
FASTER SUBPIXEL REGISTRATION FOR FORWARD LOOKING1

SONAR RECONSTRUCTION∗2

RILEY MARTELL†3

Abstract. This paper presents a benchmarking comparison of subpixel image registration in4
Julia and Matlab as applied to forward looking SONAR reconstruction. The phase-correlation area-5
based registration algorithm is investigated and a novel Julia modification to the existing algorithm6
for GPU usage is offered. All implementations achieve the same results with varying execution7
times. Julia consistently outperforms the Matlab counterparts. Results show a 2.97 times speedup8
for serialized implementations and a 13.56 times speedup for parallel implementations, using Julia9
as compared to Matlab. The novel Julia implementation utilizing GPUs shows a 6.52 times speedup10
compared to the serial Julia code.11

Key words. Julia, Matlab, SONAR, Image Registration, Phase Correlation12

1. Introduction. Recent advances in forward-looking SONAR technologies lend13

to large collections of acoustic imagery at high frame rates, providing a useful ba-14

sis for reconstructing underwater environments. SONAR provides unique challenges15

compared to optical imagery, such as low signal-to-noise ratios and inhomogenous16

intensity across the image. Reconstruction methods for all imagery rely on image17

registration, which is the ability to align two images by means of a model and data18

transformation. To achieve a full reconstruction of a high frame rate dataset, it would19

be simple to transform nearby frames via image registration and concatenate for a20

global reconstruction. However, cumulative errors arise so global alignment is needed21

to employ consistency between consecutive and non-consecutive image pairs. Many22

methods exist for global image alignment, one such method that has shown great23

performance on SONAR datasets is pose-graph optimization. [5] [4]24

The full pose-graph optimization for forward-looking SONAR reconstruction is25

described in [4], and is outside of this project’s scope. A short summary suffices to26

motivate the work.27

Fig. 1. Pose-graph structure for forward looking SONAR reconstruction algorithms.

Suppose you have a dataset of SONAR frames F = [F1, F2, F3, ..., Fn] and con-28

∗Submitted on 5/16/2023.
†MIT Lincoln Laboratory (remartell98@gmail.com).

1

mailto:remartell98@gmail.com


2 RILEY MARTELL

straints based off neighbor pairwise image registrations p = [p12, p23, ..., p1n, p2n, ...].29

The resulting graph structure is shown in Fig. (1). Each vertex of the graph repre-30

sents the position of the SONAR image on the reference frame. Image registration31

constraints make up the edges linking corresponding vertices. [5] [4]32

The graph is initialized using the simple concatenation of transformations for33

neighbor vertices. Then, the graph is optimized using a select list of candidate frames34

for further image registration. One option for selecting candidate frames is to register35

all frames with the full rest of the set. However, this brings a huge computational36

burden and becomes untenable very quickly for sequential image registration. The37

standard approach, set by [5], is to compute registrations of each frame with several38

neighbor frames using a mixed window. The window size is estimated according39

operational parameters of the SONAR, such as range and mean velocity. [5] [4]40

In practice, this results in a small loop of image registrations for one vertex with41

its selected neighbors, computed for all vertices. This is still very computationally42

intensive. For example, one case of image registration using a dataset of 700 frames43

resulted in over 12,600 calls to the image registration function. Depending on your44

implementation, this can easily create a bottleneck.45

The aim of this project is to investigate options to ease this computational burden.46

The main contributions of this work are twofold: a series of benchmarks comparing47

phase-correlation subpixel registration in Julia and Matlab and a novel modification48

to existing phase-correlation subpixel registration in Julia that utilizes GPUs. All49

