
Implementation of Lagrangian Neural Networks in Julia

Authors:
Ulrik Unneberg, Henrik Tidemann Kaarbø

1 Introduction and motivation

Langrangian mechanics is a flexible framework used by physicists to create effective and
successful models for physical systems with finite degrees of freedom which respect spe-
cific continuous symmetries. The symmetries are manifested in the mathematical object
referred to as the Lagrangian L, from which the system’s equation of motions can be de-
rived, and the framework can be used to derive physical theories like Newtonian mechan-
ics, general relativity and quantum field theory (Lagrangian Mechanics (Wikipedia) n.d.).
Importantly, Noether’s theorem shows that these symmetries L result in the system’s dy-
namics having conserved quantities (Lancaster and Blundell 2014, ch. 10). For example, if
L has no explicit time-dependence, the system’s total energy remains a conserved quantity.
However, deriving the correct Lagrangian for a system can be challenging and even small
physical systems where subsystems interact, for example a set of interacting particles, can
generate complex and chaotic dynamics while still conserving the quantities like energy
required by the system’s symmetries. This can make it difficult to derive equations of mo-
tion (EoM) from first principles, and even if they are well known, numerical models may
be very expensive computationally as interactions are often functions of distance between
different coordinates. This opens the possibility of approximating the unknown dynamics
by using Neural Networks (NNs) for both learning the dynamics and approximating them
to alleviate the computational costs.

However, it has been shown that normal neural networks struggle to capture system’s
conserved quantities when they encode the system’s equations of motion directly (in the
form of Neural ODEs) and are trained on the the observed system dynamics (Cranmer
et al. 2020). Lagrangian Neural Networks (LNNs) are a recent addition to this family of
neural networks that have been proposed to model and discover the dynamics of physical
systems introduced by Cranmer, that are yet to be implemented in scientific machine
learning packages for the Julia language. Instead of encoding the EoM directly, these
neural networks encode the aforementioned Lagrangian L from which the equations of
motions are easily derived. A related physics-based approach inspired by Hamiltonian
mechanics, where the NN encodes the Hamiltonian of a system, introduced by Greydanus
et al. 2019, has already been implemented in Julia and has been shown to generate quantity
conserving dynamics when the training data obeys conservation laws. However, for the
Hamiltonian framework to generate accurate dynamics and learn conserved quantities, the
input coordinates of the Hamiltonian Neural Network must fulfill the strict requirement
of canonical coordinates, i.e. all coordinates qj and their momenta pj need to fulfill

{qj , pj} =
∑
i

∂qj
∂qi

∂pj
∂pi

− ∂pj
∂qi

∂qj
∂pi

= δij and {qi, qj} = {pi, pj} = 0, for i ̸= j,

a requirement not needed in the Lagrangian framework where dynamical coordinates (po-
sitions and their velocities) are sufficient. Subsequently, the dynamics and conservation
laws of a system may be learned without explicit knowledge of the system’s canonical
coordinates and momenta, which can be challenging to both derive in theory and measure

1

in practice, especially when some interactions may be unknown, yielding a substantial
advantage for LNNs. Perhaps more importantly, measured data’s coordinates are seldom
expressed canonically nor includes the measurements needed to express them. For example
the canonical momentum of a charged particle in an electromagnetic field ismv−eA where
A is the electromagnetic vector potential which is not directly measurable, but is related
to the measurable magnetic field B(x, t) = ∇×A which together with the charge e may
or may not be known. This offers up a large advantage to LNNs over HNNs where no
such a priori information is needed about the training data. It is important to stress that
conserved quantities due to continuous symmetries are ubiquitous in physics and does not
end with energy. Other important conserved quantities due to such symmetries are for
example the conservation of angular and linear momentum.

In this project, we implement LNNs in Julia to facilitate the use of LNNs in scientific
research, engineering applications and potentially our own future research in physics.

