
PARALLELIZATION OF WOLFF ALGORITHM FOR LARGE-SCALE
HIGH-DIMENSIONAL ISING MODEL

DIFEI ZHANG∗

Abstract. The Ising model exhibits phase transitions and critical behavior that are crucial
to understand complex systems. The Metropolis-Hastings algorithm and the Wolff algorithm are
commonly used for sampling the Ising model. In this report, we provide a concise overview of these
algorithms and implement a novel approach for parallelizing the Wolff algorithm. We leverage bound-
ary partitioning and multi-threading techniques to distribute the workload among parallel threads,
addressing the challenges of boundary conditions and high communication costs. Our parallelization
scheme enhances the computational efficiency of the Wolff algorithm and enables the exploration of
larger-scale higher-dimensional Ising models.

Key words. Julia, parallel computing, boundary partitioning, multi-threading, Monte Carlo,
Wolff algorithm, Ising model

1. Introduction.

1.1. Ising Model. The Ising model is a fundamental statistical lattice model
wherein each site represents a binary value, typically denoting spin up or spin down.
Despite its conceptual simplicity, the Ising model finds wide-ranging applications in
statistical physics, Bayesian inference, and numerous other scientific domains [5]. The
efficient generation of the distribution of the large-scale high-dimensional Ising model
plays a pivotal role in conducting precise simulations and facilitating comprehensive
analyses.

1.2. Phase Transition and Critical Temperature. The Ising model exhibits
intriguing phase transitions, characterized by abrupt changes in its properties as tem-
peratures vary. As depicted in Figure 1, the average magnetization (the average spin)
of the lattice experiences a significant decline as the temperature rises. At very low
temperatures, all spins tend to align in the same direction, while at very high temper-
atures, the spin configuration becomes uniformly random and disordered. However, at
a specific critical temperature in middle (denoted by the red dashed line), the system
undergoes a phase transition, triggering the emergence of long-range correlations and
collective phenomena, marking a coexistence of both global order and local disorder.

The comprehension of phase transitions and critical behavior assumes paramount
importance in the study of complex systems and bears profound implications across
diverse scientific disciplines. However, conventional sampling algorithms encounter
significant challenges in the critical region, resulting in the known critical slowdown.
Moreover, as the lattice size and dimension increase, the performance further deteri-
orates. Consequently, there is a compelling need to make the most efficient sampling
algorithm parallelizable to address these limitations.

2. The Metropolis-Hastings Algorithm: 1-spin Flip.

2.1. Markov Chain and Stationary Distribution. The Metropolis-Hastings
algorithm, a widely adopted Markov chain Monte Carlo (MCMC) method, is instru-
mental in sampling from complex distributions. Central to this algorithm is the con-
cept of a Markov chain, which represents a sequence of random variables where the
probability distribution of the next state is solely dependent on the current state. The
key objective of the Metropolis-Hastings algorithm is to ensure that the Markov chain

∗MIT EECS, Cambridge, MA (difeiz@mit.edu).

1

mailto:difeiz@mit.edu


2 DIFEI ZHANG

Fig. 1. Phase transition demonstration for a 64× 64 Ising lattice.

converges to its stationary distribution, enabling correct sampling from the desired
distribution.

Achieving convergence to the stationary distribution relies on two essential con-
ditions: ergodicity and detailed balance. Ergodicity ensures that the Markov chain
can explore the entire configuration space, allowing for the comprehensive sampling
of possible states. Detailed balance, on the other hand, ensures that the transition
probabilities between states satisfy the equilibrium condition, thereby guaranteeing
that the stationary distribution is indeed reached.

The principle of detailed balance establishes a relationship between the transition
probabilities from one configuration to another in a Markov chain [4, 1]. In the
context of the Ising model, detailed balance relates the probability of transitioning
from configuration C to a new configuration C ′, denoted as W [C → C ′], with the
probability of transitioning in the reverse direction, W [C ′ → C]. Additionally, it
involves the probabilities P [C] and P [C ′] of observing the configurations C and C ′,
respectively, within the ensemble of all possible configurations.

