
18.337 FINAL PROJECT:1

PERCEPTION-AWARE MULTIAGENT TRAJECTORY PLANNER2

USING IMITATION LEARNING3

KOTA KONDO∗4

Abstract. Trajectory planning for unmanned aerial vehicles (UAVs) has been a focus of ex-5
tensive research; however, heavy computational requirements hinder their deployment in real-world6
scenarios. One solution to this challenge is to use imitation learning planners that learn optimal tra-7
jectories from existing planners and mimic their behavior. This approach offers the advantage of low8
onboard computational requirements, making it more practical for real-world applications. While9
single-agent trajectory planning has been extensively studied, multiagent planners have recently10
gained popularity due to their broad range of applications, including package delivery. Multiagent11
planners can be either centralized or decentralized, with the latter being more scalable and robust12
to single-point failures.13

Moreover, multiagent planners can be categorized as either asynchronous or synchronous, with14
the former being more scalable than the latter. Perception-aware trajectory planning has become15
increasingly popular among researchers due to its ability to gather information about the surrounding16
environment and use it to plan trajectories. This approach is particularly useful for agents flying17
in unfamiliar spaces. Although there have been numerous studies on perception-aware trajectory18
planning for single agents, its use in multi-agent systems is still relatively uncommon.19

To facilitate the training of perception-aware multiagent trajectory planners, we implemented20
Message Passing Interface (MPI) on Julia, which is a standardized and portable message-passing21
standard designed for parallel computing architectures. We conducted a performance comparison22
that demonstrated MPI’s advantage in parallelization.23

Finally, we compared our imitation learning-based approach to optimization-based approaches24
and found that our imitation learning approach had not been previously applied to decentralized,25
asynchronous, perception-aware multiagent trajectory planners.26

Key words: Julia [2], MPI, Imitation Learning, UAVs, Multiagent27

Codes: https://github.com/kotakondo/1833728

1. Introduction. In recent years, multiagent UAV trajectory planning has been29

extensively studied [1, 4, 5, 7, 9, 12, 13, 15, 17, 18, 22, 25, 28, 31]. In real-world deploy-30

ments of multiagent trajectory planning methods, it is crucial to deal with challenges31

such as (1) detecting and avoiding collisions with unknown obstacles, (2) handling32

localization errors/uncertainties, (3) achieving scalability to a large number of33

agents, and (4) enabling fast and efficient computation for onboard replanning34

and quick adaptation to dynamic environments. However, finding effective solutions35

to these challenges remains an open question.36

One approach to address challenges such as detecting and avoiding unknown37

obstacles, even in the presence of localization errors and uncertainties, is to equip38

each agent with a sensor, typically a camera, to perceive the surrounding environment.39

This allows agents to gather real-time information about their surroundings, enabling40

them to make informed decisions and take appropriate actions to avoid collisions and41

navigate through dynamic environments. However, this sensor often has a limited field42

of view (FOV), making the orientation of the UAV crucial when planning trajectories43

through unknown space. Therefore, planners for flying with limited FOV sensors44

generally need to be perception-aware to ensure that as many obstacles or other45

UAVs as possible are kept within the FOV.46

When scaling multiagent trajectory planners, it is important to note that, with47

centralized planners, each agent needs to listen to a single entity that plans all the48

∗Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA (kkondo@mit.edu).

1

This manuscript is for review purposes only.

https://github.com/kotakondo/18337
mailto:kkondo@mit.edu


2 K. KONDO

trajectories [12, 15]. While this approach simplifies planning, the central entity may49

act as a single point of failure, and the replanning abilities of the agent depend on50

their ability to communicate with the central entity. Decentralized planners greatly51

mitigate these issues, as each agent plans its own trajectory [1, 9, 18, 22, 25, 31]. De-52

centralized planners are therefore generally considered to be inherently more scalable53

and robust to failures.54

Similarly, synchronous planners such as [4, 18, 27] require all agents to wait at55

a synchronization barrier until planning can be globally triggered, whereas asyn-56

chronous planning enables each agent to independently trigger the planning step57

without considering the planning status of other agents. Asynchronous methods are58

typically more scalable compared to synchronous methods [9, 22, 31]. Table 1 shows59

the categorization of scalability of these multiagent trajectory planning approaches.60

