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A B S T R A C T

We show how to reconstruct the vortex-induced vibrations of a riser from experimental strain
measurements using a machine learning framework. We employ a modal decomposition technique
followed by inference of the expansion modes using a two-stage optimization routine. A stochastic
mode search algorithm is developed and its capabilities and limitations are demonstrated using the
MIAMI II riser field experiments, conducted in the Gulf Stream off the coast of Miami, FL using a
densely instrumented riser model. Validation is done according to a k-fold cross-validation scheme.
Computations are accelerated by paralellizing repeated tasks.

1. Introduction
Vortex induced vibrations (VIV) are driven by the peri-

odic shedding of vortices formed in the wake behind bluff
bodies placed within currents [1]. The vibration amplitude
does not typically exceed one to two body diameters [2].
Rigid cylinder VIV have become the canonical problem for
study of the phenomenon [3, 4, 5]. Flexible body VIV are
similar to rigid body vibrations as they are driven by vortex
sheeding, but with the added complexity that the loading is
non-uniform along the span as the flexible body undergoes
spatially traveling and/or standing waves.

Riser motion reconstruction has been done by leveraging
the physics-based modal expansion technique [6, 7, 8] devel-
oped to model vibrations of continuous flexible bodies, such
as beams [9]. In this work, the modal expansion approach
is employed, followed by a data-informed selection of the
expansion modes to restrict the model’s complexity while
satisfying the motion constraints imposed by VIV physics.
The challenge is that a large number of parameters are
involved in riser modeling, a problem which is common
within the field of regression and has led to a variety of
techniques for variable subset selection [10]. This frame-
work is used to satisfy physics-based VIV motion constraints
(for example, amplitude restriction), while still utilizing the
modal decomposition model.

2. Methodology
2.1. Data Description

The MIAMI II experiments took place in October 2006
with purpose to conduct high mode number VIV experi-
ments in the stream of the Gulf of Mexico. The tests were
conducted using a composite pipe of Length 𝐿 = 152.524
m and drag diameter 𝐷 = 0.0363 m. A depiction of the
experimental setup is included in Fig 8. Strain data were
collected at 70 uniformly spaced locations (every Δ𝑧 =
2.1335 m) excluding the endpoints of the body sampled
at 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 50.4857 Hz. For more information on the

experiments one should refer to [11, 12, 13, 14]. For this
work, the cross-flow strain data collected from experiment
20061020164517 between time 50-70 seconds are used.

2.2. Modelling the flow induced motions
Consider a flexible riser of circular cross-section with

radius 𝑅, spanning a length 𝐿. Let the amplitude response
be approximated by a modal decomposition as follows.

𝑦(𝑧, 𝑡) =
∑

𝑛∈𝑆
𝑐𝑛(𝑡) 𝜙𝑛(𝑧) (1)

where 𝑐𝑛(𝑡) are time varying coefficients and 𝜙𝑛(𝑧) are the
corresponding mode shapes. For VIV in the cross-flow di-
rection we expect sinusoidal mode shapes with time varying
amplitudes [1]. A reasonable choice for the modes could thus
be Fourier modes as in Equation 2.

𝑦(𝑧, 𝑡) = 𝛼0(𝑡)+
∑

𝑛∈𝑆

[

𝛼𝑛(𝑡) cos(𝑛𝜋
𝐿

𝑧) + 𝛽𝑛(𝑡) sin(𝑛𝜋
𝐿

𝑧)
]

(2)

where the contributing expansion modes are in set 𝑆 and the
coefficients 𝛼𝑛 and 𝛽𝑛 are varying in time, i.e. 𝛼𝑛 = 𝛼𝑛(𝑡)
and 𝛽𝑛 = 𝛽𝑛(𝑡). Allowing the set 𝑆 ≠ ℕ+ in Equation 2
yields a Fourier series with selectively omitted modes. For
simplicity, one may rewrite Equation 2 as follows.

𝑦(𝑧, 𝑡) = Re

[

∑

𝑛∈𝕊
𝑐𝑛(𝑡) exp (

𝑖𝑛𝜋
𝐿

𝑧)

]

(3)

where 𝑖 is the imaginary unit and the real symmetric set
𝕊 = {−𝑆 ∪ {0} ∪ 𝑆} replaces set 𝑆.

For a riser with a circular cross-section the strain mea-
sured on the riser’s surface may be related to its curvature as
follows [15].