According to detailed balance, the ratio of these transition probabilities should
be equal to the ratio of the probabilities of the configurations themselves, expressed
as:

W [C → C ′]

W [C ′ → C]
=
P [C ′]

P [C]
.

In the Ising model, the probabilities of configurations can be written in terms of
the action, a quantity related to the energy of the system. This allows us to rewrite
the detailed balance condition as:

W [C → C ′]

W [C ′ → C]
=

exp(−E[C ′]/kT )

exp(−E[C]/kT )
= exp(−∆E/kT ),

where ∆E represents the energy change between configurations C and C ′, k is the
Boltzmann constant and T is the temperature. This formulation demonstrates that
the detailed balance condition relies on the exponential of the change in the energy,
reflecting the energetic favorability of transitioning from one configuration to another.

2.2. Description of Metropolis-Hastings Sampling on Ising Model. The
Metropolis-Hastings algorithm can be applied to sample from the Ising model by



PARALLELIZATION OF WOLFF ALGORITHM FOR HIGH-DIMENSIONAL ISING MODEL3

proposing changes in the spin configurations and accepting or rejecting these changes
based on a defined acceptance criterion. The iterative process (Figure 2) below allows
for the systematic exploration of the configuration space and the generation of samples
that follow the desired Boltzmann distribution.

step 1. Randomly selecting a single site from the lattice to attempt an update.
This site represents an individual spin in the Ising model.

step 2. Calculating the energy change ∆E caused by flipping the spin at the
selected site. The energy change ∆E is computed by considering the interactions be-
tween the neighboring spins and the external magnetic field, according to the Hamil-
tonian of the Ising model, H(C) = −J

∑
<i,j> sisj .

step 3. If ∆E ≤ 0, indicating a decrease in the system’s energy, the spin is
flipped with a probability of 11. This change is accepted, as it leads to a lower energy
state.

step 4. If ∆E > 0, implying an increase in the system’s energy, the spin is still
potentially flipped, but the acceptance is determined by a probability criterion. The
flip is accepted with a probability equal to exp(−∆E/kT ).

step 5. The algorithm loops back to step 1, repeating the process for a specified
number of iterations or until a convergence criterion is met.

Correctness. The proof for the algorithm correctness is straightforward. If the
configuration update C → C ′ is in ∆E > 0 direction, based on step 4, the probabil-
ity W [C → C ′] = exp(−∆E/kT ).Consequently,thereversedupdatemustbein. Conse-
quently, the reversed update must be in ∆E < 0 direction,fromstep3,theprobability
direction, from step 3, the probability W [C ′ → C] = 1. Therefore, it follows that

W [C → C ′]

W [C ′ → C]
=

exp(−∆E/kT )

1
= exp(−∆E/kT ).

We skip the proof for the other case for the symmetry and simplicity.

Fig. 2. Metropolis Hasting Sampling demonstration for a 5× 5 Ising lattice.

3. The Wolff Algorithm: n-spin Flip.



4 DIFEI ZHANG

3.1. Description of Wolff Cluster Sampling on Ising Model. The Wolff
algorithm [6, 7] stands as a highly efficient and powerful method for sampling the Ising
model, particularly when dealing with large-scale and high-dimensional systems. This
algorithm introduces a unique approach by flipping clusters of spins instead of indi-
vidual spins, resulting in a more effective exploration of the configuration space. By
exploiting the inherent correlations among local clusters (depiced in the middle inset
of Figure 1), the Wolff algorithm demonstrates faster convergence and significantly
mitigates the issue of critical slowing down that commonly arises near phase transi-
tions, distinguishing it from other sampling algorithms.