Table 1. Multiagent Trajectory Planner Category

Synchronous Asynchronous

Centralized Not Scalable Not Possible

Decentralized Somewhat Scalable
Most Scalable
(our approach)

Many optimization-based approaches [9, 22, 25, 31] have been proposed for mul-61

tiagent trajectory generation. However, these approaches often require substantial62

computational resources, posing challenges for deployments in dynamic environments63

that demand fast on-the-fly replanning. To mitigate this issue, researchers have ex-64

plored imitation learning (IL)-based approaches [11,20,24], which offer the advantage65

of faster replanning while still achieving close-to-optimal trajectory generation.66

To tackle the challenges of (1) unknown objects detection and collision67

avoidance, (2) localization errors/uncertainties, (3) scalability, and (4) fast68

and efficient computation, we propose an IL-based decentralized, asynchronous,69

perception-aware multiagent trajectory planner. Table 2 provides a comparison of the70

proposed approach with state-of-the-art approaches.71

2. Trajectory Generation.72

2.1. Expert —Optimization-based PA MA Planning. MADER [22] pro-73

posed an optimization-check-recheck scheme for decentralized, asynchronous multia-74

gent planning. In this approach, an agent optimizes its trajectory while using received75

trajectories as optimization constraints. Next, the agent checks its trajectory against76

trajectories received in the optimization step and rechecks if it received any trajectory77

in the check step. To enhance robustness against communication delays, we proposed78

Robust MADER [9], which replaces the recheck step with a delay-check step. These79

frameworks allow fully decentralized asynchronous multiagent trajectory generation80

under real-world uncertainties and delays.81

PANTHER [23] proposed a perception-aware trajectory planner for a single agent82

in dynamic environments, generating trajectories to avoid obstacles while keeping83

them in the sensor FOV. In [24], PANTHER* improved the original PANTHER with84

less conservatism and more optimal trajectory generation, but both were limited to85

tracking and avoiding only one obstacle at a time. To overcome this limitation, we86

This manuscript is for review purposes only.



PERCEPTION-AWARE MULTIAGENT TRAJ. PLANNER USING IL 3

Table 2. State-of-the-art UAV Trajectory Planners

Method Multiagent Perception-aware

EGO-Swarm [31]

Yes No

DMPC [10]

MADER [22]

decMPC [26]

RMADER [9]

Raptor [30]

No Yes

Time-opt [19]

PANTHER [23]

PA-RHP [29]

Deep-PANTHER [24]

Proposed approach Yes Yes

Agent A

Agent B

ttrajAnew
ttrajA time

trajAnew trajA

PlanningA

constraints:
multiple agents
multiple obstacles

CheckA Delay CheckA

PlanningB CheckB Delay CheckB

Prev. iter. Next iter.

Prev. iter. Next iter.

Fig. 1. Proposed trajectory optimization and deconfliction sequence: Our approach uses an imita-
tion learning-based approach to generate trajectories for each agent, followed by a conflict detection
and resolution step based on the Robust MADER framework. Each agent first generates a new tra-
jectory in the planning step and then checks if there are any conflicts with the trajectories received
from other agents. If no conflicts are detected, the agent publishes its new trajectory and begins
checking for potential collisions in a delay check step. This delay check step is a sequence of checks
over a period of time. Finally, if no conflicts are detected during the delay check, the agent commits
to the new trajectory and publishes it. However, if conflicts are detected, the agent reverts to the
trajectory from the previous iteration and discards the new trajectory. More details on the Robust
MADER approach can be found in Section II of [9].

modified the optimization problem solved by PANTHER (see Appendix A) to enable87

tracking and avoidance of multiple obstacles, leading to a decentralized, asynchronous,88

perception-aware multi-agent trajectory planning system that incorporates this mod-89

ified optimization approach into the RMADER deconfliction framework. Fig. 1 illus-90

trates our approach’s trajectory deconfliction scheme, which is employed by both the91

expert and the student.92

2.2. Student —IL-based Approach. Deep-PANTHER [24] used IL to train93

a neural network that generates a desired position trajectory, while relying on closed-94

form solutions to obtain the direction where the onboard sensor should be looking95

(e.g., yaw on a multirotor). This closed-form yaw solution generates yaw trajectories96

given position trajectories, reducing the output dimension of the learned policy. How-97

This manuscript is for review purposes only.



