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1 Introduction

Tridiagonal systems of linear equations arise in various fields. They are partic-
ularly common in the numerical solution of partial differential equations, where
discretization methods often lead to tridiagonal systems. The solution of tridi-
agonal systems of linear equations is a fundamental problem in numerical linear
algebra with applications in various fields such as fluid dynamics, heat transfer,
and financial mathematics. Traditional direct methods like LU or Cholesky fac-
torization can be used to solve these systems with a complexity of Θ(n), where n
is the order of the system. However, these methods cannot exploit the potential
parallelism.

In this project, we explore the cyclic reduction algorithm, an alternative
approach that leverages the structure of tridiagonal systems to effectively solve
them in parallel. While the total work of cyclic reduction is Θ(n log n), which
is more than traditional methods, it can exploit up to n-fold parallelism and
requires only Θ(log n) time in best case.

2 Tridiagonal Systems

A tridiagonal system is a special type of linear system where the coefficient
matrix has non-zero elements only on the main diagonal, the diagonal above it,
and the diagonal below it. The system can be represented as follows:

b1 c1
a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn




x1

x2

...
xn−1

xn

 =


y1
y2
...

yn−1

yn

 (1)

A tridiagonal system of order n is typically solved using LU or Cholesky
factorization. These methods incur no fill and require Θ(n) operations, but they
yield a serial thread of length Θ(n) through the task graph, hence providing no
opportunity for parallelism.
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3 Cyclic Reduction Method

Cyclic reduction is an alternative method for solving tridiagonal systems that
can be parallelized. The method involves transforming the original system into
an equivalent system with fewer equations, where the new system can be solved
more efficiently.

The i-th equation of the original tridiagonal system

aixi−1 + bixi + cixi+1 = yi (2)

is transformed into

āixi−2 + b̄ixi + c̄ixi+2 = ȳi (3)

where

āi = αiai−1, b̄i = bi + αici−1 + βiai+1,

c̄i = βici+1, ȳi = yi + αiyi−1 + βiyi+1,

and αi = −ai/bi−1, βi = −ci/bi+1. After transforming each equation in the
system, the matrix of the resulting new system has a different form

b̄1 0 c̄1
0 b̄2 0 c̄2
ā3 0 b̄3 0 c̄3

. . .
. . .

. . .
. . .

. . .

ān−2 0 b̄n−2 0 c̄n−2

ān−1 0 b̄n−1 0
ān 0 b̄n


(4)

This new system can be re-ordered to group equations with odd indices
together and those with even indices together. The matrix of the system then
has the following form:

b̄1 c̄1

ā3 b̄3
. . .

. . .
. . . c̄n−3

ān−1 b̄n−1 0
0 b̄2 c̄2

ā4 b̄4
. . .

. . .
. . . c̄n−2

ān b̄n


(5)

After this transformation, the resulting new system is reordered to place
odd indices before even indices. By reordering the system, it breaks into two
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independent tridiagonal subsystems that can be solved simultaneously. Each
resulting tridiagonal subsystem can in turn be solved using the same technique,
resulting in a recursive algorithm and an opportunity for parallel computation.
This can continue until the subsystems are trivially solvable, at which point we
can simply obtain the solution via traditional solvers.

4 Parallelism in Implementation

Given the parallelism opportunities within the cyclic reduction algorithm, it is
highly beneficial to utilize the power of multiple processors if available. We im-
plemented a parallelized tridiagonal solver using the cyclic reduction method in
Julia. Our implementation for solving tridiagonal systems exploits two sources
of parallelism: simultaneous transformation of equations in the system and si-
multaneous solution of multiple tridiagonal subsystems. We combine multi-
threading and multiprocessing to exploit both the inter-processor and intra-
processor parallelism inherent in modern computing systems. Multithreading is
used to transform equations in parallel, while multiprocessing is used to solve
multiple subsystems in parallel. This results in a highly parallel implementa-
tion that can significantly reduce the time to solve large tridiagonal systems on
multi-core and multi-processor systems.

