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Abstract. In this project, we present a high performance Julia implementation of Shapley5

effects for performing global sensitivity analysis. While many methods exist for sensitivity6

analysis, they assume independence between the input features of a function, which may be7

incorrect for many real world scenarios. We are motivated to implement Shapley effects, and8

make it a part of GlobalSensitivity.jl, because they can handle correlated inputs. In this9

report, we first describe how Shapley effects are calculated using Monte Carlo simulations.10

Then we show the correctness of our implementation by testing it on commonly used analytical11

functions and comparing the results with Sobol indices. We show the utility of Shapley effects12

in handling correlated inputs by considering a Jackson model of a manufacturing plant. We13

also demonstrate how our implementation can be used on differential equations by considering14

a dynamic prey-predator system. Finally, we do a thorough performance analysis of the15

algorithm, and optimize it to be 20× faster than the Python implementations of Shapley16

effects. Our Julia code is made public at https://github.com/ajv012/shapley julia.17

1. Introduction: Global Sensitivity Analysis. Global Sensitivity Analysis (GSA) is vital18

for understanding complex systems and model behavior. It measures how the output changes19

when inputs vary, identifying important inputs and assessing model robustness. This can allow20

researchers to make more informed use of models in real world scenarios and develop sparser21

version of models by removing non-essential inputs. Taking derivatives of the output w.r.to22

the inputs can give a local measure of how much the output changes for a small change in the23

input. Probabilistic programming provides an alternative approach to sensitivity analysis, by24

asking how the output of the model changes on average when the input is changed [6]. To25

motivate the need for GSA, consider a factory receiving multiple orders daily. The output26

rate of the factory depends on the rate at which six interconnected workstations in the factory27

work. GSA would tell the factory manager the output rate of the factory is the most sensitive28

to which workstations, thus helping in managing the operations and logistics. GSA has real29

world benefits not just in manufacturing, but in studying many systems, like how forest fires30

spread [7].31

GlobalSensitivity.jl is the SciML implementation for GSA methods. Some of the commonly32

used GSA methods which are already implemented in GlobalSensitivity.jl include Derivative-33

based Global Sensitivity Measures (DGSM), Morris method, Sobol’s method and Fourier34

Amplitude Sensitivity Resampling (FAST). Of these, DGSM and Morris method rely on the35

idea of successively linearizing to approximate the function in question, with Morris taking36

finite differences to approximate derivatives. Sobol’s method, considered a gold standard in37

GSA, decomposes the variance of model into summands of variances of the input parameters38

in increasing dimensionality [8] by assuming that the inputs are independent. It is one of the39
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most widely used methods. GlobalSensitivity.jl provides a simple and intuitive interface for40

conducting GSA on models of interest, which looks like (where f is the model, method is the41

technique to use):42

res = gsa(f, method, param_range; samples, batch=false)43

Sobol indices are commonly used but assume independence among inputs, which may not44

hold in real-world scenarios such as physiology-based pharmacokinetic models of the human45

body’s organs. In contrast, Shapley effects, introduced in cooperative game theory46

in 1953, do not make any assumptions about input independence and can handle47

correlated inputs effectively. The aim of Shapley effects is to determine the contribution48

of each player fairly in the total payoff achieved by the coalition of players. One notable49

advantage of Shapley effects is their normalization property, where the sum of effects over50

all individual variables equals the variance. This normalization property provides a better51

interpretability in determining the relative importance of variables. Unlike Sobol indices,52

which cannot be interpreted as percentages of variance, Shapley effects offer this additional53

insight. Furthermore, while comparing first-order and total order Sobol indices is challenging54

due to potential differences in their summation values, Shapley effects exhibit a summation55

property that ensures fairness and avoids assigning excessive importance to a few inputs—a56

known issue with Sobol indices [7]. The goal of this project is to implement a high performance57

version of Shapley effects in Julia and add it to GlobalSensitivty.jl. The key motivation for is to58

improve the accuracy of GSA in the case of correlated inputs. Adding computationally efficient59

version of Shapley effects, which can be used for a wide range of functions, will significantly60

improve the accessibility of GlobalSensitivty.jl. Our high performance implementation of61

Shapley effects, which is inspired by the R code and pseudo-algorithm provided by the authors62

of [7] and a Python implementation of Shapley effects [5], is made public at https://github.63

com/ajv012/shapley julia.64

The report achieves the following:65

66

1. Section 2 describes how Shapley effects are calculated, which involves estimating the67

incremental cost of adding an input feature of a function to the entire feature set. We68

describe how Monte Carlo sampling is used to calculate the conditional variances and69

exemplify the process further by providing code snippets.70

2. The sensitivity of the method to different hyper-parameters is analyzed thoroughly in71

Section 4.2.72

3. In Section 4.1 the correctness of our implementation of Shapley effects is measured on73

common analytical functions, like the linear and Ishigami function, routinely used in74

sensitivity analysis. We also compare the results with Sobol indices and highlight the75

better interpretability provided by Shapley effects.76

4. We demonstrate the real world utility of Shapley effects by analyzing a Jackson model77

of a factory system in Section 4.3. We show how Shapley effects can handle correlated78

inputs better than Sobol indices.79

5. In Section 4.4, we show that in addition to analytical functions, our implementation80

of Shapley effects can be applied to differential equations. We use the Lotka–Volterra81
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equations to model a prey-predator system and show how Shapley effects can vary82

over time.83

6. We perform a thorough performance analysis of our algorithm in Section 5. We show84

how our implementation of Shapley (optimized on serial and parallel code) is 20×85

faster than a counterpart Python implementation of Shapley effects.86

87

2. Implementation of Shapley effects. Estimating the attribution of features of a func-88

tion can be thought of as finding the contributions of players in a cooperative game. Tradi-89

tionally, measures like Sobol indices assume that all players act independently, however this90

may not be true as their might be interactions between players that need to be accounted for.91

