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Abstract. By leveraging tools throughout the Julia scientific machine learning ecosystem, this4
work establishes a robust, high-perfomance simulation platform for the Cahn-Hilliard phase field5
model of phase separating electrode materials. Specifically, this work address common numerical6
challenges with simulating the stiff, nonlinear Cahn-Hilliard partial differential equation in custom7
geometries by exploiting Julia’s high performance scientific computing suite. The paper outlines the8
theoretical background of battery dynamics in custom geometries, details of the simulation platform9
including support for GPU parallelization and applications to PDE-constrained optimization, a per-10
formance evaluation, and future improvements and applications. This work provides a foundation11
for future studies on learning constitutive relationships in batteries at the population scale.12
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1. Introduction. In recent literature [3, 25, 9, 22], nonequilibrium thermody-16

namics has emerged as the true first-principles foundation for modeling dynamics17

in many common lithium-ion battery materials. The dynamics of these systems are18

driven by the exploration of a non-convex free energy landscape that drives hetero-19

geneous transport processes. Of these models, the Cahn-Hilliard continuum model20

[6] is the most general for describing the complex dynamics of lithium-ion battery21

materials that includes heterogeneous reaction kinetics, phase separation processes,22

and diffusion. Despite its generality, the Cahn-Hilliard model is a fourth-order, non-23

linear partial differential equation (PDE), and it poses many challenges for numerical24

modeling including stiffness and sharp spatial gradients. For this reason, the field25

of battery simulation has been slow to incorporate the Cahn-Hilliard single particle26

model into existing battery simulation toolkits [4, 23].27

Beyond battery simulation software, the Cahn-Hilliard model has potential ap-28

plications in bridging the gap between theorists and experimentalists in the field of29

battery science. Past studies by Zhao et al. [26, 27] have leveraged similar phase field30

models to characterize the governing physics in battery systems directly from image31

data. These studies have relied on PDE-constrained optimization to learn functional32

and or constitutive relationships within PDE-based phase field models. These studies33

have primarily utilized the numerically simpler but less physically accurate Allen-34

Cahn model [2] from nonequilibrium thermodynamics. Furthermore, these studies35

used the smoothed boundary method [24] (discussed at length in subsection 2.2) to36

simulate the Allen-Cahn equation in custom geometries at a particle by particle level.37

To push the PDE inversion analysis further, higher fidelity simulations are needed to38

enable Cahn-Hilliard simulations at a particle population scale while still retaining39

the ability to estimate constitutive relationships in custom domains.40

In this work, we will work towards achieving high performance and high fidelity41

simulations of the Cahn-Hilliard equation in custom domains using the smoothed42
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2 SAMUEL DEGNAN-MORGENSTERN

boundary method. We propose to leverage tools throughout the Julia scientific ma-43

chine learning (SciML) ecosystem to build a high performance simulation platform for44

the Cahn-Hilliard phase field PDE. In section 2, we will review the relevant theoretical45

background to the Cahn-Hilliard model and the smoothed boundary method for phase46

field models. In section 3, we will provide details on the simulation platform including47

the development of tools for creating custom smoothed boundary method domains,48

high performance Cahn-Hilliard PDE simulations, within method GPU paralleliza-49

tion, and the applications to parameter estimation. In section 4, we will discuss the50

performance of the platform, including a review of the best possible implementation51

and solvers. Lastly, in section 5, we will discuss future improvements and applications52

of this platform.53

2. Background.54

2.1. Physical Model. In a landmark 2013 paper [3], Bazant established the55

general theoretical framework for electrochemical transport based on nonequilibrium56

chemical thermodynamics. Using this framework, the governing equations for a model57

system of a depth-averaged 2D phase separating particle will be introduced.58

For an infinitesimal control volume, the conservation of species can be expressed59

as follows [7]:60

∂ci
dt

= −∇ · Fi +Ri,(2.1)61
62

where ci is the concentration of species i, Fi is the net flux of species i in the control63

volume, and Ri is the volumetric reaction term for species i in the control volume. For64

electrochemical systems, volumetric reactions can be neglected because electrochemi-65

cal reactions predominantly occur at system interfaces. To formulate the species flux,66

we must take a detour into nonequilibrium thermodynamics. For a system that obeys67

linear irreversible thermodynamics, we can postulate a Gibbs free energy functional68