4 K. KONDO

ever, this approach is not scalable in multi-obstacle environments since the closed-form98

solution only generates yaw trajectories for a single given obstacle. To address this99

limitation, we designed our IL-based method using a multi-layer perceptron (MLP)100

that generates both position and yaw trajectories. To achieve this, we increased the101

size of the neural network to 4 fully connected layers, each with 1024 neurons, and102

trained it to imitate the optimal perception-aware trajectories.103

Additionally, we added a Long Short-TermMemory (LSTM) [6] feature-extraction104

network to the MLP, inspired by the ground-robot motion planning approach [3]. This105

allowed the neural network to accept various numbers of obstacles and agents as input,106

whereas traditional feedforward neural networks can only handle a fixed number of107

obstacles. LSTM can take as many obstacles and agents as possible and generate a108

fixed length of the latent output, which we feed into the fully connected layers.109

It is also worth noting that IL-based approaches are more scalable in practice than110

optimization-based approaches. As the number of agents and obstacles in the envi-111

ronment increases, optimization-based approaches need to include more constraints112

in the optimization, leading to significant computational requirements. On the other113

hand, IL-based approaches are able to handle larger-scale environments with little to114

no additional computational overhead with the use of LSTM.115

In summary, we first fed the predicted trajectories of obstacles and received other116

agents’ trajectories to the LSTM, which outputs a fixed-size vector h. We then com-117

bine h with the agent’s own state and feed this into the fully connected layers. The118

architecture of the neural network is summarized in Fig. 2.119

Agent

Obstacles and other

agents (n, m ̸= const.)

Obst1

...
Obstn

Agent1

...
Agentm

RNN
Layers

FC
Layers

output

Fig. 2. Student Network Architecture

Table 3 shows the comparison of the state-of-the-art perception-aware trajectory120

planners. Our Expert approach is the first perception-aware multiagent trajectory121

planner that generates position and yaw coupled trajectory while tracking multiple122

obstacles, and our Student achieves much faster computation time, leveraging an123

IL-based planner.124

1Deep-PANTHER [24] generates only position trajectory, and yaw trajectory is generated by
closed-form solution based on the position trajectory.

This manuscript is for review purposes only.



PERCEPTION-AWARE MULTIAGENT TRAJ. PLANNER USING IL 5

Table 3. State-of-the-art Perception-aware Obstacle Tracking Trajectory Planners

Method
Tracking
Multi-

obstacles

Multi-
agents Trajectory Planning

[21] No No Only Position
Optimization-based
(slow & not scalable)

[14] No No Position & Yaw
Optimization-based
(slow & not scalable)

PANTHER /
PANTHER*

[23, 24]
No No Position & Yaw

Optimization-based
(slow & not scalable)

Deep-
PANTHER

[24]
No No Only Position 1 IL-based

(faster & scalable)

Expert Yes Yes Position & Yaw
Optimization-based
(slow & not scalable)

Student
(proposed)

Yes Yes Position & Yaw
IL-based

(faster & scalable)

2.3. Obstacle Sharing. As shown in Fig. 3, each agent detects and tracks ob-125

stacles and shares their predicted trajectories with other agents. This obstacle-sharing126

architecture allows the agents to have a better understanding of the surrounding en-127

vironment as a team.128

Agent 3 
Observation

Agent 2 
Observation

Agent 1 
Observation

Trajectory 
Tracker and 

Predictor

LSTM

FC layers

state

Planning Module

Agent 2

Agent 1

Agent 3

Obstacle Sharing

TrajectoryTrajectory

...

...

...

...

Fig. 3. Student Planning and Sharing Trajectory Architecture

3. Parallel Training.129

3.1. Training Setup. We used the student-expert IL learning framework, where130

our expert approach provides demonstrations, and the student is trained so that131

its neural network can reproduce the provided demonstrations. The student was132

trained in an environment containing multiple dynamic obstacles following a random-133

This manuscript is for review purposes only.



