16

26

FAST PLANAR LINKAGE MECHANISM SOLVER AND
AUTOMATIC DIFFERENTIATION FOR GRADIENT-BASED
OPTIMIZATION AND PATH SYNTHSIS

AMIN HEYRANI NOBARI

1. Introduction. The longstanding challenge in engineering design has been
the analysis and synthesis of various kinematic mechanisms, a topic that has engaged
countless engineers and scientists over time [17]. The understanding of the design
of intricate kinematic systems is still elusive, and typically is restricted to certain
tasks. The design process often relies on a combination of trial and error, specialized
knowledge, and heuristics to discover effective designs. However, the emergence of
computational design strategies in recent years has prompted a shift towards inverse
kinematic design via optimization techniques [17, 3, 4, 28, 11, 1, 13, 19, 5, 7, 29, 8, 9,
2,21, 14].

In the realm of computational approaches, the application of data-driven strate-
gies for inverse design has garnered increasing interest. This trend has spurred a surge
in research centered on the utilization of statistical machine learning and deep learning
models in inverse kinematics [29, 8, 9, 14, 12] and in engineering design more gener-
ally [22]. Yet, the effectiveness of many computational and data-driven methodologies
is hindered by the computational power required for mechanism simulations. Some
methods demand millions of simulations for efficient inverse kinematic design [12],
and others are confined to certain types of basic mechanisms, like 4-bars or 6-bars,
among others [4, 28, 11, 1, 13, 19, 5, 7, 29, 8, 9, 14].

The primary constraint stems from the vastness of the design space — the sheer va-
riety of problem requirements and mechanism variations is virtually boundless, which
makes the exploration of more sophisticated mechanisms a daunting task, potentially
necessitating billions or even trillions of simulations. Therefore, to facilitate the in-
vestigation of this immense design space for inverse kinematic synthesis, it is crucial
to have computational tools equipped with faster solvers.

In this work we focus on the problem of kinematic synthesis of planar linkage
mechanisms, however, unlike most of the work done more recently, we do not limit our
work to specific topologies of mechanisms (such as 4-bars, 6-bars, etc.) and go beyond
the well understood and further investigated mechanisms. By exploring a wide range
of simple and complex 1-DOF (degrees of freedom) planar linkage mechanisms, we
attempt to provide a more general picture of the problem and address the limitations
at the most generalizable scale possible. In these kinds of mechanisms, the problem
of inverse kinematic synthesis can have different types of goals, such as coupler path
synthesis, motion generation, and signal generation [18]. The path synthesis problem
can be described as the problem of designing linkage mechanisms that can generate
a particular path that is described by a finite series of point coordinates. Motion
generation can be thought of as the generalized version of the path synthesis where
aside from point coordinates, the orientation of an attached rigid body (such as a
robot arm) is also prescribed. Finally, the function generation problem refers to the
problem of generating a specific series of output crank angles (or slider positions) at
given angles (or positions) at the actuator, essentially transforming the signal from
the actuator (angle or position) to a different signal at the output crank (or slider).
See Figure 1 for more details. This work is created with a primary focus on the “Path
Synthesis” problem, although with some tweaking the findings of this work could be

This manuscript is for review purposes only.

A8
19

— O

[S20N) SG) BNGL |
[\

[S2 B SNV

ot

ot

66

67

70

2 AMIN HEYRANI NOBARI

adapted to be used for other types of problems such as “Function Generation” and
“Motion Generation” [18].

Different Types Inverse Kinematic
Problems In Planar Linkage Mechanisms

6, Function
~ 6,
/
/
/ Path
i
i
\
\
\
\\
Motion

F1a. 1. Different types of problems in inverse kinematics of planar linkage mechanisms. Note
that the yellow arm is the actuator arm

As mentioned before, one of the main limiting factors for computational ap-
proaches in inverse kinematic design is the need for a significant number of simu-
lations. In fact the current state-of-the-art method for path synthesis uses reinforce-
ment learning (RL) for path synthesis, however the RL agent needs to be retrained
for each target curve to find a solution [12]. In this work, the authors require 2 mil-
lion simulations of mechanisms with up to 11 joints for every target curve. Other
approaches based on genetic programming [17] and genetic algorithms have a similar
limitation since they require even larger amounts of simulations to find feasible so-
lutions for path synthesis problems sometimes requiring billions of simulations. This
can be rather time-consuming using conventional solvers currently being used by most
researchers. Given this, in this work, we develop highly optimized solvers for planar
linkage mechanisms based on the solver proposed by Bécher et al. [3]. We take this
solver and optimize the code for the solution by vectorizing the process for multiple
timesteps and vectorizing the process for multiple timesteps and multiple mechanisms
simultaneously to take advantage of the highly optimized underlying linear algebra
packages in Julia. Furthermore, we further speed up the already accelerated solver
even more by implementing GPU-based solvers for the problem which speed up the
process even more. We demonstrate that these optimizations provide multiple orders
of magnitude improvement over a naive solver and speed up the simulation process
massively. We hope that with the advent of these faster solvers even existing methods
can be accelerated massively leading to faster or better optimizers that not only per-
form inverse kinematic synthesis faster but are also capable of exploring more complex
mechanisms. We detail our work and the implementation of the fast solvers in the
sections that follow.

Finally, we take advantage of the automatic differentiation tools developed for
Julia, specifically the ForwardDiff.jl package, to develop a gradient-based optimizer
for planar linkage mechanisms to allow for the refinement of planar linkage mechanisms
for path synthesis problems. The goal of this optimizer is to take candidate solutions

This manuscript is for review purposes only.

FAST PLANAR LINKAGE MECHANISM SOLVERS 3

that are capable of producing paths very similar to a given target path and adjust
the mechanism to achieve as close a match to the target curve as possible. Existing
gradient-based methods [3] are limited to exceedingly minor changes when it comes
to path matching because these methods introduce a penalty to the objective of the
solver to prevent mechanisms from falling into a locking configuration, however, this
makes the optimizer limited to more smooth paths and paths that are produced by
mechanisms which are sufficiently away from locking configuration, as otherwise the
penalty factor in the optimizer becomes the dominating factor in the gradient [3].
In this work, we propose a novel approach for dynamically changing the weight of
the penalty term in the optimizer’s objective to enable more effective gradient-based
optimization for planar linkage mechanisms. the details of how we achieve this are
provided in the sections that follow.

2. Background & Related Works. In this section, we will discuss some of the
prior works which we utilize in our approach and discuss the overall topic of kinematic
synthesis briefly.

2.1. Computational Inverse Kinematics. Computational approaches in the
inverse kinematics problem fall into three primary categories: a) Numerical-atlas ap-
proaches, b) Optimization-based approaches, and c¢) Data-driven approaches. Below
we briefly discuss each approach in the context of how our work can benefit each
category of approaches.

Numerical atlas-based approaches:. The initial strategy involves building a reposi-
tory of mechanisms, which subsequently generate paths that function like a ” numerical
atlas”. This atlas can be used to find the nearest paths to any designated path and
employ the corresponding mechanism from the current database as a solution. Addi-
tionally, integrating this retrieval step with local optimization of the mechanism can
bring us closer to the desired path [19, 6, 26]. In the majority of cases, the numerical
atlas is generally restricted to a particular mechanism or a few types of mechanisms,
such as a four-bar or six-bar mechanism. This is primarily due to the computational
constraints of simulating numerous complex mechanisms, and the creation of a large
numerical atlas of intricate mechanisms would require excessive simulations. Search-
ing for viable mechanisms in an expansive design space entails simulating countless
mechanisms, only to discover that they are locked or degenerate and thus unsuitable
for inclusion in the numerical atlas. As a result, these methods often only apply to
a limited range of simpler mechanisms. Furthermore, these basic mechanisms, with
a few joints, can only generate a limited variety of paths. For instance, it is known
that a four-bar mechanism can precisely match at most five points of a path (and
even this is not always feasible) [23]. This demonstrates that even with a substantial
atlas, the array of feasible paths that can be traced is limited. However, our work
can address this issue by creating highly efficient solvers that facilitate the creation
of extensive numerical atlas databases, accommodating a higher level of complexity
and more joints.

