
FAST PLANAR LINKAGE MECHANISM SOLVER AND1

AUTOMATIC DIFFERENTIATION FOR GRADIENT-BASED2

OPTIMIZATION AND PATH SYNTHSIS3

AMIN HEYRANI NOBARI4

1. Introduction. The longstanding challenge in engineering design has been5

the analysis and synthesis of various kinematic mechanisms, a topic that has engaged6

countless engineers and scientists over time [17]. The understanding of the design7

of intricate kinematic systems is still elusive, and typically is restricted to certain8

tasks. The design process often relies on a combination of trial and error, specialized9

knowledge, and heuristics to discover effective designs. However, the emergence of10

computational design strategies in recent years has prompted a shift towards inverse11

kinematic design via optimization techniques [17, 3, 4, 28, 11, 1, 13, 19, 5, 7, 29, 8, 9,12

2, 21, 14].13

In the realm of computational approaches, the application of data-driven strate-14

gies for inverse design has garnered increasing interest. This trend has spurred a surge15

in research centered on the utilization of statistical machine learning and deep learning16

models in inverse kinematics [29, 8, 9, 14, 12] and in engineering design more gener-17

ally [22]. Yet, the effectiveness of many computational and data-driven methodologies18

is hindered by the computational power required for mechanism simulations. Some19

methods demand millions of simulations for efficient inverse kinematic design [12],20

and others are confined to certain types of basic mechanisms, like 4-bars or 6-bars,21

among others [4, 28, 11, 1, 13, 19, 5, 7, 29, 8, 9, 14].22

The primary constraint stems from the vastness of the design space – the sheer va-23

riety of problem requirements and mechanism variations is virtually boundless, which24

makes the exploration of more sophisticated mechanisms a daunting task, potentially25

necessitating billions or even trillions of simulations. Therefore, to facilitate the in-26

vestigation of this immense design space for inverse kinematic synthesis, it is crucial27

to have computational tools equipped with faster solvers.28

In this work we focus on the problem of kinematic synthesis of planar linkage29

mechanisms, however, unlike most of the work done more recently, we do not limit our30

work to specific topologies of mechanisms (such as 4-bars, 6-bars, etc.) and go beyond31

the well understood and further investigated mechanisms. By exploring a wide range32

of simple and complex 1-DOF (degrees of freedom) planar linkage mechanisms, we33

attempt to provide a more general picture of the problem and address the limitations34

at the most generalizable scale possible. In these kinds of mechanisms, the problem35

of inverse kinematic synthesis can have different types of goals, such as coupler path36

synthesis, motion generation, and signal generation [18]. The path synthesis problem37

can be described as the problem of designing linkage mechanisms that can generate38

a particular path that is described by a finite series of point coordinates. Motion39

generation can be thought of as the generalized version of the path synthesis where40

aside from point coordinates, the orientation of an attached rigid body (such as a41

robot arm) is also prescribed. Finally, the function generation problem refers to the42

problem of generating a specific series of output crank angles (or slider positions) at43

given angles (or positions) at the actuator, essentially transforming the signal from44

the actuator (angle or position) to a different signal at the output crank (or slider).45

See Figure 1 for more details. This work is created with a primary focus on the “Path46

Synthesis” problem, although with some tweaking the findings of this work could be47

1

This manuscript is for review purposes only.



2 AMIN HEYRANI NOBARI

adapted to be used for other types of problems such as “Function Generation” and48

“Motion Generation” [18].49

Motion

Pathθ
2θ

1

Functionθ
2

θ
1

Different Types Inverse Kinematic
 Problems In Planar Linkage Mechanisms

Fig. 1. Different types of problems in inverse kinematics of planar linkage mechanisms. Note
that the yellow arm is the actuator arm

As mentioned before, one of the main limiting factors for computational ap-50

proaches in inverse kinematic design is the need for a significant number of simu-51

lations. In fact the current state-of-the-art method for path synthesis uses reinforce-52

ment learning (RL) for path synthesis, however the RL agent needs to be retrained53

for each target curve to find a solution [12]. In this work, the authors require 2 mil-54

lion simulations of mechanisms with up to 11 joints for every target curve. Other55

approaches based on genetic programming [17] and genetic algorithms have a similar56

limitation since they require even larger amounts of simulations to find feasible so-57

lutions for path synthesis problems sometimes requiring billions of simulations. This58

can be rather time-consuming using conventional solvers currently being used by most59

researchers. Given this, in this work, we develop highly optimized solvers for planar60

linkage mechanisms based on the solver proposed by Bächer et al. [3]. We take this61

solver and optimize the code for the solution by vectorizing the process for multiple62

timesteps and vectorizing the process for multiple timesteps and multiple mechanisms63

simultaneously to take advantage of the highly optimized underlying linear algebra64

packages in Julia. Furthermore, we further speed up the already accelerated solver65

even more by implementing GPU-based solvers for the problem which speed up the66

process even more. We demonstrate that these optimizations provide multiple orders67

of magnitude improvement over a naive solver and speed up the simulation process68

massively. We hope that with the advent of these faster solvers even existing methods69

can be accelerated massively leading to faster or better optimizers that not only per-70

form inverse kinematic synthesis faster but are also capable of exploring more complex71

mechanisms. We detail our work and the implementation of the fast solvers in the72

sections that follow.73

Finally, we take advantage of the automatic differentiation tools developed for74

Julia, specifically the ForwardDiff.jl package, to develop a gradient-based optimizer75

for planar linkage mechanisms to allow for the refinement of planar linkage mechanisms76

for path synthesis problems. The goal of this optimizer is to take candidate solutions77

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 3

that are capable of producing paths very similar to a given target path and adjust78

the mechanism to achieve as close a match to the target curve as possible. Existing79

gradient-based methods [3] are limited to exceedingly minor changes when it comes80

to path matching because these methods introduce a penalty to the objective of the81

solver to prevent mechanisms from falling into a locking configuration, however, this82

makes the optimizer limited to more smooth paths and paths that are produced by83

mechanisms which are sufficiently away from locking configuration, as otherwise the84

penalty factor in the optimizer becomes the dominating factor in the gradient [3].85