6 K. KONDO

Table 4. Data Collection Time for 100 trajectories

Data Collection Time [s]

Not Parallelized 320.4

MPI Parallelized
2 processors 181.6
5 processors 86.8

ized trefoil-knot trajectory, with a randomized terminal goal. We first used Behavior134

Cloning (BC) to collect data and train the student, but its performance was sub-135

optimal compared to the expert. Therefore, we employed the Dataset-Aggregation136

algorithm (DAgger) [16] to refine the policy training using BC. The performance com-137

parison is given by Table 5, and Section 4 provides the detailed analysis. We used138

Adam [8] as an optimizer, and we normalized our observation and trajectory to make139

it easy for the neural network to learn. Additionally, we introduced a weighted loss140

function between position and yaw. During the training process, we found that it was141

more difficult to train the yaw trajectory than the position trajectory, and thus we142

weighted the yaw loss function. In our training, we set the weight α to 70. The total143

loss is defined as:144

(3.1) Ltotal = Lpos + αLyaw145

3.2. Julia MPI performance comparison. To accelerate the training pro-146

cess of perception-aware multiagent trajectory planners, we utilized the Julia MPI147

Package to implement parallelized training, which enables us to employ parallelized148

decentralized training, as depicted in Fig. 4. We performed a performance compar-149

ison and evaluated the training time using 1 (non-parallelized), 2, and 5 processors.150

Table 4 demonstrates that decentralized training completes much faster. Specifically,151

the two-processor and five-processor training completes 1.75 and 3.68 times faster152

than the non-parallelized training, respectively.153

Fig. 4. Julia [2] MPI architecture

4. Simulation Results.154

This manuscript is for review purposes only.



PERCEPTION-AWARE MULTIAGENT TRAJ. PLANNER USING IL 7

4.1. Expert vs. Student in single-agent, single-obstacle environment.155

Table 5 compares the average performance of the expert and the student in a sim-156

ulation environment with a single dynamic obstacle that follows a trefoil trajectory157

while the agent flies diagonally to avoid obstacles. The comparison is based on the158

average cost of trajectories and computation time, and the student with BC and DAg-159

ger achieves about 6000 times faster computation time with little performance loss.160

Fig. 6 shows the simulation environment.161

Table 5. Expert vs. Student

Avg. Cost Computation Time [ms]

Expert 1317.0 5363.4

Student
(BC)

2055.4 0.5634

Student
(BC + DAgger)

1550.3 0.8978

1 2

3 4

Fig. 5. Student single-agent, single-obstacle, simulation result: We made the imitation learning-
based planner (student) fly around a trefoil-trajectory dynamic obstacle. The agent started at the
top-right corner and was commanded to fly to the down-left.

4.2. Multiagent and multi-obstacle benchmarking. We also tested the ex-162

pert and the student in two different environments: one with one agent and two ob-163

stacles, and another with three agents and two obstacles. To conduct the experiment,164

we positioned the agents in a 3.0m radius circle and had them exchange positions165

This manuscript is for review purposes only.



8 K. KONDO

diagonally, as shown in Fig. 4. We set the maximum dynamic limits to 2.0m/s,166

10.0m/s2, and 30.0m/s3 for velocity, acceleration, and jerk, respectively.167

We conducted all simulations on an Alienware Aurora r8 desktop running Ubuntu168

20.04, which is equipped with an Intel® Core™ i9-9900K CPU clocked at 3.60 GHz169

with 16 cores and 62.6 GiB of RAM.170

Table 6 and Fig. 7 compare the average performance of the expert and student171

in two different environments: (1) one agent with two obstacles, and (2) three agents172

with two obstacles. The metrics used to evaluate the performance are as follows:173

1. Computation time: the time it takes to replan at each step.174

2. Sucess rate: the rate at the agents successfully reach the goal without colli-175

sions.176

3. Travel time: the time it takes for the agent to complete the position exchange.177

4. FOV rate: the percentage of time that the agent keeps obstacles within its178

FOV when the agent is closer than its camera’s depth range.179

5. Number of continuous FOV detection frames: the number of consecutive180

frames that an obstacle is kept within the FOV of the agent.181

6. Dynamic constraints violation rate: the violation rate of the maximum ve-182

locity, acceleration, jerk, and yaw rate.183

1 2

3 4

Fig. 6. Student mingle-agent, mingle-obstacle, simulation result: We made three imitation learning-
based (student) agents fly around two dynamic obstacles. They started at the top-right corner and
was commanded to fly to the down-left. For simplicity, we omitted FOV tripods visualization.