2 Theory

To understand how LNNs work as defined by Cranmer et al, some background theory is
needed. We begin by defining the action S as

S =

∫ t1

t0

L(qt, q̇t, t)dt = (Classically)

∫ t1

t0

(T (qt, q̇t)− V (qt, t))dt, (1)

where the coordinates qt and their time derivatives q̇t must span the possible states of
the system uniquely. Let xt = x(t) ≡ (qt, q̇t) be the state vector at time t. The action
of a path taken by these generalized coordinates between the times t0 and t1 is observed
in nature to be one for which the action is stationary, that is, the functional derivative
δS = 0 along this path. Applying this variational principle and using calculus of variations
gives the Euler-Lagrange equation(s) for the system

d

dt
∇q̇L = ∇qL. (2)

However, if we do not know the form of L(q, q̇), this form gives little clue of the dynamics
of the system. By using the multivariate product rule, the equation can be rearranged
into the equivalent form

(∇q̇∇⊤
q̇ L)q̈ + (∇q∇⊤

q̇ L)q̇ = ∇qL, (3)

which we can solve for q̇, yielding

q̈ = (∇q̇∇⊤
q̇ L)−1[∇qL − (∇q∇⊤

q̇ L)q̇].

which can be used to express the right hand side of an ordinary differential equation
defining the coordinates’ dynamics

d

dt

[
q
q̇

]
=

[
q̇

(∇q̇∇T
q̇ L)−1[∇qL − (∇q∇T

q̇ L)q̇]

]
=: F(q, q̇). (4)

2

At this point, we replace the Lagrangian L with a Neural Network LNN(x, p) that ap-
proximates it. To train this neural network, the solution of the ODE as defined by (4),
x(t, p) = (qt, q̇t), is compared to the data from the dynamics of a real system using a cost
function C(x(t, p), D) which is minimized with respect to the LNN’s parameters p. To do
so, the partial derivatives of the cost function with respect to p are needed, which means
that the sensitivity of the ODE is needed. As further derivatives of the second order deriv-
atives within F(q, q̇) are incompatible with current implementations of autodifferentiation
in Julia, sensitivity analysis methods that make use of autodifferentiation are out of the
reach of this project. Thus, the sensitivity ∂x(t,p)

∂pi
is (regrettably) approximated by the

inefficient Ma et al. 2021 finite difference

∂x(t, p)

∂pi
≈ x(t, p+∆pi)− x(t, p)

∆pi
. (5)

More about this choice in Section 7.

3 Main contribution

The main contribution of this project is an implementation of a Lagrangian Neural Net-
work framework in Julia, which from our understanding has not been done yet. With our
framework, one should be able to model any dynamical system x(t) = (qt, q̇t), which can
be modeled by a system of ordinary differential equations (ODE), using only an observed

data set D = (Dj)j∈[|D|], where each training vector Dj = (t
(j)
i , x(j)(ti))i∈[nj] is an observed

evolution of the dynamics we want to model. If this data respects certain continuous sym-
metries, the model should be able to learn them and generate dynamics which conserves
the correct quantities. By specifying a Neural Network architecture LNN(x, p) using the
Julia package Flux, one can with our framework learn the system’s Lagrangian, and thus
give physically sound predictions of its dynamical behaviour.

4 Implementation

The implementation in full with documentation can be found at https://github.com/henrtk/18.337-
Project-LNN (active link), and is based on the Julia packages DifferentialEquations and
Flux. The experiments conducted can be found as notebooks located in the ”examples”-
folder. The implementation is naive to both the selected model architecture of LNN
and the choice of solver used to evolve and thus also the solver used to train the sys-
tem, which can be chosen by the user. These are specified upon the initialization of a
NeuralLagrangian object, where keyword-arguments are later given to DifferentialEqua-
tions.jl’s solve()-function. The NeuralLagrangian contains a LagrangianNN struct which
when called with an input state x returns F(x) as defined by (4). When the NeuralLag-
rangian object is called with an initial condition, a chosen ODE-solver and the LNN’s
parameters, the NeuralLagrangian object sets up the ODE-problem given by F and solves
it with the given parameters and the previously set keyword-arguments. Discussion on
the default options is left to section 7.

