
HIGH PERFORMANCE NEURAL JUMP STOCHASTIC1

DIFFERENTIAL EQUATIONS2

SHIJIE ZHANG∗3

Abstract. Many real-world systems evolve continuously over time, but there are also stochastic4
jumps that will interrupt the continuous flow. Describing how these stochastic jumps affect the5
continuous dynamics is often a challenging task. Jia et al. (2019)[2] extend the Neural Ordinary6
Differential Equations (Neural ODEs) introduced by Chen et al. (2018)[1] by incorporating a discrete7
stochastic jump term. The Neural Jump Stochastic Differential Equations (Neural JSDEs) they8
created could help us to learn hybrid systems that contains both continuous and discrete behavior. In9
this project, I review the algorithm of Neural JSDEs and develop a high performance implementation10
on Julia. Then I apply this framework to model a process that combines continuous process with11
an exponential Hawkes process. The Neural JSDEs can help researchers to understand the real-12
world systems that combines continuous and discrete dynamics, thereby facilitating advancements13
in various fields of study, such as finance, epidemiology, seismology and biology.14

Key words. High Performance Computing, Neural Network, Stochastic Differential Equation,15
Stochastic Jumps.16

AMS subject classifications. 65C30, 60H1517

1. Introduction. A significant portion of real-world problems evolves continu-18

ously over time. We normally describe such continuous systems by using Ordinary19

Differential Equations(ODEs) or Partial Differential Equations(PDEs) and researchers20

have extensively worked on identifying the governing equations for specific continu-21

ously evolving systems, as well as analyzing and solving ODEs and PDEs to under-22

stand the dynamics of the system.23

However, some problems is not always continuously evolving and may be inter-24

rupted by stochastic events. These hybrid systems are not uncommon. For example,25

consider a game of tennis: the ball follows a continuous trajectory but will abruptly26

change its moving trajectory when struck by a racket. Similar hybrid evolving sys-27

tems can also be found in various scientific domains. A cell undergoes continuous28

growth, with its size function exhibiting continuity. However, when the cell reaches a29

certain size or at a specific time point, the cell will divide into two daughter cells and30

the size of each daughter is only half of the mother cell. If we are analyzing the size31

function, we will see a sudden change. The stochastic jump behavior is important for32

us to understand these hybrid systems. Unfortunately, we know too little about how33

to analyze the stochastic jumps.34

Here, I review the Neural Jump Stochastic Differential Equations (Neural JSDEs)35

proposed by Jia et al. (2019)[2] to to effectively capture and understand the dynamics36

of continuous and discrete hybrid systems. To represent the state of the hybrid system,37

I employ a latent vector z(t) ∈ Rn, which will evolves continuously until a stochastic38

event occurs. Upon the occurrence of such an event, the trajectory of the latent39

vector z(t) will have a abrupt jump, after which it resumes continuous evolution until40

the next stochastic event takes place. The continuous part of z(t) follows the model41

of Neural Ordinary Differential Equations (Neural ODEs) introduced by Chen et al.42

(2018)[1]. This approach utilizes a neural network to parameterize the continuous43

flow dynamics. While the stochastic jump behavior is describede by another neural44

network. These two neural networks would be implemented on Julia using GPU45

∗Department of Mechanical Engineering, Cambridge, MA (shjzhang@mit.edu).

1

This manuscript is for review purposes only.

mailto:shjzhang@mit.edu


2 SHIJIE ZHANG

acceleration in this project.46

The Neural ODEs framework draws inspiration from residual networks and we47

could calculate the derivative of its loss function using adjoint method. This approach48

is highly effective to describe systems that exhibit continuous evolution. However,49

it lacks the capability to depict discrete events that cause abrupt changes in the50

continuous trajectory. To address this limitation, the Neural JSDEs extends the51

continuous framework of Neural ODEs by incorporating stochastic jumps, which both52

continuous dynamics and discrete jumps. The ability of the Neural JSDEs to model53

continuous and discrete hybrid dynamics makes it become a powerful tool for modeling54