Both the expert and the studnet achieve successful position exchange with the184

two dynamic obstacles, with similar performance. However, the student significantly185

outperforms the expert in terms of computation time, completing the task in only186

57ms compared to the much slower expert.187

In the more complex environment with three agents and two obstacles, the expert188

and the student both achieve a high success rate, while the expert does not complete189

This manuscript is for review purposes only.



PERCEPTION-AWARE MULTIAGENT TRAJ. PLANNER USING IL 9

Table 6. Benchmarking

Env. Method

Avg.
Compu.
Time
[ms]

Success
Rate
[%]

Avg.
Travel

Time [s]

FOV
Rate
[%]

Avg. of
Max #
Conti.

FOV De-
tection
Frames

Dyn.
Constr.
Violation
Rate [%]

1 agent
+ 2 obst.

Expert 3456 100 7.9 29.0 19.8 0

Student 57 100 4.5 28.0 31.0 10.3

3 agents
+ 2 obst.

Expert 6212 0 13.0 19.6 65.7 0.0

Student 119 80 5.8 25.0 35.3 5.4

Expert Student

0

1000

2000

3000

4000

1 agent with 2 obstacles

Expert Student

0

1000

2000

3000

4000

5000

6000

7000

2 agents with 2 obstacles

C
om

p
u

ta
ti

on
ti

m
e

[s
]

(a) Computation time

Expert Student

5

6

7

8

9

10

1 agent with 2 obstacles

Expert Student

6

8

10

12

14

16

18

2 agents with 2 obstacles

T
ra

ve
l

ti
m

e
[s

]

(b) Travel time

Expert Student

7

8

9

10

11

12

1 agent with 2 obstacles

Expert Student

24

26

28

30

32

34

36

2 agents with 2 obstacles

∫
‖a
‖2
d
t

[m
2
/s

3
]

(c) Trajectory smoothness (Acceleration)

Expert Student

20

22

24

26

1 agent with 2 obstacles

Expert Student

60

70

80

90

100

2 agents with 2 obstacles

∫
‖j
‖2
d
t

[m
2
/3

5
]

(d) Trajectory Smoothness (Jerk)

Fig. 7. Results of flight simulations. (a) The student’s computation time is much faster than that
of the expert, and (b) the student’s travel time is also much shorter; this is mainly because of the
faster computation time. (c-d) Since the student achieves faster replanning, it does not need to stop
as the expert does, and that leads to smoother trajectory generation.

any position exchange. The reason for this is that when agents spend too much time190

optimizing their trajectory, the constraints used in the optimization become outdated191

by the time the optimization is complete, resulting in trajectory conflicts during the192

check and delay check steps. The expert suffers from long computation time, and as193

a result, almost none of the trajectories it generates pass the check and delay check194

steps, leading to a low success rate.195

This manuscript is for review purposes only.



10 K. KONDO

5. Conclusions. In conclusion, our work has addressed the critical issue of tra-196

jectory deconfliction in perception-aware, decentralized multiagent planning. We first197

presented an optimization-based perception-aware, decentralized, asynchronous mul-198

tiagent trajectory planner (expert) that enabled teams of agents to navigate uncertain199

environments while avoiding obstacles and deconflicting trajectories using perception200

information. Although these methods achieved state-of-the-art performance, they suf-201

fered from high computational costs, making it difficult for agents to replan at high202

rates.203

To overcome this challenge, we presented a learning-based planner that was204

trained with imitation learning (IL). This approach is a computationally-efficient deep205

neural network and achieved a computation speedup of up to 6000 times faster than206

