
18.337 PROJECT REPORT: AUGMENTED NEURAL ODES1

KERRI LU2

Abstract. Neural Ordinary Differential Equations are a class of deep neural network models that3
learn supervised mappings from inputs to outputs by solving an ODE initial value problem. However,4
NODEs have limited expressivity, as they preserve topology of the input space. This motivates5
the introduction of Augmented Neural ODEs (ANODEs), which augment the space on which the6
ODE is solved to a higher dimension, increasing model expressivity and allowing for simpler ODE7
flow trajectories. In this paper, we review and implement ANODE algorithms for regression and8
classification, experimenting with several variants including zero-padding augmentation, input-layer9
augmentation, temporally regularized augmentation, and second-order neural ODEs. Running the10
algorithms on toy time series and classification datasets as well as image classification tasks, we show11
that augmentation generally improves model performance and enables faster convergence compared12
to regular NODEs. All code is available at https://github.com/kerrilu/18337-anode-project.13

1. Introduction and Background. Neural ODEs (NODEs), introduced in [1],14

are a class of deep neural network models that learn a mapping from input x ∈ Rd to15

an output hidden state ϕ(x) = h(T) ∈ Rd at end time T by solving the initial value16

problem17

dh(t)

dt
= f(h(t), t) with initial condition h(0) = x18

19

where f : Rd → Rd is a differentiable, dimension-preserving neural net function. These20

models can be viewed as a continuous version of residual networks, with parameters21

encoded in f . During training with backpropagation, the weights of f are adjusted to22

fit ground-truth output labels, by optimizing some loss function between the learned23

features ϕ(x) and the true labels. While ϕ(x) is dimension preserving, NODEs can be24

modified to perform supervised regression or classification by adding a linear neural25

network layer l : Rd → R after the ODE solver output, as shown in Figure 1.26

Fig. 1. Neural ODE architecture with final linear layer mapping to scalar output, from [2].

1.1. Limitations of NODEs. NODEs have several practical advantages, such27

as their use in irregularly sampled time series prediction and density estimation [3], as28

well as their constant memory cost. However, NODEs also have limited expressivity,29

as they preserve the topology of the input space. This limitation often makes learning30

NODE approximations for functions computationally costly [2]. In particular, we31

define the flow of a NODE as the trajectory of the hidden state h(t) over time from32

x = h(0) to ϕ(x) = h(T). Intuitively, since the trajectories corresponding to different33

initial condition inputs x cannot intersect, there are many classes of functions which34

cannot be represented by ODE flows.35

1

This manuscript is for review purposes only.

https://github.com/kerrilu/18337-anode-project

2 KERRI LU

An illustrative example is the class of one-dimensional functions g satisfying36

g(1) = −1 and g(−1) = 1. As shown in Figure 2, any pair of continuous trajec-37

tories corresponding to these mappings must intersect each other, and thus cannot be38

learned by a NODE.39

Fig. 2. NODEs cannot represent trajectories for both g(1) = −1 and g(−1) = 1, from [2].

Another canonical example is that of nested spheres. It is shown in [2] that40

NODEs cannot represent functions g : Rd → R where g(x) = 1 for ||x|| ≤ r1 and41

g(x) = −1 for r2 ≤ ||x|| ≤ r3 (for any 0 < r1 < r2 < r3). As shown in Figure 3, in42

order for the NODE to linearly separate the two classes of points, the learned flows43

from the inner and outer spheres would intersect each other.44

Fig. 3. NODEs cannot easily represent classification of nested spheres (left) due to intersecting
flows (right), adapted from [2].

1.2. Augmented Neural ODEs. The limitations of NODEs motivate the in-45

troduction of Augmented Neural ODEs (ANODEs), which augment the input space46

from Rd to Rd+p so that ODE flows are “lifted” to higher dimensions so that they47

don’t intersect. Formally, ANODEs pad input data points x with p zeros, introduce48

the augmented points a(t) ∈ Rp, and solve the following modified initial value problem49

for h(T).50

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
with initial condition h(0) =

[
x
0

]
.51

52

ANODEs can thus learn a broader class of functions and tend to result in smoother53

and simpler flows. They are “empirically more stable, generalize better and have a54

lower computational cost” than NODEs, and fewer function evaluations are required55

to solve the augmented ODE [2].56

This manuscript is for review purposes only.

