
JULIATO: A JULIA-BASED PLASMA PHYSICS CODE WITH
SERIAL OPTIMIZATIONS

VINCENT FAN , LUKA GOVEDIC , LUCAS SHOJI , AND ALEX VELBERG

Abstract. In this article, we report about Juliato, a Julia version of the plasma physics code
Viriato with improvements. We analyze the Fourier-Hermite semi-implicit time integration approach
and its variable dependency graph, finding properties that allow further parallelism and cache-locality.
An algorithm is devised to take advantage of these properties. A serial version of the code is
implemented and benchmarked against the original. Further optimization approaches are explored.

1. Introduction. Plasma simulations are relevant in a variety of situations. A
great portion of the universe is composed of plasma, and modeling of this state of
matter is essential to studies of phenomena including planetary magnetospheres, stars,
and accretion disks around compact objects such as black holes. Plasmas are also
the medium in which fusion reactors would operate, and understanding its turbulent
transport of energy is fundamental to the success of the field. This state of matter
is also critical to predicting space weather, essentially the changes in the solar wind
that affect the operation of satellites and telecommunication on Earth.

Although useful in many situations, modeling plasmas has been a notoriously
difficult task and is one of the most multi-scale problems in physics. This means that
a wide separation between the small and large scales is needed inside the simulations.
For example, to accurately simulate the environments in fusion reactor scales, one
needs to resolve kinetic motion in scales around 105 smaller in space resolution. A
similar situation occurs for the time axis. Taking the cube for the number of cells, it
turns impossible even for the best high-performance systems to simulate it all. This
multi-scale behavior emerges from the highly nonlinear, chaotic nature of plasma
physics – fluctuations at the smallest scales is linked with changes in macroscopic
behavior.

One approach to make plasma simulation more viable is to take velocity moments
gm of the relevant dynamical equations. This way, we can reduce the dimensionality
of the equations to a set of coupled moment equations that are evolved in time. The
original equation can be expanded into an indefinite number of moments, and a closure
is required. This is usually done by taking all moments after some number n to zero,
e.g. gm = 0 for m > n. The more moments are used, more we can resolve fluctuations
in velocity space.

Viriato [3] is a computational algorithm, originally implemented in Fortran, that
uses such moments to simulate strongly magnetized plasma dynamics. It uses FFTs
to compute spatial derivatives and performs dynamic time integration, changing the
discrete integration step ∆t depending on previous values. Viriato is pseudo-spectral,
performing most operations in Fourier space while computing nonlinearities in real
space. The code also uses a custom semi-implicit scheme that carries a complex
dependency graph. The main task of this project is to build on Viriato’s algorithm and
improve it, exploring further parallelism and performance opportunities. The first step
is to translate the parallel Fortran implementation into a serial Julia version, allowing
for a deeper understanding of the code, as well as reducing the complexity associated
with Viriato’s parallelism. The serial Julia implementation, called “Juliato”, will be
used as a platform for future performance enhancements.

In section 2, we introduce the relevant plasma physics background and the Her-
mite moment approach. In section 3, we present the complex variable dependency

1



2 V. FAN, L. GOVEDIC, L. SHOJI, A. VELBERG

in Viriato’s time integration, and discuss properties of this dependency graph that
could be explored for better performance in 4. Next, we describe our implementation
of a Julia version of Viriato and further serial optimizations to it in 5, compare re-
sults and benchmark against the original Viriato code in 6, devise a new algorithm
that takes advantage of the dependency scheme in 7 and finally list possible further
optimizations in 8.

2. Plasma Physics Background. A purely kinetic, or first-principles descrip-
tion of a plasma requires self-consistently tracking the motion of charged particles
in electromagnetic fields through 6D phase space (3D+3V). In practice, a statistical
description of the plasma is described via the Vlasov-Maxwell system of equations,

(2.1)
∂f

∂t
+ v · ∇f + q (E + v ×B) · ∇vf = C(f)

(2.2) ∇×E = −∂B

∂t

(2.3) ∇×B = µ0J+
1

c2
∂E

∂t

where f = f(x,v, t) is the particle distribution function, whose integral over all
space is equal to the number density of the plasma, v is the velocity, q is the particle
charge, E is the electric field, B is the magnetic field, ∇v is the gradient operator
with respect to velocity, and C(f) is the collision operator, which encodes collisional
effects such as viscosity and resistivity. Note that equation 2.1 must be solved for
each plasma species (e.g. electrons and ions).