In this work, we propose a novel approach for dynamically changing the weight of86

the penalty term in the optimizer’s objective to enable more effective gradient-based87

optimization for planar linkage mechanisms. the details of how we achieve this are88

provided in the sections that follow.89

2. Background & Related Works. In this section, we will discuss some of the90

prior works which we utilize in our approach and discuss the overall topic of kinematic91

synthesis briefly.92

2.1. Computational Inverse Kinematics. Computational approaches in the93

inverse kinematics problem fall into three primary categories: a) Numerical-atlas ap-94

proaches, b) Optimization-based approaches, and c) Data-driven approaches. Below95

we briefly discuss each approach in the context of how our work can benefit each96

category of approaches.97

Numerical atlas-based approaches:. The initial strategy involves building a reposi-98

tory of mechanisms, which subsequently generate paths that function like a ”numerical99

atlas”. This atlas can be used to find the nearest paths to any designated path and100

employ the corresponding mechanism from the current database as a solution. Addi-101

tionally, integrating this retrieval step with local optimization of the mechanism can102

bring us closer to the desired path [19, 6, 26]. In the majority of cases, the numerical103

atlas is generally restricted to a particular mechanism or a few types of mechanisms,104

such as a four-bar or six-bar mechanism. This is primarily due to the computational105

constraints of simulating numerous complex mechanisms, and the creation of a large106

numerical atlas of intricate mechanisms would require excessive simulations. Search-107

ing for viable mechanisms in an expansive design space entails simulating countless108

mechanisms, only to discover that they are locked or degenerate and thus unsuitable109

for inclusion in the numerical atlas. As a result, these methods often only apply to110

a limited range of simpler mechanisms. Furthermore, these basic mechanisms, with111

a few joints, can only generate a limited variety of paths. For instance, it is known112

that a four-bar mechanism can precisely match at most five points of a path (and113

even this is not always feasible) [23]. This demonstrates that even with a substantial114

atlas, the array of feasible paths that can be traced is limited. However, our work115

can address this issue by creating highly efficient solvers that facilitate the creation116

of extensive numerical atlas databases, accommodating a higher level of complexity117

and more joints.118

Optimization-based approaches:. The second computational strategy is referred119

to as the optimization-based approach. This category encompasses various works120

that utilize a range of optimization algorithms to determine the most appropriate121

mechanisms for a specific target path. While some scholars employ genetic algorithms122

or genetic programming techniques to produce mechanisms that can follow desired123

paths [17, 13], others opt for optimization using Fourier descriptors [27, 31]. An124

additional approach involves gradient-based optimization [3] to modify an existing125

machine, although this method requires an already approximate solution to yield any126

This manuscript is for review purposes only.



4 AMIN HEYRANI NOBARI

benefits. Apart from a few exceptions [17, 3], most of these methods are limited127

to altering existing mechanisms through optimization [3], or they are limited to a128

specific subset of problems. For example, Lipson et al. [17], focused on solving the129

straight-line problem using genetic programming. The performance of population-130

based optimization approaches, such as genetic algorithms, is mostly reliant upon131

the volume of simulations that can be done in practical time. That is the size of132

the populations and the number of generations the algorithm can be iterated over133

will largely determine the level of success these approaches will have. And with134

conventional solvers, the volume of simulation is highly limited. In our work, we135

develop extremely fast solvers which potentially increase the volume of simulations136

by multiple orders of magnitude allowing for a much larger size of population and more137

generations to be evaluated within the same amount of time which can hugely improve138

the performance of such approaches. Beyond this, we also develop a gradient-based139

optimization scheme that can refine mechanisms with better performance compared140

to the existing state-of-the-art gradient-based methods such as the one proposed in [3].141

Data-driven approaches:. In recent times, the popularity of machine learning-142

based methods has surged, leading to a number of published works that adopt a143

data-driven perspective. Most of these studies incorporate the previously mentioned144

”numerical atlas” and optimization strategies within data-driven frameworks. For145

instance, Deshpande and colleagues combined the numerical atlas method with opti-146

mization in their research [7, 8, 9]. They utilize variational autoencoders (VAEs)[15]147

and clustering-based search techniques to identify suitable candidates capable of gen-148

erating a desired coupler curve. In their subsequent studies, they apply VAEs and149

conditional VAEs[25] to synthesize mechanisms.150

The datasets employed in such studies are typically small and restricted to certain151

types of mechanisms (such as four-bar, six-bar, etc.). For example, a dataset of 6818152

linkage mechanisms is used in [10]. These models could substantially benefit from153

larger datasets comprising millions of mechanisms. Other data-driven studies have154

attempted to generate mechanisms conditioned on paths [29], but these are again155

limited to four-bar mechanisms.156

In contrast to these ”numerical atlas” adaptations, some researchers have en-157

deavored to translate the optimization approach into a machine learning framework.158

One such study applied deep Q learning [20] and Lipson’s T and D operators [2].159

Although these reinforcement learning (RL) based approaches are not confined to160

specific mechanisms, they require retraining for each new target shape. More re-161

cently, Fogelson et al., proposed a new RL-based approach that was able to beat all162

existing approaches [12] in accuracy, however, as mentioned before the limitation of163

these approaches is that they need retraining for every new target shape and specif-164

ically in this latest work each new target requires 2 million simulations to be done.165

What is evident is that machine learning approaches show great promise, however, at166

the moment, the same limitations that we saw in optimization and numerical atlas167

approaches can be observed in this category of approaches as well. As such our work168

can significantly benefit this type of approach as well.169

2.2. Simulation of Kinematics. There has been substantial work done in solv-170

ing 1-DOF mechanisms, however, as mechanisms get more complex, solving them171

becomes costly and the complexity of the closed-form analytical equations becomes172

gargantuan. As a result, algorithms-based and numerical approaches to solving such173

systems are typically employed [30, 24]. The literature on this topic is extensive174

and beyond the scope of this report, however, there are a few relevant works that175

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 5

we will discuss here as they set up the context for future discussion. Broadly, two176

different approaches can be considered in simulating mechanisms beyond analytical177

approaches [24]. One approach is the numerical approach to solving kinematic sys-178

tems. An example of such an approach is Lipson’s simulator, used for the genetic179

programming approach in [16]. In most numerical approaches planar mechanisms180

are solved using numerical algorithms used for solving systems of non-linear equa-181

tions (such as Newton-Raphson or Broyden’s method), these approaches are capable182

of simulating very complex systems, however, in many complex systems the solution183

is not unique and these simulators only produce one of the possible results [30, 24].184

Despite this, these numerical approaches are the most general solvers that can handle185

all types of mechanisms which graphical approaches might not be capable of, however,186

in the context of inverse kinematic design this matters less as we see. The other ap-187

proach to solving linkage mechanisms is to take a graphical approach and solve planar188

mechanisms from a purely kinematic approach. One such simulation approach which189

focuses purely on kinematics is the one proposed by Bächer et al. [3]. The simulator190

proposed by Bächer et al.solves a linkage system iteratively by starting from known191

values such as the position of the ground joints and the current position of the actu-192

ator arm (which can be determined based on the velocity profile of the motor) and193

solving for any joints that can be solved with the available information (taking into194

account initial positions of the joint). At every iteration, more joints will be solved195

until at the final iteration where all joints are solved. This approach is illustrated196

in Figure 3. Unlike the numerical solvers, these solvers cannot handle all kinds of197

mechanisms and are limited to dyadic loops only, however, systems with complex198

kinematic loops either can be converted to equivalent dyadic mechanisms and if they199

cannot be converted to such mechanisms they must have a non-unique solution or200