AUGMENTED NEURAL ODES 3

1.3. Structure of Paper. In this paper, we review and implement variants of57

ANODE algorithms, and experimentally evaluate their performance. The rest of the58

paper is structured as follows. In Section 2, we give a brief overview of related work on59

NODEs and ANODEs. In Section 3, we discuss algorithmic methods and potential60

ANODE performance improvements such as input-layer augmentation, temporally61

regularized augmentation, and second-order neural ODEs. In Section 4, we discuss62

our experiments and evaluate results of using NODEs and ANODEs to learn toy63

time series and classification datasets, as well as image classification on MNIST. In64

Section 5, we summarize the conclusions of our work, and in Section 6, we discuss65

potential future research directions. All code is available at https://github.com/66

kerrilu/18337-anode-project.67

2. Related Work. In addition to the standard zero-padding augmentation pro-68

posed by [2], there are several potential performance optimizations for ANODEs in69

the literature. One alternative is input-layer augmentation, where the augmented ini-70

tial condition is h(0) = g(x) for some input network g : Rd → Rd+p, which allows the71

model more freedom (improving model capacity) and empirically decreases the num-72

ber of function evaluations [5]. To further accelerate training time, [3] demonstrates73

regularization by randomly sampling the end time T of the ODE. Additionally, using74

second-order (or higher) ODEs can improve parameter efficiency; [6] considers second-75

order NODEs as a special case of ANODEs with constraints on the neural network76

structure, and shows that even first-order ANODEs can use augmented dimensions77

to learn higher-order dynamics.78

The Julia SciML ecosystem includes several packages with high-performance im-79

plementations of differential equation solvers, such as DifferentialEquations.jl [8].80

In particular, the DiffEqFlux.jl library [7] combines neural networks and differen-81

tial equations, providing a framework for training NODEs as well as related models82

such as Neural Stochastic Differential Equations. Though less directly relevant, the83

NeuralPDE.jl library [9] implements physics-informed neural networks to efficiently84

approximate high-dimensional PDE solutions.85

3. Methods. For our implementation of ANODEs, we utilize the DiffEqFlux.jl86

library to efficiently construct neural networks (using Flux) and train neural ODEs.87

The implementation of zero-padding augmentation as described in Section 1.2 is88

straightforward. Using the notation from that section, we simply pad inputs with89

p zeros, solve the resulting neural ODE by optimizing a loss function of our choice,90

and remove the augmented points a(t) ∈ Rp from the output. We can visualize the91

resulting ODE flow trajectories, as well as test accuracies and losses over iterations, to92

evaluate model performance. We experiment with several values for the augmentation93

dimension p to improve performance.94

We also implement a few extensions and performance improvements for ANODEs,95

described in more detail below.96

3.1. Input-Layer Augmentation. In Input-Layer Augmented NODEs (IL-97

ANODEs) [5], the initial condition h(0) is computed as the output of an input neural98

network g(x) : Rd → Rd+p mapping inputs to a higher dimensional space. This can be99

seen as a generalization of ANODEs (which correspond to the case g(x) = (x,0)) that100

allows for richer representations and greater expressivity compared to the simple zero-101

padding operation. Empirically, this has been shown to allow for faster convergence102

and fewer function evaluations. In our implementation, we add a linear layer before103

the Neural ODE layer (using Flux.Chain) and train the entire network together. Note104

This manuscript is for review purposes only.

https://github.com/kerrilu/18337-anode-project
https://github.com/kerrilu/18337-anode-project
https://github.com/kerrilu/18337-anode-project

4 KERRI LU

that the added input layer slightly increases the total parameter complexity of the105

system.106

3.2. Temporal Regularization. Another potential performance improvement107

is the temporal regularization method proposed by [3], in which the end time parame-108

ter T of the NODE or ANODE integration limits is randomly perturbed. This added109

stochasticity during training is empirically shown to simplify model dynamics, reduce110

computational cost, and lead to faster convergence during training. Formally, in our111

implementation, the hidden state at time t becomes112

h(t) = h(0) +

∫ T

0

f(h(t), t)dt = ODESolve(h(0), f, 0, T)113
114

where the end time T is sampled uniformly at random from the interval (t−b, t+b) for115

some scalar parameter b. (Without regularization, we would simply have T = t.) This116

method effectively enforces convergence at time t− b rather than time t, as illustrated117

in Figure 4.118

Fig. 4. Behavior of NODEs after temporal regularization with parameter b, from [3].