𝜅(𝑧, 𝑡) =
𝜀𝐶𝐹 (𝑧, 𝑡)

𝑅
≈

𝜕2𝑦(𝑧, 𝑡)
𝜕𝑧2

(4)

where 𝜀𝐶𝐹 is the CF strain, and 𝜅 is the riser’s curvature.
Leveraging Equation 3 this is equivalent to

𝜕2𝑦(𝑧, 𝑡)
𝜕𝑧2

= Re

[

∑

𝑛∈𝕊
−(𝑛𝜋

𝐿
)2𝑐𝑛(𝑡) exp (

𝑖𝑛𝜋
𝐿

𝑧)

]

=
𝜀𝐶𝐹 (𝑧, 𝑡)

𝑅

(5)

Equation 5 may thus be used to formulate a system of linear
equations to determine the coefficients 𝑐𝑛(𝑡) (at each time
instance) assuming the set 𝕊 ≠ ℕ+ is known a priori and
only limited measurements of the strain are available. The
ordinary least squares problem formulation is as follows.

𝑐𝑛(𝑡0) = arg min
𝑐𝑛

{ 𝑧𝑖=𝐿
∑

𝑧𝑖=0

{

Re

[

∑

𝑛∈𝕊
−(𝑛𝜋

𝐿
)2𝑐𝑛 exp (

𝑖𝑛𝜋
𝐿

𝑧𝑖)

]

−
𝜀𝐶𝐹 (𝑧𝑖, 𝑡0)

𝑅
}2
}

(6)

where 𝑛 ∈ 𝕊 ≠ ℕ+.

2.3. Machine learning vortex induced vibrations
Let the function 𝑦(𝑧, 𝑡) defined in Equation 2 be used as

a trial function to approximate the VIV motions. It follows
from Equation 4 that

∫𝐿

|

|

|

|

𝑑2𝑦(𝑧, 𝑡0)
𝑑𝑧2

−
𝜀𝐶𝐹 (𝑧, 𝑡0)

𝑅
|

|

|

|

𝑑𝑧 = 0 (7)

Equation 7 thus may be used to quantify the approximation
quality of 𝑦(𝑧, 𝑡0) in terms of approximating the true motions
at time instance 𝑡0 by measuring the deviation of the integral
from zero. Extending the definition across all time instances
(which are discrete) an objective function measuring approx-
imation quality for 𝑦(𝑧, 𝑡) may be formulated as follows.

𝐉(𝑦 = 𝑓 (𝑧, 𝑡)) =
∑

𝑡 ∫𝐿

|

|

|

|

𝜕2𝑦(𝑧, 𝑡)
𝜕𝑧2

−
𝜀𝐶𝐹 (𝑧, 𝑡)

𝑅
|

|

|

|

𝑑𝑧 (8)

We underscore that minimizing Equation 8 is a necessary but
not sufficient condition to optimally approximate the riser’s
VIV motions, we further need to satisfy VIV physics-based
constraints. Combining Equations 2 and 8 an objective that
can be used to learn the expansion modes, i.e. the discrete
set 𝕊 may be formulated as follows.

𝐉(𝕊) =
∑

𝑡 ∫𝐿

|

|

|

|

Re

[

∑

𝑛∈𝕊
−(𝑛𝜋

𝐿
)2𝑐𝑛(𝑡) exp (

𝑖𝑛𝜋
𝐿

𝑧)

]

−
𝜀𝐶𝐹 (𝑧, 𝑡)

𝑅
|

|

|

|

𝑑𝑧

(9)

A final remark is that both the coefficients 𝑐𝑛(𝑡) and the
set 𝕊 are learned from the data; however we note that the
optimality of the coefficients 𝑐𝑛(𝑡) can only be defined after a
choice for the set 𝕊 is made. In addition, the coefficients 𝑐𝑛(𝑡)
are not learned according to Equation 9 but are determined
at each time instance by solving an OLS problem (Equation
6).

2.4. Constraints
We first consider the physical constraints imposed on a

riser. For a pinned-free riser we expect

𝑦(𝑧 = 0, 𝑡) = 0 ∀𝑡 ∈ [0, 𝑇 ] (10)

We note this is an essential boundary condition and should
thus be hardly imposed. In addition, natural boundary con-
ditions suggest that the bending moments at the body ends
should be zero. The third derivative of the displacement at
the free end should also be zero [8]. Thus,

𝜕2𝑦(𝑧, 𝑡)
𝜕𝑧2

|

|

|

|𝑧=0
=

𝜕2𝑦(𝑧, 𝑡)
𝜕𝑧2

|

|

|

|𝑧=𝐿
=

𝜕3𝑦(𝑧, 𝑡)
𝜕𝑧3

|

|

|

|𝑧=𝐿
= 0 ∀𝑡 ∈ [0, 𝑇 ]