The key steps involved in the Wolff cluster sampling algorithm for the Ising model
can be summarized as follows and depicted in Figure 3:

step 1. Randomly choose a seed spin from the lattice, serving as the initial spin
of the new cluster. This seed spin is flipped to initiate the cluster formation.

step 2. Sequentially examine each neighboring spin of the seed spin. Specifically,
identify those neighboring spins that point in the opposite direction as the flipped seed
spin. For each of these anti-aligned spins, determine their inclusion in the growing
cluster based on a probability threshold. The probability of adding an anti-aligned
spin to the cluster is typically determined by the probability 1 − exp(−2ψiψj/kT ),
where ψiψj is the interaction between two linked spins. Here, ψi is the seed spin and
ψj is the candidate spins.

step 3. For each newly added spin to the cluster in the previous step, perform
a similar examination of its neighboring spins. Once again, identify the anti-aligned
spins among these neighbors and determine their inclusion in the cluster using the
same probability threshold as in step 2. This iterative process allows the cluster to
grow by incorporating additional anti-aligned spins.

step 4. Repeat step 3 until there are no new spins added to the cluster. This ter-
mination condition ensures that the cluster has reached its maximal size and captures
the connected region of anti-aligned spins.

Correctness. The Wolff algorithm also satisfies the condition of detailed bal-
ance. We denote the cluster by the inner C and the boundary ∂C. Since the probabil-
ity of flipping a cluster is 1, we only need to calculate the total probability of building
a certain given cluster. In step 1, we randomly choose the seed spin, and therefore the
probability Pseed is the same. Then the probability of building a given cluster is the
product of the probabilities p+ that each internal link ℓ+ ∈ C will be activated, times
the product of the probabilities q+ that each boundary link ℓ+ ∈ ∂C will not be acti-
vated, where q+ = 1 − p+ = exp(−2ψ−ψ+/kT ). Therefore the complete probability
for the update of the configuration is

W [C → C ′] = Pseed

 ∏
ℓ+∈C

p+

 ∏
ℓ+∈∂C

q+

 ,

and the revered update probability is

W [C ′ → C] = Pseed

 ∏
ℓ+∈C′

p+

 ∏
ℓ+∈∂C′

q+

 .

Noticing that for two configuratons, the inner part interaction is the same, and
the only difference is the reversion of the boundary interaction, thus we can derive



PARALLELIZATION OF WOLFF ALGORITHM FOR HIGH-DIMENSIONAL ISING MODEL5

W [C → C ′]

W [C ′ → C]
=

∏
ℓ+∈∂C exp(−2ψ−ψ+/kT )∏
ℓ+∈∂C′ exp(−2ψ−ψ+/kT )

=

∏
ℓ∈∂C′ exp(ψ−ψ+/kT )∏
ℓ∈∂C exp(ψ−ψ+/kT )

.

Continuing this derivation, we establish the detail balance condition

W [C → C ′]

W [C ′ → C]
=

exp(
∑

ℓ∈∂C′ ψ−ψ+/kT )

exp(
∑

ℓ∈∂C ψ−ψ+/kT )
= exp(−∆E/kT ).

By repeatedly executing these steps, the Wolff algorithm effectively samples the
configuration space of the Ising model, generating a series of spin configurations that
approximate the desired distribution. The algorithm’s ability to capture large clusters
enhances the detection of phase transitions and critical phenomena, and it has been
widely adopted in various fields of computational physics due to its superior perfor-
mance in simulating Ising models. In the following sections, we will delve into the
parallelization of the Wolff algorithm, employing boundary partitioning and multi-
threading techniques, to further enhance its computational efficiency and enable the
exploration of even larger-scale higher-dimensional Ising models.

Fig. 3. Wolff Sampling demonstration for a 5× 5 Ising lattice.

4. Parallelization of Wolff Algorithm.

4.1. Motivation. The Wolff algorithm has established itself as a highly effi-
cient method for sampling high-dimensional and large-scale Ising models. However,
parallelizing this algorithm presents notable challenges due to the inherent complexi-
ties of its implementation. Conventional parallelization approaches [2], such as lattice
partitioning combined with message passing interface (MPI), encounter difficulties as-
sociated with boundary condition issues and the high communication costs incurred
during the parallel execution. In light of these challenges, we implement a novel ap-
proach [3] to parallelize the Wolff algorithm by leveraging boundary partitioning and
multi-threading techniques, which hold promise in overcoming the aforementioned
limitations.