Matlab and Julia code make use of existing implementations [1] [6].50

The paper is organized as follows. Image registration is described in section 251

along with a summary of the current implementations in Julia and Matlab. Our52

benchmarking results are in section 3 followed by discussion. Our new modification53

to the existing Julia subpixel registration is described in section 5 and the conclusions54

are described in section 6.55

2. Phase-correlation Subpixel Registration Algorithm. Aligning images56

by means of a model and data transformation, or image registration, has wide appli-57

cability yet is often computationally and data intensive [2]. Registration techniques58

are broadly studied and generally fall into two categories: feature-based approaches59

and area-based approaches. To estimate the projection relating one image to another,60

feature-based approaches rely on a small set of localized, distinguishable points while61

area-based approaches utilize the intensity information from the full image [7],[5].62

Area-based methods therefore become advantageous when features are not well local-63

ized or have poor resolution, which is typical of forward looking SONAR imagery [7].64

Prior work shows sub-pixel accuracy area-based methods outperform similar feature-65

based methods for simplified forward-looking SONAR geometries, and are thus the66

focus of this work [4].67

Area-based methods, often referred to as Fourier-based methods, assess a sim-68

ilarity metric between two images in the frequency domain. A common similarity69

metric is the cross correlation. The particular area-based method shown to perform70

well on SONAR imagery is the phase-correlation registration algorithm, and will be71

the subject of analysis for this project. [5]72

The basis of the phase correlation algorithm is the Fourier shift property, which73

says that if you have two images, f(x, y) and g(x, y) related by a translation,74

f(x, y) = g(x− tx, y − ty)75

,76



FASTER SUBPIXEL REGISTRATION... 3

their resulting spectrum (obtained via Fourier transform) encodes this information77

into the phase78

F (u, v) = G(u, v) exp−i(u ∗ tx − v ∗ ty).79

The basic workflow for pixel level accuracy phase-correlation registration is shown80

in figure 2 and provides the basis for the subpixel level accuracy algorithm. The final81

translation is achieved through identifying the peak of the cross-power spectrum’s82

inverse Fourier transform.83

Fig. 2. Workflow for pixel-level accuracy phase-correlation registration, pulled from [5].

To achieve subpixel level accuracy in an efficient manor, the following workflow84

is implemented, developed in [2]. Define κ = 1/s where s is the fraction of a pixel the85

images should be registered within (i.e., s is the subpixel precision). Define M,N as86

the x and y pixel dimensions, respectively.87

• Obtain initial estimate as starting point.88

1. Set κ0 = 289

2. Compute F (u, v) and G(u, v)90

3. Embed the product F (u, v) ∗ G(u, v) in a larger array of zeros with91

dimensions [κ0M,κ0N ]92

4. Compute an inverse FFT to obtain the upsampled cross power spectrum93

5. Locate the peak94

• Obtain refined estimate using a 1.5×1.5 pixel region about the initial estimate95

(in original pixel units).96

1. Set κ1 ≈
√
(κ)97

2. Compute F (u, v) and G(u, v)98

3. Embed the product F (u, v) ∗ G(u, v) in a larger array of zeros with99

dimensions [κ1M,κ1N ]100

4. Compute an inverse FFT to obtain the upsampled cross power spectrum101

5. Locate the peak102

• Obtain refined estimate using a 3
κ1

× 3
κ1

region about the new estimate (in103

original pixel units).104

1. Set κ = 1
s105

2. Compute F (u, v) and G(u, v)106

3. Embed the product F (u, v) ∗ G(u, v) in a larger array of zeros with107

dimensions [κM, κN ]108



4 RILEY MARTELL

4. Compute an inverse FFT to obtain the upsampled cross power spectrum109

5. Locate the peak110

Typically this phase-correlation registration method is advertised as computa-111

tionally efficient and less memory-intensive. However, many implementations do not112

utilize modern computing features such as parallelism or graphical processing units113

(GPUs) [4],[1]. A high-performance solution in Julia has been developed and assessed114

for feature-based registration algorithms as applied to medical imagery, where they115

often perform very well [3]. Performance of area-based algorithms is less documented,116

and no studies seek a high-performance solution for SONAR data to the author’s117

awareness.118

3. Benchmarking results. Here we state the first results, a comparison of the119

above phase-correlation subpixel registration implemented in Matlab and Julia [1],120