G and then state the flux as:69

G[{ci}] =
∫
V

g(ci) dV +

∮
A

γ(ci) dA(2.2)70

Fi = −D(ci) · ∇
(
δG

δci

)
= −D(c) · ∇µi(2.3)71

µi =
δG

δci
=
∂g

∂ci
−∇ · ∂g

∂∇ci
(2.4)72

73

where D(ci) is the concentration dependent diffusivity and µi is the chemical potential74

of the system. For this system, we will adopt the simple regular solution Cahn-Hilliard75

gradient expansion as a model for the homogenous free energy. In this framework we76

obtain the following chemical potential and flux:77

µ(c̃) = log

(
c̃

1− c̃

)
+Ω(1− 2c̃)− κ∇2c̃(2.5)78

F = −D0c̃(1− c̃)∇µ (c̃)(2.6)7980

where c̃ is the normalized species concentration, Ω is the enthalpy of mixing pa-81

rameter, κ is the gradient energy penalty coefficient, and the chemical diffusivity82

D(c̃) = D0c̃(1 − c̃) is a thermodynamically consistent diffusivity. Substituting the83
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flux term in 2.6 into the species conservation equation in 2.1 we obtain the following84

governing equation for this system:85

∂c̃

dt
= ∇ ·

(
D0c̃(1− c̃)∇

(
log

(
c̃

1− c̃

)
+Ω(1− 2c̃)− κ∇2c̃

))
.(2.7)86

87

The typical boundary conditions for this system are decided by the relevant reaction88

kinetics and surface wetting effects. However, to simplify the numerical implementa-89

tion, we will only consider no-flux Neumann boundary conditions on species concen-90

tration and flux. The resulting equation is a fourth-order, nonlinear, and stiff PDE91

that will be simulated in a 2D Cartesian coordinate system.92

2.2. Smoothed Boundary Method. In this section, we will develop the math-93

ematical framework for the smoothed boundary method in the context of the Cahn-94

Hilliard phase field model, as introduced by Yu et al. [24]. A domain parameter ψ95

(also referred to as a mask) is introduced as followed:96

(2.8) ψ(x, y) =

{
1 if (x, y) ∈ S

0 otherwise
97

where S is the domain of interest. For systems with Neumann boundary conditions,98

we define the following identity for a function F : Rn 7→ R:99

(2.9) ψ∇2F = ∇ · (ψ∇F )−∇ψ · ∇F,100

where, we can re-express ∇ψ · ∇ in terms of the boundary conditions by recognizing101

n⃗ = ∇ψ
|∇ψ| where n⃗ is the unit surface normal. Following this, we can state the following102

identity for the surface boundary condition:103

(2.10)
∂F

∂n
= ∇F · n⃗ = ∇F · ∇ψ

|∇ψ|
,104

allowing us to conclude, |∇ψ|∂F∂n = ∇F · ∇ψ. We will now apply this technique to105

the Cahn-Hilliard model. We begin by multiplying both sides of the Cahn-Hilliard106

equation with the domain parameter and applying a series of vector calculus identities:107

ψ
∂c̃

dt
= ψ∇ · (D(c̃) · ∇µ)(2.11)108

= ∇ · (ψD(c)∇µ)−∇ψ · (D(c̃)∇µ).109110

Now we can revisit a simplified version of the free energy functional introduced in 2.3111

to obtain an expression for the chemical potential µ.112

ψ · µ = ψ · (log
(

c

1− c

)
+Ω(1− 2c))− ψκ∇2c(2.12)113

= ψ · (log
(

c̃

1− c̃

)
+Ω(1− 2c̃))− κ∇ · (ψ∇c̃)−∇ψ · ∇c̃.114

115

Combining equations 2.11 and 2.12 and applying the assumption of a no wetting116

boundary condition(0 = ∂c
∂n ) and no flux boundary condition (0 = ∂µ

∂n ) we obtain the117
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4 SAMUEL DEGNAN-MORGENSTERN

final expression for the Cahn-Hilliard model using the smoothed boundary method:118

∂c̃

dt
=

1

ψ
∇ · (ψD(c̃)∇µ)(2.13)119

=
D(c̃)

ψ
∇ψ · ∇µ+

∂D

∂c̃
∇c̃ · ∇µ+D(c̃)∇2µ120

µ = log

(
c̃

1− c̃

)
+Ω(1− 2c̃)− κ∇ · (ψ∇c̃)121

= log

(
c̃

1− c̃

)
+Ω(1− 2c̃)− κ

(
∇ψ · ∇c̃

ψ
+∇2c̃

)
,122

123

which we will develop the software implementation to simulate in subsection 3.2.124

