
PMAPREDUCE: A CONFIGURABLE AND INTUITIVE TOOL FOR1

PARALLELIZING REDUCE IN MAPREDUCE2

BRYAN PYO∗ AND JUNG SOO CHU†3

Abstract. MapReduce is a programming model that facilitates concurrent processing and gen-4
eration of large data using parallel processing of multiple chunks of the data through a map function5
and a reduce function. In this paper, we introduce the PMapReduce function, which integrates the6
default parallelized map function from julia in the form of Distributed.pmap, as well as our own7
implementation of a parallelized reduce, which takes advantage of multiple tiers of reduce layers in8
order to allow multiple workers to reduce at the same time. We tested our implementation on three9
different problems: PageRank, Sorting, and TF-IDF. We found that our PMapReduce generally per-10
forms faster than the non-parallelized counterparts at the cost of more memory being needed. If the11
cost of the overhead of using PMapReduce was less than the benefit from the additional paralleliza-12
tion, then there was an overall increase in performance. We found that this was more likely to occur13
with larger input sizes. Finally, we made an empirical observation that for the sorting problem, the14
optimal number of parallelized workers stayed fairly consistent regardless of the size of the input15
sequence to be sorted.16

Key words. MapReduce, Parallelization, PageRank, Sorting, TF-IDF, Julia17

Code repository: https://github.mit.edu/jschu99/18.337-Final-Project18

1. Introduction. We are currently in a very digital era, where data is becoming19

more and more important, as well as our ability to properly process and collect this20

data. With the abundance of data, parallelization techniques such as MapReduce21

have also grown in importance. MapReduce is a programming model that facilitates22

concurrent processing and generation of large data by allowing the parallel processing23

of multiple chunks of the data. Figure 1 shows the structure of MapReduce. The first24

of the two main components of a MapReduce problem is a map procedure, which filters25

and sorts the input data into an easier format for the next step, the reduce method.26

The next component, the reduce method, then takes these outputs and performs an27

operation to combine them in a meaningful way into a single output. The benefit of28

this architecture is that the map operations and the reduce operations can all be done29

in parallel. Thus, instead of operating on one element at a time, using MapReduce30

allows multiple elements to be processed at the same time through multiple workers.31

Fig. 1. MapReduce structure

Julia already has a default, parallelized version of a map function called pmap32

from the Distributed package. However, the focus of our project is to implement a33

∗MIT CSAIL (bpyo@mit.edu).
†MIT CSAIL (jshu99@mit.edu).

1

This manuscript is for review purposes only.

mailto:bpyo@mit.edu
mailto:jshu99@mit.edu

2 BRYAN PYO AND JUNG SOO CHU

parallelized version of the reduce function that uses multiple tiers of reduce operations34

in order to perform multiple reduce operations at the same time. We combine the35

Dsitrbuted.pmap and our parallelized reduce function into a single framework, the36

PMapReduce.37

There are five main classes of MapReduce problems. Metapatterns, organization38

patterns, summarization patterns, join patterns, and filtering patterns. We test our39

PMapReduce implementation on problems from three of these classes: metapatterns,40

organization patterns, and summarization patterns. Metapattern problems aims to41

find patterns within patterns within the data. We focus on the PageRank problem,42

which tries to measure how important a web page is by counting the number and qual-43

ity of links to a page and is introduced in [7]. The central idea of PageRank is that the44

more important web pages on the internet are more likely to receive more links from45

other websites. For our implementation of PageRank, we use a simple, iterative algo-46

rithm that updates weights for each website in the input by analyzing the surrounding47

nodes. Organization pattern problems restructure the input data into a more relevant48

or easy to use structure. The problem we focus on is a standard sorting problem. The49

sorting algorithm we chose divides the array into multiple smaller arrays so that the50

reduce workers can individually sort each subarray in parallel. The final reduce step51

combines the smaller sorted arrays into the final sorted array. Summarization pattern52

problems group similar data to discover new information about the input data, such53

as word count. In particular, we focus on the TF-IDF problem, which measures how54

important each word in a document corpus is to that corpus, as described in [8]. This55

is done by finding the term frequency, which calculates how many times a word ap-56

pears in a document and multiplying it with the inverse document frequency, which57

measures how many documents a word appears in.58

We will first go over several related works, especially to our task of integrating59

parallelized reduce to Julia. We will then go over details regarding our implementation60

and overall design. We will begin by discussing our implementation of PMapReduce61

and then discuss the three problems we are testing our implementation on: PageRank,62