[6]. Corresponding to the motivation use case, phase-correlation registrations were121

performed on real-world SONAR data collected by an unmanned underwater vehicle122

for mapping purposes.123

Both implementations computed the same results within a tolerance of ϵ = 0.001124

, deemed acceptable for this use case. Each frame has dimensions [661X484]. A125

subset of 9 frames were selected for registration within a loop, and execution time is126

evaluated for the entire loop. This directly applies to the pose-graph optimization for127

SONAR reconstruction application, we seek to optimize for.128

Figure 3 shows the results for a serialized loop using the existing Matlab and129

Julia methods. The loop was performed 10 times to ascertain confidence in the results.130

Matlab timing is computed using the ’tic’ and ’toc’ functions. Julia timing is generated131

using the ’@btime’ function from the BenchmarkTools package.132

Fig. 3. Baseline comparisons for phase-correlation registration implementations.

Figure 4 shows the results for a parallelized loop using the existing Matlab and133

Julia methods. Parallelism in Matlab is achieved using the ’parfor’ technique. Paral-134

lelism in Julia is achieved using the Threads package. Both were performed on an 8135

core machine with Intel Xeon E5 CPUs. The loop was performed 10 times to ascertain136

confidence in the results. Matlab timing is computed using the ’tic’ and ’toc’ func-137



FASTER SUBPIXEL REGISTRATION... 5

tions. Julia timing is generated using the ’@btime’ function from the BenchmarkTools138

package.139

Fig. 4. Parallelized comparisons for phase-correlation registration implementations.

4. Discussion of benchmarking results. Julia implementations give much140

faster execution times for both the serial and parallelized versions as compared to141

Matlab. This is expected because the Julia code is type stable, meaning its compiled142

version is essentially statically-typed after the first call. Even though our function is143

called in a loop, Julia is able to compile and optimize the specific registration function144

rather than having to optimize for the entire loop in its underlying LLVM code, which145

is advantageous. Matlab is known to run faster for vectorized code with pre-allocated146

arrays. While the existing implementation does a good job at pre-allocation, it is not147

well vectorized, so the execution time is understandably slower.148

The parallelized Julia code is much faster than both Matlab versions and the se-149

rial Julia version. Despite this loop not being an obvious candidate for optimization150

due to its small number of iterations, each function call is independent so Julia is able151

to execute this on multiple threads with little overhead. Matlab, on the other hand,152

experiences a great deal of overhead and is surprisingly much slower than its serial153

counterpart. There are no obvious oddities to Matlab’s phase-correlation implemen-154

tation that would cause such a slow down, such as use of parallelization within one of155

the sub-functions. It is generally advised to assess the computational burden of func-156

tion calls within a loop before introducing parallelism in Matlab, as less burdensome157

functions often have too much overhead for a benefit, and this seems to be the case158

with phase-correlation registration.159

Each method scales similarly with respect to the degree of subpixel accuracy.160

Requesting registration within a smaller fraction of a pixel results in longer execution161

times. This is due to higher dimension data from upsampling, which is more expensive162

for each operation.163

5. Algorithmic results. Here we describe our second result, a novel modifica-164

tion to the existing subpixel phase-correlation registration in Julia utilizing CUDA165

to execute expensive operations on GPUs. This algorithm is based on the Subpixel-166



6 RILEY MARTELL

Registration package and has been tested with a NVIDIA Volta GPU. This code is167

not particularly optimized, but has shown beneficial performance over the standard168

algorithm limited to CPUs.169

Fig. 5. Julia code snippet that utilizes GPUs using CUDA functionality.