3. Methods.125

3.1. Mask Generation. In this section, we will discuss the process of generating126

a custom mask that serves as the discrete set of the domain parameter, ψ, which we127

will use in the numerical simulations. The authors of the original smoothed boundary128

method paper recommend fitting a domain parameter function using the tanh function129

or level set methods [24]. However, we consider an alternative approach in this work130

based on image segmentation and image processing to identify the domain and create131

a diffuse interface. An overview of the workflow is provided in Figure 1.132

Fig. 1. An example workflow is provided here for processing an image to generate a mask,
estimate the initial condition, and simulate the Cahn-Hilliard equation on the custom domain. The
image is first converted to grayscale, and the domain is determined by binarizing all the pixels above
a predetermined threshold. The smoothing process is then run on the binarized mask to create a
diffuse interface. The binary mask is then multiplied elementwise by the grayscale image to create
the initial condition. Then initial condition is used for simulation according to the model described
in equation 2.7.

Using the Images.jl package in Julia [5], a PNG image is loaded and converted into133

grayscale. Each pixel is then determined to be on the domain by evaluating whether134

it is above a predetermined threshold. For more complex images, it is possible to135

use more advanced image segmentation methods to determine the working domain.136

To generate a diffuse interface on the mask, a short smoothing procedure is used by137

solving the reaction–diffusion equation on the entire domain with no flux boundary138
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conditions. Specifically, the following equation is solved:139

∂ψ

∂t
= ζ2∇2ψ +R(ψ)(3.1)140

R(ψ) = 4(2ψ − 1)(ψ − 1)ψ141

∂ψ(x, y, t)

∂x

∣∣∣∣
x=0

= 0142

∂ψ(x, y, t)

∂x

∣∣∣∣
x=1

= 0143

∂ψ(x, y, t)

∂x

∣∣∣∣
y=0

= 0144

∂ψ(x, y, t)

∂x

∣∣∣∣
y=1

= 0145

ψ(x, y, t = 0) = ψ0(x, y),146147

where ζ is the dimensionless group controlling the ratio between the rate of ”diffusion”148

to rate of ”reaction” (set to ζ=0.04 for all simulations), and R(ψ) is the ”reaction”149

term. The simulation is run on the dimensionless domain of (x, y) ∈ [0, 1] × [0, 1]150

between, t ∈ [0, tf ] where tf is adjusted to control the width of the boundary layer.151

This mask can then be used in the simulations of equation 2.7, as described in 3.2.152

For some applications, it may be necessary to estimate the initial condition for the153

Cahn-Hilliard simulations directly from the image. One approach to do this is to take154

the grayscale values of the processed image. For more complex RGB image data, it155

is possible to estimate the concentration from a colorimetric calibration curve. For156

further discussion on this method, interested readers should consult Maire et al. [17].157

3.2. Numerical Simulation. In this section, we will discuss the development158

of the high performance Cahn-Hilliard simulation platform. The development of the159

simulation platform required developing an optimized function to compute the right-160

hand side (RHS) of equation 2.7, as well as a procedure for exploiting the sparse161

structure of the function to use in a well-selected ODE solver.162

The Cahn-Hilliard equation is a fourth order parabolic PDE [18]; for this reason,163

we use the method of lines scheme with second order accuracy centered finite differenc-164

ing to handle the spatial discretization. The potential advantages of the alternative165

finite volume discretization scheme are discussed in section 5. The RHS function was166

developed in three implementations: an elementwise direct computation method, an167

allocating matrix multiplication stencil, and a cached non-allocating matrix multipli-168

cation stencil. An overview of the directed acyclic graph (DAG) underlying all three169

of the computations is presented in figure 2.170
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Fig. 2. The DAG for calculating the RHS of equation 2.7 is presented here. The figure highlights
the six levels of computation, as well as the independence of many operations. Each grid point
can undergo elementwise calculations by propagating through the DAG elementwise. Alternatively,
using finite difference matrix stencils and broadcasting operations, we can treat these calculations
as vectorized operations.