In principle, these equations can be discretized and time-integrated over a numeri-
cal grid, however, the difficulty lies in accurately resolving the physics. Many problems
in plasma physics are inherently multi-scale, meaning that several physically impor-
tant temporal and spatial scales must be accurately resolved by the discretization.
For example, a simulation of a plasma in a fusion device may need to accurately
resolve device-scale behavior on the order of 1 meter while simultaneously resolving
the effects of turbulence at scales near the ion and electron gyroradii, ρi and ρe, on
the order of 1 mm and 0.01 mm, respectively (these are the characteristic distance at
which particles orbit magnetic field lines due to the Lorentz force). This will require
a very large number of grid points, N , which in 3D will make our computation time
scale as N3. Including the scale separation required in velocity space and in time
quickly results in an intractable computation.

To reduce dimensionality, a common technique is to take fluid moments of the
distribution function via the operator,

(2.4)

∫ ∞

−∞
vmfdv

where m represents the moment number. Applying this operator to equation
2.1 will result in an infinite hierarchy of PDEs for the evolution of the moments,
where each equation for moment m depends on previous moments as well as the next
highest moment, m+1. In the limit m→∞, this will exactly recover the distribution



JULIATO 3

function and the full velocity-space physics. There is therefore a trade-off between
more accurately resolving velocity-space dynamics by including more moments and
reducing simulation cost by truncating the hierarchy.

While low-moment approximations can be useful, we often want to refine our
description of the plasma to include kinetic effects. For instance, the description
of wave-particle interactions in the plasma via Landau damping is important for
capturing kinetic plasma instabilities and energy dissipation channels. While it is
possible to do this refinement via equation 2.4, there is no generalized form for the m-
th PDE, so this requires deriving and hard-coding each unique PDE. For mathematical
convenience, it is instead possible to use a Hermite moment expansion [2],

(2.5) gm(x, t) =

∫ ∞

−∞
Hm(v)fdv

where Hm is the m-th Hermite polynomial. These Hermite moments span the
same space as those generated by 2.4, preserve the useful coupling between each m
and its neighbors m − 1 and m + 1, and allow us to write a generalized equation
for any moment. By leveraging this expansion and making some physics-informed
reductions in the number of velocity dimensions (often to 2D: v∥ and v⊥ with respect
to the magnetic field), it is possible to reduce the computational cost of plasma physics
simulations to a feasible level for modern computing clusters.

3. Performance issues in Viriato. Viriato [3] is a code that implements this
Hermite scheme to evolve a reduced, 4D form of the Vlasov equations (3D+1V). Using
generalized operators (Gm) to represent all nonlinear components of the PDEs, the
equations for the moments look as follows:

(3.1)
∂gm
∂t

= Gm(g0, g1, gm−1, gm, gm+1)−mνeigm

where νei is a constant. As discussed in the previous section, we see that the
evolution of each gm depends on its neighbor moments, gm−1 and gm+1, as well as
the first two moments g0 and g1 For g0, this dependency reduces to only g0 itself and
g1. An source of complexity is the nonlinearity of the Gm operators. These operators
contain many Poisson brackets, defined as

[P,Q] ≡ ∂xP∂yQ− ∂yP∂xQ

This structure involving both spatial derivatives and multiplication requires sig-
nificant computation and is the main hurdle for evolving the set of equations in 3.1.
Viriato employs a pseudo-spectral scheme for calculating these brackets. To facilitate
taking derivatives, the code works with variables in Fourier (spectral) space. However,
spectral space makes array multiplications costly as they would involve convolutions.
To avoid this problem within the brackets, the variables are transformed to real space
for straightforward multiplication and transformed back to Fourier space soon after.
The Fast Fourier Transform (FFT) calls in both directions end up being very costly
for this algorithm, and tend to dominate asymptotic computation.