(11)

The natural boundary conditions are imposed softly. Finally,
the amplitude constraint is as follows

max
𝑧∈[0,𝐿], 𝑡∈[0,𝑇 ]

{𝑦(𝑧, 𝑡),−𝑦(𝑧, 𝑡)} < 2𝐷 (12)

where 𝐷 is the cylinder’s diameter. The amplitude constraint
was strictly imposed. Lastly, given that the expected physical
vibration mode is not to exceed 30, the expansion modes in
𝑆 are narrowed down to 𝑆 ⊆ Ω, where Ω = {1, 2, 3, ..., 90}.

3. Results and Discussion
In this section we present the optimization algorithm

reconstructions and attempt to validate the models obtained
after applying the proposed methodologies on the experi-
mental data. We note that all coding for this project was done
in Julia and then the results were plotted using MATLAB.
Both the Julia and the MATLAB codes are included in
Appendix C. Indicative Julia plots of the results are included
in Appendix B.

3.1. Optimization Routine
Optimizing the objective function in order to obtain the

optimal set 𝕊 is highly nontrivial. Essentially, the choice
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Figure 1: Objective function plotted against iteration.

of 𝕊 fundamentally alters the nature of 𝑦(𝑧, 𝑡) as defined in
Equation 3 by governing the number of terms used. Thus,
calculating a gradient with respect to the unknown param-
eters is not possible. To make maters worse, the number of
subsets of Ω are 2|Ω| = 290 which is inexhaustibly large.

A two stage stochastic search approach was employed to
minimize the objective. In the first stage, the cardinality of 𝕊
was restricted (to some different value at each iteration) and
the set 𝕊 was drawn uniformly at random from Ω. This stage
was the "space exploration" stage. Mathematically,

𝑁1 ≤ |𝕊| ≤ 𝑁2, 𝑁1, 𝑁2 ∈ Ω

𝕊 ← {𝑠𝑖
|

|

|

(

𝑠𝑖 = 𝑟𝑎𝑛𝑑 ∈ Ω
)

∧
(

𝑠𝑖 ≠ 𝑠𝑗 ∀ 𝑖 ≠ 𝑗
)

}
(13)

where the notation 𝑟𝑎𝑛𝑑 means a number chosen uniformly
at random (i.e. 𝑟𝑎𝑛𝑑 ∼ 𝑈 ({𝑁1, 𝑁1 + 1, ..., 𝑁2 − 1, 𝑁2}).
Given the choice of 𝕊, the optimal coefficients 𝑐𝑛 (OLS
sense) were determined at each time and the objective func-
tion was evaluated. The set which yielded the lowest value
of the objective was then selected as the optimal in stage 1.
We call this set 𝕊1.

The second stage served as a "refinement" stage, in
which the set 𝕊1 was perturbed and the objective was eval-
uated. Perturbations included the following: (i) a few modes
were added or removed from 𝕊, (ii) some or all of the modes
in 𝕊 were altered slightly. Mathematically, both procedures
fall into the below operations or their combination.

𝕊 ← 𝕊1 ∪ 𝕊𝑝, 𝕊𝑝 =

{𝑠𝑖
|

|

|

𝑠𝑖 ∈ Ω∖𝕊1 ∧ |𝑠𝑖 − 𝑥| < 𝑎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝕊1, 𝑎 > 0}

𝕊 ← 𝕊1 ∪ 𝕊𝑝, 𝕊𝑝 = {𝑠𝑖
|

|

|

𝑠𝑖 ∈ Ω ∧ 𝑠𝑖 ∉ 𝕊1}

𝕊 ← 𝕊1∖𝕊𝑝, 𝕊𝑝 ⊂ 𝕊1
(14)

Figure 2: Strain measurements plotted on top of strain
predictions as a function of body span for four randomly
selected time instances. The model predictions after opti-
mizing the modes are able to approximate the strain mea-
surements closely. We underscore that the model not only
agrees with measurements to reasonable accuracy but also
satisfies the physics-based constraints which are applied on
its second anti-derivative (not shown in this Figure).

The final set which yielded the lowest value of the objective
function was then selected as the optimum. A pseudocode
for the optimization routine is included in Appendix A.