3

https://github.com/henrtk/18.337-Project-LNN
https://github.com/henrtk/18.337-Project-LNN

4.1 Implementation details

For the implementation to remain naive to the chosen architecture for the LNN, the
gradients and hessians in eq. (4) are calculated using the auto-differentiation packages
packages Zygote and ForwardDiff. As the Lagrangian should have a single output and
can have an arbitrary number of coordinate inputs, the use of Zygote’s reverse mode
differentiation is appropriate. For the second order derivatives with respect to the input,
forward-over-reverse mode is used, as the dimension of the gradient is equal to that of
the input. In such cases, forward mode is generally more computationally efficient as
we’ve learned in this course. However, it should be noted that for the purposes of the
experiments conducted in this project, an implementation using forward mode only is
faster as the input dimension in our case is small.

The ODE defined by F in (4) also includes the inverse of the Hessian of the LNN with
respect to the input velocities q̇. Because there is no guarantee that the Hessian is non-
singular, we, like Cranmer, opted to use the Moore-Penrose pseudoinverse in its place to
guarantee a solution is found. In the case that the Hessian is non-singular, its pseudoinverse
is equal to its inverse. Mathematically, the singularity of the Hessian means that the
Lagrangian is at a saddle-point. This means that there are multiple paths that can be
taken out of this point where the action defined in (1) is stationary, ie. there is no
unique trajectory out of this point when this Hessian is singular, and the dynamics are
indeterminable from the Euler-Lagrange equations in eq. (2) alone. One may argue
that such a situation is unphysical. Nevertheless, the uniqueness of the pseudoinverse
effectively breaks the indeterminacy and absolves us of this problem, and prevents the
code from crashing.

In the implementation of the training, we also benefited from the power of easy parallel-
ization in Julia, by training over the batches using parallel threads. This enhanced the
training efficiently significantly.

4.2 Description of the training step

The main component of the implementation of the LNN is the training step, so let’s begin
by addressing this point. Let Lp(x) := LNN(x, p) denote the neural network given the
parameter vector p.

Given a data vector Dj = (t
(j)
i , x

(j)
d (ti))i∈[nj], in this section only denoted (ti, xd(ti))i∈[n]

for conciseness, we define the cost function as

C(xt, xp; p) = MSE(xd(ti)− xp(ti))i∈[n],

where xp(t) denotes predicted value at time t given parameter p. More precicely

xp(s) = ForwardSolve(Fp, x0)

∣∣∣∣
t=s

,

where ForwardSolve(Fp, x0) indicate the numerical solver which solves the initial value
problem

ẋ = Fp, x(t0) = x0.

Our goal is then to find the sensitivity

4

∂

∂p
C,

in order to backpropagate using some form of gradient descent. The cycle of each training
step is as follows.

1. Forward pass

Given a parameter vector p, which is all the parameters of our Lagrangian Nerual
Network vectorized into one vector, we numerically integrate a solution to the dy-
namical system (2), replacing L(x) with LNN(x, p). The output of this step is a
DifferentialEquations.solve object, xp(t) = ForwardSolve(Fp, x0). In principle, any
ODE solver can be used to find the forward solution. In practice, however, the
efficiency of the training step is largely determined by which solver.

2. Find sensitivity

Together with a data vector Dj , we can evaluate the sensitivity ∂
∂pC(xt, xp; p), using

a gradient method.

3. Update parameter

After evaluating the sensitivity, we update our parameter vector p using a gradient
descent algorithm. We used the ADAM-optimizer with a step-size 0.001.