optimization-based approaches, while maintaining high performance. This speedup207

enables scalability to a large number of agents, making the student a promising ap-208

proach for large-scale swarm coordination. We used Julia MPI for parallelized training209

which led to 3.68 times faster training.210

Moving forward, our future work will focus on larger-scale simulations and hard-211

ware flight experiments to demonstrate the scalability and performance of the student212

in complex environments with many agents and obstacles. Additionally, we will ex-213

plore how to integrate the student with other state-of-the-art perception systems,214

such as SLAM, to enable even more robust and accurate perception-aware multia-215

gent trajectory planning. Ultimately, our work has demonstrated the potential for216

learning-based approaches to address critical challenges in decentralized multiagent217

trajectory planning, and we believe that these approaches will play an essential role218

in enabling the deployment of multiagent systems in real-world applications.219

Appendix A. Multi-obstacle Optimization Formulation.220

To enable tracking multiple obstacles and agents we modified the FOV term given221

in Section 4 in [23] as the following.222

(A.1) − αFOV

n∑

i

{
∫ T

0

(inFOV(obstaclei))
3dt}223

where αFOV is the weight, n is the number of obstacles, T is the total time of the224

trajectory, inFOV() returns a higher number when obstaclei is in FOV.225

REFERENCES226

[1] S. Batra, Z. Huang, A. Petrenko, T. Kumar, A. Molchanov, and G. S. Sukhatme,227
Decentralized control of quadrotor swarms with end-to-end deep reinforcement learning, in228
Conference on Robot Learning, PMLR, 2022, pp. 576–586.229

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numer-230
ical computing, SIAM review, 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671.231

[3] M. Everett, Y. F. Chen, and J. P. How, Motion planning among dynamic, decision-making232
agents with deep reinforcement learning, in 2018 IEEE/RSJ International Conference on233
Intelligent Robots and Systems (IROS), 2018, pp. 3052–3059, https://doi.org/10.1109/234
IROS.2018.8593871.235

[4] R. Firoozi, L. Ferranti, X. Zhang, S. Nejadnik, and F. Borrelli, A distributed236
multi-robot coordination algorithm for navigation in tight environments, arXiv preprint237
arXiv:2006.11492, (2020).238

[5] Y. Gao, Y. Wang, X. Zhong, T. Yang, M. Wang, Z. Xu, Y. Wang, Y. Lin, C. Xu, and239
F. Gao, Meeting-merging-mission: A multi-robot coordinate framework for large-scale240
communication-limited exploration, in 2022 IEEE/RSJ International Conference on In-241
telligent Robots and Systems (IROS), 2022, pp. 13700–13707, https://doi.org/10.1109/242
IROS47612.2022.9981544.243

This manuscript is for review purposes only.

https://doi.org/10.1137/141000671
https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1109/IROS47612.2022.9981544
https://doi.org/10.1109/IROS47612.2022.9981544
https://doi.org/10.1109/IROS47612.2022.9981544


PERCEPTION-AWARE MULTIAGENT TRAJ. PLANNER USING IL 11

[6] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, 9 (1997),244
pp. 1735–1780.245

[7] J. Hou, X. Zhou, Z. Gan, and F. Gao, Enhanced decentralized autonomous aerial swarm246
with group planning, ArXiv, abs/2203.01069 (2022).247

[8] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint248
arXiv:1412.6980, (2014).249

[9] K. Kondo, R. Figueroa, J. Rached, J. Tordesillas, P. C. Lusk, and J. P. How, Ro-250
bust mader: Decentralized multiagent trajectory planner robust to communication delay in251
dynamic environments, arXiv preprint arXiv:2303.06222, (2023).252

[10] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, Online trajectory generation with dis-253
tributed model predictive control for multi-robot motion planning, IEEE Robotics and Au-254
tomation Letters, 5 (2020), pp. 604–611, https://doi.org/10.1109/LRA.2020.2964159.255

[11] B. Park and H. Oh, Vision-based obstacle avoidance for uavs via imitation learning with256
sequential neural networks, International Journal of Aeronautical and Space Sciences, 21257
(2020), pp. 768 – 779.258