Shapley effects is a variance based method that assesses the equitable allocation of a player’s92

contribution in a cooperative game by taking into account all of the interactions a player has93

with others.94

Before we understand how Shapley effects are calculated, we introduce some notation95

and definitions. Formally, consider we have a function f which has M inputs represented by96

XM = {X1, X2, . . . Xm}. An input set XJ represents a subset of inputs, i.e. J ⊂ M . The97

marginal distribution of each of the Xi is denoted as Di, and the joint distribution of any98

set of input features XJ is denoted as CJ . The response of the function to the input set is99

denoted as Y = f(XM ). The uncertainty in the output Y as a result of XM is quantified by100

Var[Y ] with respect to the joint distribution CM . Shapley effects quantify how much of the101

Var[Y ] can be attributed to each of the Xi.102

The essence of finding the Shapley effect for a feature i is to calculate what is the incre-103

mental cost of adding the feature i to a subset of features J ⊂ M , which is the then averaged104

over all of the possible sets J ⊂ K \ i. In order to systematically consider all the possible105

subsets of players, we follow these steps:106

1. Consider all possible permutations of the players in the game, denoted as Π(M). This107

will have m! permutations.108

2. For a permutation π ∈ Π(M), define the set Pi(π) as the players that precede player109

i in Π.110

3. Define the incremental cost of including player i in Pi(π) as c(Pi(Π)∪{i})− c(Pi(Π)).111

Now, Shapley effect for a player i (Si) can be defined as:112

(2.1) Si =
∑

π∈Π(M)

1

m!
c(Pi(Π) ∪ {i})− c(Pi(Π))113

In line with previous literature, we define our cost function for any subset J ⊂ M as:114

(2.2) c(J) = Var[Y ]− E[Var[Y |XJ ]]115

The cost function in Equation 2.2 can be understood as the expected reduction in Var[Y ]116

when the values of XJ are fixed. In other words, how much variance is remaining in Y117

when the values of XJ are known. Because of this cost function, we need to evaluate 2m − 1118
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variance components for m! permutations of the input features, thus the big-O for the Shapley119

algorithm is m!, where m is the number of input features. This version of the Shapley effects120

algorithm is termed the ”exact permutation” version.121

The exact permutation algorithm quickly becomes intractable for large number of input122

features, both in terms of time complexity and the memory allocation requirements. To make123

the Shapley effects algorithm tractable for functions requiring a large number of input features,124

we implement the ”random permutation” version of the algorithm, introduced by Castro et.125

al. [1] in 2009. In this algorithm, the essential idea stays the same, but instead of considering126

all of the possible m! permutations, we only consider a random subset of all permutations.127

It has been shown that such an approximation of the Shapley effects converges to the actual128

values in probability [1].129

2.1. Pseudo-code for calculating Shapley effects. To calculate the Shapley effect for130

a feature, we need to find the incremental cost of adding the feature to the feature set of131

a function, and we define the cost in Equation 2.2. In this section, we describe how our132

implementation of Shapley effects can be broken into three main steps. First, we use Monte133

Carlo sampling to generate an input sample, X. More specifically, we define distributions134

by incrementally adding input features and sample these to encode the interactions between135

different features. The input sample X is then passed through the function of interest f ; then136

using the definition of cost function and bootstrap sampling, we calculate the Shapley effects137

for each feature. We now cover the steps that we follow to generate our input sample X and138

provide code snippets for further clarity. To understand how we calculate Shapley effects,139

please take a look at our publicly available implementation at https://github.com/ajv012/140

shapley julia.141

In order to define our input sample X—which encodes the interactions between different142

features—we consider all the possible permutations of the features and all of the subsets of143

each permutation. Before, we get into the steps we follow to generate X, we outline the144

hyper-parameters of our algorithm:145

146

1. NV : number of samples used to calculate the variance of the output Y .147

2. NO: number of samples taken to estimate the conditional variance of the output Y148

conditioned on a subset of features XJ .149

3. NI : size of each of the NO samples taken.150

4. nperms: number of permutations of the input features considered. If all permutation151

of m features considered, then we have the exact permutation method. In case of152

randomly sampling permutations, we have the random permutation method.153

5. nboot: number of bootstrapped samples used to estimate the cost function.154

To make it easier to follow the steps, consider the following example. Say, we have 5155

features, [1, 2, 3, 4, 5], and m = 5. The steps we follow to define X are:156

157

1. Sample NV from the joint distribution of all features C5. Store this as sample A.158

2. Consider a permutation of the features [1, 3, 5, 4, 2], call it π.159

3. Within π, select the first feature [1] (call its distribution X+), and the remaining160

features [3, 5, 4, 2] (call their joint distribution X−).161
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4. Generate NO samples of size NI from the distribution of X+ conditioned on X−. Call162

this set of samples sample B.163

5. Repeat steps (2) and (3) by incrementally adding the next feature in π to X+ and164

keeping the remaining features in X−. Keep concatenating the generated samples to165

sample B.166

6. Repeat steps (2)-(5) for all possible permutations of the features (exact permutation)167

or a given number of permutation (random permutation).168

7. Sample A is used to estimate the variance of the output, whereas sample B is used to169

estimate the mean conditional variance by nboot bootstrapped samples.170

171

Now we present a code snippet from our implementation that generates sample A and172

B to encode the correlations between the different features. This is the core of the Shapley173

algorithm. First, from the method object we extract all of the necessary hyper-parameters.174

