faster using the BenchmarkTools
package. We benchmark how long each
method takes to calculate the predicted
neural potential energy 5 times. We expect
the global descriptor method to be faster,
as we are processing the data all in one
batch and hence achieving some sort of
parallelisation. Just as in the baseline, we
use a two layer fully connected neural network.



BenchmarkTools.Trial: 895 samples with 1 evaluation.

Range (min .. max): 3.442 ms .. 90.505 ms | GC (min .. max):
Time (median): 3.733 ms i GC (median):
Time (mean * o0): 5.582 ms *+ 12.325 ms | GC (mean * o):

0.00% .. 95.69%
0.00%
32.44% + 13.79%

= I
89.3 ms <

3.44 ms Histogram: log(frequency) by time

Memory estimate: 7.82 MiB, allocs estimate: 51520.

Figure 14: Time taken to calculate predicted energies
using the global descriptor method

BenchmarkTools.Trial: 225 samples with 1 evaluation.

Range (min .. max): 17.830 ms .. 79.741 ms | GC (min .. max):
Time (median): 19.860 ms i GC (median):
Time (mean + o): 22.239 ms + 11.364 ms | GC (mean % o):

0.00% .. 75.94%
0.00%
10.32% + 14.53%

anlln
17.8 ms Histogram: log(frequency) by time 78.3 ms <

Memory estimate: 16.06 MiB, allocs estimate: 244520.

Figure 15: Time taken to calculate predicted energies
using the local descriptor method

As predicted, the global descriptor method
achieved a mean time of 5.582ms, whereas the
local descriptor method achieved a mean time
of 22.239ms. Although both times are small,
the global descriptor time was 4 times quicker.

The force calculations are carried out using
automatic differentiation. We define the pre-
dicted spacial component ¢ of the force of atom
i in configuration s as:
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Figure 16: Non linear neural equation for calculating
energies using local descriptors

The first term in the product would be
calculated using Zygote.jl, wheras the second
term would be calculated using InteratomicBa-
sisPotentials.jl.

Although there is only one method to calculate
the forces, we will still benchmark the
function over 5 epochs in order to compare
how long it takes to execute compared to the
energy functions:

As you can see, despite taking an average
time of 1.096 seconds, the force calculations
take significantly more time, and in addition
require much more memory.

BenchmarkTools.Trial: 5 samples with 1 evaluation.

Range (min .. max): 1.001 s .. 1.236 s | GC (min .. max):
Time (median): 1.090 s ! GC (median):
Time (mean * o): 1.096 s + 87.043 ms | GC (mean * o):

1s Histogram: frequency by time
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Memory estimate: 612.34 MiB, allocs estimate: 3511055.

Figure 17: Time taken to calculate predicted forces

However, in order to understand which part
of the training function requires the most
processing time and leads to the approximate
an epoch a minute baseline result, we will
time how long it takes the neural network to
update its weights when the loss function only
depends on the mean squared error (MSE) of
the predicted energies, and then only the MSE
in the predicted forces. Again, we only train
for 5 epochs.

BenchmarkTools.Trial: 8 samples with 1 evaluation.

Range (min .. max): 591.863 ms .. 774.911 ms | GC (min .. max): 11.79% .. 20.01%
Time (median): 610.635 ms i GC (median): 12.14%

Time (mean * o): 638.982 ms + 62.909 ms | GC (mean * o): 14.66% + 4.15%

Histogram: frequency by time
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Figure 18: Time taken to update neural network weights
when loss function depends only on predicted energies
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Figure 19: Time taken to update neural network weights
when loss function depends only on predicted forces

Hence, the training function when run just on
energy predictions takes on average 638 ms.
On the other, the training function when just
run on force descriptors takes on average just
under 300s. Hence, the force term in the loss
function is the true bottleneck in the code (but



since in reality we will train for many epochs,
accelerating the learning of the energies will
help tremendously too).

At first, we attempted to apply Flux’s GPU
abstractions directly to relevant data in the
training function in order to calculate the
gradients on the gpu. We wanted to do it such
that we wouldn’t have to deviate too much
from the way the energies and forces had
intended to be calculated.

Initially, we came across some roadblocks,
in particular scalar indexing errors on the
gpu. After tracing back through the Pote-
nialLearning.jl package, we realised that
the error had been caused by a function in
the methods that compute the energy and
force descriptors outputting data in Float64,
whereas the neural network and the rest of
the piepline was expecting Float32 values.
Of course if we wwwant our models to run
quickly, our data should be in Float32. On
a CPU, these values can easily be converted.
However, on a GPU converting the types
causes the computation to serialize, negating
the benefits of parallelisation obtained from
a GPU and leading to slow execution and a
scalar indexing error.

Once the function was amended to output
Float32 values, we continued to try to apply
the abstractions without an overhaul of the
code, but to no avail. We realised that the
force calculations would need a custom GPU
kernel written for them. Hence, we decided
to first work on accelerating the energies and
then on accelerating the forces.

