
GPU Accelerated Hierarchical Semiseparable (HSS) Matrix
Multiplication in Julia

Axel Feldmann

1 Introduction

Operations on large dense matrices are a performance
bottleneck in many scientific computing applications.
Dense matrices take up O(n2) space in memory and
most computations on them, like multiplication and
factorization, are O(n2) or O(n3).

Hierarchical semiseparable (HSS) matrices [1] are a
compressed and approximate representation based on
the observation that many matrices used in numeric
algorithms are dominated by values near the diagonal.
An HSS matrix H compresses a dense matrix A by
storing it as a tree of low-rank approximations for off-
diagonal blocks and small full matrices for on-diagonal
blocks. For matrices amenable to this form of com-
pression, HSS matrices require only O(n) memory and
provide O(n) multiplication and solution. As a result,
HSS matrices can be very useful in solving many dis-
cretized partial differential equations.

However, despite their asymptotic efficiency, com-
putations on large HSS matrices can still be time-
consuming. To address this problem, we turn to
hardware-acceleration using GPUs. HSS algorithms
are not trivially parallelizable on GPUs: they involve
traversing H’s tree structure and performing many
small matrix multiplications, while GPUs are most ef-
ficient on large parallel kernels.

In this work, we present an implementation of GPU-
accelerated HSS matrix-dense matrix multiplication in
Julia. Our implementation achieves an up-to 80×
speedup over the existing CPU-only implementation
in HssMatrices.jl. As part of this implementation,
we also developed a standalone batched GPU matrix
multiplication library in Julia that can be used outside
the scope of HSS matrices.

2 Background

In this work, we will not provide a rigorous explanation
explanation HSS matrix multiplication. Instead, we
will focus on providing some intuition and introducing
the key components. To see a complete explanation,
see [5]. For concreteness, this work will focus on the
same example as HssMatrices.jl:

K(x, y) =

{
1

x−y if x− y ̸= 0

1 if x− y = 0

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1

(1)

Figure 1: Structure of a HSS matrix represent-
ing a 20, 000×20, 000 instance of K. The numbers
in each block represent the rank of its approxi-
mation.

We can adjust the granularity of discretized x and y
values to obtain matrices of different sizes.

Figure 1 shows the structure of K when using a gran-
ularity of 0.0001, resulting in a 20, 000 × 20, 000 ma-
trix. Blocks closer to the diagonal are represented by
higher-rank approximations. Note that the bottom left
block, which is of size 10, 000 × 10, 000 is represented
by a rank-21 approximation requiring just 0.21% of the
memory required to store it densely! Despite this com-
pression, the relative error from multiplying HSS(K)
by a random vector b is on the order of 10−7.

2.1 HSS Structure

To compress matrices, we use HssMatrices.jl.
Running hss(A) on a Matrix{T} results in an
HssMatrix{T}. Fundamentally, HssMatrix is a
tree structure– an HssMatrix has 4 main fields:
A11, B12, B21, A22 each corresponding to a different re-
gion of the matrix it represents. A11 and A22 are them-
selves HssMatrix structs while B12 and B21 are Matrix
objects storing low-rank approximations.

An example tree structure is shown in Figure 2. Be-
cause only A11 and A22 are recursive HssMatrix ob-
jects, the tree is a full binary tree spanning the ma-

1

Figure 2: HSS tree structure. Pink tiles are
stored full-rank, gray tiles are stored as low-
rank approximations.

trix’s diagonal. Leaf nodes contain dense blocks of the
original matrix A. Each non-leaf node also points to
two off-diagonal blocks. As these are ordinary Matrix
objects, they do not have children.

To recover approximations of A12 and A21 from B12

and B21, each non-leaf node stores a set of 4 small
matrices R1, R2, W1, W2 such that

A12 = R1B21W1

A21 = R2B12W2

In addition to their dense block D, leaf nodes also
store small dense matrices U and V that are needed
during multiplication.

2.2 Multiplication
Suppose we want to multiply an HSS matrix H and a
dense matrix B. Multiplication happens in two passes,
a down pass and an up pass.

Up pass: During the up pass, we propagate values
from the leaves up to the root as follows:

up(N, B) =
i f i s l e a f (N)

return N.V’ ∗ B
e l s e

n1 = s i z e (N. A11 , 2)
re turn N.W1’ ∗ up(N. A11 , B [1 : n1 , :])
+ N.W2’ ∗ up(N. A22 , B[n1+1:end , :])

end

We run up(H,B), and cache the result of up(N,B)
at each node N .