Then, we decide if we are iterating over all permutations of features (exact) or sampling from175

all permutations (random). We sample NV from the joint distribution of the marginals. We176

then have three loops:177

178

• First loop iterates over all permutations (step 2 from above),179

• Second loop samples NO from X−,180

• Third loop samples NO samples of size NI from X+ conditioned on X− (step 4).181

For rest of the algorithm, i.e., how we compute the effects from the input sample, please182

refer to our public implementation at https://github.com/ajv012/shapley julia.183

184

if (n_perms==-1)185

estimation_method = "exact";186

perms = collect(permutations(range(1,dim), dim));187

n_perms = length(perms);188

else189

estimation_method = "random";190

perms = [randperm(dim) for i in range(1, n_perms)]191

end192

193

# Creation of the design matrix194

sample_A = copy(transpose(rand(input_distribution, N_V)));195

sample_B = zeros((n_perms * (dim - 1) * N_O * N_I, dim));196

197

#---> First loop to go over the permutations198

for (i_p, perm) in collect(enumerate(perms))199

idx_perm_sorted = sortperm(perm) # Sort the variable ids200

for j in 1:(dim-1)201

# normal set202

idx_plus = perm[1:j];203

# Complementary set204

idx_minus = perm[j+1:end];205
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sample_complement = sample_subset(input_distribution, N_O, idx_minus);206

for l in range(1,size(sample_complement)[1])207

curr_sample = sample_complement[l, :];208

xj = cond_sampling(input_distribution, N_I, idx_plus, ...209

idx_minus, curr_sample);210

xx = reduce(hcat, (xj, repeat(transpose(curr_sample), N_I)));211

ind_inner = (i_p - 1) * (dim - 1) * N_O * N_I + (j-1) * ...212

N_O * N_I + (l-1) * n_inner;213

ind_inner += 1;214

sample_B[ind_inner:ind_inner + N_I - 1, :] = ...215

@view xx[:, idx_perm_sorted];216

end217

end218

end219

2.2. Salient features of our implementation of Shapley effects. Our algorithm for cal-220

culating Shapley effects has four salient features. First, unlike the R implementation provided221

by [7], our implementation decouples the sample generation (where different permutations and222

their subsets are considered to generate conditional samples) and the Shapley effect calcula-223

tion stages. In the original implementation, since these stages are not decoupled, they cannot224

be modulated independently. For example, if one wants tighter confidence interval bounds on225

their Shapley effects, they would need to increase the nboot variable, but this would cause the226

sample generated to be extremely large as well. This is not necessary as only more samples are227

needed to make the bounds tighter. This behavior is not seen in our implementation, where228

tighter bounds on the Shapley effects can be achieved without increasing the computational229

requirements for the sample generation phase. The second benefit of decoupling these steps230

is that different high performance techniques can be applied as per the needs of each stage.231

For example, since the external library https://github.com/lrnv/Copulas.jl is heavily used in232

generating the samples, we cannot parallelize it and and can only make improvements to the233

serial code. In the implementation of [7], this would mean that the Monte Carlo simulations234

cannot be parallelized. However, with our implementation, we can parallelize the simulations235

and separately optimize the sample generation code. This is discussed further in section 5.236

The second salient feature of our implementation of Shapley effects is that it can be applied237

to both functions with known analytical forms (e.g., linear, Ishigami [2], etc.), as well as a238

system of differential equations (e.g., Lotka–Volterra equations for a prey-predator system239

[4]). We analyze both of these systems thoroughly in our experiments in section 3. Third,240

our implementation allows the users to precisely control the input marginal distributions for241

all of the features and define a copula to encode the interactions and correlations between the242

different features. Finally, we implement the exact and random permutation versions of the243

Shapley effects algorithm so that it is tractable to compute Shapley effects for functions with244

a larger number of input variables.245

3. Experiments. To comprehensively test our implementation of Shapley effects, we per-246

form a series of correctness and exploratory experiments and compare the results with Sobol247

indices. We also show the utility of Shapley effects. In order to investigate the effect of dif-248
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ferent experimental parameters on estimated Shapley effects—namely NV , NO, and NI—we249

use the same systems as in the correctness case.250

3.1. Correctness experiments. To determine the correctness of our implementation of251

Shapley effects, we implement commonly used test cases for GSA for which we know what252

the expected relative attributions as given by theory. First, we test on the simple linear case253

(Equation 3.1), with A = 7 and b = 0.1, with the assumption that x has a uniform marginal254

distribution in the interval −π to π. It is expected that feature x would account for 100% of255

the variance in the output, so the Shapley effect for x should be close to 1.256

(3.1) y = Ax+ b257

Next, we compare the Shapley effects implementation on the Ishigami function [2]. The258

Ishigami function (3.2) is a recurrent test case for sensitivity analysis methods and uncertainty.259

it is non-linear, non-monotonic, and displays strong inter-dependence between its features,260

specifically the first and third as seen in the last term of Equation 3.2. For our tests, we take261

all xi to be uniformly distributed on the interval −π to π, and take a = 7 and b = 0.1. It is262

expected that most attribution be given to x1 and x2, and little attribution goes to x3 because263

of its dependence on x1.264

(3.2) f(x1, x2, x3) = sin(x1) + a sin2(x2) + bx43 sin(x1)265

To test the correctness in both linear and Ishigami function, we compare the output of266

our Shapley algorithm with that Sobol first and total order indices. We do not expect the267

exact attribution values to match due to their different meanings, but expect similar trends in268

relative importance given to different features. Additionally, in both the linear and Ishigami269

function tests, we also provide the function with an extra feature, which remains unused. The270

purpose of this test is to ensure that zero attribution is given to this unused feature.271

