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Abstract8

Advances in biological technologies have facilitated the generation of large-scale datasets,9

profiling biological systems at an unprecedented scale and resolution. The high dimensionality10

and complexity of these datasets require machine learning (ML) approaches to extract11

meaningful and actionable biological insights. However, current ML models often lack12

interpretability for human practitioners, and their predictions typically do not include a measure13

of uncertainty. In this study, we apply Gaussian Process (GP) to two high-throughput biological14

datasets, single cell RNA sequencing (scRNA-seq) and mass spectrometry-based metabolomics15

(MS) for classification tasks. We further utilize the uncertainty estimates to propose new16

experiments aimed at improving the model’s confidence. Collectively, our results indicate that GP17

is widely applicable in various stages of biological data analysis.18

19

Introduction20

High-throughput biology, with its capacity to generate large-scale datasets of biological systems, is21

a powerful tool that aids in understanding complex human diseases. However, this avalanche of22

data introduces new challenges in data analysis. To extract biological signals from these datasets,23

numerous groups have devisedmachine learning (ML) approaches for data analysis and low-dimensional24

representation (McInnes et al.)(family=Maaten and Hinton)(Maćkiewicz and Ratajczak). Large-scale25

datasets inherently exhibit variability due to biological, technical, and stochastic factors, making it26

critical to quantify the uncertainty in the data analysis process.27

Uncertainty quantification assists in assessing whether a model prediction is under- or over-28

confident and provides a measure of the reliability of model predictions. This is particularly crucial29

in high-stakes applications like medical diagnosis, where prediction reliability is vital (Unc). In ex-30

perimental biology, uncertainty quantification can help guide the design of new experiments. For31

instance, single-cell RNA sequencing (scRNA-seq), a powerful tool for profiling the transcriptome32

of individual cells, is prone to technical noise (Sin). While this noise can be reduced by increasing33

the sequencing depth, doing so is often infeasible due to cost and time constraints. In such cases,34

uncertainty quantification can help guide the design of new experiments by suggesting which cell35

types to prioritize next to maximize information gain.36

In this study, we aim to quantify uncertainty in high-throughput biological datasets. We choose37

to focus on twoprimary datamodalities: single-cell RNA sequencing (scRNA-seq) andmass spectrometry-38

basedmetabolomics (MS). Both data modalities are commonly used in biological research and are39

subject to technical noise and batch effects. We demonstrate that Gaussian Processes (GP) can be40

employed to quantify both uncertainties from data noise (aleatoric uncertainty) and from model41

uncertainty (epistemic uncertainty). We then utilize the uncertainty estimates to suggest new ex-42
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Figure 1. Two types of uncertainty in machine learning. Aleatoric uncertainty is due to noise in the data, whileepistemic uncertainty is due to uncertainty in the model.

periments that enhance the model’s confidence. Collectively, our results suggest that GP can be43

widely applicable in various types of biological data.44

This manuscript is organized as follows: We first introduce the concept of uncertainty quantifi-45

cation and the Gaussian Process. We then apply the Gaussian Process to a real-world dataset and46

compare its performancewith othermachine learningmethods. Finally, we discuss the advantages47

and disadvantages of using the Gaussian Process in omics data analysis.48

Results49

Gaussian Processes50

Gaussian processes (GPs) are powerful and flexible tools in machine learning and statistics for51

modeling complex relationships between variables and predicting uncertain outcomes. They have52

been employed in a wide range of applications, including computer vision, robotics, bioinformatics,53

and finance (Kalaitzis and Lawrence)(Simek et al.). Fundamentally, GPs are a collection of random54

variables, any finite number of which have a joint Gaussian distribution. They can be used tomodel55

functions that map inputs to outputs, such as the relationship between the features of a dataset56

and their associated labels. Unlike traditional regression techniques that assume a fixed functional57

form for the relationship between input and output variables, GPs allow for a more flexible mod-58

eling approach capable of capturing complex nonlinear relationships.59

One of the key strengths of GPs is their ability to provide uncertainty estimates alongside their60

predictions. This is particularly useful in situations where data is noisy or there is a high level of61

uncertainty in the underlying model. Figure 2 shows an example of a GP regression model with62

uncertainty estimates. The shaded region represents the 95% confidence interval, which is wider63

in regions with fewer data points and narrower in regions with more data points. The uncertainty64

estimates can be used to inform decision-making and improve prediction reliability.65