“Branch Defects” which from a design perspective makes them undesirable as their201

kinematics are not predictable and as such their use in real-world applications require202

special considerations. Therefore, while these approaches are limited to mechanisms203

with simple kinematic loops consisting of dyadic loops from a designs perspective they204

offer a near-complete representation of the design space, furthermore, an advantage205

of using them is that the gradients of simulation can be obtained in a similar man-206

ner which enables gradient-based optimization (e.g., editing existing mechanisms to207

fit certain constraints [3]). We adopt the approach of Bächer et al.and discuss the208

details of our work in the following sections. For a more in-depth view of simulation209

methods, readers are referred to [24].210

3. Methodology. In this section, we will discuss the details of our methodology211

for both accelerating simulations and performing gradient-based optimization. First,212

we will discuss the solver we use and our implementations of it, then we will discuss213

how we approach the gradient-based optimization and our contributions there.214

3.1. Accelerating Graphical Solvers. As mentioned before we adopt the215

solver proposed by Bächer et al. [3] and introduce some improvements to the im-216

plementation to speed up the simulation process. In this approach, we take any given217

mechanism with simple kinematic loops and rather than performing a dyadic decom-218

position [24] to identify four-bar loops, take an iterative approach to find the solutions219

by modeling mechanisms as graphs. We can solve for any joint which has two known220

neighbors (i.e., two joints with currently known positions at a given timestep that221

have linkages connecting to the node we are trying to solve). To solve for a joint with222

two known neighbors, we can use the initial positions of the joints and the current223

positions of the known neighbors to solve for the unknown joint. Take the example224

This manuscript is for review purposes only.



6 AMIN HEYRANI NOBARI

illustrated in Figure 2. In this example, joints 1 and 2 are solved at time step t, given225

this and the fact that we know the initial positions of the joints we can solve for the226

angle θ the linkage between joints 1 and 3 takes in this time step using the following227

equation:228

Fig. 2. This figure shows the simple case of solving for the angle theta for an unsolved joint 3
using the solutions for joints 1 and 2.

(3.1)

θ =sign
(
[(X0,1 −X0,3)× (X0,1 −X0,2)] .êz

)
×

cos−1

(
∥X0,1 −X0,3∥22 + ∥X1 −X2∥22 − ∥X0,2 −X0,3∥22

2 ∥X0,1 −X0,3∥2 ∥X1 −X2∥2

)
229

Where X0 is an N×2 matrix of initial positions (X0,1, for example, is a 2D vector230

indicating the initial position of joint 1) and X is an N × 2 matrix of the positions231

of joints at the current timestep. As evident this is simply applying the cosine rule232

to find the angle the linkage takes. Then once this angle theta is determined we can233

determine the position of our unknown joint 3 using the following equation:234

(3.2) X3 = X1 +R(θ)
(X2 −X1) ∥X0,3 −X0,1∥2

∥X2 −X1∥2
235

WhereR(θ) is the 2D rotation matrix for a given angle theta. One important thing236

to note here is that the value of the term inside the inverse cosine function in (3.1)237

can become larger than 1 or smaller than -1 which leads to no solution. This happens238

when a mechanism is locking or degenerating. Determining the exact timesteps that239

the mechanism locks at would require solving massive impractical non-linear equations240

as such in most cases the practical solution to identifying locking mechanisms is by241

refining the timesteps of the simulation to ensure that the mechanism does not lock242

at any point. This is one of the reasons why fast solvers are necessary as many243

high-fidelity simulations are needed just to identify feasible mechanisms.244

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 7

Fig. 3. Here we illustrate the path the solver takes to find the solution. At first, the solver
starts with the known joints (i.e., fixed and actuated joints) and at every step nodes with two known
neighbors can be found, in this mechanism illustrated, the path to the solution has 3 steps. The
numbers of the joints indicate the order in which the solution is found and the arrows indicate
which two neighboring joints are needed to solve the given joint. Known nodes are highlighted in
green.

Now that we established how we can solve for joints with two known neighbors245

all that is left to do is to find a path to solving a given mechanism for each timestep.246

Starting from joints with always-known positions at all timesteps (actuator arm and247

fixed joints), we start by identifying joints with two known neighbors these joints are248

what we can solve for first at every timestep. Then we repeat the process but with the249

joints, we identified in the prior step considered as known joints and determine which250

joints can be solved for given the solution to these joints. We repeat this process251

until all the joints in the mechanism have been solved. This process is similar to a252

breadth-first search in graphs and it is visualized for a simple mechanism in Figure 3.253

In doing this a path to the solution of all joints is found which can be used to find254

solutions at different timesteps. Note that this process only needs to be done once for255

every mechanism to find the path to the solution and to solve all the timesteps we256

would only traverse this already established path. The process for finding the path257

to the solution is described in Algorithm 3.1.258

Once the path to the solution is found we can then run the simulation for all259

the necessary timesteps. We can perform this task naively by iterating through each260

timestep separately in a loop, however, as we mentioned in (3.1) the solution to each261

timestep does not rely on prior timesteps therefore these calculations can be made in262

parallel. As a baseline, we can look at the naive algorithm described in Algorithm 3.2.263

One obvious way to accelerate this simulator is simply run the timestep for loop264

in parallel using multiple threads. This will immediately speed up the simulations265

significantly depending on the number of threads available. However, using high-266

level Julia code to do this will not allow us to optimize the simulation speed to the267

maximum speed it can get to as low-level optimization is necessary for such a thing.268

The good news is that the underlying linear algebra packages implemented in Julia use269

highly optimized code which has been optimized as much as possible over decades of270

This manuscript is for review purposes only.



8 AMIN HEYRANI NOBARI

Algorithm 3.1 Path Algorithm

Require: initialNodes fixed joints and motor
Require: activeList
for all i ∈initialNodes do
activeList.insert(neighbors(initialNodes(i)))

end for
while !activeList.empty() do
k = activeList.pop front()
vn = visitedNeighbors(k)
if vn.size()¿ 1 then
i = vn(1), j = vn(2)
addRule(i,j,k) Add the solution dyadic (i, j) → k to the list of operation
steps
assignNextIndex(k), setVisited(k)
activeList.append(unvisitedNeigbors(k))

else
activeList.push back(k)

end if
end while

research on matrix and vector operations. Therefore what we need to do to accelerate271

the solver to the maximum extent possible is to vectorize the process of finding the272

solution for all time steps in one go using only vector and matrix operations. In273

this way, we replace the entire for loop in Algorithm 3.2 for timesteps with a single274

function or a few lines of code that compute the solution for all timesteps at once.275

For the sake of brevity, we do not provide the specific code in the main body of the276

report but rather include it in Appendix A. By doing this we only use built-in linear277

algebra operations (i.e.matrix multiplication and vector operations) which are highly278

optimized in the backend of Julia. In this way, we take advantage of the low-level279

optimization done for linear algebra packages and with minimal effort achieve great280

code efficiency.