This computation has a two aspects worth nothing:
first, B is recursively split into chunks split across the
HSS matrix’s leaf nodes. Second, this algorithm is com-
posed of multiplying and adding many small matrices
together. After executing this algorithm starting with
N = H, each node N will store a matrix N.up

Down pass: The up pass sends values from the root
back down to the leaves. These quantities involve com-
putations with the N.up matrices computed during the
up-pass. The up-pass is defined as follows:

down(N, B, F) =
i f i s l e a f (N)

return N.D ∗ B + N.U ∗ F
e l s e

n1 = s i z e (N. A11 , 2)
F1 = N. B12 ∗ N. A22 . up + N.R1 ∗ F
C1 = down(N. A11 , B [1 : n1 , :] , F1)
F2 = N. B21 ∗ N. A11 . up + N.R2 ∗ F
C2 = down(N. A11 , B[n1+1:end , :] , F2)
re turn vcat (C1 , C2)

end

We can run C = down(H,B, nothing) starting at
the root of H. C will be the approximate result of AB.
Again, B and C are recursively split into chunks split
across the HSS matrix leaf nodes, and again, the algo-
rithm consists of many small matrix multiplications.

One important observation is that HSS matrix-dense
matrix multiplication implements a prefix-sum algo-
rithm. The up-pass and down-pass correspond exactly
to the up-pass and down-pass in prefix sum algorithms!

3 Implementation
When implementing this algorithm on a GPU, we must
consider the strengths and weaknesses of GPUs as a
platform. Both the up and down passes of HSS ma-
trix multiplication involve a lot of multiplications with
small matrices. Running each of these multiplications
in a separate kernel would result in losing all perfor-
mance to kernel launch overheads. Furthermore, be-
cause the matrices are mostly very small (< 100 rows
and columns), a single matrix multiplication will be
unable to saturate the GPU’s compute resources.

Therefore, we need to batch multiple multiplications
into the same kernel launch. These multiplications
must be independent, meaning that we can execute
them in parallel without any data races. Fortunately,
the tree structure provides us with ample opportuni-
ties for inter-node parallelism. Consider the up-pass
dataflow on a small HSS tree shown in Figure 3. We
are able to multiply all the leaf N.V matrices by their
respective chunks of B in parallel. Looking up the
tree, we are also able to execute N5.W1 * N1.up and
N6.W1 * N3.up in parallel. We cannot, however, ex-
ecute N5.W2 * N2.up in parallel with N5.W1 * N1.up
as they both write to the same destination: N5.up.
Note matrices on the same level of the tree are not
guaranteed to be the same size.

3.1 Batched Matrix Multiplication

CuBLAS does support batched matrix multiplication
with the cublas<T>gemmBatched() function, however
it requires that all the matrices be the same size. Fur-
thermore, Julia wrappers of this function in CUDA.jl
appear to be somewhat flaky. As a result, we must im-
plement our own batched matrix multiply from scratch.

Multiplying many matrices of different sizes on a
GPU requires some non-trivial engineering. GPU ker-
nels are organized in grids of thread blocks. Grids, as

2

Figure 3: HSS matrix multiplication up-pass
dataflow.

Figure 4: Example matrices for a batched
matrix-matrix multiplication. For i = 1, 2, 3,
Ci = AiBi

well as thread blocks, must have uniform dimensions.
Consider the example shown in Figure 4. Assuming
that we assign a single thread to each location in the
output matrix C, C1 = A1B1 will require 620 threads,
C2 = A2B2 will require 1961 threads, and C3 = A3B3

will require 1260 threads. To further complicate things,
1961 and 1845 are both greater than the 1260 limit of
threads/block imposed by most GPUs! As a result of
this imbalance, we cannot do a simple mapping of k
blocks per pair of matrices.

Concretely: if A matrices had uniform size n×k and
B matrices had uniform size k ×m, then each matrix
multiplication would require n×m threads. Multiply-
ing two groups of N such matrices could be accom-
plished with a grid size of N × ⌈n×m

1024 ⌉. Each thread
would be able to use blockIdx.x to determine the pair
of matrices it is multiplying and use blockIdx.y to de-
termine its position in the output matrix.

Given non-uniformly sized matrices, this approach
is not possible– threads in a block cannot simply read
their blockIdx to know their position in the multipli-
cation.

Instead, we must implement two new data structures
on the GPU. The first is called BatchedMats which
represents a batch of matrices. Example BatchedMats
representing the matrices in Figure 4 are shown in Fig-
ure 5. A storing N matrices will contain 3 arrays
of size N , rows, cols, and starts in addition to a

Figure 5: BatchedMats structures representing
the matrices in Figure 4.

data array that holds the actual matrix values. The
structure is built such that for all 1 ≤ 1 ≤ N , ma-
trix i is of size rows[i] × cols[i]. Its values are
laid out in column-major order from data[starts[i]]
to data[starts[i] + rows[i] * cols[i]]. This
structure is a compact representation of a group of ma-
trices stored in GPU memory.