Only most expensive portion of this algorithm, the upsampled discrete Fourier170

transform, is shown for brevity. Full code will be made available on GitHub at https://171

github.com/remartell/mit 18337 SubpixelRegistration.git. CuArrays were utilized to172

implement GPU calculations. Although this comes at a memory cost for transferring173

data between the CPU and GPU, execution time was the metric of interest for this174

project.175

Figure 6 shows a comparison for each Julia implementation for a variety of sub-176

pixel accuracy requirements. As expected, the serial version performs worst as there177

are no optimizations. The parallelized version performs, on average, 3.90 times faster178

than serial. The CUDA version performs, on average, 1.68 times faster than the179

parallel version and 6.52 times faster than the serial version.180

https://github.com/remartell/mit_18337_SubpixelRegistration.git
https://github.com/remartell/mit_18337_SubpixelRegistration.git
https://github.com/remartell/mit_18337_SubpixelRegistration.git


FASTER SUBPIXEL REGISTRATION... 7

Fig. 6. Julia comparisons for various phase-correlation registration implementations.

6. Conclusions. In this work, we assessed performance of the phase-correlation181

image registration algorithm in Julia and Matlab as used in forward looking SONAR182

applications. It is well confirmed that Julia outperforms Matlab with the serial and183

parallel implementations. For serialized implementations, Julia executes 2.97 times184

faster than its Matlab counterpart. For parallelized implementations, Julia executes185

13.56 times faster than its Matlab counterpart. A GPU comparison was not possible186

due to limitations in Matlab’s GPU code conversion tool, but Julia clearly showed187

benefit for using GPUs with great ease to the user. Compared to the Julia serial188

version, the CUDA version runs 6.52 times faster.189

Following the original motivation of this project, the example of 12,600 function190

calls to the phase-correlation registration function would take approximately 27 min-191

utes to achieve 1
1000 subpixel accuracy when utilizing GPUs. Comparatively, Matlab’s192

fastest offering, the serial version, would take over 8 hours to complete these compu-193

tations. Julia provides a serious benefit with little cost to the user.194

Future work on benchmarking would compare the memory use for Matlab and195

Julia algorithms. Matlab does not have easy command-line tools for assessing the196

memory footprint like Julia’s BenchmarkTools and CUDA packages, so this was not197

possible for this project. Further work on the novel Julia algorithm would optimize198

the CUDA implementation, perhaps utilizing a GPU kernel to avoid any CPU calcu-199

lations.200

Acknowledgments. I would like to acknowledge Paul Ryu who assisted in mo-201

tivating this work and provided feedback throughout.202

REFERENCES203

[1] M. Guizar, Efficient subpixel image registration by cross-correlation,204
2023, https://www.mathworks.com/matlabcentral/fileexchange/205
18401-efficient-subpixel-image-registration-by-cross-correlation.206

[2] S. T. M. Guizar-Sicairos and J. R. Fienup, Efficient subpixel image registration algorithms,207
Optics Letters, 33 (2008), pp. 156–158.208

https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation


8 RILEY MARTELL

[3] S. V. M. Van Gendt, T. Besard and B. D. Sutter, Productively accelerating positron emis-209
sion tomography image reconstruction on graphics processing units with julia, International210
Journal of High Performance Computing Algorithms, 36 (2022), pp. 320–336.211

[4] X. C. Y. P. J. S. N. Hurtos, S. Nagappa, Evaluation of registration methods on two dimen-212
sional forward-looking sonar imagery, IEEE RSJ International Conference on Intelligent213
Robots and Systems, (2013).214

[5] Y. P. J. S. N. Hurtos, X. Cuf, Fourier-based registrations for two-dimensional forward-looking215
sonar image mosaicing, IEEE RSJ International Conference on Intelligent Robots and Sys-216
tems, (2012).217

[6] romainFr, Subpixelregistration, 2016, https://juliapackages.com/p/subpixelregistration. Ac-218
cessed on 15 03,2023.219

[7] Y. X. S. G. e. a. X. Tong, Z. Ye, Image registration with fourier-based image correlation: A220
comprehensive review of developments and applications, Selected Topics in Applied Earth221
Observations and Remote Sensing, 12 (2019), pp. 4062–4081.222

https://juliapackages.com/p/subpixelregistration

	Introduction
	Phase-correlation Subpixel Registration Algorithm
	Benchmarking results
	Discussion of benchmarking results
	Algorithmic results
	Conclusions
	References

