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Abstract. Coronary atherosclerosis can impede blood flow in the heart, necessitating revascularization proce-4
dures such as angioplasty. Coronary angioplasty success relies on the complex interplay between stent deployment5
and patient-specific micro-morphology. To facilitate intervention planning, we propose a graph convolutional neu-6
ral network (GCNN) that leverages geometric deep learning for real-time prediction of vessel expansion based on7
the 3D arterial structure. This approach significantly reduces computational time, enabling the use of a surrogate8
model to optimize coronary interventions, enhancing decision-making processes, and improving patient outcomes in9
time-sensitive clinical settings.10
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1. Introduction. Coronary artery disease (CAD) remains the foremost global cause of mor-13

tality, primarily attributed to the buildup of atherosclerotic plaque within the coronary wall, which14

subsequently leads to reduced blood flow to the heart muscle[8]. These plaques exhibit a wide va-15

riety of micro-anatomical phenotypes, with their complex micro-morphology and micro-topology16

significantly impacting the efficacy of clinical interventions [10]. To restore blood flow and alleviate17

the detrimental effects of CAD, coronary angioplasty is performed. This revascularization proce-18

dure involves the insertion and expansion of a stent within the artery, with its success hinging on19

the intricate interaction between the device and the patient’s unique coronary micro-morphology,20

such as the presence of calcium deposits [2].21

Cardiologists currently base their interventional decisions on invasive and non-invasive imag-22

ing technologies, such as optical coherence tomography (OCT), to analyze plaque composition and23

determine stent size, placement, inflation pressure, and vessel preparation techniques [7]. While24

OCT provides high-resolution, 3D image stacks of atherosclerotic lesions, enabling the differentia-25

tion of various plaque components based on their optical appearance, relying solely on these broad26

morphological indicators may not provide adequate information to predict device success [3, 13].27

Consequently, understanding and utilizing 3D micro-anatomical information to guide percutaneous28

coronary intervention (PCI) strategies is of paramount importance to optimize clinical outcomes.29

Computational cardiology endeavors to address this limitation by converting intravascular 3D30

OCT images of coronary arteries into patient-specific, multi-material digital twins. These digital31

representations serve as the foundation for virtual angioplasty simulations, which predict vessel32

expansion in response to stent deployment parameters[3, 13]. These simulations employ partial33

differential equations to model the complex interplay of soft tissue biomechanics, contact mechanics,34

and metal alloy plasticity. However, while highly accurate, such numerical simulations are time-35

consuming and computationally intensive, preventing their use in catheter labs, where critical36

interventional parameter decisions are made within minutes of obtaining intravascular images.37

To bridge this gap, recent advancements in scientific machine learning have fostered the de-38

velopment of surrogate machine learning models, trained on numerical simulation data, to predict39

the dynamic state of organic physical systems more rapidly than traditional numerical simula-40

tions [9]. This paves the way for real-time applications in clinical settings. Previous surrogate41

models for PDEs primarily relied on convolutional neural networks (CNNs), which were limited42

by their inability to handle non-Euclidean data, non-homogeneous prediction resolutions, and low43

resolutions[11]. In contrast, graph-based approaches predict system dynamics using a graph repre-44

sentation of computational meshes, which serve as the substrate for numerical simulations. These45

approaches accommodate anisotropic resolutions and non-Euclidean data handling, offering a more46

versatile solution for complex, patient-specific geometries[11].47

In this course project, we propose leveraging graph convolutional neural networks (GCNN)48

to predict vessel expansion in coronary angioplasty based on the morphological representation of49