3.3. Higher-Order NODEs and ANODEs. NODEs and ANODEs can be119

generalized to higher dimensions, as discussed in [5]. An nth order NODE can be120

described by concatenating vectors hi(t) ∈ Rd/n so that the hidden state is h(t) =121

[h1(t), h2(t), . . . , hn(t)]. The system of coupled first-order equations is122

d

dt
hi(t) = hi+1(t) for i < n,123

and
d

dt
hn(t) = f(h(t), t)124

125

where f : Rd → Rd/n is a neural network whose output dimension is n times smaller126

than its input dimension. This results in increased parameter efficiency compared to127

first-order NODEs and ANODEs where f is dimension-preserving.128

Note that equivalently, we can write and solve the nth order NODE equation as129

dn

dtn
h1(t) = f

(
h1(t),

d

dt
h1(t), . . . ,

dn−1

dtn−1
h1(t), t

)
.130

131

For image classification, we implemented a second-order Neural ODE, using Dif-132

fEqFlux’s built-in function for solving second-order ODE problems. As observed in133

[6], second-order NODEs can be viewed as a constrained type of ANODE where the134

augmenting vector a(t) is the derivative of h(t), which also constrains the structure of135

f . Unlike first-order NODEs, second-order and higher NODEs (even without augmen-136

tation) do not necessarily preserve topology of the input space and can thus represent137

a wider range of functions.138

This manuscript is for review purposes only.

AUGMENTED NEURAL ODES 5

4. Experiments and Results. In this section, we discuss experiments and re-139

sults from applying ANODEs to a few different settings: toy time-series prediction140

with sinusoidal functions, toy classification of nested spheres, and MNIST image clas-141

sification. For the first two toy examples, we use simple zero-padding ANODEs and142

experiment with augmentation dimensions. For the more complex image classification143

task, we also experiment with the ANODE variants and performance improvements144

described in the previous section.145

4.1. Time-Series Prediction with Sinusoidal Functions. For this toy ex-146

ample, we generate 100 datapoints from each of the functions y(x) = sin(x) and147

y(x) = sin(x) + x and inject a small amount of Gaussian noise. Then, our goal is to148

train ANODEs to learn the functions. Note that these two functions cannot be rep-149

resented by regular NODEs due to intersecting flow trajectories (e.g. any continuous150

flows for sin(5π/6) = 0.5 and sin(π/2) = 1 would have to intersect).151

We compare zero-padding ANODE performance for different numbers of aug-152

mentation dimensions p, and also compare against the baseline performance of the153

original NODE algorithm. We use a simple neural net with input and output size154

2+ p (since each datapoint (x, y(x)) is two-dimensional), and a single hidden layer of155

size 20. We use (0, 0) as the initial condition. The loss function is the sum of squared156

differences between predicted coordinates and ground-truth data. The ANODE is157

trained for 1000 iterations using Adam optimizer with learning rate 0.05, then the158

BFGS optimization algorithm is used for fine-tuning.159

The final functions learned by the NODE and ANODEs are shown in Figure 5.160

In both cases, the NODE prediction (in red) differs significantly from the ground-161

truth data (in blue). Increasing the number of augmentation dimensions significantly162

improves the predictions. The ANODE padded with 5 zeros predicts y(x) = sin(x)163

fairly well. More augmentation is needed for the more complex y(x) = sin(x) + x164

function: an ANODE padded with 10 zeros performs well.165

Fig. 5. NODE and ANODE predicted coordinates for our time-series functions.

We can also quantify convergence by plotting loss values over training iterations.166

For example, Figure 6 shows the models’ loss for predicting y(x) = sin(x) + x. In167

general, we see that increasing the number of augmentation dimensions results in168

lower loss and better convergence in fewer iterations (whereas the regular NODE loss169

and ANODE loss with augmentation dimension p = 1 do not converge at all). This170

is expected, as lifting the ODE to a higher dimensional space improves the model’s171

expressivity and allows it to learn simpler flows more quickly.172

This manuscript is for review purposes only.

