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ABSTRACT

Stochastic differential equations (SDEs) are a fundamental tool in many fields,
including physics, finance, and engineering. SDEs can be used to model a wide
variety of phenomena, including random walks, Brownian motion, and the stock
market. One of the most common methods for solving SDEs is to use a numerical
method, such as Euler-Maruyama or Milstein. However, these methods can be
computationally expensive, especially for high-dimensional SDEs.

In recent years, there has been growing interest in using deep learning to solve
SDEs. Deep learning methods have the potential to be much faster than traditional
numerical methods, and they can also be used to solve SDEs with high-dimensional
state and parameter spaces.

In this project, we propose to develop a solver for SDEs using PINNs. PINNs is a
deep learning method that can be used to solve differential equations. PINNs have
been shown to be effective for solving a variety of differential equations, including
linear ODEs and nonlinear PDEs. This project was introduced by Chris Rackauckas
from MIT Julia Lab, main contributor of NeuralPDE.jl[1]]. The code used for this
project is available at https://github.com/yassjanati/SDE-PINN-Solver/tree/stable.
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1 Introduction

Stochastic Differential Equations (SDEs) are a powerful tool for modeling dynamic systems with
random fluctuations. They arise in many fields, including finance, physics, and engineering, and are
often used to describe complex systems that cannot be easily modeled using deterministic equations.
Solving SDE:s is challenging due to the stochastic nature of the equations, and it is crucial to have
reliable SDE solvers to accurately capture the behavior of the system. Recently, Physics-Informed
Neural Networks (PINNs) have become a popular tool for solving differential equations. PINNs are
neural networks that are trained to solve differential equations by minimizing a loss function that
measures the discrepancy between the predicted solution and the actual solution. The advantage
of PINNS is that they can solve differential equations without requiring a predefined grid or mesh,
making them well-suited for solving complex, high-dimensional problems.

In this paper, we introduce a new SDE solver based on PINNs. Our approach combines the strengths
of PINNs with stochastic calculus to provide an efficient and reliable method for solving SDEs. We
demonstrate the effectiveness of our method through several numerical experiments and compare our
results to other state-of-the-art SDE solvers.

The ability to accurately solve SDEs has many important applications, such as predicting financial
markets, modeling physical systems subject to noise, and simulating biological processes. With the
development of PINNs, we now have an efficient and flexible tool for solving differential equations
that is well-suited for handling stochastic processes. Our work represents an important step towards
providing a reliable and accurate SDE solver that can be used in a wide range of applications.

2 Related work

Some researchers already tackled the challenge of solving Stochastic Differential Equations (SDEs)
using Physics-Informed Neural Networks (PINNSs). O’Leary et al (2022) [2] introduces a framework
called the stochastic physics-informed neural ordinary differential equation (SPINODE) which uses
artificial neural networks to learn constitutive equations that represent the hidden physics within SDEs.
The framework propagates stochasticity through the known SDE structure, resulting in deterministic
ODEs that describe the time evolution of statistical moments of the stochastic states. SPINODE
then predicts moment trajectories using ODE solvers, and it learns neural network representations of
the hidden physics by matching predicted moments to data-estimated moments. The framework’s
unknown parameters are established using recent advances in automatic differentiation and mini-
batch gradient descent with adjoint sensitivity. In their study, the authors demonstrate SPINODE’s
numerical robustness and stability on three benchmark in-silico case studies.

In another study, Chen et al. (2019) [3] introduces PINNs as an alternative method for solving partial
differential equations (PDEs). PINNs consist of two neural networks, one representing the solution
and the other representing a PDE-induced neural network coupled to the solution network. Differential
operators are treated using automatic differentiation. In this study, the authors apply standard PINNs
and a stochastic version called sPINN to solve forward and inverse problems governed by a nonlinear
advection-diffusion-reaction (ADR) equation. The approach assumes that only sparse measurements
of the concentration field at random or pre-selected locations are available. The authors then optimize
the hyper-parameters of SPINN using Bayesian optimization (meta-learning) and compare the results
with the hyper-parameters selected empirically for sPINN. This study demonstrates the effectiveness
of PINNSs in solving complex PDE problems, including those with stochasticity, and highlights the
potential benefits of using meta-learning to optimize the hyper-parameters of PINNs.

Our work has been mainly inspired by the Github thread #531 [4] of the NeuralPDE. j1 Julia
package.
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3 Methods

3.1 Terminology

In this paper, we will introduce the conventions and terminology used in our mathematical notation.
We will use standard mathematical symbols and notation, as well as introduce any unique or non-
standard notation used in our work.