The first implementation of the RHS function relied on computing each opera-171

tion in figure 2 elementwise using inline functions to avoid allocation. The second172

approach transformed this calculation to use finite difference matrix stencil operators173

to compute all discretized differentiation operators, and it used broadcasting oper-174

ations to calculate the chemical potential µ and final output. This approach was175

then further optimized by using the cached mul! operator from LinearAlgebra.jl that176

calls accelerated BLAS routines under the hood. The cached, non-allocating matrix177

multiplication approach for calculating the RHS function achieve a 15x speedup rela-178

tive to the equivalent elementwise computation. For further discussion of the relative179

performance, please consult section 4.180

Prior to any simulation, it is strongly advantageous to leverage the performance181

optimization tools throughout the scientific machine learning (SciML) ecosystem to182

accelerate the code and enhance functionality. In this work, PreallocationTools.jl was183

used to enable automatic differentiation compatibility for our cached RHS function184

implementation, which is critical for enabling the required implicit solvers. Further-185

more, the sparsity detection and matrix coloring tools in Symbolics.jl [11, 12] and186

SparseDiffTools.jl are deployed to greatly accelerate the computation of the Jacobian187

for our function by exploiting its sparse, banded structure.188

Lastly, the simulation platform is finalized by leveraging the functionality of the189

DifferentialEquations.jl library [20] for solving systems of ODEs for the Cahn-Hilliard190

model. This model exhibits a variety of time scales corresponding to different phys-191

ical processes in the simulation. Specifically, random perturbations evolve on a fast192

timescale according to nucleation, while coarsening evolves on a longer timescale [16].193
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HIGH PERFORMANCE SIMULATIONS OF PHASE-SEPARATING ELECTRODES 7

This separation of timescales means the system will be stiff and potentially unsta-194

ble. To remediate this stiffness, we will utilize a variety of specialized solvers for stiff195

problems in the simulation platform. Furthermore, this model is composed of a sys-196

tem of N ×N differential equations from the discretized Cahn-Hilliard equation. For197

typical grid sizes of around 25× 25 to 300× 300, this system can consist of between198

103 – 105 elements, necessitating specialized solvers for large, stiff systems. Given199

these constraints, we tested the following solvers: the explicit stabilized second or-200

der Runga-Kutta methods ROCK2(), ROCK4(), RKC(), SERK2(), ESERK5() [1],201

the second order implicit TRBDF2() solver [14], the implicit, stiff KenCarp4() solver202

[15], the implicit, stiff Rosenbrock23() solver, and the Sundials CVODE BDF() solver203

[10, 13]. Simulations were benchmarked on a model 40×40 system described in figure204

3 for a time horizon of t ∈ [0, 5] to capture both short time nucleation processes and205

long time coarsening dynamics. The best performing solvers from the smaller system206

were tested on a 256 × 256 grid. The results of these tests are further described in207

detail in section 4.208

Fig. 3. The initial and final conditions of the model system used for benchmarking the Cahn-
Hilliard simulations is shown here. The custom domain is a hand drawn tilted ellipse with rough
boundaries, meant to mimic a prototypical electrode particle. The initial condition is generated by
sampling from a uniform distribution C0 ∼ U(0, 1). The system is simulated for a time horizon
t ∈ [0, 5] to encapsulate both short and long term dynamics. The final state of the system shows a
prototypical phase separated state with different sections of the particle existing in a high concen-
tration state and other sections existing in a low concentration state with sharp boundaries between
the two regions. The confirmation of phase separation provides high-level validation for the success
of the underlying numerical methods.

3.3. Applications and Extensions. In this section, we will discuss the ex-209

tensions and applications of the Cahn-Hilliard simulation platform developed in sub-210

section 3.2. Specifically, we will discuss how within-method parallelization can be211

leveraged for massively parallel PDE simulation on the GPU, and how this method212

can be embedded within optimization programs to perform parameter estimation.213

Due to Julia’s core design principle of multiple dispatch, we can naturally override214

the previous numerical implementation to use GPU arrays (CuArrays) and GPU215

operations. This override is enabled by the formulation of the RHS function in terms216

of matrix multiplications and broadcasting operations. However, it is important to217

consider when it is worth it to switch to the GPU implementation. Specifically, the218

GPU operations have a large overhead due to data transfer and managing the parallel219

computations, so it is important to consider when we will get a speedup from running220

computations on the GPU of the CPU. As shown in figure 4, this question can be221

partially answered by looking at the time to perform matrix multiplication on the222
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8 SAMUEL DEGNAN-MORGENSTERN

GPU versus the CPU.223

Fig. 4. For the simulations, the most efficient matrix multiplication type specializations are
tridiagonal-dense matrix multiplication on the CPU and sparse-dense matrix multiplication on the
GPU. These two operations were compared for randomly generated N × N matrices of the appro-
priate type and structure, corresponding to those encountered in this problem. It is found that until
around 300 × 300 sized matrices, it is cheaper to evaluate the expressions on the CPU. To enable
more efficient parallelization, it is critical to shift this intersection towards smaller system sizes by
utilization more efficient GPU specific operations or designing custom GPU kernels.