4.2. Boundary Partitioning in Step 3 of Serial Algorithm. The paral-
lelization of the Wolff algorithm involves a carefully designed scheme utilizing bound-
ary partitioning and multi-threading to distribute the workload efficiently among par-
allel threads. The following steps outline the process in detail (Figure 4):



6 DIFEI ZHANG

step 3.1: Divide the List of the Growing Cluster Boundary. In this step,
the list comprising the growing cluster boundary is divided among the parallel threads.
This division ensures that each thread is responsible for handling a specific fraction
of the cluster boundary. By assigning a portion of the boundary to each thread, the
workload is evenly distributed, maximizing the utilization of computational resources.

Furthermore, to facilitate seamless data access and synchronization between the
threads, the coordinate array and array of spin variables are stored in shared memory.
This shared memory space enables efficient communication and coordination among
the parallel threads during the execution of the parallelized algorithm.

step 3.2: Parallel Searching in Each Direction. For effective paralleliza-
tion, each thread independently performs Step 3 of the Wolff algorithm in parallel for
a specific searching direction. In a three-dimensional lattice, this typically involves
considering six directions. Although different directions searching are executed in se-
rial, given a certain direction, the boundary is growing in parallel, efficiently exploring
the configuration space of the Ising model. Within each thread, the assigned fraction
of the cluster boundary, as determined in Step 1 of the parallelization scheme, is pro-
cessed. Additionally, each thread forms its new boundary consisting of newly added
spins.

To ensure proper synchronization and data integrity, the newly added spins, which
are shared variables among the parallel threads, play a vital role. Each thread gen-
erates its own new boundary by examining neighboring spins and determining the
ones pointing in the opposite direction. These spins are then added to the thread’s
new boundary. This process allows each thread to independently identify and gather
relevant spins for further analysis and cluster growth.

step 3.3: Formation of the Common New Cluster Boundary. After the
parallel execution of Step 3 in multiple directions, it is necessary to form a common
new cluster boundary that incorporates the newly added spins from all threads. This
step involves merging the individual thread’s new boundaries, combining the pertinent
information from each thread’s local computation.

The merging process ensures that the common new cluster boundary reflects the
collective contributions of all parallel threads. By consolidating the newly added
spins, the common boundary represents an updated and comprehensive set of spins
for further iterations of the parallelized algorithm.

Upon completing the formation of the common new cluster boundary, the scheme
returns to Step 1, initiating the next iteration of the parallelized algorithm. This
iterative process continues until convergence is achieved or a predetermined stopping
criterion is met.

Correctness. The correctness of the parallelized Wolff sampling can be demon-
strated by showing that multiple threads accessing and modifying the shared memory
do not lead to conflicts. Given a certain searching direction, since no new spin can
be accessed twice, we do not need to concern such conflict. For example, in a two-
dimensional lattice A, the lattice site A[i, j] can only be visited and modified from
A[i− 1, j], A[i+ 1, j], A[i, j − 1], A[i, j + 1] in four different directions rather than the
same direction.

When transitioning from one search direction to the next, three possible cases arise
for the spins to be searched: those never seen before, those visited but not added, and
those visited and added. In the first case, a normal search is performed, and the spin
is added to the shared memory if necessary. In the second case, the spin has been



PARALLELIZATION OF WOLFF ALGORITHM FOR HIGH-DIMENSIONAL ISING MODEL7

(a) Search left (b) Seach up

(c) Search right (d) Seach down

Fig. 4. Parallelization design of the Wolff algorithm demonstration for a 5 × 5 Ising lattice.
Search each direction in serial. In each direction, the current boundary (blue spins) are partitioned
and fed into different threads (orange and green), allowing parallel searching.

visited in the previous direction search but was not added to the boundary or shared
memory. In this case, the spin is given another chance to be activated according to
the determined probability 1 − exp(−2ψiψj/kT ). Adding it to the shared memory
does not lead to conflicts.