Ordinary Differential Equations (ODEs) can be written in the form shown in equation (TJ).

du = f(u,p,t)[dt] Q)
where:

* uis a function-vector of R"

* p is a set of parameters defined outside of the ODE

* t is the variable-vector (which can be assumed to be a 1-dimensional time component in our
case)

Naturally, we expand the above definition to define Stochastic Differential Equations (SDE) as shown
in equation (2).

du = f(u,p, t)[dt] + g(u, q, W;)[dW,] )

where W, is a Wiener process which models a Brownian motion.

3.2 Solving approach

3.2.1 Approximating a Wiener process using the KKL expansion

We followed the methodology proposed in the Github thread [4] to develop the PINN solver for SDEs.
A suggested method by Chris Rackauckas was to use the KKL theorem to expand the Wiener process
and use the expansion to obtain a rough path ODE approximation for the SDE.

Following the Kosambi—Karhunen—Lo¢ve theorem, a Wiener process can be writtelﬂ as shown in
equation (3).
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where the (j, are independently identically distributed and follow a normal distribution. Because
the convergence to a Brownian process is uniform in £2, we can approximate the Brownian process
W (t, z1, ..., z,) by truncating expansion from equation (3 and keeping a finite sample of n terms
(see equation (4)).
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'The representation in equation ll is only valid for ¢ € [0, 1]. However, we can assume that is the case given
the assumptions we made about ¢ in section 3.1}
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Figure 1: To accommodate for the ( variables, we add n inputs (on top of the time variable) to the
physics-informed neural network

The rough path ODE is then solved using a PINN solver. For this, we first truncate the expansion to
n terms similarly to what we do in equation (), which means that we only consider the first n terms
of the rough path signature. Next, we change the physics-informed neural network input to be n + 1,
where the additional inputs correspond to the ¢ random variables (see Figure[I)). We then feed the
time ¢ and the expansion terms ((x)1<k<r to the PINN as we would for an ODE.

However, we have to implement a new loss function that takes into account the truncated expansion
terms and penalizes the discrepancy between the predicted solution and the ground truth.

3.2.2 Loss function

In PINNS, the loss function consists of two terms: a data term and a physics term. The data term
measures the discrepancy between the predicted solution and the available data, while the physics
term ensures that the predicted solution satisfies the underlying physical equations. The physics
term is expressed as the residual of the differential equation and its boundary conditions, and can be
obtained using automatic differentiation. The loss for the ODE solver is defined as shown in equation
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To take into account the random aspect of equation (2), we modify the loss to integrate the g function
(see equation (6)).
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We can then compute the last term using equation ().
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3.2.3 PINN training and weak solution

For training we use various PINN architectures depending to the SDE problem. In our experiments
in the next section, we used various hidden layers (from 1 to 3), neurons per layer (5 to 50) and
activation functions (sigmoid and relu) to achieve good performance in training. We use an Adam
optimizer [15] with various learning rates depending on the performance at each SDE we train on. We
also use a various number of epochs depending on the learning rate and the specific SDE with early
stopping to get good convergent results fast. In training PINNs we found that there were issues with
exploding loss and then lowering again, so we wanted to stop our model if it performed well enough
to avoid this problem.

Once the PINN is trained, samples of the SDE solutions can be obtained as random slices of the
neural network. To test the accuracy and efficiency of the solver, we apply it to linear and nonlinear
SDEs with known solutions, such as the Ornstein-Uhlenbeck process [6] and the Black-Scholes
model [7]].

To extend the solver to handle multidimensional SDEs, we can use the same methodology but with
appropriate modifications to account for the additional dimensions. A natural next step would be to
test the multidimensional solver on benchmark problems by comparing it with existing numerical
methods.

3.2.4 Debugging

In our project we worked on expanding the SciML/NeuralPDE. j1 repository to add our method to
the methodology and format used in the repository. Specifically we modified the ode_solve. jl
module to instead handle SDEs with our proposed method. To get our method to work using their
code we had to do a lot of small or large changes in the code and debugging that we analyze here.

We start by changing the ODE problem arguments to SDE types, specifically
DiffEqBase.AbstractSDEProblem. = We proceed by creating the necessary function to
compute the Wiener process using the KKL expansion as well as its derivative with respect to time ¢.

function W(t, zetas)
sqrt(2) * sum(zetas[k] * sin((k - 1/2) * m * t) / ((k - 1/2) * m) for k in 1:length(zetas))
end

function dw at(t, zetas)
sqrt(2) * sum{zetas[k] * cos((k - 1/2) * m * t) for k in 1:length(zetas))
end

Figure 2: W, and derivative of W, using KKL expansion in Julia

Since now the prob argument is an SDE we add handling for the additional parameters inside the
solve function, where g = prob.gandn = prob.p[1]. Here, g is the function for the random
component and n is the number of KKL expansion coefficients to use in the PINN. We then proceed
to generate the zetas from a standard normal distribution, zetas = randn(Float32, n).