4. Evaluate result

With the updated parameter, we can either continue training directly (going to step
1), or evaluate the result either by visual inspection by performing comparison plots
with the given data, or evaluating the loss.

Figure 1: The training step cycle.

5 Experimenting on the double pendulum

As our example of demonstration, we have chosen to study the double pendulum - a
simple yet chaotic system, which invites for challenges when modeled by an ordinary
neural network. Furthermore, the system preserves energy. Energy conservation is one

5

typical symmetry for which LNNs have shown to outperform Neural ODEs (NODEs)
(Cranmer et al. 2020).

Figure 2: Illustration of the double pendulum.

The ODE which governs this system is given by

d

dt


θ1
θ2
ω1

ω1

 =


ω1

ω2

g1(θ1, θ2, ω1, ω2)
g2(θ1, θ2, ω1, ω2)


where

α1(θ1, θ2) :=
l2
l1

(
m2

m1 +m2

)
cos(θ1 − θ2) (6)

α2(θ1, θ2) :=
l1
l2

cos(θ1 − θ2) (7)

f1(θ1, θ2, θ̇1, θ̇2) := − l2
l1

(
m2

m1 +m2

)
θ̇22 sin(θ1 − θ2)−

g

l1
sin θ1 (8)

f2(θ1, θ2, θ̇1, θ̇2) :=
l1
l2
θ̇21 sin(θ1 − θ2)−

g

l2
sin θ2 (9)

g1 :=
f1 − α1f2
1− α1α2

g2 :=
−α2f1 + f2
1− α1α2

, (10)

with a true Lagrangian

L(x) =1

2
(m1 +m2)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 cos(θ1 − θ2)

+ (m1 +m2)gl1 cos θ1 +m2gl2 cos θ2. (11)

5.1 Experiments

To model the Lagrangian, we follow the architecture provided by Cranmer et al, in his
implementation on Google Collab (A self-contained tutorial for LNNs n.d.). The network

6

consists of two hidden layers with Softplus as activation functions. As our implementation
rely on finite differences to find the sensitivity, this puts a severe restriction on the size
of our neural network. Further analysis of complexity growth as function of parameters
is found in Section 6.3. By testing with different number of neurons in each layer, we
concluded that 10 neurons in each layer gave the most stable results, while still giving
efficient training.

Figure 3: Architecture of LNN

5.1.1 Training and prediction

First and foremost, we want to test correctness of the scheme, by training the mentioned
LNN to the point where it accurately mimics the analytical solution on the training inter-
val. Once training is completed, we are interested in evaluating LNN’s performance on a
longer interval, i.e. predicting the future dynamics.

While a network as shown in Figure 3 with 10 neurons in each layer performs quite well,
it lacks the flexibility to fully fit the true Lagrangian (9), which is very non-linear. The
computational expense of the finite difference gradient makes it practically impossible
to train a network much bigger than the one chosen to greater precision. While this is
a big challenge, we are still interested in analyzing the power of the LNN at its best.
Therefore, we did an augmented training scheme on a network with architecture as in
Figure 3, but with 128 neurons in each layer. With a well-functioning AD method, a
network of this size could easily be trained by the conventional training cycle as described
in 4.2. The computational expense of training such a LNN with our own computers using
finite differences, however, is very demanding, and as such seems in-achievable as of now.
Therefore, we found applying the augmented training scheme, which will be described in
the next paragraph, very useful.

The principle of the augmented training scheme is to start the training with an informed
parameter vector p0, which is not randomly given from Flux’ destructure. In order to
obtain this p0, we trained the network on data points generated from the analytical Lag-
rangian L(x). In this way, we could drastically decrease the number of ordinary training
steps on our LNN to achieve reasonable results. This workaround enabled us to perform
realistic analysis of the performance of the LNN, even while lacking an effective gradient
method. Therefore, it’s important to emphasize that the large LNN is not solely trained
on the data from the dynamics, but also on values from the Lagrangian directly. However,

7

it’s worth mentioning that the last training steps are indeed from the data from the dy-
namics, which significantly enhanced the overall performance of the network, so we believe
the analysis henceforth is still reliable and insightful. While the scheme is not the optimal
way of evaluating the performance of the LNN, it proved as a useful workaround tool to
prove the concept of LNN, despite the lack of automatic differentiation. It is worth noting
that evaluating the gradient of the cost function for the LNN with the given size (≃ 6000
neurons) was on the order of 10s of minutes on our computers.

