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Abstract. Discovering exoplanets with the transit technique requires continuous monitoring of5

O(100,000) stars. It is therefore critical to have an efficient, automated pipeline for identifying the6
dips in brightness characteristic of stars with transiting exoplanets. We perform a preliminary inves-7
tigation of whether a Julia fitting pipeline could fulfill this role by comparing the speed of Python8
and Julia implementations and comparing the accuracy of two different fitting models, called the Box9
model and the Mandel-Agol model. These models are fit using our own Markov chain Monte Carlo10
sampler. We find that the Julia implementation outperforms the Python implementation, and that11
parallelization provides an additional increase in speed. Additionally, more complex models require12
a trade-off between accuracy and efficiency.13

1. Introduction. Since the first discovery of the first exoplanet in 1992 [5], over14

5,000 exoplanets have been discovered. Nearly 4,000 of these worlds were found using15

transit techniques [e.g., 1]. As a planet orbits around its host star, it blocks a portion16

of its light. This signal is detectable in the system’s brightness as a function of time,17

commonly known as the light curve. The change in brightness is closely related to18

the relative sizes of the planet rp and star r⋆, and is proportional to (
rp
r⋆
)2. Figure 119

provides a demonstration of how the exoplanet’s motion affects the observed light20

curve. This light curve encodes important information about the system, such as21

the planet’s orbital period, radius, and density (when combined with stellar radial22

velocity data).23

In order to find exoplanets using the transit method, many stars must be mon-24

itored. For instance, past missions such as Kepler observed O(100,000) stars, while25

future missions such as the Nancy Grace Roman Space Telescope plan to observe26

O(100,000,000) stars. Being able to efficiently fit a large number of light curves will27

therefore be critical for quickly identifying exoplanets hidden in upcoming telescope28

data.29

We conduct a preliminary investigation into whether Julia would provide a suit-30

able platform for creating a transit fitting pipeline. To do this, we create a Julia31

pipeline to test the accuracy and efficiency of different fitting methods. Specifically,32

we test two different transit models: the Box model and the Mandel-Agol model. We33

also run our code using Python and Julia implementations, and serial and parallel34

implementations. We then compare the speed and accuracy of our different imple-35

mentations. To fit our models, we write our own Markov chain Monte Carlo sampler.36

The paper is organized as follows. We describe our data in section 2, our fitting37

models in section 3, and our MCMC sampler in section 4. Our experimental set-up is38

outlined in section 5, results are discussed in section 6, code availability is described39

in section 7, and future work is proposed in section 8. We then conclude in section 9.40

2. Data. We use data from Kepler, a space-based telescope that operated be-41

tween 2009 and 2018. Kepler had a fixed field of view, meaning that it continuously42

looked at the same patch of sky. It monitored ∼150,000 stars in this region. This43

long-term monitoring of a large number of stars makes it the ideal mission for studying44

transiting exoplanets.45

We place several restrictions on the light curves used in this analysis. We focus46

on bright targets (with magnitudes < 14) and easily-observed transit depths (0.01 –47

0.05) that correspond to large planets. This period depth is defined as the fractional48
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Fig. 1. Diagram depicting an exoplanet transit. If the star, planet, and obsrvor are properly
aligned, we observe a dip in the star’s brightness as the planet passes in front of it. Position 1,
2, and 3 correspond to the out-of-transit brightness, ingress brightness, and in-transit brightness,
respectively. Diagram from the European Space Agency (ESA).

change in flux during the transit. We also require that the planet’s orbital period is49

greater than 5 days, as this avoids light curves with unusual shapes. In future work,50

these constrains could be loosened in order to fit a wider variety of light curves. This51

is further discussed in section 8. 115 Kepler stars with known planets satisfy our52

magnitude, depth, and period constraints. Several example light curves are shown53

in Figure 2. These light curves all correspond to different planet sizes, periods, and54

orbital configerations.55

Each light curve in our sample is normalized using a package called keplersplinev256

