Feasibility Study of Graph Neural Networks
with Atomic Cluster Expansion

Minsik Cho
May 15, 2023

1 Introduction

The field of computational chemistry has a fundamental cost-accuracy tradeoff
that limits accurate simulation of large systems in a long time scale. Because of
the complexity of solving the Schrédinger Equation even in the time-independent
regime (and even more so in the time-dependent case), various approximation
techniques have emerged from the birth of the field. As shown in Figure Eﬂ,
simulation of longer time scales or larger system size necessitate more aggressive
approximations, which may often leave out important details only captured in
more precise levels of calculation.

-Time scale (ms) Biology Chemistry Materials
System size (10° atoms) ) -~ a7
o =

gl
e

Coarse
graining

General applicability
Accuracy beyond DFT

Classical
force fields

Reactive
force fields

QM/MM

Accuracy (<1 kcal mol™)

I Applicability (reactions)

Figure 1: Tradeoff between accuracy and time scale (or system size)

One interesting point to note here is that ab initio Molecular Dynamics that
use Density Functional Theory (DFT) backend is the most accurate method of
choice in the plot. This is in fact the only method in the plot that fully depicts
the system based on quantum mechanical principles. For quantum chemical
simulations that do not involve time evolution, this plot continues towards the
lower right — in fact, DFT is regarded as less accurate but scalable choice in the



time-independent regime. It suffices to say that the prohibitive computational
cost of more accurate methods limit the scientific exploration of longer-time
phenomena, and without a major breakthrough in method development, such
limitation will continue to be the biggest inhibitor. Machine-learned potentials,
as shown in Figure [I] present an alternative to the tradeoff by estimating the
high-quality quantum mechanical energies and forces using a pre-trained model.
For interpolative estimations, which is often the case with the time evolved up-
dates in molecular dynamics (MD) simulations, machine-learned potentials al-
low fast and yet accurate scalable approach. Machine-learned Potentials (MLPs)
thus provides a pathway towards larger problems in ab initio molecular dynam-
ics (AIMD) that were previously deemed as intractable due to the prohibitive
computational complexity.

MLPs have already seen numerous applications in biochemistry and mate-
rial science[2]. For force field applications, the benefits are especially huge as it
allows treatment of solvent material[9] at a relatively low cost. Compared to di-
electric continuum used for most quantum mechanical solute calculations, MLPs
provide some quantum mechanical details of the bath solvent at a reasonable
computational cost.

At the Center for the Exascale Simulation of Materials in Extreme Environ-
ments (CESMIX), there are on-going efforts in development of machine-learned
interatomic potentials (MLIAPs) using high-level programming language, such
as Julia. Utilizing the software composability of Julia and differentiable pro-
gramming provided by Zygote, different strategies are explored at CESMIX to
further advance the state-of-the-art MLIAPs.

In this final project, a feasibility study of Graph Neural Networks (GNNs)
with Atomic Cluster Expansion (ACE) for MLIAPs was conducted. Noting from
the fact that molecules (and its geometries) are inherently graphs, GNNs have
been viewed as a natural choice of neural network architecture for molecular
applications[7]. Convolutions in GNNs, such as localized convolutions, also
match the chemists’ intuition that interaction between near pairs contribute
more. Long range effects are much smaller and are relatively insignificant on
the level of DFT (and DFT-based MLIAPs). Because ACE is one of the most
popular approaches in MLIAP development, a natural motivation is to attempt
use GNNs with ACE.