5.1.2 Energy conservation

As mentioned, one of the main benefits of LNNs are its symmetry-preserving properties.
One typical example of such symmetry, is energy conservation, which is found in many
large scale physical systems like planetary motion, as well as in many nano-scale systems.
The double-pendulum is an example of an energy conserving system, such as moving
particles in conservative fields.

NODEs have shown a tendency to struggle to capture symmetries such as energy conser-
vation. Therefore, we are going to compare the energy conserving ability of LNNs and
NODEs.

5.1.3 Computational performance

Finally, it’s in order to evaluate the computational performance of LNN and NODE. To
do this, we use Julia’s BenchmarkTools package.

In particular, we will evaluate the time taken to find the sensitivity ∂pC, which is the
most time consuming part of each training step, and analyze its computational cost as
a function of the number of parameters, to illustrate the complexity growth. We will do
the same for NODEs, to have a benchmark for comparison. For the most robust results
against possibly stiff F , the solver used for benchmarking the LNN was the auto-switching
AutoTsit5() which switches to Rosenbrock23() upon detection of stiffness.

6 Results

6.1 Training and prediction

After training our small LNN with |D| = 1400, with 10 different initial conditions, we got
a result which fit the true dynamics quire well (Figure 4). By the look of the trained result
and the evolution of the loss, the implementation seems to work correctly.

To evaluate the performance of the scheme, we would like to evaluate the LNN’s ability to
predict. To fully compare LNN and NODE, we found it necessary to train on big neural
network, which can fully capture the Lagrangian of our system. Therefore, as mentioned
in Section 5.1.1, we use a large neural network with an architecture as shown in Figure
3, and with 128 neurons in each hidden layers. This architecture will be used throughout
this section. The training, together with the augmented training scheme, was performed
on the interval t ∈ [0, 1] for different initial coditions x0. Thus, integrating beyond t = 1
and comparing it with the analytical solution will give us a metric of predicting ability. As

8

(a) Forward passed solution after training. (b) Loss as function of training step.

Figure 4: Training of the small Lagrangian Neural Network.

LNN is an alternative to the NODE in these type of problems, it’s natural to benchmark
against a NODE solution. Therefore, we implemented a NODE as well, trained it on
similar data, and did a comparison of the two on the training interval, as shown in Figure
5. They both appear well-trained.

Figure 5: Comparison of LNN and NODE on training interval t ∈ [0, 1]. Analytical
solution in dashed line.

To evaluate their performance on predicting the dynamics, we integrate to t = 30, which
is well out of their training domain. The results are shown in Figure 6. As we can see,
while the LNN doesn’t follow the analytical behaviour exactly, it captures the shape of
the dynamics much better than the NODE. The NODE, on the other hand, seem to be in
a positive feedback loop, with increasing magnitude in both position and velocity. These
results agree with the results found by Cranmer et al.

6.2 Energy conservation

The energy as function of time are plotted for all three solutions in Figure 7. As we can
see, the LNN has some oscilation in energy, but has a steady average around the correct
energy. The NODE’s energy appears unstable, and seems to be blowing up for large t.

6.3 Computational performance

One final important metric to analyze is the computational performance of the LNN frame-
work. As NODEs are the natural option to LNNs when given a data set to model without
the dynamical equations, we found it apt to use its performance as a benchmark for the

9

Figure 6: Comparison of LNN and NODE predicting the dynamics for t = [0, 30]. Ana-
lytical solution in dashed line.