4.1 Simultaneous Transformation of Equations

The system of equations is first transformed using the method of cyclic reduc-
tion. Each equation in the system can be transformed independently, providing
an opportunity for parallelism. Thus, we perform these updates simultaneously
across multiple threads using a multithreaded loop in Julia. In our implemen-
tation, we use the Threads.@threads macro, which automatically manages the
distribution of iterations to threads and the synchronization between them.

for each index i in the system, in parallel do
Compute new coefficients āi, b̄i, c̄i, ȳi using cyclic reduction formulas

end for

4.2 Simultaneous Solution of Multiple Tridiagonal Sub-
systems

Once the system has been transformed, it is split into two separate subsystems:
one for odd-indexed equations and another for even-indexed equations. These
two subsystems can be solved independently, providing another opportunity for
parallelism.

The implementation uses Julia’s multiprocessing capabilities to solve the
subsystems concurrently. We utilized Julia’s Distributed library, which provides
the @spawnat macro, a powerful tool for managing distributed computations.
Crucially, @spawnat is non-blocking, which enables us to split the computation
between the odd and even subsystems across different processors. In particular,
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as long as there are additional processors available, our implementation exe-
cutes the next function call to solve the odd-indexed subsystem on the current
processor, and at the same time assign a new processor to execute the function
call to solve the even-indexed subsystem.

This is done recursively, so that each level of the recursion spawns new tasks
for the next level. This continues until all available processors are being used,
after which no new tasks are spawned and each processor is responsible for
solving all of its remaining subsystems.

if there are still processors available then
Spawn task to solve odd-indexed subsystem on the current processor
Spawn task to solve even-indexed subsystem on a new processor

else
Solve odd-indexed subsystem on the current processor
Solve even-indexed subsystem on the current processor

end if
Get solutions of odd and even-indexed subsystems
Merge solutions into final solution vector x

4.3 Switching Back to Traditional Solvers

When the size of the matrix becomes sufficiently small, the benefits of further
recursive calls in the cyclic reduction algorithm diminish. This occurs when the
number of equations reduces to a point where there is no significant parallelism
to exploit. In such scenarios, it becomes more efficient to switch to traditional
methods for solving tridiagonal systems, such as LU and Cholesky factorization.
Switching to traditional methods for small subsystems allows us to avoid the
unnecessary overhead associated with parallel communication, synchronization,
and further recursive calls. It ensures that computational resources are effi-
ciently utilized and that the most appropriate solution method is employed for
the given problem size.

When the matrix size reaches this threshold, we can halt the recursive calls
and solve the subsystems directly using traditional methods. By incorporat-
ing a termination condition in the parallel cyclic reduction algorithm, we can
dynamically determine the appropriate point at which to switch from parallel
execution to traditional serial methods. This condition is typically based on the
size of the subsystems or the number of equations remaining.

Careful consideration and benchmarking are required to determine the opti-
mal threshold for stopping the recursive calls and employing traditional meth-
ods. It is important to note that the threshold at which we transition to tradi-
tional methods will depend on various factors, including the specific characteris-
tics of the problem, the hardware architecture, and the available computational
resources. In fact, this decision can be made once all processors have been
assigned their respective subsystems to solve. At this stage, the parallelism
has been fully utilized, and it is potentially more beneficial to employ fast and
optimized linear solvers such as LU and Cholesky factorization.
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Another group of methods for truncated tridiagonal systems is to solve each
subsystem roughly (e.g. ignoring nonzero elements outside of main diagonals),
obtain an approximate solution for the whole system, and use some iterative
numerical linear algebraic methods to compute a more precise solution. Given
the sparsity of tridiagonal matrices, each iteration in an iterative method will
be fast as the most computationally intensive part, the matrix-vector product,
takes only O(N) operations. However, many iterative linear algebraic methods
require certain properties of matrices to solve. Therefore, such methods shall
only be used on matrices whose properties satisfy the iterative methods to be
used.

5 Complexity Analysis

In order to understand the efficiency and effectiveness of the cyclic reduction
algorithm, it’s important to understand the complexity and parallelization po-
tential of the method.

5.1 Computational Complexity

The cyclic reduction method operates in log n steps, where n is the number
of equations in the tridiagonal system. This is due to the divide-and-conquer
strategy employed by the algorithm, in which the original system is recursively
broken down into smaller, independent tridiagonal systems. At each step, the
system size is effectively halved, leading to the logarithmic number of steps.