6 KERRI LU

Fig. 6. NODE and ANODE training loss for predicting y(x) = sin(x) + x. Note that the loss
converges in fewest iterations when we use the highest number of augmentation dimensions (p = 10).

4.2. Classification of Nested Spheres. In this section, we train ANODEs to173

do classification on the canonical example where regular NODEs fail: nested concen-174

tric circles. We generate a dataset of 4000 datapoints, in which points in the inner175

circle (of radius 1) are labeled ”1” and points in the outer annulus (between the circles176

of radius 2 and radius 3) are labeled ”-1.” The dataset is visualized in Figure 7.177

Fig. 7. Concentric circle data with class labels.

We use a neural network with two hidden layers of dimension 64, and Adam178

optimizer with learning rate 0.05. A final linear layer of the network outputs a real179

scalar value (so technically it computes a regression). We use mean square error loss180

between the ground-truth and predicted labels. We experiment with 2, 5, and 10181

zero-padding augmentation dimensions and train all models for 20 epochs.182

The resulting contour maps for predicted regression values at each coordinate are183

shown in Figure 8. The NODE model does not converge, while the performance of184

the ANODE models improves as the number of augmentation dimensions increases185

(for similar reasons as explained in the previous subsection). With 10 augmentation186

dimensions, the contour map is close to being a series of concentric circles of decreasing187

label value as radius increases, which is the desired result.188

We plot the mean square error loss for each of the models over the training189

iterations in Figure 9. The loss does not converge for the NODE. For the ANODEs,190

increasing augmentation dimension leads to faster convergence and lower loss, as191

before.192

Finally, to better understand ANODE behavior, we plot the learned features (the193

This manuscript is for review purposes only.

AUGMENTED NEURAL ODES 7

Fig. 8. Contour maps for predicted labels at each coordinate, for trained NODE and ANODE
models.

Fig. 9. Model loss during training for learning concentric circles.

final flow trajectory values ϕ(x) = h(T)) for augmentation dimension 10. In Figure194

10, we choose a few of the augmented dimensions and plot the final flow trajectory195

locations on the z-axis in 3D. We also plot the learned features for the regular NODE196

in 2D for comparison. In the ANODE model, we see that the higher dimensionality197

allows the inner circle class to “lift out” and become linearly separable from the outer198

annulus, without having intersecting flows. By contrast, the NODE learned features199

are only a slightly distorted version of the original data, and the red and blue points200

do not become linearly separable.201

As expected, the augmentation allows the model to learn a class of regression202

functions that would not be learnable by the regular NODE.203

This manuscript is for review purposes only.

8 KERRI LU

Fig. 10. Flow trajectory features at final time T for NODE and three of the augmented ANODE
dimensions.

4.3. MNIST Image Classification. Finally, we train NODE and ANODE204

models to perform classification on the MNIST image dataset, which consists of 28 by205

28 pixel images of handwritten digits paired with one-hot ground-truth labels from 0206

to 9.207

The first layer of the neural network reshapes the images to vectors of length 784.208

The next layer is a dense downsampling layer with 20 output nodes which serve as209

the input to the Neural ODE. The NODE has two hidden layers of 10 nodes each,210

and 20 output nodes. Finally, there is a dense layer that maps the NODE output to a211

vector of length 10, corresponding to the one-hot encoding of the ten digits. We use212

logit cross entropy loss, Adam optimizer with learning rate 0.05, and batch size 100.213

We train for 50 iterations.214

For zero-padding augmentation, the only modification to the network architecture215

is that the input to the NODE is padded with p zeros, for a total length of 20+p (and216

then the NODE output must also have length 20 + p, but it is truncated to the first217

20 nodes before being fed into the output layer). The overall network architecture is218

shown in Figure 11.219

We experiment with values p = 10, 25, 40. In Figure 12, we plot the NODE220

and ANODE model classification accuracy and loss on the test set over the training221

iterations. The ANODE models converge to somewhat higher accuracy and lower222

loss in fewer iterations than the NODE. The final NODE accuracy of 73% is a few223

percentage points lower than the final ANODE accuracy of 77% (with augmentation224

dimension p = 10). Further increasing the augmentation dimension also slightly225

improves final accuracy, as seen in the graph.226

We also experiment with the ANODE variants described in Section 3.227

This manuscript is for review purposes only.