3.2. Convergence and computational cost
Albeit the stochastic optimization algorithm lacks the-

oretical convergence guarantees, in practice convergence is
observed. Specifically, after performing the algorithm with
10 restarts and performing 20,000 iterations with the last
1,000 iterations as the refinement stage, the returned set is
the exact same all 10 times. In addition, if instead of 20,000
iterations only 5,000 iterations are performed, the optimal set
obtained is the same as that obtained using 20,000 iterations
for 7/10 restarts. The 3 suboptimal sets differed from the
optimal by no more than 4 modes (out of 36 modes selected
total).

A typical plot of the objective function plotted against
iteration is shown in Figure 1. We note that since the objec-
tive is not monotonically decreasing with iteration number,
the value of the objective was only plotted if it was better
than the previous best estimate. The first 19,000 iterations
served as the exploration stage; we observe that the best
set found in the exploration stage was found typically in
less than 5,000 iterations. Rapid improvement to the final
optimum was observed in the refinement stage (last 1,000
iterations).
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Figure 3: Time-wise root mean square (RMS) of measure-
ments as well as of predictions of motion (top) and strain
(bottom) as functions of body span.

The wall time of the optimization is about one hour for
20,000 iterations on a computer with an intel core i7 CPU
of 7th generation (2018). The process may be sped up by
parallelizing loop operations, for example when computing
the values of 𝑦(𝑧, 𝑡) which require extensive sequential sum-
mations and are repeated in the order of thousands of times
at every iteration.

3.3. Validation
In order to examine how well the model approximates the

motions after optimizing the expansion modes according to
the nonlinear objective, model predictions were compared
to observations at different times. Figure 2 illustrates the
recorded strain measurements as well as the trained model
predictions at four randomly sampled times. As is evident in
the Figure, the model is able to approximate the motions to
reasonable accuracy in all four times shown. In addition, the
predictions follow the trends of the measurements as well as
the fluctuations closely. We underscore that the model not
only agrees with observations closely but also satisfies all
constraints imposed.

Figure 3 illustrates the the time-wise root mean square
(RMS) of measurements as well as of predictions of motion
(top) and strain (bottom) as functions of body span. The
RMS measurements and predictions are useful in illustrat-
ing the effectiveness of the model in terms of predictions
throughout all recorded time steps.

As is evident in Figure 3 the RMS strain predictions
show reasonable agreement with measurements. However,
they do underpredict the strain slightly at about midspan.
The RMS motions of the riser are reasonable resembling
closely the vibrations of a flexible body oscillating in the
tenth mode [9]. In addition, since the vibration of each loca-
tion is sinusoidal, one can easily verify that the amplitude (on
average) did not exceed 𝑟𝑚𝑠{𝑦(𝑧, 𝑡)} ×

√

(2) which remains
below 1 diameter. We underscore that although on average
the amplitude was about 1 diameter, time instances were

Figure 4: RMS motion (top) and RMS strain (bottom) as
functions of span. Reconstructions are shown of a model
trained on all available data (orange) and of a model trained
on 80% of available data (blue) which predicts unseen data.

recorded where the maximum amplitude remained barely
below 2 diameters.

3.4. Generalization
In order to assess how well the optimized model general-

izes, a five-fold cross validation was performed. Specifically,
16 seconds of the total 20 seconds of available data were
used to train the model and testing was done on the unseen
four seconds. We include cross validation plots for training
using the first 16 seconds and testing on the full 20 seconds.
Figure 4 illustrates the predicted RMS motion (top) as well
as the reconstructed RMS strain (bottom). Besides experi-
mental strain measurements, two reconstructions are shown
both for the strain measurements and for the amplitudes
(partially trained model and fully trained model).

As is evident in the figure, not only are both models rea-
sonably accurate, they are in addition remarkably consistent.
The cross-validation performed suggests that the model can
generalize reasonably well.

4. Parallelization of computations
The wall time of the program to determine an opti-

mal mode set is about one hour for 20,000 iterations on
a computer with an intel core i7 CPU of 7th generation
(2018). Most of the computation time is spent in solving
for the optimal coefficients 𝑐𝑛(𝑡) for each recorded time
(given the trial mode set) and in performing the sequential
summations required to approximate 𝑦(𝑧, 𝑡) and 𝜕2𝑦(𝑧,𝑡)

𝜕𝑧2 at
each time step with modal expansion sums. Both operations
must be repeated over 1,000 times for every iteration of
the algorithm and thus effort was placed to speed up those
operations by parallelizing loop computations using Julia’s
built in Threads.@threads macro.

Specifically, in order to approximate the coefficients at
each time step a system of over-determined matrix equations
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𝐴𝑥 = 𝑏 must be solved where the number of equations
is of 𝑂(100) and the number of unknowns is of 𝑂(70).
Formulation of this system, including both the matrix 𝐴 and
the vector 𝑏, was done in parallel using 4 CPU cores instead
of 1. Julia’s backslash solver which is also multi-threaded
was used to return the system’s solution.