Uncertainty quantification is crucial in numerous applications, such as medical diagnosis. Here,66

prediction accuracy is of utmost importance andmust be accompanied by ameasure of confidence67

in the results. To estimate uncertainty, GPs model the output variable as a Gaussian distribution68

with a mean and variance. The variance represents the uncertainty in the prediction, with larger69

variances indicating greater uncertainty. GPs can also be used to perform Bayesian inference, al-70

lowing for the incorporation of prior knowledge and the updating of beliefs as new data becomes71

available. Bayesian inference proves especially useful in situations with limited data or when the72

model is complex and challenging to estimate using traditional techniques.73

GPs offer several advantages over other machine learning techniques, such as neural networks74

and support vector machines (Işık and Alptekin). They are non-parametric and do not assume a75

fixed functional form for the relationship between input and output variables, thereby allowing for76

greater flexibility and the modeling of complex relationships. GPs can also manage missing data77

and noisy measurements, which are common in biological sciences. Additionally, they provide a78

measure of uncertainty that can inform decision-making and enhance prediction reliability.79
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Figure 2. Gaussian Processes Regression on different number of test points.

Active learning80

Active learning is a machine learning technique in which the algorithm determines which data to81

label for training, instead of passively receiving labeled data. This approach can be beneficial in82

scenarios where obtaining labeled data is expensive or time-consuming (Hemmer et al.). The goal83

is to minimize the amount of labeled data needed to train a model by intelligently choosing which84

data points to label next.85

Active learning algorithms operate by iteratively selecting the most informative samples to la-86

bel, based on a predefined criterion. Several criteria can be utilized for this purpose, including87

uncertainty sampling, query by committee, and expected model change. Uncertainty sampling88

involves choosing the data points for which the model is most uncertain about the correct label.89

Query by committee involves selecting the data points that are most controversial among a group90

of models. Expected model change involves selecting data points expected to have the greatest91

impact on the model’s performance.92

One method of implementing active learning is through Gaussian processes (Riis et al.). Gaus-93

sian processes are a flexible and potent probabilistic modeling technique that can be used for94

regression and classification tasks. In the context of active learning, Gaussian processes can be95

employed to model the uncertainty of the model’s predictions (Riis et al.).96

In Gaussian process-based active learning, the algorithm begins with an initial set of labeled97

data points and fits a Gaussian process model to these points. It then selects the data point with98

the highest uncertainty according to the Gaussian process model and requests its label from an99

oracle (i.e., a human expert). This labeled data point is then added to the training set, and the100

Gaussian process model is updated. The process is repeated iteratively until the desired level of101

accuracy is achieved or the labeling budget is exhausted.102

One advantage of Gaussian process-based active learning is that it facilitates a principled ap-103

proach to modeling uncertainty [10]. The Gaussian process model can be used to compute the104
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Figure 3. Active learning improves model confidence.

uncertainty of the model’s predictions, which can then guide the selection of the most informative105

data points for labeling. Another advantage is that Gaussian processes are non-parametric mod-106

els, meaning they can adapt to complex patterns in the data without making strong assumptions107

about the underlying distribution.108

However, Gaussian process-based active learning also has some limitations. One limitation is109

that Gaussian processes can be computationally expensive to train and evaluate, especially for110

large datasets. Another limitation is that the performance of the Gaussian process model de-111

pends on the choice of kernel function and hyperparameters, which can be challenging to optimize112

(Krauth et al.).113

Active learning in improving confidence114

Following the example in Figure 2, an uncertainty-guided active learning approach can be deployed115

to acquire new data points that enhance the model’s confidence. Figure 3 illustrates an instance116

of active learning in a GP regression model. The model is initialized with a small number of data117

points and iteratively selects new data points to acquire based on the uncertainty estimates. These118

estimates are used to select data points that are likely to boost the model’s confidence. This ap-119

proach is contrasted with a random sampling method, where data points are selected randomly.120

The results demonstrate that the active learning approach is capable of improving themodel’s con-121

fidence more rapidly than the random sampling method, given the same number of data points.122