[4]. This package also smooths the light curve and removes long-term variability57

caused by stellar effects and instrumental artifacts.58

In this analysis, we choose to divide each light curve into individual transit events,59

rather than fitting the entire light curve or fitting the phase-folded light curve. This60

was done to minimize the fitting time. While this reduction in our data size may61

reduce the quality of our fit, it still provides a sufficient basis for this preliminary62

investigation, as we can still compare the calculated running times and accuracy63

measurements of the different fitting methods.64

3. Fitting Algorithms. To investigate the trade-off between speed and accu-65

racy, we compare two exoplanet transit models: the Box model and the Mandel-Agol66

model. This allows us to explore the effects of model complexity on both the running67

time and accuracy of our fitting code. These models are described in detail below.68

3.1. Box Model. The Box model is the simplest exoplanet transit fitting model.69

It models the transit event as a box-shaped function that takes either a high (out-of-70

transit) or low (in-transit) value. It requires four parameters: the period P , transit71
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duration ∆T , transit depth d, and a reference time t0. Because we are only fitting72

an individual transit, our input data does not contain information about the planet’s73

orbital period. We therefore use the Kepler catalogue period for this initial investiga-74

tion. Additionally, while the reference time normally corresponds to some mid-transit75

time of an earlier transit, in this case we define it as the starting time of the observed76

transit. Our Box function is therefore a piece-wise function of the following form:77

(3.1) F (t, t0,∆t, d) =

{
1 if t < t0 or t > t0 +∆t
1− d if t > t0 and t < t0 +∆t

}
78

F corresponds to the observed stellar flux. This equation assumes that the light curve79

has been normalized to a value of 1.80

3.2. Mandel-Agol Model. The Mandel-Agol (MA) model [3] is a more com-81

plex model for fitting exoplanet transits. Specifically, this model accounts for an82

optical effect called limb darkening. This occurs because, when looking at a star83

closer to its center, one can see further into its atmosphere. Because these deeper84

layers are at a higher temperature, the star appears brighter. Therefore, stars will85

seem brighter at their center and dimmer at their edges, or “limbs.” This effect is86

visible in Figure 1. Because of limb darkening, when the planet passes in front of the87

edges of the star, it will block less flux than it does when it passes in front of the88

center of the star. This causes the light curve to become more rounded.89

We model this effect using a quadratic limb darkening model. This impacts the90

stellar intensity I, which is defined in terms of the limb darkening coefficients (γ1 and91

γ2) and µ (where µ =
√
1− r2). µ accounts for the changing angle between the planet92

and star. Specifically, I is defined as:93

(3.2) I(γ1, γ2, µ) = 1− γ1(1− µ)− γ2(1− µ)294

To establish a baseline, we also model the flux ratio for a uniform source F e(p, z) =95

1− λe(p, z). This value depends on the size ratio between the planet and star p and96

the normalized separation of the object centers z. Specifically, p is defined in terms97

of the planetary radius rp and stellar radius r⋆ to be rp/r⋆. z is defined in terms of98

the center-to-center distance between the star and planet d and the stellar radius to99

be d/r⋆. λ
e is defined below:100

(3.3) λe(p, z) =


0 if 1 + p < z

1
π

[
p2κ0 + κ1 −

√
4z2−(1+z2−p2)2

4

]
if |1− p| < z ≤ 1 + p

p2 if z ≤ 1− p
1 if z ≤ p− 1

101

The parameters κ0 and κ1 are defined as cos−1[(p2+ z2− 1)/2pz] and cos−1[(1− p2+102

z2)/2pz], respectively.103

We then combine these equations to define the final light curve:104

(3.4) F (r, p, z) =

[∫ 1

0

2rI(r) dr

]−1 ∫ 1

0

I(r)
d[F e(p/r, z/r)r2]

dr
dr105

F and r correspond to the observed stellar flux and the normalized radial coordinate106

on the disk of the star, respectively. We note that this gives the flux as a function of107
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Fig. 2. Example exoplanet transits from Kepler data, shown as the normalized stellar flux as
a function of time. The passage of the planet in front of the star is detectable as a periodic dip in
the host star’s flux. Different planet sizes and orbital configurations create a diverse variety of light
curve shapes.

