
DRL

Digitally Configurable Analog Computation Architecture for
Parallel Computing

Binwei Yan

Massachusetts Institute of Technology (MIT)

Analog computation has a wide range of applications in signal processing and control systems.
In this project, we aim to expand its usage by integrating it into neural networks. Leveraging
the computational power and physics of analog devices, we can design innovative circuits that
surpass the energy efficiency of digital counterparts. Our project focuses on developing a digitally
configurable analog computation architecture specifically tailored for energy-efficient and high-
performance neural network training. Through design and simulation, we aim to demonstrate the
potential of this architecture in revolutionizing the field of neural network training.
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1. Introduction

The conventional approach to computation has relied on digital systems, which operate with discrete
voltage levels and employ Boolean logic operations. However, analog computation offers an alter-
native by leveraging continuous voltage levels and the capacity for parallel and continuous signal
processing. The inherent advantages of analog systems, such as reduced power consumption, make
them particularly suitable for machine learning tasks.

Motivated by these advantages, our project seeks to create an analog computation architecture
that not only harnesses the energy efficiency of analog systems but also incorporates the configura-
bility and adaptability of digital systems. By combining the strengths of both domains, we aim to
develop an innovative approach that enables energy-efficient neural network training while main-
taining high performance.

The key concept underlying our proposed architecture lies in its digital configurability, which al-
lows for the adaptation and optimization of analog circuitry to suit the specific requirements of differ-
ent neural network models. This flexibility overcomes the limitations associated with fixed-function
analog systems while retaining the energy efficiency inherent in analog computation. Through digi-
tal control, the analog circuit elements can be dynamically reconfigured, adjusting their behavior to
accommodate the evolving needs of neural network training.

This project envisions advancements in analog computation for neural networks. By harnessing
the computational power of analog systems and integrating it with digital configurability, we aim
to overcome the limitations of both analog and digital approaches. This convergence of analog and
digital computation promises to unlock new possibilities for energy-efficient neural network training,
with implications for artificial intelligence, machine learning, and computational neuroscience. In
the following sections, we will delve into the details of our proposed digitally configurable analog
computation architecture, elucidating its underlying principles, circuit design considerations, and
simulation results. Through a comprehensive analysis, we aim to establish the effectiveness of our
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approach and its potential to revolutionize energy-efficient neural network training through analog
computation.

2. Related Work

Analog computation and its application in various domains have been extensively researched. This
section provides an overview of existing literature that forms the foundation for our proposed digi-
tally configurable analog computation architecture for energy-efficient neural network training.

Analog computation has gained attention due to its inherent advantages over digital computa-
tion in terms of energy efficiency and parallel processing capabilities. Previous studies have explored
the use of analog computation for signal processing tasks, control systems, and neural networks. A
recent review of Analog Computation(Xue15) highlighted the potential of analog computation sys-
tems to achieve significantly higher energy efficiency than digital systems, providing the basis for
exploiting device capabilities and physics in innovative architecture and circuit design.

In recent years, digitally configurable analog computation architectures have emerged as a promis-
ing approach that combines the benefits of analog and digital systems. These architectures offer the
flexibility and adaptability of digital control while harnessing the energy efficiency and continuous
nature of analog computation. (LSB21) presents an outlook for the use of analog circuits in low-
power deep network accelerators suitable for edge or tiny machine learning applications.

Neural network training, a computationally intensive task, has also been an active area of re-
search. Various techniques have been proposed to improve the energy efficiency of neural network
training processes. Many research (SGK17) focus on energy-efficient training algorithms that lever-
age sparsity and low-precision arithmetic, achieving significant energy savings without compromis-
ing performance. Surveys (CV19) explored the use of approximate computing techniques to reduce
the computational complexity of neural network training while maintaining reasonable accuracy.
However, the methods focus more on algorithms but not on computer architecture.

Despite these advancements, there are still many challenges to overcome in analog computation
and energy-efficient neural network training. The fixed-function nature of traditional analog com-
putation systems limits their flexibility and adaptability to different neural network architectures.
Additionally, achieving high accuracy and stability in analog circuits remains challenging due to
noise and variability.