Sorting, and TF-IDF. We will finally conclude with the results of our experimentation63

on the run time and memory allocation of PMapReduce and our overall conclusions.64

2. Related Works. The idea of MapReduce was introduced by Dean and Ghe-65

mawat as a way to process large amounts of data, inspired by the map and reduce66

functions often used in functional programming [1]. In this paper, they discuss how67

the map function can be used to process key-value pairs to generate a set of inter-68

mediate set of key-value pairs. A reduce function can then be used to combine this69

intermediate set of key-value pairs into a final relevant key-value pair. They discuss70

how their implementation can take any problem written in this format and automati-71

cally parallelize the problem and execute it across a set of machines. We expand upon72

these ideas by allowing inputs that are not necessary dictionaries and using multiple73

layers of reduce functions in order to allow for a higher level of parallelization spread74

across multiple workers on the same computer instead of across different computers.75

Since Dean and Ghemawat published their paper on MapReduce, there have been76

many papers that explored the use of the MapReduce model to solve a variety of dif-77

ferent problems. Li et al. used the MapReduce model in order to process and manage78

large-scale datasets in a distributed cluster [6]. They review how it can be used to79

generate search indices, perform document clustering, access log analysis, and per-80

form a variety of other data analytics. Verma et al. used the MapReduce model in81

the field of biology in order to process genetic algorithms [9]. They were able to use82

This manuscript is for review purposes only.

PMAPREDUCE: A CONFIGURABLE AND INTUITIVE TOOL FOR PARALLELIZING REDUCE INMAPREDUCE3

Hadoop, an open source implementation of MapReduce, to obtain stable results on83

genetic algorithm problems with up to 100000 variable problems. Finally, Ene et al.84

used the model to process large data in order to perform several different types of85

clustering, specifically k-center and k-median [2]. They were able to discover that86

their MapReduce performance performed equally or better than non-parallel imple-87

mentations and better than other parallel implementations when using a sufficiently88

large dataset.89

There have also been a few papers that explore implementing MapReduce models90

in Julia. Kavi discusses how they use Julia to implement several fast MapReduce al-91

gorithms to count word frequencies across a large number of documents [3]. Their first92

implementation was done on the CPU using two processes with MPI and their second93

implementation uses a GPU on Julia’s CUDA library. Although, we did not use a94

GPU in our implementation, their implementation of finding the word frequencies was95

helpful in implementing our simpler algorithm for finding word frequencies. Another96

paper by Kourzanov uses a MapReduce model in Julia in order to perform simula-97

tions [4]. In particular, they use it to speed up a Digital Signal Processing (DSP)98

Intellectual Property (IP) model simulation for a Wireless LAN product. They found99

that with 120 workers, the MapReduce model was able to achieve speedups of around100

40x and that with 480 workers, it was able to achieve speedups of around 260x. These101

results were very promising for our own implementation given that they also discuss102

how it was a fairly straightforward implementation of MapReduce for their simulation.103

There has also been some work on parallelizing calculations in Julia with works104

from people such as Lee et al. that use parallelization to efficiently solve matrix105

calculations [5]. Although certain matrix calcuations can be formatted as MapReduce106

problems, they did not use the model for their matrix calculations. We will be taking107

that extra step of transforming our problems of interest into MapReduce problems108

and then further parallelizing the reduce function in Julia for these problems.109

3. Design and Implementation. In this section, we discuss the implementa-110

tion details for PMapReduce and its three application examples, PageRank, Sort, and111