In the third case, where the spin has already been added to the shared memory,
each thread has access to the shared memory, and the direction searches are executed
sequentially. Therefore, when encountering a spin that has been marked in the shared
memory, the thread knows to skip it without causing any conflicts. Overall, by al-
lowing each thread access to the shared memory, it is ensured that conflicts do not
occur.

Thus, based on no issue by assigning shared memory, plus the similar proof to that
of that of the serial version, the parallelized Wolff sampling maintains correctness.

5. Results and Analysis.

5.1. Correctness of the Parallel Wolff Algorithm. We first demonstrate
the correctness of our parallel version of Wolff sampling. For an 8times8 Ising lattice,
we use Metropolis Hasting sampling, simulating 10000 times at each temperature, as
a benchmark. Then for our parallel Wolff sampling, we set JULIA NUM THREADS
= 1 as a serial version, meaning no boundary partitioning can happen. For each
sampling method, we calculate the average energy ⟨E(T )⟩ = ⟨−J

∑
<i,j> sisj⟩. As is

shown in Figure 5, the two overlapped curves demonstrate the stationary distributions
are the same at least for the first moment, serving as a part proof for the correctness
of the parallel Wolff sampling implementation.



8 DIFEI ZHANG

We provide an analysis of the correctness of our parallelized Wolff sampling al-
gorithm. To validate the parallel implementation, we conduct a benchmark compar-
ison with the Metropolis-Hasting sampling method on an 8 × 8 Ising lattice. The
Metropolis-Hasting sampling is performed with 10, 000 simulations at each tempera-
ture as a reference.

In our parallel Wolff sampling, we initially set JULIA NUM THREADS = 1,
simulating the algorithm in a serial manner without any boundary partitioning. For
both the Metropolis-Hasting and parallel Wolff sampling methods, we calculate the
average energy ⟨E(T )⟩ = ⟨−J

∑
<i,j> sisj⟩.

The results, as illustrated in Figure 5, show that the two energy curves overlap,
indicating that the stationary distributions are consistent at least for the first moment.
This serves as preliminary evidence of the correctness of our parallel implementation
of the Wolff sampling algorithm.

The comparison between the Metropolis-Hasting and parallel Wolff sampling
methods provides insight into the fidelity and accuracy of the parallel implementa-
tion, supporting its correctness in capturing the essential features of the Ising model’s
energy distribution.

Fig. 5. Correctness of parallel Wolff Sampling implementation on an 8× 8 Ising lattice.

5.2. Comparison of Serial and Parallel Wolff Algorithm. In order to as-
sess the speedup achieved by our parallel Wolff sampling implementation, we con-
ducted experiments on lattices of size 262, 144. Specifically, we performed the experi-
ments on two different systems: a two-dimensional lattice with dimensions 512× 512
and a three-dimensional lattice with dimensions 64× 64× 64. The parallelization was
carried out by varying the number of threads, setting JULIA NUM THREADS = 1,
2, and 4 for the respective systems.

The performance evaluation focused on measuring the time consumption of each
Wolff sampling step and observing the resulting performance plateau. Figure 6 il-
lustrates the recorded time consumption (or speed) for each step. In the case of the
two-dimensional lattice (Figure 6a), the parallel implementation did not yield any
noticeable acceleration for such a large Ising lattice.

However, in the case of the three-dimensional lattice (Figure 6b), the speedup
achieved by the parallel implementation was significant and aligned with our expec-



PARALLELIZATION OF WOLFF ALGORITHM FOR HIGH-DIMENSIONAL ISING MODEL9

tations. Doubling the number of threads resulted in a twofold increase in the speed
of each Wolff sampling step.