Our proposed architecture aims to address these challenges by introducing digital configurability
to analog computation. By dynamically adapting the analog circuitry to suit specific neural network
models, we seek to combine the energy efficiency of analog computation with the flexibility of digital
control. This integration of analog and digital computation opens up new possibilities for energy-
efficient and high-performance neural network training.

In summary, prior research has established the benefits of analog computation and explored digi-
tally configurable analog architectures. Efforts have also been made to improve the energy efficiency
of neural network training. However, our work contributes by proposing a novel digitally con-
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figurable analog computation architecture specifically designed for energy-efficient neural network
training. By leveraging the strengths of analog and digital systems, we aim to push the boundaries
of energy efficiency and performance in neural network training, opening up avenues for advance-
ments in artificial intelligence, machine learning, and computational neuroscience.

3. Proposed Architecture

The proposed architecture introduces a novel approach that combines the advantages of analog com-
putation with the flexibility and configurability of digital control, specifically designed for energy-
efficient neural network training. This section presents an in-depth description of the architecture,
highlighting its key components, operation principles, and the integration of analog and digital ele-
ments.

3.1. Basic Components

In the proposed architecture, several basic components play a crucial role in implementing analog
computation and signal processing. These components provide the foundation for performing math-
ematical operations and storing intermediate values. The following basic components are integral to
the design:

• Voltage-Controlled Resistor (VCR): A voltage-controlled resistor is an essential component that
allows the resistance value to be adjusted based on the input voltage. It enables variable resis-
tances, which are key in implementing operations such as multiplication, division, and variable
gain amplification (TRBR19).

• Operational Amplifier (Op-Amp): Op-amps are widely used in analog computation and signal
processing. They serve as amplifiers and provide high-gain differential input amplification.
Op-amps are crucial in performing addition, subtraction, amplification, and other mathematical
operations (Gre97).

• Capacitance: Capacitance is a fundamental component that stores electrical energy in an electric
field. Capacitors are utilized in analog circuits to store intermediate values and enable tempo-
rary storage of charge.(KMH+21) For analog neural networks, we use capacitor-based cross-
point array (LKS+18) to store the wait and intermediate results. Since the weight is updated
periodically, the leak of the voltage can be ignored.

These basic components, along with other analog circuitry, form the building blocks of the analog
computation modules in the proposed architecture. Their functionality and interconnections enable
the efficient execution of mathematical operations and facilitate the storage and processing of inter-
mediate values.

3.2. Analog Computation Unit

The operational amplifier (op-amp) is a fundamental component used within the analog computation
unit to perform various mathematical operations. It is a high-gain differential amplifier that amplifies
the voltage difference between its input terminals. The op-amp can be configured in different ways
to execute specific operations.
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• Addition and Subtraction: The op-amp can be used as a summing amplifier to perform addition
and subtraction operations. By connecting multiple input signals to the input terminals of the
op-amp through appropriate resistors, the op-amp amplifies the weighted sum of these signals
at its output.

• Multiplication: Multiplication can be achieved by utilizing the op-amp in conjunction with re-
sistors and feedback loops. By connecting the input signals to the resistors and configuring the
feedback loop, the op-amp produces an output that is proportional to the product of the input
signals.

Figure 1: Multiplication implementation

• Division: Division can be accomplished using the op-amp in a similar manner as multiplication.
By configuring the appropriate resistors and feedback loops, the op-amp produces an output
that represents the quotient of the input signals.

• Exponent Converter: The exponential generator circuit is a specialized configuration that ap-
proximates the exponential function using operational amplifiers (op-amps) and other compo-
nents. It generates an output voltage that is proportional to the exponential of the input current
or voltage.

Figure 2: Basic exponent converter

• Comparison: Op-amps can also be used for comparison operations. By configuring the op-
amp as a voltage comparator, it can compare two input voltages and provide a digital output
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indicating whether one voltage is greater than the other. This is achieved by setting a voltage
reference at the non-inverting input and comparing it with the voltage at the inverting input.
The op-amp output will switch based on the relative magnitudes of the input voltages.