3.1. Semi-implicit time integration. To evolve the moments, the code per-
forms discrete time integration through a semi-implicit scheme. This approach is
taken to ensure numerical stability, evolving the stiff part of the equations implicitly
and the non-stiff parts explicitly to avoid large matrix inversions.



4 V. FAN, L. GOVEDIC, L. SHOJI, A. VELBERG

First, a predictor step is taken to calculate a preliminary value of each gn+1,∗
m

moment from the values gnm from the previous time step:

(3.2) gn+1,∗
m = e−mνei∆tgnm +

∆t

2

(
1 + e−mνei∆t

)
Gm(gn0 , g

n
1 , g

n
m−1, g

n
m, gnm+1)

Notice that this step depends on the variables gn0 , g
n
1 , g

n
m and the neighbors from

the previous time step. After this, multiple iterations of a corrector step are taken
until converge within a desired accuracy is achieved. Adopting the initial predictor
value as the 0th step, the value for the (p+ 1)-th corrector step gn,p+1

m is:

(3.3) gn+1,p+1
m = e−mνei∆tgnm +

∆t

2
e−mνei∆tGm(gn0 , g

n
1 , g

n
m−1, g

n
m, gnm+1)+

∆t

2
e−mνei∆tGm(gn+1,p+1

0 , gn+1,p+1
1 , gn+1,p+1

m−1 , gn+1,p
m , gn,pm+1)

Notice the complicated dependency structure of this equation. Beyond using
variables from the previous time step and the previous iteration (p) of the corrector
step, it also depends on values of g0, g1 and gm−1 of the same (p+ 1)th iteration. In
the special case for g1, the equation does not depend on gp+1

0 from the same corrector
step; It can be calculated directly with values from just the previous step. Thus, this
moment can be calculated first to obtain all the others. We make a dependency chart
for this predictor-corrector scheme for the case of one corrector step in figure 1.

Another relevant aspect of this dependency is its dynamic time-stepping scheme:
each time interval ∆t is determined by values of gm in the previous time step. More
specifically, the CFL condition is evaluated at each timestep in conjunction with the
maximum value of g1. The timestep is chosen based on either the maximum allowed by
the CFL coefficient or an imposed relative error between steps based on g1, whichever
is smaller. Due to all this complexity, even though it is parallel in space Viriato has
poor parallel scalability which will be discussed further in section 6.

4. Opportunities for parallelism and cache-locality. Despite the compli-
cated dependency graph, there are opportunities for parallelism. There is also sig-
nificant reuse, which could be exploited to increase the cache locality. These are the
main valuable properties:

1. Ignoring the dependence on g0 (and g1), value gt1m1
does not depend on gt2m2

if (m2−m1) > 2 · (t1− t2). In other words, a moment m1 at time t1 does not
depend on a higher moment m2 at an earlier time t2 if m2 is much further
away in space than it is in time. Let’s call this t-parallelism.

2. Each gm value is used between 2-4 times. For example, a predictor step gn,∗m

value is used to compute gn+1,p=1
m−1 and gn+1,p=1

m , while a corrector step value

gn+1
m is used to compute gn+2,∗

m−1 , gn+2,∗
m , gn+2,∗

m+1 , and gn+1
m+1.

3. Each g1(x, y) value will be used for computing gm for all m in that time step
for a given x, y. Let’s call this m-reuse.

These valuable properties can be exploited by changing the high-level order of
computation. However, there are more that we can exploit regardless of the high-
level approach we take:

1. After the forward FFT to compute the bracket, all computation in xy-space
is independent and can be done in parallel.



JULIATO 5

Fig. 1: Dependency diagram for the semi-implicit scheme, depicted as balls in m, t-
space. Predictor step values (in yellow) only depend on g0, g1, and neighboring gm
from the already computed previous time step (in green). Corrector step values (blue
and orange) depend on neighboring moments from the predictor step (yellow), as well
as g0, g1, and gm−1 from the same corrector step, shown in orange. Finally, g1 is
computed first and used in the computation of g0. That dependency is also shown in
orange.