Figure 7: Comparison of LNN and NODE predicting the dynamics for t = [0, 30]. Analyt-
ical solution in dashed line. Though the NODE gives close predictions within the training
interval, the energy is clearly not conserved as the NODE’s dynamics slip into higher en-
ergy states over time.

performance of our implementation, especially given that it is possible to use adjoint sens-
itivity analysis to calculate its gradients which should give O(n+ length(p)) performance
(Ma et al. 2021), where n is the number of coordinates in the ODE. As we can see in Figure
8, the computational cost grows linearly with the number of parameters with a growth
of approximately 80 ms per added parameter. The growth should be O(n · length(p))
(Ma et al. 2021). This is tremendously expensive when compared to the NODE, seen in
Figure 9, which granted has a much lower RHS evaluation cost. For NODEs using the
SciMLSensitivity.jl package’s automatic sensistivity analysis with InterpolatingAdjoint(),
the growth in computationals cost per gradient was only 0.3 ms, two orders of magnitude
less. This is despite the fact that benchmarking gives the evaluation of F using an LNN
with 99 parameters was found to be around 35 µs, while a NODE with identical parameter
size was found to cost 12.5µs.

10

Figure 8: The computational cost for finding the gradient of the cost-function for the LNN
as a function of the number of its parameters. The scale being given in seconds underlines
the inefficiency of finding gradients in this way.

Figure 9: Computational cost for similarly sized NODEs using adjoint sensitivity analysis.
The cost is significantly lower compared to the current implementation of LNN.

7 Discussion

We have through Lagrangian Neural Networks learned the dynamics of a double pendulum
from data alone. This is quite a remarkable result, and Cranmer et al. have demonstrated
that the power of Lagrangian mechanics also can benefit from the power of neural net-
works. After performing several experiments using our implementation of Lagrangian
Neural Networks, it’s worth discussing the results we have obtained, address weaknesses,
and suggest new areas worth investigating.

In the preceeding section, we compared the performance of LNN to NODEs. While both
had fairly equal starting point in terms of training accuracy, we certainly saw stronger
predicting abilities from the LNN compared to the NODE. While the former showed
trajectories similar to analytical, the latter revealed dynamics which spiraled out of control.
This performance was quantified by the energy evolution, where the LNN give a small
oscillating behavior, yet constant in trend, around the true constant energy. The NODE
on the other hand, showed unstable energy evolution.

11

While the LNN certainly seems to outperform the NODE on this dynamical system, it’s
worth pointing out that this system in particular are prone to instabilities for the NODE,
as its chaotic. As the system is both chaotic and energy conserving, it serves as a school
example of a system Lagrangian mechanics will outperform Newtonian mechanics, and
the results should be interpreted accordingly. This, in addition to the augmented training
scheme, might significantly influence the results. However, as Cranmer obtained results
agreeing with ours, we are quite confident that we would obtain similar results with an
AD gradient, which would make the use of an augmented scheme redundant.

On the topic of computational performance, the NODE definitely outperforms the current
implementation of LNN. As we saw, the growth of the computation of the sensitivity
of the NODE beats LNN by a factor of approximately 250 per parameter, even though
the evaluation of F was found to only differ by a factor of approximately 2.5. This is
mainly due to the tremendous expense of computing the gradient by finite differences. The
computational time of this single operation grows linearly with the number of parameters,
which in turn grows super-linearly with the number of neurons in each layer (dependent
on the architecture). This prevents the possibility of making a flexible network, which is
absolutely necessary for Lagrangians much more complicated than the one defined in eq.
(11).

