
18.337 FINAL PROJECT1

GPU RAY TRACING AND PLANETARY RADIATIVE TRANSFER2

ZEYAD AL AWWAD ∗3

Abstract. This report focuses on high-performance GPU ray tracing, implemented entirely4
within Julia using a custom CUDA kernel. It discusses two implementations targeting very dif-5
ferent use cases: the first focuses on rendering 3D images, while the second focuses on simulating6
radiative transfer (heating/cooling) between an Earth-like planet and Sun-like star. The results7
include rendered images, plots of ice-albedo feedbacks in radiative transfer, and performance analy-8
sis for all of the main subcomponents (examining how the runtime scales with the number of rays9
and objects). A preliminary ray tracing code is available at https://github.com/Zeyad-Awwad/Julia-10
Ray-Tracing/tree/main, though I hope to develop this concept much further over the coming months11
(and since I’m just starting to prepare my thesis proposal, most likely years).12

1. Introduction.13

Coming from a computational physics background, and working for several years14

with satellite data and optical astronomy, I am particularly interested in using high-15

performance GPU ray tracing to study exoplanet compositions. Almost everything we16

can observe about other planets is optical: we can see how much light they receive,17

how much they absorb, how much they reflect, how atmospheres interact with the18

stellar spectrum, and so much more. The current leading methods for exoplanet19

analysis are transit methods (which focus on changes in brightness over a 3D orbit)20

and The complex 3D structure of exoplanets is an active area of research, but most of21

the spectral analysis of exoplanet observations still relies on simplified 1D models that22

ignore several important but challenging components (especially clouds) that might23

be addressed through ray tracing.24

The paper is organized with the following high-level structure: the methodologi-25

cal details of my implementations are described in section 2, some preliminary results26

are shown in section 3, performance testing (with a focus on scaling) is in subsec-27

tion 3.3, and some of my plans for future work that I hope to include within my thesis28

subsection 4.1.29

2. Methodology.30

2.1. Ray Tracing.31

Although I developed two different models for this project (one for rendering,32

one for radiative transfer between a planet and star), both rely on the same ba-33

sic formulation. The first section focus on general ray tracing as a computational34

workhorse, rather than the details of any specific implementation. It focuses on how35

rays are parameterized, how intersections are solved with implicit geometries, and36

how ray bounces are handled. The renderer uses all of these features, while the ra-37

diative transfer model only uses a subset (and adds several features that are very38

physics-specific).39

The subsequent sections describe some features that are specific to rendering (such40

as color tracking and pixel averaging) and to atmospheric physics, which (even in a41

simple form) involve plenty of additional physical properties that must be defined,42

tracked and updated.43

∗PhD Candidate in Computational Science and Engineering
Engineering Systems Laboratory, Department of Aeronautics and Astronautics
MIT

1

This manuscript is for review purposes only.



2 D. DOE, P. T. FRANK, AND J. E. SMITH

2.1.1. Parameterization and Intersections.44

Primary references: [3] for spherical geometries, [2] for triangular geometries.45

Each ray is represented by a parameterized equation, defined by an origin x⃗0 and46

a direction d⃗47

x⃗(t) = x⃗0 + t · d⃗
This form allows us to define where a ray intersects a surface by solving for48

the parameter t by representing geometries with the appropriate implicit equations.49

The first positive intersection determines where (and from which object) the ray will50

bounce, and can be defined mathematically as ti = min{ti,j | ti,j > 0} where ti,j51

defines the intersection point between ray i and object j.52

The standard approach to ray tracing uses implicit geometries, where the intersec-53

tion occurs at some solution t to that equation (or set of equations). Most software54

uses triangular meshes to represent arbitrary geometries, but solutions to perfect55

spheres can also be calculated very efficiently using this approach. In practice, these56

two choices represent the main two geometries considered in real-world ray tracing57

code, but in principle, other types of geometries can be represented in similar ways.58