We also need to change the input dimension of the PINN whih we do by recreating the first layer to
handle time plus the zeta coefficients.
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layer1l = Dense(1 + n, length(chain.layers[1].bias), chain.layers[1].g)

chain = chain(layerl, chain.layers[2:end]...)

Figure 3: Modifying input dimension to PINN

At this point we found that given a SDEProblem as an input (instead of ODEProblem) calls
rode_solve instead of ode_solve, so we solved it by simply removing rode_solve. j1 inclusion
in module export.

To feed the network the zetas as well, we augment the time parameter to be a vector that includes
the coefficients of the KKL expansion, tO_aug = Float32. (hcat(t0, zetas’)) and the feed
the augmented tO to the generate_phi_0 to generate the PINN.

We then modify how the PINN acts when given some input, so we modify the f: :0DEPhiC, T, U
functions in the module for different inputs, since now our time is augmented to include the zetas
coefficient. We modify how PINN acts when t is a number, a single observation, when t is a vector,
many observations of time (in our case a time sequence), and we add functionality for when t is a
matrix, batch of observations.

function (f::0DEPhi{C, T, U})(t::Number,
0) v Optimisers.Restructure, T, U <: Number}
f.ue + (t - f.te[1]) * first( (8) (adapt(parameterless_type(8), vcat(t, f.te[2:end]))))

end
function (f::0DEPhi{C, T, U})(t::AbstractVector,
0) {Cc <: optimisers.Restructure, T, U <: Number}

zetas = f.t0[2:end]

zetas = repeat(zetas, 1, size(t, 1))

(t' .- f.te[1]) .* f.chain(®)(adapt(parameterless_type(8), vcat(t', zetas)))

ion (f::0DEPhi{C, T, U})(t::AbstractMatrix,
e {C <: Optimisers.Restructure, T, U <: Number}
f.ue .+ (t[1] - f.te[1]) .* f.chain(0)(adapt(parameterless type(0), t'))

Figure 4: Modifying £ : : 0DEPhi, PINN

After we’ve managed to make the PINN to handle time and the additional coefficients we now
have to change the loss of the PINN to be the one we propose. This is equivalent to changing the
inner_loss function in the module to include the g function and evaluate the partial derivatve of
the KKL expansion at times t.
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function inner loss(phi::0DEPhi{C, T, U}, f, g, autodiff::Bool, t::Abstractvector, 0,
e {C, T, U <: Number}

zetas = phi.te[2:end]

out = phi(t, 0)

fs = reduce(hcat, [f(out[i], p, t[i]) for 1 in 1:size(out, 2)])

gs = reduce(hcat, [g(out[i], p, t[i]) for 1 in 1:size(out, 2)])
dwdtguess = oW dt.(t, Ref(zetas))
dxdtguess = Array(ode dfdx(phi, t, 6, autodiff))

sum(abs2, dxdtguess .- (fs .+ (gs .* dwdtguess))) / length(t)

Figure 5: Modifying inner_loss

4 Results

The equations used to test the solver are SDEs with known analytic solutions. We use the ones listed
in Rackauckas et al. (2017) [8]], Appendix E and some additional ones that we considered to be of
relevance.

4.1 Black-Scholes model
4.1.1 Formulation

This SDE is a specific form of the geometric Brownian motion, which is a model often used in
financial mathematics to model stock prices or other quantities that can never become negative. This
SDE could be seen as a representation of the dynamics of an asset in a market modelled by the
Black-Scholes model.

Equation:
dSt = uStdt + UStth
Parameters:
® So =0.5
e a=0.1
e =0.2

Analytic solution:
St = S() exp((ﬂ — 052/2)t + OLWt)
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4.1.2 PINN Solution

t

Figure 6: PINN weak solution for the Black-Scholes formula

We observe a heavy tail in the end around 1, but other than that it seems to be converging well. The
reason for that is that the model may be overestimating the parameters, but the exponential nature of
the Black-Scholes solution is accurate. We calculate the RMSE at around 0.006 and the R? at around
0.959.