position instead of time. To convert this to a function of time, we use the following108

equation for z:109

(3.5) z(t) = R−1
a

[
(sinωt)2 + (cosi cosωt)2

]1/2
110

Here, Ra is the stellar radius over the planet’s semi-major axis, i is the inclination111

angle, and ω is 2π
P , where P is the planet’s orbital period.112

Because we are only fitting a single transit, rather than a full light curve or phase-113

folded transit, we expect there to be degeneracies between these many parameters. We114

therefore simplify the fitting process by assuming that the star, planet, and observor115

are perfectly aligned (i = 0). We also use the value of the period provided by the116

Kepler catalog. We therefore restrict ourselves to fitting the following parameters:117

the time of transit t0, γ1, γ2, p, and Ra.118

4. MCMC Fitting. We write our own Markov chain Monte Carlo (MCMC)119

sampler to find the best-fit parameters. We create multiple walkers to explore the120

parameter space, all starting from slightly different starting guesses. Each walker has121

their own corresponding chain, where they can update their parameter values.122

We update each set of parameters by adding a small perturbation. We then123

calculate the acceptance probability of this new state using the log likelihood function124

and log prior function. The log likelihood function computes the logarithm of the125

likelihood of observing the data given the current set of model parameters. Taking126

the logarithm simply simplifies the calculations performed. However, maximizing the127

log likelihood function is equivalent to maximizing the likelihood function. We can128

therefore use it to determine whether one set of parameters is a better fit than another129

set of values.130

The priors restrict the parameters to certain allowed ranges. For both the Box131

and MA model, we allow t0 to range within 0.2 days of a pre-calculated value. This is132

meant to simplify the fitting process. For the Box model, we then allow ∆t to range133
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between 0.01 and 0.5 days, and d to range between 0.01 and 0.1. For the MA model,134

we allow γ1 and γ2 to range between -1 and 1, p to range between 0 and 0.5, and Ra135

to range between 0.001 and 1.136

Once we have calculated the sum of the log likelihood and log prior values for a137

given iteration i, denoted by li, we can determine the acceptance probability. This138

is calculated by taking the difference with the previous sum (i.e. li − li−1). We then139

generate a random number n to determine whether the new parameter values are140

accepted (li − li−1 > log(n)) or rejected (li − li−1 < log(n)). In this way, the sampler141

will converge toward increasingly better fitting parameter values.142

After a set number of iterations, some number of parameter values are discarded143

from each chain in a process known as burn-in. This allows us to take the mean and144

standard deviation of the chains after they have reached some equilibrium value, thus145

providing us with the best-fit parameter values.146

Two example fits are shown in Figure 3. This figure showcases both the Box and147

MA models, both fit to the transit data of star KIC 6965293 (shown in black) using148

our MCMC code. The best-fit parameter values are also provided.149

5. Experimental Set-Up.150

5.1. Comparisons. We perform several comparisons in this investigation. These151

are summarized below:152

• Python vs. Julia We implement our algorithms in both Python and Julia. This153

is done to compare the speed of calculations in each language. We expect154

the Julia implementations to be faster, given that Julia was designed for155

efficiency.156

• Box vs. MA Model We fit our light curves with both the Box and MA model.157

The Box model requires us to fit only three parameters, while the MA model158

requires us to fit five parameters. The MA model is also significantly more159

computationally expensive, as it requires many more computations, including160

two integrals. We therefore expect it to take a longer time to perform each161

iteration. However, we also expect it to provide a better fit to the data, as it162

accounts for limb darkening effects.163

• Serial vs. Parallel We fit each model using both a serial and parallel implemen-164

tation, allowing us to investigate the benefits of parallelization. Because we165

are running this pipeline locally, we only use four threads (corresponding to166

the number of cores on our machine). However, we still expect to observe a167

speedup for the parallel implementation.168

5.2. Measurements. In this experiment, we are interested in the speed and169

accuracy of our implementations. We estimate these parameters using the methods170

described below:171

• Speed To perform a fair comparison of algorithm speeds, we time each implemen-172

tation using the same number of walkers and iterations per walker. Because173

Python is slow, we limit ourselves to 128 walkers and 100 iterations per walker174

for the comparison between Python and Julia. We then time the MCMC175

code, using the time modules in Python and Julia. We decide not to use the176

Julia BenchmarkTools package in order to provide a fairer comparison with177

the Python time measurements. We acknowledge that, given the relatively178

small (12800) number of total parameter updates performed per implementa-179

tion in this experiment, the estimated times include large contributions from180

the MCMC overhead calculations, such as determining the initial parameter181
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Fig. 3. Example model fits to star KIC 6965293. Data is shown in black. The best-fit parameter
values and fit are shown for the Box model (left) and for the Mandel-Agol (MA) model (right). The
MA model provides a more accurate fit to the transit event, but is more computationally expensive.