3D arterial structures. This approach would significantly reduces the time taken to predict vessel50

response, enabling the use of a real-time surrogate model for optimizing coronary interventions. By51

providing a more comprehensive understanding of the intricate interactions between cardiovascular52

morphology and device-based interventions, our proposed GCNN has the potential to accelerate53
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decision-making processes and patient outcomes in coronary angioplasty. With this novel method-54

ology, cardiologists will be better equipped to tailor interventions to individual patients, resulting in55

more successful revascularization procedures and improved long-term prognosis. Our contributions56

are therefore as follows:57

• We develop a parametric model of calcified coronary arteries to produce meshes with58

different morphological parameters59

• We develop and leverage a virtual angioplasty platform that numerically simulates stent60

expansion to calculate vessel displacement61

• We introduce a novel method of condensing the three-dimensional atherosclerotic mor-62

phology onto a 2D mesh manifold embedded in three dimensions, which preserves the63

information necessary to predict vessel expansion in response to virtual angioplasty64

• We leverage a graph convolutional architecture to take the manifold representation of a65

coronary artery to predict nodal displacements on the inner surface.66

• We trained and validated our graph convolutional network on numerical simulations of67

virtual angioplasties applied to a wide range of coronary morphologies.68

2. Methodology. In the methodology section of our study, we delineate the systematic pro-69

cess undertaken to evaluate the practicality of employing Graph Neural Networks (GNNs) in70

predicting the outcomes of virtual stent angioplasty procedures. The methodology comprises of71

several phases: 1) constructing the computational models for virtual stenting (section 2.1), 2) the72

implementation of virtual stent angioplasty simulations (section 2.3), 3) the generation of training73

data for the GNN (section 2.4), 4) the development of the GNN architecture (section 2.5),and 5)74

the conduction of validation experiments section (section 2.6).75

2.1. Computational Models.76

2.1.1. Baseline Geometries. The virtual angioplasty platform consists of three compo-77

nents, a computational model of a calcified coronary artery, a stent, and a balloon. The stent has78

a nominal (starting) diameter of 3mm, is 20mm long and has a radial thickness of 70µm. The79

multi-folded angioplasty balloon measures 23mm in length and has an outer diameter of 0.9mm. It80

is designed with a nominal diameter of 3mm. The baseline arterial model is partitioned into three81

distinct segments, two of which represent healthy sections located at either extremity, and one82

diseased segment positioned centrally. The healthy sections are configured to have a cylindrical ge-83

ometry with a diameter of 2.9mm, a thickness of 0.66mm, and a length of 40mm. In these healthy84

portions, the media and adventitia layers are respectively 0.32mm and 0.34mm thick, adhering85

to the empirical data obtained from the analysis of 13 fresh human cadaveric hearts by Holzapfel86

et al [6]. Interposed between these healthy portions is the diseased segment, characterized by a87

stenosis degree of 60%. This value was derived from an in-depth analysis of an Optical Coherence88

Tomography (OCT) pullback from a patient diagnosed with Coronary Artery Calcification (CAC).89

2.1.2. Parametric variations of the artery model. The parametric variations of the90

artery can be seen in Figure 1. Lumen stenosis diameter (L) ranges from 0 to 2, the calcium91

thickness (T) ranges from 0.1mm to 2mm, and calcium arclength (A) span from 10 to 360 degrees.92

2.1.3. Meshing. The artery was meshed with first order tetrahedra. The number of elements93

varies between the different cases but is usually on the order of 100,000. The balloon has meshed94

with 9600 4-node quadrilateral membranes. The stent has been meshed with 266,588 first order95

linear bricks96

2.2. Material Properties.97

2.2.1. Artery properties. The artery was defined as hyperelastic/plastic and the properties98

were obtained from Poletti et. al [12]. The hyperelastic behaviour is modeled as a polynomial strain99

energy function:100

(2.1) ψ = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 + C40(I1 − 3)4 + C50(I1 − 3)5 + C60(I
1 − 3)6101

Where, Cxx are the material coefficients, and I1 is the first invariant of the cauchy deformation102

tensor. The hyperelastic coefficients for the plastic and elastic behaviour can be found in Tables 1103

and 2.104
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Fig. 1: A visual representation of the computational models for virtual angioplasty. Top row:
Longitudinal inset of parametrized geometry of calcified coronary artery, which consists of media
(blue), adventitia (green) and embedded calcified plaque (red). Right inset shows cross section
of artery with associated calcium deposit. Bottom row: balloon+stent angioplasty system after
crimping operation, left inset shows zoom in on crimped stent mesh, right inset shows cross section
of balloon folding pattern.