AUGMENTED NEURAL ODES 9

Fig. 11. Neural network and ANODE architecture for MNIST classification.

Fig. 12. Zero-padding ANODE test accuracy and loss over training iterations.

4.3.1. Input-Layer Augmentation. To implement input-layer augmentation228

(IL-ANODEs), we change the dense downsampling layer to have 20+p output nodes.229

That is, the network directly learns a mapping from the input vector of length 784230

to a vector of length 20 + p which will serve as the input to the NODE (rather than231

mapping to a vector of length 20 and then padding with zeros).232

As before, we experiment with different augmentation dimensions p = 10, 25, 40233

and plot the resulting test accuracies and losses in Figure 13. Even with the same234

number of augmentation dimensions p = 10, the IL-ANODE has somewhat faster con-235

vergence and has a slightly higher final accuracy of 81% compared to the zero-padding236

ANODE. This is consistent with the hypothesis that learning an input network in-237

creases the freedom and capacity of the model to represent more complex mappings.238

However, further increasing the IL-ANODE augmentation dimension above p = 10239

does not seem to result in significantly improved performance.240

4.3.2. Temporal Regularization. The original NODE is solved from time241

span t = 0 to t = 1. We implement temporal regularization by randomly sampling the242

end time from the interval (1−b, 1+b) where b is the regularization parameter defined243

in Section 3.2. We keep the zero-padding augmentation dimension constant at p = 10244

and experiment with several values of b = 0.2, 0.3, 0.6. Plotting the training accuracies245

and losses in Figure 14, we see that the temporally regularized ANODEs are slower246

to converge than the regular ANODE. This is expected, as regularization works to247

prevent overfitting during training (reducing the variance and generally increasing the248

This manuscript is for review purposes only.

10 KERRI LU

Fig. 13. Input-layer augmentation ANODE test accuracy and loss over training iterations.

bias), which results in lower training accuracy.249

Fig. 14. Time-regularized augmentation ANODE train accuracy and loss over training iterations.

In Figure 15, the test accuracies and losses suggest that the temporal regulariza-250

tion slightly improves model performance in general (although there doesn’t seem to251

be a clear relationship between the value of b and speed of convergence). The final252

test accuracies are around 81% which is slightly higher than the regular ANODE.253

Fig. 15. Time-regularized augmentation ANODE test accuracy and loss over training iterations.

4.3.3. Second-Order NODEs. We implement a second-order NODE for MNIST254

classification. We modify the network architecture for better performance as follows.255

We change the output of the downsampling layer to have length 80, and the NODE256

part of the network to have input and output size 40 with a single hidden layer of 20257

nodes. (The downsampling layer output can be viewed as the concatenation of the258

initial condition h(0) and the initial condition for its derivative h′(0), each of which259

This manuscript is for review purposes only.

AUGMENTED NEURAL ODES 11

Model NODE ANODE IL-ANODE Time-regularized ANODE (b=0.2) Second-order NODE
Final accuracy 73.2% 77.0% 80.7% 81.0% 55.4%

Table 1
Final test accuracy after 50 iterations for NODEs and ANODEs with p = 10.

have length 40 in this case.) Empirically we find that using the second order equation260
d2

dt2h(t) = f(h(t), t) seems to produce somewhat better results than feeding in both261

h(t) and its derivative (i.e. d2

dt2h(t) = f(h(t), h′(t), t)). We use the second order ODE262

solver in DiffEqFlux to directly compute the second-order NODE output.263

Unfortunately, as seen in Figure 16, the second-order NODE performance is much264

worse than the first-order NODE and ANODE models and does not converge. The265

final test accuracy is around 55%, and even training for more epochs seems to result266

in convergence at only around 60%. We believe our naive approach of directly using267

the second order ODE solver on the downsampled inputs is likely flawed; optimiza-268

tion of second order NODEs seems to require a different framework and a modified269

adjoint sensitivity method. More discussion on potential improvements can be found270

in Section 6 (Future Work).271

Fig. 16. Second-order NODE test accuracy and loss over training iterations.