Algorithm 3.2 Naive Solver

Require: X0 initial positions of joints
Require: initialNodes, NTimesteps
Require: X = zeros(NTimesteps,NJoints,2)
Path ← Use Algorithm 3.1 to find the path to the solution
for t← 1 to NTimesteps do
Compute X[t,initialNodes] fixed joints and actuator position at timestep t
for all step ∈ path do
(i,j,k) ← step
X[t,i] ← Use (3.1) to compute i using j and k

end for
end for
return X

281

Beyond vectorizing the simulation for all timesteps in one mechanism, we can282

take this vectorization to another level, and vectorize the process for a batch of mech-283

anisms. That is to say that we simulate not just for all the timesteps at the same time284

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 9

but rather solve for all the timesteps and all the mechanisms in a batch at the same285

time. However, to do this we need to take into account a few considerations. Vector-286

ized processes require all the mechanisms to have the same number of joints so as to287

make the matrices and vectors representing all the mechanisms the same size so that288

we can batch them into higher dimensional arrays and apply built-in linear algebra289

operations in batch. However, different mechanisms can have different sizes, there-290

fore, we need to somehow resize the mechanisms without changing their kinematics.291

Luckily, this is a fairly simple thing to achieve. When batching mechanisms we can292

simply add fixed joints that are not connected to anything, and therefore do not alter293

the kinematics of the mechanism. Using this approach we simply add as many fixed294

joints to mechanisms in a batch to make sure that they are all the same size (i.e., the295

maximum size, and in this work we limit the size to mechanisms with 20 joints). By296

doing this we make sure that all the mechanisms in a batch are of the same size. As297

it can be seen in Appendix A in the vectorized solver we still compute the path for a298

mechanism and traverse through the path to the solution, which is different for each299

mechanism. However, if we wish to solve a batch of mechanisms this is not going to300

be possible as batch operations must be applied at the same time, and this cannot301

be done in different paths simultaneously. Therefore, the only way we can simulate a302

batch of mechanisms is if they all have the same path to the solution. This however is303

clearly not the case for different mechanisms, but this does not have to be the case in304

general. To address this all we have to do is sort the joint ordering for all mechanisms305

in a batch such that the path to the solution for all mechanisms is to simply start306

with the first joint and compute the solution one joint at a time in order. Therefore,307

to overcome this second challenge we simply first sort all the mechanisms in a batch308

as well. For the sake of brevity, we do not go into the algorithm and code details here309

and include the Julia code for both preprocessing a batch and simulating a batch in310

Appendix B.311

At this point, we have discussed the three main ways that we can accelerate312

the solver; 1) Multi-Threding, 2) Vectorizing over timesteps, and 3) Vectorizing over313

timesteps and batches of mechanisms. In the sections that follow we will experiment314

with these approaches and demonstrate that the proposed methods truly do accelerate315

the simulation of the mechanisms significantly. Furthermore, we will also implement316

similar solvers that run on the GPU and demonstrate that by utilizing the high317

throughput of modern GPUs we can further accelerate the simulations.318

3.2. Computing Gradient And An Optimization Scheme For Path Syn-319

thesis. So far we have discussed ways to accelerate the solver, however, as we dis-320

cussed in the background section there is great interest in gradient-based optimization321

methods for path synthesis as well. Moreover, the ForwardDiff.jl package in Julia al-322

lows us to easily obtain gradients and jacobians of our solver without any additional323

effort. This means that it is worthwhile to investigate gradient-based optimization us-324

ing our fast solvers as the accelerated solver not only speeds up the forward simulation325

process it also enables that much faster gradient calculations for the solver, effectively326

accelerating both simulation and optimization at the same time. However, simply327

applying ForwardDiff.jl to the solver would not be doing this project justice as there328

are many challenges in the gradient-based optimization of planar linkage mechanisms329

that are currently unaddressed with the majority of the work in literature focusing on330

the path synthesis problem from the perspective of design space exploration through331

genetic algorithms, RL, or deep learning enhanced numerical atlas approaches. The332

main reason these existing methods do not use an optimization-based refinement in333

This manuscript is for review purposes only.



10 AMIN HEYRANI NOBARI

Fig. 4. Here we illustrate the overall gradient decent approach and how we perform this com-
pared to the conventional approach of applying a weighted penalty to the objective.

their work is because of a few notable challenges which have yet to be addressed by334

researchers in the community. In this project, we aim to address three major chal-335

lenges in gradient-based optimization for path synthesis which make the application of336

gradient-based optimization rather difficult. One of the challenges is slow solvers and337

gradient calculations which make the iterative process of optimization rather slow.338

This challenge is already addressed thanks to our significantly faster solver. However,339

two other challenges exist that we still need to address. These issues are the prob-340

lem of picking a good objective function for comparing target paths and traced paths341

and the other is how to prevent mechanisms to fall into locking configurations during342

optimization. Both of these matters boil down to obtaining a reasonable objective343

function to allow us to match our target path as well as possible while still remaining344

in the feasible space. We will discuss the details of our implementation in the sections345

that follow.346

3.3. Shape Matching Objective. The main objective of path synthesis is to347

generate mechanisms that trace a path that matches any arbitrary path with any348

arbitrary number of points. This means that if we simulate a mechanism for say349

200 timesteps but our objective curve is a hand-drawn path with only a handful of350

points we cannot simply compare the points of the path generated by a mechanism351

and our target directly. Furthermore, the simulated curve has information regarding352

velocity, that is to say, if the mechanism is moving faster in a given part of the path353

the distance between the points will be larger, however, in path synthesis the only354

objective is to match a given target curve purely from a geometric perspective without355

any dynamic considerations. In fact, in practice, the dynamics can be controlled by356

adjusting the speed of the actuator as needed. As such, we need to come up with an357

objective function that unlike the work by Bächer et al. [3] does not rely on direct358

editing of coupler path already traced by a machine but rather is generalized to any359

arbitrary shape we wish to optimize for. This can be done using single-directional or360

bi-directional chamfer distance. The general form of the equation for chamfer distance361

between two sets of points S1 and S2 is as follows:362

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 11

(3.3) dCD (S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22 +
∑
y∈S2

min
x∈S1

∥x− y∥22363

Where the first term measures the distance from S1 to S2 and the second term the364

other way around. As such this is usually referred to as the bi-directional chamfer dis-365

tance. However, in path synthesis, we may be interested in only capturing the desired366

path as part of the mechanism’s output curve. That is because even if the mechanism367

only traces the desired path in part of its motion the problem of synthesizing that368

path is solved. Therefore, in some instances, it may make sense to include only the369

term that measures the distance from the target curve to the traced path. However,370

for the results and discussions presented in this report, we will use the bi-directional371

chamfer distance and not make any further modifications to this objective function.372

3.4. Preventing Locking In Mechanisms. As we saw in (3.1) the solution373

to any of the joints in the mechanisms requires the computation of an inverse cosine,374

and if a mechanism is set up such that during the motion of the actuator at some375

timestep the value inside the inverse cosine function is above 1 or below -1, the sim-376

ulation fails, which indicates that the mechanism locks in at time between the last377

timestep and the timestep without a solution. This presents a challenge in gradient-378

based optimization as now a highly non-linear and complex constraint is added to the379

optimization problem which if ignored will easily render gradient-based optimization380

useless. Furthermore, the complexity of the constraint is beyond its non-linear nature,381

as the algorithm for the solution traverses a specific path through the graph repre-382

senting the mechanisms. This means that if at one point in the path to the solution,383

a locking joint is identified the steps in the solution path after this point also cannot384

be solved for since they rely on the solution of prior joints in the path to be solved.385