Optimization-based approaches:. The second computational strategy is referred
to as the optimization-based approach. This category encompasses various works
that utilize a range of optimization algorithms to determine the most appropriate
mechanisms for a specific target path. While some scholars employ genetic algorithms
or genetic programming techniques to produce mechanisms that can follow desired
paths [17, 13], others opt for optimization using Fourier descriptors [27, 31]. An
additional approach involves gradient-based optimization [3] to modify an existing
machine, although this method requires an already approximate solution to yield any

This manuscript is for review purposes only.

127
128
129
130
131
132
133
134

4 AMIN HEYRANI NOBARI

benefits. Apart from a few exceptions [17, 3], most of these methods are limited
to altering existing mechanisms through optimization [3], or they are limited to a
specific subset of problems. For example, Lipson et al. [17], focused on solving the
straight-line problem using genetic programming. The performance of population-
based optimization approaches, such as genetic algorithms, is mostly reliant upon
the volume of simulations that can be done in practical time. That is the size of
the populations and the number of generations the algorithm can be iterated over
will largely determine the level of success these approaches will have. And with
conventional solvers, the volume of simulation is highly limited. In our work, we
develop extremely fast solvers which potentially increase the volume of simulations
by multiple orders of magnitude allowing for a much larger size of population and more
generations to be evaluated within the same amount of time which can hugely improve
the performance of such approaches. Beyond this, we also develop a gradient-based
optimization scheme that can refine mechanisms with better performance compared
to the existing state-of-the-art gradient-based methods such as the one proposed in [3].

Data-driven approaches:. In recent times, the popularity of machine learning-
based methods has surged, leading to a number of published works that adopt a
data-driven perspective. Most of these studies incorporate the previously mentioned
"numerical atlas” and optimization strategies within data-driven frameworks. For
instance, Deshpande and colleagues combined the numerical atlas method with opti-
mization in their research [7, 8, 9]. They utilize variational autoencoders (VAEs)[15]
and clustering-based search techniques to identify suitable candidates capable of gen-
erating a desired coupler curve. In their subsequent studies, they apply VAEs and
conditional VAEs[25] to synthesize mechanisms.

The datasets employed in such studies are typically small and restricted to certain
types of mechanisms (such as four-bar, six-bar, etc.). For example, a dataset of 6818
linkage mechanisms is used in [10]. These models could substantially benefit from
larger datasets comprising millions of mechanisms. Other data-driven studies have
attempted to generate mechanisms conditioned on paths [29], but these are again
limited to four-bar mechanisms.

In contrast to these "numerical atlas” adaptations, some researchers have en-
deavored to translate the optimization approach into a machine learning framework.
One such study applied deep Q learning [20] and Lipson’s T and D operators [2].
Although these reinforcement learning (RL) based approaches are not confined to
specific mechanisms, they require retraining for each new target shape. More re-
cently, Fogelson et al., proposed a new RL-based approach that was able to beat all
existing approaches [12] in accuracy, however, as mentioned before the limitation of
these approaches is that they need retraining for every new target shape and specif-
ically in this latest work each new target requires 2 million simulations to be done.
What is evident is that machine learning approaches show great promise, however, at
the moment, the same limitations that we saw in optimization and numerical atlas
approaches can be observed in this category of approaches as well. As such our work
can significantly benefit this type of approach as well.

2.2. Simulation of Kinematics. There has been substantial work done in solv-
ing 1-DOF mechanisms, however, as mechanisms get more complex, solving them
becomes costly and the complexity of the closed-form analytical equations becomes
gargantuan. As a result, algorithms-based and numerical approaches to solving such
systems are typically employed [30, 24]. The literature on this topic is extensive
and beyond the scope of this report, however, there are a few relevant works that

This manuscript is for review purposes only.

176
177
178
179
180

215
216
217
218
219
220
221
222
223
224

FAST PLANAR LINKAGE MECHANISM SOLVERS 5

we will discuss here as they set up the context for future discussion. Broadly, two
different approaches can be considered in simulating mechanisms beyond analytical
approaches [24]. One approach is the numerical approach to solving kinematic sys-
tems. An example of such an approach is Lipson’s simulator, used for the genetic
programming approach in [16]. In most numerical approaches planar mechanisms
are solved using numerical algorithms used for solving systems of non-linear equa-
tions (such as Newton-Raphson or Broyden’s method), these approaches are capable
of simulating very complex systems, however, in many complex systems the solution
is not unique and these simulators only produce one of the possible results [30, 24].
Despite this, these numerical approaches are the most general solvers that can handle
all types of mechanisms which graphical approaches might not be capable of, however,
in the context of inverse kinematic design this matters less as we see. The other ap-
proach to solving linkage mechanisms is to take a graphical approach and solve planar
mechanisms from a purely kinematic approach. One such simulation approach which
focuses purely on kinematics is the one proposed by Bécher et al. [3]. The simulator
proposed by Bécher et al.solves a linkage system iteratively by starting from known
values such as the position of the ground joints and the current position of the actu-
ator arm (which can be determined based on the velocity profile of the motor) and
solving for any joints that can be solved with the available information (taking into
account initial positions of the joint). At every iteration, more joints will be solved
until at the final iteration where all joints are solved. This approach is illustrated
in Figure 3. Unlike the numerical solvers, these solvers cannot handle all kinds of
mechanisms and are limited to dyadic loops only, however, systems with complex
kinematic loops either can be converted to equivalent dyadic mechanisms and if they
cannot be converted to such mechanisms they must have a non-unique solution or
“Branch Defects” which from a design perspective makes them undesirable as their
kinematics are not predictable and as such their use in real-world applications require
special considerations. Therefore, while these approaches are limited to mechanisms
with simple kinematic loops consisting of dyadic loops from a designs perspective they
offer a near-complete representation of the design space, furthermore, an advantage
of using them is that the gradients of simulation can be obtained in a similar man-
ner which enables gradient-based optimization (e.g., editing existing mechanisms to
fit certain constraints [3]). We adopt the approach of Bacher et al.and discuss the
details of our work in the following sections. For a more in-depth view of simulation
methods, readers are referred to [24].

3. Methodology. In this section, we will discuss the details of our methodology
for both accelerating simulations and performing gradient-based optimization. First,
we will discuss the solver we use and our implementations of it, then we will discuss
how we approach the gradient-based optimization and our contributions there.

3.1. Accelerating Graphical Solvers. As mentioned before we adopt the
solver proposed by Bécher et al. [3] and introduce some improvements to the im-
plementation to speed up the simulation process. In this approach, we take any given
mechanism with simple kinematic loops and rather than performing a dyadic decom-
position [24] to identify four-bar loops, take an iterative approach to find the solutions
by modeling mechanisms as graphs. We can solve for any joint which has two known
neighbors (i.e., two joints with currently known positions at a given timestep that
have linkages connecting to the node we are trying to solve). To solve for a joint with
two known neighbors, we can use the initial positions of the joints and the current
positions of the known neighbors to solve for the unknown joint. Take the example

This manuscript is for review purposes only.

229

230
231
232
233
234

235

236
237
238
239
240
241
242
243
244

6 AMIN HEYRANI NOBARI

illustrated in Figure 2. In this example, joints 1 and 2 are solved at time step t, given
this and the fact that we know the initial positions of the joints we can solve for the
angle 0 the linkage between joints 1 and 3 takes in this time step using the following
equation:

Fic. 2. This figure shows the simple case of solving for the angle theta for an unsolved joint 3
using the solutions for joints 1 and 2.

