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1 Introduction and background

In this project, I explore the use of physics-informed machine learning for simulating and analyzing
transmission grids, to aid planning as well as real-time operations. Scientific machine learning,
parallelization, and high-performance computing can help accelerate these steps, especially for
large-scale networks with millions of nodes and lines. I will be applying physics-informed learning
methods for two applications:

1. Online estimation of key system parameters (that are either unknown or time-varying) from
past measurements.

2. Neural network-based approaches for faster solutions of system states, to study transient
dynamics as well as perform stability analysis.

Specifically, I will be focusing on methods to accelerate the analysis of fast dynamics and
transient stability in high-voltage transmission systems. It is critical to be able to estimate system
frequency in real-time since there is only a very limited amount of time available to respond to
such grid frequency events as shown in fig. 1. Such deviations in frequency can occur due to
major changes in either electricity generation or load. For example, the increasing penetration of
clean, renewable energy sources implies that generation is much more variable and intermittent,
and there’s more uncertainty in forecasts. Furthermore, extreme weather events like heat waves,
wildfires, or hurricanes can disrupt the system and/or cause sudden, unpredictable fluctuations in
demand. Sustained, continuous drops in frequency can cause cascading failures and even complete
collapse of the power system - this almost occurred during the Texas arctic winter storm in February
2021.

There are several resources that can provide frequency support. I will be focusing here on the
fastest timescales, i.e. inertial response which occurs immediately after frequency disturbances
(within < 10 s). In today’s grid, these are generally provided by the conventional synchronous
generators - essentially the rotors and turbines associated with conventional fossil fuel-based ther-
mal power plants like coal and natural gas. These machines have high rotational inertia that can
dampen the disturbance and thus partially help mitigate frequency changes.

1



Figure 1: Timelines for frequency response in transmission systems.

Grid frequency events are likely to be come more frequent and acute in the future as we move
away traditional centralized, high inertia generators to distributed inerter-based energy sources
like wind, solar and batteries that are based on faster power electronics and thus have much lower
inertia. This increases the risk for potential stability issues, further emphasizing the need for faster
transient stability analysis tools.

2 System modeling

The overall dynamics of the power system can be described by high-dimensional nonlinear ordinary
differential equations (eq. (1)) for dynamic devices (mainly generators) along with algebraic equa-
tions (eq. (2)) for the network as a whole, resulting in a system of differential-algebraic equations
(DAE):

ẋ = f(x,V;p) (1)

g(x,V;p) = YV− I(x,V;p) = 0 (2)

where f describes the ODEs, x represents all the state variables of the power system, V represents
the voltage vector for all buses (or nodes) in the network, I is the bus current injection vector, Y
is the network admittance matrix and g represents all the algebraic network equations (e.g. power
balance).

2.1 Algebraic network equations

For the algebraic equations, optimal power flow is the key optimization problem that governs the
operations of power systems. It describes the physical laws the system needs to obey such as
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Kirchoff’s laws, Ohm’s law, line thermal limits, etc. These are exactly specified by the alternating
current (AC) optimal power flow equations, shown below.

Pi + jQi = Vi

n∑
k=1

YikV̄k (3)

Splitting these into real and imaginary components, we get:

Pi = |Vi|
n∑

j=1

|Vj| (Gij cos (δi − δj) +Bij sin (δi − δj)) (4)

Qi = |Vi|
n∑

j=1

|Vj| (Gij sin (δi − δj)−Bij cos (δi − δj)) (5)

where P , Q are the real and reactive power, respectively, Y,G and B are the network admit-
tance, conductance and susceptance matrices, V are the complex voltage phasors (With magntiude
|V | and angle δ). Since this is an NP-hard nonconvex problem, a commonly used approach for
transmission systems is to instead make several simplifying assumptions that result in the linear
direct current (DC) optimal power flow equations instead. This is what I used for the simulations
in this project.

min
PG,QG,|V |,δ

∑
i∈G

fi (PGi) (6)

subject to (7)

PGi − PDi =
n∑

k=1

Bik (δi − δk) ,∀i ∈ N (8)

Pmin
Gi ≤ PGi ≤ Pmax

Gi ,∀i ∈ G (9)

− fik ≤ Bik (δi − δk) ≤ fik,∀(i, k) ∈ L (10)

δ1 = 0 (Slack bus) (11)

|δi − δk| ≤ ∆δik,∀(i, k) ∈ L (12)

These only account for power balance (eq. (8)), generator capacities (eq. (9)), line power flow
limits or thermal ratings (eq. (10)) and voltage angle constraints. Thus DCOPF model was used
to solve the system economic dispatch and determine the optimal power injections (setpoints) at
both generator and load buses (or nodes) as well as the line power flows.