TF-IDF.112

3.1. PMapReduce. Julia already has an implementation for parallelized map113

in the form of Distributed.pmap. It spawns workers that can handle the given map114

task in parallel by splitting the input collection into batches. Its main advantage is115

that it provides an intuitive and easy to use tool for parallel computing, abstracting116

away details such as spawning the workers, distributing tasks, and combining them117

into the single output variable. It offers a multitude of features, such as configurable118

batch size and error handling. The PMapReduce that we implemented is an extension119

of this function, with parallelized reduce integrated as well. The goal is to provide an120

intuitive and easy to use function like Distributed.pmap while integrating parallelized121

reduce.122

One way to achieve parallelized reduce is by having tiered reduce functions. Fig-123

ure 2 shows the structure of PMapReduce. Suppose the map function generates n124

items in the output. Traditionally, this can be processed by a single non-parallelized125

reduce function that takes in an input collection and returns a single output. How-126

ever, to parallelize this, we split the n map output items into m1 batches (n ≥ m1)127

and spawn m1 workers, each of which is running a reduce function on the batch.128

There will be m1 outputs from this process. The aforementioned reduce workers form129

the first tier of reduce functions. With this design we can add multiple reduce tiers,130

where we let the ith tier spawn mi workers. Then, with k total reduce tiers, the131

This manuscript is for review purposes only.

4 BRYAN PYO AND JUNG SOO CHU

number of outputs after each reduce tier would be m1, . . . ,mk, a non increasing se-132

quence. Note that we want the final output to be a single output, so mk must be133

1. In terms of performance, this design has benefits and drawbacks. Its main ben-134

efit is that all of the reduce tiers are parallelized, except for the last one. With a135

large input and suitable hardware, this can result in faster performance. However,136

the drawback is that compared to using a single reduce function, the total number of137

operations and memory allocation increase. So, the performance comparison results138

between PMapReduce and the traditional approach of combining Distributed.pmap139

with reduce depend heavily on the scenario.140

Fig. 2. The structure of PMapReduce with tiered reduce functions

Our implementation of PMapReduce takes in five inputs. The function inputs141

were designed so that as much of the implementation needed to run PMapReduce142

would be abstracted away inside the function while still offering a high degree of143

configurability. The five inputs are:144

1. input: This stores the input collection for PMapReduce.145

2. map function: This is the map function that will be used by the Distributed.146

pmap part of PMapReduce.147

3. reduce functions: This is the collection of reduce functions to be used in the148

parallelized reduce part. Each reduce function is used in a reduce tier.149

4. inter results: This is a collection of preallocated collections for storing inter-150

mediate results after each reduce tier. The use of preallocated collections has151

This manuscript is for review purposes only.

PMAPREDUCE: A CONFIGURABLE AND INTUITIVE TOOL FOR PARALLELIZING REDUCE INMAPREDUCE5

a performance advantage. This has to be passed in as an input, as opposed152

to automatically being defined inside PMapReduce, because the element type153

depends on the output type of each reduce function.154

5. reduce layer sizes: This is a collection of integers for defining the size of the155

outputs after each reduce tier. This is equivalent to the number of workers156

each reduce tier should spawn. Since the last reduce tier should have only157

one worker, so that the final output is size one, reduce layer sizes should have158

exactly one less element than reduce functions and inter results. For robust-159

ness, if reduce layer sizes is larger than expected, only the first appropriate160

number of elements are used. Conversely, if it is smaller than expected, the161

missing elements are filled in with ones.162

3.2. PageRank with PMapReduce. PageRank has many versions and dif-163

ferent ways to implement using the MapReduce framework. Since our purpose is to164

compare PMapReduce and the traditional Distributed.pmap and reduce, not to im-165

plement PageRank most efficiently, we use the simple version of it. In this version,166

the weights for each webpage need to converge according to the following formula:167

PR(A) =
1− d

N
+ d

(
PR(B)

L(B)
+

PR(C)

L(C)
+ . . .