Within this simulation platform, support was built for initializing the system224

on the GPU and simulating it using the within method parallelization methods in225

DiffEqGPU.jl. The viability of this extension will be qualified further in section 4.226

The final application of this platform was to solve a parameter estimation opti-227

mization problem of the form:228

(3.2) min
θ∈R2

Nx∑
i=1

Ny∑
j=1

Nt∑
k=1

(ĉ(xi, yj , tk; θ)− cdata(xi, yj , tk))
2

229

where θ = [D,Ω] is the vector of model parameters to estimate, Nx = Ny = 40, Nt =230

100 are the number of x spatial nodes, y spatial nodes, t temporal nodes respectively,231

ĉ is the concentration profile predicted by the model developed in subsection 3.2,232

and cdata is a synthetic dataset generated using D = 0.1 and Ω = 3.0. Support for233

gradient calculations was enabled using the ForwardDiff.jl [21] and SciMLSensitivity.jl234

[19] packages. Using these tools for computing gradients, the parameter estimation235

problem was solved using the NewtonTrustRegion() algorithm within Optimization.jl236

[8]. The results of the parameter estimation are discussed in section 4.237
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4. Results and Discussion. In this section, we will analyze the results and238

performance of the Cahn-Hilliard simulation platform including the different RHS239

function implementations, the simulations themselves, the performance of the GPU240

adaptation, and the application to parameter estimation.241

The first analysis will focus on the performance of each implementation of the242

RHS functions; the benchmarks for each implementation can be visualized in figure243

5.244

Fig. 5. This figure depicts the runtime benchmark for the three implementations of the RHS
function described in subsection 3.2. The cached matrix stencil function exhibits the best perfor-
mance on the order of approximately 10 µs. The elementwise implementation performs about an
order of magnitude worse, and the allocating matrix stencil implementation is about two orders of
magnitudes slower due to the high overhead of allocating memory at each call. From this analysis,
we can determine that the best implementation should be done such that it can exploit performance
optimizations in Julia’s underlying linear algebra routines.

As shown in figure 5, the fastest performing solver is the RHS that uses broad-245

casting and cached matrix multiplication for the finite differencing. The elementwise246

RHS performs about an order of magnitude worse, and the allocating matrix multipli-247

cation RHS function performs the worst overall. The allocating matrix multiplication248

RHS function should be the slowest because of the time it takes to allocate memory at249

each function call. Furthermore, the cached matrix multiplication approach is much250

faster than the elementwise computation despite neither allocating memory because251

it is able to take advantage of optimized BLAS routines for the underlying linear252

algebra. Despite this analysis, it is important to also consider how each method fares253

using a variety of implicit and stabilized explicit solvers during the actual numerical254

simulation, as ultimately the total simulation runtime is the most critical performance255

metric.256

To analyze the overall performance, we will benchmark the cached matrix mul-257

tiplication and elementwise implementations with the following solvers: ROCK2(),258

ROCK4(), RKC(), SERK2(), ESERK5(),TRBDF2(), KenCarp4(), Rosenbrock23(),259

CVODE BDF() (note all implicit solvers tested with the default implementation and260

with a Krylov subspace GMRES linear solver). The results of this test are displayed261

in figure 6.262
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10 SAMUEL DEGNAN-MORGENSTERN

Fig. 6. In this figure, we plot the performance of the Cahn-Hilliard simulation with a variety
of specialized stiff native and non-native Julia solvers in the DifferentialEquations.jl [20] package.
From this analysis, we can confidently determine the cached matrix stencil RHS implementation is
faster than the equivalent elementwise RHS version by up to several orders of magnitude in most
cases. We also determine the fastest solver is the Sundials CVODE BDF solver with a Newton-
Krylov method GMRES Jacobian free linear solver. The closest native Julia solver is ROCK2(), but
this solver is explicit, so it will exhibit limited stability with respect to more noisy initial conditions.
Furthermore, the best native Julia implicit solver is the TRBDF2 method without a GMRES linear
solver. The performance of this might be accelerated by tuning the preconditioner of the GMRES
linear solver method.