This means that even if we can measure how much the cosine value of a given joint386

that locking is above 1 or below -1 we cannot say anything about how using gradients387

of this constraint violation for healing this issue will affect the solution of all the other388

joints. Therefore, a straightforward measure of constraint violation in cases of failure389

is not practical in this case. However, we may yet be able to perform gradient-based390

optimization by adding a penalty term to the objective of the optimization. Looking391

at prior works Bächer et al. [3] propose a penalty strategy by adding an objective to392

increase what the authors call distance to locking. This metric is measured by the393

following equation:394

(3.4) di (xi,xj ,xk) = 1− cos (θ (xi,xj ,xk))
2

395

where cos(θ (xi,xj ,xk)) is the value of the cosine of the angle calculated for joint396

i using the solutions of joints j and k using (3.1). To prevent this penalty from397

becoming too restrictive the authors use a cross-entropy penalty with a threshold ε398

and define the penalty objective as:399

(3.5) fi (xi,xj ,xk) = −
1

2
log2

(
1

ε
di (xi,xj ,xk)

)
400

by doing this they prevent the penalty from being too restrictive until the distance401

to locking dips below a specific threshold ε. However, this penalty will practically402

This manuscript is for review purposes only.



12 AMIN HEYRANI NOBARI

encourage the optimization to specifically achieve a distance to locking equal to ε.403

And this is not exactly optimal. Furthermore, we still have to choose a fairly large ε.404

Bächer et al. [3] simply add the sum of this equation for all joints to their objective405

for minimization with some weight applied to it with respect to the main objective406

and solve for the minimal value of the sum of the two objectives in other words to407

minimize the following optimization problem:408

(3.6) ∆X0 = argmin
∆X̃0

dCD(Starget, X0) + λ
∑
i

fi(X0)409

Where dCD(Starget, X0) is the chamfer distance between the path traced by a410

mechanism with initial joint positions X0 and the target curve with points in the411

set Starget and fi(X0) is the value of cross-entropy penalty function for joint i in the412

mechanism with initial joint positions X0 and λ is the weight for the penalty objective413

and ∆X0 is the optimal changes applied to the initial joint positions X0 to optimize414

the mechanism for path synthesis. In the end, although this penalty approach makes415

the optimization process clear-cut, it still limits the path synthesis potential with416

optimization as it will always directly work against the main objective of reducing417

chamfer distance. As such we introduce an alternative to this by suggesting a different418

strategy for preventing locking, which is similar in nature to this approach but gives419

the optimization more freedom. We propose using simple gradient descent with a step420

size of α however instead of just optimizing for minimal chamfer distance we linearly421

orthogonalize the chamfer distance gradient with respect to distance to locking. By422

doing this we make an assumption that for small enough α the objective can be423

deemed linear, hence making it so that if we orthogonalize the gradient of chamfer424

distance with respect to distance to locking we move only in the direction that reduces425

chamfer distance without changing the distance to locking for the mechanism. This426

assumption of course in practice is not going to be accurate as we still have to choose427

a sufficiently large α to make the optimization practical, however by doing this we428

ensure that if the distance to locking is to increase during the optimization the rate429

at which it will happen during the gradient descent is minimal. Therefore, the update430

rule we propose for the gradient descent can be described as:431

(3.7) Xk+1
0 = Xk

0 − α

∂CD

∂X0
−

∂DL
∂X0
· ∂CD

∂X0∣∣∣∂DL
∂X0

∣∣∣2
∂DL

∂X0

432

Where CD = dCD(Starget, X0) and DL =
∑

i fi(X0) and Xk
0 is the intial joint433

positions for the mechanism after k steps of gradient decent. We will later demonstrate434

how this approach is effective for refining mechanisms for path synthesis. The overall435

workflow of our approach is illustrated in Figure 4.436

4. Results & Discussion. In this section, we run experiments on different437

variants of the solver and demonstrate how the approaches we have developed for438

accelerating the solver actually significantly improve the speed of the solver to a no-439

ticeable extent. Finally, we will demonstrate the gradient-based optimization results440

for a few examples to show the efficacy of the proposed approach for the refinement441

of mechanisms.442

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 13

4.1. Acceleration Of The Solver. To measure how well each of the proposed443

implementations of the solver performs we conduct an experiment for simulating444

10,000 mechanisms with 6 to 20 joints in them using each of the solvers described445

in prior sections. We solve all of these mechanisms for 200 timesteps and with the446

actuator moving at constant velocity. We also make a GPU implementation of the447

batch solver and test the simulation speeds on the GPU as well. As for hardware448

we use an Intel i9-12900K processor for the CPU versions of the solver and an RTX449

3090Ti for the GPU implementations of the solver. Furthermore, it is important to450

note that we were unable to get the GPU version to work properly on Julia, as such we451

implemented the GPU versions on Python using Pytorch, and the results presented452

here for the GPU version of the solver are based on experiments on python. The453

results of our experiments are presented in Figure 5.454

Fig. 5. The results of running the solvers for 10,000 mechanisms. The time reported is the
average across 10 runs of each solver.

As evident in Figure 5 we see that the naive solver is the slowest solver. However,455

we can see that a simple approach of multi-threading does not really yield a significant456

improvement in the results and only accelerates the process by slightly more than457

double despite the i9-12900k’s 24 threads. This is the main reason it is important458

for us to utilize the lower-level optimized linear algebra packages to maximize the459

performance of the solver. As evident the vectorized solver is more than 10 times faster460

than the naive solver and 5 times faster than the multi-threaded solver. Interestingly461

the batch-vectorized solver actually ends up being slower than the multi-threaded462

solver on the CPU. This is simply because we resize all of the mechanisms to the463

maximum size of 20 joints which essentially makes the overall solver much slower464

as the CPU simply does not have enough throughput to truly perform all of the465

computations at once despite the highly optimized linear algebra packages. However,466

This manuscript is for review purposes only.



14 AMIN HEYRANI NOBARI

the same cannot be said of the GPU. As it is shown in Figure 5, the GPU can simulate467

all 10,000 mechanisms using the batch vectorized solver in roughly 100 milliseconds,468

which is a mindblowing 500 times faster than the naive solver and 50 times faster469

than the vectorized solver on the CPU. This is simply made possible by the immense470

throughput of the GPU and the highly optimized CUDA libraries that Pytorch uses471

in its backend. Furthermore, we see that despite the increased cost of the batch solver472

resizing all mechanisms to the maximum size the GPU has the necessary throughput473

to handle the larger number of computations and perform all the simulations in one474

go. One thing to note is that when we tested the GPU using just a timestep vectorized475

solver the results we got were much slower as each simulation had to be done on the476

GPU one at a time, despite the GPU having the capacity for much more, which despite477

of the better efficiency of the vectorized solver (as we saw in the CPU) led to slower478

results overall, demonstrating the importance of developing the batch vectorization479

for a high throughput hardware like the GPU. In conclusion, we see that utilizing480

the GPU can provide up to 500 times faster simulations and speed up most current481

approaches employed by researchers for path synthesis to a great extent.482

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 15

Mechanisms Target Curves

Fig. 6. The 5 case studies for demonstrating the effectiveness of gradient-based optimization.
Here we visualize the mechanism and their current output curves and the target curves we wish to
achieve using these mechanisms through gradient-based optimization.