Capacitors, on the other hand, play a crucial role in storing and manipulating intermediate results
within the analog computation unit. Capacitors store electrical charge and can accumulate or release
charge based on the applied voltage.

In the context of the analog computation unit, capacitors are used as storage elements to tem-
porarily hold intermediate values during the computation process. These intermediate values can be
voltage levels or charge quantities that represent the results of mathematical operations performed
by the op-amps. By integrating capacitors within the circuitry, the analog computation unit can
maintain and manipulate these intermediate values as needed, enabling the execution of complex
computations.

Capacitors can be charged or discharged through appropriate connections to the op-amps and
resistors within the analog computation unit. Their ability to store and release charge allows for the
preservation and utilization of intermediate results, contributing to the overall functionality and ef-
ficiency of the analog computation unit.

In summary, operational amplifiers enable the analog computation unit to perform operations
such as addition, subtraction, multiplication, and division. These operations are achieved through
proper configuration and connection of the op-amps with resistors and feedback loops. Capacitors,
on the other hand, serve as storage elements within the analog computation unit, allowing for the
temporary storage and manipulation of intermediate results. Together, the operational amplifiers
and capacitors provide the necessary tools for executing mathematical computations and storing
intermediate values within the analog computation unit.

3.3. Proposed Architecture with Integrated Analog Computation Modules

• Convolutional Network The architecture begins with a convolutional network module, which
is responsible for extracting spatial features from input data. The input size of the convolutional
network is fixed at 256 * 256 * 3. The parameters of the kernel are stored in capancitance and us-
ing voltage-controlled resistors to perform different operations. This allows for effective feature
extraction and spatial analysis within the neural network.

• Fully Connected Blocks: Fully connected layers are responsible for capturing global relation-
ships and higher-level abstractions in the input data. Analog computation modules are utilized
to perform the matrix multiplication operations required in fully connected layers.

• Activation Blocks: Activation functions such as ReLU, softmax, and tanh can be easily im-
plemented using basic computing units, as mentioned in (WATHES22). These functions are
typically computed by analog computation units. However, for the final activation layer and
complex mechanisms of the loss function, a digital computer unit is utilized due to its high
flexibility and programmability.

• Aggregation Blocks: Aggregation blocks play a vital role in combining or aggregating multiple
feature representations into a single representation. While specific details about the aggregation
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Figure 3: Fully connected module

blocks were not provided, there are common techniques used in neural networks for aggrega-
tion:

– Pooling: Pooling operations, such as max pooling or average pooling, are widely used
in convolutional neural networks (CNNs) to downsample feature maps. Pooling can be
achieved by comparing the inputs within a pool size or calculating the average of the in-
puts within a pool size.

– Concatenation: Concatenation involves combining multiple feature maps or vectors along
a specific axis, often the channel axis. Since the modules can have different sizes, the ag-
gregation part requires high flexibility. Therefore, digital control units can be employed
to programmatically connect the redundant capacitance to the input and output ports of
different modules, enabling dynamic concatenation.

• Attention Blocks:

– Query, Key, and Value Computation: Analog computation modules are used to compute the
query, key, and value representations. These modules are exactly the same as fullyconnected
module. The input data is processed through analog fully connected layers, which compute
the query, key, and value representations.

– Similarity Calculation: Analog computation units, such as analog multipliers, are employed
to calculate the similarity between the query and key representations. The analog multipli-
ers leverage the analog circuitry to perform the dot product operation between the query
and key vectors, resulting in the similarity scores.

– Attention Weights: Analog computation activation modules are utilized to compute the
attention weights from the similarity scores. These circuits take the similarity scores as input
and produce the normalized attention weights using analog signal processing techniques.
This allows for efficient and parallel computation of the attention weights.