3.2. Sensitivity to Hyper-parameters. To determine the effect of hyper-parameters re-272

quired for Shapley effects (NV , NO, and NI), we compute the Shapley effects for the Ishigami273

function with various combinations of these hyper-parameters and also keep track of the run274

time and memory allocations. Trends in these measures will help in determining good trade-275

offs between speed, memory, and accuracy of calculated Shapley effects.276

3.3. Case study 1: Manufacturing system model. The first example we consider is277

a make-to-order manufacturing system, where we model manufacturing of multiple product278

types using a Jackson network [3]. Queueing network models are extensively employed in279

industrial engineering and operations research to optimize manufacturing and service systems.280

Our objective in conducting sensitivity analysis is to identify the specific product type that281

has the greatest impact on fluctuations in the expected order completion time for all jobs.282

This valuable information can assist companies in effectively managing system tension and283

reducing overall fluctuations. To achieve this, we estimate the Shapley effects and compare284

them with the first-order and total effects, providing a comprehensive evaluation of their285

respective contributions within this manufacturing system.286

Consider the network depicted in Figure 1, which represents a manufacturing line with287

six workstations labeled A-F, each handling a different job. Throughout a month, the daily288
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arrival rates of six jobs, namelyX1...X6, remain consistent. The model’s output is the monthly289

expected completion time for the manufacturing line (η), with the X representing the input290

containing the six arrival rates. Since fluctuations in this anticipated time can result in costs291

for the company, we use Shapley effects to identify the job types that have the most significant292

impact on the variation in expected completion time.293

Figure 1. Jackson model of manufacturing line with size workstations (A-F) and six incoming orders (X1−6).

Different jobs arrive at different workstations. Job 1 arrives at workstation A, jobs 2, 3, 5294

arrive at workstation B, and jobs 4, 6 arrive at workstation E. After each of the job is processed,295

they are routed to the next workstation with passing probabilities shown on the arrows in Fig-296

ure 1. Job arrival and processing times are assumed to be independent. The processing rates297

at each workstation are fixed at: µA = 1.2, µB = 1.5, µC = 4, µD = 1.8, µE = 3.6, µF = 1.5298

(per day) [7]. Since calculation of Shapley effects requires specification of marginal distribu-299

tion of each input, we used Distributions.jl to model each arrival rate with a beta distribution,300

B(α = 1.5, β = 2.0,min = 0.5,max = 0.8).301

The Jackson model calculates the expected job completion time η given the arrival rates302

vector X, as shown in Equation 3.3. First, the daily arrival rates at each workstation vA−F303

are calculated, which are then combined to get the job completion time of the network η.304

vA = X1(3.3)305

vB = 0.4X1 +X2 +X3 +X5306

vC = 0.3X1 + 0.15X4 + 0.15X6307

vD = 0.6X1 + 0.3X4 + 0.3X6308

vE = X4 +X6309

vF = 0.85X4 + 0.85X6 + 0.3X1310

η(X1, . . . X6) = {
F∑

i=A

vj
µj − vj

} × (
24∑6
i=1Xi

)311

312

3.3.1. Numerical experiment: How do correlated inputs affect feature attributions?.313

We first calculate the Shapley effects of the six order arrival rates assuming that all orders314

arrive independently. In line with [7], we use the parameters NV = 2, 000, NO = 100, NI = 2,315

and nboot = 1, 000, nperms = 6!. In order to make a fair comparison between Sobol indices316
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and Shapley effects, we also implement Sobol first and total order indices so that the same317

sampling method used to calculate Shapley effects can be used to find Sobol indices.318

However, in real world manufacturing and operations research, it is highly unlikely that319

all order rates are independent of each other. Let’s consider a scenario where products of320

types 1 and 2 exhibit a complementary nature, resulting in a positive correlation between321

their respective demands. Conversely, products of types 3 and 4 act as substitutes for one322

another, leading to a negative correlation in their demands. We now incrementally test the323

effect of adding in correlated inputs on the calculated Shapley effects and Sobol indices. First,324

we consider ”small correlation”, where Corr(X1, X2) = 0.25 and Corr(X3, X4) = −0.25. Next,325

we consider ”large correlation” where Corr(X1, X2) = 0.75 and Corr(X3, X4) = −0.50. We326

compare the Shapley effects and Sobol indices for both the scenarios.327

3.3.2. Numerical experiment: Are all permutations of input features required?. One of328

the limitations of the naive implementation of Shapley effects is that the number of all possible329

permutations of the features, nperms, has factorial time complexity. However, all permutations330

of features may not be necessary, especially in the scenario with highly correlated inputs. To331

make the calculation of Shapley effects tractable for large number of input features, we sample332

from all possible permutations. To validate that sampling permutations leads to approximately333

similar results, we calculate and compare Shapley effects on the Jackson manufacturing model334

with different number of permutations (6! = 720, 700, 600, and 200).335

3.4. Case study 2: Prey-predatory system of differential equations. While the first case336

study worked with an analytical solution to the Jackson model, in this case study we explore337

how Shapley effects can be computed for a system of differential equations. We consider the338

Lotka-Volterra equations, which are a pair of first-order nonlinear differential equations and339

describe population densities of two inter-connected species, like a prey-predator pair. The340

populations change through time according to the pair of equations:341

dx

dt
= αx− βxy342

dy

dt
= δxy − γy343

344

Where x and y are the population densities of the prey and the predator, respectively,345
dx

dt
and

dy

dt
model the instantaneous growth rates of populations, α is the maximum per346

capita growth rate of the prey, and β represents the presence of predators on the growth rate.347

Similarly, δ and γ represent the predator’s growth rate and presence of prey, respectively.348

The four parameters are given the following initial values, α0 = 1.5, β0 = 1.0, δ0 = 3.0, γ0 =349