2.2 Differential equations

I’ll mainly be focusing on the power system frequency dynamics that are important for determining
transient stability. This is governed by the swing equation for each generator k:

mkδ̈k + dkδ̇k +
∑
j

Bkj|Vk||Vj| sin (δk − δ)− Pk = 0 (13)

Pk ≤ Pk ≤ Pk, pk = [mk, dk, Bk]
⊺, xk = [δk, ωk]
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where mk defines the generator inertia constant, dk represents the damping coefficient, Bkj is
the {k, j}-entry of the bus susceptance matrix, Pk is the mechanical power of the kth generator,
k, j and δk, δj represent the voltage angles behind the transient reactance, for generators this is
the rotor angle. δ̇k is the angular frequency of generator k, often also denoted as ωk.

The swing equation is a heterogeneous nonlinear second-order differential equation with mul-
tiple variables. Thus, there is no known exact method to solve these analytically. Currently, these
are most commonly solved via discretization and numerical schemes such as Euler or Runge-Kutta
methods. However, these are computationally expensive, especially for large systems, which makes
it challenging to solve these in real-time and quickly respond to disturbance. They also involve
truncation errors and need very precise estimates for the parameters - this reduces their accuracy
in practice and they may not be able to capture important effects [1]. Rapidly changing system
conditions imply that these equations need to be solved very frequently (sub-second) and the move
to distributed energy resources (DER) further increase the problem’s dimensionality in terms of
the number of nodes we need to study.

This motivates a data-driven approach for estimating parameters and solving eqs. (1), (2)
and (13). For a realistic network with many generators, we may not know all the inertias m
and damping coefficients d. In addition to large synchronous machines (conventional generators),
renewable energy sources like wind turbines and other inverter-based resources like solar PV also
have non-synchronous inertia called synthetic or virtual inertia. We can derive similar swing-
equation-like models for these types of resources as well [2]. For example, grid-following virtual
inertia inverter devices are described by:

˙̂
δk = ω̂k (14)

τk ˙̂ωk = −ω̂k −KP,kVq,k −KI,k

∫
vq,k (15)

where Vq,k is the q-axis component of the bus voltage Vk (in a d − q reference frame) with angle
∠δk, τk, KP,k, and KI,k are the filter timeconstant, proportional gain, and integral synchronization
gain. Grid-forming inverters are modeled as:

δ̇VI,k = ωVI,k (16)

m̃kω̇VI,k = −d̃kωVI,k − PVI,k (17)

where m̃k and d̃k are the virtual inertia and damping constants. In addition to generators, we can
also model certain frequency-dependent loads as:

dkδ̇k +
∑
j

BkjVkVj sin (δk − δj)− Pk = 0 (18)

In this project, I mainly focused on the ODE models for synchronous generators (eq. (13)),
grid-forming inverters (eqs. (16) and (17)) and frequency dependent loads (eq. (18)).

Our grid is rapidly changing as we transition away from synchronous generators and increase
the penetration of renewables. This reduces overall inertia and damping, making frequencies more
susceptible to power deviations and potentially destabilizing the grid:

G(s) =
∆f

∆Pe

= − 1

2Hs+D
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Thus, estimating the time-varying overall inertia H and damping D characteristics of the network
is crucial, especially as the generation mix becomes cleaner with increasing renewable penetration
in the future

3 Methodolody, simulations and preliminary results

I considered and experimented with few different physics-informed learning approaches for ODE
parameter estimation and solutions. Here, we focus mainly on the transient or dynamic stability
of the transmission system, and not the steady state. I used the steady state DC OPF eq. (6)
only to solve the dispatch (i.e. generator setpoints), and then used it to understand effects on
generator angles and frequencies immediately following a disturbance, i.e when the generation
suddenly deviates from these setpoints. The response of the system depends on the overall system
inertia. Note that in all of these simulations, we’re only interested in solving for the next few
seconds (< 5-10 s) since this is the timeframe for inertial frequency response.