2 Graph Neural Networks

In graph neural networks (GNNs), a key quantity to start the discussion with
is the adjacency matrix. Suppose that we have a graph shown in Figure 2| For
this graph, we can define an adjacency matrix A € N™*™ where n is the number
of nodes in the graph. Each element of the adjacency matrix A;; is then the
number of edges that connect the i-th and the j-th nodes. For the graph above,



Figure 2: Example of a graph

the adjacency matrix is

01 00
1 011
01 01
01 10

Note that the adjacency matrix by construct has some nice qualities as a rep-
resentation for molecules. First, permutation of the order of constituent atoms
simply correspond to permutation of basis in the adjacency matrix, which does
not alter the information represented in the matrix. Second, it allows a rota-
tionally invariant representation — the molecular input does not change with
trivial overall rotation. Adjacency matrix does have a few issues, namely nor-
malization and distance thresholding. The adjacency matrix, in practice, is
normalized to prevent from the training process to explode, as recommended
in a paper[6]. Arbitrary distance threshold applied to determine whether two
atoms are connected or not cannot be avoided trivially, but in many cases (where
there is a clear cut distinction between the two) this is not a prohibitive concern.
Some ideas to circumvent the arbitrary thresholds will be discussed in the later
sections as a future directions.

Now that the input graphs are defined, neural network models are formed
with attributes associated with the components of the graph. Each node, edges,
and global (entire graph) context can have corresponding attributes. For the
case of molecules, information about the atoms (which will be the local descrip-
tors in Atomic Cluster Expansion) are the node attributes, and the estimated
(or the true) energies are the global attributes. With these information, GNNs
are usually defined with some combination of graph convolutions and pooling
functions[I], such as sum operation over all perceptrons. By optimizing the
parameters that feed into the neural network, models are trained using input
dataset.

3 Atomic Cluster Expansion

Atomic Cluster Expansion (ACE) is a cluster expansion technique that expresses
energies and forces as a many-body expansion of atoms within some cutoff



distance[3]. With ACE, energy contribution of atom 7 is expressed as

I e I e
Ei=e@ +52 ST 52 Samt (1)
J Jik
Here, the indices j, k, - - - run over the neighboring atoms within some threshold

distance.

In obtaining each cluster term, ACE formalism starts by defining some neigh-
borhood density using Dirac-delta functions with peaks on neighboring atoms
within the threshold distance.

plis ) =Y 6, 0(r —150) (2)
i

Here, ;1 denotes the elemental identity (i.e. number of protons) of the corre-
sponding atom. Then, the neighborhood density is projected into hydrogen-like
harmonic orbitals.

Puiogaymidim = By ™ (150)Yim (75) (3)

Ai,(ui,uj,n,l,m) = <p(ivﬂ)|¢u¢,uj7n,l7m> (4)
= Z ¢Hiallj7”7l777l(rji) (5)
J

Finally, tensor products for n-th order cluster terms are taken and are used as
basis functions.

Ai,u = H Ai,(/u,,/t],n,l,m) (6)
t=1

W =3 B, (7)

= Z Cf,p) Z CV,V’Ai,u (8)

E=FW", @ .. (9)

This representation, which is the key idea of Atomic Cluster Expansion (ACE)
retains rotational, translational, and permutation invariance. Its use of hydro-
genic harmonics allows a path toward easier analyses by chemists. For GNN,
these expansion terms that are calculated for each constituent atom are the
ACE local descriptors that comprise the node attributes in the neural network.

4 Method

Benefiting from the software composability of Julia and the existing code base
maintained by CESMIX, the general workflow of the initial test of GNN based
on ACE formalism operates as listed below:



1. Read in training dataset (aHfO2, SNAP) using the ExtXYZ struct defined
in PotentialLearning.jl — Molecular geometries and DFT energies are
loaded.

2. Evaluate the ACE local descriptors using ace.jl

Build normalized adjacency matrix for periodic cells

- W

Define a GNN model based on convolutions of graphs using GraphNeuralNetworks. j1

5. Train neural net using Flux. j1, which performs automatic differentiation
(AD) to obtain the Jacobian of the parameters used in GNN model

6. Compare the loss and time performance with linear (least-squares) solu-
tion

For the adjacency matrix build step, distance threshold of 0.5 A was applied
after taking the periodicity into account (by using the crystal lattice vectors)
and the matrix was normalized as:

A'=D 2AD: (10)

where D is the degree matrix, a diagonal matrix with the total number of edges
from the i-th node. Use of an one-hot vector for the elemental identity was tested
by creating struct OneHotAtom that extends the AbstractVector. However,
its effect on the learning process, compared to just relying on the ACE local
descriptor (which embeds the elemental identity) was minimal and was therefore
removed moving forward.

a-HfO2 dataset|§], which consists of hafnium dioxide systems with 96 atoms
(which are either hafnium or oxygen) in periodic cell, was used as test dataset.