2. gm will be stored as a multidimensional array in contiguous memory, so gm
values along the fastest-moving dimension will be on the same cache line.
This allows for vectorization and spatial locality.

5. Implementation and Serial Optimization. We attach a high level
overview of the Viriato algorithm in 5.1 written in pseudocode. The algorithm was
originally implemented in Fortran, and a majority of this project focused on re-
implementing the algorithm in Julia and C++ and then investigating some perfor-
mance improvements.
Algorithm 5.1 Viriato

1: procedure Naive
2: for t← 0, tmax do ▷ Begin predictor step
3: if t = 0 then
4: Initialize
5: end if
6: for m← 0,M do
7: B̃r1 ← Bracket(g̃m, g̃0)

8: B̃r2 ← Bracket(g̃m−1 + g̃m+1, g̃1)
9: for x← 0, X; y ← 0, Y do

10: g̃∗m[x, y]← Gm(g̃m[x, y], B̃r1[x, y], B̃r2[x, y], DT )
11: end for
12: end for
13: for m← 0,M do ▷ Begin corrector step
14: B̃r1 ← Bracket(g̃∗m, g̃ new

0 )

15: B̃r2 ← Bracket(g̃ new
m−1 + g̃∗m+1, g̃

new
1 )



6 V. FAN, L. GOVEDIC, L. SHOJI, A. VELBERG

16: for x← 0, X; y ← 0, Y do
17: g̃ new

m [x, y]← Gm(g̃m[x, y], B̃r1[x, y], B̃r2[x, y], DT )
18: end for
19: end for
20: Calculate RelError
21: if RelError > ε then
22: DT ← 0.92 ·DT
23: Redo timestep
24: end if
25: ComputeNextDT(g̃ new)
26: Swap(g̃, g̃ new)
27: end for
28: end procedure
29:

30: procedure Bracket(ṽ1, ṽ2)
31: δxv1 ← FFT−1(kx · ṽ1)
32: δyv2 ← FFT−1(ky · ṽ2)
33: for x← 0, X; y ← 0, Y do
34: Br[x, y]← δxv1[x, y]δyv2[x, y]− δyv1[x, y]δxv2[x, y]
35: end for
36: B̃r ←FFT (Br )

37: return B̃r
38: end procedure

In the algorithm above, t represents the time parameter, where tmax determines
the number of timesteps we would like to run the simulation for. M is the number
of moments that we would like to resolve for, and X and Y are parameters that
determine how fine the mesh grid we use is. DT is a parameter that determines
the “physics” time step which the simulation reflects, and is calculated by the semi
implicit scheme.

Viriato consists of an outer loop through all of the timesteps. If t = 0, then we
initialize the moments depending on the input parameters. Each timestep consists of
a predictor step and a corrector step.

In the predictor step, we use previous moments to compute the preliminary mo-
ments for the current time step, which consists of a large number of calls to bracket
and various implementations of Gm (the implementation differs depending on m). In
the corrector step, we use the preliminary values from the predictor step, as well as
values of the moments from the previous time steps to re-calculate the moments for
this time step. Finally, we compute the relative error. If the relative error is larger
than some input threshold ε, we redo the entire timestep using a smaller value of DT .

For more details on Viriato, consult section 3 which describes the details each
component of the implementation in more detail.

After the naive version of the algorithm was implemented in Julia, we sought to
improve the performance first by making as many serial implementations as possible.
In particular, we used ProfileView.@profview to profile the code in detail to observe
which lines of code were taking up the most time.

Figure 2a shows a visualization of the stack trace for viriato.jl run with
X = 64, Y = 64, tmax = 10 and M = 10 implemented as the naive algorithm, and
figure 2b shows the stack trace for viriato.jl after we implemented several serial



JULIATO 7

optimizations. The full timing results will be presented in the following section, but
we achieved over 3x speedup by implementing these serial improvements. To interpret
the stack trace visualizations, note that the x axis shows the relative time a certain
line of code requires, and the y axis is essentially the stack trace of that line of code.