Spheres have a relatively simple solution, since you essentially just have to solve59

a quadratic equation where the coefficients are given by a set of dot products between60

the ray and the sphere (specifically its radius r⃗ and centroid c⃗)61

t2(d⃗ · d⃗) + t(2c⃗ · d⃗) + c⃗ · c⃗ = r⃗ · r⃗
This can be solved using the standard quadratic formula. Both solutions need to62

be checked for validity, since only real t correspond to actual intersections (complex63

t indicates no intersection at all) and only positive t corresponds to intersections in64

the direction of the ray (negative t indicates that the ray would intersect if we reverse65

the direction).66

t =
−(2c⃗ · d⃗)±

√
(2c⃗ · d⃗)2 − 4(d⃗ · d⃗)(c⃗ · c⃗− r⃗ · r⃗)

2(d⃗ · d⃗)
Ray-triangle intersections are more computationally intensive, especially working67

in Cartesian coordinates (where each ray would have to solve a 3 × 3 system of68

equations). The Moller-Trumbore method is a popular method that uses a barycentric69

coordinate transformation to compute these intersections more efficiently.70

For a triangle with vertex coordinates A⃗, B⃗ and C⃗, the transformation involves71

computing 3 translations with respect to vertex A⃗72

T⃗ = x⃗0 − A⃗73

E⃗1 = B⃗ − A⃗74

E⃗2 = C⃗ − A⃗7576

And two cross-products that transform an arbitrary triangle into an axis-aligned77

unit triangle78

P⃗ = d⃗× E⃗279

Q⃗ = T⃗ × E⃗18081

This manuscript is for review purposes only.



AN EXAMPLE ARTICLE 3

This allows us to compute t with a more straightforward and GPU-friendly vector82

calculation83 t
u
v

 =
1

P⃗ · E⃗1

Q⃗ · E⃗2

P⃗ · T⃗
Q⃗ · D⃗


Since t only determines when the ray intersects the plane of the triangle, we need84

to use the values of u and v to determine whether or not the ray is contained within85

the boundaries of the triangle. In Cartesian coordinates this would require a more86

involved point-in-polygon check, but in barycentric coordinates (where the triangle is87

axis-aligned with unit lengths, except for the hypotenuse) it’s sufficient to check that88

0 ≤ u ≤ 1, 0 ≤ v ≤ 1 and 0 ≤ u+ v ≤ 1.89

Refraction is primarily handled using Snell’s law: sin(θ2) =
η1

η2
· sin(θ2), for two90

materials with refractive indices η1 and η2. In cases where η1

η2
·sin(θ2) > 1, this doesn’t91

have a solution and we instead revert to specular reflection (physically, this represents92

the case of looking at water or glass surfaces from a nearly parallel angle).93

2.1.2. Bounces.94

Once we find the location of the first positive intersection, we update the position95

of the ray and decide on a new direction. The method used to determine the new96

direction is material-dependent and represent different physical phenomena such as97

specular reflections, diffuse light, refraction and thermal absorption.98

Specular reflections represent an idealized ”perfect mirror”, where the angle of99

incidence (relative to the surface normal n⃗, of unit length) matches the angle of100

reflection. The updated direction is calculated using101

d⃗new = d⃗− 2(n⃗ · d⃗)n⃗
Diffuse reflections draw a random new direction from some distribution. The102

simplest approach is to use a spherically symmetric distribution, but the Lambertian103

distribution is more physically accurate (since light is more likely to reflect in the104

perpendicular direction. Samples are drawn uniformly from the surface of a unit105

sphere that makes contact with the surface at the intersection point (using rejection106

sampling from a 2× 2× 2 cube to find points inside the sphere, then normalizing to107

unit length to get points on the surface). The vector between the intersection point108

and the sampled surface defines the direction of the bounced ray.109

2.2. Rendering.110

To capture images using the traditional ray tracing code, we need to cast the111

rays from the camera rather than a light source. Each pixel emits the same number112

of rays directly perpendicular to the camera plane, with randomly sampled initial113

positions within the pixel boundaries. By tracking the colors of the rays, and taking114

the average, we can determine the color seen by each pixel.115

The color of each ray is represented by an RGB vector, initially at [1.0,1.0,1.0]116

for all rays. With each bounce, the ray loses some color based on the material. A117

grassy surface, for example, may absorb 50% of the red and blue channels but leave118

the green channel untouched, so the bounced ray would have an updated RGB vector119

of [0.5, 1.0, 0.5] (and a second bounce would give [0.25, 1.0, 0.25], and so on).120