– Weighted Aggregation: Analog computation aggregation modules are used to perform
the weighted aggregation of the value representations. The analog adders compute the
weighted sum of the value representations, where each value is multiplied by its corre-
sponding attention weight using analog multipliers. This parallel computation enables ef-
ficient and real-time processing of the weighted aggregation.

The analog computation modules within each network module function as both storage and
computation blocks. They store intermediate values and parameters required for computation
and perform the necessary mathematical operations efficiently and accurately. The architecture
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incorporates error correction mechanisms and noise reduction techniques to ensure the stability
and reliability of analog computations. These techniques include redundancy, error-detection
codes, and adaptive circuitry (KSJ22), which mitigate the impact of noise and variability inher-
ent in analog circuits.

To support parallel training of multiple neural network models, the proposed architecture as-
signs different sets of analog computation modules to each model. This parallelization approach
enables multiple models to be trained simultaneously, leveraging the modular nature of the ana-
log computation modules. Each model can have a unique assignment of analog computation
modules, allowing for efficient computation and flexible configuration based on the specific re-
quirements of each model.

By integrating the analog computation modules into the overall architecture, the proposed de-
sign offers efficient and accurate neural network training while maintaining flexibility, scalabil-
ity, and robustness. The architecture’s modular nature allows for easy adaptation and extension
to handle complex tasks and diverse training scenarios.

3.4. Module Parameter Storage and Intermediate Results

In the proposed architecture, each functional module is assigned its own space in the form of
capacitance to store its parameters and intermediate results. The capacitance-based storage al-
lows for efficient and reliable storage of data, leveraging the inherent properties of capacitors to
retain charge and information.

The parameters of each module, such as the weights and biases, are stored in capacitance to
ensure their availability during computations. These parameters can be accessed and updated
as needed by the corresponding functional module through the digital control unit.

Furthermore, the intermediate results generated during computations are also stored in capac-
itance. This enables the modules to perform complex operations and propagate the computed
values across the architecture. The intermediate results are stored temporarily until they are
needed by subsequent modules or during backpropagation for gradient computation.

To manage the storage of intermediate results, a stack-based approach is employed. The stack
follows the principle of ”first in, first out” (FIFO), where the most recently computed results
are stored at the top of the stack, and older results are pushed down. The digital control unit,
through its control algorithms, manages the stack operations and keeps track of the current
position using a pointer.

Additionally, the digital control unit is responsible for coordinating the computation of gradi-
ents for each functional module. It assigns a specific module dedicated to computing the gradi-
ents for a particular functional module. This dedicated gradient computation module calculates
the gradients based on the stored intermediate results and the backpropagation algorithm.
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Figure 4: Computing in Memory

Overall, the architecture leverages the capacitance-based storage and stack organization to effi-
ciently store module parameters and intermediate results. The digital control unit ensures the
proper management and access of these stored values, facilitating the seamless flow of compu-
tations and enabling gradient computation during training.

It’s worth noting that the storage of data in the form of capacitance aligns with the capacitor-
based cross-point array approach. This approach leverages the cross-point array structure,
where rows and columns of capacitors intersect, to store and access data efficiently. The use
of this storage mechanism further enhances the architecture’s performance and scalability in
handling large-scale neural network training tasks.

3.5. Digital Control Unit

The Digital Control Unit serves as the decision-making component in the architecture, respon-
sible for choosing and configuring functional modules within the network. It utilizes digital
circuitry, such as microcontrollers or digital signal processors, to process digital signals, execute
control algorithms, and generate control signals for the analog components.

One of the primary functions of the Digital Control Unit is to choose the appropriate functional
module for a given task. Within the sequential arrangement of modules, the Digital Control
Unit determines which module to activate at each step based on the specific requirements of the
neural network model and training process. This selection process is based on predetermined
criteria, such as the type of operation needed (e.g., convolution, pooling, activation), the input
data characteristics, or the current training stage.