The second new data structure is called a Task and
is designed to address the non-uniformity problems dis-
cussed earlier. An example Task corresponding to the
pairwise multiplication of [A1, A2, A3] and [B1, B2, B3]
is shown in Figure 6. A task contains 4 arrays: dest,
src1, src2, and chunk. This is an auxiliary data struc-
ture designed to help threads in the matrix multiplica-
tion kernel know where to find their inputs and where
to store their outputs.

Specifically, each block j in the matrix multiplica-
tion kernel batchedmul!(Cs, As, Bs, task) is able
to find out its work by looking at task.dest[j],
task.src1[j], task.src2[j], and task.block[j].
These values are used as follows:

1. task.dest[j] is used to find a thread’s out-
put matrix in Cs. If a thread reads d =
task.dest[j], then it knows that it is writ-
ing to matrix Cs[d], of size Cs.rows[d] ×
Cs.cols[d], whose data is stored starting at
Cs.data[Cs.starts[d]].

2. task.src1[j] and task.src2[j] are analogous
to task.dest[j], except instead of telling the
thread where to write its output data, they tell
it where to read its input data. A thread in a
block j will be repsonsible for reading values from
As[task.src1[j]] and Bs[task.src2[j]]. In
this basic example, for all j, dest[j] is the same
as task.src1[j] and task.src2[j] but this is
not always the case. In HSS matrix multiplica-
tion, indices often differ.

3. task.chunk[j] is used to find which chunk of the
destination matrix a particular thread is responsi-

3

Figure 6: BatchedMats structures representing
the matrices in Figure 4.

ble for. Consider the example shown in Figure 6:
because of the 1024 thread limit, both blocks 2 and
3 need to work on C2 = A2B2. To disambiguate
which block of the result they are working on, the
threads use the task.chunks array to calculate
their output index.

Using these structures, the kernel is able to locate
its inputs and outputs roughly as follows:

f unc t i on kern (. . .)
b = blockIdx () . x
t = threadIdx () . x

C_idx = task . des t [b]
A_idx = task . s r c1 [b]
B_idx = task . s r c2 [b]
C_chunk = task . chunk [b]

C_idx = (C_chunk − 1) ∗ 1024 + t
. . .

end

This implementation allows efficient variably-sized
batched matrix multiplication and forms the basis of
HSS matrix multiplication.

3.2 HSS Multiplication
Using the batched matrix multiplication primitive de-
scribed in subsection 3.1, we are able to implement an
efficient HSS matrix multiplication algorithm. The al-
gorithm is composed of two parts: setup and execution.

Setup: Before beginning the actual HSS matrix mul-
tiplication HSS(A) * B, data must first be transferred
to the GPU and set up appropriately. To leverage our
efficient batched matrix multiplication primitives, we
must structure H = HSS(A) as a set of BatchedMats,
each representing matrices at all levels of the tree. Sim-
ilarly, we must divide B into a BatchedMats, with each
of the component matrices mapping to a different leaf
of H. This computation is done primarily on the CPU.
The expensive part of this computation is structuring
H as a set of BatchedMats. However, this must only

be done once over A’s lifetime, and therefore amortized
extensively over the course of multiple computations.

As part of setup, storage for intermediates, (such
as up and F from subsection 2.2) must also be allo-
cated. Unfortunately, the size of these intermediates
is a function of the number of columns in B, so once
intermediates have been allocated for a particular B,
their space can only be reused in multiplications with
matrices B′ that have at most as many columns as the
original B. During this stage, we also allocate all GPU
Task structures.

Execution: Once setup is complete, executing the
algorithm is relatively straightforward. We simply it-
erate through the prepared Tasks, performing batched
matrix multiplications on the appropriate input and
output BatchedMats for the given task. Each matrix
multiplication takes 4L-1 calls to batchedmul!, where
L is the number of levels in the HSS tree.

Upon completion, the result can be obtained by un-
batching the result C and concatenating its chunks to-
gether as follows: vcat(unpack(C)...).

4 Results

All results are obtained on the JuliaHub machines us-
ing Nvidia V100 GPUs and 8-core Intel Xeon CPU
E5-2686 v4 CPUs.

4.1 Batched Matrix Multiplication

To test the effectiveness of the batched matrix mul-
tiplication primitive, we run experiments on pairwise
multiplying two N -vectors of m × m matrices. First,
we compare batched kernel performance to CPU per-
formance in Figure 7. We note a few effects. When we
have very small values of m, the CPU’s BLAS is unable
to effectively parallelize the individual matrix multipli-
cations. At large values of m, the CPU is able to paral-
lelize individual matrix multiplications, and therefore
our speedups become smaller. Our largest speedups
come on problems where the matrices are too small
for the CPU to extract intra-multiplication parallelism,
but not so small that the GPU is unable to saturate all
of its compute resources. It is unclear why we observe
slowdowns for large values of N at m = 64– perhaps
cache effects or benchmarking artifacts.