The most vital weakness of our implementation is the means of finding the sensitivities
∂pC(p). As much as we hoped we could find this sensitivity using Julia’s strengths, namely
its effectiveness on automatic differentiation (AD), this turned out to be harder than
expected. Having tried all known combinations of AD methods from packages such as
Zygote, ForardDiff, ReverseDiff, TaylorDiff, and Enzyme, nothing seemed to tackle our
nested-differentiation right hand side (4). According to staff at JuliaLab at MIT, and
after finding several similar issues on Github, it seems to be a well-known problem that
the AD methods, especially Zygote.jl, struggle on nested differentiation. Much of the
problem seems to be that many of these packages mutate objects when calculating Hessian
or Jacobian in order to reduce allocations. This in turn prohibits later calculating the
gradient, as for example Zygote’s gradient doesn’t accept functions which mutate objects.
Replacing all AD calls with ForwardDiff does not fix the problem either; ForwardDiff is
not compatible with the pseudoinverse function in LinearAlgebra.jl pinv() which cannot
perform svd!() on matrices using ForwardDiff’s dual numbers. A minimum example is
given below:

f = p −> [p p ; p −p]
g = p −> pinv (f (p))
ForwardDiff . g rad i en t (p −> g (p) , p)
MethodError : no method matching svd ! (: : Matrix{ForwardDiff . Dual . . .

Replacing the pinv() function opens another can of worms, as the Hessian has been found
to be close to or singular very often during training or solving, causing singular errors or
extremely stiff F as det(∇q̇∇T

q̇ L)−1 → ±∞ when it is close to singular which not even
the autoswitching ODE-solvers seem to handle. Implementing an SVD-algorithm that is
compatible with ForwardDiff is beyond the scope of this project.

To find the sensitivity, we found it necessary to perform the differentiation by the finite
difference provided in the FiniteDiff package. While this dramatically reduce the efficiency
and certainly limits our results, it nevertheless provides a way to find the sensitivity and
hence enables implementation of the method. It’s also worth mentioning that our scheme
very easily could be enhanced, once an AD library in Julia like Zygote proves able to
differentiate nested AD functions, adjoint sensitivity analysis would be possible and speed

12

up performance – if so this could be implemented by essentially changing one line of code
by adding SciMLSensitivity’s keyword option sensealg to the LNN’s solve call, which would
automatically define the gradient of the ODE-solution. At that point, our code could be
added onto the package DiffEqFlux.jl with minor changes, as we envisioned in our project
proposal. With the current implementation’s speed due to the heavy cost of computing
gradients however, we deem this to be be out of reach as of now.

Finite difference gradients are computationally expensive in our case as they involve solving
an ODE system for each perturbation in p, which inhibits effective learning on larger sys-
tems. In particular, for each training iteration, we must perform the ForwardSolve(Fp, x0)-
method mp times, with a finite difference method containing an m point stencil. In our
scenario,

Fp =

[
q̇

(∇q̇∇T
q̇ L)−1[∇qL − (∇q∇T

q̇ L)q̇]

]
is a fairly expensive right-hand-side, including both a Hessian and a matrix pseudoinverse.
Changing to automatic differentiation will reduce to only one dual number calculation
of ForwardSolve(Fp, x0) for each training iteration which is probably faster and is more
accurate (Ma et al. 2021) than the finite difference scheme.

As it often is with neural networks, the architecture has a large influence on the results,
and it often is hard to predict or explain the behaviour of the network. Cranmer concluded
a network of 128 neurons in each of their two hidden layers worked well (A self-contained
tutorial for LNNs n.d.). When experimenting with different sizes, we found a network ex-
ceeding around 20 neurons in each hidden layer gave very unstable (stiff) solutions during
training, causing solving to slow down as the number of steps needed to solve the ODEs
adaptively increases or as more computationally expensive implicit solvers kick in. When
training the large LNN with 128 neurons in each hidden layer, we didn’t encounter in-
stability, but that might be due to the augmented training scheme performed in advance.
Since the underlying Lagrangian mechanics do not result in stiff ODEs in our case, the
stiffness is an issue encountered during training. It’s hard to conclude an optimal archi-
tecture in the general case, but it seems that the model with two hidden layers, together
with Softplus as activations, performs well on this particular problem.