0 =sign ([(Xo,1 — Xo,3) X (Xo,1 — Xo,2)] -&2) x

(3.1) o5 [Xo1 — Xoslls + X1 — Xall2 — [Xo,2 — Xosl
2| Xo,1 — Xosll, [[X1 — Xa

2

Where X is an N x 2 matrix of initial positions (X 1, for example, is a 2D vector
indicating the initial position of joint 1) and X is an N X 2 matrix of the positions
of joints at the current timestep. As evident this is simply applying the cosine rule
to find the angle the linkage takes. Then once this angle theta is determined we can
determine the position of our unknown joint 3 using the following equation:

(X2 — X1) | Xo,3 — Xo,1ll,
X2 — Xal,

(3.2) X3 = X1 + R(6)

Where R(#) is the 2D rotation matrix for a given angle theta. One important thing
to note here is that the value of the term inside the inverse cosine function in (3.1)
can become larger than 1 or smaller than -1 which leads to no solution. This happens
when a mechanism is locking or degenerating. Determining the exact timesteps that
the mechanism locks at would require solving massive impractical non-linear equations
as such in most cases the practical solution to identifying locking mechanisms is by
refining the timesteps of the simulation to ensure that the mechanism does not lock
at any point. This is one of the reasons why fast solvers are necessary as many
high-fidelity simulations are needed just to identify feasible mechanisms.

This manuscript is for review purposes only.

245
246
247
248
249
250

ot

NN
ot ¢

NN
v Ot ot gt ot Ot Ot ¢
(>

e

[\

I)
Y Ot R W N

[\
J

[\
o

260
261
262
263
264
265
266
267
268
269
270

FAST PLANAR LINKAGE MECHANISM SOLVERS 7

Path To Solution

——

F1G. 3. Here we illustrate the path the solver takes to find the solution. At first, the solver
starts with the known joints (i.e., fized and actuated joints) and at every step nodes with two known
neighbors can be found, in this mechanism tllustrated, the path to the solution has 3 steps. The
numbers of the joints indicate the order in which the solution is found and the arrows indicate
which two neighboring joints are needed to solve the given joint. Known nodes are highlighted in
green.

Now that we established how we can solve for joints with two known neighbors
all that is left to do is to find a path to solving a given mechanism for each timestep.
Starting from joints with always-known positions at all timesteps (actuator arm and
fixed joints), we start by identifying joints with two known neighbors these joints are
what we can solve for first at every timestep. Then we repeat the process but with the
joints, we identified in the prior step considered as known joints and determine which
joints can be solved for given the solution to these joints. We repeat this process
until all the joints in the mechanism have been solved. This process is similar to a
breadth-first search in graphs and it is visualized for a simple mechanism in Figure 3.
In doing this a path to the solution of all joints is found which can be used to find
solutions at different timesteps. Note that this process only needs to be done once for
every mechanism to find the path to the solution and to solve all the timesteps we
would only traverse this already established path. The process for finding the path
to the solution is described in Algorithm 3.1.

Once the path to the solution is found we can then run the simulation for all
the necessary timesteps. We can perform this task naively by iterating through each
timestep separately in a loop, however, as we mentioned in (3.1) the solution to each
timestep does not rely on prior timesteps therefore these calculations can be made in
parallel. As a baseline, we can look at the naive algorithm described in Algorithm 3.2.
One obvious way to accelerate this simulator is simply run the timestep for loop
in parallel using multiple threads. This will immediately speed up the simulations
significantly depending on the number of threads available. However, using high-
level Julia code to do this will not allow us to optimize the simulation speed to the
maximum speed it can get to as low-level optimization is necessary for such a thing.
The good news is that the underlying linear algebra packages implemented in Julia use
highly optimized code which has been optimized as much as possible over decades of

This manuscript is for review purposes only.

281
282
283
284

8 AMIN HEYRANI NOBARI

Algorithm 3.1 Path Algorithm
Require: initialNodes fixed joints and motor
Require: activeList
for all 7 €initialNodes do
activeList.insert(neighbors(initialNodes(i)))
end for
while lactiveList.empty() do
k = activeList.pop front()
vn = visitedNeighbors(k)
if vn.size(); 1 then
i=vwn(1),j=vn(2)
addRule(i,j k) Add the solution dyadic (4,7) — k to the list of operation
steps
assignNextIndex(k), setVisited (k)
activeList.append(unvisitedNeigbors(k))
else
activeList.push back(k)
end if
end while

research on matrix and vector operations. Therefore what we need to do to accelerate
the solver to the maximum extent possible is to vectorize the process of finding the
solution for all time steps in one go using only vector and matrix operations. In
this way, we replace the entire for loop in Algorithm 3.2 for timesteps with a single
function or a few lines of code that compute the solution for all timesteps at once.
For the sake of brevity, we do not provide the specific code in the main body of the
report but rather include it in Appendix A. By doing this we only use built-in linear
algebra operations (i.e.matrix multiplication and vector operations) which are highly
optimized in the backend of Julia. In this way, we take advantage of the low-level
optimization done for linear algebra packages and with minimal effort achieve great
code efficiency.

Algorithm 3.2 Naive Solver
Require: Xj initial positions of joints
Require: initialNodes, NTimesteps
Require: X = zeros(NTimesteps,NJoints,2)
Path + Use Algorithm 3.1 to find the path to the solution
for t < 1 to NTimesteps do
Compute X[t,initialNodes] fixed joints and actuator position at timestep t
for all step € path do
(i,j,k) < step
X[t,i] - Use (3.1) to compute i using j and k
end for
end for
return X

Beyond vectorizing the simulation for all timesteps in one mechanism, we can
take this vectorization to another level, and vectorize the process for a batch of mech-
anisms. That is to say that we simulate not just for all the timesteps at the same time

This manuscript is for review purposes only.

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

318

319
320
321
322
323
324

326

w
w
o

w
w
[\

FAST PLANAR LINKAGE MECHANISM SOLVERS 9

but rather solve for all the timesteps and all the mechanisms in a batch at the same
time. However, to do this we need to take into account a few considerations. Vector-
ized processes require all the mechanisms to have the same number of joints so as to
make the matrices and vectors representing all the mechanisms the same size so that
we can batch them into higher dimensional arrays and apply built-in linear algebra
operations in batch. However, different mechanisms can have different sizes, there-
fore, we need to somehow resize the mechanisms without changing their kinematics.
Luckily, this is a fairly simple thing to achieve. When batching mechanisms we can
simply add fixed joints that are not connected to anything, and therefore do not alter
the kinematics of the mechanism. Using this approach we simply add as many fixed
joints to mechanisms in a batch to make sure that they are all the same size (i.e., the
maximum size, and in this work we limit the size to mechanisms with 20 joints). By
doing this we make sure that all the mechanisms in a batch are of the same size. As
it can be seen in Appendix A in the vectorized solver we still compute the path for a
mechanism and traverse through the path to the solution, which is different for each
mechanism. However, if we wish to solve a batch of mechanisms this is not going to
be possible as batch operations must be applied at the same time, and this cannot
be done in different paths simultaneously. Therefore, the only way we can simulate a
batch of mechanisms is if they all have the same path to the solution. This however is
clearly not the case for different mechanisms, but this does not have to be the case in
general. To address this all we have to do is sort the joint ordering for all mechanisms
in a batch such that the path to the solution for all mechanisms is to simply start
with the first joint and compute the solution one joint at a time in order. Therefore,
to overcome this second challenge we simply first sort all the mechanisms in a batch
as well. For the sake of brevity, we do not go into the algorithm and code details here
and include the Julia code for both preprocessing a batch and simulating a batch in
Appendix B.

At this point, we have discussed the three main ways that we can accelerate
the solver; 1) Multi-Threding, 2) Vectorizing over timesteps, and 3) Vectorizing over
timesteps and batches of mechanisms. In the sections that follow we will experiment
with these approaches and demonstrate that the proposed methods truly do accelerate
the simulation of the mechanisms significantly. Furthermore, we will also implement
similar solvers that run on the GPU and demonstrate that by utilizing the high
throughput of modern GPUs we can further accelerate the simulations.