systems with hybrid dynamics that combine continuous and discrete behaviors.55

2. Point Processs. Point processes are discrete stochastic models used to de-56

scribe the random occurrence of points or events. The time sequence when the discrete57

events happen could be described as a set of time H = {τj} and the function N(t)58

could be used to describe the total number of events occurred before time t:59

(2.1) N(t) =
∑
τj∈H

H(t− τj)60

where H is the Heaviside step function.61

Among point processes, what we are mostly interested in is the temporal point62

processes, that is, the occurrence of future events depend on past events. Temporal63

point processes have wide applications in various fields, including finance, epidemi-64

ology, telecommunications, and social sciences. The dependency of future events on65

past events could be described as a conditional probability on H = {τj}, which is the66

set of hitorical events. We use a function λ(t) to describe the conditional intensity at67

time t. Then, we could describe the probability that event happen in [t, t+ dt) as:68

(2.2) P{event happen in [t, t+ dt)|Ht} = λ(t) · dt69

2.1. Hawkes Process. One of the most well-studied and commonly used point70

processes is the Hawkes processes, which is also what I later used in this project. The71

Hawkes process is a kind of self-exciting process, which means a past event will leave72

an impact on the probability of future events. That is conditional intensity function73

λ(t) after it happens. The intensity function would be:74

(2.3) λ(t) = λ0 + α
∑

τj∈Ht

κ(t− τj)75

here, λ0 is the baseline intensity, κ is a kernel function. There are two widely used76

kernels for Hawkes Processthe exponential kernel κ1 and the power-law kernel κ2:77

(2.4) κ1(t) = e−βt
78

κ2(t) =


0, t < σ

β

σ
(
t

σ
)−β−1, otherwise

In this project, I consider the exponential Hawkes process and apply Neural JSDEs79

on this process.80

This manuscript is for review purposes only.



HIGH PERFORMANCE NEURAL JUMP STOCHASTIC DIFFERENTIAL EQUATION 3

3. Neural Jump Stochastic Differential Equation. In the Neural JSDEs,81

we represents the latent state of the continuous and discrete hybrid system with a82

vector z(t) ∈ Rn, that is , the latent state evolves continuously with a deterministic83

trajectories and will be interrupted by discrete stochastic jumps. Then, the latent84

state dynamics could be described as following:85

(3.1) dz(t) = f(z(t), t; θ) · dt+ w(z(t), t; θ) · dN(t)86

here, f(z(t), t; θ) and w(z(t), t; θ) are neural networks that control the flow and jump.87

N(t) is the total number of the occurrence of events up to time t (see Equation 2.1).88

Then, we could simulate the dynamics of the continuous and discrete hybrid89

system by integrating Equation 3.1. Details of simulating the hybrid system can be90

seen in Section 5.1.91

Fig. 1. Forward-mode of the jump stochastic differential equation 3.1. Here, f(z) and w(z(τi))
are neural networks that control the flow and jump respectively.

Then the transformed state at any time τj < ti < τj+1 is given by integrating the92

ODE forward from time τj :93

(3.2) z(ti) = z(τ+j ) +

∫ ti

τj

f(z(t), t; θ)dt94

Noting that the right limit of the latent vector z(t) is z(t+) = limϵ→0z(t+ ϵ). Then,95

at each timestep τj when event happens, the latent state would be:96

(3.3) z(τ+j ) = z(τj) + w(z(τj), τj ; θ)97

Then, we consider optimizing a scalar-valued loss function L, whose input is the98

result of forward propagation. At continuous timestep τj < ti < τj+1, the derivative99

of the loss function can be calculated by the adjoint method used in Chen et al.100

(2018)[1]:101

(3.4)
da(t)

dt
= −a(t)

∂f(z(t), t; θ)

∂z(t)
102

daθ(t)

dt
= −a(t)

∂f(z(t), t; θ)

∂θ

dat(t)

dt
= −a(t)

∂f(z(t), t; θ)

∂t

Integrating Equation 3.4 backward in time, we could get:103

(3.5) a(ti) = a(τj+1) +

∫ ti

τj+1

[
da(t)

dt
−

∑
δ(t− ti)

∂L

∂z(ti)

]
dt104

This manuscript is for review purposes only.