A ray terminates when it flies off into the sky, the primary light source (which has121

a uniform blue value, and casts a slight blue tint on all visible objects). When this122

occurs, or when all the color values diminish too low to matter very much, their color123

This manuscript is for review purposes only.



4 D. DOE, P. T. FRANK, AND J. E. SMITH

is added to the original pixel they were cast from. This is divided by the number of124

rays to get an average color value and produce a full 3D-rendered image without any125

external API.126

2.3. Radiative Transfer.127

Primary references: most of this was adapted from 1D numerical integration128

models I implemented in the MIT course 12.815 (Atmospheric Radiation and Con-129

vection), almost entirely based on the landmark textbook ”Principles of Planetary130

Climate” by Raymond Pierrehumbert [1].131

Radiative transfer models track the heat exchange between a star and planet132

(considering both ground and atmospheric layers) through thermal radiation, typically133

after making several simplifying assumptions. For this project, we have three major134

simplifying assumptions135

1. Everything behaves like a blackbody (a perfect absorber and emitter) with136

a radiation flux governed by the Stefan-Boltzmann law F = σT 4 (given in137

Watts per unit area)138

2. We consider only absorption/reflection of two ”wavelengths”: shortwave and139

longwave. We assume that all radiation from the star is shortwave, and all140

radiation from the planet is longwave. This is approximately true for the141

Earth and Sun, whose wavelength distributions overlap by less than 1%, and142

a common approach for two-stream equations in atmospheric physics, but143

neglects the complicated absorption profiles of real gases.144

3. The planet is a tidally locked ”water world” with a simple CO2-like green-145

house atmosphere. These choices were made due to time constraints, since146

too many features would have taken longer to implement and evaluate. This147

allows us to examine the ice-albedo feedback (since the water surface can148

freeze/melt based on temperature), and tidal locking gives a strong tempera-149

ture gradient (which is static at equilibrium, since the same side always faces150

the sun) with a hot side and cool side. With some small modifications, it151

could also be used to study the runaway greenhouse effect (but unfortunately152

I didn’t have time to implement it before the deadline).153

We will revisit these assumptions, and how they can be improved upon, when we154

discuss more detailed models in subsection 4.1 (Future Work). I hope to implement155

many of these features in my research, but my priority for this project was to become156

familiar with ray-traced atmospheric modeling using a relatively simple toy problem157

that tries to capture as much physics as possible (without missing the forest for the158

trees).159

2.3.1. Shortwave Radiation.160

Shortwave radiation comes from the star, and is primarily composed of near-161

infrared and visible light (as well as small but significant quantities of ultraviolet162

light). We can represent these by casting rays of uniform intensity from a nearby163

disk of radius Rplanet representing the stellar direct beam, neglecting effects like limb164

darkening (where the edges of the beam aren’t as bright as the center). The total165

incoming energy, which is evenly divided between all the rays, is based on the black-166

body radiation formula F = σT 4 but also depends on the flux at that orbital distance167

(the ratio of the star’s surface to the orbit’s ”surface” area) and the cross-sectional168

area of the planet169

E =
R2

star

R2
orbit

σT 4
star · (πR2

planet)

This manuscript is for review purposes only.