Since the two figures only show the relative timings of each line of code, it is not
immediately clear that the second visualization represents a large improvement over
the first visualization. However, note that the horizontal bands are generally wider
in Figure 2b, which means that we were able to reduce the pieces of code that were
taking up severely large proportions of time in our serial improvements. Also, the
visualization is less ”spiky”, as we targeted the pieces of code that were often making
too many calls to built in helper functions due to the nature of the original naive
implementation. We describe the changes below.

Note that in our pseudocode, when we calculate the updated moments arrays, we
loop through each index and assign it to a new value, since a new computation must
be done at every position. This is similar to the actual implementation. One serial
improvement we made was changing the order of the inner and outer loops. Since Julia
is column major, we saw improvements in performance when we switched from for

i in 1:nkx, j in 1:nky to for j in 1:nky, i in 1:nkx in all of the locations
where we were iterating through two dimensional arrays. In general, switching to
column major access patterns can improve cache efficiency, and also allow for the
compiler to look for efficient vectorization opportunities. This was backed up by
the @benchmark results we acquired immediately after only implementing this one
improvement.

The next set of improvements came from observing that the stack trace made a
large number of calls to helper functions that were computing various exponentials,
such as exp nu or exp eta that were used in calculating the moments for the next
timestep. We were able to improve performance by only calculating one value of each
helper function with a loop step, and use the saved value for future calculations.

During the implementation process, we had uncovered an aliasing bug where the
new set of values, such as for A∥ would be assigned to an old variable such as in akpar

= akpar new, which actually caused both variable names to become references for the
same object. We initially amended this issue by using deepcopy. During the serial
improvements, we instead just switched the references of the two objects with akpar,

akpar new = akpar new, akpar, which yielded small improvements in performance.
The largest improvements in performance came upon careful inspection of the

stack trace and theorizing that our input parameters and constants could be loaded
more efficiently. For one, we added const to every variable that would remain constant
through the entire algorithm. Also, we found that we initially had far too many
include statements, which we consolidated into only the file that contained main().

6. Benchmarks and Serial Performance Results. We have performed
benchmarks for Viriato and Juliato with and without serial improvements on MIT’s
Engaging cluster. Each node on Engaging is an Intel(R) Xeon(R) CPU E5-2683 v4 @
2.10GHz, containing 16 2-way hyperthreaded cores. Both Viriato’s serial and parallel
performance are benchmarked by timing the execution of the primary time-loop (line
2 in Algorithm 5.1) for 50 time steps. For serial performance, the minimum of a set
of seven timings was taken, and for the parallel performance, the median value was
taken. The simulation parameters used for benchmarking are reported in Table 1.

The results of benchmarking Viriato’s parallel speedup are shown in Figure 3,
where the poor performance compared to a linear speedup indicates ample oppor-



8 V. FAN, L. GOVEDIC, L. SHOJI, A. VELBERG

(a) Before serial improvements

(b) After serial improvements

Fig. 2: Stack trace visualizations of Juliato withX = Y = 64, M = 10 and tmax = 10

Parameter Value
lx, ly 1.0
nlx, nly 128

η, ν 0.1
ngtot 20

Table 1: Simulation Parameters used for all Benchmarks. lx and ly are the box
length, nlx and nly are the number of grid points in the x and y directions, resistivity
and viscosity are η and ν, and ngtot is the number of Hermite moments, M , not
including 0 and 1.

tunities for improvement. On 16 cores, it only achieves a parallel speedup of cca.
5.34.

Juliato’s serial performance was benchmarked through timing the primary loop
with BenchmarkTools.@benchmark. Results are shown in Table 2.

Although both Julia versions remain slower than the original Fortran90 imple-
mentation, the serial optimizations to the Julia code described in section 5 resulted in
a 3.3x speedup over our initial version. We ran out of time doing further performance
engineering and investigation, but we suspect that the speed deficit of Juliato has to
do with Julia being a higher-level language. While it allows you to write code that
does not perform well (due to type-instability or garbage collection), it should be
possible to achieve the full performance that Viriato achieves. For that, we’d need to
take a look at the generated assembly code for both.