The experimental results highlight the dependence of the speedup on the lattice
dimensionality and the associated computational complexity. The lack of acceleration
observed in the two-dimensional case suggests that the parallelization overhead may
not be justified for large-scale 2D Ising models. Conversely, the substantial speedup
observed in the three-dimensional case demonstrates the effectiveness of the parallel
Wolff algorithm for high-dimensional systems.

(a) 2D 512× 512 Ising Lattice (b) 3D 64× 64× 64 Ising Lattice

Fig. 6. Performance comparison of serial and parallel Wolff sampling.

5.3. Dimension Analysis: Impact of Boundary Partitioning. In order to
shed light on the reasons behind the observed acceleration of the parallel Wolff sam-
pling algorithm in higher dimensions, we conducted a detailed analysis and further
experimentation. The key insight lies in the significance of efficient boundary parti-
tioning, which relies on having a sufficiently large boundary length for parallelization.

Intuitively, one might expect the boundary length to increase as the cluster grows,
irrespective of the dimensionality. However, it is important to note that the boundary
subjected to partitioning in our algorithm is not the conventional boundary of the
cluster, but rather the boundary formed by the newly added spins. In other words,
even if the cluster size is 100 × 100 resulting in a normal boundary length of 400,
the actual boundary length in our algorithm would be only 2 if there are merely 2
newly added spins. This distinction is crucial in understanding the behavior of the
parallelization.

As illustrated in Figure 7, we can observe that despite having the same lattice size,
the boundary length of a two-dimensional 512 × 512 system in each Wolff sampling
step is consistently less than 10. Consequently, there is limited potential for multi-
threading acceleration in this scenario. On the contrary, as the dimension increases to
3 and 4, the boundary length becomes significantly larger even with the same lattice
size. This discrepancy perfectly explains why the parallel Wolff sampling method is
better suited for large-scale high-dimensional Ising models.

The findings from this dimension analysis highlight the crucial role of boundary
length in determining the efficacy of the parallelization strategy. It reinforces the
observation that the parallel Wolff algorithm demonstrates optimal performance when
applied to high-dimensional Ising models with large-scale lattice sizes. This insight
opens up avenues for further exploration of boundary partitioning techniques and their
impact on different system dimensions, enabling the development of more efficient



10 DIFEI ZHANG

parallel sampling algorithms for complex lattice models.

Fig. 7. Dimension analysis for the parallel Wolff sampling on the same lattice size.

6. Conclusion. In this report, we have explored the sampling of the Ising model
using the Metropolis-Hastings algorithm and the Wolff algorithm. We have discussed
the principles and implementation details of these algorithms, highlighting their cor-
rectness and their ability to generate samples following the desired Boltzmann distri-
bution. The Metropolis-Hastings algorithm updates individual spins, while the Wolff
algorithm flips clusters of spins, offering advantages in exploring the configuration
space efficiently and mitigating critical slowing down near phase transitions.

Furthermore, we have implemented a novel approach to parallelize the Wolff al-
gorithm by utilizing boundary partitioning and multi-threading techniques. This
parallelization scheme allows for the efficient distribution of workload among paral-
lel threads, maximizing computational resources’ utilization. We have outlined the
steps involved in the parallelization process, emphasizing the division of the growing
cluster boundary and the parallel searching in each direction. In conclusion, the par-
allelization of the Wolff algorithm enhances its computational efficiency, enabling the
exploration of larger-scale and higher-dimensional Ising models.

Further research can focus on optimizing the boundary partitioning strategy em-
ployed in the parallelized Wolff algorithm. Exploring different partitioning schemes,
load balancing techniques, and communication strategies can enhance the algorithm’s
performance and scalability. Additionally, investigating adaptive partitioning meth-
ods that dynamically adjust the partition boundaries based on the evolving cluster
structure may further improve the parallel efficiency. On the other hand, machine
learning techniques, such as neural networks, have shown promise in enhancing Monte
Carlo simulations. Integrating parallelized Wolff algorithm with machine learning ap-
proaches, such as generative models or reinforcement learning, can provide novel ways
to explore complex phase spaces, optimize sampling strategies, and accelerate conver-
gence, leading to more efficient simulations and deeper insights into statistical physics
phenomena.