3.2. Computing Gradient And An Optimization Scheme For Path Syn-
thesis. So far we have discussed ways to accelerate the solver, however, as we dis-
cussed in the background section there is great interest in gradient-based optimization
methods for path synthesis as well. Moreover, the ForwardDiff.jl package in Julia al-
lows us to easily obtain gradients and jacobians of our solver without any additional
effort. This means that it is worthwhile to investigate gradient-based optimization us-
ing our fast solvers as the accelerated solver not only speeds up the forward simulation
process it also enables that much faster gradient calculations for the solver, effectively
accelerating both simulation and optimization at the same time. However, simply
applying ForwardDiff.jl to the solver would not be doing this project justice as there
are many challenges in the gradient-based optimization of planar linkage mechanisms
that are currently unaddressed with the majority of the work in literature focusing on
the path synthesis problem from the perspective of design space exploration through
genetic algorithms, RL, or deep learning enhanced numerical atlas approaches. The
main reason these existing methods do not use an optimization-based refinement in

This manuscript is for review purposes only.

10 AMIN HEYRANI NOBARI

Current Candidate
Current Output

[A/ NG

— — Target /Chamfﬂfistance
0x¢
D1~ cos(6) aDL
Ours Conventional Distance to Locking - a—
X
_GDL _BCD acD oDL ’
acD dxy " 0xq aDL
— _ - Xg=Xg—A(=——A1——
Yo = Xo— @G aDL|? axo) ome (ﬁxn 3xu)
0xq

FiG. 4. Here we illustrate the overall gradient decent approach and how we perform this com-
pared to the conventional approach of applying a weighted penalty to the objective.

their work is because of a few notable challenges which have yet to be addressed by
researchers in the community. In this project, we aim to address three major chal-
336 lenges in gradient-based optimization for path synthesis which make the application of
337 gradient-based optimization rather difficult. One of the challenges is slow solvers and
338 gradient calculations which make the iterative process of optimization rather slow.
339 This challenge is already addressed thanks to our significantly faster solver. However,
340 two other challenges exist that we still need to address. These issues are the prob-
341 lem of picking a good objective function for comparing target paths and traced paths
342 and the other is how to prevent mechanisms to fall into locking configurations during
343 optimization. Both of these matters boil down to obtaining a reasonable objective
344 function to allow us to match our target path as well as possible while still remaining
345 in the feasible space. We will discuss the details of our implementation in the sections
346 that follow.

w W W
w w W
[GLEENTSN

347 3.3. Shape Matching Objective. The main objective of path synthesis is to
348 generate mechanisms that trace a path that matches any arbitrary path with any
349 arbitrary number of points. This means that if we simulate a mechanism for say
50 200 timesteps but our objective curve is a hand-drawn path with only a handful of
51 points we cannot simply compare the points of the path generated by a mechanism
352 and our target directly. Furthermore, the simulated curve has information regarding
53 velocity, that is to say, if the mechanism is moving faster in a given part of the path
54 the distance between the points will be larger, however, in path synthesis the only
55 objective is to match a given target curve purely from a geometric perspective without
356 any dynamic considerations. In fact, in practice, the dynamics can be controlled by
357 adjusting the speed of the actuator as needed. As such, we need to come up with an
358 objective function that unlike the work by Bécher et al. [3] does not rely on direct
359 editing of coupler path already traced by a machine but rather is generalized to any
360 arbitrary shape we wish to optimize for. This can be done using single-directional or
361 bi-directional chamfer distance. The general form of the equation for chamfer distance
362 between two sets of points S; and S is as follows:

This manuscript is for review purposes only.

363

395

396
397
398
399

400

FAST PLANAR LINKAGE MECHANISM SOLVERS 11

_ : . 2 : . 2
(3.3) dop (S1,52) = D min o = yll + > min |l — y3
€S, YyES2

Where the first term measures the distance from S; to S and the second term the
other way around. As such this is usually referred to as the bi-directional chamfer dis-
tance. However, in path synthesis, we may be interested in only capturing the desired
path as part of the mechanism’s output curve. That is because even if the mechanism
only traces the desired path in part of its motion the problem of synthesizing that
path is solved. Therefore, in some instances, it may make sense to include only the
term that measures the distance from the target curve to the traced path. However,
for the results and discussions presented in this report, we will use the bi-directional
chamfer distance and not make any further modifications to this objective function.

3.4. Preventing Locking In Mechanisms. As we saw in (3.1) the solution
to any of the joints in the mechanisms requires the computation of an inverse cosine,
and if a mechanism is set up such that during the motion of the actuator at some
timestep the value inside the inverse cosine function is above 1 or below -1, the sim-
ulation fails, which indicates that the mechanism locks in at time between the last
timestep and the timestep without a solution. This presents a challenge in gradient-
based optimization as now a highly non-linear and complex constraint is added to the
optimization problem which if ignored will easily render gradient-based optimization
useless. Furthermore, the complexity of the constraint is beyond its non-linear nature,
as the algorithm for the solution traverses a specific path through the graph repre-
senting the mechanisms. This means that if at one point in the path to the solution,
a locking joint is identified the steps in the solution path after this point also cannot
be solved for since they rely on the solution of prior joints in the path to be solved.
This means that even if we can measure how much the cosine value of a given joint
that locking is above 1 or below -1 we cannot say anything about how using gradients
of this constraint violation for healing this issue will affect the solution of all the other
joints. Therefore, a straightforward measure of constraint violation in cases of failure
is not practical in this case. However, we may yet be able to perform gradient-based
optimization by adding a penalty term to the objective of the optimization. Looking
at prior works Bécher et al. [3] propose a penalty strategy by adding an objective to
increase what the authors call distance to locking. This metric is measured by the
following equation:

(3.4) d; (xi,%j,X) =1 —cos (0 (Xi7Xj,Xk))2
where cos(f (x;,X;,Xg)) is the value of the cosine of the angle calculated for joint
1 using the solutions of joints j and k using (3.1). To prevent this penalty from

becoming too restrictive the authors use a cross-entropy penalty with a threshold ¢
and define the penalty objective as:

1 1
(3.5) fi (%4, %5, X3) = —3 log” <€di (Xi,XpXk))

by doing this they prevent the penalty from being too restrictive until the distance
to locking dips below a specific threshold . However, this penalty will practically

This manuscript is for review purposes only.

110
{11
412
413
414
415
116
417
418
419
420
121
422
423
424
425
126
127
428
429
430
431

433
434
435
136

437
438
439
440
141
142

12 AMIN HEYRANI NOBARI

encourage the optimization to specifically achieve a distance to locking equal to e.
And this is not exactly optimal. Furthermore, we still have to choose a fairly large €.
Bécher et al. [3] simply add the sum of this equation for all joints to their objective
for minimization with some weight applied to it with respect to the main objective
and solve for the minimal value of the sum of the two objectives in other words to
minimize the following optimization problem:

(3.6) AX, = arg min dop(Starget; Xo) + A Y fi(Xo)
0 i

Where dcp(Starget, Xo) is the chamfer distance between the path traced by a
mechanism with initial joint positions Xy and the target curve with points in the
set Starger and f;(Xo) is the value of cross-entropy penalty function for joint ¢ in the
mechanism with initial joint positions Xy and A is the weight for the penalty objective
and AXj is the optimal changes applied to the initial joint positions X, to optimize
the mechanism for path synthesis. In the end, although this penalty approach makes
the optimization process clear-cut, it still limits the path synthesis potential with
optimization as it will always directly work against the main objective of reducing
chamfer distance. As such we introduce an alternative to this by suggesting a different
strategy for preventing locking, which is similar in nature to this approach but gives
the optimization more freedom. We propose using simple gradient descent with a step
size of o however instead of just optimizing for minimal chamfer distance we linearly
orthogonalize the chamfer distance gradient with respect to distance to locking. By
doing this we make an assumption that for small enough « the objective can be
deemed linear, hence making it so that if we orthogonalize the gradient of chamfer
distance with respect to distance to locking we move only in the direction that reduces
chamfer distance without changing the distance to locking for the mechanism. This
assumption of course in practice is not going to be accurate as we still have to choose
a sufficiently large o to make the optimization practical, however by doing this we
ensure that if the distance to locking is to increase during the optimization the rate
at which it will happen during the gradient descent is minimal. Therefore, the update
rule we propose for the gradient descent can be described as:

DL . 9CD

oCD oDL
37 Xk-‘rl — Xk _ _ 0Xo 0Xo
3.7 0 L opL]* 0Xo
09Xy

Where CD = dop(Starget, Xo) and DL = Y. f;(Xo) and X(’f is the intial joint
positions for the mechanism after k steps of gradient decent. We will later demonstrate
how this approach is effective for refining mechanisms for path synthesis. The overall
workflow of our approach is illustrated in Figure 4.