Application in scRNA-seq data123

We then sought to apply the Gaussian Process (GP) to a single-cell RNA sequencing (scRNA-seq)124

dataset derived from peripheral blood mononuclear cells (PBMCs). PBMCs represent a heteroge-125

neous population of immune cells, including T cells, B cells, natural killer (NK) cells, monocytes, and126

dendritic cells, among others. In a typical scRNA-seq experiment, PBMCs are first isolated from the127

blood and then subjected to droplet-based or plate-based single-cell capture. Here, individual cells128

are encapsulated into microfluidic droplets or wells. The cells are then lysed, and the RNA is re-129

verse transcribed into complementary DNA (cDNA). This cDNA is subsequently amplified, and the130

resulting library is sequenced using high-throughput sequencing technologies, typically Illumina se-131

quencing. The sequencing data obtained provides information about the gene expression profiles132

of each individual cell.133

Gaussian Processes reveal epistemic uncertainty in cell type classification134

We applied Gaussian Processes to a classification problem to predict cell types based on gene135

expression (Figure 4a). We set aside 50% of the data for testing and used the remaining 50% for136

training. To simulate a real-world scenario where the training data has limited coverage compared137

to a clinical query dataset, we additionally held out all B cells (Figure 4b). Encouragingly, the GP138

model was able to accurately predict the cell type of the test data with high accuracy (AUC ≈ 1)139
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Figure 4. scRNA-seq dataset of 3000 peripheral blood mononuclear cell.

(Figure 4c). As anticipated, the model was unable to predict the held-out B cells and incorrectly140

classified the cells as dendritic cells, likely due to their biological similarity. This type of error is141

known as epistemic uncertainty, which arises from the lack of training data, leading to uncertainty142

in the model. This kind of classification is known as a label transfer task, and it’s widely used in143

annotating scRNA-seq data. Misannotation is, therefore, a common pitfall in scRNA-seq analysis144

and can lead to erroneous biological conclusions.145

In the application of GP, we calculated the uncertainty of the prediction as the Shannon entropy146

of the prediction probability associated with each classification (Figure 4d). As expected, the uncer-147

tainty of the prediction was highest among the held-out B cells. Surprisingly, GP was also able to148

assign high uncertainty accurately to rare cell types such as Megakaryocytes and Dendritic cells.149

Analogous to the sinusoidal function example above, we again used active learning to iteratively150

select new data points to acquire based on the uncertainty estimates. In the earliest iteration,151

model uncertainty appears to increase across cell types (Figure 5a). This is due to the introduc-152

tion of B cells into the new training set, which increases the alphabet size for entropy calculation.153

Initially, B cells exhibited the highest uncertainty, but as more data points were acquired, the un-154

certainty decreased (Figure 5b). In the final iterations, all cell types had lower uncertainty than in155

the initial iterations. This is because the model, having seen more data points, had increased con-156

fidence in its predictions, even for cell types initially included in the training set. Upon examining157

the acquired data, we observed that themodel prioritized acquiring B cells in the beginning. As the158

uncertainty of B cells became comparable to other cell types, the model began to acquire other159

cell types (Figure 5d). As a comparison, we also performed a random data acquisition approach,160

analogous to generating the same scRNA-seq dataset experimentally. While the random approach161

also improved the model’s confidence, it did so at a much slower rate than the uncertainty-guided162

approach (Figure 5c). This is because the random approach does not consider the model’s uncer-163

tainty and is thus unable to prioritize data points likely to improve the model’s confidence.164
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Figure 6. Gaussian processes reveal aleatoric uncertainty in molecular class prediction.

In summary, our use of GP for label transfer in single-cell RNA-seq data demonstrated high ac-165

curacy and the ability to quantify prediction uncertainty. From the example dataset, we highlighted166

uncertainty associated with both held-out cell types and rare cell types. This understanding can167

help guide future experimental design to selectively enrich for these cell types, in order to improve168

representation in the model.169

Application in metabolomic data170

Mass spectrometry (MS) is a powerful analytical techniqueused to identify and characterizemolecules171

based on their mass-to-charge ratio. The basic principle of mass spectrometry is the generation172

of ions from a sample, which are then separated based on their mass-to-charge ratio using a com-173

bination of electric and magnetic fields. The ions are then detected and the resulting signal is174

analyzed to determine the mass and abundance of the ions present in the sample. The chemical175

structure of the molecule can be identified by analyzing the mass spectrum of the molecular ion176

peak, which represents the intact molecule without any fragmentation. The mass of the molecular177

ion provides information about the molecular weight of the compound. The fragmentation pat-178

terns of the molecule provide information about the chemical bonds within the molecule and can179

be used to reconstruct the molecular structure. These fragmentation patterns can be analyzed180

using software tools that compare the observed mass spectrum to a database of known spectra,181

such as the MassBank database. This comparison can then help identify potential molecular struc-182

tures that match the observed fragmentation pattern. However, identifying unknown compounds183

or compounds from a mixture of samples using mass spectra remains challenging. Over 90% of184

compounds from a typical sample are unknown, and quantifying uncertainty in the identification185

of these compounds is critical, both for the curation of a representative database and for future186

experimental design.187

Gaussian Processes reveal aleatoric uncertainty in molecular class prediction188

We transformed spectral intensities into feature vectors using a spectral featurizer, and trained a189