Because of these problems with the computational expense of taking gradients, we found
that training using simple non-adaptive solvers like Euler(), Heun(), VCAB3(), and RK4()
performed well during training. Although these methods will give large errors with respect
to the actual solution of the LNN’s ODE when it is very stiff, the resulting large values
of the cost function C(xp) incurred by the erroneous steps due to stiffness will likely
generate gradients with respect to p that favor lowering the extreme truncation error due
to stiffness, as the data from the true system likely does not include such extreme jumps
in state. In essence, we argue that the gradients generated by the non-adaptive solvers
will result in parameters which make the LNN give less stiff ODEs, which again enables
training with the more accurate adaptive methods down the line. Therefore, an initial
training scheme using simple non-adaptive methods which are far less computationally
expensive could enable much faster training of the LNN. The original paper by Cranmer
et al. does not address these issues at all; in their implementation in Jax, they rely on
jax.experimental.odeint (Cranmer et al. 2020, (code link, line 59)), a Dormand-Prince45
method, and calculate gradients using Jax’s built in autodifferentiation to calculate the
gradients without issue. It should however be noted that they did offer up an initialization
scheme for the LNNs parameters to ease training.

13

https://github.com/MilesCranmer/lagrangian_nns/blob/master/lnn.py

8 Conclusion

We have in this paper presented our implementation of Lagrangian Neural Networks, a
concept first proposed by Cranmer et al. In addition to a technical description of our
implementation, we illustrated a use case on the double pendulum - a simple yet chaotic
dynamical system. Furthermore, we compared the LNN with its natural competitor,
the Neural ODE, on the topics of prediction, energy conservation, and computational
performance. We found the LNN to outperform the NODE on prediction and energy
conservation, but its performance is still quite poor compared to the NODE. This is in
large due to the lack of a better way than finite differences to find the sensitivity. However,
with an automatic differentiation method which can handle nested functions, our scheme
is very easily enhanced to a tremendous degree.

14

References

A self-contained tutorial for LNNs (n.d.). https://colab.research.google.com/drive/1CS-
xfrnTX28p1difoTA8ulYw0zytJkq#scrollTowmRTRTz9SJm8. Accessed: 2023-04-15.

Cranmer, Miles et al. (2020). Lagrangian Neural Networks. arXiv: 2003.04630 [cs.LG].
Greydanus, Sam, Misko Dzamba and Jason Yosinski (2019). Hamiltonian Neural Networks.

arXiv: 1906.01563 [cs.NE].
Lagrangian Mechanics (Wikipedia) (n.d.). https://en.wikipedia.org/wiki/Lagrangian mechanics.

Accessed: 2023-04-15.
Lancaster, Tom and Stephen Blundell (2014). Quantum field theory for the gifted amateur.

eng. Oxford.
Ma, Yingbo et al. (2021). A Comparison of Automatic Differentiation and Continuous

Sensitivity Analysis for Derivatives of Differential Equation Solutions. arXiv: 1812.
01892 [cs.NA].

15

https://colab.research.google.com/drive/1CS-xfrnTX28p1difoTA8ulYw0zytJkq#scrollTow̄mRTRTz9SJm8
https://colab.research.google.com/drive/1CS-xfrnTX28p1difoTA8ulYw0zytJkq#scrollTow̄mRTRTz9SJm8
https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/1906.01563
https://arxiv.org/abs/1812.01892
https://arxiv.org/abs/1812.01892

	Introduction and motivation
	Theory
	Main contribution
	Implementation
	Implementation details
	Description of the training step

	Experimenting on the double pendulum
	Experiments
	Training and prediction
	Energy conservation
	Computational performance

	Results
	Training and prediction
	Energy conservation
	Computational performance

	Discussion
	Conclusion