In each of these log n steps, the algorithm performs transformations on the
equations of the system. The transformations involve calculating new coeffi-
cients for the system based on the old ones, and each transformation requires
a constant number of operations. Since these transformations are performed
for each equation in the system, the total number of operations in each step is
proportional to the number of equations, i.e., Θ(n).

Therefore, the total work done by the cyclic reduction method is the product
of the number of steps and the work done per step, leading to a total computa-
tional complexity of Θ(n log n). This is more than the Θ(n) work required by the
LU or Cholesky factorization methods for tridiagonal systems when executed
serially. However, this comparison does not take into account the parallelization
potential of the cyclic reduction method, which can significantly speed up its
execution on parallel computing architectures.

5.2 Parallelization Potential

The main advantage of the cyclic reduction method is its high degree of paral-
lelism. In each step of the method, the transformations applied to the equations
of the system are independent of each other, meaning that they can be performed
concurrently. This allows the method to exploit up to n-fold parallelism, with
n being the size of the system.
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In the best case, the time required by the cyclic reduction method is then only
Θ(log n), which corresponds to the depth of the divide-and-conquer operation.
This is a significant reduction compared to the Θ(n) time required by the serial
execution of LU or Cholesky factorization.

5.3 Early Truncation

In many cases, the matrix of the tridiagonal system becomes approximately
diagonal in fewer than log n steps of the cyclic reduction method. When this
happens, the remaining off-diagonal elements are sufficiently small that they
can be ignored without significantly affecting the accuracy of the solution.

In such cases, the reduction can be truncated, meaning that the remaining
steps of the method are skipped and the system is solved either directly or
iteratively. This can significantly reduce the actual work done by the method
and the time required to solve the system, while still attaining an acceptable
level of accuracy. The potential for early truncation is another factor that
contributes to the efficiency and effectiveness of the cyclic reduction method.

6 Results

6.1 Random Matrices

The code was tested on randomly generated matrices and accuracy was con-
firmed by comparing them to the reference solution. Running an unoptimized
implementation shows that while the parallel solver is faster than the sequen-
tial cyclic reduction solver given a large system size, it cannot beat the built-in
backslash solver in Julia. The time and memory comparison is shown in figure
6.

(a) Timings of original cyclic reduction
solver

(b) Allocations of original cyclic reduc-
tion solver

Figure 1: Performances of Cyclic reduction

Experiment results indicate that using Threads.@threads actually slows
down the solver, so we decided to use @simd instead. We also tried to incor-

6



(a) Timings of Early Termination with
direct solver

(b) Allocations of Early Termination
with direct solver

Figure 2: Performances of Early Termination with Direct Solver

porate early termination of the recursion and switching back to the built-in
backslash solver. Figure 2 shows the results of early termination with direct
solvers. As matrix sizes increase, both the timing and allocation memory sizes
of the backslash solver and our termination-early-with-direct-solver form log-log
linear relationships with matrix size. Asymptotically, the timing/memory ratio
of our solver to backslash is constant. While we aimed to achieve parallelization
in our recursive tridiagonal solver, the timing results indicate that the current
implementation still did not obtain the desired speedup. This lack of perfor-
mance improvement could be discussed in terms of both the multithreading and
multiprocessing effort.

6.1.1 Multithreading Overhead

Using multithreading in every recursive call leads to the creation of thousands
of threads. The overhead associated with managing these threads could nega-
tively impact performance, nullifying the benefits of parallelism. Each thread
creation, synchronization, and termination consumes both time and system re-
sources, and the for loop for updating the the coefficients may not take as much
time by itself. Furthermore, the shared memory architecture of multithreading
may introduce contention and cache coherence issues. In our implementation,
the sheer number of threads could have caused the multithreading overhead to
outweigh the advantages of parallelism, thereby hindering performance improve-
ment.

6.1.2 Multiprocessing Trade-offs

In our attempt to adapt the tridiagonal solver for multiprocessing, we intro-
duced a trade-off. The original algorithm has a complexity of O(n), while our
adaptation increased the complexity to O(nlogn). This additional overhead
might have impacted the performance negatively.
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We tested our implementation using 8 processors for parallelization. When
the input size N is large, the benefits of p-fold parallelism might not outweigh
the additional factor of log n introduced by our adaptation. In practice, the
number of processors is likely to be smaller than logn. In other words, the
O(nlogn) complexity might have dominated the performance, causing the lack
of speedup.