However, the true baseline for this kernel is not a
CPU, but rather an unbatched GPU implementation.
Results are shown in Figure 8. Here, we compare a
single batched matrix multiplication kernel against se-
quentially launching CUBLAS.gemm kernels with a sin-
gle synchronization point at the end. Here, we ob-
serve that for larger values of m, the highly-optimized
CUBLAS kernel begins to significantly outperform our
less tuned kernel. However, for smaller values of m,
we obtain very large speedups, as our implementation
is able to more effectively leverage inter-matrix paral-
lelism. Furthermore, as we have more matrices in the

4

Figure 7: Batched GPU kernel speedups over
CPU on pairwise multiplication of two N-
vectors of m×m matrices.

Figure 8: Batched GPU kernel speedups over
naive GPU implementation on pairwise multi-
plication of two N-vectors of m×m matrices.

batch, the speedup gets larger as the naive GPU im-
plementation incurs more kernel launch overheads.

These results show that the new batched matrix
multiplication kernel can obtain large speedups in
cases where we have many small, independent matrix
multiplications– exactly what is needed for HSS matri-
ces.

4.2 HSS Matrix Multiplication

We evaluate HSS multiplication AB where A is an in-
stance of the K matrix described in section 2 and B is
a random dense matrix.

Our experiments sweep different sizes of A from 500
to 35,000 as well as different numbers of columns in B.
The CPU baseline is mul! from the HssMatrices.jl
package. Results are shown in Figure 9.

Unsurprisingly, we observe the largest speedups
when both A and B are large– this results in large ker-
nel launches which are able to saturate all of the GPU’s
compute resources. On very small instances of A and
B, we do observe slowdowns– even though we batch
matrix multiplications, there is simply not enough work

Figure 9: GPU speedups on various HSS matrix
multiplication sizes.

to amortize kernel launch overheads. However, for the
largest tested values of A and B, we obtain a > 100×
speedup over the baseline.

Importantly, we obtain some speedups even on
matrix-vector multiplications (left column of Figure 9).
These are particularly challenging because they have
very little arithmetic intensity. However, by leverag-
ing batching, we are able to still obtain performance
improvements.

4.3 Code
Code is available at https://github.com/
axelfeldmann/hss-gpu.

5 Future Work
This GPU-accelerated HSS matrix library is by no
means complete. The most important improvement
is to leverage GPU shared memory to achieve larger
speedups for batched matrix multiplications. This
should allow batched matrix multiplication kernels to
perform closer to unbatched CuBLAS baselines for the
larger values of m in Figure 8.

Further work includes accelerating all other HSS ma-
trix primitives. This includes compression (actually
creating HSS matrices from dense matrices), factoring,
and solution. More performance engineering can also
be done to the CPU-based setup phase of HSS matrix
multiplication. Finally, it would be interesting to in-
tegrate this library into existing applications that use
HSS matrices and obtain real end-to-end speedups.

References
[1] Chandrasekaran S., Dewilde P., Gu M., Pals T., van

der Veen A.J. (2002). Fast stable solver for sequen-
tially semi-separable linear systems of equations.
High Performance Computing—HiPC (2002).

[2] Boukram W., Turkiyyah G., and Keyes D. (2019).
Hierarchical Matrix Operations on GPUs: Matrix-

5

https://github.com/axelfeldmann/hss-gpu
https://github.com/axelfeldmann/hss-gpu

Vector Multiplication and Compression. ACM
Transactions on Mathematical Software, https:
//dl.acm.org/doi/pdf/10.1145/3232850.

[3] Zhu Z., and Soricut R. (2021). H-Transformer-1D:
Fast One-Dimensional Hierarchical Attention for
Sequences. Arxiv, https://arxiv.org/pdf/2107.
11906.pdf.

[4] Vater K., Betcke T. and Dilba B. (2017). Sim-
ple and efficient GPU parallelization of existing
H-matrix accelerated BEM code. Arxiv, https://
arxiv.org/pdf/1711.01897.pdf.

[5] Xia J., Chandrasekaran S., Gu M., Li X.S. (2010).
Fast algorithms for hierarchically semiseparable
matrices. Numerical Linear Algebra with Applica-
tions (2010).

6

https://dl.acm.org/doi/pdf/10.1145/3232850
https://dl.acm.org/doi/pdf/10.1145/3232850
https://arxiv.org/pdf/2107.11906.pdf
https://arxiv.org/pdf/2107.11906.pdf
https://arxiv.org/pdf/1711.01897.pdf
https://arxiv.org/pdf/1711.01897.pdf

	Introduction
	Background
	HSS Structure
	Multiplication

	Implementation
	Batched Matrix Multiplication
	HSS Multiplication

	Results
	Batched Matrix Multiplication
	HSS Matrix Multiplication
	Code

	Future Work