)
168

d =Damping factor169

N =Total number of web pages170

PR(X) =The PageRank of web page X171

L(X) =The outdegree of web page X172173

Here, damping factor is the probability of the search engine user clicking one of the174

links in the current webpage, as opposed to going to a completely random webpage175

on the internet. We use the standard value of 0.85 for it. According to the above176

expression for PageRank, we can view the weight of a webpage as the sum of weight177

contributions from the webpages that link to it and a constant. Hence, we need to178

compute this efficiently in each iteration. Considering this, the iterative algorithm for179

computing PageRank is shown in Algorithm 3.1

Algorithm 3.1 PageRank iterative algorithm

Define W := weights for the websites
Initialize W = {1/N, . . . , 1/N}
while |W − prev W | > t do
C := N by N matrix storing weight contributions from web pages to others
Cij = 1ijdWi/oi, where 1ij is 1 if web page i has a link to web page j, 0 otherwise.
d is the damping factor, Wi is the weight of web page i, and oi is the outdegree
of web page i.
new W = {(1− d)/N +ΣiCi1, . . . , (1− d)/N +ΣiCiN}
prev W = new W
W = new W

end while
return W

180

The iterative algorithm for computing PageRank in Algorithm 3.1 was imple-181

mented using PMapReduce. Specifically, the computation inside the while loop is182

compatible with PMapReduce. Figure 3 shows the implementation in PMapReduce.183

This manuscript is for review purposes only.

6 BRYAN PYO AND JUNG SOO CHU

The computation of Cij is done using the Distributed.pmap of PMapReduce. Then,184

the reduce tiers compute ΣiCij . While many reduce tiers could have been used for185

this, we implemented with just two reduce tiers for the sake of simplicity. The first186

tier computes the sum of a subset of the Cij rows. For example, if it has m workers,187

each worker would compute one of Σ1≤i≤N/mCij , . . . ,Σ(m−1)N/m≤i≤NCij . Then, the188

second tier adds up the m outputs from the first tier. With this implementation, it189

is easy to add additional reduce tiers and change the number of workers, which are190

useful when the input size becomes particularly large.191

Fig. 3. PageRank implementation using PMapReduce

3.3. Sort with PMapReduce. While there are many sorting algorithms, only192

some of them can be parallelized without a significant change in the algorithm. We193

chose the sorting algorithm that works with the MapReduce framework, and it is194

shown in Algorithm 3.2. This algorithm can be implemented using PMapReduce195

with two reduce tiers. The Distributed.pmap component splits the input array into196

bins. Then, the first reduce tier spawns multiple workers, each sorting a subset of bins.197

For example, if there are 15 bins, A1, . . . , A15, and 3 workers, worker 1 sorts the bins198

A1, . . . , A5, worker 2 sorts A6, . . . , A10, and worker 3 sorts A11, . . . , A15. After that,199

the second reduce tier concatenates these sorted bins and produces the final output.200

Figure 4 shows a small example of the sort algorithm implemented with PMapReduce.201

Algorithm 3.2 Sorting algorithm

Split the input array A into n bins: {A1, . . . , An} such that ∀i, j ∈ [1, n] such that
i < j, maxAi ≤ minAj

Sort each bin, A1, . . . , An

A′ = concat(A1, . . . , An)
return A′

This manuscript is for review purposes only.

PMAPREDUCE: A CONFIGURABLE AND INTUITIVE TOOL FOR PARALLELIZING REDUCE INMAPREDUCE7

Fig. 4. Sort implementation using PMapReduce

3.4. TF-IDF with PMapReduce. TF-IDF stands for term frequency - in-202

verse document frequency, and it is a statistical measure that evaluates how relevant203

a particular word in a document is for a corpus of documents. It is useful in many204

different fields, but especially in automated text analysis and as a method of numeri-205

cally scoring words for natural language processing. It is the result from multiplying206

the term frequency term with the inverse document frequency term.207

The term frequency measures how often a particular word appears in a particular208

document. Thus, even if the same word appears in the multiple documents, it will209