1.0. For the sampling of these parameters, we assume uniform distributions over [1, 5]. We350

solve the problem using the time span of 10 months, and calculate Shapley effects and Sobol351

indices at five time points (2, 4, 6, 8, and 10 months) using TsiT5 solver in Julia. Since352

the goal of this case study is to show that Shapley effects can be applied to a system of353

equations, we assume all parameters are independent. The hyper-parameters for this study354

are: nperms = 4! = 24, NV = 1000, NO = 100, NI = 3, nboot = 1000.355
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4. Results.356

4.1. Correctness. To test the correctness of our implementation of Shapley effects, we test357

it on two commonly used functions in sensitivity analysis—linear and Ishigami functions—and358

compare the attribution given to the input features with Sobol indices. For the linear system359

(Figure 2A and B), we see that 99.95% of variance is accounted for by the first feature (A360

in Equation 3.1) and no attribution is given to the second feature (B in Equation 3.1). This361

is reasonable because the inputs affect the function output via the feature A, and feature362

B does not account for any of the variance. Similarly, the first order and total order Sobol363

indices give highest attribution to feature 1. In the Ishigami function, we would expect low364

attribution for the third feature because it is correlated with the first feature. Shapley effects365

give 9.8% attribution to the third feature, whereas the remaining attribution is largely given366

to the first two features (Figure 2C). When interpreting Sobol indices for this example, we367

see that first order and total order indices demonstrate different stories (Figure 2D). First368

order indices say that feature 2 is most significant, but total order indices indicate that the369

first feature is the most significant. Moreover, first order and total order indices cannot be370

compared against each, so one cannot argue that feature one is most important because total371

order index assigned to it is the largest out of all Sobol indices (Figure 2D). On the other372

hand, Shapley effects for different features are comparable because they are percentages of373

the total variance, hence one can argue that features one and two are more sensitive than374

feature 3 because they account for a larger percentage of the variation. This highlights the375

limited interpretation of Sobol indices. Finally, the unused feature, namely the fourth feature,376

is given the lowest attribution, which is reasonable.377

4.2. Sensitivity to hyper-parameters. The Shapley effects algorithm has four hyper-378

parameters NV , NO, NI , nboot. We analyze the effect of these hyper-parameters on the ac-379

curacy, memory allocations, and computation time of Shapley effects, using the Ishigami380

function as a test case (Table 1). Since NV controls the size of the sample used to calculate381

the output variance, it is important not to make that variable too small, even though larger382

NV would directly affect the allocation and computation time. However, between 1000 and383

10000, we do not see any significant gains but higher increase in costs (4× increase in memory384

allocation and 3× increase in computation time). It is also important to balance NO and NI385

because the former denotes the number of samples for calculating the conditional variance and386

the latter controls the size of the sample. If many small samples are taken (NI=2), we can get387

non-senseical results like negative Shapley effects. Taking very large samples can can cause 7×388

increase in computation time. Thus, these two variables need to be balanced. Finally, nboot389

determines the number of bootstrapped samples of size NV taken; its effect is directly seen390

on the size of the confidence intervals. We find that 60, 000 samples leads to tight confidence391

intervals, and beyond this, there are more costs than gains. Our selected parameters shown in392

the last line of Table 1 balance the accuracy, speed, and memory allocation for the Ishigami393

function. One must note that these values are problem-specific and we encourage users to394

perform such an analysis to find the best set of hyper-parameters for their problem at hand.395

4.3. Case study 1: Manufacturing model. Regardless of the amount of correlation be-396

tween the features, Shapley effects find that in the Jackson model for the manufacturing line397

is the most sensitive to feature 2, and this features accounts for large portions of the output398
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Figure 2. For the linear system described in Equation 3.1 (A) Shapley effects (B) First order and total
order Sobol indices. For the Ishigami function described in Equation 3.2 (C) Shapley effects (D) First order
and total order Sobol indices. Error bars show 95% confidence interval on nboot samples.

variance (Figure 3). We see that as we increase the correlation between the first two fea-399

tures, the attributions given to them by the Shapley algorithm also scales accordingly, i.e.,400

importance for feature 2 is ”routed” to feature 1, which is what we would expect for highly401

correlated inputs. On the other hand, for independent and small correlation case, we see402

that the Sobol indices also assign highest attributions to the first two features. However, we403

once again see that Sobol first order and total order indices are contradicting each other, and404

since they are not directly comparable, it is difficult to determine which feature is the most405

important. Moreover, we see that as we increase the correlation between the features, Sobol406

indices conclude that the first two features are no longer as important as the others, which is407

in contrast to the Shapley effects. This helps us validate that when features are correlated,408

Shapley effects are a better choice for sensitivity analysis because of fewer discrepancies.409

Additionally, we use the factory system to determine if all of the permutations of the410

features are required to accurately calculate the Shapley effects. This is an important question411

because the Shapley algorithm has factorial complexity with the number of permutations,412

i.e., the nperms = (number of features)!. So, for the factory system, the total number of413

permutations to consider are 6! = 720. For different levels of correlations between inputs,414

we find that sampling 80% of total permutations is sufficient to get similar Shapley effects415

(Figure 4). Similar attributions are given to the features as low as 200 permutations (28%416

of total permutations). Interestingly, we find that the sixth feature gets increased attribution417

at lower number of permutations (Figure 4) for both the no correlation and high correlation418

cases.419
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NV NO NI nboot Feature 1 Feature 2 Feature 3 Allocation (GB) Time (ms)