In addition, the computation of the modal sums of 𝑦(𝑧, 𝑡)
and 𝜕2𝑦(𝑧,𝑡)

𝜕𝑧2 required extensive sequential summations which
were also performed in parallel. Specifically, the summa-
tions were done atomically, ensuring thread-safe operations
on the shared variables between the 4 CPU cores using
Julia’s Threads.Atomic operations guidelines.

Process Speed up
Formation of 𝐴 x1.7
Formation of 𝑏 x3

Calculation of 𝑦(𝑧, 𝑡), 𝜕
2𝑦(𝑧,𝑡)
𝜕𝑧2 x2

Table 1: Parallelization

Table 1 summarizes the speed improvements for the
three operations described above: formulation of 𝐴 matrix,
formulation of 𝑏 vector, sequential summations. All pro-
cesses were sped up by more than 150% while formulation
of the b matrix was sped up by 300%.

5. Conclusions
In this work, the VIV motions of a riser were machine-

learned from experimental strain data via solving a physics-
based combinatorial optimization problem. The modal de-
composition technique was employed and followed by infer-
ence of a carefully selected set of optimal expansion modes
learned from experimental data.

Solving the learning problem requires optimizing a non-
convex, nonlinear objective function with a variable number
of unknown parameters subject to various constraints both
essential and natural. In order to optimize the objective,
the authors propose a stochastic mode search algorithm and
demonstrate its capabilities and limitations. The optimiza-
tion routine’s convergence and computational cost are ex-
amined. Finally, the combined modelling and optimization
routine framework is studied and validated using a k-fold
cross-validation scheme.

A. Algorithms

Algorithm 1 Stochastic Mode Search (𝐽 (𝕊))
𝕊𝑏𝑒𝑠𝑡 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡
𝐽𝑏𝑒𝑠𝑡 ← +∞
for i = number of total iterations do

if i in explration stage then
𝕊 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡 ⊆ Ω

else if i in refinement stage then
𝕊 ← 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝕊𝑏𝑒𝑠𝑡

end if

for t = recorded times do
𝑐𝑛(𝑡) ← arg min

𝑐𝑛
(Y′′(𝑧) − 𝜀𝐶𝐹 (𝑧,𝑡)

𝑅 )2

end for

if 𝐽 (𝕊) < 𝐽𝑏𝑒𝑠𝑡 then
𝐽𝑏𝑒𝑠𝑡 ← 𝐽 (𝕊)
𝕊𝑏𝑒𝑠𝑡 ← 𝕊

end if
end for
return 𝕊𝑏𝑒𝑠𝑡

B. Julia Figures
Using MATLAB as the plotting software of choice was

mainly motivated by the fact that subplots with multiple data
plotted in each subplot was not easy to do in Julia (I am
new to Julia). These can in addition be used for comparison
between plotting capabilities with Julia and MATLAB.

Figure 5: Time-wise root mean square (RMS) of measure-
ments as well as of predictions of motion (top) and strain
(bottom) as functions of body span plotted in Julia.
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Figure 6: Time-wise root mean square (RMS) of measure-
ments as well as of predictions of motion (top) and strain
(bottom) as functions of body span plotted in Julia.

Figure 7: Strain measurements plotted on top of strain
predictions as a function of body for a randomly selected
time instance. The model predictions after optimizing the
modes are able to approximate the strain measurements
closely. We underscore that the model not only agrees with
measurements to reasonable accuracy but also satisfies the
physics-based constraints which are applied on its second
anti-derivative (not shown in this Figure).

C. Code
A public github repository has been created containing

the relevant codes to the project (Both Julia and MATLAB
codes). The link to the repository is:

https://github.com/mentzelopoulos/SciML-Project-18.337-
Spring-2023-MIT.git

The required input data are also available in the github
repository. Table 2 details the project files.

Recommendations for running the code: set "minmode"
to be greater than 17. In addition run at least a few thousand
iterations. Store the solutions by running the very last part
of the code and they should be ready to be read by the
MATLAB code.

Filename Purpose
sci_ml_project_v2.jl Main Code (Julia)

Plotting_project.m Plotting code (MATLAB)
fs.csv Input file
t.csv Input file

vel.csv Input file
xCF.csv Input file

z.csv Input file

Table 2: Relevant Codes on Github Repository

D. Supplementary Figures

Figure 8: Depiction of experimental setup
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