3.1 Online estimation of ODE parameters

I first focused on estimating the best fit inertia and damping parameters, i.e. solving the inverse
problem for ODE using an optimization-based approach. The form of the nonlinear ode δ̈(t) is
known but the inertia and damping parameters are unknown. I started by considering a simple
single machine infinite bus (SMIB) system as a proof of concept, which consists of a single generator
connected to the grid.

m1δ̈ + d1δ̇ +B12V1V2 sin(δ)− P1 = 0

Considering our state x(t) = [δ(t), ω(t)], this results in the system of nonlinear 2nd order ODEs:

δ̇(t) = ω(t) = x1(t)

ω̇(t) =
1

m1

(
P1 − d1δ̇ −B12V1V2sin(δ(t))

)
(19)

=
1

m1

(P1 − d1x2(t)−B12V1V2sin(x1(t))) (20)

V1, V2 B12 P1 m1 d1

1 p.u. 0.2 p.u. [0.08,0.18] p.u. [0.1,0.4] p.u. [0.05,0.15] p.u.

Table 1: Parameters used for SMIB system [3].

From fig. 3a, we see that this system is very sensitive to the choice of parameters since the
solution values for both the rotor angles δ(t) and frequencies ω(t) diverge quickly after the 1st few
seconds. Here δ(t), ω(t) corresponds to parameter values [m, d] = [0.2, 0.1] p.u while δ′(t), ω′(t)
correspond to [m′, d′] = [0.1, 0.05] p.u.
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Figure 2: Single machine infinite bus system.

(a) Solutions for perturbed damping and inertia. (b) Synthetic noisy data.

(c) True vs solutions using estimated parameters.

Figure 3: SMIB parameter estimation.

I generated synthetic data for angles and frequencies by 1st solving the forward problem and
then adding some Gaussian noise to mimic measured data as shown in fig. 3b. I used initial
conditions u0 = [δ0, ω0] with δ0 = 0.1 rad and ω0 = 0.1 rad/s. I then minimized the L2 squared
norm between the true values and estimated solutions when solving the ODE in eq. (20) with
estimated parameters:
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m̂, d̂ = argmin
m,d

∥(δ∗(t)− δ̂(m̂, d̂)∥2 + ∥(ω̂∗(t)− ω(m̂, d̂)∥2 (21)

s.t.δ ≤ δ ≤ δ, ω ≤ δ ≤ ω (22)

We see from fig. 3c that we’re able to recover the true parameters and the resulting forward solution
almost exactly matches the true values.

3.2 Neural ordinary differential equations

Following a similar approach to [4], we can use a neural approach to estimate the gradients of the
ODE and then use an integrator to solve the system:

ẋ(t) = NN (x(t), t; ŵ) (23)

where x(t) = [δ(t), ω(t)] and ŵ refer to the neural network parameters (weights and biases).
Need to use conventional numerical methods to integrate/solve the resulting neural ODEs to get
the NN predicted solution. This approach can be useful when the parameters are unknown or if
there are sources of uncertainty or noise in any of the ODE terms. We can even apply this if we
don’t have any information on the structure of the ODE beforehand. For example, in the power
systems case, this could occur when the grid operator does not know what types of devices are
connected to each bus, i.e. the dynamics could be any of eq. (13)-(18). In this case, we use the
same loss function as in section 3.1:

C(x̂(t), p̂) =
T∑

t=t0

∥x(t)− x̂(t, ŵ)∥22

and derive the gradients of this loss w.r.t neural (NN) network parameters using the adjoint
sensitivity approach. The adjoint of the ODE is defined by the system of equations:

λ̇ = −λ∗ ∂f

∂x̂
(24)

µ̇ = −λ∗ ∂f

∂ŵ
(25)

where f(·) = NN (x(t), t; ŵ) represents the neural net approximating the derivative. The adjoints
or vector-Jacobian products for the derivative of the NN w.r.t to each of the inputs (at any y)
can be calculated using its pullback Bŵ

NN(y). Thus, B
ŵ
f (λ) = λ∗ ∂f

∂ŵ
. We also know that µ(T ) = 0

and λ(T ) = ∂C
∂x̂

. While solving the reverse ODE adjoint problem, we also need to add jumps
∂C

∂x(ti)
= 2(xi − x̂(ti, ŵ) to λ(ti) for each data point (ti,xi). After solving the reverse problem,

the gradient of the loss function is given by µ(0) = ∂C
∂ŵ

which we can use to update the neural
network parameters I was able to get good convergence by just using simple gradient descent with
a learning rate η = 0.001 (as seen in fig. 4a but we could also use any other stochastic gradient
descent variants like ADAM. The neural ODE performs very well and is able to accurately predict
the outputs even farther out into the future. I also tested the pre-trained neural network on a
different initial condition than the one used during training and it still does a great job at accurate
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predictions as seen in fig. 4c, indicating good generalization rather than overfitting to the training
data.