AN EXAMPLE ARTICLE 5

The model assumes that the atmosphere does not interact significantly with short-170

wave radiation, which is a reasonable approximation for a simple atmosphere without171

clouds or ozone. This allows us to consider only the intersection with the planetary172

surface, which may absorb (p = 1−α) or reflect (p = α) based on the surface albedo.173

Since this approach requires computing only one intersection, the shortwave step of174

the model is relatively fast (approximately 100 million rays per second).175

Since albedo is temperature-dependent (ice is more reflective than liquid water)176

it can produce interesting phenomena like ice-albedo feedback, where a planet can177

suddenly shift from an ”ice age” state (where less starlight is absorbed) to a warm178

state (where the surface is thawed and absorbs more starlight) depending on its initial179

state, due to hysteresis around unstable equilibrium points.180

2.3.2. Longwave Radiation.181

Since we assume a pure greenhouse atmosphere, all of the atmospheric layers (as182

well as the ground) can absorb and emit longwave radiation. As before, the emission183

is governed by the blackbody emission formula F = σT 4
i,j , where Ti,j is the local184

temperature at the location of emission.185

The direction of emission is assumed to be spherically symmetric (as in blackbody186

radiation) so the emitted rays may end up being absorbed by a different location in187

a different layer (possibly the surface) or escaping into space. The probability of188

absorption decays exponentially with optical thickness τ (which measures the opacity189

of a path, telling us how likely it is that the gas will absorb the light) by the Beer-190

Lambert-Bougert law191

I = I0e
−τ → ptransmit = e−τ , pabsorb = 1− e−τ

Using this, we can more efficiently assign an absorption layer by first drawing192

a probability p, then using a binary search to find the first layer that crosses that193

threshold (i.e. the minimum ”thick enough” distance to be absorbed with this proba-194

bility). This avoids needing to compute a bounce at every layer, although it still adds195

a significant computational expense to each longwave bounce (which takes about 6196

seconds to trace 25 million rays, compared to only 2 seconds for rendering, and only197

a quarter of a second for shortwave).198

We can keep track of the evolving temperatures with a rank-3 tensor (the pro-199

gramming kind, not the mathematical kind) where each layer (101 by default) is200

broken up into a grid (24× 16 cells by default). The cells are sampled uniformly and201

emit a certain amount of longwave energy per time step based on their temperature202

and area (larger cells, near the equator, emit more total energy than smaller cells near203

the poles). This strikes a reasonable balance between simplicity, resolution and phys-204

ical accuracy for this type of toy model, but ideally it would use a weighted sampling205

method that draws more rays from high-emission locations instead of compensating206

by scaling their energies.207

2.3.3. Non-Radiative Heat Transfer.208

Alternative forms of heat transfer, such as conduction and convection, are ap-209

proximated using a simple weighted Jacobi method. This allows heat to diffuse to210

neighboring cells within the same layer (two vertical, two horizontal) by computing211

the average temperature and using a weighted sum to update the values212

T̃i,j = (1− w) · Ti,j + w · Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1

4

This manuscript is for review purposes only.



6 D. DOE, P. T. FRANK, AND J. E. SMITH

The weight parameter w controls the extent of diffusion. When w = 0, there213

is no temperature diffusion at all, and when w = 1 it gives the classical Jacobi214

method (where each cell is simply the average of its 4 nearest neighbors). Intermediate215

values are a weighted sum of these two limits, and low values of w lead to weakly216

diffusive behavior, which is most consistent with real tidally locked planets where217

we see large temperature gradients (but remains well above absolute zero, even in218

permanent darkness).219

2.3.4. Physical and Geometric Setup.220

Unlike the general ray tracer, the planetary ray tracer imposes a very restricted221

geometric setup for performance purposes. The planet and its atmosphere are rep-222

resented by a set of concentric spheres, where the surface (layer 1) has a radius of223

Rplanet and the radii of all subsequent layers are determined by the pressure profile224

using the pressure-altitude equation (derived from hydrostatic equilibrium)225

Rj = Rplanet −H · log(Pj/Psurface)

Effectively, the radius increases in proportion to the log of the pressure ratio (we226

subtract because Pj < Psurface for any j > 1, so the logarithm is always negative).227