10 100 3 60000 0.316 (0.302, 0.329) 0.497 (0.479, 0.515) 0.125 (0.116, 0.135) 1.77 479.86
100 100 3 60000 0.484 (0.483, 0.485) 0.414 (0.413, 0.415) 0.033 (0.033, 0.034) 1.86 493.34
1000 100 3 60000 0.396 (0.395, 0.396) 0.383 (0.382, 0.383) 0.153 (0.153, 0.153) 2.67 631.20
10000 100 3 60000 0.380 (0.379, 0.381) 0.414 (0.413, 0.414) 0.140 (0.139, 0.140) 10.71 1772.0

1000 1 3 60000 0.707 (0.706, 0.708) 0.501 (0.500, 0.501) -0.253 (-0.254, -0.253) 1.52 333.06
1000 10 3 60000 0.124 (0.123, 0.124) 0.716 (0.714, 0.719) 0.067 (0.065, 0.069) 1.63 351.6
1000 100 3 60000 0.319 (0.318, 0.319) 0.418 (0.417, 0.418) 0.167 (0.167, 0.169) 2.67 579.71
1000 1000 3 60000 0.431 (0.430, 0.432) 0.387 (0.387, 0.387) 0.104 (0.104, 0.104) 12.97 2917.0

1000 100 2 60000 0.459 (0.458, 0.460) 0.402 (0.402, 0.403) 0.075 (0.074, 0.075) 2.66 602.27
1000 100 5 60000 0.382 (0.381, 0.382) 0.394 (0.393, 0.394) 0.157 (0.157, 0.157) 2.67 714.80
1000 100 10 60000 0.459 (0.458, 0.460) 0.395 (0.394, 0.395) 0.083 (0.082, 0.83) 2.67 908.03
1000 100 100 60000 0.396 (0.395, 0.396) 0.448 (0.448, 0.449) 0.096 (0.096, 0.097) 2.69 4684.0

1000 100 3 100 0.388 (0.375, 0.401) 0.413 (0.399, 0.426) 0.123 (0.115, 0.132) 0.03 7.19
1000 100 3 1000 0.437 (0.432, 0.442) 0.412 (0.408, 0.416) 0.078 (0.075, 0.081) 0.07 16.10
1000 100 3 10000 0.436 (0.434, 0.437) 0.379 (0.378, 0.381) 0.107 (0.106, 0.108) 0.48 111.98
1000 100 3 100000 0.392 (0.392, 0.393) 0.440 (0.439, 0.440) 0.079 (0.079, 0.080) 4.42 1029.0

1000 100 3 60000 0.398 (0.397, 0.398) 0.386 (0.385, 0.386) 0.147 (0.146, 0.147) 2.67 605.61

Table 1
The effect of different hyper-parameters NV , NO, NI , nboot on the output of the Shapley effects algorithm

on the Ishigami function. The values in bold indicate the hyperparameter that is being changed for that set of
experiments. The final row shows the set of hyper-parameters used in making Figure 2C. The Shapley effects
for the different features are reported with their 95% Confidence Interval in brackets.
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Figure 3. Shapley effects and Sobol indices for the manufacturing line Jackson model explained in Equation
3.3. (A), (B), (C) show Shapley effects for increasing correlations between inputs. (D), (E), (F) show the first
order and total order Sobol indices for increasing correlations between inputs. Error bars show 95% confidence
interval on nboot samples.

4.4. Case study 2: Prey-predatory system. The previous case study had an analytical420

formula that could be analyzed. In this case study, we show that our implementation of421

Shapley effects can also be applied to a system of differential equations and that the attribution422

to different features can be analyzed as a function of time. In Figure 5, we see that the different423
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Figure 4. Shapley effects for the manufacturing line Jackson model with different number of randomly
selected permutations. We repeat the experiment for when there is no correlation between input features (top
row) as well as when there is high correlation between features (bottom row). Error bars show 95% confidence
interval on nboot samples.

parameters of the prey-predator system have different attributions at different timepoints.424

Here, the interpretability of Shapley effects is again exemplified. First, for the prey, we see425

that the prey system is most sensitive to the δ parameter (the effect of the presence of prey426

on the predator’s growth rate), whereas the predator system is generally most sensitive to427

the β parameter (the effect of the presence of predators on the prey growth rate). These are428

reasonable because the greater growth rate of prey would affect the predatory system (and429

vice-versa).430
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Figure 5. Shapley effects and Sobol indices (first and total order) for the prey-predatory system at different
time points.

5. Performance Engineering.431

5.1. Efforts made in performance improvements. We started with a serial, naive im-432

plementation of the program based on the numpy implementation in Shapley effects [5]. To433

improve performance of our code, we followed the principle of optimising serial performance434

first, then looking at parallelism. Our efforts in this can be categorised under three main435

steps:436

5.1.1. Type Stability. We first went over our code to ensure all functions were type-stable,437

i.e. the compiler knew what type of output and input to expect for every function in the438

program. This includes both the core computation GSA function, as well as helper functions439

we wrote for sampling. This required going through all the function calls and anticipating what440

the type could be, and mentioning that in the function declaration. This did not yield any441

noticeable performance improvements over baseline on our test example (Ishigami function).442

This is not surprising since our baseline code already had some type-stability incorporated and443

the fact that the program has significant computation complexity and requires a large number444
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of allocations which dwarf the effect of type-stability. Nevertheless, our final implementation445

of the code is type-stable.446

5.1.2. Memory Management (Allocations). Memory management is extremely impor-447

tant as memory requirements can cross 10 GB for even a simple test function like Ishigami448

on moderate values of the hyperparamters (see Table 1). Our first effort was in pre-allocating449

large arrays before computation to reduce number of allocation calls inside the loops. This450

involved use of calls such as451

shapley_indices = zeros(dim, n_boot, 1);452

or similar for pre-allocation and then updating elements in loop. This was part of our453

baseline implementation.454

The next step was reducing the number of redundant copying of arrays in loops. This455

involved using @view where accessing elements of a matrix was required without modification.456