4. Results & Discussion. In this section, we run experiments on different
variants of the solver and demonstrate how the approaches we have developed for
accelerating the solver actually significantly improve the speed of the solver to a no-
ticeable extent. Finally, we will demonstrate the gradient-based optimization results
for a few examples to show the efficacy of the proposed approach for the refinement
of mechanisms.

This manuscript is for review purposes only.

443
444
445
446
447
448
,/1,/19
450
451
452
453
454

S

N
[o2 NG

W
v Qv Ut Ut Ot
S|

©

oo

.
(=]
en)

461
462
463
464
465
466

FAST PLANAR LINKAGE MECHANISM SOLVERS 13

4.1. Acceleration Of The Solver. To measure how well each of the proposed
implementations of the solver performs we conduct an experiment for simulating
10,000 mechanisms with 6 to 20 joints in them using each of the solvers described
in prior sections. We solve all of these mechanisms for 200 timesteps and with the
actuator moving at constant velocity. We also make a GPU implementation of the
batch solver and test the simulation speeds on the GPU as well. As for hardware
we use an Intel 19-12900K processor for the CPU versions of the solver and an RTX
3090Ti for the GPU implementations of the solver. Furthermore, it is important to
note that we were unable to get the GPU version to work properly on Julia, as such we
implemented the GPU versions on Python using Pytorch, and the results presented
here for the GPU version of the solver are based on experiments on python. The
results of our experiments are presented in Figure 5.

Average Time Taken To Simulate 10,000 Mechanisms
60

51.451
50

20 38.669

30

21.522

4.197
- 0.112
0

Naive Solver Multi-Thread Vectorized Solver Batch Vectorized GPU Batch
Solver Solver Vectorized Solver
(3090Ti, Pytorch)

Fi1G. 5. The results of running the solvers for 10,000 mechanisms. The time reported is the
average across 10 runs of each solver.

As evident in Figure 5 we see that the naive solver is the slowest solver. However,
we can see that a simple approach of multi-threading does not really yield a significant
improvement in the results and only accelerates the process by slightly more than
double despite the i9-12900k’s 24 threads. This is the main reason it is important
for us to utilize the lower-level optimized linear algebra packages to maximize the
performance of the solver. As evident the vectorized solver is more than 10 times faster
than the naive solver and 5 times faster than the multi-threaded solver. Interestingly
the batch-vectorized solver actually ends up being slower than the multi-threaded
solver on the CPU. This is simply because we resize all of the mechanisms to the
maximum size of 20 joints which essentially makes the overall solver much slower
as the CPU simply does not have enough throughput to truly perform all of the
computations at once despite the highly optimized linear algebra packages. However,

This manuscript is for review purposes only.

167
468
469
470
471
472
173
474
475
476
477
178
479
480
481
482

14 AMIN HEYRANI NOBARI

the same cannot be said of the GPU. As it is shown in Figure 5, the GPU can simulate
all 10,000 mechanisms using the batch vectorized solver in roughly 100 milliseconds,
which is a mindblowing 500 times faster than the naive solver and 50 times faster
than the vectorized solver on the CPU. This is simply made possible by the immense
throughput of the GPU and the highly optimized CUDA libraries that Pytorch uses
in its backend. Furthermore, we see that despite the increased cost of the batch solver
resizing all mechanisms to the maximum size the GPU has the necessary throughput
to handle the larger number of computations and perform all the simulations in one
go. One thing to note is that when we tested the GPU using just a timestep vectorized
solver the results we got were much slower as each simulation had to be done on the
GPU one at a time, despite the GPU having the capacity for much more, which despite
of the better efficiency of the vectorized solver (as we saw in the CPU) led to slower
results overall, demonstrating the importance of developing the batch vectorization
for a high throughput hardware like the GPU. In conclusion, we see that utilizing
the GPU can provide up to 500 times faster simulations and speed up most current
approaches employed by researchers for path synthesis to a great extent.

This manuscript is for review purposes only.

FAST PLANAR LINKAGE MECHANISM SOLVERS 15

Mechanisms Target Curves

—— Current Output
—— Target Path

—— Current Output
—— Target Path

—— Current Output
—— Target Path

—— Current Output
—— Target Path

—— Current Output
—— Target Path

FiG. 6. The 5 case studies for demonstrating the effectiveness of gradient-based optimization.
Here we visualize the mechanism and their current output curves and the target curves we wish to
achieve using these mechanisms through gradient-based optimization.

This manuscript is for review purposes only.

16 AMIN HEYRANI NOBARI

Before Optimization: @ @ @ @ Z

Our Approach:

Fic. 7. The results of gradient-based optimization on the 5 case studies demonstrating the
effectiveness of gradient-based optimization. Here we see that our approach of orthogonalization
instead of weighted penalty has led to much better results compared to conventional optimization.

TABLE 1
Quantitave results (final chamfer distance) of the optimization comparing both methods is each
case-study

Method Study 1 | Study 2 | Study 3 | Study 4 | Study 5
Before Optimization 0.8155 0.5425 0.2955 0.5051 0.7207
Conventional 0.6307 0.3703 0.0215 0.3001 0.1056
Ours 0.4948 0.0049 0.0065 0.2909 0.1648

4.2. Experiments On Gradient-Based Optimization. To demonstrate the
effects of the gradient-based optimization approach we propose we conduct a case
study with 5 mechanisms and 5 target paths which for each mechanism. These mech-
anisms and the test targets for each case study can be seen in Figure 6. We then run
gradient descent using our method and the naive method with a constant penalty with
weight lambda = 0.1 (see (3.6)) for 10,000 steps in each case-study with a gradient
decent step size of 0.0001 and compare the results visually in Figure 7 and report the
minimum chamfer distance achieved by each method in Table 1.

The first thing we see visually is that in all cases the outputs of the mechanisms
have improved significantly with the exception of the first case study where both con-
ventional and our optimization have failed to improve the output of the mechanism.
However, in all other cases, we can both visually (Figure 7) and quantitatively (Ta-
ble 1) confirm the improvements. Specifically in the second, third, and last case
studies, we see amazing improvements in the mechanisms matching their targets with
great accuracy. However, as it is clear the orthogonalization has led to much bet-
ter outcomes (the only exception is the last case study) with the mechanisms while
the conventional approach has mostly failed to provide significant enough improve-
ments in the mechanisms. This shows that unless the optimization is being done
on a machine that traces a path that is already very close to the desired path the
conventional approach is simply not good enough and does not provide a worthwhile
refinement, which is likely why most researchers have not applied such methods. But

This manuscript is for review purposes only.

[\]

v Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ut Ut

NN
w N

FAST PLANAR LINKAGE MECHANISM SOLVERS 17

we showed that with our improved method, we are able to do much better and prove
that refinement through optimization is a viable option for path synthesis.