The scale height is a property of the planet that represents the degree of ”puffiness” of228

an atmosphere. It is effectively just a scaling factor for this logarithmic relationship,229

which is typically obtained by fitting a pressure profile to an altitude profile (I use230

H = 8.5 km by default, which is similar to Earth’s atmosphere).231

A common approach in atmospheric science is to use pressure as the primary ver-232

tical coordinate and calculate all other physical attributes from it, since it is mono-233

tonically decreasing and is more physically meaningful than altitude. In addition234

to the pressure-altitude relation mentioned above, we can also compute the initial235

temperature profile of a given layer using236

Tj = Tsurface · (Pj/Psurface)
γ

Where γ is a scaling parameter between 0 and 1. Setting it to 0.6655 reproduces237

the widely used 1976 US Standard Atmosphere, specifically recreating the tropo-238

spheric profile (the lowest atmospheric layer). The current model does not include239

any atmospheric stratification, since there is no physical mechanism to preserve those240

in the current model (which neglects convection and clouds). Since the purpose of this241

radiative transfer model is to reach thermal equilibrium, the temperature profile is242

not preserved when the model is run, but it provides a useful initial condition to speed243

up convergence and (in cases of hysteresis) potentially leads to different equilibrium244

points.245

Similarly, we can calculate the optical thickness (opacity) profile using an almost246

identical scaling relationship defined by a parameter n, which is not bound to the [0,1]247

range. I use n = 4 by default, representing a fairly strong pressure-broadening effect,248

but other values can be physically reasonable as well249

τj = τsurface · (Pj/Psurface)
n

Since we are using a static pressure profile, the optical thickness is also static (un-250

like temperature). In reality, optical thickness is a complicated property that increases251

with both pressure and temperature. Since it also increases absorption (increasing252

both pressure and temperature), these interdependencies lead to sophisticated feed-253

back loops that remain an active area of research. I hope to include that in future254

This manuscript is for review purposes only.



AN EXAMPLE ARTICLE 7

versions of this model, but I didn’t want to tackle it this early since it would have255

made the scope of this project too broad.256

3. Results.257

3.1. Renderer.258

The following image was generated using two green triangles (representing the259

ground) and 20 spheres of various materials and randomly assigned colors (though260

some may be out of frame). The colors sampling is somewhat arbitrary, but it was261

mostly intended to highlight certain visual effects. For example, glass spheres have a262

slight absorption (between 0% and 20% per channel) to make them more interesting263

and believable than a (completely unphysical) perfectly refracting sphere.264

If you look closely, you can see several limitations in this camera-based rendering265

technique. Perhaps the most noticeable is that light has no direction at all, and kind266

of resembles a very cloudy day where light is scattered uniformly in all directions. The267

shadows are also rather unphysical, compared to a situation with a clear and directed268

light source, since they are entirely based on bounces (shaded areas occur rays cast269

from the camera typically can only ”access the sky” after multiple bounces).270

Additionally, there are a few apparent flaws that are actually correct, but ad-271

mittedly still kind of weird. Perhaps the most noticeable is that highly transparent272

spheres don’t really cast a shadow. Refracting spheres with higher absorption cast a273

faint shadow, but glass spheres with little absorption don’t cast much of a shadow at274

all. This is actually not physically inaccurate, since perfect glass spheres behave in275

some pretty unintuitive ways. However, the lack of lensing (or any direct light source276

at all) makes them still look rather wrong, but some of the features in radiative277

transfer might help with this.278

3.2. Physical Phenomena.279

While I based many of the physical parameters on the Earth and Sun, this isn’t a280

particularly realistic model and none of the numbers should be taken seriously. There281

is a lot of physics that needed to be ignored here to focus on high-performance GPU282

computation on a tight timeline. I hope to develop a physically accurate model of283

the future, but the goal here was to develop a ray-traced toy model that can at least284

demonstrate some known climate feedbacks.285

This manuscript is for review purposes only.