C10 C20 C30 C40 C50 C60

Adventitia 2.60× 10−1 4.76× 101 −4.09× 103 5.29× 105 −2.69× 107 5.65× 108

Media 7.29× 10−2 3.71× 100 −1.56× 102 9.18× 103 −2.61× 105 2.91× 106

Table 1: Hyperelastic Behavior of Artery Tissue

2.2.2. Balloon and Stent Properties. The balloon was assumed to have a first order105

Ogden hyperelastic behavior (Table 3:106

(2.2) Ψ =
µ1

α1
(λα1

1 + λα1
2 + λα1

3 − 3)107

Where λX are the principle stretches along each direction. The stent was assumed to have an108

elastic-plastic material behavior as can be seen in tables 4 and 5.109

2.3. Virtual Angioplasty.110

2.3.1. Crimping procedure. The stent was initially 3D-drawn at its nominal diameter of111

3 mm to match the standard received by cardiologists. However, coronary arteries can vary in112

diameter from 3.7 mm to 1.9 mm. Therefore, in order to deliver the stent through these arteries,113

it needs to be crimped or compressed.114

To achieve crimping, 16 rigid planes were placed in an orthoradial pattern, maintaining a115

distance equal to the stent radius. This arrangement ensures immediate contact from the beginning116

of the simulation. To effectively crimp the stent, a radial displacement to a diameter of 1.1 mm117

was imposed on the crimping planes. This process reduces the stent diameter, enabling it to pass118

through the coronary arteries. The resulting configuration represents the final crimped stent.119

2.3.2. Inflation and Deflation. In the simulation setup, both the proximal and distal ends120

of the artery and balloon are pinned, meaning they can rotate locally but not translate. The121
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Artery Tissue Plastic Strain (-) Plastic Stress (MPa)
Adventitia 0 1.60

0.07 2.30
0.40 4.00

Media 0 0.70
0.07 1.10
0.40 2.00

Table 2: Plastic Behavior of Artery Tissue

µ1 (MPa) α1 (-)
80 -15

Table 3: Hyperelastic behavior of the Balloon

balloon is inflated with a pressure of 1.4 MPa. The length of the stent was intentionally chosen to122

overlap a portion of each healthy end of the artery, ensuring that the stent spans the entire length123

of the lesion. Once the balloon is inflated, it is then correspondingly deflated, leaving only the124

stent to keep it open.125

In terms of contact behavior, tangential contact is assumed to be frictionless, while normal126

contact is assumed to be hard, meaning no penetration is allowed. These contact properties were127

applied between every part of the model. Considering the highly non-linear dynamics of this128

simulation, which includes contact and significant deformation, Abaqus/Explicit (Abaqus Inc.,129

Providence RI, USA) was utilized for the analysis. Abaqus/Explicit is well-suited for such simula-130

tions due to its ability to handle explicit dynamics and large deformation scenarios. We run each131

simulation on a node with 28/40 cpus and 128 GB of ram, we utilize domain parallelization, which132

divides the computational mesh into seperate domains for each cpu, and loop paralellization, which133

utilizes multiple cpus to quickly solve certain parallelizable loop procedures. Figure 2 demonstrates134

the results of a single stent angioplasty procedure135

Fig. 2: A visual representation of a virtual stent angioplasty at the end of the inflation step.