guesses and initializing the chains. To provide a better comparison of the182

time requirements for the Julia implementations, we also measure the time183

taken to compute 10,000 iterations per walker.184

• Accuracy To estimate the accuracy of a given fit, we calculate the Root Mean185

Square Error (RMSE) of the model’s predictions. The RMSE is calculated186

using the following equation:187

(5.1) RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
188

where n is the size of the data set, yi is the ith data point, and ŷi is the ith189

model prediction. Because the average RMSE is expected to be the same for190

a given model, regardless of whether the model is fit in Julia or Python, or fit191

using a serial or parallel implementation, we simply calculate a mean RMSE192

using our parallel Julia implementation. We fit 20 unique transits and use193

the mean RMSE values to compare the accuracy of the Box and MA models.194

6. Results and Discussion. We measure the time per iteration for each of195

eight implementations, and the RMSE for both the Box and Mandel-Agol models.196

Our results are summarized in Table 1.197

We find that the Julia implementation is faster, as expected. Specifically, we find198

that the speed of the Julia implementations is ∼3 orders of magnitude faster than the199

corresponding Python versions. This indicates that Julia would be a suitable language200

for large-scale exoplanet transit fitting, as it would be able to efficiently fit the large201

number of light curves that will be generated by upcoming telescope missions.202

We also find that parallelizing the Julia code provides an additional speed-up203

for the 10,000-iteration comparison. This is consistent with what we expected, as204

having multiple threads iterate over the chains reduces the overall time required to205

perform all the computations. We find that the serial versions take 1.4 and 2.7206
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times longer than the parallel versions when fitting the Box model and MA models,207

respectively. However, the increased speed is less than one might naively expect when208

using four threads. That is, even though we use four threads, our code does not run209

four times faster. This makes sense, as there are computational overheads to both our210

fitting algorithm (such as initializing the chains) and the process of multi-threading211

(such as creating multiple threads). This also explains why, in the 100-iteration212

comparison, the parallel version sometimes performs worse than the serial version—213

with a lower number of iterations per walker, the advantage gained by parallelizing214

the code becomes dominated by the overhead costs.215

Finally, we find that fitting the Box model is ∼2 orders of magnitude faster216

than fitting the MA model. This is also consistent with our expectations, as the217

Box model has fewer parameters to fit and requires fewer computations. However,218

there is a trade-off between speed and accuracy, as the MA model has a lower RMSE219

(0.002±0.001) compared to the Box model (0.003±0.002). This performance reflects220

the MA model’s inclusion of limb darkening effects. These results indicate that, when221

choosing which model to fit to a light curve, it is important to consider the relative222

importance of speed compared to accuracy.223

Table 1
Results for each method used, including for different languages (Julia or Python), models (Box

model or Mandel-Agol model), and computing methods (serial or parallel). We report the time taken
to fit a single transit based on the number of iterations per chain (either 100 or 10,000), and the
root-mean-square error (RMSE).

Model Language P/S 100-it Time 10,000-it Time RMSE

(s) (s)

Box
Julia

Serial 0.03 2.1

0.003±0.002
Parallel 0.09 1.5

Python
Serial 52.1
Parallel 49.9

Mandel-Agol
Julia

Serial 3.9 365.7

0.002±0.001
Parallel 1.3 131.7

Python
Serial 2638.5
Parallel 2926.7

224

7. Code Availability. The relevant code is included in the GitHub link pro-225

vided at the beginning of this study. The GitHub page includes six files, including the226

Julia implementation, the Python implementation, and the data. The Julia imple-227

mentation includes fits to both the Box and MA models, and includes both serial and228

parallel options. The Python implementation includes many of the same functions,229

but in Python. Both implementations are done in an interactive format (Pluto and230