have its own term frequency value for each document. The term frequency can also210

be calculated in a variety of different ways as long as within the same document,211

the value gets larger with more occurrences. We chose the logarithmically scaled212

frequency method which can be calculated with:213

TF (term, document) = log(1 + fterm,document)214

215216

where fterm,document is simply the raw number of times the term appears within the217

document. With this logarithmically scaled calculation for term frequency, the value218

increases with more frequent occurrences of the word within the document, but it219

also levels off at some point. This is to show the diminishing returns of importance220

from unique word that appears too many times within a document without being221

particularly useful in measuring relevance, such as certain proper nouns.222

The inverse document frequency term measures the frequency of a word across223

a set of documents. In other words, it is a way to measure how rare or common a224

word is within a corpus of documents. The closer this term is to 0, the more common225

the word is to the document. This can also be calculated in many ways but the most226

common method way to calculate the term is as follows:227

IDF (term, document) = log(1 +
N

|d ∈ D : t ∈ d|
)228

229230

where N is the total number of documents within a corpus and |d ∈ D : t ∈ d| is the231

number of documents within a corpus in which the term t appears. This term is232

helpful because even if a word appears many times within a single document, it is233

not very relevant within the corpus if it appears in many different documents. For234

This manuscript is for review purposes only.

8 BRYAN PYO AND JUNG SOO CHU

example, words such as “the”, “a”, and “is” are likely to appear many times within a235

single document. However, since these terms also appear across many documents in236

a corpus, it is not very significant relative to a corpus.237

Our implementation for calculating TF-IDF consists of several layers of mapping238

and reduction. There is first an initial mapping of the corpus to calculate the TF239

values. Once the TF values are obtained, they are then mapped again to represent a240

boolean flag that determines whether or not the word appears in the document. These241

initial boolean values are then reduced through two layers, across multiple workers,242

in order to get a final IDF dictionary for the corpus. Finally, the IDF dictionary as243

well as the previously calculated TF values are combined in order to get the final244

TF-IDF values for all the terms in the corpus. The algorithm is also summarized in245

Algorithm 3.3.246

Algorithm 3.3 TF-IDF algorithm

Map input document corpus −→ TF values
Map TF values −→ boolean flags for term existance
Parallized reduce boolean flags −→ IDF dicionaries
Final reduction to combine IDF dictionaries
TF − IDFvalues = combine IDF dictionary and TF values
return TF − IDFvalues

4. Results. In order to show the efficacy of PMapReduce, we compared the247

PMapReduce implementations for the three aforementioned problems, PageRank,248

sort, and TF-IDF, with their single worker reduce counterparts. Since we expected249

that the results would heavily depend on the input data size, we experimented with250

varying input size, starting from a very small number until we saw an inflection point,251

where the run time ordering between various implementations changed. Since there252

could be run to run variance, for each datapoint, we ran the experiment 10-20 times253

and used the average. We also collected data on memory allocation, as using memory254

allocation is a major downside for PMapReduce that we anticipated, and it could be255

used to explain its performance behavior.256

For PageRank, three implementations were compared for their run time and mem-257

ory allocation. The first is an implementation using a single worker map and single258

worker reduce, to provide a baseline implementation. The second is the multiple259

worker map and a single worker reduce. Note that these two do not use PMapReduce,260

as they could be implemented with Julia’s default map, reduce, and Distributed.pmap.261

On the other hand, the last implementation had a multiple worker map and a multi-262

ple worker reduce implemented with PMapReduce. Figure 5 shows the resulting run263

time. Here, the input size represents number of web pages in the input. Each link264

from a web page to the other was put into the input randomly with a 0.3 chance. We265

see that at lower input size, all three implementations had a very similar run time, but266

with larger input sizes, the multi map, multi reduce implementation was the fastest,267

followed by multi map, single reduce and single map, single reduce, in that order. This268

is likely because the three implementations use similar amount of memory allocation,269

as shown in Figure 6, so the parallelization results in a performance benefit.270

This manuscript is for review purposes only.