2.4. Production of Training Data. The virtual angioplasty produces a a vector prediction136

of the displacement at every node in the mesh. While this mesh and the nodewise displacement137

vector can be fed into the graph neural network, they prove quite large to process on GPU’s. We138

therefore instead choose to project the 3D calcium onto the luminal surface of the artery mesh.139

Producing a 2D triangular mesh embedded in 3D space. We project the calcium by shooting 1 ray140

per node from the surface of the lumen in an outwardly radial fashion. We measure the thickness141

of the calcium by finding the intersection points between the nodal rays and calcium elements. We142

then assign each node a thickness value. Similarly, we found the xyz displacement vector associated143

with each node on the surface. This can be visualized in figure 3144

2.5. Geometric Deep Learning.145

2.5.1. Problem definition. We define vessel expansion as a node-level displacement predic-146

tion problem. We are given as input a 2D surface mesh that is a homogeneous graph G = (V, E)147
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Young’s modulus (GPa) Poisson’s ratio (-)
203 0.3

Table 4: Elastic Behavior of the stent

Plastic stress (MPa) Plastic strain (-)
203 0.3
480 0
1208 0.35
1300 0.62
2300 1.09

Table 5: Plastic behavior of the stent

with nodes in the vertex set vi ∈ V, edges ei,j = (vi, vj) in the edge set E , where vi is called the148

head/source node and vj is called the tail/target node. Each node also has an initial embedding,149

which we denote as h
(0)
i , that contains various expertly curated features. For each node, we would150

like to predict a two-dimensional vector h
(n)
i = (x, y) that represents the displacement of mesh at151

that node in the respective coordinate directions.152

2.5.2. Message passing in graph convolutional layers. Given a graph of an artery, we153

aim to learn a numerical vector h
(n)
i = (x, y) for each node such that it captures vessel expansion154

at that point in a manner that is physiological sound and consistent with other parts of the155

artery. This is achieved by transforming initial node embeddings through several layers of local156

graph-based non-linear function transformations to generate predictions [5]. These functions are157

optimized iteratively, given a loss function to gradually minimize the error of making poor vessel158

expansion predictions. Upon convergence, optimized functions generate an optimal set of node159

displacements.160

Step 1: Initialization. We denote the input node embedding Xi for each node i, which is161

initialized using curated features such as the thickness of calcium at the node, and the position of162

the node. For every layer l of message-passing, there are the following three stages:163

Step 2: Propagating relation-specific neural messages. We calculate a transformation164

of the embedding at each node from the previous layer h(l−1), where the first layer h(0) = X. This165

is achieved via applying a weight matrix W
(l)
M on the previous layer’s embedding:166

m
(l)
i = W

(l)
Mh

(l−1)
i167

Step 3: Aggregating local network neighborhoods. For each node vi, we aggregate on168

the incoming messages {m(l)
j |j ∈ Ni} from neighboring nodes denoted as Ni by taking the average169

of these messages:170

m̃(l)
i =

1

|Ni|
∑
j∈Ni

m
(l)
j171

Step 4: Updating network embeddings. We then combine the node embedding trans-172

formed from the previous layer and the aggregated messages to obtain the new node embedding:173

h
(l)
i = h

(l−1)
i + m̃(l)

i174

After L layers of propagation, we arrive at our encoded node embeddings h
(L)
i for each node i.175

The final node embeddings h
(N)
i represent the displacement prediction at the given node.176

2.5.3. Graph U-Net Architecture. We employ the Graph U-Net architecture [4], inspired177

by the conventional U-Net architecture [14] for image segmentation. This Graph U-Net architec-178

ture effectively captures and decodes hierarchical topological and spatial information in graph-179
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Fig. 3: A visual representation of the input and output representations to be fed into a graph
neural network. Left: calcium is projected onto the inner surface of the lumen. Right: The nodal
displacements of the inner surface are extracted and used as ground truth to supervise network
training.

structured data, enabling the efficient learning of complex patterns across large, densely-connected180

graphs [4].181

The encoder effectively captures both local and global features of the input graph at varying182

mesh resolutions by employing alternating graph convolutional layers and graph pooling layers.183