This manuscript is for review purposes only.



16 AMIN HEYRANI NOBARI

Before Optimization:

Our Approach:

Conventional Approach:

Fig. 7. The results of gradient-based optimization on the 5 case studies demonstrating the
effectiveness of gradient-based optimization. Here we see that our approach of orthogonalization
instead of weighted penalty has led to much better results compared to conventional optimization.

Table 1
Quantitave results (final chamfer distance) of the optimization comparing both methods is each

case-study

Method Study 1 Study 2 Study 3 Study 4 Study 5
Before Optimization 0.8155 0.5425 0.2955 0.5051 0.7207

Conventional 0.6307 0.3703 0.0215 0.3001 0.1056
Ours 0.4948 0.0049 0.0065 0.2909 0.1648

4.2. Experiments On Gradient-Based Optimization. To demonstrate the483

effects of the gradient-based optimization approach we propose we conduct a case484

study with 5 mechanisms and 5 target paths which for each mechanism. These mech-485

anisms and the test targets for each case study can be seen in Figure 6. We then run486

gradient descent using our method and the naive method with a constant penalty with487

weight lambda = 0.1 (see (3.6)) for 10,000 steps in each case-study with a gradient488

decent step size of 0.0001 and compare the results visually in Figure 7 and report the489

minimum chamfer distance achieved by each method in Table 1.490

The first thing we see visually is that in all cases the outputs of the mechanisms491

have improved significantly with the exception of the first case study where both con-492

ventional and our optimization have failed to improve the output of the mechanism.493

However, in all other cases, we can both visually (Figure 7) and quantitatively (Ta-494

ble 1) confirm the improvements. Specifically in the second, third, and last case495

studies, we see amazing improvements in the mechanisms matching their targets with496

great accuracy. However, as it is clear the orthogonalization has led to much bet-497

ter outcomes (the only exception is the last case study) with the mechanisms while498

the conventional approach has mostly failed to provide significant enough improve-499

ments in the mechanisms. This shows that unless the optimization is being done500

on a machine that traces a path that is already very close to the desired path the501

conventional approach is simply not good enough and does not provide a worthwhile502

refinement, which is likely why most researchers have not applied such methods. But503

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 17

we showed that with our improved method, we are able to do much better and prove504

that refinement through optimization is a viable option for path synthesis.505

5. Conclusion. In this project, we set out to address one of the major challenges506

that has slowed progress in inverse kinematics which is a lack of very fast solvers for507

linkage mechanisms. As we discussed the faster these solvers are the better existing508

methods for inverse kinematic synthesis can get. Given this, we developed very fast509

vectorized solvers for linkage mechanisms that can enable up to 500 times faster simu-510

lations when GPUs are utilized, which can improve the speed of existing optimization511

and data-driven approaches for inverse kinematic design. Furthermore, we took ad-512

vantage of the ForwardDiff.jl package in Julia to develop an improved gradient-based513

optimization method that can outperform the existing methods for gradient-based op-514

timization for path synthesis, and we demonstrated the efficacy of our method and its515

superiority to existing methods through a case study of 5 optimization problems. In516

conclusion, in this project, we were able to accelerate planar linkage mechanism simu-517

lations by up to 500 times while also improving gradient-based optimization methods518

for path synthesis using the automatic differentiation of our fast solvers. We hope519

that this contribution will help accelerate progress in the field of inverse kinematic520

design and path synthesis.521

Finally, we provide the code used in this project publicly which can be found at522

https://github.com/ahnobari/18337-Linakge-Project.523

This manuscript is for review purposes only.



18 AMIN HEYRANI NOBARI

Appendix A. Julia Code For Vectoized Solver. Below is the Julia code524

to traverse the path to the solution and compute all the timesteps at once.525

Fig. 8. Vectorized solver to solve for all timesteps at once.

Appendix B. Julia Code For Batch Vectoized Solver. Below is the code526

for preprocessing a list of mechanisms into a batch for the batch solver. This part527

includes the sorting and resizing of the batch.528

This manuscript is for review purposes only.



FAST PLANAR LINKAGE MECHANISM SOLVERS 19

Fig. 9. Preprocessing code for the batch solver.

Once the batches have been prepared the code below is used to solve not just all529

timesteps but all the mechanisms in the batch as well:530

This manuscript is for review purposes only.



20 AMIN HEYRANI NOBARI

Fig. 10. Vectorized solver to solve for all timesteps and mechanisms in the batch at once.

REFERENCES531

[1] On the Extension of a Fourier Descriptor Based Method for Four-Bar Linkage Syn-532
thesis for Generation of Open and Closed Paths, vol. Volume 2: 34th An-533
nual Mechanisms and Robotics Conference, Parts A and B of International De-534
sign Engineering Technical Conferences and Computers and Information in Engineer-535
ing Conference, 08 2010, https://doi.org/10.1115/DETC2010-29028, https://doi.org/536
10.1115/DETC2010-29028, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/537
IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923/4549582/923 1.pdf.538

[2] Kinematic Synthesis Using Reinforcement Learning, vol. Volume 2A: 44th Design539
Automation Conference of International Design Engineering Technical Confer-540

This manuscript is for review purposes only.

https://doi.org/10.1115/DETC2010-29028
https://doi.org/10.1115/DETC2010-29028
https://doi.org/10.1115/DETC2010-29028
https://doi.org/10.1115/DETC2010-29028
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923/4549582/923_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923/4549582/923_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2010/44106/923/4549582/923_1.pdf


FAST PLANAR LINKAGE MECHANISM SOLVERS 21

ences and Computers and Information in Engineering Conference, 08 2018, https:541
//doi.org/10.1115/DETC2018-85529, https://doi.org/10.1115/DETC2018-85529, https:542
//arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/543
IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf.544
V02AT03A009.545

[3] M. Bächer, S. Coros, and B. Thomaszewski, Linkedit: Interactive linkage editing using546
symbolic kinematics, ACM Trans. Graph., 34 (2015), https://doi.org/10.1145/2766985,547
https://doi-org.libproxy.mit.edu/10.1145/2766985.548

[4] J. Cabrera, A. Simon, and M. Prado, Optimal synthesis of mechanisms with genetic al-549
gorithms, Mechanism and Machine Theory, 37 (2002), pp. 1165–1177, https://doi.org/550
https://doi.org/10.1016/S0094-114X(02)00051-4, https://www.sciencedirect.com/science/551
article/pii/S0094114X02000514.552

[5] J. Chu and J. Sun, A New Approach to Dimension Synthesis of Spatial Four-Bar553
Linkage Through Numerical Atlas Method, Journal of Mechanisms and Robotics,554
2 (2010), https://doi.org/10.1115/1.4001774, https://doi.org/10.1115/1.4001774,555
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/556
article-pdf/2/4/041004/5812581/041004 1.pdf. 041004.557

[6] J. Chu and J. Sun, Numerical atlas method for path generation of spherical four-bar558
mechanism, Mechanism and Machine Theory, 45 (2010), pp. 867–879, https://doi.org/559
https://doi.org/10.1016/j.mechmachtheory.2009.12.005, https://www.sciencedirect.com/560
science/article/pii/S0094114X09002286.561