Aside from the performance benchmarks, it is also important that our code pro-
duces accurate physics results. We have performed some preliminary tests which
compare the output of the 1st moment, the vector potential parallel to the magnetic
field, A∥ for the Orszag-Tang vortex initial condition, a commonly used setup for
benchmarking plasma codes [3]. Both codes are run serially with the same input



JULIATO 9

Fig. 3: Parallel speedup of Viriato on a Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz,
which has 16 cores that are 2-way hyperthreaded. The speedup is measured compared
to the running time on one core (larger is better). The dashed line shows perfect linear
speedup.

Implementation Normalized Compute Time
Viriato 1.0

Juliato (initial) 10.3
Juliato (serial optimization) 3.1

Table 2: Serial performance normalized to Viriato serial performance using parameters
given in 1.

parameters and the same output cadence (every 3200 timesteps). If Juliato perfectly
replicates the values in Viriato, we would expect identical results at a given time-loop
iteration, regardless of performance. The simplest way to test this is to compare the
physics time achieved by each simulation at a given time iteration. Since the code
adaptively changes the physics timestep to meet the CFL condition (it restricts the
propagation of a wave to less than 1 grid point per timestep based on the wave veloc-
ity), the dynamics of the problem will modify how big the timesteps are for a given
time iteration. A comparison between Viriato and Julia is shown in Figure 4. While
there is some deviation over time, this does not reveal any major issues with Juliato.
More careful benchmarking in the future will aim to resolve this discrepancy.

Figure 5 shows a colormap of A∥ at time iterations 3200 and 6400, as well as the
absolute value of the relative error. We note qualitative agreement in the dynamics,
but due to the discrepancy observed in 4, it is difficult to make a direct comparison via
a relative error calculation–the errors are influenced by the fact that the simulation
time is different in the comparison.

7. A better approach: SkewedTableau. A SkewedTableau algorithm
adopts a less straightforward order of computation to better exploit valuable properties



10 V. FAN, L. GOVEDIC, L. SHOJI, A. VELBERG

Fig. 4: Simulation time deviation between Viriato and Juliato over 22,400 timesteps.

Fig. 5: Comparison of A∥ from Viriato and Juliato at 3200 (first row) and 6400
(second row) time iterations, as well as the relative error.

introduced in section 4. It is similar to a parallel recursive solution of a simple tableau
computation problem; both are shown in Figure 6. Because SkewedTableau is not
balanced (the top-left yellow region is smaller than the bottom right), low-overhead
load balancing is required, which OpenCilk can provide.

Additional complexity arises here because we suddenly need to store values of
g for more than just one timestep. That is especially true for g0 and g1, which are



JULIATO 11

Fig. 6: The simple tableau construction (left) and our dependency scheme (right),
along with their parallel recursive implementations. On the left, we recursively divide
the tableau into 4 subregions, and compute the green one first, then the two yellow
ones in parallel, and finally the orange one. Inside each region, we recursively repeat
each process. On the right, although complex, we can do something similar. The
predictor step is omitted to reduce the visual load.

always needed. However, if memory usage becomes a problem, we can always allo-
cate the memory on each worker when it’s needed, which will bound it by P -times
the minimum memory required during serial execution. It is important to note that
the SkewedTableau algorithm parallelizes over Hermite-moment-space, an opti-
mization not found in Viriato, which only parallelizes by tiling the physical volume.
Implementing the SkewedTableau in conjunction with parallelization across the
physical volume could greatly speed up computation compared to Viriato when a
high number of moments are required, as is the case for the highest fidelity simula-
tions.

8. Further Optimizations. This section lists possible low-level optimizations
that might improve the performance of either approach. After looking at preliminary
benchmarking results, some optimizations do not seem worth it while others became
more interesting.

8.1. Manual Vectorization. Despite only O(1) arithmetic operations per
memory operation, the time integration step is non-trivial and is quite compute-
intensive. In the C++ version, the compiler does not currently fully vectorize the
computation, and it does not use the full AVX512 vector lane width. According to
preliminary profiling results, a large chunk of the time is spent inside the inner loop
that computes the moment values, so getting that loop to vectorize more aggressively
should result in further performance gains.