It was generally found that the Sundials CVODE BDF() solver with a GMRES263

linear solver performed the best in terms of stability and computational time, while the264

native Julia solvers ROCK2() performed fast but lacked stability, and the TRBDF2()265

solver had much more favorable stability, but it was an order of magnitude slower266

than CVOD BDF() and ROCK2(). For a large stiff system such as this, these results267

make sense, as any direct implicit solver will require numerous operations to compute268

the Jacobian at each step during the solution process. The reason Sundials performs269

so well with the GMRES linear solver is because the method is Jacobian free and does270

not require these expensive operations that must be computed with automatic differ-271

entiation at each step in the solver. The equivalent Julia solvers lack the automatic272

tuning of the GMRES linear solver that you get with Sundials, and as a result the273

native Julia solvers suffer in performance relative to Sundials.274

The within method GPU parallelization was successfully deployed for this sys-275

tem; however, for the 40× 40 system, there was no improvement in the performance276

on the GPU due to the overhead of GPU operations. Furthermore, when testing277

the simulation platform on a larger 256 × 256 system, there was poor stability that278

hampered the feasibility of the simulation. At this system size, the CPU simulation279

with Sundials had erroneous divergent behavior, likely due to excessive noise in the280
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initial condition. Specifically, it was found that the second derivative terms quickly281

diverged, leading to poor behavior in the simulations. Further research is required282

to ensure stability in the larger simulations and enable more favorable testing of the283

GPU platform.284

The final performance analysis will focus on the results of the parameter estima-285

tion tools in the simulation platform. The simulation was run as an unconstrained286

PDE-constrained optimization problem with the initial guess of D = 0.3 and Ω = 2.5.287

The algorithm converged in 24 iterations with a loss landscape displayed in figure288

7. It was found that despite the costly Hessian construction, NewtonTrustRegion()289

performed the best due to its favorable convergence relative to other optimization290

algorithms such as gradient descent, BFGS, or ADAM. The parameter estimation291

problem was solved in a reasonable 350 – 400 seconds to a tolerance of 1e-4.292

Fig. 7. A convergence plot for the parameter estimation, showing the L2 error versus the
number of iterations. The optimization problem exhibits steady linear convergence followed by rapid
convergence close to the minimum, as it is characteristic of the Newton trust region optimization
algorithm.

5. Conclusions. In this work, we established a high performance simulation293

platform for the 2D Cahn-Hilliard reaction model in custom geometries with the294

smoothed boundary method. This work utilizes state-of-the-art tools from across the295

SciML ecosystem to solve the stiff, nonlinear PDE with extremely fast performance.296

A thorough performance analysis was conducted to test several potential implementa-297

tions of the Cahn-Hilliard smoothed boundary method model with a variety of candi-298

date solvers from the DifferentialEquations.jl [20] library. This study determines the299

best simulation performance is exhibited by the Sundials.jl[10, 13] CVODE BDF()300

solver with a GMRES linear solver. The simulation platform is further extended to301

support within method GPU parallelization for large simulations. The simulations are302
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12 SAMUEL DEGNAN-MORGENSTERN

successfully embedded within a PDE-constrained parameter estimation optimization303

problem using tools from SciMLSensitivity.jl, Optimization.jl, and ForwardDiff.jl.304

Future work on this project will focus primarily on improving numerical sta-305

bility while maintaining fast performance, improving the viability of within method306

GPU performance, and conducting more advanced PDE-constrained inversion prob-307

lems. Specifically, alternative schemes for the spatial discretization will be considered.308

The finite volume method will be adapted for the 2D SBM model, as it has favor-309

able numerical properties in representing a conservation equation such as the model310

presented here. This improved stability will likely aid the performance of GPU algo-311

rithm by enabling more stable large-scale simulations. Further work will be done to312

create specialized GPU routines and kernels for the Cahn-Hilliard solver to provide313

additional GPU-specific performance optimizations. Lastly, the platform developed314

in this project will be utilized for more advanced parameter estimation and model315

discovery tasks. We have experimental image data available from collaborators de-316

picting phase transformation in graphite anodes during charging and discharging that317

will be used for training universal differential equations following the paradigm of318

Rackauckas et al. [19]. The development of the high performance simulation platform319

for the Cahn-Hilliard reaction model with the smoothed boundary method is a strong320

foundation for future studies in advanced modeling and optimization in the field of321

lithium-ion battery science.322
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