5 Results

5.1 Initial Trial

For the initial trial of the GNN/ACE implementation for machine-learned en-
ergies, the learning rate was set to a very conservative (= 10~%) value to assess
the convergence pattern. Without proper treatment of the adjacency matrix
(through normalization and periodic treatment), the training of the neural net-
work exploded after the first few epochs, so this initial trial refers to the first
run after the critical issues were fixed.

In the linear least-squares fit of 200 train data and 100 test data, mean
squared error (MSE) was 0.10eV. Linear fit took about 67 seconds.

As shown in Figure [3] initial test of GNN/ACE showed a promising result
where the loss function gradually decreased in each epoch. After about 35000
epochs, it reached about 0.37eV MSE, resulting in a value comparable to the
least squares approach.



Adam(1f-4)

10° === Linear (Least Squares)

MSE (eV?)

0 5000 10000 15000 20000 25000 30000 35000
lterations

Figure 3: Initial Trial of GNN/ACE Implementation

Performance-wise, the whole training required a long time, in the orders of
hours on a 20-core CPU. GPU programming was not employed at this point,
because the number of training dataset was small enough.

For a faster convergence, for subsequent calculations, a larger learning rate
was used. Most commonly used scheme (will be specified in detail below) was
to take a learning rate of n = 0.1 and decay of momentums S = (0.9,0.8) for
the first few (about 500) epochs and a slow rate (n = le=°, 8 = (0.9,0.8)) for
the later iterations. Calculations in the next subsections took in the order of
minutes, lowering the computational cost of training the neural net comparable
to solving the least squares problem.

5.2 Dependence on the Number of Training Data

To examine how the training of GNN/ACE neutral net behaves with a different
number of training dataset, training was performed for 25, 50, 100, and 200
dataset.

Adam; Different No. of Training Data

10¢ —
50
— 100
3
- — 200
== Linear (Least Squares)
T e
@
w
2w
10°
2071 e e

) 200 200 £00 800 1000
lterations

Figure 4: Training with Different Numbers of Training Data



As shown in Figure [] using different number of training data did not have
a large impact on the converged MSE. It is encouraging to observe that con-
vergence to about 0.30eV was reached in a similar number of epochs. Larger
number of training data of course lengthens each epoch, of course, but this hints
a nice scalability of the GNN/ACE model.

5.3 Activation Function Choices

Different choices of activation functions were also tested to identify the charac-
teristics of the GNN/ACE model.

Adam; Different Activation Function

| —— RelU
10 Leaky RelU
—— tanh

10° -+ Linear (Least Squares)

107

MSE (eV?)

10*

10°

1071 e ree e e
o 200 400 600 800 1000
lterations

Figure 5: Training with Different Activation Functions

As shown in Figure [5] use of different activation functions in the first con-
volution layer did not affect the finally converged value by much. Hyperbolic
tangent (fast tanh in Flux.jl) function has a longer tail compared to ReLU
and Leaky ReLU, which share similar convergence behavior, but the differences
are relatively insignificant.

6 GPU Implementation

GPU version of the implementation was trivially written using the Flux.gpu
binding to CUDA libraries. For simple neural networks only consisting of two
convolutional layers and one pooling & dense layer, the V100 GPU did not
provide significant speedup compared to the CPU setup (20 CPU cores reserved
on Intel Xeon-based computing cluster). It is expected that production level
training would require computations on a GPU node.