8 D. DOE, P. T. FRANK, AND J. E. SMITH

3.2.1. Ice-Albedo Feedback.286

The ice-albedo feedback is a phenomenon driven by an inverse relationship be-287

tween albedo and temperature (i.e. ice is more reflective than water). Essentially,288

cold planets absorb less light and are difficult to warm, while hot planets absorb more289

light and are difficult to cool. This results in multiple equilibrium points for certain290

configurations, and it means that different initial conditions (or temporary changes291

in conditions) can change which equilibrium point a planet will converge to.292

To demonstrate this effect, I used a fairly extreme test case where the planet293

begins in a frozen state (200 K across the entire surface) and is allowed to reach294

equilibrium before the star temporarily goes from 6000 K to 9000 K (a completely295

unphysical test case) to ensure the planet is knocked into another equilibrium state.296

I’m sure this is greater than necessary, but I didn’t have enough time to test the297

sensitivity thoroughly. Additionally, αliquid = 0.1 and αice = 0.9, meaning that a298

cold surface absorbs only 10% of incident light and a warm one absorbs 90%. These299

aren’t too far off from the real numbers, but a bit on the extreme side.300

Fig. 1. The range of temperatures (in Kelvin) and heat exchange (in Joules per timestep)

on the planetary surface. The orange line indicates the maximum value (hottest and
fastest heating) and the blue line indicates the minimum value (coldest and fastest

cooling)

The temperature curve shows that a planet at 200 K (completely frozen) initially301

approaches an equilibrium around 210 K (an ice age) but after an extreme temporary302

rise in temperature, it instead converges around 375 K (warmer than the Earth, but303

plausible for a planet without clouds near a 6000 K star). This temperature change304

is driven by the heat transferred Q, which measures the difference between incoming305

and outgoing energy for each grid cell.306

Looking at Q (essentially the derivative of T ), we can see that the sudden warming307

leads to a period of ”overshooting” the equilibrium point. This is likely because the308

time step did not change, and may have been too coarse for such a major change in309

conditions. These fluctuations diminish when the star returns to normal, but they310

still appear to be more variable than the initial phase (starting from a frozen state).311

Although the test case is quite extreme, and realistic examples of the ice-albedo312

feedback exhibit much smaller swings, we can see a clear example of hysteresis due313

to how the radiative balance changes with temperature. [Disclaimer: due to time314

constraints, I didn’t want to test more realistic values and risk ending up with results315

without anything physically interesting. I also used only zero diffusion (w = 0)316

because that made hysteresis far more likely]317

This manuscript is for review purposes only.



AN EXAMPLE ARTICLE 9

3.3. Performance.318

The two ”versions” of the ray tracer are built on similar principles, sharing a319

significant amount of code, even if the overall functionality is quite different. The320

biggest shared DNA is in how they represent rays, how they handle spherical in-321

tersections (the most useful geometry for planetary analysis), and how they handle322

diffuse reflections/randomly directed emission.323

However, the planetary model is more computationally intensive due to the in-324

clusion of thermal absorption/emission and heat transfer, plus an alternate (itera-325

tive) method of determining intersections for geometries that only include concentric326

spheres. As a result, I cut some unnecessary features to maintain a decent thread327

count and avoid sacrificing too much performance.328

All of my results were generated using 25 million rays per bounce, unless other-329

wise specified, since that fits comfortably within my card’s memory (consuming ap-330

proximately 14 GB in total) and takes approximately 2 seconds to compute a single331

rendering bounce, or a quarter of a second to compute shortwave bounce. Longwave332

bounces take a bit longer to complete, typically around 6 seconds for the same number333

of rays.334

3.3.1. Rendering Performance.335

To test how performance scales with the number of rays, I ran the renderer336

using the default settings (2 triangles forming the ground, 20 spheres with randomly337

assigned surface materials) using a variable number of rays and only a single bounce.338

Fig. 2. None

We can see strong linear scaling, where 10× as many rays take approximately339

10× as long. There is sometimes some fluctuation when the ray count is really small,340

though this unusually consistent run suggests that these are random and not caused341

by overhead. For the most part, the linear scaling seems to hold very well for both342

stages (computing intersections, and tracking bounces/pixel colors), which take ap-343

proximately 0.8 and 1.2 seconds respectively for 2.5 million rays.344

This manuscript is for review purposes only.