5. Conclusion. In this project, we set out to address one of the major challenges
that has slowed progress in inverse kinematics which is a lack of very fast solvers for
linkage mechanisms. As we discussed the faster these solvers are the better existing
methods for inverse kinematic synthesis can get. Given this, we developed very fast
vectorized solvers for linkage mechanisms that can enable up to 500 times faster simu-
lations when GPUs are utilized, which can improve the speed of existing optimization
and data-driven approaches for inverse kinematic design. Furthermore, we took ad-
vantage of the ForwardDiff.jl package in Julia to develop an improved gradient-based
optimization method that can outperform the existing methods for gradient-based op-
timization for path synthesis, and we demonstrated the efficacy of our method and its
superiority to existing methods through a case study of 5 optimization problems. In
conclusion, in this project, we were able to accelerate planar linkage mechanism simu-
lations by up to 500 times while also improving gradient-based optimization methods
for path synthesis using the automatic differentiation of our fast solvers. We hope
that this contribution will help accelerate progress in the field of inverse kinematic
design and path synthesis.

Finally, we provide the code used in this project publicly which can be found at
https://github.com/ahnobari/18337-Linakge-Project.

This manuscript is for review purposes only.

18 AMIN HEYRANI NOBARI

524 Appendix A. Julia Code For Vectoized Solver. Below is the Julia code
525 to traverse the path to the solution and compute all the timesteps at once.

(C, motor
p.o,f find_path(C,motor, fixed

Li
G = pairwise(Euclidean(),x8")

x = repeat(reshape(x8,size(x8)[1],1,2),1, size(thetas)[1],1)

x[fixed nodes,:,:1 repeat(reshape(xe[fixed s,:1, size(fixed nodes)[1],1,2), 1 (thetas)[1]1, 1)

x[motor[2],:,:1 x[motor[1],:,:] GImotor[1],motor[2]1] [cos. (thetas) sin. (thetas)]

flag

((x[§,:,:1-x[1,:,:1)'))
phi = (1_ij 2 G[i,k]"2 G[j,kl"2)./{2 * 1_ij
singularities findall(x-> x=1. x<-1.8, cosphi}
phil[singularities]
sign((x@li,2]1-x0[k,21)*(x0[i,1]-x6[j,11) (x0[i,21-x00[j,21)*(x0li,1
s * acos.(cosphi)
reshape([[cos.(phi) sin.(phi)] [-sin.(phi)
(x[j,z,:]-x[1,:,:1)./1_1ij G[i,k]
ims (R 3,11}
e(thetas)[11,2,1),12,3,11),13,1,21},size{thetas) [1],2
x[k,singularities,:]
permutedims(x,

zeros((x8)[1], size(thetas)[1],2)

F1G. 8. Vectorized solver to solve for all timesteps at once.

526 Appendix B. Julia Code For Batch Vectoized Solver. Below is the code
for preprocessing a list of mechanisms into a batch for the batch solver. This part
528 includes the sorting and resizing of the batch.

ot
(V]
-~

This manuscript is for review purposes only.

FAST PLANAR LINKAGE MECHANISM SOLVERS 19

(C, x@, motor, fixed nodes)
path, order, f (C, motor, fixed nodes)
T
Clorder, :][: ,order], x@[order,:], - X fixed nodes, order)

C, motor, fixed_nodes

(Cs,x@s,fixed nodess, m size 20)
Batch_Cs ((Cs)[1],m size,m _size)
Batch_nt [(Cs)[1],m_size)
Batch_x@s ((Cs)[1],m_size,2)
5

Batch_G ((Cs)[1],m size,m_size)
Threads i 1 (Cs)[1]
C,x8,fn (Cs[i],x@s[i],[1,2],fixed nodess[i])
Batch Cs[i,1 (C)[1].1 (O)[1]] = ¢
Batch x@s[i,1 (C)[11,:] - =@
Batch_nt[i,fn] 1
Batch_nt[i, (C)[1]+1:m _size] 1
Batch_Gs[i,:,:] ((),Batch x@s[i,:,:]")

Batch Cs,Batch_x@s,Batch_nt,Batch_Gs

F1G. 9. Preprocessing code for the batch solver.

29 Once the batches have been prepared the code below is used to solve not just all
30 timesteps but all the mechanisms in the batch as well:

This manuscript is for review purposes only.

20 AMIN HEYRANI NOBARI

(Cs,xBs,6s5,node_types,thetas)

(size(x@s)[1],5 122 (x@s) [2],51 2= (thetas)[1],2)
(x@s node_types, (x@s)[1], (x@s)[2],1,2)

x[:,2,0,01 = x[,1, 1] (([cos . (thetas) sin (thetas)],1,=izc(thetas)[1],2),iz=(x8s)[1],1,1) * 6s[:,1,2]

t (x@s)[1], (x@s)[2], (x@s)[2])
sl 1 1

t node_types

(xes)[2]
inds (= x8 , Cs[:,k,1:k
x_vals = x[inds,:,:]

xis = x wals[1 (x@s)[1], 1
xjs = x vals[(x@s)[1]+1:2 (x@s)[1],:,5:1

1ijs

1ijs

1ijs (1

1_ijs - sqrt.(l_ijs)

g ij k - es[inds,k]

g ik - g ij k[1 (x0s)[1],:,]

g jk - g ij k[size(x@s)[1]+1:2 (x@s)[1],:,-]

cosphis = (1 ijs."2 g ik.~2 g jk.~2)./(2 * 1 ijs g ik)
singularities (x->x:1.0 x<-1.8, cosphis)
cosphis[singularities]

x8_val - x@s[inds,:]

x0il - x0 val[l (x@s)[1],2]
x0i@ - x0 val[l (x@s)[1],1]

x0j1 - x8 val[{x@s)[1]+1:2 (x@s)[1],2]
x0j8 - x8 val[{x@s)[1]+1:2 (x@s)[1],1]

x@k1
x0ka

s = sign. ((x@i1 x@kl)." (x@i® x8je) - (x@il x8j1). (x@ie xeke))
phi - s acos . (cosphis)
R ([[cos.(phi) sin.(phi)] [-sin.(phi) cos.(phi)]]. (x8s)[1],200,2,2)
scaled ij (xjs-xis)./1 ijs g_ik
x_k - xis ((((R,=iz=(thetas)[1] siz=(x8s)[1],2,2),[2,3,1]) ®
((scaled_ij, (thetas)[1] (x0s)[1],2,1),[2,3,11), . (x@s)[1]. (thetas)[1].2)
x k = x_k - node_types[:,k] x k

ks ai] - xk

Fic. 10. Vectorized solver to solve for all timesteps and mechanisms in the batch at once.

REFERENCES

[1] On the Eztension of a Fourier Descriptor Based Method for Four-Bar Linkage Syn-
thesis for Generation of Open and Closed Paths, vol. Volume 2: 34th An-
nual Mechanisms and Robotics Conference, Parts A and B of International De-
sign Engineering Technical Conferences and Computers and Information in Engineer-
ing Conference, 08 2010, https://doi.org/10.1115/DETC2010-29028, https://doi.org/
10.1115/DETC2010-29028, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/
IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923,/4549582,/923_1 pdf.

[2] Kinematic Synthesis Using Reinforcement Learning, vol. Volume 2A: 44th Design
Automation Conference of International Design Engineering Technical Confer-

This manuscript is for review purposes only.

https://doi.org/10.1115/DETC2010-29028
https://doi.org/10.1115/DETC2010-29028
https://doi.org/10.1115/DETC2010-29028
https://doi.org/10.1115/DETC2010-29028
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923/4549582/923_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923/4549582/923_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923/4549582/923_1.pdf

ot C
ot
Y Ut

noc

ot Ot
o Ut
=N o

oo

OU O U1 U1 O U1 U1 Ot Ut O U O O O O O Ot Ot Ot Ot Ot
b B T M B M B BN | DD GOt
QW WXWTNDDURE WNHOOWOTIDULR WD OO

ot gt Ot Ot
oo oo o oo

ot

%
TR LR~

v Ot Ot Ot
0o 00 00 Q0 QO
[ClE e

e

600
601
602

(5]

(8]

(17)

M.