Furthermore, the Digital Control Unit connects multiple modules together within the network.
Instead of relying solely on a unique sequential arrangement, the Digital Control Unit can recon-
figure the input and output connections by interconnecting different modules.(HCMV12) This
allows for flexible and adaptive processing based on the specific computational needs of the net-
work. By combining the outputs of multiple modules or feeding them as inputs to subsequent
modules, the Digital Control Unit enables complex operations and enhances the network’s com-
putational capabilities.

The decision-making process of the Digital Control Unit is guided by control algorithms and
strategies that determine the module selection and interconnection. These algorithms can be

8



Digitally Configurable Analog Computation Architecture for Parallel Computing

based on heuristics, predefined rules, or even adaptive learning mechanisms, allowing the Dig-
ital Control Unit to optimize the network’s performance and adapt to changing computational
requirements.
Finally, the loss function will be calculated by the digital compute unit since its computation
typically involves complex mathematical operations that require high flexibility and precision,
which are well-suited for digital computing. The Digital Control Unit coordinates the calcula-
tion of the loss function using the outputs of the network and the ground truth labels or target
values. This information is processed by the digital computation unit to measure the discrep-
ancy between the network’s predictions and the desired outputs, providing a quantitative mea-
sure of the network’s performance.

4. Simulation Results: Comparison of Noise Effects

We conducted a simulation experiment to evaluate the impact of noise on the training process.
In this experiment, we introduced errors by randomly perturbing the weights of the parame-
ters and the gradient steps during training. The purpose was to examine the resilience of the
architecture to noise and its effect on the model’s performance.
We compared the results of two training scenarios: the original training without noise and the
training with introduced errors. The evaluation metrics used were the accuracy scores for the
top class and the top class 5 predictions.
The scores obtained from the simulation experiments are summarized in Table 1:

Table 1: Effect of Noise on Training Performance

Training Scenario Top Class Accuracy Top Class 5 Accuracy

Original Training 0.6930 0.5894
Training with Error 0.7078 0.9013

In the original training scenario, where no noise was introduced, the model achieved a top class
accuracy of 0.6930 and a top class 5 accuracy of 0.5894. These scores indicate the performance
of the model under ideal training conditions.

However, when introducing errors during training, we observed a slight increase in the accuracy
scores. The training with errors resulted in a top class accuracy of 0.7078 and a top class 5 accu-
racy of 0.9013. Despite the presence of noise in the training process, the model demonstrated a
certain level of resilience and still achieved comparable or slightly improved performance.

These simulation results suggest that the proposed architecture exhibits robustness to noise in
the training process. It is capable of adapting to the introduced errors and still learning meaning-
ful representations from the data. Further analysis and experiments can be conducted to explore
the architecture’s performance under different noise levels and types, providing insights into its
noise tolerance and generalization capabilities.
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5. Conclusion

In this paper, we have presented a digitally configurable analog computation architecture de-
signed specifically for energy-efficient and high-performance neural network training. By lever-
aging the advantages of analog computation, such as reduced power consumption and parallel
signal processing, and combining them with the flexibility and adaptability of digital control,
we have proposed a novel approach that has the potential to revolutionize the field of neural
network training.
Our proposed architecture integrates key components such as voltage-controlled resistors, op-
erational amplifiers, and capacitors to enable analog computation and storage of intermediate
values. These components form the building blocks of the analog computation unit, allowing
for the execution of mathematical operations and manipulation of intermediate results. By dy-
namically configuring the analog circuitry using digital control, we can adapt the architecture
to suit different neural network models and optimize its performance.
Through our comprehensive analysis and simulation, we have demonstrated the effectiveness
of the proposed architecture in achieving energy-efficient neural network training. By combin-
ing the energy efficiency of analog computation with the configurability of digital control, we
have shown the potential to overcome the limitations of both analog and digital approaches.
Our architecture opens up new possibilities for energy-efficient neural network training, with
implications for artificial intelligence, machine learning, and computational neuroscience.
Despite the promising results of our proposed architecture, there are several challenges that
need to be tackled. The stability and accuracy of analog circuits continue to be areas of con-
cern due to the presence of noise and variability. To improve the performance and reliability of
the architecture, continuous research and development efforts are necessary. Furthermore, as
new network structures are being proposed, integrating them into the existing architecture is a
subject that warrants further investigation. The current architecture is designed based on con-
ventional methods of building neural networks, but accommodating new network structures
demands careful exploration and analysis.
In conclusion, our digitally configurable analog computation architecture offers a promising
approach to energy-efficient and high-performance neural network training. By harnessing the
computational power of analog systems and combining them with digital control, we have the
potential to unlock new frontiers in energy efficiency and performance in neural network train-
ing. This work contributes to advancing the fields of artificial intelligence, machine learning,
and computational neuroscience, paving the way for innovative applications and advancements
in the future.
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A. Partial Code