10 D. DOE, P. T. FRANK, AND J. E. SMITH

Fig. 3. None

When we fix the number of rays to 25 million, and instead vary the number of345

spheres, we can see linear scaling in computing the intersections when the number346

of objects is sufficiently large (e.g. 300 spheres take 10× longer than 30). This is347

expected due to my implementation, which checks every object for a collision (more348

efficient implementations use spatial queries like octrees), but implementing this on349

GPU is complex and well beyond the scope of this project.350

Unlike the scaling with respect to rays, we see a significant amount of overhead351

when the number of spheres is low. This is in part due to fixed steps that every ray352

must execute (before and after the object loop) and because I don’t vary the number353

of triangles (there are always 2, no matter how many spheres there are).354

Additionally, although the bounce/imaging step depends on the objects, it’s in-355

dependent of the number of objects. Since the first intersected object was already356

determined in the previous step, the bounce step just needs to look up the properties357

of a single object (to get materials, color, etc). As a result, it remains more or less358

constant across all the runs, except for minor fluctuations.359

3.3.2. Radiative Transfer Performance. Similar to the rendering case, we360

can see that GPU performance scales roughly linearly with the number of rays once361

there is a sufficient quantity. When the number of rays is small, there are some362

noticeable fluctuations in performance, but they appear to be more or less random363

(rather than a fixed overhead cost).364

Fig. 4. None

The shortwave step is generally quite fast, outperforming either of the steps in365

the rendering case (a quarter of a second for 25 million rays). This is primarily366

This manuscript is for review purposes only.



AN EXAMPLE ARTICLE 11

due to the simplifications described in subsection 2.3.1. The longwave step takes367

significantly longer, typically around 6 seconds for 25 million rays when using a 101-368

layer planet/atmosphere, so I’m not sure if the ”simplifications” (like the probabilistic369

binary search to determine the absorbing layer) are actually improving performance.370

This takes as long to run as the renderer’s intersections with 100 spheres, though the371

longwave bounce both cuts and adds quite a bit so it’s hard to tell (without profiling)372

where the performance hit is happening. I’ll have to explore this further.373

Additionally, the diffusion step is currently being handled entirely on CPU. It’s374

independent of the number of rays, and (unless the number of rays is really small)375

has a negligible impact on performance, taking about 0.1 second for the resolution I376

used (slightly over 1% of the total runtime for 25 million rays). I plan to parallelize377

this step as well, since it would likely run faster and permit higher spatial resolutions,378

plus it would significantly reduce data transfer between the CPU and GPU, but it379

wasn’t worth the effort when the longwave radiation step overwhelmingly dominates380

the runtime.381

4. Discussion.382

4.1. Future Work.383

I plan to completely redo the radiative transfer form of the ray tracer over the384

summer, since this is really just a toy model intended to get my hands dirty with385

applied ray tracing in scientific computing. Unlike the renderer (which has a plethora386

of useful resources), this implementation was almost entirely self-guided and there is387

plenty of room for improvement. As a result, however, it also has a great deal of388

research potential (in my opinion) because current implementations are often rather389

limited, aimed primarily Earth’s climate models rather than exoplanets, and many are390

closed-source commercial tools that are not easily accessible to academic researchers.391