4 SHIJIE ZHANG

aθ(ti) = aθ(τj+1) +

∫ ti

τj+1

daθ(t)

dt
dt

at(ti) = at(τj+1) +

∫ ti

τj+1

[
dat(t)

dt
−
∑

δ(t− ti)
∂L

∂ti

]
dt

At discontinuity point τj , the adjoint sensitivity variable would satisfy:105

(3.6) a(τj) = a(τ+j )
∂z(τ+j )

∂z(τj)
106

So, we will have:107

(3.7) a(τj) = a(τ+j ) + a(τ+j )
∂[w(z(τj), τj ; θ)]

∂z(τj)
108

aθ(τj) = aθ(τ
+
j ) + a(τ+j )

∂[w(z(τj), τj ; θ)]

∂θ

at(τj) = at(τ
+
j ) + a(τ+j )

∂[w(z(τj), τj ; θ)]

∂τj

Then, we could compute the derivative of the loss function dL
dz(t0)

= a(t0),
dL
dθ =109

aθ(t0),
dL
dt0

= at(t0) by calculating backward starting with the final value of z(tN ) by110

using Equation 3.5 abd Equation 3.7. The initial condition of the adjoint variables111

would be :112

(3.8) a(tN ) =
∂L

∂z(tN )
113

aθ(tN ) = 0

at(tN ) =
∂L

∂tN
= a(tN )f(z(tN ), tN ; θ)

Details of the backward propagation could be find in Section 5.2.114

Fig. 2. Backward-mode of the jump stochastic differential equation 3.1. Algorithm to Calculate
the loss function derivative from the final value of the latent vector z(tN ) follows Equation 3.5 and
Equation 3.7.

4. Experiments and Results. In this project, I perform the Neural JSDE115

on a continuous flow affected by an exponential Hawkes Process. For simplicity, I116

implement it on a 1-Dimensional system, i.e. z(t) ∈ R, t ∈ (0, 100). I set the true117

value of the continuous trajectory as:118

(4.1) f(z(t), t; θ) = 1119

This manuscript is for review purposes only.



HIGH PERFORMANCE NEURAL JUMP STOCHASTIC DIFFERENTIAL EQUATION 5

The true value of the conditional intensity of the discrete event would follows the120

exponential Hawkes Process:121

(4.2) λ(t) = λ0 + α
∑

τj∈Ht

e−β(t−τj)122

In this project, I set β = 1, α = 0.8, λ0 = 0.2. Each time an event happens, z = z+1.123

Then, we could simulate this process using DifferentialEquations.jl in Julia. Then124

we could get the event sequence H and the true evolving trajectories. Using this as125

our ground truth, we implement the Neural JSDEs to this process and get the result,126

which is quite promising:127

Fig. 3. Learning results of Neural JSDEs applying on a simple continuously evolving system
that interrupted by an exponential Hawkes Process.

5. Algorithm of Neural JSDEs.128

5.1. Forward Propagation. To do forward propagation, we begin with the129

model parameter θ, which consists of the parameter of the two neural network f(z(t), t; θ)130

and w(z(t), t; θ). We also need to the start time t0, end time tN , and initial state of131

the latent vector z(t0) as our input.132

In this project, I set the two neural network have the same simple structure133

NN : R → R:134

(5.1) NN(z;Wi, bi) = W2tanh.(W1z + b1) + b2135

where W1 is 50× 1, b1 is length 50, W2 is 1× 50, b1 is length 1.136

In forward-mode, we need to simulate the timestep that stochastic events happen.137

So the algorithm would go like this:138

Algorithm 5.1 Forward-mode of Neural JSDEs

Initialization: t = t0, j = 0,H = {}, z = z(t0)
while t ≤ tN do
τj = NextEvent(z, t, θ)
z =StepForward(z, t, τj , θ)
z =JumpForward(z, τj , θ)
H = H ∪ {τj}
j = j + 1
t = t+ τj

end while

This manuscript is for review purposes only.