(a) Neural ODE training loss. (b) Comparison of true vs Neural ODE solutions.

(c) Comparison of true vs Neural ODE solutions for
new initial conditions.

Figure 4: Neural ODE results.

3.3 Physics-informed neural networks

Finally, I tried to also use a Physics-informed neural network (PINN) approach to simultaneously
estimate the parameters and predict solutions [5]. As opposed to the neural ODE approach where
the NN computes the gradients, the PINN attempts to directly predict the states by exploiting
prior knowledge about the underlying physics and structure of the ODE. Here, I trained the PINN
to approximate the temporal evolution of the rotor angle and then applied automatic differentiation
to calculate the frequencies, given the initial conditions. These can be compared against the true
δ, δ̇ values to optimize the neural network parameters via supervised learning.

δ̂(t) = NN(t δ0, ω0,m, d), ω̂ =
˙̂
δ(t) = AD(δ̂(t))

Simultaneously, if needed, we can also learn the true parameters p = [m, d] by adding a physics
regularization term to the loss function to enforce the dynamics. This allows us to learn the true
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system parameters in an unsupervised manner. Thus, we combine the ODE output prediction
error Lx with the parameter estimation error Lp:

Lx =
∥∥∥δk(t)− δ̂k(t)

∥∥∥2

+
∥∥∥δ̇k(t)− ˙̂

δk(t)
∥∥∥2

(26)

Lp =

∥∥∥∥∥m̂k
¨̂
δk(t) + d̂k

˙̂
δk(t) +

∑
j

BkjVkVj sin
(
δ̂k(t)− δ̂j(t)

)
− Pk

∥∥∥∥∥
2

(27)

(a) Predictions for 1 second into the future. (b) Predictions over 5 seconds.

Figure 5: True solutions versus predictions by the trained PINN.

It was more challenging to obtain good results using the PINN approach. As seen in fig. 5b,
the PINN is able to accurately for the next few timesteps fairly accurately (≈ 0-2 s) but the
errors increase quickly for predictions farther ahead as seen in fig. 5a. I tried tuning the neural
network hyperparameters (number of layer and neurons) extensively and also experimented with
other methods like batch normalization, dropout, weight decay and learning rate schedules. The
final results shown in fig. 5 were obtained with a network with 3 hidden layers with 16 neurons each
and sigmoidal activation functions, using the ADAM optimizer. I’m still working on investigating
why the PINN is not able to converge well but it may be because this is a stiff nonlinear ODE and
the ODE error stagnates after a certain preventing the network from learning further.

4 Conclusions and future work

Overall, I found that the neural ODE approach (in section 3.2) performs better than the PINN (in
section 3.3) at predicting the ODE solutions. Thus, this can be combined with the optimization
based approach (from section 3.1) to also simultaneously estimate the ODE parameters. However,
an important caveat for both of these methods is that training them may be more challenging in
practice due to limited availability of good quality data on angle/frequency measurements. Thus,
we may need to leverage other methods to deal with these potential data sparsity issues.

While the PINN offers the potential to simultaneously estimate both solutions and parameters,
it currently under performs compared to the other methods in terms of accuracy. This will be one
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of my focus areas for future work. Some ideas I have to improve the PINNs are: (i) improving
initializations of the parameters p̂ to achieve faster convergence, (ii) optimizing code, incorporating
parallelization, and leveraging GPUs, as well as (iii) fusing the PINN with other nonlinear filtering-
based approaches for online estimation (e.g. Unscented Kalman filters). Such a hybrid approach
could be used to generate better initial estimates, and the PINN can then be used to fine-tune
these parameters while also predicting the system states. I will also consider how to use feedback
to improve the neural network’s weights in real-time based on incoming measurements from devices
like phasor measurement units (PMU). Finally, I aim to extend all 3 of the studied methods to
validate on much larger, realistic networks. Eventually, fig. 6 shows the overall workflow I propose
to implement for using physics informed learning methods for studying power system dynamics.

Figure 6: Overall proposed workflow.

PRIVATE CODE:
https://gitfront.io/r/user-8651281/xLmLmor8o9Tm/18.337-S23-proj-Vineet/ (Still a work
in progress - currently working on debugging the ‘multi gen’ code files).
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