8.2. Data Layout. While it was initially suspected that experimenting with
different data layouts might prove beneficial, due to FFT being the bottleneck, it was
decided to keep x and y as the fastest-running dimensions, so that contiguous chunks
can be passed to FFTW.

8.3. FFT. FFT remains one of the bottlenecks of the computation due to its
O(n log n) complexity, even when using FFTW [1]. However, preliminary results show
that executing multiple transforms at a time using library capabilities does not benefit
performance. Additionally, bracket computation repeatedly allocates and deallocates
temporary buffers, but the amount of time needed for that is pretty much negligible.

While FFT implementations achieve polylogarithmic span, they do not scale well



12 V. FAN, L. GOVEDIC, L. SHOJI, A. VELBERG

in practice1. Because library implementations use custom thread scheduling, they are
incompatible with the OpenCilk scheduler. A benchmark that tested the scalability
of running multiple FFTs in parallel was written, and it turned out well, almost
achieving perfect linear speedup, increasing hope about parallelizing the computation
on a high level.

9. Conclusions. The main product of this project is the Julia implementation
of Viriato. Although it is not as fast as the Fortran version Juliato can achieve qual-
itatively similar physics results. As a serial implementation, Juliato unpacks some of
the complexity in Viriato’s MPI parallelization and will serve as a platform for further
serial improvements and the implementation of the cache-localized parallel algorithm
developed for this project. Although we could not implement the SkewedTableau
algorithm in time for this semester and further verification will be needed before
Juliato is ready for production use, we hope to continue development to speed up
real research tasks. Throughout this project, we have learned a lot about physics
simulation codes, parallel computing, and optimization in Julia. It was also reward-
ing to work on an interdisciplinary project, combining plasma physics and algorithm
performance engineering.

Acknowledgments. We would like to thank Prof. Nuno Loureiro, Prof. Rezaul
Chowdhury, and Dr. Alexandros-Stavros Iliopoulos for extremely helpful discussions
and support throughout this project.

GitHub Repository. The GitHub repository for this project is open-source and
can be found at the following link:
https://github.com/Ozymandias314/adaptive-hermite-refinement

REFERENCES

[1] M. Frigo and S. Johnson, The design and implementation of fftw3, Proceedings of the IEEE,
93 (2005), pp. 216–231, https://doi.org/10.1109/JPROC.2004.840301.

[2] G. W. Hammett, M. A. Beer, W. Dorland, S. C. Cowley, and S. A. Smith, Developments
in the gyrofluid approach to tokamak turbulence simulations, Plasma Physics and Controlled
Fusion, 35 (1993), p. 973, https://doi.org/10.1088/0741-3335/35/8/006, https://dx.doi.org/
10.1088/0741-3335/35/8/006.

[3] N. F. Loureiro, W. Dorland, L. Fazendeiro, A. Kanekar, A. Mallet, M. S. Vilelas,
and A. Zocco, Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-
kinetic plasma dynamics, Computer Physics Communications, 206 (2016), pp. 45–63, https:
//doi.org/10.1016/j.cpc.2016.05.004.

1According to Prof. Chowdhury. We searched, but could not find references that support this.
Publicly available FFT benchmarks also do not evaluate the libraries on more than one core.

https://github.com/Ozymandias314/adaptive-hermite-refinement
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1088/0741-3335/35/8/006
https://dx.doi.org/10.1088/0741-3335/35/8/006
https://dx.doi.org/10.1088/0741-3335/35/8/006
https://doi.org/10.1016/j.cpc.2016.05.004
https://doi.org/10.1016/j.cpc.2016.05.004

	Introduction
	Plasma Physics Background
	Performance issues in Viriato
	Semi-implicit time integration

	Opportunities for parallelism and cache-locality
	Implementation and Serial Optimization
	Benchmarks and Serial Performance Results
	A better approach: SkewedTableau
	Further Optimizations
	Manual Vectorization
	Data Layout
	FFT

	Conclusions
	References