7 Conclusions

Through this final project, the immediate goal of testing the applicability of
graph neural networks (GNNs) and atomic cluster expansion (ACE) has been



achieved. GNN/ACE provides comparable accuracy to linear squares solution,
and mean squared error of the GNN/ACE model is well within the target values
MLIAPs aim forﬂ Larger and more complicated neural net models are being
tested using GPU implementation as of writing this report. It is expected
that GNN/ACE may provide a MLIAP that preserves the chemists’ intuition
embodied in the GNN and ACE formalism.

The graph-based formalism of GNN also provides some opportunities to
bridge in graph-based methods in quantum chemistry. Bootstrap Embedding[10]
(BE), which is a kind of QM/QM E[, evaluates fragment-by-fragment energies
to recover the energy of the whole chemical system. These fragments, which
are two (in BE2), three (in BE3), or n (in BEn) atoms next to each other in
a chemical systems, are inherently found in adjacency matrices used in GNNs.
Therefore, BE energies can provide edge level (from BE2) features that MLIAPs
can be trained against instead of graph level features (total energies). Previ-
ous attempts in using the edge features for molecular application only use edge
features as descriptors[5], but using BE energies allow us to fully exploit edge
level structure to actual estimator outputs. Because of the radically lower com-
putational cost of BE calculations, reference data can also originate from much
higher-level quantum mechanical calculations. Instead of mean-field level calcu-
lations (i.e. Density Functional Theory), correlated calculations (i.e. Coupled
Cluster) can be performed routinely. Generalizations to BEn (n > 3) is less
clear, since each fragment represents more than a single edge.

In conclusion, this feasilbility study of GNN/ACE have shown the possibility
of a new approach in MLIAP development. Interesting opportunities stemming
from the nice data structure of graphs also present new directions in MLIAP
development.

1Unlike quantum chemistry methods, which target chemical accuracy — lkcal/mol — MLI-
APs take per atom measures.
2quantum mechanical method embedded in another quantum mechanical method



References

[1]
2]

[3]

[10]

Nikolas Adaloglou. How graph neural networks (gnns) work.

Jorg Behler and Gabor Csanyi. Machine learning potentials for extended
systems: a perspective. The European Physical Journal B, 94(142), 2021.

Ralf Drautz. Atomic cluster expansion for accurate and transferable inter-
atomic potentials. Phys. Rev. B, 99:014104, Jan 2019.

Pascal Friederich, Florian Hése, Jonny Proppe, and Alan Aspuru-Guzik.
Machine-learned potentials for next-generation matter simulations. Nature
Materials, 20(6):750-761, 2021.

Liyu Gong and Qiang Cheng. Exploiting edge features in graph neural
networks. In Conference on Computer Vision and Pattern Recognition,
2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations, 2017.

Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B.
Wiltschko. A gentle introduction to graph neural networks. Distill, 2021.

Ganesh Sivaraman, Anand Narayanan Krishnamoorthy, Matthias Baur,
Christian Holm, Marius Stan, Gabor Csanyi, Chris Benmore, and Alvaro
Viézquez-Mayagoitia. a-hfo2 dataset: ”machine-learned interatomic po-
tentials by active learning: amorphous and liquid hafnium dioxide”. npj
Computational Materials, 2020.

Adri C. T. van Duin, Siddharth Dasgupta, Francois Lorant, and William A.
Goddard. Reaxff: A reactive force field for hydrocarbons. The Journal of
Physical Chemistry A, 105(41):9396-9409, 2001.

Hong-Zhou Ye and Troy Van Voorhis. Atom-based bootstrap embedding
for molecules. Journal of Physical Chemistry Letters, 10:6368-6374, 2019.

Appendix

Source code for the GNN/ACE implementation can be found in this pull request
on Potentiallearning. j1 Github repository. This final project was conducted
with Dr. Emmanuel Lujan’s (Center for the Exascale Simulation of Materials
in Extreme Environments) guidance.


https://github.com/cesmix-mit/PotentialLearning.jl/pull/44

	Introduction
	Graph Neural Networks
	Atomic Cluster Expansion
	Method
	Results
	Initial Trial
	Dependence on the Number of Training Data
	Activation Function Choices

	GPU Implementation
	Conclusions
	Appendix