[12] J. Park, J. Kim, I. Jang, and H. J. Kim, Efficient Multi-Agent Trajectory Planning with259
Feasibility Guarantee using Relative Bernstein Polynomial, in 2020 IEEE International260
Conference on Robotics and Automation (ICRA), May 2020, pp. 434–440, https://doi.261
org/10.1109/ICRA40945.2020.9197162. ISSN: 2577-087X.262

[13] P. Peng, W. Dong, G. Chen, and X. Zhu, Obstacle avoidance of resilient uav swarm forma-263
tion with active sensing system in the dense environment, arXiv preprint arXiv:2202.13381,264
(2022).265

[14] B. Penin, R. Spica, P. R. Giordano, and F. Chaumette, Vision-based minimum-time tra-266
jectory generation for a quadrotor uav, in 2017 IEEE/RSJ International Conference on267
Intelligent Robots and Systems (IROS), 2017, pp. 6199–6206, https://doi.org/10.1109/268
IROS.2017.8206522.269

[15] D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer, An Efficient Algorithm for270
Optimal Trajectory Generation for Heterogeneous Multi-Agent Systems in Non-Convex271
Environments, IEEE Robotics and Automation Letters, 3 (2018), pp. 1215–1222, https:272
//doi.org/10.1109/LRA.2018.2794582. Conference Name: IEEE Robotics and Automation273
Letters.274

[16] S. Ross, G. Gordon, and D. Bagnell, A reduction of imitation learning and structured pre-275
diction to no-regret online learning, in Proceedings of the fourteenth international confer-276
ence on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings,277
2011, pp. 627–635.278

[17] G. Ryou, E. Tal, and S. Karaman, Cooperative Multi-Agent Trajectory Generation with279
Modular Bayesian Optimization, in Robotics: Science and Systems XVIII, Robotics: Sci-280
ence and Systems Foundation, June 2022, https://doi.org/10.15607/RSS.2022.XVIII.060,281
http://www.roboticsproceedings.org/rss18/p060.pdf (accessed 2022-07-08).282

[18] B. Sabetghadam, R. Cunha, and A. Pascoal, A distributed algorithm for real-time multi-283
drone collision-free trajectory replanning, Sensors, 22 (2022), https://doi.org/10.3390/284
s22051855, https://www.mdpi.com/1424-8220/22/5/1855.285

[19] I. Spasojevic, V. Murali, and S. Karaman, Perception-aware time optimal path parameteri-286
zation for quadrotors, in 2020 IEEE International Conference on Robotics and Automation287
(ICRA), 2020, pp. 3213–3219, https://doi.org/10.1109/ICRA40945.2020.9197157.288

[20] A. Tagliabue, D.-K. Kim, M. Everett, and J. P. How, Demonstration-efficient guided policy289
search via imitation of robust tube mpc, 2022 International Conference on Robotics and290
Automation (ICRA), (2021), pp. 462–468.291

[21] J. Thomas, J. Welde, G. Loianno, K. Daniilidis, and V. Kumar, Autonomous flight292
for detection, localization, and tracking of moving targets with a small quadrotor, IEEE293
Robotics and Automation Letters, 2 (2017), pp. 1762–1769, https://doi.org/10.1109/LRA.294
2017.2702198.295

[22] J. Tordesillas and J. P. How, MADER: Trajectory planner in multi-agent and dynamic296
environments, IEEE Transactions on Robotics, (2021).297

[23] J. Tordesillas and J. P. How, PANTHER: Perception-aware trajectory planner in dynamic298
environments, arXiv preprint arXiv:2103.06372, (2021).299

[24] J. Tordesillas and J. P. How, Deep-panther: Learning-based perception-aware trajectory300
planner in dynamic environments, IEEE Robotics and Automation Letters, 8 (2023),301
pp. 1399–1406, https://doi.org/10.1109/LRA.2023.3235678.302

[25] C. Toumieh, Decentralized multi-agent planning for multirotors: a fully online and communi-303
cation latency robust approach, arXiv preprint arXiv:2304.09462, (2023).304

[26] C. Toumieh and A. Lambert, Decentralized Multi-Agent Planning Using Model Predictive305