FAST PLANAR LINKAGE MECHANISM SOLVERS 21

ences and Computers and Information in Engineering Conference, 08 2018, https:
//doi.org/10.1115/DETC2018-85529, https://doi.org/10.1115/DETC2018-85529, https:
//arxiv.org/abs/https://asmedigitalcollection.asme.org /IDETC- CIE/proceedings-pdf/
IDETC-CIE2018/51753/V02AT03A009/2475681 /v02at03a009-detc2018-85529.pdf.
V02ATO03A009.

BACHER, S. COROS, AND B. THOMASZEWSKI, Linkedit: Interactive linkage editing using
symbolic kinematics, ACM Trans. Graph., 34 (2015), https://doi.org/10.1145/2766985,
https://doi-org.libproxy.mit.edu/10.1145/2766985.

J. CABRERA, A. SIMON, AND M. PRADO, Optimal synthesis of mechanisms with genetic al-

M.

gorithms, Mechanism and Machine Theory, 37 (2002), pp. 1165-1177, https://doi.org/
https://doi.org/10.1016 /S0094-114X(02)00051-4, https://www.sciencedirect.com/science/
article/pii/S0094114X02000514.

CHU AND J. SuN, A New Approach to Dimension Synthesis of Spatial Four-Bar
Linkage Through Numerical Atlas Method, Journal of Mechanisms and Robotics,
2 (2010), https://doi.org/10.1115/1.4001774, https://doi.org/10.1115/1.4001774,
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/
article-pdf/2/4/041004/5812581/041004_1.pdf. 041004.

. CHU AND J. SUN, Numerical atlas method for path generation of spherical four-bar

mechanism, Mechanism and Machine Theory, 45 (2010), pp. 867-879, https://doi.org/
https://doi.org/10.1016/j.mechmachtheory.2009.12.005, https://www.sciencedirect.com/
science/article/pii/S0094114X09002286.

. DESHPANDE AND A. PURWAR, A Machine Learning Approach to Kinematic Synthe-

sis of Defect-Free Planar Four-Bar Linkages, Journal of Computing and Informa-
tion Science in Engineering, 19 (2019), https://doi.org/10.1115/1.4042325, https://
doi.org/10.1115/1.4042325, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/
computingengineering/article-pdf/19/2/021004/5998446 /jcise_019_02_021004.pdf. 021004.
DESHPANDE AND A. PURWAR, Computational Creativity Via Assisted Variational
Synthesis of Mechanisms Using Deep Generative Models, Journal of Mechani-
cal Design, 141 (2019), https://doi.org/10.1115/1.4044396, https://doi.org/10.1115/1.
4044396, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/141/12/121402/5874716/md_141_12_121402.pdf. 121402.

DESHPANDE AND A. PURWAR, An Image-Based Approach to Variational Path Syn-
thests of Linkages, Journal of Computing and Information Science in Engineering,
21 (2020), https://doi.org/10.1115/1.4048422, https://doi.org/10.1115/1.4048422,
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/
article-pdf/21/2/021005/6577132/jcise-21_-2_.021005.pdf. 021005.

. DESHPANDE AND A. PURWAR, An image-based approach to variational path synthesis of

linkages, Journal of Computing and Information Science in Engineering, 21 (2021).

. EBRAHIMI AND P. PAYVANDY, Efficient constrained synthesis of path generating four-bar

mechanisms based on the heuristic optimization algorithms, Mechanism and Machine The-
ory, 85 (2015), pp. 189-204, https://doi.org/https://doi.org/10.1016/j.mechmachtheory.
2014.11.021, https://www.sciencedirect.com/science/article/pii/S0094114X14003036.

B. FocGeLsoN, C. TUCKER, AND J. CAGAN, GCP-HOLO: Generating High-
Order Linkage Graphs for Path Synthesis, Journal of Mechanical Design, 145
(2023), https://doi.org/10.1115/1.4062147, https://doi.org/10.1115/1.4062147,
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/145/7/073303/7001642/md_145_7_073303.pdf. 073303.

. KHAN, I. ULLAH, AND M. AL-GRAFI, Dimensional synthesis of mechanical linkages using

artificial neural networks and fourier descriptors, Mechanical Sciences, 6 (2015), pp. 29-34,
https://doi.org/10.5194/ms-6-29-2015, https://ms.copernicus.org/articles/6,/29/2015/.

. Kuan, I. UrLan, AND M. AL-GRAFI, Dimensional synthesis of mechanical linkages using

artificial neural networks and fourier descriptors, Mechanical Sciences, 6 (2015), pp. 29-34.

. P. KiNaMA AND M. WELLING, Auto-encoding variational bayes, 2014, https://arxiv.org/

abs/1312.6114.

LipsON, A Relazation Method for Simulating the Kinematics of Compound
Nonlinear Mechanisms, Journal of Mechanical Design, 128 (2005), pp. 719-
728, https://doi.org/10.1115/1.2198255, https://doi.org/10.1115/1.2198255,
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/128/4/719/5923963/719_1.pdf.

. L1PSON, Ewolutionary synthesis of kinematic mechanisms, Artificial Intelligence for Engi-

neering Design, Analysis and Manufacturing, 22 (2008), p. 195-205, https://doi.org/10.
1017/S0890060408000139.

This manuscript is for review purposes only.

https://doi.org/10.1115/DETC2018-85529
https://doi.org/10.1115/DETC2018-85529
https://doi.org/10.1115/DETC2018-85529
https://doi.org/10.1115/DETC2018-85529
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://doi.org/10.1145/2766985
https://doi-org.libproxy.mit.edu/10.1145/2766985
https://doi.org/https://doi.org/10.1016/S0094-114X(02)00051-4
https://doi.org/https://doi.org/10.1016/S0094-114X(02)00051-4
https://doi.org/https://doi.org/10.1016/S0094-114X(02)00051-4
https://www.sciencedirect.com/science/article/pii/S0094114X02000514
https://www.sciencedirect.com/science/article/pii/S0094114X02000514
https://www.sciencedirect.com/science/article/pii/S0094114X02000514
https://doi.org/10.1115/1.4001774
https://doi.org/10.1115/1.4001774
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/2/4/041004/5812581/041004_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/2/4/041004/5812581/041004_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/2/4/041004/5812581/041004_1.pdf
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2009.12.005
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2009.12.005
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2009.12.005
https://www.sciencedirect.com/science/article/pii/S0094114X09002286
https://www.sciencedirect.com/science/article/pii/S0094114X09002286
https://www.sciencedirect.com/science/article/pii/S0094114X09002286
https://doi.org/10.1115/1.4042325
https://doi.org/10.1115/1.4042325
https://doi.org/10.1115/1.4042325
https://doi.org/10.1115/1.4042325
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/19/2/021004/5998446/jcise_019_02_021004.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/19/2/021004/5998446/jcise_019_02_021004.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/19/2/021004/5998446/jcise_019_02_021004.pdf
https://doi.org/10.1115/1.4044396
https://doi.org/10.1115/1.4044396
https://doi.org/10.1115/1.4044396
https://doi.org/10.1115/1.4044396
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/12/121402/5874716/md_141_12_121402.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/12/121402/5874716/md_141_12_121402.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/12/121402/5874716/md_141_12_121402.pdf
https://doi.org/10.1115/1.4048422
https://doi.org/10.1115/1.4048422
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/21/2/021005/6577132/jcise_21_2_021005.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/21/2/021005/6577132/jcise_21_2_021005.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/21/2/021005/6577132/jcise_21_2_021005.pdf
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2014.11.021
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2014.11.021
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2014.11.021
https://www.sciencedirect.com/science/article/pii/S0094114X14003036
https://doi.org/10.1115/1.4062147
https://doi.org/10.1115/1.4062147
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/7/073303/7001642/md_145_7_073303.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/7/073303/7001642/md_145_7_073303.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/7/073303/7001642/md_145_7_073303.pdf
https://doi.org/10.5194/ms-6-29-2015
https://ms.copernicus.org/articles/6/29/2015/
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1115/1.2198255
https://doi.org/10.1115/1.2198255
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/128/4/719/5923963/719_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/128/4/719/5923963/719_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/128/4/719/5923963/719_1.pdf
https://doi.org/10.1017/S0890060408000139
https://doi.org/10.1017/S0890060408000139
https://doi.org/10.1017/S0890060408000139

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

[26]

27]

29]

(30]

AMIN HEYRANI NOBARI

. M. McCARTHY AND G. S. SoH, Geometric design of linkages, vol. 11, Springer Science &

Business Media, 2010.