6.2 Application: 1D Poisson Equation

As an application, we consider the simple finite difference scheme for 1D Poisson
Equation. Specifically, we consider the following ODE problem:

u′′(x) = f(x), x ∈ (0, 1);u(0) = u(1) = 0

where f(x) = exp(sin(x)).
To solve this ODE problem numerically, we consider uniform points xi =

i
N+1 , where N is the number of grid points we select and i = 1, 2 · · ·N . Let

h = 1
N+1 . By approximating u′′(xi) ≈ −Ui−1+2Ui+1−Ui+1

h2 where Ui represents
the approximated value of u(xi), the ODE system above can be transformed to
the following linear system:

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




U1

U2

...
Un−1

Un

 =


f(x1)
f(x2)

...
f(xn−1)
f(xn)

h2 (6)

Due to time limit, we haven’t visualized our results. However, we’ve imple-
mented this scheme with cyclic reduction and confirmed our code’s accuracy.
The implementation can be found in the file ”spawnat ODE timing test.jl” at
this Github repository.

6.3 Termination with Iterative Methods

We also test how well cyclic reduction performs when combined with iterative
methods. Here we adopt the Jacobi method. Suppose we want to solve Ax = b,
and A = L + D + U , where L, D, and U represent the lower, diagonal, and
upper part of A, the Jacobi method suggests the following iterative formula:

xk+1 = D−1(b− (L+ U)xk)

A sufficient condition for the Jacobi method to work is that the matrix is diag-
onally dominant (i.e.

∑
j ̸=i |ai,j | < |ai,i|). To ensure convergence, we first ini-

tialize the sub-diagonal and super-diagonal of our matrix with random numbers
on [−1, 0]. Then we initialize the diagonal by setting ai,i = |ai−1,i|+ |ai+1,i|+1.
Jacobi is thus guaranteed to converge in our experiments.

The results obained from an 8 cores machine are shown in 3. Again, asymp-
totically, the memory/timing ratio of our method to backslash is constant.
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(a) Timings of early termination with
Jacobi solver

(b) Allocations of early termination
with Jacobi solver

Figure 3: Performances of Early Termination with Jacobi Solver

7 Future Works: Reusing Arrays and Reducing
Allocations

7.1 Design and Procedure

The algorithm initiates with four arrays a, b, c, and y, each of size N . Here, a,
b, and c represent the diagonals of the tridiagonal matrix, while y signifies the
RHS vector.

The function solve tridiagonal! computes modified arrays ā, b̄, c̄, and ȳ,
each of the same size N based on a, b, c, and y. After this computation, ā, b̄, c̄,
ȳ are partitioned into odd and even indexed sub-arrays, each of size N/2. These
newly formed sub-arrays are then passed as inputs into two recursive calls of
the solve tridiagonal! function.

To illustrate the recursion process, let’s follow through at least three levels
of recursions:

• Level 1: The algorithm begins with arrays a, b, c, and y, each of size N .
The function solve tridiagonal! modifies these arrays into ā, b̄, c̄, and
ȳ, each of size N and then splits them into two sub-arrays each of size
N/2. There are now two recursive calls, each taking arrays of size N/2 as
input.

• Level 2: For each of the two recursive calls from Level 1, the function
further modifies and splits the input arrays of size N/2 into two new sub-
arrays each of size N/4. At this level, there are a total of 2 × 2 = 4
recursive calls, each taking arrays of size N/4 as input.

• Level 3: Similar to Level 2, for each of the four recursive calls from Level
2, the function modifies and splits the input arrays of size N/4 into two
new sub-arrays each of size N/8. At this level, there are a total of 2×4 = 8
recursive calls, each taking arrays of size N/8 as input.
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Figure 4: An illustration of our allocation reduction process.

By the time we reach Level 3, we can see a clear pattern: each level of
recursion doubles the number of recursive calls while halving the size of the
arrays involved in each call. Thus, the total size of the arrays involved in each
level of recursion remains constant, equal to 2N (i.e., N for a and N for ā).
This holds true for the arrays b, c, and y as well.

Since in theory, each layer of the recursive calls uses arrays with total length
of 2N (N for a and N for ā), we hope to reduce allocations by preallocating
two arrays arr1 and arr2 of size N and them splitting them and reusing them
throughout the subsequent recursion.