In the same vein, it was important to ensure operations where done in-place where possible457

with use of Julia’s dot operator (namely .= ). A very valuable resource for understanding the458

major sources of allocations and finding whether our if our operators were indeed allocating459

memory as we expected was the use of Julia’s track allocations command line feature , namely460

--track-allocation=user flag. This generated a .mem file listing the number of allocations461

per line of code, which was a big help in identifying the key bottlenecks. This flag, along462

with BenchmarkTools such as btime helped us see that most allocations were occurring inside463

the bootstrap loop (apart from our expected array allocations). Taking a closer look at the464

boostrap loop, two lines are of particular importance:465

idx_for_var = rand(1:n_var, n_var);466

idx_for_cond_var = rand(1:n_outer, n_outer);467

These lines are used for ’creating’ a sample for cost computation by selecting elements468

from our generated samples. They involve creating an NV and NO element random vector at469

each iteration of this loop, i.e. resulting in Order (nboot * NV + nboot * NO) allocations, a very470

significant cost considering nboot = 60, 000 and NV = 1000 are typical and have been used471

in this report. The allocations can be brought down by making these allocations in-place,472

i.e. allocating the array once and storing new random elements to it each loop instead of473

allocating more space. This would look as follows:474

rand!(idx_for_var, 1:n_var );475

rand!(idx_for_cond_var, 1:n_outer);476

However, we could not simply make all function calls in-place as we wanted to parallelize477

this loop across multiple threads. There was a trade-off to consider between reducing alloca-478

tions and reducing computation time by multi-threading. To better understand its effect on479

performance, we developed both an optimised serial code that reduced allocations as much as480

possible (by using rand!() above), and an optimised parallel code designed to make use of481

the threading but at the cost of increased allocations.482

5.1.3. Multi Threading/ Parallelism. Use of reductions: Our implementation relies on483

generating samples, calculation of the cost function based on the samples and finally calcu-484

lating the Shapley values. All these steps require construction, storage, and manipulation of485

large arrays. For efficient construction and concatenation we make use of the reduce function486

in Julia with hcat and repeat to manipulate our arrays in desired shape. An example is seen487
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as follows:488

xx = reduce(hcat, (xj, repeat(transpose(curr_sample), n_inner)));489

Multi threading: Threading is the most obvious use of parallelism in the code, and we490

also expect it provide the most significant benefit in performance. The most straightforward491

application is using the Threads.@threads call on for loops. We tackle this in two parts,492

representing the two key segments of our code:493

A. Sample generation: Sample generation involves listing the permutations of the dimen-494

sions, then generating samples based on conditional distributions and storing them in the495

input sample array. The sample generation segment has multiple nested loops with function496

calls to our sampling/distribution helper functions (one of which itself contains loops), so it497

represents an opportunity for speedup. However, use of threads do not actually improve the498

performance of our code - at best it simply reproduces the performance of serial code, or499

only slightly worsens it, when the outermost loop is threaded. Threading the innermost loop500

significantly worsens the code performance by as much as a factor of 2.501

We believe this is down to two main reasons. Firstly, we know generating threads has502

a significant overhead involved, and memory sharing across threads can lead to slowdowns.503

This is especially true when the same data structure is being accessed by multiple threads at504

once, which is true in this case - sample_B is being used by all threads for storing results while505

input_distribution, a sklar distribution type, is being passed to functions by all threads.506

Secondly, the function calls and data types used in this section includes an external library507

called Copulas. Since we do not have complete control over all aspects in these loops, we are508

unable to control it’s behaviour and modify it to be appropriate for multi-threading (discussed509

previously in Section 2.2). Therefore, we keep the sample generation part of the code as a510

serial implementation but optimise it as well as possible in terms of memory allocations.511

B. Shapley indices calculations: This segment of the code has two sets of loops. The first512

is a single for loop over the nboot for computing the cost function, while the second is two513

nested for loops over nboot and number of permutations that computes and stores the actual514

Shapley indices. For this part, we use threading across both the outer loops. This gives us a515

significant benefit and helps optimize the performance of the code. However this benefit must516

be traded-off against a cost in allocations, discussed below in performance analysis.517

Other libraries and tools beyond Threads.@threads were tried as well (such as LoopVec-518

torisation.jl) but no noticeable benefit over the Threads.@threads was seen. An additional519

benefit of using Threads in this manner was its versatility whereas several other tools had520

more specific requirements from underlying code.521

5.2. Benchmarks and Performance Analysis. For analysing the performance of our pro-522

gram, we measure it’s performance using the 3 dimensional Ishigami function with NV = 1000,523

NO = 100, NI = 3, nboot = 60, 000. We benchmark: (i) the python Shapley effects implemen-524

tation [5], which served as the inspiration for our code, (ii) our baseline Julia implementation525

in the structure of the GSA repo, (iii) our optimised serial implementation for the Julia code,526

and (iv) the optimised parallel implementation for the Julia code. The runtime and mem-527

ory allocations for the implementations is shown in Table 2. Note that the allocations for528

python code are not listed as no direct analogue to btime or Julia’s BenchmarkTools could be529

found and the python functions for similar functionality may have differences. All benchmarks530
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reported are for a 2020 M1 processor Macbook Air, with 4 threads in case of multi-threading.531

Implementation NV NO NI nboot dim Runtime (s) Allocations (GB)

python-shapley [5] 1000 100 3 60000 3 12.009 n/a
julia-baseline 1000 100 3 60000 3 1.917 4.12

julia-optim. serial 1000 100 3 60000 3 1.372 1.99
julia-optim. parallel 1000 100 3 60000 3 0.582 2.67

Table 2
Performance benchmarks, namely runtime and allocations, for 4 implementations of Shapley effects for

GSA: ’python-shapley’ refers to the implementation of Shapley effects in python [5], ’julia-basline’ is our im-
plementation of Shapley-effects in the GSA scaffold, ’julia-optim. serial’ refers to our optimised serial imple-
mentation while ’julia-optim. parallel’ is our optimised parallel implementation, running over 4 threads.