This manuscript is for review purposes only.

https://doi.org/10.1109/LRA.2020.2964159
https://doi.org/10.1109/ICRA40945.2020.9197162
https://doi.org/10.1109/ICRA40945.2020.9197162
https://doi.org/10.1109/ICRA40945.2020.9197162
https://doi.org/10.1109/IROS.2017.8206522
https://doi.org/10.1109/IROS.2017.8206522
https://doi.org/10.1109/IROS.2017.8206522
https://doi.org/10.1109/LRA.2018.2794582
https://doi.org/10.1109/LRA.2018.2794582
https://doi.org/10.1109/LRA.2018.2794582
https://doi.org/10.15607/RSS.2022.XVIII.060
http://www.roboticsproceedings.org/rss18/p060.pdf
https://doi.org/10.3390/s22051855
https://doi.org/10.3390/s22051855
https://doi.org/10.3390/s22051855
https://www.mdpi.com/1424-8220/22/5/1855
https://doi.org/10.1109/ICRA40945.2020.9197157
https://doi.org/10.1109/LRA.2017.2702198
https://doi.org/10.1109/LRA.2017.2702198
https://doi.org/10.1109/LRA.2017.2702198
https://doi.org/10.1109/LRA.2023.3235678


12 K. KONDO

Control and Time-Aware Safe Corridors, IEEE Robotics and Automation Letters, 7306
(2022), pp. 11110–11117, https://doi.org/10.1109/LRA.2022.3196777. Conference Name:307
IEEE Robotics and Automation Letters.308

[27] R. Van Parys and G. Pipeleers, Distributed model predictive formation control with inter-309
vehicle collision avoidance, in 2017 11th Asian Control Conference (ASCC), IEEE, 2017,310
pp. 2399–2404.311

[28] Z. Wang, C. Xu, and F. Gao, Robust trajectory planning for spatial-temporal multi-drone312
coordination in large scenes, in 2022 IEEE/RSJ International Conference on Intelligent313
Robots and Systems (IROS), 2022, pp. 12182–12188, https://doi.org/10.1109/IROS47612.314
2022.9982032.315

[29] X. Wu, S. Chen, K. Sreenath, and M. W. Mueller, Perception-aware receding horizon316
trajectory planning for multicopters with visual-inertial odometry, IEEE Access, 10 (2022),317
pp. 87911–87922, https://doi.org/10.1109/ACCESS.2022.3200342.318

[30] B. Zhou, J. Pan, F. Gao, and S. Shen, Raptor: Robust and perception-aware trajectory319
replanning for quadrotor fast flight, IEEE Transactions on Robotics, 37 (2021), pp. 1992–320
2009, https://doi.org/10.1109/TRO.2021.3071527.321

[31] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, EGO-Swarm: A Fully Autonomous and322
Decentralized Quadrotor Swarm System in Cluttered Environments, Nov. 2020, https:323
//doi.org/10.48550/arXiv.2011.04183, http://arxiv.org/abs/2011.04183 (accessed 2022-07-324
05). arXiv:2011.04183 [cs] version: 1.325

This manuscript is for review purposes only.

https://doi.org/10.1109/LRA.2022.3196777
https://doi.org/10.1109/IROS47612.2022.9982032
https://doi.org/10.1109/IROS47612.2022.9982032
https://doi.org/10.1109/IROS47612.2022.9982032
https://doi.org/10.1109/ACCESS.2022.3200342
https://doi.org/10.1109/TRO.2021.3071527
https://doi.org/10.48550/arXiv.2011.04183
https://doi.org/10.48550/arXiv.2011.04183
https://doi.org/10.48550/arXiv.2011.04183
http://arxiv.org/abs/2011.04183

	Introduction
	Trajectory Generation
	Expert —Optimization-based PA MA Planning
	Student —IL-based Approach
	Obstacle Sharing

	Parallel Training
	Training Setup
	Julia MPI performance comparison

	Simulation Results
	Expert vs. Student in single-agent, single-obstacle environment
	Multiagent and multi-obstacle benchmarking

	Conclusions
	Appendix A. Multi-obstacle Optimization Formulation
	References