PMAPREDUCE: A CONFIGURABLE AND INTUITIVE TOOL FOR PARALLELIZING REDUCE INMAPREDUCE9

Fig. 5. PageRank run time results

Fig. 6. PageRank memory allocation results

The next problem we experimented on was sorting. For this problem, the input271

size represents the number of randomly generated floats in the input array. We used272

them to compare three implementations. The first two were single worker map and273

single worker reduce; and multi worker map and single worker reduce, same as PageR-274

ank implementations. However, for the third implementation that uses PMapReduce,275

This manuscript is for review purposes only.

10 BRYAN PYO AND JUNG SOO CHU

we opted to pair single worker map with the parallelized reduce. This is because, as276

shown in Figure 8, multi worker reduce uses too much memory allocation compared to277

its single worker counterpart. As a result, as shown in Figure 7, the multi map single278

reduce implementation is by far the slowest. So, we have a single map multi reduce279

implementation that we can compare to the single map single reduce implementation.280

According to Figure 7, the two use a very similar amount of memory allocation. So,281

due to the performance benefit with parallelization, single map multi reduce outper-282

forms single map single reduce as expected. In addition to the run time and memory283

allocation analysis, we also experimented with changing the number of workers in the284

reduce tier one of the PMapReduce sort implementation. As shown in Figure 9, we285

experimented with varying input sizes from 10000 to 100000 and number of workers286

from 10 to 150. We observe several interesting trends in Figure 9. First, the number287

of workers can drastically change the average run time. We notice that the runs with288

low number of workers tend to be slow. However, having the highest number of work-289

ers (150) was never the fastest run. Also, the optimal number of workers remained290

fairly consistent at around 125 workers regardless of the input size. While this result291

is hard to generalize, since the data was collected only on a single implementation292

of a problem, it is an interesting empirical result showing the relation between the293

input size and the number of workers, and the optimal number of workers in general.294

Finding the optimal number of workers is a useful step for any implementation using295

PMapReduce.296

Fig. 7. Sort run time results

This manuscript is for review purposes only.

PMAPREDUCE: A CONFIGURABLE AND INTUITIVE TOOL FOR PARALLELIZING REDUCE INMAPREDUCE11

Fig. 8. Sort memory allocation results

Fig. 9. Sort optimal number of workers. Red represents faster speed, while black is for slower
speed. The fastest run for each input size is highlighted with yellow.

The last problem we examined was TF-IDF. Here, the input size represents the297

number of documents. Standard three implementations were used for this problem:298

single worker map and single worker reduce; multi worker map and single worker299

reduce; and multi worker map and multi worker reduce. Only the last implementation300

This manuscript is for review purposes only.

12 BRYAN PYO AND JUNG SOO CHU

used PMapReduce. Also, it is important to note that the TF-IDF implementation had301

three map operations in total, and the multi map single reduce implementation used302

Distributed.pmap for all three, but the multi worker multi reduce implementation303

used Distributed.pmap for only two, and regular map for the other one. This is304

because that one map operation used too much memory allocation when parallelized305

with Distributed.pmap, to a point where it hindered the performance. This is shown306

in Figure 11, where the multi map single reduce uses substantially more memory307

allocation than the other two. As a result, as shown in Figure 10, it had the slowest308

run time. Comparing the single map single reduce and multi map multi reduce, the309

memory allocation of the two are close, although the latter uses slightly more. This310

is as expected, since parallelization and spawning workers involves more operations311

and memory usage. However, the multi map multi reduce ended up being faster312

than the single map single reduce in Figure 10, as the performance benefits from the313

parallelization likely outweighed the slight cost increase in memory allocation.314

Fig. 10. TF-IDF run time results

This manuscript is for review purposes only.