The final test accuracies for NODEs and ANODEs with augmentation dimension272

p = 10 are summarized in Table 1. Overall, our results suggest that augmentation273

enables the NODE model to achieve somewhat higher accuracy, and our performance274

improvements seem effective (with the exception of the second-order system).275

5. Conclusion. In this paper, we have reviewed Augmented Neural ODEs and276

implemented several variants with applications to toy examples and image classifica-277

tion. Our empirical results support the notion that augmenting the space on which278

we solve a neural ODE increases expressivity of the model and allow it to learn a279

broader class of functions, leading to faster convergence and smoother ODE flows.280

Furthermore, we showed that optimizations such as input-layer augmentation and281

time regularization can further improve model performance.282

6. Future Work. For future work, we would like to improve on our experiments283

with second (or higher) order NODEs, as it would be interesting to better understand284

why our naive approach failed. One alternative approach would be to recursively use285

the first-order adjoint method, as higher order NODEs can be decomposed into a series286

of coupled first-order ODEs as shown in Section 3.3. However, there are also more287

sophisticated approaches for higher-order adjoint sensitivity methods. In particular,288

This manuscript is for review purposes only.

12 KERRI LU

[4] proposes an optimal control programming method for second-order optimization289

of Neural ODEs, and shows that it empirically improves convergence time because290

only a single backward pass is needed to find all derivatives.291

It would also be of interest to try to apply Augmented Neural ODEs to a real-292

world setting. Neural ODEs have shown to be especially useful for modeling irregularly293

sampled time series [3], and it would be nice to explore potential applications to areas294

such as climate and weather forecasting where data may be temporally sparse and295

dynamical systems modeling is commonly used.296

REFERENCES297

[1] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differen-298
tial equations, Advances in neural information processing systems, 31 (2018).299

[2] E. Dupont, A. Doucet, and Y. W. Teh, Augmented neural ODEs, Advances in Neural Infor-300
mation Processing Systems, 32 (2019).301

[3] A. Ghosh, H. Behl, E. Dupont, P. Torr, and V. Namboodiri, Steer: Simple temporal regu-302
larization for neural ODE, Advances in Neural Information Processing Systems, 33 (2020),303
pp. 14831–14843.304

[4] G.-H. Liu, T. Chen, and E. Theodorou, Second-order neural ODE optimizer, Advances in305
Neural Information Processing Systems, 34 (2021), pp. 25267–25279.306

[5] S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, Dissecting neural ODEs,307
Advances in Neural Information Processing Systems, 33 (2020), pp. 3952–3963.308

[6] A. Norcliffe, C. Bodnar, B. Day, N. Simidjievski, and P. Liò, On second order behaviour309
in augmented neural ODEs, Advances in Neural Information Processing Systems, 33 (2020),310
pp. 5911–5921.311

[7] C. Rackauckas, M. Innes, Y. Ma, J. Bettencourt, L. White, and V. Dixit, DiffEqFlux.jl-a312
Julia library for neural differential equations, arXiv preprint arXiv:1902.02376, (2019).313

[8] C. Rackauckas and Q. Nie, DifferentialEquations.jl–a performant and feature-rich ecosystem314
for solving differential equations in Julia, Journal of open research software, 5 (2017).315

[9] K. Zubov, Z. McCarthy, Y. Ma, F. Calisto, V. Pagliarino, S. Azeglio, L. Bottero,316
E. Luján, V. Sulzer, A. Bharambe, et al., NeuralPDE: Automating physics-informed317
neural networks (PINNs) with error approximations, arXiv preprint arXiv:2107.09443,318
(2021).319

This manuscript is for review purposes only.

	Introduction and Background
	Limitations of NODEs
	Augmented Neural ODEs
	Structure of Paper

	Related Work
	Methods
	Input-Layer Augmentation
	Temporal Regularization
	Higher-Order NODEs and ANODEs

	Experiments and Results
	Time-Series Prediction with Sinusoidal Functions
	Classification of Nested Spheres
	MNIST Image Classification
	Input-Layer Augmentation
	Temporal Regularization
	Second-Order NODEs

	Conclusion
	Future Work
	References