[7] S. Deshpande and A. Purwar, A Machine Learning Approach to Kinematic Synthe-562
sis of Defect-Free Planar Four-Bar Linkages, Journal of Computing and Informa-563
tion Science in Engineering, 19 (2019), https://doi.org/10.1115/1.4042325, https://564
doi.org/10.1115/1.4042325, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/565
computingengineering/article-pdf/19/2/021004/5998446/jcise 019 02 021004.pdf. 021004.566

[8] S. Deshpande and A. Purwar, Computational Creativity Via Assisted Variational567
Synthesis of Mechanisms Using Deep Generative Models, Journal of Mechani-568
cal Design, 141 (2019), https://doi.org/10.1115/1.4044396, https://doi.org/10.1115/1.569
4044396, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/570
article-pdf/141/12/121402/5874716/md 141 12 121402.pdf. 121402.571

[9] S. Deshpande and A. Purwar, An Image-Based Approach to Variational Path Syn-572
thesis of Linkages, Journal of Computing and Information Science in Engineering,573
21 (2020), https://doi.org/10.1115/1.4048422, https://doi.org/10.1115/1.4048422,574
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/575
article-pdf/21/2/021005/6577132/jcise 21 2 021005.pdf. 021005.576

[10] S. Deshpande and A. Purwar, An image-based approach to variational path synthesis of577
linkages, Journal of Computing and Information Science in Engineering, 21 (2021).578

[11] S. Ebrahimi and P. Payvandy, Efficient constrained synthesis of path generating four-bar579
mechanisms based on the heuristic optimization algorithms, Mechanism and Machine The-580
ory, 85 (2015), pp. 189–204, https://doi.org/https://doi.org/10.1016/j.mechmachtheory.581
2014.11.021, https://www.sciencedirect.com/science/article/pii/S0094114X14003036.582

[12] M. B. Fogelson, C. Tucker, and J. Cagan, GCP-HOLO: Generating High-583
Order Linkage Graphs for Path Synthesis, Journal of Mechanical Design, 145584
(2023), https://doi.org/10.1115/1.4062147, https://doi.org/10.1115/1.4062147,585
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/586
article-pdf/145/7/073303/7001642/md 145 7 073303.pdf. 073303.587

[13] N. Khan, I. Ullah, and M. Al-Grafi, Dimensional synthesis of mechanical linkages using588
artificial neural networks and fourier descriptors, Mechanical Sciences, 6 (2015), pp. 29–34,589
https://doi.org/10.5194/ms-6-29-2015, https://ms.copernicus.org/articles/6/29/2015/.590

[14] N. Khan, I. Ullah, and M. Al-Grafi, Dimensional synthesis of mechanical linkages using591
artificial neural networks and fourier descriptors, Mechanical Sciences, 6 (2015), pp. 29–34.592

[15] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2014, https://arxiv.org/593
abs/1312.6114.594

[16] H. Lipson, A Relaxation Method for Simulating the Kinematics of Compound595
Nonlinear Mechanisms, Journal of Mechanical Design, 128 (2005), pp. 719–596
728, https://doi.org/10.1115/1.2198255, https://doi.org/10.1115/1.2198255,597
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/598
article-pdf/128/4/719/5923963/719 1.pdf.599

[17] H. Lipson, Evolutionary synthesis of kinematic mechanisms, Artificial Intelligence for Engi-600
neering Design, Analysis and Manufacturing, 22 (2008), p. 195–205, https://doi.org/10.601
1017/S0890060408000139.602

This manuscript is for review purposes only.

https://doi.org/10.1115/DETC2018-85529
https://doi.org/10.1115/DETC2018-85529
https://doi.org/10.1115/DETC2018-85529
https://doi.org/10.1115/DETC2018-85529
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51753/V02AT03A009/2475681/v02at03a009-detc2018-85529.pdf
https://doi.org/10.1145/2766985
https://doi-org.libproxy.mit.edu/10.1145/2766985
https://doi.org/https://doi.org/10.1016/S0094-114X(02)00051-4
https://doi.org/https://doi.org/10.1016/S0094-114X(02)00051-4
https://doi.org/https://doi.org/10.1016/S0094-114X(02)00051-4
https://www.sciencedirect.com/science/article/pii/S0094114X02000514
https://www.sciencedirect.com/science/article/pii/S0094114X02000514
https://www.sciencedirect.com/science/article/pii/S0094114X02000514
https://doi.org/10.1115/1.4001774
https://doi.org/10.1115/1.4001774
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/2/4/041004/5812581/041004_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/2/4/041004/5812581/041004_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/2/4/041004/5812581/041004_1.pdf
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2009.12.005
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2009.12.005
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2009.12.005
https://www.sciencedirect.com/science/article/pii/S0094114X09002286
https://www.sciencedirect.com/science/article/pii/S0094114X09002286
https://www.sciencedirect.com/science/article/pii/S0094114X09002286
https://doi.org/10.1115/1.4042325
https://doi.org/10.1115/1.4042325
https://doi.org/10.1115/1.4042325
https://doi.org/10.1115/1.4042325
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/19/2/021004/5998446/jcise_019_02_021004.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/19/2/021004/5998446/jcise_019_02_021004.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/19/2/021004/5998446/jcise_019_02_021004.pdf
https://doi.org/10.1115/1.4044396
https://doi.org/10.1115/1.4044396
https://doi.org/10.1115/1.4044396
https://doi.org/10.1115/1.4044396
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/12/121402/5874716/md_141_12_121402.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/12/121402/5874716/md_141_12_121402.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/12/121402/5874716/md_141_12_121402.pdf
https://doi.org/10.1115/1.4048422
https://doi.org/10.1115/1.4048422
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/21/2/021005/6577132/jcise_21_2_021005.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/21/2/021005/6577132/jcise_21_2_021005.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/21/2/021005/6577132/jcise_21_2_021005.pdf
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2014.11.021
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2014.11.021
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2014.11.021
https://www.sciencedirect.com/science/article/pii/S0094114X14003036
https://doi.org/10.1115/1.4062147
https://doi.org/10.1115/1.4062147
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/7/073303/7001642/md_145_7_073303.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/7/073303/7001642/md_145_7_073303.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/7/073303/7001642/md_145_7_073303.pdf
https://doi.org/10.5194/ms-6-29-2015
https://ms.copernicus.org/articles/6/29/2015/
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1115/1.2198255
https://doi.org/10.1115/1.2198255
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/128/4/719/5923963/719_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/128/4/719/5923963/719_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/128/4/719/5923963/719_1.pdf
https://doi.org/10.1017/S0890060408000139
https://doi.org/10.1017/S0890060408000139
https://doi.org/10.1017/S0890060408000139


22 AMIN HEYRANI NOBARI

[18] J. M. McCarthy and G. S. Soh, Geometric design of linkages, vol. 11, Springer Science &603
Business Media, 2010.604