The pooling layer samples a subset of important nodes to facilitate the enlargement of nodal184

receptive fields [4]. Subsequently, the decoder reconstructs the graph to its original size using185

a series of graph convolutional layers and unpooling operations. The unpooling layer restores186

the original graph structure by using the position information of nodes in the original graph and187

performing the inverse operation of the corresponding pooling layer [4]. To facilitate information188

transfer across layers, skip connections from the encoding phase are integrated into the decoder.189

A representation of this architecture, applied to arterial meshes, is presented in Figure 4.190

The Graph U-Net architecture is particularly effective at propagating information across the191

entire mesh structure through its pooling and unpooling operations, unlike traditional graph neural192

networks that tend to be constrained to a few-hop neighborhood around a node [15]. This ability193

is particularly important for our vessel expansion problem, as the model must recognize long-range194

dependencies along the artery to generate physiologically plausible displacement predictions for a195

given node.196

Fig. 4: Graph U-Net architecture used to estimate displacements during coronary angiography.
Adapted from [15].

2.6. Experiments. We implement the Graph-UNet architecture using FeaSt convolutions197

[16], as employed in the existing literature for modeling arterial meshes [15]. A FeaSt convolution198

[16] represents a graph-convolutional message-passing layer that leverages an attention mechanism199

to dynamically determine local filters based on the features present in the preceding network layer.200

The network consists of approximately 800,000 trainable parameters.201
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Our dataset, comprising 13 arteries, is randomly partitioned into training and testing sets,202

forgoing a validation set due to data constraints. The graph neural networks are trained to predict203

a two-dimensional radial displacement vector at each vertex on the surface mesh. All models are204

trained using a mean absolute error loss and the Adam optimizer. The implementation of this205

architecture is adapted from the code in [1, 15]. Inference on a new artery featuring unseen mesh206

geometry requires only a few seconds, as opposed to the equivalent finite element simulation, which207

took 48 hours.208

3. Results. The results are shown below in the following figures. we present the distributions209

of predicted displacements vs ground truth displacements, and mean absolute error values for the210

training distribution (Figure 5) and test distribution (Figure 6). The training error increases with211

the number of training arteries, while the test error trends downwards with the number of training212

arteries. Indicating the model was overfitting on small datasets but is slowly learning to generalize.213

Fig. 5: Consistent distribution of predicted displacements and increasing mean absolute error
(MAE) during training as training set (N) grows
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(b) N=3; MAE=0.0736
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(c) N=6; MAE= 0.0562
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(d) N=9; MAE=0.1181

214

4. Discussion. In this study, we present a proof of concept for using geometric deep learn-215

ing to predict vessel expansion during coronary angioplasty, showcasing promising results in the216

preliminary stage. Our neural network employs geometric deep learning in conjunction with a217

U-Net architecture, effectively analyzing the 3D arterial mesh to predict radial displacement. Our218

approach significantly reduces computational time and could potentially enable the real-time pre-219

diction of vessel expansion to optimize coronary interventions.220

Despite the encouraging results, our training dataset was limited to a mere 13 arteries, which221

impeded a comprehensive assessment of the graph neural network’s performance and its capacity222

to generalize. To mitigate this limitation, we aim to simulate additional meshes to enhance training223

and facilitate a more robust evaluation.224

Moreover, our current model is not equivariant to transformations in the input data, implying225

that predictions may be influenced by translations, rotations, or the introduction of noise. To226

enhance the model’s performance, we plan to generate a larger dataset with such augmentations227

and train the model using this expanded dataset.228

Finally, our evaluation in this study relies on a random training and testing split of the dataset.229

However, in clinical practice, we would prefer to train models on a specific cohort of patients and230

generalize the model to unseen patients with potentially different morphologies. As a result,231

future evaluations should take into account data splits based on morphology to gain a deeper232

understanding of the graph neural network’s performance in real-world settings.233
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Fig. 6: Improving distribution of predicted displacements and decreasing mean absolute error
(MAE) during testing as training set (N) grows
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(b) N=3; MAE=0.6834
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(c) N=6; MAE=0.0758
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(d) N=9; MAE=0.1213
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