7. Supplemental Material. The Julia implementation of the parallel Wolff
sampling can be found in the link https://github.com/difeizhang/ParallelWolff.git.

https://github.com/difeizhang/ParallelWolff.git


PARALLELIZATION OF WOLFF ALGORITHM FOR HIGH-DIMENSIONAL ISING MODEL11

REFERENCES

[1] http://latt.if.usp.br/technical-pages/twawesab/Text.html/node1.html.
[2] D. Hassani and S. Rafibakhsh, Parallelization and implementation of multi-spin monte carlo

simulation of 2d square ising model using mpi and c++, Journal of Theoretical and Applied
Physics, 12 (2018), pp. 199–208, https://doi.org/10.1007/s40094-018-0301-4, https://doi.
org/10.1007/s40094-018-0301-4.

[3] J. Kaupužs, J. Rimšāns, and R. V. N. Melnik, Parallelization of the wolff single-cluster al-
gorithm, Phys. Rev. E, 81 (2010), p. 026701, https://doi.org/10.1103/PhysRevE.81.026701,
https://link.aps.org/doi/10.1103/PhysRevE.81.026701.

[4] M. E. Newman and G. T. Barkema, Monte Carlo methods in statistical physics, Clarendon
Press, 1999.

[5] S. P. Singh, The ising model: Brief introduction and its application, in Metastable, Spintronics
Materials and Mechanics of Deformable Bodies, S. Sivasankaran, P. K. Nayak, and E. Gnay,
eds., IntechOpen, Rijeka, 2020, ch. 8, https://doi.org/10.5772/intechopen.90875, https://
doi.org/10.5772/intechopen.90875.

[6] R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in monte carlo simulations,
Phys. Rev. Lett., 58 (1987), pp. 86–88, https://doi.org/10.1103/PhysRevLett.58.86, https:
//link.aps.org/doi/10.1103/PhysRevLett.58.86.

[7] U. Wolff, Collective monte carlo updating for spin systems, Phys. Rev. Lett., 62
(1989), pp. 361–364, https://doi.org/10.1103/PhysRevLett.62.361, https://link.aps.org/
doi/10.1103/PhysRevLett.62.361.

http://latt.if.usp.br/technical-pages/twawesab/Text.html/node1.html
https://doi.org/10.1007/s40094-018-0301-4
https://doi.org/10.1007/s40094-018-0301-4
https://doi.org/10.1007/s40094-018-0301-4
https://doi.org/10.1103/PhysRevE.81.026701
https://link.aps.org/doi/10.1103/PhysRevE.81.026701
https://doi.org/10.5772/intechopen.90875
https://doi.org/10.5772/intechopen.90875
https://doi.org/10.5772/intechopen.90875
https://doi.org/10.1103/PhysRevLett.58.86
https://link.aps.org/doi/10.1103/PhysRevLett.58.86
https://link.aps.org/doi/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.62.361
https://link.aps.org/doi/10.1103/PhysRevLett.62.361
https://link.aps.org/doi/10.1103/PhysRevLett.62.361

	Introduction
	Ising Model
	Phase Transition and Critical Temperature

	The Metropolis-Hastings Algorithm: 1-spin Flip
	Markov Chain and Stationary Distribution
	Description of Metropolis-Hastings Sampling on Ising Model

	The Wolff Algorithm: n-spin Flip
	Description of Wolff Cluster Sampling on Ising Model

	Parallelization of Wolff Algorithm
	Motivation
	Boundary Partitioning in Step 3 of Serial Algorithm

	Results and Analysis
	Correctness of the Parallel Wolff Algorithm
	Comparison of Serial and Parallel Wolff Algorithm
	Dimension Analysis: Impact of Boundary Partitioning

	Conclusion
	Supplemental Material
	References