PMAPREDUCE: A CONFIGURABLE AND INTUITIVE TOOL FOR PARALLELIZING REDUCE INMAPREDUCE13

Fig. 11. TF-IDF memory allocation results

5. Conclusion. MapReduce is a common programming model that allows for315

the processing and generation of large data and consists of a mapping function and316

a reduce function. Although Julia already has a parallelized map function in the317

form of Distributed.pmap, in this paper we introduce PMapReduce which can use318

Distributed.pmap as well as our implementation of a parallelized reduce function.319

Our parallelized reduce function uses multiple tiers of reduce functions in order to320

allow multiple workers to work on reducing a set of outputs from the mapping step.321

Every tier except for the last tier of reduce functions can be done in parallel, with322

only the last tier being done sequentially in order to ensure that one correct output323

is generated.324

Through our experiments, we discovered that in general the parallelized reduce325

method led to faster performance. However, there was also a cost from the over-326

head for implementing our PMapReduce function, which made this less clear. This327

additional cost came from various factors such as creating new workers, deleting work-328

ers, and setting up the correct input and output formats. These cost were observed329

through the increased memory allocation. When the cost of using the PMapReduce330

method was less than the benefit from parallelizing the reduce method, there were331

significant decreases in performance. This disparity was better seen with larger data332

inputs due to parallelization being more impactful than the less scalable cost of setting333

up the problem.334

We also made an empirical observation that for sorting, regardless of the size of the335

input sequence, the optimal number of threads stayed fairly consistent. While this is336

not a generalizable result, since this data was collected on only one implementation for337

one problem, it was an interesting result. This is likely due to the balance between the338

cost of spawning and assigning tasks to more workers and the benefit from additional339

workers remains stable when the input size is sufficiently large and the hardware does340

not change.341

This manuscript is for review purposes only.

14 BRYAN PYO AND JUNG SOO CHU

REFERENCES342

[1] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, in343
OSDI’04: Sixth Symposium on Operating System Design and Implementation, San Fran-344
cisco, CA, 2004, pp. 137–150.345

[2] A. Ene, S. Im, and B. Moseley, Fast clustering using MapReduce, Proceedings of the346
17th ACM SIGKDD international conference on Knowledge discovery and data mining,347
(2011), pp. 681–689, https://doi.org/10.1145/2020408.2020515, https://dl.acm.org/doi/10.348
1145/2020408.2020515 (accessed 2023-05-16). Conference Name: KDD ’11: The 17th349
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ISBN:350
9781450308137 Place: San Diego California USA Publisher: ACM.351

[3] N. Kavi, MapReduce for Counting Word Frequencies with MPI and GPUs, (2022), https://doi.352
org/10.48550/ARXIV.2206.05269, https://arxiv.org/abs/2206.05269 (accessed 2023-05-16).353
Publisher: arXiv Version Number: 1.354

[4] P. Kourzanov, Parallel evaluation of a DSP algorithm using julia, Proceedings of the 3rd Inter-355
national Workshop on Software Engineering for Parallel Systems, (2016), pp. 20–24, https:356
//doi.org/10.1145/3002125.3002126, https://dl.acm.org/doi/10.1145/3002125.3002126 (ac-357
cessed 2023-05-16). Conference Name: SPLASH ’16: Conference on Systems, Program-358
ming, Languages, and Applications: Software for Humanity ISBN: 9781450346412 Place:359
Amsterdam Netherlands Publisher: ACM.360

[5] J. H. Lee, Y. Kim, Y. Ryu, W. Sodsong, H. Jeon, J. Park, B. Burgstaller, and361
B. Scholz, Julia Cloud Matrix Machine: Dynamic Matrix Language Acceleration on Mul-362
ticore Clusters in the Cloud, Proceedings of the 14th International Workshop on Program-363
ming Models and Applications for Multicores and Manycores, (2023), pp. 1–10, https:364
//doi.org/10.1145/3582514.3582518, https://dl.acm.org/doi/10.1145/3582514.3582518 (ac-365
cessed 2023-05-16). Conference Name: PMAM’23: 14th International Workshop on Pro-366
gramming Models and Applications for Multicores and Manycores ISBN: 9798400701153367
Place: Montreal QC Canada Publisher: ACM.368