We see that the baseline Julia implementation is itself 6.3× faster than the Shapley effects532

implementation in python, underscoring the benefits of developing high-performance code in533

Julia. Our optimised serial implementation is about 1.4× faster than the baseline, while534

using less than half the memory, 1.99 GB vs 4.12 GB, representing a significant saving. Our535

optimised parallel code comes in at 3.3× faster than the baseline and 2.4× faster than the536

optimised serial code. However, its performance comes at a cost - the parallel code uses 35%537

more memory than the optimised serial code. Overall, our fastest parallel code is over 20x538

faster than the existing equivalent python implementation, representing a significant markup539

in speed.540

As mentioned, the serial code is significantly more memory efficient, 1.99 GB vs 2.67 GB541

for the parallel implementation. This is down to two factors - an increase in allocations and542

overhead due to multi-threading, and the fact that we can use in-place operations in the543

bootstrap loop. Depending on the problem and system used, either of time or memory may544

be more important to optimise over. In this case, since a sizeable time benefit is seen on just 4545

threads, parallelization may be preferred. This is likely to be the case for most systems since546

HPC setups typically have many more threads. Moreover, while the allocations are increased,547

these are in temporary variables so memory is flushed at end of loop; the risk of going out548

of bounds in memory are limited. However, there may be certain cases where memory is549

more critical and for this reason we publish both our optimised serial and parallel code on the550

project’s GitHub.551

For analysing performance of the program, we make use of Table 1, computed using our552

optimised parallel code on the Ishigami system for different values of NV , NO, NI , nboot. In553

addition, we benchmark our program for different values of dimensions and nboot on Ishigami,554

also recording the breakup of the time spent on sample generation vs Shapley indices calcu-555

lation, as shown in Table 3.556

From Table 1, we see the most crucial variable influencing performance of the program557

is nboot. Computation time and memory scale roughly linearly (though not exactly, with558

variation at both highest and lowest values) with nboot. This follows our expectation since559

most of the computation effort and allocations are in the loop going over nboot. nboot sets560

the size of the confidence interval, therefore the user must make this key tradeoff between561

computation cost and precision. This, and other considerations relating to setting the values562
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of NV , NO, NI were discussed in Section 4.2.563

Table 3 shows that sample generation time is independent of bootstrap runs. It depends564

primarily on the dimension of the problem since that defines the number of permutations over565

which the samples are to be generated. This is a key feature of our implementation (discussed566

in Section 2.2), distinct from the Song Nelson Staum paper [7] that inspired this work. Table567

3 also shows how increasing dimension drastically increases memory and time requirements568

in both sections of the code. This underscores the importance of the random permutation569

implementation - generating all samples using the exact permutation method for even 10+570

dimensions may prove to be very costly. Fundamentally, the use of random permutations571

method makes the problem of Shapley effects calculation tractable.572

NV NO NI nboot dim Total runtime (s) Total allocations (GB) Sample time (s) Shapley time(s)

1000 100 3 1000 3 0.014 0.073 0.006 0.008
1000 100 3 1000 4 0.075 0.281 0.038 0.038
1000 100 3 1000 5 0.531 2.02 0.370 0.161
1000 100 3 1000 6 3.590 13.71 2.162 1.428
1000 100 3 1000 7 45.083 128.35 22.903 22.180

1000 100 3 100000 3 1.054 4.42 0.006 1.048
1000 100 3 100000 4 3.387 15.45 0.081 3.305
1000 100 3 100000 5 20.629 88.19 0.292 20.337

Table 3
Runtime and allocations as a function of number of dimensions and number of bootstraps. The total runtime

is broken down into the time taken for generating the sample (sample time) and the time for calculating Shapley
indices (shapley time).

6. Conclusion. In this report, we discussed the importance of global sensitivity analysis,573

a crucial technique for analysing the behaviour of a system over entire range of its input pa-574

rameters. We discussed the motivation for developing an implementation for Shapley effects,575

a GSA technique which is interpretable and can account for dependencies in input parameters576

of a system. We described our implementation of Shapley effects in Julia. This involved esti-577

mating the incremental cost of adding an input feature of a function to the entire feature set,578

and using Monte Carlo sampling to calculate the conditional variances. Our implementation579

decouples the generation of samples from the computation of Shapley indices, allowing for580

independent modulation of these two segments. It follows the SciML principles and can be581

applied to functions and differential equations alike. Another key feature is that it allows582

using a random subset of permutations for generating samples, making estimating Shapley583

effects tractable in higher dimensional systems as well. We demonstrated the correctness of584

our system by testing its result on the Ishigami and Linear functions and comparing with585

Sobol. We demonstrated the benefit of our implementation of the Jackson model of a fac-586

tory system, showing how the sobol estimates can differ widely from Shapley in the case587

of dependent inputs. We also applied our program to a prey-predator system modelled by588

Lotka–Volterra ODEs to underscore its versatility. Finally, we optimised our code for per-589

formance by focusing on type-stability, reducing allocations and parallelism. We showed our590

optimised parallel code running on 4 threads is 20× faster than the equivalent Shapley effects591

implementation in python, while our optimised serial code in julia is about 9x faster than the592

python implementation. Our optimised code is available on the project repository.593

This manuscript is for review purposes only.

https://github.com/ajv012/shapley_julia
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