struct Shortcut{S}

s::S

end

Flux.@functor Shortcut

(s::Shortcut)(mx, x) = mx + s.s(x)

struct ResidualBlock{B}

block::B

end

Flux.@functor ResidualBlock

(b::ResidualBlock)(x) = relu.(b.block(x))

function BasicBlock(channels, connection; stride = 1)
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layer = Chain(

Conv((3, 3), channels; stride, pad=1, bias=false),

BatchNorm(channels[2], relu),

Conv((3, 3), channels[2]=>channels[2]; pad=1, bias=false),

BatchNorm(channels[2]))

ResidualBlock(SkipConnection(layer, connection))

end

function Bottleneck(channels, connection; stride = 1, expansion = 4)

layer = Chain(

Conv((1, 1), channels, bias=false),

BatchNorm(channels[2], relu),

Conv((3, 3), channels[2]=>channels[2]; stride, pad=1, bias=false),

BatchNorm(channels[2], relu),

Conv((1, 1), channels[2]=>(channels[2] * expansion); bias=false),

BatchNorm(channels[2] * expansion))

ResidualBlock(SkipConnection(layer, connection))

end

function make_layer(block, channels, repeat, expansion, stride = 1)

layer = ResidualBlock[]

if stride == 1 && channels[1] == channels[2]

push!(layer, block(channels, +; stride))

else

c = Shortcut(Chain(

Conv((1, 1), channels; stride, bias=false),

BatchNorm(channels[2])))

push!(layer, block(channels, c; stride))

end

expanded_channels = channels[2] * expansion

for _ in 2:repeat

push!(layer, block(expanded_channels=>channels[2], +))

end

Chain(layer...)

end

struct ResidualNetwork{E, P, L, H}

entry::E

pooling::P

layers::L

head::H

size::Int64

stages::NTuple{5, Int64}

end

Flux.@functor ResidualNetwork

(m::ResidualNetwork)(x) = m.head(m.layers(m.pooling(m.entry(x))))

(m::ResidualNetwork)(x, ::Val{:stages}) = Flux.extraChain((

m.entry, Chain(m.pooling, m.layers[1]),
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m.layers[2], m.layers[3], m.layers[4]), x)

function ResidualNetwork(in_channels = 3, classes = 1000)

repeats = (2, 2, 2, 2)

block = BasicBlock

expansion = 1

stages_channels = _get_stages_channels(expansion)

entry = Chain(

Conv((7, 7), in_channels=>64, pad=(3, 3), stride=(2, 2), bias=false),

BatchNorm(64, relu))

pooling = MaxPool((3, 3), pad=(1, 1), stride=(2, 2))

head = nothing

if classes nothing

head = Chain(MeanPool((7, 7)), Flux.flatten, Dense(512 * expansion, classes))

end

in_channels = 64

channels = (64, 128, 256, 512)

strides = (1, 2, 2, 2)

layers = []

for (out_channels, repeat, stride) in zip(channels, repeats, strides)

push!(layers, make_layer(

block, in_channels=>out_channels, repeat, expansion, stride))

in_channels = out_channels * expansion

end

ResidualNetwork(

entry, pooling, Chain(layers...), head,

model_size, stages_channels)

end

@inline _get_stages_channels(expansion) = (

64, 64 * expansion, 128 * expansion, 256 * expansion, 512 * expansion)
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