[6] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu, Distributed data management using MapReduce,369
ACM Computing Surveys, 46 (2014), pp. 1–42, https://doi.org/10.1145/2503009, https:370
//dl.acm.org/doi/10.1145/2503009 (accessed 2023-05-16).371

[7] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank Citation Rank-372
ing : Bringing Order to the Web, Nov. 1999, https://www.semanticscholar.373
org/paper/The-PageRank-Citation-Ranking-%3A-Bringing-Order-to-Page-Brin/374
eb82d3035849cd23578096462ba419b53198a556 (accessed 2023-05-16).375

[8] J. E. Ramos, Using TF-IDF to Determine Word Relevance in376
Document Queries, 2003, https://www.semanticscholar.org/paper/377
Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/378
b3bf6373ff41a115197cb5b30e57830c16130c2c (accessed 2023-05-16).379

[9] A. Verma, X. Llorà, D. E. Goldberg, and R. H. Campbell, Scaling Genetic Algorithms380
Using MapReduce, 2009 Ninth International Conference on Intelligent Systems Design and381
Applications, (2009), pp. 13–18, https://doi.org/10.1109/ISDA.2009.181, http://ieeexplore.382
ieee.org/document/5362925/ (accessed 2023-05-16). Conference Name: 2009 Ninth Inter-383
national Conference on Intelligent Systems Design and Applications ISBN: 9781424447350384
Place: Pisa, Italy Publisher: IEEE.385

This manuscript is for review purposes only.

https://doi.org/10.1145/2020408.2020515
https://dl.acm.org/doi/10.1145/2020408.2020515
https://dl.acm.org/doi/10.1145/2020408.2020515
https://dl.acm.org/doi/10.1145/2020408.2020515
https://doi.org/10.48550/ARXIV.2206.05269
https://doi.org/10.48550/ARXIV.2206.05269
https://doi.org/10.48550/ARXIV.2206.05269
https://arxiv.org/abs/2206.05269
https://doi.org/10.1145/3002125.3002126
https://doi.org/10.1145/3002125.3002126
https://doi.org/10.1145/3002125.3002126
https://dl.acm.org/doi/10.1145/3002125.3002126
https://doi.org/10.1145/3582514.3582518
https://doi.org/10.1145/3582514.3582518
https://doi.org/10.1145/3582514.3582518
https://dl.acm.org/doi/10.1145/3582514.3582518
https://doi.org/10.1145/2503009
https://dl.acm.org/doi/10.1145/2503009
https://dl.acm.org/doi/10.1145/2503009
https://dl.acm.org/doi/10.1145/2503009
https://www.semanticscholar.org/paper/The-PageRank-Citation-Ranking-%3A-Bringing-Order-to-Page-Brin/eb82d3035849cd23578096462ba419b53198a556
https://www.semanticscholar.org/paper/The-PageRank-Citation-Ranking-%3A-Bringing-Order-to-Page-Brin/eb82d3035849cd23578096462ba419b53198a556
https://www.semanticscholar.org/paper/The-PageRank-Citation-Ranking-%3A-Bringing-Order-to-Page-Brin/eb82d3035849cd23578096462ba419b53198a556
https://www.semanticscholar.org/paper/The-PageRank-Citation-Ranking-%3A-Bringing-Order-to-Page-Brin/eb82d3035849cd23578096462ba419b53198a556
https://www.semanticscholar.org/paper/The-PageRank-Citation-Ranking-%3A-Bringing-Order-to-Page-Brin/eb82d3035849cd23578096462ba419b53198a556
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c
https://doi.org/10.1109/ISDA.2009.181
http://ieeexplore.ieee.org/document/5362925/
http://ieeexplore.ieee.org/document/5362925/
http://ieeexplore.ieee.org/document/5362925/

	Introduction
	Related Works
	Design and Implementation
	PMapReduce
	PageRank with PMapReduce
	Sort with PMapReduce
	TF-IDF with PMapReduce

	Results
	Conclusion
	References