GP classifier with 50% of the data, withholding the remaining 50% for testing. Interestingly, even190

without any held-out molecular class, there was substantial uncertainty in the prediction (Figure191

6a, b). Comparing the average uncertainty betweenmolecular classes, we observed that in a UMAP192

representation of the data, the uncertainty is highest where there is greater label mixing within a193

neighborhood. Molecular classes such as lipids exhibited the lowest uncertainty, as they were well194

separated from other classes. This shows that GP is able to capture intrinsic uncertainty due to195

noise in the data, known as aleatoric uncertainty.196

In order to be considered a viable option for routine MS analysis, GP must demonstrate a clas-197

sification performance that is on par with or superior to state-of-the-art methods. We conducted198
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Figure 7. Gaussian processes classifier has good classification performance relative to state of art methods.

a comparison of the performance of GP to a variety of these methods, including random forest199

and support vector machine algorithms. Our findings revealed that GP offers comparable perfor-200

mance to thesemethods (Figure 7, Data not shown). This suggests that GP could serve as a suitable201

replacement for these methods, with the added advantage of being able to quantify the level of202

uncertainty in the prediction. This ability to estimate uncertainty could be particularly beneficial in203

areas such as metabolomics, where a large proportion of compounds remain unidentified and the204

ability to quantify the confidence in compound identification can provide valuable information for205

future experimental design and database curation.206

Discussion207

Our study has demonstrated the utility of Gaussian Processes (GP) in quantifying prediction un-208

certainty in both single-cell RNA-seq and metabolomic data. For the single-cell RNA-seq analysis,209

we were able to identify the levels of uncertainty in predictions for held-out cell types as well as210

rare cell types. With metabolomic data, GP was able to quantify uncertainty within the prediction211

of molecular classes. Importantly, in both scenarios, we showed that GP can be used to measure212

the uncertainty of predictions for held-out data points, which can provide valuable insights to help213

guide the design of future experiments, with the aim of enriching data for these particular points214

and thus enhancing their representation within the model.215

In the current version of our implementation, we largely utilize a paired cosine similarity kernel216

for GP. However, there is potential for enhancing performance and scalability by exploring other217

kernels, such as the Radial Basis Function (RBF) kernel. While this study focused mainly on the218

application of GP as a drop-in replacement for standard analysis tasks within biological datasets,219

future research could benefit from integrating uncertainty quantification into earlier stages of the220

analysis process, such as spectral featurization.221

Given the often large scale of data in high throughput biology, it can present challenges for222

the application of GP. To address this, it may be beneficial to explore performance engineering223

techniques in Julia, such as parallelization and GPU computing, to enhance the performance of224

GP.225

Despite these challenges, we have clearly demonstrated the value of GP in quantifying predic-226

tion uncertainty within biological datasets. We anticipate that GP will prove to be a valuable tool227

in perturbation experiments, such as perturb-seq and chemical perturbation experiments, where228

experiments are not easily scalable and can be expensive to conduct. By quantifying uncertainty,229

we can more effectively guide the design of future experiments to selectively enrich for the most230
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informative data, ultimately improving our understanding of complex biological systems.231

Methods and Materials232

Computational analysis233

Code used in this study is available at https://github.com/nhcheng/Xavier_MS_Active_Learning_234

notebook. All analyses is performed using both the Julia programming language and Python. Unless235

otherwise specified, all gaussian processes analyses is performed using the scikit-learn package in236

Python. All analysis is performed on a 44-core Intel Xeon CPU computer with 88 GB of RAM.237

Single-cell analysis238

The pbmc-3k standard processed dataset is used throughout. All single-cell analysis is performed239

using the scanpy package in Python.240

Metabolomic analysis241

A pre-trained Siamese neural network MS2DeepScore to predict the structural similarity between242

a pair of spectra. For molecular class prediction, Classyfire is used for automated chemical classi-243

fication of the molecules.244
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