Jupyter Notebook for the Julia and Python implementations, respectively).231

Finally, the data files include 115 transits from the stars that satisfy all the criteria232

described in section 2. There are also additional files containing the t0 values, transit233

depths, and orbital periods for each light curve. The transit depths and orbital periods234

are collected from the Kepler catalog, while the t0 values are estimated during the235

separation of the 115 light curves into individual transit events. These values are used236

to help improve our fits, but would ideally not be necessary in the final implementation237

of any fitting pipeline.238
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8. Future Work. Because this is a preliminary investigation into the benefits239

of using a Julia pipeline, there are many areas for future work to expand upon these240

results. Specifically, we limit ourselves to a subset of the available light curves, and241

only investigate two transit models. Additionally, we use a relatively simple MCMC242

sampler, and restrict ourselves to just four threads. We describe ways to address these243

limitations in further detail below.244

• Increased Diversity of Light Curves In this experiment, we select light curves245

that satisfy the following constraints: P > 5 days, magnitude < 14, and tran-246

sit depth between 0.01 and 0.05. This restricted our light curves to those with247

relatively straight-forward, easily detectable signals. We additionally only fit248

individual transit events. However, to identify transits in real survey data,249

we would want to expand our pipeline to be able to fit full light curves with250

more complex shapes. Therefore, future work could evaluate the accuracy of251

the Box and MA models on a representative set of light curves. Addition-252

ally, rather than fitting a single transit, they could fit the entire light curve.253

This would allow future implementations to fit the planet’s orbital period, in254

addition to the other parameters.255

• Additional Transit Models We could also compare the speed and accuracy of256

other exoplanet transit models. Additional parameters that could be fit in-257

clude the inclination (which is included in the MA model, but set to a value258

of zero in this study), eccentricity, and period. Additionally, there are a wide259

range of limb darkening model that can be adopted, including uniform, linear,260

logarithmic, and exponential models. Fitting more parameters would allow261

us to account for a larger range of behavior in the light curves, thus provid-262

ing us with better fits and making our code applicable to a more diverse set263

of light curves. Packages that allow for these complexities already exist in264

Python [2] and are widely used. A similar implementation in Julia would265

provide similar accuracy paired with improved efficiency.266

• Optimized Sampler In addition, we could further optimize our sampler. For267

instance, we are currently using a set perturbation distribution to update268

our parameter values. However, future work could have an update value269

that decreases in size as the sampler converges on the best-fit values. This270

would provide a more precise estimate of the best-fit parameters. Similarly,271

we could break the fitting into multiple stages, using the average chain values272

from the previous iteration as the starting parameters for the next iteration.273

The perturbations could then be modified for each of these iterations. This274

could also provide improved convergence.275

• Increased Parallelization In this experiment, we restrict the number of threads276

to the number of cores on our local machine. However, future work could277

run our code on a computing cluster and dramatically increase the amount of278

parallelization. This would likely greatly increase the speed of our code. We279

would expect that, as we increase the number of threads, the benefit of using280

parallelization would increasingly dominate the associated overhead cost of281

setting up the parallelization. However, once the number of threads is equal282

to the number of walkers, there would no longer be any more advantages to283

increasing the number of threads, as the code is designed to designate at least284

one walker per thread.285

9. Conclusions. We perform a preliminary comparison of the speed and effi-286

ciency of several exoplanet transit fitting methods, with a specific focus on the effects287
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of the coding language, the transit model used, and parallelization. As expected, we288

find that using Julia and multithreading both lead to increases in speed. Additionally,289

we find that the MA model provides a more accurate fit to light curve data. However,290

it also takes longer to fit, indicating that its computational costs should be weighed291

against its improved accuracy when deciding which model to use. All relevant code292

is provided on GitHub.293

Our findings indicate that a Julia transit fitting pipeline could provide improved294

accuracy relative to more traditional pipelines in Python. As future telescope mis-295

sions look at an ever increasing number of stars, this efficiency will become a pivotal296

advantage, making Julia the ideal language for future transit fitting.297
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