4.2 Ornstein-Uhlenbeck Process
4.2.1 Formulation

The Ornstein-Uhlenbeck process is a stochastic process that is widely used in various fields such as
physics, economics, and finance. In finance, the Ornstein-Uhlenbeck process is used to model interest
rates, commodity prices, and other variables that exhibit mean-reverting behavior. For example, it
forms the basis of the Vasicek model for interest rate dynamics.

Equation:
dSt = —9(# - St)dt + O'Wt
Parameters:
® S() =0.5
e =25
e 1 =0.05
e 0 =0.05

Analytic solution:
S, = Soe % + (1 — e + ge W)
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4.2.2 PINN Solution
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Figure 7: PINN weak solution for the Ornstein-Uhlenbeck Process

We calculate the RMSE at around 0.005 and the R? at around 0.998.

4.3 SDE example 2
4.3.1 Formulation

This SDE and its analytic solution come from the second example in Rackauckas et al. (2017) [8]],
Appendix E.

Equation: The stochastic differential equation (SDE) is given by:

dS; = —0*sin(S;) cos(S)3dt + 6 cos(Sy)2dW;

Parameters:
* So =0.5
« 9=0.1

Analytic solution: The analytic solution of this SDE is given by:

Sy = arctan(6W; + tan(Sp))
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4.3.2 PINN Solution
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Figure 8: PINN weak solution for the second example

We calculate the RMSE at around 0.008 and the R? at around -0.003. R? is negative, because for
this specific SDE the average value performs better than any model, as it simply oscilates around
a constant value. Hence, any attempt to predict the precise motion is likely to perform worse than
just using the mean as a predictor, leading to a negative R? value. This emphasizes the inherent
randomness and unpredictability in the system described by this specific SDE.

4.4 SDE example 3

4.4.1 Formulation

This SDE and its analytic solution come from the third example in Rackauckas et al. (2017) [8],
Appendix E.

Equation: The stochastic differential equation (SDE) is given by:

B St af
dS; = — dt dW,
¢ (M1+t 2O+¢ﬁ VT
Parameters:
b S() =0.5
e a=0.1
e 3=0.05

Analytic solution: The analytic solution of this SDE is given by:

S() ﬁ(t—F aWt)

S, = +
RV VIt

10
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4.4.2 PINN Solution
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Figure 9: PINN weak solution for the third example

We calculate the RMSE at around 0.001 and the R? at around 0.999.

5 Discussion

In this paper, we presented a novel method for solving stochastic differential equations (SDEs) using
Physics-Informed Neural Networks (PINNs). Our approach leverages the powerful capabilities of
deep learning to address the challenges associated with traditional numerical methods for solving
SDEs, such as computational complexity and difficulty in handling high-dimensional problems.

To approximate a Brownian motion, which is essential for the modelling of SDEs, we used the
Karhunen-Logve expansion. We also proposed a new loss function that incorporates the stochastic
nature of SDEs. The architecture of our PINN solver was designed to accommodate the random
variables arising from the stochastic process, resulting in an efficient and robust method for solving
SDEs.

Our method was tested on various benchmark problems, including the Black-Scholes model and the
Ornstein-Uhlenbeck process. The results showed that our PINN-based SDE solver performed great
in terms of both accuracy and computational efficiency. In particular, our method showed excellent
performance in handling high-dimensional SDEs, demonstrating its potential in tackling real-world
problems in various fields, such as finance, physics, and engineering.

Despite the promising results obtained in this study, there were a few limitations we could not address
due to time constraints. One such limitation is the extensive testing of the proposed PINN-based
SDE solver across a broader range of SDEs, both linear and non-linear and comparing them to
the state of the art numerical methods. Although the solver demonstrated promising results for the
tested equations, we could not validate its performance comprehensively across a wider range of
problems. Additionally, the scaling of our solver to high-dimensional problems, an area where PINNs
are expected to shine, was not thoroughly tested. Furthermore, the impact of various hyperparameters
such as the neural network architecture and the number of zeta coefficients from the KKL expansion
on the solver’s performance was not thoroughly studied. These areas offer significant potential for
future exploration and improvements.

11
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In conclusion, this work represents a significant step forward in the use of deep learning for solv-
ing stochastic differential equations. It opens up new possibilities for the modeling of complex
stochastic systems, and paves the way for future research in this exciting area. Furthermore, our
PINN-based SDE solver will be incorporated into the NeuralPDE. j1 Julia package, currently in
https://github.com/yassjanati/SDE-PINN-Solver/tree/stable, which is widely used in the scientific
computing community. This not only validates the effectiveness of our method but also makes it
accessible to a broader range of users.
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