. R. McGARvA, Rapid search and selection of path generating mechanisms from a li-

brary, Mechanism and Machine Theory, 29 (1994), pp. 223-235, https://doi.org/
https://doi.org/10.1016/0094-114X(94)90032-9, https://www.sciencedirect.com/science/
article /pii/0094114X94900329.

. MniH, K. KAvUukcuoGLU, D. SILVER, A. GRAVES, I. ANTONOGLOU, D. WIERSTRA, AND

M. RIEDMILLER, Playing atari with deep reinforcement learning, 2013, https://arxiv.org/
abs/1312.5602.

. RADHAKRISHNAN AND M. I. CAMPBELL, A graph grammar based scheme for generating and

evaluating planar mechanisms, in Design Computing and Cognition 10, J. S. Gero, ed.,
Dordrecht, 2011, Springer Netherlands, pp. 663-679.

. REGENWETTER, A. H. NOBARI, AND F. AHMED, Deep generative models in engineering

design: A review, CoRR, abs/2110.10863 (2021), https://arxiv.org/abs/2110.10863, https:
//arxiv.org/abs/2110.10863.

. REULEAUX, Lehrbuch der Kinematik, vol. 1, Vieweg, 1875.
. SHARMA AND A. PURWAR, Using a Point-Line-Plane Representation for Unified Sim-

ulation of Planar and Spherical Mechanisms, Journal of Computing and Informa-
tion Science in Engineering, 20 (2020), https://doi.org/10.1115/1.4046817, https://
doi.org/10.1115/1.4046817, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/
computingengineering/article-pdf/20/6/061002/6537582/jcise-20-6-061002.pdf. 061002.
SoHN, H. LEgE, AND X. YAN, Learning structured output representation wusing deep
conditional generative models, in Advances in Neural Information Processing Sys-
tems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.,
vol. 28, Curran Associates, Inc., 2015, https://proceedings.neurips.cc/paper/2015/file/
8d55a249e6baabc06772297520da2051-Paper.pdf.

. SuN, H. Lu, AxD J. CHU, Variable step-size numerical atlas method for path genera-

tion of spherical four-bar crank-slider mechanism, Inverse Problems in Science and En-
gineering, 23 (2015), pp. 256-276, https://doi.org/10.1080/17415977.2014.890615, https:
//doi.org/10.1080/17415977.2014.890615, https://arxiv.org/abs/https://doi.org/10.1080/
17415977.2014.890615.

ULLAH AND S. KotaA, Optimal Synthesis of Mechanisms for Path Generation Us-
ing Fourier Descriptors and Global Search Methods, Journal of Mechanical Design,
119 (1997), pp. 504-510, https://doi.org/10.1115/1.2826396, https://doi.org/10.1115/1.
2826396, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/119/4/504/5600257/504_1.pdf.

. VAREDI-KOULAEI AND H. REZAGHOLIZADEH, Synthesis of the four-bar linkage as path gen-

eration by choosing the shape of the connecting rod, Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234 (2020),
pp. 2643-2652, https://doi.org/10.1177/0954406220908616, https://doi.org/10.1177/
0954406220908616, https://arxiv.org/abs/https://doi.org/10.1177/0954406220908616.

. VASILIU AND B. YANNOU, Dimensional synthesis of planar mechanisms using neural net-

works: Application to path generator linkages, Mechanism and Machine Theory, 36 (2001),
pp. 299-310, https://doi.org/10.1016/S0094-114X(00)00037-9.

. J. WALDRON AND S. V. SREENIVASAN, A Study of the Solvability of the Position Problem for

Multi-Circuit Mechanisms by Way of Exzample of the Double Butterfly Linkage, Journal of
Mechanical Design, 118 (1996), pp. 390-395, https://doi.org/10.1115/1.2826898, https://
doi.org/10.1115/1.2826898, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/
mechanicaldesign/article-pdf/118/3/390/5747759/390_1.pdf.

. Wu, Q. J. G, F. Gao, aAND W. Z. Guo, On the Ezxtension of a Fourier Descriptor

Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed
Paths, Journal of Mechanisms and Robotics, 3 (2011), https://doi.org/10.1115/1.4004227,
https://doi.org/10.1115/1.4004227, https://arxiv.org/abs/https://asmedigitalcollection.
asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002_1.pdf. 031002.

This manuscript is for review purposes only.

https://doi.org/https://doi.org/10.1016/0094-114X(94)90032-9
https://doi.org/https://doi.org/10.1016/0094-114X(94)90032-9
https://doi.org/https://doi.org/10.1016/0094-114X(94)90032-9
https://www.sciencedirect.com/science/article/pii/0094114X94900329
https://www.sciencedirect.com/science/article/pii/0094114X94900329
https://www.sciencedirect.com/science/article/pii/0094114X94900329
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2110.10863
https://arxiv.org/abs/2110.10863
https://arxiv.org/abs/2110.10863
https://arxiv.org/abs/2110.10863
https://doi.org/10.1115/1.4046817
https://doi.org/10.1115/1.4046817
https://doi.org/10.1115/1.4046817
https://doi.org/10.1115/1.4046817
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/6/061002/6537582/jcise_20_6_061002.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/6/061002/6537582/jcise_20_6_061002.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/6/061002/6537582/jcise_20_6_061002.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1080/17415977.2014.890615
https://arxiv.org/abs/https://doi.org/10.1080/17415977.2014.890615
https://arxiv.org/abs/https://doi.org/10.1080/17415977.2014.890615
https://arxiv.org/abs/https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1115/1.2826396
https://doi.org/10.1115/1.2826396
https://doi.org/10.1115/1.2826396
https://doi.org/10.1115/1.2826396
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/119/4/504/5600257/504_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/119/4/504/5600257/504_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/119/4/504/5600257/504_1.pdf
https://doi.org/10.1177/0954406220908616
https://doi.org/10.1177/0954406220908616
https://doi.org/10.1177/0954406220908616
https://doi.org/10.1177/0954406220908616
https://arxiv.org/abs/https://doi.org/10.1177/0954406220908616
https://doi.org/10.1016/S0094-114X(00)00037-9
https://doi.org/10.1115/1.2826898
https://doi.org/10.1115/1.2826898
https://doi.org/10.1115/1.2826898
https://doi.org/10.1115/1.2826898
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/118/3/390/5747759/390_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/118/3/390/5747759/390_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/118/3/390/5747759/390_1.pdf
https://doi.org/10.1115/1.4004227
https://doi.org/10.1115/1.4004227
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002_1.pdf

	Introduction
	Background & Related Works
	Computational Inverse Kinematics
	Simulation of Kinematics

	Methodology
	Accelerating Graphical Solvers
	Computing Gradient And An Optimization Scheme For Path Synthesis
	Shape Matching Objective
	Preventing Locking In Mechanisms

	Results & Discussion
	Acceleration Of The Solver
	Experiments On Gradient-Based Optimization

	Conclusion
	Appendix A. Julia Code For Vectoized Solver
	Appendix B. Julia Code For Batch Vectoized Solver
	References