Firstly, we noted that previously the loss
function for a specific configuration was
calculated one at a time. Instead, we transfer
batches of data to the GPU in order to
make use of parallelisation and speed up
performance. Doing this required the energy
prediction function to be adjusted, so that the
calculations are split depending on how many
atoms are in each configuration. Furthermore,

we added the ability to choose how many
batches of configurations a user wanted to
be on each epoch (initially all configurations
would be processed each epoch).

I then tested the code by running the training
function on the GPU for 5 epochs and
achieved the following results:

BenchmarkTools.Trial: 20 samples with 1 evaluation.

Range (min .. max): 215.364 ms .. 296.245 ms | GC (min .. max): 0.00% ..
Time (median): 240.872 ms i GC (median): 0.00%
Time (mean * 0): 250.916 ms * i GC (mean * ¢): 13.22% %

25.53%
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Memory estimate: 194.70 MiB, allocs estimate: 1109128.

Figure 20: Time taken to train energies with the new
algorithm on a gpu

The mean time is 250ms, which is 2.5 times
as fast as the original algorithm (which can
be seen in figure 13). Hence, we are seeing
improvements in speed. Although the code
for the predicted energies is mostly complete,
there are still some minor changes/improve-
ments that need to be made so that my pull re-
quest can be merged into the CESMIX project.
Once this pull request is completed, I will then
turn my attention back to writing a custom
GPU kernel for the forces.

5 Training with a CNN

Instead of using a dense neural network,
we investigate if a CNN may yield better
results. According to a paper written by
Junqi Yi et al. [3], CNN layers can provide
benefits of reducing computational cost
compared to models of fully-connected layers
of a similar size, and allow the model to
be independent of lattice size. Again, in
order to not over-inflate the training time,
we restrict ourselves to relatively simple
CNNs.  Although traditional CNNs consist
of max pooling layers, flattening layers etc.,
I found that these layers were incompatible
with the training function, in particular with
some of the gradient calculations in Zygote.jl.
Unfortunately, I haven’t had time to delve into
why these problems arise, so for this paper
we will just utilise standard CNN layers. The



purpose is to just explore a new architecture
that the group could potentially look further
into at some other point. After some trial and
error, a promising architecture was

nn_conv = Chain(
Conv((2,2), 1=>2, leakyrelu, pad=1),
Conv((2,2), 2=>1, leakyrelu, pad=1),

Conv((5,5),
Dense (26, 1)
)

1=>1, leakyrelu, pad=1),

I first trained the model for 60 epochs with a
learning rate of 0.01, before then training the
model for an extra 30 epochs with a learning
rate of 0.001. This produced the following
results:

CNN training loss
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Figure 21: CNN training loss

As we can see, we get convergence in much
fewer epochs with the CNN model. After
60 epochs, the model had a loss of 18.5.
Then, after reducing the learning rate the loss
monotonically decreased to a loss of 7.7. As
in reality we would likely train for many more
epochs (e.g. 500 or 1000), an architecture
similar to this does seem promising.

However, the CNN does take much longer to
train than the previously used fully-connected
neural networks. In fact, I measured a time
of approximately an epoch every 5 minutes.
Hence, although we do achieve more rapid con-
vergence, it needs to be weighed up whether
the longer training time negates this.

6 Initialisation

Initially, when Flux.jl initialises a model
it uses the Xavier method to initialize the
weights. Although this is a good heuristic in
many problems, we decided to investigate
whether a better initialization exists that aids
in accelerating convergence. In particular, we
look for a parallel heuristic to precondition the
ML model weights and biases, to accelerate
convergence, using threads. One option that
we investigated was first training a model
just on the energies, then training another the
model just on the forces, before then setting
the initial parameters to be the average of the
parameters of the aforementioned models.
After training the initial energy and force
models each for 3 epochs and then training the
‘full” model for 60 epochs, we achieved the
subsequent results:

Pre-trained vs Xavier initialization
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Figure 22: Pre-trained weights vs Xavier initialization

As can be seen although the pre-trained weight
curve is below the Xavier initialization curve,
they both have almost identical gradients
throughout, and remember that the pre-trained
weights require training for 3 epochs before-
hand, which effectively negates any benefits it
provides.

In the future, we would like to explore other
methods or variations we can make to aid con-
vergence.



7 Conclusion

In conclusion, although the accelerations are
still very much a working progress, speed-ups
in learning the energies with a gpu have been
demonstrated, and a variety of other methods
such as using different architectures or
threading have provided promising results. In
the future, once my energy accelerations code
has been merged with the repository, I would
like to work on creating the custom GPU
kernel for force training, as well as investigate
other CNN architecture and heuristic weight
initializations.

Most of the code that I have written can be
found within:
https://shorturl.at/vAHV9

and
https://shorturl.at/BFRW2

The second link contains code pertaining to
sections 5 and 6 of the paper. I have uploaded
code for these files in silo with the rest of the
repository.
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