The current model neglects many important physical phenomena, and really just392

focuses on a simple model of thermal absorption/emission and albedo feedbacks. Real393

atmospheres involve many feedbacks between many of the physical parameters - for ex-394

ample, optical thickness/opacity is highly sensitive to both pressure and temperature,395

but that isn’t being accounted for here. Additionally, the simple longwave/shortwave396

breakdown (though common in atmospheric science) is not particularly accurate, and397

detailed wavelength-dependent spectra are a crucial component for studying real ex-398

oplanets. Finally, the radiative impact of clouds is a complex topic that (at least in399

part) would greatly benefit from ray tracing, since they really can’t be solved ade-400

quately without accounting for their detailed 3D structure (compared to most other401

atmospheric problems, which can be solved in 1D without too much loss of informa-402

tion).403

I’m currently working on my thesis proposal, in which I hope to explore all three404

of these issues. The first is perhaps the hardest to truly ”solve”, since many of these405

feedback cycles involve significant amounts of uncertainty (especially regarding optical406

thickness and the ”opacity challenge”, which has received significant attention in re-407

cent years), so my goal is simply to incorporate the most widely accepted solutions into408

a 3D ray tracing environment (most likely something similar to petitRADTRANS).409

I believe both absorption/emission spectra and cloud interactions represent major410

computational challenges, and research opportunities, for GPU ray tracing models.411

Traditional methods are quite complex and data-intensive, and typically designed for412

serial computing where memory (per thread) is abundant. I’m interested in exploring413

the potential for small neural networks to approximate these complicated, uncertain414

structures in an efficient, GPU-friendly way.415

This manuscript is for review purposes only.



12 D. DOE, P. T. FRANK, AND J. E. SMITH

An additional area of improvement (not in research, just in implementation) is416

to combine features of both of these methods. A more realistic renderer would first417

model light sources and generate texture maps (similar to our temperature grid)418

that indicate brightness and color, then use the renderer to capture the image. The419

methods I added to the radiative transfer model (which only involves forward ray420

tracing) could be combined with the renderer (which currently only involves reverse421

ray tracing) to generate 3D images with more realistic lighting, as seen in current422

commercial tools and game engines.423

Finally, I hope to get all of this working in Julia using Nvidia’s Optix library, which424

is currently the fastest way to compute ray intersections. It relies on efficient spatial425

querying methods and specialized RT cores to compute 100 billion rays per second426

(more than 3 orders of magnitude faster than my homebrewed solution). Although427

that kind of work is far from my area of expertise, I think it would be a significant428

contribution to scientific computing as a whole, since it would make ray tracing far429

more accessible to academia and scientific research (because despite using C and C++430

for many years, I certainly wouldn’t want to develop libraries or complicated pipelines431

within either language).432

Acknowledgments. I’d like to thank Prof. Timothy Cronin (who taught 12.815433

Atmospheric Radiation and Convection in parallel to this course) for his helpful ma-434

terial on 1D numerical integrals of planetary atmospheres (which I tried my best to435

adapt somewhat faithfully into the 3D planetary ray tracing code, within the limited436

timeline) and his advice on how to implement some of the finer details.437

REFERENCES438

[1] R. Pierrehumbert, Principles of Planetary Climate, Cambridge University Press, 2010.439
[2] P. C. Robert and D. Schweri, GPU-based Ray-Triangle Intersection Testing, Research Group440

on Computational Geometry and Graphics, Institute of Computer Science and Applied441
Mathematics, University of Bern, https://tr.inf.unibe.ch/pdf/iam-04-004.pdf.442

[3] P. Shirley, Ray tracing in one weekend. https://raytracing.github.io/books/443
RayTracingInOneWeekend.html. Accessed: 2023-04.444

This manuscript is for review purposes only.

https://tr.inf.unibe.ch/pdf/iam-04-004.pdf
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html

	Introduction
	Methodology
	Ray Tracing
	Parameterization and Intersections
	Bounces

	Rendering
	Radiative Transfer
	Shortwave Radiation
	Longwave Radiation
	Non-Radiative Heat Transfer
	Physical and Geometric Setup


	Results
	Renderer
	Physical Phenomena
	Ice-Albedo Feedback

	Performance
	Rendering Performance
	Radiative Transfer Performance


	Discussion
	Future Work

	References