6 SHIJIE ZHANG

In this forward-mode algorithm, StepForward(z, t, τj , θ) is an ODE solver that139

integrate the neural network f(z(t), t; θ) from time t to time τj , which is the second140

term in Equation 3.2 (i.e. the first term in Equation 3.1). JumpForward(z, τj , θ)141

is a jump process, which add the value of w(z(τj), τj ; θ) to z(τj) to get z(τ+j ). It142

implements the first term in Equation 3.2 (i.e. the second term in Equation 3.1).143

5.2. Backward Propagation. To do backward Propagation to get the deriva-144

tives of loss function L: dL
dz(t0)

= a(t0),
dL
dθ = aθ(t0),

dL
dt0

= at(t0), we begin with145

the model parameter θ. We also need to the start time t0, end time tN , and initial146

state of the latent vector z(t0) and the event sequence H we get from forward-mode147

algorithm in Section 5.1 as our input.148

Algorithm 5.2 Backward-mode of Neural JSDEs

Initialization: t = t0, z = z(t0)
while t ≤ tN do
τj = NextEvent(z, t, θ)
z =StepForward(z, t, τj , θ)
z =JumpForward(z, τj , θ)
t = t+ τj

end while
Compute loss function: L = L({z(ti)}, {z(τj)}; θ)
while t ≥ t0 do
τj = PreviousEvent(H, t)
z,a,aθ,at =StepBackward(z,a,aθ,at, t, τj , θ)
z =JumpBackward(z,a,aθ,at, τj , θ)
t = τj

end while

In this backward-mode algorithm, StepBackward(z,a,aθ,at, t, τj , θ) is an ODE149

solver that integrate the backward ODEs (Equation 3.4), which is Equation 3.5.150

JumpBackward(z,a,aθ,at, τj , θ) is a jump process, which implements Equation 3.7.151

5.3. High Performance settings. In this project, I accelerate the Neural JS-152

DEs using GPU. I use CuArrays.jl to make underlying array type be able to be accel-153

erated by GPU. By using CuArrays.jl, the neural network in Neural JSDEs algorithm154

is accelerated.155

6. Discussion. In this project, I have implemented a high-performance version156

of Neural JSDEs on GPU using CuArrays.jl package in Julia, which could enhance157

the computational efficiency of the Neural JSDEs algotrithm. To test the algorithm,158

I apply the Neural JSDEs framework to an exponential Hawkes process, which is159

well-studied and high applicable in real scenarios, and the results are quite promising.160

While this project focuses on a temporal point process, the high-performance Neural161

JSDEs algorithm has broad applicability across various fields. The algorithm is not162

limited to well-studied processes like the exponential Hawkes process or other known163

stochastic point processes. It can also be extended to model other unknown jump164

stochastic differential equations, providing a data-driven approach to understanding165

such commonly seen systems in real-world. The Neural JSDEs algorithm allows us166

to simulate and predict the discrete events that stochastically occurs in a continuous167

dynamics.168

In real-world problems, we often encounter problems that combine a continuous169

This manuscript is for review purposes only.



HIGH PERFORMANCE NEURAL JUMP STOCHASTIC DIFFERENTIAL EQUATION 7

flow and stochastic jumps. The Neural JSDEs could help us understand and analyze170

such complex dynamics. By applying it to real experimental data, we can simulate171

and predict unknown processes. The versatility of Neural JSDEs holds significant172

potential for advancing our understanding of continuous and discrete hybrid systems173

and their behaviors.174

7. Code Accessibility. The complete implementation of our algorithms and ex-175

ponential Hawkes process experiments is available at https://github.com/ShijieZhang10/18337NJSDE.176

Codes and figures used in this project can also be found in this repository.177

REFERENCES178

[1] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differen-179
tial equations, Advances in neural information processing systems, 31 (2018).180

[2] J. Jia and A. R. Benson, Neural jump stochastic differential equations, Advances in Neural181
Information Processing Systems, 32 (2019).182

This manuscript is for review purposes only.


	Introduction
	Point Processs
	Hawkes Process

	Neural Jump Stochastic Differential Equation
	Experiments and Results
	Algorithm of Neural JSDEs
	Forward Propagation
	Backward Propagation
	High Performance settings

	Discussion
	Code Accessibility
	References