[19] J. R. McGarva, Rapid search and selection of path generating mechanisms from a li-605
brary, Mechanism and Machine Theory, 29 (1994), pp. 223–235, https://doi.org/606
https://doi.org/10.1016/0094-114X(94)90032-9, https://www.sciencedirect.com/science/607
article/pii/0094114X94900329.608

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and609
M. Riedmiller, Playing atari with deep reinforcement learning, 2013, https://arxiv.org/610
abs/1312.5602.611

[21] P. Radhakrishnan and M. I. Campbell, A graph grammar based scheme for generating and612
evaluating planar mechanisms, in Design Computing and Cognition ’10, J. S. Gero, ed.,613
Dordrecht, 2011, Springer Netherlands, pp. 663–679.614

[22] L. Regenwetter, A. H. Nobari, and F. Ahmed, Deep generative models in engineering615
design: A review, CoRR, abs/2110.10863 (2021), https://arxiv.org/abs/2110.10863, https:616
//arxiv.org/abs/2110.10863.617

[23] F. Reuleaux, Lehrbuch der Kinematik, vol. 1, Vieweg, 1875.618
[24] S. Sharma and A. Purwar, Using a Point-Line-Plane Representation for Unified Sim-619

ulation of Planar and Spherical Mechanisms, Journal of Computing and Informa-620
tion Science in Engineering, 20 (2020), https://doi.org/10.1115/1.4046817, https://621
doi.org/10.1115/1.4046817, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/622
computingengineering/article-pdf/20/6/061002/6537582/jcise 20 6 061002.pdf. 061002.623

[25] K. Sohn, H. Lee, and X. Yan, Learning structured output representation using deep624
conditional generative models, in Advances in Neural Information Processing Sys-625
tems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.,626
vol. 28, Curran Associates, Inc., 2015, https://proceedings.neurips.cc/paper/2015/file/627
8d55a249e6baa5c06772297520da2051-Paper.pdf.628

[26] J. Sun, H. Lu, and J. Chu, Variable step-size numerical atlas method for path genera-629
tion of spherical four-bar crank-slider mechanism, Inverse Problems in Science and En-630
gineering, 23 (2015), pp. 256–276, https://doi.org/10.1080/17415977.2014.890615, https:631
//doi.org/10.1080/17415977.2014.890615, https://arxiv.org/abs/https://doi.org/10.1080/632
17415977.2014.890615.633

[27] I. Ullah and S. Kota, Optimal Synthesis of Mechanisms for Path Generation Us-634
ing Fourier Descriptors and Global Search Methods, Journal of Mechanical Design,635
119 (1997), pp. 504–510, https://doi.org/10.1115/1.2826396, https://doi.org/10.1115/1.636
2826396, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/637
article-pdf/119/4/504/5600257/504 1.pdf.638

[28] S. Varedi-Koulaei and H. Rezagholizadeh, Synthesis of the four-bar linkage as path gen-639
eration by choosing the shape of the connecting rod, Proceedings of the Institution of640
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234 (2020),641
pp. 2643–2652, https://doi.org/10.1177/0954406220908616, https://doi.org/10.1177/642
0954406220908616, https://arxiv.org/abs/https://doi.org/10.1177/0954406220908616.643

[29] A. Vasiliu and B. Yannou, Dimensional synthesis of planar mechanisms using neural net-644
works: Application to path generator linkages, Mechanism and Machine Theory, 36 (2001),645
pp. 299–310, https://doi.org/10.1016/S0094-114X(00)00037-9.646

[30] K. J. Waldron and S. V. Sreenivasan, A Study of the Solvability of the Position Problem for647
Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage, Journal of648
Mechanical Design, 118 (1996), pp. 390–395, https://doi.org/10.1115/1.2826898, https://649
doi.org/10.1115/1.2826898, https://arxiv.org/abs/https://asmedigitalcollection.asme.org/650
mechanicaldesign/article-pdf/118/3/390/5747759/390 1.pdf.651

[31] J. Wu, Q. J. Ge, F. Gao, and W. Z. Guo, On the Extension of a Fourier Descriptor652
Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed653
Paths, Journal of Mechanisms and Robotics, 3 (2011), https://doi.org/10.1115/1.4004227,654
https://doi.org/10.1115/1.4004227, https://arxiv.org/abs/https://asmedigitalcollection.655
asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002 1.pdf. 031002.656

This manuscript is for review purposes only.

https://doi.org/https://doi.org/10.1016/0094-114X(94)90032-9
https://doi.org/https://doi.org/10.1016/0094-114X(94)90032-9
https://doi.org/https://doi.org/10.1016/0094-114X(94)90032-9
https://www.sciencedirect.com/science/article/pii/0094114X94900329
https://www.sciencedirect.com/science/article/pii/0094114X94900329
https://www.sciencedirect.com/science/article/pii/0094114X94900329
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2110.10863
https://arxiv.org/abs/2110.10863
https://arxiv.org/abs/2110.10863
https://arxiv.org/abs/2110.10863
https://doi.org/10.1115/1.4046817
https://doi.org/10.1115/1.4046817
https://doi.org/10.1115/1.4046817
https://doi.org/10.1115/1.4046817
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/6/061002/6537582/jcise_20_6_061002.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/6/061002/6537582/jcise_20_6_061002.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/computingengineering/article-pdf/20/6/061002/6537582/jcise_20_6_061002.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1080/17415977.2014.890615
https://arxiv.org/abs/https://doi.org/10.1080/17415977.2014.890615
https://arxiv.org/abs/https://doi.org/10.1080/17415977.2014.890615
https://arxiv.org/abs/https://doi.org/10.1080/17415977.2014.890615
https://doi.org/10.1115/1.2826396
https://doi.org/10.1115/1.2826396
https://doi.org/10.1115/1.2826396
https://doi.org/10.1115/1.2826396
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/119/4/504/5600257/504_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/119/4/504/5600257/504_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/119/4/504/5600257/504_1.pdf
https://doi.org/10.1177/0954406220908616
https://doi.org/10.1177/0954406220908616
https://doi.org/10.1177/0954406220908616
https://doi.org/10.1177/0954406220908616
https://arxiv.org/abs/https://doi.org/10.1177/0954406220908616
https://doi.org/10.1016/S0094-114X(00)00037-9
https://doi.org/10.1115/1.2826898
https://doi.org/10.1115/1.2826898
https://doi.org/10.1115/1.2826898
https://doi.org/10.1115/1.2826898
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/118/3/390/5747759/390_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/118/3/390/5747759/390_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/118/3/390/5747759/390_1.pdf
https://doi.org/10.1115/1.4004227
https://doi.org/10.1115/1.4004227
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/3/3/031002/5590355/031002_1.pdf

	Introduction
	Background & Related Works
	Computational Inverse Kinematics
	Simulation of Kinematics

	Methodology
	Accelerating Graphical Solvers
	Computing Gradient And An Optimization Scheme For Path Synthesis
	Shape Matching Objective
	Preventing Locking In Mechanisms

	Results & Discussion
	Acceleration Of The Solver
	Experiments On Gradient-Based Optimization

	Conclusion
	Appendix A. Julia Code For Vectoized Solver
	Appendix B. Julia Code For Batch Vectoized Solver
	References