More specifically, arr1 and arr2 are pre-allocated for a and ā, respectively,
before the initial call to the solver. These arrays are used in an interleaved
fashion in every layer of recursion.

Let’s illustrate the first three layers again, focusing on the specific indices
(assuming the 1-based indexing used in Julia):

• Level 1: At the initial call, arr1 is used for a and arr2 for ā. The indices
in ā are then divided into odd (2k+1) and even (2k+2) parts. These
correspond to the odd and even indices in the original a array.

• Level 2: In the subsequent recursive calls, the halves of arr2 (which was
ā in the previous call) are used for a and the halves of arr1 are used
for ā. Specifically, for the new odd recursive call from the odd part of
the previous layer, the indices are 4k+1; for the new even recursive call
from the odd part of the previous layer, the indices are 4k+3; for the new
odd recursive call from the even part of the previous layer, the indices
are 4k+2; and for the new even recursive call from the even part of the
previous layer, the indices are 4k+4.

• Level 3: At this level, the four quarters of arr1 are used for a and the four
quarters of arr2 for ā. The indices follow a similar pattern as described
for Level 2 but are further divided (for example, 8k+1 for the odd call of
the odd call of the odd call), leading to a total of 8 recursive calls at this
level.
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Through this recursive process, the data originally stored in arr2 (which
was ā) will become the new a in the subsequent recursive calls. This interleaved
usage of arr1 and arr2 facilitates efficient memory utilization by effectively
reusing the preallocated arrays arr1 and arr2 and thus minimizing the need for
additional allocations.

An illustration of this procedure is given in figure 4.

Algorithm 1 Tridiagonal Solver with Interleaving

1: procedure SolveTridiagonal!(a, b, c, y, a , b , c , y , spawn, spawnid)
2: N ← size(a, 1)
3: if N large then
4: Initialize a , b , c , y
5: Compute the modified a , b , c , y based on a, b, c, y
6: Partition a , b , c , y into odd and even indexed sub-arrays
7: n← N

2
8: if spawn > 0 then
9: xoddTask ← spawnAt(spawnId,SolveTridiagonal!(a odd, b odd, c odd, y odd,

10: aodd, bodd, codd, yodd, spawn− 1, spawnId)
11: xevenTask ← spawnAt(spawnId + 2spawn−1,
12: SolveTridiagonal!(a even, b even, c even, y even, a even, beven, ceven, yeven,
13: spawn− 1, spawnId + 2spawn−1)
14: x[1 : 2 : end]← fetch(xoddTask)
15: x[2 : 2 : end]← fetch(xoddTask)
16: else
17: Compute xodd and xeven without spawning new tasks
18: x[1 : 2 : end]← fetch(xoddTask)
19: x[2 : 2 : end]← fetch(xoddTask)s
20: return x
21: end if
22: else
23: Solve using backslash
24: return x
25: end if
26: end procedure

7.2 Limitations

Through numerical experiments, we found that strict synchronization is required
for the above design to produce the correct outputs consistently. In particular,
the calls in each subsequent layer must wait for the preceding layer to finish its
computation before performing their own computation. Thus there are limita-
tions that prevents the above implementation from giving a better performance:

1. Synchronization Requirement: Due to the data dependency, the de-
sign necessitates synchronization, implying each layer of calls cannot start
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before the previous layer of calls have completed their computation. This
requirement of synchronization can limit the speed of the execution, and
severely limits the parallel processing potential of the system.

2. Spatial Locality: When the size of the array is large, the interleaved
design might lose spatial locality, potentially leading to inefficient memory
use.

8 Conclusion

In summary, the cyclic reduction method provides an efficient way to solve
tridiagonal systems of linear equations in parallel. Although it requires more
operations than serial methods such as LU or Cholesky factorization when exe-
cuted serially, the parallelism it offers makes it a suitable choice for large systems
where parallel computation can be effectively exploited. By exploiting the inher-
ent parallelism of the algorithm, we can solve large systems with a complexity
of Θ(n log n), which is a significant improvement over sequential methods for
large n. The Julia implementation, with its use of both multi-threading and
multi-processing, demonstrates how to effectively parallelize this algorithm to
leverage the power of modern computing resources.

9 Code

Our codes are available in this Github repository.
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